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Mechanical Properties and
Deformation Mechanisms of
Heterostructured High-Entropy and
Medium-Entropy Alloys: A Review
Wei Jiang1, Yuntian Zhu1,2 and Yonghao Zhao1*

1Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and
Technology, Nanjing, China, 2Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China

Recently, heterostructured (HS) materials, consisting of hard and soft zones with
dramatically different strengths, have been developed and received extensive attention
because they have been reported to exhibit superior mechanical properties over those
predicted by the rule of mixtures. Due to the accumulation of geometrically necessary
dislocations during plastic deformation, a back stress is developed in the soft zones to
increase the yield strength of HS materials, which also induce forward stress in the hard
zones, and a global hetero-deformation induced (HDI) hardening to retain ductility. High-
entropy alloys (HEAs) and medium-entropy alloys (MEAs) or multicomponent alloys usually
contain three or more principal elements in near-equal atomic ratios and have been widely
studied in the world. This review paper first introduces concepts of HSmaterials and HEAs/
MEAs, respectively, and then reviewed emphatically the mechanical properties and
deformation mechanisms of HS HEAs/MEAs. Finally, we discuss the prospect for
industrial applications of the HS HEAs and MEAs.

Keywords: high-entropy alloy, heterostructured material, microstructure, mechanical property, strength, ductility

INTRODUCTION

Heterostructured Materials
Metallic materials with outstanding mechanical properties, especially high strength and ductility, are
widely used in many engineering fields such as transportation, spacecraft, and industrial
manufacture (Bouaziz et al., 2013; He et al., 2017; Zhao and Jiang, 2018). For example, super
strong metallic materials can significantly reduce the weight of transport vehicles, thus improving
their energy efficiency (Zhao and Jiang, 2018). Therefore, the development of metallic materials with
high strength and ductility is an unremitting research subject for material scientists (Gao et al., 2020).
Nowadays, the challenge for the industrial application of metallic materials is that the strength of
most metallic materials is limited and needs to be further improved to meet the industrial
requirements. Considering the internal mechanism that affects the strength and ductility of
metallic materials, the strength of metallic materials depends on the hindrance of dislocation
motion, while the ductility depends on the ability of dislocation activity, such as dislocation
generation, accumulation, and movement (Hughes et al., 2003; Meyers and Chawla, 2008).
Therefore, one of the traditional strengthening strategies for high-strength materials is to
produce nanostructured materials by grain refinement through severe plastic deformation, such
as equal-channel angular pressing (ECAP) and high-pressure torsion (HPT) (Cao et al., 2018).
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According to the empirical Hall–Petch relationship and classic
Taylor hardening model, the strength of metallic materials
monotonically increases with reducing grain size and
increasing dislocation density (Taylor, 1934; Hansen, 2004).
The introduction of substantial grain boundaries and high
density of dislocations is a powerful approach for blocking
dislocation movement and thus significantly enhances the
strength of metallic materials (He et al., 2017; Jiang et al.,
2021a). Moreover, the introduction of precipitates and solute
atoms to induce precipitation hardening and solid solution
strengthening are also effective means of strengthening (Zhao
et al., 2004; Li et al., 2015; Jiang et al., 2021a).

Unfortunately, these traditional methods of introducing
obstacles, e.g., grain boundaries, dislocations, precipitation, and
solute atoms, to improve strength inevitably limit the
multiplication and accumulation of dislocations. According to
the Hart’s theory (Hart, 1967) and the Considère criterion (Wei
et al., 2004), higher dislocation storage capacity associated with
dislocation multiplication and accumulation means higher strain
hardening, which can help delay the onset of necking during plastic
deformation and prolong ductility. Consequently, the
enhancement of strength through the traditional strengthening
mechanisms always leads to a degradation of ductility, which is
referred to as the strength-ductility trade-off, as shown in Figure 1
(Wang et al., 2002; Ritchie, 2011; Wu et al., 2015; Shahmir et al.,
2016). Actually, the strength-ductility trade-off has always been a
problem in the materials science community, because good
ductility is simultaneously required for high-strength materials
to prevent catastrophic failure during service (Wang andMa, 2004;
Ma and Zhu, 2017). Over the centuries, engineers have been forced
to choose either strength or ductile of metallic materials, not both
as desired (Zhu and Li, 2010).

Previous efforts to resolve this trade-off problem have been
focused on boundary engineering such as coherent twin
boundaries (Lu et al., 2004; Lu K. et al., 2009; Gutierrez-
Urrutia and Raabe, 2011) and phase boundaries (Byun et al.,
2004); the associated strengthening mechanisms are known as
twinning-induced plasticity (TWIP) effect (Gutierrez-Urrutia
and Raabe, 2011) and transformation-induced plasticity

(TRIP) effect (Byun et al., 2004), respectively. TWIP and TRIP
effects generate additional boundaries in-situ for dislocation
storage and significantly reduce the effective grain size,
resulting in secondary strain hardening (Byun et al., 2004;
Gutierrez-Urrutia and Raabe, 2011, 2012; Zhu et al., 2012; Su
et al., 2019) and enhanced ductility. Moreover, the preexisting
twin boundaries can act as both obstacles to dislocation
movement and pathways to dislocation slip and cross-slip,
simultaneously enhancing the strength and ductility (Ming
et al., 2019). However, there are still shortcomings: 1) their
strength may reach a limit with reducing boundary spacing to
nanometers (Lu L. et al., 2009; Li et al., 2010); 2) both the TWIP
and TRIP effects are confined in materials with low stacking-fault
energy (SFE) (Grässel et al., 2000; An et al., 2012); and 3) the yield
strength is low, and a further increase in yield strength will still
lead to a degradation of ductility (Bouaziz et al., 2011).

FIGURE 1 | Traditional strength–ductility trade-off relationship in pure (A) Ti and (B) Cu (Wang et al., 2002; Ritchie, 2011; Wu et al., 2015; Shahmir et al., 2016).

FIGURE 2 | Normalized yield strength versus normalized uniform tensile
strain of metallic materials with homogeneous (banana-shaped shaded
regions) and heterogeneous (solid circle) microstructures. Image adopted
from Ref. Ma and Zhu (2017). with permission from Elsevier.
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More recently, a novel concept of heterostructured (HS)
materials has attracted increasing attention due to their
superior strength-ductility combination (Zhu et al., 2020), as
shown in Figure 2. After years of development, there are several
types of HS materials, including bimodal grain structures (Wang
et al., 2002; Han et al., 2005; Zhao et al., 2008), heterogeneous
lamella structures (HLSs) (Wu et al., 2015; Li J. et al., 2019),
gradient grain structures (Wu X. et al., 2014; Lu, 2014; Wei et al.,
2014; Qin et al., 2019), laminate structures (Qin et al., 2019), dual-
phase structures (Li et al., 2016), harmonic structures (Sawangrat
et al., 2014), andmetal matrix composites (Choudhuri et al., 2018;
Liu et al., 2018). What they have in common is that all these HS
materials consist of very diverse microstructures: the mixture of
hard and soft zones with dramatically different strengths (Wu
and Zhu, 2017). The strength difference between the hard and
soft zones can be achieved by adjusting the crystal structures
(Zhao et al., 2017), defect concentration (Yang M. et al., 2018;
Ming et al., 2019), and just the grain size ranging from
nanometers to millimeters (Wang et al., 2002). For example, a
simple thermomechanical treatment of Cu skillfully avoids the
traditional strength–ductility paradox through the bimodal grain
structures, in which a small amount of micron-size grains
randomly distribute in nanocrystalline (NC) and ultrafine
grain (UFG) matrices (Wang et al., 2002).

The key concept for HS materials to increase strength while
retaining ductility is to enhance the strain hardening ability and
thus in turn delay plastic instability. As shown in Figure 3, HS
materials experience a unique deformation process during
tension, compared to homogeneous materials. Once loaded,
both the hard and soft zones start elastic deformation first
(Wu and Zhu, 2017). After the simultaneous elastic
deformation stage, the soft zones begin plastic deformation,
while the hard zones are still in elastic status. Constraints

resulting from the hard zones will be imposed on the soft
zones to inhibit its free plastic deformation. Consequently,
geometrically necessary dislocations (GNDs) will be generated
and pile up against zone interfaces due to mechanical
incompatibility of hard and soft zones. The induced GNDs
can produce long-range internal stress, i.e., back stress, in soft
zones to offset the applied shear stress, making them appear
stronger to withstand higher shear stress (Wu and Zhu, 2017; Zhu
and Wu, 2019). Meanwhile, the stress concentration caused by
dislocation piling up at zone interfaces induces forward stress in
hard zones to make hard zones appear weaker (Zhu and Wu,
2019). As evidenced by the increasing works in recent years, the
hetero-deformation-induced (HDI) hardening effect (Zhu and
Wu, 2019), induced by the interaction between back stresses and
forward stresses, exert extra strain hardening in HS materials and
thus enhanced the yield strength and ductility (Zhu and Wu,
2019; Liu et al., 2020). With the flow stress further increasing, the
hard zones start yielding to accommodate the stress
concentration (Zhu and Wu, 2019). Finally, both the hard and
soft zones are deforming plastically, while the soft zones bear
higher plastic strain, leading to a strain partitioning. However, the
continuity of zone boundaries requires the same plastic strain for
adjacent soft and hard zones. Thus, strain gradient is necessary
near the zone interface to accommodate the strain partitioning
(Zhu and Wu, 2019). There is clear evidence that rapid
accumulation of GNDs in the hetero-zone boundary-affected
regions (HBARs) (Wu and Zhu, 2021) will result in a
significant HDI effect at low strain (>4.5%), while dislocation
hardening dominates at higher strain levels (Fang et al., 2020).

There is no doubt that the HS materials have microstructural
requirements for the optimum mechanical properties, such as
volume fraction of soft zones, interface spacing, and distribution
of hard zones (Ma et al., 2016; Huang et al., 2018; Liu et al., 2020).
For instance, thinner interface spacing results in a synergetic
improvement of strength and ductility in copper/bronze
laminates (Ma et al., 2016). In the vicinity of zone boundaries,
the accumulation of GNDs results in a (HBAR) of a few
micrometers. The optimum spacing is that the adjacent
HBARs begin to overlap to maximize the hardening capacity,
after which the strength–ductility trade-off occurred (Huang
et al., 2018). Likewise, the volume fractions of the gradient
structure have a significant influence on the strength and
ductility of gradient structural pure copper (Yang et al., 2015).
The optimum gradient structure volume fraction of 0.08–0.1
produces an excellent strength–ductility combination (Yang
et al., 2015). Moreover, the strength–ductility combination in
HS materials can be optimized by adjusting the volume and
density of boundaries between the hard and soft zones to
maximize the strain/stress partitioning and strain gradient
between the zones (Ma and Zhu, 2017; Wu and Zhu, 2017).
For guidance of material design, Zhu et al. have made numerous
efforts to systematically study the effectiveness of various HS
structural materials (Wu and Zhu, 2017). With regard to the
gradient structures, the dynamic migration of interfaces from the
coarse-grained core to the nanograined layer makes the
successive deformation over the sample and suppresses strain
localization (Lu, 2014). However, the limited interface density of

FIGURE 3 | The plastic deformation process of heterogeneous materials
during tension. Image adopted from Ref. Wu and Zhu (2017) with permission
from Taylor and Francis.
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gradient structures weakens the density of accumulated
dislocation and thus their capability of back-stress work
hardening (Wu X. et al., 2014; Lu, 2014). For bimodal
structures (Wang et al., 2002; Han et al., 2005; Zhao et al.,
2008), the problem that still exists is that the limited interface
density cannot effectively maximize the HDI stress strengthening
potential. For dual-phase steels with hard zones embedded in the
soft matrix, the continuous soft matrix induces high ductility but
relatively low yield strength (Calcagnotto et al., 2011; Li et al.,
2016). For harmonic structures with soft zones surrounded by
hard zones, strength can be further improved by tuning the
interface spacing and volume fraction of hard zones
(Sawangrat et al., 2014). In contrast, the heterogeneous lamella
structures (HLSs) present the best strength–ductility combination
(Wu et al., 2015). By asymmetric rolling and partial
recrystallization, HLS Ti featured with soft lamellae zones
embedded in the hard lamella matrix was architected (Wu
et al., 2015). The high constraint of the soft zones by the hard
matrix renders high strength, and the strong strain partitioning
also renders extraordinary strain hardening and consequent
increased ductility (Wu et al., 2015).

High Entropy Alloy
While alloys of dilute solid solutions are still being researched,
there is a continuous surge worldwide in developing alloys of
concentrated solid solutions—medium-entropy alloys (MEAs)
and high-entropy alloys (HEAs) (Zhang et al., 2014; Gludovatz
et al., 2016; Ding et al., 2019). Different from traditional dilute
solid solution alloys with only one principal element and some
other elements in minor quantity, the MEAs/HEAs are
nominally equiatomic or near-equimolar multicomponent
alloys typically with three or more principal elements. This
concept, first pointed out by Yeh et al. (Yeh et al., 2004) and
Cantor et al. (Cantor et al., 2004), results in a paradigm shift in
the alloy design concept toward the unexplored center region of
the phase diagram and broadens the field of scope on alloy
design (Miracle and Senkov, 2017; Sathiyamoorthi and Kim,
2020; Jiang et al., 2021b). MEAs are composed of three or more
principal elements with near-equal atomic percentages
(Gludovatz et al., 2016), and their configurational entropies
are in the range of 1–1.5R (R � 8.314 mol−1·K−1). HEAs are
comprised of five or more principal elements with near-equal
atomic percentages (Zhang et al., 2014), and their
configurational entropies are larger than 1.5R (Miracle et al.,
2014). Due to the high mixing entropy associated with a
disordered solution of several elements, both MEAs and
HEAs can form stable single-phase solid solutions, in which
atoms with different sizes are homogeneously distributed in the
ideal situation. However, enthalpic interactions unavoidably
change the local chemical order (LCO) in MEAs and HEAs,
leading to short-range ordering (SRO) and/or incipient
concentration waves. Notwithstanding the uncertainty of
LCO, a mixture of atoms of diverse sizes results in severe
lattice distortion, presenting frequent short-range resistance
to dislocation slip, in this manner to maximize the solid
solution strengthening effect in MEAs and HEAs (Yeh et al.,
2007; Tsai et al., 2013; Li Q.-J. et al., 2019; Jiang et al., 2021c).

Thus, the MEAs/HEAs exhibit remarkable properties and spark
a lot of research interests among materials scientists.

After years of research, there are four unique core effects
summarized in HEAs, which are relatively unusual in
conventional alloys: high entropy effect, sluggish diffusion
effect, lattice distortion effect, and cocktail effect (Tsai et al.,
2013; Tsai and Yeh, 2014; Song et al., 2017; Li et al., 2021). These
effects are closely related to the phase stability, microstructures,
and mechanical properties of MEAs/HEAs. Nevertheless, the
high entropy effect is still debatable. In some research, the
high mixing entropy was confirmed that can stabilize MEA/
HEA solution phases rather than intermetallic and complex
phases (Yeh et al., 2004; Tsai and Yeh, 2014). Works on
CoCrFeNi HEA argue the absence of long-range ordering,
indicating the formation of really disordered solid solutions
(Lucas et al., 2012). However, both first-principle density
functional theory (DFT)-based simulations and direct
experimental observation also verify the presence of LCO in
MEAs/HEAs (Ding et al., 2018; Li Q.-J. et al., 2019; Chen
et al., 2021).

Hitherto, it has been broadly demonstrated that both MEAs
and HEAs have extraordinary mechanical properties over a wide
temperature range from elevated to cryogenic temperatures (Jo
et al., 2017; Yang M. et al., 2019; Gao et al., 2019; Jiang et al.,
2021c). For instance, almost all the traditional high-temperature
alloys tend to lose both strength and ductility at high
temperatures, while equiatomic NbMoTaW and VNbMoTaW
refractory HEAs sustain high strength at elevated temperatures
more than 1,000°C (Senkov et al., 2011). At room and cryogenic
temperatures, researchers attempt to introduce deformation
substructures of stacking faults, deformation twins, and
hexagonal close-packed (HCP) phase into MEAs/HEAs by
tailoring the SFE (Zaddach et al., 2013). As evidenced by first-
principle electronic structure calculations, the SFEs of MEAs/
HEAs can be tuned by tailoring the atomic proportions of
individual components. For example, the SFE of CrMnFeCoNi
HEA is determined as approximately 25.5–27.3 mJm−2, and that
of Cr26Mn20Fe20Co20Ni14 HEA is as low as 3.5 mJm−2 (Zaddach
et al., 2013). These induced deformation substructures contribute
to improve the strain hardening ability and leads to high tensile
strength and ductility. As exemplified, Li et al. designed a
metastable Fe50Mn30Co10Cr10 HEA to induce interface
hardening and dynamic transformation induced hardening
effects and consequently overcome the traditional
strength–ductility trade-off (Li et al., 2016). Moreover, the
prototypical Cantor alloy (CoCrFeMnNi) and its variants and
subsets such as Cr26Mn20Fe20Co20Ni14 HEA, CoCrFeNi HEA,
and CoCrNi MEA are proven to possess remarkable cryogenic
properties such as enhanced strength and ductility and superior
fracture toughness, which are ascribed to their low SFEs and high
propensity for twinning and phase transformation (Zaddach
et al., 2013; Gludovatz et al., 2014; Gludovatz et al., 2016).
More recently, LCO is confirmed to have significant influence
on the SFE, which results in the increase of the SFE with the
increase of the LCO (Ding et al., 2018). Furthermore, LCO affects
the critical stress for dislocation slip and dislocation storage
capacity in the bulk material, thus in turn affecting strain
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hardening in single phase MEAs/HEAs (Jiang et al., 2021c). The
dislocation slip in MEAs/HEAs has to continuously overcome the
activation barriers created by LCO. In turn, MEAs/HEAs with
LCO may exhibit higher strength.

Unfortunately, the yield strength of MEAs/HEAs is relatively
low, especially for those with single-phase face-centered cubic
(FCC) structures, which will greatly limit their industrial
application prospects. Traditional methods to improve yield
strength, such as solid solution strengthening (He et al., 2020),
precipitation strengthening (Ming et al., 2017), and grain
boundary strengthening (Sathiyamoorthi et al., 2019b),
inevitably cause a degradation of ductility. The simple MEAs/
HEAs are not exempted from the dilemma of the
strength–ductility trade-off. Therefore, based on the novel
alloy design concept with multi-principal elements, it is
anticipated to achieve superior mechanical properties by
further tuning the microstructures of HEAs/MEAs to fabricate
HS structures. This review paper introduces the concept of HS
MEAs/HEAs and then emphatically overviews the mechanical
properties and deformation mechanisms of HS MEAs/HEAs.
Finally, we discuss the prospects and industrial applications of the
HS MEAs/HEAs.

HS HEAS

Heterogeneous Gradient Structure
A typical gradient structure is featured by a microstructural
gradient at a macroscopic scale, which shows gradually
increased grain size, increased substructure size, and reduced
defect density from the surface layer to the interior layer (Wu X.
L. et al., 2014; Yang et al., 2016; Bian et al., 2017; Pan et al., 2021).
Due to the existing grain size gradient and/or the defect density
gradient, the gradient structures possess prominent mechanical
incompatibility, thus in turn leading to a macroscopic strain
gradient and complex stress state, which needs to be
accommodated by accumulated GNDs. The gradient structural
materials usually show superior strength–ductility synergy, which
are ascribed to either mechanically driven grain growth of the
unstable nanostructured surface layer (Fang et al., 2011) or extra
strain hardening caused by the presence of the strain gradient
combined with the stress state change for the mechanically stable
gradient structure (Wu X. et al., 2014; Wu X. L. et al., 2014; Bian
et al., 2017). The intrinsic synergetic strengthening effect induced
by the gradient structure is even much higher than the sum of the
strength of individual layers, as calculated by the rule of mixtures
(Wu X. L. et al., 2014).

The common methods for producing gradient materials
include surface mechanical grinding treatment (SMGT) (Li
et al., 2008), surface mechanical rolling treatment (SMRT)
(Chen et al., 2020), surface mechanical attrition treatment
(SMAT) (Yang et al., 2016), and rotationally accelerated shot
peening (RASP) (Hasan et al., 2019; Liang et al., 2020). However,
these surface treatment techniques produce only thin
nanostructured surface layers with a depth of a few hundred
micrometers (∼200 μm) along the thickness direction of
materials. In contrast, torsion, especially the HPT process, can

produce larger-scale gradient structures along the diameter of the
samples (Cao et al., 2011; Cao et al., 2014).

RASP was used to prepare gradient structural CoCrFeNiMn
HEA (Hasan et al., 2019). Along the thickness direction, there
exist gradient microstructures (Figure 4), such as gradients in
twin and dislocation densities, and hierarchical nanotwin, which
contribute to the strain hardening capability and mechanical
properties (Hasan et al., 2019). Compared to the coarse grain
(CG), the CoCrFeNiMn HEA with gradient structures (RASP1)
shows enhanced strength (418 MPa) and ductility (45%)
(Figure 4) (Hasan et al., 2019). However, an appropriate
gradient structure profile is essential for the effective
improvement of mechanical properties. Simultaneously
enhanced strength and ductility can be realized in a gradient
structure with an undeformed core sandwiched between two thin
deformed surface layers (RASP1), while the fully deformed
gradient structure profile (RASP3) will double the yield
strength but sacrifice ductility (Hasan et al., 2019). This is due
to the higher strain gradient in the gradient samples with the thin
gradient structure profile, thus in turn promoting the generation
and accumulation of GNDs to enhance the yield strength and
strain hardening.

Gradient structures produced by SMRT are closely related to
the processing passes, in which the depth of the surface gradient
layer increases with increasing SMRT passes. For the
(Fe40Mn40Co10Cr10)96.7C3.3 HEA with a gradient structure,
enhanced strength (from 429 to 765 MPa) together with
considerable ductility (20.5%) is achieved, due to the high
HDI hardening (Chen et al., 2020). The gradient structure
containing dislocations and twins produces multiaxial stress
state and strain gradient under tensile deformation, which
contributes to the accumulation of GNDs, leading to the
improvement of strength higher than the prediction of the
rule of mixture.

Cyclic dynamic torsion (CDT) processing was used to obtain a
gradient microstructural Al0.1CoCrFeNi HEA (Chen et al., 2019a;
Chen et al., 2019b). Along the radial direction, grain size
gradually decreases from CG (∼130 μm) at the center to fine
grain (FG, ∼8 μm) at the surface layer, as shown in Figure 5.
Moreover, numerous deformation structures, such as
deformation twins, dislocations, and microbands, form due to
the torsional strain. The gradient structure results in a gradient
distribution of hardness, which decreases from 3.4 GPa in surface
layers to 2.6 GPa at the center (Chen et al., 2019a). A combination
of high yield strength (850 MPa) and ductility (19%) indicates the
important role of gradient microstructures (Chen et al., 2019b).
More recently, Pan et al. designed a novel gradient nanoscaled
dislocation–cell structures in Al0.1CoCrFeNi HEA, which lead to
enhanced strength (539 MPa) and little sacrificed ductility
(42.6%) (Pan et al., 2021). Numerous low-angle dislocation
cells provide nucleation sites for the formation of stacking
faults and deformation twins, thereby contributing to extra
strengthening, work hardening, and ductility (Pan et al., 2021).

Asymmetric rolling (ASR) followed by annealing is a novel
strategy for producing CoCrFeMnNi HEA with gradient
microstructures (Han et al., 2018). Different from the
homogeneous structures achieved by symmetric rolling and
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annealing treatment, ASR and subsequent annealing processing
produce a gradient structure. The surface layers contain UFGs
(∼500 nm), while the center consists of FGs (∼2 μm) (Han et al.,
2018). The combined effects of fine-grain strengthening and HDI
hardening induced by the gradient microstructure give rise to a
superior combination of strength (930 MPa) and ductility (42%).

During the tensile deformation of gradient structures,
elastic–plastic deformation occurs immediately after the initial
elastic deformation between the center CG regions and the
gradient surface layer, thus in turn resulting in an

elastic–plastic interface. As the deformation continues, the
grains in the inner gradient layer gradually reach the yielding
state and begin to deform plastically, leading to the dynamic
movement of the elastic–plastic interface toward the surface. Due
to the mechanical incompatibility between the center CG regions
and the gradient surface layer, they significantly constrain each
other during tensile deformation (Yang et al., 2015; Li et al.,
2017). The CG core is subjected to tensile stresses laterally, while
the gradient surface layer is subjected to compressive stresses
along the gradient direction. These biaxial stress states can
effectively activate more slip systems and improve the
dislocation activities. Moreover, the mutual constraint between
the central CG region and the gradient layer during the plastic
deformation results in strain gradients near the interfaces to
sustain the strain continuity, causing the generation and
accumulation of GNDs at the interface. Some surface
treatment processes, e.g., SMAT and SMRT, will also
introduce the compressive stress, developing multiaxial stress
states (Moering et al., 2016). The combined effect of the piling-up
of GNDs and multiaxial stress states results in the superior
strength–ductility combination in gradient structural materials
(Table 1).

It has been substantiated that there exist optimal gradient
thickness condition and microstructures within the gradient layer
to optimize the strain hardening capacity and mechanical
properties. Hasan et al. (Hasan et al., 2019) used different
RASP parameters to produce a series of gradient structural
CoCrFeNiMn HEAs with different gradient structural profiles.
This accordingly results in different mechanical properties.
Among the gradient structural CoCrFeNiMn HEAs, samples
subjected to more severe deformation exhibit an obvious fine-
grained layer, while those subjected to mild deformation only
exhibit TBs, high-angle grain boundaries, and low-angle grain
boundaries distributed along the gradient direction (Hasan et al.,

FIGURE 4 | (A)Gradient microstructures of CG, RASP1, and RASP3 samples along depths from the surface. (B) Engineering stress–strain curves for CG, RASP1,
and RASP3 samples. Insets are the 3D surface topography for RASP1 and RASP3 after tensile deformation. Image adopted from Ref. Hasan et al. (2019) with
permission from Elsevier.

FIGURE 5 | A schematic diagram of the gradient microstructural
Al0.1CoCrFeNi HEA after DT processing, showing coarse grain area,
intermediate area, and the fine grain area along the radial direction (Chen et al.,
2019b; Mao et al., 2021).
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2019). The former shows the dramatic improvement of yield
strength but scarified ductility, while the latter shows the
simultaneously enhanced strength and ductility (Figure 4).
This is attributed to the optimal gradient structures of a
sandwich structure with a CG core and a thin layer of
gradient structure on each side of the surface, improving
mechanical properties due to the hierarchical twin structures
in the gradient structural layers and the prominent strain gradient
induced during the subsequent tensile deformation (Hasan et al.,
2019). Besides, the surface treatment processes and the geometry
of the tensile samples will lead to the difference in stress state and
thus in turn influence the mechanical properties of the materials
with gradient structures (Moering et al., 2016). For example, the
SMAT and RASP processes can produce rod and flat samples,
respectively. For the former, the ductile core is fully confined by
the hard-outer surface and subjected to complex stress states,
while for the latter, the ductile core is not confined in the lateral
surface and subjected to biaxial stress states (Hasan et al., 2019;
Chen et al., 2020).

Heterogeneous Grain Structure
“Smaller is stronger” means that grain refinement from CG to
nano-grain (NG) results in extreme improvement in strength for
conventional materials. However, low ductility has always been a

problem for NG materials. Scientists are always looking for
materials that have both the strength of NG and the ductility
of CG. Recently, a heterogeneous material with bimodal and/or
multimodal grain structures is a novel material design strategy to
unite the advantages of both CG materials and NG materials,
which present high strain hardening rate and superior strength
and ductility combination (Wang et al., 2002).

Inspired by this concept, many strategies are explored to
produce bimodal structural materials (Table 2). Both bimodal
Fe30Co30Ni30Ti10 MEA and Fe25Co25Ni25Al7.5Cu17.5 HEA
produced by mechanical alloying and following spark plasma
sintering exhibit high compressive strength (>1.7 GPa) and
enhanced plasticity, as compared to their CG counterparts (Fu
et al., 2016; Fu et al., 2018). The combined effect of local
temperature gradient in SPS processing and sluggish diffusion
effect of MEAs/HEAs results in the inhomogeneous grain size,
where the Fe30Co30Ni30Ti10 MEA consists of CGs (>1 μm) and
NGs and the Fe25Co25Ni25Al7.5Cu17.5 HEA is comprised of NGs
and UFGs (>200 nm) (Olevsky and Froyen, 2009; Tsai et al.,
2013). HPT followed by annealing processing successfully
produces bimodal microstructures in CoCrNi MEA
(Sathiyamoorthi et al., 2019b; Schuh et al., 2019). Annealing
parameters such as temperature and time play an important role
in the ratio of bimodal grains and thus in turn influence the

TABLE 1 | List of the processing steps (P), yield strength (YS), ultimate tensile strength (UTS), and uniform elongation (UE) of MEAs/HEAs reported with gradient structure.
AN—annealing; EP-USR—electropulsing-assisted ultrasonic surface rolling; SP—shot peening.

Alloys P YS (MPa) UTS (MPa) UE (%) References

CoCrFeMnNi ASR, AN 700 930 42 Han et al. (2018)
Al0.1CoCrFeNi CDT 510 850 19 Chen et al. (2019b)
Al0.1CoCrFeNi CT 539 690 42 Pan et al. (2021)
(Fe40Mn40Co10Cr10)96.7C3.3 SMRT 587 885 40.4 Chen et al. (2020)
(Fe40Mn40Co10Cr10)96.7C3.3 SMRT 765 956 20.5 Chen et al. (2020)
CrCoFeNiMn RASP 418 720 45 Hasan et al. (2019)
CrCoFeNiMn RASP 610 680 15 Hasan et al. (2019)
CoCrFeMnNi EP-USR 750 802 21.9 Xie et al. (2020a)
CoCrFeNiMo0.15 Torsion 724 904 27 Wu et al. (2017)
FeCoCrNiMo0.15 SP 486 855 46.8 Guo et al. (2020)
CoCrNi Torsion 760 880 31 Liu et al. (2021a)
CoCrNi Torsion, AN 930 1,050 27 Liu et al. (2021b)

TABLE 2 | List of the heterogeneous structures (H) and mechanical properties of MEAs/HEAs reported with heterogeneous grain structure. “-” represents the
compressive test.

Alloys H YS (MPa) UTS (MPa) UE (%) References

Co25Ni25Fe25Al7.5Cu17.5 NG + UFG -1795 -1936 -10.6 Fu et al. (2016)
Ti10Fe30Co30Ni30 NG + CG -1830 -2024 -18.7 Fu et al. (2018)
Cr20Fe6Co34Ni34Mo6 FG + UFG 1,100 1,300 29 Ming et al. (2019)
V10Cr15Mn5Fe35Co10Ni25 FG + CG 761 936 28.3 Jo et al. (2017)
Al0.1CoCrFeNi UFG + FG + CG 711 928 30.3 Wu et al. (2019b)
Al0.1CoCrFeNi FG + CG 525 784 37 Wang et al. (2019)
CrMnFeCoNi FG + UFG 625 855 50.7 Bae et al. (2017)
CoCrFeNiMn UFG + CG 1,298 1,390 9.4 Xie et al. (2020b)
CoCrNi NG + UFG + FG 1,150 1,320 22 Yang et al. (2018a)
CoCrNi UFG + FG 797 1,360 19 Slone et al. (2019)
CoCrNi FG + UFG 928 1,191 28 Sathiyamoorthi et al. (2019a)
CrCoNi CG + NG 1,452 1,520 10 Schuh et al. (2019)
CoCrNi UFG + FG 1,435 1,580 24 Sathiyamoorthi et al. (2019b)
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mechanical properties. For the CoCrNi MEA annealed at 500°C/
100 h, the mixture of NG and FG structures gains the ultra-high
strength (1,500 MPa) and decent ductility (10%) combination
(Schuh et al., 2019). By contrast, Sathiyamoorthi et al.
(Sathiyamoorthi et al., 2019b) doubled the ductility (24%) of
CoCrNi MEA with comparable strength (1,580 MPa) via HPT
and followed annealing processing (600°C/1 h). Bimodal grain
structures comprised of UFGs and FGs are responsible for the
superior strength–ductility synergy. This observation indicates
that the bimodal grain structure with UFGs and FGs seems to be
better than that with NGs and FGs.

More strikingly, material design strategies for fabricating
three-level heterogeneous grain structures, characterized by
mixture of NGs, UFGs, and FGs, are successfully controlled
(Table 2). Through partial recrystallization, Yang et al. (Yang
M. et al., 2018) produced a HS CoCrNi MEA with a large span of
grain size from NG to FG, imparting gigapascal yield strength
(1,150 MPa) and high ductility (22%). Similarly, the
CoCrFeNiAl0.1 HEA with multiscale grains was produced by
cold-rolling and intermediate temperature annealing, which is
featured by three types of grains consisting of stretched grains
(∼20 μm), deformed grains (1–20 μm), and recrystallized grains
(0.2–5 μm) (Wu S. W. et al., 2019). The thermomechanical
treatments induced a difference in grain sizes, and dislocation
density leads to a superior combination of yield strength
(711 MPa) ductility (30.3%) (Wu S. W. et al., 2019).

According to the “smaller is stronger,” NGs and/or UFGs in
either bimodal or multimodal MEAs/HEAs serve as hard zones,
while CGs serve as soft zones. Such HS materials present extra
strain hardening ability, attributing to the generation and
accumulation of GNDs to accommodate the strain gradient at
zone interface (Wang et al., 2002). Moreover, partitioning of
stress and strain comes into being at the zone interface, inducing a
high stress concentration upon plastic deformation. Such stress

concentration will achieve the critical resolved shear stress
(CRSS) for twinning and generate twinned NGs, which in turn
results in greater inhomogeneity (Yang M. et al., 2018).
Significant HDI hardening effects together with the TWIP
effects result in the superior strength–ductility synergy.

HLS
The HLS is featured by the soft micro-grained lamellae embedded
in the hard UFG/NG lamella matrix (Figure 6). This material
design strategies can also effectively unite the advantages of both
CG materials and nanostructured materials to achieve excellent
mechanical properties. Wu et al. (Wu et al., 2015) produced an
HLS Ti, which presents an unprecedented property combination:
as strong as UFG metals and as ductile as CG metals (Wu et al.,
2015). HDI stress results in the unusual high strength, while HDI
hardening and dislocation hardening lead to the high ductility
(Wu et al., 2015).

For fabricating the HLSs, some approaches are typically
employed, such as powder metallurgy with different size
particles and asymmetrical rolling followed by annealing to
obtain recrystallization with laminar distribution (Wu et al.,
2015; Huang et al., 2017). Zhang et al. (Zhang et al., 2018;
Zhang et al., 2019) successfully produced two kinds of MEAs
with HLSs through thermomechanical processing (rolling and
annealing). After cold rolling, numerous deformed structures,
such as deformation bands, shear bands, and microbands, are
formed, which depends on the original grain size (Zhang et al.,
2019). After subsequent annealing, these deformed structures
evolve into different annealing structures, forming HLSs. Partial
recrystallization occurs to form recrystallized grains with sizes
between 3 and 7 μm in the shear bands due to the high dislocation
density (Zhang et al., 2019), while some UFGs with sizes less than
1 μm form in the large deformation bands (Zhang et al., 2019).
The difference in the fraction of precipitates between the large
deformation bands and shear bands has great influence on the
behavior of recrystallization and grain growth. With increasing
annealing time, the recrystallization and grain growth in large
deformation bands occur, while these behaviors are much slower
in shear bands due to the much more precipitate-induced Zener
pinning effect (Zhang et al., 2018; Zhang et al., 2019). Thus, the
rolling and subsequent annealing process results in the
nonuniform grain size and the formation of the HLSs
comprising of a UFG-FG lamella structure or FG-CG lamella
structure (Zhang et al., 2019). The HS structure leads to a good
combination of strength and ductility compared to simple FG and
CG samples (Zhang et al., 2018).

The key advantage of materials with HLSs is the enhanced
strain hardening ability (Wu et al., 2015; Wu and Zhu, 2017),
which can prevent the early onset of necking (Hart, 1967). Due
to the distribution of soft and hard lamella structures,
corresponding to the CG and UFG grains, lots of GNDs are
introduced to accommodate the strain gradients in order to
avoid the formation of voids during the loading process. UFG
lamellae with higher yield strength surround and constrain the
soft CG lamellae, leading to the accumulation and block of
dislocations in the CGs. Thus, yielding occurs in CG lamellae
first due to the higher resolved shear stress from dislocation pile-

FIGURE 6 | Schematics of the lamella structure with elongated soft
coarse-grained domains embedded in an ultrafine-grained matrix. Image
adopted from Ref. Wu and Zhu (2017) with permission from Taylor and
Francis.
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ups at the CG/UFG interface (Eshelby et al., 1951). Pile-ups of
GNDs will also induce the long-range back stress, which resists
the movement of dislocations in the CG lamellae and thus
enhance strain hardening (Wu et al., 2015). With further
increase in tensile load, the UFG lamellae begin plastic
deformation, and hence the overall strength is enhanced by
the HDI stress. The MEAs/HEAs with HLSs present remarkable
mechanical properties, as shown in Table 3.

Heterogeneous Phase Structure
Eutectic structure
The approach of introducing two phases has been successfully
used in MEAs/HEAs such as eutectic HEAs (Lu et al., 2014; Gao
et al., 2017). Generally, the eutectic HEAs consist of alternate

layers of soft FCC and hard B2 phases (Baker et al., 2016; Wang
et al., 2016; Jin et al., 2018b; a; Jin et al., 2019; Wu Q. et al., 2019;
Dong et al., 2020), which possess a dramatic difference in strength
and hardness. Like conventional dual-phase steel, the eutectic
HEAs are typical HS materials that present a superior
combination of strength and ductility, as shown in Table 4.

Among the numerous eutectic HEAs, AlCoCrFeNi2.1 is the
most widely investigated. Through different thermomechanical
treatments, such as warm-rolling, cryo-rolling, cold-rolling, and
subsequent annealing process, the heterogeneous microstructures
of the AlCoCrFeNi2.1 eutectic HEA can be further tuned to
achieve superior mechanical properties, as shown in Figure 7
(Bhattacharjee et al., 2018; Shukla et al., 2018; Reddy et al., 2019;
Shi et al., 2019). Warm-rolled (750°C) AlCoCrFeNi2.1 eutectic

TABLE 3 | List of the heterogeneous structures and mechanical properties of MEAs/HEAs reported with HLSs.

Alloys H YS (MPa) UTS (MPa) UE (%) References

FeNiCoAlTaB FG + UFG 586 1,050 23 Zhang et al. (2019)
FeNiCoAlTaB FG + CG 484 890 43 Zhang et al. (2019)
FeNiCoAlCrB FG + CG 330 690 34 Zhang et al. (2018)
FeNiCoAlTaB FG + CG 851 1,400 30 Zhang et al. (2020)
FeNiCoAlTaB FG + CG 1,100 1700 10 Zhang et al. (2020)

TABLE 4 | A collection of reported HEAs with completely eutectic microstructure.

Alloys Eutectic structure YS (MPa) UTS (MPa) UE (%) References

AlCrFeNi3 (FeCrNi)-FCC + (AlNi)-B2 626 1,200 10.1 Dong et al. (2020)
CrFeNi2.2Al0.8 (FeCrNi)-FCC + (AlNi)-B2 479 956 12.7 Jin et al. (2019)
Ni30Co30Cr10Fe10Al18W2 (FeCoCrNi)-FCC + (AlNi)-B2 700 1,266 20.3 Wu et al. (2019a)
Fe20Co20Ni41Al19 (Fe, Co)-rich L12 + (AlNi)-B2 577 1,103 18.7 Jin et al. (2018b)
Fe28.2Ni18.8Mn32.9Al14.1Cr6 (Fe, Mn, Ni)-FCC + (AlNi)-B2 599 868 19.5 Baker et al. (2016)
Fe36Ni18Mn33Al13 (Fe, Mn, Ni)-FCC + (AlNi)-B2 270 578 22.8 Wang et al. (2016)
Al17Co14.3Cr14.3Fe14.3Ni40.1 L12 + B2 479 1,067 14 Jin et al. (2018a)
Al17Co28.6Cr14.3Fe14.3Ni25.8 FCC + B2 476 1,001 14.8 Jin et al. (2018a)
Al17Co14.3Cr14.3Fe28.6Ni25.8 FCC + B2 731 1,145 10.3 Jin et al. (2018a)

FIGURE 7 | Eutectic lamellate structures in AlCoCrFeNi2.1 HEA by thermomechanical treatments. (A) Cryo-rolling and annealing (Bhattacharjee et al., 2018), (B)
cold-rolling and annealing (Shi et al., 2019). Image adopted with permission under the terms of Creative Common License.
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HEA presents a heterogeneous microstructure characterized by
the mixture of the retained lamellar region of B2 and FCCwith B2
phases inside the FCC lamellar and non-lamellar regions
consisting of disordered FCC, precipitated B2, and Cr-rich
sigma phases (Reddy et al., 2019). The heterogeneous
microstructures produced by cold-rolling and cryo-rolling and
subsequent annealing are quite different. Through cold-rolling
and following annealing, the AlCoCrFeNi2.1 eutectic HEA
consists of hard and soft lamellae with recrystallized grains
and substantial B2 precipitates (Shukla et al., 2018; Shi et al.,
2019). The cryo-rolling and subsequent annealing result in an
HLS comprising of fine alternative FCC and B2 lamellar
structures and coarse non-lamellar regions (Bhattacharjee
et al., 2018). The fine FCC and B2 lamellae are filled with
recrystallized UFGs (∼200–250 nm) and low-angle grain
boundaries, respectively, while the coarse non-lamellar regions
are featured by ultrafine FCC (∼200–250 nm), coarse
recrystallized FCC grains, and coarse uncrystallized B2 phase
(∼2.5 μm) (Bhattacharjee et al., 2018). However, the Cr-rich
sigma phases observed in the warm-rolled (750°C)
AlCoCrFeNi2.1 eutectic HEA were not observed in the HEA
processed by cold-rolling and cryo-rolling.

Despite of the difference in thermomechanical treatments, all
these remarkable HS AlCoCrFeNi2.1 eutectic HEAs with high
lamella density obtain an outstanding strength–ductility
combination with gigapascal yield strength and ductility of
over 15% (Table 5). This is attributed to the constraint effect
originated from the lamellae. Upon plastic deformation, the hard
B2 lamellae and the intergranular B2 precipitates provide rigid
deformation constraint to FCC lamellae, resulting in generation
and accumulation of GNDs at the lamellar interface and at the
FCC-B2 interphase. This in turn makes the soft FCC lamellae
stronger and improves the overall yield strength of
AlCoCrFeNi2.1 eutectic HEAs. Further plastic deformation
results in the synergistic deformation of both hard and soft
lamellae, with soft FCC lamellae bearing a higher strain,
leading to the more substantial HDI hardening effect.
Moreover, the aligned lamellar structure and ductile FCC
matrix can delay crack propagation and coalescence, thereby
delaying the onset of global necking (Shi et al., 2019; Shi et al.,
2021).

Precipitation structure
As utilized in traditional materials, precipitations can be
introduced in the grain interior to enhance the accumulation
of dislocations when they intersect or bypass precipitations. This

will result in strain hardening and consequently higher ductility.
Moreover, the precipitations will impede the slip of dislocations
and increase the stress required for dislocation movement. Thus,
precipitation strengthening is an important strategy for
improving the yield strength of MEAs/HEAs. This approach
has been reported by several groups with the addition of Al,
Cu, and Mo alloying elements to produce multiphase structures.
Various kinds of precipitations, such as σ, μ, B2, BCC, and L12
phases, have been compounded in MEAs/HEAs to achieve
superior mechanical properties (Table 6). It should be noted
that, in order for this approach to be effective, the concentration
of the alloying elements and the thermomechanical processing
need to be optimized (Shahmir et al., 2016).

A multiphase hierarchical microstructure in Al0.3CoCrNi
MEA was achieved by cold-rolling and annealing
(Sathiyamoorthi et al., 2019c). After annealing, the multiphase
hierarchical microstructure features non-recrystallized regions,
partial recrystallized regions with fine (3 ± 2 μm) and coarse (14 ±
3 μm) grains, and hierarchical distribution of σ phase
(100–500 nm) and B2 precipitates (300–400 nm). This
Al0.3CoCrNi MEA with a multiphase hierarchical
microstructure presents an excellent combination of high yield
strength (1 GPa), high tensile strength (1.2 GPa), and high
ductility (∼28%). Similarly, the CoCrFeNiMo0.3 HEA
strengthened by σ and μ particles presents a yield strength of
816 MPa and a ductility of ∼19% (Liu et al., 2016). By using
different thermomechanical processings, Choudhuri et al.
fabricated a three-phase microstructure consisting of FG FCC,
ordered B2, and σ phase in Al0.3CoCrFeNi HEA (Choudhuri
et al., 2019). Strikingly, the Al0.3CoCrFeNi HEA with a three-
phase microstructure shows a fourfold increase in yield strength
and more significant work hardening ability compared to that
with only the FCC microstructure.

The thermomechanical processing-induced precipitations
have significant effects on the mechanical properties of MEAs/
HEAs. First, the precipitations promote the formation of
heterogeneous grain structures. The difference in dislocation
density and interface energy induced by plastic deformation
results in heterogeneous nucleation and distribution of
precipitation (Gwalani et al., 2018; Sathiyamoorthi et al.,
2019c). Meanwhile, the heterogeneous precipitations can delay
the recrystallization process and facilitate partial recrystallization
with formation of fine and coarse recrystallized grains
(Sathiyamoorthi et al., 2019c; He et al., 2020). Second,
precipitations offer an important strengthening effect. Both the
experiments by transmission electron microscopy and molecular

TABLE 5 | List of the processing steps (P), eutectic structure (S) and mechanical properties of reported eutectic HEAs. AC–—as cast, WR—warm rolling, CR—cold rolling,
CryoR—cryo rolling, AN—annealing, A—aging.

Alloys P S YS (MPa) UTS (MPa) UE (%) References

AlCoCrFeNi2.1 eutectic HEA AC FCC + B2 1,100 18 Gao et al. (2017)
WR 1,192 1,635 18 Reddy et al. (2019)
50%CR, AN 1,110 1,340 10 Shukla et al. (2018)
84%CR, AN 1,490 1,638 16 Shi et al. (2019)
CryoR, AN 1,437 1,562 14 Bhattacharjee et al. (2018)
70%CR, AN, A 1,009 1,476 19 Xiong et al. (2020)
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dynamic simulations have demonstrated that the ordered B2 and
σ phases will raise the local stress levels to facilitate deformation
twinning (Choudhuri et al., 2019). Furthermore, direct
observation by EBSD shows the heterogeneous distribution of
strain induced by the heterogeneous microstructures, with higher
strain accumulation in uncrystallized regions and FGs
(Sathiyamoorthi et al., 2019c). The outstanding mechanical
properties of MEAs/HEAs with multiphase hierarchical
microstructure are attributed to the combined effect of
hierarchical constraints to the deformation of the major phase.
The combination of strengthening from HDI stress induced by
heterogeneous structures and effective stress induced by nano-
precipitates results in high strength, while the GNDs and twins
lead to a remarkable strain hardening rate and thus high ductility.

Dynamic phase transformation
It has been documented that the deformation mechanisms in
FCC materials perform as a function of SFE, which can be
summarized as the following: 1) SFEs for dislocation slip are
higher than 60 mJm−2; 2) SFEs for twinning are in the range of
20–60 mJm−2; and 3) SFEs for transformation from the FCC to
HCP phases are lower than 20 mJm−2 (Remy and Pineau, 1977;
Saeed-Akbari et al., 2012). The low SFE promotes the dissociation
of unit dislocation into partial dislocations and suppresses the
unit dislocation slip. Furthermore, the low SFE reduces the CRSS
for phase transformation, and hence it enhances the TRIP effects,
leading to dynamically accumulating dislocations and hardening
of alloys during deformation. Therefore, MEAs/HEAs with
extremely low SFE usually experience dynamic phase
transformation from FCC to HCP and achieve simultaneously
enhanced strength and ductility.

Utilizing this concept, metastable dual-phase Fe80-
xMnxCo10Cr10 (at%) HEAs were developed, which overcome
the traditional strength–ductility trade-off (Li et al., 2016). By
tuning the Mn content, the authors realized the transition of
dominating deformation mechanisms from dislocation slip to the
TWIP effect in metastable HEAs, due to the lower Mn content-
induced reduction of SFE. Finally, the Fe50Mn30Co10Cr10 HEA is
composed of the dual-phase microstructure with ∼28% HCP
phase and ∼72% FCC phase (Li et al., 2016). Upon plastic
deformation, sustaining phase transformation from the FCC to

HCP phases is realized through the formation of stacking faults
on alternative slip planes. The phase transformation-induced
high-phase boundary density creates additional obstacles for
dislocation slip, thereby contributing to higher strain
hardening in the dual-phase Fe50Mn30Co10Cr10 HEA than in
the single-phase HEAs (Li et al., 2016). In conclusion, the
increased interface density and the massive solid solution
strengthening result in greatly improved strength, while at the
same time the dislocation plasticity and transformation-induced
hardening lead to enhanced ductility. The synergic deformation
of the two phases leads to a highly beneficial dynamic
strain–stress partitioning effect, and thus the combined
increase in strength and ductility (Li et al., 2016).

Similarly, Su et al. developed an HS interstitial carbon-doped
HEA (Fe49.5Mn30Co10Cr10C0.5 (at%), which exhibits excellent
mechanical properties (Su et al., 2019). Through a
thermomechanical process (cold-rolling and annealing at
600°C), the authors can fine-tune the microstructures of the
HEAs to form a trimodal grain structures featured by fine
recrystallized grains (<1 µm) related to shear bands, medium-
sized grain (1–6 µm) recrystallized from the retained FCC phase,
and large non-recrystallized grains from the reverted FCC phase
(Figure 8) (Su et al., 2019). The tri-modal grain structure shows
superior combination of yield strength and ductility compared to
the fully recrystallized coarse and FGs. Nano-twins and grain
refinement account for the improvement in yield strength, and
multistage work hardening associated with the TWIP and TRIP
effects accounts for the enhanced ductility (Su et al., 2019).

The transformation nucleus of FCC usually occurs in the
SF–SF intersections, which has been revealed in the FCC/BCC
transformation in Co25Ni25Fe25Al7.5Cu17.5 HEA by molecular
dynamic simulation (Li et al., 2018). In addition, the nano-
HCP laths may form in the presence of nano-twins, leading to
the formation of nano-twin–HCP composite lamellae. The
nanocomposite of the dual-phase mixture offers an optimal
balance of strain and stress benefits and decreases the
possibility of damage nucleation due to their elastic
compliance. Without the adjustment to the deformation via
twinning and/or dislocation slip, the deformation attributed
solely to the single HCP phase transformation is prone to
produce damage to the tensile specimen, thereby leading to a

TABLE 6 | List of the strengthening phase (P) and mechanical properties of MEAs/HEAs reported with multiphase hierarchical microstructure.

Alloys P YS (MPa) UTS (MPa) UE (%) References

(FeCoNiCr)94Ti2Al4 L12, Ni2AlTi 645 1,094 39 He et al. (2016)
CoCrFeNiMo0.3 σ, μ 816 1,187 19 Liu et al. (2016)
Al0.5Cr0.9FeNi2.5V0.2 Ni3Al, BCC 1800 1900 9 Liang et al. (2018)
Al0.3CrFeNi L12, B2 1,074 1,302 8 Dasari et al. (2020)
Ni30Co30Fe13Cr15Al6Ti6 L12 925 1,310 35 Yang et al. (2019b)
(CoCrNi)94Al3Ti3 L12 750 1,300 40 Zhao et al. (2017)
Al0.5CrFeCoNiCu L12 850 1,300 35 Yang et al. (2018b)
Al7Co23.26Cr23.26Fe23.26Ni23.26 L12, B2 490 825 48 Borkar et al. (2016)
(Fe25Co25Ni25Cr25)94Ti2Al4 L12, L21 645 1,094 39 He et al. (2016)
Al3.7Cr18.5Fe18.5Co18.5Ni37Cu3.7 L12 719 1,048 30.4 Wang et al. (2017)
Al3.64Co40.9Cr27.27Fe27.27Ni40.9Ti5.45 L12 640 830 10 Kuo and Tsai, (2018)
Al3.31Co27Cr18Fe18Ni27.27Ti5.78 L12 952 1,306 20.5 Chang and Yeh, (2018)
Al10Co25Cr8Fe15Ni36Ti6 L12 596 1,039 20 Daoud et al. (2015)

Frontiers in Materials | www.frontiersin.org January 2022 | Volume 8 | Article 79235911

Jiang et al. Review on Heterostructured High-Entropy Alloys

18

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


premature fracture even though the TRIP effect is contributed to
a high strain hardening effect. When compared with the
hardening effect from TBs, the HCP lamellar structure would
be an effective barrier for dislocation slip since the transmission
of edge-component dislocations into the HCP phase would
require the activation of either <c> or < c + a> dislocation
with a component along (0001) (Miao et al., 2017; Lu et al., 2018).
The <c> or < c + a> dislocation typically exhibits extremely high
CRSS in HCP materials.

Heterogeneous Structure by Additive
Manufacturing
The additive manufacturing technique, including selective laser
melting and direct laser deposition, can also produce bulk
heterogeneous structures in HEAs/MEAs, without any post-
processing (e.g., homogenization, severe plastic deformation,
and annealing). The additive manufacturing technique
possesses unique forming mode (e.g., melt pool connection,
layer-by-layer deposition, high cooling rate, and
nonequilibrium solidification). Thus, the produced
heterogeneous structures are usually featured by melt pools,
columnar grains, cellular dislocation structures, twinning,
solute heterogeneity, and precipitation (Zhu et al., 2018; Park
et al., 2019; Kim et al., 2020; Luo et al., 2020; Wang et al., 2020).

In the single-phase CoCrFeMnNi HEA produced by selective
laser melting, the three-dimensional dislocation network
structures are observed (Zhu et al., 2018). Such unique
dislocation networks generate by the substantial interaction
between dislocation slip bands and cellular dislocation walls
and show no misorientation with the matrix. These cellular
dislocation structures can efficiently accommodate and trap
dislocations to bring about remarkably dislocation hardening,
thereby resulting in an outstanding combination of high strength
(609 MPa) and excellent ductility (34%) (Zhu et al., 2018).

Luo et al. fabricate a dual-phase AlCrCuFeNix (x � 2.0, 2.5,
2.75, 3.0) HEA with BCC and FCC structures using selective laser
melting (Luo et al., 2020). The AlCrCuFeNix HEA exhibits an
excellent combination of strength (957 MPa) and ductility
(14.3%), which is attributed to the heterogeneous
microstructures and distinct deformation mechanisms in FCC
and BCC phases (Luo et al., 2020). The deformation of FCC
phases is carried by planar dislocation slip and stacking faults,
while high densities of Cr-rich nano-precipitates promote the
formation of deformation twins and stacking faults in BCC

FIGURE 8 | A schematic diagram of producing Fe49.5Mn30Co10Cr10C0.5 with bimodal and trimodal microstructures (Su et al., 2019).

FIGURE 9 | Yield strength versus uniform elongation of MEAs/HEAs with
homogeneous structures (below banana-shaped region) and various
heterostructures. (GS, HGS, HLS, ES, and PS are gradient structure,
heterogeneous grain structure, heterogeneous lamella structure,
eutectic structure, and precipitation structure, respectively).
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phases. Moreover, the strain-induced phase transition from BCC
to FCC contributes to the strain hardening and ductility.

However, there remains a paucity of studies on the nature and
the inherent formationmechanisms of the heterogeneous structures
in additively manufactured materials. Much more effort is required
to understand the influence of processing parameters to design
HEAs/MEAs with superior mechanical properties.

SUMMARY AND FUTURE ISSUES

This review paper introduces HS and HEA concepts and
emphatically reviews the microstructure, mechanical properties,
and deformation mechanisms of HS MEAs/HEAs. The HS design
can enhance strain hardening capacity and delay plastic instability,
effectively evading the paradox between strength and ductility
observed in metallic materials with conventional strengthening
strategies. The introduction of HS into MEAs/HEAs helps to
achieve a superior strength–ductility synergy, as shown in
Figure 9. The HS MEAs/HEAs should be comprised of different
microstructures characterized by large strength difference, which
induces stress and strain partitioning upon tensile deformation and
thus leads to GND pile-up and HDI-stress effects.

From the previous reported mechanical properties of MEAs/
HEAs with heterostructure, the field is still in its incipient stage
and the great potential in next-generation structural and
functional applications spanning diverse fields remains to be
explored, such as transportation, energy sustainability (nuclear
reactors and hydrogen storage), aerospace applications, and

biomedical applications. Meanwhile, the shortcomings in the
field of high-entropy alloy research must be faced up to,
which is the transition from laboratory explorations to
practical engineering applications. For example, strength and
ductility are the concern for laboratory investigations whereas
a complex application environment must be considered for
practical applications. In this sense, more application-driven
and building-up of benchmarking for commercial application
is also a crucial step in exploring MEAs/HEAs. Most importantly,
the expense could by and large be a decisive issue for utilizations
of MEAs/HEAs, which requires careful contemplations.
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To reduce the energy-intensity and carbon footprint of Portland cement (PC), the prevailing
practice embraced by concrete technologists is to partially replace the PC in concrete with
supplementary cementitious materials [SCMs: geological materials (e.g., limestone);
industrial by-products (e.g., fly ash); and processed materials (e.g., calcined clay)].
Chemistry and content of the SCM profoundly affect PC hydration kinetics; which, in
turn, dictates the evolutions of microstructure and properties of the [PC + SCM] binder.
Owing to the substantial diversity in SCMs’ compositions–plus the massive combinatorial
spaces, and the highly nonlinear and mutually-interacting processes that arise from SCM-
PC interactions–state-of-the-art computational models are unable to produce a priori
predictions of hydration kinetics or properties of [PC + SCM] binders. In the past
2 decades, the combination of Big data and machine learning (ML)—commonly
referred to as the fourth paradigm of science–has emerged as a promising approach
to learn composition-property correlations in materials (e.g., concrete), and capitalize on
such learnings to produce a priori predictions of properties of materials with new
compositions. Notwithstanding these merits, widespread use of ML models is
hindered because they: 1) Require Big data to learn composition-property correlations,
and, in general, large databases for concrete are not publicly available; and 2) Function as
black-boxes, thus providing little-to-no insights into the materials laws like theory-based
analytical models do. This study presents a deep learning (DL) model capable of producing
a priori, high-fidelity predictions of composition- and time-dependent hydration kinetics
and phase assemblage development in [PC + SCM] pastes. The DL is coupled with: 1) A
fast Fourier transformation algorithm that reduces the dimensionality of training datasets
(e.g., kinetic datasets), thus allowing the model to learn intrinsic composition-property
correlations from a small database; and 2) A thermodynamic model that constrains the
model, thus ensuring that predictions do not violate fundamental materials laws. The
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training and outcomes of the DL are ultimately leveraged to develop a simple, easy-to-use,
closed-form analytical model capable of predicting hydration kinetics and phase
assemblage development in [PC + SCM] pastes, using their initial composition and
mixture design as inputs.

Keywords: deep learning, sustaianability, hydration kinetic, prediction, thermodynamics

INTRODUCTION

Concrete–a mixture of Portland cement (PC); water; sand; and
stone–is the principal material used in the construction of all
forms of physical infrastructure; and, more generally, the built
environment. At the current global level of production—∼4.5
gigatonnes (Gt) every year (Lange and Clare, 2013; Gartner and
Hirao, 2015; Biernacki et al., 2017; Scrivener et al., 2018)—PC
requires 11•1018J of thermal energy; (Gartner and Hirao, 2015;
Ludwig and Zhang, 2015; Schneider, 2015; Biernacki et al., 2017;
He et al., 2019); which is equivalent to the energy generated from
the combustion of ∼1.3 billion barrels of crude oil. (Schneider
et al., 2011; Schneider, 2015; Cadavid-Giraldo et al., 2020; Ighalo
and Adeniyi, 2020). When we account for emission of greenhouse
gases, especially CO2, the statistics exacerbate alarmingly:
(Gartner and Hirao, 2015; Ludwig and Zhang, 2015;
Schneider, 2015): PC’s production-and-use accounts for ∼9%
of all anthropogenic CO2 emissions. (Miller, 2013; Schorcht,
2013; Dowling et al., 2015). As the global population rises to
10 billion by 2050, (United Nations, 2019), the demand for PC
concrete infrastructure–and, thus, the concomitant energy
demand and CO2 emissions–are expected to continually
increase in the future.

To alleviate the energy-intensity and carbon footprint of PC’s
production-and-use, the construction community has
emphasized partial substitution of PC (up to 60%mass) with
supplementary cementitious materials (SCMs: limestone;
quartz; metakaolin; fly ash; slag; etc. (Mehta and Monteiro,
1976; Johari et al., 2011; Juenger et al., 2012; Juenger and
Siddique, 2015; Biernacki et al., 2017; Juenger et al., 2019)).
However, much research is still required to comprehensively
understand and describe the underlying composition-reaction-
microstructure-property correlations in low-PC or [PC + SCM]
binders (i.e., pastes; mortars; and concretes). Such
understanding–when distilled down to theories, and
subsequently, as closed-form mathematical equations–would
offer the ability to produce a priori predictions of binders’
properties, just using their compositions (plus a few other
easy-to-measure attributes, e.g., mixture proportion and
fineness of precursor materials) as inputs. This would be
greatly beneficial, as it would substantially reduce the time and
cost of conducting experiments to determine the binders’
properties; and would allow end-users to manipulate (e.g.,
enhance) the binders’ properties by simply finetuning their
composition.

While the needs and benefits of a priori predictions of
cementitious binders’ properties (from their compositions) are
clear, developing theory-based models that are actually capable of
producing accurate predictions is not straightforward. This is

largely because, in all PC-based binders (e.g., plain paste [PC +
SCM] paste; etc.), the development of properties (e.g., strength) is
dictated by the hydration of PC, a complex process involving the
reaction of PC with water. (Taylor, 1997). The aforesaid
complexity–which has, in effect, stymied the development of
accurate, predictive models–arises from the presence of
numerous anhydrous (i.e., unreacted) and hydrated phases
(i.e., hydration products) within the binder at any given age
(Mehta and Monteiro, 1976; Thomas et al., 2011; Cook et al.,
2021a). A typical, commercial PC comprises C3S, C2S, C3A, and
C4AF (plus C$H2)—where: C � CaO; S � SiO2; A � Al2O3; $ �
SO3; F � Fe2O3; and H � H2O–and all of these phases
concurrently undergo hydration at distinct rates upon contact
with water, and produce distinct sets of hydrates. (Bullard et al.,
2011; Cook et al., 2019a). Many past studies (Breval, 1976; Vovk,
2000; Chen and Juenger, 2011; Kumar et al., 2012; Quennoz and
Scrivener, 2012; Lapeyre et al., 2020; Cook et al., 2021a) have
attempted to describe PC hydration by investigating simpler
variants of PC pastes; for example, pure C3S and
C3S-C3A-gypsum pastes. While these studies have provided
foundational understanding of intrinsic composition-reaction-
microstructure-property correlations in simpler systems, this
understanding falls short of explaining hydration (and the
ensuing development of microstructure and properties) in
low-PC binders. For instance, in [PC + SCM] binders,
chemical interactions of the SCM with anhydrous cementitious
phases (e.g., C3S; and C3A) and hydrates–that occur alongside the
hydration of the anhydrous phases–can be difficult to explain or
predict based on our knowledge gained from simpler systems.
Complexities resulting from metakaolin–for example–are well-
documented in both binary (Lapeyre and Kumar, 2018; Lapeyre
et al., 2019) and ternary pastes; (Cook et al., 2021b); as it can act as
both a pozzolan and a filler, (Lapeyre and Kumar, 2018; Lapeyre
et al., 2019), as well as contribute to carboaluminate hydrate
formation. (De Weerdt et al., 2011; Antoni et al., 2012; Vance
et al., 2013a; Ramezanianpour and Hooton, 2014).

To predict the properties of a given (PC + SCM) binder (e.g.,
paste) at a specific age, it is critical to know the binder’s phase
assemblage [i.e., volume fractions of anhydrous PC; anhydrous
SCMs; hydrates; and capillary pores]; which, in turn, depends on
the rate and extent of hydration of PC in the binder. Isothermal
calorimetry has emerged as the dominant technique among
cement chemists to measure the rate and extent (degree) of
hydration of PC in cementitious binders. This technique
measures time-resolved exothermic heat release from the
hydration of PC (and other endothermic and exothermic
reactions, if any). This heat–generally speaking–is much larger
in magnitude compared to minor amounts of thermal energy
associated with interactions of SCMs with other components of
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the binder (Cook et al., 2021b). The heat evolution (or
calorimetry) profiles thus obtained can be processed to
determine the degree of reaction (or hydration) of PC in the
binder as a function of time. (Bullard et al., 2011; Cook et al.,
2021b). Figure 1 shows representative isothermal calorimetry
profiles (i.e., time-resolved heat flow rate; and cumulative heat
release) of a type I/II PC paste. These heat evolution profiles can
be coupled with thermodynamic simulations to describe the
evolution of a binder’s phase assemblage (i.e., volume fractions
of anhydrous PC and SCMs; hydrates; and capillary pores) with
respect to time or the degree of hydration of PC. Gibbs Energy
Minimization Software (GEMS)—designed for geochemical
modeling (Wagner et al., 2012; Kulik et al., 2013)—has
become a popular tool for such thermodynamic simulations.
(Lothenbach and Winnefeld, 2006; Lothenbach et al., 2008; De
Weerdt et al., 2011). More specifically: isothermal calorimetry
results and GEMS simulations–when combined–can describe,
with reasonable accuracy, the phase assemblage of a PC-based
binder with respect to time; which can be further analyzed to
qualitatively or quantitively predict the properties of the binder.
With that said, the combination of isothermal calorimetry and
GEMS still cannot produce a priori predictions of time-resolved
phase assemblage of a new binder. This is because experimental
measurement of the new binder’s heat evolution profiles, or PC’s

hydration kinetics, would still be required. And, to reiterate the
point made earlier, due to our lack of understanding of
underlying composition-reaction correlations, state-of-the-art
kinetic models (e.g., phase boundary nucleation and growth
models with constant, (Thomas, 2007), or variable growth rate
(Oey et al., 2016; Ley-Hernandez et al., 2018; Lapeyre et al., 2019))
are unable to produce reliable predictions of heat evolution
profiles of PC-based systems. Furthermore, although these
kinetic models can reproduce heat evolution profiles,
experiments are required to determine key parameters (e.g.,
constant or time-dependent growth rate of CSH) for the
models. Consequently, these models are unable to produce a
priori predictions of calorimetry profiles of cementitious systems.

Recent studies (Cook et al., 2021b; Lapeyre et al., 2021) have
shown that machine learning (ML) models–once trained from a
sufficiently large calorimetry database–can produce a priori
predictions of heat evolution profiles (i.e., time-dependent heat
flow rate and cumulative heat release) of PC-based binders,
including binary and ternary [PC + SCM] pastes. Despite the
successes of these studies, there are still few challenges that need
to be addressed. 1) In both studies, (Cook et al., 2021b; Lapeyre
et al., 2021), relatively homogenous databases were used to train
and test the prediction performance of the ML model. To better
explain the aforesaid homogeneous nature of the databases: in one
study, (Lapeyre et al., 2021), a database comprised of calorimetry
profiles of (synthetic PC + SCM) pastes was used; whereas, in the
other, (Cook et al., 2021c), a database comprised of calorimetry
profiles of (commercial PC + SCM) pastes was used. It is unclear
if the prediction performance of the ML models would decline if
the two databases were to be combined to produce a singular,
highly heterogeneous–yet a moderately low-volume–database.
The authors hypothesize that for such a highly heterogeneous
database, it is important to reduce the dimensionality
(complexity) of the database; to make it easier for the ML
models to learn the intrinsic input-output correlations during
their training. Fourier transformation–which has historically
been used for signal processing, and processing of 2D and 3D
images obtained from various techniques (e.g., spectroscopy;
(Fromherz and Guenther, 2005); microstructures generated
from micro- and nano-indentation apparatuses; (Passoja and
Psioda, 1981; Hao et al., 1993); electron microscopy; (Buseck
et al., 1988; Zeng et al., 2016) etc.;)—is a promising tool for
dimensionality-reduction of numerical databases. This is because
of Fourier transformation’s innate ability to maintain most of the
information–except for the redundant ones–contained within the
database of interest, but in a much simpler, near loss-less format
(Duhamel and Vetterli, 1990). Preservation of pertinent
information in the database–while reducing the
redundancies–not only simplifies the initial transformation,
but also the reverse transformation (i.e., from the reduced to
the original dimensional form) (Duhamel and Vetterli, 1990).
Although Fourier transformation has never been used to treat or
process calorimetry databases, the authors hypothesize that its
use could substantially enhance the prediction performance of
ML models, especially when working with complex, highly
heterogeneous database with a relatively small volume. This
hypothesis will be tested in this study. 2) The ML models used

FIGURE 1 | Heat flow rate profile (blue), depicting the kinetics of PC
hydration during four stages that manifest within the first 24 h after mixing (I)
initial period (II) induction period (III) acceleration period; and (IV) deceleration
period (Bullard et al., 2011; Cook, 2020; Cook et al., 2021b). The initial
period corresponds to wetting of PC particulates (upon contact with water)
and their rapid dissolution. The induction period corresponds to a period of
slow dissolution of PC particulates, and precipitation of small amounts of
hydrates (Bullard et al., 2011; Scrivener et al., 2015). The acceleration and
deceleration periods are associated with a short burst of nucleation and
subsequent growth of hydrates (Bullard, 2008; Bazzoni, 2014; Bazzoni et al.,
2014; Bullard et al., 2015; Scrivener et al., 2015). The heat flow rate profile can
be used to estimate the time-dependent extent/degree of reaction of PC (red).
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in the two studies (Cook et al., 2021b; Lapeyre et al., 2021) cited
above–while good at producing a priori predictions of heat
evolution profiles of [PC + SCM] pastes–were not constrained
in any way. The authors hypothesize that if these ML models are
constrained–e.g., using thermodynamic rules as constraints–their
prediction performance would improve. Importantly, it would be
less likely for the models’ predictions to violate basic
thermodynamic rules. Testing this hypothesis is another focus
of this study. 3) The studies (Cook et al., 2021b; Lapeyre et al.,
2021) cited above used ML models that function–more or less–as
black-boxes; providing little-to-no insights into the materials laws
like closed-form analytical models do. This is a problem, because
end-users–who do not have access to ML models–would not gain
any benefits from such ML models. It is, thus, important to
capitalize on the training of the ML models–and the cause-effect
correlations established by them–to develop simple, closed-form
analytical models that are accessible to all end-users, irrespective
of their knowledge of, or access to, ML models.

In this study, a deep learning (DL) model–trained from a
heterogenous, low-volume database of heat evolution profiles of
[PC + SCM] pastes–is implemented to produce a priori, high-
fidelity predictions of composition- and time-dependent
hydration kinetics, and phase assemblage development in

(PC + SCM) pastes. The SCMs used in this study include
permutations-and-combinations of limestone; quartz; silica
fume; and metakaolin. To enhance the prediction
performance, the DL model is coupled with: 1) A fast Fourier
transformation (FFT) algorithm that reduces the dimensionality
of database; and 2) A thermodynamic constraint (obtained from
thermodynamic simulations of phase assemblages) that ensures
that the predictions do not violate fundamental materials laws.
The DL model is used to quantify the influence of each input
variable (e.g., contents of SCMs and C3S in the binder) on the
resultant properties of the binder; thereby allowing the distinction
between consequential and inconsequential variables (in terms of
their influence on hydration kinetics). On the premise of this
understanding, an easy-to-use, closed-form analytical model is
developed; and it is shown that this model–despite its simplicity
and fewer input requirements–can produce reliable, a priori
predictions of hydration kinetics and phase assemblage
development in (PC + SCM) pastes.

MODELING METHODS

An original Fourier transform-deep learning (FT-DL) model was
developed in this study. The model was trained: first, using a
synthetic database for benchmarking and validation (described in
section 3.1); and second, using database of isothermal
calorimetry profiles of (PC + SCM) pastes (described in
section 3.2). The trained model was subsequently employed to
produce predictions of outputs in blank data-domains of the
synthetic database, and hydration kinetics of new (PC + SCM)
pastes. Prediction performance of the model was rigorously
appraised by comparing its predictions against actual values.
Figure 2 shows the architecture of the FT-DL model. As can
be seen, this model unites the fast Fourier transformation (FFT)
algorithm with the deep learning (DL) model. Details of the DL
model–which is premised on the random forests model that has
been in our previous studies (Cook et al., 2021b; Lapeyre et al.,
2021; Xu et al., 2021)—can be found in Supplementary Section
S1 of Supplementary Information S1

The calorimetry database used for training and validation
of FT-DL model is composed of: 1) Input variables:
physicochemical properties of (PC + SCM) pastes (e.g.,
mixture design; and physical attributes such as specific
surface areas (SSAs) of the PC and SCM measured using
static light scattering); and 2) Output: time-resolved heat
flow rate profiles, obtained from isothermal calorimetry.
First, the model is trained using a large fraction of the
database. Prior to the training, dimensionality of the heat
flow rate profiles (in the training database) is reduced using
the FFT algorithm. Next, during the training, the model finds
the underlying correlations between input variables and the
FFT-transformed heat flow rate profiles. The trained FT-DL
model is then validated against a testing database (the
remaining minor fraction of the database that is kept
hidden from the model during its training). The model
leverages its training to predict the FFT-transformed heat
flow rate profiles in relation to physicochemical properties of

FIGURE 2 | Schematic of the original FT-DL model, developed in this
study, to predict hydration kinetics (i.e., heat flow rate and cumulative heat
release) of (PC + SCM) pastes. For prediction of cumulative heat release,
thermodynamic constraint–obtained from simulations of phase
assemblages in the pastes–is used to provide guidance to the model, and
constrain its outputs.
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pastes in the testing database. Finally, the model’s predictions
are reverse-transformed, back to time-dependent heat flow
rate profiles–akin to those obtained from isothermal
calorimetry–using the inverse FFT algorithm. In select
cases (e.g., to predict the cumulative heat release of pastes
at 24 h; see section 3.3), thermodynamic simulations of phase
assemblages in the pastes are used to provide theoretical
guidance to the FT-DL model, and to constrain its outputs.
These predictions are then compared against experiments. To
evaluate the accuracy of predictions produced by the FT-DL
model, five statistical parameters–mean absolute error (MAE);
mean absolute percentage error (MAPE); root mean squared
error (RMSE); Person correlation coefficient (R); and
coefficient of determination (R2)—are used. Relevant
equations that describe these parameters–the measures of
errors in the model’s predictions–can be found in our
previous studies. (Cook et al., 2019b; Cai et al., 2020).

Fourier transform (FT) is a signal-processing technique that is
used to convert a complex waveform from its original domain
(e.g., time) to a representation in the frequency domain, and vice
versa. (Cochran et al., 1967; Bergland, 1969; Higgins, 1976).
Time-to-frequency domain conversion, when done for a
dataset comprising a finite number of data-records spanning a
finite range (as opposed to functions, e.g., sin (x), that are
continuous over an infinite domain) (Duhamel and Vetterli,
1990), is called discrete-time Fourier transform (DFT; shown
in )

Ar � ∑
N−1

k�0
Xke

−2πirk/N

r � 0,/, N − 1

(1)

where Ar is the r
th coefficient of the DFT; Xk represents the k

th

sample of the time series which consists of N samples; i � ���−1√
;

and N is the number of data points.

In this study, FFT algorithm–a simple and efficient
algorithm, designed to obtain discrete-time Fourier
transformations of complex datasets–is used to reduce the
dimensionality (or complexity) of heat flow rate profiles of
[PC + SCM] pastes. (Cooley and Tukey, 1965). Compared to
competing algorithms (e.g., conventional DFT), FFT is
computationally more efficient. This is because the number
of required operations is reduced from N2 to N log2N. In
general, the FFT algorithm splits the N-point transformation
into 2 N/2-point transformations in each step. Then, in an
iterative manner, each subset is bifurcated, until the final
subset only has a 1-point transformation. Overall, each
point requires log2N splits, resulting in Nlog2N operations
for generating N-point transformations. The FFT algorithm is
described in Eq. (2). Figure 3 shows representative examples
of FFT transformation of heat flow rate profiles of pastes. As
can be seen, the transformed profiles are much simpler than
their original counterparts. Information contained within the
transformed profiles (Figure 3B) can be expressed using far
fewer number of datapoints than the corresponding original
versions (Figure 3A). This is important because such
reduction in number of datapoints substantially reduces the
time and computational resources (e.g., memory) needed for
the FT-DL model’s training. Furthermore, as the number of
inflection (i.e., non-differentiable) points in the transformed
profiles are significantly lower than in the original ones, it is
much easier for the FT-DL model to establish input-output
correlations from the transformed profiles as compared to the
original ones.

Ar � ∑
N/2−1

k�0
X2ke

−4πirk/N +X2k−1e−2πir(2k+1)/N

k � 0,/,
N

2
− 1;

r � 0,/, N − 1

(2)

FIGURE 3 | (A) Original and (B) FFT-transformed heat flow rate profiles of representative plain and (PC + SCM) pastes. As can be seen, FFT transformation
significantly reduces the dimensionality (complexity) of the profile; thereby making is easier andmore (computationally) efficient for the FT-DLmodel to statistically analyze
the datasets–and learn input-output correlations–during its training.
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RESULTS AND DISCUSSION

Validation of the FT-DL Model
The FT-DL model described in section 2.0 differs from the ML
models used in our previous studies (Cook et al., 2021b; Lapeyre
et al., 2021; Xu et al., 2021) (i.e., DL model based on random
forests) in one key respect: In the FT-DL model, the database is
FFT-transformed, prior to the model’s training, so as to reduce
the database’s dimensionality; whereas in the DL model, the
database is used in its pristine form. In section 2.0, it was
argued that the FFT-transformation of the database ensures
better training of FT-DL model; thereby, resulting in
improvement of its prediction performance. To justify this
argument, the prediction performance of the FT-DL model
was compared against that of the DL model; using a synthetic
database featuring a highly nonlinear, and non-monotonous
relationship between the input (X) and the output (Y). Within
the database, the complex input-output relationships are
represented by a composite mathematical function (Eq. (3)).
This function consists of three separate functions: exponential;
trigonometric; and hyperbolic. Here, X is the input; Y is the
output; and A, B, and C are coefficients ranging from 0-to-2. The
synthetic database was populated with ∼20,000 data-series (i.e., Y
as a function of X), created by randomly assigning an
independent set of coefficients (i.e., randomly chosen values of
A, B, and C within the pre-selected range of 0-to-2); while varying
X from 0.2 to 4.0 with a step-size of 0.2.75% of data-series were
randomly selected from the database, and used to train the FT-DL
and DL models. The remaining 25% were used to probe and
compare the prediction performances of the two models.

Y � exp( −1
X + A

) + sin[π(B + x)] + C

X
(3)

Figure 4 shows representative predictions (of data-series
included in the testing database) produced by the DL and FT-
DLmodels; the actual data-series, calculated directly from Eq. (3),
are also shown. As can be seen, the prediction performance of the
FT-DL model is clearly superior to that of the DL model. This

result is in agreement with our previous studies, (Cook et al.,
2019b; Han et al., 2020a; Han et al., 2020b), wherein we have
shown that standaloneMLmodels–including the random forests-
based DL model–generally exhibit moderate-to-poor prediction
performance over datasets that feature highly nonlinear and non-
monotonous input-output correlations. The FT-DL model–in
which the database is FFT-transformed prior to the model’s
training–produces accurate predictions; because the FFT
transformation substantially reduces the nonlinearity and non-
monotonicity of the database, by transforming it from the
original domain to the frequency domain (see Figure 3). Put
in another way: the FFT algorithm converts each data-series to a
simple, broadly monotonic Y-X relationship; thereby, making it
easier for the FT-DL model to establish the underlying
mathematical relationship between the output and input. The
DL model–on the other hand–must employ brute-force statistical
methods to establish Y-X relationship from the highly complex
data-series; and, consequently, is susceptible to missing key
inflection points (peaks and troughs) and other vicissitudes
(e.g., sharp changes in Y occurring over small ranges of X) in
the data-series.

Prediction of Heat Flow Rate Profiles of
Pastes
Results in section 3.1 demonstrate that the FT-DL model can
produce accurate predictions; even in data-domains featuring
complex input-output correlations. Since Y-X relationships
shown in Figure 4 are similar in nature to heat flow rate
profiles of (PC + SCM) pastes, it is reasonable to posit that
the FT-DLmodel would produce more accurate predictions of PC
hydration kinetics compared to those produced by the DL model.
To test this hypothesis, a calorimetry database–comprising heat
flow rate profiles of (PC + SCM) pastes–was consolidated from
our two prior studies. (Cook et al., 2021b; Lapeyre et al., 2021).
The combined database consists of eight types of PCs: one
commercial cement (CC; type I/II PC); and seven synthetic
cements (SCs). Phase compositions of the 8 PCs are shown in

FIGURE 4 | Representative predictions of Y of mathematical functions produced by the DL and FT-DL models plotted against calculated Y values. The input, X,
ranges from 0.2 to 2.0. The coefficients (A–C) used in the functions, and the models’ prediction accuracies (R2), are shown in the legends.
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Table 1. The SCMs comprise permutations-and-combinations of
quartz (QZ); limestone (LS); metakaolin (MK); and silica fume
(SF). Other details of this database are described in
Supplementary Section S2.0. The parent database was split
into training and testing databases. The training database
consisted of 13,416 data-records from 559 (PC + SCM) pastes;
and the testing database consisted of 960 data-records from 40
(PC + SCM) pastes. The training database was used for training
the FT-DL model (and the DL model for comparison), and
optimizing the models’ hyperparameters. The testing database
was used to evaluate the prediction performance of the trained
models against experimental measurements. Both databases
include physicochemical attributes of the pastes as inputs: C3S
content (%mass); C2S content (%mass); C3A content (%mass); C4AF

content (%mass); C$H2 content (%mass); types (integers) and
contents (%mass) of SCMs; specific surface area (SSA) of PC
and SCMs (cm (Biernacki et al., 2017). g−1); and time (hour).
The output is time-dependent heat flow rate (mW. gCem

−1) from
0-to-24 h, with a 1-h time-interval between successive steps.
Pertinent statistical variations in the inputs and outputs of the
training and testing databases are shown in Supplemetary Table
S1 and Supplemetary Table S2.

Figure 5 shows representative predictions of heat flow rate
profiles produced by the DL and FT-DLmodels compared against
experimental (isothermal calorimetry) measurements. Prediction
errors are summarized in Table 2; and depicted graphically in
Supplementary Figure S1. As shown in Figure 5 and Table 2,
both DL and FT-DL models produce accurate predictions of heat
flow rate profiles of (PC + SCM) pastes; with R2 ranging from 0.79
to 0.89, andMAE ranging from 0.32 to 0.58 mW gCem

−1. The FT-
DL model–across the board–produces more accurate predictions
compared to the DL model; validating the hypothesis made
earlier in this section. Importantly, the FT-DL model is able to
produce accurate a priori predictions of heat flow rates of new
(PC + SCM) pastes (i.e., new to the model); even during early ages
(i.e., between 1 h and ±2 h of the main hydration peak) when the
heat flow rates change rapidly from very high values (during stage
I) to very low values (during stage II), and then again to high
values (during stage III). Each SCM–depending on its content;

TABLE 1 | Compositions of commercial cement (CC) and synthetic cements (SCs) 1–7.

Cement type C3S (%mass) C2S (%mass) C3A (%mass) C4AF (%mass) C$H2 (%mass)

CC 62.37 19.35 6.24 9.35 2.69
SC 1 90 0 4 0 6
SC 2 92 0 4 0 4
SC 3 88 0 8 0 4
SC 4 80 0 8 0 12
SC 5 70 0 12 0 18
SC 6 82 0 12 0 6
SC 7 100 0 0 0 0

FIGURE 5 | The FT-DL and DLmodels’ predictions of heat flow rate profiles of: (A) (commercial cement (CC) + limestone (LS) + silica fume (SF)])paste; (B) [synthetic
cement 1 (SC 1) + limestone (LS) + metakaolin (MK)] paste; and (C) [synthetic cement 6 (SC 6) + limestone (LS)] paste compared against experimental measurements.
Coefficient of determination (R2) of each prediction is shown in the legends.

TABLE 2 | Statistical parameters describing the mean prediction errors
(i.e., averaged over a period of 24 h) of DL and FT-DL models. Errors were
estimated by comparing predicted heat flow rate profiles of (PC + SCM) pastes
against experimentally-measured ones. Time-solved prediction errors are
descried in Supplemetary Information.

ML model R R2 MAE MAPE RMSE

Unitless Unitless mW. gcem
−1 % mW. gcem

−1

DL 0.8935 0.7983 0.5852 41.07 0.8211
FT-DL 0.9454 0.8937 0.3188 18.36 0.5289
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physical properties (mainly fineness); and composition–casts
unique influence on the heat flow rate profile. For example,
fine limestone and fine quartz cause leftward shift of the heat
flow rate profile; (Cook et al., 2019a); resulting in steeper rise to,
and earlier occurrence of, the main hydration peak. In contrast,
fine metakaolin, when used to replace d20%mass of PC, causes
deceleration of PC’s hydration kinetics; (Lapeyre and Kumar,
2018; Cook et al., 2019a; Lapeyre et al., 2019); which manifests as
delayed occurrence of the main hydration peak (although the
peak’s intensity is comparable to, and sometimes greater than,
that of its plain paste counterpart). Coarse metakaolin also causes
deceleration of PC’s hydration rates; but–owing to metakaolin’s
slow dissolution kinetics–the deceleration is minor, sometimes
imperceptible (Lapeyre et al., 2019). Notwithstanding these
disparate influences of SCMs, Figure 5 and Table 2
demonstrate that the FT-DL model can capture the effects of
SCM type and physicochemical attributes during its training; and
capitalize on this knowledge to produce reliable predictions of
hydration behavior of new [PC + SCM] pastes. The DLmodel–on
the other hand–fails to capture the critical inflection points of the
heat flow rate profiles. As can be seen in Figure 5, for each of the
three (PC + SCM) pastes, DL model’s predictions of the time of
occurrence and intensity of the main hydration peak are not
accurate. The main hydration peak is a critical juncture of the
hydration process; as it is indicative of the period that generally
occurs a few hours after the paste sets, and begins to gain strength
at a rapid rate due to massive precipitation of hydrates. (Mehta
andMonteiro, 1976; Taylor, 1997; Bullard et al., 2011; Mehdipour
et al., 2017). Because of the significance of the main hydration
peak, in many prior studies, (Kumar et al., 2012; Scherer et al.,
2012; Oey et al., 2013; Masoero et al., 2014; Ley-Hernandez et al.,
2018), the accuracies of kinetic models (and the underlying
mechanisms that were implemented within the models) have
been adjudicated–almost exclusively–on the basis of whether or
not they were able to capture the experimentally-observed main
hydration peak. Since the DL model was unable to capture the
main hydration peak–whereas the FT-DL model was–it is
justified to say that the FT-DL model is the more reliable tool
to produce a priori predictions of heat evolution profiles of
cementitious binders.

As stated earlier in section 3.1, the disparity in the prediction
performance of the DL model vis-à-vis the FT-DL model arises,
mainly, from the FFT algorithm; which is integrated in the latter
model, but not in the former. In the FT-DL model, the FFT
algorithm–which is used to preprocess the training database prior
to the model’s training–substantially reduces the nonlinearity and
non-monotonicity of heat flow rate profiles; thereby, reducing
their complexity (see Figure 3). This reduction in complexity
becomes particularly important when the volume of the training
database is low (e.g., the database used in this study, which
comprises heat flow rate profiles of only ∼600 pastes). If a
large database were used, most ML models–including the DL
model–would be able to statistically (i.e., by brute-force) process
input-output maps–with both inputs and outputs spanning a
wide range of magnitudes–and establish a sufficiently-accurate
mathematical correlation between them. But, in a small but
complex database, establishing such correlation is not easy.

Furthermore, the FFT-transformed heat flow rate profiles
contain fewer data-records compared to the original ones; this
ensures that the computational resources (e.g., number of
processing threads; memory; etc.) required to train the FT-DL
model are substantially less than the DL model.

Prediction of Cumulative Heat Release
Results in section 3.2 show that the FT-DLmodel is a reliable tool
for a priori predictions of time-dependent heat flow rate
profiles–or hydration kinetics–of (PC + SCM) pastes. These
predicted heat flow rate profiles can simply be processed
(i.e., integrated with respect to time) to obtain time-dependent
cumulative heat release profiles. Cumulative heat release profiles
are important for a practical standpoint; as several past studies
have shown that the cumulative heat released from PC’s
hydration in a binder is directly correlated with the binder’s
rheological properties, (Mehdipour et al., 2017; Meng et al., 2019;
Ferraz et al., 2020), setting time, (Vance et al., 2013b; Lootens and
Bentz, 2016), and compressive strength. (Bentz et al., 2012;
Kumar et al., 2013a; Kumar et al., 2013b; Mehdipour et al.,
2017). Put in another way: cumulative heat release profiles can
be used to roughly estimate important compliance-relevant
properties of binders; thus, eliminating the need for costly,
cumbersome, and time-consuming experiments. For instance,
if the 24-h cumulative heat releases of [PC + SCM] pastes are
known, this information can be used to rank and order the pastes
on the basis of their 24-h compressive strengths. (Bentz et al.,
2012; Mehdipour et al., 2017).

In this study, the predicted heat flow rate profiles of all (PC +
SCM) pastes (in the testing database) were processed to obtain
cumulative heat release profiles; which were then compared
against experiments. It was found–expectedly, as discussed in
section 3.1—that the FT-DL model’s predictions were more
accurate than those produced by the DL model. However, the
prediction errors–as evaluated using the five statistical
parameters discussed in section 2.0—were, in general, greater
than those associated with predictions of heat flow rate profiles.
This is because the prediction errors of heat flow rate profiles
accrue as they are integrated to obtain the cumulative heat release
profiles. Therefore, to obtain reliable predictions of cumulative
heat release–especially at critical ages (e.g., at 24 h, at which the
paste’s strength is used as a qualification criterion for use in
construction of infrastructure (Taylor et al., 2015))—it is
important to further finetune the FT-DL model. Towards this
end, thermodynamic simulations of phase assemblages in the
pastes (summarized below; and in Supplementary Section S3.0
of Supplementary Information S1) were used to provide
theoretical guidance to the FT-DL model, and to constrain its
outputs.

GEMS (Lothenbach et al., 2019; Kulik et al., 2012) was used to
produce thermodynamic simulations of phase assemblage
evolution in (PC + SCM) pastes in relation to their mixture
design (i.e., composition and mixture proportions of precursors
used to formulate the binders). Phase assemblages obtained from
the simulations (see Figures 6A,B) reveal the volumes of all
reactants (i.e., PC; and SCMs) and products (i.e., hydration
products such as C-S-H and ettringite) at increasing degrees of
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reaction of the main reactant (PC or SCM). (Lothenbach and
Winnefeld, 2006; Lothenbach et al., 2008). To obtain accurate
phase assemblages, it is important to specify the degree of
reaction of PC and of the SCM (if it is reactive). PC’s degree
of reaction at any given age–for example, at 24 h–can be
estimated directly from the cumulative heat release at that age.
More specifically: PC’s degree of reaction in each paste at 24 h is
equivalent to the ratio of cumulative heat release at 24 h to the
enthalpy of hydration of PC. The enthalpy of hydration of each
PC (i.e., either the commercial PC, or one of the seven synthetic
ones) is calculated as the sum of enthalpies of hydration of each of
its constituent phases [C3S ≈ 500 J g−1; C2S ≈ 260 J g−1; C3A
(reacting with C$H2) ≈ 1160 J g−1; and C4AF ≈ 725 J g−1 (Taylor,
1997; Kurdowski, 2014).] multiplied to its respective mass
fraction. In this study, four different types of SCMs were used:
quartz; limestone; silica fume; and metakaolin. Quartz and
limestone dissolve at very slow rates; as, as such, in the
thermodynamic simulations, they were assumed to be inert
(i.e., degree of reaction at 24 h � 0.0) (Cook et al., 2019a; Oey
et al., 2013; Kumar et al., 2017; Berodier and Scrivener, 2014).
Silica fume and metakaolin–on the other hand–dissolve (albeit
slowly), and can partake in chemical interactions with anhydrous
cementitious phases (e.g., metakaolin can react with C3A and
C$H2) and hydrates (e.g., metakaolin and silica fume can undergo
pozzolanic reaction with portlandite, a hydrate present in the
paste). (Cook et al., 2019a; Lapeyre et al., 2019; Lapeyre and
Kumar, 2018; Meng et al., 2019). Therefore, to obtain accurate
phase assemblages of metakaolin- and silica fume-containing
pastes, it is important to determine their degrees of reaction.
In a series of prior studies, (Cook et al., 2019a; Lapeyre et al., 2019;
Lapeyre and Kumar, 2018; Meng et al., 2019), it has been shown
that the degrees of reaction of silica fume and metakaolin range
between 5-and-15% within the first 24 h. To determine the
precise degrees of reaction at 24 h, GEMS simulations of all
[PC + SCM] pastes were employed by varying silica fume’s
and metakaolin’s degree of reaction from 5-to15%; while using

PC’s degree of reaction at 24 h as calculated from cumulative heat
release profiles, and assuming that limestone and quartz are inert.
Based on the simulation results (Figure 6B), it was found that
across all (PC + silica fume) and (PC + metakaolin) pastes, a
degree of reaction of 12% for silica fume and degree of reaction of
6% for metakaolin resulted in a near linear relationship between
the cumulative heat release and the volume fraction of hydrates
(Figure 6C). We chose specifically to evaluate this relationship to
estimate the pozzolanic SCMs’ degrees of reaction, because
cumulative heat release of any (PC + SCM) paste is correlated
with the extents of reaction of the reactants (i.e., PC and SCM);
which, in turn, dictates the amounts (or volume fractions) of the
hydrates. In Figure 6C, it should be noted that results pertaining
to plain pastes [PC + quartz] pastes, and (PC + limestone) pastes
are also included; which justify our assumption that limestone
and quartz are inert in the first 24 h. An important aspect of
Figure 6C is the generic mathematical equation that describes the
relationship between cumulative heat release and volume fraction
of hydrates in ∼600 (PC + SCM) pastes. It should be noted that
both the cumulative heat and volume fraction of hydrates account
for not just the hydration of cement but also cement-SCM
interactions. This relationship–in and of itself–is an important
outcome; since, it allows researchers to promptly estimate the
volume fraction of hydrates in any given (PC + SCM) paste using
its 24 h cumulative heat release as the sole input. The volume
fraction of hydrates–which is a crude measure of the solid-to-
solid connectivity within the paste (Zalzale and McDonald, 2012;
Zalzale et al., 2013; Lootens and Bentz, 2016; Banala and Kumar,
2017)—can be used to roughly estimate the compressive strength
and porosity of the paste. The authors would like to clarify that
the volume fractions of hydrates in (PC + SCM) pastes–shown in
Figure 6C–can be predicted directly from the FT-DL model; as
opposed to deriving them from GEMS simulations. For this, the
FT-DL model needs to be trained using a new database;
comprising the same input variables as those described in
section 3.2, and the volume fraction of hydrates

FIGURE 6 | (A) Equilibrium phase assemblage, estimated using GEMS, of a representative (synthetic cement 1 + limestone (LS) paste at 24 h. The vertical dashed
line indicates the phase assemblage at 24 h based on the degree of hydration of PC as estimated from the cumulative heat release. (B) Equilibrium phase assemblage of
a representative [commercial cement + silica fume (SF)] paste at the age of 24 h. Here, the degree of hydration of PC at 24 h is estimated from isothermal calorimetry. The
vertical dashed line represents the degree of reaction of silica fume. (C) A linear correlation between volume fraction of hydrates and cumulative heat release at 24 h
of ∼600 [PC + SCM] pastes used in this study (PC + pozzolan) pastes are silica fume- andmetakaolin-containing pastes; and (PC + filler) pastes are either plain pastes, or
pastes that contain limestone or quartz.
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(estimated from GEMs simulations) as the output. Once trained,
the FT-DL model can predict the volume fraction of hydrates in a
new (PC + SCM) paste using its mixture proportion and
physiochemical attributes as inputs. Therefore, it can be said
that the FT-DL model can not only produce reliable, a priori
predictions of hydration kinetics but also of phase assemblages of
(PC + SCM) pastes.

Outcomes of thermodynamic simulations–shown in
Figure 6C–allow us to correlate the cumulative heat release (at
24 h) with the volume fraction of hydrates in (PC + SCM) pastes.
In this study, this correlation was used as a thermodynamic
constraint to guide and regulate the predictions of 24 h
cumulative heat release of (PC + SCM) pastes. More
specifically, for any given (PC + SCM) paste, the heat flow
rate profile–and then the cumulative heat release at 24 h–was
predicted using the FT-DL model described in sections 3.1 and
3.2. Next, the predicted value of the 24 h cumulative heat release
was compared with the cumulative heat release derived from
Figure 6C (using the paste’s phase assemblage (i.e., volume
fraction of hydrates at 24 h), calculated from thermodynamic
simulations (GEMS), as input]. If the deviation between the two
predictions was found to be smaller than 10 J. gcem

−1, the
prediction from the FT-DL model was selected as the final
output. Otherwise, the cumulative heat release from the
thermodynamic simulations was selected as final output.
Figure 7 compares the predictions of 24-h cumulative release
of (PC + SCM) pastes obtained using the unconstrained FT-DL
model and the thermodynamically-constrained FT-DL model.
The corresponding prediction errors are summarized in Table 3.
As can be seen, predictions of 24 h cumulative heat release from
the thermodynamically-constrained FT-DL model are

significantly more accurate than the unconstrained FT-DL
model. This result clarifies that guidance from thermodynamic
simulations significantly boosts the ability of the FT-DL model to
predict the hydration kinetics of (PC + SCM) pastes. It must be
noted that, in Figure 7, the 24 h cumulative heat release of the
pastes is used merely as a representative example. The
thermodynamically-constrained FT-DL model can be used–in
similar fashion–to produce a priori predictions of the cumulative
heat release at other ages (0 ≤ age ≤24 h) as well.

DISCUSSION

Development of a Closed-form Analytical
Model
Results in section 3.0 show that the FT-DL model–especially
when integrated with thermodynamic guidance and
constraints–can produce reliable, a priori predictions of
hydration kinetics and phase assemblages (e.g., volume
fraction of hydrates at a given age) of (PC + SCM) pastes. It
must, however, be acknowledged that the FT-DL model–while
powerful–is not accessible to end-users; especially those who have
limited background in computer programming. Hence, it is
important that the learnings of the FT-DL model be distilled
down to simple, closed-form analytical models that can be used
by end-users of all expertise and disciplines. Such distillation of
the FT-DL model into an analytical model also improves the
interpretability of the outcomes; as in an analytical model the
correlation between each input (e.g., physicochemical properties
of binders’ precursors) and the output (i.e., cumulative heat
release at 24 h) is clearly outlined in the form of a
mathematical equation.

To develop a reliable analytical model, it is crucial to select
input variables that cast significant influence on the output, while
disregarding those which are largely inconsequential. The “DL”
part of the FT-DL model is important in this context; because, it
can statistically evaluate–in the form of Gini scores (Xu et al.,
2021; Han et al., 2020a; Han et al., 2020b; Breiman, 2001; Menze
et al., 2009)—the influence of each variable on the output. Results
from this analysis are shown in Figure 8. Here, the contents of
C$H2, C3S, C3A, and SCM cast the strongest influence on the 24 h
cumulative release. C3S–being the major phase in PC (Taylor,
1997)—is expectedly an influential factor. C3A and C$H2 are also
influential because these two phases react with each other (and
water) vigorously within minutes of mixing; thereby releasing
heat at a rapid rate for few hours, followed by relatively slow,
near-constant rate of heat release. (Taylor, 1997; Bullard et al.,

FIGURE 7 | Predictions of cumulative heat at 24 h produced by the FT-
DL model–with and without thermodynamic constraint–compared against
experimental measurements. The coefficients of determination (R2) of the
predictions are shown in the legends. The dashed and solid lines
represent the line of ideality and ±10% error bounds, respectively.

TABLE 3 | Statistical parameters describing the errors in predictions of 24 h
cumulative heat release, as produced by the unconstrained and
thermodynamically-constrained FT-DL models.

ML model R R2 MAE MAPE RMSE

Unitless Unitless J. gcem
−1 % J. gcem

−1

Unconstrained FT-DL 0.6935 0.4809 21.63 8.087 27.64
Constrained FT-DL 0.9033 0.8161 13.24 4.887 16.79

Frontiers in Materials | www.frontiersin.org January 2022 | Volume 8 | Article 79647610

Han et al. Deep ML to Predict Cement Hydration

34

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


2011; Kurdowski, 2014). SCM content and specific surface area
(SSA) are also influential; as these variables dictate the ability of
the SCM to influence the overall hydration kinetics through the
filler effect, and/or pozzolanic effect, and/or chemical interactions
with other paste components. (Juenger and Siddique, 2015;
Lapeyre and Kumar, 2018; Cook et al., 2019a; Lapeyre et al.,
2019). C2S and C4AF react very slowly with water in the first 24 h;
thus, their effects on the overall hydration kinetics are not
significant. (Bullard et al., 2011; Cook et al., 2021a). SSA of
PC is known to profoundly affect its hydration kinetics
(Bullard et al., 2011). However, owing to limited variability in
SSA of PC in the database used in this study, it is evaluated as the
less influential. SCM type is appraised to be the least important
variable. This–once again–is because only two types of SCMs
(fillers and pozzolans) were used in this study.

Variable importance, shown in Figure 8, was used to guide the
mathematical form of the closed-form analytical model. SCM
type, C2S content, and C4AF content were excluded due to their
low variable importance; but the other influential input variables
were included. C$H2 content and C3S content were assigned
greater weight; by raising them to the second power. The general
form of the analytical model, thus developed, is shown in Eq. (3).
Here, CH is the cumulative heat release at 24 h (J.gcem

−1); Ci is the
coefficient for each input variable; Mi is mass percentage of
component i (%mass); and Aj is SSA of component j (cm
(Biernacki et al., 2017).g−1).

CH24 hours � C0 + C1 ×M2
C3S

+ C2 ×MC3A + C3

×M
CH2

2 + C4 ×MSCM + C5 × APC + C6 × ASCM

(4)

In the analytical model, six coefficients and one constant
need to be optimized. Those coefficients were optimized for
two scenarios: 1) (PC + pozzolan) pastes; and 2) (PC + filler)

pastes; wherein silica fume and metakaolin are treated as
pozzolans, and limestone and quartz are treated as fillers
(as discussed in section 3.3). A nonlinear, gradient-descent
scheme (Han et al., 2020a; Han et al., 2020b; Lapeyre et al.,
2021)—based on the Nelder-Mead multi-dimensional simplex
algorithm (Nelder and Mead, 1965; McKinnon, 1998)—was
used to optimize the coefficients of the analytical model. The
optimal coefficients for (PC + pozzolan) pastes and (PC +
filler) pastes are shown in Table 4. Final predictions of the
24 h cumulative heat release of both types of pastes are shown
in Figure 9.

As can be seen in Figure 9, the analytical model–despite being
much simpler and easier-to-use than its parent model (FT-DL
model)—produces accurate predictions (i.e., margin of error
within ±6.3%) of 24 h cumulative heat release of (PC +
pozzolan) and (PC + filler) pastes. The values of R are 0.81
and 0.90 for (PC + pozzolan) pastes and (PC + filler) pastes,
respectively; which are commensurable to that of the FT-DL
model (R ≈ 0.90). Importantly, the analytical model has a simple
polynomial form; which can be coded into any spreadsheet
software by end-users of all disciplines and expertise to
produce a priori predictions of heat evolution behavior of

FIGURE 8 | Ranking of input variables (descending order of variable importance), based on their abilities to influence the 24-h cumulative release of (PC + SCM)
pastes at 24 h.

TABLE 4 | Optimum values of coefficients and the constant for the analytical
model shown in Eq. 3. Themodel can be used to estimate the 24 h cumulative
heat release of (PC + pozzolan) pastes and (PC + filler) pastes.

(PC +
pozzolan) pastes

C0 166.2189 C1 −0.0027 C2 8.7031

C3 −0.5031 C4 1.4123 C5 0.0106
C6 −0.0001

[PC + Filler] pastes C0 135.243 C1 0.0044 C2 5.692
C3 −0.3137 C4 1.8383 C5 0.0053
C6 0.0014
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(PC + SCM) pastes; using just a few mixture design parameters as
inputs. It is worth pointing out that in Figure 9, the 24 h
cumulative heat release is used as a representative example.
Using the method described in this section, cumulative heat
release at other critical ages can also be predicted.
Furthermore, the cumulative heat release predictions produced
by the analytical model can be plugged into the equation shown in
Figure 6C to directly estimate the volume fraction of hydrates in
the (PC + SCM) pastes. Therefore, as a standalone prediction tool,
the analytical model–although not as sophisticated or accurate as
the FT-DL model–can be used for a priori predictions of
important aspects of both hydration kinetics and phase
assemblage development in PC-based binders.

Conclusion
Supplementary cementitious materials (SCMs: e.g., limestone;
calcined clays; etc.) are typically used to partially replace
Portland cement (PC) in concrete to reduce its energy-
intensity and carbon footprint. SCMs–depending on their
composition; physical properties (e.g., fineness); and
content–cast significant influence on PC’s hydration
behavior; thus, affecting nearly all fresh- and mature-state
properties of concrete. For decades, researchers have
attempted to develop analytical models–premised on
theories and mechanisms learned from classical materials
science approaches–that would be able to produce a priori
predictions of (PC + SCM) binders. While the pursuit of
theory-based models is essential for the advancement of our
understanding of underlying composition-reaction-
microstructure-property correlations in (PC + SCM)
binders, our current piecemeal understanding of these

correlations has thus far stymied the development of such
models.

In recent years, machine learning (ML)—coupled with a
large database (i.e., Big data); comprised of experimental
measurements, and/or experimentally-validated
simulations–has emerged as a promising approach to learn
the intrinsic cause-effect correlations in materials, including
(PC + SCM) binders (e.g., pastes); and, then, to capitalize on
such learnings to predict the properties of new materials by
simply using their easy-to-measure physicochemical
characteristics as inputs. While promising, widespread use
of ML models is hindered because they: 1) Require “Big” data
for their training (which is difficult to produce, or mine from
literature); and 2) Provide little-to-no insights into the origins
of the materials’ behavior/properties (and, thus, are perceived
as black boxes).

In this study, an original deep learning (DL) model was
developed, with the objective of predicting hydration kinetics
(i.e., time-dependent heat flow rate, and cumulative heat release),
and phase assemblage development (e.g., volume fraction of
hydrates at a specific age) in (PC + SCM) pastes. A fast
Fourier transformation (FFT) algorithm was integrated into
the model: to reduce the dimensionality of the database used
to train the DL model; and to make it easier, and computationally
efficient, for the model to learn the input-output correlations
from a relatively small database (comprised of reaction behavior
of only ∼600 distinct [PC + SCM] pastes). Results obtained from
extramural thermodynamic simulations (conducted using
GEMS: a free-to-use, and publicly accessible, thermodynamic
modeling software) were also integrated into the model: to
provide theoretical guidance to the model; and to constrain its
outputs, to ensure that they do not violate basic thermodynamic
rules. It was shown that the model–i.e., thermodynamically-
constrained FT-DL model–produced accurate a priori
predictions of hydration behavior and phase assemblage
development of (PC + SCM) pastes. The training and
outcomes of the FT-DL model were then used to develop a
closed-form analytical model. The analytical model–albeit not as
sophisticated or accurate as the FT-DL model–was shown to be a
simple, easy-to-use prediction tool to produce reliable a priori
predictions of important aspects of both hydration kinetics and
phase assemblage development in (PC + SCM) binders.

The FT-DL model–and its simpler derivative, the closed-form
analytical model–that are presented in this study demonstrate
that, even with small data (rather than Big data), reliable
predictions of reaction behavior and microstructural evolution
(phase assemblage) of cementitious systems are possible. As with
any ML model, it is expected that the FT-DL model’s accuracy
would improve if/when it is trained with a larger, more diverse
Big Data. Such a Big Data/FT-DL platform–if created and
disseminated–would give researchers and end-users
unprecedented access to data (information); and empower
them with reliable prediction (and optimization) tools to tune
locally-available–but often overlooked and/or
underutilized–materials (e.g., volcanic, and off-specification
ash; waste-to-energy residue produced from incineration of
municipal waste) to function as CO2-efficient SCMs.

FIGURE 9 | Predictions of 24-h cumulative heat of (PC + pozzolan)
pastes and (PC + filler) pastes compared against experimental
measurements. Mean absolute percentage errors (MAPE) of the predictions
are shown in the legends. The dashed and solid lines represent the line of
ideality and ±10% error bounds, respectively.
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Role of Aluminum and Lithium in
Mitigating Alkali-Silica Reaction—A
Review
Zhenguo Shi1,2 and Barbara Lothenbach2*

1Global R&D, HeidelbergCement AG, Leimen, Germany, 2Laboratory Concrete and Asphalt, Swiss Federal Laboratories for
Materials Science and Technology (Empa), Dübendorf, Switzerland

Effective mitigation of alkali-silica reaction (ASR) is critical for producing durable concrete.
The use of alumina-rich supplementary cementitious materials (SCMs) and chemical
admixtures such as lithium salts to prevent expansion caused by ASR was first
reported 70 years ago, shortly after the discovery of ASR in 1940s. Despite numerous
investigations, the understanding of the mechanisms of Al and Li for mitigating ASR remain
partially inexplicit in the case of Al, and hardly understood in the case of Li. This paper
reviews the available information on the effect of Al and Li on ASR expansion, the
influencing factors, possible mechanisms and limitations. The role of Al in mitigating
ASR is likely related to the reduction of dissolution rate of reactive silica. Moreover, the
presence of Al may alter the structure of crystalline ASR products to zeolite or its precursor,
but such effect seems to be not that significant at ambient conditions due to the slow
kinetics of zeolite formation. Several mechanisms for the lithium salts in mitigating ASR
have been proposed, but most of them are not conclusive primarily due to the lack of
knowledge about the formed reaction products. Combination of Al-rich SCMs and lithium
salts may be used as an economic solution for ASRmitigation, although systematic studies
are necessary prior to the applications.

Keywords: alkali silica reaction, supplementary cementitious materials, expansion, aluminium, lithium salts

1 INTRODUCTION

Alkali-silica reaction (ASR) is an important durability issue world-wide, which causes significant
expansion and deterioration of various concrete infrastructures including dams, pavements, bridges,
walls, barriers, and nuclear/power plant structures (Rajabipour et al., 2015; Sims and Poole, 2017).
The reaction starts by the dissolution of reactive silica at high pH in presence of alkalis from concrete
pore solution followed by formation of alkali-silica gels. With further uptake of Ca, gelation and/or
crystallization occur(s) leading to formation of amorphous and/or crystalline ASR products. The
nature of the ASR products varies significantly depending on the composition of the pore solution,
stage of ASR, and temperature (Shi et al., 2019; Shi et al., 2020a; Shi et al., 2020b). It remains unclear
at which steps and by which mechanisms ASR expansion is generated (Shi et al., 2020b). Generally,
the expansion due to ASR has been related to swelling of the product in the presence of water as more
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damage has been observed at high relative humidity (Olafsson,
1986; Kurihara and Katawaki, 1989; Stark, 1991). However,
recent work based on synthetic ASR products (Shi et al., 2019)
and field ASR products (Leemann et al., 2020) demonstrated that
neither amorphous nor crystalline ASR products based on Na, K,
Ca and silica swell upon uptake of water. The uptake of water by
these ASR products was lower than that of C-S-H, suggesting that
not swelling but rather alternative mechanisms are responsible
for ASR expansion, indicating an urgent need for further
investigations.

To stop ASR in existing structures is challenging and costly
and can involve water proofing by coatings and/or slot cutting
to release stresses due to concrete expansion of the affected
structure. However, in both cases ASR can continue as there
can be sufficient water for the ASR even in coated concrete
structures and the concrete will continue expanding after slot
cutting. In new structures, the use of non-reactive aggregates
is a relatively cheap and efficient solution to avoid ASR.
However, local aggregates are often used due to
environmental and economic reasons, and in remote
locations such as for dams may be the only choice.

Effective mitigation of ASR is critical for safe use of
reactive aggregates for producing durable concrete. The
use of supplementary cementitious materials (SCMs) and
chemical admixtures such as lithium salts to prevent
expansion caused by ASR was first reported 70 years ago
shortly after the discovery of ASR in 1940s. For freshly
produced concrete, use of appropriate cement blends such
as Portland cement blended with SCMs to lower the pH and
alkali concentration in the concrete pore solution is an
efficient solution to minimize damage risk of ASR. Lower
pH values decreases the dissolution kinetics of silica-
containing minerals within the aggregate (Iler, 1979;
Bagheri et al., 2021) and lower pH values together with
lower alkali concentrations decrease also the risk of the
formation of ASR products (Thomas, 2011; Shi and
Lothenbach, 2020). Moreover, alumina-rich SCMs such as
fly ash, blast furnace slags or metakaolin are found to be more
effective than silica-rich SCMs such as silica fume (Aquino
et al., 2001; Duchesne and Bérubé, 2001; Kandasamy and
Shehata, 2014).

The role of Al in mitigating ASR has been at least partially
related to a slowing down of the dissolution of reactive silica
(Chappex and Scrivener, 2012b; Bagheri et al., 2022). The
presence of Al may also alter the structure of crystalline ASR
products to zeolite or its precursor at 80°C, while their
formation kinetics at ambient temperatures seem to be too
slow to have a relevant effect (Hünger, 2007; Shi et al., 2018;
Shi et al., 2021). Thus despite of numerous investigations, the
understanding of the mechanisms of Al mitigating ASR
remains at least partially inexplicit (Hünger, 2007;
Chappex and Scrivener, 2012a).

In contrast to SCMs, which can only be introduced during
concrete production, lithium salt solutions can be applied to
an expanding concrete structure in addition to being used as
an admixture during production. So far, eleven different types
of lithium salts have been studied to mitigate ASR including

LiCl, Li2CO3, LiF, Li2SiO3, LiNO3, Li2SO4, LiOH, LiNO2,
LiBr, LiOH·H2O, LiH2PO4 (McCoy and Caldwell, 1951;
Qinghan et al., 1995; Lumley, 1997; Demir and Arslan,
2013). Some difficulties of using these lithium salts are
encountered because the dosage of different types of
lithium salts varies significantly depending on several
factors such as the type of lithium salts, the mineralogy of
reactive aggregates, and the alkali content of the concrete.
Moreover, the mechanisms of different types of lithium salts
are also complicated, since they may result in formation of
different types of Li-bearing ASR products and lithium
silicates.

Understanding the precise mechanisms of both Al and Li
for mitigating ASR is important for optimizing the use of
these materials and for ensuring their long-term efficiency in
mitigating ASR. This has been a challenge for many decades,
primarily due to the difficulties to characterize the ASR
products formed in small amounts and volume with
conventional laboratory techniques. Moreover, Li-
containing reaction products are difficult to be
characterized in particular for their chemical compositions.
Recent successful synthesis of ASR products at different
temperatures resembling to those formed in concrete
aggregates under accelerated and field conditions, provide
a new opportunity to re-investigate the mechanisms of Al and
Li in mitigating ASR (Shi et al., 2019; Shi et al., 2020a; Shi
et al., 2021). This review article summaries and critically
discusses the available investigations on the effect of Al and Li
on ASR expansion, the influencing factors, possible
mechanisms and limitations.

FIGURE 1 | ASR expansion of concrete prisms containing highly reactive
Spratt coarse aggregates and binder materials of control cement (OPC)
partially replaced with Al(OH)3. Data from (Szeles et al., 2017).
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2 ROLE OF AL IN MITIGATING ASR

2.1 Efficiency of Al in Mitigating ASR
Expansion
Both Al2O3 and SiO2 from Al-rich SCMs can contribute to the
reduction of ASR expansion as addressed in the introduction. In
order to differentiate between the influence of SiO2 and Al2O3 in
SCMs on ASR expansion, few studies (Szeles et al., 2017; Zhou
et al., 2019) have isolated the role of Al on ASR expansion by
partially replacing Portland cement with pure Al(OH)3 or
γ-Al2O3. As demonstrated in Figure 1, replacing 20% OPC
with Al(OH)3 significantly reduced the ASR expansion below
the threshold level 0.04% at 38°C as specified in ASTMC1293-08b
(Szeles et al., 2017). The ASR expansion of the concrete prism was
completely suppressed by increasing the replacement level up to
30% over 600 days of exposure. In another study (Zhou et al.,
2019) the control concrete using different aggregate composed of
10% crushed fused silica (2.36–4.75 mm) and 90% standard sand
(0.15–2.36 mm) showed a comparable ASR expansion to the
expansion of the control concrete in Figure 1. However,
incorporation of only 10% γ-Al2O3 could already reduce the
ASR expansion to the threshold level following either ASTM
C227 (at 38°C) or ASTM C1260 (at 80°C). The SEM images from
both of the studies demonstrated that the aggregates remain
intact for the concrete containing Al in contrast to the
reference concrete with significant damage and ASR product
formation (Szeles et al., 2017; Zhou et al., 2019). These studies
confirmed the role of sole Al in mitigating ASR as previously
suggested by other studies based on comparison of the ASR
mitigation efficacy between Al-rich SCMs and silica fume
(Aquino et al., 2001; Ramlochan et al., 2004). Therefore, it is
of significance to elucidate the mechanisms of Al in mitigating
ASR in order to predict its long-term efficiency.

2.2 Mechanisms of Al in Mitigating ASR
Several mechanisms of Al in mitigating ASR were proposed in the
literature, which include increased alkali fixation, alteration of the
ASR products, and reduction of the silica dissolution rates, as
discussed in the following.

2.2.1 Increased Alkali Fixation With Subsequent pH
Reduction
It was conjectured that the presence of Al in the SCMs
possibly enhance the removal of alkalis from the concrete
pore solution resulting a reduction of its pH, which would be
beneficial for ASR mitigation. Hong and Glasser (Hong and
Glasser, 2002) reported that incorporation of Al into C-S-H
leads to formation of C-A-S-H phase, which markedly
increases its alkali binding capacity. They suggested that
this partially contributes to the potential of Al-rich SCMs
in reducing pore solution alkalinity and subsequently ASR
expansion. Later, Sun et al. (2006) showed significant
increases in basal spacings when Al was incorporated into
C-S-H phase. They explained that alumina was incorporated
into C-S-H and present in the interlayer and that the
substitution of Si by Al provides a negative site that must

be charge balanced by a net positive charge (e.g., Na+, K+)
leading to alkali binding. Thomas (Thomas, 2011) also stated
that there is evidence that the alumina content of the SCM
also affects its alkali-binding capacity as its silica content.

On contrary, an earlier study from Diamond (Diamond, 1981)
showed that class F fly ash reduced hydroxyl and alkali ion
concentration of the pore solution by a factor equivalent to its
OPC replacement level of 30%, indicating a simple dilution effect.
This observation is supported by the studies of Chappex and
Scrivener (Chappex and Scrivener, 2012a). In their study, they
compared an OPC-metakaolin paste with a paste containing silica
fume and an inert filler to maintain an equivalent silica fraction
and could thus isolate the effect of alumina. They found that the
pore solution alkalinity was reduced with increasing the
replacement level of OPC. However, such reduction of pore
solution alkalinity was a mere dilution effect, and the alumina
did not actively consume hydroxyl ions or alkalis.

Most of the aforementioned studies focused on cement
mixtures containing Al-rich SCMs, where the joint effects of
alumina and silica in SCMs could not be directly separated. To
isolate the role of Al in mitigating ASR, Szeles et al. (2017)
replaced OPC with 20% Al(OH)3 and measured the pore solution
pH of the cement paste mixtures. They observed that the pH of
the Al(OH)3 mixture was initially similar to the 80% of the
control mixture, indicating a pure dilution effect. At later ages
up to 1 year, slight reduction of pH (0.13 pH unit) was observed
beyond the dilution effect, the pH reduction was not significant
enough to be the sole mechanism for Al to mitigate ASR. A drop
of pH from 12.4 to 11.9 was also recently captured by Shi et al.
(2021) during the synthesis of ASR products at 40°C containing

FIGURE 2 | Alkali uptake in C-S-H and C-A-S-H (Al/Si � 0.05, Ca/Si �
0.8) in equilibrium with a solution containing 0.5 mol/L [KOH] equilibrated for
182 days. Reproduced from (L’Hôpital et al., 2016).
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SiO2, CaO, and KOH, where Al(OH)3 precipitated as a separate
phase. However, the pH increased at 80°C from 12.1 to 12.8,
where the formation of an alumino-silicate phase prevented the
formation of ASR products. The influence of Al on formation and
structure of ASR products will be discussed in detail in the next
section.

The above seeming contradictions has been clarified based on
synthetic C-S-H (L’Hôpital et al., 2016), where the uptake of K in
C-S-H and C-A-S-H at different Ca/Si ratios were compared as
shown in Figure 2. The results show that the K/Si ratio in C-S-H
is not significantly increased in the presence of aluminum. The
scattered results reported in the aforementioned studies was
attributed to the experimental error associated with the
measurement of alkali concentrations, the synthesis protocol,
and equilibration time (L’Hôpital et al., 2016). Therefore, the
mechanism of significantly increased alkali fixation with
subsequent pH reduction can be excluded.

2.2.2 Alteration of ASR Products or Formation of
Alumino-Silicates
For a long period of time, it was debated whether dissolved
aluminum ions affect the formation and structure of ASR
products or not. Many studies reported the incorporation of
Al in ASR products based on scanning electron microscope with
energy-dispersive X-ray spectroscopy (SEM/EDS) analysis
(Fernandes et al., 2007; Fernandes, 2009; Šachlová et al., 2010;
Hagelia and Fernandes, 2012; Leemann and Lura, 2013;
Shafaatian et al., 2013; Guo et al., 2018), while many others
reported no Al or hardly detectable amounts in ASR products
(Aquino et al., 2001; Leemann and Lothenbach, 2008; Katayama,
2012a; Katayama, 2012b; Leemann, 2017). It should be noted that
the observation of Al in ASR products could be caused either by
the close intermixing with Al-containing phases (hydrated
cements or Al-containing minerals within the aggregates) or
by cross-contaminations during sample preparation for SEM/
EDS analysis. The absence of a significant amount of Al in ASR
products was recently confirmed (Shi et al., 2021) based on
laboratory synthetized ASR samples, where Al precipitated as
a separate phase [gibbsite, Al(OH)3] at 40°C, i.e., under
temperatures relevant for field conditions, while the structure
and composition of ASR products was not affected by aluminum.

At high temperature (80°C) and high alkali concentration
(0.5–1mol/L NaOH or KOH), however, the formation of zeolites
or zeolitic precursors (alkali alumino-silicate phase) was observed in
concrete (Hünger, 2007; Shi et al., 2018) as well as in synthetic
samples (Shi et al., 2021). Hünger (Hünger, 2007) found an inverse
relation between the silica releasing rate of aggregate and the amount
of zeolite formed at the same temperature and suggested that the
formation of alkali alumino-silicate and zeolite would reduce the
concentration of so-called “free” silica available for ASR and thus
inhibit ASR. Also laboratory experiments showed the suppression of
the formation of ASR products in the presence of sufficient Al.While
the formation of alkali alumino-silicate or zeolite could in fact lower
the potential to form ASR products at high temperatures (80°C or
above), at ambient temperatures the formation of alkali alumino-
silicate and zeolite is usually slow (decades) (Sand et al., 1987;
Lothenbach et al., 2017). Thus, the formation of alkali alumino-

silicate and zeolite is undermost conditions too slow to be relevant in
suppressing ASR formation in field concretes.

2.2.3 Slow Down the Dissolution Rate of the Reactive
Silica
A possibility to prevent ASR is to suppress or strongly slow down
the dissolution of SiO2 within the aggregate. Aluminum can
drastically reduce silica dissolution rates as aluminum sorbs on
the silica surface, which passivates the active silica sites and slows
down dissolution (Iler, 1973; Bickmore et al., 2006; Nicoleau et al.,
2014). Relatively low concentrations of Al (1–5 mM) can reduce
the dissolution rate of silica by as much as 90%. However, the
sorption of Al(OH)4

- on the surface of silica and the slowing
down of silica dissolution silica is more distinct at intermediate
pH values (<12), while at pH 13 and above the sorption of
Al(OH)4

- on silica becomes weak resulting in only feeble
suppression of the dissolution rate (Yokoyama et al., 1988;
Chappex and Scrivener, 2012b; Nicoleau et al., 2014) as
illustrated in Figure 3 (Bagheri et al., 2022). A comparison
with the Al concentration in the pore solution of Portland
cement and blended cements, show that blending of Portland
cement with fly ash or metakaolin could in fact increase the Al
concentration to 1 mM and above, i.e., to Al concentrations
efficient in slowing down silica dissolution (see Figure 3).
Recent study from Zhou et al. (2022) showed that the Al
concentration could potentially reach about 80 mM after
dissolution of 2 g metakaolin (ca. 1.0 g Al2O3) for 100 days in
75 ml simulated pore solution [0.6M NaOH, Ca(OH)2 saturated],
although in a concrete pore solution the concentrations might be
significantly lower due to the formation of AFt and AFm phases.

FIGURE 3 | Effect Al concentration on the Si release rate [mol/(m2·s)] of
amorphous silica in 100 and 400 mM KOH at 40°C, adapted from (Bagheri
et al., 2022). The vertical lines indicate Al concentrations typically observed in
the pore solution of Portland cements (≈0.1 mM), in blends with blast
furnace slags (≈0.1 mM), with fly ash (≈1 mM) and with metakaolin (≈3 mM)
(Deschner et al., 2012; Vollpracht et al., 2016; Avet and Scrivener, 2018).
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In fact, drastic reduction in damage to reactive siliceous
aggregates is observed in metakaolin, slag or fly ash blended
cements (Chappex and Scrivener, 2012a; Tapas et al., 2021),
although this reduction might also relate to the decrease of pH
in the pore solution due to the reaction of metakaolin, slag or
fly ash.

As Al slows down, but does not prevent silica dissolution, one
could expect a slower buildup of ASR with time. However, as
demonstrated in Figure 1, the presence of Al(OH)3 or Al-rich
SCMs seems to prevent ASR completely up to 700 days
(Ramlochan et al., 2004; Szeles et al., 2017), indicating that
other effects in addition to a slow down of dissolution could
play an important role.

3 ROLE OF LI IN MITIGATING ASR

3.1 Factors Influencing the Li Salts on ASR
Expansion
3.1.1 Types of Li Salts
Lithium salts to inhibit ASR were first used 70 years ago by
McCoy and Caldwell (McCoy and Caldwell, 1951). McCoy and
Caldwell investigated the potential of over 100 different
compounds to prevent ASR of mortars containing Pyrex glass
as reactive aggregate. All the studied lithium salts containing LiCl,
Li2CO3, LiF, Li2SiO3, LiNO3, and Li2SO4 were found to be more
effective than the other inorganic salts and the other compounds
such as acids, oils, organic chemicals, proteins, and proprietary
admixtures. Since even the almost insoluble LiF seemed to be
beneficial, they also suggested that the nature of the
accompanying anion of the lithium salts was not particularly
important. Later, Stark (Stark, 1992) confirmed the effectiveness
of LiF and Li2CO3 in inhibiting ASR expansion, and reported that
also LiOH seemed to be effective. Several other studies further
reported that also LiBr (Qinghan et al., 1995; Bian et al., 1996;
Demir and Arslan, 2013; Demir et al., 2018) and LiH2PO4 (Bian
et al., 1996) are effective in reducing ASR expansion. Bian et al.
(Bian et al., 1996) reported LiCl, LiBr, LiNO2, LiNO3, Li2SO4, and
LiH2PO4 actually produced similar suppressive effects on ASR
expansion, whereas Li2CO3, LiOH, and LiF only exhibited certain
effects at a [Li]/[Na + K] molar ratio of 0.8.

Among all types of lithium salts, LiNO3 emerged as the
preferred lithium compound for inhibiting ASR (Diamond,
1999), due to its neutrality, high solubility and good
compatibility with other admixtures (Wang et al., 1996). It
was also reported that LiNO3 has a benign effect on the
concrete properties of strength, electrical resistance, drying
shrinkage, and resistance to freezing and thawing, whereas
LiOH retard the strength development (Lane and Board,
2002). In Japan the use of lithium nitrite (LiNO2) as an ASR
inhibitor has been widely studied (Sakaguchi et al., 1989; Saito
et al., 1992; Kobayashi and Takagi, 2020) due to its positive effect
on preventing rebar corrosion as well as due to its high solubility.

3.1.2 Li/(K + Na) Ratio and its Influencing Factors
Although lithium salts are used to inhibit ASR expansion, Stark
et al. (Stark et al., 1993) also reported that insufficient dosages of

lithium compounds may even increase the ASR expansion in
some aggregates, known as “pessimum effect”. The dosage of
lithium salts to be added for inhibiting ASR is commonly
expressed as the molar ratio Li/(Na + K). Only at relative high
Li/(Na + K) ratio can completely suppress the ASR expansion. A
molar ratio of Li/(Na + K) of 0.74 seems to be required to
suppress ASR expansion as found in many studies (McCoy
and Caldwell, 1951; Bérubé et al., 2004; Leemann et al., 2014),
while others also reported that the optimum Li/Na molar ratio is
in the range of 0.9–1.2 if LiOH is added (Sakaguchi et al., 1989). In
fact, the exact value of the Li/(K + Na) ratio is not fixed but varies
depending on the following factors:

a) Type of lithium salts: Thomas et al. (2000) observed that in the
case of for LiNO3 a [Li]/[Na + K] molar ratio of 0.74
sufficiently suppressed ASR-induced expansion with most
aggregates, whereas higher ratio of [Li]/[Na + K] of 0.85
was required in the case of LiOH·H2O in concrete prisms
containing a crushed siltstone aggregate. Collins et al. (2004b)
reported that the required minimum threshold [Li2O]/
[Na2Oe] ratio varies from 0.5 to 1.0 for each additive
examined (LiOH, LiCl, or LiNO3), with respect to the
particular reactive aggregate used in their work.

b) Equivalent dosage relates to alkali content: Several studies
reported that the minimum Li/(K + Na) ratio required to
substantially suppress ASR expansion depends also on the
amount of alkali present in the cement. Mo et al. (2003)
reported that if the cement contained less than 2.5% Na2O
equivalent, a [Li/Na] molar ratio above 0.3 was sufficient to

FIGURE 4 | Relationship between the effective dosage of lithium nitrate
(deff), the alkali content of concrete (Lac), and the threshold alkali level (TAL) of
the aggregates. Data reproduced from (Berra et al., 2003).
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inhibit ASR in long-term by adding LiOH. However, when the
cement contained more than 3% Na2O equivalent, a Li/Na
ratio of at least 0.6 was needed (Mo et al., 2003). Qinghan et al.
(1995) studied the suppressive effect of LiNO2 on mortars
containing an andesite sand from Japan following an
autoclave test procedure, they reported that the required
Li/Na ratios were 0.1, 0.3 and 0.5 and 0.8 corresponding to
Na2O equivalent levels of 0.5, 1.0, 1.5%, and 2%. Berra et al.
(2003) found a linear relationship between the effective
lithium dosage in terms of Li/[Na + K] and the difference
between total alkali content and threshold alkali level of the
aggregates (alkali reactivity level) as shown in Figure 4.

c) Types of reactive aggregates: Several early studies showed that
the dosage of lithium depends also on the aggregates (Lane,
2000; Lane and Board, 2002; Collins et al., 2004b). Lane and
coworkers (Lane, 2000; Lane and Board, 2002) studied the
efficiency of both LiOH and a commercial LiNO3 solution in
mitigating ASR for the concrete prisms containing Pyrex glass
and some Virginia reactive aggregates composed of
microcrystalline and strained quartz. They observed that
[Li]/[Na + K] � 0.925 was required for the two aggregates,
and also concluded that both lithium compounds were more
effective for the highly reactive aggregates than for the less
reactive aggregates. Similar observation is also reported in
Drimalas et al. (2012) based on a study on the long-term
exposed concrete blocks, using different aggregate types and
various dosages of lithium-based salts. The concrete blocks
exposed for up to 16 years showed a varying response to
lithium based on aggregate types. Tremblay and co-workers
(Tremblay et al., 2004a; Tremblay et al., 2007) systematically
investigated 12 different aggregates and showed that 50% of
the reactive aggregates responded well to the commonly used
dosage (0.74 molar ratio). For three other aggregates tested, a
higher dosage of LiNO3 ranging from 0.75 to 1.04 was
required. For the remaining three aggregates, a 1.11 molar
ratio was not sufficient to limit ASR below threshold 0.04% of

the concrete prism test. Moreover, they also showed that the
response of lithium could not be correlated to the aggregate
reactivity level and mineralogy.

Regardless of the above-mentioned factors, it is generally
accepted that a dosage of Li/(Na + K) of >0.6 is required to
inhibit ASR (Collins et al., 2004b; Leemann et al., 2014; Islam and
Ghafoori, 2016) as illustrated in Figure 5 reproduced based on
the data from literature (Qinghan et al., 1995; Thomas et al., 2000;
Collins et al., 2004b; Mo et al., 2005; Folliard et al., 2006;
Kobayashi and Takagi, 2020) and in Table 1.

3.1.3 Introducing Lithium Salts to ASR Affected
Concrete
The proposed Li/(K + Na) molar ratios from most of the studies
discussed above are based on freshly prepared mortars and
concretes where lithium salts have been used as admixtures. In
practice, lithium salts are often used afterwards to slow down
expansion in ASR affected concrete. The determination of the
optimum amount of lithium for concrete is thus not
straightforward. The even distribution of lithium ions within
the entire concrete plays a key role in effectively suppressing ASR
expansion. Several methods have been suggested to apply lithium
salts to ASR-affected concrete, e.g., sprinkling lithium solution on
concrete surface (Zapała-Sławeta and Owsiak, 2018), using
electrochemical method by applying voltage at 40 V (Souza
et al., 2017), injecting lithium solution into concrete under
vacuum (Thomas et al., 2007) or by pressure through drilled
holes of a 10–30 mm diameter using a compressor (Kobayashi
and Takagi, 2020), or by soaking ASR affected concrete elements
in lithium solutions. Most of these methods do not achieve
sufficient ingress of the lithium salts into concrete (Thomas
et al., 2007). The electrochemical process showed higher Li
penetration, but reduced the pH of the pore solution near
rebar (cathode) due to electrochemical reduction of water.
Surface overlay is commonly used on road and airfield

FIGURE 5 | Expansion measured over an extended time frame as it relates to the Li/Na ratio of the product for various lithium treatments (Qinghan et al., 1995;
Thomas et al., 2000; Collins et al., 2004b; Mo et al., 2005; Folliard et al., 2006; Kobayashi amd Takagi, 2020).
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TABLE 1 | Summary of selected research findings related to the lithium dosage ([Li]/[Na + K] molar ratio) needed to suppress ASR expansion and their test conditions. The
table is adapted based on the version published in (Folliard et al., 2006).

References Test methods Reactive aggregates Lithium
salts

Parameter studies, i.e.,
[Li]/[Na + K]

McCoy and Caldwell
(1951)

ASTM C 227 Pyrex glass LiCl 0.74
Li2CO3

LiF
Li2SiO3

LiNO3

Li2SO4

Lawrence and Vivian
(1961)

Mortar prism at 43°C LiOH Data not provided to calculate the ratio

Sakaguchi et al. (1989) Mortar bar at 40°C
(standard not
specified)

Pyrex glass pyroxene andesite LiOH·H2O • 0.9 for LiOH·H2O at 1.2 wt.% Na2O
LiNO2 • 0.69 for LiNO2 at 0.8 wt.% Na2O

(expansion not completely
suppressed)

Li2CO3 • 0.56 for LiNO2 at 1.0 wt.% Na2O
(expansion not completely
suppressed)

• 0.77 for Li2CO3 at 0.8 wt.% Na2O
• 0.63 for Li2CO3 at 1.0 wt.% Na2O

Stark (1992) ASTM C 227 Aggregates of andesitic to rhyolitic composition; Granite
gneiss

LiOH·H2O • 0.755–1.00 for LiOH
ASTM P 214 LiF • 0.6 for LiF

Li2CO3 • 0.92 for Li2CO3

Diamond and Ong (1992) ASTM C 227 Cristobalite LiOH 1.2 (for cristobalite, more for opal)
Beltane opal

Qinghan et al. (1995) Autoclave Andesite LiNO2 • 0.8 at higher Na2O level
• 0.1 at 0.5 wt.% Na2O
• 0.3 at 1.0 wt.% Na2O
• 0.5 at 1.5 wt.% Na2O

Lumley (1997) ASTM C 1293 Calcined flint cristobalite LiOH·H2O 0.62
LiF
Li2CO3

Durand (2000) ASTM C 1293 Canadian aggregates (Sudbury—sandstone quartzwacke;
Potsdam—siliceous sandstone, and Sherbrooke—chloritic
schist)

LiOH·H2O • 0.72 (for LiNO3 with Sudbury)
LiF • 0.82 (for LiOH·H2O, LiF, and LiCO3

with Sudbury)
Li2CO3

LiNO3

Collins et al. (2004b) ASTM C 227 Crushed, graded borosilicate glass LiOH • 0.60 (LiOH)
LiNO3 • 0.83 (LiNO3)
LiCl • 0.93 (LiCl)

Data taken at threshold
expansion: 0.05%

Tremblay et al. (2004a);
Tremblay et al. (2004b)

ASTM C 1293 Canadian aggregates (greywacke-argillite, dolostone,
polygenic gravels, rhyolite, siliceous limestones, granite-
gneiss)

LiNO3 Agg. type (1-year CPT exp. %): Molar
ratio
• Granite/gneiss (0.029%): 0.56
• Chloritic schist (0.082%): >0.94
• Greywacke/arg. (0.087%): 0.71
• Dolostone (0.100%): 0.61
• Gravel (0.101%): 0.58
• Gravel (0.103%): 0.91
• Gravel (0.113%): 0.97
• Gravel (0.122%): 0.66
• Greywacke (0.142%): >1.11
• Gravel (rhyolite) (0.151%): 0.63
• Siliceous limestone (0.162%): 1.04
• Siliceous limestone (0.199%): >1.11

Mo et al. (2005) 80°C at 95% relative
humidity

Zeolitic perlite aggregate, Liuhe aggregate (minerology not
mentioned)

LiOH Zeolitic perlite aggregate
• 0.3 at 2.5 wt.% Na2Oeq

• 0.3 at 3.0 wt.% Na2Oeq

(Continued on following page)
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pavements and on highway dividers. In this case, better
penetration of Li can be achieved by several applications of
smaller amounts, e.g., 0.06 L/m2 to 0.40 L/m2 of 30% LiNO3

solution with multiple applications (Folliard et al., 2003;
Thomas et al., 2007). Injection of lithium salts has been
applied to almost 100 ASR-affected concrete structures in
Japan (Kobayashi and Takagi, 2020). Since it can only prevent
further deterioration and not recover the lost performance,
Kobayashi and Takagi suggested that it is desirable to perform
lithium injection in an as early as possible stage of deterioration
(Kobayashi and Takagi, 2020). However, they found that lithium
injection into concrete at early deterioration stage, which indeed
suppressed the ASR expansion to some extent, resulted in a larger
final expansion than that of the concrete treated with lithium after
developing ASR cracks. Moreover, injection of lithium also took
longer time for concrete at early stage of deterioration, thus the

authors suggested that it would be reasonable and economical to
apply this treatment only to concrete already suffering ASR with
expected further deterioration. Of course, one should avoid over
development of ASR cracks, as it will affect the serviceability of
concrete structure. An optimization of injection time is therefore
very important. For this purpose, precise evaluation of the stage of
ASR is critical for lithium treatment.

3.1.4 Temperature
ASR is a very slow process at ambient temperature, thusmany studies
applying lithium salts to mitigating ASR expansion are based on
accelerated or ultra accelerated (autoclave) testing methods (Ohama
et al., 1989; Qinghan et al., 1995; Bian et al., 1996; Mo et al., 2003).
Feng et al. (2005) concluded that the results from autoclave methods
involving lithium are not directly comparable to those from studies at
lower temperatures and pressures. In contrast, Berra et al. (2003)
found that LiNO3 was effective at both low (38°C) and high (150°C)
temperatures and reported a linear relationship of the effective LiNO3

dosage (Li/[K + Na] molar ratio) between the two temperatures as
shown in Figure 6. However, they also found that Li2CO3 was only
effective at 38°C.

3.2 Mitigation Mechanisms
3.2.1 Influence on Dissolution of Silica
Most published studies on ASR with respect to the effect of lithium
on silica dissolution is based on the findings of Lawrence and Vivian
(Lawrence and Vivian, 1961), who found that the dissolution of
reactive silica strongly depended on the type of alkali hydroxides
(i.e., NaOH, KOH, or LiOH) following the order LiOH < NaOH <
KOH. Twenty years later, Wijnen et al. (1989) reported similar
results and suggested that the dissolution rate of reactive silica
decreased with an increase in the effective cation radius of the
alkaline species following the order K+<Na+< Li+.Whilemany later
studies supported the observation of reduced silica dissolution in the
presence of various lithium compounds (Plettinck et al., 1994; Kurtis
andMonteiro, 2003; Collins et al., 2004b; Feng et al., 2005; Tremblay
et al., 2010; Rajabipour et al., 2015), others also observed no
significant influence of Li on silica dissolution (Dove and Nix,
1997; Dove, 1999; Leemann et al., 2014; Oey et al., 2020;
Leemann, 2021; Bagheri et al., 2021). In some cases, even an
increase in silica dissolution in presence of lithium was observed
(Kurtis and Monteiro, 2003; Collins et al., 2004b; Bagheri et al.,
2021). Kurtis andMonteiro (Kurtis andMonteiro, 2003) and Collins
et al. (2004b) studied the dissolution of silica gel in simulated pore

FIGURE 6 | Comparison between the effective dosages of lithium nitrate
for mitigating ASR obtained from the ultra-accelerated concrete prism test
(150°C) and the concrete prism test at 38°C and 100% RH. Data from (Berra
et al., 2003).

TABLE 1 | (Continued) Summary of selected research findings related to the lithium dosage ([Li]/[Na + K] molar ratio) needed to suppress ASR expansion and their test
conditions. The table is adapted based on the version published in (Folliard et al., 2006).

References Test methods Reactive aggregates Lithium
salts

Parameter studies, i.e.,
[Li]/[Na + K]

Liuhe aggregate
• 0.6 (expansion 0.05%) at 2.5 wt.%

Na2Oeq

• 0.3 (expansion 0.04%) at 3.0 wt.%
Na2Oeq

Kobayashi and Takagi
(2020)

35–40°C Andesite LiNO2 • 0.4 (Andesite from Hokkaido)
• 0.6 (Andesite from Oita)
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solutions with and without lithium salts and observed that in
the slurries prepared with LiCl and LiNO3, the dissolved Si
concentration decreased with increasing lithium dosages,
while for LiOH they observed an increase in silica
dissolution with increasing lithium dosage. A recent study
(Bagheri et al., 2021) indicated that lithium in the absence of
calcium could in fact accelerate SiO2 dissolution rate at high pH
values by 20–50%.

The above contradictory observations reported in literature
are found to be related to the influence of pH and Ca2+ on the
effect of Li+ the dissolution rates (Bagheri et al., 2021). Many
studies, which investigated the effect of Li on the dissolution of
SiO2, were carried out under acidic to neutral conditions
(Plettinck et al., 1994; Dove and Nix, 1997; Dove, 1999),
where no or only a slightly retarding effect of Li+ in
comparison to Na+ or K+ was observed and related to the
lower tendency of Li+ to sorb on the SiO2 surface and faster
ligand exchange rate (Dove, 1999). Bagheri et al. (2021)
investigated the effect of Li+ under high pH conditions (in
400 mM KOH) and found a clear acceleration of SiO2

dissolution in the presence of Li+, which might be related to
the ability of Li+ to form surface complexes on silica. It should be
noted that lithium can precipitate in the presence of silica as
Li2SiO3 (Zhou et al., 2018; Bagheri et al., 2021), which can lower
the measured silicon concentration or mass loss in dissolution
experiments (Kurtis and Monteiro, 2003; Tremblay et al., 2010;
Leemann et al., 2014; Zhou et al., 2018; Oey et al., 2020; Leemann,
2021), leading to an apparent decrease in the observed dissolution
rate. In the presence of calcium, the effect of Li on the dissolutions
changes drastically. A significant decrease in SiO2 dissolution rate
in 100 and 1,000 mM NaOH in the presence of both Li and Ca
and the formation of a dense C-S-H containing Li were observed
(Leemann et al., 2014; Zhou et al., 2018), indicating a
destabilization of Li2SiO3 in the presence of calcium. It has
been speculated that this Li containing C-S-H layer is
responsible for the slowdown of the silica dissolution in the
presence of both Li and Ca. More detailed discussions on
influence of the lithium on the change of ASR products and
formation of Li-Si complex are presented in the next sections.

The detailed study of the literature has indicated that Li might
somewhat accelerate SiO2 dissolution, but only in the absence of
calcium, while in the presence of Ca and Li a clear decrease of the
silica dissolution has been observed (Leemann et al., 2014; Zhou
et al., 2018), whichmight contribute together with other factors to
the lower the expansion observed for Li containing concretes.

3.2.2 Non Expansive Reaction Products
Along with the studies on dissolution of silica in presence of
lithium, also changes in the ASR product has been reported in
many of the studies mentioned above. Several studies reported
that presence of lithium lowers the CaO/SiO2 as well as the (Na +
K)/Si ratio in the ASR products (Kawamura and Fuwa, 2003; Feng
et al., 2010; Leemann et al., 2014). Feng and co-workers (Feng
et al., 2010) observed a dense rigid alkali–silica gel composed of Li
with low-Ca contents. The low content of Ca in reaction products
was also confirmed in the extensive study by Leemann et al.
(2014). They suggested that Ca can be replaced by lithium due to

comparable radius of the hydrated cation. It also has been
suggested that Li+, due to its smaller ionic radius and higher
charge density, is more readily incorporated in ASR products
than K+ and Na+ (Kawamura and Fuwa, 2003; Mo, 2005).

In addition to lower the Ca content of ASR products, the
precipitation of amorphous Li-Si products has been observed
(Sakaguchi et al., 1989; Schneider et al., 2008; Guo et al., 2019).
Due to the lack of characterizations of the chemical composition
and molecular structure, the amorphous Li-Si products are often
described as “Li-Si complex” following the work of Lawrence and
Vivian (1961). In some cases, also the precipitation of crystalline
Li-containing products has been observed (Mo et al., 2003;
Collins et al., 2004a; Feng et al., 2010), generally Li2SiO3,
which seems to form in the absence of Ca and at low Ca but
high Li contents (Zhou et al., 2018; Bagheri et al., 2021). However,
so far no systematic investigations about the formation
conditions of the amorphous and crystalline Li-containing
products have been conducted. Leemann et al. (2014) found
no evidence of crystalline Li2SiO3 formation and argued that
crystalline lithium silicate is unlikely to form under dosages of Li/
Na + K < 1.0.

Most studies reported that those Li-containing products are
not expansive (Sakaguchi et al., 1989; Diamond, 1992; Kawamura
et al., 1994; Leemann et al., 2014), although a minimum
proportion of lithium must be reached to be non-expansive
(Stark, 1992), which could explain the “pessimum” effect of
lithium dosages on controlling ASR expansion. However, a
recent study showed that formation of crystalline Li2SiO3

could actually cause expansion and cracks in concrete after
long periods of exposure (Liu et al., 2019).

Several researchers (Mitchell et al., 2004; Schneider et al., 2008;
Leemann et al., 2014) have used nuclear magnetic resonance
(NMR) spectroscopy to study the effects of lithium on the
chemical structure of ASR gels. The incorporation of Li+ ions
into the ASR gel changes its structure from a product with a
layered structure (containing mainly Q3 sites) to a product with
more disordered networks containing mainly Q1 and Q2 sites.
This was put forward as a possible reason, why Li based ASR
products show little expansion. It was claimed that expansive gels
are typically characterized by large presence of Q3 sites as layered
silicates, while the depolymerized products containing mainly Q1

and Q2 sites are not considered to swell upon contact with water
(Kirkpatrick et al., 2005; Tambelli et al., 2006). Also Kurtis and
coworkers (Kurtis et al., 2000; Kurtis and Monteiro, 2003)
suggested that the suppressive effect of lithium on ASR
expansion should be attributed to the limitation of ASR gel re-
polymerization, rather than reduced dissolution of silica. By
dispersing the ASR gel extracted from ASR-affected structure
to NaOH solution alone, they observed that ASR is partially
dissolved and re-polymerized as a potentially expansive gel.
However, when the ASR gel was exposed to the mixture
NaOH and LiCl solution, re-polymerization into an expansive
gel was limited.

The understanding of ASR mitigation mechanisms by Li is
simply based on the assumption that conventional ASR products,
which have a layered silicate structure, will swell upon uptake of
water while Li-containing ASR products with mainly Q1 and Q2
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sites will not swell. However, as recent work based on synthetic
ASR products (Shi et al., 2019) and field ASR products (Leemann
et al., 2020) demonstrated that both amorphous and crystalline
ASR products do not swell upon uptake of water, rather
alternative mechanisms seem responsible for ASR expansion
as well as their suppression by Li, indicating an urgent need
for clarifying the real cause of ASR expansion.

3.2.3 Formation of a Physical Barrier
Another mechanism of ASR mitigation suggested for lithium is
that these products serve as physical barrier preventing the
further dissolution and reaction of reactive silica. This
mechanism was first suggested by Lawrence and Vivian
(1961), who reported that the lithium silicates formed had
low solubility producing a coating effectively protecting the
reactive aggregates from further participation in ASR. This
observation has been supported by many later studies
(Kawamura and Fuwa, 2003; Mitchell et al., 2004; Feng
et al., 2010; Leemann et al., 2014; Leemann et al., 2015;
Kim and Olek, 2016; Guo et al., 2019). Leemann et al.
(2015) observed that the mitigating efficiency of LiNO3

lessens with increasing the specific surface area of the
reactive aggregates, due to the increased area to be covered
by the lithium products. Based on this finding, Kawamura
(2017) assumed that the mitigating effects of lithium on ASR
affected structures may be related to the amount of ASR
products already formed. Few studies reported that only the
Li products containing Ca could serve a physical barrier. Zhou
et al. (2018) observed that quartz glass slices immersed in
solution containing both LiNO3 and Ca(OH)2 were well
protected by the precipitation of a dense layer, while
samples were seriously damaged in the solution with only
LiNO3 or Ca(OH)2. In contrast, Tremblay et al. (2010)
considered the formation of physical barriers unlikely based
on detail analysis of the surface and suggested an increased
chemical stability of silica due to a presently unknown
mechanism as the probable cause.

3.2.4 Other Mechanisms
Several additional mechanisms for the ASR mitigation of lithium
have been proposed. Prezzi et al. (1997) introduced an electrical
double layer (EDL) theory to explain the suppressive effect of
lithium on ASR expansion. ASR gels are negatively charged
(Krattiger et al., 2021), and are thus surrounded by a
positively charged electrical double layer where cations
accumulate. Theoretically, cations with the same valence but
smaller hydrated ionic radii will result in a thinner double
layer, which would cause based on the swelling theory less gel
expansion. As the hydrated radius increases in the order K+ <Na+

< Li+ (Conway, 1981), this would mean that Li would result in
higher expansion, which is contradictory to the results generally
observed in expansion testing, and thus also to the explanation
suggested by (Prezzi et al., 1997). It was also proposed that
presence of lithium may reduce the repulsive forces between
colloidal ASR gel particles (Mohd et al., 2017). Bian et al. (1996)
proposed that the suppressive effect of cations on ASR expansion
depended on the ionic surface charge density. The higher value of

surface charge density, the stronger the bonding between the
cation and anions in the gels, the less tendency to expand. Others
(McCormick et al., 1989; Gaboriaud et al., 1999) studied the
mitigating mechanisms based on sol-gel principles, they observed
that presence of lithium enhanced the formation of large silicate
species in solution, which took longer time to destabilize
(Gaboriaud et al., 1998).

Based on the literature reviewed above it becomes clear, that
the presence of some Ca as well as of sufficient Li are prerequisites
for an effective mitigation by Li. Different mechanism such as
blocking of dissolution, formation of a non-expansive solid,
prevention of swelling due to other reasons have been
suggested, however the findings reported in literature are
contradictory and the experimental evidence pointing in any
direction is circumstantial and inconclusive. This may not be
surprising as also the mechanism of ASR expansion itself is under
debate since recent investigations have suggested that the swelling
theory does not agree with the observed changes in the ASR
product (Shi et al., 2019; Leemann et al., 2020; Shi et al., 2020a;
Geng et al., 2021).

3.3 Pore Solution Observations
Analysis of the pore solution of the samples containing lithium
can also provide valuable information about the reaction of Li
with Si. The addition of some lithium salts (LiF and Li2CO3) can
increase the pore solution pH through reaction with Ca(OH)2
forming insoluble CaCO3 or CaF2, while Li

+ and OH− remain in
solution. However, the pore solution pH is not affected by LiNO3

(Diamond, 1999). Several studies (Sakaguchi et al., 1989; Collins
et al., 2004b; Tremblay et al., 2008; Tremblay et al., 2010;

FIGURE 7 |Mortar bar expansion determined according to ASTMC227.
Data from (Zapała-Sławeta and Owsiak, 2017).
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Leemann et al., 2014) reported that the Li concentration of the
extracted pore solution decreased with time, while the
concentration of K and Na remained unchanged. In contrast,
the samples without Li showed a decrease of K and Na
concentrations (Sakaguchi et al., 1989). Diamond and Ong
(1992) reported that even in the samples without reactive
aggregates, 40% of Li was absorbed by the cement hydrates
after 1 day of hydration, while only 25% NaOH and 20%
KOH were incorporated in the C-S-H phase. Similarly (Bérubé
et al., 2004), reported that only 35% of the original quantity of
lithium left in pore solution in contrast to 55 and 80% for Na and
K respectively. Kim and Olek (2015) found that 50% of added
lithium is not available in the pore solution but incorporated into
cement hydrates. These observations suggest the precipitation of
a solid phase containing Li and a stronger interaction of Si with Li
than with K and Na.

3.4 Long-Term Effectiveness and Cautions
to Potential Risk
Only few studies have investigated the long-term effectiveness of
lithium salts to inhibit ASR. Mo et al. (2003) studied the long-
term effectiveness of LiOH in mitigating ASR by applying a
rigorous experimental condition for the mortars, i.e., cured at
80°C for 3 years after being autoclaved for 24 h at 150°C. Under
this condition, they found that LiOH was able to inhibit long-
term ASR expansion effectively at Li/Na ratio above 0.3 or 0.6,
depending on the alkali dosage of cements, i.e., 2.5% or 3.0%. A 6-
years experimental study (Ekolu et al., 2017) also showed that
LiNO3 with Li/(K + Na) molar ratio of 0.74 is effective in long-
term control of delayed ettringite formation (DEF) or combined
ASR-DEF mechanism in concretes. However, other researchers
(Zapała-Sławeta and Owsiak, 2017) observed that, LiNO3 used at
the molar ratio of Li/(K + Na) � 1.0, mitigated ASR only for a
limited period of time as shown in Figure 7. A significant increase
of expansion was observed from 180 to 540 days. Microscopic
observation from this study confirmed that large amount of ASR
products were formed with indication of multiple exudations in
the presence of LiNO3 at long term. Additionally, DEF was also
observed in this study, which possibly contribute the boost
expansion after 900 days. Slower DEF than ASR was also
observed in (Ekolu et al., 2017). The mechanism for the post
formation of ASR products within this period remains unclear,
but the authors stated that the ASR products formed seemed to be
less viscous. Recently, Liu et al. (2019) showed that high
concentration of LiNO3 only inhibit ASR at early stages, and
suggested that formation of LiSiO3 could cause expansion and
cracking of concrete after long period of time.

4 SYNERGETIC EFFECT BETWEEN AL
AND LI

In some cases, the use of Al-rich SCMs alone may not be able to
fully control the ASR. Therefore, combination of Al-rich SCMs
with small dosage of lithium salts to mitigate ASR has also gained
some interests. Thomas et al. (2001) studied the efficacy of

combinations of fly ash and lithium salts for preventing ASR.
Their results indicated that the beneficial effects of lithium and fly
ash are cumulative when the materials are combined and, in some
cases, there is a synergistic effect. Drimalas et al. (2012) reported
that both single use of either 30% class C fly ash or LiNO3 with a
Li/(K + Na) molar ratio 0.56 are effective in reducing ASR
expansion of concrete containing a highly reactive fine
aggregate from Texas. The combinations of lithium and fly
ash have shown synergistically beneficial but also detrimental
effects (i.e., no synergistic effect and even increase of ASR
expansion) may occur. A mixture containing both LiNO3 and
30% class C fly ash showed only a 50% of reduction of the ASR
expansion compared to single use of 30% class C fly ash after
3,500 days of outdoor exposure. Venkatanarayanan and
Rangaraju (2014) conducted a quantitative analysis of the
combined effects of fly ash and lithium admixture in
mitigating ASR in mortars containing Spratt aggregate. A
linear correlation between the minimum oxide contents (for
ASR inhibiting oxides: SiO2, SiO2equi, and SiO2+Al2O3+Fe2O3)
or maximum oxide contents (for ASR promoting oxides: CaO,
CaOequi, and CaO + MgO + SO3) and the lithium dosage needed
to achieve effective ASR mitigation was established as shown in
Figure 8. The results show that use of lithium nitrate is not
needed for mortars containing fly ashes with less than 14.40%
CaO. It was expected that the correlation could be used to
optimize the lithium dosage as a function of fly ash
composition to provide an economic solution for ASR
mitigation.

5 SUMMARY AND PERSPECTIVES

The efficiency of Al in mitigating ASR expansion has been
directly confirmed by replacing Portland cement with 20%

FIGURE 8 | Correlation of chemical contents of fly ash and lithium
dosage required to achieve ASR mitigation at 25% fly ash replacement level.
Data reproduced from (Venkatanarayanan and Rangaraju, 2014).
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Al(OH)3 following ASTM C1293 or 10% γ-Al2O3 following
ASTM C 1260 or ASTM C227. The presence of Al leads to a
slower SiO2 dissolution and thus a slower formation of reaction
products. Sorption of Al(OH)4

- on the surface of silica and the
slowing down of silica dissolution silica is more distinct at
intermediate pH values (<12), while at pH 13 and above the
sorption of Al(OH)4

- on silica becomes weak resulting in only
feeble suppression of the dissolution rate. As the sorption of
Al(OH)4

- on SiO2 only slows down, but does not prevent silica
dissolution, although the presence of Al(OH)3 or Al-rich SCMs
seems to prevent ASR completely up to 700 days, additional not
yet well-understood effects could play an important role.

Uptake of alkalis by C-S-H is not significantly increased in the
presence of Al, such that the mechanism of significantly increased
alkali fixation by C-A-S-H with subsequent pH reduction can be
excluded.

The structure and composition of ASR products are not
affected by the presence of Al at ambient conditions, while at
higher temperature such as 80°C, formation of alkali alumino-
silicates or zeolites could lower the potential to form ASR
products. However, the formation of alkali alumino-silicate
and zeolite is under most conditions expected to be too slow
to be relevant in suppressing ASR formation in field concretes.

Different lithium salts, such as LiNO3, LiNO2, Li2CO3, LiF,
LiOH, LiOH·H2O, Li2SiO3, Li2SO4, LiCl, LiBr, and LiH2PO4, have
been found to be effective in mitigating ASR at a certain dosage.
The use of some lithium salt such as Li2CO3 and LiF as well as
LiOH results an increase of pore solution pH. Preferably, LiNO3

and LiNO2 are used due to their high solubility and good
compatibility with other admixtures. LiNO2 can have in
addition a positive effect on preventing rebar corrosion.

The effective dosage of lithium depends on the type of lithium
salts, alkali content of the cements and reactivity of the
aggregates. Lithium salts are more effective in mitigating ASR
for the highly reactive aggregates than for the less reactive
aggregates. Generally, high alkali content in the cement result
in high effective Li dosages needed. A linear correlation between
the effective lithium dosage and the difference between total alkali
content and threshold alkali level of the aggregates has been
established by some authors, while others did not find a
correlation between alkali reactivity of the aggregates and
effective lithium dosage. More investigations will be needed to
clarify those effects.

LiNO3 was found to be effective at both low (38°C) and
high (150°C) temperatures, while Li2CO3 was only effective at
38°C, due to unknown reasons. In laboratory studies, lithium
salts are often used as an admixture, while in practice they are
rather applied to already ASR-affected structures. The
transferability from pre-treatment laboratory results to
post-exposure treatment on concrete structure will also
need further research.

Various mechanisms have been proposed to explain why lithium
salts mitigate ASR. Lithium might somewhat accelerate SiO2

dissolution, but only in the absence of calcium, while in the
presence of Ca and Li a clear decrease of the silica dissolution
has been observed which might contribute together with other
factors to the lower the expansion observed for Li containing
concretes. Li can replace Ca, K and Na in ASR products, thus
alter their composition and structure although it remains unclear
how that affects expansion. In addition, Li can also react with Si to
form amorphous and/or crystalline lithium silicates. Different
mechanism such as blocking of dissolution, formation of a non-
expansive solid, prevention of swelling due to other reasons have
been suggested, however the findings reported in literature are
contradictory and the experimental evidences are not conclusive,
indicating more systematic research will be needed.

The combination of Al-rich SCMs such as fly ash and lithium
could be very efficient in preventing ASR. A correlation of the
CaO content of fly ash and the required lithium dosage could be
established. Such relationships could be used to optimize the
lithium dosage as a function of fly ash composition to provide an
economic solution for ASR mitigation.
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Deep Learning for Photonic Design
and Analysis: Principles and
Applications
Bing Duan1†, Bei Wu2†, Jin-hui Chen2,3*, Huanyang Chen2 and Da-Quan Yang1*
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Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, China,
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Innovative techniques play important roles in photonic structure design and complex
optical data analysis. As a branch of machine learning, deep learning can automatically
reveal the inherent connections behind the data by using hierarchically structured layers,
which has found broad applications in photonics. In this paper, we review the recent
advances of deep learning for the photonic structure design and optical data analysis,
which is based on the two major learning paradigms of supervised learning and
unsupervised learning. In addition, the optical neural networks with high parallelism
and low energy consuming are also highlighted as novel computing architectures. The
challenges and perspectives of this flourishing research field are discussed.

Keywords: optics and photonics, deep learning, photonic structure design, optical data analysis, optical neural
networks

1 INTRODUCTION

Over the past few decades, photonics, as an important field of fundamental research, has been
penetrating into various domains, such as life science and information technology (Vukusic and
Sambles, 2003; Bigio and Sergio, 2016; Ravì et al., 2016). In particular, the advances of photonic
devices, optical imaging and spectroscopy techniques have further accelerated the wide
applications of photonics (Török and Kao, 2007; Ntziachristos, 2010; Dong et al., 2014;
Jiang et al., 2021). For example, the creation of metasurfaces/metamaterials have promoted
the development of holography and superlenses (Zhang and Liu, 2008; Yoon et al., 2018), while
the optical spectroscopy and imaging have deep utility in medical diagnosis (Chan and Siegel,
2019; Lundervoldab and Lundervoldacd, 2019) and biological study (Török and Kao, 2007).
However, for sophisticated photonic devices, the initial design relies on the electromagnetic
modelling, which is largely determined by human experience gained from the physical intuition
and previous (Ma W. et al., 2021). The specific structure parameters are determined by means of
trial-and-error, and their parametric space is limited by simulation power and time. Besides, the
optical data generated from optical measurements are becoming more and more complicated.
For instance, when applying optical spectroscopy to characterize various analytes (e.g.,
malignant tumor tissue and bacterial pathogens) in complex biological environments, it is
challenging to extract the fingerprint due to the large spectral overlap from the common bonds in
the analytes (Rickard et al., 2020; Fang et al., 2021). The traditional analysis methods are mainly
based on the physical intuition and prior-experiences, which are time-consuming and susceptive
to human error.
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Recently, the booming field of artificial intelligence has
accelerated the pace of technological progresses (Goodfellow
et al., 2016). Particularly, deep learning, as a data-driven
method, can automatically reveal the inherent connections
behind the data by using hierarchically structured layers. It
has been widely exploited in the field of computer visions
(Luongo et al., 2021), image analysis (Barbastathis et al.,
2019), robotic controls (Abbeel et al., 2010), driverless cars
(Karmakar et al., 2021) and language translations (Wu et al.,
2016; Popel et al., 2020). In the photonics applications, deep
learning provides a new perspective for device design and optical
data analysis (Anjit et al., 2021). It is capable of searching the
nonlinear physical correlations, such as the relationship between
photonic structures and their electromagnetic response (Wiecha
and Muskens, 2019; Li et al., 2020). The cross-discipline of deep
learning and photonics enables researchers to design photonic
devices and decode optical data without explicitly modeling the
underlying physical processes or manually manipulating the
models (Chen et al., 2020). Particular areas of success include
the materials and structures design (Malkiel et al., 2018; Ma et al.,
2019), optical spectroscopy and image analysis (Ghosh et al.,
2019; Moen et al., 2019), data storage (Rivenson et al., 2019; Liao
et al., 2019), and optical communications (Khan et al., 2019), as
shown in Figure 1. The deep neural networks used for these
applications are mainly tested and trained in electronic
computing systems. Compared with the conventional
electronic platforms, the photonic systems have attracted
increasing attention due to the low energy consuming,
multiple interconnections and high parallelism (Sui et al.,
2020; Goi et al., 2021). Recently, various optical neural
network (ONN) architectures have been used for high-speed

data analysis, such as optical interferometric neural network
(Shen et al., 2017) and diffractive optical neural network (Lin
et al., 2018).

In this article, we focus on the merging of photonics and deep
learning for the optical structures design and data analysis. In
Section 2, we introduce the typical deep learning algorithms,
including supervised learning and unsupervised learning. In
Section 3, we present the deep learning-assisted photonic
structure design and optical data analysis. The optical neural
networks are highlighted as novel computing architectures in
Section 4. In Section 5, we discuss the outlook of this flourishing
field accompanied with a short conclusion.

2 PRINCIPLES OF TYPICAL NEURAL
NETWORKS

In this section, we will introduce several typical deep learning
algorithms, and elucidate their working principles for the cross-
discipline optical applications. Basically, the algorithms can be
divided into supervised learning and unsupervised learning.

In supervised learning, the input training data are
accompanied with “correct answer” labels. During the training
process, supervised learning compares the predicted results with
the ground-true labels in the datasets, and constantly optimizes
the network to achieve desired performance. Specifically, it can
learn the correlations between photonic structures and optical
properties, so as to perform special optical functions. Supervised
learning includes multiple artificial neural networks (LeCun et al.,
2015), such as multilayer perceptron (MLP), convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), as
shown in Figures 2A–C.

2.1 Multilayer Perceptron
MLP is a fundamental model from which all other artificial neural
networks are developed, so it is usually considered as the beginning
of deep learning. MLP is composed of a series of hidden layers,
which are the link between the inputs and outputs. The neurons in
the upper and lower layers are connected to each other through a
nonlinear activation function. This model determines a large
number of optimizable parameters, which provides high
capability to learn the complex and nonlinear relationships in
the optical data. In a typical MLP training process, we need to pre-
define a cost function by the variance or cross entropy between the
predicted and actual values. During the optimization, the weights
of the neurons are adjusted by the back propagation algorithm to
minimize the cost function. Later, the target optical functions such
as the scattering spectra are imported into the network, and the
predicted photonic structures are obtained (Wu et al., 2021).
Intuitively, with the increase of hidden layers in MLP, the
neural network learns more features and realizes higher training
accuracy at the cost of training time. Noting that too many hidden
layers are prone to cause over-fitting results, thus the appropriate
hidden-layer numbers are preferred. To solve the universally non-
uniqueness problems, the tandem network model is proposed by
cascading an inverse-design network with a forward-modeling
network (Liu et al., 2018).

FIGURE 1 | Applications of the deep learning in optical structure design
and data analysis.
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2.2 Convolutional Neural Networks
CNNs are specially designed for image classification (Li et al., 2014;
Guo et al., 2017) and recognition (Hijazi et al., 2015; Fu et al., 2017),
and their performance on special tasks such as image recognition can
even surpass humans (Lundervoldab and Lundervoldacd, 2019). The
reason why CNNs can effectively process high-dimensional data such
as images, is that they can automatically learn the features from large-
scale data and generalize them to the same type of unknown data.
Generally, CNNs consist of four parts: 1) The convolution layers
extract the features of the input images; 2) The activation layers realize
nonlinear mapping; 3) The pooling layers aggregate features in
different regions to reduce the data dimension; 4) The full
connection layer outputs the final classification results. The
convolution layers usually contain several convolution kernels,
which are also known as filters, and they sequentially extract the
features of the input image just like the human brain. In the past years,
various derivative networks, such as LeNet (Lecun et al., 1998),
AlexNet (Krizhevsky et al., 2012), ZFNet (Zeiler and Fergus, 2014),
VGG (Simonyan and Zisserman, 2014), GoogleNet (Szegedy et al.,
2015), ResNet (He et al., 2016) and SENet (Hu et al., 2018) are
developed on the basic components ofCNNs. The network accuracy is
improved by manipulating the layer numbers and connection modes.
CNNs exhibit two important characteristics: First, the neurons in the
neighboring layers are connected locally, which is different from the
fully connected neurons in MLP. Second, the weight array in a region
is shared to reduce the number of parameters, and it accelerates the
convergence of network. Since the complexity of themodel is reduced,
the over-fitting problem can be released. Theoretically, CNNs are
prominent to solve problems relevant to the images, such as optical
illusion custom and super-resolution imaging. The network can
automatically extract image features, including color, texture, shape
and topology, which increases the robustness and operation efficiency
in image processing. Recently, CNNs have been applied in photonic
crystal (Asano andNoda, 2018) design. By optimizing the positions of
air holes in a base nanocavity with CNNs, the extremely high Q-factor
of 1.58 × 109 was successfully obtained.

2.3 Recurrent Neural Networks
Just like human beings can better understand the world by virtue
of their memory effects, RNNs have certain memory for the past
processed information. The output of RNNs is related not only to
the current input, but also to the previous inputs. Thus, RNNs are
prevalently used to simulate continuous sequential optical signal
in the time domain. Since the networks memorize all information
in the same way, they usually occupy a lot of memory and reduce
the computational efficiency. The long short-term memory
network, as a derivative RNNs, can selectively memorize the
important information and forget the unimportant information
by controlling the gate states (Ochreiter and Schmidhuber, 1997).
Moreover, it solves the problem of gradient disappearance and
gradient explosion for the long sequence training.

Unsupervised learning is fed with unlabeled training data,
which denotes having no standard answer in the training process.
Consequently, unsupervised systems are capable of discovering
new patterns in the training datasets, some of which can even go
beyond prior knowledge and scientific intuition. Moreover, the
unsupervised learning focuses on extracting important features
from data, rather than directly predicting the optical response,
thus it does not need massive data to train the network. In this
way, it removes the burden of creating massive labeled data.

2.4 Generative Adversarial Network
GAN is proposed by Goodfellow et al. (2014) to solve
unsupervised learning problems. It contains two independent
networks as shown in Figure 2D, which fight against each other
to complete a zero-sum game. The discriminator network
distinguishes whether the input structure data is real or fake.
The generator network generates fake structure data by selecting
and combining elements in the latent space with superposed
noise. In the training process, the discriminator receives data from
both the real and fake structure data, and judges which category it
belongs to. Specifically, if the discriminator is right, adjust the
generator to make the fake structure data more real to deceive

FIGURE 2 | Schematic illustration of typical deep learning models. (A) Multilayer perceptron, (B) Convolutional neural networks, (C) Recurrent neural networks, (D)
Generative adversarial network.
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the discriminator; otherwise, adjust the discriminator to avoid
making similar mistakes again. The continuous training will
reach a balanced state, and a generator with high quality and
discriminator with strong judgment ability is achieved. After
training, the generator is capable of producing target photonic
structures quickly, and the discriminator can accurately judge
whether a new input structure matches the target optical
response or not.

The typical characteristics of deep learning algorithms
including MLP, CNNs, RNNs and generative model are
summarized in Table 1. Note that MLP and CNNs have been
widely used in the photonic devices design and optical data
analysis. Further research of RNNs and generation models for
photonics applications needs to be explored.

In the inverse design of photonic devices, there have been
various optimization algorithms including the classic machine
learning approaches (e.g., regularization algorithms, ensemble
algorithms, or decision tree algorithms) and the traditional
optimization approaches (e.g. topology optimization, adjoint
methods or genetic algorithms) to efficiently search the target in
large design space. By involving more data, deep learning can
usually improve the computing accuracy efficiently, but this
method has almost no effect on the conventional machine
learning approaches. Moreover, the transfer learning technology
enables the well-trained deep learning models to be applied to
other scenarios, making it adaptable and easy to transform. In
contrast, machine learning can only be applied to a single scene and
is weak in transportability. Traditional optimization approaches
search the maximal solution iteratively, which modify the
searching strategy according to the intermediate results. This
strategy consumes huge computational resources and is difficult
to be applied for complex designs. People interested in these
algorithms can refer to the recent review for more information
(Ma L. et al., 2021).

3 PHOTONIC APPLICATIONS OF DEEP
LEARNING

In this section, we briefly introduce the deep learning-based
applications from photonic structure design to data analysis.

3.1 Deep Learning for Photonic Structure
Design
In the past decades, the photonics have developed rapidly, and
show a strong capability in tailoring light-matter interactions.
Recently, this field has been revolutionized by the data-driven
deep learning method. The method can search for the intricate
relationship between the photonic structures and the optical
responses after training on large samples, which circumvents
the time-consuming iterative numerical simulations in photonic
structure designs. Moreover, unlike traditional optimization
algorithms, which requires repeated iterative training for each
computation, data collection and network training for deep
learning are only one-time costs. Such data-driven model can
serve as a powerful tool for the on-demand design of photonic
devices.

3.1.1 Inverse Design of Optical Nanoparticles
Core-shell nanoparticles can exhibit intriguing phenomena, such
as multifrequency superscattering (Qin et al., 2021), directional
scattering and Fano-like resonance, but its higher degree-of-
freedom makes designing difficult. Peurifoy et al. (2018)
applied MLP to predict the scattering cross-section of a
nanoparticle with silicon dioxide/titanium dioxide multilayered
structures, as shown in Figure 3A. In this work, MLP was trained
on 50,000 scattering cross-section spectra obtained by the transfer
matrix method. They achieved dual functions of forward
modeling and inverse design. Specifically, MLP was used to
approximate the scattering cross section of the core-shell
nanoparticle for the input layer parameters. Besides, with the
target scattering spectra, MLP would expeditiously output the
corresponding structural parameters of the nanoparticle. The
results show that MLP is able to calculate spectra accurately
even the input structure goes beyond the training data. It suggests
that MLP is not just simply fitting the data, but instead
discovering some underlying patterns and structures of the
input and output data. Note that this model architecture can
not achieve the inverse design of materials, and there are certain
restrictions on design freedom. So et al. (2019) took a step
forward and inversely designed optical material and structural
thickness simultaneously by realizing the classification and
regression at the same time, as shown in Figure 3B. They

TABLE 1 | Comparison of deep learning algorithms.

Algorithms Unique features Advantages Disadvantages Optical applications

Multilayer
perceptron

Full connected neurons, simple
structure

High reliability, low latency Difficult to handle high
dimensional data

Nanoparticle simulation(Peurifoy etal., 2018), self-
adaptive invisibility cloak(Qian et al., 2020), 3D vectorial
holography(Ren et al., 2020)

Convolutional
neural networks

Local receptive fields, shared
weights

High dimensional data
processing

Ignore global and local
correlations

Spectra analysis(Fan et al., 2019), optical
communications(Fan et al., 2020), data storage(Wiecha e

tal., 2019), optical image processing(Buggenthin et al.,

2017)

Recurrent neural
networks

Intra-layer neurons connected,
shared parameters at different
cycles

Memorable, sequential
information processing

Long-term dependencies,
gradient disappearance

Optical character recognition(Singh, 2013), transient
electromagnetic modeling(Sharmaand and Zhang, 2005)

Generative model With two different networks,
gradient updated from discriminator
rather than training data

Fast convergence speed,
incomplete datasets
processing

Unsuitable for discrete
data, error-prone

Metallic metamolecules design(Liu et al., 2020)
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used classification to determine what materials were used for each
layer, and regression to predict the thickness. The loss function
was defined as weighted average of spectrum and design losses.
The spectrum loss was calculated by mean squared error of target
spectra and predicted response by deep learning, and the design
loss was weighted average of material and structural losses. As a
result, the material and thickness of the core-shell nanoparticle
are designed simultaneously and accurately.

3.1.2 Inverse Design of Metasurface
Over the past 2 decades, the explorations of metasurfaces have led
to the discovery of exotic light–matter interactions, such as
anomalous deflection (Yu and Capasso, 2014; Wang et al.,
2018), asymmetric polarization conversion (Schwanecke et al.,
2008; Pfeiffer et al., 2014) and wave-front shaping (Pu et al., 2015;
Zhang et al., 2017; Raeker and Grbic, 2019).

From individual nanoparticles to collective meta-atoms
metasurfaces, the structural degree of freedom and flexibility
are increased drastically. Liu et al. (2020) proposed a hybrid
framework, i.e. compositional pattern-producing networks
(CPPN) and cooperative coevolution (CC) algorithm, to
design metamolecules with significantly increased training
efficiency, as shown in Figure 3C. The CPPN as a generative
network composes high-quality nanostructure patterns, and CC
divides the target metamolecule into the independent meta-
atoms. The metallic metamolecules for arbitrary manipulation
of the polarization and wavefront of light were demonstrated in

the hybrid framework. This work provides a promising way to
automatically construct the large-scale metasurfaces with high
efficiency. Note that the proposed framework is assumed with
weak-coupled meta-atoms, the strong coupling and nonlinear
optical effects are expected to be involved for the future
development. The nature of three-dimensional (3D) vector
optical field is crucial to understand the light-matter
interaction, which plays a significant role in imaging,
holographic optical trapping and high-capacity data storage.
Hence, using deep learning to manipulate the complex 3D
vector optical fields in photonic structures such as spin and
orbital momentum, topology and anisotropic vector fields are
ready to be explored. For instance, Ren et al. (2020) designed an
optical vectorial hologram of a 3D-kangaroo projection by MLP,
as shown in Figure 3E. The phase hologram and a 2D vector-field
distribution were served as state vector and label vector,
respectively, and they were used to train the network model to
reconstruct a stereo optical image. This work achieves the lensless
reconstruction of a 3D-image with an ultra-wide viewing angle of
94°and a high diffraction efficiency of 78%, which shows great
potentials in multiplexed displays and encryption.

Following the pioneering works on the static manipulation of
optical field, there is an increasing interest to dynamically
manipulate the optical filed, such as the design of invisibility
cloak. The invisibility cloak is an intriguing device with great
applications in various fields, however, the conventional cloak
could not fit into the ever-changing environment. Qian et al.

FIGURE 3 | Photonic designs enabled by deep learning models. (A) Nanophotonic particle scattering simulation. Reproduced from Peurifoy et al. (2018) with
permission from American Association for the Advancement of Science. (B) Simultaneous design of material and structure of nanosphere particles. Reproduced from So
et al. (2019) with permission from American Chemical Society. (C) Inverse design of metallic metamolecules. Reproduced from Liu et al. (2020) with permission from the
WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim. (D) Self-adaptive invisibility cloak. Reproduced fromQian et al. (2020) with permission from Springer Nature. (E)
Optical vectorial hologram design of a 3D-kangaroo projection. Reproduced from Ren et al. (2020) with permission from American Association for the Advancement of
Science.
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(2020) used MLP to design a self-adaptive cloak with millisecond
response time to the dynamic incident wave and surrounding
environment, as shown in Figure 3D. To this end, the optical
response of each element inside the metasurface was
independently tuned by feeding different bias voltages across a
loaded varactor diode. With deep learning, the integrated system
could exploit the intricate relationship between incident waves,
reflection spectra and bias voltages for each individual meta-
atom. Thereafter, the proposed intelligent cloak with bandwidth
of 6.7–9.2 GHz was realized. The concept of demonstration can
be potentially extended to the visible spectra with ingredients of
gate-tunable conducting oxide (e.g. indium tin oxide) (Huang
et al., 2016) or phase-change materials (e.g., vanadium dioxide)
(Cormier et al., 2017).

Deep learning technology exhibits the huge potential in
photonic structure design, material optimization, and even the
optimization of the entire optical system. Besides the
aforementioned work, it has been used for various intricate
devices design, such as multi-mode converters (Liu et al.,
2019; Zheng et al., 2021), metagratings (Inampudi and
Mosallaei, 2018; Jiang et al., 2019), chiral metamaterials (Ma
et al., 2018) and photonic crystals (Hao et al., 2019).

3.2 Deep Learning for Optical Data Analysis
The optical techniques have been widely implemented in various
fields. Large optical data will be generated when applying optical
spectroscopy and imaging to medical diagnosis, information
storage and optical communication. The conventional analysis
of optical data is often based on the prior experiences and physical
intuition. Yet it is time-consuming and error-prone when
processing huge amount of the complex optical data, such as
optical spectra and images. To tackle this challenge, various deep
neural networks have been exploited. In the following part, some
important work of deep learning in optical data analysis are
introduced.

3.2.1 Complex Spectra Analysis
The optical spectroscopy is the study of interaction between matter
and light radiation as a function of the wavelength or frequency.
From the spectral analysis, the chemical compositions and relative
contents of the target analytes can be deduced. Deep learning
provides an alternative way for a better extraction of the encoded
information from the massive and complex spectra. For example,
Fan et al. (2019) implemented a CNN to analyze the Raman spectra
and identify the components of mixtures, as shown in Figure 4A.
The training datasets contained the spectra of 94 ternary mixtures of
methanol, acetonitrile and distilled water. The identification
accuracy of CNN was up to 99.9% and the detected volume
percentage of methanol was as low as 4%, which went beyond
the conventional models, such as k-nearest neighbor. The proposed
component identification algorithm is suitable for complex mixtures
sensing and is potential for rapid disease diagnosis.

The optical memory provides an intriguing solution for “big
data” due to the high information capacity and longevity.
However, the diffraction limit of light inevitably restricts the
bit density in optical information storage. Wiecha et al. (2019)
encoded multiple bits of information in the subwavelength

dielectric nanostructures by using a CNN and MLP, as
illustrated in Figure 4B. The scattering spectra were identified
to extract the bit sequence. In the network training, the scattering
spectra data propagated forward through the network, and the
outputs of highly activated neurons indicated the encoded bit
sequence (Figure 4C). In this way, they efficiently improved the
bit density up to 9-bits with quasi-error-free readout accuracy,
which was of 40% higher information density than that of the
Blu-ray. Furthermore, they simplified the readout process by
probing few wavelengths of nanostructure scattering, i.e., the
scattered RGB values of the dark-field microscopy images. This
study provides a promising solution for high-density optical
information storage based on the planar nanostructures.

3.2.2 Nonlinear Signal Processing
The long-haul optical communications face the fundamental
bottlenecks, such as the fiber Kerr nonlinearity and chromatic
dispersion. Deep learning, as a powerful tool, has been applied to
fiber nonlinearity compensation in optical communications. Fan
et al. (2020) utilized the deep learning-based digital back-
propagation (DBP) architecture for nonlinear optical signal
processing, as shown in Figure 4E. For a single-channel 28-
GBaud 16-quadrature amplitude modulation system, the
developed method demonstrated a 0.9-dB quality factor gain.
This architecture was further extended to polarization-division-
multiplexed (PDM) and wavelength-division-multiplexed
(WDM). The quality factor gain of modified DBP were 0.6
and 0.25 dB for the single channel PDM and WDM system,
respectively. This work shows that deep learning provides an
effective tool for theoretical understanding of the nonlinear fiber
transmission.

In addition, deep learning has promoted the development of
intelligent systems in fiber optic communication, such as eye map
analyzers. Wang et al. (2017) proposed an intelligent eye-diagram
analyzer based on CNNs to achieve the modulation format
recognition and optical signal-to-noise rate estimation in
optical communications. Four commonly used optical signals
by the simulations were obtained, which were then detected by
the photodetectors. They collected 6,400 eye-diagram images
from the oscilloscope as training sets. Each image in the
training datasets had a 20-bits label vector. During the
training process, CNNs gradually extracted the effective
features of the input images and the back-propagation
algorithm was exploited to optimize the kernel parameters.
Consequently, the estimation accuracy nearly reached 100%.

3.2.3 Optical Images Processing
Optical imaging technology, such as fluorescence microscopy and
super resolution imaging, have been considered as powerful tools
in various areas. For example, image classification has been
widely used for the medical image recognition. Buggenthin
et al. (2017) established a classifier by combining CNNs and
RNNs for directly identifying differentiated cells. With massive
bright-field images input, the convolutional layers extracted the
local features and the concatenation layer combined the highest-
level spatial features with cell displacement in differentiation
process. The extracted features were fed into the RNNs to
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exploit the temporal information of the single-cell tracks for cells
lineage prediction, as shown in Figure 4D. They achieved the
label-free identification of cells with differentially expressed
lineage-specifying genes, and the lineage choice could be
detected up to three generations. The model allows for
analyzing the cell differentiation processes with high
robustness and rapid prediction.

In the fluorescence microscopy, the observable phenomena of
fluorescence microscopy is limited by the chemistry of
fluorophores, and the maximum photon exposure that the
sample can withstand. The cross-discipline of deep learning
and bio-imaging provides an opportunity to overcome this
tackle. For instance, Weigert et al. (2018) proposed a content-
aware image restoration (CARE) method to restore the
microscopy images with enhanced performance. In Figure 4F,
the CNN architecture was trained on the well-registered pairs of
images: a low signal-to-noise ratio (SNR) image as input and high
SNR one as output. The CARE networks could maintain the
microscopy images of high SNR even if the 60-fold light dosage
was decreased. Besides, the isotropic resolution could be realized
with the tenfold fewer axial slices. Impressively, they achieved the
imaging speed by CARE of 20-times faster than that of the state-
of-the-art reconstruction methods. The proposed CARE
networks can extend the range of biological phenomena

observable by microscopy, and can be automatically adapted
to various image contents.

4 OPTICAL NEURAL NETWORKS

Integrated circuit chip is the mainstream hardware carrier, such
as graphical processing units, central processing units and
application-specific integrated circuits (Misra and Saha, 2010).
However, the conventional electronic computing systems on von
Nemumann architectures are insufficient for training and testing
neural networks (Neumann, 2012). It is because that they separate
the data space from the program space, and the tidal data load is
generated between the computing unit and the memory. Photons
exhibit the unique abilities of realizing multiple interconnections
and simultaneously parallel calculations at the speed of light (Xu
et al., 2021). Thus, the optical neural networks (ONNs)
constructed by the photonic devices, have opened a new road
to achieving orders-of-magnitude improvements in both
computation speed and energy consumption over the existing
solutions (Cardenas et al., 2009; Yang et al., 2013). The ONNs
have shown the potential for addressing the ever-growing
demand of high-speed data analysis in complex
applications, such as medical diagnosis, autonomous

FIGURE 4 | Deep learning for optical data analysis. (A)Working principle of CNN used in spectral analysis. Reproduced from Fan et al. (2019) with permission from
the Royal Society of Chemistry. (B) Schematic of 4-bit nanostructure geometry. (C) Illustration of CNN applied for information storage. Reproduced from Wiecha et al.
(2019) with permission from Springer Nature. (D) Schematic of CNN used for classification of differentiated cells. Reproduced from Buggenthin et al. (2017) with
permission from Springer Nature. (E) DNN-based DBP architecture. FOE: frequency-offset estimation, CPE: carrier-phase estimation. Reproduced from Fan et al.
(2020) with permission from Springer Nature. (F) The proposed CARE for image restoration. Reproduced from Weigert et al. (2018) with permission from Springer
Nature.
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driving, and high-performance computing, as shown in
Figure 5. The platforms to achieving ONNs mainly include
photonic circuits and optical diffractive layers as discussed
following.

Recently, Shen et al. (2017) experimentally demonstrated an
ONN by using a cascaded array of 56 programmable Mach-
Zehnder interferometers on an integrated chip. Theoretically,
they estimated that the proposed ONN could achieve 1011 N-
dimension matrix-vector multiplications per second, which was
two orders of magnitude faster than the state-of-the-art electronic
devices. To test the performance, they verified the utility in vowel
recognition with measured accuracy of 76.7%. They claimed that
the system could achieve a correctness of 90% with calibrations to
reduce the thermal cross-talk, which was comparable to
conventional 64-bits computer with accuracy of 91.7%. Noted
that the optical nonlinearity unit by a saturable absorber was only
modelled on a computer, and the power dissipation of data
movement was significant in the current ONNs. There is still
a long way to exploring the optical interconnects and optical
computing units to realize the supremacy of ONNs.

In addition to the photonic integrated circuit, the physical
diffractive layers also provides a method for implementing neural
networks algorithms. The optical diffraction of planar structures
is mathematically a convolutional processing of input modulated

fields and propagation functions. Thus the diffractive layers can
be intuitively used to train ONNs. Lin et al. (2018) pioneered the
study of all-optical diffractive deep neural network (D2NN)
architectures. The learning framework was based on multiple
layers of 3D-printed diffractive surfaces, which was designed
through a computer. They demonstrated that the trained
D2NN could achieve the automated classification of
handwritten digits (accuracy of 93.39%) and complex images
datasets (Fashion MNIST, accuracy of 86.6%) with the 10
diffractive layers and 0.4 million neurons. The proposed
D2NN shows the ability to operates at the speed of light, and
it can be easily extended to billions of neurons and connections
(Lin et al., 2018).

5 OUTLOOK AND CONCLUSION

Deep learning usually needs large amounts of data support.
However, it is impractical to collect massive databases by
either physical simulations or experimental measurements.
There are mainly two approaches to solving this problem.
First, transfer learning allows migrating the knowledge of
neural network trained from a certain physical process to
other similar cases (Torrey and Shavlik, 2010). Specifically, the

FIGURE 5 | Development of photonic chip computing power and their representative application.

FIGURE 6 | An conceived user-friendly software system for photonic structure design.
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neural network pre-trained on high-quality datasets shows strong
generalization ability, which can solve new problems with small
datasets. Thus the data collection can be substantially reduced.
Second, the burden of massive data collection can also be relieved
by combining deep learning model with basic physical rules. For
example, deep learning can be used as an intermediate step to
effectively solve the Maxwell’s equations (So et al., 2020), rather
than to directly find a mapping of optical structures and
properties.

In the past few years, intelligent photonics has made great
progress benefited from the interdisciplinary collaborations from
researchers in the field of computer science and physical optics. To
relieve the researchers from tedious and complex algorithm
programming, a user-friendly system is highly on demand. This
system should basically contain two parts: open-source resources
and user-friendly interface, as shown in Figure 6. Inspired by
computer-science community, researchers are encouraged to
share their datasets and neural networks to establish a
comprehensive optical open-source community. Furthermore, the
abundant open-source networks enable transfer learning to solve the
various problems. The basic idea is to migrate data characteristics
from related domains to improve the learning effect of the target
tasks. Thereafter, when a deep learning network is needed to train
and solve a specific photonic problem, we can directly call the
relative database and well-trained neural networks from the open-
source resources, which avoids the ab initio building of data
collection.

In the context of photonic structures, people are not only
interested in some specific designs and their performances, but
also in the general mechanism or principle that leads to the
functionalities. The neural networks are considered as black-box
models, which fit the training sets to directly provide the expected
results. There is relentless effort for researchers to study the
interpretability of neural networks. For instance, Zhou et al.
(2016) proved that by using global average pooling, CNNs

could retain remarkable localization ability, which exposed the
implicit attention of CNNs on image-level labels. The remarkable
localization ability are probably transferred to physical
interpretability of the photonic devices design.

In this review, we have surveyed the recent development of
deep learning in the field of photonics, including photonic
structure design and optical data analysis. Optical neural
networks are also emerging to reform the conventional
electronic-circuit architecture for deep learning with high
computational power and low energy consumption. We have
witnessed the interactions between the deep learning and
photonics, and look forward to more exciting works in the
interdisciplinary field.
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Self-Healing Coatings Based on
Stimuli-Responsive Release of
Corrosion Inhibitors: A Review
Yue Zhang, Mei Yu*, Chao Chen, SongMei Li and JianHua Liu

School of Materials Science and Engineering, Beihang University, Beijing, China

Corrosion inhibitors loaded in coatings promote the protection performance of coatings,
avoid the local corrosion of metal substrates, and endow the self-healing properties of the
coatings. The stimuli-responsive release of corrosion inhibitors, which is generally achieved
by loading corrosion inhibitors in containers, is key to the self-healing and long-term
protection of the coatings. The loading and release methods of corrosion inhibitors are
discussed in the article. First, two kinds of loading methods for corrosion inhibitors are
reviewed, which are one-step synthetic methods and multistep synthetic methods. Then
the released methods of corrosion inhibitors, which can be achieved by intrinsic properties
and surface modification of containers, are summarized.

Keywords: self-healing coatings, corrosion inhibitors, containers, loading methods, stimuli-responsive release

INTRODUCTION

Organic coatings on metal surfaces physically isolate the metal substrate from the external corrosion
environment, which is one of the most widely used measures in metal corrosion prevention (Abdolah
et al., 2016; Zhang et al., 2016). However, traditional organic coatings are susceptible to defects and
cracks during use, and it is easy to be infiltrated by corrosive media during service. If not repaired in
time, the shielding effect of coatings will be significantly reduced, resulting in metal corrosion.
Therefore, in order to prolong the service time of coatings and avoid the local corrosion of the metal
substrate caused by coating defects, it is necessary to endow coatings with self-healing protection
performance when coatings are damaged or corroded. Self-healing coating is an intelligent protective
material, which can self-repair the damage generated in the process of use and has become a research
hotspot in the coating field in recent years (Cui et al., 2021). Some articles (Abu-Thabit et al., 2016;
Zhang et al., 2018), patents (Keeney et al., 2002; Cho et al., 2018), and books (Li and Meng, 2015;
et al., Hosseini, 2016) on self-healing coatings have been published. According to the recent view
(Zhang et al., 2018), self-healing coatings are classified into autonomous and non-autonomous
healing coatings. The self-repair process can be realized by adding corrosion inhibitors to the
coatings shown in Figure 1, which is efficient, economical, and convenient, and have become one of
the most widely used corrosion protection methods in recent years (Liu et al., 2021).

Adding corrosion inhibitors can obviously inhibit the corrosion electrochemical reaction on the
metal surface. However, if corrosion inhibitors are directly added to the coating, they will react with
the metal substrate or the material in the coating in advance, so as to prematurely lose the self-healing
protection performance and cause adverse effects to coatings (Zhang et al., 2018). The strategy to
overcome these drawbacks is encapsulating inhibitors using micro- or nanocontainers (Saji, 2019).
Inspired by drug delivery in the medical field, researchers first proposed using nano-/microcapsules
to load healing agents and then doped them into coatings. White et al. used capsules to load healing
agents (White et al., 2001). When the coating is damaged by external force, the healing agent and
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catalyst released from ruptured capsules at the mechanical
damage caused a cross-linking reaction to repair cracks, and
the physical shielding performance of the coating is restored in
time. However, in this way, the corrosion inhibitor is released by
the mechanical damage of containers, which will result in
uncontrollable one-time release of corrosion inhibitors. The
self-healing protection performance of coatings will soon
disappear and cannot realize long-term service of coatings. In
addition, the diameters of microcapsules usually range from
dozens of microns to hundreds of microns, and they are not

suitable for thin coatings. Also, the weak mechanical properties of
microcapsules and incompatibility between microcapsules and
matrix destroy the performance of final composites.

The method to overcome this disadvantage is to encapsulate
corrosion inhibitors into micro-/nanocontainers, such as
mesoporous silica containers (Recloux et al., 2015; Ma et al.,
2017; Xu et al., 2018; Wang, et al., 2019; Xiong et al., 2019a), silica
nanocapsules (Exbrayat et al., 2019), zeolitic imidazolate
framework-8 (ZIF-8) (Xiong et al., 2019b), zeolite (ZEO) (Lv
et al., 2021), and layered double hydroxides (LDHs) (Tedim et al.,

FIGURE 1 | Basic structure and functions of a coating system and major self-healing mechanisms (Zhang et al., 2018).

FIGURE 2 | Overview of main loading and release methods of corrosion inhibitors in this review.
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2016; Alibakhshi et al., 2016). Micro-/nanocontainers have more
extensive structure and characteristics. While loading corrosion
inhibitors efficiently, it can respond to the external changes in
light, heat, pressure, pH, and potential during corrosion
occurrence and realize the controllable release of corrosion
inhibitors (Shchukin and Moehwald, 2013). Corrosion
inhibitors can be released from micro-/nanocontainers only
when these internal/external stimuli are triggered. This can
prevent corrosion inhibitors from leaking out of coatings and
increase the durability of coatings, thereby enhancing the self-
healing ability of coatings and preventing corrosion.

Stimuli-responsive self-healing coatings can avoid corrosion
inhibitor failure in advance (Zheludkevich et al., 2007) and one-
time release leading to loss of self-healing protection performance
(White et al., 2001), which is generally achieved by loading
corrosion inhibitors in containers, and the critical issue is the
loading and release of corrosion inhibitors. In recent works
(Crespy et al., 2016; Zhang et al., 2018; Ye K et al., 2020),
most of the self-healing coatings are classified according to the
type of containers, but the comprehensive investigation of
loading and release methods of corrosion inhibitors is rare.
Therefore, in this paper, loading and release methods of
corrosion inhibitor are reviewed in detail, the main loading
and release methods of corrosion inhibitors in this review are
shown in Figure 2. In the last section, a prospect with critical
issues, aiming to provide insights for the further development of
self-healing coatings was proposed.

LOADING METHODS OF CORROSION
INHIBITORS

The loading methods of corrosion inhibitors are generally divided
into two types: one-step method and multistep method. The one-
step method refers to the completion of container preparation
and corrosion inhibitor loading in one step, usually through oil-
in-water, the template method, and in situ polymerization. The
multistep method refers to the prior preparation of the container
and then loading of the corrosion inhibitor (Hu et al., 2011),
usually by vacuum adsorption, ion exchange, and layer-by-layer
self-assembly. These common loading methods of corrosion
inhibitors are shown in Figure 3.

One-Step Synthetic
Container preparation and corrosion inhibitor loading are
completed in one step. This refers to the direct loading of
corrosion inhibitors while preparing containers. In recent
years, one-step synthesis of nanocontainers loaded with
corrosion inhibitors has attracted attention due to its simple
process and economy. The widely used method is oil-in-water
microemulsion polymerization. Yi et al. based on the oil-in-water
Pickering solution template stabilized by lignin nanoparticles,
prepared multilayer composite microcapsules loaded with
healing agents and controlled the particle size of microcapsules
by changing the lignin content and oil-to-water volume ratio in
the Pickering emulsion. When the microcapsules were doped into

FIGURE 3 | Schematic illustration of common loading methods of corrosion inhibitors.
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the epoxy coating, the immersion test showed that the self-
healing epoxy coating loaded with microcapsules had good
dispersion and a good anticorrosion effect (Yi et al., 2015).
However, the particle size obtained by this preparation method
is usually at micron level so that the doping may destroy the
integrity of the coating and affect its performances. In
addition, toxic organic solvents are inevitably used in the
preparation of nanocontainers with a diameter less than
150 nm. In this context, it is necessary to study the one-step
synthetic method of nanocontainers loaded with corrosion
inhibitors for energy conservation and environmental
protection.

In various micro-/nanocontainers, mesoporous silica
nanoparticles (MSN) have many advantages, such as high
stability, large specific surface area, adjustable pore size, and
easy surface functionalization, so they are often used as
corrosion inhibitors loaded containers in the field of metal
corrosion protection. However, traditional methods of loading
corrosion inhibitors on MSN include the synthesis of silica
template composites, removal of the template by calcination or
acid extraction, functionalization of silica nanoparticles, and
loading of corrosion inhibitors, which are time-consuming and
inefficient. Therefore, it is necessary to develop a simple and
effective loading inhibitor method to improve industrial
application value. Based on high solubility of organic
inhibitors in the template micelle hydrophobic core, Xu et al.
prepared the mesoporous silica nanocontainers loaded with
corrosion inhibitors by a simple one-step synthetic method, as
shown in Figure 4 (Xu et al., 2018). The MSN loaded with
benzotriazole (BTA) and cetyltrimethyl ammonium bromide
(CTAB) were prepared without additional steps, such as

removing templates or loading corrosion inhibitors, which has
H+ stimulus-response release characteristics. SVET results show
that the coatings doped with these nanocontainers exhibit
effective corrosion protection performance. The results show
that the one-step synthesis method is simple and efficient, and
the whole preparation process does not require organic
solvents, compared with the traditional multistep preparation
method and the one-step synthesis method with toxic organic
solvents in the preparation process. It is energy-saving and
environmentally friendly and can be applied to a variety of self-
healing coatings.

In addition, in situ polymerization is also one of the common
methods for one-step preparation of micro-/nanocontainers
loaded with healing agents, which has the advantages of
economy and easy operation. White et al. prepared the
urea–formaldehyde resin microcapsules loaded with a
polymer-based self-healing material dicyclopentadiene by in
situ polymerization (White et al., 2001). However, the
development of in situ polymerization is limited because the
preparation time is usually as long as several hours.

Multistep Synthetic
Container preparation and corrosion inhibitor loading are
completed by using the multistep synthetic method, which is
the most common way to load corrosion inhibitors. After the
preparation of micro-/nanocontainers, appropriate methods
can be selected according to the properties of containers and
corrosion inhibitors. The common corrosion inhibitor
loading methods include the vacuum adsorption method,
ion exchange method, and layer-by-layer self-assembly
technology.

FIGURE 4 | Schematic illustration of MSN loaded with corrosion inhibitors synthesized by traditional multistep method and current one-step methods in this work
(Xu et al., 2018).
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Vacuum Adsorption
The vacuum adsorptionmethod uses decompression (vacuum) to
load corrosion inhibitors. Many corrosion inhibitors loaded into
containers, such as mesoporous silica, use this method to load
corrosion inhibitors.

MSN can be dispersed in the corrosion inhibitor solution and
placed in a low-pressure environment to adsorb corrosion
inhibitors. Borisova et al. adsorbed BTA as a corrosion
inhibitor after the synthesis of MSN and incorporated into a
sol-gel coating to protect aluminum alloy (Borisova et al., 2011).
Mechanical stability, high specific surface area (1,000 m2 g−1), and
large pore volume (1 ml g−1) of mesoporous silica make its load
capacity reach 409 mg BTA/1g SiO2. SVET is used to simulate the
corrosion process. It was found that the newly developed self-
healing anticorrosive coating had better corrosion protection
performance than control sol-gel coatings.

Ion Exchange
Some micro-/nanocontainers have ion exchange properties, and
some corrosion inhibitors are loaded into containers by
exchanging with the original ions in the containers. The large
specific surface area and porosity of layered silicate materials
make it possible to load corrosion inhibitors. Researchers have
found that cations (such as Na+) contained in zeolites have cation
exchange properties, which can be exchanged with some cation
corrosion inhibitors to incorporate corrosion inhibitors into
zeolites.

Rassouli et al. embedded Zn2+ into NaX zeolite for corrosion
inhibition by ion exchange reaction and doped it into an epoxy
coating (Rassouli et al., 2017). Electrochemical tests and surface
analysis show that the coating containing NaX zeolite load with
corrosion inhibitor Zn2+ has better corrosion protection
performance than the control group. This is because in the
process of corrosion reaction, the zeolite container releases
Zn2+ by ion exchange with Na+ in the corrosive medium and
forms zinc hydroxide precipitation in the active area, which leads
to a decrease in corrosion rate and thus inhibits corrosion. Wang
et al. (2016) obtained Ce-MCM-22 zeolite by loading Ce3+

corrosion inhibitors into it through the cation exchange
reaction of MCM-22 zeolite and added it to the epoxy coating
on Mg–Li alloy. Scratch test results show that the epoxy coating
containing Ce-MCM-22 zeolite has a self-healing function
because during the corrosion process of the Mg–Li alloy
substrate, Ce3+ is released from MCM-22 zeolite based on the
ion exchange of zeolite.

Layer-by-Layer Self-Assembly
Layer-by-layer self-assembly (LBL) technology, which emerged in
the 1990s, is a simple, fast, and green multifunctional surface
modification method. The most classical principle is the alternate
deposition of polyelectrolyte self-assembly multilayers in
polyelectrolyte solutions with opposite charges. Common
polyelectrolyte multilayers include negatively charged
polystyrene sulfonic acid (PSS) and positively charged
polyetherimide (PEI). Due to the electrostatic interaction
between layers, the polyelectrolyte layer is sensitive to external
stimuli such as pH and light, and the active substance

encapsulated between layers can be released slowly. Therefore,
the controllable release of corrosion inhibitors can be realized
when the corrosion environment changes. In this context, layer-
by-layer self-assembly technology is often used in the coating field
for corrosion inhibitor loading.

Falcón et al. studied the self-repairing and anti-corrosion
effects of nanocontainers coated with dodecylamine on carbon
steel (Falcón et al., 2014). Researchers used LBL technology to
alternately deposit several polyelectrolyte layers (PEI and PSS)
and corrosion inhibitor (dodecylamine) layers on the surface of
SiO2 nanoparticles, and the final structure of the obtained
nanocontainer is SiO2/PEI/PSS/dodecylamine/PSS/
dodecylamine. The corrosion resistance of coatings at different
pH (2.0, 6.2, and 9.0) is evaluated by electrochemical impedance
spectroscopy (EIS) and scanning vibrating electrode technique
(SVET). The results showed that when the coating contained
10 wt% nanocontainer loaded with dodecylamine, the corrosion
inhibition effect was best at pH � 2. At the same time, the salt
spray test of carbon steel samples coated with prefabricated
scratches shows that the coating with nanocontainers has self-
healing performance.

Chen et al. developed a SnO2 nanocontainer and deposited
polypyrrole (PPy), molybdate corrosion inhibitors, and PDA
layers using the LBL assembly technology, as shown in
Figure 5 (Chen et al., 2020a). The prepared SnO2

nanocontainer was incorporated into the epoxy coating of
stainless steel, which makes the electrochemical tests of the
coating show the best anti-corrosion and self-healing
properties. The PDA layer can control the on-demand release
of the molybdate corrosion inhibitors and reforms the cracked
polymer networks using the dopamine functional group and iron
oxide to enhance the self-healing ability of the epoxy coatings.

RELEASE METHODS OF CORROSION
INHIBITORS

Natural Release
Loaded in Microcontainers
A large number of studies have shown that compared with the
direct doping of healing agents in the coating, whether healing
agents are encapsulated into microcapsules or hollow fibers, they
can have a better effect. This is because the packaging of healing
agents can avoid the adverse reaction with coatings. When
coating microcracks form and begin to propagate,
microcapsules or hollow fibers at the crack are then ruptured,
and healing agents flow out to refill the crack area. This method
has high packaging efficiency, strong core material protection
ability, and fast response to environmental hazards. Figure 6
shows its mechanism.

Inspired by the use of capsule-coated drugs for directional
delivery in the medical field, White et al. reported the first
generation of self-healing systems based on polymer-based
self-healing materials, dicyclopentadiene (DCPD), in 2001
(White et al., 2001), which received a strong response in the
field of materials. Since then, microcapsule-based self-healing
materials have attracted widespread attention and have begun to
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be applied in the field of coatings. They dispersed the
microcapsules loaded with a liquid DCPD healing agent and
powdered Grubbs catalyst in the epoxy substrate. When
microcracks appeared in the substrate and began to propagate,
the microcapsules at the crack propagation ruptured, resulting in
the release of DCPD and Grubbs catalysts, and contacted at the

defect, triggering ring-opening complex decomposition
polymerization (ROMP), which led to the formation of cross-
linked networks and the healing of damaged areas. The self-
healing mechanism is shown in Figure 7 (White et al., 2001).

In order to optimize the defect that the repair process cannot
continue due to the depletion of healing agents in the

FIGURE 5 | Schematic illustration of SnO2-ppy-Inh-PDA (Chen et al., 2020a).

FIGURE 6 | Schematic diagram of natural release method of microcontainers loaded healing agents.
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microcapsule model, researchers inspired by the biological
vascular system propose the method of encapsulating healing
agents and catalysts with hollow fibers, which opens up a new way
for the continuous transportation of healing agents and other
active substances to the coating defects. Toohey et al.
encapsulated DCPD into a three-dimensional capillary
network system and embedded it into the coating (Toohey
et al., 2007). When the coating is cracked by mechanical force,
the fiber pipeline at the “wound” ruptures, the healing agent and
the catalyst flow out, and the curing reaction occurs after contact
with the coating damage, thus repairing microcracks. The
structure is shown in Figure 8.

Since then, based on the packaging technology of healing
agents, researchers have continued to study the packaging of
different types of healing agents, and explore healing agents that
can cross-link and cure without additional catalyst or curing
agent. For example, the hydrophobic structure is formed by the
combination of methylsilyl ester and water in the corrosive
environment. Isocyanates can react with water. Some healing
agents that polymerize under the stimulation of visible light can also
be loaded into microcapsules or hollow fibers, which was developed
inspired by human vascular system, which simplifies the process.

Loaded in Nanocontainers
A large number of studies have shown that adding a certain
amount of nanocontainers to the coating can fill the original
defects in the coating and enhance the physical shielding effect of
the coating. At the same time, the corrosion inhibitor loaded in
the nanocontainer will slowly release into the coating, enhancing
the integrity of the coating and protecting the metal substrate.
Figure 9 shows its mechanism.

Since the microcapsule size is usually between tens and
hundreds of microns, it cannot be used for thin coating. And

FIGURE 7 | Schematic diagram of autonomic healing concept. (A)
cracks appeared in the substrate; (B) release of the healing agent loaded in
microcapsules ruptured by cracks; and (C) polymerization reaction between
the healing agent and the catalyst (White et al., 2001).

FIGURE 8 | Structure diagram of self-healing materials with 3D microvascular networks. (A) Dermal capillary network with a cut in the epidermis layer and (B) self-
healing structure consisting of a microvascular substrate and an epoxy coating embedded with a catalyst in a four-point bending configuration monitored with an
acoustic emission sensor (Toohey et al., 2007).

FIGURE 9 | Schematic diagram of natural release method of
nanocontainer loaded corrosion inhibitors.
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part of the cavity formed after the rupture of microcapsules will
affect the coating stability. In addition to the natural release
methods of corrosion inhibitors flowing out of microcapsules or
hollow fibers caused by crack propagation, researchers can also
realize the slow release of corrosion inhibitors by directly loading
the corrosion inhibitor into nanocontainers and adding it into
coatings.

Chen et al. loaded molybdate corrosion inhibitors into TiO2
nanotubes, which can slowly release inhibitors into the natural
environment (Chen et al., 2020b). Ye et al. loaded corrosion
inhibitors of benzotriazole (BTA) into the porous graphene sheets
and then embedded into epoxy coating to form composite coating.

The spontaneous release of BTA from the graphene-based
nanocontainer makes the coating obtain good corrosion
resistance (Ye Y et al., 2020). Borisova et al. studied and
evaluated using a simplified coating system. They adsorbed BTA
under reduced pressure in MSN without additional modification.
And then, they added it to the sol-gel coating and coated it on the
surface of aluminum alloy (Borisova et al., 2011). The optical images
of the bare aluminum alloy substrate, the substrate coated with
sol-gel coating, the substrate coated with a sol-gel coating doped
with BTA, and the substrate coated with a sol-gel coating doped
with MSN loaded with BTA showed that MSN loaded with BTA
in the coating has the best corrosion inhibition effect, while the

FIGURE 10 | Chemical structures of studied organic corrosion inhibitors MBT and MBI, and schematic of the inclusion complexes formation with b-cyclodextrin
(Khramov et al., 2004).

FIGURE 11 | Schematic diagram of the self-healing coating based on stimuli-responsive of corrosion inhibitors.
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long-term corrosion resistance of other control groups is low,
and there are many defects and corrosion products. This is due
to the uniform distribution of MSN in the coating, filling
coating defects, and improving its physical barrier properties.
At the same time, corrosion inhibitors are loaded into
nanocontainers to prevent their early leakage and reaction
with the coating substrate. In addition, MSN can release
corrosion inhibitors in the coating, which can inhibit corrosion.

Khramov et al. loaded inhibitors of mercaptobenzimidazole
(MBI) and mercaptobenzothiazole (MBT) in the hydrophobic
cavity of β-cyclodextrin, as shown in Figure 10 (Khramov et al.,
2004). The container loaded with corrosion inhibitors is added to
the silane film and coated on the aluminum alloy surface. SVET
test results show that the coating of β-cyclodextrin containers
loaded with corrosion inhibitors has the best corrosion resistance
performance compared with the coating without corrosion

inhibitors and the coating directly doped with corrosion
inhibitors, which could be explained that corrosion inhibitors
could be continuously and slowly released from β-cyclodextrin
and promote the repair of corrosion defects.

Stimuli-Responsive Release
Problems such as premature failure of corrosion inhibitors can be
avoided by loading healing agents with microcapsules or hollow
fibers or loading corrosion inhibitors in nanocontainers and then
adding coatings. The corrosion inhibition effect is enhanced
compared with directly doping corrosion inhibitors in coatings.
However, these release methods of corrosion inhibitors are natural
releases, with low corrosion inhibition efficiency and short service
life, which cannotmeet the growing demand of industry. Therefore,
the study on the controlled release methods of corrosion inhibitors
has become a hot issue. The main stimuli-responsive release
methods are described in detail in this article.

A large number of studies have shown that when
nanocontainers loaded with corrosion inhibitors are doped in
coatings, the self-performance or surface modification of
nanocontainers can be used to perceive the changes in
external conditions (such as light, heat, pressure, potential,
pH, and other common variables) when corrosion occurs, and
finally, the controllable release of corrosion inhibitors is realized.
The controlled release of corrosion inhibitors can greatly improve
the corrosion inhibition efficiency and prolong the service time of
coatings, which plays an important role in the field of corrosion
protection. Figure 11 shows the mechanism of the process.

Intrinsic Properties of Containers
Some containers have ion exchange properties or are sensitive to
some metal ions, such as LDH andMOF. The structure of layered
double hydroxides (LDHs) (such as hydrotalcite) includes two
parts, which are the layered main body with positive electric
property and the interlayer ions with negative electric property
and neutral electric property. The two parts are connected by
hydrogen bonds, so interlayer ions can move freely so as to
replace anions in the environment (Serdechnova et al., 2016).

FIGURE 12 |Mechanism diagram of LDHs in corrosion protection (Tedim et al., 2010). (I) Anion (Cl−) in the solution triggers the release of the inhibitors (Inh−), and (II)
LDHs play a double-role, providing inhibitors to protect the metallic substrates and entrapping aggressive species from the environment.

FIGURE 13 | Schematic illustration of the procedure for the synthesis of
ZBT nanomaterials (Yang et al., 2021).
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Tedim et al. studied the preparation of LDHs, the load and
release of corrosion inhibitors, and their application in corrosion
protection (Tedim et al., 2012). They doped Zn–Al LDH
intercalated with NO3

− into organic polymer coatings as
containers to absorb Cl− during corrosion, which can greatly
reduce the penetration of corrosive Cl− in coatings. The
spectrophotometric results show that the organic anion
NO3

−in Zn (2)-Al-NO3 LDH is released due to the presence
of Cl−. The release of NO3

−from LDHs intercalates, and the
absorption of Cl− by LDHs reduces the concentration of Cl− in
the solution, which is controlled by the ion exchange equilibrium.
Compared with the unmodified coating, the modified coating
significantly reduced the chloride permeability, which proves the
protective effect of LDHs on the coating when corrosion occurs
and has a good application prospect in the field of self-healing
coatings. The mechanism of LDHs releasing anionic corrosion
inhibitors and absorbing corrosive anions in the environment is
shown in Figure 12 (Tedim et al., 2010).

The cage-like pore structure of some layered silicates, such as
montmorillonite, kaolinite, and zeolite, is formed by the periodic
arrangement of tetrahedra such as SiO4

4−and AlO4
5-. The

isomorphous replacement of Si4+ and Al3+ makes the main
structure negatively charged, so the cation in the pore can be
replaced with the cation in the environment.

Thai et al. proposed a new protective coating based on cerium
ion corrosion inhibitors for AA2024 corrosion protection (Thai
et al., 2020). Cerium cation is inserted into the nanoclay layer by
cation exchange reaction to obtain cerium modified
montmorillonite (CeMMT). EIS measurement and polarization
curves showed that CeMMT had a good corrosion inhibition
effect. The corrosion protection performance of AA2024 is

improved after the CeMMT is added. Salt spray results of the
pre-scratched specimen showed that CeMMT had self-healing
performance. UV-Vis spectra showed that the excellent corrosion
inhibition performance might be due to the release rate of Ce ions
from CeMMT reached 60% in NaCl solution.

When LDHs and some layered silicate containers mentioned
earlier have corrosive ions (such as Cl− or metal ions) in the
external environment, the embedded corrosion inhibitor reacts
with them by ion exchange, which not only absorbs Cl− or metal
ions in the corrosive environment but also realizes the release of
corrosion inhibitors. In addition, the two-dimensional structure of
LDHs and chemical stability of layered silicate containers enhance
the physical shielding effect of coatings as the carriers of corrosion
inhibitors have been favored by industrial production.

In addition, the metal–organic framework (MOF) material is a
new type of porous material with broad prospects. The zeolite
imidazole ester framework material (ZIF) is a subclass of the
MOF. The structure of ZIF-8 is a tetrahedral unit composed of a
Zn2+ and four imidazole anions, and the large internal space can
load corrosion inhibitors. The structure of ZIF-8 will decompose
or collapse with the change of some external conditions. For
example, ZIF-8 decomposes at pH 5.0–6.0 due to the
coordination dissociation of Zn2+ and imidazole anions
(Zhuang et al., 2014), and ZIF-8 is unstable with divalent and
higher valence metal cations. If treated with an Al3+ solution, ZIF-
8 will completely collapse (Zhang et al., 2011). The corrosion
inhibitor loaded in ZIF-8 also released with its structure’s
decomposition or collapse. In this context, the acidic
environment and metal cations can stimulate ZIF-8 to achieve
the response release of corrosion inhibitors. Yang et al. loaded with
BTA into ZIF-8 by a one-step method and modified it with tannic

FIGURE 14 | Synthetic procedure illustration of SZG (Xiong et al., 2019b).

FIGURE 15 | Illustration of the synthetic processes for fGS-BTA nanosheets (Xiong et al., 2019b).
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acid, as shown in Figure 13 (Yang et al., 2021). The synthesized pH-
responsive hydrophilic stimuli-responsive release system TA@ZIF-
8@tannic acid (ZBT) based on ZIF-8 was used for epoxy resin
coating. EIS and salt spray tests showed that ZBT could significantly
inhibit the corrosion of carbon steel and endow the coating with
effective self-healing performance. After 20 d of immersion, the
impedance modulus of the ZBT/EP composite coating was about
two orders of magnitude higher than that of the blank coating.

Xiong et al. used ZIF-8 nanoparticles to load corrosion
inhibitor salicylaldehyde (SA) and modified GO to obtain SGZ
two-dimensional nanocomposites, as shown in Figure 14 (Xiong
et al., 2019b). When corrosion occurred, under the stimulation of

Al3+ in the environment, the structure of ZIF-8 collapsed, and SA
was released and formed an adsorption layer on the surface of the
metal substrate, which prevented the corrosion activity. EIS and
immersion tests showed that SGZ effectively improved the
protective performance of the PVB coating.

By Surface Modification of Containers
The surface modification of nanocontainers enables some
inorganic nanocontainers to combine with some polymer
molecular chains with stimulus response characteristics (such
as pH, temperature, and light), which can realize the response of
containers to external stimuli. At the same time, the grafted
molecular chains are expected to enhance the dispersion of
inorganic nanocontainers in organic coatings and improve the
stability of coatings. Fu et al. used ferrocenyl acid–cucurbituril
binary system to modify hollow mesoporous SiO2 microspheres
as pH-responsive valves and loaded caffeine molecules, which
realized the controlled release under acidic and alkaline
conditions (Fu et al., 2013). Adding nanocontainers loaded
with corrosion inhibitors to smart nanocontainers implanted
into the self-assembled nanophase particles (SNAP) films on
the AA2024 surface, it was found that the composite coating
had significant physical shielding and self-healing protection
properties. Chen et al. reported a light-responsive self-healing
coating loaded with BTA and light-responsive molecular switch
azobenzene in MSN (Chen et al., 2015). Azobenzene molecules

FIGURE 16 | Schematic illustration of the fabrication of 2-mercaptobenzothiazole-loaded halloysite/polyelectrolyte nanocontainers (Shchukin et al., 2008).

FIGURE 17 | Structure diagram of dual-stimulus responsive
microcapsules (Leal et al., 2018).
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close under visible light but open under ultraviolet light, and
corrosion inhibitor molecules released from containers. SVET
results show that MSN modified by azobenzene molecular switch
has excellent light sensitivity and self-healing properties, which
can prolong the corrosion protection effect of aluminum alloy.

Wang et al. successfully synthesized hollow MSN modified by
a functional polymer poly-(dimethylaminoethyl methacrylate)
(PDMAEMA) to load corrosion inhibitors (Wang et al., 2021).
Because of its CO2 response mechanism, it can react with CO2

corrosion in aqueous solution. In the presence of CO2 in aqueous
solution, the polymer shell PDMAEMA on the surface of the
MSN can change from a hydrophobic state to a hydrophilic state
to improve the release rate of corrosion inhibitors. Xiong et al.
prepared graphene oxide–mesoporous silica nanocomposites
(GS) to load the corrosion inhibitor BTA, and nanogates of
the GS container were constructed by aminosilane, as shown
in Figure 15 (Xiong et al., 2019a). Aminosilane as a pH-driven
“nanogate” inhibits premature leakage of corrosion inhibitors
and endows fGS-BTA nanocomposites with stimuli-responsive
release characteristics under alkaline conditions. At the same
time, aminosilane functionalization significantly enhances its
dispersion stability in organic coating. The EIS and scratch tests
show that the sol-gel coating filled with fGS-BTA has enhanced
barrier performance and self-healing protection performance.

In addition to surface grafting of containers, nanocontainers
can also be encapsulated with pH-sensitive polyelectrolyte layers
or polymer shells (such as polyphenyl acrylate) by LBL
technology. The polyelectrolyte layer is coated outside with
microcapsules, and corrosion inhibitors are loaded. When pH
changes, the electrostatic adsorption between polyelectrolyte
layers changes, thus releasing corrosion inhibitors and
realizing the stimulation response to pH. Shchukin et al.
loaded corrosion inhibitor 2–mercaptobenzothiazole inside
halloysite nanotubes, and polypropylene amine, as shown in
Figure 16 (Shchukin et al., 2008). When corrosion occurs, the
local pH value changes, resulting in the dissociation of
polyelectrolyte layers outside nanocontainers and the release of
inhibitors, which makes the corrosion area repaired.

Leal et al. synthesized microcapsules loading flaxseed oil by in
situ polymerization and used LBL technology to assemble BTA
between polyelectrolyte layer polyetherimide (PEI) and
polystyrene sulfonate (PSS) outside microcapsules (Leal et al.,
2018). The structure is shown in Figure 17. The system has two
stimuli-responsive mechanisms, which are mechanical
stimulation (which controls the release of flaxseed oil) and
pH-responsive stimulation (which controls the release of
BTA). The EIS results show that the epoxy resin doped with
4.8 wt% dual stimuli-responsive microcapsules is more effective
in corrosion protection than the control sample, which is related
to the release of flaxseed oil by mechanical stimulation (induced
defects) and the release of BTA by pH stimulation.

CONCLUSION AND OUTLOOK

Stimuli-responsive self-healing coatings avoid the one-time
release of corrosion inhibitors and the premature failure of

self-healing performance, which is generally achieved by
loading corrosion inhibitors in containers, and key is the
loading and release of corrosion inhibitors.

The adverse reaction between corrosion inhibitors and
coatings can also be avoided by loading corrosion inhibitors in
micro-/nanocontainers. However, it is found that the micro-/
nanocontainers loaded with corrosion inhibitors in coatings may
affect the stability of the coating. Therefore, effective loading
methods of corrosion inhibitors are important in surface
engineering and corrosion protection. The preparation of
containers and corrosion inhibitor loading can be completed
by a one-step or step-by-step synthetic method. Among them, the
loading methods of corrosion inhibitors in micro-/
nanocontainers mainly include physical adsorption, ion
exchange, and layer-by-layer self-assembly.

Compared with the natural release of corrosion inhibitors
from micro-/nanocontainers, the stimuli-responsive release
methods increase the inhibition efficiency and service time of
coatings, which can be achieved by intrinsic properties or surface
modification of containers. For the former, the stimuli-responsive
release of corrosion inhibitors is achieved by an ion exchange
reaction between corrosion ions and corrosion inhibitors loaded
in the containers, or by the collapse of the container structures.
For the latter, the stimuli-responsive release of corrosion
inhibitors can be achieved by grafting nanocontainers to
construct the “nanogate” or by using layer-by-layer self-
assembly technology on modified containers.

Self-healing coatings based on the stimuli-responsive release
of corrosion inhibitors have potentially broad applications in
the future. Although significant progress in the area of self-
healing coating has been obtained, many challenges still need
to be addressed with a continuous improvement. For example,
the efficient encapsulation of these healing agents is critical,
since it prolongs the shelf life and endows the coatings with a
long-term corrosion inhibition effect. In addition, the
containers should be compatible with organic coatings, and
their fabrication should be cost-effective for practical
applications. Finally, next-generation self-healing coatings
will be smarter and multifunctional, for example, the
anticorrosion and corrosion sensing. We expect that all
these efforts will make a progress in anticorrosion
engineering.

AUTHOR CONTRIBUTIONS

YZmade the illustrations and the main analytic and writing work.
CC collected the references. MY contributed to the idea and
design of the study and participated in the revision of the
manuscript with JL and SL. All authors contributed to the
article and approved the submitted version.

FUNDING

This work was supported by the Beijing Natural Science
Foundation (Grant No. 2172032).

Frontiers in Materials | www.frontiersin.org January 2022 | Volume 8 | Article 79539712

Zhang et al. Stimuli-Responsive Release of Self-Healing Coating

78

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


REFERENCES

Abdolah Zadeh, M., van der Zwaag, S., and Garcia, S. J. (2016). Adhesion and
Long-Term Barrier Restoration of Intrinsic Self-Healing Hybrid Sol-Gel
Coatings. ACS Appl. Mater. Inter. 8, 4126–4136. doi:10.1021/acsami.5b11867

Abu-Thabit, N. Y., and Hamdy, A. S. (2016). Stimuli-Responsive Polyelectrolyte
Multilayers for Fabrication of Self-Healing Coatings - A Review. Surf. Coat.
Technology. 303, 406–424. doi:10.1016/j.surfcoat.2015.11.020

Alibakhshi, E., Ghasemi, E., Mahdavian, M., and Ramezanzadeh, B. (2017). A
Comparative Study on Corrosion Inhibitive Effect of Nitrate and Phosphate
Intercalated Zn-Al- Layered Double Hydroxides (LDHs) Nanocontainers
Incorporated into a Hybrid Silane Layer and Their Effect on Cathodic
Delamination of Epoxy Topcoat. Corrosion Sci. 115, 159–174. doi:10.1016/
j.corsci.2016.12.001

Borisova, D., Möhwald, H., and Shchukin, D. G. (2011). Mesoporous Silica
Nanoparticles for Active Corrosion Protection. Acs. Nano. 5 (3), 1939–1946.
doi:10.1021/nn102871v

Chen, T., Chen, R., Jin, Z., and Liu, J. (2015). Engineering Hollow Mesoporous
Silica Nanocontainers with Molecular Switches for Continuous Self-Healing
Anticorrosion Coating. J. Mater. Chem. A. 3 (18), 9510–9516. doi:10.1039/
c5ta01188d

Chen, Z., Yang, W., Chen, Y., Yin, X., and Liu, Y. (2020a). Smart Coatings
Embedded With Polydopamine-Decorated Layer-By-Layer Assembled SnO2
Nanocontainers for the Corrosion Protection of 304 Stainless Steels. J. Colloid
Interf. Sci. 579, 741–753. doi:10.1016/j.jcis.2020.06.118

Chen, Z., Yang, W., Yin, X., Chen, Y., Liu, Y., and Xu, B. (2020b). Corrosion
Protection of 304 Stainless Steel From a Smart Conducting Polypyrrole Coating
Doped with pH-Sensitive Molybdate-Loaded TiO2 Nanocontainers. Prog. Org.
Coat. 146, 105750. doi:10.1016/j.porgcoat.2020.105750

Cho, C., Kovalev, M., Sakai, N., and Kim, M. (2018). Anti-Fingerpringing
Compositon With Self- Healing Property, Film, Laminate, and Device. U.S.
Patent Application No. 15/889,607. Washington, D.C.: U.S. Patent and
Trademark Office.

Crespy, D., Landfester, K., Fickert, J., and Rohwerder, M. (2016). Self-Healing for
Anticorrosion Based on Encapsulated Healing Agents. Adv. Polym. Sci. 273,
219–245. doi:10.1007/12_2015_342

Cui, M., Njoku, D. I., Li, B., Yang, L., Wang, Z., Hou, B., et al. (2021). Corrosion
Protection of Aluminium Alloy 2024 Through an Epoxy Coating Embedded
With Smart Microcapsules: The Responses of Smart Microcapsules to
Corrosive Entities. Corrosion Commun. 1, 1–9. doi:10.1016/
j.corcom.2021.06.001

Exbrayat, L., Salaluk, S., Uebel, M., Jenjob, R., Rameau, B., Koynov, K., et al. (2019).
Nanosensors for Monitoring Early Stages of Metallic Corrosion. ACS Appl.
Nano Mater. 2 (2), 812–818. doi:10.1021/acsanm.8b02045

Falcón, J. M., Batista, F. F., and Aoki, I. V. (2014). Encapsulation of Dodecylamine
Corrosion Inhibitor on Silica Nanoparticles. Electrochim. Acta. 124, 109–118.
doi:10.1016/j.electacta.2013.06.114

Fu, J., Chen, T., Wang, M., Yang, N., Li, S., Wang, Y., et al. (2013). Acid and
Alkaline Dual Stimuli-Responsive Mechanized Hollow Mesoporous Silica
Nanoparticles as Smart Nanocontainers for Intelligent Anticorrosion
Coatings. Acs Nano. 7 (12), 11397–11408. doi:10.1021/nn4053233

Hosseini, M. (2016). Industrial Applications for Intelligent Polymers and Coatings.
Switzerland: Springer International Publishing.

Hu, J., Wang, J., Zhang, J., and Cao, C. (2011). Corrosion of aMetal Surface Loading
Methods and Uses. CN, CN102268709 B. China: Intellectual Property
Publishing House.

Keeney, C., Clements, M., Hawkins, J., Yollick, S., and Fader, J. (2002).
Encapsulated Anti-Corrosion Coating. Washington: U.S. Patent No
6,090,051. US6420052 B1.

Khramov, A. N., Voevodin, N. N., Balbyshev, V. N., and Donley, M. S. (2004).
Hybrid Organo-Ceramic Corrosion Protection Coatings With Encapsulated
Organic Corrosion Inhibitors. Thin Solid Films. 447-448, 549–557. doi:10.1016/
j.tsf.2003.07.016

Leal, D. A., Riegel-Vidotti, I. C., Ferreira, M. G. S., and Marino, C. E. B. (2018).
Smart Coating Based on Double Stimuli-Responsive Microcapsules Containing
Linseed Oil and Benzotriazole for Active Corrosion protection. Corrosion Sci.
130, 56–63. doi:10.1016/j.corsci.2017.10.009

Li, G., and Meng, H. (2015). Recent Advances in Smart Self-Healing Polymers and
Composites. United Kingdom: Woodhead Publishing.

Liu, T., Ma, L., Wang, X., Wang, J., Qian, H., Zhang, D., et al. (2021). Self-Healing
Corrosion Protective Coatings Based on Micro/Nanocarriers: a Review.
Corrosion. Commun. 1, 18–25. doi:10.1016/j.corcom.2021.05.004

Lv, J., Yue, Q.-X., Ding, R., Han, Q., Liu, X., Liu, J.-L., et al. (2021). Construction of
Zeolite-Loaded Fluorescent Supramolecular On-Off Probes for Corrosion
Detection Based on a Cation Exchange Mechanism. Nanomaterials. 11 (1),
169. doi:10.3390/nano11010169

Ma, X., Xu, L., Wang, W., Lin, Z., and Li, X. (2017). Synthesis and Characterisation
of Composite Nanoparticles of Mesoporous Silica Loaded With Inhibitor for
Corrosion Protection of Cu-Zn alloy. Corrosion Sci. 120, 139–147. doi:10.1016/
j.corsci.2017.02.004

Rassouli, L., Naderi, R., and Mahdavain, M. (2017). The Role of Micro/Nano
Zeolites Doped with Zinc Cations in the Active protection of Epoxy Ester
Coating. Appl. Surf. Sci. 423, 571–583. doi:10.1016/j.apsusc.2017.06.245

Recloux, I., Mouanga, M., Druart, M.-E., Paint, Y., and Olivier, M.-G. (2015). Silica
Mesoporous Thin Films as Containers for Benzotriazole for Corrosion
protection of 2024 Aluminium Alloys. Appl. Surf. Sci. 346, 124–133.
doi:10.1016/j.apsusc.2015.03.191

Saji, V. S. (2019). Supramolecular Concepts and Approaches in Corrosion and
Biofouling Prevention. Corros. Revc. 37 (3), 187–230. doi:10.1515/corrrev-
2018-0105

Serdechnova, M., Salak, A. N., Barbosa, F. S., Vieira, D. E. L., Tedim, J.,
Zheludkevich, M. L., et al. (2016). Interlayer Intercalation and Arrangement
of 2-Mercaptobenzothiazolate and 1,2,3-Benzotriazolate Anions in Layered
Double Hydroxides: In Situ X-ray Diffraction Study. J. Solid State Chem. 233,
158–165. doi:10.1016/j.jssc.2015.10.023

Shchukin, D. G., Lamaka, S. V., Yasakau, K. A., Zheludkevich, M. L., Ferreira, M. G.
S., and Möhwald, H. (2008). Active Anticorrosion Coatings With Halloysite
Nanocontainers. J. Phys. Chem. C. 112 (4), 958–964. doi:10.1021/jp076188r

Shchukin, D., and Möhwald, H. (2013). A Coat of Many Functions. Science. 341
(6153), 1458–1459. doi:10.1126/science.1242895

Tedim, J., Bastos, A. C., Kallip, S., Zheludkevich, M. L., and Ferreira, M. G. S.
(2016). Corrosion Protection of AA2024-T3 by LDH Conversion Films.
Analysis of SVET Results. Electrochimica Acta. 210, 215–224. doi:10.1016/
j.electacta.2016.05.134

Tedim, J., Kuznetsova, A., Salak, A. N., Montemor, F., Snihirova, D., Pilz, M., et al.
(2012). Zn-Al Layered Double Hydroxides as Chloride Nanotraps in Active
Protective Coatings. Corrosion Sci. 55, 1–4. doi:10.1016/j.corsci.2011.10.003

Tedim, J., Poznyak, S. K., Kuznetsova, A., Raps, D., Hack, T., Zheludkevich, M. L.,
et al. (2010). Enhancement of Active Corrosion Protection via Combination of
Inhibitor-Loaded Nanocontainers. ACS Appl. Mater. Inter. 2 (5), 1528–1535.
doi:10.1021/am100174t

Thai, T. T., Trinh, A. T., and Olivier, M. G. (2020). Hybrid Sol-Gel Coatings Doped
with Cerium Nanocontainers for Active Corrosion Protection of AA2024. Prog.
Org. Coat. 138, 105428. doi:10.1016/j.porgcoat.2019.105428

Toohey, K. S., Sottos, N. R., Lewis, J. A., Moore, J. S., and White, S. R. (2007). Self-
Healing Materials With Microvascular Networks. Nat. Mater. 6 (8), 581–585.
doi:10.1038/nmat1934

Wang, J., Tang, J., Zhang, H., Wang, Y., Wang, H., and Lin, B. (2021). A CO2-
Responsive Anti-Corrosion Ethyl Cellulose Coating Based on the pH-Response
Mechanism. Corros Sci. 180, 109194. doi:10.1016/j.corsci.2020.109194

Wang, W., Wang, H., Zhao, J., Wang, X., Xiong, C., Song, L., et al. (2019). Self-
Healing Performance and Corrosion Resistance of Graphene Oxide-
Mesoporous Silicon Layer-Nanosphere Structure Coating Under Marine
Alternating Hydrostatic Pressure. Chem. Eng. J. 361, 792–804. doi:10.1016/
j.cej.2018.12.124

Wang, Y., Zhu, Y., Li, C., Song, D., Zhang, T., Zheng, X., et al. (2016). Smart Epoxy
Coating Containing Ce-MCM-22 Zeolites for Corrosion Protection of Mg-Li
Alloy. Appl. Surf. Sci. 369, 384–389. doi:10.1016/j.apsusc.2016.02.102

White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R.,
et al. (2001). Autonomic Healing of Polymer Composites. Nature. 409,
794–797. doi:10.1038/35057232

Xiong, L., Liu, J., Li, Y., Li, S., and Yu, M. (2019a). Enhancing Corrosion protection
Properties of Sol-Gel Coating by pH-Responsive Amino-Silane Functionalized
Graphene Oxide-Mesoporous Silica Nanosheets. Prog. Org. Coat. 135, 228–239.
doi:10.1016/j.porgcoat.2019.06.007

Frontiers in Materials | www.frontiersin.org January 2022 | Volume 8 | Article 79539713

Zhang et al. Stimuli-Responsive Release of Self-Healing Coating

79

https://doi.org/10.1021/acsami.5b11867
https://doi.org/10.1016/j.surfcoat.2015.11.020
https://doi.org/10.1016/j.corsci.2016.12.001
https://doi.org/10.1016/j.corsci.2016.12.001
https://doi.org/10.1021/nn102871v
https://doi.org/10.1039/c5ta01188d
https://doi.org/10.1039/c5ta01188d
https://doi.org/10.1016/j.jcis.2020.06.118
https://doi.org/10.1016/j.porgcoat.2020.105750
https://doi.org/10.1007/12_2015_342
https://doi.org/10.1016/j.corcom.2021.06.001
https://doi.org/10.1016/j.corcom.2021.06.001
https://doi.org/10.1021/acsanm.8b02045
https://doi.org/10.1016/j.electacta.2013.06.114
https://doi.org/10.1021/nn4053233
https://doi.org/10.1016/j.tsf.2003.07.016
https://doi.org/10.1016/j.tsf.2003.07.016
https://doi.org/10.1016/j.corsci.2017.10.009
https://doi.org/10.1016/j.corcom.2021.05.004
https://doi.org/10.3390/nano11010169
https://doi.org/10.1016/j.corsci.2017.02.004
https://doi.org/10.1016/j.corsci.2017.02.004
https://doi.org/10.1016/j.apsusc.2017.06.245
https://doi.org/10.1016/j.apsusc.2015.03.191
https://doi.org/10.1515/corrrev-2018-0105
https://doi.org/10.1515/corrrev-2018-0105
https://doi.org/10.1016/j.jssc.2015.10.023
https://doi.org/10.1021/jp076188r
https://doi.org/10.1126/science.1242895
https://doi.org/10.1016/j.electacta.2016.05.134
https://doi.org/10.1016/j.electacta.2016.05.134
https://doi.org/10.1016/j.corsci.2011.10.003
https://doi.org/10.1021/am100174t
https://doi.org/10.1016/j.porgcoat.2019.105428
https://doi.org/10.1038/nmat1934
https://doi.org/10.1016/j.corsci.2020.109194
https://doi.org/10.1016/j.cej.2018.12.124
https://doi.org/10.1016/j.cej.2018.12.124
https://doi.org/10.1016/j.apsusc.2016.02.102
https://doi.org/10.1038/35057232
https://doi.org/10.1016/j.porgcoat.2019.06.007
https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Xiong, L., Liu, J., Yu, M., and Li, S. (2019b). Improving the Corrosion protection
Properties of Pvb Coating by Using Salicylaldehyde@zif-8/graphene Oxide
Two-Dimensional Nanocomposites. Corrosion Sci. 146, 70–79. doi:10.1016/
j.corsci.2018.10.016

Xu, J.-B., Cao, Y.-Q., Fang, L., and Hu, J.-M. (2018). A One-Step Preparation of
Inhibitor-Loaded Silica Nanocontainers for Self-Healing Coatings. Corrosion
Sci. 140, 349–362. doi:10.1016/j.corsci.2018.05.030

Yang, C., Xu, W. J., Meng, X., Shi, X. L., Shao, L. H., Zeng, X. L., et al. (2021). A pH-
Responsive Hydrophilic Controlled Release System Based on Zif-8 for Self-
Healing Anticorrosion Application. Che. Eng. J. 415, 128985. doi:10.1016/
j.cej.2021.128985

Ye, K., Bi, Z., Cui, G., Zhang, B., and Li, Z. (2020). External Self-Healing Coatings in
Anticorrosion Applications: A Review. Corrosion 76 (3), 279–298. doi:10.5006/
3430

Ye, Y., Chen, H., Zou, Y., Ye, Y., and Zhao, H. (2020). Corrosion Protective
Mechanism of Smart Graphene-Based Self-Healing Coating on Carbon Steel.
Corrosion Sci. 174, 108825. doi:10.1016/j.corsci.2020.108825

Yi, H., Yang, Y., Gu, X., Huang, J., and Wang, C. (2015). Multilayer Composite
Microcapsules Synthesized by Pickering Emulsion Templates and Their
Application in Self-Healing Coating.J. Mater. Chem. A. 3 (26),
13749–13757. doi:10.1039/c5ta02288f

Zhang, D., Qian, H., Wang, L., and Li, X. (2016). Comparison of Barrier
Properties for a Superhydrophobic Epoxy Coating Under Different
Simulated Corrosion Environments. Corrosion Sci. 103, 230–241.
doi:10.1016/j.corsci.2015.11.023

Zhang, F., Ju, P., Pan, M., Zhang, D., Huang, Y., Li, G., et al. (2018). Self-Healing
Mechanisms in Smart Protective Coatings: a Review. Corrosion Sci. 144, 74–88.
doi:10.1016/j.corsci.2018.08.005

Zhang, L., and Hu, Y. H. (2011). Strong Effects of Higher-Valent Cations on the
Structure of the Zeolitic Zn(2-Methylimidazole)2 Framework (ZIF-8). J. Phys.
Chem. C. 115 (16), 7967–7971. doi:10.1021/jp200699n

Zheludkevich, M. L., Shchukin, D. G., Yasakau, K. A., Möhwald, H., and Ferreira,
M. G. S. (2007). Anticorrosion Coatings With Self-Healing Effect Based on
Nanocontainers Impregnated with Corrosion Inhibitor. Chem. Mater. 19 (3),
402–411. doi:10.1021/cm062066k

Zhuang, J., Kuo, C.-H., Chou, L.-Y., Liu, D.-Y., Weerapana, E., and Tsung, C.-K.
(2014). Optimized Metal-Organic-Framework Nanospheres for Drug Delivery:
Evaluation of Small-Molecule Encapsulation. Acs Nano. 8 (3), 2812–2819.
doi:10.1021/nn406590q

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhang, Yu, Chen, Li and Liu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Materials | www.frontiersin.org January 2022 | Volume 8 | Article 79539714

Zhang et al. Stimuli-Responsive Release of Self-Healing Coating

80

https://doi.org/10.1016/j.corsci.2018.10.016
https://doi.org/10.1016/j.corsci.2018.10.016
https://doi.org/10.1016/j.corsci.2018.05.030
https://doi.org/10.1016/j.cej.2021.128985
https://doi.org/10.1016/j.cej.2021.128985
https://doi.org/10.5006/3430
https://doi.org/10.5006/3430
https://doi.org/10.1016/j.corsci.2020.108825
https://doi.org/10.1039/c5ta02288f
https://doi.org/10.1016/j.corsci.2015.11.023
https://doi.org/10.1016/j.corsci.2018.08.005
https://doi.org/10.1021/jp200699n
https://doi.org/10.1021/cm062066k
https://doi.org/10.1021/nn406590q
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Capillary Effects in Fiber Reinforced
Polymer Composite Processing: A
Review
Helena Teixidó1†, Jeroen Staal1†, Baris Caglar2 and Véronique Michaud1*

1Laboratory for Processing of Advanced Composites (LPAC), Institute of Materials (IMX), Ecole Polytechnique Fédérale de
Lausanne (EPFL), Lausanne, Switzerland, 2Aerospace Manufacturing Technologies, Faculty of Aerospace Engineering, Delft
University of Technology, Delft, Netherlands

Capillarity plays a crucial role in many natural and engineered systems, ranging from
nutrient delivery in plants to functional textiles for wear comfort or thermal heat pipes for
heat dissipation. Unlike nano- or microfluidic systems with well-defined pore network
geometries and well-understood capillary flow, fiber textiles or preforms used in composite
structures exhibit highly anisotropic pore networks that span from micron scale pores
between fibers to millimeter scale pores between fiber yarns that are woven or stitched into
a textile preform. Owing to the nature of the composite manufacturing processes, capillary
action taking place in the complex network is usually coupled with hydrodynamics as well
as the (chemo) rheology of the polymer matrices; these phenomena are known to play a
crucial role in producing high quality composites. Despite its importance, the role of
capillary effects in composite processing largely remained overlooked. Their magnitude is
indeed rather low as compared to hydrodynamic effects, and it is difficult to characterize
them due to a lack of adequate monitoring techniques to capture the time and spatial scale
on which the capillary effects take place. There is a renewed interest in this topic, due to a
combination of increasing demand for high performance composites and recent advances
in experimental techniques as well as numerical modeling methods. The present review
covers the developments in the identification, measurement and exploitation of capillary
effects in composite manufacturing. A special focus is placed on Liquid Composite
Molding processes, where a dry stack is impregnated with a low viscosity thermoset
resin mainly via in-plane flow, thus exacerbating the capillary effects within the anisotropic
pore network of the reinforcements. Experimental techniques to investigate the capillary
effects and their evolution from post-mortem analyses to in-situ/rapid techniques
compatible with both translucent and non-translucent reinforcements are reviewed.
Approaches to control and enhance the capillary effects for improving composite
quality are then introduced. This is complemented by a survey of numerical techniques
to incorporate capillary effects in process simulation, material characterization and by the
remaining challenges in the study of capillary effects in composite manufacturing.

Keywords: capillary effects, composite processing, liquid composite molding, textile preforms, fiber reinforced
polymers
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1 INTRODUCTION

Capillary action is defined as the process whereby a fluid flows on
a surface, thus displacing air or another immiscible phase present
on this solid surface, under no external forces, simply due to the
presence of intermolecular forces between the liquid and the solid
surface. These forces arise from the presence of the liquid/air
surface tension and the interfacial tension between the solid and
the liquid phase. A pressure difference is thus created between the
pressure in the air and that in the fluid phase, driving fluid flow at
the interface between solid, liquid and generally air. For example,
these effects help the fluid phase move up against gravity in a
capillary tube that was initially filled with air, if the energy balance
is favorable when replacing a solid-air interface by a solid-liquid
interface. In a circular capillary tube, the capillary pressure drop,
ΔPγ, is written as:

ΔPγ � −2σ lv cos θ
r

(1)

where θ is the contact angle between the liquid interface and the
tube, σlv is the surface tension between the fluid and the ambient
atmosphere, and r is the radius of the tube. ΔPγ > 0 thus indicates
a non-wetting system whereas ΔPγ < 0 indicates a wetting system.
Capillary forces play an important role in many physical systems
where a fluid invades a network of narrow spaces, ensuring fluid
circulation in plants, in the lacrimal ducts, wicks, brushes and
towels, heat pipes, fountain pens, and of course they are at the
base of hydrogeology and groundwater flow (Bear, 1972; Freeze
and Cherry, 1979).

These effects are also found in composite processing, wherever
an activated liquid monomer or polymer flows into the initially
dry porous network formed by the reinforcing fibers (or
powders); they will thus act close to the impregnation flow
front, or in regions that are partially impregnated. In most
cases, the reinforcing fibers or filaments, which have a
diameter in the order of 7–20 μm, are produced in the form of
yarns, comprising several thousands of filaments, which are then
combined by textile processes into mats, woven, knitted or
braided fabrics, as well as non-crimp fabrics or polymer
bound tapes. As a result, fiber textiles or preforms used in
composite structures exhibit highly anisotropic, in general dual
scale pore networks that span from micron scale pores between
fibers to millimeter scale pores between fiber yarns (Michaud,
2021). Owing to the nature of the composite manufacturing
processes, capillary action is usually coupled with
hydrodynamics, since flow is driven by externally applied
pressure, as well as with the (chemo)rheology of the polymer
matrices; in addition, the matrix material in liquid form is
generally much more viscous than water, up to several orders
of magnitude, leading to a strong dependence of the mechanisms
to the interface velocity. Despite their importance, capillary
effects largely remained overlooked in composite processing
research. Their magnitude is rather low as compared to
hydrodynamic effects, which dominate the flow kinetics. In
general, the capillary pressure values found in composite
processing are in the range of 1–70 kPa, whereas applied
pressures are in the range of 102–103 kPa. In addition, it is

difficult to characterize them due to a lack of adequate
monitoring techniques to capture the time and spatial scale on
which the capillary effects take place, and to model them, as they
require rather advanced fluid flow analysis and the knowledge of
the physical phenomena taking place close to the flow front.
Interest is nonetheless rapidly increasing, due to a gain in process
maturity and thus higher demand for high performance, low
porosity composites and to recent advances in experimental
techniques as well as numerical modeling methods. The
present review addresses these, with particular focus on Liquid
Composite Molding (LCM) processes, where a dry fabric stack is
impregnated with a low viscosity thermoset resin mainly via in-
plane flow, thus exacerbating the capillary effects within the
anisotropic pore network of the reinforcements.

2 CAPILLARY EFFECTS IN POROUS
MEDIA: PHYSICAL PRINCIPLES

Capillary effects in porous media are directly linked to the wetting
of an initially dry porous medium by a fluid phase. Wetting is the
ability of a liquid to stay in contact with a solid due to
intermolecular interactions, creating a balance between
adhesive and cohesive forces. The main parameters controlling
capillary effects can be considered based on the different length
scales they operate on, from the molecular scale controlling
chemical and molecular interactions very close to the solid-
liquid-air interface, to the sub-pore and pore scale where
surface energy considerations lead to contact angles and
menisci, up to the Representative Volume Element (RVE)
scale, where macroscopic saturation is observed. The link
between the thermodynamic and geometric considerations
acting at these length scales has been the subject of intense
work with many remaining open questions in the fields related
to soil science, as recently reviewed by Armstrong et al.
(Armstrong et al., 2021). Although we will consider
thermodynamic effects and the possibility to modify the
surface of the reinforcement to change wettability, we will
mostly focus on the macroscopic or pore scale effects in this
review, as these are most relevant in composite manufacturing,
due to the presence of additional body forces beyond capillary
forces.

As reviewed in Ref. (Michaud, 2016), the patterns found when
a fluid displaces another one within a porous medium strongly
depend on two parameters, which are the ratio of the invading
(ηresin) to the displaced (ηair) fluid viscosity, Mv � ηresin

ηair
, and the

modified capillary number (as commonly referred to in literature
on composite processing), a dimensionless number defined in soil
science as:

Cap � Q
A

ηresin
σ lv cos θ

(2)

where Q is the invading fluid flow rate, A the cross-sectional area
of the porous medium. The value of these two parameters defines
a range of infiltration front patterns, from percolation and
capillary fingering to viscous fingering, as illustrated in
Figure 1 for the case of a rather homogeneous porous
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medium. In cases typical of LCM, where the invading fluid has a
much higher viscosity than the air present in the fibrous preform,
Mv is large, and the flow regime can vary from capillary fingering
for very low Ca* to a stable, hydrodynamics dominated plug flow
displacement for large Ca*. Note that for fluids of rather high
viscosity as generally found in matrices used in composite
manufacturing, as the contact angle strongly depends on the
fluid velocity, as will be discussed later, the capillary number is
often simply taken as:

Ca � Q
A

ηresin
σ lv

(3)

In polymer composite processing, fingering and percolation
effects are generally omitted, whereas this approach has been
applied to metal matrix composite processing where these effects
are observed (Michaud et al., 1994; Léger et al., 2014, Léger et al.,
2015; Schneider et al., 2019; Varnavides et al., 2021). Most of the
soil science (as well as metal matrix composites) analysis
considers a rather homogeneous porous medium without the
dual scale and highly localized pore structures observed in
polymer composite processing, apart from cases of fractured
rocks (Sahimi, 2011), which could be used as an inspiration to
the pore network description of textiles. Even the fractured rocks
are often considered to contain randomly distributed channels
rather than well-organized structures, thus leaving the textiles as a
particular case with anisotropic pore networks formed via large
inter-tow regions and small intra-tow regions.

As mentioned previously, fibrous reinforcements used in
advanced composites generally exhibit a bimodal pore

distribution. More specifically, pores present between the fibers
in a yarn are referred to as micro-pores and empty space between
the yarns are called meso-pores. Irrespective of the
manufacturing process, an outcome of this pore characteristic
is a matrix/fabric interaction at different scales that generally
leads to a dual scale flow during resin infiltration (Bonnard et al.,
2017). Hydrodynamic forces resulting from the applied pressure
differential drive the impregnation process. However, the viscous
drag is significantly higher in micro-pores (i.e., where
permeability is lower). In addition, capillary forces are present
at the fluid/fiber interface and the coupling between the yarn
permeability, overall preform permeability and the capillary
effects yield a complex relationship in terms of relative
influence of flow within and between tows.

The interplay between different flow modes (micro- and
meso-, viscous flow or capillary flow) results in formation of
voids that change in shape and location depending on the
extent of viscous and capillary driven flows. Void presence in
an advanced composite is known to significantly reduce the
mechanical performance of these materials and their
formation as well as transport and removal has been
studied in the literature (Lundström et al., 1993; Binetruy
and Hilaire, 1998; Kang et al., 2000; Bréard et al., 2003b;
Ruiz et al., 2006; Leclerc and Ruiz, 2008; Park et al., 2011;
Abdelwahed et al., 2014; Gueroult et al., 2014; Mehdikhani
et al., 2019; Castro et al., 2021). Despite the existence of several
sources of void formation such as mechanical air entrapment,
nucleation, leakage and cavitation; air entrapment is known to
be the most common mechanism in LCM process, originating
from the abovementioned dual scale porosity induced flow
phenomena (Park and Lee, 2011; Mehdikhani et al., 2019). For
a given system, higher Ca indicates dominance of viscous
forces over capillary forces and vice versa. In the extremely
slow impregnation situations with flow front speeds in the
range of few mm/min, micro-flow progresses ahead of the
meso-flow and results in entrapment of µm to mm sized
spherical voids between tows (as illustrated in Figure 2).
Similarly, high impregnation rates with typical flow front
speeds in the range of several cm/min or higher, results in a
delay of impregnation of small spaces between fibers in tows
and in return causes formation of elliptically shaped, higher
aspect ratio voids in the intra-tow spaces (Leclerc and Ruiz,
2008).

There exists a flow regime where the viscous and capillary
forces are in balance which corresponds to an optimum capillary
number, also referred to as Caopt (Leclerc and Ruiz, 2008; Park
et al., 2011; LeBel et al., 2014). Void content as a function of Ca
has been characterized experimentally (Leclerc and Ruiz, 2008)
and numerically (Devalve and Pitchumani, 2013) and is known to
follow a “V-shaped” trend as sketched in Figure 2. However the
range of Caopt is known to differ for different matrix/fabric
systems and as reported by Park (Park and Lee, 2011) and by
Michaud (Michaud, 2016), typical values range in the order of
10–3 and in recent studies of Caglar et al. (Caglar et al., 2019)
found a value of 1.4·10−3, Lebel et al. (LeBel et al., 2019) a value of
1.5·10−3 and Lystrup et al. (Lystrup et al., 2021) a value of 0.6·10−3.
The soil science version of the capillary number (Ca*), as written

FIGURE 1 | Phase diagram for three types of displacements as a
function of the capillary number and viscosity ratio. The blue ellipse
schematically represents the location of LCM processes.
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in Eq. 2, is preferred in some studies, introducing the static
contact angle between the matrix and fibrous reinforcement (θ0)
(Ruiz et al., 2006; Ravey et al., 2014; LeBel et al., 2017).

Alternative approaches have also taken place towards the
definition of other non-dimensional numbers as an alternative
to Ca and their use for identifying the optimal processing
conditions, as the so-called Caopt is merely an intrinsic
property of the matrix/fabric system and does not consider the
process history (such as spatiotemporal variation of pressure and
the formation and transport of voids as a result). Lawrence et al.
(Lawrence et al., 2009) and Facciotto et al. (Facciotto et al., 2021)
opted for using the so-called capillary ratio (C � ΔPγ/Pinj) to
account for the changes in the flow velocity over time. Lebel et al.
(LeBel et al., 2019) defined a critical capillary number that is
required to mobilize a void. In a similar vein, Matsuzaki et al.
(Matsuzaki et al., 2015) developed an analytical expression to
predict the void formation in anisotropic woven fabrics by
decoupling the flow in different domains (meso-flow,
transverse and axial micro-flow) and defining criteria for void
formation depending on the relation between the required times
to fill each domain.

Determination of Caopt or its modified counterpart (Ca*opt), as
well as the other non-dimensional numbers discussed so far
heavily relies on experimental studies with limitations that will
be highlighted in the next section, as the current state of research
is still far from linking the process conditions and geometrical
descriptions of arbitrary matrix/fabric systems to a Caopt without
requiring laborious experiments. Despite the efforts towards
achieving flow simulation with ever increasing accuracy and
fidelity, the complexity of the underlying physics and the need
to account for those at several length scales hinders the
developments in the field. The following sections will provide

an overview of current developments in the experimental
approaches for characterizing the extent of capillary effects in
composite manufacturing and their link with residual porosity.
Conventional approaches such as post-mortem analysis of
composites will be followed by a survey of more advanced
methods suitable for translucent reinforcements, mostly glass
fibers, and recent developments in experimental approaches to
study the capillary phenomena in other types of reinforcements,
including but not limited to carbon fibers and natural fibers.
Subsequent sections will then present the modeling efforts
starting from microscale models to multiscale models that are
inspired from the soil science literature to dual-scale models
implemented using different numerical solvers and to semi-
analytical approaches proposed to overcome the limitations of
Ca-based residual void prediction.

3 OBSERVATION OF CAPILLARY EFFECTS

3.1 Capillary Wicking
Capillary pressure can be characterized in capillary wicking
experiments, allowing for direct quantification from a single
experiment. Amico and Lekakou (Amico and Lekakou, 2002)
proposed a methodology where a fiber bundle, or a single ply of
fibrous reinforcement (Caglar et al., 2019), is partially immersed
into a probe liquid, where the capillary pressure was directly
derived from the rate of weight gain or height increase. Pucci et al.
(Pucci et al., 2015b) proposed a tensiometric method, based on
Washburn’s method (Washburn, 1921), to characterize capillary
wicking of water and n-hexane in stacks of carbon fibrous
preforms. By varying the orientation of the fibrous preforms
they were able to determine the advancing contact angles in three,

FIGURE 2 | Demonstration of the influence of the capillary number on the void formation and final part properties during infiltration based on fluids paths in a glass
twill fabric under capillary- and viscous-dominated flow regimes.
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i.e., weft, warp and through-thickness, directions, from which
equivalent capillary pressures were derived. With coefficients of
variation in the order of 30% this methodology is expected to be
less accurate than that proposed by Amico and Lekakou (Amico
and Lekakou, 2002) but the possibility to characterize fabric
stacks and potentially vary fiber volume fractions makes it a
very suitable method to apply in the context of LCM processing. It
should be noted that capillary pressures measured in capillary
wicking tests are not directly representative of those acting in
LCM processes as the typical fluid velocities (hence Ca)
encountered in these processes are not reached, in contrast to,
e.g., direct flow experiments under a given applied pressure or
flow rate (Salvatori et al., 2018). Nonetheless, capillary wicking
experiments can be a valuable tool to obtain a first indication of
capillary pressure in fibrous reinforcements, and to test changes
in fiber surface conditions, volume fraction or pore morphology.

3.2 Post-Mortem Analysis
Post-mortem analysis on produced composite parts was the first
and a facile method to observe and quantify the role of capillary
effects. Post-mortem methods almost uniquely quantify capillary
effects via the void content present after final consolidation of the
composite, while varying process parameters (Lundström et al.,
1993; Lundström and Gebart, 1994; Patel and Lee, 1995; Patel and
Lee, 1996; Labat et al., 2001a; Leclerc and Ruiz, 2008) such as the
flow rate or injection pressure and thereby the impregnation
velocity. It is important to note that for impregnation under
constant applied pressure, the velocity of the flow front decreases
with the impregnation length. The presence of an optimum Ca
(Patel and Lee, 1995; Patel and Lee, 1996; Labat et al., 2001a;
Leclerc and Ruiz, 2008), where minimum void content is present
within the composite, was often reported, while similar
consequential observations were made for the resulting tensile
modulus and tensile strength (Leclerc and Ruiz, 2008). While
bringing the advantage of being an easy method with low
equipment costs, post-mortem analysis of capillary effects
could lead to large inaccuracies. These arise partially from the
methods used for void content analysis such as, in order of
increasing accuracy (Little et al., 2012), Archimedes (Kedari
et al., 2011), microscopy (Lundström et al., 1993; Lundström
and Gebart, 1994; Kedari et al., 2011) andmicro-CT (Madra et al.,
2014; Sisodia et al., 2016) methods, while part void content is also
affected by phenomena occurring after passing of the flow front,
e.g., void transport and dissolution into the resin. In spite of the
strong assumption that part saturation in a chosen location does
not change after passing of the flow front and during the cure/
solidification process, these analyses have nonetheless been
crucial to highlight the strong influence of capillary effects on
part void content, as illustrated in Figure 2.

3.3 In-situ Analysis
An a priori more accurate method to analyze capillary effects
taking place at the flow front is to observe, in-situ, the flow front
progression and morphology, either very locally at the scale of a
few fiber tows, or through the macroscopic analysis of the
progressive saturation of the porous medium with the flowing
fluid. These analyses usually refer to a saturation term, S, which is

defined as the ratio of the volume fraction of liquid over the
available pore space and is equal to 1 when the porous medium is
fully filled with the liquid phase.

3.3.1 Transparent Fiber Reinforced Polymers
In-situ measurements allow for direct observations of capillary
effects taking place in polymer composite processing. Optical
methods can record impregnating resins in fibrous preforms in a
non-intrusive manner and at a high spatial and time resolution
with simple equipment, making it an effective and low-cost
method for flow characterization (LeBel et al., 2019). Optical
imaging is generally limited to translucent fabrics and relies on
the matching of refractive indices to distinct phases (Lawrence
et al., 2009; Nordlund and Michaud, 2012; LeBel et al., 2019),
i.e., refractive indices of epoxy/fiberglass can be very different
from that of the air/fiberglass interface and the distinction
between the two interfaces can be further enhanced by
colorants compatible with the test fluid (Caglar et al., 2018;
Salvatori et al., 2018). Recording a linear flow with a
conventional camera and subsequent image analysis has
allowed Nordlund and Michaud (Nordlund and Michaud,
2012) and Facciotto et al. (Facciotto et al., 2021) to estimate
the width of the unsaturated region, which was subsequently
modelled with finite difference (Nordlund and Michaud, 2012)
and finite element models (Facciotto et al., 2021). Continuous
imaging of these regions showed the progressive saturation of the
preform, which was quantified from the pixel intensity in the
successive pictures. Standard camera imaging however only
captures the flow at the surfaces of the mold (in general a
glass top surface), which are known to be vulnerable to wall-
effects, i.e., race-tracking between the preform and the mold
halves, while effects such as nesting are also not well captured
(Chen and Chou, 2000; Yousaf et al., 2017).

Visible Light Transmission (VLT), illustrated in Figure 3A,
has been proposed as an elegant method to overcome this
limitation (Lawrence et al., 2009). Placement of a diffuse light
source below the transparent mold halves and of a camera above
it makes the recorded light intensity an average over the preform
thickness. Moreover, the signal is also significantly intensified.
Lebel et al. (LeBel et al., 2017; LeBel et al., 2019) employed VLT to
characterize the relation between processing conditions, i.e., Ca*,
and saturation of a glass fabric. The increased light intensity
allowed them to accurately estimate the local void content after
calibration with burn-off composites after consolidation.
Distinction of voids allowed them to estimate the optimum
Ca* as well as the onset of pressure-induced void mobility.
Further contrast enhancement could be achieved by the
addition of fluorophores into the probe liquid. This resulted in
strong contrast enhancement, e.g., for visualization of intratow
flow (Lebel et al., 2013; LeBel et al., 2014), even enabling the use of
optical methods in opaque carbon fibrous preforms (Lystrup
et al., 2021). The addition of dyes may however induce changes in
resin properties, e.g., wettability, and thereby may affect the
apparent Ca or Ca*, making the resulting observations not
directly representative of pure resin systems.

Increases in spatial resolution and observations on tow-scale
could be achieved with the use of optical microscopy imaging.
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This increased resolution, however, comes at the cost of the
overall field of view, making the method better suited for local
detection of voids rather than for the assessment of saturation.
Yoshihara et al. (Yoshihara et al., 2020) investigated the role of
capillary pressure, varied by the application of different fluorine
coatings on the fiber surface, on the dual-scale flow behavior in an
optical microscopy setup. This allowed them to observe infusion
of a woven fabric on a micron-scale, shown in Figure 3C, which
were coupled to numerical simulations. Zhao et al. (Zhao et al.,
2019) and Matsuzaki et al. (Matsuzaki et al., 2014) followed a
similar approach in their studies on void formation and were able
to accurately record capillary fingering and void formation upon
the impregnation of a woven preform at a range of velocities
falling in the capillary-dominated regime. This allowed them to
accurately capture the void formation and evolution with the use
of in-situ optical microscopy. However, flow analysis by means of
optical microscopy can typically be applied to single ply fibrous
reinforcements if based on light diffusion and suffers from the
aforementioned wall effects in reflectance mode, while the upper
limit of allowed infusion rates is defined by the maximum

imaging rate of the microscope. Caglar et al. (Caglar et al.,
2019) proposed an in-situ UV flow-freezing method
(Figure 3B), where infiltrating flows are in-situ cured by UV-
photopolymerization. This overcomes any constraints in time
resolution allowing for visualization of a large range of flow
regimes. This method however requires the use of specially
designed resin systems and rather thin and transparent
samples to avoid inhibiting the cure reaction that is highly
dependent on the penetration of UV light.

3.3.2 Non-Transparent Fiber Reinforced Polymers
The opaque nature of many commercially available fibers in
polymer composites, e.g., carbon or flax, limits the optical
observations of capillary effects in processing to the outer
layers, which are susceptible to wall effects as discussed in
Section 3.3.1. A multitude of methods have been proposed to
overcome this limitation, ranging from methods already widely
established in other fields, e.g., Magnetic Resonance Imaging
(MRI), to more exploratory techniques such as infrared
thermography. With no universal agreement on the preferred

FIGURE 3 |Demonstrations of optical methods for flow characterization at different scales, with increasing resolution: (A) Visible Light Transmission on centimetre-
scale (Source: (LeBel et al., 2017)), (B) UV-flow freezing on millimetre-scale (Source: (Caglar et al., 2019)), (C)Microscope imaging on micron-scale (Source: (Yoshihara
et al., 2020)).

Frontiers in Materials | www.frontiersin.org February 2022 | Volume 9 | Article 8092266

Teixidó et al. Capillary Effects in Composite Processing

86

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


technique to elucidate the degree of fluid saturation as a function
of time and position, each specific method brings its own
advantages and trade-offs between spatial resolution, recording
speed and ease of implementation.

One of the proposed methods to track resin front progression
and thereby indirectly record progressive saturation and void
formation in LCM processing is the inclusion of sensors in or in-
between stacked preforms (Konstantopoulos et al., 2014).
Methods using conductive sensors typically require a non-
conductive fibrous preform to be placed in between two
conductive parallel plates. Labat et al. (Labat et al., 2001b) and
later Gueroult et al. (Gueroult et al., 2014) infused a glass fiber
preform with a conductive liquid and simultaneously recorded
the voltage over the preform, which increased with increasing
saturation. The first strong increase of the voltage was attributed
to the passing of the unsaturated flow front followed by a period
of void removal, while the final voltage was directly linked to the
saturation and hence the void content in the part. The recorded
void contents moreover followed the expected “V-shaped” curve
as a function of Ca*. Carlone et al. (Carlone and Palazzo, 2015;
Carlone et al., 2018) employed a similar experimental
methodology while recording the capacitance over the fabric
preforms and correlated the observations to numerical models.
This methodology also allowed for impregnation with less
conductive resins. Similar saturation curves were obtained and
verified in comparison with the void contents in post-mortem
optical microscopy images. They moreover compared the
accuracy of progressive saturation tracking by dielectric
sensors with that recorded by pressure sensors, e.g., as
proposed by Refs. (Di Fratta et al., 2013; Chiu et al., 2018),
which was found to be significantly higher. The requirement for a
non-conductive fibrous preform limits the use of the methods
developed by Refs (Labat et al., 2001b; Gueroult et al., 2014;
Carlone and Palazzo, 2015; Carlone et al., 2018). with several
conventional fabric types. Developments have been made to
overcome this issue, e.g., by insulating the sensor with a
dielectric material and optimization of the sensor
characteristics (Pouchias et al., 2019; Caglar et al., 2021a).
However, these types of sensors have not yet been employed
to study unsaturated flow phenomena to-date. Alternatively,
Villière et al. (Villière et al., 2015) proposed a method based
on the saturation-dependence of the thermal behavior of a resin-
fiber system. Recording of heat fluxes induced by an electric
heater was found to give an accurate representation of the local
saturation, which were coupled with mathematical models to fit
progressive saturation curves. Implementation of optical micro-
flow sensors within tows on the other hand gives the possibility to
record capillary pressures, as was demonstrated by He et al. (He
et al., 2019) in their study on resin flow in prepreg processing.
However, introducing thermal gradients in the fluid induces
changes in the viscosity and surface tension characteristics and
requires elaborated material characterization next to the
experimental analyses.

The discrete nature of sensors limits the observations that can
be made in a single impregnation while the spatial resolution of
methods making use of integrated sensors is relatively low.
Imaging techniques typically possess higher spatial resolution

over a larger section of the composite part. Ultrasound techniques
are known for their high acquisition rates and have been used to
track resin flow in fibrous preforms (Schmachtenberg et al.,
2005), in particular for through-thickness resin infusion
(Stöven et al., 2003; Thomas et al., 2008; Konstantopoulos
et al., 2018). Thomas et al. (Thomas et al., 2008) tracked
through-thickness resin flow via acoustic C-scan
measurements giving a planar view of the sample. While this
method gives an indication of through-thickness saturation of the
preform, the limited spatial resolution does not allow for
distinction of capillary effects such as localized saturation and
void formation. Unsaturated permeability on the other hand was
successfully characterized with use of ultrasound, given a
microstructure-dependent minimum fiber content is present
within the preform (Konstantopoulos et al., 2018).

Magnetic Resonance Imaging (MRI) (Callaghan, 1993) has
been investigated as well to observe flow in porous media. While
suffering from drawbacks such as large tooling costs and spatial
resolutions that are limited to around 0.1 mm due to signal
relaxation effects (Endruweit et al., 2011), MRI brings the
advantage of an excellent material contrast between
constituents of composites, i.e., fibers, polymer and voids,
which could be further enhanced by the addition of
contrasting agents or by specified measurement sequences
(Neacsu et al., 2007). MRI has therefore been used for the
characterization of flow in fibrous preforms (Mantle et al.,
2001; Bijeljic et al., 2004; Bencsik et al., 2008), with several
studies specifically focused on visualizing dual-scale flow
behavior. Leisen and Beckham (Leisen and Beckham, 2008)
proposed a method of nuclear MRI and subsequent image
analysis to quantify inter-yarn voids and their morphologies in
saturated woven nylon fabrics, while Neacsu et al. (Neacsu et al.,
2007) applied MRI to characterize capillary effects in glass fiber
bundles. In the latter case they found fast MRI imaging able to
track progressive transversal impregnation within bundles with
different volume fractions and were able to use this data to back
calculate the driving capillary pressures. Endruweit et al.
(Endruweit et al., 2011) carried out an extensive investigation
regarding the use of MRI to in-situ image the impregnation of
dual-scale textiles. Reconstructed 3D images had resolutions of
0.5 mm, visualizing the meso-structure of fibrous preforms. An
intermittent injection strategy was used to overcome time
resolution limitations, which allowed for imaging of various
flow regimes. Resulting images clearly visualized the
progressing flow front and the formation of inter-yarn voids,
while progressive saturation was tracked by a gradual increase of
relative signal intensities.

Intrinsic differences in X-ray absorption coefficients of
composite constituents gave rise to a multitude of X-ray-based
techniques that were applied to study in-situ the role of capillary
effects in LCM processing. Bréard et al. (Bréard et al., 1999)
continuously tracked through-thickness impregnation of a
random mat stack using X-ray radiography. While image
resolution was insufficient to capture the fibrous preform, fast
imaging allowed for accurate tracking of the infiltrating fluids.
Teixidó et al. (Teixidó et al., 2021) used an X-ray phase contrast
method in-operando to assess saturation of several types of
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fibrous preforms. Based on the material-sensitive phase
modulation due to interference formed after passing X-rays
through a grating, the material contrast, which can be a
limiting factor for composites, is significantly enhanced (Gresil
et al., 2017). Employing this method allowed them to image
progressive saturation of 15 cm × 5 cm non-transparent fabrics
over a range of capillary numbers and they were able to extract the
thickness-averaged saturation curves from these images, with a
time step below 10 s.

The use of X-ray micro computed tomography (μCT) has
allowed for the observation of dual-scale flow at an
unprecedented resolution. Based on the reconstruction of 3D
images from a set of radial X-ray radiographs, X-ray μCT
provides the ability to reconstruct through-thickness images of
opaque materials (Withers et al., 2021). Features down to sub-μm
can be reached, e.g., allowing for accurate imaging of carbon
composites and of the void morphology, while image resolutions
typically come at a cost of the volume that can be analyzed, and
the measurement speed. 4D μCT imaging (3D in space and time),
e.g., to study the dual-scale flow behavior, is moreover typically
complicated by possible blurring effects occurring, reducing
image resolution due to movement of the flow front (Castro
et al., 2021). To avoid this, the acquisition time should be short
enough to limit the movement to less than 1 voxel per scan
(Castro et al., 2021). While some studies have thus aimed at
indirect observations of dual-scale flow behavior, e.g., by
assessing thickness changes (Hemmer et al., 2018) or image-
based computational fluid dynamics simulations (Ali et al., 2019),
several investigations aimed at in-situ imaging dual-scale flow
behavior through a fibrous preform. Vilà et al. (Vilà et al., 2015)
were the first to use μCT to study the intra-tow infiltration of a
glass fiber bundle in a μCT synchrotron beamline. Infusion was
carried out under a capillary-dominated regime and was halted to
image the flow front. Images were reconstructed from 900
radiographs taken over a period of 120 min with a voxel size
of 2.5 μm3. At a slightly reduced resolution, Larson et al. (Larson
and Zok, 2018; Larson et al., 2019) were able to drastically reduce
the imaging time, i.e., to 1.5 min, which allowed them to in-situ
record impregnation of an enclosed fiber bundle with capillary
numbers up to 10−3. They furthermore employed advanced
segmentation methods to distinguish local saturated and dry
sections. Vilà et al. (Vilà et al., 2015) and Larson et al. (Larson
and Zok, 2018; Larson et al., 2019) were both able to observe
progressive saturation of the fiber bundle and were able to relate
this to local capillary pressures and permeabilities, while the more
homogeneous fiber distributions of Larson et al. (Larson and Zok,
2018; Larson et al., 2019) resulted in more homogeneous
distributions and magnitudes. They were moreover able to
gain insight in the apparent dynamic contact angles and to
relate this to fiber displacement. Static contact angles after
capillary wicking of a fiber bundle was studied in more detail
by Castro et al. (Castro et al., 2020), who employed synchrotron-
μCT to produce high resolution images. Image analysis then
allowed for an assessment of axial and transverse contact angles.

The resolution requirement to obtain an accurate
representation of (carbon) composites with a conventional
μCT setup limits the sample size significantly. Castro et al.

(Castro et al., 2021) overcame this limitation by making use of
so-called synchrotron radiation computed laminography, where
significant gains in field of view can be achieved by imaging
planar samples at an angle (Helfen et al., 2011; Bull et al., 2013;
Fisher et al., 2019). In combination with a fast acquisition rate,
i.e., 1.8 min per tomogram, they were the first to in-situ image
dual-scale flow behavior in woven textiles with micron-scale
resolution. Equilibrated flow regimes (Figure 4A) were imaged
and, although slightly affected by blurring due to movement of
the flow front, the images clearly showed the microstructural
evolution upon impregnation and the absence of void formation.
Slower infusion rates in capillary-dominated regimes (Figure 4B)
minimized the blurring effect, giving a highly detailed insight on
progressive saturation and void formation upon impregnation.
Moreover, they were able to segment and analyze both inter- and
intra-yarn void distributions as well as gaining novel insights in
the void formation mechanisms during LCM.

3.4 The Case of Natural Fiber Reinforced
Polymers
Composites made of natural fibers, in general plant-based, are
gaining interest for the development of more sustainable and eco-
friendly composite materials. Natural fiber reinforced composites
still present a large amount of porosity and processing defects
mainly due an incomplete understanding of the role of the initial
humidity level in the fibers, surface characteristics, depending on
the fiber treatment such as alkali treatments, and their complex
morphology (illustrated in Figure 5). Compared to synthetic
fibers, plant based fibers are also known to suffer from extensive
resin absorption and swelling due to their microstructure, which
highly alter flow characteristics (Francucci et al., 2010; Pucci et al.,
2017b; Garat et al., 2020; Salokhe et al., 2021). Moreover, they
present irregular and complex morphological and surface
properties. Fibers are built-up from elementary cells with a
given length and an irregular cross-section, and are composed
of a hierarchical sequence of wall layers of different composition
and thicknesses around an internal closed cavity called the lumen
(Pantaloni et al., 2021). Depending on the extraction conditions,
fibers can be present in the fabric as elementary fibers with
diameters around 20–40 µm or technical fibers (several
elementary fibers bonded together with the middle lamella
which acts as matrix) with larger variable sizes in the order of
some hundred micrometers (Melelli et al., 2020). The fiber
surface roughness together with the composition of lignin,
cellulose and hemi-cellulose of the outer layer define the
wetting properties of the natural fiber. Given the complexity of
the porous network and surface properties of natural
reinforcements, the understanding of infiltration and in
particular of capillary effects has remained as a very complex
issue to-date.

Dual-scale flow behavior and void formation mechanisms in
LCM processes have also been observed in the case of natural
fiber preforms (Pantaloni et al., 2020), and have received
increasing attention over the past decade. Francucci et al.
(Francucci et al., 2010) found that natural fibers exhibit
capillary pressures that are two or three times higher
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FIGURE 4 | Progressive saturation recorded by synchrotron radiation computed laminography of (A) Equilibrated and (B) Capillary dominated flow regimes
(Source: (Castro et al., 2021)).

FIGURE 5 | Structure of natural fibers: Schematic representations of (A) technical (fiber bundle from the stem) and (B) elementary fiber, (C) optical microscopy
image of technical and elementary fibers in a composite and (D) optical microscopy image of an elementary fiber surface.
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compared to synthetic fibers, elucidating the relevance of micro-
flows and capillary effects occurring during impregnation. Some
authors attributed this to the hollow structure of the fibers
(Francucci et al., 2010; Yin et al., 2018) however recent studies
have shown limited evidence that the resin can impregnate the
lumen since it is a closed cavity (Pantaloni et al., 2020). Due to the
polar nature of the fibers, the model fluid chosen to carry
impregnation measurements highly influences the study of
capillary effects. For example, Francucci et al. (Francucci et al.,
2010) carried out unidirectional impregnation experiments of
woven jute fabrics with a water/glycerin solution and a vinylester
resin. They measured the capillary pressure and obtained -25 and
36 kPa with the water-based solution and the resin respectively.

As already said, natural fibers are sensitive to liquid
absorption. In consequence, during infiltration, fibers remove
liquid from the main stream of infiltrating resin, acting as a sink
component, decreasing the velocity of the flow as the fiber cross-
section tends to enlarge due to liquid absorption and reduction in
permeability during impregnation (Francucci et al., 2010; Testoni
et al., 2018). Testoni et al. (Testoni et al., 2018) showed in
capillary wicking tests that the swelling of the fibers leads to a
reduction of the inter-fiber pores and thus an increase of the
capillary pressure. With the aim of predicting and modeling the
relation between capillarity and swelling in natural fibers,
researchers used a similar approach based on physical wicking
experiments coupled to modified Washburn’s equations (Pucci
et al., 2015a, 2016; Testoni et al., 2018; Vo et al., 2020). In wicking
tests, synthetic fibers show a linear trend following Washburn’s
equation whereas a non-linear trend is usually observed for
natural fibers due to swelling. Pucci et al. (Pucci et al., 2016)
proposed a modified Washburn’s equation, taking into account
the change in the porosity due to swelling over time. They
assumed a capillary radius decreasing linearly with time, from
the initial to the final swollen values, when wicking the fabrics in
water. More recently, Vo et al. (Vo et al., 2020) improved their
numerical model by defining a dual scale porosity (dual scale
capillary radius) of the flax fibers since wicking takes place in
between individual yarns and in between elementary fibers.
Swelling induced changes in the pore distribution and the
effects on the capillary action more complex at high fiber
volume fraction (Vf). The proposed method successfully
predicted swelling of a flax fabric in water for Vf ranging from
30 to 60%. As recently reviewed by Pantaloni (Pantaloni et al.,
2020), flow modelling taking into account both swelling and fluid
absorption by the natural fibers could be carried out by modifying
the continuity equation accordingly, allowing for changes in both
saturation (through a sink term) and porosity over time.

3.5 Role of Sizing and Additional Phases in
the Textile Preform
3.5.1 Role of the Fiber Surface Treatment
Commercial fibrous preforms are coated with sizings that form an
interphase region between fibers and polymer (Thomason, 2021).
Sizings are generally functionalized for compatibility with specific
monomer types. Alteration of the surface chemistry of the fiber
affects its wettability and thereby the capillary pressures exerted

on infiltrating resins, in particular during intra-yarn flow
(Palmese and Karbhari, 1995; Thomason, 2021). The
wettability of commercial sizings is reported to vary strongly
(Bernet et al., 2000) due to differences in the sizing composition,
e.g., resin-fiber interactions of glass fibers determining contact
angles are sensitive to the silane types (Wei et al., 1993; Araujo
et al., 1995) and content present in the sizing (Nishioka, 1990;
Karbhari and Palmese, 1997). Hence, the sizing composition
could potentially be employed to control local capillary
pressures and thereby dual-scale flow in LCM processing, but
the confidential nature of commercial sizing compositions has
impeded further investigations into the role of sizing
compositions on the (intra-yarn) flow behavior. Sharma et al.
(Sharma et al., 2009) observed that permeabilities of fibrous
preforms, measured with silicon oil and Karo syrup as model
fluid phases, are lower in the presence of a compatible sizing. In
the absence of capillary effects, saturated permeability decreases
due to the stronger resin-fiber interactions experienced by an
infiltrating resin in the presence of a dedicated sizing. The
decrease in capillary driven unsaturated flow was in agreement
with the intra-yarn flow analysis as reported by Wang et al.
(Wang et al., 2006) or Palmese and Karbhari (Palmese and
Karbhari, 1995; Karbhari and Palmese, 1997) and was
attributed to resin-fiber interactions to differences specific
surface free energy (Steenkamer et al., 1995; Karbhari and
Palmese, 1997). Capillary pressures moreover are reported to
be lower for dedicated sizings due to the consequent increase of
the contact angle. It should be noted however that dynamic,
advancing, contact angles and thereby capillary pressures are
highly dependent on the imposed flow rates in LCM (Karbhari
and Palmese, 1997), which could potentially explain the decrease
in capillary pressure in the presence of a dedicated sizing by
increased induced wicking rates.

Surface treatments on sized fabrics have furthermore shown
promise to control resin-fiber interactions in LCM processing.
Physical treatments comprise electric discharge/plasma
treatments, which are extensively employed in polymer
composite production (Mittal et al., 2018). Application of
electric discharge treatments increases polarity of the fiber
surface due to the suggested formation of additional carboxyl
and hydroxyl groups (Morent et al., 2008; Sinha and Panigrahi,
2009; Mittal et al., 2018). Caglar et al. (Caglar et al., 2019)
assessed the influence of these oxidative treatments on the
impregnation of glass fiber textiles. They found that the
increased polarity decreased the capillary pressure drop,
which subsequently accelerated capillary wicking. Analysis
of UV-frozen flow fronts showed that the optimum Ca
shifted after applying the treatment while the unsaturated
region in capillary-dominated flow counterintuitively
became smaller. This latter was attributed to a more
favorable transverse flow when treated, spreading out the
flow front. Application of this surface treatment strongly
accelerated impregnation in capillary-dominated regimes,
i.e., up to 50%. Further control of surface properties could
be achieved by the application of numerous chemical
treatments (Mittal et al., 2018). As an example, Yoshihara
et al. (Yoshihara et al., 2020) controlled the capillary pressure
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by the application of fluorine coatings on glass fiber textiles,
which enhanced the capillary effects acting during resin
infiltration.

3.5.2 Role of Additional Phases in the Textile Preform
In the search to expand the areas of use of polymer composites,
strategies to introduce additional functions have been proposed.
Functionalization by the presence of second phase particles in the
polymer matrix could improve the overall mechanical, thermal
and electrical performance of the resulting composite. Examples
of second phases include capsules for self-healing behavior
(Kessler et al., 2003; Cohades et al., 2018), hollow
microspheres to reduce the composite density (Porfiri and
Gupta, 2009; Zhang et al., 2016) and powders to tailor
capillary effects in porous structures (Kostornov et al., 2015).
The introduction of these particles can however introduce
complications in LCM processing. Filtration effects are
commonly observed upon the infiltration of nanoparticles
(Reia Da Costa et al., 2012; Yum et al., 2016; Zhang et al.,
2017), which can even occur at fiber volume fractions of ~40%
(Louis et al., 2014). A study by Louis et al. (Louis et al., 2019)
showed that the filtration behavior of nanoparticles mainly
depends on the particle size and the fiber volume fractions,
while the nature, i.e., type of particle is also reported to have a
large influence. The role of second phases on the capillary effects
taking place in LCM processing is little understood. In their work
on the processing of self-healing capsules, Manfredi andMichaud
(Manfredi and Michaud, 2014) observed bilinear infusion rates,
where, after an initial phase, the unsaturated permeability of the
preforms strongly increased compared to that when no capsules
were present. This was attributed to increased capillary effects
that drive the flow in the presence of capsules, but no correlation
between the particle concentration and the in-plane permeability
was found. Caglar et al. (Caglar et al., 2017) tried to gain an
improved understanding of these effects by a combination of in-
plane permeability experiments and computational simulations.
They confirmed that permeabilities increased in the presence of
spherical glass; this was moreover found to depend on the bead
diameter and the concentration in the composite. In a parallel
study (Caglar et al., 2016), they reported on the influence of
particle size and volume fraction on the capillary effects. They
concluded that relatively small particles (40–70 μm and
100–200 μm) at low volume fractions enhanced the capillary
effects, whereas an increase in the volume fraction resulted in
a more homogenous pore distribution which yielded more
balanced flows. On the other hand, large particles
(400–800 μm) caused extensive deformation of the fabric
layers and formation of new large flow channels resulted in
less pronounced capillary flow enhancement.

Hierarchical composites have shown promising
enhancements in mechanical, thermal and electrical
performance (Thostenson et al., 2002; Yamamoto et al., 2009;
Qian et al., 2010b; Chou et al., 2010; Spitalsky et al., 2010) when
nanometer-spaced CNTs are grafted onto the fiber surfaces. With
capillary pressure being inversely proportional to the channel
diameter, strong capillary action (Futaba et al., 2006; Liu et al.,
2006; Garcia et al., 2007) is induced in the presence of these

nanoporous CNT forests. Garcia et al. (Garcia et al., 2008)
observed complete impregnation of their 80 nm-spaced CNT
forests grafted on an alumina textile and suggested capillary
effects to have contributed to this. Recent investigations by
Staal et al. (Staal et al., 2021) on the permeability of the same
fabric supported this suggestion. Induced capillary action by the
presence of grafted CNTs can further be observed by fast droplet
spreading over the surface of a single fiber (Qian et al., 2010a).
Alternatively, Lee et al. (Lee et al., 2020) exploited the strong
capillary actions induced by nanoporous networks of aligned
CNTs for void-removal in Out-of-Autoclave (OoA) prepreg
processing. Introduction of a nanoporous network between
plies was estimated to increase the pressure gradient at the
resin/void interface, i.e., the driving force for void removal, by
57% resulting in a void free composite, while a layup without
these networks had a large void content. Moreover, resulting
mechanical properties of the OoA-produced composites were like
those achieved after conventional autoclave processing.

3.5.3 Capillary Effects in Thermoplastic LCM
Processing
Influence of capillary effects in reactive thermoplastics and melt
thermoplastics is strongly linked to their viscosity: for the reactive
thermoplastics-based monomer (Rijswijk et al., 2009; Han et al.,
2020; Obande et al., 2021), it is typically in the same range as or
even lower than the viscosity of thermosetting polymers used in
LCM processes while melt thermoplastics have a few orders of
magnitude higher viscosities (Rijswijk et al., 2009; Salvatori et al.,
2019; Han et al., 2020; Obande et al., 2021). In reactive systems,
the capillary phenomena and their effects are similar to those
found in thermosetting systems, but with enhanced capillary
action resulting from the low viscosity of the fluid phase. For
instance, Zingraff et al. (Zingraff et al., 2005) experimentally
studied the resin transfer molding of a woven fabric with the
precursor of an anionically polymerized polyamide 12 and also
found an optimum capillary number range (in the order of 10−3)
where the void content was minimal. Similarly, Murray et al.
(Murray et al., 2020) studied the resin transfer molding of
unidirectional stitched glass fabrics with the precursor of in-
situ polymerized polyamide six and demonstrated the dominance
of viscous flow within the bundles as well as the void formation
within bundles due to lack of balance between capillary and
viscous forces. Melt thermoplastic impregnation is gaining
importance in recent years, however capillary effects so far
have not been analyzed (Studer et al., 2019; Gomez et al.,
2021) as their impregnation is dominated by viscous forces
due to the high-pressure differential and/or high viscosity of
thermoplastic resins. Research is however ongoing to better
capture the role of molecular weight and temperature in the
wetting characteristics of polymers (Duchemin et al., 2021).

3.5.4 Capillary Effects in Continuous Composite
Manufacturing
Next to LCM processes where the flow lengths can reach up to
meters, capillary effects manifest themselves also in continuous
composite manufacturing. For instance, resin bath impregnation
pultrusion (Strauß et al., 2019; Vedernikov et al., 2020) is a
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common technique for manufacturing fiber reinforced profiles of
varying cross-sectional complexity. Irfan et al. (Irfan et al., 2017,
2021) modified the resin bath where the rovings are impregnated
before entering the mold where they are shaped into the final
cross-sectional profile. They demonstrated that in their modified
pultrusion process, capillary impregnation was dominant owing
to pre-spreading the fibers before entering the resin bath and the
extended fluid reservoir promoting the capillary actions under
low pressures. Another continuous composite route is the
manufacturing of fiber reinforced (typically unidirectional)
thermoplastic tapes that are then used in secondary processes
such as automated fiber placement, press forming or in autoclave
processes. Melt impregnation is generally used for thermoplastic
tape manufacturing, as well as powder impregnation. In all cases,
as well as in commingled yarns where reinforcement fibers and
polymer fibers are intimately mixed, impregnation takes place
after the polymer has melt, and capillary effects may again play a
role towards local impregnation of the fiber tows. This was for
example exploited by Ho et al. (Ho et al., 2011) for improving the
quality of their wet powder impregnation approach, and by
Bernet et al. (Bernet et al., 1999, 2001) for PA12/Carbon
commingled yarns.

4 NUMERICAL MODELLING

Capillary effects play, despite the low magnitude of capillary
pressures as compared to applied pressures, a significant role in
LCM processing and, while mainly acting on a yarn-scale, largely
influence the final part quality on a macroscopic scale. Capillary
effects must thus be considered for the development of accurate
numerical models that are used to describe and predict flow
behavior in LCM. Several approaches have been proposed
towards the development of flow simulations over the past
decades, describing dual-scale flow behavior and the role of
capillary effects at different scales. Most approaches base their
estimation of the effects on direct or indirect experimental
observation of flow front position, and saturation over time
during an infiltration experiment, under no (apart from
gravity) or applied external body forces.

4.1 Microscopic Scale Models
At the microscopic scale and under static conditions, the capillary
pressure ΔPγ is described as the pressure jump across the air-fluid
interfaces arising from the solid surface and interfacial tensions
defined by the Young–Laplace equation as previously described
in Section 2. In the case of fibrous reinforcements, Ahn et al.
(Ahn et al., 1991) and Pillai and Advani (Pillai and Advani, 1996)
proposed an analytical expression of the capillary pressure, which
was often used in later studies (Amico and Lekakou, 2000, Amico
and Lekakou, 2001, Amico and Lekakou, 2002; Matsuzaki et al.,
2015; Vilà et al., 2015; Willenbacher et al., 2019; Facciotto et al.,
2021). They considered a tow, formed of several fibers with
different spacing in size and thus with different capillary
diameters impregnated with a unidirectional flow, and defined
the capillary pressure as:

ΔPγ � Vf

(1 − Vf )
Fσ lv cos θ

Df
(4)

where F is a dimensionless shape factor describing the anisotropy
of the tow (in general, F is assumed to be equal to 4 and 2 for
longitudinal and transversal flows, respectively) andDf is the fiber
diameter. The term Vf

1−Vf
is known as the non-dimensional

capillary pressure and represents the effect of the tow
microstructure on the capillary pressure within the tow.
Similarly, Bayramli and Powell (Bayramli and Powell, 1990)
described the capillary pressure as:

ΔPγ � σ lv cos(θ + α)
Df (1 − cos α) + d

(5)

where α is the directional body angle and d half of the minimum
distance between two fibers. This model was improved by Foley
and Gillespie (Foley and Gillespie, 2005) and later by Neacsu et al.
(Neacsu et al., 2006). This equation has been used by Yeager et al.
(Yeager et al., 2016; Yeager et al., 2017) and recently by Li et al. (Li
et al., 2020) to describe the capillary pressure in their finite
element models to simulate the resin moving in-between two
fibers and thus model the injection of resin in a dual scale fabric in
which the tows are quasi-realistically defined following a realistic
model. Counterintuitively, the capillary pressure, which should
not depend on the direction of flow, has been experimentally
shown and modelled as indicated before as a function of flow
direction with respect to the fiber preform. However, this is
probably linked to the geometry of the pores and necks as the
flow front progresses, indicating the influence of the pore-level
scale onto the measurements.

In fluid infiltration, the capillary pressure is used for studying
the local wettability between fiber and liquids, quantified by the
contact angle θ. As infiltration involves motion, the dynamic
contact angle is more accurate to describe the wettability between
fluid and fibers. However, due to the complexity of determining it
analytically, the static contact angle is usually measured for a first
approximation even though it can strongly deviate from dynamic
values. To overcome this, empirical laws such as Tanner’s law
(Tanner, 1979) are proposed in literature to estimate the dynamic
contact angle from the static one. The static contact angle can be
directly measured from e.g. from sessile drop or droplet-on-fiber
measurements (Wu and Dzenis, 2006; Behroozi and Behroozi,
2019). In the case of structural fibers, a tensiometric method
coupled to Wilhelmy’s equation is usually applied to measure the
dynamic contact angle and capillary forces (Pucci et al., 2016;
Pucci et al., 2017a; Wang et al., 2017a; Hansen et al., 2017; Pucci
et al., 2020). This method measures the force needed to pull or
push a fiber or a tow partially submerged in a liquid as a function
of the length of the immersed region. It is also possible to evaluate
the of the meniscus profile between the fibers and the liquid.
Similarly, some researchers performed wicking experiments on
single tows (Hamdaoui et al., 2007; Pucci et al., 2015a; Koubaa
et al., 2016; Castro et al., 2020) or a single layer of fabric (Lebel
et al., 2013; Pucci et al., 2015b, Pucci et al., 2016; Vo et al., 2020)
and were able to extract the values of the capillary pressure and
the dynamic advancing contact angle using the Lucas-Washburn
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method (Washburn, 1921) which describes the capillary rise of a
liquid inside a capillary tube, and by extension into a porous
media. However, the Lucas-Washburn approach assumes a
constant geometry of the porous medium during the
experiment and does not take into account attraction forces
between vertical cylinders resulting from elasto-capillary effects
and neither the swelling effect in natural fibers which leads to
densification phenomenon, this is why some modifications have
been proposed over the years (Rieser et al., 2015; Koubaa et al.,
2016; Pucci et al., 2016; Vo et al., 2020). Lebel et al. (LeBel et al.,
2014) proposed a simple methodology to obtain the optimal flow
injection conditions for a given fluid/fabric system based on the
Lucas-Washburn imbibition model, which was thereafter used in
Refs. (Ravey et al., 2014; Causse et al., 2018; LeBel et al., 2019;
Castro et al., 2021).

4.2 Unsaturated Flow Models
Capillary effects are also included in studies at the more
macroscopic scale and are regarded as promoters of micro-
diffusion inside the tows. Since the dual scale of the fabrics
leads to a multiphase flow effect, it is commonly accepted that
the fibrous preform is progressively saturated by the liquid,
resulting in a nonlinear pressure profile along the unsaturated
area (Figure 6). Partially saturated regions indeed show a broad
distribution of pore channel diameters and thereby capillary
forces act at a wide range of scales, therefore in macroscopic
studies, the capillary pressure is represented by an average of
multiple capillary pressure jumps inside a small region (RVE).
Moreover, the progressive saturation is directly linked to a
progressive filling of the pores and can be in turn related to
void mechanisms during the infiltration (Park and Lee, 2011;
LeBel et al., 2017). Two main strategies are commonly adopted to
tackle unsaturated flow phenomena: two-phase flow and dual-
scale approaches (Michaud, 2016).

The first approach is inspired from soil science and relies on
traditional multiphase flow equations for porous media (Panfilov,
2000). Although this approach is commonly used in other
branches of engineering, researchers seldom applied it to
model composite infiltration processes (Bréard et al., 2003a;
Nordlund and Michaud, 2012; Gascón et al., 2015; Villière
et al., 2015; Gascón et al., 2016). Resin flow is in this case
modelled as a two-phase flow in which the resin invades the
porous medium (fabric), displacing and expelling the fluid which
saturates the porous medium (air). As already discussed,
depending on the fiber/matrix system and the impregnation
conditions (fluid velocity), resin and air can be either wetting
(w) and non-wetting (nw). For simplicity, the resin is often
considered to be the non-wetting phase, which is often
observed to be the case in industrial LCM processing when
flow is fast enough that the dynamic contact angle becomes
greater than 90°. In the current method, permeability and
pressure are dependent on the infiltrating fluid saturation S
and the sum of the phase’s saturations are equal to 1. If the
porous medium is assimilated to a random assembly of tubes of
various radii, each of these tubes will drain the fluid differently
and a strong relationship is created between the saturation and
the capillary pressure, defined as the pressure difference between
the two phases as:

ΔPγ(S) � Pnw − Pw (6)
There are two main approaches to tackle the modeling. One is

the two-pressure formulation which uses mass balance equations
and a single-phase Darcy’s law to describe the velocity of the two
fluids through the same porous material. If the air pressure is
assumed to be relatively low, the mass balance equation for the
resin can be solved independently and is reduced to Richard’s
equation (Nordlund and Michaud, 2012). The other approach is
the fractional flow method, which considers saturation and

FIGURE 6 | Saturation and slug flow description of an infiltrating flow: (A) optical image of flow front (B) saturation and (C) capillary pressure distributions.
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pressure as independent variables. Gravitational and capillary
pressures are neglected and saturation is defined by the Buckley-
Leverett formulation (which assumes an isotropic medium)
(Buckley and Leverett, 1942). Gascón et al. (Gascón et al.,
2015; Gascón et al., 2016) more recently proposed a numerical
model based on this approach which includes capillary effects and
the effect of air residual saturation. In two phase flow modeling,
the permeability K is divided into two terms K � krKsat, where
Ksat is the saturated permeability and kr the relative permeability,
a dimensionless value between 0 and 1 which is a function of S.
The relative permeability is defined for both phases as kr,nw and
kr,w, and describes how fluid and air phases flow with respect to
each other into the porous medium. Two phase flow formulations
require constitutive equations between the permeability, the resin
saturation and the capillary pressure. Different analytical
parameterizations have been proposed to define kr(S) and S(P),
usually defined by a power law such as the functional descriptions
of Brooks and Corey (Brooks and Corey, 1964) and Van
Genuchten (van Genuchten, 1980), among others
(Hassanizadeh and Gray, 1990; Helmig et al., 2007; Gao et al.,
2014). These formulations can also be obtained with the help of
parametric studies of virtual fibrous microstructures, as proposed
by Ashari and Vahedi Tafreshi for thin fibrous sheets (Ashari and
Vahedi Tafreshi, 2009). Bréard et al. (Bréard et al., 2003a)
introduced a relative permeability law specifically for fibrous
reinforcements based on the ratio of unsaturated and saturated
permeability Rs which will be introduced thereafter. S(P) curve is
known in soil science as the imbibition-drainage curve. Drainage
is used to indicate when a non-wetting fluid displaces a wetting
fluid whereas imbibition indicates when a wetting fluid displaces
a non-wetting fluid. Nordlund et al. (Nordlund and Michaud,
2012) used the semi-empirical expression developed by van
Genuchten and Mualem (Mualem, 1978; van Genuchten,
1980) to model the impregnation of a glass preform by a
resin; they observed a strong dependence between the
saturation curve and flow rate given the dynamic wetting
conditions during the impregnation. As a result, they showed
that several imbibition-drainage curves may be necessary to
model flow over a wider range of velocities. Similarly, Gascón
et al. (Gascón et al., 2015; Gascón et al., 2016) used a formulation
based on that of Brooks and Corey to model the saturation in a
glass fiber reinforcement to predict void formation and transport
mechanisms. With this approach, it is not possible to a priori
determine the location of voids as a similar degree of saturation
could correspond to voids in the tows or in between, nonetheless
the dependency of the saturation curve on flow rate may be an
indirect indication of a change in void location.

The second approach is more specific to the polymer
composite processing field and considers the preform as a
dual-scale body, separating the intra- and inter-bundle
impregnations by introducing a sink term into fully saturated
models (Bréard et al., 2003a; Simacek and Advani, 2003;
Gourichon et al., 2006; Wolfrath et al., 2006; Bayldon and
Daniel, 2009; Lawrence et al., 2009; Wang et al., 2009;
Simacek et al., 2010; Park and Lee, 2011; Tan and Pillai, 2012;
Walther et al., 2012; Carlone and Palazzo, 2015; Carlone et al.,
2018; Imbert et al., 2018; Patiño-Arcila and Vanegas-Jaramillo,

2018; Wu and Larsson, 2020; Facciotto et al., 2021; Patiño and
Nieto-Londoño, 2021). These models consider that viscous forces
dominate (non-wetting system) the infiltration and that the flow
preferentially fills the inter-tow macro. The bundles upstream are
gradually saturated by a delayed secondary micro flow altering
the overall pressure as shown in Figure 7. The capillary pressure
will in this case influence only the time to saturate the tows.

Generally, the length of the partially saturated zone is assumed
to be constant. Then, the pressure drop creates an apparent
change in the permeability and this delayed effect is
considered by adding a sink term Ṡ into the common
equations which represent the liquid saturation or volume rate
into the fiber tow. In this approach, tow and overall fabric
permeability are usually measured in saturated models.
However, for higher accuracy, some researchers proposed to
model the permeability in terms of degree of saturation or
void content (Lawrence et al., 2009; Simacek et al., 2010). The
mass conservation equation can then be written as:

_S � ( K
ηresin

P) (7)

If the flow front is non-uniform (i.e., intra- or inter-yarn flow
is predominant), Ṡ is not null and the relationship between
pressure and time is not linear anymore which in turn
influences the overall permeability (Bodaghi et al., 2019).
Longitudinal dual-scale flow analysis is usually performed by
using a Stokes-Darcy or a Stokes-Brinkman coupling (with the
latter one being more common) (Patiño et al., 2017; Lu et al.,
2021). The Stokes equation is employed to define the inter-tow
flow and the Darcy or Brinkman equations for the intra-tow flow.
A coupling condition is developed at the interface to ensure a
mass transfer from the inter-to the intra-tow flow. This approach
is usually linked to void entrapment and void migration models
(Mehdikhani et al., 2019). Given the dual-scale nature of fabrics,
some authors worked on the combined interaction between intra-
and inter-tow permeability on the global permeability (Bodaghi
et al., 2019). Bréard et al. (Bréard et al., 2003a) measured a convex
pressure curve profile along the impregnation, explained by the
delayed tow saturation. Park and Lee (Park and Lee, 2011) later
assimilated a convex and/or concave shape to the pressure curve,
depending on the presence of capillary effects as shown in
Figure 8. If the degree of saturation is lower than 1,
unsaturated permeability is lower but close to the saturated
permeability, a convex profile is obtained. If the degree of
saturation drops and is far from 1, capillary effects are more
significant and tow saturation is more prominent.

The Control Volume Finite Element approach has been a
preferred route for homogenized simulations to predict the flow
evolution, fill times, and has been used for process optimization of
RTM and its variants such as VARTM (Correia et al., 2004; Sas
et al., 2015; Wang et al., 2016, 2017b; Caglar et al., 2021b; Chai
et al., 2021) as well as for purposes such as predicting the
formation of macroscale voids (Park et al., 2011; Park and
Lee, 2011), predicting the permeability (Lugo et al., 2014; Yun
et al., 2017; Caglar et al., 2018; Godbole et al., 2019) and changes
in the flow patterns induced by inserts or race-tracking channels
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as well as in part manufacturing around inserts (Matsuzaki et al.,
2013; Sas et al., 2015; Pierce and Falzon, 2017) and as a predictive
tool in active control of these processes (Alms et al., 2011;
Matsuzaki et al., 2013). Several works have made use of
existing flow simulation software such as LIMS and
introduced additional terms to account for the dual scale
effects (Schell et al., 2007; Lawrence et al., 2009; Simacek et al.,
2010; Facciotto et al., 2021). Similarly, finite element solvers are
coupled with level-set for tracking the free surface and enriched
for accounting for multiscale effects at the air-liquid-solid
interface (Liu et al., 2016; Chevalier et al., 2018;
Andriamananjara et al., 2019; Rougier et al., 2021) with
capability of modeling wetting and non-wetting systems as
well as the transition or to predict the average capillary
pressure evolution in between individual fibers (Yeager et al.,
2016). In recent years, there has also been interest towards the use

of other numerical approaches to account for the dual scale effects
using particle based solvers (Yashiro et al., 2019; Yoshihara et al.,
2020) or boundary elements (Patiño and Nieto-Londoño, 2021).
Recent developments in application of above mentioned in
modeling the dual-scale flow with a focus on the introduction
of sink effects has been reviewed by Patiño-Arcila and Vanegas-
Jaramillo (Patiño-Arcila and Vanegas-Jaramillo, 2018).

4.3 Slug-Flow Assumption
For simplicity, it is often considered that the liquid progresses
with a fully saturated front neglecting preferential flow
channeling, known as the “slug-flow” assumption. As shown
in Figure 6, the saturation results in a step function varying
between 0 and 1 (the steady-state saturation can be less than one if
voids remain entrapped behind the flow front). Although
capillary effects arise from local micro-scale geometric and

FIGURE 7 | Schematic representation of the dual-phase approach with delayed impregnation yarns.

FIGURE 8 | Pressure profile and permeability in saturated and unsaturated areas, convex and concave pressure profiles in a partially saturated zone. (Source (Park
and Lee, 2011))
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surface tension mechanisms, they are in this case considered as a
macro phenomenon and are lumped in the conventional fluid
flow equations as a pressure difference ΔPγ. This pressure created
at the flow front compensates the delayed flow coming from the
low permeability of the packed tows (Amico and Lekakou, 2001).
The total fluid pressure difference ΔP can be defined as the
applied pressure difference ΔPapp between the inlet (i) and the
outlet (f) considering the capillary forces:

ΔP � Pf − Pi + ΔPγ � ΔPapp + ΔPγ (8)
The capillary pressure can be expressed as:

ΔPγ � −Sf σ lv cos θ (9)
where Sf is the total surface of matrix-fiber interfaces per unit of
volume (Mortensen and Cornie, 1987; Mortensen and Wong,
1990). The capillary pressure drop ΔPγ can be quantified within
an experiment in which the fluid is injected into the preform
either at constant pressure or constant flow rate. In unidirectional
cases it is possible to track the fluid movement using Darcy’s law
and the Dupuit-Forchheimer approximation and find the ΔPγ
value from experimental results (Amico and Lekakou, 2001;
Zingraff et al., 2005; Verrey et al., 2006; Li et al., 2010; Li
et al., 2012). Verrey et al. (Verrey et al., 2006) proved that it is
more suitable to measure ΔPγ in a constant flow rate experiment
rather than constant pressure experiment, since in the latter, the
velocity changes significantly during impregnation resulting in a
decreasing range of capillary numbers.

Intuitively, capillary effects taking place at the flow front can
alter the fluid velocity leading to erroneous unsaturated
permeability measurements. Although unsaturated (Kunsat) and
saturated (Ksat) permeabilities are respectively measured from the
flow front position and the flow rate after filling the textile, they
should be theoretically equal as they only depend on the fabric
structure. Nevertheless, significant differences between these two
values have been reported in literature (Lundström et al., 2000;
Bréard et al., 2003a; Pillai, 2004; Kim et al., 2017). Whereas some
authors support that the saturated permeability should be higher
than the unsaturated permeability because dry tows oppose a
certain resistance to the macro-flow, the opposite has also been
observed. By using a slug flow approach, one can show that the
capillary pressure drop acting at the flow front should be taken
into account when estimating the unsaturated permeability,
whereas it is generally omitted. As a result, the permeability
ratio Rs is also easily expressed as a function of the ratio of
capillary over applied pressure (Salvatori et al., 2018):

Rs � Kunsat

Ksat
� 1 − ΔPγ

ΔPapp
(10)

Since ΔPγ is directly dependent on the capillary number and
thus the dynamic wettability of the system, Kunsat turns to be not
only fabric architecture dependent, but also relies on the fluid-
fabric wettability. Following this approach, if infiltration is carried
out under conditions close to the optimal capillary number,
capillary effects may be negligible and Rs will be equal to 1.
On the contrary, if ΔPγ is not negligible, the two permeability
values will differ. If ΔPγ is negative, at least when estimated locally

close to the tows, the system is wetting and Rs > 1 and conversely,
if ΔPγ is positive, the system is non-wetting and Rs < 1. The ratio
Rs was observed to be generally below 1, considering that the fluid
acts with a non-wetting behavior (Bréard et al., 2003a) even
though values above 1 have also been observed in the case of slow
flow (Lundström et al., 2000). However, it is important to note
that the geometric features of the porous medium also have an
effect, and optimal Ca flow conditions have been found in cases
where ΔPγ is negative, at least when estimated close to the tows,
such that the capillary forces inside the tows compensate for their
lower permeability to reach a stable front. This was observed by
Gueroult et al. (Gueroult et al., 2014), who proposed an analytical
model evaluating the time scales for flow in each of the two
regions, tow and inter-tow channels.

Nowadays, the use ofKunsat as ameasurement of the permeability
is still debated since it is influenced by capillary effects. For example,
several authors observed that the fiber volume fraction influencesRs
due to the increase of tows andmicro spaces leading to an increase of
capillary phenomena and in turn a change of the unsaturated
permeability (Francucci et al., 2010; Caglar et al., 2019; Moudood
et al., 2019). The choice of model fluids to measure permeability also
becomes highly critical since their surface tension and viscosity
should be close enough to those of the resin. Overall, this
measurement is fine for comparative purposes if the same fluids
and conditions are used, as was demonstrated in the round robin
exercise (Vernet et al., 2014).

Salvatori et al. (Salvatori et al., 2018) studied the effect of the
fabric architecture on permeability and capillary effects. They
showed for a classic woven fabric, that Rs is greater than 1 at low
capillary numbers, below 1 for high capillary numbers and
around 1 close to the optimal infiltration conditions. For a
fabric with large meso-channels, Rs was found to be close to 1
for a wide range of capillary numbers since inter-tow flow
dominates the overall flow kinetics and capillary effects are
insignificant. They concluded that unsaturated permeability
can be used as a permeability measurement for fabrics
showing a strong-dual scale nature. Caglar et al. (Caglar et al.,
2019) improved the wetting characteristics of a glass fabric by
means of corona treatment without altering the permeability.
They found similar permeability values for pristine and treated
fabrics, however, they proved that the change in the wettability
has a strong effect on the Rs. Impregnation of treated fabrics is
enhanced by the wettability of the system translated to an increase
of Kunsat with Rs is higher than 1. Conversely, for the pristine
fabrics the system remains non-wetting and Rs is lower than 1.
Recently, Staal et al. (Staal et al., 2021) studied the permeability of
alumina fiber woven fabrics grafted with aligned carbon
nanotubes (CNT). They found Rs values to be higher than 1
in all cases attributed to the capillary wicking happening in the
forest areas created by the CNT. In this case, the flow is dragged
by capillary forces leading to a strong wetting system. This
observation is also consistent with models of wetting on rough
surfaces, indicating that wettability can be enhanced when the
surface roughness is increased.

In the case of natural fibers, it is usually observed that Kunsat is
lower than Ksat. As already introduced, infiltration is hampered
by the fibers absorption behavior which removes fluid from the
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main stream (Figure 9), reducing the macro flow velocity and in
consequence, directly affecting the unsaturated permeability.
Since the sink effect is highly influenced by the nature of the
infiltrating fluid, permeability measurements will be highly fluid
type dependent (Nguyen et al., 2014; Moudood et al., 2019).
Thereupon, fibers will continue to absorb liquid until their
saturation leading to fiber swelling and thus changing the
fibrous microstructure. Consequently, the fiber volume fraction
is increased, reducing the fluid path and directly influencing the
saturated permeability. Nguyen et al. (Nguyen et al., 2014)
showed that the fiber diameter after swelling is also influenced
by liquid nature, in turn, the saturated permeability is also fluid
type dependent. Thus, both unsaturated and saturated
permeability are reduced due to absorption and swelling
respectively, however, it has always been observed that Kunsat

> Ksat absorption thus being more critical than swelling.
Nevertheless, researchers showed that at low fiber volume
fraction, this behavior is reversed (Kunsat < Ksat) since less
amount of fibers are present, less fluid is removed from the
stream and the change in the macro flow is insignificant
(Francucci et al., 2010; Moudood et al., 2019; Pantaloni et al.,
2020).

5 CONCLUSION

Capillary effects operate at several length scales in composite
processing, from the molecular scale at the triple line between
fluid, solid and air, which can be related to the physical
characteristics of the phases, to the scale of the spaces within

fiber tows or between tows, which are related to the geometrical
features of the reinforcement. They are generally not the main
drivers of flow in composite processing, where external pressure
or flow rates are imposed on the fluid phase to speed the flow
kinetics. However, they have been shown to play a crucial role in
determining the part quality; the consensus is now large in our
community that there is an optimal flow front velocity to
minimize porosity entrapment during impregnation of a fiber
reinforcement textile, which corresponds to an optimal capillary
number Caopt ranging between 0.5 and 1.5·10−3 depending on the
fabric type and to a minor extent, conditions of experiments.
There is also an increasing consensus on the utility to measure
unsaturated and saturated permeabilities and to evaluate their
ratio to better quantify macro-scale capillary effects, although
often using model fluids. Research is very active these days to
improve our experimental understanding of these effects thanks
to the increasing availability of time- and space-resolved
experimental observation tools, and computing power as well
as a technological pull to further improve part quality and
production robustness. However, modelling is still in progress
to link local wetting effects with geometrical pore effects leading
tomacroscopic volume averaged capillary effects, as also observed
in the soil science field, although microscopic and macroscopic
effects tend to be independently increasingly well captured.

It is clear to all composite manufacturers that relying only on
capillary effects to impregnate a composite is not practical, even if
the static contact angle seems very low and the system is wetting,
as the flow kinetics would be too low (depending on the fluid
viscosity) and the quality poor, due to porosity forming in
between the wicking tows. In some cases, when the porous

FIGURE 9 | Schematic representation of phenomena occurring during the impregnation of natural fibers: (A) infiltration of the preform, (B) fiber swelling after
saturation, (C) resin absorption by fibers and (D) capillary flow between fibers. (Source (Pantaloni et al., 2020))

Frontiers in Materials | www.frontiersin.org February 2022 | Volume 9 | Article 80922617

Teixidó et al. Capillary Effects in Composite Processing

97

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


medium is more uniform or when a very fine porous network is
placed between fibers, as in CNT grafted fabrics, enhanced
capillary effects may help drive the flow and counteract a
reduced overall permeability. This effect could also be taken
advantage of when flow takes place at short distance, for
example in thermoplastic composite processing from stacked
films, fibers or powders.

In most practical cases however, the need to reduce cycle
times led to the development of more permeable textiles, with
increased dual scale pore space distribution (wider flow
channels and more compact tows), and flow takes place well
above the optimal capillary number. This often leads to a delay
in tow impregnation, with potential porosity remaining within
the tows, or the practice to let resin flow out for some time to
saturate the fabric. This could possibly be minimized with
enhanced local wetting at the tow level if air can find a path to

escape ahead of the flow front. As a result, well distributed and
optimized sizings could still play a strong role not only for
mechanical properties, but also to ensure optimal flow
conditions.
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Recent Progress in Crystallographic
Characterization, Magnetoresponsive
and Elastocaloric Effects of
Ni-Mn-In-Based Heusler Alloys—A
Review
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Ni-Mn-In-based magnetic shape memory alloys have promising applications in numerous
state-of-the-art technologies, such as solid-state refrigeration and smart sensing, resulting
from the magnetic field-induced inverse martensitic transformation. This paper aims at
presenting a comprehensive review of the recent research progress of Ni-Mn-In-based
alloys. First, the crystallographic characterization of these compounds that strongly affects
functional behaviors, including the crystal structure of modulated martensite, the self-
organization of martensite variants and the strain path during martensitic transformation,
are reviewed. Second, the current research progress in functional behaviors, including
magnetic shape memory, magnetocaloric and elastocaloric effects, are summarized.
Finally, the main bottlenecks hindering the technical development and some possible
solutions to overcome these difficulties are discussed. This review is expected to
provide some useful insights for the design of novel advanced magnetic shape
memory alloys.

Keywords: NiMnIn, modulated martensite, martensitic transformation, magnetocaloric effect, elastocaloric effect

1 INTRODUCTION

In 1996, a large magnetic-field-induced strain, i.e., 0.2% under a magnetic field of 0.8 T realized by the
rearrangement of martensite variants driven by the magnetocrystalline anisotropy energy, was first
reported in the stoichiometric Heusler-type Ni2MnGa alloys by K. Ullakko and collaborators (Ullakko
et al., 1996). Compared with the magnetostrictive materials, such as Terfenol-D, and conventional shape
memory alloys, such as Ni-Ti, the magnetic-field-induced strain in Ni2MnGa has both fast responsive
frequency and large output strain, and thus is considered to have huge potential in the fields of smart
actuators and sensors. From then on, the Heusler-type NiMnGa alloy has aroused widespread attention
(Zheludev et al., 1996; Mañosa et al., 1997; Planes et al., 1997; Ullakko et al., 1997; Brown et al., 1999).
About 10 years later, Y. Sutou and R. Kainuma et al. fabricated a series of nonstoichiometric Ni(Co)MnZ
(Z = In, Sn and Sb) Heusler-type alloys by the replacement of the p-block type Ga by Z (Z = In, Sn or Sb)
(Sutou et al., 2004a). Although Ga (4s2p1) and In (5s2p1) belong to the same main-group elements (IIIA)
and their positions in the elemental periodic table are adjacent, the magnetic properties and the resultant
functional behaviors of NiMnGa and NiMnIn are significantly different.
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Specifically, the magnetization of martensite and austenite are
similar in NiMnGa, while the magnetization of martensite in the
NiMnIn is much weaker than that of austenite, as shown in
Figure 1. In other words, for the NiMnIn-based alloys, there is a
significant change in magnetism during the martensitic
transformation, and thus this transition is also termed the
magnetostructural transition. As a result, the Zeeman energy
(EZeeman � −μ0 ∫

V

MHdV) of austenite, i.e., the potential energy of
a magnetized body having magnetizationM and a volume of V in
an external magnetic field H, should be much lower than that of
martensite. Thus, the magnetic field should stabilize the strong
magnetic austenite phase. This feature of the NiMnIn alloy
provides an extra stimulus, apart from thermal and
mechanical fields, to drive the inverse martensitic
transformation. To be specific, when a magnetic field is
applied to the martensite of the NiMnIn alloy, the sample
tends to transform to the austenite state, i.e., the magnetic-
field-induced inverse martensite transformation, under the
driving force of the Zeeman energy difference μ0HΔM of these
two phases.

If a pre-strain is applied to the martensite before the
application of a magnetic field, during the magnetic-field-
induced inverse martensite transformation, the sample tends
to recover its original shape, which is termed as the
metamagnetic shape-memory effect (Kainuma et al., 2006).
Different from NiMnGa, in which the output stress (a few
MPa) is limited by the magnetocrystalline anisotropy energy,
the output stress of Ni(Co)MnIn can reach a large value
(~100 MPa) since the Zeeman energy continues to increase
with the elevated magnetic field (Karaca et al., 2006; Karaca
et al., 2009). In addition, since the total entropy and the electric
resistance of austenite and martensite have great differences,
when an external magnetic field is applied, a huge change of

total entropy (termed as the magnetocaloric effect) and electric
resistance (termed as the magnetoresistance effect) may occur
during the magnetic-field-induced inverse martensite
transformation. Thus, the Ni(Co)MnIn alloys possess excellent
magnetoresponsive performances (Han et al., 2006; Han et al.,
2008; Kustov et al., 2009; Liu et al., 2012; Kihara et al., 2014),
including magnetocaloric, magnetoresistance, and exchange bias
effects. Besides, like the conventional shape memory alloy in
which the martensitic transformation can be driven by thermal
and mechanical fields, the Ni(Co)MnIn alloys also exhibit the
thermal-induced shape memory, superelasticity, and elastocaloric
effects (Mañosa et al., 2010; Lu et al., 2014; Moya et al., 2014; Liu
et al., 2017; Manosa and Planes, 2017; Kabirifar et al., 2019).

During the past 15 years, scientists from all over the world
have conducted continuous and in-depth research on NiMnIn-
based alloys (Kainuma et al., 2008; Hu et al., 2013; Bachaga et al.,
2019). Numerous systematic and in-depth research results
covering crystal structure, morphological and crystallographic
features of microstructure, martensitic transformation,
multifunctional behaviors, etc., have been reported in the
literature. Therefore, a systematical overview of the current
findings is of great significance to the development of this
compound. To date, the metamagnetic shape memory,
magnetocaloric, and elastocaloric effects of NiMnIn alloy have
been briefly summarized and compared with other competitors in
different review papers, such as the review paper about magnetic
shape memory alloy by Kainuma et al. (2008), the paper focused
on caloric materials by Moya et al. (2014), the review about
mechanocaloric effect by Manosa and Planes (2017) and the
paper focused on magnetic elastocaloric materials by Liu et al.
(2017), and the review about magnetic refrigeration materials by
Gottschall et al. (2019). Nevertheless, to the best of the authors’
knowledge, there is still a lack of review articles focusing on the
NiMnIn-based alloy in the literature.

This paper aims at presenting a comprehensive review of the
research progress of Ni-Mn-In-based alloys. First, the
crystallographic characterizations, including the crystal
structure of austenite and modulated martensite (Section 2),
the self-organization microstructure of modulated martensite
(Section 3), and the transformation strain path of martensitic
transformation (Section 4), are reviewed. Then, the current
research progress in functional behaviors, including magnetic
shape memory (Section 5), magnetocaloric (Section 6), and
mechanocaloric (Section 7) effects, are summarized. For each
topic, the main bottlenecks hindering the technical development
and some possible solutions for overcoming these difficulties are
discussed.

2 CRYSTAL STRUCTURE

The crystal structure is one of the most fundamental information
of crystalline materials. In general, the determination of crystal
structure is the first step to understanding the physical or
mechanical properties of materials (Ravel et al., 2002b). Since
the magnetostructural transition was discovered in the NiMnIn-
based alloys, many state-of-the-art modern characterization

FIGURE 1 | Typical temperature dependence of magnetization (M-T
curve) for the NiMnIn-based alloys.
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techniques, such as X-ray diffraction (XRD) (Liu et al., 2008; Feng
et al., 2009; Zhang et al., 2014; Crouigneau et al., 2015; Paramanik
and Das, 2016), synchrotron high-energy XRD (Karaca et al.,
2009; Huang et al., 2016), neutron diffraction (Yan et al., 2015),
high-resolution transmission electron microscope (HRTEM)
(Yan et al., 2016c), selected area electron diffraction (SAED)
(Ito et al., 2007; Ito et al., 2008; Liu et al., 2009a), high angle
annular dark-field (HAADF) imaging of spherical aberration-
corrected high-resolution scanning transmission electron
microscope (Yang et al., 2020), have been used to characterize
crystal structure of the compounds.

2.1 Austenite
2.1.1 Stoichiometric Ni2MnIn
NiMnIn-based alloys belong to the Heusler-type alloys. The
austenite phase of this compound has a typical structure of 2:
1:1 full Heusler alloy, that is, a highly ordered cubic Cu2MnAl-
type L21 structure (space group: Fm3m) (Heusler, 1934). Figures
2A1,B1 display the L21 structural model and a typical X-ray
diffraction pattern, respectively. It is seen that the L21 structure is
composed of four interpenetrated face-centered-cubic (FCC)
sublattices, i.e., In: 4a (0 0 0), Mn: 4b (0.5 0.5 0.5), and Ni: 8c
(0.25 0.25 0.25) and (0.75 0.75 0.75). Theoretically, under 2θ
ranging from 20° to 90°, there are three main reflections (labeled
with the black indices), i.e., (022), (004) and (224), and seven

satellite reflections (labeled with the blue and olive indices) due to
the orderly stacking of Ni, Mn and In atoms, i.e., (111), (002),
(113), (222), (133), (024) and (115), as shown in Figure 2B1.

As is known, the ordering degree of crystal structure
significantly affects both mechanical and functional properties
in the Heusler-type alloy (Ravel et al., 2002a; Raphael et al., 2002;
Harris and Chen, 2015). For the NiMn-based alloys, the order
degree of austenite is sensitive to the fabrication process and
chemical composition (Krenke et al., 2006). When the alloy is
quenched from a high temperature with a high cooling rate (such
as melt-spinning technique), the austenite of NiMnIn alloy could
exhibit the B2 type structure, as illustrated in Figure 2A2. The
difference between the L21 and the B2 structures is that In and
Mn atoms are orderly located at 4a and 4b sites in the former,
whereas these two elements occupy the 4a and 4b sites randomly
in the latter. Owing to the reduction of ordering degree, as shown
in Figure 2B2, the number of satellite reflections decreases from 7
(the L21 structure) to 3 (the B2 structure), i.e., (002), (222), and
(024). When the ordering degree further decreases, the B2
structure may turn to be the body-centered cubic (BCC) type.
In this case, as shown in Figure 2A3, all Ni, Mn, and In atoms
randomly occupy the 4a, 4b, and 8c sites. For the XRD spectrum,
the fully random occupations of Ni, Mn, and In atoms lead to the
disappearance of all satellite diffraction peaks (Figure 2B3).
Generally, the ordering degree of the austenite of the NiMnIn-
based alloys can be evaluated by examining the number of satellite
reflections at 2θ ranging from 25° to 35° (Cu Kα-radiation), as
indicated in the red dashed boxes in Figures 2A1–A3. Two
(Figure 2A1), one (Figure 2A2), or zero (Figure 2A3)
reflections suggest the austenite has the L21, the B2, or the
BCC structure.

First-principles calculations showed that the exchange energy
for In (4a) and Mn (4b) is around 70 meV/atom (Liu et al., 2020),
which is smaller than that for Ni (8c) and Mn (4b) (around
85 meV/atom) (Liang et al., 2021). This result implies that the
possibility of the occurrence of 4a-4b disorder should be larger
than that of 4a (4b)-8c disorder, which explains the experimental
results that the B2 structure is observed easier than the BCC
structure. Moreover, from Figures 2A1–A3, it is seen that even
though the L21 structure is usually classified to be the face-
centered cubic (FCC) structure from the point of view of
crystallographic symmetry (Yan et al., 2016a; Lin et al., 2016),
the atom stacking manner of the NiMnIn-based alloys mostly
follows the characteristics of the BCC structure (with a different
degree of ordering) rather than FCC. Thus, the typical structure
characteristic parameters of the NiMnIn-based alloy, such as
close-packed crystal plane, close-packed crystal direction,
stacking density, coordination number, are the same as those
of the BCC structure.

2.1.2 Non-stoichiometric NiMnIn Alloys
Unlike the NiMnGa alloys, where the stoichiometric case,
i.e., Ni2MnGa, undergoes a displacive structural transition at
around 210 K (Wirth et al., 1997; Brown et al., 2002), the
stoichiometric Ni2MnIn is thermodynamically stable even
when the temperature drops toward 0 K (Kurfiß et al., 2005;
Krenke et al., 2006). Thus, the investigations on the NiMnIn-

FIGURE 2 | Illustration of crystal structural models of L21 (A1), B2 (A2),
and BCC (A3) of NiMnIn alloy and their corresponding Cu Kα-radiation X-ray
diffraction patterns (B1–B3). To keep consistency with the L21 structure (A1),
for the B2 (A2) and the BCC (A3) structures, the superstructural models
containing 8 unit cells are illustrated. The main reflections in (B1–B3) are
labeled with the black indices, while the superlattice reflections generated due
to the B2 and the L21 types of stacking order of Ni, Mn, and In atoms are
highlighted in olive and blue, respectively.
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based alloys are mostly focused on the nonstoichiometric
compositions, especially the Mn-enriched Ni2Mn(In, Mn)
systems. Rietveld refinement of the high-resolution neutron
diffraction data (Yan et al., 2015) showed that the extra-Mn
prefers to directly substitute In at the 4a site. For the NiMnIn-
based alloys, the magnetoresponsive behaviors are originated
from the magnetic-field induced inverse martensitic
transformation owing to the significant change of
magnetization between austenite (ferromagnetism) and
martensite (antiferromagnetism). Numerous studies suggested
that the antiferromagnetism comes from the first-neighbored
Mn (4a)-Mn(4b) coupling (Şaşıoğlu et al., 2004; Liu et al.,
2006), which can be easily realized in the Mn-enriched
Ni2Mn(In, Mn) system since the extra-Mn tends to occupy the
4a sites while the normal Mn is located at the 4b sites
(Figure 2A2). This could be the reason why the fruitful
magnetoresponsive behaviors of the NiMnIn-based alloys
mostly exist in the Mn-enriched systems. By using the first-
principles calculations, it is revealed that at the 4b site, the extra-
Mn atoms prefer to be dispersed from one another (Yan et al.,
2015).

2.2 Martensite
For the martensite of the NiMnIn-based alloys, numerous studies
showed that there exist two kinds of crystal structures, i.e., the
non-modulated (NM) martensite and modulated martensite
(Krenke et al., 2006). Note that even though the partial
substitution of Co for Ni can significantly enhance the
ferromagnetism of the NiMn-based alloys and thus improve
their magnetoresponsive performances, this substitution will
not change the type of crystal structure. Moreover, with the
addition of Co, it is difficult to obtain a pure single-phase
martensite powder sample, even if the testing temperature is
far below the finishing temperature of martensitic transformation
Mf measured by the DSC technique (Abematsu et al., 2014; Yan
et al., 2015; Yan et al., 2016b). The reason could be attributed to
the large specific surface area of the powder sample, which tends
to stabilize the austenite and suppress the occurrence of
martensitic transformation (Yan et al., 2021a). Thus, it is more
convenient to determine the crystal structure of martensite with
Co-free NiMnIn samples. X-ray diffraction studies showed that
for the ternary Mn-enriched Ni50Mn50–xInx (0 ≤ x ≤ 25) alloys,
the NM martensite structure exists in the alloys with a relatively
low In content (x ≤ 10) (Yang et al., 2016). When 10 < x ≤ 16, the
martensite has a modulated structure. When the content of In
continues to increase, the martensite transformation is arrested
(Sutou et al., 2004b).

2.2.1 Non-modulated Martensite
For the Ni50Mn50–xInx alloys with a relatively low In content, it
can be considered as In doped NiMn alloys. Actually, the crystal
structure of the martensite of the Ni50Mn50–xInx (x ≤ 10) alloys is
indeed the same as that of the stochiometric NiMn (Yang et al.,
2016), i.e., the tetragonally distorted B2 structure. Nevertheless, to
keep consistency with the L21 structure of austenite, as an
equivalent structural model of the distorted B2 structure, the
double L10 tetragonal cell proposed by J. Pons and coworkers

(Pons et al., 2000) was extensively used in the literature to
describe the non-modulated structure of martensite, as shown
in Figure 3A. The space group of the double L10 tetragonal
structure is I4/mmm (group number: 139). The atomic fractional
coordinates of the different constituent elements in the NiMnIn
alloys are as follows: Ni: 4d (0, 0.5, 0.25); Mn and In: 2a (0, 0, 0)
and 2b (0, 0, 0.5). The typical X-ray diffraction pattern of the non-
modulated martensite is displayed in Figure 3B. Note that in this
figure, the reflections are indexed based on the double L10
structural model rather than the distorted B2 model.

2.2.2 Modulated Martensite
With the increase of In content in the Ni50Mn50–xInx alloys, the
crystal structure of martensite no longer follows the structure of
NiMn (non-modulated double L10 tetragonal structure) and
exhibits a long periodic layered modulated structure (Yang
et al., 2016). For the NiMnIn-based alloys, the excellent
magnetoresponsive performance mainly exists in the alloy
systems with a modulated structure. Therefore, the accurate
determination of the crystal structure for the modulated
martensite is of significant importance for understanding and
optimizing magnetoresponsive behaviors. Measured by neutron
diffraction and synchrotron high-energy X-ray diffraction, and
analyzed using the (3+1) dimensional superspace theory in
combination with the Rietveld full-profile fitting method, the
crystal structure of the modulated martensite of the NiMnIn
alloys was determined with the Ni50Mn36In14 alloy as a model
material (Yan et al., 2015), as shown in Figure 4A. The basic idea
of superspace theory is that by increasing the dimension of space,
as shown in Figure 4B, the aperiodic structure can be
mathematically transformed into a periodic one (Van Smaalen,
1995). Then, a unit cell can be defined in a higher-dimensional
space and can thus be determined by fitting the diffraction data.

The determination process in Ref. (Yan et al., 2015) is as
follows: 1) Construct the average crystal structure model of
modulated martensite (ignoring atomic position modulation).
Based on the crystal structure of austenite, combined with the
splitting characteristics of neutron diffraction peaks during the
martensitic transformation, the space group, the lattice constants,
and the atom occupation information of the average
crystal structure of the modulated martensite were determined.

FIGURE 3 | Double L10 tetragonal structural model (A) and typical X-ray
diffraction pattern (B) of the non-modulated martensite of the NiMnIn-based
alloys.
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2) Estimate the modulation wave vector q representing the
modulation periodicity using the peak position of the satellite
reflections caused by the periodic modulation of atom position. 3)
Refine all structure information, including the coefficients of
atom position modulation function, the lattice parameters, etc.,
with the high energy synchrotron X-ray diffraction pattern by
means of the Rietveld method in the frame of the (3+1)
dimensional superspace theory. 4) Analyze the rationality of
the determined crystal structure information. 5) Build a three-
dimensional superstructure model. A three-dimensional periodic
superstructure model was established to approximately represent
the determined modulated structure since many theoretical and
experimental studies require the crystal structure information in
the three-dimensional space.

Refinement showed that the modulated martensite has a
monoclinic 6M modulated crystal structure and the space
group is I2/m(α0γ)00, the lattice parameters of the
average 1crystal structure are a = 4.3919 (4) Å, b = 5.6202 (1)

Å, c = 4.3315 (7) Å, and β = 93.044 (1)°, and the modulation wave
vector q = 0.343 (7) c* (Yan et al., 2015). Since the coefficient of
modulation wave vector q [0.343 (7)] is irrational, the structure
should be incommensurate. The modulation wave vector can be
described as q = 1/3(1+δ)c*, where δ (0.0312) represents the
incommensurability. As δ is very small, the determined
incommensurable 6M modulated structure can be
approximately described using a superstructural model
containing three average crystal structure cells along the c axis,
as shown in Figure 4C. The space group of the established
superstructural model is P2/m, and the lattice constants are
a = 4.3919 (4) Å, b = 5.6202 (1) Å, c = 12.9947 (1) Å and β =
93.044 (1)°. For the detailed atomic occupation information, the
readers can refer to Ref. (Yan et al., 2015). It is seen from
Figure 4C that the shuffling character of the atomic layers is
the same as that of the (21)2 Zhdanov sequence. To verify the
accuracy of the established superstructure model, the EBSD
Kikuchi pattern and the TEM selected area electron diffraction

FIGURE 4 | (A) Rietveld full-profile refinement of high-energy synchrotron XRD pattern of the Ni50Mn36In14 alloy by using the (3 + 1)-dimensional theory (Yan et al.,
2015). (B) Basic idea of superspace theory, i.e., mathematically transforming the aperiodic structure to a periodic representation by increasing the dimension of space
(x4). (C) Established the three-dimensional 6M superstructural model with three consecutive averaging cells along the c axis. Measured (D1,E1) and simulated (D2,E2)
SEM/EBSD Kikuchi and TEM selected area electron diffraction patterns (Yan et al., 2015). Reproduced with the permission of Elsevier Publisher.
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(SAED) pattern were acquired and simulated using the
determined crystal structure data, as shown in Figures 4D,E.
It can be seen that both the main and satellite reflections are
accurately represented with the established
superstructural model.

Recently, by means of synchrotron and neutron diffraction,
using the (3+1) dimensional superspace theory, P. Devi et al. also
reported that the Ni2Mn1.4In0.6 alloy possesses a 6M
incommensurate structure (Devi et al., 2018). It is worth
emphasizing that the type of modulated martensite in the
NiMn-based alloy is very sensitive to external stress and the
sample state. Based on the TEM SAED method, 5M, 7M, and 8M
modulated structures (Ito et al., 2007; Liu et al., 2008; Karaca
et al., 2009; Erkartal et al., 2012; Huang et al., 2016; Paramanik
and Das, 2016) were also observed in the NiMnIn-based alloys.
Nevertheless, for the stress-free powder sample investigated by
neutron and X-ray diffraction, so far, only the 6M
modulated martensite has been evidenced in the Ni(Co)MnIn
based alloys.

2.3 Perspectives
(1) The formation mechanism of modulated martensite is still

unclear. For the Ni2Mn1+xIn1-x alloy, the martensite has a
non-modulated double L10 structure when the In content is
low, while the structure of martensite transforms into a
complex long periodic layered 6M modulated structure
when the In content is high. Moreover, the NiMnGa-
based alloys have 5M and 7M structures, and NiMnSn
and NiMnSb alloys possess 4O structure, but only 6M
structure is observed in the NiMnIn-based alloys at the
stress-free state. As mentioned above, structural
modulation often brings excellent magnetoresponsive
properties. However, so far, the formation mechanism of
modulated structure is still an open issue.

(2) The relationship between the modulated martensite and the
functional properties in the NiMn-based alloy is not clear yet.
The excellent magnetoresponsive performances of the NiMn-
based alloys often only exist in alloys with a modulated
martensite structure. However, the quantitative

FIGURE 5 | Crystallographic orientation (A1) and variant-group distribution (A2) maps of the 6M modulated martensite of the NiMnIn-based alloys at room
temperature measured using SEM/EBSD. The bold black line represents the initial austenite grain. (B) Variant organization within the martensite variant group. (C)
Minimum misorientation angles of different variant pairs. (D) Stereographic projections of twinning plane K1 of different variant pairs. (E) 2D illustration of variant
organization. High-resolution TEM images of the type-I (F1), the type-II (F2), and the compound (F3) twin interfaces (Yan et al., 2016b). Reproduced with the
permission of Elsevier Publisher.
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relationship between the modulated structure and the
properties has yet to be established.

3 MICROSTRUCTURE OF 6M MODULATED
MARTENSITE

3.1 Variant Organization
Based on the established superstructural model (Figure 4C), by
using the SEM/EBSD technique combined with the orientation
analysis method, the morphological and the crystallographic
characters of the 6M modulated martensite microstructure of
the NiMnIn alloys were characterized in detail (Yan et al., 2015;
Yan et al., 2016b; Yan et al., 2016c; Yan et al., 2021b). Experiments
showed that the 6M modulated martensite is in a plate shape and
self-organized in colonies, as shown in Figure 5A1. Within one
initial austenite grain, a maximum of 6 orientation-independent
variant colonies (Figure 5A2) and a total of 24 orientation-
independent variants can be generated. The formation
mechanism of the microstructure will be discussed with the
transformation strain path in Section 4. In each martensite
colony, as shown in Figure 5B, there are four orientation
variants, i.e., A, B, C, and D.

Misorientation examinations showed that the four variants
within the martensite colony are twin-related. In total, there exist
three types of twins, i.e., type-I (A: C and B: D), type-II (A: B and
C: D), and compound (A: D and B: C) twins (Yan et al., 2016b).
The twinning elements ofK1, K2, η1, η2, s, and P for different types
of twins, determined with the method proposed by Zhang et al.
(2010), are listed inTable 1. It is seen that the shear magnitudes of
the type-I and the type-II twins are the same (0.27), which is
around one order of magnitude larger than that of the compound
twin (0.03). Misorientation calculations showed that for the 6M
NiMnIn modulated martensite, the theoretical angle/axis pair (ω/
d) for the type-I, the type-II, and the compound twins are 82.4°/
< 301>M, 97.6°/normal of {103}M and 180°/ < 301>M (Yan
et al., 2016c), respectively, which is in good agreement with the
experimental measurements (Figure 5C).

3.2 Twin Interface Structure
Twin boundary is a key material parameter that significantly
affects both the physical and mechanical properties of materials.

For the 6Mmodulated martensite of the NiMnIn alloys, using the
indirect two-trace method (Zhang et al., 2007), the interface
indices between different variants within the martensite colony
are found to coincide with their twinning plane K1 in the
mesoscale (Yan et al., 2016a). Within one martensite colony,
as shown in Figure 5D, there is only one kind of type-I (indicated
by the solid circle) and compound twin (indicated by the solid
diamond) boundaries. In other words, the two boundaries
between the type-I twin related variants A: C and B: D (or the
compound twin related variants A: D and B: C) are parallel to
each other. In addition, the interface between the type-I twin
related variants is almost perpendicular to the interface between
the compound twin related variants. In contrast, the two
boundaries between the type-II twin related variants (indicated
by the inverted triangle), i.e., the interfaces between A: B and C: D,
are separated. It is seen from Figure 5D that the two kinds of
type-II twin interfaces are distributed on the two sides of the type-
I twin interfaces with an angle of around 5°. The orientation
characters of various interfaces within one martensite colony are
illustrated in Figure 5E.

High-resolution TEM characterization showed that at the
atomic scale, the type-I twin interface possesses a straight
boundary, whereas the type-II twin boundary has a “stepped”
interface (Yan, et al., 2016a). This difference leads to much
smaller detwinning stress of the type-II twin with respect to
that of the type-I twin, although the shear magnitudes of these
two twins are exactly the same. For the compound twin, even
though its twinning plane is rational, i.e., {103}M, it also has a
“stepped” interface at the atomic scale. Compared with the type-II
twin, the step of the compound twin is much larger and shows an
irregular distribution feature. The irregularly stepped interface
structure and the small shear of the compound twin account for
its high mobility (Yan et al., 2016a).

3.3 Perspectives
The reason for the difference in detwining stress of different twin
systems is still unclear. For the modulated martensite, there are
huge differences in the detwining stresses for type-I, type-II, and
compound twin systems. At present, we can only speculate that
this phenomenon is related to the magnitude of the shear and the
structure of the interface. However, the underlying physical
mechanism still needs to be explored.

TABLE 1 | Twining elements of the type-I, the type-II, and the compound twins for the 6Mmodulated martensite of the NiMnIn alloys (Yan et al., 2016a). K1, K2, η1, η2, s, and
P represent the twinning plane, the conjugate twinning plane, the twinning direction, the conjugate twinning direction, the shear magnitude and the shear plane,
respectively. ω/d indicates the minimum misorientation angle/the corresponding rotation axis, respectively. Reproduced with permission of the International Union of
Crystallography.

Twinning elements Type-I twin Type-II twin Compound twin
A: D, B: CA: C, B: D A: B, C: D

K1 {123}M {1.13 2 2.60}M {103}M
K2 {1.13 2 2.60}M {123}M {103}M
η1 < 3.34 3 0.88>M < 331>M < 301>M

η2 <331>M < 3.34 3 0.88>M < 301>M

P {1 0.12 3.36}M {1 0.12 3.36}M {010}M
s 0.27 0.27 0.03
ω/d 82.40°/ < 301>M 97.60°/Normal of {103}M 180°/<301>M
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4 CRYSTALLOGRAPHY OF MARTENSITIC
TRANSFORMATION

The magnetoresponsive behaviors of the NiMnIn-based alloys
are closely related to the magnetic field-induced inverse
martensitic transformation. It is thus greatly meaningful to
clarify the crystallographic characteristics of martensitic
transformation, including transformation orientation
relationship (OR), transformation strain path, etc., to
understand the formation mechanism of microstructure and
magnetoresponsive behaviors.

4.1 Transformation Orientation Relationship
Transformation OR describes the geometrical relation between
the crystal lattices of austenite and martensite. Generally, the
transformation OR is represented by plane and in-plane direction
correspondences, i.e., {hkl}A//{hkl}M and <uvw>A//<uvw>M
where the subscript “A” and “M” represent austenite and
martensite, respectively. By composition design, a dual-phase
Ni45Co5Mn36.8In13.2 alloy at room temperature was fabricated,
and the accurate crystallographic orientations of the two
coexisting phases were measured by using the SEM/EBSD
technique (Yan et al., 2021a), as shown in Figure 6A. With
the orientation information of the co-existing austenite and
martensite, the reported ORs in the literature, including the
Bain (Bain and Dunkirk, 1924), the Nishiyama-Wassermann

(N-W) (Nishiyama, 1934), the Kurdjumov-Sachs (K-S) (Kurfib
and Schultz, 1930), and the Pitsch (Pitsch, 1962) ORs were
examined one by one. Results showed that the deviations of
the measured misorientation between austenite and martensite
Δgexp from the theoretical ΔgOR of the Bain, the N-W, the K-S,
and the Pitsch ORs are 3.73°, 1.27°, 0.70°, and 0.63° (Yan et al.,
2021a), respectively.

For the Bain and the N-W ORs, the deviation angles are the
largest (>1°), and thus these two ORs can be excluded. In contrast,
for both the K-S and the Pitsch OR, the deviation angles are both
the smallest and are close to the angular resolution of current
EBSD technology (±0.5°). Thus, it is difficult to discriminate
which is the valid OR or to determine that both are valid. It is
worth emphasizing that such a dual OR occasion is not a unique
occurrence in the studied Ni45Co5Mn36.8In13.2 alloy nor in the
NiMnIn-based alloys. This dual-OR phenomenon widely exists in
many other NiMn-based ferromagnetic shape memory alloys
with modulated martensite, such as Ni50Mn30Ga20 (Li Z. B.
et al., 2011) with 7M modulated martensite, Ni50Mn28Ga22 (Li
Z. et al., 2011) with 5M modulated martensite and Ni50Mn38Sb12
(Zhang et al., 2016) alloy with 4O modulated martensite.

In order to reveal the difference between the K-S and the
Pitsch OR in the NiMnIn-based alloys, the correspondent
crystalline planes and crystalline directions of these two ORs
are outlined in the austenite (orange) and the martensite (green)
lattices that strictly obey the Pitsch OR, as shown in Figure 6B1. It

FIGURE 6 | Phase contrast (A1) and crystallographic orientation (A2) maps of the dual-phase Ni45Co5Mn36.8In13.2 alloy measured by using the SEM/EBSD
technique at room temperature. (B1) Geometrical relation between the K-S and the Pitsch orientation relationships (ORs). (B2) is the projection of (B1) along the OR
direction. (C) Basic idea of determining transformation strain path based on the variant organization of martensite variants. Reproduced with the permission of Elsevier
Publisher.
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is seen that the OR directions of the K-S and the Pitsch relations
are exactly the same. The difference between these two ORs lies in
the OR planes. For the K-S relation, the OR plane pair is
{111}A//{013}6M, while the OR plane pair of Pitsch relation is
{101}A//{123}. Figure 6B2 is a projection of Figure 6B1 along the
OR direction (the black arrow), i.e., [011]A. The normal of the OR
plane in Figure 6B2 is indicated by the dotted line. It is seen from
Figure 6B2 that when the Pitsch OR is strictly satisfied, for the
K-S relation, the deviation between the OR planes of austenite
and martensite is just 0.33° away. From the point of view of
geometry, this is the difference between the K-S and the Pitsch
OR. The reason that the K-S and the Pitsch OR are almost
simultaneously satisfied could be related to the special lattice
parameters of austenite and martensite in the NiMn-based alloys.
The underlying physical mechanism still needs to be further
studied.

4.2 Transformation Strain Path
By definition, the transformation OR of martensitic
transformation describes the geometric relation between the
crystal lattices of austenite and martensite. Nevertheless,
considering that the martensitic transformation involves a
shear process and the atomic displacement during this process
is far less than one atomic spacing, the OR plane {hkl}A and OR
direction vector [uvw]A of austenite should not rotate (distortion
is allowed) during the lattice distortion of phase transformation.
Thus, OR can be used to describe the transformation strain path
of martensitic transformation, that is, the OR plane {hkl}A of
austenite shears along the OR direction <uvw>A. It is worth
emphasizing that the OR plane of austenite {hkl}A is not the so-
called habit plane since both rotation and distortion are not
allowed for the habit plane, but only rotation is forbidden for the
OR plane. During the lattice distortion of martensitic
transformation, the OR plane {hkl} and the OR direction
<uvw> can be distorted to realize the change of crystal structure.

Normally, the transformation strain path can be easily
obtained from the transformation OR. However, for the
NiMnIn-based alloys, both the K-S and the Pitsch ORs can be
approximately satisfied. Thus, the commonly utilized method to
determine the transformation strain path through the relevant
orientation relationship is no longer applicable. For the NiMnIn-
based alloys, from the viewpoint of transformation OR, the
conclusion that can be drawn is that the two transformation
strain paths, i.e., the K-S type {1 1 1}A<0 11> and the Pitsch type
{01 1}A<0 11> (Figure 6C) may occur. Previous studies showed
that the martensitic transformation occurs at the speed of sound
(Bunshah and Mehl, 1953; Mukherjee, 1968), so the direct
determination of the transformation strain path is difficult
even by using modern physical characterization techniques.

Usually, the resultant behaviors of phase transition are greatly
affected by the transformation process. Thus, one can assume that
the microstructure characters of martensite produced by different
transformation strain paths are likely to be different. Based on
this assumption, a strategy of determining the transformation
strain path was proposed, i.e., deducing the transformation strain
path according to the microstructural features of martensite (Yan
et al., 2021b). With this strategy, the transformation strain path of

NiMnIn alloy was determined successfully. To satisfy the
criterion of the minimum interface and elastic strain energies,
combined with the stress and the strain compatibility conditions,
theoretically, the K−S path produces two variants as a self-
accommodated variant group, whereas the Pitsch path
produces four variants as a self-accommodated variant group,
as shown in Figure 6C. The details are referred to Ref. (Yan et al.,
2021a). For the NiMnIn-based alloy, as shown in Figure 5B and
Figure 6A, the self-accommodated variant group is composed of
4 orientation variants. Thus, the Pitsch strain path, {01 1}A<0 11>
A, was evidenced to be the real one that governs the lattice
distortion during martensitic transformation.

Moreover, it is found that the 4 self-accommodated martensite
variants within the variant group are transformed on the same
transformation plane {01 1}A (Yan et al., 2021b). For example, all
4 self-accommodated martensitic variants A, B, C, and D in
Figure 6A2 are transformed mainly by shear deformations on the
same (10 1)A plane. The transformation strain paths for these 4
variants lies just by permutating the signs (positive or negative) of
the transformation plane and direction. For instance, the specific
transformation strain paths for A, B, C, and D are (10 1)A[101]A,
(1 01)A[101] A, (10 1)A[1 0 1]A, and (1 01)A[1 0 1]A, respectively.
During the martensitic transformation process, the 4 self-
accommodated variants gradually grow and develop into a
martensite variant group. For cubic structure, owing to the
crystal symmetry, there are 6 equivalent Pitsch-type
transformation planes {01 1}A, i.e., (01 1)A, (011)A, (10 1)A,
(101)A, (1 10)A, and (110)A. Therefore, theoretically, an
austenite grain can form a maximum of 6 independent variant
groups and in total 24 orientation-independent variants. This
result is consistent with the experimental observation
(Figure 5A) and explains well the formation mechanism of
the self-accommodated microstructure of 6M modulated
martensite of the NiMnIn alloys.

4.3 Perspectives
The underlying physical mechanism why the K-S and the Pitsch
transformation orientation relations are almost simultaneously
satisfied in the NiMn-based alloys is still unclear. The shuffling
path of the different (001)M atomic layers during the martensitic
transformation is still unclear. The Pitsch-type transformation
strain path can only reveal the shear mode of the average lattice of
modulated martensite. However, in addition to the Pitsch-type
lattice distortion, the shuffling of the (001)M atomic layer is also
needed to form the modulated martensite. The physical
mechanism of this process is still unclear.

5 MAGNETIC SHAPE MEMORY EFFECT

NiMnIn-based alloys can achieve the shape memory effect via the
magnetic-field-induced inverse martensitic transformation from
the weak-magnetic martensite to the ferromagnetic austenite,
which is called the magnetic shape memory effect (MSME). The
mechanism of MSME of the NiMnIn-based alloys is illustrated in
Figure 7. When the pre-deformedmartensite of a NiMnIn alloy is
exposed in a magnetic field, at the condition that the driving force
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for the inverse martensitic transformation (the Zeeman energy
difference, μ0HΔM) exceeds the energy barrier of structural
transition, the new phase of austenite nucleates and grows,
and thus resulting in the shape recovery (Karaca et al., 2007).
Compared with the conventional thermally-induced SME that is
limited by the low heat conduction rate, the MSME of the
NiMnIn-based alloys shows the advantages of fast response,
easy control, and high stability. Moreover, different from
NiMnGa in which the magnetic output work (magneto-stress)
is limited by the magnetocrystalline anisotropy energy (Karaca
et al., 2006; Karaca et al., 2007), the magneto-stress of the
NiMnIn-based alloys continuously increases with the strength
of magnetic field as there is no limit for the Zeeman Energy
(Karaca et al., 2009; Turabi et al., 2016).

In 2006, for the first time, R. Kainuma et al. reported the
MSME in a Co-doped Ni45Co5Mn36.7In13.3 single-crystalline
sample (Kainuma et al., 2006). They observed that a pre-strain

of 3% can almost be recovered by the magnetic field-induced
inverse martensitic transformation in the Ni45Co5Mn36.7In13.3
single-crystalline sample, as shown in Figure 8. Based on the
Clausius–Clapeyron relation, the output magneto-stress
generated during the transformation was estimated to be
about 108 MPa under a magnetic field of 7 T (Kainuma et al.,
2006), which is about 50 times larger than that of NiMnGa
(2 MPa) (Murray et al., 2000). Later, under a pulsed magnetic
field of 70 kOe, a 3% recoverable strain was obtained in the
Ni45Co5Mn36.7In13.3 single-crystalline sample at room
temperature (Sakon et al., 2007). Since then, the MSME of the
NiMnIn-based alloys has attracted more and more attention.

For the MSME, in view of practical applications, a large
magnetic-field-induced strain (MFIS) is desirable (Jiang et al.,
2013; Barua et al., 2018). For the NiMnIn-based alloys, owing to
the high energy barrier, the magnitude of MFIS is closely
associated with the transformed volume under an external
magnetic field, which is greatly affected by the sensitivity of
transformation temperature to the magnetic field, i.e., ΔT/ΔH.
Normally, under a given magnetic field, a large ΔT/ΔH tends to
increase the transformed volume and thus the magnitude of the
MFIS. Besides, a large ΔT/ΔH can expand the operating
temperature window of the MSME. Based on the
Clausius–Clapeyron relation (Eq. 1),

ΔT
ΔH � ΔM

ΔS (1)

where ΔM and ΔS represent the magnetization difference and the
entropy change during the martensitic transformation,
respectively, it is clear that a large ΔM value is favorable to
promote a high magnetic-field sensitivity of transformation
temperature (ΔT/ΔH). So far, for the NiMnIn-based alloys, the
most successful strategy of increasing ΔM is the partial
substitution of Co for Ni. Thus, the MSME of the Co-doped
NiCoMnIn alloys has been intensively studied (Karaca et al.,
2009; Monroe et al., 2012; Turabi et al., 2016; Bruno et al., 2017).

FIGURE 7 | Schematic diagram of magnetic shape memory effect (MSME) from the weak-magnetic martensite to the strong-magnetic austenite.

FIGURE 8 | Magnetic shape memory effect (MSME) in the single-
crystalline Ni45Co5Mn36.7In13.3 alloy measured at room temperature (Kainuma
et al., 2008). Reproduced with the permission of Royal Society of Chemistry
Publisher.
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5.1 NiCoMnIn
Like the conventional shape memory alloy, for the single crystal
sample, since the counteraction of transformation strains
generated by different austenite grains with distinct
orientations is avoided, the transformation strain is much
larger than that of the polycrystalline sample. Thus, studies on
the MFIS in the NiMnIn-based alloys were first focused on single
crystals. Under a magnetic field of 18 T and bias stress of
125 MPa, J.A. Monroe and cooperators observed a fully
recoverable transformation strain of 3.1% in the <100>
oriented Ni45Co5Mn36.5In13.5 single crystal (Monroe et al.,
2012). For this sample, an output work of 1 MJ m−3 T−1

(Karaca et al., 2009) and a magneto-stress of 71 MPa at a
magnetic field of 9 T (Turabi et al., 2016) were obtained. Both
of them are one order of magnitude higher than those in
NiMnGa. The theoretical magneto-stress along [100], [123],
[011], and [111] were 26.5, 42.2, 50.4, 143.4 MPa T−1,
respectively, which are much larger than the corresponding
values in NiMnGa (2–5 MPa T−1). Along the [111] direction, a
transformation strain of ~1.2% was observed. N. M. Bruno et al.
found that the magneto-mechanical training can significantly
reduce the critical magnetic field required for the inverse
martensitic transformation from 8.3 T to 1.3 T in the single-
crystalline Ni45Co5Mn36.6In13.4 alloy (Bruno et al., 2017). After
the magneto-mechanical training, under a magnetic field of 3 T,
an MFIS of 5.6% was obtained.

Apart from single crystals, owing to the simple preparation
process and the low cost, the MSME of the NiMnIn-based
polycrystalline alloys were also studied (Krenke et al., 2007;
Liu et al., 2009a; Sharma et al., 2010a; Li et al., 2010; Acet
et al., 2011; Yu et al., 2014; Yu et al., 2016), although the
magnitude of the MFIS of polycrystalline sample is generally
smaller than those of single crystals. In 2007, by using in-situ
X-ray diffraction technology, Y. D. Wang et al. evidenced the
occurrence of magnetic-field-induced reversible martensitic
transformation in the Ni45Co5Mn36.6In13.4 polycrystalline
sample under a uniaxial compressive stress of 50 MPa and a
magnetic field of 5 T (Wang et al., 2007). In 2009, J. Liu et al.
studied the MFIS of the textured Ni45.2Mn36.7In13Co5.1
polycrystalline sample during two magnetic-field cycles at
310 K (Liu et al., 2009b). They found that magnetic training
was able to enhance the magnitude of magnetostrain from 0.2%
(the first magnetic cycle) to 0.25% (the second magnetic cycle).
After the magnetic training, the critical magnetic field of
transformation is reduced from 1.6 T to 1.2 T. In 2010, Z. Li
et al. found that the non-prestrained Ni45Co5Mn37In13
polycrystalline alloy possesses a reversible MFIS of 0.4% and
exhibits a large two-way MSME without applying a pre-strain (Li
et al., 2010). Moreover, the two-way MSME was still reproducible
even after three magnetic-field cycles at 320 K.

5.2 Other NiMnIn-Based Alloys
Apart from the Co-doped NiCoMnIn, the MSME of undoped
(Krenke et al., 2007), Cu-doped (Sharma et al., 2010b), Sb-doped
(Yu et al., 2014), and Ga-doped (Yu et al., 2016) NiMnIn-based
polycrystalline samples were also studied. In 2007, T. Krenke and
collaborators obtained an MFIS of 0.12% under a magnetic field

of 5 T in the ternary Ni50Mn34In16 polycrystalline sample
(Krenke et al., 2007). Later, S. Y. Yu et al. found that the
transformation strain increases rapidly with the doping by Sb
(Yu et al., 2014). Under a magnetic field of 10 T, an MFIS of 1.7%
was obtained in the non-prestrained Ni50Mn36In8Sb6 alloy (Yu
et al., 2014). Unfortunately, the critical magnetic field in this alloy
is as large as ~ 6 T, and there is almost no shape recovery after
removing the magnetic field. Besides, by using the directional
solidification technique, S. Y. Yu et al. obtained an MFIS of
−0.28% along (and 0.49% perpendicular to) the solidification
direction in the polycrystalline Ni50Mn33In13Ga4 alloy (Yu et al.,
2016).

5.3 Perspectives
For the NiMnIn-based alloys, both the single-crystal and the
polycrystalline samples have excellent MSME, which makes this
compound a potential candidate for smart sensors and actuators.
However, in view of commercial application, there are still some
thorny problems that need to be solved:

High critical magnetic field required to drive reversible
transformation. Usually, the critical magnetic field required to
drive a completely reversible transformation in the NiMnIn-
based alloys is as large as ~ 3 T (Kainuma et al., 2006; Li
et al., 2010; Huang et al., 2021), which greatly limits the
application range of this compound. For instance, the critical
magnetic fields for the inverse martensitic transformation in the
Ni45Co5Mn37In13 alloy at 320 K and 310 K are as large as 5 T and
7 T, respectively (Li et al., 2010).

Large thermal hysteresis ΔThys and transition interval ΔTint

during martensitic transformation. The large thermal hysteresis
ΔThys and transition interval ΔTint may lead to the retain of
partial austenite after removing the magnetic field and ultimately
reduce the transformed volume fraction. For instance, due to the
existence of thermal hysteresis, the value of MFIS in the
Ni50Mn36In8Sb6 alloy becomes irreversible after removing the
magnetic field (Yu et al., 2014).

Based on the previous studies, for the NiMnIn-based alloys,
the critical magnetic field, thermal hysteresis, and transition
interval could be optimized in the following ways:

a) External field training to reduce the critical magnetic field.
The external field training methods, such as mechanical,
magnetic, and thermo-mechanical training, can reduce the
number of martensite variants. After that, the number of
unfavorable variants is reduced by the process of detwinning
(Yan et al., 2016a), and thus the critical magnetic field driving
the inverse martensitic transformation can be reduced.

b) Applying mechanical or thermal field to reduce thermal
hysteresis and critical magnetic field. Generally speaking,
for the NiMnIn-based alloys, the mechanical field stabilizes
the martensite, and the thermal field stabilizes the austenite.
Applying the mechanical or the thermal field reasonably to
assist transformation can reduce the thermal hysteresis and
the critical magnetic field of MSME.

c) Increasing geometrical compatibility between austenite and
martensite to reduce thermal hysteresis. Adjusting the lattice
parameters of austenite and martensite by tailoring the
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chemical composition to increase the geometric compatibility
between austenite and martensite can reduce the thermal
hysteresis.

d) Tailoring microstructural features to control thermal
hysteresis. The microstructure characteristics, including
grain boundary, point defect, and phase constituent, play
important roles in the nucleation and growth of
martensite. Thus, the hysteresis can also be tuned by
microstructure modification.

Reasonably utilizing the above-mentioned strategies, it is
possible to significantly improve the MSME of the NiMnIn-
based alloys and thus promote the practical application of this
compound in the field of smart sensors and actuators.

6 MAGNETOCALORIC EFFECT

The magnetocaloric effect (MCE) refers to the temperature
change ΔT of a material when exposed to an external
magnetic field (Wiedemann, 1889; Moya et al., 2014).
Nowadays, the magnetocaloric refrigeration technique has
been successfully applied in the low and extremely low-
temperature refrigeration fields, such as physical property
measurement, superconducting environment, and cryogenic
physics, and shows the potential of entering the conventional
room-temperature refrigeration market (Yu et al., 2010;
Kitanovski and Egolf, 2009), such as conditioner, refrigerator,
and food freezer. Generally, the MCE is characterized by the

isothermal magnetic entropy change ΔSM or the adiabatic
temperature change ΔTad. The mechanism of MCE in the
conventional materials is shown in Figure 9. When a
magnetic material is exposed to a magnetic field, the magnetic
moment tends to be parallel to the direction of the applied
magnetic field, resulting in a decrease in magnetic entropy and
thus a rise in temperature. By heat exchange, the heat of the MCE
material releases into the environment. When the magnetic field
is removed, the magnetic moments of magnetic atoms tend to be
disordered again due to the thermal vibration, resulting in an
increase in magnetic entropy and a decrease in temperature. In
1933, by using the thermal-magnetic cycle illustrated in Figure 9,
W. F. Giauque and D. P. Macdougall successfully realized an
ultra-low temperature of 0.25 K by using the paramagnetic salt
Gd2(SO4)3·8H2O (Giauque and Macdougall, 1933).
Subsequently, a variety of excellent low-temperature magnetic
refrigerants have been discovered, such as Gd2(SO4)3·8H2O
(Giauque and Macdougall, 1933), GGG (Gd3Ga5O12)
(McMichael et al., 1993), and RAl2 (R = Er, Ho, Dy,
Dy0.5Ho0.5, DyxEr1−x, Gd and Pd) (Hashimoto et al., 1987).
After the development of the low-temperature magnetic
refrigerants for half a century, in 1976, G. V. Brown observed
a room-temperature MCE effect in Gd (Brown, 1976). At this
time, both the low-temperature and the room-temperature MCE
effects were realized at around the temperature of the second-
order Cuire magnetic transition.

A breakthrough came in 1997. In this year, V. K. Pecharsky
and K. A. Gschneidner et al. reported a first-order phase
transition related room-temperature magnetocaloric material

FIGURE 9 | Schematic diagram of magnetocaloric effect for the conventional materials.
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Gd5Si2Ge2 (Pecharsky and Gschneidner, 1997). In this material, a
giant ΔSM of about 18 J kg−1 K−1 under a magnetic field of 5 T was
obtained at 280 K, which is about twice larger than that of Gd.
Further investigations showed that this large ΔSM comes from the
magnetic-field-induced transformation from the paramagnetic
monoclinic phase to the ferromagnetic orthorhombic phase.
From then on, the magnetocaloric materials associated with
the first-order phase transition attracted great attention based
on this work.

For the NiMnIn-based alloys, as mentioned above, the
martensitic transformation is accompanied by significant
changes in magnetism, which is similar to the case of
Gd5Si2Ge2 (Pecharsky and Gschneidner, 1997). Thus, since the
discovery of NiMnIn alloy, the magnetocaloric effect of this
compound has attracted increasing attention. By the Maxwell
relation, R. Kainuma et al. found that the
Ni45Co5Mn36.7In13.3 single-crystal exhibits a large ΔSM of
28.4 J kg−1 K−1 at 292 K under a magnetic field of 7 T
(Kainuma et al., 2006). This value of ΔSM is comparable to the
famous room-temperature rare-earth-based MCE refrigerant,
such as Gd5Si2Ge2, MnAsSb, and La(Fe, Si)13. Besides, since
the critical temperature of first-order martensitic transformation
can be easily tailored by composition modification, the NiMnIn-
based alloy has adjustable refrigeration working temperature, as
well as relatively low cost, compared with the second-order Cuire
transition associated rare-earth-based MCE materials, such as
Gd, RAl2 (R = Er, Ho, Dy, Dy0.5Ho0.5, DyxEr1−x, Gd and Pd), RE-
TM (RE = Nd, Ho, Er, and Tm; TM = Zn and Ga) and RETMX
(RE = Tb, Dy, Ho, and Er; TM = Fe, Co, and Pt; X = Al, Mg, and
C) (Luo and Wang, 2009; Nirmala et al., 2015; Li and Yan, 2020).
Moreover, different from the conventional MCE refrigerants in
which the temperature is increased upon the application of
magnetic field, the temperature of the NiMnIn-based alloys is
decreased when a magnetic field is applied. For the NiMnIn-
based alloys, when a magnetic field is applied, the heat absorbed
from the structural transition from the low-entropy martensite
phase to high-entropy austenite is larger than the heat released
from the alignment of magnetic moments during the process of
the inverse martensitic transformation. Therefore, the
temperature of the sample decreases during the process of the
magnetic-field induced inverse martensitic transformation.
Clearly, the MCE in the NiMnIn-based alloys is different from
the above-mentioned conventional magnetocaloric effect, which
thus is termed as the inverse magnetocaloric effect (Tegus et al.,
2002; Krenke et al., 2005).

For theMCE refrigerant, the following requirements should be
satisfied: 1) the value of isothermal magnetic entropy change ΔSM
(or adiabatic temperature change ΔTad) should be as large as
possible as it directly decides the refrigeration efficiency; 2) the
transition thermal hysteresis ΔThys accompanied with the
magnetostructural transformation should be as small as
possible since the existence of large thermal hysteresis will
greatly reduce the cooling efficiency and may further cause the
functional fatigue after several cycles; 3) the refrigeration
temperature window δTFWHM should be as wide as possible.
Aimed at improving the above-mentioned three parameters, the
MCE of the NiMnIn-based alloys has been extensively studied

during the past 15 years. Next, the main progress related to the
improvement of ΔSM (or ΔTad), ΔThys, and δTFWHM in the
NiMnIn-based alloys will be briefly reviewed.

6.1 Isothermal magnetic Entropy Change
As mentioned above, the isothermal magnetic entropy change
ΔSM (or adiabatic temperature change ΔTad) is the key parameter
to decide the refrigeration capacity for the MCE refrigerants.
Thus, to improve ΔSM or ΔTad, several strategies, including
increasing transformed volume fraction via enlarging the
driving force of magnetic-field-induced inverse martensitic
transformation, reducing the negative contribution of magnetic
entropy change ΔSmag to transformation entropy change ΔStr and
exploiting multicaloric effect, have been proposed.

a) Increasing transformed volume fraction via increasing the
driving force of magnetic-field-induced inverse martensitic
transformation. For the NiMnIn-based alloys, one of the
critical issues is the high magnetic field requirement to
induce a completely inverse martensitic transformation.
This results in a limited volume of inverse martensitic
transformation under a relatively low magnetic field. In this
case, the corresponding MCE performance is significantly
reduced compared with that of a complete transformation.
This is why the reported MCEs of the NiMnIn-based alloys in
the literature were mostly measured with high magnetic field
strength, usually 5T (Liu et al., 2009b; Wang et al., 2020; Yang
et al., 2020; Bai et al., 2021). It is known that the maximum
magnetic field produced by the ordinary permanent magnets
is around 2T. This value is much lower than the magnetic field
required to induce a complete inverse martensitic
transformation in the NiMnIn alloys. Thus, increasing
transformed volume under a relatively low magnetic field
should be the most efficient method to increase the MCE
refrigeration efficiency.

For the NiMnIn-based alloys, the driving force of magnetic-
field induced inverse martensitic transformation comes from the
giant magnetization difference between austenite and martensite,
i.e., Zeeman energy, μ0HΔM. Thus, under a constant magnetic
field, increasing the magnetization difference between austenite
and martensite ΔM can greatly elevate the Zeeman energy and
thus increase the transformed volume. For the NiMnIn-based
alloys, the magnetization of martensite is very small, and thus ΔM
is mainly decided by the magnetization of austenite. Therefore,
the most effective method to increase ΔM is to enhance the
magnetism of austenite.

So far, the most successful method of enhancing the
magnetism of austenite in the NiMnIn alloys is the partial
substitution of Co for Ni (Kainuma et al., 2006; Liu Z. H.
et al., 2009; Pathak et al., 2010; Guillou et al., 2012; Li et al.,
2018; Wang et al., 2020; Yang et al., 2020; Bai et al., 2021). In the
Co-doped Ni45.2Mn36.7In13Co5.1 alloy, J. Liu et al. realized a ΔTad

of −6.2 K under a relatively low magnetic field of 1.9 T at 317 K
(Liu et al., 2012). Besides, by using a pulsed magnetic field of 15 T,
T. Kihara and collaborators realized a giant ΔTad of −12.8 K in the
Ni45Co5Mn36.7In13.3 alloy (Kihara et al., 2014). Apart from the
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doping with Co, Z. H. Liu et al. reported that the addition of Sb
can also enhance the ferromagnetism of austenite, thus
improving ΔT/ΔH (Liu et al., 2009b). In the
Ni48.3Mn36.1In10.1Sb5.5 alloy, an ΔSM of 21 J kg−1 K−1 was
obtained at a magnetic field of 5 T (Liu et al., 2009a).
Different from the strategy of increasing magnetism of
austenite, V. Sánchez-Alarcos reported that the magnetization
of martensite can be reduced with the addition of Ti, which
further results in an enhancement of MCE (Sánchez-Alarcos
et al., 2015).

b) Reducing the negative contribution of magnetic entropy
change during the magnetostructural transition. For the
MCE associated with the first-order phase transition, the
upper-limit of the isothermal magnetic entropy change
ΔSM is the transformation entropy change ΔStr during
phase transition. Thus, a large ΔStr is a prerequisite to
realizing a significant MCE performance. Theoretically, the
transformation entropy change ΔStr comes from three
contributions, i.e., the lattice vibration entropy change
ΔSvib, the magnetic entropy change ΔSmag and the
electronic entropy change ΔSelec (Recarte et al., 2010;
Recarte et al., 2012; Wang et al., 2017). For the NiMnIn-
based alloys, during the process of magnetic-field induced
inverse martensitic transformation from low-entropy
martensite to high-entropy austenite, the lattice vibration
entropy change ΔSvib is increased. This term makes the
highest contribution to ΔStr. Nevertheless, since the
austenite has a highly ordered magnetic structure while
martensite has a disordered magnetic structure, ΔSmag is
decreased during the process of magnetic-field induced
inverse martensitic transformation. Clearly, the sign of
ΔSmag is opposite to ΔSvib and ΔStr. Thus, in the NiMnIn-
based alloy, ΔSmag plays a negative contribution to ΔStr. For
the contribution of electronic structure change on ΔStr, since
both austenite and martensite exhibit the conductivity of
metal in the reported NiMnIn alloys, ΔSelec usually makes
a negligible contribution to ΔStr. For example, ΔStr of the
Ni45Co5Mn36.5In13.5 alloy was determined to be
~23 J kg−1 K−1, where ΔSvib, ΔSmag, and ΔSelec were about
51, −29, and 1.2 J kg−1 K−1, respectively (Kihara et al.,
2014). From the above analyses, under the condition of
constant ΔSvib, decreasing the negative contribution of
ΔSmag should be the most effective method to improve ΔStr
and then ΔSM (or ΔTad).

Intuitively, the most direct way to decrease the negative
contribution of ΔSmag is to reduce the magnetization
difference between austenite and martensite ΔM. However, as
discussed in the first half of this section, a remarkable ΔM,
directly related to the Zeeman energy (μ0HΔM), is the
prerequisite of the occurrence of magnetic-field induced
martensitic transformation. Therefore, from the perspective of the
MCE performance, a moderate ΔM is appropriate. In experiments,
themost utilized strategy to reduceΔSmag is to reduce the temperature
distance between the magnetostructural transition TM and the Curie
temperature of austeniteTA

C , i.e.,T
A
C −TM. Specifically, this is achieved

by elevating TM to make it approach TA
C . During this process, on the

one hand, the magnetization difference between austenite and
martensite ΔM is decreased, and then the negative contribution of
ΔSmag is weakened. On the other hand, ΔM still possesses a relatively
large value since TM is still lower than TA

C , which guarantees a
remarkable Zeeman energy to ensure the occurrence of the magnetic
field-induced reverse martensitic transformation. Thus, one of the
key issues of weakening ΔSmag is to adjust TM.

Different from mechanical properties that are strongly
dependent on microstructure, TM belongs to the inherent
property of materials and thus is mainly determined by the
chemical composition. Aimed at reducing ΔSmag by tailoring
TM, for the ternary NiMnIn alloys, several alloying methods
including changing relative contents of different elements of
the alloy and adding the fourth alien elements, such as Cu (Li
et al., 2019a; Yan et al., 2021a; Huang et al., 2021), Cr (Sharma
et al., 2010a; Sharma et al., 2011), Fe (Chen et al., 2012; Feng et al.,
2012), Ga (Paramanik and Das, 2016) and Pd (Li et al., 2015),
have been utilized. For instance, under the guidance of valence
electron concentration (e/a) criteria of TM, i.e., a larger e/a
corresponds to a higher TM (Wei et al., 2016), Feng et al.
elevated TM of Ni50Mn34In16 from 250 K to 303 K via the
partial substitution of a low valence electron number (VEN)
element of In (5s2p1, VEN = 3) by a high VEN element of Fe
(3d64s2, VEN = 8) (Feng et al., 2012). In the Fe-doped
Ni50Mn34In14Fe2 alloy, TM almost coincides with TA

C , and a
ΔSM of 53.6 J kg−1 K−1 was realized under an 8 T magnetic
field at 303 K. In addition, under the guidance of lattice
volume effect of TM, i.e., a contracted lattice tends to elevate
TM (Paramanik and Das, 2016), Sharma et al. shifted TM of
Ni50Mn34In16 to a higher temperature (Sharma et al., 2010b). In
the Ni50Mn33.66Cr0.34In16 alloy, a ΔSM of 17.7 J kg−1 K−1 was
obtained under a magnetic field of 8T at 270 K.

For the Co-doped NiCoMnIn alloys, compared with ternary
NiMnIn alloys, the negative contribution of ΔSmag to ΔStr is more
pronounced as the addition of Co greatly enhances the
magnetism of austenite and then the value of ΔM (Li et al.,
2019a; Yang et al., 2020). The strategy of weakening ΔSmag in the
NiCoMnIn alloy is the same as that of NiMnIn, i.e., elevating TM

to make it close to TA
C by doping a fifth alien element, such as Cu

(Li et al., 2019b; Yan et al., 2021a; Huang et al., 2021), Fe (Chen
et al., 2012), Ga (Paramanik and Das, 2016), Pd (Li et al., 2015).
With respect to the ternary NiMnIn alloys, in these cases, two
elements, i.e., Co and a fifth element, are doped. Thus, this
alloying method was sometimes termed as co-doping (Li et al.,
2019c). Compared with doping with a single element, the
improvement of the MCE performance by the co-doping is
usually more prominent. For instance, by co-doping with Co
and Cu, Z. B. Li and collaborators realized a large ΔTad up to
−4.8 K under a low-field change of 1.5 T in the
Ni46Co3Mn35Cu2In14 alloy at 272 K (Li et al., 2019a).

c) Utilizing multicaloric effect. As discussed above, the
incompleteness of magnetic field-induced inverse
martensitic transformation due to the high critical magnetic
field required for a full transformation is a critical issue that
restricts the MCE performance of the NiMnIn-based alloys.
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Inspired by the fact that apart from the magnetic field, the
martensitic transformation of NiMnIn alloy can also be
triggered by mechanical field, an idea of improving MCE
by simultaneously or sequentially applying mechanical and
magnetic fields was proposed. Owing to the existence of
multiple stimuli, the caloric effect generated in this process
is termed as the multicaloric effect (Stern-Taulats et al., 2018).
Compared with the caloric response when subjected to a single
stimulus, the multicaloric effect generally has a much higher
refrigeration capacity (Gràcia-Condal et al., 2020). In the
Ni50Mn35.5In14.5 alloy, by applying a magnetic field of 4 T
and a mechanical field of 40 MPa, a multicaloric effect with an
entropy change of 25.2 J kg−1 K−1 and an adiabatic
temperature change of 5.9 K was realized at room
temperature. These values obviously exceed that of single
magnetocaloric and elastocaloric effects.

6.2 Thermal/Magnetism Hysteresis
In application, to realize a real MCE refrigeration, the magnetic
field needs to be repeatedly applied to the MCE refrigerant
(around 107 times), which requires that the MCE effect
possess a good cyclability. Unfortunately, different from MCE
around the second-order Curie transition, MCE originated from
the first-order magnetostructural transition is inevitably
accompanied with the transitional thermal hysteresis ΔTHys.
Theoretically, ΔTHys caused by the energy barrier between
austenite and martensite is closely related to the transitional
stress layer between the two phases. During the cyclic
transformation, the stress in the transitional layer could induce
certain irreversible processes, such as the formation of
dislocations and the nucleation of microcracks, which further
lead to functional degradation and failure (Song et al., 2013).
Thus, for the practical applications, it is greatly meaningful to
reduce ΔTHys and improve the reversibility of magnetostructural
transition of the NiMnIn alloys. Until now, several strategies have
been proposed, aimed at reducing ΔTHys, such as improving
geometric compatibility between austenite and martensite,
applying extra stimuli, etc.

a) Enhancing geometrical compatibility between austenite and
martensite: As mentioned above, the degradation of cyclability
is associated with the transitional stress layer between austenite
and martensite. Thus, reducing the transition layer will be able to
fundamentally decrease ΔTHys and improve the functional
stability. According to the crystallographic theory of
martensitic transformation (Nishiyama, 1978; Christian, 2002),
the transitional stress layer is closely related to the geometrical
compatibility between austenite and martensite, which can be
described quantitatively by the middle eigenvalue of
transformation stretch tensor λ2 and the more strict cofactor
condition (Chen et al., 2013; Song et al., 2013; Della Porta, 2019).
A thinner transitional layer corresponds to better geometrical
compatibility. For the geometrical compatibility between austenite
andmartensite, it is purely determined by the lattice parameters of
these two phases, which can be adjusted by tailoring the chemical
composition of the alloy. This provides an effective method to
reduce ΔTHys.

For the ternary NiMnIn alloys, it is reported that the
substitution of Cu for Mn is a valid method to improve the
geometrical compatibility and thus decreases ΔTHys (Zhao et al.,
2017a). For instance, D. W. Zhao et al. achieved a small ΔTHys of
3K and an excellent phase transition stability over 105 magnetic
field cycles in the Cu-doped Ni50Mn31.5In16Cu2.5 alloy (Zhao
et al., 2017b). They attributed the low ΔTHys and the exceptional
cyclic stability to the fact that in this compound, λ2 (0.99281) is
fairly close to 1 and the (011) type-I/II twins, together with the
(100) compound twins, closely satisfy the co-factor conditions
simultaneously (Zhao et al., 2017a).

For the NiCoMnIn alloys, even though the addition of Co can
enhance the magnetism of austenite and further significantly
improve the magnetoresponsive behaviors, unfortunately, this
alloying leads to a significant increase in hysteresis and phase
transition irreversibility. For example, ΔThys of the ternary
NiMnIn alloys is around 5–12 K, while with the addition of
Co the value of ΔThys abruptly elevates to 10–30 K (Yan et al.,
2021a). Thus, for the NiCoMnIn alloys, the harm caused by the
thermal hysteresis and the irreversibility of phase transition is
more severe compared with that in the ternary NiMnIn alloys.
Until now, apart from Co, several fifth alloying elements were co-
added to the NiMnIn alloys aimed at optimizing the hysteresis
behavior, such as Co & Fe (Chen et al., 2012), Co & Si (Li et al.,
2019b), Co & Cu (Li et al., 2019c; Yan et al., 2021b; Huang et al.,
2021). Z. B. Li et al. reported that the Cu substitution for Mn can
effectively reduce ΔTHys of the NiCoMnIn alloys from 17.5 K
(Ni46Co3Mn36Cu1In14) to 9 K (Ni46Co3Mn34Cu3In14) (Li et al.,
2019a). In the Co and Cu co-doped Ni46Co3Mn35Cu2In14 alloy,
they achieved a reversible ΔSM of 16.4 J kg−1 K−1 under a
magnetic field of 5 T and a reversible ΔTad of 2.5 K under a
magnetic field of 1.5 T (Li et al., 2019b).

Nevertheless, this alloying strategy of Cu, i.e., replacing Mn,
will inevitably lead to the reduction of magnetism, since the
magnetic moment of the Ni–Mn-based alloys is mainly provided
by Mn (~85%) (Yan et al., 2020a; Yan et al., 2020b). To avoid the
negative influence on magnetism caused by Cu doping, the co-
alloying strategy with Cu replacing In and Co replacing Mn was
studied (Yan et al., 2021a). In the Ni45Co5Mn36In13.3Cu0.7 alloy, a
reversible isothermal magnetic entropy change of 13.8 J kg−1 K−1

and a refrigeration capacity of 270.2 J kg−1 were obtained.
Moreover, when the geometrical compatibility between
austenite and martensite is improved by adjusting lattice
parameters via tailoring the chemical composition, the volume
variation ratio ΔV/V0 during the transition that is closely related
to the transformation entropy change will inevitably be changed.
The alloying strategy of improving geometrical compatibility and
keeping remarkable ΔV/V0 meanwhile is still an open issue.

b) Applying extra stimulus fields: For the NiMnIn based alloys,
owing to the strong coupling between magnetism and crystal
lattice, the magnetostructural transformation is sensitive to
both magnetic field and stress/strain field. This provides
another way to tailor the hysteresis behavior of MCE,
i.e., the stress/strain-assisted transformation. J. Liu et al.
reported that the application of bias stress can greatly
reduce or even eliminate the magnetic hysteresis during the
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cycle of the magnetic field-induced inverse martensitic
transformation (Liu et al., 2012; Zhao et al., 2017a). They
observed that if the sample is magnetized without bias stress
but is demagnetized under a low external hydrostatic pressure
of 1.3 kbar, the isothermal magnetization and
demagnetization curves of the NiCoMnIn alloy almost
coincide (Liu et al., 2012).

By utilizing the bias stress, T. Gottschall et al. proposed a
multicaloric cooling cycle to eliminate the negative influence of
hysteresis on the reversibility of phase transition (Gottschall et al.,
2018). The key idea of this method is to apply uniaxial stress to
assist the transformation of the ferromagnetic austenite phase
locked by large hysteresis into the martensite phase. The caloric
effect is expected to be reproducible under the following
sequence: 1) a decrease in temperature when the NiMnIn-
based alloys are adiabatically magnetized; 2) the reverse
transition does not happen due to the existence of thermal
hysteresis during demagnetization; 3) absorbing heat from
surroundings in the absence of a magnetic field; 4) applying
uniaxial stress to assist the transformation from austenite to
martensite; 5) removing stress; 6) expelling heat to the
surroundings. By alternately applying a magnetic field (1.8T)
and a stress field (80 MPa), they obtained a reversible ΔTad of
−1.2 K in the Ni49.6Mn35.6In14.8 alloy (Gottschall et al., 2018).

Apart from bias stress, Z. Z. Li et al. reported that the existence
of the internal stress introduced by the pre-deformation can also
improve the MCE cyclability (Li et al., 2018). They found that by
applying pre-deformation, the reversible ΔTad of the
Ni45.3Co5.1Mn36.1In13.5 alloy increases to 1.1 K from 0.8 K (the
stress-free state). Besides, Y.-Y. Gong et al. reported that the
strain-assisted transformation can also effectively tailor the
hysteresis behavior of the NiCoMnIn alloy (Gong et al., 2015).
They found that the strain generated by the PMN-PT
piezoelectric ceramics can decrease ΔTHys from 25.5 to 21.6 K
with an electric field varying from 0 to 8 kV cm−1.

c) Other methods: Apart from tailoring geometrical
compatibility and applying external stress/strain stimuli, the
microstructure of MCE refrigerant was also reported to have
an important influence on hysteresis. J. Liu et al. found that for
the Ni45Mn37In13Co5 ribbons sample, the annealing can
reduce the thermal hysteresis from 25 K to 20 K (Liu et al.,
2009b). They attributed the reduction of ΔTad to the increased
grain size and decreased defect density. Besides, T. Gottschall
et al. proposed that the transformation performed in a minor
loop instead of a complete transformation can improve the
MCE stability (Gottschall et al., 2015). With this method, they
obtained a cyclic ΔTad of −3 K at the magnetic field of 1.95 T in
the Ni45.7Mn36.6In13.5Co4.2 alloy (Gottschall et al., 2015).

6.3 Working Temperature Window
For the NiMnIn-based alloys, different from the conventional
giant MCE which occurs around the second-order Curie
transition, the excellent MCE in these compounds is
originated from the first-order magnetostructural transition.
During the second-order Curie transition, the order parameter,

i.e., magnetization, experiences a continuous transition in a
relatively wide temperature change (40–50 K). In contrast, the
first-order martensitic transformation occurs in a burst manner
at speed close to that of the sound. The difference in the
transformation speed of the first-order and the second-order
phase transition results in a large difference in the operating
temperature window of the corresponding MCE. An example
comparing theMCE operating temperature window widths of the
first-order and second-order transitions is illustrated in
Figure 10. It is seen that the operating temperature range
δTFWHM defined as the full width at half maximum of ΔSM(T)
curve of Gd (second-order Curie transition) is around 47 K,
which is about 6 times wider than that of Gd5Si2Ge2 (first-
order magnetostructural transition) (Pecharsky and
Gschneidner, 1997). For the MCE, the refrigeration capacity
(RC) is determined by the product of isothermal magnetic
entropy change ΔSM and the operating temperature window
δTFWHM. Thus, a narrow δTFWHM will lead to a significant
reduction in refrigeration capacity. So far, numerous strategies
have been proposed to expand the operating temperature window
of the MCE, such as enhancing the magnetic field sensitivity of
magnetostructural transition temperature TM, preparing
composite material containing the MCE refrigerants with
different TM, and combining different caloric responses
(magnetocaloric and elastocaloric).

a) Enhancing the magnetic field sensitivity of magnetostructural
transition temperature ΔT/ΔH: Fundamentally, for the MCE
associated with the first-order magnetostructural transition,
the width of the operating temperature window is decided by
the magnetic field sensitivity of magnetostructural transition
temperature ΔT/ΔH. Under a certain magnetic field, a higher
ΔT/ΔH value will lead to a larger shift of magnetostructural

FIGURE 10 | Isothermal magnetic entropy change of the Gd5Si2Ge2
between 240 and 325 K for a magnetic field change from 0 to 2 T, compared
with that of pure Gd as determined from magnetization measurement
(Pecharsky and Gschneidner Jr., 1997).
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transition temperature, further resulting in a wider operating
temperature window δTFWHM. Based on the Clausius-
Clapeyron equation, as discussed previously, the ΔT/ΔH
value can be increased by enlarging the magnetization
difference between austenite and martensite ΔM, which can
be achieved by the partial substitution of Co for Ni. For
instance, by introducing Co, the value of δTFWHM increases
from 24 K (Mn50Ni39In9Co2) to 32 K (Mn50Ni37In9Co4)
(Yang et al., 2020). However, as mentioned earlier, the
substitution of Co will increase ΔThys. To weaken the
negative effect on ΔThys, L. M. Wang proposed a low
content of Co alloying method aiming at simultaneously
realizing a wide ΔT/ΔH and low ΔThys (Wang et al., 2020).
In the Ni48Co1Mn37In14 alloy, a working temperature range of
34 K and an effective refrigeration capacity of 284 J kg−1 were
realized under a magnetic field of 5 T.

b) Combining different caloric responses: For the NiMnIn-based
alloys, apart from the inverse MCE associated with the first-
order magnetostructural transition, it also exhibits the
elastocaloric effect (see details in Section 7) and the
conventional MCE around the second-order Curie
transition of austenite. As is known, the magnetic field
tends to stabilize the phase with strong magnetism,
i.e., austenite, while the mechanical field stabilizes
martensite preferentially. Therefore, the transitional
temperature of martensitic transformation TM tends to
shift towards an opposite direction when the magnetic field
and the stress field are applied, respectively. As a result,
although both inverse MCE and elastocaloric effects are
associated with martensitic transformation, typically, the
working temperature ranges for the inverse MCE and the
elastocaloric effect are, respectively, lower and higher than TM.
This characteristic of the NiMnIn-based alloys provides a
novel route to widen the working temperature range,
i.e., combining the different caloric responses with adjacent
temperature ranges. Moreover, by composition design, MCE
associated with the second-order Curie temperature can also
be adjusted near the magnetostructural transition. In this
situation, the inverse MCE, the elastocaloric effect, and the
conventional MCE can be combined and further expand the
refrigeration temperature region.

In 2017, Y. Hu et al. proposed the method of widening the
operating temperature window by combining elastocaloric and
MCE effects. By using this method, they realized a broad
refrigeration temperature region of around 120 K in the
Ni49.5Mn28Ga22.5 alloy (Hu et al., 2017). In the Ni50Mn35In15
alloy, Z. B. Li et al. realized a broad refrigeration temperature
region ranging from 270 K to 380 K via the combination of
successive MCE and elastocaloric effects (Li et al., 2020).
Recently, P. T. Cheng et al. realized a refrigeration
temperature range of 250–340 K in the Ni45Co5Mn37In13 alloy
by using the same strategy (Cheng et al., 2021).

c) Utilizing the intermediate martensitic transformation: In
some NiMnIn-based alloys, an intermediate martensitic
transformation has been observed, i.e., the martensitic

transformation occurs in multiple stages. By using the
multi-stage phase transition characteristics, the operating
temperature window of MCE can be extended if different
stages of martensite transformation occur in an adjacent
temperature range. For example, S. Dwevedi et al. reported
a two-step martensitic transformation in the Sn-doped
Ni–Mn–In-based alloys, which leads to the double peak
behavior of ΔSM and widens the operating temperature
range (Dwevedi and Tiwari, 2012). With a two-step
martensitic transformation, an operating temperature
window δTFWHM of around 46.5 K was realized in the
Ni50Mn34In8Sn8 alloy that greatly exceeds the typical
δTFWHM value of the single-stage martensitic
transformation (~10 K at a magnetic field of 2 T).

d) Fabricating composite material containing the MCE
refrigerants with different TM: For the MCE associated
with the first-order magnetostructural transition, the
operating temperature is around the temperature of
magnetostructural transition. Thus, fabricating a series of
MCE refrigerants with different TM and compositing them
will allow to greatly expand the operating temperature range.
Using this strategy, J. Liu et al. proposed a method of
stacking a series of alloys with different annealing times
to successfully expand the operating temperature window of
the NiCoMnIn alloy(Liu et al., 2012). For the NiCoMnIn
alloys, with the prolongation of aging time, the martensitic
transformation is gradually shifted to the lower
temperatures, whereas the transformation entropy change
remains unchanged. Thus, for the composite containing a
series of alloys aged at different times, the operating
temperature window is greatly enlarged, as illustrated in
Figure 11. Later, J.-P. Camarillo et al. reported that a
reversible ΔSM of 7.5 J kg−1 K−1 was obtained over a broad
temperature range of 30 K by assembling a
composite specimen in a NiMnInCu alloy (Camarillo
et al., 2016).

FIGURE 11 | Realizing a wide operating temperature window by
combining various samples with different aging times.
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6.4 Perspectives
From the above discussion, the high magnetic moment of
austenite, which usually brings about a large magnetization
difference ΔM between austenite and martensite, is a double-
edged sword for the MCE performance. On the one hand, a
remarkable ΔM is a prerequisite for the magnetic field-induced
inverse martensitic transformation. On the other hand, a higher
ΔM makes a larger negative contribution of ΔSmag to ΔStr. Thus,
for the optimized MCE performance, ΔM should be neither too
big nor too small. For the multicaloric effect, it is indeed possible
to improve refrigeration efficiency. Unfortunately, compared
with the single stimulus, the multiple stimuli significantly
increase the complexity of machine construction and
equipment cost. More efforts focused on optimizing the
structure of the equipment are required. Apart from the
above-mentioned strategies, in our opinion, the methods of
improving lattice vibration entropy change ΔSvib and
electronic entropy change ΔSelec may open new ways to
improve the MCE performance. Since ΔStr is mainly decided
by ΔSvib, the method of enlarging ΔSvib could greatly improve the
MCE performance. In addition, even though in the known
NiMnIn-based alloys, ΔSelec plays a negligible positive role on
ΔStr, it might be possible to obtain a large ΔSelec by tailoring the
electronic structure of martensite from metal to semiconductor
state. The semiconducting state is not uncommon in the 2:1:1
type Heusler alloys. Recently, J. C. Lin et al. found that ΔSelec plays
a key role on ΔStr in the Ni1-xFexS alloy during the study of
barocaloric effect (Lin et al., 2020), which evidenced that it is
feasible to utilize ΔSelec to improve ΔStr.

Through the above-mentioned strategies, the thermal/
magnetic hysteresis of the Ni(Co)MnIn alloys has been greatly
optimized. However, the cyclic stability of the MCE performance
of the Ni(Co)MnIn alloys yet cannot meet the needs for practical
applications. For instance, in the state-of-the-art Co and Cu co-
doped Ni46Co3Mn35Cu2In14 alloy, the maximum ΔTad is up to
−4.8 K under the magnetic field of 1.5 T at the first cycle, while
this value rapidly drops to −2.5 K at the second cycle (Li et al.,
2019c). So far, there is still a lack of satisfactory alloying methods,
which can substantially improve the geometrical compatibility of
the alloy without degrading other parameters required for MCE.
One of the difficulties is that the geometrical compatibility rule is
a posteriori criterion. Specifically, the geometrical compatibility
factors can only be calculated with the measured lattice
parameters of austenite and martensite after the alloy is
fabricated. This method is inefficient and cannot be directly
used to guide the design of alloy composition. So far, the
direct relation between alloy composition and geometrical
compatibility is unknown. High throughput experimental or
computational methods and machine learning may provide a
feasible way to find the correlation and then promote the design
of low-hysteresis NiMnIn alloys.

7 ELASTOCALORIC EFFECT

Elastocaloric effect (eCE) refers to the caloric response of material
when external uniaxial stress is applied (Brown, 1981). Compared

with the MEC and the electrocaloric effect, the elastocaloric effect
is of high work efficiency, environmental friendliness, and low
cost. Therefore, the elastocaloric refrigeration technique has been
considered to be the most promising alternative to replace
traditional vapor compression technology for room-
temperature refrigeration (Goetzler et al., 2014), such as air
conditioners and fridges. Besides, owing to the convenience of
mechanical loading, the elastocaloric effect also exhibits
promising potential application in the field of micro- or nano-
refrigeration, such as the microelectronic chip. In recent years,
some significant progress has been made in the design and
development of elastocaloric refrigeration devices (Schmidt
et al., 2015; Tušek et al., 2016; Kabirifar et al., 2019).

At present, the discovered elastocaloric material includes
natural rubber, shape memory alloy, ion or molecular
compound, and rare-earth-based compound. Among them, the
shape memory alloy possesses a remarkable refrigeration capacity
with the adiabatic temperature change of 3–30 K (Mañosa et al.,
2010; Lu et al., 2014; Moya et al., 2014; Liu et al., 2017; Manosa
and Planes, 2017; Kabirifar et al., 2019), which is much larger
than those of ion or molecular compounds and rare earth
compounds, such as 0.42 K for Ce0.85(La0.95Y0.05)0.15Sb and
0.4 K for HoAs (Nikitin, 2011; Cazorla, 2019; Zhang et al.,
2020). Moreover, the constituent elements of shape memory
alloy are relatively abundant and cheap compared with the
rare-earth-based compounds. Among numerous shape
memory alloys, NiMnIn-based magnetic shape memory alloys
represent a special category owing to the relatively low critical
driving stress (100–300 MPa) (Lu et al., 2014; Huang et al., 2019;
Li et al., 2020).

For shape memory alloy materials, the large elastocaloric effect
is originated from the process of stress-induced martensitic
transformation. During the loading-unloading cycle, the
release and the absorption of the latent heat are used to
achieve refrigeration, as illustrated in Figure 12. When
uniaxial stress is applied to austenite, at the condition that the
applied stress exceeds the critical stress to drive martensitic
transformation σSM, the alloy will transform from a high-
temperature austenite phase to a low-temperature martensite
phase (stage ② in Figure 12A). During this process, the latent
heat of phase transition will be released, leading to a rise in the
temperature of the refrigerant (stage② in Figure 12B). When the
load is removed, the sample experiences a process of inverse
martensitic transformation and returns to the austenitic state
(stage ⑥ in Figure 12A). In the process, the refrigerant absorbs
heat from the environment, leading to a decrease in the
temperature of the sample (stage ⑥ in Figure 12B).

Like MCE, eCE is characterized by the isothermal entropy
change ΔSiso and adiabatic temperature change ΔTad. For the
NiMnIn alloys, eCE was first reported by Lu et al. (2014). In the
textured Ni45.7Mn36.6In13.3Co5.1 polycrystalline sample, they
observed a reversible ΔTad of 3.5 K under uniaxial stress of
100 MPa at room temperature. Later, Y. J. Huang et al.
realized a ΔTad of −4 K in the ternary Ni48Mn35In17
directionally solidified alloy (Huang et al., 2015). Among
various known eCE refrigerants, the required critical stress for
martensitic transformation σSM is relatively small (~100 MPa) in
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the NiMnIn-based alloys (Lu et al., 2014; Huang et al., 2019;
Cheng et al., 2021), which makes this kind of compounds have
broad prospects in the fields of micro- and nano-refrigeration,
such as microelectronic chips. From then on, the eCE of the
NiMnIn-based alloys has been attracting more and more
attention. Some representative work associated with eCE of
the NiMnIn-based alloys are summarized in Table 2.

Until now, the studies on the eCE of the NiMnIn-based alloys
were mainly focused on the following two aspects: 1) elevating
adiabatic temperature change ΔTad that is directly linked to the
refrigeration capacity. A large ΔTad is a constant pursuit to
improve the energy conversion efficiency; 2) improving

mechanical properties. Different from the MCE, the eCE has a
much higher requirement on the mechanical properties of a
refrigerant since the refrigeration material must bear a large
mechanical load during work. Unfortunately, owing to the
strong covalent p-d hybridization between the p valence
electrons of the p-block element of In and the 3d valence
electrons of Ni (and Mn) (Bechtold et al., 2012; Qian et al.,
2015; Liu et al., 2017), the NiMnIn-based alloys are intrinsically
brittle, which will introduce structural fatigue and do harm to
cyclic stability of eCE. Next, the main progress related to these
two aspects of the Ni–Mn–In-based alloys will be briefly
reviewed.

FIGURE 12 | Schematic diagram of (A) stress-strain curve and (B) corresponding temperature change for eCE of shape memory alloys. The temperature variations
of ① to ⑦ in (B) exactly correspond to the stages of ① to ⑦ in the stress-strain curve of (A).

TABLE 2 | Research progress of elastocaloric effect in the NiMnIn-based alloys.

Year Reference Alloy composition (at%) Sample state eCE Stress Test temperature
ΔSiso ΔT COP

J kg−1 K−1 K MPa K

2014 Lu et al. (2014) Ni45.7Mn36.6In13.3Co5.1 Oriented polycrystalline −3.5 100 300
2015 Huang et al. (2015) Ni48Mn35In17 Oriented polycrystalline 10.3 −4 300 313.3
2015 Lu et al. (2015) Ni45Mn36.4In13.6Co5 Bulk Polycrystalline −4 150 296
2016 Shen et al. (2017) Ni51.4Mn34In15.6Tb0.4 Bulk Polycrystalline −5.1 622 291
2017 Zhao et al. (2017b) Ni45Mn36.5In13.5Co5 Oriented polycrystalline +8.6 260 298
2017 Lu and Liu (2017) Ni45Mn36.4In13.6Co5 Bulk Polycrystalline −3 135 293

Ni45Mn36In14Co5 −2 340 287
Ni45Mn36.2In13.8Co5 −3.1 225 room temperature

2017 Yang et al. (2017) (Ni51.5Mn33In15.5)99.7B0.3 Bulk Polycrystalline 20 −6.2 18 550 303
2017 Zhao et al. (2017a) Ni50Mn31.5In16Cu2.5 Oriented polycrystalline −23.1 +13 280 room temperature
2017 Camarillo et al. (2017) Ni51.4Mn33.6In12.1Ga2.9 Bulk Polycrystalline 25 −4.9 100 room temperature
2018 Henández-Navarro et al. (2018) Ni50Mn32In16Cr2 Bulk Polycrystalline −3.9 100 room temperature
2018 Shen et al. (2018) Ni45Mn36In13Co5Cr Bulk Polycrystalline −5.8 300 323
2019 Huang et al. (2019) Ni50Mn34.8In15.2 Oriented polycrystalline – −7.6 – 345 room temperature
2019 Tang et al. (2019) (Ni52Mn31In16Cu1)B0.2 Bulk Polycrystalline −9.5 220 room temperature
2019 Yang et al. (2019) (Ni51Mn33In14Fe2)99.4B0.6 Bulk Polycrystalline +5.6 350 304
2019 Li et al. (2019c) Ni44.9Co4.9Mn36.9In13.3 Oriented polycrystalline +14.7 650 390
2020 Huang et al. (2020) Ni50(Mn31.7Cu2.5B0.3)In15.5 Oriented polycrystalline – −12.8 – 500 room temperature
2020 Li et al. (2020) Ni50Mn35In15 Oriented polycrystalline −19.7 350 320
2021 Cheng et al. (2021) Ni45Co5Mn37In13 Oriented polycrystalline 10 −6 200 303
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7.1 Adiabatic Temperature Change
Like the isothermal magnetic entropy change ΔSM of the MCE,
the upper limit of isothermal entropy change ΔSiso (or
adiabatic temperature change ΔTad) of eCE is determined
by the transformation entropy change ΔStr. As discussed in
Section 6, for the NiMnIn-based alloys, the sign of magnetic
entropy change ΔSmag is opposite to the total transformation
entropy change ΔStr (Figure 13). Therefore, one of the critical
issues of increasing ΔStr is to reduce the negative contribution
of magnetic entropy change ΔSmag. To optimize the eCE of the
NiMnIn-based alloys by means of weakening ΔSmag, as
illustrated in Figure 14, several methods have been
proposed, including (a) elevating the temperature of
magnetostructural transition TM to make it close (or above)
the Curie temperature of austenite, (b) increasing the testing
temperature TTest to make it close (or above) the Curie
temperature of austenite, and (c) reducing the magnetism of
austenite.

a) Elevating the temperature of magnetostructural transition TM

to (or above) the Curie temperature of austenite: As utilized in
improving the MCE performance, as illustrated in Figure 14A,
ΔTad of the eCE can also be optimized by elevating the
temperature of magnetostructural transition TM to or above
the Curie temperature of austenite to reduce the negative
contribution of ΔSmag on ΔStr. By the partial substitution of
Cu for Mn, D. W. Zhao et al. elevated the finish temperature of
inverse martensitic transformation (Af) from 235.0 K of
Ni50Mn34In16 to 279.8 K of Ni50Mn31.5In16Cu2.5. With this
substitution, the ΔTad values of +13 K and −10 K in a
directionally solidified Ni50Mn31.5In16Cu2.5 sample were
obtained during loading and unloading at room
temperature, respectively (Zhao et al., 2017b). As can be
seen from Table 2, this ΔTad belongs to the relatively high
value of room-temperature eCE in the NiMnIn-based alloys. Z.
Yang et al. reported that by Fe doping, Af of 304 K of the
Ni51.5Mn33In15.5 alloy (e/a = 7.93) is shifted to 319 K in the
Ni51Mn33In14Fe2 alloy (e/a = 7.99) (Yang et al., 2019). Under
this substitution, ΔTad was increased from 3 K of
Ni51.5Mn33In15.5 to 5.7 K of Ni51Mn33In14Fe2 under 350MPa.

b) Increasing testing temperature TTest to (or above) the Curie
temperature of austenite: For the eCE, the temperature at
which the structural transition occurs, i.e., the temperature of
stress-induced martensitic transformation, is determined by
the testing temperature TTest, rather than the temperature of
martensitic transformation under zero-field (TM). Thus, as a
conjugate way by TM, the negative contribution of ΔSmag can
be reduced by increasing testing temperature TTest to or above
the Curie temperature of austenite, as illustrated in
Figure 14B. For instance, Z. Z. Li et al. reported that as
the test temperature increased from 320 to 390 K under
650 MPa, ΔTad of the Ni44.9Co4.9Mn36.9In13.3 alloy
increased from 8.3 to 14.7 K due to the decreased ΔSmag

(Li et al., 2019c). Similar to this temperature enhanced
eCE, as TTest increased from 310 to 320 K under 350 MPa,
ΔTad of the Ni50Mn35In15 alloy increased from –15 to –19.7 K
(Li et al., 2020). In addition, as TTest increased from 290 to
314 K under 250 MPa, ΔSiso increased from 15 to 47.8 J kg−1

K−1 (Li et al., 2020).
c) Reducing the magnetism of austenite: For the MCE

performance, as discussed in Section 6, the magnetism of
austenite is a double-edged sword. On the one hand, a strong
magnetism of austenite will lead to a remarkable ΔM and then
a large driving force for inverse martensitic transformation;
on the other hand, a strong magnetism will bring about a large
ΔSmag, which is harmful to the MCE refrigeration capacity.
However, for the eCE in which the martensitic transformation
is driven by a mechanical field rather than amagnetic field, the
magnetism of austenite seems to be a purely harmful factor.
Thus, for the eCE performance, the most effective and
fundamental method to weaken the negative contribution
of ΔSmag is to reduce the magnetism of austenite, as
illustrated in Figure 14C.

For the Ni–Mn-based alloys, the adiabatic temperature change
realized at room temperature is only 3–15 K (Lu et al., 2014; Zhao
et al., 2017a; Huang et al., 2020), which is smaller than those of
non-magnetic NiTi (10–25 K) (Cui et al., 2012; Pataky et al., 2015;
Tušek et al., 2015) and NiMnTi (20–30 K) (Cong et al., 2019; Yan
et al., 2019). One of the possible reasons might be associated with

FIGURE 13 | Schematic diagram of the entropy change of magnetostructural transition in NiMnIn-based alloys.
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the large negative contribution of magnetic entropy change
ΔSmag. It is known that the magnetic moment of the Ni–Mn-
based alloys is mainly originated from theMn element. Therefore,
decreasing the concentration of Mn, substituted by non-magnetic
elements, allows to dramatically reduce the ferromagnetism of
austenite and further eliminate the negative contribution of

ΔSmag. By using this strategy, with the co-substitution of Cu
and B for Mn, X. M. Huang et al. successfully reduced the value of
ΔM from 82 to 42 emu g−1 and realized a large ΔTad of –12.8 K in
the Ni50(Mn31.7Cu2.5B0.3)In15.5 directionally solidified alloy
(Huang et al., 2020).

7.2 Mechanical Properties and Cyclic
Stability
To realize a real application of eCE refrigeration, the number of
cyclic loading-unloading around 107 times (Chluba et al., 2015) of
uniaxial stress to the eCE refrigerant is necessary, which requires
that the eCE refrigerant bemechanically stable. As discussed above,
the NiMnIn-based alloys are intrinsically brittle due to the high
covalency in chemical bonds, which greatly reduces the fatigue
fracture resistance of the material and thus is detrimental to the
cyclic stability of the eCE. Aimed at improving the mechanical
properties of the NiMnIn-based alloys, several methods have been
proposed to enhance the mechanical properties, such as grain
refinement (Yang et al., 2017; Yang et al., 2019; Huang et al., 2020),
grain boundary strengthening (Huang et al., 2015; Zhao et al.,
2017b; Huang et al., 2019), introducing coarse columnar crystals
with strong texture (Huang et al., 2015; Zhao et al., 2017a; Huang
et al., 2019), and introducing a soft second-phase (Yang et al., 2015;
Shen et al., 2018).

a) Grain refinement: For the NiMnIn-based polycrystalline
alloys, since the transformation strain εtrans is strongly
orientation-dependent (Section 4.2), the strain
discontinuity would inevitably occur near the grain
boundary of the austenite with different orientations,
especially at triple junctions. Thus, cracks may nucleate at
the grain boundaries of austenite and propagate along the
grain boundaries due to the relative weakness of the grain
boundary with respect to the grain interior in intermetallics.
For the refined samples, the reduced grain size leads to the
decrease of the difference of cumulative transformation
displacements d·εtrans between two austenite grains. Thus,
the nucleation and the propagation of the crack might be
suppressed. As a result, the strength and toughness of the
material will be improved.

V. Sánchez-Alarcos et al. reported that the Ti doping can refine
the grain size from 1160 μm (Ni50Mn33.5In16.5) to 40 μm
[(Ni50Mn33.5In16.5)98Ti2] (Sánchez-Alarcos et al., 2015). For
their studied (Ni50Mn33.5In16.5)100−xTix (x = 0, 0.5, 1, and 2)
alloys, they found that the Vickers hardness and yield strength
increase with the increasing Ti concentration, with an increase of
around 10% for (Ni50Mn33.5In16.5)98Ti2 compared with the
undoped alloy. Q. Shen et al. reported that the Tb doping can
reduce the grain size from 50 μm (Ni50Mn34In15.7Tb0.3) to 5 μm
(Ni50Mn34In15.6Tb0.4) (Shen et al., 2017). The compressive
strength of Ni50Mn34In15.6Tb0.4 increases to 622 MPa from
372 MPa (Ni50Mn34In15.7Tb0.3).

b) Grain boundary strengthening: As discussed above, for the
NiMnIn compounds, the nucleation and the propagation of

FIGURE 14 | Schematic diagrams of weakening ΔSmag by (A) elevating
the temperature of magnetostructural transition TM to make it close (or above)
the Curie temperature of austenite, (B) increasing the test temperature TTest to
make it close (or above) the Curie temperature of austenite, and (C)
reducing the magnetism of austenite.
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cracks mostly occur near grain boundaries of austenite. Thus,
elevating the strength of grain boundaries could significantly
improve the mechanical properties. Until now, the most
effective method known for increasing the cohesion of
grain boundary is microalloying with boron (Yang et al.,
2017; Yang et al., 2019). Z. Yang et al. reported that by
microalloying with boron, as illustrated in Figure 15, the
grain boundary cohesion can be increased; meanwhile, the
grain size can be refined (Yang et al., 2017). With this
microstructure modification, the mechanical properties and
the eCE cyclic stability of the NiMnIn alloy can be
prominently improved. For instance, the eCE of 2 K
remains stable with almost no degradation for more than
150 cycles in (Ni51.5Mn33In15.5)99.7B0.3 (Yang et al., 2017).
Later, they realized an ultrahigh cyclability of eCE in the
(Ni51Mn33In14Fe2)99.4B0.6 polycrystalline alloy, i.e., a ΔTad of
5.6 K at 2700 loading-unloading cycles (Yang et al., 2019).
With the 3D atom probe tomography (ATP) technique, they
reported that the addition of B promotes the formation of
NiBH cluster, which may act as the H trapping to reduce the
hydrogen diffusion along the grain boundary and thus
suppresses the hydrogen embrittlement, leading to an

improvement of the grain boundary strength. X. M. Huang
et al. found that with the addition of B, the compressive
strength σcomp and strain εcomp was significantly improved
from 630 MPa to 9.3% of Ni50Mn34.5In15.5 alloy to 1142 MPa
and 12.3% of Ni50(Mn31.7Cu2.5B0.3)In15.5 alloy (Huang et al.,
2020).

c) Introducing crystallographic texture: The crack nucleation in
the NiMnIn alloys is closely related to the discontinuity of
transformation strain near the grain boundary regions of
austenite with different orientations. Thus, introducing
crystallographic texture could effectively reduce the
discontinuity of transformation strain at grain boundaries,
as illustrated in Figure 16 (Huang et al., 2019), and thus
improve the fracture resistance and the eCE cyclic stability of
the NiMnIn alloys. Unlike the conventional metals (such as
Al, Cu and Ti) for which the texture can be introduced by
severe plastic deformation and heat treatment (Kocks et al.,
1998; Yan et al., 2014), the texture of brittle intermetallics can
just be introduced at the solidification process, such as the
directional solidification and the melt-spinning techniques.
Considering the convenience of mechanical loading, the
directional solidification technique was widely used to
introduce texture for the studies of eCE of the NiMnIn
alloys (Huang et al., 2015; Huang et al., 2020).

X. M. Huang et al. systematically studied the influence of
microstructural characters on mechanical properties and cyclic
stability of eCE using Ni50Mn34.8In15.2 as an example material
(Huang et al., 2019). By applying arc-melting, suction casting, and
directional solidification techniques, three samples with different
microstructural features, i.e., arc-melted (columnar-shape grains
with the long axis of 1–2 mm and the wide axis of 100–500 μm;
random texture), suction cast (grain size less than 200 μm;
random texture) and directionally solidified (coarse columnar-
shaped grains of several mm; strong <001> texture) samples, were
fabricated. The compressive strength and strain of the
directionally solidified sample were 991 MPa and 11.9%,
respectively, which are obviously higher than the arc-melted
(451 MPa and 9.4%) and suction cast (341 MPa and 7%)

FIGURE 15 | Effects of the B microalloying on the microstructure of a NiMnIn alloy (Yang et al., 2019).

FIGURE 16 | Texture effect on the compatibility of transformation strain
around grain boundary. (A) strong texture and (B) random texture (Huang
et al., 2019). Reproduced with the permission of Elsevier Publisher.
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samples. Moreover, the cyclic stability of the directionally
solidified sample (>40) is much higher than the arc melted
and the suction cast samples (<10). These results suggest that
the microstructure of the directionally solidified sample,
i.e., strong texture and coarse grain, is conducive to obtaining
excellent mechanical properties. The improved mechanical
properties of the directionally solidified sample are attributed
to the reduced strain incompatibility near grain boundaries owing
to the strong texture.

d) Introducing a soft second phase: Introducing a soft second
phase was also reported to be an effective method to increase
the mechanical properties of the NiMnIn-based alloys (Yang
et al., 2015; Shen et al., 2018). A. Shen et al. reported that the
undoped Ni45Mn37In13Co5 sample with no precipitates could
only withstand maximum compressive stress and strain of
155 MPa and 3%. Furthermore, the fracture strength and
strain of Ni45Mn36In13Co5Cr1 with a small amount of the
second phase precipitates along grain boundaries increased to
407 MPa and 5% (Shen et al., 2018).

7.3 Perspectives
For the eCE refrigerants, one of the key parameters measuring
refrigeration efficiency is ΔTad or ΔSiso. At present, as
discussed in Section 7.1, most of the work is focused on
reducing the negative contribution of ΔSmag to improve ΔTad.
Apart from the magnetism contribution ΔSmag, ΔTad is also
closely related to the contributions of lattice vibration ΔSvib
and electron structure ΔSelec, especially ΔSvib. Thus,
increasing ΔSvib could significantly improve the total
entropy change ΔSstr and further eCE ΔTad. It is now
understood that ΔSvib is associated with the volume change
of crystal lattice ΔV/V0 during martensitic transformation.
Thus, elevating ΔV/V0 would be an effective method to
increase eCE ΔTad. Recently, D. Y. Cong et al. confirmed
that a large ΔV/V0 corresponds to a high value of eCE ΔTad in
the all-d-metal NiMnTi alloys (Cong et al., 2019). However,
the key materials factors affecting ΔV/V0 are unknown for
certain eCE refrigerants. In addition, for the cyclic stability of
eCE, apart frommechanical properties, stress hysteresis is also
a critical influencing factor. Generally, a large stress hysteresis
is harmful to both the refrigeration efficiency and the
functional stability of eCE. However, the key materials
factors affecting stress hysteresis also remain unclear.
High-throughput experimental techniques, high-throughput
first-principle calculations, and machine learning algorithms
would provide powerful tools to find the key factors
determining ΔV/V0 and stress hysteresis and thus improve
the performance of the NiMnIn alloys.

8 SUMMARY

In the past 15 years, stimulated by the potential applications in
the fields of smart sensors and solid-state refrigeration, the
NiMnIn-based metamagnetic shape memory alloys have
attracted increasing attention from both communities of

materials science and solid-state physics. Scientists from all
over the world have conducted systematic research on the
NiMnIn alloy covering from the crystal structure,
microstructure, martensitic transformation to metamagnetic
shape memory, magnetocaloric, and elastocaloric effects.

The austenite of NiMnIn alloy has a highly ordered cubic
L21 structure. The martensite has a non-modulated (NM)
tetragonal or a monoclinic modulated (6M) structure based
on the chemical composition. 6M martensite possesses a self-
accommodated microstructure with six distinct martensite
colonies in one austenite grain. In each colony, there exist four
twin-related martensite variants. The Pitsch strain path,
{011}A<011>A, is the real strain path that governs the
lattice distortion during martensitic transformation. The
progress of metamagnetic shape memory effect was
summarized from two aspects of NiCoMnIn and other
NiMnIn-based alloys. The magnetocaloric effect was
reviewed in the focus of increasing isothermal magnetic
entropy change, reducing thermal/magnetism hysteresis,
and expanding the operating temperature window. For the
elastocaloric effect, the main progress was summarized from
two aspects of increasing adiabatic temperature change and
improving cyclic stability.

Until now, there are still many fundamental scientific issues to
be resolved, including 1) the formation mechanism of modulated
martensite structure, 2) the key materials factors that determine
the modulation type of martensite, 3) the quantitative
relationship between the modulated martensite and functional
properties, 4) the reason for the huge difference in detwining
stress for different twinning systems, 5) the underlying physical
mechanism that the K-S and the Pitsch orientation relations are
almost simultaneously satisfied and 6) the shuffling path of the
(001)M atomic layer during the martensitic transformation. To
realize practical applications of the fruitful magnetoresponsive
and elastocaloric effects, more effective methods to 1) reduce the
critical driving field of magnetic-field induced inverse martensitic
transformation, 2) decrease the transitional thermal/magnetic/
stress hysteresis, and 3) improve mechanical properties and cyclic
stability are still in great need.

In recent years, the rapid development of advanced
computational characterization methods such as high-
throughput first-principles calculations based on quantum
mechanics, spherical aberration-corrected TEM electron
microscopes, in-situ high-resolution TEM electron
microscopes, high-throughput experimental methods, and
machine learning methods based on big data analyses provide
powerful tools for solving the issues mentioned above. The
resolution of these issues will definitely promote the
development of the NiMn-based magnetic shape memory
alloys and the numerous related practical applications.
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Progress in the Use of Biosourced
Phenolic Molecules for Electrode
Manufacturing
Javier Quílez-Bermejo*, Sara Pérez-Rodríguez, Alain Celzard and Vanessa Fierro*

Centre National de La Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine, Épinal, France

In the era of renewable technologies and clean processes, carbon science must adapt to
this new model of a green society. Carbon materials are often obtained from petroleum
precursors through polluting processes that do not meet the requirements of sustainable
and green chemistry. Biomass is considered the only renewable source for the production
of carbon materials, as the carbon in biomass comes from the consumption of carbon
dioxide from the atmosphere, resulting in zero net carbon dioxide emissions. In addition to
being a green source of carbon materials, biomass has many advantages such as being a
readily available, large and cheap feedstock, as well as the ability to create unique carbon-
derived structures with well-developed porosity and heteroatom doping. All these positive
aspects position biomass-derived carbon materials as attractive alternatives in multiple
applications, from energy storage to electrocatalysis, via adsorption and biosensors,
among others. This review focuses on the application of phenolic resins to the production
of electrodes for energy storage and the slow but inexorable movement from petroleum-
derived phenolic compounds to biosourced molecules (i.e., lignins, tannins, etc.) as
precursors for these carbon materials. Important perspectives and challenges for the
design of these biosourced electrodes are discussed.

Keywords: biosourced, phenolic molecules, electrodes, carbon, energy storage

INTRODUCTION

Most countries have signed the Paris Agreement on climate change, with the intention of avoiding a
global temperature increase of 1.5°C above pre-industrial levels (Paris Agreement to the United
Nations Framework Convention on Climate Change, 2015). According to the IPCC report (IPCC,
2021: Climate Change 2021), the risk of not being able to slow the rate of temperature increase would
threaten human life and environmental health worldwide. This fact encourages society toward a
governmental and social movement that involves net zero emissions in the coming years. This
movement should also be accompanied by the growth of clean and renewable energy technologies. In
this context, multiple green technologies have been presented as attractive alternatives to replace
fossil fuel-based energy (Du and Li, 2019). Electrochemistry is at the forefront of this renewable
movement since most of these technologies are based on electrochemical processes and reactions
(Ganiyu and Martínez-Huitle, 2020). Fuel cells (Ganiyu and Martínez-Huitle, 2020; Sazali et al.,
2020; Neatu et al., 2021), supercapacitors (Muzaffar et al., 2019; Pomerantseva et al., 2019; Poonam
et al., 2019), batteries (Mauger et al., 2019; Xu et al., 2020; Liu et al., 2021) and electrolyzers (Abbasi
et al., 2019; Brauns and Turek, 2020), among others, are electrochemical devices that are among the
most innovative suppliers of energy and chemicals.
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Carbon materials have been proposed as excellent low-cost
electrodes for all these electrochemical devices due to their unique
properties, such as high availability, large developed porosity,
wide variety of pore size distributions, tunability of surface
chemistry, high conductivity, excellent chemical and thermal
stability, etc. (Quílez-Bermejo et al., 2020a; Castro-Gutierrez
et al., 2020; Wu et al., 2020; Yin et al., 2020). Nevertheless,
carbon materials chemistry, and carbon science in general, must
adapt immediately to the rapid changes facing our society.
Traditional methods of preparing carbon materials are often
based on thermal processing of petrochemical precursors (Liu
W.-J. et al., 2015; Titirici et al., 2015; Yahya et al., 2015; Ma et al.,
2017; Lan et al., 2021). This is a huge problem because, despite
their use in renewable technologies, most of the carbon electrodes
in these devices are still produced from fossil fuels, which does not
solve the problematic issue of polluting emissions. If the ultimate
goal is to use technologies with fully environmentally friendly
equipment, the renewable production of carbon materials is
mandatory.

A branch of carbon science and technology involves the
preparation of carbon materials from phenolic resins (Effendi
et al., 2008; Celzard and Fierro, 2020; Szczesniak et al., 2020;
Torres et al., 2021). Phenolic resins are synthetic polymeric
compounds that are obtained from the condensation reaction
of phenolic molecules with or without a crosslinking agent (Sarika
et al., 2020). Such resins are excellent precursors for carbon
materials since the selection of phenolic molecules and
crosslinkers allows excellent control of the properties of the
resulting carbon materials. Nevertheless, it is worth noting
that phenolic precursors and crosslinkers are commonly
obtained from petrochemical precursors that involve polluting
processes (European Chemicals Agency, 2021a; European
Chemicals Agency, 2021c; European Chemicals Agency,
2021d). Due to the high levels of pollution in recent years,
new renewable alternatives have been proposed to replace
petroleum precursors to produce carbon materials derived
from phenolic molecules (Nieuwenhove et al., 2020; Sarika
et al., 2020; Sternberg et al., 2021).

Biomass-derived carbon precursors are considered the only
renewable carbon source since the carbon emissions released
during thermal processing of biomass were previously
consumed from the atmosphere during biomass growth
(Forest Research 2021). This means that biomass absorbs
anthropic carbon dioxide emissions while growing and
releases them back into the atmosphere during carbon
materials production. Therefore, the carbon cycle remains
closed with zero net emissions while synthesizing a value-
added product. This closed cycle can be very useful for
preparing carbon materials derived from phenolic resins
since the phenolic and crosslinking components can be
found in nature as biomass feedstocks (Foyer et al., 2016;
Nieuwenhove et al., 2020; Sarika et al., 2020; Sternberg et al.,
2021). Biomass represents a large amount of natural reservoirs
of carbon, including agricultural crops, plants, forest residues
or materials, and industrial or domestic biowastes, among
others. The nature, composition, structure and other features
of these biosourced precursors have been widely detailed in

extensive reviews (Jian et al., 2018; Li et al., 2019; Szczesniak
et al., 2020).

In this review, we aim to summarize the most fundamental
advances in the preparation of carbon electrodes from biosourced
phenolic molecules in the quest for the non-dependence on fossil
fuels. This review does not provide a detailed overview but shows
the extensive possibilities of carbon materials derived from
biosourced phenolic molecules as electrodes for energy storage
and conversion applications.

Biosourced Precursors of Phenolic-Based
Resins
Phenolic resins, of which the best known are phenol-
formaldehyde resins, are primarily based on two main
components: phenolic and aldehyde structural units. The
phenolic units react with the crosslinkers in ortho- or para-
position, leading to a condensed product, the phenolic resin,
whose characteristics depend on phenol/aldehyde ratio, the
phenol and aldehyde precursors and the synthesis conditions,
in particular the pH (Grenier-Loustalot et al., 1994; Effendi et al.,
2008). Regarding phenolic and aldehyde precursors, it is
important to emphasize that phenol and formaldehyde are the
most common raw materials for the preparation of phenolic
resins.

The reaction mechanisms for the formation of phenol-
formaldehyde resins have been extensively studied in the
literature since their discovery in 1907, and multiple works
can be found regarding the proposed mechanisms
(Yeddanapalli and Francis, 1962; Grenier-Loustalot et al.,
1994; Pilato, 2013). The first step of the mechanism is
attributed to the formaldehyde substitution in ortho- or para-
positions in the phenolic ring, leading to the possible formation of
mono-, di-, and tri-functionalized phenol monomer, which is
thought to be mainly related to the phenol/formaldehyde ratio
during synthesis. Then, the second step of the mechanism
involves polymeric reactions between the monomeric products
through condensation processes. Such processes have been
shown to be highly dependent on pH (Pizzi and Stephanou,
1994). Under alkaline conditions, the bonds between the
monomers are based on methylene-type (-CH2-) bridging
bonds, while in neutral or acid environments, ether-type
(-CH2-O-CH2-) bridging bonds can also be found.

All the parameters that influence the synthesis are of
paramount importance to adapt the properties of phenolic
resins. The high process tunability (pH, temperature, precursor
ratios, etc.) makes them of prime interest for a wide range of
applications: aerospace industry, adhesives, coatings, and high-
yield precursors for the preparation of carbon materials, among
others (Celzard and Fierro, 2020). However, one of the main
concerns about phenolic resins is their production from
petrochemical feedstocks (European Chemicals Agency, 2021a;
European Chemicals Agency, 2021c; European Chemicals
Agency, 2021d). On the one hand, 95% of the world’s phenol
production is based on the cumene process (Zakoshansky, 2007),
which involves the partial oxidation of benzene and propylene to
obtain phenol and acetone. Benzene and propylene are highly
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polluting petrochemical raw materials (European Chemicals
Agency, 2021b; European Chemicals Agency. Propene). On
the other hand, although crosslinker-free resins exist (Celzard
and Fierro, 2020), the most common preparation of carbon
materials from phenolic molecules involves the reaction
between the phenolic groups and formaldehyde (Grenier-
Loustalot et al., 1994; Zhang et al., 2015; Foyer et al., 2016).
Unfortunately, formaldehyde is also considered a pollutant since
it is obtained from hydrocarbons such as methanol (European
Chemicals Agency, 2021a). The presence of formaldehyde in the
air can have dangerous consequences for human health
(European Chemicals Agency, 2021a).

Biosourced precursors of phenolic resins have been explored
over the last decades in the search for fully green technologies.
This section reviews the most common bio-based precursors of
phenolic molecules (lignin and tannins), including structure,
properties and role in bio-resins. Moreover, crosslinker-free
resins and bio-based crosslinker components will also be
studied in this section.

Lignin
Lignin is an amorphous 3D phenolic polymer composed
mainly of three structural units: p-hydroxyphenyl (H),
guaiacyl (G) and syringyl (S) (Figure 1). Lignin is one of the
largest components of plant matter, along with cellulose and
hemicellulose. However, unlike the other two, lignin is the only
component with aromatic properties and carbon contents
above 60 wt%, making it desirable for the development of
carbon materials (Fierro et al., 2005, 2006). Lignin is a
highly heterogeneous polymer that plants naturally produce
through the consumption of carbon dioxide followed by the
formation of carbohydrates through the photosynthesis (Hu,
2002).

As commented above, phenol-formaldehyde resins do not
necessarily involve the use of pure phenol as the phenolic
component. Lignin can serve as a substitute for phenol
molecules in these resins (Sellers et al., 2004; Hu et al., 2011;
Nieuwenhove et al., 2020). The structural units of lignin are based
on phenol-like moieties, which can interact with aldehydes in a
form similar to phenol-formaldehyde resins (Figure 1).
Assuming that lignin-aldehyde resins are formed through the
same mechanism and that the para- positions of phenolic rings in
lignin are occupied, the reaction can only take place through the
ortho- position of H and G moieties of lignin via methylene or
ether bridging bonds. At the same time, S-type groups would not

be able to interact in such crosslinking reactions (Xu and
Ferdosian, 2017; Wang Y.-Y. et al., 2020).

The main problem with lignin as a phenol-type component in
phenolic resins is its considerable molecular weight and complex,
stable structure, which results in low reactivity of the lignin feedstock.
In order to increase the reaction rate, lignin is often purified and
chemically modified by methylolation (Peng et al., 1993; Vázquez
et al., 1997), phenolation (Jiang et al., 2018) and demethylation (Song
et al., 2016; Wang et al., 2019) reactions. Without applying
modifications to the non-reactive raw structure, the use of lignin
as a phenolic component is severely hampered. After these chemical
modifications, large amounts of phenol [up to 100% of lignin-based
resins (Kalami et al., 2017)] were successfully substituted by lignin
components in phenol-formaldehyde resins (Zhang et al., 2013;
Kalami et al., 2017). Interestingly, lignin has also been shown to
react with glyoxal (as a crosslinker) to form lignin-based phenolic
resins without using phenol and formaldehyde in the formulation
(Kumar et al., 2021).

Tannin and Raw Materials Derived From
Tannin
Tannins are complex polyphenolic biomolecules found in plant
materials, especially in dicotyledonous plants. After lignin,
tannins are the second most abundant aromatic compound in
biomass, with a high carbon content. However, tannin

FIGURE 1 | Structural units of lignin monomers: p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S).

FIGURE 2 | Chemical structure of the flavonoid unit.
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composition highly depends on the plant source. High tannin
concentration has been reported in mimosa, quebracho, pine and
chestnut. Nevertheless, despite the heterogeneous nature of
tannins, these can be classified into three different groups
according to their structural units; 1) hydrolysable tannins, 2)
condensed tannins and 3) complex tannins (Gross, 1999;
Kahnbabaee and Van-Ree, 2001).

Condensed tannins (also known as flavan-3,4-diol-derived
tannins) are another important renewable substitute for
phenol in phenolic resins. The monomers of condensed
tannins is based on flavonoid units, which are formed by a
heterocyclic ring linking two phenolic rings: the A ring and
the B ring (Figure 2).

The use of tannin as a phenolic-type component has been
widely demonstrated in the scientific literature through the
formation of multiple tannin-formaldehyde resins (Amaral-
Labat et al., 2013; Pizzi et al., 2013; Lagel et al., 2014; Li et al.,
2016). Due to their phenolic moieties, these tannin-derived
substances indeed undergo the same kind of reaction
mechanisms with aldehydes. Such reactions are mainly based
on the polymerization of flavonoid units with formaldehyde
through -C-C- and -C-O-C bridging bonds (Figure 3) (Gross,
1999; Kahnbabaee and Van-Ree, 2001), similar to the original
phenol-formaldehyde resins.

Not only that, many different derivatives can be obtained
through organic reactions between condensed tannins and other
compounds. Tannins have proven to be able to react with amines
to obtain polycondensed resins (Delgado-Sánchez et al., 2017).
Some recent work shows that in alkaline or acidic solution, the
reaction mechanism proceeds through 1) the reaction of the
amine and the phenolic-type component and 2) the formation of
ionic bonds between the protonated amino groups and the

hydroxyl groups of the flavonoid structure of the tannin
(Santiago-Medina et al., 2017). Biosourced tannin resins have
also been obtained from the reaction between tannin and furfuryl
alcohol with glyoxal, a crosslinker that is much less toxic and
much less volatile than formaldehyde (Lacoste et al., 2013).

However, one of the most exciting tannin-based preparation is
the one obtained by the self-condensation of these organic
molecules (Pizzi et al., 1995; Pizzi, 2008; Basso et al., 2014).
Unlike simple phenolic molecules, condensed tannins are also
prone to self-condensation reactions through methylene or ether
bridging bonds in alkaline and acids (Pizzi et al., 1995). The
mechanism of self-condensation is well-known; tannins react
through three different reactions that are: 1) degradation of
tannins to lower molecular weight compounds, such as
catechin, 2) condensation reaction by hydrolysis of aromatic
rings, and 3) formation and reaction of free radicals in the
presence of air. This feature makes tannins one of the few
phenolic-type molecules capable of producing phenolic resins
without the presence of additional crosslinkers, leading to tannin-
only resins.

Crosslinkers
Lignin and tannins are the main substitutes for phenol in phenol-
formaldehyde resins. In the case of aldehyde components,
hydroxymethylfurfural (HMF) represents the main biosourced
alternative to replace formaldehyde (Sarika et al., 2020). HMF is
an aromatic aldehyde found in sugars, fruits, coffee, flavoring
agents and other carbohydrate polymers. It is usually synthesized
from cellulose and lignocellulose using ionic liquids and/or
organic solvents (Stahlberg et al., 2011; Zakrzewska et al., 2011).

HMF has proven to be an effective substitute for formaldehyde
in the manufacture of “green” phenolic resins, in which the

FIGURE 3 | Reaction mechanism between flavonoid units of tannin and formaldehyde.
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production of polluting formaldehyde emissions is avoided
(Zhang et al., 2016a). The use of HMF in fully “green” resins
have already been demonstrated: phenol was replaced by lignin
derivatives, while formaldehyde was substituted by HMF,
resulting in a green phenolic resin with interesting properties
in terms of thermal stability and mechanical strength (Zhang
et al., 2016b). Nevertheless, HMF is not the only biosourced
crosslinker. Other formaldehyde substitutes have proven to be
helpful for the formation of phenolic resin with excellent
properties. Among all the aldehyde-type alternatives, the role
of furfural (Oliveira et al., 2008; Zhang et al., 2020), furfuryl
alcohol (Cheng et al., 2018), glyoxal (Ramires et al., 2010) and
vanillin (Foyer et al., 2016) should be highlighted. If readers are
looking for more details on biosourced precursors to phenolic
resins, we encourage them to read the following scientific
literature (Sarika et al., 2020).

FROM PHENOLIC MOLECULES TO
CARBON MATERIALS

The high carbon content and low cost of biosourced phenolic
molecules and the resultant phenolic resins make them an
attractive alternative to petrochemical compounds for
producing carbon materials. The variety of phenolic and
crosslinking precursors (if used) and their extensive properties
make them a potential material for the production of carbons
with different chemical and structural properties, such as
porosity, carbon and oxygen content, heteroatom doping,
electrical conductivity or thermal stability. The following
section briefly summarizes the most common methodologies
for producing carbon materials from phenolic compounds and
resins.

Carbonization
The most widely used method for the production of carbon
materials is based on high-temperatures heat treatment of
precursors in an oxygen-free atmosphere. These high
temperatures promote condensation reactions of chains of
phenolic molecules or resins (Meng et al., 2006; Muylaert
et al., 2012). Prior to carbonization processes, a standard
methodology for increasing the carbonization yield is a well-
known curing process (Meng et al., 2006; Muylaert et al., 2012).
The curing process uses heat treatments at moderate
temperatures in an air atmosphere to promote crosslinking
reactions of the phenolic structure. After the pre-treatment,
high-temperature carbonization is applied (Meng et al., 2006;
Muylaert et al., 2012). This procedure consists of the thermal
degradation of carbon precursors by heating in an inert
atmosphere at temperatures above 300°C, leading to the
conversion of the phenolic matrix into highly disordered
carbon (Ko et al., 2000). Such conversion involves multiple
reactions at high temperature: crosslinking, dehydration,
isomerization and condensation (Trick and Saliba, 1995). The
mechanism of pyrolysis of phenolic resins is well established: 1)
formation of additional crosslinks, 2) scission of these crosslinks,
and 3) polycyclic aromatization (Jiang et al., 2012). As a result of

phenolic resin decomposition, water vapor, hydrogen, methane
and carbon monoxide emissions are produced during thermal
processing (Trick and Saliba, 1995).

The properties of the carbon material depend on the heat-
treatment temperature, heating rate, residence time, flow rate,
and phenolic and crosslinking precursors. As with other biomass
precursors, to achieve high carbonization yields, a rather slow
heating rate is preferable. Otherwise, rapid carbonization leads to
volatilization of most of the biomass and production of bio-oils,
and thus to low carbonization yields (Szczesniak et al., 2020).

With respect to the previously mentioned biosourced phenolic
resins, it is worth noting that tannin-derived carbon materials
have been prepared extensively through the carbonization of self-
condensed tannins and tannin-aldehyde resins (Celzard and
Fierro, 2020). The properties of such carbons have been
tailored through heating temperature, heating rate, etc., but
the non-graphitizable structure remains present regardless of
the carbonization parameters. Moreover, tannins alone have
been shown to be a promising precursor for obtaining carbon
materials with excellent properties in terms of porosity (SNLDFT =
770 m2 g−1), without requiring any additional crosslinking
procedures, thereby avoiding any additional steps related to
the formation of phenolic resins (Jagiello et al., 2019). In the
case of lignin, the properties of lignin-derived carbon materials
are also highly dependent on carbonization conditions. Lignin
has been used as a phenolic substitute in resins for subsequent
carbon materials (Simitzis and Sfyrakis, 1993; Guo et al., 2015;
Zhang et al., 2018; Castro-Díaz et al., 2019). The heat-treatment
temperature was found to be of paramount importance in the
apparent surface area of carbon materials since the same lignin
precursor shows 496 m2 g−1 at 500°C and 278 m2 g−1 at 900°C at a
heating rate of 10°C·min−1 (Rodríguez-Mirasol et al., 1993a;
1993b). This effect of the temperature is related to the
constriction of micropores when increasing the treatment
temperature at such a high heating rate (Rodríguez-Mirasol
et al., 1993a; 1993b). However, treatment at the same
temperatures at a heating rate of 2.5°C·min−1 shows the
opposite trend. The higher the treatment temperature, the
higher the apparent surface area of the carbon materials (Xie
et al., 2009), which also highlights the relevance of the
heating rate.

Hydrothermal Carbonization
Hydrothermal carbonization, also known as aqueous
carbonization or wet pyrolysis, is an alternative method for
producing carbon materials from phenolic resins under milder
conditions. The most common hydrothermal carbonization is
done under subcritical conditions, which involves thermal
treatment of a carbon precursor at temperatures between 150
and 350°C in a pressure vessel in the presence of water (or other
aqueous solvents). In this temperature and pressure range,
ionization of water occurs, which promotes hydrolysis of
organic compounds. Besides, this process can be further
accelerated by the presence of acids in the solution. The
reaction mechanisms of hydrothermal carbonization are still
contradictory because they seem to depend strongly on the
carbon precursor. Nevertheless, there is a general consensus
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that hydrothermal carbonization involves dehydration,
decarboxylation, aromatization and condensation reactions,
which govern the structural arrangement of the resultant
carbon materials, also called hydrochars (Mohamed et al.,
2017; Nizamuddin et al., 2017).

This methodology for producing carbon materials from
phenolic resins is less standard than conventional
carbonization. Nevertheless, there is a large number of
publications reporting phenolic resins-derived carbon
nanospheres (Xu and Guo, 2013), fibers (Fei et al., 2015),
ordered mesoporous carbons (Yu and So, 2019), etc., obtained
by hydrothermal method.

It is also worth mentioning that lignin and tannins are widely
used to prepare carbon materials by hydrothermal carbonization
without prior formation of phenolic resins, as these two kinds of
organic molecules can produce carbon materials with excellent
properties. Tannins are especially attractive for the preparation of
carbon materials by hydrothermal methods because they are
soluble in water. This facilitates condensation and dehydration
reactions in hot pressurized water, leading to high hydrothermal
yields near 60% (Braghiroli et al., 2014). Furthermore, this
methodology is desirable for doping with heteroatoms since
heteroatom precursors can also be introduced in the
hydrothermal equipment. Following this approach, apparent
surface areas of 500 m2 g−1 and nitrogen content above 8 at%
were obtained in tannin-derived hydrothermal carbons
(Braghiroli et al., 2015). In hydrothermal carbons derived from
biomass under mild conditions, the most common nitrogen
species are edge-type functionalities, such as imines and
amines. However, more aggressive conditions are needed to
obtain heterocyclic-type nitrogen groups, such as pyridines,
pyrroles and graphitic nitrogen (Zhuang et al., 2018). The
same principle of nitrogen doping can be used to complex
transition metals and, therefore, to form metal-carbon hybrids.

On the other hand, lignin-based carbons have also been
obtained by hydrothermal carbonization (Kang et al., 2013),
with promising hydrothermal pyrolysis yields up to 66 wt% (Li
et al., 2021). Carbon dots with photoluminescence emissions were
obtained from hydrothermal carbonization of lignin in the
presence of a small amount of hydrogen peroxide at 180°C.
H2O2 act as an oxidizing agent that functionalizes the lignin-
derived carbon domains during hydrothermal treatment (Chen
et al., 2016). The functionalization involves the formation of
oxygen groups and the creation of defects on the surface of the
carbon dots. These can act as excitation energy traps, which may
be responsible for the photoluminescence behavior (Chen et al.,
2016).

Activation
Activation processes are not strictly speaking synthetic routes to
produce carbon materials, but a promising pathway to modulate
the microporosity and nanostructure of carbon materials derived
from phenolic compounds. There are two types of activation
processes: 1) chemical activation, and 2) physical activation
(Marsh and Rodríguez-Reinoso, 2006).

Chemical activations involve the use of chemical activating
agents, such as KOH, NaOH, and H3PO4 (Marsh and Rodríguez-

Reinoso, 2006; Pérez-Mayoral et al., 2021; Pérez-Rodríguez et al.,
2021). These activating agents are mixed with the carbon
precursors, followed by thermal treatment at temperatures of
350–900°C. The mechanisms of chemical activation with KOH
and NaOH have been widely studied. KOH (or NaOH) reacts
with carbon materials at about 400°C to form K2CO3 (Lillo-
Rodenas et al., 2003). At temperatures above 700°C, potassium (or
sodium) carbonate decomposes into K2O (or Na2O) and CO2. At
this high temperature, CO2 can also interact with the carbon
matrix through oxidation of the carbon material to produce two
COmolecules. In addition, K2O or K2CO3 can also be reduced by
the carbon network to produce metallic K, leading to the removal
of carbon atoms.

Besides alkaline agents, acidic solvents can also be used during
the activation process. Although many acidic agents have been
used (Legrouri et al., 2004; Sanchez et al., 2006; Liu et al., 2011;
Gao et al., 2020), the most widely used acidic activation agent is
H3PO4 (Molina-Sabio et al., 1996; Jagtoyen and Derbyshite, 1998;
Puziy et al., 2003). H3PO4 operates by different mechanisms than
NaOH and KOH. The carbon material and acid solution are
mixed and subjected to heat treatment at temperatures between
350 and 700°C. The proposed mechanism of acid activation is as
follows: evaporation of the acidic agent leads to depolymerization
and dehydration reactions of the polymeric materials. Then, the
volatile by-products of the reaction between H3PO4 and the
carbon material decompose, releasing cavities and pores (Gao
et al., 2020). Chemical activations with acidic agents of
biosourced phenolic molecules have generated significant
developments of microporosity in carbon materials, reaching
surface areas of nearly 3,000 m2 g−1 (Fierro et al., 2008).
Nevertheless, by regulating the acid concentration, many
surface areas can also be obtained (Gao et al., 2020).

On the other hand, physical activation consists of a two-step
process: 1) carbonization of the carbon precursor, and 2) high-
temperature treatment (500–900°C) in the presence of oxidizing
agents, such as air, water vapor or CO2 (Marsh and Rodríguez-
Reinoso, 2006; Din et al., 2017; Heidarinejad et al., 2020; Pérez-
Mayoral et al., 2021). These gases consume the carbon material
creating microchannels in the carbonaceous structure. Carbons
subjected to physical activation develop a large surface area due to
the formation of micropores. Depending on the physical agent,
the microporosity can be modulated. The use of CO2 results in
narrower micropores, whereas the use of steam leads to a broader
pore size distribution with a lower content of micropores (Pérez-
Mayoral et al., 2021).

Among all activating agents, CO2 is by far the most common
in physical activations, whose reaction mechanisms have been
widely explained according to the following reaction:

CO2 + C→ 2CO

This means that the carbonmaterial reduces the CO2molecule
while the carbon material is oxidized, producing two carbon
monoxide molecules and eliminating one carbon atom from the
surface. Such physical activation has been widely applied to
obtain carbon materials from biosourced phenolic molecules
(Doney et al., 2009; Xue et al., 2011).
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Template Methods
The main limitation of the above carbonization processes is the
lack of control over the porosity of the resultant carbon materials.
Carbonization in the presence of templates is a powerful strategy
to produce carbon materials with accurate control of pore
structure and size distribution. In order to prepare carbon
materials with a well-defined pore structure, one attractive
strategy, known as hard-templating, is to replicate a template
material that already has a well-ordered structure (Muylaert et al.,
2012;WangH. et al., 2020; Xie et al., 2020; Díez et al., 2021). Thus,
the carbon precursor is deposited chemically (Jun et al., 2009) or
electrochemically (Quílez-Bermejo et al., 2020b) as the inverse
template structure, filling the pores of the pristine template
structure. For carbon materials derived from phenolic resins,
the template cannot only be added during carbonization but also
during the formation of the phenolic resins (Muylaert et al.,
2012). Therefore, porosity control can be overcome early in resin
production or during pyrolysis of carbon precursors. This
approach has been widely applied to obtain ordered
mesoporous carbons (OMCs) from biosourced phenolic
compounds (Fierro et al., 2013; Salinas-Torres et al., 2016; Xi
et al., 2020). The main limitation of this approach is the need for
an additional step to remove the template from the composition
of the material, which often involves the use of hazardous and
toxic chemicals, such as hydrofluoric acid or high concentrations
of sodium hydroxide.

The second template method, known as soft-templating,
involves cooperative assembly between an amphiphilic
templating agent and the carbon precursor. This is the most
common method for obtaining carbon materials of phenolic
origin (Szczesniak et al., 2020). In general, in soft-templating,
the templating agent consists of surfactants or copolymers and
the carbon precursor is based on phenolic precursors. The
mixture of the components and a solvent leads to a
mesophase that is heated to produce well-ordered carbon
materials. At the same time, the templating agent is removed
by heat treatment (Muylaert et al., 2012; Nita et al., 2016; Choma
et al., 2020). Compared to hard-templating, the main advantage
of this methodology is the lack of need for corrosive compounds
to remove the template from the final carbon material. After
pyrolysis at temperatures above 400°C, the soft template is
completely eliminated, releasing the porosity of the resultant
carbons.

In soft-template methods for the formation of phenolic-
derived carbons, some factors are of paramount importance,
especially the effect of pH (Meng et al., 2006; Huang et al.,
2009; Xie et al., 2011; Renda and Bertholdo, 2018). In a basic
medium, phenolic moieties are deprotonated by the action of the
OH− anions, which leads to the formation of phenolate anions.
Then, these anions interact with the surfactant. The resultant
polymer has large amounts of hydroxyl groups that strengthen
the template-resin interaction through hydrogen bonding.

These hard- and soft-templating methodologies have been
widely applied to bio-based phenolic resins. Furthermore, carbon
materials by templating directly from biosourced phenolic
molecules have proven to be an effective way to produce well-
ordered carbon materials, especially from tannins (Figure 4) and

triblock copolymers such as Pluronic® (Castro-Gutierrez et al.,
2018, 2021a; Sanchez-Sanchez et al., 2018). These ordered carbon
materials show outstanding properties not only for
electrochemical applications (Celzard and Fierro, 2020), as
discussed in the next section, but also for adsorption (Nelson
et al., 2016; Canevesi et al., 2020; Zhao et al., 2020), hydrogen
storage (Schaefer et al., 2016) or even molecular sieving of alkanes
(Castro-Gutierrez et al., 2021b). Lignin-derived ordered carbon
materials obtained by template methods have also shown
excellent properties in catalysis (Gan et al., 2019; Wang X.
et al., 2020) or adsorption (Xie et al., 2019).

Mechanosynthesis
Mechanosynthesis has emerged in recent years as a promising
methodology to simplify all the above-mentioned synthetic
protocols (Suryanarayana, 2001; James et al., 2012).
Mechanochemical synthesis has the advantage of using
mechanical forces to produce the reaction instead of using
hazardous chemicals or high temperatures and pressures as in
conventional procedures (Figure 5).

Mechanosynthesis is based on milling processes in which the
mechanical energy ofmotion is transferred to the precursor through
abundant collisions (Margetic and Strukil, 2016). Depending on the
mechanical forces, elastic or plastic deformation can be achieved
(Figure 5) (Xu et al., 2015). If the mechanical forces are not strong
enough, the kinetics transferred to the reagents only provides energy
to reduce the size of the carbon particles. However, if the energy is
high enough, the organic reactants can be chemically altered
through the cleavage of chemical bonds (Figure 5) (James et al.,
2012; Margetic and Strukil, 2016). This leads to the formation of
new bonds between reactants and, consequently, the formation of
new materials with significantly different chemical properties.
Although it is a technique primarily used for the formation of
metallic alloys, metal oxides and co-crystals, the use of
mechanosynthesis for the preparation of carbon materials has
been increasing significantly in recent years (Friscic, 2012;
Margetic and Strukil, 2016; Zhang P. et al., 2017). This is
particularly remarkable in the use of biosourced phenolic
molecules and resins. In recent years, a few very relevant works
can be found on this hot topic for lignin (Zhang J. et al., 2017; Liang
et al., 2018; Liu et al., 2019) and tannins (Zhang P. et al., 2017;
Castro-Gutierrez et al., 2018). Tannin, a templating agent
(Pluronic® F127), and a small amount of water were ball-milled
at room temperature. Interestingly, despite the absence of aldehyde,
this synthetic methodology produces a structured mesophase
through the self-condensation of tannin monomers due to the
considerable energy provided by this novel technique without
the need for hazardous solutions or compounds (Castro-
Gutierrez et al., 2018). Moreover, this synthetic procedure has
proven to be very versatile since multiple mesostructures can be
found by modifying the amount of water, surfactant, and energy
applied to themechanochemical process. After heat treatment of the
carbon mesophase, the well-ordered homogeneous pore size
distribution was still observed (Castro-Gutierrez et al., 2018).

Nevertheless, mechanosynthesis is still in the early stages of
carbon science. It holds promising prospects for the future of
phenolic resins and carbon materials. However, more
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fundamental and applicative studies are still necessary to go
further in its realization and understanding.

ELECTROCHEMICAL APPLICATIONS

Carbon materials, whose most important characteristics are high
availability, tunable porosity and chemical nature, easy of
processing, inexpensive synthesis, and intrinsic heteroatom
doping, can be found in almost every aspect and branch of
materials science, such as membranes, water treatment, optics,

aerospace industry, biosensors, energy storage and energy
conversion (Ruoff, 2018). Considering all the properties
already mentioned, carbon materials have proven to be an
excellent way to improve performance in electrochemical
applications, in the form of electrodes for electrochemical
energy storage and conversion.

This review section will focus on the significant findings and
advances in the different electrochemical applications of carbon
materials obtained from “green” phenolic compounds. This will
cover their use as electrodes in supercapacitors and rechargeable
batteries for energy storage.

FIGURE 4 |Bright-field TEMmicrographs of transverse and longitudinal views of well-orderedmesoporous carbonmaterials obtained by soft-templating of tannins
[Reprinted with permission from (Castro-Gutierrez et al., 2018)].

FIGURE 5 | Schematic representation of the ball motion inside the ball-milling and illustration of deformation and reaction in mechanochemical processes (Xu et al.,
2015).
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Supercapacitors
Supercapacitors (SCs), also known as electrochemical capacitors
or ultracapacitors, have attracted significant attention in the
energy storage field due to their superior rate capability, high
power density, fast charge/discharge rates, and long-term
durability (Sharma and Bhatti, 2010; Xing et al., 2014). These
unique properties of SCs bridge the gap between batteries and
traditional capacitors. SCs consist of two electrodes electrically
isolated by an ion-permeable separator containing an electrolyte,
where energy storage occurs by charge accumulation at the
electrode-electrolyte interface. Among the various parameters
influencing the performance of SCs, the porous structure of
the active electrodes, i.e., the pore size and specific surface
area, is of critical importance. Carbons with well-developed
porosity obtained from fossil precursors (such as mesoporous
carbons, carbon gels, nanostructured materials, etc.) have been
widely explored as electrodes for SCs. Nowadays, the fabrication
of cost-effective and high energy density electrodes using
environmentally friendly resources remains a challenge facing
material scientists worldwide.

Lignin and other natural phenolic compounds, especially
tannin and tannin-related molecules (such as phloroglucinol),
have been investigated in the reaction with an aldehyde for the
production of porous carbons derived from phenolic resins with
outstanding electrochemical performance when used as SC
electrodes (Liu M. et al., 2015; Miao et al., 2017; Vinodh et al.,
2020; Sima et al., 2021). In this regard, hierarchical structured
pore materials, incorporating ultramicropores, supermicropores
and mesopores in a carbon network, were successfully
synthesized by solvothermal polymerization of phloroglucinol
and terephthaldehyde in dioxane, followed by carbonization
(Miao et al., 2017; Vinodh et al., 2020). In these reaction
systems, dioxane acts as both a solvent and a template to
produce mesoporous domains, whereas the polymeric
phloroglucinol/terephthaldehyde units serve as self-template to
generate micropores during pyrolysis. Interestingly, the authors
(Miao et al., 2017) reported the production of porous carbons
with a high specific surface area (up to 1,003 m2 g−1) by this
strategy. The developed porosity, together with the micro-
mesopore network, provides the resultant SC electrodes
adequate specific capacitance (214 F g−1 at 1 A g−1) in 6M
KOH aqueous electrolyte, high-rate capability (154 F g−1 at
50 A g−1), and long-term cycling stability (with a capacitance
retention of 95.5% after 10,000 cycles) (Miao et al., 2017).

Further efforts in the eco-friendly synthesis of carbon
electrodes for SCs from greener, non-toxic phenolic resins
have been made by replacing formaldehyde with glyoxylic acid
or glyoxal as crosslinkers (Moussa et al., 2018; Herou et al., 2019).
For example, the synthesis of sustainable ordered mesoporous
carbons (OMCs) by self-assembly of a phloroglucinol/lignin
mixture (phenolic precursor) and glyoxal (crosslinker) in the
presence of a soft template (Pluronic® F127) has been recently
reported (Herou et al., 2019). The influence of phloroglucinol/
lignin mass ratio on the electrochemical performance of the
resultant OMC-based electrodes was investigated. The bio-
based electrode derived from 50 wt% lignin + 50 wt%
phloroglucinol showed optimal behavior with an enhanced

volumetric capacitance (90 F cm−3), twice as high as the
material prepared with phloroglucinol alone.

Self-condensation of tannins in the absence of crosslinkers has
emerged over the past decade as an environmentally friendly
approach to fabricate carbon materials with outstanding
capacitive properties and high-rate capability (Castro-Gutierrez
et al., 2019; 2021a). This particular route paves the way for the
production of green, phenolic resin-derived carbon materials for
energy storage applications with zero formaldehyde emissions.
Several micro-mesoporous carbon materials obtained from the
self-condensation of tannins by different synthetic routes have
been explored as SC electrodes with promising results. Nano-cast
OMCs based on tannin-related polyphenols (phloroglucinol,
gallic acid, catechin or Mimosa tannin) have been investigated
for electrochemical double-layer capacitors (Sanchez-Sanchez
et al., 2017a). The synthesis route consists of a one-step
impregnation of the hard template (SBA-15 silica) with the
natural phenolic molecule in ethanol, which avoids the use of
toxic solvents. The pyrolyzed carbon material achieved specific
capacitances up to 277 F g−1 (at 0.5 mV s−1) in 1M H2SO4

aqueous electrolyte, which is in the range of OMCs with
comparable textural parameters (Jurewicz et al., 2004; Tanaka
et al., 2015) but obtained from petrochemical carbon precursors,
and which require additional post-oxidation treatment to
introduce oxygenated functionalities. These surface oxygen-
containing groups increase the specific capacitance through: 1)
pseudocapacitive contributions (quinone-hydroquinone redox
reactions), and 2) improved carbon wettability and hence,
increased electrochemical active area.

Although the nanocasting approach provides good control of
the surface area and pore size of the resultant carbon electrodes, it
requires the use of harsh acids (e.g., HF) to remove the hard silica
template, which prevents the scaling-up of this methodology. A
subsequent work showed successful soft-templating synthesis of
OMCs by self-assembly of Mimosa tannin with Pluronic® F127
under mild conditions (30°C, pH 3) (Sanchez-Sanchez et al.,
2018). An additional CO2 activation step led to highly porous
carbons (specific surface area up to 1,152 m2 g−1) with a
gravimetric capacitance of 286 F g−1 (at 0.5 mV s−1) and better
capacitance retention compared to the non-activated electrode.
Although this strategy free of phenol and formaldehyde avoids
the acid leaching step (essential for hard-templating routes), long
polymerization times (three days) are needed, making the
methodology time-consuming and limiting its practical
application for SC electrode production.

Recently, a versatile water-assisted mechanochemical tannin
self-assembly method was reported for the rapid production of
phenolic resins (1 h) using Pluronic® F127 as a surfactant. By
controlling the mimosa tannin/water/F127 ratio, disordered and
perfectly ordered mesoporous carbons (DMC and OMC,
respectively) with similar physicochemical properties and
differing only in the mesoporous structure were obtained, see
Figure 6A (Castro-Gutierrez et al., 2018, 2019; 2021a). After
physical activation with CO2, which resulted in a fourfold
increase in surface area (from ca 500–2000 m2 g−1), the
resultant mesoporous carbon electrodes exhibited superior
capacitive properties with excellent rate capabilities at high
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current densities and long-term stability in both aqueous (1M
H2SO4) and organic (TEABF4) electrolytes (Figure 6B). By
scanning the hysteresis loops of nitrogen adsorption-
desorption isotherms, the role of the connectivity of the
micro-mesopore structure on the capacitive behavior has been
studied (Castro-Gutierrez et al., 2021a). A 15% higher
capacitance retention at 40 A g−1 in organic electrolyte was
obtained with DMC compared to the ordered analog due to
the more interconnected porosity of the former material, which
allows for better diffusion of large ions. Conversely, the longer
diffusion paths for small ions in 1M H2SO4 of the disordered
mesoporous structure led to a 12% lower capacitance retention at
80 A g−1 than that obtained with OMC in the aqueous electrolyte.

As mentioned above, the interfacial capacitance of the
materials can be further increased by the introduction of
pseudocapacitance, which has been the subject of intensive
research in the past decades. In addition to the surface oxygen
functionalities, the introduction of other heteroatoms (nitrogen,
phosphorous, boron, etc.) in the carbon lattice has been presented
as a promising strategy to improve the capacitive performance of
carbon electrodes derived from self-condensed-tannin. An
innovative approach is the hydrothermal carbonization of
aqueous tannin solutions, which benefits from tannin self-
condensation under basic or acidic conditions. For example, a
highly N- and O-doped carbon was prepared by hydrothermal
carbonization (190°C) of pine tannins in ammonia, followed by
pyrolysis of the resultant hydrochar at 900°C to develop the
porous structure (Sanchez-Sanchez et al., 2017b). This easy,
activation-free route to a carbon material with low
ultramicroporosity and well-developed mesoporosity, as well as
high N + O content (i.e., 24 μmol m−2), resulting in a specific

capacitance of 252 F g−1 (0.5 mV s−1) in 1M H2SO4 and a high
energy density (up to ~1,500 mA g−1).

The crucial role of N and O co-doping in carbon materials has
been demonstrated to have a positive impact for other
electrochemical applications by acting as active sites towards the
oxygen reduction reaction in fuel cells or metal-air batteries
(Quílez-Bermejo et al., 2017, Quílez-Bermejo et al., 2019;
Quílez-Bermejo et al., 2020c). Other works have also revealed
the superior capacitive properties of dual heteroatom-doped
carbon materials from aminated tannin or tannin-melamine
resins using a microwave-assisted carbonization method (Nasini
et al., 2014; Bairi et al., 2015). Following this strategy, these authors
synthesized phosphorus- and nitrogen- co-doped mesoporous
carbons from tannin crosslinked by melamine (N precursor) in
the presence of phosphoric acid (as the P source) (Fu et al., 2016).
The resultant carbonmaterials achieved specific capacitances up to
271 F g−1 in acidic (1M H2SO4) and 236 F g−1 in alkaline (6M
KOH) aqueous electrolytes, which can be explained by: 1) the
developed surface area (up to 855 m2 g−1), which plays a key role in
the electric double layer capacitive behavior; and 2) the
modification of the carbon with nitrogen moieties (specially
pyridinic-N and quaternary-N), which is responsible for the
pseudocapacitance.

In addition to the carbonization of renewable phenolic resins, the
direct thermal treatment of lignin and tannin has also been evaluated
for the production of advanced carbon electrodes for electrochemical
capacitors. A recentwork (Pérez-Rodríguez et al., 2021) used biochars
obtained as a byproduct of bio-oil production from the fast pyrolysis
of pine bark tannin as green and abundant precursors for the
fabrication of SC electrodes (Figure 7A). After activation of the
tannin-derived biochars with KOH at 650°C at different activation

FIGURE 6 | (A) Schematic representations of the synthesis of ordered and disordered mesoporous carbons (OMC and DMC, respectively) by mechanochemical
mesostructuration. TEM images and schematic porous structure of the resultant OMC and DMCmaterials. (B)Cell capacitance (Ccell) as a function of the applied current
and Ragone-like plots in aqueous (1M H2SO4) and organic (TEABF4) electrolytes. Adapted with permission from (Castro-Gutierrez et al., 2021a).
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ratios (ARs), the resultant microporous activated carbons exhibited
highly developed surface areas (up to 2,200m2 g−1) and high oxygen
content (10–15 wt%). These values explain their excellent capacitive
behavior, with a maximum electrode capacitance of 232 F g−1 (at
0.5 A g−1, 1MH2SO4) and a capacitance retention of 70% at 10 A g−1

for the most activated carbons, i.e., those obtained at ARs of 2.8 and
3.6 g of KOH per gram of biochar (TBC-K2.8 and TBC-K3.6,
respectively). This improved condition for energy storage is also
evident in the Ragone-like plots (Figure 7B): TBC-K2.8 and TBC-
K3.6 presented the highest specific energies with maxima of 5.4 and
6.7Wh kg−1 at 110W kg−1 under standard commercial mass
loadings (~10mg cm−2). From the power-energy curves, the
performance of a commercial device was extrapolated by
estimating the carbon mass to be 30% of the SC stack (Gogotsi
and Simon, 2011; Sevilla et al., 2019). Thematerials obtained from the
upgrading of pine tannin biochars provided similar behavior to that
of commercial reference SCs, showing their practical use for energy
storage. The tannin-derived activated carbons also exhibited long-
term stability, retaining 94% (at 5 A g−1) of the initial stored charge
after 10,000 cycles. Further details of the use of lignin- and tannin-
derived carbonmaterials as advanced electrodes for SCs can be found
in the following references (Espinoza-Acosta et al., 2018; Castro-
Gutierrez et al., 2020). All these results are comparable or even better
than those obtained with other biomass precursors not based on
phenolic molecules, such as the 228 F g−1 achieved in an alkaline
electrolyte by using coconut shell as carbon precursor (Mi et al.,
2012). This highlights the paramount importance of lignin and
tannin as carbon precursors for the preparation of supercapacitor
electrodes.

Despite all the above advantages of SCs, the low energy density
compared to batteries and fuel cells limits their practical
application as autonomous devices. The next section reviews
significant progress in the development of carbon electrodes
derived from phenolic compounds for rechargeable batteries.

Rechargeable Batteries
Rechargeable batteries (secondary batteries) are older
electrochemical energy storage devices than SCs on the

market. In particular, batteries are used in a wide range of
mid- and short-term storage technologies, such as electric
vehicles, portable devices and grid storage. Similar to an SC, a
battery also consists of two electrodes and an electrolyte-soaked
separator, but the main energy storage mechanism is based on
chemical reactions (redox reactions) and not on charge
separation as in electrochemical capacitors. Among the
different types of batteries, lithium-ion batteries (LIBs)
outperform other systems due to their high energy density
(180Wh kg−1), cycle stability, and design flexibility (Tarascon
and Armand, 2001). However, the uneven distribution and
scarcity of lithium resources limit the large-scale application of

FIGURE 7 | (A) Schematic representations of the upgrading of biochars obtained as a byproduct of bio-oil production from pine bark tannin as precursors for the
fabrication of SC electrodes. (B) Ragone plots of symmetrical SCs based on tannin biochars (TBCs) activated with different ratios (from 0 to 0.6 g KOH per gram of
biochar) (full symbols) and Ragone-like curves of the packaged device extrapolated by dividing the specific energy values by a factor of 3 (empty symbols). Commercial
electrochemical capacitor technologies have been included in the green zone. Reprinted with permission from (Pérez-Rodríguez et al., 2021).

FIGURE 8 | Schematic representations of a lithium-ion battery (in
discharge mode of operation) (reprinted with permission from (Xu et al., 2004).
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LIBs. Similar technologies, such as sodium-ion batteries (NIBs),
have emerged in the recent years as affordable alternatives due to
the greater availability and lower cost of sodium comparted to
lithium (Hwang et al., 2017).

In commercial LIBs, the negative electrode is typically
graphite, where lithium ions are de-intercalated during battery
discharge (spontaneous reaction, oxidation semi-reaction at the
graphite electrode) and intercalated during the charging process
(current is applied, reduction semi-reaction at the graphite
electrode) for thousands of cycles (Figure 8). While graphite
electrodes offer a suitable lithium intercalation capacity (with a
theoretical value of 372 mAh g−1), the instability of Na-graphite
intercalation compounds (NaC6 or NaC8) limits their use in NIBs
(Stevens and Dahn, 2001; Yoon et al., 2016).

Motivated by graphite’s inability to store sodium ions and the
energy transition to a sustainable economy, many groups have
focused their research on developing of green, cheap and efficient
carbon electrodes for next-generation rechargeable metal-ion
batteries. Hard (i.e., non-graphitizable) carbons have attracted
special attention as negative electrodes due to their high ability to
store more lithium ions than graphite and their suitability for
NIBs (Soltani et al., 2021; Xie et al., 2021). Hard carbons are
usually obtained from the pyrolysis of biomass waste, sugars, or
phenolic resins. Phenolic resins have recently been shown to be
more suitable precursors than commercial cellulose or lignin to
produce hard carbons for practical use in NIBs due to their high
carbon yield and reversible sodium ion insertion capacity (249
mAh g−1) (Irisarri et al., 2018). In this study, however,
commercial phenolic resins based on toxic and petrochemical
precursors were used. The abundance, low cost, sustainability and
non-toxicity of biomass make eco-friendly phenolic resin-derived
hard carbons a promising option for metal-ion batteries.

Although the development of hard carbons from green (or
partially green) phenolic resins for high-performance metal-ion
batteries is an emerging field, a few examples can already be found
in the literature involving different biosourced phenolic
molecules (tannin, phloroglucinol, lignin, etc.) and crosslinkers
(formaldehyde, furfuryl alcohol, glyoxylic acid, glyoxal) (Beda
et al., 2018; Sun et al., 2020). Interestingly, a recent work
synthesized hard carbons materials from phloroglucinol
crosslinked with glyoxylic acid for NIB negative electrodes
(Beda et al., 2018). In this environmentally friendly route,
glyoxylic acid, containing aldehyde and carboxylic acid
functionalities, acts as both a crosslinker and acidic catalyst,
which leads to the formation of a phenolic resin with shorter
curing times (Ghimbeu et al., 2015). Pyrolysis of the phenolic
resin at high temperature (1,100–1700°C) led to the production of
hard carbons with low surface area, disordered structure and
moderate carbon yields (25–35%). The materials provided a
sodium intercalation capacity of 270 mA h g−1 at a specific
current density of 37.2 mA g−1 and good stability for 40 cycles,
showing the potential of these green hard carbons for
rechargeable metal-ion batteries.

It is also worth mentioning here a very recent work in which a
hard carbon powder derived from tannin was tested as an anode
material for NIB (Tonnoir et al., 2021). This powder was obtained
by milling glassy carbon foam, itself obtained from self-generated

foaming of a resin based on tannin and furfuryl alcohol and
pyrolyzed at temperatures between 900 and 1,600°C. The hard
carbon obtained at the highest temperature showed a high
reversible capacity of 306 mAh g−1 at C/20 and a high initial
Coulombic efficiency of 87%. To the best of our knowledge, these
electrochemical performances are among the best reported in the
literature for hard carbon derived from biomass.

Other attempts to increase defects (or active sites) and
electrical conductivity of hard carbons derived from
biophenolics-based polymer networks, and hence, to improve
the sodium or lithium storage capabilities, have been made by
heteroatom doping (such as nitrogen or sulfur) of carbon
structures (Zhang et al., 2018; Huang et al., 2020). Recently,
N-doped hard carbons derived from resole and urea have been
explored for Na-ion storage (Sun et al., 2020). Porous carbons
were obtained by a co-assembly strategy using phloroglucinol/
glyoxal as the carbon precursor and urea as the nitrogen source,
whereas Pluronic® F123 was used as a soft template. The resultant
N-doped carbon electrode exhibited higher ability for sodium
intercalation with a stable capacity of 229 mAh g−1 (at
100 mA g−1) for 200 cycles, which is almost twice that of the
non-doped electrode (123 mAh g−1). The better performance of
N-doped carbon materials has been also been proven for LIBs
using hard carbons obtained by carbonizing formaldehyde-
crosslinked lignin/melamine resins at 1,000°C (Yang et al.,
2018). Nickel nitrate was used as a catalyst to induce
graphitization, and thus, to enhance the electrical conductivity
of the resultant hard carbon. When assembled into lithium-ion
batteries, the electrode containing nitrogen moieties delivered a
higher reversible lithium insertion capacity (340 mAh g−1 at
0.1 A g−1) than the N-free electrode (260 mAh g−1). In addition,
the N-doped electrode presented a capacity retention of 69%
when the current density increased from 0.1 to 1 A g−1, which is
higher than for the non-doped electrode (42%) or the N-doped
electrode synthesized in the absence of nickel nitrate (55%). This
study also reveals the long-term stability of the N-doped electrode
for 300 cycles at 0.5 A g−1. This work shows the potential of both
introducing nitrogen-containing species and creating graphitic
carbon structures to improve the electrochemical performance
for LIBs of hard carbons obtained from phenolic bioresources.

The direct use of lignin (in the absence of any crosslinker) for
the production of porous carbon-based electrodes has also been
explored for metal-ion batteries and other related storage
technologies, for example, as positive electrodes in Li-O2

batteries or primary batteries. This research field has been the
subject of recent reviews and we encourage readers to find more
details in the following references (Espinoza-Acosta et al., 2018;
Mehta et al., 2020; Baloch and Labidi, 2021).

On the other hand, porous carbons obtained by
polymerization of biophenolic molecules (tannin,
phloroglucinol, lignin) in the presence of an aldehyde or by
crosslinker-free methodologies and subsequent carbonization
have been explored for the oxygen reduction reaction (ORR),
leading to promising results (Nasini et al., 2013; Bairi et al., 2015;
Parthiban et al., 2019). These works pave the way for the
production of metal-free carbon electrodes with outstanding
catalytic properties when used as cathodes in fuel cells but
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also as positive electrodes in metal-air batteries. However, further
efforts are required for the design of green and highly active
phenolic resin-derived carbon electrocatalysts for ORR with Pt-
like performance (state-of-the-art electrodes) and with bi-
functional activity for both oxygen reduction and oxygen
evolution reactions, which plays a key role in the development
of metal-air batteries and regenerative fuel cells.

PERSPECTIVES AND FUTURE RESEARCH

Biosourced phenolic resins represent one of the most
promising alternatives to petrochemical feedstocks for the
production of carbon materials. The properties of phenolic
resins and the resultant carbon materials are highly dependent
on the precursor ratios, their nature, synthesis protocols, etc.,
making phenolic resins a critical and complex branch of
materials science. In the quest for green production of
carbon materials from phenolic resins, lignin and tannin
have proven to be the most realistic substitutes for
traditional fossil fuel-based precursors because of their
abundance in nature and high carbon content.

Throughout this review, the most essential information has
been collected and detailed, from the type of biomass precursors
to the methods of obtaining these carbon materials from phenolic
resins. Biomass precursors, and especially tannin and lignin,
possess tunable characteristics that can further enhance the
properties of these carbon electrodes through defects,
heteroatom or metal doping. Phenolic-derived carbon
materials have received much attention in recent years due to
their excellent energy storage properties in supercapacitors and
rechargeable batteries, reaching or surpassing the state-of-the-art
electrodes. The high surface area and tunability of the surface
chemistry by simple functionalization processes make them ideal

for combining large surface area electrodes with pseudocapacitive
reactions on the surface of the carbon electrodes, which can
increase the energy storage in these electrochemical devices.

A deeper understanding on carbon materials derived from
phenolic compounds is needed, with a focus on synthetic
methods and functionalization processes. Special mention
must be made here for mechanosynthesis, which has proven
to be a new synthetic route to overcome the limitations of
conventional fabrication protocols, but further research is still
needed as it is in the early stages of carbon materials preparation.

Supercapacitors and rechargeable batteries are just two devices
in which phenolic-derived carbon materials play a crucial role,
but these properties are scalable to multiple electrochemical and
non-electrochemical devices. The outstanding and tunable
properties of these carbons make them an attractive alternative
for adsorption, gas storage, fuel cells, electrochemical biosensors,
or as electrodes for electrochemical water splitting.
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Digital twins are emerging as powerful tools for supporting innovation as well as optimizing
the in-service performance of a broad range of complex physical machines, devices, and
components. A digital twin is generally designed to provide accurate in-silico
representation of the form (i.e., appearance) and the functional response of a specified
(unique) physical twin. This paper offers a new perspective on how the emerging concept
of digital twins could be applied to accelerate materials innovation efforts. Specifically, it is
argued that the material itself can be considered as a highly complex multiscale physical
system whose form (i.e., details of the material structure over a hierarchy of material length)
and function (i.e., response to external stimuli typically characterized through suitably
defined material properties) can be captured suitably in a digital twin. Accordingly, the
digital twin can represent the evolution of structure, process, and performance of the
material over time, with regard to both process history and in-service environment. This
paper establishes the foundational concepts and frameworks needed to formulate and
continuously update both the form and function of the digital twin of a selected material
physical twin. The form of the proposed material digital twin can be captured effectively
using the broadly applicable framework of n-point spatial correlations, while its function at
the different length scales can be captured using homogenization and localization
process-structure-property surrogate models calibrated to collections of available
experimental and physics-based simulation data.

Keywords: artificial intelligence, machine learning, digital twins, computational materials science, materials
knowledge systems

1 INTRODUCTION

Recent forward-looking roadmaps (Gil and Selman, 2019; Jenks et al., 2020) have identified the
development of a fully digital framework that fuses human-subject matter expertise, process and
performance modeling, experimental in-situ diagnostics, and data science algorithms as one of the
most important areas to transform manufacturing and surveillance of components throughput their
life cycle. Indeed, the digitization of product lifecycle management (PLM) has led to the emergence
and deployment of digital threads (Kapteyn et al., 2021; Niederer et al., 2021; Zeb et al., 2021) in a
broad spectrum of manufacturing industries. These digital threads collect, curate, and archive all of
the data/information generated from all stages of the product life cycle: conceptualization, design,
prototype, manufacturing, operation, and retirement (Singh and Willcox, 2018; Margaria and
Schieweck, 2019). Digital threads open multiple new avenues for fostering innovation and
improving the in-service performance of a wide range of products. A necessary feature of the
digital threads is that they encompass both the in-silico activities (e.g., model-based or virtual
engineering) and the physical activities (e.g., measurements made during the different stages of
manufacturing, testing, and operation of the product) conducted in the PLM. An important outcome
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from the deployment of digital threads is that they have opened
new opportunities for the creation and use of in-silico analogues
to the physical product. The recent advances in digital and sensor
technologies (Mei et al., 2019; Ullo and Sinha, 2020) enable the
in-silico objects to co-exist along with their physical counterparts.
In addition to mimicking the physical products, the in-silico
analogues offer unprecedented potential for consistent change
management, allowing the optimization of intentional or
unintentional product evolution over time. Therefore, within
this context, a digital twin can be defined as a high-fidelity in-
silico representation closely mirroring the form (i.e., appearance)
and the functional response of a specified (unique) physical twin.
Digital twins have thus far been used in the manufacturing and
performance evaluation of complex engineered physical systems
(e.g., turbine engines) (Tao et al., 2018; Zaccaria et al., 2018; Raj
and Surianarayanan, 2020; Lim et al., 2021; Xie et al., 2021) and/
or their components, where the focus has been largely on
capturing accurately the macroscale geometry and the
component-level performance metrics. Current digital twins do
not address adequately the capture and archival of the materials
data, which typically deals with physical phenomena occurring at
the lower material length scales (typically ranging from the
atomic to the macroscale). This disconnect is not surprising
given the siloed nature of current materials research and
product design/manufacturing communities. However, it is
abundantly clear that a successful extension of digital twins to
include the materials data/information in a comprehensive
manner can allow for a holistic co-design of material,

manufacturing process, and product in fully integrated
innovation cycles, possibly resulting in dramatic improvements
in the overall part performance.

Materials, in their own right, represent highly complex
multiscale and multi-physics systems. Their production and
in-service responses are controlled by a wide range of
phenomena occurring at length scales ranging from the atomic
to the macroscale and an equally broad range of associated time
scales. Figure 1 depicts schematically the hierarchical nature of
materials systems with examples of a wide variety of physical
phenomena that occur at the nano- and micro-scales. Clearly, the
materials phenomena occurring at the lower material length
scales play important roles in controlling the macro- and
component-scale performances of the part. In the current
research paradigm, the considerations at the component/part
scale and the material scale are studied in a mostly de-coupled
manner by different groups of researchers. The former are the
domain of mechanical designers and manufacturing specialists,
while the latter are addressed by materials science and
engineering specialists. More specifically, the field of materials
science and engineering focuses on understanding how the
different processing histories (e.g., thermo-mechanical
processing) influence the material structure (includes
information on the many aspects of order and disorder seen at
different length scales cf. Figure 1) and their associated
properties. However, understanding and quantifying accurately
the underlying process-structure-property (PSP) relationships
(Kalidindi, 2015; McDowell and LeSar, 2016) at the different

FIGURE 1 | A schematic depiction of the multiscale and multi-physics nature of material systems and their relationship with the component performance. A
comprehensive understanding of material performance requires a complete hierarchical representation of structural/chemical features, the relationship between those
features and material properties, and the mechanisms that drive their evolution either through processing or service history. All arrows represent scale bridging,
i.e., upscaling via homogenization and downscaling via localization.
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material length and time scales is quite arduous. This is mainly
because the diverse physical phenomena occurring at these scales
are necessarily related and co-dependent with one another.
Therefore, adopting a systems approach that manages the
complex trade-offs between potentially conflicting
multifunctional requirements at the different length scales
spanning across the complete range of material and product
scales would yield significant benefits.

However, this task faces many hurdles. The most significant of
these hurdles comes from the fact that the relevant data, even for a
selected single material system, is necessarily generated by
distributed teams of researchers with the requisite expertise.
For example, on the experimental front, materials data comes
from a wide range of imaging modalities (e.g., optical microscopy,
scanning and transmission electron microscopy, various
diffraction and spectroscopic techniques, X-ray tomography,
atomic force microscopy) (Belianinov et al., 2018; Polonsky
and Pandey, 2021) and property evaluations (e.g., mechanical
testing in different modes and at different spatial resolutions,
thermal conductivity, diffusivities) (Khosravani et al., 2020:;
Khosravani et al., 2021). On the modelling front, the data
comes from an equally disparate set of sources that aim to
faithfully simulate specific selected sub-phenomena at different
material length scales (e.g., density functional theory
computations, molecular dynamics, discrete dislocation

dynamics, kinetic Monte-Carlo simulations, cellular automata,
phase-field simulations, finite element models) (Horstemeyer,
2009; Panchal et al., 2013; Matouš et al., 2017). Although each
individual dataset often provides a partial insight, only a systems
approach can provide the comprehensive holistic view needed to
objectively drive materials innovation in an accelerated manner;
this is indeed the goal of many national and international
materials research initiatives [e.g., ICME (Allison et al., 2006),
MGI (National Science and Technology Council, 2011; de Pablo
et al., 2019)].

Figure 2 illustrates the large variety of data sources involved in
formulating a systems approach to understanding and optimizing
materials for desired combinations of macroscale (effective)
properties. As already noted, the datasets collected from any
one data source (refers to either a single experimental protocol or
a single physics-based simulation tool) often provides incomplete
and uncertain insights into the physics controlling the materials
phenomena of interest. At a high level, it should be recognized
that physics-based simulations are designed to provide
predictions of the material response to imposed (thermo-
mechanical) environments for user-specified physics. On the
other hand, experiments are generally designed to provide
observations of material response to specific imposed
environments, for as yet unknown (or uncertain) materials
physics. Clearly, all individual datasets (from any individual

FIGURE 2 | Modeling and experimental tools typically used to obtain relevant materials data at different length and time scales. Example of modeling tools used
include Density Functional Theory (DFT), Molecular Dynamics (MD), Accelerated MD (AMD), Dislocation Dynamics (DD), kinetic Monte Carlo (kMC), Crystal Plasticity
Finite Element Modeling (CPFEM), FEM, and extended FEM (xFEM). Examples of experimental tools used include Atomic Force Microscopy (AFM), High Resolution
Transmission Microscopy (HRTEM), in situ TEM, tomography, Scanning Electron Microscopy (SEM), Electron Backscattered Diffraction (EBSD), and mechanical
testing.
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data source) should be treated as being incomplete and/or
uncertain. However, if the insights from the datasets collected
from the different data sources can be effectively fused in a
consistent framework, it is likely to produce much more
comprehensive and valuable insights. Currently, there does not
yet exist an overarching mathematical framework for such data
fusion. The development and utilization of such a framework is
likely to open new avenues for major time and effort savings in
materials-product co-design and innovation efforts by optimally
guiding the effort investment (i.e., objectively identifying the next
best steps based on a rigorous statistical analyses of all previously
aggregated data).

As already noted, the perspectives presented above build on
multiple national and international initiatives. Specifically, ICME
(Allison et al., 2006), and MGI (de Pablo et al., 2019) have
articulated the need for increased use of computational tools
and data sciences [including artificial intelligence/machine
learning toolsets (AI/ML)] to accelerate the rate of materials
discovery, development, and deployment in advanced
technologies. Indeed, much progress has been made in
organizing and disseminating materials data (The Minerals,
Metals & Materials Society TMS, 2017), and physics-based
simulation toolsets (The Minerals, Metals & Materials Society
TMS, 2015). There has also been a strong injection of data
sciences and AI/ML into materials research, especially in
aspects related to data ingestion (e.g., experimental laboratory
automation) (Kalidindi et al., 2019), curation (e.g., ontologies)
(Morgado et al., 2020; Voigt and Kalidindi, 2021), feature
engineering (Kalidindi, 2020; Xiang et al., 2021), and
automated generation of surrogate models (Generale and

Kalidindi, 2021; Marshall and Kalidindi, 2021). These recent
advances in materials research have set the stage for the
extension and application of the emerging concept of digital
twins described earlier to include the multiscale details of the
material. This paper establishes a roadmap for the pursuit of this
goal, i.e., the extension of digital twins to include materials data
over a hierarchy of length scales. Specifically, we identify the key
foundational elements that currently exist and outline the gaps
that need to be overcome for success in this endeavor (Figure 3).

2MAIN ELEMENTSOFDIGITAL TWINS FOR
MATERIALS SYSTEMS

2.1 Physical Twin of a Material System
Digital twins of macroscale engineered components and
machines typically aim to represent a uniquely identified
single physical twin. For example, a digital twin might target a
specific turbine engine in service on an airplane. However, in
building digital twins for a material system, it becomes intractable
to consider each individual material sample as the physical twin.
This is not only because of the large number of distinct material
samples that can be produced for a nominally specified chemical
composition and processing history, but also due to the fact that
non-destructive characterization techniques are not yet mature
for evaluating both the three-dimensional structure of the
material as well as its properties of interest. Furthermore, even
with the use of destructive techniques for materials
characterization, one can only hope to establish distributions
that adequately quantify the material structure and properties in a

FIGURE 3 | The main components of the proposed roadmap for building digital twins for material systems.
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stochastic framework (i.e., accounting for the significant
uncertainty associated with these quantities for any given
material sample). Given these considerations, it is readily
apparent that the digital twins for materials systems can only
be established in a stochastic framework at the present time. In
other words, we propose here that digital twins of materials
systems should aim to produce multiple instantiations (as
many as needed) sampled from the distributions of the
possible material structure and their associated properties
(with both structure and properties defined over a hierarchy of
material length scales). Therefore, in our proposed framework, we
will associate the digital twins of the material system to the
nominal chemical composition and processing/service history
that created the material samples. In doing so, we will implicitly
define the material by the controllable details (each of which is
identified with aleatoric uncertainty) of the generative process
used to create the material samples (i.e., instantiations of the
physical twin). This, we believe, will result in a much more
pragmatic approach to building digital twins for material
systems that will have high value for the design and in-service
prognosis of engineered components and devices.

2.2 Mathematical Framework for Digital
Twins of Material Systems
The mathematical framework underpinning the digital twins for
material systems should address two main needs: (i) the statistical
quantification of the material structure over a hierarchy of
material length scales1 and its suitable representation in
practically useful low-dimensional forms, and (ii) the reliable
prediction of the material properties of interest given information
about the material structure and the processing/service history.
These tasks indeed correspond to defining the form and the
function of the digital twins for material systems. As already
noted, both these tasks need to be addressed in a stochastic
framework that rigorously tracks the uncertainty associated with
all of the available data and propagates it into the predictions of
the material properties.

2.2.1 Material Structure Representation and
Quantification
The term material structure is used here to describe the spatial
arrangement of structural and chemical heterogeneities, which
constitute a material at a specified instant of time and govern its
properties at that instant of time. For a given chemical
composition, thermodynamics predicts an equilibrium
crystallographic phase (or a multiphase mixture), and at finite
temperature, an equilibrium vacancy concentration. Yet materials
are rarely in their thermodynamic ground state. Essentially, an
overwhelming subset of the material structural features represent

metastable or unstable defects created throughout the process
history. Conventionally, material structure defects have been
classified based on their dimensionality as planar grain
boundaries, linear dislocations, and point-wise atomic
impurities; these are but the simplest examples of a myriad of
complex microstructural features (see Figure 1). The material
structure is not usually static but evolves when stimulated by
exposure to energy (thermal, mechanical, chemical, etc.).
Through state-of-the-art processing, the most perfect undoped,
isotopically pure silicon single crystals have been produced to
purity levels of >99.9999%. On the other hand, the most
sophisticated structural alloys benefit from their complex,
multiscale arrangement of the lower length scale structural
features, reminiscent of the hierarchical nature of biological
systems. Hence, the challenge for a digital twin of a material
system is to represent the necessary complexity of the inherently
high-dimensional material structure features with sufficient
fidelity to capture the relevant subset that controls the
material response of interest. Complicating matters, no single
experimental technique is capable of comprehensively digitizing
the material’s complete internal structure.

A digital twin of a material system should be able to instantiate
a representative volume of the material with sufficient statistical
sampling of all the relevant lower length-scale structural features
and their spatial arrangements. Given the roughly eight orders of
magnitude in length scales (from ~�A to ~ cms) involved, it should
become clear that such instantiations cannot be deterministic or
unique. Therefore, what is required here is the ability to produce
multiple instantiations that reflect as accurately as possible the
inherent stochasticity of the material structure for a given
nominal composition and process history. Laplace conjectured
that by knowing every atom, its position and momentum, we
could anticipate the behavior of the material (marquis de Laplace,
1814).While this statement reflects accurately the expected causal
relationship between the material structure and its associated
properties, it reflects a practically impossible pursuit. Therefore,
we take the viewpoint that the digital twin of a material system is
intended to be a minimally sufficient reduced-order
representation of Laplace’s “demon.” A tractable digital twin
of a material system should therefore utilize a versatile
(broadly applicable to all material classes and length scales)
low-dimensional representation of the material structure that
would allow efficient learning of the functional response of the
material system. Based on the earlier discussion, it is also clear
that the low-dimensional representation of the material structure
can only reflect suitably defined statistical measures at different
material length scales; henceforth, such salient statistical
measures of the material structure will be referred as features.
Because of our interest in instantiating the material structure in
our digital twins, it is important that the selected feature set
should produce realistic, sufficiently accurate, instantiations of
the material structure that can be subsequently correlated with its
functional response. This is not a trivial requirement. For
example, most of the conventionally used statistical measures
of the material structure, such as the overall alloy composition,
phase volume fractions, and the averaged grain sizes are woefully
inadequate for producing the required instantiations of the

1In PSP linkages, one associates a material structure to an instant of time. The
structure is then assumed to be responsible completely for the properties exhibited
by the sample. In any imposed process, the structure is assumed to evolve with
time. When the structure evolves, its associated properties are also expected to
evolve.
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multiscale material structure for our digital twins. More advanced
approaches involving a richer set of microstructure statistics (e.g.,
orientation and mis-orientation distributions, grain aspect ratio
distributions) have led to concepts such as statistically equivalent
representative volume elements (McDowell and LeSar, 2016;
Ghosh and Groeber, 2020). Some of these concepts have also
been implemented in open-source codes such as DREAM.3D
(Groeber and Jackson, 2014; Ghosh and Groeber, 2020).

A comprehensive and systematic framework available today
that is capable of providing the requisite feature engineering
capabilities for the material structure is the framework of n-point
spatial correlations (Torquato and Stell, 1982; Torquato and
Haslach, 2002; Fullwood et al., 2010; Niezgoda et al., 2011;
Adams et al., 2012; Niezgoda et al., 2013). In recent work,
Kalidindi and co-workers (e.g., Kalidindi, 2015) have
developed and demonstrated an efficient and broadly
applicable computational framework and toolsets for
addressing this task. Broadly referred as Materials Knowledge
Systems (MKS), this framework takes advantage of the
computational efficiency of voxelated representations and Fast
Fourier Transform (FFT) algorithms to implement the theoretical
framework of n-point spatial correlations. The feasibility and
benefits of this approach have been demonstrated on a wide
variety of material classes and material structures at different
length scales [from the atomic (Gomberg et al., 2017; Kaundinya
et al., 2021) to dislocation length scales (Robertson and Kalidindi,
2021a) to microscale (Generale and Kalidindi, 2021)].

At its core, MKS defines and utilizes a material structure
function (Kalidindi, 2015) that maps a selected combination of
spatial position x ∈ Ω (the physical volume of the material
domain) and a local material state h ∈ H (includes
information such as phase identifiers, chemical compositions,
lattice orientations, defect densities) to suitable measures (e.g.,
density) that reflect the intensity of h at x. Mathematically, one
can express this function as m(h, x). Implicit in this definition is
the expectation that H needs to be identified suitably to capture
the complete set of material states of interest at the different
material structure length scales. Features of the material structure
can then be defined as expectations of suitably scaled moments of
m(h, x). For example, the expected value of m(h, x) over Ω can
provide a set of 1-point features that can be interpreted as the
volume fractions of h in Ω (Kalidindi, 2015). Similarly, the
expected value of m(h, x)m(h′, x + r) over Ω can produce a
set of 2-point features that can be interpreted as the joint
probability of realizing h at x and h′ at x + r, where r denotes
a specified vector separating the two spatial points randomly
selected from Ω. Although, one can define higher-order features
(e.g., 3-point features), one often finds a sufficiently large number
of features in the 2-point feature set, as it includes all
permutations of (h, h′) over a very large domain of r (this
domain includes all distinct set of all vectors of interest that
can be placed inΩ). The adequacy of the set of 2-point features in
capturing the salient features of the material structure (including
the set of features identified in conventional practices in materials
science and engineering) has been established for a broad range of
material classes (Latypov et al., 2019; Generale and Kalidindi,
2021) as well as the different structure length scales (Fullwood

et al., 2010; Robertson and Kalidindi, 2021a; Kaundinya et al.,
2021) encountered in them.

The MKS framework described in Figure 4 produces a very
large number of features, even when using only the 2-point
feature set. For extracting a low-dimensional feature set, one
needs to use a suitable dimensionality reduction technique. Of the
various options for this task, principal component analysis (PCA)
has been found to be particularly attractive. First, it allows for an
unsupervised learning of the salient low-dimensional features
based on maximization of captured variance. Therefore, it
identifies a consistent set of features that can be used across
multiple PSP surrogate models, allowing for full interoperability
among collections of such models. In other words, since the
salient features are identified without the knowledge of the
specific targets (i.e., outputs) of the surrogate model, they can
be used for different targets (for example, in the predictions of
very different properties of a given material system). Second, the
PCA basis can be inspected and interpreted to a limited extent,
allowing for the low-dimensional features to be associated with
some (limited) physical meaning. Third, since PCA essentially
involves a rotational transform of the original space, it preserves
distances between datapoints in the original space. Finally, the
orthogonal decomposition involved in the PCA allows for
practically useful reconstructions of the full feature list, i.e., a
reconstruction of the high-dimensional feature list from the low-
dimensional feature list. Of course, these reconstructions are
approximate because of PC truncation. However, since the PC
representations are maximized to capture variance, it is possible
to make sure that the approximation introduced by the
truncation is within acceptable tolerance. The PC scores
obtained from the application of PCA on an ensemble of 2-
point feature sets (one set corresponds to one material structure)
serve as a highly effective low-dimensional feature set for the
material structure in our digital twins. There exist a multitude of
other options for dimensionality reduction of the feature space,
such as isomap or kernel PCA. However, the nonlinear
embeddings employed in these techniques can introduce
distortions into the latent space that negate the benefits of
PCA identified above (Hu et al., 2022).

As stated earlier in Section 2.1, the physical twin is not defined
as a single instantiation of a material structure, but rather as the
outcome of a stochastic generative process that yields
instantiations that we then observe. The MKS framework
described above provides a mathematically compact
representation using computationally efficient tools. However,
many tools (e.g., phase-field simulations, micromechanical finite
element models) only take specific instantiations of the material
structure as inputs. Therefore, successful creation of digital twins
for materials requires the ability to move between statistical
representations of material structure and their three-
dimensional physical instantiations at low computational cost.
While the computation of 2-point spatial correlations from
instantiations is relatively easy (Cecen et al., 2016), the inverse
computation is not trivial. Very recently, it has been shown that
the three-dimensional material structures can be instantiated
from their 2-point feature sets with minimal computational
cost (Robertson and Kalidindi, 2021b). As a result of the
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many advantages described above, the MKS framework along
with its open-source code repository PyMKS (Brough et al., 2017)
offers a powerful, currently available, toolset for addressing the
challenges of building digital twins of materials systems.

It is also noted that there are a number of other options based
on neural networks that allow one to combine feature engineering
and property prediction into a single-step framework. These
approaches offer attractive avenues when one is interested in a
limited number of properties as targets. If one insists on de-
coupling the form and function of the digital twins (as we have
argued here), then it is imperative to pursue feature engineering
of the material structure independently from establishing
property predictors (discussed in the next section). In this
context, it should be recognized that the autoencoder-decoder
networks (Herr et al., 2019) offer an interesting option. These
networks do address the unsupervised feature engineering of the
material structure. Therefore, the features identified from such
networks can then be input into other neural networks for
property predictions. This idea represents an open research
avenue that merits further exploration.

2.2.2 Predictions of Material Properties
Reliable prediction of the effective properties of a given material
sample is a challenging task. At a high level, the main options are
to either measure experimentally the properties of interest or to
leverage known physics (often delivered in physics-based
simulation packages) to estimate their values. Both approaches
face hurdles when one desires to produce amultiscale, digital twin
for materials. On the experimental front, the effort and cost
involved in measuring all of the properties of interest along with
the related information (e.g., anisotropy, variances) over the

multiple material length scales of interest are often prohibitive.
On the modelling front, there is substantial uncertainty in the
model forms and/or parameter values used in the physics-based
models. It is therefore clear that neither approach by itself is
optimal in getting us the requisite information. In this regard, the
recent emergence and successful application of materials data
analytics tools has opened up new avenues for addressing
these gaps.

Recently (Kalidindi, 2015; Kalidindi, 2020), it has been argued
that process-structure-property (PSP) linkages can be defined
over different material-structure length scales to capture the core
knowledge needed to study multiscale material responses. It is
argued here that the same PSP linkages can be utilized to predict
the functional response of the material digital twin. This is
because the PSP linkages can be used to update both the
changes in the multiscale material structure due to the
imposed service conditions (using suitably defined process-
structure evolution linkages) but also their associated
properties (using structure-property linkages). The required
PSP linkages need to be formulated using available data that
might often be disparate, incomplete and/or uncertain. Most
importantly, the framework for predicting the function of the
material digital twin should allow easy (and possibly frequent)
updates as new data becomes available. It is also likely that one
needs to chain together multiple PSP models in order to make the
predictions of the function of the material digital twin.

A Bayesian framework has the potential to address scale-
bridging with uncertain physics. The proposed Bayesian
framework will be described next using the structure-property
(SP) linkages as an example. However, they will be formulated
such that they can also be easily applied to capturing process-

FIGURE 4 | The MKS workflow for feature engineering of material structure. In this example, we start with microstructures belonging to three distinct classes
(corresponding to vertical, horizontal, or random ellipses), with one example of each class shown on the left. Their corresponding 2-point features are shown in themiddle
and reflect a large number of statistics (including volume fractions, size and shape distributions) for each microstructure. The low-dimensional representations of the
microstructure statistics are shown on the right, in the subspace of the first two PC scores. The clusters in the PC plots successfully classify the microstructures in
the three classes. The intra-class variance between microstructures within each class can also be quantified from the PC representations.
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structure linkages (PS). Typically, SP linkages are formulated to
take structure variables as inputs and predict property values as
output. The mapping implied in these linkages can be expressed
as P � F(μ), where P is a property variable and μ denotes a
vector of structure features (e.g., the PC scores of the 2-point
feature set described in Section 2.2.1). Both P and μ should be
treated as stochastic variables. This naïve definition makes the
governing physics implicit in the formulation of F . It would be
much more desirable for SP linkages to explicitly treat the
governing physics as additional input variables to the
mapping, i.e., to refine the desired mapping as P � F(μ,φ),
where φ denotes the governing physics. In practice, φ would
represent a vector of parameters defining the physical
mechanisms controlling the response of the material physical
twin (e.g., parameters used in constitutive modeling of the
material response). This refinement is advantageous in two
ways. Firstly, it allows one to treat φ as a stochastic vector
variable, which often exhibits a significant amount of
uncertainty for a selected material physical twin. Secondly, it
allows for the uncertain physics to be passed between linkages.
This is particularly useful for the multiscale phenomenon that
occur in material systems, as the uncertain physics learned in one
length scale can still be utilized at another length scale. An
example of this scale-bridging is depicted schematically in
Figure 5. The first linkage estimates the indentation yield
strength (effective property) of a single grain given the grain’s
orientation (structure variable) and critically resolved shear
strengths (physics variables). The second linkage estimates
the bulk yield strength (property) given the two-point
statistics of the grain orientations (structure variables) and
the same critically resolved shear strengths (physics
variables). Since the physics variables in these two linkages
are the same, the uncertain knowledge of the physics variables
extracted in the grain-scale data (could come from
experiments and/or simulations) can be upscaled and
utilized in making predictions of the effective properties at
the polycrystal scale.

In establishing the material physics parameters, one has to
exploit all of the available data, collected from disparate
sources (e.g., experiments and physics-based simulations).
Machine learning of φ for a selected material physical twin
can be accomplished using a Bayesian update strategy
expressed as:

p(φ|E)∝p(E|φ) p(φ) (1)
where E denotes the set of available experimental observations,
p(φ) is the prior (reflecting our best initial guess), p(E|φ) is the
likelihood of realizing the observations in E, and p(φ|E) denotes
the updated posterior on φ. Although Eq. 1 looks very simple, its
practical usage for learning the controlling physics in multiscale
material phenomena has been hindered by several factors. First,
only the physics-based simulation tools that faithfully mimic the
experiments performed to obtain E can allow for the computation
of the likelihood term in Eq. 1. This is because only these tools
allow arbitrary specification of the governing physics φ. However,
a brute-force application of physics-based tools for computing the
likelihood is prohibitively expensive because of the extremely
large number of simulations one needs to perform to accomplish
this task since it entails performing simulations covering a large
domain of likely governing physics for all of the experimental
observations in E. Second, the proportionality in Eq. 1 implies
that one needs to develop and implement a suitable strategy for
establishing the proportionality factor. Recent work (Castillo
et al., 2021) has demonstrated that it is possible to train AI/
ML models on simulation results produced by physics-based
models, which can then be used to compute the likelihood term in
Eq. 1. Furthermore, they would also allow for the implementation
of Markov-Chain Metropolis-Hastings (MCMH) approaches for
sampling the posterior in Eq. 1 without explicitly computing the
proportionality factor. It is important to note that the posterior
estimate of φ is not restricted to come from any single source of
data. As an example, let us consider the situation where the data
becomes available from different test modes (these could be
indentation tests and micro-pillar tests for grain-scale

FIGURE 5 | Schematic illustration of the scale-bridging between the response of an individual grain and the response of a polycrystalline aggregate. At the grain
scale, the structure-property linkage is formulated to take grain orientation (structure variable) and critical resolved shear strength(s) (CRSS; physics variables) as input
and predict the overall property of interest (e.g., indentation yield strength of grains of different orientations). This linkage is used with both experimental and modeling
datasets to extract a posterior on the CRSS for a given material system (see Panel 6 for more details). At the polycrystal scale, the structure-property linkage is
formulated to take the 2-point spatial correlations of orientation (structure variables) and CRSS (physics variables) to make a prediction of the bulk (effective) yield strength
of the polycrystal (c.f., Paulson et al., 2017).
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mechanical measurements). In such situations, we need to
establish different surrogate models for each test mode. Let P1 �
F(μ,φ) and P2 � F(μ,φ) represent such surrogate models.
Since the underlying microstructure and physics variables have
the exact samemeanings in bothmodels, one can use bothmodels
with their respective experimental datasets for sampling a
consistent posterior for φ. Once the posterior is established,
one can establish the desired SP linkage in a stochastic
framework by marginalizing as:

p(μ∣∣∣∣E) � ∫f(μ,φ)p(φ∣∣∣∣E)dφ (2)

As noted above, the practical implementation of Eqs 1, 2
needs the establishment of suitable AI/ML surrogates. These
usually take the form F(μ,φ), and can be accomplished using
Gaussian Process Regression (GPR). The central advantage of
the proposed strategy here is that the formulation of the needed
AI/ML models is generally a one-time effort. In other words,
when these are properly designed to cover large input domains
in the space of the controlling physical parameters and the space
of relevant material structures, they only need to be performed
once [examples can be seen in prior work (Castillo and
Kalidindi, 2019; Castillo et al., 2021)]. This feature allows for
a relatively low-computational cost update of the surrogate
model as new experimental data becomes available. It is also
possible to suggest new experiments that maximize the potential
for improving the accuracy of the predictions (i.e., reducing the
prediction uncertainty). This is most efficiently accomplished
using established concepts of information gain such as the
posterior predictive variance (Castillo and Kalidindi, 2019;
Castillo et al., 2021; Castillo and Kalidindi, 2021), expected
improvement (Solomou et al., 2018; Takhtaganov and Müller,
2018; Talapatra et al., 2018; Ghoreishi and Allaire, 2019), and
expected information gain (Pandita et al., 2019).

An example application of the proposed Bayesian approach
methodology is depicted in Figure 6, taken from the work of
Castillo et al. (2021). In this example, the information from
spherical indentation measurements on individual grains in a
polycrystalline sample and the corresponding simulations using
crystal plasticity finite element models are combined to establish
distributions on the unknown values of the critical resolved shear
strengths of four different families of potentially active slip
systems in a selected Ti alloy. The approach described in this
study resulted in at least one order of magnitude savings in both
the overall cost and effort expended, when compared to the
conventional approaches that employed small-scale testing to
obtain the same information.

2.3 Cyberinfrastructure for Digital Twins of
Materials
Cyberinfrastructure supports the acquisition, storage,
management, and fusion of data within a collaborative, but
distributed, research environment. The creation of a robust
cyberinfrastructure is critical to the realization of a digital
twin, as digital twins exist at the confluence of multiple
disparate data streams (e.g., simulation data, experimental
data, real time sensor data). These data streams present
challenges in managing both the variety and volume of data
ingested, as well as any associated metadata needed to ensure high
utility of the data for future use. Challenges in the variety of data
come from themultimodal nature of materials data,meaning that
the data in question stems from a variety of data sources (e.g.,
different imaging or analysis modalities). For example, materials
data can take many forms: scalar parameters (e.g., diffraction line
profile), time series (e.g., fatigue response), and spatially resolved
(2-D and 3-D) image data (e.g., SEM image, tomography scan),
and each modality is accompanied by its own unique forms of

FIGURE 6 | An example application of the Bayesian update strategy for the fusion of experimental and simulation datasets from indentation of a-Ti grains in a
polycrystalline sample (Castillo et al., 2021).
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metadata that describe pre-process, in-process, and post-process
information. Challenges in the volume of data stem from
advancements in acquisition resolution and high-throughput
experimental capabilities (hyperspectral imaging, x-ray
computed tomography, etc.). For example, it is now
commonplace to collect a large ensemble of images with high
spatial resolution at a high frame rate using a variety of
microscopes (e.g., optical, scanning electron, transmission
electron), producing gigabytes-to-terabytes of observations of a
single material (Dingreville et al., 2016). Similarly, expanded
computational resources and multiscale modeling capabilities
can also generate large amounts of data related to a material’s
response to variety of environments (de Oca Zapiain et al., 2021).
The main challenge lies in collecting and curating this large
collection of heterogeneous data into the high-value information
needed for the creation of a digital twin.

2.3.1 Data Sources
Material structure measurements capture the state of the material
before, during, and after evolution, and material property
measurements quantify various characteristics of evolution
(e.g., resistance to evolution, evolution rates). The constellation
of methods used to measure material structure and properties is
extensive, and here we only mention two general trends. First, the
digital data stream is becoming more entrenched in the
instruments used to measure material properties. Just a
generation ago, material structures were documented on film
and quantification was performed by manual measurements; lab
instruments utilized strip-chart recorders that created an analog
graphical representation of the data. Now, not only have data
streams become digitized, but increasingly, the data collection
instruments are networked and remotely accessible. Yet
significant concerns remain regarding the cyber vulnerability
of both the data and the instrument, and institutional
regulations regarding interconnectivity are highly disparate.
Second, with the continuing advances in measurement sensors,
data transfer, and data storage, the data streams are becoming
increasingly dense, requiring thoughtful strategies for intelligent
data reduction. Additionally, unconventional datasets, collected
with alternative low-cost methods are proving to have utility.
Previous trends in measurement science have focused on
increases in precision and accuracy of data. Now, the focus is
shifting to affordable high-density data streams that can provide

similar or complementary information content to the existing
suite of ultra-precise measurements.

The external stimuli (e.g., thermo-chemo-mechanical loading)
driving material structure evolution need to be tracked through
the use of suitable sensors. Sensors generally transduce various
forms of energy (Table 1) into electrical signals that can be
transformed into digital data. The transduction can also involve
intermediate forms of energy, e.g., magnetic or optical. All forms
of sensing have limits in resolution, range, accuracy, and
precision. The fidelity of the digitized resolution of the
external stimulus captured by the sensor is limited by the
accuracy of the correlation of the electrical signal to the
intensity of the imposed stimulus, and the bit-depth of the
stored information. The fidelity of an environmental
measurement can also be limited by the temporal and spatial
resolution of the sensor. Sensor arrays allow for spatial mapping
of a field (e.g., temperature field on a sample surface) of interest,
with the spatial resolution limited by the spacing between
individual sensors in the array. Alternately, one can acquire
such information using a single sensor and rapidly scanning a
region of interest; this strategy will lead to some degree of
temporal disregistry between individual measurements.

2.3.2 Data Management (Ontology, Data Software
Platforms)
The high volume and high variety of materials data quickly
outpaces rudimentary data organization techniques typically
used by humans (project specific folder structures, ad hoc
organization or note taking). We therefore require more
sophisticated data management tools to manage the storage
and organization of the materials data relevant to the digital
twin. In their most basic forms data management tools act as
simple data repositories, centralized locations where data is held
and made accessible to others. However, simple data repositories
do not necessarily provide a systematic scheme for the
organization of the data or metadata therein. Digital twins
require the establishment of standards and protocols to
catalogue, vet, compare, and use data reliably and credibly in
automated (and possibly autonomous) protocols (Kalidindi and
De Graef, 2015; Sorkin et al., 2020). Consequently, data
management solutions for digital twins should aim to at least
meet FAIR data principles: Findability, Accessibility,
Interoperability, and Reusability (Wilkinson et al., 2016). FAIR

TABLE 1 | Example of energy forms that drive changes in material state and the transducers employed to observe the corresponding exposure history.

Stimuli Application examples Sensor examples

Mechanical Vibration, Shock, Sound/Phonon, Stress, Strain Strain gauges, piezoelectric, magnetostrictive, eddy current, accelerometer, capacitive
Electrical Current, magnetic fields Voltage sensors, current sensors, resistance sensors, power sensors hall-effect sensors, giant

magnetoresistance sensors, fluxgate sensor
Radiant
Energy

Gamma, X-ray, UV, Infrared, Visible light, Microwave,
Radio waves

Photoresistors (LDR), photodiodes, phototransistors, charged-coupled devices, gamma ray
detectors, microwave sensors, CMOS detector

Thermal Convective, conductive, latent Thermocouples, RTDs, Thermistors, infrared, semiconductor sensors
Chemical Gases, liquids, solids, ions, isotopesetc. Hygrometer, gas sensor, pH sensor
Nuclear Neutron, Beta, Alpha, Proton Gas-filled proportional detectors, ionization chambers, Geiger-Mueller tubes, scintillators, solid-

state detectors
Gravitational weight See mechanical sensors
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data should have: (1) globally assigned, rich, searchable metadata
with a unique persistent identifier and clear provenance; (2)
standardized communication protocols for data storage and
retrieval; (3) consistent, widely utilized, non-proprietary
standards employed for data formatting. Data repositories
generally only meet the most basic aspects of FAIR—namely
accessibility. Materials databases progress further towards FAIR
principles by providing greater searchability. Databases allow
users to construct and carry out complex queries to search for
information, and therefore improve searchability. However, their
searchability is generally limited to tabular data. Furthermore,
databases are also generally limited in their interoperability and
reusability. In particular, they are not well suited for the materials
data needed for digital twins as there is no natural way to describe
the relational connections between disparate materials data (e.g.,
temporal variations along process paths, nested composition
relationships, multimodal data describing single sample).

In order to truly realize FAIR data principles for materials
data, we need to adopt emerging software tools in ontologies and
linked data. Ontologies for data management are an open-world
framework where we construct a standardized language to
connect and describe objects. There currently exists many

standardized languages used to describe ontologies such as
OWL (McGuinness and Van Harmelen, 2004), RDF (Lassila
and Swick, 1998), or JSONLD (Sporny et al., 2014). These
languages all describe data in subject-predicate-object triples
where we link the subject and the object through some rule
(the predicate). One way to capture this information is through
the formation of knowledge graph consisting of nodes (subjects,
objects) and edges (predicates). Knowledge graphs allow for easily
understood visual depictions of metadata, and for the application
of emergent graph-based AI toolsets for the automated
identification of new connections between aggregated elements
of a complex heterogeneous dataset.

A recently proposed materials ontology (Voigt and Kalidindi,
2021) shown in Figure 7A can prove valuable in our effort to
collect and curate the data needed for a materials digital twin.
This ontology consists of four primary classes of entities (denoted
by circles) that can serve as subjects or objects: Process, Material,
Tool, and Data. A total of nine predicates (denoted by arrows)
have been defined to link these objects. Process nodes hold
information about process parameters, tool nodes describe the
settings and characteristics of machines, and data nodes hold the
payloads of interest (images, tabular data, etc). A material node

FIGURE 7 | (A) The constitutive elements of a recently proposedmaterials ontology (Voigt and Kalidindi, 2021). The four main elements are Material (blue), Process
(yellow), Tool (purple), and Data (orange) are shown in different colors along with the allowed connections between them. (B) An example of a knowledge graph
constructed using the ontology.
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describes the state of the material along a nominal process.
Therefore, every time an action is taken on a material, we
produce a new material node. This allows us to easily
associate data with a point along a process path. As an
example, a given steel (Material) produced after a specified
thermo-mechanical processing route (Process) can be studied
in a microscope (Tool); the results of the study are captured in a
file (Data). Figure 7B depicts an example knowledge graph for a
steel. The process begins with a generic low carbon steel node
(seen at the bottom of the knowledge graph). It then undergoes a
standard annealing step to get a uniform starting material, and
proceeds through a specialized intercritical annealing and quench
steps to its final form (labelled as 750-00-000 in the knowledge
graph). Along the processing route shown, we are able to connect
the various data/metadata collected. For example, it is seen that
both the starting material and the final material have associated
SEM images. The final material also has a datasheet generated
using a known software package (defined by a Tool node) which
took a known load-displacement curve (defined by a Data node)
as input. Ontologies allow us to systematically capture
interconnected materials data and allow for the context of a
dataset to be robustly described and communicated, thus
enhancing the reusability of the data.

2.3.3 AI Tools
There currently exist several software packages than can be used
to support the mathematical framework proposed in Section 2.2.
For structure quantification PyMKS (Brough et al.) offers
computationally efficient tools for the feature engineering of
material internal structures. PyMKS supports various data
transformations needed to capture information on a wide
range of material local states encountered in different material
classes at different material structure length scales. PyMKS
utilizes Dask, a distributed framework for developing python
applications, to facilitate computations involving large datasets
on supercomputers and large clusters (Rocklin, 2015).
Subsequent to feature engineering, surrogate model building
can be accomplished via a wide variety of popular python
packages; examples include Statsmodels (Seabold and Perktold,
2010) for basic statistical models, SKLearn (Pedregosa et al., 2011)
for machine learning tools, PyTorch (Paszke et al., 2019) and
TensorFlow (Abadi et al., 2016) for neural networks/deep
learning tools.

AI tools support digital twins beyond the needs of the
mathematical framework alone. AI based segmentation
strategies have gained traction, and Bayesian CNNs have
recently been used to characterize the segmentation
uncertainty in materials images (LaBonte et al., 2020). AI tools
have also been effective in fusing multimodal materials data.
Multi-input NNs have proven effective in combining data from
multiple sources and different data types. For example, numeric
and categorical data, assessed via multi-layer perceptron
algorithms can be directly combined with image-based
convolutional NNs (Azim and Aggarwal, 2014). While data
streams are typically experimental, it can sometimes be
beneficial to integrate high-fidelity simulation data from
traditional high-performance computing approaches (e.g.,

atomistic modeling, phase-field, finite element) to augment
“missing” experimental data or to represent functional
dependencies/sensitivities that were not exposed in the
experimental datasets. For instance, well-established
experimental methods such as diffraction measurements are
being implemented into computational models as a
complement of the interpretation of experimental results
(Coleman et al., 2014; Kunka et al., 2021). Alternatively,
researchers have recently used generative machine learning
algorithms such as generative adversarial network (GAN) to
generate large materials and process libraries (Banko et al., 2020).

3 APPLICATIONS

The ability to use a digital twin to provide an accurate picture of
the corresponding physical twin at any given point in time is
expected to significantly improve the guidance to subject-matter
experts towards rational (and optimized) material/process
improvements. Additionally, predictions of component
performance can drive upstream changes in design or
manufacturing process. To date, the development of detection
and prognosis-driven planning strategies has largely focused on
tuning individual process parameters such as temperature or
materials composition for example, despite the urge to devise
efficient strategies for the selection of multiple interdependent
variables to substantially accelerate and improve scientific
discovery. Digital twins open up new opportunities to enable
such strategies and accelerate autonomous experimental design
and exploration. Autonomous experiments are emerging in
materials research leading to the acceleration of materials
design and discovery (Nikolaev et al., 2016; Correa-Baena
et al., 2018; Hase et al., 2018; Häse et al., 2019; Pendleton
et al., 2019; Gongora et al., 2020). The idea is to integrate
automation with some form of machine learning or artificial
intelligence framework to accelerate experimentation or to guide
and discover the next set of experiments. Most of the work to date
is dedicated to materials discovery, i.e., autonomously predict and
synthesize materials with targeted properties. For instance,
Nikolaev et al. (2016) presented a closed-loop iterative method
that automatically analyzes experimental results from carbon
nanotubes grown from chemical vapor deposition to design or
alter the next set of growth experiments to best reach a designated
design target growth. Expanding autonomous loops to
encompass more complex workflows will require the
integration of the digital twin elements described in Section 2
with the automation of expert decisions. One interesting direction
is to use the digital twins as a tool to autonomously test hypothesis
during an experimental design. In this case, the practitioner
would simply state the Process, Material, Tool, and Data and
have the automation process decide whether the hypothesis is
supported or refuted in order to decide on the potential next set of
experiments. In this context, each automated trial would be
guided by the knowledge collected and curated by the digital twin.

One particular application domain of interest for digital twins
is the material/process exploration in additive manufacturing,
with origins in rapid prototyping. There are extensive model-
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based simulations of the additive manufacturing process, ranging
from powder packing through the entire laser-matter interaction
and solidification process that can be taken as input into the
Bayesian update strategy described in Section 2.2.2. The range of
physical considerations in this process are daunting. In addition
to these process models, there are complementary and similarly
extensive set of structure-property models. Currently, a
comprehensive digital representation of the entire spectrum of
governing equations is beyond the state-of-the-art. A digital twin
composed of many surrogate models utilizing the Bayesian
update strategy could be formulated to optimize the
parameters of these models for use in material design as well
as process optimization.

4 CONCLUSION

Digital twins of the components in devices have enabled the in-
service monitoring, prognosis, and design of complex systems.
This work proposes both the conceptual framework and the
cyberinfrastructure required to extend the concept of digital
twins to the material level. Digital twins for materials provide
a statistical in-silico materials representation of both structure
and performance. The proposed framework consists of a
materials representation based on n-point spatial correlations
and PCA, a performance prediction framework centered around
a two-step Bayesian framework, and a cyberinfrastructure that
leverages new material ontologies for the management of

multimodal materials data. Together, these foundational
elements offer new opportunities for the extension of current
digital twins to include important details of the material over a
multitude of material structure length scales (from themacroscale
to the atomistic).
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High Temperature Composites From
Renewable Resources: A Perspective
on Current Technological Challenges
for the Manufacturing of Non-Oil
Based High Char Yield Matrices and
Carbon Fibers
Maurizio Natali, Marco Rallini, Luigi Torre and Debora Puglia*

University of Perugia, Civil and Environmental Engineering Department, Materials Engineering Center, Terni, Italy

During last decades a plethora of high temperature materials have been developed to work
as a Thermal Protection System (TPS). Carbon based materials such as graphite, which
possesses low density, high heat capacity and high energy of vaporization, have been
used as TPS material. However, graphite has relatively poor mechanical properties, but
exhibits low resistance to the thermal shocks. Accordingly, to bypass the limitation of
graphite, carbon fibers are typically introduced in a carbon matrix to produce Carbon/
Carbon Composites (CCCs). Among the different families of TPS solutions, Polymeric
Ablative Materials (PAMs), produced combining high char yield matrices - mainly phenolic
resins - and Carbon Fibers (CFs) are used to manufacture Carbon/Phenolic Composites
(CPCs) i.e. the most important class of fiber reinforced PAM. Carbon fibers are traditionally
produced from Polyacrylonitrile (PAN), Rayon and Pitch. Some limited researches also
aimed to use cyanate-esters, bismaleimides, benzoxazines matrices in combination with
ex-PAN-CFs, ex-Rayon-CFs, and ex-Pitch-CFs. In our paper, after covering the science
and technology of these state-of-the-art fiber reinforced TPS materials, a review of current
challenges behind the manufacturing of new, high char yield matrices and carbon fibers
derived from alternative precursors will be provided to the reader. In particular, the
possibility to produce CFs from precursors different from PAN, Rayon and Pitch will be
reported and similarly, the technology of non-oil based phenolics, bismaleimides, cyanate-
esters and benzoxazines will be discussed. The effect of the use of nanosized fillers on
these matrices will also be reported. More in detail, after a preliminary section in which the
state of the art of technologies behind carbon/phenolic composites will be covered, a
second part of this review paper will be focused on the most recent development related to
non-oil based phenolics and biomass derived carbon fibers. Finally, an outlook focused on
the maturity of the lab-scale protocols behind the researches at the base of these non-
traditional raw materials from an industrial point of view will conclude this review paper.

Keywords: thermal protection system (TPS), carbon/phenolic composites (CPCs), solid rocket motors (SRMs),
traditional and non-oil based high char yield polymers, traditional and non-oil based carbon fibers (CFs)
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INTRODUCTION

During last decades, a plethora of high temperature and Thermal
Protection System (TPS) materials have been developed and
optimized for different applications. TPS materials are used to
manufacture propulsion systems, such as liquid rocket engines,
Solid Rocket Motors (SRMs) and, more recently, Hybrid Rocket
Motors (HRMs) (Sutton and Biblarz, 2000). They are also used to
manufacture the heat shields which protect probes and vehicles
during the hypersonic flight through an atmosphere (D’Aelio GF,
1971). In addition to Refractory Metals (RMs) and Ultra High
Temperature Ceramics (UHTCs), carbon based materials such as
graphite, which possesses high heat capacity and high energy of

vaporization, have been widely used as TPS material. However,
even though graphite has a substantially lower density than RMs
and UHTCs, it has the drawback to possess relatively poor
mechanical properties and to exhibit problems in terms of
resistance to thermal shocks. Accordingly, carbon fibers are
typically introduced in a carbon matrix to produce Carbon/
Carbon Composites (CCCs) (Fitzer and Manocha, 1998).
These materials are used in the throat region of SRMs which
is exposed to the harshest conditions generated by modern
aluminized propellants and where the heat flux easily exceeds
~1,000W/cm2 (Koubek, 1971). Among TPS materials, Polymeric
Ablative Materials (PAMs) possess the highest versatility in terms
of properties tunability. Ablation is a self-regulating heat and

FIGURE 1 | Typical nozzle assembly of a solid rocket motor. In this figure it is possible to see the complex structure of all components of the nozzle assembly of a
SLBM Poseidon C-3 first stage. The item indicated in figure as 1-5 are made of carbon/phenolic composites (from Ellis, 1975, credit NASA).
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mass transfer process in which the incident thermal energy is
dissipated through a sacrificial material which undergoes
endothermic degradation reactions.

In general, among PAMs, composite materials are produced
combining high char yield matrices with high performance fibers.
To this purpose, in order to produce high char yield and
performance composite formulations, many researches aimed
at use matrices such as cyanate-esters, bismaleimides,
benzoxazines in combination with different types of fibers
(silica, glass, carbon, etc.). Each type of fiber is optimized to
work in a certain hyperthermal environment (Natali et al., 2016).
Unfortunately, a series of problems - mainly related to the costs
and the processing - tends to hinder the use of these matrices. As a
result, the data available on literature on the use of these matrices
are very limited. Phenolics are the most important resins used to
produce high char yield and performance composite
formulations. Consequently, Carbon/Phenolic Composites
(CPCs) are the most studied and versatile class of fiber
reinforced PAMs. Due to their high mechanical properties,
high thermal resistance, low density, Carbon Fibers (CFs) are
the most important class of reinforcements for high char yield
composites. Carbon/phenolic composites are used to produce
many parts of a nozzle (such as the cowl in a submerged
configuration or the exit cone) since the erosive phenomena
are smaller as compared to the throat region.

Figure 1 reports the exploded view of the Submarine
Launched Ballistic Missile (SLBM) UGM-73 Poseidon first
stage (Ellis, 1975). It is possible to identify thermoset based
PAMs such as the carbon/phenolic composites known as MX-
4926 (Natali et al., 2016) that will be discussed in details in
Section 3. Moreover, through the use of a series of carbonization,
graphitization and re-impregnations cycles, carbon/phenolic
composites are converted into carbon/carbon composites
(Fitzer and Manocha, 1998). Depending on the re-entry or
flight conditions, carbon/phenolic composites are also used to
manufacture the heat shields of re-entry objects; as an example, a
carbon/phenolic composite was used to manufacture the heat
shield of the Galileo probe which entered in the Jupiter
atmosphere and underwent one of the highest heat flux ever
recorded (~30,000 kW/cm2) (Milos, 1997). For these reasons,
carbon/phenolic composites are virtually the most important
class of TPS materials. One of the last efforts of NASA to
systematically investigate high temperature composites has
been done within the Next Generation Launch Vehicle
(NGLV) program (Smith, 2019). In this framework, the
development of out-of-autoclave processing techniques for
carbon/phenolic composites has also been faced. However, for
over 60 years, space agencies such as National Aeronautics and
Space Administration (NASA) spent millions and substantial
efforts to investigate carbon/phenolic composites (Natali et al.,
2016). Moreover, hundreds of papers and reports on carbon/
phenolic composites have been reported and made readily
available mostly through the NASA Technical Reports Server
(NTRS). In the next sections we will first provide an introduction
to the raw materials used to produce high temperature
composites i.e. the matrices - mainly focusing the attention on
phenolics - and the carbon fibers (ex-PAN, ex-Rayon, ex-Pitch).

Then the efforts of our survey will be focused on non-oil based
phenolics and carbon fibers derived from biomass, also
highlighting the current limitations and the potential of these
renewable raw materials.

AN INTRODUCTION TO TRADITIONAL
HIGHCHAR YIELD POLYMERICMATRICES

Due to the high temperature properties of carbon, the creation of
a carbonaceous residue - char - on the surface of the ablated
material is essential (Allen, 1958). In fact, carbon possesses a high
heat capacity and high energy of vaporization combined with
high heat of ablation. In this case, the PAM is based on the use of
charring precursors. When the matrix is exposed to a non-
oxidizing hyperthermal environment and it is not subjected to
mechanical erosion, it is converted into a charred layer obtained
from the carbon atoms present in the molecules of the organic
precursor (Schmidt, 1968a; Schmidt, 1968b; Schmidt, 1971;
D’Aelio GF, 1971; Wen et al., 1971); the carbon based-residue
can still partly operate as a binder of the fillers used in the
formulation of the ablative. In addition with their superb thermal
stability and char yield, phenolics have a remarkable dimensional
stability due the high density of highly aromatic rings in the
molecular structure of these resins (Schmidt, 1968a; Schmidt,
1968b; Schmidt, 1971; D’Aelio GF, 1971; Wen et al., 1971). Once
the polymeric binder is charred it works as thermal insulator for
the virgin matrix. Different precursors have been evaluated as
binders of PAMs but, among common matrices, phenolics
remain the most versatile infiltrants. In fact, in addition to
phenolic matrices, other high char yield polymers have been
evaluated as binders of high temperature composite (Schmidt,
1971; Pilato et al., 2008; Vincent, 1971; Lurie et al., 1971; Marks
and Rubin, 1971; Dickey et al., 1969; Minges, 1971). Among
them, it is worth to mention cyanate-esters, bismaleimides, and
benzoxazines (Natali et al., 2016). However, when compared to
phenolics, they generally tend to exhibit limitations mainly in
terms of processability and costs - they are typically one order of
magnitude more expensive than phenolics. For these reasons,
most of efforts of these review paper on the non-oil based high
char yield matrices will be focused on phenolics.

Phenolics
Phenol-formaldehyde resins are synthetic polymers obtained by
the reaction of phenol and formaldehyde. The molar ratio
between these two organic compounds and the acidity (or
basicity) of the environment in which they are allowed to
react can lead to various and versatile families of phenolic
resins (Gardziella et al., 2013). Heat reactive phenolic resins
known as resols are obtained under basic conditions, and the
molar ratio between formaldehyde and phenol can vary from
equimolar to values in excess of formaldehyde. On the other
hand, when less than an equimolar amount of formaldehyde to
phenol is maintained under acidic conditions, a novolac resin is
obtained. In general, when compared to other polymers in which
the chemistry of the cure is based on a single main process, the
crosslinking of phenolics is very complex and involves a wide
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series of competing reactions which are deeply influenced by
experimental conditions. An additional factor that complicates
the chemistry of the cure of phenolics is due to the possibility to
obtain crosslinking reaction by either or both the ortho- and
para-positions of the phenol. As a result, depending on the
position of the functional group and as a function of the steric
spacing in which the molecules can intertwine, a wide number of
isomeric products having different reactivity is created.

Resols are readily cured mainly by acid aiders or thermal
conditions. The polymerization is a poly-condensation reaction
where the oxygen atom in the formaldehyde molecule reacts with
a hydrogen atom on each of two phenol molecules. Water is the
product of the reaction. The two phenol molecules are then joined
by the residual carbon atom in the formaldehyde (Askeland,
1996). Methylene links connect phenol rings along with methoxy-
type ether links produced during the initial reactions that are still
present due to shielding from subsequent heating conditions, and
phenoxy-type ether links occasionally formed between adjacent
phenol hydroxy groups. In both cases, the ether groups are
vulnerable to dehydration or oxidation. Post-curing at
temperature higher than 200 °C will remove all the ether links
as formaldehyde is generated (Lee, 2007). The mechanism of cure
for novolac involves benzoxazine intermediates that are
converted into benzyl amines, amides/imides, imines, methyl
phenol, benzaldehyde. Curing reaction of novolac with
hexamine results in a polymer network, especially when
sufficient hexamine is available for full cure and reaction of all
available novolac sites. Hexamethylenetetramine (HMTA or
hexa) is by far the most important curing agent for novolac:
typically, about (5–10) % of hexamine is added to novolac. When
heat is applied to novolac, the hexamine added to the uncured
resin decomposes, enabling the production of methylene bridge
bonds to form the crosslinked structure. (Smith and Hashemi.
2006). Complete cure of phenol-formaldehyde resin leads to a
polymeric material characterized by high elastic modulus, high
crosslink density, moderately high glass transition temperature;
the material exhibits excellent moisture, electrical and heat
resistance (Smith and Hashemi. 2006; Kim et al., 1997). The
dimensional and thermal properties of phenolics are widely
covered in (Natali et al., 2016).

Cyanate-Esters
Cyanate esters (CE) matrices consist of a variety of bisphenols as
well as phenolic novolac resins with the cyanate (-O-C=N)
functional group appended to the phenolic hydroxyl
(Hamerton, 2012; Hamerton and Hay, 1998). Chemically
speaking, this family of thermo-setting monomers and their
prepolymers are prepared by reacting the phenolic containing
materials with cyanogen halide to form the resulting cyanate ester
in the presence of a base (Hamerton and Hay., 1998). At elevated
temperatures cyanate esters convert to a thermoset polymer via
cyclotrimerization to form three-dimensional networks of
oxygen-linked triazine (or cyanurate) and bisphenyl units
called poly (cyanurate) s (Hamerton and Hay, 1998). The
cured polymer exhibits high Tg, excellent mechanical
properties, heat resistance, low volume shrinkage, and low
water absorption (Pilato, 2010).

Bismaleimides
Bismaleimides monomers are usually synthesized from maleic
anhydride and an aromatic diamine and then, the resulting
bismaleamic acid is cyclo-dehydrated to a bismaleimide resin
(Bibin & Reghunadhan Nair, 2014). The double bond of
maleimide is very reactive and can promote chain-extension
reactions. When bismaleimide is heated above 200°C, a
polymerization by an addition mechanism with the formation
of a cross-linked network occurs. A basic catalyst such as
diazabicyclooctane or 2-methylimidazole can be used to
polymerize bismaleimides by an anionic mechanism (Sillion,
1996). or, Bismaleimides can provide a higher service
temperature than epoxies maintaining epoxy-like processing
glass transition temperatures in excess of 260°C and a
continuous-use temperature of 200–230°C. These matrices
mainly find applications in high-performance structural
adhesives for high temperature application (Bibin &
Reghunadhan Nair, 2014).

Benzoxazines
Benzoxazines can be considered as a novel type of phenolic resins,
even though they differ from traditional phenolics, because the
phenolic moieties are connected through the formation of a cyclic
structure from the phenolic hydroxyl to the ortho position
[–O–CH2–N(R)–CH2–] rather than a methylene [–CH2–]
bridge associated with traditional phenolics (Ning & Ishida,
1994; Takeichi & Agag, 2006; Blyakham et al., 2001; Ghosh
et al., 2007). The molecule of monomer consists in oxazine
ring (a hetero-cyclic six-membered ring with oxygen and
nitrogen atom) attached to a benzene ring. There are several
benzoxazine structures that depend on the position of the
heteroatoms. Benzoxazines can be readily produced by a
combination of a phenolic derivative, formaldehyde, and a
primary amine and any combination of them can be used.
Like epoxies and cyanate esters, both monomers and
oligomeric benzoxazine materials are available by reaction of
bisphenols or novolac with primary amines and formaldehyde
(Cortopassi, 2012). Polymerization occurs through the ring
opening of the cyclic component by heat treatment with or
without catalyst and, without the generation of by-products/
volatiles. In addition to flame retardant properties and high
heat resistance, the material exhibits characteristics that are
not showed in traditional phenolic resins, such as low water
absorption (Ishida, 2011).

FIBER REINFORCED COMPOSITES AS
POLYMERIC ABLATIVE MATERIALS

Many matrices have been tested in PAMs but, among common
polymers, phenolics resins still remain the preferred and most
widely used charring binders. An important example of a
phenolic resin used to produce PAMs is the SC-1008 (Hexion,
2015b). This resin has been used in many of the phenolic based
composite formulation. The SC-1008 resin is a resol diluted in
isopropyl alcohol whit a solid content close to (60–64) % and a
viscosity of (180–300) mPas.
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Even though matrices such as phenolics possess a carbon yield
higher than 50%, the residual char of the polymeric precursor is a
relatively weak medium. When the polymer is converted into
char a substantial amount of heat is absorbed by the degradation
processes and the char works as a heat sink. However, the char i.e.
the residue of the organic precursor can be removed by the high
pressure and temperature of the combustion products of solid
rocket motor propellants or by the interaction with the
atmosphere gases during the re-entry flight (Allen, 1958). As a
result, since the polymeric matrix needs to be combined with
some reinforcement. Once converted into a carbonaceous
residue, the retention of the charred matrix is then promoted
and consequently the ablation process can proceed effectively -
the material can continue to endothermically absorb heat.

When compared to reinforcements made of refractory oxides
(such as glass or silica fibers), in not oxidizing conditions, carbon
based filaments tend to possess lower density and a substantially
higher ablation resistance (Natali et al., 2016). Different
precursors have been generally used to produce carbon fibers:
CFs are typically produced from Rayon, Polyacrylonitrile (PAN),
and Pitch (Rossi & Wong, 1996). Since the introduction of fibers
also helps to anchor the charred material on the virgin region
which is undergoing pyrolysis, the delamination phenomena tend
to be mitigated. A fiber with a high thermal conductivity tends to
increase the in-depth penetration of the charring phenomena and
consequently a wider degradation of the bonding capability of the
virgin matrix. If the pyrolysis gases cannot escape, the fibers can
suffer severe in depth de-bonding or pull-out from the matrix

(Allen, 1958). In fact, entrapped pyrolysis gases in the charring
matrix can cause pore pressure build-up, and also produce a wide
series of erosion phenomena such as ply lift, sub-char ply
separations, pocketing, etc. (Schmidt. 1968a). These erosion
processes can significantly affect the performance of the PAM.
Moreover, the reinforcements embedded in the composite
material also undergo many endothermic processes. As an
example, carbon fibers can also undergo sublimation (Natali
et al., 2016). Accordingly, fibers should possess the lowest
thermal conductivity and the highest heat capacity.

The virtually most important carbon/phenolic composite used
in rocketry and to manufacture nozzle components is Cytec MX-
4926 (density 1.45 g/cm3) (Minges, 1971; Koo, 2006; Cortopassi,
2012; Cortopassi et al., 2009, Hexion, 2015a). It consists of 50 wt%
carbon reinforcements, 35 wt% phenolic resin (Hexion SC-1008)
and 15 wt% carbon black which help to reduce the shrinkage of
the resin pocket, due to the carbonization and loss of volatiles
from the matrix. During the firing of the motor (Mathis &
Laramee, 1970), the inner layers of the nozzle wall start to
char (Figure 2A, in red) dramatically reducing the local Inter
Laminar Shear Strength (ILSS) (over 90%); as a result, the
structural integrity of the nozzle wall is enabled by the virgin
portion (Figure 2A, in green) of the overlapping fiber layers. The
charred part does not contribute to the structural integrity of the
nozzle wall which is subjected to ply-lift (Figure 2B). Depending
on the combustion time, every design and layout of the fibers have
to keep into account the fact that a certain portion of the carbon/
phenolic composite wall has to be left virgin to avoid the failure of

FIGURE 2 |Charring phenomena within the nozzle of a solid rocket motor. (A) Ply-lift of a carbon/phenolic composite. (B) Post burning appearance of a composite
segmented submerged nozzle assembly and phenomena of erosion. (C) It is possible to also evidence the portion of the throat made of MX-4926 (image produced
starting from an image taken from (Mathis & Laramee, 1970), credit NASA).
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the nozzle. That’s the reason why it is imperative to have carbon/
phenolic composites with the highest ILSS and the lower thermal
conductivity. The part of throat evidenced in the circular red area
of Figure 2C is completely charred as compared to other portions
of the same part which still possess a certain level of virgin
material - as resumed in Figure 1A. In Figure 2C, the triangular
part evidenced in red is the portion that does not possess any
virgin material and thus is completely removed.

Moreover, different researchers reported the effect of the use
of nanostructured phenolic matrices (Natali et al., 2016; Natali
et al., 2012; Rallini at al., 2017; Natali et al., 2011a;, Natali et al.,
2011b) on the ablation resistance of the derived carbon/phenolic
laminates. Among these researches, some efforts were
successfully spent to identify special fillers or chemical
modifiers aimed at improve the ILSS of carbon/phenolic
composites (Yeh et al., 2006; Lyashenko et al., 2013;
Abramovitch et al., 2015; Wang et al., 2006; Wolf et al., 2012;
Srikanth et al., 2010).

An Introduction to Carbon Fibers for
Polymeric Ablative Materials: Rayon vs.
Polyacrylonitrile Precursors
NASA and other US agencies spent decades to study carbon/
phenolic composite materials. On the base of these studies, most
of the European countries and US allied in the pacific area such as
South Korea and Japan set up their corresponding efforts to
produce high temperature carbon/phenolic composites. Randy
Lee at NASA Marshall Space Flight Center (MSFC) carried out
the most comprehensive investigation on the effect of the use of
different carbon fibers for carbon/phenolic composites [Lee,
2009; Lee, 2010; Lee, 2014.]. In these papers, the benefits and
demerits of ex-Rayon based Carbon Fibers (R-CFs) - which are
typically used to produce carbon/phenolic composites and
carbon/phenolic composites - and common ex-
polyacrylonitrile (PAN) based Carbon Fibers (P-CFs) -
i.e., T300-like fibers which are typically used to produce high
performance Carbon/Epoxy Composites (CECs) - were
highlighted.

Pitch-based CFs were also evaluated as fibers to produce high
char yield composites. However, Pitch based carbon fibers possess
a thermal conductivity too high so tend to promote in depth
charring (i.e. pyrolysis of the resin) and hence are not suitable to
produce carbon/phenolic composites (Rossi and Wong, 1996).
P-CFs, however, have been evaluated as alternative reinforcement

for nozzle insulators for more than 20 years with NASA, Air
Force, and Navy funding. Thermal conductivity of P-CFs, a
critical performance property, was found to be adjustable by
varying the carbonization temperature. A comparison of thermal
conductivity for various carbon fibers is reported in Table 1
(Towne, 1989). By dropping carbonization temperature below
1400°C, P-CFs thermal conductivity values can be reduced to
about one-half of standard P-CFs (T300-like), but are still two to
three times the value of R-CFs.

Due to the intrinsic properties of Rayon based carbon fibers
(Lee, 2010; Lee, 2009; Lee, 2014), the ILSS properties for R-CF-
based laminates are much higher than P-CF based counterparts.
However, P-CFs represent most of the carbon fiber production
worldwide and many suppliers of R-CFs have ceased production,
also due to the increasingly stringent environmental constraints
[https://parkaerospace.com/our-company]. As a result, over the
past 30 years, new cellulose based R-CFs had to be qualified for
the production of carbon/phenolic composites (Lee, 2010; Lee,
2009; Lee, 2014). Below, the history of R-CFs in US and Europe
will be covered in detail.

Most launch vehicle based on SRMs originally relied on R-CFs
produced by North American Rayon Company (NARC) (Mills,
2008). But environmental and economic challenges resulted in
NARC stopping the production of Rayon fibers in 1998. In
November 2002, Snecma Propulsion Solide (SPS, France)
announced that FiberCote (now known as Nelcote, a
subsidiary of Park Electrochemical, US) would be SPS’s
exclusive marketer and distributor of Raycarb C2 carbonized
Rayon fabric in North America, Asia and Israel and SPS’s global
partner for Raycarb C2™ ablative grade prepregs (Berdoyes et al.,
2005; Peake et al., 2006; Peake et al., 2007). The new grade R-CFs
known as Raycarb C2™ fiber cloth is currently used by large firms
in US and France (as an example, in the Ariane and Vega
programs). The Raycarb C2™ is stocked in the US and France.

However, since Raycarb C2™ is manufactured in Europe, the
launch vehicle systems in the United States depend on foreign
sources. It would be helpful to report the text of one Small
Business Innovation Research (SBIR) call for proposal released
by the US Missile Defense Agency (MDA) in 2016. In particular
the topic entitled “Rayon Replacement for High Temperature
Materials” (MDA16-020) [https://www.sbir.gov/node/1188777.]
reported: “Rayon-based fibers continue as the industry standard
for ablative and non-ablative insulators in applications such as
nozzles and reentry vehicles. In recent decades, environmental
constraints have limited availability since rayon is no longer
domestically produced. Many aerospace programs have
stockpiled heritage material or utilize foreign sources. This
topic focuses on domestically available replacement materials,
such as structural or ablative insulators, with performance
properties comparable to or exceeding rayon based high
temperature composites. In order to address domestic supply
issues, many manufacturers have used Polyacrylonitrile (PAN)
fibers as reinforcement for high temperature composites.
However, PAN based fibers do not have the same thermal
properties as rayon based fibers, and some PAN based
materials have exhibited aging issues. New fibers, such as
cellulose based fiber, have demonstrated properties very

TABLE 1 | Thermal conductivity values of carbon fibers derived from different
precursors. From (Towne, 1989).

Precursor Thermal conductivity
(W/mK)

Rayon derived carbon fibers ~4
“Standard” (T300-like) derived PAN carbon
fibers

~22

Low fired derived PAN carbon fibers ~12
“Standard” Pitch derived carbon fibers ~20
High modulus Pitch derived carbon fibers ~120
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similar to rayon in the carbonized form. The thermal conductivity
of carbonized rayon fiber is close to 5 W/mK and on the order of
1 W/mK for some rayon based composites. Other precursor fibers
may also provide a viable domestic source for high temperature
composites. Utilization of new fiber precursors could significantly
decrease thermal conductivity of ablative and/or structural
insulators. In addition, new fiber based architectures (braids,
weaves, etc.) could improve mechanical and thermal
properties. Efforts should demonstrate the feasibility of
producing either structural or ablative insulator components
(valve components, nozzle components, etc.) with improved
thermal properties. Process technologies should be appropriate
for modest production volumes, be repeatable, and offer
significant potential for enhancing performance properties
while improving producibility”. A careful reader would
immediately understand that Department of Defense (DoD)
agencies such as the MDA are struggling to overcome the
problems due to the procurement of carbon fibers for PAMs.
As a result, the US government promoted the evaluation of new
cellulose based fibers as a replacement of Raycarb C2™. Lyocell, a
cellulose-based fiber like Rayon that is manufactured using an
environmentally-friendly process, has been evaluated as a
replacement of traditional Rayon derived carbon fiber (Gasch
et al., 2016; Gradl & Valentine, 2017). The product, marketed
under the trade name Tencel, is produced in Mobile, Alabama
and Lenzing, Germany. Lyocell (Wu and Pa, 2002; McCorsley,
1980; Lenz et al., 1994), which has been commercialized under the
trademark of Tencel, is a new 100% cellulosic fiber spun from
wood or cotton pulp in a closed amine oxide solvent system, a
unique, environmentally friendly production process. Lyocell
showed to be an excellent candidate for making high
performance carbon fibers (Wu & Pa, 2002; McCorsley, 1980).
Due to the increasing importance of Lyocell-like fibers in the
production of carbon/phenolic composites, section will provide
more details on the science and technology of cellulose based
carbon fibers.

However, in order to bypass the procurement problems
related to R-CFs, some P-CFs were qualified as a replacement
of R-CFs (Williams &Murray, 2008). It was noted that P-CFs are
readily available and used extensively for composite fabrication in
the aircraft industry. These fibers exhibited low erosion, good
char integrity, and thermal stability. According to Canfield et al.

(Canfield & Koenig, 1989), in general, P-CFs based carbon/
phenolic composites erode less, char deeper and weigh more.
P-CFs based carbon/phenolic composites are more thermally
stable, char cracking and spallation is minimized. P-CFs based
carbon/phenolic composites also exhibit low thermal expansion,
high purity, and uniform erosion. Because of their good erosion
properties, (T300-like) P-CFs should be considered as candidates
for high erosion areas, such as the throat and entrance sections. In
2005, Alliant Techsystems (ATK) (now Northrop Grumman
Innovation Systems, NGIS) reported a series of delamination
issues on one of their program to produce SRM nozzle
components based on P-CFs (Orion Stage I Vectorable Nozzle
Separations, 2005). Mills and coauthors (Mills, 2008; Mills et al.,
2011) indicated that a carbon/phenolic composites made of
common (T300-like) P-CFs and a SC-1008 matrix could be
manufactured with properties that met the characteristics of
the R-CFs based carbon/phenolic formulations, such as MX-
4926, thereby establishing a new source of composite materials
for ablative nozzle fabrication and/or military applications. This
conclusion was reached in part by using the method of
photomicrography to compare the micro-crack densities of
specimens cut from R-CFs/SC-1008 and P-CFs/SC-1008
composite plates.

Moreover, with the aim to produce a carbon fiber with a
reduced thermal conductivity - as compared to the values of
standard P-CFs - and consequently, able to mimic the values of
R-CFs, special low-fired stretch-broken P-CFs have been
developed. In fact, in addition to the low thermal conductivity,
due to the intrinsic properties of Rayon-based carbon fibers
(Natali et al., 2016; Lee, 2010; Lee, 2009; Lee, 2014) such as
high surface roughness, and chemical affinity with phenolics, the
Inter Laminar Shear Strength (ILSS) properties of R-CF-based
laminates are much higher than P-CF based counterparts (Lee,
2010; Lee, 2009; Lee, 2014). Aerojet’s experiences with low-fired
stretch-broken P-CFs began in 2001 with a material called
Lewcott LR1406 (Williams & Murray, 2008). The test results
showed that the Lewcott LR1406 has performance characteristics
that are comparable to the R-CFs based carbon/phenolic
composites. Other studies confirmed these results (Katzman
et al., 1994). Thus, a new generation of carbon/phenolic
composites made from the so called Naxeco® 3D
reinforcement (Berdoyes et al., 2011), impregnated with a high

FIGURE 3 | Through section microscopy image of a carbon/phenolic composite based on PAN derived fibers. (A) Through section microscopy image of a carbon/
phenolic composite based on Rayon derived fibers. (B) (from [Nasa Grant NAGS-545, 1988], credit NASA).
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char yield matrix (a phenolic resin) using the Resin Transfer
Molding (RTM) process has been developed and flight validated
by SPS in the Ariane five program. Unfortunately, both due to
their dual use nature, materials such as the Raycarb C2™ as well
as the Naxeco® 3D are available only to the large US and French
players. In fact, most of these state-of-the-art aerospace-qualified
R-CF-based carbon/phenolic composites (such as the MX-4926)
as well as the low thermal conductivity PAN-CF-based-carbon/
phenolic composites (such as the LR-1406 (Williams & Murray,
2008; Shields, 1976) or the LR-1750) are restricted under
International Traffic in Arms Regulations (ITAR) which
controls the export and import of defense-related material
(Cortopassi, 2012; Martin, 2013) and so it is extremely
difficult to produce a review paper on this topic.

To summarize, at this point of the researches on T300-like
P-CFs based carbon/phenolic composites, it can be concluded
that most of the problems related to the delamination issues of
these high temperature composites can be dramatically mitigated
acting on: 1) the composition of the high char yield matrix; 2) the
processing parameters of the curing cycle in terms of
temperatures, heating rates, length of the plateau, as well as
pressure applied during the consolidation of the composite
material; 3) the removal of the by-products of the reaction of
the phenolic matrix. The following section will help to

understand the reason why the difference among PAN derived
carbon fibers and Rayon based counterparts can influence the
properties of the final carbon/phenolic composites. This section
will also help to further understand the reason why many
researches are focused on new non-oil based cellulose derived
fibers such as the Lyocell.

Carbon Fibers for Polymeric Ablative
Materials: Role of the Polymeric Precursors
on the Mechanical Properties of Carbon/
Phenolic Composites
It has been reported as the longitudinal tensile strength of
carbonized P-CFs laminates is in general 4/5 times higher
than the corresponding of composites made with R-CFs (Rossi
and Wong, 1996; Lee, 2010). Indeed, the tenacity of isolated
P-CFs is only 2/3 times higher than R-CFs, but because Rayon
derived fibers are crimped along their lengths during the fiber
manufacturing process, the tensile strength of the corresponding
laminates is then reduced. Moreover, the Young modulus of
isolated PAN derived carbon fibers can be 6/10 times higher than
the values of R-CFs (Rossi & Wong, 1996; Lee, 2010). As a result,
in the in-plane direction, P-CFs-based laminates tend to be
significantly stronger and significantly stiffer than R-CFs

FIGURE 4 | Viscose Rayon fiber cross-sectional view. (A) Viscose rayon fiber longitudinal view. (B) Lyocell rayon fiber cross-sectional view. (C) Lyocell rayon fiber
longitudinal view. (D) Reprinted with permission from (Chen, 2015).
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counterpart composites. These differences are mainly due to the
morphology differences generated during the fiber
manufacturing process leading to composite laminates in
which the R-CF fabric layers are highly interacting while the
P-CF layers are not. Thus, the Rayon laminas are more
interacting, but overall, the resulting composite is softer and
weaker. P-CF-based laminated tend to fulfill the structural
requirements in many regards, but the composite layers are
flat, smooth and weakly-interacting leading to out-plane
properties. As reported in previous section, due to the
widespread use of P-CFs, this issue is of extreme importance
and often tops the list of research efforts under pursuit.

One of the principal factors leading to the formation of weak
interfaces in laminated composite systems is related to the
residual stresses embedded in the laminate during the
manufacturing. Two types of stresses are of extreme relevance.
Stresses associated with the difference in terms of Coefficient of
Thermal Expansion (CTE) between the constituents which
develop during thermal processing and those associated with
constituent material properties of the mold tooling, especially in
presence of complex article geometries.

In the case of composite based on R-CFs, the shape of the fiber
is a key factor: crimps and bends are generated along the length of
the R-CFs. During the coagulation step the R-CF will develop an
inner core of unprecipitated viscose bounded by a peripheral area
of fully polymerized and solidified precursor. The shrinking
periphery tends to produce patterns - also known as
crenulations - around the circumference of the fiber. In
Figure 3 [Nasa Grant NAGS-545, 1988] the straight pattern of
PAN derived carbon fibers (a) is evidenced as compared to the
longitudinal crimping shape of Rayon based counterparts (b).

As a result, a typical Rayon fiber possesses morphology - both
longitudinally and laterally - that traditional P-CFs do not exhibit.

These features are key attributes in the distinction between R-CFs
and P-CFs in terms of ILSS as well as of interlaminar nesting.
Longitudinal crimps and lateral crenulations are unique to Rayon
derived fibers, however, the introduction of roughness such as
pores and irregularities has been demonstrated, to varying degree,
with fibers deriving from PAN (Tiwari & Bijwe, 2014; Yuan et al.,
2012). However, in order to maintain the high mechanical
properties of PAN derived reinforcements, these etching
protocols tend to be detrimental for the final properties of
the fiber.

The interlaminar nesting is characterized by the interweaving
of fabric features from one layer to the next. The 2D weaving of
the fabric determines the pattern of the meshing features across
the x-y fabric (in-plane) and along with the 3D z-directional (out-
of-plane). The ply-to-ply nesting can also be influenced by the
fiber surface roughness. The degree of matrix interaction with the
fiber morphology is dependent on several factors. Among them it
is worth to mention: 1) the hydrophobicity/hydrophilicity of the
fibers, the sizing surfactants coupling and wetting agents; 2) resin
viscosity and resin solvent(s); 3) the processing parameters -
time/temperature/pressure curing profiles. In terms of
manufacturing, the curing profile can influence the degree of
nesting and also the level of induced damages. However, an
excessively pressures can damage and shift the nesting features of
the laminate. Indeed, high pressure cured laminates of both
R-CFs and P-CFs have been documented to exhibit reduced
interlaminar properties (Lee, 2010). It has been repeatedly
showed that the autoclave pressures of less than about 80–100
psi for both R-CF and P-CFs-based laminates produce the
optimal mechanical properties (Warga, 1970) and the high
ILSS values.

The polymer science at the base of the production of Rayon-
and PAN-derived carbon fibers is well documented in literature

FIGURE 5 | SEM micrographs of untreated and nitric acid treated PAN derived carbon fibers: (A) untreated (B) 30 (C) 60 (D) 90 (E) 120 (F) 180 min of treatment.
Reprinted with permission from (Chen, 2015).
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(Lee, 2010). Similarly, the manufacturing steps behind the fiber
spinning processes for both precursors be documented (Lee,
2010; Morgan, 2005). For wet solution spinning, the raw fiber
precursor is dispersed in a proper solvent to create a solution
which by means of a spinneret is immersed in a coagulation
bath. Rayon fibers are cellulose derivative from wood pulp that
is dissolved in a strong acid solution which reacts with carbon
disulfide to obtain a viscous liquid called viscose. Once the
viscose starts to gel, the outer regions are polymerized and the
Rayon fiber starts to form. The fiber is forced to pass through
several coagulation baths having decreasing concentrations of
sulfuric acid and zinc salt. As a result, the degree of coagulation
is the driving force that promotes the creation of the
crenulations in the Rayon derived fibers. These lateral and
longitudinal features are consequently intrinsically possessed
by the Rayon filaments and as a result in the 2D woven fabrics as
well as in the carbonization steps. Figures 4A,B report the
(viscose) Rayon fiber cross-sectional view and also the
corresponding fiber longitudinal surface (Chen, 2015).

Relaxation occurs at the end of this process resulting in the
formation of sine wave-like crimps along the length of the fiber
(Figure 4B). In order to bypass the environmental constraints
that basically killed the industry of the old Rayon derived carbon
fibers, it has been found that cellulosic wood pulp can be
effectively dissolved in certain organic solvents (such as
N-methylmorpholine N-oxide) leading to the formation of
higher tenacity filaments without undesirable waste products
(ee, 2010). The most well-known cellulosic fiber product from
this method is Lyocell (Morgan, 2005). Figures 4C,D report the
(viscose) Lyocell fiber cross-sectional view and also the
corresponding fiber longitudinal surface (Chen, 2015). One of
the major differences between Rayon and PAN is that the initial
PAN feedstock is already fully polymerized before the fiber
spinning process even begins. Thus, smooth lateral surfaces
generally define the predominant morphology of PAN derived
carbon fibers.

In terms of microstructure, Lyocell polymers exhibit higher
crystal-like order than conventional regenerated Rayon. PAN
structures are also expected to show high order due to the
extensive nitrile-nitrile interactions. For Rayon derived carbon
fibers, bundles (tow) of regenerated polymer fiber are
carbonized/graphitized at temperatures in the range
(1200–3,000)°C depending on the final desired properties
(Morgan, 2005). A protective atmosphere of nitrogen or
other inert gases is required in this step of the process. On
the other hand, PAN derived fibers are typically spun, stabilized,
carbonized, bundled into tow and then woven. A comprehensive
review of the manufacturing processes of carbon fibers is
provided in (Morgan, 2005). Low temperature processed
PAN derived carbon fibers ~(1100–1400) °C exhibit low
modulus whilst high modulus, high temperature PAN
derived carbon fibers ~(2,200–2,800)°C are more stiff and
brittle. Prior to weaving, carbonized PAN fibers are usually
exposed to chemical/physical surface treatments. Some of these
phases could involve surface etching with reactive gases (such as
air or CO2) and/or strong acids (such as nitric) (Tiwari & Bijwe,
2014; Yuan et al., 2012) that cause the formation of surface

morphology features (roughness) along the fiber surfaces as
previously described. Figure 5 reports some PAN derived
carbon fibers once treated with nitric acid at different times.

These chemicals not only physically etch the surface, but lead
to the formation of active functional groups and allow
establishing the principal interface coupling mechanism for
matrix-to-fiber chemical bonding in the composite system.
Since most of the PAN derived fibers manufactured worldwide
are destined for use in epoxy-based composites, they are
intentionally treated to contain mostly carboxyl groups, then it
is now possible to understand the reason why fiber-to-matrix
chemical bonding in carbon/phenolic composites is relatively
insignificant. Moreover, PAN derived fibers manufactured
worldwide are treated with coupling agents (sizing) aimed at
optimize the adhesion with epoxies, evidencing again the reasons
why traditional T300-like P-CFs are not simple to be used in the
production of carbon/phenolic composites.

AN INTRODUCTION TO THE SYNTHESIS
OF NON-OIL BASED HIGH CHAR YIELD
MATRICES
As reported in previous sections, high performance and char-
yield thermosetting matrices (especially phenolics) are essential
in many crucial aerospace applications, which require materials
such as carbon/phenolic or carbon/carbon composites. For a
series of reasons - mainly related to very severe military
standards used to certify these aerospace materials and due to
the cost of the qualification of a new product - this industry only
relies on well-known and industrially established petroleum-
based materials. As an example, the phenolic resin known as
SC-1008 has been used for over 50 years to produce the most
important American carbon/phenolic composite formulation i.e.
the MX-4926. On the other hand, the US government has been
forced to spend millions to requalify new materials (such as novel
cellulose derived carbon fibers) which are compatible with the
environmental constraints.

Nevertheless, the latest developments in the materials science
of polymers suggest that sustainable thermosetting polymers can
display similar performances than traditional counterparts
(Cywar, et al., 2021). Additionally, in order to overcome the
problems due to the procurement of raw materials, considering
the increasing demand of materials at the base of the space access
and of the homeland security activities, the high char yield
matrices (and carbon fibers) derived from renewable feedstock
have to meet the very specific and stringent requirements of the
aerospace industries (Mauck et al., 2017; Derradji et al., 2021;
Wan et al., 2020). The purpose of these researchers would be to
identify new paths aimed at avoid problems such as the ones
found in the production of the Rayon derived carbon fibers
which, due to the environmental constraints, has been
discontinued by most companies. As a result, in order to
satisfy these environmental constraints, the possibility to
produce a polymer (and a fiber) partially based on bio raw
materials, but also having its mechanical and thermal behavior
preserved, has been sought in these researches (Dotan, 2014).
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In light of the ever more stringent environmental constraints,
a lot of efforts have been spent to advance in the study of materials
coming from truly renewable resources. Obviously, these bio
based alternative raw materials have to be economically viable
and able to produce products with properties comparable to
current technologies. The use of renewable resources requires that
bio-based compounds with distinct chemical characteristics
should be obtained through careful transformations of plant
and other non-fossil materials (Liu et al., 2021): in line with
this requirement, considerable efforts have been finalized to
produce bio-based polymers that could directly substitute
those of fossil origin (Cywar et al., 2021; Selvaraj &
Raghavarshini, 2021). On the other hand, biomass constituents
should be chemically transformed to obtain desired compounds
for crosslinked polymers (monomers, oligomers and resins)
starting from bio-based phenolic monomers (i.e., vanillin,
eugenol, tannins, lignins) and these operations require a series
of chemical reactions and purification processes which are also
energy intensive and economically not favorable (Paipa-Álvarez
et al., 2020; Quirino et al., 2021). In fact, it should be also
considered that every additional step brings a decrease in the
yield of subsequent product, resulting into higher process costs
(Khoo et al., 2016; Mahajan et al., 2020). Following the
requirements of the aerospace sector, an overview on the main
biosourced thermosetting polymers that could potentially replace
the oil based counterparts is reported. It is essential to remark that
the following survey will be mostly focused on the experimental
routes reported in literature aimed at synthesizing the non-oil
based high char yield matrices as well as on their processability,
thermal stability and char yield (and of their carbon fiber derived
composites). Moreover, the experimental routes reported in
literature aimed at synthesizing the non-oil based carbon
fibers will also be covered.

Benzoxazines
Polybenzoxazines are high-performance materials possessing
exceptional thermomechanical and chemical properties
(Kiskan et al., 2011). They are produced by the combination
of derivative phenols, primary amines and formaldehyde (Zhang
et al., 2019). The ring-opening polymerization of benzoxazines,
that take place at high temperature, is able to produce polymers
having both phenolic hydroxyl and tertiary amine functionalities
(Trejo-Machin et al., 2018). It is reported in the literature that
biobased benzoxazines can be prepared from guaiacol (from
lignin source), paraformaldehyde (from oxidized biomethanol),
and furfurylamine (from furfural). Rising interest has been also
originated by the possible use of cardanol, having reactivity
similar to phenol, due to the existence of the hydroxyl group
in its structure. Vanillin, that brings both para formyl and ortho
methoxy group, is industrially obtained from the processing of
lignin, and it can be used as a precursor for the synthesis of
benzoxazines (Lochab et al., 2021; Froimowicz et al., 2016).
Eugenol, due to its availability and low cost, has also attracted
much interest, even if, owing to its blocked ortho and para
positions, has limited reactivity and consequently low cross-
linked networks. Other bio-phenols can be used for the
preparation of benzoxazine monomers: examples can be found

in the case of coumaric, ferulic and phloretic acid (Comí et al.,
2013). Nonetheless, the presence of additive chemical
functionality on monomers may also affect the overall
processability of monomers and related polymers. For
example, position of functional groups, steric hindrance or
limited processing window may strongly hinder the processing
and polymerization of the benzoxazines. To surpass such
difficulties frequently faced in presence of monomers
synthetized with bio-based phenols, some research groups
reported the synthesis of asymmetric benzoxazines monomers
(eugenol/phenol, vanillin/cardanol) (Verge et al., 2017). This
methodology is moving the research toward more processable
high performance bio-based benzoxazines (Kirubakaran et al.,
2020). More recently, even if the majority of the research on bio-
based benzoxazine has been dedicated almost entirely to the
selection of phenolic and amine compounds, few groups also
considered the possibility of synthesizing a fully bio-based
benzoxazine in which all three reactants necessary to
synthesize it, comprising the aldehyde, are from renewable
sources for the first time (Machado et al., 2021).

The intrinsic molecular-design flexibility of benzoxazines,
their chemical structures and properties open their use to
tailored and dedicated applications, so they have been widely
applied in the field of space and military applications due to low
moisture absorption, high charring ability, limited shrinkage after
polymerization, worthy chemical resistance, and high glass
transition temperature. High crosslinking degree, that brings
high charring ability, can be promoted, for example, by
incorporation of diphenolic acid and furfurylamine (Feng
et al., 2020): in the reported paper, the authors found that
decarboxylation during heating was effectively blocked by the
better cross-linking, in details the char yield at 800°C for PBA
film, measured at ~30%, increased to ~43 and about 54%,
respectively, for PDA and PDF, due to the enhanced cross-
linking density of cured PDA and PDF films, where PBA,
PDA and PDF are the cured films of benzoxazine samples
based on different combination of diphenolic acid and
furfurylamine (Figure 6A). Lu et al. (2020) also found that the
increasing thermal stability of cross-linked main-chain-type
benzoxazine polymers (poly (propylene glycol) bis(2-
aminopropyl ether):furfurylamine molar ratio = 3:14 showed
~54% wt. residual weight at 800°C) can be attributed to the
participation of furan moiety in the polymerization at high
temperatures.

Even if the current common approach to have highly
crosslinked polybenzoxazines is related to the selection of
bifunctional monomers, monobenzoxazines are simpler to
formulate and are more flexible, having the possibility to
introduce substituents into their structures giving special
properties to final materials: in their research, Martos et al.
(2020) described the effect of monobenzoxazines substitution
in meta positions on Tg and crosslinking density (Figure 6B): the
results confirm that higher char yields and increased Tg can be
obtained, proposing also the successful incorporation of this type
of benzoxazine into other benzoxazine mixtures (as doping
material) to increase the final crosslinking network (Wen
et al., 2021). Zhang et al. (2021) also found that diamine
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derived from furfurylamine (PDFA), when able to react with
cardanol/eugenol, had a char yield of ~65% at 850°C.

The thermal stability of highly crosslinked polybenzoxazines
can be also enhanced when the biobased matrix is combined with
other polymers or specific fillers. As an example (Gao et al., 2019),
Gao et al. studied the behavior of a new silicon rubber based
composite containing benzoxazine resins and ZrO2: the limited
ablation rate (~0.11 mm/s) of the control sample was reduced to
~0.06 mm/s with a 20% resin formulation. In their work,
Subramani et al. (Devaraju et al., 2019), prepared
polybenzoxazines-by using cardanol and furfurylamine and
further hybridization with silica was considered, by means of
thiol-ene click reaction, with the main aim of enhancing thermal
stability and fire resistance of the reference material. The same
authors also developed hybrid poly (benzoxazine-co-epoxy)
composites using cardanol based benzoxazine, commercial
bisphenol-F epoxy and functionalized bio-silica (Devaraju
et al., 2021). Data acquired from thermal studies confirmed
that the bio-silica reinforced hybrid composite showed
flexibility, enhanced thermal stability and properties and
flame-resistance characteristics.

A comprehensive review on nanostructured natural-
sourced polybenzoxazine matrices has been reported by
Prof. Ishida (Lyu & Ishida, 2019). In this paper, virtually all
the possibilities offered by the combination of benzoxazines
with other polymers for the preparation of biobased

composites, has been summarized. However, even if it is
possible to find papers on the ablation response of
nanostructured polybenzoxazine/carbon fiber composites
(Rao et al., 2021a) or in general, for high temperature
applications (Comer et al., 2019; Wolter et al., 2020), to our
knowledge, no papers on the use of non-oil based matrices for
the production of high char yield laminates has been
documented in literature.

Bismaleimides
Bismaleimide (BMI) resins, that hold outstanding thermal,
mechanical and chemical properties, have been considered
for many applications, comprehensive of the aerospace
sector. Since bismaleimide resins are cured by following
polymerization by addition, volatile by-products are
produced during the curing process, providing in this way
high strength and rigidity to the matrix. (Prasanaa Iyer &
Arunkumar, 2020). They can be processed at rather low
temperatures (i.e. < 170°C) and then post cured at high
temperatures to yield highly cross-linked networks with
high glass transition temperatures, but limited toughness is
reached in these conditions. Efforts have been spent to
overwhelm those problems by incorporating micro sized
elastomers or thermoplastic polymers or copolymerizing
them with nanomaterials (Jiang et al., 2020) and same
energies have been spent to find valuable solutions for the

FIGURE 6 | Chemical structures (A) and TGA (A’) curves of PBA, PDA, PDF, cured films of benzoxazine samples DF, DA, and BA (A) and proposed crosslinked
structures for m-substituted polybenzoxazines derived from monobenzoxazines considering only reactions on the phenolic ring (B) Reprinted with permission from
(Feng et al. 2020; Martos et al., 2020)
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replacement of fossil based monomers with biobased
counterparts (Ge et al., 2017) (Figure 7A).

Generally, these resins can be synthetized by copolymerizing
bismaleimide monomers with 2,2′-diallyl bisphenol A (DBA) in a
two reactions mechanism, namely Diels–Alder (DA) and/or ene
reactions (Iredale et al., 2016). Shibata and his group have
reported the development of biobased BMI (Shibata et al.,
2016; Shibata & Hashimoto, 2017), and the literature on these
materials essential relies on the attempts they made to replace or
modify the DBA fraction with eugenol-based allylphenyl
compound (Figures 7B,C) (Shibata et al., 2011a; Shibata et al.,
2013a), tung oil (Shibata et al., 2011b),
difurfurylidenecyclopentanone and dicinnamylidene
cyclopentanone (Shibata & Miyazawa, 2016), and cardanol
(Shibata et al., 2013b).

Gu’s group also prepared a modified BMI resin using a
phosphorus-containing allylphenyl compound by linking
eugenol to hexachlorocyclotriphosphazene: these BMI resins
have demonstrated excellent flame retardancy and high Tg

values (~250–270°C) (Figure 7D) (Miao et al., 2019).
Explorative experiments were also performed to investigate the
potential of itaconimides synthesized from itaconic anhydride,
confirming that life extension and full recyclability can be
achieved with this system (Lejeai & Fischer, 2020).

A series of papers reported the combination of BMIs with
carbon fibers (Morgan et al., 1993; Spratt & Akay, 1995; Sun et al.,
2011; Li et al., 2019; Yang et al., 2021). Ning et al., 2020 reported
the preparation of bio-based BMI resins in combination with
carbon fibers. The authors synthesized hydroxymethylated

eugenol (MEG) and poly-MEG (PMEG) to modify BMI:
carbon-fabric laminate composites based on eugenol/
maleimide (1:0.3) had the highest Tg (above ~400°C), high
flexural strength (>570 MPa) and modulus (>57 GPa), in the
meantime the achieved renewable fraction was the highest (57%)
among all the prepared composites. The same authors (Ning
et al., 2019) previously considered the preparation of 4,4′-
bismaleimidodiphenylmethane (BMI) modified by eugenol and
various contents of 4,4′-diphenylmethane diisocyanate (MDI),
showing a 5% weight loss temperatures around 300°C and char
residue of 42% at 900°C for MDI-EG-BMI resins. However, the
limited scientific literature on this subject clearly evidences that
the progress on the preparation of bio-based high performance-
modified BMI composites is certainly a great challenge.

Cyanate-Esters
Cyanate ester (CE) are obtained by reacting phenols with
cyanogen halides to give reactive cyanate groups (-OCN)
linked to an aromatic ring. The major part of cyanate esters
industrially produced are aromatic polymers with strong rigidity
of their cured phase, so blending with other thermosets to
improve their processability in the composite industry is
needed (Nair et al., 2001; Kandelbauer, 2014). The literature
reports the effect of different nanofillers on the cure of CE resin
(Amirova et al., 2021), in particular the introduction of silica
(Bershtein et al., 2021), POSS (Li et al., 2021) was widely
investigated. Combination of carbon fibers and nanofillers for
ablative purposes have been recently considered in the paper of
Rao et al., 2021b, where the authors studied the effect of organo-

FIGURE 7 | Impact strengths and flexuralmoduli of BA andBD resin (4,4′-bismaleimidodiphenylmethane (BDM) and renewable bis(5-allyloxy)-4-methoxy-2-methylphenyl)
methane (ABE) from bio-based lignin derivative as a function of allyl to imide molar ratio (n) (A); Biobased thermosetting resins based on bismaleimide and allyl-etherified eugenol
derivatives (B); Tg and renewable carbon contents of BTP, BD and other eugenol derived BMI resins (C); TGA curves of cured AEG/BMI (EB) (allyl-etherified eugenol
prepolymerized with 4,4′-bismaleimidodiphenylmethane, with allyl/maleimide unit ratios of 1/1, 1/2 and 1/3 (D) Reprinted with permission from (Neda et al. 2014; Miao
et al., 2019; Ge et al., 2017).
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modified Montmorillonite (o-MMT) addition (0, 1, 2, 4, 6 wt%)
on thermal stability of carbon fiber reinforced cyanate ester resin
composites, confirming the possibility of using o-MMT for
improvement of mechanical properties of CE composites.

In this context, research has moved towards obtaining
cyanate ester thermosets by using anethole, resveratrol,
vanillin, eugenol, and other lignin derivatives. Harvey and
co-workers studied the synthesis of cyanate ester thermosets
from vanillin (Meylemans et al., 2013; Harvey et al., 2011), by
showing that, even if a decreased thermal stability was observed,
vanillin-based resins showed other properties comparable to the
petroleum-based commercial counterparts (Llevot et al., 2016).
In a recent review, Randani et al. reported about the design and
production of biobased cyanate esters from various
bioresources, giving a widespread overview of the current

advances in the synthesis of these products and discussing
their properties and applications (Ramdani et al., 2021). They
reported that, in the case of aliphatic bio-precursors, the cyanate
ester monomers revealed large processing windows and limited
water uptake, while cyanate esters based on aromatic bio-
precursors- demonstrated higher thermal properties and
stiffness. As in the case of fossil based CE, the introduction
of different nanofillers has been considered (Zhan et al., 2011),
the available results generally show that the incorporation of
reactive fillers can accelerate the initial step of curing process,
but decreasing at the same time the final degree of conversion
after isothermal curing. On the other hand, no reports have been
found on the use of carbon fiber reinforced CE from biobased
sources. Actually, the high price requested for chemical
modification, limited availability of bio-based raw materials

FIGURE 8 | Sustainable alternatives for the synthesis of high thermal performances phenolic networks (A); probable reactions of pre-polymerization and curing
between phenol and terephthalaldehyde (B); macroscopic morphologies of the front and side views of (A) neat carbon fiber phenolic, (B,C) carbon fiber phenolic +0.2%
graphitic C3N4 and (D,E) carbon fiber phenolic 0.2% wt. of graphene oxide after oxyacetylene flame test. The red parabola represents the ablation depth distribution,
while the yellow line represents the ablation central zone (C); SEM fractographs of C-Ph composites and TiBr2/C-Ph composites tested at 1000°C and their TG/
DTG curves (D) Reprinted with permission from (Granado et al. 2019; Granado et al. 2018; Ma et al., 2019; Ding et al., 2019).

Frontiers in Materials | www.frontiersin.org March 2022 | Volume 9 | Article 80513114

Natali et al. Non-oil Based High Temperature Composites

179

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


for synthesis are some of the crucial problems to be solved
before reaching a decent technological maturity.

Phenolics
Phenolic resins (PF) are the result of a step-growth
polymerization of a mixture of phenol and formaldehyde
using acidic or basic conditions. Phenolic are highly cross-
linked and thermally stable thermosets, due to their aromatic
structure and high cross-linking densities. As discussed in the
previous sections, their high degradation temperatures and high
char yields make phenolic thermosets key and ideal materials for
aerospace applications (Granado et al., 2019) However, phenolics
present several drawbacks that still need to be surpassed. From an
environmental perspective, phenol and formaldehyde are
hazardous substances: thus in order to develop no-oil based
high thermal performance resins, efforts need to be focused on
finding alternative strategies to replace both of them, (Sarika et al.,
2020). The replacement of formaldehyde is the main challenge.
Hydroxymethylfurfural (Zhang et al., 2015; Xu et al., 2019),
furfuryl alcohol (Conejo et al., 2017), glyoxal [Van
Nieuwenhove et al., 2020] and vanillin (Foyer et al., 2016b)
are few of the bio-based precursors that have been considered
and investigated for the replacement of formaldehyde in PF resin
synthesis.

In light of the high performance required by the aerospace
sector, a potential substitute of formaldehyde should show good
reactivity and low molecular weight to accomplish with high
cross-linking degrees and final densities (Figure 8A). Hence,
phenolic networks with nontoxic aromatic dialdehydes (Foyer
et al., 2016a), such as terephthalaldehyde (TPA), showing the best
reactivity, should be considered. TPA can react with phenols (in
addition and condensation reactions that can be realized on both
aldehyde moieties), yielding highly cross-linked and aromatic
dense configurations (Granado et al., 2018) (Figure 8B). On the
other hand, solutions for phenol substitution in different
formulations still have to be found. In order to achieve
suitable high charring networks, phenolic blocks must possess
high aromatic content and enough activated positions for
available reactions. Phenolic blocks can be provided from

lignin (Dongre & Bujanovic, 2021), hydrolysable and
condensed tannins (Pizzi, 2019), plant oils (Kim, 2015),
moreover guaiacol is a possible candidate in the synthesis of
phenolic biobased thermosets.

Phenolic resins from biomasses have been indeed developed
and studied extensively in recent decades, but the search for
biobased alternative to standard phenolic in the specific sector of
high charring matrices is still ongoing (Loganathan et al., 2021),
even though it is predictable that the properties of resin
synthesized from bioresources are lower than the raw material
derived from oil (Ipakchi et al., 2020; Ma et al., 2020; Guo et al.,
2021; Gruber et al., 2021). One example of nanofiller reinforced
phenolic composites for ablative purposes comes from the paper
of Ma et al., where the authors found that the addition of
graphene oxide or graphitic carbon nitride (Figure 8C) (Ma
et al., 2019) increased the char yield graphitization level during
ablation, helping heat dissipation and thereby increasing the
ablation resistance. Other nanoscaled fillers, such as carbon
nanotubes, silica, ZrB2, ZrSi2,TiB2 (Figure 8D) have been also
studied (Ding et al., 2019): as a representative result, TiB2
particles included in carbon–phenolic (T/C-Ph) composites
prepared by compression moulding reacted, at high
temperature, with oxygen-containing molecules, by coating the
residue of phenolic after pyrolysis with glassy B2O3, assuring in
this way improved mechanical performance at high temperature.
Nano-modified carbon fabric represents another opportunity to
enhance the ablation behavior of these materials (Xu et al., 2020a;
Xu et al., 2020b).

PRODUCTION AND PROPERTIES OF
NON-OIL CARBON FIBERS

The current methods for manufacturing carbon fibers are slow
and energy-consuming, thus making their production very
expensive. Additionally, the high cost of precursors keep CF a
niche market with applications restricted essentially to high-
performance and structural applications (e.g., aerospace):
regardless these assumptions, alternative precursors to reduce

FIGURE 9 | Reported mechanical properties of lignin-based carbon fibers (A) and residue weight at 900°C of various carbon materials as reported in literature
(B)—reprinted with permission from (Wang et al., 2021) (Xu et al., 2014).
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the realization cost for CF and need for no-fossil feedstock have
been investigated and are still under exploration (Xu et al.,
2020a). These include biomass-derived precursors such as
cellulose (Zaitsev et al., 2021), lignin (Wang et al., 2021),
lignin/cellulose blends (Byrne et al., 2018; Bengtsson, et al.,
2020), glycerol, and lignocellulosic sugars.

Production and properties of carbon fibers obtained by the
different biomasses (mainly lignin ad its blends) will be revised:
since the precursor of the carbon fiber contributes to about half of
the total cost of the final product, some experimental researches
on the possibility to use bio-based CFs has been carried out
(Ogale et al., 2016; Frank et al., 2014). However, some
disadvantages are typical of these fibers: differently from PAN
based carbon fibers, biomass typically contains a major amount of
ash/minerals, particularly harmful for the tensile strength of the
resulting CFs, additionally biomass-based CFs give low carbon
yield in carbonization when compared to commercial PAN-based
CFs (the maximum theoretical carbonization yield for a cellulose
precursor is ~44% (corresponding to the formal loss of five
molecules of water per anhydroglucose unit), that decreases to
the actual value of 15% without any pre-treatment (oxidative
pretreatment, use of a reactive atmosphere, application of
carbonization aids, inclusion of catalysts for dehydration and
crosslinking reagents).

CF from cellulose (natural or man-made) has been detailed in
their manufacturing and properties in the previous sections, while
here we will introduce the benefits coming from the selection of
lignin biosource. Benefiting of its high intrinsic aromatic content,
lignin is certainly attractive for the obtainment of high carbon
yield following a high-temperature treatment, conditions which
makes lignin a suitable precursor for producing carbon-based
materials (Qu et al., 2021). Lignin is an abundant biomass with
millions of tons produced every year as a by-product of the
pulping industry, its cost is less than PAN, additionally it also
shows a significantly theoretical high carbon yield when
compared with cellulose (62 vs. 44%) (Frank et al., 2014).
However, the current main drawback and limitation for the
massive production of carbon fibers by starting from lignin is
related to the time-consuming stabilization time, which makes its
use largely impractical for industrial production (Bengtsson et al.,
2019). Additionally, they have limited mechanical properties,
restricting their use to sectors where structural functionality is
not stringent (Collins et al., 2019). It has been recently claimed
that improvements in mechanical performance can be obtained
by means of the optimization of chemical reactions during the
stabilization and carbonization processes, through the addition of
cross-linkers, miscible thermoplastic biopolymers (Culebras
et al., 2019) and optimized thermal processing regimes.

In recent studies, the combination of lignin and cellulose has
been considered for the realization of composite fibers, where the
main aim was the overcoming of disadvantages typical of
cellulose and lignin (low carbon yield and long stabilization
time, respectively). Le et al. (2021), Trogen et al. (2021)
considered the production of cellulose-lignin fibers with a
different weight ratio, stabilized at different temperature, by
using organosolv or spruce lignin, revealing that one of the
main factors affecting the performance of the CF from lignin

is the extraction method and/or source of the biomass. Initial
structural differences between lignins cause varying rheological
and thermal behavior which need to be studied and optimized to
create tailored feedstock appropriate fiber spinning processing
windows. It is known that more reactive lignins have a greater
tendency to form direct ring-to-ring cross-links and this is very
significant for the properties of CF as this leads to higher
orientation of graphitic planes and subsequently higher
mechanical properties of the final CFs (Demiroğlu Mustafov
and Seydibeyoğlu, 2019) (Figure 9A).

By changing the reactivity of precursor, the thermal stability of
the lignin-based carbon fibers can be also significantly enhanced.
Xu et al. [Xu et al., 201491–102] synthesized lignin-based carbon
fibers doped with CNTs obtained by catalysis of Fe or Pd: results
suggested that the hybrid structure, containing CNTs, showed at
950°C the highest thermal stability when Pd catalyst was
considered (~98% residual weight at 950°C), and the residual
weights kept to be stable at 90% even after 1 h of isothermal
heating at this temperature (Wang et al., 2021) (Figure 9B): such
nanoparticles were able to convert amorphous carbon to graphitic
carbon and enabled the growth of CNTs, while carbon fibers
without the presence of metallic nanoparticles showed limited
thermal stability, essentially due to the lack of amorphous carbon
conversion to a graphitic structure.

It has been concluded that, considering current environmental
constraints, lignin precursors show also cost savings over
conventional PAN precursors. In particular, it has been
estimated that lignin carbon fiber can save $260 per ton from
CO2 environmental impact compared to PAN fibers (Ismail &
Akpan, 2019). On the other hand, even though the chemistry of
lignin deserves to be further investigated, in terms of
performance, the mechanical properties of lignin carbon fibers
made with current experimental lab-scale protocols do not meet
the requirements of the aerospace industry.

CONCLUSION AND FUTURE OUTLOOK

The access to the space changed our lives in so many ways that it
is very difficult to fully grasp the nature of this revolution;
considering all the technological returns, new materials,
patents, and breakthroughs related to the space activity, then
it is practically impossible to draft a comprehensive list. The space
sector is also a very profitable market: in “The Space Report 2020”
released by The Space Foundation it was estimated that in 2019
the global space economy reached a value of $424 billion
worldwide as compared to about $384 billion in 2017. The US
Chamber of Commerce reported that this sector will increase
from approximately $424 billion of 2019 to at least $1.5 trillion by
2040. As a result, the development of the space economy is
intimately related to the space access. Liquid, and especially Solid
Rocket Motors (SRMs) provide most of the thrust necessary to
reach Low Earth Orbit (LEO). By virtue of their common nature,
the materials used for SRMs are also used to manufacture the heat
shield which protects the structure, the aerodynamic surfaces, of
missiles, probes, and space vehicles from the severe heating
encountered during the re-entry flight through the
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atmosphere. In fact, due to the interaction of the re-entry item
with the atmosphere, its kinetic energy can be dissipated via re-
radiation and ablation. Thermal Protection System (TPS)
materials such as Carbon/Phenolic Composites (CPCs) and
Carbon/Carbon Composites (CCCs) are also essential to
enable all homeland security programs. Accordingly, the
strategic importance of TPS materials now appears in its full
extension.

Among the different families of TPS solutions, Polymeric
Ablative Materials (PAMs) such as carbon/phenolic
composites possess the highest versatility. As a result, more in
general, the combination with high char matrices such as
phenolics, bismaleimides, cyanate-esters, benzoxazines with
Carbon Fibers (CFs) derived from Polyacrylonitrile (PAN),
Rayon and Pitch allow to produce the most advanced high
temperature fiber reinforced composites. For a series of
reasons - mainly related to very severe military standards used
to certify a given aerospace material and due to the cost of the
qualification of a new product - this industry only relies on well-
known and industrially established petroleum-based materials. In
general, in order to be used in a launch vehicle, an SRM and its
materials - such as the carbon/phenolic composites - need to be
tested for validation of required technical specifications. Any
changes in the SRM or its components may have need of
supplementary testing and, if the deviations are significant or
if there are multiple variations, then the re-testing of the entire
launch vehicle could be mandatory and thus, a re-qualification
process, very expensive and time-consuming, should be
necessary.

In our paper, after covering the science and technology of
these state-of-the-art fiber reinforced TPS materials, a review of
current challenges behind the manufacturing of new, high char
yield matrices and carbon fibers derived from non-oil based
precursors has been carried out. As a result, in terms of
possibility to replace current raw materials, used to
manufacture high temperature composites with non-oil based
counterparts, the most relevant conclusions of our review work
are the following:

1) The latest developments in the materials science of polymers
suggest that, in terms of thermal stability and char yield, the non-
oil based thermosetting polymers seem to display comparable
properties/performances than traditional counterparts. In line
with these requirements, substantial efforts have been invested
to produce non-oil based polymers that are chemically identical
and could directly replace those from petroleum;

2) In order to address the challenges to minimize supply
concerns, considering the increasing demand of high
temperature materials for the space access and for to the
homeland protection activities - taking into account the
efforts aimed at solve the dramatic problems experienced
during last 40 years by countries such the US and France
related to the possibility to establish a stable and cost effective
source of cellulose derived carbon fibers - the new non-oil
based high char yield matrices (or fibers) have to depend on
renewable feedstock able to meet the ever specific and very
stringent demands of these industries;

3) Accordingly, the purpose of the researchers would be to
identify new paths aimed at mitigate the problems such as
the ones found in the production of the cellulose derived
carbon fibers which has been discontinued bymost companies
due to the environmental constraints. As a result, in order to
satisfy the continuously more stringent environmental
constraints, the possibility to produce polymer (or fibers)
partially based on bio raw materials but also having the
mechanical and thermal behavior preserved, has been
sought in these researches. Moreover, in light of these ever
more stringent environmental constraints, a lot of efforts have
to be spent to the development of materials coming from fully
renewable resources. Obviously, these bio based alternative
raw materials have to be economically viable and able to
produce products with properties comparable to the current
technologies;

4) With aim to introduce raw materials which can be of real
interest for the high tech companies involved in the
production of ablative materials, it is necessary to identify
more uniform and efficient processes able to ensure the
manufacturing of materials having the same quality,
repeatability and reproducibility than current counterparts.
To make it very short, the Technology Readiness Level (TRL)
level of the non-oil based matrices has to match the ones
associated with the traditional solutions. Due to the intrinsic
limitations related to the use of renewable feedstock, it is also
questionable whether or not this TRL level will be reached in
future;

5) Finally, due to the dual use of technologies related to high
temperature composite materials, and in light of the concerns
related to the current geopolitical situation related to the
commodities, in order to produce non-oil based materials,
which are of real interest for the aerospace and homeland
security programs, the renewable raw materials should be
obtained from domestically available feedstock.

At the end of our literature survey it is possible to conclude
that further researches are worth to be done in some very
specific areas. However, in terms of performance, it has been
showed that the non-oil based materials made with current
experimental lab-scale protocols are not able to meet the
extremely demanding technology readiness level required by
the aerospace industry. Moreover, in terms of real benefits on
the environmental impact of the processing technologies
related the these non-oil based materials, mixed or
questionable results have also been reported in the available
literature (Bilow and Miller, 1969; Cyanate Ester Resins
Market, 2018; D’ Alelio GF, 1971; Parkaerospace; Rayon
Replacement; Nasa Grant NAGS-545, 1988; Van
Nieuwenhove et al., 2020; Yongjian Xu et al., 2020).
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