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Tracking people has many applications, such as security or safe use of robots. Many
onboard systems are based on Laser Imaging Detection and Ranging (LIDAR) sensors.
Tracking peoples’ legs using only information from a 2D LIDAR scanner in a mobile robot
is a challenging problem because many legs can be present in an indoor environment,
there are frequent occlusions and self-occlusions, many items in the environment such
as table legs or columns could resemble legs as a result of the limited information
provided by two-dimensional LIDAR usually mounted at knee height in mobile robots,
etc. On the other hand, LIDAR sensors are affordable in terms of the acquisition price
and processing requirements. In this article, we describe a tool named PeTra based on
an off-line trained full Convolutional Neural Network capable of tracking pairs of legs
in a cluttered environment. We describe the characteristics of the system proposed
and evaluate its accuracy using a dataset from a public repository. Results show that
PeTra provides better accuracy than Leg Detector (LD), the standard solution for Robot
Operating System (ROS)-based robots.

Keywords: convolutional networks, LIDAR, people tracking, robotics, cluttered environment

1. INTRODUCTION

Detecting and tracking people are very useful capabilities for different systems, in particular for
improving navigation in mobile robots and also to facilitate more socially acceptable robots, but
also in security applications, for instance using biometric data (Ngo et al., 2015; Gavrilova et al.,
2017) or safely using robotics platforms (Morante et al., 2015). There are many solutions in the
literature that try to solve this problem using a multi-modal approach, typically with vision and
range sensors (Arras et al., 2012), but these kinds of approaches are very expensive both from the
point of view of the cost of the sensor and the computing capabilities needed for processing and
integrating, and are more likely to generate contradictory information. For this reason, systems
based only on range sensors are more desirable. Regarding the classifiers to process sensor data,
Convolutional Neural Networks (CNNs) has emerged as a very popular solution (Long et al., 2015).

Laser Imaging Detection and Ranging (LIDAR) sensors are reliable and currently affordable
range sensors that provide information about a dynamic environment at good rates (∼20− 30 Hz)
that can be processed in real-time, as each scan consists of an array of just a few 100 integers.
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Usually, mobile robots mount LIDAR scanners in a low
position (∼ 30 − 50 cm from the ground) to detect obstacles,
which are used to build occupancy maps and to navigate. The
information provided is an accurate estimate of the distance in
precise angles (resolution of 0.5◦). Thismeans that objects such as
tables or chair legs, trunks of plants, etc., may be easily confused
with peoples’ legs. It is also difficult to keep track of a particular
person (pair of legs) in a crowded environment because many
occlusions can happen.

Different solutions have been proposed previously in the
literature to deal with the problem of tracking people using
a 2D LIDAR scanner mounted on a mobile robot. Navigation
in peopled, mapped, indoor environments has been recently
reviewed (Rios-Martinez et al., 2015). The use of the geometric
characteristics of human legs and the frequency and phase of
walking motion have been tested (Lee et al., 2006), but cannot
deal with partial occlusions, changes in peoples’ speed, etc. In this
article we are concerned with the specific problem of detecting
pairs of legs (from a person) and being able to track them.

Early research (Schulz et al., 2003) applied Bayesian filtering
to track different objects in the perceptual range of the robot
to estimate the number of people in the current scan based on
the number of moving local minima in the scan. Unfortunately,
this supposes that people are continuously moving, giving poor
results in cluttered environments (where the number of local
minima is misleading).

Other research (Arras et al., 2012) proposed a solution based
on AdaBoost to learn to detect individual legs. In a second level
they proposed a multi-target tracking framework that uses leg
observations to infer peoples’ state of motion.

Another report (Leigh and Zhang, 2015) described a tracking
method considering both legs, rather than individual ones. They
proposed using a combination of Kalman filters to predict
behaviors over consecutive scans and a Global Nearest Neighbor
filter to solve the scan-to-scan data association problem. This
solution has the drawback of using two different steps (prediction
and association) that we are trying to solve with a one-
step approach. Also, the authors acknowledge the problem of
adapting their ad-hoc proposal. We propose that a more general
system based on machine learning can be built.

Other researchers (Aguirre et al., 2014) have used Support
Vector Machines to learn the different patterns of legs that can
appear in robot surroundings corresponding to moving or still
people. However, their approach is limited, tracking only a single
person in a controlled scenario.

Other methods using several steps have been proposed. For
instance, some have (Ondruska et al., 2016) deployed a Recurrent
Neural Network (RNN) to filter an input stream of raw laser
measurements in order to directly infer object locations, along
with their identity in both visible and occluded areas. Others

Abbreviations: CNN, Convolutional Neural Network; ERL, European Robotics
league; INCIBE, Instituto Nacional de Ciberseguridad de España; LD, Leg
Detector; LIDAR, Laser Imaging Detection and Ranging; MRPT, Mobile Robot
Programming Toolkit; ReLU, Rectified Linear Unit; RNN, Recurrent Neural
Network; ROS, Robot Operating System; RTLS, Real Time Location System; MA,
Moving Average.

(Premebida et al., 2009) described a sensor fusion architecture.
The fusion process occurs at the feature level, combining a
LIDAR sensor and a camera for improving the detection system’s
reliability and accuracy. A different approach (Szarvas et al.,
2006) presented a real-time pedestrian detection system utilizing
a LIDAR-based object detector and CNN-based image classifier.
The proposed method achieves a processing speed of over 10
frames/s speed by constraining the search space using the range
information from the LIDAR.

Some solutions have also been developed for the Robot
Operating System (ROS) framework (Quigley et al., 2009), the
most popular framework for developing robotic applications.
For instance, the cob_people_perception package allows to find
leg-like patterns of laser scanner readings. This software is
based on the LD approach and implementation. LD is the most
popular package for tracking people by using a LIDAR sensor
in ROS-based robots. It obtains incoming messages from the
LIDAR scanner and uses trained data to classify the groups
of laser records as possible legs. Detection is performed by a
classifier using Random Trees implemented with the OpenCV
API. However, LD has an important drawback; the project has
not received continuous development and there is not a version
of the software for the latest ROS versions.

Other ideas have been the use of heuristic knowledge, such
as some research (Mashad Nemati et al., 2016) that proposes a
technique that relies on the estimation of the reappearance event
both in time and location. In the same way, a utility function to
approximate and predict the trajectory of a walking partner has
also been proposed (Morales et al., 2014).

In summary, we consider that learning techniques are a
more general approach than heuristic or ad-hoc techniques for
this problem. We also propose that a single shot approach can
solve the problem in a more compact and consistent way than
approaches based on several steps. Under this assumption, we
propose a system based on CNNs developed by the Robotics
Group at the University of León, named PeTra, for developing
tracking systems based on LIDAR measurements. PeTra has
been developed and tested on a mobile robot based on the ROS
framework.

CNNs have been typically used on classification tasks, where
the output to an image is a single class label (Lawrence et al., 1997;
Krizhevsky et al., 2012; Simonyan and Zisserman, 2014). In our
case, we want to label the pixels of an occupancy map (image),
not the whole image. We have explored different alternatives and
we have found that the ideas proposed in the U-Net architecture
(Ronneberger et al., 2015)match with our requirements. The next
section describes in depth the system built.

Evaluating neural networks requires a good validation dataset.
Collecting and organizing a training set needs time and domain-
specific knowledge. There is a large collection of robotic
datasets available from various mobile robots, vehicles, or just
handheld sensors, for instance the Repository of robotics and
computer vision datasets1 forMobile Robot Programming Toolkit
(MRPT). However, most may not be suitable for training neural
networks. For PeTra’s validation, a dataset known as Range-based

1https://www.mrpt.org/robotics_datasets
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people tracker classifiers Benchmark2 (RRID:SCR_01574) was
compiled.

In order to evaluate PeTra accuracy, we have compared its
results with the ones obtained by LD, the most popular package
to track people by using a LIDAR sensor in ROS-based robots.
Evaluation was conducted in an indoor mock-up apartment
located at the Robotics Lab at the University of León (Spain). A
mobile robot called Orbi-One, with an on-board LIDAR sensor,
was used to track peoples’ locations using either PeTra or LD.

The rest of the paper is organized as follows. The next
section describes the system that was built, including a detailed
explanation of the architecture of the CNN used. Materials and
methods used to evaluate the accuracy of PeTra are described
in section 2. Section 3 shows the results of PeTra performance
compared to LD. Section 4 discusses the above results. Finally,
our contribution and the next steps foreseen are presented at
section 5.

2. MATERIALS AND METHODS

A set of experiments was carried out to evaluate PeTra accuracy.
They were conducted in the indoor mock-up apartment at
Leon@Home Testbed3, a Certified Testbed4 of the European
Robotics league (ERL) located in the Robotics Lab at the
University of León. Its main purpose is to benchmark service
robots in a realistic home environment. Figure 1, left shows the
apartment plan.

Orbi-One robot, shown in Figure 1, middle, with an on-board
LIDAR sensor, was used to track people either using PeTra or
LD under different scenarios that will be described in section
2.5. Peoples’ location was ascertained using a commercial Real
Time Location System (RTLS) based on radio beacons shown in
Figure 1, right. The location calculated by the RTLS was used as
ground-truth data to calculate the error of PeTra and LD systems.

In the Youtube channel of the Robotics Group of the
University of León, readers can find a video demonstration5 of
PeTra and LD working as displayed on Rviz, a well-known tool
for displaying robot information for the ROS framework.

Below, the main components of the experiment are described
in depth as well as the methods used to evaluate accuracy.

2.1. Orbi-One Robot
Orbi-One is a service robot manufactured by Robotnik6. It
accommodates sensors, such as a RGBD camera, a LIDAR sensor,
and an inertial unit. It can operate a manipulator arm attached to
its torso and it has a wheeled base for moving around the room.
An Intel Core i7 CPU with 8 GB of RAM allows it to run the
software to control the robot hardware. The software to control
the robot hardware is based on a ROS framework.

2http://robotica.unileon.es/index.php/Benchmark_dataset_for_evaluation_of_range-
based_people_tracker_classifiers_in_mobile_robots
3http://robotica.unileon.es/index.php/Testbed
4https://www.eu-robotics.net/robotics_league/erl-service/certified-test-beds/
index.html
5https://youtu.be/Qa6eEJzUlRg
6http://www.robotnik.es/manipuladores-roboticos-moviles/rb-one/

2.2. KIO RTLS
A commercial RTLS (KIO) has been used to provide ground-
truth data. KIO calculates the position of a mobile transceiver,
called a tag, in a two- or three-dimensional space. In order to
do so, KIO uses radio beacons, called anchors, that have been
previously located in known positions in the surroundings. Red
markers in Figure 1, left show the position of the 6 anchors used
in the experiments described in the paper. They are attached
at the ceiling of the mock-up apartment. The distribution of
the anchors has been chosen following a previously established
method (Guerrero-Higueras et al., 2017). Figure 1, right shows
two KIO anchors.

The KIO tag was carried by the person to be tracked in our
experiments. Location estimates provided by this system have
an average error of ±30 cm according to the manufacturer’s
specifications. Calibrations done by the authors of this paper
show that the error is higher in some areas and lower in
others, but on average the claims of the manufacturer are correct
(Guerrero-Higueras et al., 2017).

2.3. PeTra
PeTra is a tool for detecting and tracking people developed by
the Robotics Group at the University of León. The system is
based on a CNNwhich uses an occupancymap built from LIDAR
measurements as input. We explored different alternatives and
we have found that the configuration proposed in the U-
Net architecture by Ronneberger et al. (2015) is the one that
best matches with our requirements. U-Net architecture was
developed for Biomedical Image Segmentation. It consists of a
contracting path to capture context and a symmetric expanding
path that enables precise localization that we need to look for an
specific pattern (pair of legs) in the occupancy map.

2.3.1. Neural Network Configuration
U-Net architecture was originally proposed to segment
biomedical images. We have adapted it to LIDAR map “images.”
Basically, the architecture is an evolution of the full CNN
proposed in Long et al. (2015). It consists of supplementing the
usual contracting network by successive layers, where pooling
operators are replaced by upsampling operators. Hence, these
layers increase the resolution of the output. In this way, the
contracting path captures context and a symmetric expanding
path enables precise localization of targets.

Figure 2 illustrates the architecture of the CNN embedded
in PeTra. It is inspired by the design in Ronneberger et al.
(2015), adapting sampling sizes. Basically, the PeTra network
consists of a contracting path on the left side and an expansive
path on the right side of the picture. The contracting path
consists of the repeated application of two 3 × 3 convolutions,
followed by a Rectified Linear Unit (ReLU) and a 4 × 4 max
pooling operation with stride 2 for downsampling. At each
downsampling step we doubled the number of feature channels.
Every step in the expansive path consists of a 4 × 4 up-
convolution that reduces the number of feature channels, a
concatenation with the corresponding feature map from the
contracting path, and two 3 × 3 convolutions, each followed
by a ReLU. At the final layer a 1 × 1 convolution is used to
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FIGURE 1 | Robotics mobile lab plan (left), Orbi-One robot (center), and KIO RTLS anchors (right).

FIGURE 2 | Architecture of the CNN used by PeTra.

map each 64-component feature vector to the desired number of
classes.

In order to define the input of the network, we have projected
the range measurements into a two dimensional map centered
around the robot. This occupancy map is defined as a 256 ×

256 matrix, with a resolution of about 2 cm. The occupancy
map presented in this work is not a standard occupancy map
containing probability values as known in the literature. The
values of each cell could be:

0: meaning either the LIDAR scan went through it without
detecting any obstacle, or it did not go through that position

during the reading due to occlusions or being out of
range (LIDAR range is 240 degrees in the front of the
robot),

1: , meaning an obstacle was found in that position.

2.3.2. Operation
PeTra has been developed and tested on a mobile robot based
on the ROS framework. It has been designed as a ROS node
with the CNN described at section 2.3.1 embedded on it. Once
the network is trained, the system is capable of performing the
following steps in real time:
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1. First, the data provided by the LIDAR sensor is processed
to build a two-dimensional occupancy map in front of the
robot. Figure 3, top left shows Orbi-One and two people at
the study area. Figure 3, top right shows the same situation
over the apartment plan. Figure 3, bottom left illustrates
the occupancy map obtained from the LIDAR’s readings
on the above situation. The occupancy map is presented as
a 256 × 256 picture, where white pixels denote positions
where the LIDAR scan found an obstacle and black pixels
denote positions where either the LIDAR scan went through
without detecting any obstacle or did not go through that
position.

2. Then, the occupancy map of the previous step is given to
the network as input data. The network produces a second
occupancy map representing the zones where legs have been
detected. Figure 3, bottom right shows the network output
after processing the occupancy map shown in Figure 3,
bottom left.

3. Finally, a mass center calculation returns peoples’ locations,
which is published as a location message in a specific topic.

Location messages include, among other data, the location
coordinates and a timestamp that is precise to the nanosecond,
as shown in Figure 4.

FIGURE 4 | Location message (PointStamped message, in ROS terminology)
published at the /person topic. It includes a header with a nanosecond-precise
timestamp and some identification data as well as a body with the Cartesian
coordinates of the location.

FIGURE 3 | Top left: Orbi-One and two people at the kitchen of the mock-up apartment. Top right: same situation over the apartment plan. Bottom left:

occupancy map built from LIDAR’s readings on the above situation. Bottom right: PeTra’s output after processing the above occupancy map.
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FIGURE 5 | Information of the robot as displayed on Rviz (running PeTra in the right and without running it to the left): Yellow markers show LIDAR readings; the red
arrow shows Orbi-One’s location and orientation, the beginning of the arrow matches the robot location; blue markers show leg location estimates; and the green
marker shows the person center.

Location messages published by PeTra will be used to evaluate
its performance by comparing it with ground-truth data. PeTra
also publishes visualization Marker messages to indicate where
detection happened. These markers can be displayed on Rviz, as
shown on Figure 5.

2.3.3. Neural Network Training
A CNN embedded in PeTra was trained using data gathered at
the Robotics Lab of the University of León (see Figure 1, left). To
get training data a single person walked in a straight line toward
the robot and then turned around to move away while the robot
remained still. This situation was repeated in two locations at the
mock-up apartment, the kitchen and the living room.

To label training data, KIO location estimates were used. In
order to do so, for each LIDAR scan, an occupancy map was
created. Then, discarding all LIDAR readings close to the KIO
location estimate, leg position were labeled. To illustrate this
process Figure 6 shows the labeling from a specific LIDAR scan.
Figure 6, left shows some information of the robot as displayed
on Rivz. LIDAR’s readings are shown as white points. The red
arrow shows Orbi-One robot’s pose (location and orientation).
The robot location matches the beginning of the arrow. The pink
marker shows the KIO location estimate of the person in the
scene. Blue markers show the LIDAR readings close to the PeTra
location estimate. Figure 6, middle shows the occupancy map
created from the above data. Figure 6, right shows the labeled
data by gathering the LIDAR readings close to the KIO location
estimate.

The training dataset includes 2,790 pairs of images
(occupancy- and labeled-map). Two thousand two hundred
and twenty four were used to train the network and 550 to test
it. PeTra training data is available at the University of León
Robotics group website7 As mentioned in the introduction, for

7http://robotica.unileon.es/~datasets/LegTracking/PeTra_training_dataset/
npy_train_test_globales.tar.gz

PeTra evaluation, in order to ensure an optimal generalization,
a different dataset was used including situations at different
environments with several people in the scene, as will be
explained later.

2.4. Leg Detector (LD)
LD is a standard ROS package which takes messages published
by a LIDAR sensor as input and uses a machine learning-trained
classifier to detect groups of LIDAR readings as possible legs. The
code is available in a public repository8, but is unsupported at this
time.

Figure 7 shows LD location estimates as displayed on Rviz. It
publishes the location for the individual legs. Markers colored in
a black-to-blue gradient show leg location estimates. A close-to-
black marker represents a small chance that it is a real leg while
a close-to-blue marker represents a high probability. Some false
positives appear in Figure 7, right, see the blue marker close to
the wall. LD can also attempt to pair the legs together (displayed
as red markers on Rviz) and publish their average as an estimate
of where the center of the person is displayed on Rviz as a green
marker.

2.5. Evaluation
A complete dataset, different than the training dataset, has
been used for PeTra evaluation. This section describes how the
evaluation dataset has been built. Later, the evaluation method is
proposed.

2.5.1. Data Collection
Evaluation data, different than training data to ensure
generalization, is needed to evaluate PeTra. Therefore,
Range-based people tracker classifiers Benchmark dataset2

(RRID:SCR_01574) was used. The dataset has different versions
and data from version 2 were used in the evaluation. Data were

8https://github.com/wg-perception/people
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FIGURE 6 | Information of the robot as displayed on Rivz (left): white points show LIDAR readings; the red arrow shows Orbi-One’s location and orientation, the
beginning of the arrow matches the robot location; the pink marker shows the KIO location estimate; and blue markers show the LIDAR readings close to the PeTra
location estimate. Occupancy map built from LIDAR readings (middle). Labeled data (right).

FIGURE 7 | Information of the robot as displayed on Rviz (running LD in the right and without running it to the left): Yellow markers show LIDAR readings; the red
arrow shows Orbi-One’s location and orientation, the beginning of the arrow matches the robot location; black-to-blue markers show leg location estimate,
close-to-black markers represent a small chance that it is a real leg, close-to-blue markers represent a high probability; red markers show paired legs; and the green
marker shows the person center.

gathered in 14 different situations, where the robot stood still
as one person, carrying a KIO tag, moved around it. Situations
represent different human-robot interactions that may occur in
robotics competitions such as ERL9 or RoboCup10, in particular
in the “Following and Guiding” test where a robot has to follow
an operator in a cluttered environment. Figure 8 illustrates each
of these situations. Three different locations were defined (black
numbered markers in Figure 1, left show Orbi-One locations
during the data gathering) resulting in 42 scenarios (14 situations
× 3 locations).

Recently, a new version of the dataset was released (version 3).
These data were also used in the evaluation. New data were

9https://www.eu-robotics.net/robotics_league/
10http://www.robocup.org/

gathered according to situations 5 and 10 (see Figure 8) on three
different locations (kitchen, living room and bedroom), but in
this case Orbi-One was not still but was instead moving around
the room.

Rosbag files were used to record the state of the robot by
gathering data from the robot’s sensors and actuators such as
LIDAR scans, odometry data, etc. A rosbag file is equivalent to
a recording of the state of the robot in a period. A rosbag file
was created for each scenario. In all of them, the person to be
tracked was carrying a KIO tag in order to get his real location.
Each rosbag file contains the following data:

– LIDAR sensor data which include, among other information,
the following: acquisition time of the first ray for each scan,
start/end angle, angular distance between measurements, and
range data.
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FIGURE 8 | Recognition situations recorded as shown at Álvarez-Aparicio et al. (2018).

– PeTra location estimates which include a position [x, y, z] and
a timestamp.

– Location estimates calculated by LD including data for
individual legs and paired legs which will be compared to
ground-truth data.

– Locations provided by KIORTLSwhich also include a position
and a timestamp.

– Useful information such as map information, odometry
of the robot base, and transformation information,
respectively.

Further information about the dataset may be found at Álvarez-
Aparicio et al. (2018).

2.5.2. Evaluation Method
In order to evaluate PeTra accuracy, a comparison with LD
was done. In order to empirically decide which one offers the
best results, location estimates of people from both systems can
be compared to the ground-truth data provided by KIO RTLS.
The accuracy error of both PeTra (ePeTra) and LD (eLD) in a
specific instant of time has been calculated as the euclidean
distance between their location estimates (lPeTra and lLD) and
ground-truth data provided by KIO-RTLS (lKIO). A comparison
may be done just in case there is a valid location estimate
from PeTra or LD, otherwise ePeTra and eLD will respectively
get a maximum value. Equations 1 and 2 show ePeTra and eLD

calculation,

ePeTra =

{

Max. range value if ∄ lPeTra

d(lPeTra, lKIO) =
√

∑n
i=1(lPeTrai − lKIOi )2 if ∃ lPeTra

(1)

eLD =

{

Max. range value if ∄ lLD

d(lLD, lKIO) =
√

∑n
i=1(lLDi − lKIOi )2 if ∃ lLD

(2)

where n is the number of dimensions considered. In our
experiments, only X and Y coordinates are considered. The
Z coordinate is constant since a mobile robot moves on
the ground. Ground-truth data location estimates (lKIO) are
provided as Cartesian coordinates by KIO RTLS. PeTra and LD
location estimates (lPeTra and lLD) are also provided as Cartesian
coordinates but using the LIDAR location as the coordinates’
origin.

The evolution of ePeTra and eLD over time was used to decide
the system which works better. The accuracy error was calculated
for the period of time covered for each Rosbag file included in the
dataset.

Regarding the above, there are two important issues to deal
with as detailed in Álvarez-Aparicio et al. (2018). First, KIO,
PeTra and LD use their own coordinate origins to represent
locations. In order to compare these locations they ought to be
represented using the same coordinate origins. The tf package,
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see Foote (2013), included in the ROS framework core, is in
charge of transforming KIO, PeTra and LD location estimates,
allowing for easy comparison. tf operates with a central server
that contains all transform information. On the other hand,
each message published for the recorded topics has its own
timestamp with precision to the nanosecond, so comparing
locations in a concrete instant of time may not be an easy task.
A synchronization method is needed to compare measurements
from different topics. To synchronize data in our experiments,
we have used the timestamp of the PeTra location estimates and
then we have selected the closest measure in time from both LD
and KIO.

3. RESULTS

The accuracy of PeTra has been evaluated vs. LD accuracy
applying the described method. Table 1 shows the mean error
and standard deviation for the 14 situations of the second version
of the dataset. As can be seen in the table, the average error
of ePeTra at locations 1, 2, and 3, are 0.17, 0.43, and 0.20 m
respectively; it is lower than eLD at all locations (0.30, 0.75, and
0.49 m respectively).

The standard deviations of ePeTra at locations 1, 2, and 3, are
0.13, 0.22, and 0.13 m respectively; which are also slightly lower
than eLD (0.15, 0.28, and 0.33 m respectively).

Figure 9 shows the evolution of the accuracy error for both
PeTra and LD over the time horizon given by Rosbag files
recorded at locations 1, 2, and 3, on situations 5, and 10, of
the second version of the dataset. Green markers represent eLD.
Red markers represent ePeTra. Green and red lines illustrate eLD
and ePeTra Moving Average (MA). MAs were used to smooth
out short-term fluctuations and highlight longer-term trends
or cycles. The same analysis has been done for all scenarios
at all locations. Complete results are shown in Figures S1–S3.

According to Table 1, ePeTra is slightly lower on average than eLD
for scenarios 5 and 10. This is shown in the figure, ePeTra is lower
than eLD on scenario 5 at location 3, and on scenario 6 at locations
1, 2, and 3. However, there are specific moments where eLD is
lower, especially at scenario 5 on locations 1 and 2.

Table 2 shows the mean error and standard deviation for the
two situations of the third version of the dataset. As can be
seen in the table, the average error of ePeTra at the kitchen, the
living room, and the bedroom, are 0.18m, 0.13m, and 0.53m,
respectively; it is lower than eLD at the three rooms (0.38, 0.57,
and 0.64 m).

The standard deviations of ePeTra at the three rooms are 0.25,
0.15, and 0.23 m respectively are slightly higher than standard
deviations of eLD at the kitchen and at the bedroom (0.22 and
0.22 m) and lower at the living room (0.30 m).

Figure 10 shows the evolution of the accuracy error for both
PeTra and LD over the time horizon given by rosbag files
recorded at locations 1, 2, and 3, on situations 5, and 10, of the
third version of the dataset. Green markers represent eLD. Red
markers represent ePeTra. Green and red lines illustrate eLD and
ePeTra MA. According to the figure, ePeTra is lower than eLD most
of the time for both scenarios.

Regarding performance, PeTra spends ≈ 0.3 s on calculating
a location estimate from LIDAR sensor data when running on
Orbi-One hardware configuration as described in 2.1. With the
same hardware platform LD spends ≈ 0.1 s on calculating a
location estimate.

4. DISCUSSION

Table 1 shows that PeTra has a lower mean error than LD at the
three locations. These differences represent an accuracy increase
of 43%, 42%, and 59% at locations 1, 2, and 3, respectively.
Considering the standard deviation, differences between PeTra

TABLE 1 | Mean error and standard deviation (m) using data from version 2 of the dataset.

Location 1 Location 2 Location 3

Situation X̄ePeTra X̄eLD X̄ePeTra X̄eLD X̄ePeTra X̄eLD

1 0.02 (±0.02) 0.21 (±0.04) 1.40 (±0.03) 1.16 (±0.03) 0.03 (±0.01) 0.52 (±0.09)

2 0.48 (±0.47) 0.17 (±0.11) 1.25 (±0.29) 1.51 (±0.19) 0.48 (±0.35) 0.33 (±0.08)

3 0.08 (±0.10) 0.32 (±0.15) 0.06 (±0.03) 0.62 (±0.40) 0.06 (±0.02) 0.20 (±0.08)

4 0.09 (±0.06) 0.30 (±0.15) 0.36 (±0.50) 0.85 (±0.39) 0.15 (±0.12) 0.32 (±0.11)

5 0.43 (±0.12) 0.35 (±0.13) 0.95 (±0.46) 0.84 (±0.30) 0.38 (±0.07) 0.54 (±0.10)

6 0.16 (±0.22) 0.21 (±0.10) 0.55 (±0.44) 0.63 (±0.44) 0.36 (±0.29) 0.61 (±0.27)

7 0.18 (±0.22) 0.39 (±0.25) 0.20 (±0.14) 0.95 (±0.52) 0.21 (±0.13) 0.24 (±0.12)

8 0.11 (±0.14) 0.26 (±0.11) 0.08 (±0.07) 0.73 (±0.28) 0.08 (±0.06) 0.39 (±0.16)

9 0.29 (±0.18) 0.25 (±0.15) 0.69 (±0.60) 0.56 (±0.42) 0.41 (±0.20) 1.78 (±2.89)

10 0.10 (±0.06) 0.36 (±0.16) 0.10 (±0.07) 0.71 (±0.24) 0.19 (±0.13) 0.50 (±0.16)

11 0.05 (±0.03) 0.26 (±0.08) 0.08 (±0.18) 0.18 (±0.06) 0.08 (±0.09) 0.28 (±0.05)

12 0.04 (±0.02) 0.27 (±0.16) 0.06 (±0.05) 0.53 (±0.27) 0.04 (±0.04) 0.55 (±0.13)

13 0.12 (±0.11) 0.49 (±0.28) 0.13 (±0.10) 1.03 (±0.34) 0.23 (±0.22) 0.35 (±0.30)

14 0.19 (±0.11) 0.35 (±0.16) 0.12 (±0.12) 0.18 (±0.13) 0.10 (±0.11) 0.18 (±0.09)

Average 0.17 (±0.13) 0.30 (±0.15) 0.43 (±0.22) 0.75 (±0.28) 0.20 (±0.13) 0.49 (±0.33)
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FIGURE 9 | ePeTra (m) and eLD (m) evolution over time (hh:mm:ss) on scenarios 5 (1st row), and 10 (2th row), at locations 1 (left), 2 (center), and 3 (right). Red
markers show ePeTra, green markers show eLD, red line show MA(ePeTra), and green line shows MA(eLD).

TABLE 2 | Mean error and standard deviation (m) using data from version 3 of the dataset.

Kitchen Living room Bedroom

Situation X̄ePeTra X̄eLD X̄ePeTra X̄eLD X̄ePeTra X̄eLD

5 0.20 (±0.33) 0.35 (±0.25) 0.14 (±0.17) 0.56 (±0.29) 0.92 (±0.34) 0.98 (±0.33)

10 0.16 (±0.16) 0.40 (±0.19) 0.12 (±0.12) 0.57 (±0.31) 0.13 (±0.12) 0.29 (±0.11)

Average 0.18 (±0.25) 0.38 (±0.22) 0.13 (±0.15) 0.57 (±0.30) 0.53 (±0.23) 0.64 (±0.22)

and LD represent a reduction of 13, 21, and 60% at locations 1,
2, and 3. Thus, PeTra is more consistent over time at all locations
when Orbi-One remains still. Considering each situation, ePeTra
is lower on average than eLD, however, there are not too many
differences on multi-person scenarios (scenarios 2, 5, 6 and 9). It
is expected because the training data employs a single person.

Figures S1–S3 visually illustrate the evolution over time of
ePeTra and eLD. They show that ePeTra is lower than eLD most of
the time for most of the scenarios at the three locations analyzed.
However, we must analyze carefully the differences between
different situations. In order to do so, scenarios 5 and 10 have
been selected for in-depth analysis. Graphics of Figure 9 visually
illustrate the evolution of ePeTra and eLD specifically on these
scenarios. These scenarios have been chosen because they include
a large variety of situations with one or several people standing or
moving around in the environment. They also include situations
where PeTra gets a better performance and a worse performance
comparing to LD.

The first row of Figure 11 shows information of the robot on
situation 5 at location 2 as displayed at Rviz. On this situation,

recorded at the living room of the mock-up apartment, four
people stand still in front of the robot while another one moves
away. The red arrow shows the robot’s pose. The beginning of
the arrow matches the robot’s location. Yellow markers show
LIDAR’s readings. These readings allow the identification of the
people on the scene. Two half-circles can be guessed in front
of the robot at several places in the image. These two half-
circles are the shape that the sensor gathers when a person is
in the LIDAR range. In this case, PeTra is able to detect two
of the people in the scene as shown in Figure 11, top middle.
Another person close to the wall is not detected because just
one of her legs can be seen. The fourth person is hidden behind
another one and is not detected either. Regarding LD, it identifies
3 people in the scene, as shown in Figure 11, top right, but
just one of them corresponds to a real person, the others have
been located by pairing legs from different people or even from
furniture.

The second row of Figure 11 shows information of the robot
on situation 10 at location 3. It was recorded at the bedroom of
the mock-up apartment. Here, a person first moves away and
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FIGURE 10 | ePeTra (m) and eLD (m) evolution over time (hh:mm:ss) on scenarios 5 (1st row), and 10 (2nd row), at locations 1 (left), 2 (center), and 3 (right). Red
markers show ePeTra, green markers show eLD, red line shows MA(ePeTra), and green line shows MA(eLD).

FIGURE 11 | Information of the robot as displayed on Rviz for scenarios 5 (1st row), and 10 (2nd row). Yellow markers show LIDAR readings. The red arrow shows
Orbi-One’s location and orientation. The beginning of the arrow matches the robot location. PeTra’s location estimates are shown on the center: blue markers show
leg location estimates and the green marker shows the person’s center. LD location estimates are shown on the right: black-to-blue markers show legs location
estimates, close-to-black markers represent a low chance it is a real leg, close-to-blue markers represent a high probability; red markers show paired legs; and the
green marker shows the person center.
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then moves toward the robot. The LIDAR’s readings allow the
identification of the person on the scene. In this case, both PeTra
and LD identify the person correctly, but LD also identifies some
points as people’s legs that in fact match furniture legs. These
matchings are displayed as black-to-blue markers in Figure 11,
bottom right.

Regarding results of Table 2, again ePeTra has a lower mean
error than eLD, representing an accuracy increase of 52, 77, and
18% at locations 1, 2, and 3 ,respectively. The standard deviation
is slightly higher at locations 1 and 3 (12 and 4%) and lower
at location 2 (50%). Graphics of Figure 10 visually illustrate the
evolution of ePeTra and eLD over time, showing that PeTra offers
better accuracy than LDmost of the time in both situations. These
results demonstrate that PeTra is also more consistent over time
at all locations when the Robot moves.

5. CONCLUSIONS AND FURTHER WORK

This paper presented a system named PeTra to track pair of
legs (people) by processing LIDAR sensor data using CNNs.
This could be used in several applications, such as improving
navigation, facilitating human-robot interaction, or in security
and safety. To demonstrate that PeTra allows the tracking of
people, it has been compared with LD, a well-known solution
for tracking people from LIDAR sensor data, at several locations
and situations. Evaluations have been done using data different
than the ones used to train and test both models. As a result,
experiments proved that PeTra offers a better accuracy in most
scenarios.

The main contribution of this work is the PeTra system
itself. But in addition, we also want to point out the technical
contributions of this work, which include:

1. A people tracking system ready to be used by anymobile robot
using the ROS framework.

2. A method to evaluate the performance of range-based people
trackers in mobile robots by comparing their results with the
data contained in public dataset (RRID:SCR_015743). The
dataset is described in section 2.5.1. Data are available at the
University of Leon Robotics group website2.

3. A system to transform LIDAR sensor data to a two-
dimensional occupancy map as described in section 2.3.1,
which enables processing them as a picture. This makes
LIDAR sensor data treatable by classifiers based on neural
networks which used pictures as input.

Regarding further work, there are several aspects that have to be
analyzed. On the one hand, a network optimization is needed to
improve performance. Amobile robot such as Orbi-One needs to
get peoples’ locations in real time as soon as LIDAR sensor data
is received. A 0.3 s delay can be too muchinon certain situations.

LIDAR sensor data pre-processing could improve
performance. Currently, a Boolean matrix is built considering
just two situations: in the first one, pointed out as the value 1,
LIDAR scan found an obstacle in a given position; in the second
one, pointed out as the value 0, LIDAR scan went through it
without detecting an obstacle in that position or did not go
through it due to an occlusion. Differentiating the cases when the
LIDAR scan found an obstacle and when it did not go through
that position, could be useful to generate new fit and evaluation
data for the CNN used by PeTra.
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An important field in robotics is the optimization of controllers. Currently, robots are often

treated as a black box in this optimization process, which is the reasonwhy derivative-free

optimization methods such as evolutionary algorithms or reinforcement learning are

omnipresent. When gradient-based methods are used, models are kept small or rely on

finite difference approximations for the Jacobian. This method quickly grows expensive

with increasing numbers of parameters, such as found in deep learning. We propose the

implementation of a modern physics engine, which can differentiate control parameters.

This engine is implemented for both CPU and GPU. Firstly, this paper shows how such

an engine speeds up the optimization process, even for small problems. Furthermore, it

explains why this is an alternative approach to deep Q-learning, for using deep learning

in robotics. Finally, we argue that this is a big step for deep learning in robotics, as it

opens up new possibilities to optimize robots, both in hardware and software.

Keywords: differentiable physics engine, deep learning, gradient descent, neural network controller, robotics

1. INTRODUCTION

To solve tasks efficiently, robots require an optimization of their control system. This optimization
process can be done in automated testbeds (Degrave et al., 2015), but typically these controllers
are optimized in simulation. Standard methods (Aguilar-Ibañez, 2017; Meda-Campana, 2018) to
optimize these controllers include particle swarms, reinforcement learning, genetic algorithms, and
evolutionary strategies. These are all derivative-free methods.

A recently popular alternative approach is to use deep Q-learning, a reinforcement learning
algorithm. This method requires a lot of evaluations in order to train the many parameters (Levine
et al., 2018). However, deep learning experience has taught us that optimizing with a gradient is
often faster and more efficient. This fact is especially true when there are a lot of parameters, as is
common in deep learning. However, in the optimization processes for control systems, the robot
is almost exclusively treated as a non-differentiable black box. The reason for this is that the robot
in hardware is not differentiable, nor are current physics engines able to provide the gradient of
the robot models. The resulting need for derivative-free optimization approaches limits both the
optimization speed and the number of parameters in the controllers. One could tackle this issue by
fitting a neural network model and using its gradient (Grzeszczuk et al., 1998), but those gradients
tend to be poor a approximations for the gradient of the original system.

Recent physics engines, such as mujoco (Todorov et al., 2012), can derive gradients through the
model of a robot. However, they can at most evaluate gradients between actions and states in the
transitions of the model, and cannot find the derivatives with respect to model parameters.
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In this paper, we suggest an alternative approach, by
introducing a differentiable physics engine with analytical
gradients. This idea is not novel. It has been done before with
spring-damper models in 2D and 3D (Hermans et al., 2014). This
technique is also similar to adjoint optimization, a method widely
used in various applications such as thermodynamics (Jarny
et al., 1991) and fluid dynamics (Iollo et al., 2001). However,
modern engines to model robotics are not based on spring-
damper systems. The most commonly used ones are 3D rigid
body engines, which rely on impulse-based velocity stepping
methods (Erez et al., 2015). In this paper, we test whether
these engines are also differentiable and whether this gradient
is computationally tractable. We will show how this method
does speed up the optimization process tremendously, and give
some examples where we optimize deep learned neural network
controllers with millions of parameters.

2. MATERIALS AND METHODS

2.1. A 3D Rigid Body Engine
The goal is to implement a modern 3D rigid body engine, in
which parameters can be differentiated with respect to the fitness
a robot achieves in a simulation, such that these parameters can
be optimized with methods based on gradient descent.

The most frequently used simulation tools for model-based
robotics, such as PhysX, Bullet, Havok, and ODE, go back to
MathEngine (Erez et al., 2015). These tools are all 3D rigid
body engines, where bodies have 6 degrees of freedom, and the
relations between them are defined as constraints. These bodies
exert impulses on each other, but their positions are constrained,
e.g., to prevent the bodies from penetrating each other. The
velocities, positions and constraints of the rigid bodies define
a linear complementarity problem (LCP) (Chappuis, 2013),
which is then solved using a Gauss-Seidel projection (GSP)
method (Jourdan et al., 1998). The solution of this problem are
the new velocities of the bodies, which are then integrated by
semi-implicit Euler integration to get the new positions (Stewart
and Trinkle, 2000). This system is not always numerically stable.
Therefore, the constraints are usually softened (Catto, 2009).

The recent growth of automatic differentiation libraries,
such as Theano (Al-Rfou et al., 2016), Caffe (Jia et al., 2014),
and Tensorflow (Abadi et al., 2016), has allowed for efficient
differentiation of remarkably complex functions before (Degrave
et al., 2016a). Therefore, we implemented such a physics engine
from scratch as a mathematical expression in Theano, a software
library which does automatic evaluation and differentiation
of expressions with a focus on deep learning. The resulting
computational graph to evaluate this expression is then compiled
for both CPU and GPU. To be able to compile for GPU
however, we had to limit our implementation to a restricted
set of elementary operations. The range of implementable
functions is therefore severely capped. However, since the
analytic gradient is determined automatically, the complexity of
correctly implementing the differentiation is removed entirely.

One of these limitations with this restricted set of operations,
is the limited support for conditionals. Therefore, we needed
to implement our physics engine without branching, as this is

not yet available in Theano for GPU. Note that newer systems
for automatic differentiation such as PyTorch (Paszke et al.,
2017) do allow branching. Therefore, we made sacrificed some
abilities of our system. For instance, our system only allows for
contact constraints between different spheres or between spheres
and the ground plane. Collision detection algorithms for cubes
typically have a lot of branching (Mirtich, 1998). However, this
sphere based approach can in principle be extended to any other
shape (Hubbard, 1996). On the other hand, we did implement
a rather accurate model of servo motors, with gain, maximal
torque, and maximal velocity parameters.

Another design choice was to use rotation matrices rather
than the more common quaternions for representing rotations.
Consequently, the states of the bodies are larger, but the
operations required are matrix multiplications. This design
reduced the complexity of the graph. However, cumulative
operations on a rotation matrix might move the rotation matrix
away from orthogonality. To correct for this, we renormalize our
matrix with the update equation (Premerlani and Bizard, 2009):

A′
=

3A− A ◦ (A · A)

2
(1)

where A′ is the renormalized version of the rotation matrix
A. “◦” denotes the elementwise multiplication, and “·” the
matrix multiplication.

These design decisions are the most important aspects of
difference with the frequently used simulation tools. In the
following section, we will evaluate our physics simulator on some
different problems. We take a look at the speed of computation
and the number of evaluations required before the parameters of
are optimized.

2.1.1. Throwing a Ball

To test our engine, we implemented the model of a giant soccer
ball in the physics engine, as shown in Figure 3A. The ball has
a 1m diameter, a friction of µ = 1.0 and restitution e = 0.5.
The ball starts off at position (0, 0). After 5 s it should be at
position (10, 0) with zero velocity v and zero angular velocity ω.
We optimized the initial velocity v0 and angular velocity ω0 at
time t = 0 s until the errors at t = 5 s are <0.01m and 0.01m/s
respectively.

Since the quantity we optimize is only know at the end of
the simulation, but we need to optimize the parameters at the
beginning of the simulation, we need to backpropagate our error
through time (BPTT) (Sutskever, 2013). This approach is similar
to the backpropagation through timemethod used for optimizing
recurrent neural networks (RNN). In our case, every time step in
the simulation can be seen as one pass through a neural network,
which transforms the inputs from this timestep to inputs for the
next time step. For finding the gradient, this RNN is unfolded
completely, and the gradient can be obtained by differentiating
this unfolded structure. This analytic differentiation is done
automatically by the Theano library.

Optimizing the six parameters in v0 and ω0 took only
88 iterations with gradient descent and backpropagation through
time. Optimizing this problem with CMA-ES (Hansen, 2006),
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FIGURE 1 | Illustration of how a closed loop neural network controller would

be used to actuate a robot. The neural network receives sensor signals from

the sensors on the robot and uses these to generate motor signals which are

sent to the servo motors. The neural network can also generate a signal which

it can use at the next timestep to control the robot.

a state of the art derivative-free optimization method, took
2,422 iterations. Even when taking the time to compute the
gradient into account, the optimization with gradient descent
takes 16.3 s, compared to 59.9 s with CMA-ES. This result
shows that gradient-based optimization of kinematic systems
can in some cases already outperform gradient-free optimization
algorithms from as little as six parameters.

2.2. Policy Search
To evaluate the relevance of our differentiable physics engine, we
use a neural network as a general controller for a robot, as shown
in Figure 1. We consider a general robot model in a discrete-time
dynamical system xt+1

= fph(xt , ut) with a task cost function
of l(xt , p), where xt is the state of the system at time t and ut is
the input of the system at time t. p provides some freedom in
parameterizing the loss. If Xt is the trajectory of the state up to
time t − 1, the goal is to find a policy ut = π(Xt) such that we
minimize the loss Lπ .

Lπ =

T
∑

t=0

l(xt , p)

s.t. xt+1
= fph(x

t ,π(Xt)) and x0 = xinit

(2)

In previous research, finding a gradient for this objective has
been described as presenting challenges (Mordatch and Todorov,
2014). An approximation to tackle these issues has been discussed
in Levine and Koltun (2013).

We implement this equation into an automatic differentiation
library, ignoring these challenges in finding the analytic gradient
altogether. The automatic differentiation library, Theano in our
case, analytically derives this equation and compiles code to
evaluate both the equation and its gradient.

Unlike in previous approaches such as iLQR (Todorov and
Li, 2005) and DDP (Bertsekas et al., 2005), we propose not
to use this gradient to optimize a trajectory, but to use the
gradient obtained to optimize a general controller parameterized
by a neural network. This limits the amount of computation at

execution time, but requires the optimization of a harder problem
with more parameters.

We define our controller as a deep neural network gdeep
with weights W. We do not pass all information Xt to this
neural network, but only a vector of values st observed by
the modeled sensors s(xt). We also provide our network with
(some of the) task-specific parameters p′. Finally, we add a
recurrent connection to the controller in the previous timestep
ht . Therefore, our policy is the following:

π(Xt) = gdeep(s(x
t), ht , p′ | W)

s.t. ht = hdeep(s(x
t−1), ht−1, p′ | W) and h0 = 0

(3)

Notice the similarity between Equations (2)and (3). Indeed, the
equations for recurrent neural networks (RNN) in Equation (3)
are very similar to the ones of the loss of a physical model in
Equation (2). Therefore, we optimize this entire system as an
RNN unfolded over time, as illustrated in Figure 2. The weights
W are optimized with stochastic gradient descent. The gradient
required for that is the Jacobian dL/dW, which is found with
automatic differentiation software.

We have now reduced the problem to a standard deep learning
problem. We need to train our network gdeep on a sufficient
amount of samples xinit and for a sufficient amount of sampled
tasks p in order to get adequate generalization. Standard RNN
regularization approaches could also improve this generalization.
We reckon that generalization of gdeep to more models fph, in
order to ease the transfer of the controller from the model to the
real system, is also possible (Hermans et al., 2014), but it is outside
the scope of this paper.

3. RESULTS

3.1. Quadrupedal Robot: Computing Speed
To verify the speed of our engine, we also implemented a
small quadrupedal robot model, as illustrated in Figure 3B. This
model has a total of 81 sensors, e.g., encoders and an inertial
measurement unit (IMU). The servo motors are controlled in a
closed loop by a small neural network gdeep with a number of
parameters, as shown in Figure 2. The gradient is the Jacobian
of L, the total traveled distance of the robot in 10 s , differentiated
with respect to all the parameters of the controller W. This
Jacobian is found by using BPTT and propagating all 10 s back.
The time it takes to compute this traveled distance and the
accompanying Jacobian is shown in Table 1. We include both
the computation time with and without the gradient, i.e., both
the forward and backward pass and the forward pass alone. This
way, the numbers can be compared to other physics engines, as
those only calculate without gradient. Our implementation and
our model can probably be made more efficient, and evaluating
the gradient can probably be made faster a similar factor.

When only a single controller is optimized, our engine runs
more slowly on GPU than on CPU. To tackle this issue, we
implemented batch gradient descent, which is commonly used
in complex optimization problems. In this case, by batching
our robot models, we achieve significant acceleration on GPU.
Although backpropagating the gradient through physics slows

Frontiers in Neurorobotics | www.frontiersin.org 3 March 2019 | Volume 13 | Article 619

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Degrave et al. A Differentiable Physics Engine

FIGURE 2 | Illustration of the dynamic system with the robot and controller, after unrolling over time. The neural networks gdeep and hdeep with weights W receive

sensor signals st from the sensors on the robot and use these to generate motor signals ut which are used by the physics engine fph to find the next state of the robot

in the physical system. These neural networks also have a memory, implemented with recurrent connections ht. From the state xt of these robots, the loss L can be

found. In order to find dL/dW, every block in this chart needs to be differentiable. The contribution of this paper, is to implement a differentiable fph, which allows us

to optimize W to minimize L more efficiently than was possible before.

FIGURE 3 | (A) Illustration of the ball model used in the first task. (B) Illustration of the quadruped robot model with 8 actuated degrees of freedom, 1 in each

shoulder, 1 in each elbow. The spine of the robot can collide with the ground, through 4 spheres in the inside of the cuboid. (C) Illustration of the robot arm model with

4 actuated degrees of freedom.

down the computations by roughly a factor 10, this factor only
barely increases with the number of parameters in our controller.

Combining this with our previous observation that fewer
iterations are needed when using gradient descent, our approach
can enable the use of gradient descent through physics for
highly complex deep neural network controllers with millions
of parameters. Also note that by using a batch method, a single
GPU can simulate about 864,000 model seconds per day, or
86,400,000 model states. This should be plenty for deep learning.
It also means that a single simulation step of a single robot, which
includes collision detection, solving the LCP problem, integrating
the velocities and backpropagating the gradient through it all,
takes about 1ms on average. Without the backpropagation, this
process is only about seven times faster.

3.2. 4 Degree of Freedom Robot Arm
As a first test of optimizing robot controllers, we implemented a
four degree of freedom robotic arm, as depicted in Figure 3C.

The bottom of the robot has a 2 degrees of freedom actuated
universal joint; the elbow has a 2 degree of freedom actuated joint
as well. The arm is 1m long, and has a total mass of 32 kg. The
servos have a gain of 30 s−1, a torque of 30Nm and a velocity
of 45◦ s−1.

For this robot arm, we train controllers for a task with a
gradually increasing amount of difficulty. To be able to train our
parameters, we have to use a couple of tricks often used in the
training of recurrent neural networks.

• We choose an objective which is evaluated at every time
step and then averaged, rather than at specific points
of the simulation. This approach vastly increases the
number of samples over which the gradient is averaged,
which in turn makes the gradient direction more
reliable (Sjöberg et al., 1995).

• The value of the gradient is decreased by a factor α < 1 at
every time step. This trick has the effect of a prior. Namely,
events further in the past are less important for influencing
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current events, because intermediate events might diminish
their influence altogether. It also improves robustness against
exploding gradients (Hermans et al., 2014).

• We initialize the controller intelligently. We do not want the
controller to shake the actuators violently and explore outside
the accurate domain of our simulation model. Therefore, our
controllers are initialized with zeros such that they only output
zeros at the start of the simulation. The initial policy is the
zero policy.

• We constraint the size of the gradient to an L2-norm of
1. This makes sure that gradients close to discontinuities
in the fitness landscape do not push the parameter values
too far away, such that everything which was learned is
forgotten (Sutskever, 2013).

3.2.1. Reaching a Fixed Point

A first simple task, is to have a small neural net controller
learn to move the controller to a certain fixed point in space, at
coordinates (0.5m; 0.5m; 0.5m). The objective we minimize for
this task, is the distance between the end effector and the target
point, averaged over the 8 s we simulate our model.

We provide the controller with a single sensor input,
namely the current distance between the end effector and
the target point. Input is not required for this task, as there
are solutions for which the motor signals are constant in
time. However, this would not necessarily be the optimal
approach for minimizing the average distance over time, it
only solves the distance at the end of the simulation, but does
not minimize the distance during the trajectory to get at the
final position.

As a controller, we use a dense neural network with 1
input, 2 hidden layers of 128 units with a rectifier activation
function, and 4 outputs with an identity activation function.
Each unit in the neural network also has a bias parameter.
This controller has 17,284 parameters in total. We disabled the
recurrent connections ht .

We use gradient descent with a batch size of 1 robot for
optimization, as the problem is not stochastic in nature. The
parameters are optimized with Adam’s rule (Kingma and Ba,
2014) with a learning rate of 0.001. Every update step with this
method takes about 5 s on CPU. We find that the controller
comes within 4 cm of the target in 100 model evaluations, and
within 1 cm in 150 model evaluations, which is small compared
to the 1m arm of the robot. Moreover, the controller does
find a more optimal trajectory which takes into account the
sensor information.

Solving problems like these in fewer iteration steps than
the number of parameters, is unfeasible with derivative free
methods (Sjöberg et al., 1995). Despite that, we did try to optimize
the same problem with CMA-ES. After a week of computing
and 60,000 model evaluations, CMA-ES did not show any sign
of improvement nor convergence, as it cannot handle the sheer
amount of parameters. In performance, the policy went from a
starting performance of 0.995 ± 0.330m to a not significantly
different 0.933± 0.369m after the optimization. For this reason,
we did not continue using CMA-ES as a benchmark in the
further experiments.

3.2.2. Reaching a Random Point

As a second task, we sample a random target point in the
reachable space of the end effector. We give this point as input
v′ to the controller, and the task is to again minimize the average
distance between the end effector and the target point v. Our
objective L is this distance averaged over all timesteps.

As a controller, we use a dense neural network comparable to
the previous section, but this time with 3 inputs. Note that this is
an open loop controller, which needs to control the system to a
set point given as input. We used 3 hidden layers with 1,024 units
each, so the controller has 2,107,396 parameters in total. This is
not necessary for this task, but we do it like this to demonstrate
the power of this approach. In order to train for this task, we use a
batch size of 128 robots, such that every update step takes 58 s on
GPU. Each simulation takes 8 s with a simulation step of 0.01 s.
Therefore, the gradient on the parameters of the controllers has
been averaged over 51,200 timesteps at every update step. We
update the parameters with Adam’s rule, where we scale the
learning rate with the average error achieved in the previous step.

We find that it takes 576 update steps before the millions of
parameters are optimized, such that the end effector of the robot
is on average<10 cm of target, 2,563 update steps before the error
is <5 cm.

3.3. A Quadrupedal Robot: Revisited
Optimizing a gait for a quadrupedal robot is a problem of a
different order, something the authors have extensive experience
with Degrave et al. (2013, 2015) and Sproewitz et al. (2013). The
problem is way more challenging and allows for a broad range of
possible solutions. In nature, we find a wide variety of gaits, from
hopping over trotting, walking and galloping. With hand tuning
on the robot model shown in Figure 3B, we were able to obtain
a trotting motion with an average forward speed of 0.7m/s. We
found it tricky to find a gait where the robot did not end up like
an upside down turtle, as 75% of the mass of the robot is located
in its torso.

As a controller for our quadrupedal robot, we use a neural
network with 2 input signals st , namely a sine and a cosine signal
with a frequency of 1.5Hz. On top of this, we added 2 hidden
layers of 128 units and a rectifier activation function. As output
layer, we have a dense layer with 8 units and a linear activation
function, which has as input both the input layer and the top
layer of the hidden layers. In total, this controller has 17,952
parameters. Since the problem is not stochastic in nature, we
use a batch size of 1 robot. We initialize the output layer with
zero weights, so the robot starts the optimization in a stand
still position.

We optimize these parameters to maximize the average
velocity of the spine over the course of 10 s of time in simulation.
This way, the gradient used in the update step is effectively an
average of the 1,000 time steps after unrolling the recurrent
connections. This objective does not take into account energy
use, or other metrics typically employed in robotic problems.

In only 500 model evaluations or about 1 h of optimizing
on CPU, the optimization with BPTT comes up with a solution
with a speed of 1.17m/s. This solution is a hopping gait, with
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FIGURE 4 | A frame captured by the differentiable camera looking at the

model of the pendulum-cart system. The resolution used is 288 by 96 pixels.

All the textures are made from pictures of the actual system.

FIGURE 5 | The camera model used to convert the three dimensional point P
into a two dimensional pixel on the projection plane (u, v).

a summersault every 3 steps1, despite limiting the torque of
the servos to 4Nm on this 28.7 kg robot. For more life-like
gaits, energy efficiency could be use as a regularization method.
Evaluating these improvements are however outside the scope of
this paper.

3.4. The Inverted Pendulum With a Camera
as Sensor
As a fourth example, we implemented a model of the pendulum-
cart system we have in our laboratorium. This pendulum-cart
system is used for the classic control task of the underactuated
inverted pendulum (Vaccaro, 1995). In this example however, a
camera which is set up in front of the system is the only available
information for the controller. It therefore has to observe the
system it controls using vision, i.e., learning from pixels. A frame
captured by this camera is shown in Figure 4.

In order to build this model, we implemented a renderer in
our physics engine which converts the three dimensional scene
into a two dimensional color image, as illustrated in Figure 5.
In order to perform this operation in a differentiable way, we
use a ray tracing approach rather than the more conventional
rasterization pipeline. First we cast a set of lines from the point of
our camera C in the direction Ed of the optical axis of the camera.

1A video is available at https://goo.gl/5ykZZe

These vectors are then converted with the pinhole camera model
into a line going through the center of the pixel with the image
coordinates (u, v) on the projection plane. Each of these rays is
then intersected with every object in the scene to find the texture
and corresponding sample location to sample from in the scene’s
texture array. From all intersections a single ray makes, all but the
one closest in front of the projection plane is kept.

Each of the intersections is then converted to a color
by bilinearly interpolating the scene’s texture array, in a
way similar to the approach used for the spatial transform
layer (Jaderberg et al., 2015; Degrave et al., 2016a). This
bilinear interpolation is necessary to make the frame captured
by the camera differentiable to the state of the robot with
non-zero derivatives. If the textures would have been a zero-
order, pixelated approximation, then all the gradients would be
zero analytically.

Using the above ray-tracing approach, we minimize the
distance from the end of the pendulum to the desired point
and regularize the speed of the pendulum. The memoryless
deep controller receives the current image of the camera, in
addition to two images from the past such that it can estimate
velocity and acceleration. We observe that a controller with
1,065,888 parameters is able to learn to swing up and keep the
pendulum stable after only 2,420 episodes of 3 model seconds.
The complete optimization process took 15 h on 1 GPU. The
resulting controller keeps the pendulum stable for more than 1
min2. In order to do this, the controller has learned to interpret
the frames it receives from the camera and found a suitable
control strategy.

Note that this would not have been possible using a
physics engine such as mujoco, as these engines only allow
differentiation through the action and the state, but does not
allow to differentiate through the renderer. We want to stress
that in this setup we solved the problem by backpropagating
through both the computer vision in the form of the
convolutional neural network, and the renderer in the form of
the differentiable camera.

4. DISCUSSION

We implemented amodern engine which can run a 3D rigid body
model, using the same algorithm as other engines commonly
used to simulate robots, but we can additionally differentiate
control parameters with BPTT. Our implementation also runs
on GPU, and we show that using GPUs to simulate the physics
can speed up the process for large batches of robots. We show
that even complex sensors such as cameras, can be implemented
and differentiated through, allowing for computer vision to be
learned together with a control policy.

When initially addressing the problem, we did not know
whether finding the gradient would be computationally tractable,
let alone whether evaluating it would be fast enough to be
beneficial for optimization. In this paper, we have demonstrated
that evaluating the gradient is tractable enough to speed up
optimization on problems with as little as six parameters. The

2https://twitter.com/317070/status/821062814798331905
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speed of this evaluation mainly depends on the complexity of the
physics model and only slightly on the number of parameters
to optimize. Therefore, our results suggest that this cost is
dominated by the gain achieved from the combination of using
batch gradient descent and GPU acceleration. Consequently,
by using gradient descent with BPTT one can speed up
the optimization processes often found in robotics, even for
rather small problems, due to the reduced number of model
evaluations required. Furthermore, this improvement in speed
scales to problems with a lot of parameters. By using the
proposed engine, finding policies for robot models can be done
faster and in a more straightforward way. This method should
allow for a new approach to apply deep learning techniques
in robotics.

Optimizing the controller of a robot model with gradient-
based optimization is equivalent to optimizing an RNN. After
all, the gradient passes through each parameter at every time
step. The parameter space is therefore very noisy. Consequently,
training the parameters of this controller is a highly non-trivial
problem, as it corresponds to training the parameters of an
RNN. On top of that, exploding and vanishing signals and
gradients cause far more challenging problems compared to feed
forward networks.

In section 3.2, we already discussed some of the tricks used
for optimizing RNNs. Earlier research shows that these methods
can be extended to more complicated tasks than the ones
discussed here (Sutskever, 2013; Hermans et al., 2014). Hence, we
believe that this approach toward learning controllers for robotics
applies to more complex problems than the illustrative examples
in this paper.

TABLE 1 | Evaluation of the computing speed of our engine on a robot model

controlled by a closed loop controller with a variable number of parameters.

With gradient Without gradient

CPU GPU CPU GPU

SECONDS OF COMPUTING TIME REQUIRED TO SIMULATE A BATCH OF

ROBOTS FOR 10 s

1 robot 1,296 parameters 8.17 69.6 1.06 9.69

1,147,904 parameters 13.2 75.0 2.04 9.69

128 robots 1,296 parameters 263 128 47.7 17.8

1,147,904 parameters 311 129 50.4 18.3

MILLISECONDS OF COMPUTING TIME REQUIRED TO PERFORM ONE

TIME STEP OF ONE ROBOT.

1 robot 1,296 parameters 8.17 69.6 1.06 9.69

1,147,904 parameters 13.2 75.0 2.04 9.69

128 robots 1,296 parameters 2.05 1.00 0.372 0.139

1,147,904 parameters 2.43 1.01 0.394 0.143

We evaluated both on CPU (i7 5930K) and GPU (GTX 1080), both for a single robot
optimization and for batches of multiple robots in parallel. The numbers are the time
required in seconds for simulating the quadruped robot(s) for 10 s, with and without
updating the controller parameters through gradient descent. Shorter times are colored
in green, longer in red. The gradient calculated here is the Jacobian of the total traveled
distance of the robot in 10 s, differentiated with respect to all the parameters of the
controller. For comparison, the model has 102 states. It is built from 17 rigid bodies, each
having 6 degrees of freedom. These states are constrained by exactly 100 constraints.

All of the results in this paper will largely depend on showing
how these controllers will work on the physical counterparts
of our models. Nonetheless, we would like to conjecture that
to a certain extent, this gradient of a model is close to the
gradient of the physical system. The gradient of the model
is more susceptible to high-frequency noise introduced by
modeling the system, than the imaginary gradient of the system
itself. Nonetheless, it contains information which might be
indicative, even if it is not perfect. We would theorize that
using this noisy gradient is still better than optimizing in
the blind and that the transferability to real robots can be
improved by evaluating the gradients on batches of (slightly)
different robots in (slightly) different situations and averaging
the results. This technique has already been applied in Hermans
et al. (2014) as a regularization method to avoid bifurcations
during online learning. If the previous proves to be correct, our
approach can offer an addition or possibly even an alternative
to deep Q-learning for deep neural network controllers
in robotics.

We can see the use of this extended approach for a
broad range of applications in robotics. Not only do we
think there are multiple ways where recent advances in deep
learning could be applied to robotics more efficiently with a
differentiable physics engine, we also see various ways in which
this engine could improve existing angles at which robotics are
currently approached:

• In this paper, we added memory by introducing recurrent
connections in the neural network controller. We reckon that
advanced, recurrent connections such as ones with a memory
made out of LSTM cells (Hochreiter and Schmidhuber, 1997)
can allow for more powerful controllers than the controllers
described in this paper.

• Having general differentiable models should allow for an
efficient system identification process (Bongard et al., 2006;
Ha and Schmidhuber, 2018). The physics engine can find
analytic derivatives to all model parameters. This includes
masses and lengths, but also parameters which are not typically
touched in system identification, such as the textures of the
rigid body. As the approach could efficiently optimize many
parameters simultaneously, it would be conceivable to find
state dependent model parameters using a neural network
to map the current state onto e.g., the friction coefficient in
that state.

• Using a differentiable physics engine, we reckon that
knowledge of a model can be distilled more efficiently into
a forward or backward model in the form of a neural
network, similar to methods such as used in Johnson
et al. (2016) and Dumoulin et al. (2017). By differentiating
through an exact model and defining a relevant error on
this model, it should be possible to transfer knowledge
from a forward or backward model in the differentiable
physics engine to a forward or backward neural network
model. Neural network models trained this way might
be more robust than the ones learned from generated
trajectories (Christiano et al., 2016). In turn, this neural model
could then be used for faster but approximate evaluation of
the model.
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• Although we did not address this in this paper, there is no
reason why only control parameters could be optimized in
the process. Hardware parameters of the robot have been
optimized the same way before (Jarny et al., 1991; Iollo et al.,
2001; Hermans et al., 2014). The authors reckon that the
reverse process is also true. A physics engine can provide a
strong prior, which can be used for robots to learn (or adjust)
their robot models based on their hardware measurements
faster than today. You could optimize the model parameters
with gradient descent through physics, to have the model
better mimic the actual observations.

• Where adversarial networks are already showing their use
in generating image models, we believe adversarial robotics
training (ART) will create some inventive ways to design
and control robots. Like in generative adversarial nets
(GAN) (Goodfellow et al., 2014), where the gradient is pulled
through two competing neural networks, the gradient could
be pulled through multiple competing robots as well. It would
form an interesting approach for swarm robotics, similar to
previous results in evolutionary robotics (Sims, 1994; Pfeifer
and Bongard, 2006; Cheney et al., 2014), but possibly faster.
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Designing controllers for compliant, underactuated robots is challenging and usually

requires a learning procedure. Learning robotic control in simulated environments can

speed up the process whilst lowering risk of physical damage. Since perfect simulations

are unfeasible, several techniques are used to improve transfer to the real world. Here,

we investigate the impact of randomizing body parameters during learning of CPG

controllers in simulation. The controllers are evaluated on our physical quadruped robot.

We find that body randomization in simulation increases chances of finding gaits that

function well on the real robot.

Keywords: compliant robotics, quadruped control, knowledge transfer, simulation-reality gap, dynamics

randomization

1. INTRODUCTION

Compliant robots can provide many benefits over rigid robots (Pfeifer and Iida, 2007). They are
more versatile and posses an inherently greater capacity to deal with different environments or with
changing body properties due to wear and tear. Additionally, they can be more energy-efficient,
safer for humans and less costly. The drawback is that they are generally more difficult to control
than rigid robots.

Currently, state-of-the-art robots are usually made of rigid components (e.g., Raibert et al., 2008;
Barasuol, 2013; Park et al., 2017). The rigid and well characterized body parts allow for controllers
to be explicitly designed, based on accurate knowledge of the robot’s physical properties. There are,
however, some severe limitations to this approach. It is prohibitively difficult to design controllers
that can adapt to a wide variety of environments and to the changing body properties due to
wear and tear over the robot’s lifetime. Well characterized and reliable components also come at a
high cost.

The same approach cannot be applied to compliant robots, as their body parts can interact highly
non-linearly with each other and the robots environment. This makes it difficult to accurately
model their physical properties. Machine learning approaches are promising to the development
of adaptive controllers for compliant robots. The combination of machine learning and compliant
robotics may lead to robots moving out of highly standardized environments and into daily life at
a cost that is affordable for consumers.

In the field of robot locomotion, machine learning techniques have been increasingly successful
in developing adaptive robot controllers in simulation. Especially in the field of deep reinforcement
learning, there have been some significant improvements recently (Heess et al., 2017; Peng et al.,
2017). These controllers are usually learned in simulation and not on the physical robot. Learning
only on the robot is challenging for multiple reasons, it is usually time-costly and unoptimized
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controllers may damage the robot. While it is impossible to
simulate the real world, it is desirable to optimize controllers as
far as possible before training on the physical robot. Particularly,
in the case of a locomotion controller, it is desirable to start on
the physical robot with a stable gait to prevent damage.

1.1. Related Work
The transfer of knowledge obtained in one domain to a new
domain is important to speed up learning. Knowledge transfer
can be applied across tasks, where knowledge from a learned task
is utilized to speed up learning a new task by the same model
(Hamer et al., 2013; Um et al., 2014). For instance, transfer of
a quadruped gait learned in a specific environment, speeds up
learning in other environments (Degrave et al., 2015). Knowledge
transfer can also be applied across models, for instance if
knowledge obtained by a first robot is utilized by a second robot
(Gupta et al., 2017) or if a model is trained in simulation and
then applied to a physical robot (Peng et al., 2018). However,
the transfer of knowledge from simulation to reality has proven
challenging for locomotion controllers due to discrepancies
between simulation and reality, the so-called simulation-reality
gap (Lipson and Pollack, 2000). This gap can easily cause a
controller that is optimized in simulation to fail in the real world.
Different methods have been developed to decrease the gap,
they can generally be divided into two categories: (i) improving
simulation accuracy and (ii) improving controller robustness.

System identification improves simulation accuracy by tuning
the simulation parameters to match the behavior of the physical
system. In the embodiment theory framework (Füchslin et al.,
2013), the relation between environment, body and controller is
described from a dynamical view point, where each entity can be
modeled as a non-linear filter. Improving the simulator accuracy
is then reduced to matching the transfer function of these filters.
Urbain et al. (2018) provides an automated and parametrized
calibrationmethod that improves simulation accuracy by treating
both the physical robot and its parametrized model as black
box dynamical systems. It optimizes the similarity between the
transfer functions by matching their sensor response to a given
actuation input.

Similarly, simulation accuracy can be improved with machine
learning techniques. For instance, in computer vision tasks (e.g.,
Taigman et al., 2016; Bousmalis et al., 2017) and visually guided
robotic grasping tasks (Bousmalis et al., 2018), synthetic data has
been augmented with generative adversarial networks (GANs).
The augmentation improves the realism of the synthetic data and
hence results in better models.

Another approach for minimizing the simulation-reality gap
is by increasing robustness of the learned controllers. This
can be achieved by perturbing the simulated robot during
learning or by adding noise to the simulated environment
(domain randomization, Jakobi, 1998; Tobin et al., 2017). The
assumption is that if the model is trained on a sufficiently
broad range of simulated environments, the real world will
seem like just another variation to the model. Similarly,
dynamics randomization is achieved by randomizing physical
properties. Tan et al. (2018) found that dynamics randomization
decreased performance but increased stability of a non-compliant

quadruped robot. In Mordatch et al. (2015), optimization on
ensembles of models instead of only the nominal model enables
functional gaits on a small humanoid. In Peng et al. (2018),
dynamics randomization was necessary for sim-to-real transfer
of a robotic arm controller.

1.2. Our Approach
Whereas, Tan et al. (2018) observed the benefit of dynamics
randomization for quadrupedal gait stability, the platform
used is a stable, commercial robot used in a non-compliant
manner. Passive compliance and underactuation are considered
important for robots to cope with a broad range of real-world
environments (Pfeifer et al., 2012; Laschi and Cianchetti, 2014).
However, the difficulty of modeling the robot accurately increases
with compliance and underactuation as well as with the use of
low-cost components, exacerbating the simulation-reality gap. In
this work we investigate the impact of dynamics randomization
on controller robustness for compliant quadruped locomotion.

Measuring the robots physical properties does not necessarily
translate into a good model. Especially with compliant robots,
the dynamics of the model may be different from the physical
robot. Therefor, we use a calibration method that focuses on
replicating the dynamics, as described in a previous paper
Urbain et al. (2018).

Using the calibrated model, we investigate if and how
body randomization reduces the simulation-reality gap. For
this purpose, we restrain ourselves to a straightforward
controller optimization: a parametrized central pattern generator
(CPG) optimized with an evolutionary strategy (the CMA-ES
algorithm). The optimization is repeated for varying degrees of
body randomization and subsequently tested on the physical
robot. The randomization is applied to body parameters critical
for the robot dynamics: mass distribution, spring stiffness and
foot friction.

We observed that randomization of body parameters on
average improves the stability of gaits when applied to the
physical robot. Additionally, the used method is relatively
straightforward to implement.

2. MATERIALS AND METHODS

2.1. Robot
The robot used for this paper is an update of the Tigrillo robot
(Willems et al., 2017) as described by Urbain et al. (2018)
(Figure 1A). Tigrillo is a low-cost platform built with off-the-
shelf components and a structure laser cut out of ABS. It is
developed for researching compliance in quadrupeds and has
underactuated legs. Each hip joint is actuated with a Dynamixel
RX-24F servomotor. The knee joints are passive compliant due
to mounted springs (Figure 1B), which can be replaced to tune
the passive compliance properties. The angle of the passive joints
is measured with Hall sensors and rare-earth magnets placed
on respectively the upper and lower leg parts. The Hall sensor
will output a voltage between 0 and 5 V proportionally to the
magnetic field. As the sensed magnetic field varies non-linearly
with the distance to the magnet, the sensor provides us with
non-linear body feedback. The total weight is 950 g and the
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FIGURE 1 | (A) The Tigrillo robot used in this paper (left) and its parametrized model in Gazebo (right). (B) Zoom on a leg with a spring loaded on the knee joint. M

denotes the magnet, H denotes the Hall sensor.

robot fits in a box of 30 × 18 cm. The front legs are 15 cm
apart and the hind legs 11 cm. A mounted Raspberry Pi 3 allows
wireless control of the robot from a remote computer. Actuator
and sensor communication runs on the Robotic Operating
System (ROS1).

2.2. Calibration
The goal of the calibration process is to tune a simulated
model to increase similarity in dynamics of the model and
robot. The Tigrillo platform has a parametric model (Figure 1)
that is simulated in the Neurorobotics platform (NRP) (Falotico
et al., 2017), using Gazebo configured with ODE (Drumwright
et al., 2010) physics engine. The model is calibrated using the
calibration method detailed by Urbain et al. (2018). This method
is an automated procedure in which both the model and real
robot are considered sensor-to-actuator transfer functions. As the
model is parametrized, its transfer function can be adapted by
tuning the parameters.

We start with learning the sensor-to-actuator transfer
function from the physical robot by recording the Hall sensor
activity in response to an actuation pattern a(t). The actuation
pattern is chosen to be a succession of sine waves at three different
frequencies (0.4, 0.8, and 1.6 Hz). In order to calibrate the model
such that it behaves similarly to the real robot during actual gaits,
the sine waves are also used in anti-phase between the front
and hind legs, creating bounding-like movement. Hence, in total
six actuation patterns are used in the calibration procedure. To
reduce sensor noise, an average (N=5) of multiple recordings
is used as the target signal y. Figure 3 shows the actuation and
corresponding sensor signals for the legs of the physical robot.
The high frequency event in the actuation signal for the front legs
at the transition from high to low frequency (15th s) is an artifact
caused by the signal generator. It does not significantly impact
the calibration procedure as it is an event of short duration.

Next, we want to tune the body parameters of the model to
achieve a similar sensor-to-actuator transfer function. We start
with an uncalibrated model based on the measured physical
properties (see diagram in Figure 2). Then, covariance matrix
adaptation evolutionary strategy (CMA-ES) is applied for the
parameter search. The included parameters θ are those observed

1http://wiki.ros.org/

FIGURE 2 | Diagram of the calibration procedure. CMA-ES optimization

minimizes the difference between the sensor recording from the robot and the

model (y(t) and yθ (t), respectively), by tuning the model parameters (θ̂ ). Figure

adapted from Urbain et al. (2018).

critical for the dynamic behavior and are listed in Table 1. The
indices f and h refer to the front and hind part of the body,
respectively. Parameter θm is the mass of the main body part on
the front and hind side, θµ is the friction coefficient of the feet,
and θk the spring constant indicating spring stiffness. The contact
depth θd is the minimum depth before a contact correction
impulse is applied. Parameter θc is the compression tolerance,
which allows for the minimum angle of the passive joint to be
smaller than the spring length, simulating spring compression.

A more detailed description of the CMA-ES algorithm can
be found in Hansen (2006). It is an evolutionary algorithm
that samples solutions from a multi-variate normal distribution.
Every iteration, the mean and the covariance matrix of the
distribution are updated. The mean is updated to increase the
likelihood of previously successful solutions. The covariance
matrix is updated to increase the likelihood of a previously
successful search step. CMA-ES is well suited for a search space
with multiple local minima. It requires few initial parameters and
doesn’t require derivation of the search space.

CMA-ES will minimize the error ε(θ), here chosen to be the
root mean square error (RMSE) with y being the target sensor
signal as recorded on the robot and ŷ the sensor signal recorded
in simulation:

θ̂ = argmin
θ

ε(θ) (1)
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FIGURE 3 | Characterization of the robot dynamics. The robot was actuated with a pattern of sine waves (top row). The front legs (left) and hind legs (right) were

actuated in phase firstly and in antiphase subsequently. The bottom rows show the Hall sensor readout in response to the actuation pattern for the front and hind legs

(left and right, respectively). An average of 5 trials was used as target signal during model calibration.

TABLE 1 | Parameters included in the calibration procedure with CMA-ES.

Parameter Description Range Unit

θmf Front mass [0.1, 0.5] kg

θmh Hind mass [0.1, 0.5] kg

θµf Front feet friction coefficient [10−3, 2.] NA

θµh Hind feet friction coefficient [10−3, 2.] NA

θdf Front feet contact depth [10−4, 10−2] m

θdh Hind feet contact depth [10−4, 10−2] m

θkf Front legs spring constant [50, 103] N/m

θkh Hind legs spring constant [50, 103] N/m

θcf Front compression tolerance [0.92, 0.98] mm

θch Hind compression tolerance [0.7, 1.2] mm

ε(θ) =

√

√

√

√

6n
i=1

(

ŷ− y
)2

n
(2)

2.3. Gait Search
2.3.1. Central Pattern Generator

With the calibrated model, a controller is optimized in the
same simulation environment. The controller is modeled by a
parametrized CPG, based on the open-loop CPG introduced by
Gay et al. (2013). The CPG is described by three equations:

ṙ = γ (µ− r2)r

φ̇ = ω

λ = r cos(φL)+ o,

(3)

Where r describes the radius of the oscillator and φ the current
phase. Both are used to calculate the actual control value λ in
degrees. µ is the target amplitude of the oscillator and γ is a
positive gain that defines the convergence speed of the radius to
the target amplitude. ω is the radial frequency of the oscillator
and o the offset. φL is a filter applied on the phase of the oscillator,
the formula of which is different for the swing and stance phase
of the control as determined by the duty factor (d):

φL =



















φ2π

2d
if φ2π < 2πd

φ2π + 2π(1− 2d)

2(1− d)
otherwise

and φ2π = φ (mod 2π)

(4)

The Tigrillo platform has four actuated joints that are
controlled by four phase-coupled CPGs. One leg, the front
left, is chosen as reference leg and three phase offset (po)
parameters describe the phase difference of the remaining 3
legs to the reference leg. This is implemented by adding a
term to the formula for the phase (φ) in Equation (3). For
instance, for the coupling between the front left and front
right oscillators:

φ̇fr = ω + wfrsin(φfl − φfr − pofr) (5)

where wfr is the coupling strength.
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2.3.2. Gait Search With CMA-ES

The CMA-ES algorithm is used again to optimize the CPG
controller. The search space consist of a subset of the CPG
parameters. To enforce a walking gait, the search space is
constrained to the set of parameters as detailed in Table 2. The
walking gait is characterized by a phase offset among the legs
that results in asymmetry along the transverse axis. Additionally,
the Tigrillo robot has no feet retraction mechanism in its
underactuated legs. Consequently, maintaining balance during
a walking-like gait presents a challenge for this platform. The
frequency ω is fixed at 2π radian/s (1 Hz).

CMA-ES as described by Hansen (2006) was used to perform
the optimization, but with a larger population size (N = 20)
to increase chance of avoiding local optima. Each solution is
evaluated for 10 s of simulation time. As score function the
distance of the model from origin after 10 s is used. After
convergence of the CMA-ES algorithm, the best performing
individual of the final generation is chosen as the final solution.
Hence each optimization resulted in one set of CPG parameters
that corresponds to a gait.

To investigate the effect of randomizing body morphology
on transferability, CMA-ES optimizations were performed with
varying levels of randomization of body properties deemed
critical for the gait dynamics: θk, θµ, and θm. The parameters
are sampled from a Gaussian distribution with the mean value
µ taken from the calibrated model and the randomization
parameter ψ affecting the standard deviation σ of the Gaussian
distribution in a parameter dependent fashion (see Figure 4 for
an example). Given ψ , the standard deviation is obtained by the
following equations, for the parameters θk and θm:

σ = ψµ (6)

And, for the parameters θµ:

σ = 2ψµ (7)

For θm, the mass of the main front body part is sampled from
the Gaussian distribution and the mass of the main hind body
part is adapted such that the total mass remains constant, varying
only the mass distribution. θk and θµ are sampled independently
per leg, hence each individual has 9 variable parameters. Because

TABLE 2 | Parameters and their ranges included in the CMA-ES optimization for a

walking gait.

Parameter Symbol Range Unit

Front amplitude µf [45, 140] degrees

Hind amplitude µh [45, 140] degrees

Front duty cycle df [0.15, 0.85] NA

Hind duty cycle dh [0.15, 0.85] NA

Front offset of [-45, 10] degrees

Hind offset oh [-45, -10] degrees

Front right phase offset pofr [165, 195] degrees

Hind left phase offset pohl [255, 285] degrees

Hind right phase offset pohr [75, 105] degrees

the noisy body parameters are sampled from a distribution, it is
desirable to evaluate a given controller on multiple independent
trials. It was observed that the average score over 5 trials gave a
reliable estimate.

2.4. Evaluation Methods
In all experiments performance and stability are measured.
Stability is measured as the fraction of all trials in which
the model or robot has fallen. In simulation, performance is
measured as distance between the original and final position
of the model after a short time period (10 s unless mentioned
otherwise). For the physical robot, the robot is tracked with
a Kinect camera and performance is measured as distance
traveled by the robot after a short time period (10 s unless
mentioned otherwise).

3. RESULTS

3.1. Calibration
The aim of the calibration is to tune the robot model to achieve
a sensor response to an actuation signal that is similar to that
of the physical robot. Figure 5 shows the response of the model

FIGURE 4 | Randomization level ψ affects the sampling distribution of the

body parameters. ψ determines the standard deviation (σ , colored dashed

lines) of the Gaussian distribution with mean µ (black dashed line). In this

example for parameter θk , σ = ψ ∗ µ, with µ = 151N/m being the spring

stiffness of the calibrated model front legs.

FIGURE 5 | Model calibration. The model was optimized to match the robot

sensor response (“target”, black). Sensor values after calibration (red, RMSE=

0.245) match better than before calibration (blue, RMSE= 0.741). Signals

shown are for the hind right leg.
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pre- and post-calibration. The calibration resulted in amodel that
approximates the dynamics of the physical robot. In line with the
hypothesis of body randomization, we do not deem it beneficial
to fine tune calibration to the greatest extent possible. Even with
an optimally calibrated model, the simulation-reality gap may
remain. Rather, we try to bridge the gap by searching for a gait
that works on a variety of body morphologies. The calibrated
model serves as a default morphology, on which variations
are applied.

3.2. Gait Optimization in Simulation
To evaluate the effect of body randomization on the simulation-
reality gap, gait optimizations with different levels of

randomization were performed (parameter ψ ranging from
0 to 0.4). A higher level of randomization means that the
body parameters were sampled from a broader distribution.
Since the CMA-ES optimization does not guarantee an optimal
convergence, experiments were repeated 5 times.

For each optimization, the solution was chosen as best
performing individual of the final generation. Subsequently, the
performance of each solution was tested in simulation. The
controller, trained with a specific level of ψ , was tested on
varying degrees of randomization (ψtest). For each level of ψ ,
the procedure was repeated 5 times, Figure 6, Left presents
the average performance. Performance of solutions trained on
the nominal body (without body randomization, ψ = 0) is

FIGURE 6 | Gait evaluation in simulation. For each level of ψ , 5 optimizations were performed resulting in 5 controllers. Each controller was tested in 30 trials.

Left: average distance to origin (in 20 s, N = 150). Right: observed frequency of falling over, normalized.

FIGURE 7 | Evaluation of parameters. Gaits are evaluated while incrementally varying a single parameter at a time, other parameters are kept at the default value.

Top: average performance measured as distance from origin after 20 s (N = 50). Bottom: observed frequency of falling over, normalized.
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higher if tested on bodies with no or limited randomization
(ψtest < 0.3) and converges with other solutions in the higher
randomization regimes (ψtest ≥ 0.3). The variance of these
solutions however is higher, reflecting the performance variation
both between solutions and between trials of the same solution.
Solutions trained with randomization (ψ ≥ 0.1) have a lower
score when tested without randomization (ψtest = 0), because
they have developed more prudent locomotion during training
as the randomization prevents overfitting of the controller to the
dynamics of the simulation environment and model.

Figure 6, Right plots the robustness metric: frequency of
falling over. As expected, the fraction of trials resulting in a robot
fallen over increases with increasing body randomization (ψtest).
More importantly, the amount of randomization during training
improves stability of the resulting solution. The gaits trained
without randomization (ψ = 0) are particularly susceptible
to losing balance when tested on body configurations that it is
not trained on. Overall, it seems there is a trade-off between
speed and stability of a given solution. Randomization impacts
this trade-off and favors more prudent gaits that are slower but
more stable.

To evaluate the impact of variation of the different body
parameters, the gaits were also tested while incrementally varying
a single body parameter at the time and keeping other parameters
at their default value (Figure 7). Similar to the previous test,
training with body randomization lowers average performance
but also the variance when changing the feet friction and mass
distribution parameters. Varying the spring stiffness parameter
has a more dramatic effect on the performance and here
body randomization seems to improve performance in certain
parameter ranges. Generally, the negative impact of varying body
parameters on stability is reduced by increasing the amount of
training randomization (Figure 7, Bottom).

3.3. Transfer to Real World
The final solution of each optimization was tested on the physical
robot. Performance is measured as distance traveled in 10 s
(Figure 8, Top). Generally, adding body randomization (ψ > 0)
improves average performance and decreases the variability
in performance. Forty percent (2/5) of optimizations without
randomization (ψ = 0) resulted in a functional gait compared
to 80% (16/20) of optimizations with randomization (ψ > 0).
Non-functional gaits result in the robot shuffling in place or
consistently falling within 10 s. While a randomization level
ψ > 0 seems beneficial, the precise level of randomization
doesn’t seem critical. This could be a consequence of sampling
the parameters from a Gaussian distribution around a common
mean. The optimization procedure was repeated with a very
high randomization level (ψ = 2, not shown), which resulted
in nonfunctional gaits. Presumably, the gaits learned without
randomization (ψ = 0) are overfit to the training environment
and hence perform well on the nominal body in the simulation,
but suffer a performance dropwhen tested in another setting such
as on the physical robot.

Additionally, frequency of falling was recorded (Figure 8,
Bottom). Lack of body randomization resulted in a higher
probability of the robot falling to its side or back. Optimizations

FIGURE 8 | Transfer test on physical robot. Top: Average traveled distance of

the robot in 10 s trials. Each point represents an average of N = 25 trials (each

result of the optimizations was tested 5 times on the robot), error bars indicate

standard deviation. Bottom: fraction of trials where the robot flipped to its side

or back.

with body randomization generally resulted in reduced frequency
of falling, using ψ = 0.3 resulted in functional gaits that
maintained balance in all trials.

4. CONCLUSION

In this work, we investigated bridging the simulation-reality
gap for a compliant, underactuated robot, by treating a robot
and its model as variations of the same dynamical system.
Consequently, both the calibration and control optimization
procedure focus on body parameters critical for the behavior of
the dynamical system.

For the optimization procedure, we showed that body
randomization results in improved transferability of the
controllers. Lack of randomization results in better performance
in simulation but worse performance on the real robot,
compared to the optimization with randomization. Addition
of randomization also improved stability of controllers, both
in simulation and on the physical robot. Body randomization
can be interpreted as a regularization method, preventing
the optimization procedure from overfitting to the particular
simulation environment. While body randomization improves
sim-to-real transfer, the precise amount of randomization did not
seem critical. For our platform, the use of body randomization
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enhances the quality of controllers learned in simulation. The
resulting controller has an improved stability, reducing risk of
physical harm and providing a safe starting point to continue
learning on the physical platform. This method is relatively
straightforward to implement and could be used in combination
with other tools that reduce the simulation-reality gap, such as
domain randomization and data augmentation.

From the evaluations of gaits in simulation, it is clear that
the quality of a given gait can be very sensitive to even small
changes in physical properties such as the stiffness of springs in
the leg. It would therefor be interesting to use a platform with
adaptive spring stiffness in future work. This would allow to tune
the compliance in function of gait optimization.
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Encode-Manipulate-Decode Network
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We propose a deep neural network architecture, the Encode-Manipulate-Decode

(EM∗D) net, for rapid manipulation planning on deformable objects. We demonstrate

its effectiveness on simulated cloth. The net consists of 3D convolutional encoder and

decoder modules that map cloth states to and from latent space, with a “manipulation

module” in between that learns a forward model of the cloth’s dynamics w.r.t. the

manipulation repertoire, in latent space. The manipulation module’s architecture is

specialized for its role as a forward model, iteratively modifying a state representation

by means of residual connections and repeated input at every layer. We train the

network to predict the post-manipulation cloth state from a pre-manipulation cloth

state and a manipulation input. By training the network end-to-end, we force the

encoder and decoder modules to learn a latent state representation that facilitates

modification by the manipulation module. We show that the network can achieve good

generalization from a training dataset of 6,000 manipulation examples. Comparative

experiments without the architectural specializations of the manipulation module show

reduced performance, confirming the benefits of our architecture. Manipulation plans are

generated by performing error back-propagation w.r.t. the manipulation inputs. Recurrent

use of the manipulation network during planning allows for generation of multi-step

plans. We show results for plans of up to three manipulations, demonstrating generally

good approximation of the goal state. Plan generation takes <2.5 s for a three-step plan

and is found to be robust to cloth self-occlusion, supporting the approach’ viability for

practical application.

Keywords: planning, neural networks, forward models, deformable objects, manipulation, machine learning

INTRODUCTION

Within the area of robotic manipulation planning, deformable objects pose a particularly tough
challenge. Manipulation changes the shape of such objects, so the common strategy of acquiring a
3D model of the object and planning w.r.t. this model is of little use. Even just predicting the object
shape that will result from a given manipulation is far from trivial. Maybe the most common type
of deformable object manipulation is cloth manipulation. Cloth exemplifies the difficulties stated
above, yet humans manipulate cloth routinely and with ease, without much thought. We seem to
acquire an intuitive sense of how cloth reacts to our manipulations. Replicating this ability in AI is
a challenge of both theoretical and practical interest.
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One point of particular theoretical interest is that our affinity
with cloth goes beyond fixed goal-based routines, yet does not fit
rule-based reasoning patterns. Despite being notoriously hard to
formalize (or even verbalize), our affinity with cloth generalizes
well to novel situations. This puts cloth manipulation into
somewhat of a gray zone, that present day AI does not yet have a
clear solution for.

Practical interest in cloth manipulation derives from the fact
that cloth is ubiquitous in our everyday lives. Many everyday
chores involve cloth manipulation in one form or another, so
efficient cloth manipulation capabilities would be an important
feature in household support robots.

Related Work in Cloth Manipulation
Much work in multi-step cloth manipulation avoids the need to
plan by assuming fixed, hand-designedmanipulation procedures.
Such procedures can be quite effective for specific tasks (Maitin-
Shepard et al., 2010; Koishihara et al., 2017; Yuba et al., 2017).
Assuming a circumscribed starting situation and fixed outcome
allows comparatively quick operationwith limited computational
cost, making this type of approach feasible for real-world
applications where the same tasks have to be performed over and
over, such as in industrial settings. However, there is no flexibility
to accommodate new goals; every new goal state requires a new,
human-provided, plan.

To flexibly realize variable goals requires an ability to plan
ahead, to foresee the outcomes of individual actions and string
actions together accordingly. This naturally leads to simulation-
based approaches. While simulation provides high flexibility in
terms of the manipulations that can be considered (Kita et al.,
2014; Li et al., 2015), application in planning faces at least two
major hurdles. The first is computational cost. Simulating a
single manipulation is computationally expensive, and planning
a sequence of manipulations generally requires consideration of
a substantial number of possibilities. This in turn makes explicit
search for manipulation sequences slow and impractical. The
second hurdle is that obtaining an accurate deformation model
of a given object is a difficult problem in itself, an issue that
gets more pressing as more complex manipulations and longer
sequences of manipulations are considered.

A promising intermediary approach works by retrieving and
modifying manipulations from a database (Lee et al., 2015). This
offers more operational flexibility than fixed procedures at a
smaller computational cost than the simulation-based approach.
However, present demonstrations of this approach still assume
a fixed goal, and whereas the cost of database retrieval and
deformation operations is less than full-fledged simulation, it is
not clear whether this approach can be made efficient enough to
perform free-form planning in real-time.

Recent years have seen increasing interest in the use of neural
networks for manipulation problems. Impressive results have
been demonstrated in grasp point detection for rigid objects
(Lenz et al., 2015), and visuomotor policy learning (Levine
et al., 2016). Given neural networks’ natural affinity for fuzzy
subject matter, they may have the potential to bring major
progress to deformable object manipulation. Neural network-
driven grasp point detection has been applied in a bed-making

task (Seita et al., 2018). Interesting results have been reported
on a dual neural network approach to cloth folding, combining
a convolutional autoencoder and a time-delay neural network
to achieve fine control over manipulation motions (Yang et al.,
2017). Whereas the goal is fixed, motion is guided by network-
generated predictions of the very near future, thus realizing
some degree of foresight. Neural network-driven prediction has
also been employed for prediction of forces exerted on human
subjects in a dressing task (Erickson et al., 2018).

Despite these advances, open-goal, multi-step
manipulation planning for deformable objects remains largely
unexplored territory.

Related Work in Model-Based Learning
There is increasing evidence from neuroscience that humans
learn, in part, by acquiring forward models (Gläscher et al.,
2010; Liljeholm et al., 2013; Lee et al., 2014). Human ability
to generalize implicit knowledge of cloth dynamics to novel
circumstances suggests that we acquire forward models of these
dynamics. Forward models are commonly used in model-based
control and planning, but in the case of cloth manipulation
planning, the use of explicit forward models (i.e., physical
simulation) is problematic due to computational cost and the
difficulty of obtaining an accurate model, as discussed above.
However, it has been demonstrated that neural networks can
be trained as forward models. Of particular relevance here is
(Wahlström et al., 2015) for the use of a neural network trained as
a forward model in latent space. The proposed model takes high-
dimensional observations (images) of a low-dimensional control
task as inputs, maps these observations into low-dimensional
latent representations (by means of PCA followed by an encoder
network), feeds these through a network functioning as a forward
model, and then maps the outputs of this network to high-
dimensional predictions of future states. This model is then used
to search for control signals that bring about a fixed goal.

Also related is (Watter et al., 2015). Here too, an encoder
network is used to map high-dimensional observations to low-
dimensional latent representations. The forward model takes the
form of linear transformations in latent space (although a non-
linear variant is considered as well). We return to these and other
related neural network studies in the discussion section. In the
context of cloth manipulation, use of a neural network as forward
model allows us to side-step the computational cost of explicit
simulation (replacing it with forward propagation through the
network), as well as the burden of acquiring an accurate model
of a given cloth item (instead, the forward model is learned
from data).

Contributions and Limitations
This paper presents a fully connectionist approach for efficient
deformable object manipulation planning, based on forward
modeling of the object’s deformation dynamics with respect to
a given manipulation repertoire. We avoid explicit simulation
and database matching/retrieval, yet realize a substantial degree
of flexibility along with fast operation time. Core of the
system is a modular neural network architecture, composed
of 3D convolutional encoder and decoder modules and a
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fully connected manipulation module. Given a start and goal
state, the network is used to search for the manipulation
sequence that produces the latter from the former, by means
of error back-propagation w.r.t. the manipulation input. We
can search for manipulation sequences of various lengths by
varying the number of recurrent propagation loops through
the manipulation module. In the present paper, we apply this
manipulation planning approach to free-form manipulation on
a (simulated) square cloth.

The main contributions of this work are as follows.

• We propose a neural network architecture for associating
manipulations with changes in cloth states, trainable on
individual manipulation examples from a comparatively
small dataset.

• We show that this network can predict cloth
manipulation outcomes.

• We show that this network can be used to generate single
and multi-step manipulation plans in seconds, by means of
back-propagation w.r.t. the manipulation inputs.

An important distinction between our system and most
existing work in cloth manipulation is that our system
is, to a large degree, task-agnostic. The task domain and
manipulation repertoire are determined by the dataset the
system is trained on. We believe this should provide a high
degree of flexibility for application to various task domains and
manipulation repertoires.

This has consequences for system evaluation as well. The
free-form manipulation task we adopt here for evaluation is
not intended to represent or resemble any particular practical
cloth manipulation task, nor was the manipulation repertoire
designed with any specific robotic platform in mind. Instead, our
experimental setup is designed to assess the system’s capabilities
on a broad domain with a basic manipulation repertoire that
could be realized on a wide variety of robotic platforms. The
motivation for this choice is two-fold.

The first motivation is that success on a broad task would
suggest that the approach is viable for a broad variety of more
specific tasks. For use in a practical, constrained application, one
would want to use a dataset that covers a domain suited to the
application, with a manipulation repertoire suited to the specific
robotic platform under consideration.

The second motivation is the long-term goal of pursuing
a generalized affinity with cloth objects. Human affinity with
cloth goes far beyond folding towels and clothes into neat
rectangles. We quickly drape a dish towel over the back of a
chair when a goal more urgent than drying the dishes presents
itself. We extract sizable bed sheets from a washing machine
without them sweeping over the floor with little effort. We
intuit what will or will not fit into a coat pocket. Much of
human cloth manipulation seems better characterized as the
flexible application of a general understanding of cloth dynamics
than as mastery of a large collection of individual micro-tasks.
Progress toward broad generalized cloth manipulation abilities
for robots requires that we try and push toward methods that
offer increasingly high degrees of generality. In the context of
this goal, the value of our results lies not in their practical

applicability, but in the fact that they represent progress toward
higher generality.

As will be clear from the above, our purpose in this work is
not to excel at any one specific example of cloth manipulation,
and practical applicability of the system as trained on our dataset
is limited at best. Also, whereas we believe that our approach
should be viable for a range of task settings more specific than
ours, we expect its applicability to highly constrained tasks
to be limited: planning ability is only meaningful on tasks
that present significant variability and require some level of
system autonomy.

TASK DESIGN

The problem of manipulation planning can be formulated
as follows: Given a state domain consisting of possible state
set S, a manipulation (action) domain consisting of possible
manipulation setM, and states sa and sb ǫ S, find a manipulation
sequence (action sequence) pab = <m0, . . . , mn−1 > withmi ǫ M
such that applying manipulation sequence pab starting in state sa
will produce state sb.

In this paper we consider the task of manipulating a square
piece of cloth from one configuration into another. We let states
represent the cloth in some stable configuration. Manipulations
are defined as triplets of real-valued 2D vectors. The first two
vectors indicate the x and y coordinates where the cloth is picked
up (grasp points below), and the third vector (displacement
vector below) indicates the horizontal movement of the grasp
points (both points are moved in parallel and by the same
distance, so one vector suffices). Figure 1 illustrates how such
manipulations are translated into actuator trajectories. Plans are
sequences of manipulations. The height to which the grasp points
are lifted is fixed.

The manipulation format is intentionally somewhat
minimalistic. Every additional dimension also adds to the
complexity of the planning process, so any aspects that can be
resolved locally are best excluded from the planning process.
In simulation, we perform manipulations by fixing the relevant
vertices of the cloth mesh to a non-colliding actuator. The
complexities of performing cloth manipulations with any given
physical actuator are not considered in the present paper.
In ongoing work, we are integrating the planning system
described here with a physical dual-armed robot platform
(Tanaka et al., 2018).

FIGURE 1 | Schematic of cloth manipulation.
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SYSTEM ARCHITECTURE

The system is composed of three modules: encoder module
E, manipulation module M, and decoder module D. E maps
(encodes) state si to its latent representation ci:

E (si) = ci. (1)

M maps latent representation ci and manipulation mi to a
prediction ĉi+1 of ci+1, the latent representation of the state si+1

that results from applying manipulationmi to si:

M (ci,mi) = ĉi+1. (2)

D maps (decodes) latent representation ci (or ĉi) to an
approximation ŝi of state si:

D (ci) = ŝi. (3)

Given a state si and a manipulationmi, D(M(E(si),mi)) computes
a prediction of the outcome si+1. Mapping to latent space before
applyingM, andmapping back to regular space afterwards, serves
two purposes. The first is dimensionality reduction. States in
our task are 16384D. Applying manipulations directly on states
of this dimensionality is computationally costly and hard (if
not impossible) to train. Modules E and D map states to more
manageable 512D latent representations. The second reason is
manipulability. Depending on how a state is represented, it
may be easier or harder to apply specific manipulations to it.
By training E, M, and D in compound fashion, the E and D
modules are forced to learn a latent representation format that
makes M’s life easy, i.e., lends itself well to application of the
manipulation repertoire.

Movement of one point of a cloth often affects the cloth’s shape
over a broad region in non-trivial but highly structured ways. For
predicting these effects, the substrate of a voxel representation
is likely far from ideal. We let E map voxel representations
to latent representations with no imposed spatial structure,
so the learning process is free to find a way of representing
the cloth’s spatial contingencies that facilitates prediction of
manipulation outcomes.

Each module is instantiated as one neural network. Encoder
E and decoder D are structured like the bottom and top halves
of a 3D convolutional autoencoder. Manipulation module M is a
modifiedmulti-layer perceptron. A concept image of the network
is shown in Figure 2. The network is implemented in TensorFlow
(Abadi et al., 2015). Network specifications are given in Table 1.

We avoid pooling, because it discards important spatial
information. The use of pooling between convolution layers
is usually motivated by the partial translation invariance and
dimensionality-reduction it affords, but in the present system the
former is detrimental and the second can as well be obtained with
strided convolution, which does not destroy spatial information.
As can be inferred from the strides andmap counts given above, E
maps 32 × 32 × 16 × 1 inputs to 1 × 1 × 1 × 512 outputs (here
the first three dimensions are spatial, the fourth is the channel
dimension), and D does the inverse. The latent representations

FIGURE 2 | Concept image of EMD network. Functionally denoted as

D(M(E(si ),mi )). See Table 1 for actual sizes.

TABLE 1 | Network architecture specifications.

3D CONVOLUTIONAL ENCODER (E)/UP-CONVOLUTIONAL DECODER (D)

Layers 6

Feature maps /

layer

1 (input), 32, 32, 64, 128, 256, 512 (output).

Order reversed in decoder.

Kernel size 3×3×3 (all layers)

Strides 2×2×1 on the first layer (E) / last layer (D)

2×2×2 on all other layers

Activation function tanh

MANIPULATION MODULE (M)

Layers 10 (5 in configuration C2)

Input layer size 512+6

Hidden layer size 512+512+6 (512+512 in configuration C0)

Output layer size 512

Activation function tanh

only have extension in the channel dimension, meaning they have
no imposed spatial structure.

Cloth state input is given in the form of a binary voxel
rasterisation of the (simulation-generated) cloth mesh, at the 32
× 32 × 16( × 1) resolution taken by E. Each voxel takes a value
of 1 if one or more vertices of the cloth mesh fall in that voxel,
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and a value of 0 otherwise. Before rasterisation, we multiply the
vertices’ z coordinates by a factor 4 to emphasize height variations
(effectively increasing resolution on the z-axis by a factor 4). This
is important to ensure that creases in the cloth (which do not have
much height but do provide important shape information) do not
get lost in rasterisation.

We scale the view-port of the voxel space so that the cloth,
shape-wise, fully fits inside it in any plausible stable shape
configuration. However, repeated manipulations can move the
cloth by a substantial distance, which would quickly take it out
of the range of the viewport. To keep the cloth always fully in
view, we introduce periodic boundary conditions on the x and y
axes. That is, we bring vertices’ x and y coordinates into the [-1,
1] range using x′ = (x+ 1) mod 2− 1 (and same for y).

Both the autoencoder (encoder and decoder module) and
the manipulation network have some uncommon features. The
convolution operations use periodic padding on the x and y
dimension to account for periodic boundary conditions on the
voxel space. A kernel size of 3 × 3 × 3 implies that for full-
size convolution we should pad each map with a border of
width 1 before applying the kernel. Instead of the usual zero-
padding, we fill the border with the content of the opposite
edges and corners of the map. Figure 3 shows an example
of a cloth extending over the edges of the voxel space, with
periodic padding applied. Periodic padding is applied at every
convolution and up-convolution throughout the encoder and
decoder modules. All connections in the encoder and decoder are
initialized with random values from the [−0.05, 0.05] range.

The manipulation network is a multi-layer perceptron with a
number of modifications. One modification is the introduction
of an aspect of Residual Learning (He et al., 2015). As can be seen
in Figure 2, the network is comprised of three vertical sections,
colored in blue, green and yellow in the figure. The blue section of
the input layer receives the encoded state representation. In each
subsequent layer, the blue section receives a copy of the activation
vector on the blue section of the preceding layer (i.e., the pink
connections in Figure 2 have fixed weights of 1.0). Activations
computed in the layer are added to the copied values. The blue

FIGURE 3 | Top-down view (voxel value means over z-axis) of a voxel

representation of a state with the cloth wrapped around the periodic

boundaries of the voxel space, with periodic padding.

section essentially serves to hold the state representation as it
is incrementally modified through the layers. Note that with all
other weights set to 0, this architecture simply passes on the
encoded state unchanged.

This style of propagation, where setting all mutable weights
to 0 results not in blank output but in pass-through behavior,
was originally proposed to facilitate the training of very deep
networks (He et al., 2015). The result is a learning style where
subsequent layers learn to make incremental improvements to
the representation as it propagates through the net. Our network
is not particularly deep (the manipulation module has just 10
layers), and our implementation differs (the residual connections
do not skip layers), but the concept of incremental modification
is applicable to our problem setting. Pre- and post-manipulation
cloth states often show some degree of resemblance. A short
displacement distance often leaves part of the cloth undisturbed.
Many movements displace the cloth in space but leave parts
of its shape intact. Hence a computation style of incremental
modification seems appropriate. In the experimental results
below, we include a variant without these residual connections
(Configuration C1) to assess the effect of their inclusion.

Neurons in the green section behave as in a regular neural
network. They serve to compute the appropriate modifications
and apply them to the state representation. This section has
no residual connectivity. Finally, the yellow section receives the
manipulation input. The manipulation input is small (6 values)
compared to the state representation in the blue section and
the activation vector in the green section (512 values each).
We offset this imbalance in two ways. Firstly, we initialize the
weights on connections from manipulation inputs to larger
values (random values from the [−0.05, 0.05] range) than the
rest of the weights in the manipulation network (random values
from the [−0.001, 0.001] range). Secondly, manipulation inputs
are provided (identically) at every layer. This avoids the need for
the network to retain the manipulation signal through numerous
layers before it can affect computation in the upper layers. We
included a variant that feeds the manipulation input only into
the first layer of the manipulation network (configuration C0), to
assess this feature’s effect on performance.

At the borders between any twomodules (i.e., on the output of
the E andMmodules), we introduce a simple discretization layer.

activationout =
round(res·activationin)

res
(4)

Here res is a system parameter controlling the grain of the
discretization, which we set to 16. This layer is not differentiable,
so during backpropagation we let the gradient pass through
unmodified, cf. (Van den Oord et al., 2017). The use of discrete
latent representations in generative models has recently been
reported on in Jang et al. (2017), Maddison et al. (2017), where
it is typically motivated by the latent variables’ correspondence
to categories. Our motivation to discretize representations is
rather different (there is no concept of categories in our task).
We will be using the manipulation module recurrently to
compute multi-step plans, which can quickly incur a build-
up of noise and diffusion in the latent representations. If we
let the latent representation be discrete, it can be denoised
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FIGURE 4 | (A) Network setup for generating a 3-step plan. This composition

can be denoted as D(M(M(M(E(s0),m0),m1),m2)), or EM
3D for short.

Multi-step manipulation planning is done by back-propagation through such

recurrent applications of the manipulation network. The cyan arrows represent

the back-propagating error signal. (B) Network setup after speed optimization.

By precomputing latent encodings of sa and sb, plan search can be run

entirely in latent space, avoiding repeated (and comparatively expensive)

propagations through the encoder and decoder modules.

by means of rediscretisation. Specifically, if the magnitude
of the noise on a given representation falls below 0.5/res,
then equation (4) will return the representation perfectly
denoised. Theoretically, as long as the error incurred in a
single pass through the manipulation network falls below this
threshold, predictions would not lose accuracy as the number
of passes through the network increases. Conversely, without
discretization, any error larger than zero would carry through to
the next pass, leading to degradation of prediction quality as the
number of passes increases. Hence in theory, the discretization
layer may improve multi-step prediction and planning ability.
Of course, setting res too low will harm the expressiveness
of the latent representation, as it reduces the number of
possible latent representations. We included a non-discretizing
variant in our experiments (configuration C3), to assess the
effect on performance.

PLANNING ALGORITHM

The network as discussed so far computes predictions of
manipulation outcomes, but its actual purpose here is plan
generation. Here we discuss how the net is used to generatemulti-
step manipulation plans, and how planning and manipulation
execution are interleaved in operation.

Algorithm 1 Plan generation.
1 n = plan length
2 sizec = size of latent representation
3 n_parallel_instances= 10
4 max_iterations= 100
5 sa = current cloth state
6 sb = target cloth state
7 mab = n×6 array initialized with
8 a random n-step plan
9 c0 = E(sa)
10 cb = E(sb)
11 r = n×6 array of update rates,
12 initialized to 0.1
13 instance_best=[1.0]∗n_parallel_instances1

14 steps_stagnant= [0] ∗ n_parallel_instances
15 for iiteration ∈ 0, . . ., max_iterations:
16 foriinstance ∈0, . . .,n_parallel_instances:
17 for step ∈ 1, . . ., n:
18 cstep = M (cstep-1, mab[step-1])
19 loss= (Cb − Cn)2 / sizec
20 if loss < instance_best[iinstance]:
21 instance_best[iinstance] = loss
22 steps_stagnant[iinstance] = 0
23 else:
24 steps_stagnant[iinstance] += 1
25 g = n×6 array of gradients for
26 manipulation inputs w.r.t. loss
27 update r according to iRprop-
28 mab += r · g
29 if minimum(steps_stagnant) ==

30 early_stopping_criterion:
31 break
32 return mab

1The (Python) syntax [v] * n initialises a list of length n with value v.

Plan Generation
By applying themanipulation network recurrently for n times, we
can predict the outcome of an n-step plan. We refer to a net with
n recurrent passes through the manipulation module as EMnD,
and to these nets in general as EM∗D nets. By means of iterated
backpropagation w.r.t. the manipulation inputs, these nets can
be used to generate multi-step manipulation plans. Figure 4A
illustrates the concept for n= 3 (the maximum considered in the
present work). This generation process can be further optimized
for speed by precomputing latent representations of the start and
end state and running the iterative plan generation process in
latent space entirely. Figure 4B illustrates this optimization. Note
that the encoder is used twice while the decoder is not used.
Algorithm 1 specifies the procedure for generating a plan mab

for transforming state sa into state sb.
Although the optimized variant has a substantial speed

advantage, its viability was found to depend on the loss functions
used for training, so for some experiments belowwe report scores
for both variants. An earlier report on this work (Arnold and
Yamazaki, 2017) also employed the non-optimized variant.
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Manipulation input values are adjusted by means of the
iRprop- variant (Igel and Hüsken, 2000) of the Rprop update
scheme (Riedmiller and Braun, 1992). Rprop was proposed as
an update rule for neural network training. The distinguishing
feature of Rprop and its variants is that a separate learning rate ηi
is kept for each variable vi to be optimized. Typically, the variables
are neural network connection weights, but in the present case
the object of optimization is the manipulation input, so we keep
one learning rate for each variable in mab. The learning rate
is updated every iteration of the optimization process, on basis
of the sign of the error gradient at its variable. When the sign
of the gradient is unchanged w.r.t. the previous iteration, the
learning rate is multiplied by η+, and the variable is updated
by -η times the sign of the gradient. When the sign of the
gradient has flipped, different variants of the Rprop algorithm
operate in subtly different ways. The iRprop- variant multiplies
the learning rate by η−, leaves the variable’s value unchanged,
and blocks change of the learning rate at the subsequent iteration.
Learning rates are clipped to the range [1min, 1max]. Rprop and
its variants are robust against a broad range of initializations of
the learning rates, and can quickly zoom in on solutions, even
on error functions with small gradients, as only the sign of the
gradient is used. A drawback is the need for individual learning
rates for each variable, but in our use case the number of variables
to be optimized is small (6n). We found values of 1.5 for η+

and 0.33 for η- to perform well in our setup. Learning rates are
initialized to 0.1 and the learning rate bounds 1min, 1max were
set to 10−10 and 0.1.

We set the number of search instances (n_parallel_instances
in Algorithm 1) to 10, and let the instances run in parallel on
GPU (i.e., the for loop at line 16 is parallelized). Each instance
is started from a different random initialization. Search is cut
short if all search instances are stagnant for a set number of
iterations (early_stopping_criterion, set to 25 here). We observed
that in practice, most runs run for the full number of iterations
(max_iterations, set to 100 here), although improvement during
the latter half of the search tends to be marginal. We adopt the
plan with the lowest remaining loss value as the final result,
and obtain its expected outcome state by forward propagation
through EMnD.

Closed-Loop Planning
Here we describe the procedure for assessing the system’s
planning performance, used to generate the results in the next
section. We adopted a “closed-loop” procedure that interleaves
planning and execution steps (Algorithm 2). The execution
step here refers to performance of the first step of the
generated manipulation plan. In our test setup, this means
that we send the manipulation instruction to the simulator,
which then executes the manipulation and returns the resulting
cloth state. Interleaving planning and execution ensures that
small errors do not build up over multiple manipulations, and
affords some degree of correction when outcomes are not as
expected. Alternatively, faster but less accurate performance
can be achieved by “open-loop” operation: planning just once
and performing the obtained sequence “blindly” (i.e., without
observing and re-planning w.r.t. the intermediate results).

Algorithm 2 Closed-loop planning.
1 n= sequence length
2 sa = initial state of the sequence
3 sb = final state of the sequence
4 while n> θ do
5 <m0, . . ., mn> = generate plan of length n
6 sa = result of performing m0 on sa
7 n −= 1

DATA GENERATION

We generate states using the cloth simulation functionality of
the Blender 3D editor (Blender, 2017) (version 2.77a). The cloth
is represented by an 80 × 80 mesh with the cloth modifier
enabled. The mesh measures 1.4 × 1.4 in Blender’s spatial units,
spanning from [−0.7, −0.7, 0.03] to [0.7, 0.7, 0.03] in its initial
configuration. In the conversion between Blender data and neural
network input, the neural network’s input space corresponds to a
viewport of size 2× 2× 0.25 in Blender units. The clothmesh has
no explicit thickness, but we let collision detectionmaintain some
minimal distance between vertices, as well as between vertices
and the virtual desk surface (a plane at z = 0), so that the cloth
behaves as if it has some thickness.

Each sequence starts with the cloth laid out as a square
on a flat surface (representing e.g., a table), with the axes of
the cloth aligned with the x and y axes of the coordinate
system. Then randomly generated manipulations are performed
one by one, while we store the resulting cloth state to the
dataset after each individual manipulation. Two-handed and
one-handed manipulations are generated, with equal probability.
Zero-handed examples (i.e., failures to manipulate) need not be
generated at this stage; such examples can be generated on the fly
during training from successful examples (we return to this point
below). One issue that requires consideration when generating
examples is the range from which to pick the manipulation
coordinates. Covering the entire space the cloth can reach over 3
manipulations is inefficient, and will grow increasingly inefficient
as we consider longer sequences. We constrain the range for
manipulation coordinates by shifting the coordinate system along
the displacement vector of each manipulation. This way the cloth
always remains near the origin.

Random grasp points are found by randomly selecting cloth
vertices, and values for the displacement vector are randomly
picked from the [−1.4, 1.4] range. To manipulate the cloth, we
pin the vertex or vertices selected as grasp point(s) to an invisible
actuator object (an “empty” in Blender terminology), and assign
the relevant movement trajectory to this actuator.

During manipulation, movement speed of the actuators is
fixed to 0.02 Blender units per frame in horizontal and vertical
direction (independently). The lifting height is set to 0.15
Blender units. Horizontal and vertical actuator movement starts
simultaneously. Vertical movement is stopped once the lifting
height is reached. A snapshot of a manipulation in progress
is shown in Figure 5. Once the movement is completed, the
actuator releases the cloth, and the simulation is left to run for
16 additional frames to allow the cloth to fall down and settle.
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FIGURE 5 | Snapshot from a cloth manipulation in progress in simulation. The

pink squares show the points where the cloth is pinned to the (invisible)

actuators. Cloth mesh resolution is 80 × 80.

TABLE 2 | Cloth simulation parameter settings.

Material settings

Mass 1.0

Structural stiffness 10.0

Bending stiffness 50.0

Damping

Spring damping 50.0

Air damping 0.0

Velocity damping 1.0

Collision settings

Collision distance 0.015

Self-collision distance 1.0

For interpretation of these values we refer to the Blender documentation (www.blender.

org).

We generate 2,900 sequences of length 3, for a total of 8,700
manipulation examples. Sequences are stored as 7-tuples of the
form <s0, m0, s1, m1, s2, m2, s3 >. We designate 2,000 sequences
as training data, 600 as test data, and 300 as validation data. The
simulation parameters defining the cloth behavior are given in
Table 2. Settings not pertaining to cloth specifically were left at
their default values.

Whereas all manipulation sequences in the dataset start
from the initial, fully spread state, the prediction and planning
capabilities of the system are not constrained to starting from this
state. In our evaluation experiments below, we assess prediction
and planning abilities starting from any non-final state within
the sequences.

It should be noted that this data generation procedure limits
the scope of the dataset to cloth states that are accessible from
the initial spread out state within a few manipulations from the
manipulation repertoire under consideration. As such the dataset
does not represent a uniform sampling of the space of possible
cloth configurations. Uniform sampling of this space is by itself
far from trivial, and we have not pursued it here. Whereas by
no means exhaustive, the dataset does present a broad variety of

starting states. State variation is further enriched bymeans of data
augmentation, as explained below.

Data Augmentation
Data augmentation is performed during training by applying
random rotation (rotating all cloth mesh vertices around the
origin by a random angle between 0 and 360), mirroring,
and grasp point swapping. A grasp point swap changes which
grasp point’s coordinates go into which pair of coordinate
input neurons. The order of the grasp points is immaterial,
so the outcome state remains the same. The data is further
augmented with failure-to-grasp examples. Training on failure-
to-grasp examples is necessary, since many valid manipulation
inputs have neither grasp point lying on the cloth. However, there
is no need to explicitly generate such examples. In case of a failure
to grasp, the cloth remains in the same state, so we can generate
failure-examples simply by picking existing examples, replacing
the grasp points with random points falling outside the cloth, and
replacing the result states with copies of the initial states. We let
every batch (16 examples) contain two such failure cases. In these
examples we do not shift the coordinate system along with the
displacement vector.

Rotational data augmentation in particular proved essential
to make training work on the relatively small dataset used here.
Without it, training quickly overfit on the training data and never
achieved adequate performance on the test set.

The Role of Simulation
Although in this paper we use explicit simulation to generate
data, this simulation is not an integral part of the system as it
is in simulation-based planning. Simulation data is used here
because it is easy to generate, but given a similar data set of real-
world data the system could be trained and used without any
explicit simulation. This fact that an accurate simulation model
of the object is no requirement for this system is an important
feature, as it is often difficult in practice to obtain accurate
simulationmodels of cloth items and discrepancy betweenmodel
and reality can substantially degrade performance of simulation-
based systems. Note that our simulated cloth is not a stand-in for
the real planning subject; the simulated cloth itself is the subject.

In consideration of the costs of real-world data generation,
we kept the size of the simulation dataset modest, to ensure that
the system can be trained effectively on realistically generatable
amounts of real-world data. A system for automated data
generation on robot hardware is currently under development
(Tanaka et al., 2018).

TRAINING

We train the network on our Blender-generated dataset. Recall
that the purpose of training here is not to teach the net to
plan, but to let it acquire a forward model of the cloth’s
dynamics w.r.t. the manipulation repertoire. Hence whereas
we generated sequences of length 3, the training process uses
individual manipulation examples. Each 7-tuple <s0, m0, s1,
m1, s2, m2, s3> provides 3 training examples of the form <si,
mi, si+1>. The net is trained on 1,250,000 batches of 16 such
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manipulations each. Batches are composed randomly, but with
some weighing of the manipulation steps. As all sequences start
from the same default state, there is less cloth shape variation
over the first-of-sequence manipulations in the dataset than over
the third-of-sequence manipulations. The later cloth shapes in a
manipulation sequences are also taller (i.e., have more vertices
with higher z-coordinates) on average, as repeated manipulation
often produces shapes in which the cloth is folded over itself. To
counter-balance this bias in shape variation across steps we pick
the first, second and third manipulation step with probabilities of
1/7, 2/7, and 4/7, respectively.

Loss Functions
We use two loss functions, which we denote as losss and lossc.
Losss is the mean squared error between network output, i.e.,
D(M(E(s0),m0)) and the (voxel representation of) the actual
outcome, i.e., s1.

losss =
∑

(D(M(E(si),mi))−si+1)
2

sizes
(5)

Here sizes is the size (in voxels) of the state representation. The
second loss function, lossc, is introduced to enforce consistency
of state encoding format between the input and output layers of
the manipulation module.

lossc =
∑

(M(E(si),mi)−E(si+1))
2

sizec
(6)

Where sizec is the size of a latent representation (512 with our
settings). Lossc serves to enable multi-step planning. Multi-step
planning involves recurrent use of the manipulation module.
For recurrent application to make sense, the input and output
of the manipulation module must be in the same encoding
format, i.e., the latent representation of a given cloth state
should not differ (much) depending on whether it is read
at the input or output of the manipulation module. When
the encoding format is inconsistent, looping the manipulation
module’s output back into its input will not produce a meaningful
subsequent output. Hence, consistency of representation format
between the manipulation network’s input and output must be
enforced explicitly. However, we do not want to impose any
format in particular; finding a suitable encoding is up to the
learning process.

To achieve this we compare two differently obtained
encodings of s1. The first is simply ĉ1 as above, i.e., M(E(s0),m0).
The second is obtained by application of the encoder directly on
s1, i.e. E(s1). Lossc quantifies encoding inconsistency as the mean
squared error over these two encodings of s1. Regardless of how
the encoder module encodes states, this loss will be low if the
manipulation module preserves the encoding format between its
input and output. A functionally similar loss term was used in
Watter et al. (2015).

There is overlap in function between the two loss terms.
Minimizing losss trains the net to compress states into an
easily manipulable format and to apply manipulations, whereas
lossc trains the net to keep the encoding consistent over the
course of manipulation application and to apply manipulations
in this encoding.

It proved difficult to balance the losses effectively. Losss
and lossc derive from different representation formats, and do
not necessarily decrease in tandem over the training process.
Balancing them with fixed weight parameters will often have one
dominate the other. We resolved this issue as follows: instead of
combining the losses into a compound loss function, we compute
the gradients for both losses separately, and then combine the
gradients on a per-weight basis by averaging over their signs. As
only the signs of the gradients are used, the resulting update rule
can be considered a variant of the Manhattan update rule. With
combining gradients, the update rule takes the following form:

1wi = 0.5·η·
[

sign
(

gsi
)

+ sign
(

gci
)]

(7)

Where 1wi is the change in weight for connection i, η is the
learning rate, and gsi and gci are the gradients for connection
i w.r.t. losss and lossc, respectively. Using this rule, weights
are updated by η in the direction of the sign of the gradients
when the gradients agree in sign. If the signs oppose, they
cancel out, and the weight is not updated. This update rule
is used on the weights of the manipulation module only. No
gradients for the decoder module can be derived from lossc,
and whereas gradients for the encoder module can be derived
they may actually be harmful: with respect to the encoder,
lossc would favor trivial encodings that map every state to the
same representation, for this maximizes encoding consistency
and makes manipulation application trivial. Restricting lossc to
the manipulation module bars this dead-end solution. For the
encoder and decoder modules we use the Manhattan update rule
on the gradients derived from losss only:

1wi = η·sign
(

gsi
)

(8)

Learning rate η is initialized to 5·10−5, and reduced dynamically
(see Learning rate adjustment and overfitting counter-measures).

Use of the Manhattan update rule is unusual. In general, it
is by no means the fastest weight update rule. However, our
network proved hard to train with the more common update
rules. We expect that this problem is related to the strong zero-
bias in our data (zeros outnumber ones by a large margin in the
voxel representations of all cloth states). Experiments with more
advanced rules invariably saw the net devolve into producing
all-zero outputs (a fine first approximation, but hard to escape
from). We never observed this problem with the Manhattan
update rule. Additionally, the Manhattan update rule affords the
easy combination of dissimilar losses shown in equation (7),
and circumvents the vanishing gradient problem, both without
additional hyperparameters to tune.

Since the use of the Manhattan rule is atypical, we include
results for a configuration using standard Stochastic Gradient
Descent (SGD) (configuration C7). Losss and lossc are combined
by simple summing. Using a modestly high initial learning rate
of 5·10−3, training first converges upon the all-zero solution
mentioned above and temporarily stagnates there, but eventually
escapes and achieves some level of prediction ability.
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Alternative Encoding
Consistency Enforcement
An alternative training scheme combines losss with a loss
computed over si and D(E(si)), i.e., the typical autoencoder loss.
Wahlström et al. (2015) adopt a loss term to this effect. To
compare these variants, we define a reconstruction loss as follows:

lossr =
∑

(D(E(si))−si)2+
∑

(D(E(si+1))−si+1)
2

2·sizes
(9)

For convenience, we let lossr combine pre- and post-
manipulation states (as our training examples provide both).
Our experiments below include a configuration (configuration
C6) that replaces lossc with lossr (combined with losss in the
same manner as lossc). This configuration, too, is trained with
the Manhattan update rule.

Learning Rate Adjustment and
Overfitting Counter-Measures
To appropriately adjust the learning rate as the net trains,
and to avoid overfitting, we use a validation set of 900
examples (300 sequences). Every 10,000 batches, we evaluate
prediction performance (i.e., losss) on the entire validation set.
When validation set performance has not increased for 5 such
evaluations in a row (i.e., over 50,000 batches) at the same
learning rate, the learning rate is reduced by a factor 2. To
avoid overfitting on the training data, we store a copy of the
net whenever the validation score is improved, and perform
all performance assessments below on these “validation-best”
networks. This strategy can be considered a simple variant of
early stopping (Morgan and Bourlard, 1990; Prechelt, 2012). This
learning rate adjustment scheme was applied identically in all
system configurations.

RESULTS—OUTCOME PREDICTION

Once trained, the network can fairly well predict the result of
applying a givenmanipulation to a given cloth state.Table 3 gives
results over the test (top panel) and training (bottom panel) sets
for all experiments, and Figure 6 shows representative example
results for configurations C4, C5, and C6. For generating these
scores, all data augmentation types were enabled except for the
failure-to-grasp augmentation (including this would artificially
improve the scores). The binary scores are computed by rounding
the values of all voxels to the nearest binary value, then taking the
absolute difference w.r.t. the target state and dividing by the total
number of voxels (16384).

We also include D(E(si)) and D(E(si+1)), i.e., the result
of encoding and then directly decoding the initial state and
goal state. Note however that except for configuration C6,
these pathways are not trained directly. In general, the pre-
manipulation state (si) is reconstructed more accurately than
post-manipulation state (si+1). This is unsurprising: si ǫ {s0, s1, s2}
whereas si+1 ǫ {s1, s2, s3}, and in general states occurring later in
a sequence will have more complex shapes. In particular, s0 is the
same initial state in every sequence (albeit rotated by a random
angle). Being simple and common, it is generally reconstructed

with very high accuracy. This state never occurs in the D(E(si+1))
and D(M(E(si),mi) targets.

We trained a total of 8 system configurations. Configuration
C4 is the default configuration discussed so far. Configuration
C0 feeds the manipulation input only at the first layer of the
manipulation network, to assess the effect of feeding it anew at
every layer. Configuration C1 drops the residual connectivity in
the manipulation module, to assess the effect of this connectivity
on performance. Configuration C2 reduces the number of layers
in the manipulation module from 10 to 5, to assess whether
10 layers is overkill for this task. Configuration C3 drops
the discretization layers, meaning latent representations are
continuous. Configuration C5 and C6 are included to investigate
the role of encoding consistency enforcement. Configuration C5
drops lossc, whereas configuration C6 features an alternative
consistency enforcement scheme that replaces lossc with lossr
(see section Alternative Encoding Consistency Enforcement).
Lastly, configuration C7 replaces the Manhattan update rule with
regular SGD as discussed above.

We compare the various configurations to our base
configuration C4. Looking at the scores in Table 3 we observe
that C4 outperforms C0, C1, and C2 on both test and training
data, indicating that feeding the manipulation input at all layers
of the manipulation network and the inclusion of residual
connections is beneficial, and (at a rough granularity) that
the depth of the manipulation module is warranted. C4 is
also seen to outperform C3 on both sets, but the difference is
marginal at best, suggesting the contribution of discretization
was limited.

Despite high prediction accuracy (exceeding C4 on the
training set), configuration C5 produces by far the worst
direct reconstructions. High prediction accuracy despite dismal
reconstruction may seem contradictory at first glance. In
a standard autoencoder, low-quality reconstruction would
strongly imply low-quality latent representations, and it is
hard to see how accurate prediction could be achieved
with low-quality latent representations. However, the low
reconstruction quality observed here is no indication of
poor latent representation quality, but of inconsistency of
representation format between the representations produced
by the encoder and the manipulation network. The decoder
can only meaningfully decode representations produced by
the latter, hence prediction succeeds but reconstruction fails.
This result indicates that the consistency of representation
format achieved by the default configuration (evidenced
by the combination of high prediction accuracy and high
reconstruction accuracy) is indeed due to the inclusion of lossc,
Configuration C6 excels in reconstruction, exceeding all other
configurations on both the test and training set. This is to
be expected, as it is the only configuration explicitly trained
to reconstruct. Overall, prediction ability is close between C3,
C4, C5, and C6. Configuration C7 falls short of all other
configurations in terms of prediction ability, and short of all
other configurations except C5 in terms of reconstruction ability,
showing that our variant of the Manhattan update rule was more
effective for training this particular network architecture than
standard SGD.
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TABLE 3 | Prediction results on test and training data.

Configuration Error Measure D(E(si )) D(E(si+1)) D(M(E(si ),mi ))

TEST SET

C0 Single input MSE 0.00567 (0.0043) 0.00852 (0.0026) 0.0114 (0.0045)

binary 0.00781 (0.0062) 0.0119 (0.0038) 0.0158 (0.0060)

C1 No residual connectivity MSE 0.00724 (0.0055) 0.0107 (0.0030) 0.0120 (0.0044)

binary 0.00990 (0.0078) 0.0148 (0.0044) 0.0165 (0.0058)

C2 Shallow M MSE 0.00633 (0.0046) 0.00939 (0.0027) 0.0122 (0.0045)

binary 0.00869 (0.0067) 0.0130 (0.0040) 0.0167 (0.0060)

C3 Continuous MSE 0.00537 (0.0042) 0.00812 (0.0026) 0.0109 (0.0045)

binary 0.00741 (0.0061) 0.0113 (0.0038) 0.0150 (0.0059)

C4 Default MSE 0.00522 (0.0041) 0.00790 (0.0025) 0.0107 (0.0047)

binary 0.00722 (0.0059) 0.0110 (0.0037) 0.0148 (0.0060)

C5 Losss only MSE 0.0272 (0.0058) 0.0311 (0.0044) 0.0108 (0.0049)

binary 0.0384 (0.0035) 0.0386 (0.0040) 0.0149 (0.0062)

C6 Losss & lossr MSE 0.00151 (0.0014) 0.00245 (0.0011) 0.0110 (0.0047)

binary 0.00204 (0.0019) 0.00335 (0.0015) 0.0151 (0.0060)

C7 SGD MSE 0.0153 (0.0050) 0.0185 (0.0045) 0.0191 (0.0051)

binary 0.0194 (0.0077) 0.0245 (0.0060) 0.0249 (0.0070)

TRAINING SET

C0 Single input MSE 0.00562 (0.0043) 0.00843 (0.0027) 0.0110 (0.0042)

binary 0.00772 (0.0062) 0.0117 (0.0039) 0.0152 (0.0056)

C1 No residual connectivity MSE 0.00719 (0.0055) 0.0107 (0.0032) 0.0117 (0.0041)

binary 0.00983 (0.0078) 0.0147 (0.0046) 0.0160 (0.0055)

C2 Shallow M MSE 0.00629 (0.0047) 0.00931 (0.0028) 0.0120 (0.0045)

binary 0.00860 (0.0067) 0.0129 (0.0041) 0.0164 (0.0060)

C3 Continuous MSE 0.00531 (0.0042) 0.00802 (0.0026) 0.0101 (0.0038)

binary 0.00733 (0.0060) 0.0112 (0.0038) 0.0140 (0.0051)

C4 Default MSE 0.00515 (0.0041) 0.00781 (0.0026) 0.00982 (0.0039)

binary 0.00711 (0.0059) 0.0109 (0.0038) 0.0136 (0.0052)

C5 Losss only MSE 0.0271 (0.0057) 0.0309 (0.0043) 0.00979 (0.0039)

binary 0.0385 (0.0036) 0.0386 (0.0040) 0.0135 (0.0051)

C6 Losss & lossr MSE 0.00146 (0.0014) 0.00239 (0.0011) 0.0101 (0.0039)

binary 0.00198 (0.0019) 0.00327 (0.0015) 0.0138 (0.0052)

C7 SGD MSE 0.0152 (0.0049) 0.0184 (0.0046) 0.0191 (0.0052)

binary 0.0192 (0.0077) 0.0244 (0.0061) 0.0249 (0.0072)

Mean squared and binary error scores, for reconstruction, D(E(si )) and D(E(si+1 )), and outcome prediction, D(M(E(si ),mi )), for test (top panel) and training (bottom panel) datasets, under

various system configurations. Standard deviations in brackets. Best scores for each item bolded.

Looking at Figure 6A we can observe that configuration
C4 produces appropriate (though moderately diffuse)
reconstructions and predictions of the target states. Incidental
prediction failures are observed on examples with one or both
grasp points lying very close to the edge of the cloth. The
cloth’s edges correspond to sharp discontinuities in the relation
between manipulation inputs and outcomes: grasping the cloth
right at its edge produces a very different outcome from failing
to grasp the cloth by a millimeter. The observed failures can
often be understood as mistaking one of these situations for
the other.

Figure 6B shows reconstructions and predictions from
configuration C5. The “reconstructions” here bear no discernible
resemblance to the targets at all. We initially thought that even

in absence of lossc, the residual connectivity of the manipulation
module may produce some degree of encoding consistency,
but the outcomes do not support this notion. Nonetheless,
prediction accuracy is high. Figure 6C shows reconstructions
and predictions from configuration C6. Here too, prediction is
close to configuration C4, whereas reconstruction is by far the
most accurate across all configurations.

Figure 6D shows prediction results w.r.t. two common folds:
folding in half along one of the cloth’s axes, and folding in half
along a diagonal. The results are centered in view for ease of
interpretation. These examples were generated for purpose of
illustration, and are not part of the dataset. We observe that
prediction quality on these examples is in line with prediction on
the random examples in the test set.
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FIGURE 6 | Reconstructions and predictions generated by various

configurations. Each row corresponds to one result, showing (from left to

right): start states si , their reconstructions D(E(si )), manipulation outcomes

si+1, their reconstructions D(E(si+1)), and outcome prediction results

D(M(E(si ),mi )). Along with each generated state is shown a direct visualization

of its encoding (512 real values, shown as blue tones) and its MSE. All

examples are from the test set. (A) Results for configuration C4. The last

example in panel a shows a typical failure case (the net mistakes a grasp point

right on the cloth edge for a miss, and consequently predicts no change of

shape). (B) Results for configuration C5. Training without lossc produces

(Continued)

FIGURE 6 | accurate predictions, but the “reconstructions” show no obvious

resemblance to their targets. (C) Results for configuration C6. Training with

lossr instead of lossc produces highly accurate reconstruction, and prediction

accuracy similar to configurations C3, C4, and C5. (D) Prediction results for

two common manipulations: folding in two along one of the cloth’s axes, and

folding in two along a diagonal. For ease of interpretation, we manually

centered the outcomes for these examples (centered outcomes are marked

with a letter c in their lower right corner). (E) Legend explaining the figure

format.

RESULTS—PLANNING

Next we assess the system’s planning performance. From a
manipulation sequence of length 3, represented as a 7-tuple
<s0, m0, s1, m1, s2, m2, s3>, we can extract a total of six
subsequences <si, mi, . . . , si+n>: (n,i) ǫ [(1,0), (1,1), (1,2),
(2,0), (2,1), (3,0)]. Note that subsequences (n,i) for which i = 0
start from the fully spread state, whereas subsequences for
which i > 0 start from states generated by application of i
random manipulations. For n = 3 the only subsequence is the
full sequence, and consequently planning for 3 steps always
starts at the fully spread state. As in training and prediction
evaluation, random rotation and mirroring is applied. For
planning we apply rotation and mirroring identically to each
state and manipulation in a sequence, in order to maintain
sequence coherence. The other data augmentation operators are
not applicable for planning.

For each sub-sequence we run the system on 100 examples,
following the closed-loop planning procedure detailed in section
Closed-Loop Planning. Table 4 shows the scores obtained by
configurations C3, C4, C5, and C6 for both test (top panel)
and training (bottom panel) datasets (C0, C1, C2, and C7 were
excluded as they evidently fell short in prediction ability). Scores
represent the mean absolute errors between the goal state and the
state actually obtained by performing the planned manipulations
in simulation, both in voxel representation (since both are binary
representations, this is identical to the MSE). Medians were
included because the presence of occasional failures sometimes
skews the mean upward. As is to be expected, there is some falloff
in accuracy as plans get longer, but recognizable approximations
of the goal state are obtained for all plan lengths tested here.
What performance gap there is between training and test data
appears to be below the noise level of this assessment, suggesting
that the net did not overfit substantially and generalizes well to
unseen data.

Configuration C4 succeeds in both single and multi-step
planning. Figure 7 shows representative examples of plans and
outcomes. Figure 8 shows a few iterations of the generation
process of a 3-step plan. On a single NVIDIA GTX1080 GPU,
plan generation took <2.5 s on average. Plan generation times
per plan length are given in Table 5. Figure 9 shows plans and
outcomes obtained for a small number of common folds. The
goal states here are not part of the dataset, but were modeled
manually in simulation for the purpose of illustration. We
observe that the trained network is capable of generating sensible
plans that produce adequate approximations of these goal states.
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TABLE 4 | Planning results for test and training data.

Test set Sequence

Configuration 1-0 1-1 1-2 2-0 2-1 3-0

C3 Continuous µ 0.0134 0.0166 0.0181 0.0210 0.0254 0.0243

σ 0.0063 0.0069 0.0099 0.0066 0.011 0.0083

M 0.0130 0.0174 0.0170 0.0210 0.0237 0.0224

C4 Default µ 0.0130 0.0153 0.0177 0.0206 0.0250 0.0236

σ 0.0080 0.0064 0.010 0.0063 0.0082 0.0063

M 0.0123 0.0151 0.0163 0.0206 0.0232 0.0226

C5 Losss only µ 0.0401 0.0439 0.0430 0.0512 0.0519 0.0557

σ (0.019) (0.016) (0.018) 0.013 0.012 0.011

M 0.0406 0.0442 0.0438 0.0513 0.0518 0.0561

C5* Losss only µ 0.0128 0.0167 0.0183 0.0335 0.0374 0.0385

σ 0.0065 0.0070 0.011 0.012 0.016 0.015

M 0.0127 0.0162 0.0156 0.0312 0.0316 0.0330

C6 Losss and lossr µ 0.0346 0.0403 0.0397 0.0438 0.0460 0.0468

σ 0.018 0.016 0.017 0.015 0.012 0.013

M 0.0364 0.0378 0.0385 0.0447 0.0437 0.0466

C6* Losss and lossr µ 0.0131 0.0175 0.0180 0.0244 0.0277 0.0292

σ 0.0067 0.0095 0.010 0.0090 0.012 0.0093

M 0.0125 0.0161 0.0168 0.0233 0.0251 0.0272

Training set Sequence

Configuration 1-0 1-1 1-2 2-0 2-1 3-0

C3 Continuous µ 0.0135 0.0156 0.0177 0.0212 0.0221 0.0238

σ 0.0073 0.0055 0.012 0.0068 0.0081 0.0072

M 0.0123 0.0150 0.0158 0.0213 0.0205 0.0229

C4 Default µ 0.0124 0.0154 0.0158 0.0217 0.0201 0.0248

σ 0.0060 0.0073 0.0086 0.0078 0.0076 0.0088

M 0.0123 0.0148 0.0143 0.0211 0.0197 0.0240

C5 Losss only µ 0.0405 0.0466 0.0440 0.0505 0.0511 0.0535

σ 0.017 0.015 0.018 0.014 0.014 0.012

M 0.0412 0.0468 0.0450 0.0522 0.0528 0.0553

C5* Losss only µ 0.0117 0.0165 0.0154 0.0308 0.0328 0.0360

σ 0.0058 0.0094 0.074 0.012 0.015 0.014

M 0.0107 0.0142 0.0145 0.0281 0.0282 0.0311

C6 Losss and lossr µ 0.0344 0.0414 0.0380 0.0432 0.0448 0.0474

σ 0.016 0.017 0.018 0.015 0.014 0.012

M 0.0349 0.0410 0.0384 0.0419 0.0438 0.0463

C6* Losss and lossr µ 0.0129 0.0163 0.0157 0.0229 0.0268 0.0288

σ 0.0066 0.0083 0.010 0.0080 0.011 0.011

M 0.0132 0.0144 0.0142 0.0225 0.0240 0.0262

Average (µ), standard deviation (σ ), and median (M) of binary errors for each type of subsequence, for the test (top panel) and training (bottom panel) datasets. For subsequence types,

n-i indicates a subsequence of length n, starting at manipulation i of the source sequence. Each score is an average over 100 examples from the relevant set. Example sets used for

different subsequence types are non-overlapping. Best scores (per subsequence type) in bold. Results with a * mark in the configuration column were obtained using an alternative

planning algorithm (see text).

Plan generation with configuration C5 fails when we use the
algorithm given in section Planning Algorithm. However, this
is in part a consequence of speed optimization (see Figure 4B).
The planning process aims to reduce the loss between latent
representations of the goal state and the expected outcome for
the manipulation input. Comparing the two only makes sense
if there is sufficient encoding consistency between the two.

Configuration C5 does not enforce consistency during training,
so failure here is not unexpected. To perform planning with
C5, we can follow the strategy given in Figure 4A, using the
loss between the voxel representations of the goal state and the
expected outcome for the manipulation input. This strategy is
slower (taking roughly twice as long), as we need to run the
decoder every time the manipulation inputs are updated, but
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FIGURE 7 | (A–C) Representative 1, 2, and 3-step manipulation results, respectively, for the default configuration (C4). Manipulations and intermediate states of the

original sequence (top row in each example) shown for reference only; the net sees the start and goal states only. Framed states are voxelisations of actual (i.e.,

simulation-generated) states, non-framed states are network-generated predictions. Numbers above states indicate MSE loss w.r.t. the goal state. Note that

manipulation trajectories can wrap around the edges of the viewport, and that the camera shifts along with the manipulation trajectory. (D) Legend explaining the

figure format.

otherwise similarly effective. Results for C5 obtained with this
alternative planning strategy are given in Table 4 as C5∗.

Configuration C6 had encoding consistency enforced via lossr
and indeed fares better than C5, but still falls short of C3 and C4
by a large margin on both test and training data. Assuming that
lossr was not quite effective for this purpose, we ran C6 with the
alternative planning scheme as well, and give the results as C6∗.

The alternative planning scheme brings C5∗ scores for 1-
step plans up to par with C4, with C5∗ doing slightly better

on the training set and C4 doing slightly better on the test set
(repeating the pattern seen for prediction). However, scores for
multi-step planning remain poor. This is to be expected: without
an encoding consistency enforcing loss, we obtain an M module
that predicts the results of individual steps accurately, but cannot
read its own output. This makes it unfit for recurrent application,
leading to failure in multi-step planning.

The alternative planning scheme brings C6∗ scores for 1-step
plans close to C4 as well for both test and training data. Scores
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FIGURE 8 | Iterations 1, 10, 50, and 100 from the generation process for a

3-step plan. Each panel shows the task, the best plan up to the iteration, and

the current plan in each of the 10 parallel search instances. Numbers to the

right of a plan indicate its residual error w.r.t. the goal state. We see the search

instances quickly converging on a variety of plans for approximating the

target outcome.

TABLE 5 | Mean plan generation times per plan length.

Plan length

Configuration 1 2 3

C3 continuous 1.85s (0.039) 2.06s (0.047) 2.27s (0.041)

C4 default 1.90s (0.050) 2.10s (0.070) 2.30s (0.52)

C5* losss only 4.33s (0.082) 4.51s (0.10) 4.65s (0.066)

C6* losss and lossr 4.29s (0.067) 4.49s (0.083) 4.65s (0.068)

Times in seconds. All times measured over the test set. Numbers in brackets are standard

deviations. Results marked with a * used an alternative planning scheme (see text).

for multi-step plans are improved too, but fall short of C4. This
again suggests that lossr did not enforce encoding consistency
as effectively as lossc. We hypothesize as follows: configuration
C6 trains to minimize losss and lossr. When both are near zero,
this implies that D can decode latent representation c of a given
state s into an approximation of s, regardless whether c was
produced by E orM. This suggests encoding consistency between
E and M, but does not guarantee it: D may be decoding different
latent representations into similar state approximations. Lossc
on the other hand, directly and specifically enforces encoding
consistency with no such wiggling room.

Whereas C4 outperforms C3 by a slight margin on most
sequences in the test set, the scores are again very close, indicating
that the effect of the discretization layers was marginal at best. As
seen in Table 5, plan generation with C3 was faster by a similarly
diminutive margin.

It bears emphasizing why back-propagation (BP) can arrive
at good solutions within 2.5 s. During plan generation, we only
search for input values, not connection weights. The number of
input values for a plan of length n is 6n, so BP for generating
a plan of a few steps has vastly fewer variables to optimize than
BP in the training process has. Furthermore, planning does not
work on batches of examples; only one input state and one output
state need to be considered (in our implementation the batch
dimension is instead used to run multiple search instances in
parallel). The small scale of the problem allows us to zoom in on
solutions quickly with aggressive use of iRprop-.

The plan generation process need not be implemented with
BP. In preliminary experimentation, we found plan generation
by means of a genetic algorithm to be viable as well (the trained
network then serves as the evaluation function for solutions
generated by the genetic algorithm). However, the fact that the
BP machinery is already present in the system for training makes
the BP approach particularly convenient to implement.

It is worth noting the planning process we employ is not
deterministic. Where multiple solutions exist, different runs of
the search process (and different search instances in parallel
search, as seen in Figure 8) can produce different solutions.

SELF-OCCLUSION

So far, we have considered the case where the cloth shape is fully
visible (albeit at low resolution) to the network. Full visibility
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FIGURE 9 | Manipulation plans and outcomes obtained for four hand-crafted goal states. See Figure 7D for the figure format. For examples that wrap around the

view border (first two examples), we include manually centered views of the goal, prediction, and result states. Centered states are marked with a letter c in their lower

right corner.

would be hard to achieve in a physical implementation on robotic
hardware. To be applicable in a physical setup, the system must
be able to handle self-occlusion. In this section we evaluate the
performance impact of self-occlusion.We assume to have a single
top-down view of the cloth, recorded using a depth camera. To
replicate this view limitation on simulation data, we occlude all
voxels below the top-most 1-voxel in each z-column of the voxel
space. Occluded voxels are given the value 1, same as known-
occupied voxels. We evaluate the impact of occlusion by training
the default configuration from scratch with occlusion enabled
and all other settings unchanged. All states presented to the
network, in training, prediction, and planning, are given with
occlusion applied. Consequently, predictions are also generated
with occlusion present.

Since the state representation differs from the preceding
experiments, prediction results cannot be compared
straightforwardly to results obtained without occlusion.
However, planning performance can be evaluated as before,
since it involves comparison of actual states only. As before,
we compute the binary error scores over non-occluded voxel
representations of the outcome and goal state. Table 6 shows
the results for the occlusion experiment, for both test and
training data. Comparing these results to the results obtained
by configuration C4 without occlusion (Table 4), we observe
that the performance impact of occlusion is small. The use of
incomplete state representations carries a risk of inducing more
overfitting, but we do not observe a widening of the gap between
training and test scores. These results indicates that even with
the occlusion incurred by a single static top-down view, the cloth
state representation generally still provides sufficient information
to allow effective planning.

DISCUSSION

The EM∗D network functions as a forward model that is
differentiable, and therefor searchable, w.r.t. the manipulation
repertoire it is trained on. Given an economically defined

TABLE 6 | Planning results with self-occlusion.

Occlusion Sequence

1-0 1-1 1-2 2-0 2-1 3-0

Test set µ 0.0136 0.0162 0.0187 0.0210 0.0249 0.0252

σ 0.0068 0.0073 0.010 0.0068 0.010 0.0089

M 0.0141 0.0160 0.0173 0.0218 0.0230 0.0229

Training set µ 0.0131 0.0165 0.0171 0.0213 0.0230 0.0236

σ 0.0066 0.0061 0.0081 0.0062 0.0088 0.0070

M 0.0127 0.0160 0.0164 0.0220 0.0221 0.0225

Average (µ), standard deviation (σ ), and median (M) of binary errors for each type of

subsequence, for the test (top) and training (bottom) datasets. For subsequence types,

n-i indicates a subsequence of length n, starting at manipulation i of the source sequence.

Each score is an average over 100 examples from the relevant set. Example sets used for

different subsequence types are non-overlapping.

manipulation repertoire, planning is not a high-dimensional
problem. In the present work, planning a manipulation sequence
of length n is reduced to gradient descent search in a 6n-
dimensional space.

The task of multi-step cloth folding could also be cast as a
model-free reinforcement learning (RL) problem, so it is worth
noting the merits afforded by each approach. First off, while both
approaches generate goal-directed behavior, ours generates such
behavior in the form of explicit plans. There is a large conceptual
difference between learning to pursue a given goal state, and
learning the deformation and movement characteristics of a
given task environment. This has practical consequences for
the training procedure. The former requires evaluation of
manipulation outputs during training (which for our task would
be computationally very costly). The latter, as demonstrated here,
allows training from a static database of examples. Furthermore,
as this style of training is goal-agnostic, the goal state for planning
can be set freely, and the planning process can be constrained
using additional loss terms without having to retrain the net
(which is presently proving useful in integrating the system
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with a physical robot platform with a limited range of motion).
The cost of these merits is that the planning process is slow
(taking seconds) compared to the action-generation time cost of
model-free RL systems.

We found that the system emphasizes overall shape (what
we might call the 3D silhouette of the cloth) over the details
of how that shape is realized. For example, given as target a
cloth folded neatly in two, the system will produce a plan that
produces the same rectangular shape, but not necessarily with
the fold on the same side. This is to be expected (as the loss
used in plan generation quantifies the difference between voxel
representations), but not ideal. Marking or patterning of the
cloth (e.g., adding an additional color channel to distinguish
the cloth’s hem) can likely improve this issue, but would also
constrain the applicability of the system to cloths adhering to the
marking scheme.

A related issue is that predictions are rather diffuse.
Some degree of diffusion is theoretically appropriate. The
voxelisation introduces some ambiguity with respect to the
cloth mesh. Predictions from a network trained to perfection
would be distributions over the manipulation outcomes for
all the mesh configurations that would produce the given
input voxel representation. This diffusion could be reduced
(though not eliminated) by simply using higher resolution voxel
representations, at the cost of slower training and operation.
However, there are also some unwanted sources of blur affecting
the results presented here. One is that autoencoders tend
to replicate low-frequency features better than high-frequency
features. This is a well-known problem (Snell et al., 2015).
Low-frequency features generally have a bigger impact on the
loss function, causing them to dominate the training process.
However, the fact that the reconstruction results of configuration
C6 show only limited diffusion suggests that the root cause of
the blur in our prediction results is not just due to an emphasis
on low-frequency features. Further supporting a different root
cause, we experimented with 3D SSIM (Snell et al., 2015) loss
functions in hopes of improving prediction clarity, but did
not obtain notable improvements over the MSE loss used in
the experiments here. Adversarial training (Goodfellow et al.,
2014) has been shown capable of improving the quality of
generated images. It is imaginable that sharper predictions could
be obtained with an adversarial approach, but it is not a given that
this would contribute to better multi-step planning. Sharpness
only contributes to planning performance insofar it reflects
increased prediction accuracy, whereas the sharpness obtained
by adversarial training is obtained by the objective of reducing
distinguishability between real and generated states. Also,
introducing a discriminator net would substantially complicate
the system. A third factor is the somewhat stochastic nature of
the data itself, caused by limitations of the cloth simulation. The
simulated cloth generally does not stabilize entirely. After the
grasp is released and the cloth has settled into a folded state,
it continues to jitter slightly, which slowly changes the cloth
shape (left to run for a long time, this jittering can even cause
the cloth to unfold entirely). Our data generation procedure
stops the simulation 16 frames after the grasp is released,
which includes variable amounts of such jitter. This introduces

a source of noise, which is likely reflected in the predictions.
Adoption of a more stable cloth simulation algorithm should
resolve this issue. However, the system is developed with
the aim of operating on real cloth, which introduces a
different set of noise sources, so exact predictions will likely
remain hard to obtain.

Perhaps somewhat counter-intuitively, we see that
manipulation outcomes often resemble the goal state more
closely than their predictions do. Evidently the planning process
is robust to some level of blur. This can be understood as follows.
What is required for planning to function is that the prediction’s
match w.r.t. the goal state should improve (i.e., planning loss
should decrease) as the manipulation input approaches the
correct action. Differently put, prediction ability does not need to
produce the goal state, it only needs to provide predictions that
are good enough to identify the goal state among other possible
outcomes. This permits a fair level of noise and blur.

Next, we position our approach among related work in
generative models, control, and planning. The EM∗D net
could be considered a relative of transforming autoencoders
(Hinton et al., 2011) and variational autoencoders (Kingma
and Welling, 2014; Rezende et al., 2014). Whereas typical
autoencoders are mainly used for compression and feature
extraction, transforming and variational autoencoders are used
to generate novel outputs. Dosovitskiy et al. (2014) introduced
techniques to make individual values in an autoencoder’s latent
encoding control specific features of the representation, and
demonstrated how this can be used to change specific features
(e.g., color, view angle) in a controlled manner. The EM∗D net,
too, compresses and modifies representations in a controlled
manner, although not by changing specific features or view angles
but by applying specific manipulations.

As noted in the introduction, the use of neural networks
as forward models can also be found in research on model-
based control. Wahlström et al. (2015), Watter et al. (2015)
similarly use neural networks to map states into a latent space,
in which a variety of control problems is then solved. Both
studies map high-dimensional states (images) into latent space
using encoder networks, and then solve control problems in
latent space. A first point to note is that whereas both these
studies solve control tasks, we focused on a planning task.
This is fundamentally a difference in the size of the time-
step: our step units are full manipulations (representing large
jumps in state-space), whereas the control studies consider
smaller and more granular transitions. For convenience, we
will use the term “actions” here to refer to the object of
inference (i.e., control signals in the control studies, and
manipulation plans in the present work). Both (Wahlström
et al., 2015) and (Watter et al., 2015) employ high-dimensional
observations (images) of low-dimensional tasks (2D in the
former, 2D to 6D in the latter). Both systems successfully
reduce these observations back to low dimensionality. However,
neither compresses state representations beyond the original task
dimensionality. The present work employs high-dimensional
observations of an intrinsically high-dimensional task. The actual
state dimensionality is, strictly speaking, 19200D (x, y and
z coordinates for 80 × 80 cloth vertices). Observations are
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16384D voxel representations, which the encoder compresses
into 512D latent representations. The encoder’s task here is
not to recover or approach the task’s actual dimensionality;
the actual dimensionality is too large to plan on effectively.
Rather, the encoder must learn a manifold of low-dimensional
representations of a high-dimensional state space, that also allows
for easy manipulability. Our work shows that the concept of
action inference in latent space can be applied effectively under
the demanding conditions of intrinsically high-dimensional real-
world problems.

In terms of action inference (Watter et al., 2015) stay
close to the variational auto-encoder paradigm. Transitions
are performed by means of linear transformations in latent
space. This is effective for small time-steps in low-dimensional
control problems and has advantages in terms of solution search,
but it is not clear how well imposed linearity would play in
inherently high-dimensional problems with large time-steps,
such as treated here. Our approach is close to Wahlström
et al. (2015), combining non-linear latent state transformations
with backpropagation-based solution search. The concept of
planning by means of back-propagation has also been discussed
and demonstrated in Henaff et al. (2017), with the purpose of
extending this approach to discrete state and action spaces. A
shallow recurrent neural network architecture was used there,
and no mapping to latent spaces was employed. In a wider
scope, planning by means of back-propagation is a special
case of planning by means of gradient descent, which has a
history outside the context of neural networks. The present work
shows that this concept is effective on moderately deep neural
architectures and in combination with manifold learning.

Sergeant et al. (2015) propose an interesting autoencoder-
like architecture for control of a mobile robot which generates
control signals along with a reconstruction of the robot’s
sensor input (laser range scan measurements). Sensor input is
associated with control signals using a mix of supervised and
unsupervised learning. This approach, too, targets control, and
is not applicable for planning as-is, as it does not accommodate
variable goal states.

Another closely related work is (Finn et al., 2016). This
work combined autoencoders with RL to accomplish a variety
of robotic manipulation tasks, including some on deformable
objects. Here too the role of the autoencoder is to extract compact
representations suitable for driving control, but in contrast to
other work, the autoencoder’s architecture is designed specifically
to extract feature points that indicate the locations of objects
in the scene. The cost function used in the RL process bears
notable resemblance to our lossc: the encoder is applied to obtain
the latent representation of the goal state, which can then be
compared to the latent representation of the current state to
compute the cost. However, the use of RL requires that the goal
state be set at training time. Consequently the trained system does
not accommodate goal variability.

Koganti et al. (2017) also employ automatically acquired
low-dimensional latent representations of cloth states, but in
contrast to the autoencoder-based architectures above a Bayesian
Gaussian Process Latent Variable Model (BGPLVM) is used.
After training on motion capture and depth sensor data, the

latent variable model is used to map noisy and high-dimensional
depth sensor readings to cloth configurations in a task-specific,
low-dimensional manifold. This approach was demonstrated
on a dressing assistance task. This example illustrates the
effectiveness of aggressive dimensionality reduction and
manifold learning for cloth manipulation.

Finally, Erickson et al. (2018) presents a conceptually close
example of Model Predictive Control (MPC) applied in cloth
manipulation (a dressing assistance task). The forward model
employed here operates in the haptic domain instead of the
visuospatial domain, predicting the forces an action would
exert (indirectly, through the clothing item) on the subject
being dressed. No mapping to a latent space is performed (as
cloth shape is not explicitly represented high dimensionality
is less of a hurdle), and the task is again one of control
rather than planning, but the approach is close to ours in its
use of a recurrent neural network architecture for prediction,
and its goal-agnostic training procedure. Like in our approach,
the latter allows for goal definition at run-time, and hence
the approach can in principle accommodate goal variability
without retraining.

When training a forward model with the intent to use
it recurrently, encoding consistency is crucial. Our results
demonstrate that training with a loss computed over the
encoding-prediction pathway (lossc) results in better planning
ability than training with a loss computed over the encoding-
decoding pathway (lossr).

Our network architecture is specialized for the purpose of
modeling state transformations. It consists of a section of neurons
designated to hold the state representation (passed on via
residual connections), a section of regular neurons, and repeated
action input at every layer. Our results demonstrate that this
architecture is beneficial for modeling cloth’s forward dynamics
in latent space. As the reasoning behind this architecture
is not specific to cloth manipulation, its benefits potentially
extend to other task domains as well, although this remains to
be investigated.

With the eye on future practical application, it is important to
consider how goal state representations could be set. Although
we have not focused on this aspect yet, we can outline a few ways
forward. A cloth item already in the goal state could be used to
specify the goal state. This would be practical when folding a
number of items when at least one similar item already in the
intended goal configuration can be observed. Targets could also
be acquired by having a human user produce the goal state once
and storing it for later recall. Either approach could build up a
database of goal states on the side for quick selection of a suitable
goal state at a later time (either by the user or by a high-level
planning process).

Higher flexibility could be obtained by relaxing the definition
of a “goal state.” There is no need for the goal state to be
a literal cloth state. The planning process tries to maximize
the similarity between the expected outcome and the goal.
Preliminary experiments suggest that it is possible to set the goal
as (a voxel representation of) the space we want to fit a given
cloth item into. This allows us to consider scenarios like the
following: A household robot is tasked with tidying up a room. A
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high-level planning process decides to store some scattered cloth
items in a closet drawer. The drawer’s internal sizes are estimated
and passed to the cloth manipulation planning system for use
as goal state. The manipulation planning system then returns a
suitable manipulation sequence, allowing the robot to achieve its
high-level goal.

FUTURE WORK

A limitation of the current system is that we need to set
the length of the sequence to plan, which in practice will
generally be unknown. Along with the manipulation plan,
the system outputs the plan’s expected loss w.r.t. the target
state, providing a natural quality assessment of the plan.
This can be used to automatically search for the appropriate
sequence length sequentially. Alternatively, it may be possible
to search over variable plan lengths simultaneously. One could
use an appropriately defined loss over the sequence of latent
representations generated by the propagation loops through the
manipulation module (with a small penalty term for plan length).
Implementation and evaluation of such procedures remains as
future work.

Related to the above, dynamic plan length adjustment during
operation could be exploited for failure recovery. Discrepancy
between predicted and observed outcome can be used to infer
failure. For example, in the case of a failure to grasp, one
will want to add one step in order to allow a retry of the
failed manipulation.

Another avenue for improvement is expansion of the
manipulation repertoire. In particular, the present manipulation
format enforces that both grasp points are moved by the
same displacement vector. This restriction should be relaxed,
as there are common manipulations in manual cloth folding
that involve different movement vectors for different grasping
points. However, allowing diverging trajectories for the grasp
points also introduces manipulations into the repertoire that
would pull the cloth apart, so this expansion requires some
careful consideration.

Concurrent to further development of the planning system,
we are integrating the system with a dual-armed robot. Initial
results are reported in Tanaka et al. (2018). The system as
discussed in the present paper assumes certain idealizations that
do not carry over to real-world application. One difference to
account for is the assumption of an infinite desk and point-
sized non-colliding actuators with infinite range of motion. The
constraints imposed by a finite desk and real robot hands can
be accounted for with constraints on the planning process in
the form of additional loss terms, but work remains in defining
these loss terms efficiently and balancing them with the main
planning loss.

CONCLUSIONS

We proposed the EM∗D neural network architecture
for generating multi-step cloth manipulation plans, and
experimentally demonstrated its viability on simulated cloth.
This approach to manipulation planning combines flexibility
(variable start and goal states) speed (plans are generated
in seconds), and robustness to cloth self-occlusion, core
prerequisites for practical application in household robotics.
Future work will focus on accuracy improvement, expansion
of the manipulation repertoire, and continued integration with
robotic hardware.
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The size, weight, and power consumption of soft wearable robots rapidly scale with

their number of active degrees of freedom. While various underactuation strategies have

been proposed, most of them impose hard constrains on the kinetics and kinematics

of the device. Here we propose a paradigm to independently control multiple degrees

of freedom using a set of modular components, all tapping power from a single motor.

Each module consists of three electromagnetic clutches, controlled to convert a constant

unidirectional motion in an arbitrary output trajectory. We detail the design and functioning

principle of each module and propose an approach to control the velocity and position of

its output. The device is characterized in free space and under loading conditions. Finally,

we test the performance of the proposed actuation scheme to drive a soft exosuit for the

elbow joint, comparing it with the performance obtained using a traditional DC motor and

an unpowered-exosuit condition. The exosuit powered by our novel scheme reduces the

biological torque required to move by an average of 46.2%, compared to the unpowered

condition, but negatively affects movement smoothness. When compared to a DCmotor,

using the our paradigm slightly deteriorates performance. Despite the technical limitations

of the current design, the method proposed in this paper is a promising way to design

more portable wearable robots.

Keywords: soft exosuit, underactuation, assistive robots, unidrive, soft robotics, exoskeletons, PWM control,

wearable robotic suit

1. INTRODUCTION

One of the earliest attempts to develop a wearable robotic device to assist human motion, dating
back to 1967, failed because of the excessive weight and size of the system (Mosher, 1967). Since
then, advancements in material science, power supplies and computing power have fundamentally
broadened the boundaries of what we can achieve.

Exoskeletons have been used for a plethora of applications, ranging from performance
augmentation in industry (de Looze et al., 2016) to neuro-rehabilitation in medicine
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(Louie and Eng, 2016). Despite exciting achievements, there
are still substantial technical limitations preventing wearable
powered devices from becoming a ubiquitous part of our daily
lives. Among others, power requirements and weight of the
actuation stage play a key role, confining most of the existing
exoskeletons to research laboratories or specialized clinics.

A significant step forwards in this direction has been recently
taken by using fabric and polymers to transmit forces and
torques to the human body. Soft materials limit the magnitude
and accuracy of assistive forces but allow to engineer lighter,
less power-demanding, and svelter exoskeletons, resembling our
everyday clothes more than the rigid machines portrayed by
science-fiction movies (Asbeck et al., 2014).

Although fundamental research is being carried out to design
efficient, controllable and robust new actuators (Cappello et al.,
2018), most exosuits are powered by traditional electric motors,
transferring power to the joints through flexible transmissions
(Asbeck et al., 2013). Using one motor to assist each Degrees of
Freedom (DoF) of the human body is the most common design
choice. This strategy is hardly scalable to complex systems: the
human arm alone has at least 7 DoFs and the complexity, size,
and weight of a device using such a high number of motors would
make it impractical.

A common way to address this problem is to use fewer
motors than DoF: underactuation strategies include differential
mechanism (In and Cho, 2015), mechanical implementation of
kinematic synergies (Catalano et al., 2014; Xiloyannis et al.,
2016) and routing of the driving cables along multiple joints
(Asbeck et al., 2015). However, these approaches impose hard
constrains on the kinetics and/or kinematics of the wearer,
allowing only a finite number of predefined moving patterns.
This idea is conceptually shown in Figure 1A, where multiple
DoF are mechanically coupled to be driven by a single motor.

An interesting, yet less investigated, method involves using a
set of modules, each one moving a DoFs, all tapping mechanical
energy from a single drive. In literature, this paradigm is
known as One-To-Many (OTM) (Hunt et al., 2013), Unidrive
(Karbasi et al., 2004), or Single-Motor-Driven (SMD) system
(Chen and Xie, 1999).

The idea of having a prime mover delivering motion to many
subunits is gracefully illustrated in Dante Alighieri’s picture of
the structure of the universe: he imagined the existence of an
outer rotating spheric “sky” that generates energy and transfers
it trough its motion to its inner circles, each rotating at a fraction
of its speed:

“Non è suo moto per altro distinto,
ma li altri son mensurati da questo,
sì come diece da mezzo e da quinto.”1

A One-To-Many transmission is the mechanical equivalent of
this idea: one electric motor, that we shall call prime mover,

Abbreviations: DoF, Degree of freedom; OTP, One-to-many; EM,
Electromagnetic; MR, Magneto-rheological; PWM, Pulse width modulation;
MJT, Minimum jerk trajectory; EMG, Electromyography; MVC, Maximum
voluntary contraction; SPARC, Spectral arc length; RMS, Root mean square;
RMSE, Root mean square error.

FIGURE 1 | Underactuation mechanisms and One-To-Many (OTM) paradigm.

(A) Typical underactuated mechanisms rely on some form of mechanical

coupling between degrees of freedom (DoF), imposing a hard constraint on

the kinematics and/or dynamics of the system. (B) The OTM paradigm

consists in actuating many DoF, each tapping power from the same drive but

controlled independently by a local module.

transfers power to many modules, each driving a DoF. This
paradigm is shown in Figure 1B. The prime mover rotates at
a constant speed and the trajectory of each DoF is modulated
locally by its corresponding module. Such a setup, unlike
underactuation mechanisms, allows independent control of each
DoF and scales nicely with increasingly complex systems.

The challenge when designing an OTM system comes down to
engineering a module that is smaller and less power-consuming
than a motor but can control the position, velocity, and/or torque
of a joint just as well.

Performance-wise, Infinite Variable Transmissions (IVT),
allowing to continuously modulate their transmission ratio
within a range of positive and negative values, are the ideal
candidates for an OTM module. The input velocity remains
constant while the output velocity of each DoF can be
modulated and even reversed by changing the transmission
ratio of each IVT. The recently-published work from Kembaum
et al. proposed a novel compact design (Kembaum et al.,
2017), but traditionally, the size and mass of IVTs would not
justify their use over a simple additional motor. Hunt et al.

1“Its motion is not measured by another, but all the others are by this, as ten is
measured by its half and by its fifth” (Alighieri, 1555).
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proposed an OTM system where each module consisted of a
linear spring and a clutchable ratchet, the former used to store
energy and the latter to selectively release it (Hunt et al., 2013).

The group led by Kermani (Kermani and Alex, 2014;
Yadmellat et al., 2014), proposed a mechanism employing
magnetorheological (MR) clutches to design a 2DoFmanipulator
for safe human-robot interaction. A single electric motor was
placed a the base of the robot, providing power to both
joints, while three MR clutches were controlled to limit the
output torque’s magnitude and direction at each joint. The
authors showed that this Distributed Active-Semi Active (DASA)
actuation paradigm can achieve smooth and accurate tracking
of joint positions while benefiting from key advantages of MR
clutches such as backdrivability and low impedance.

Finally, a handful of research groups have presented designs
based on a similar and powerful principle: the module consists
of at least two gears, constantly rotating in opposite directions,
and the output is coupled with either one of them using
ElectroMagnetic (EM) clutches, or locked using a brake (Li
et al., 2003; Karbasi et al., 2004; Yadmellat et al., 2014). The
group led by Xie was probably one of the first to propose such
arrangement to drive a 9 DoF robotic hand (Chen and Xie, 1999)
and a 6 DoF serial manipulator (Li et al., 2011) with a single
electric motor.

The encouraging results of OTM systems, applied to drive
manipulators and robotic hands, led us to investigate their
feasibility in the field of wearable assistive devices, increasingly
in need of novel, efficient actuation paradigms. We previously
proposed an OTM system, consisting of 2 clutchable modules,
to actuate the tendons driving a soft exosuit for the elbow joints
(Canesi et al., 2017), shown in Figure 2. Each module followed
a working principle similar to the one presented in Chen and
Xie (1999): this design has the advantage, over the spring-ratchet
design in Hunt et al. (2013), of not being limited in the amount
of energy that can be stored in each module and it results in a
simpler and lighter architecture than the designs employing MR
clutches or IVTs.

Our first work was controlled using a heuristically-designed
state machine that didn’t guarantee stability. Because of this lack
of robustness we limited our first assessments to a testbench.
Even with a simple controller, however, we demonstrated the
feasibility of this approach to achieve independent control of
multiple DoF, using a single drive. In this manuscript, we bring
the assessment one step further, by including the human in the
validation process.

We propose a refined version of our module’s design and
presents a novel PID-modulated PWM controller to finely
adjust the velocity of each DoF independently. We thoroughly
characterize the system on a test-bench and then use it as the
low-level layer of an admittance-based scheme to control our soft
exosuit.

The performance of the new actuation unit is finally
compared to that of a traditional DC motor by assessing
their impact on kinetics and kinematics of human
movement. This human-in-the-loop validation highlights
the limitations of our approach and points out avenues
for improvement.

FIGURE 2 | OTM actuator to power two elbow exosuits with one electric

motor. This system, that we proposed in Canesi et al. (2017), consists in one

prime mover, transmitting power to two clutchable DOF Modules connected to

two elbow exosuits via Bowden cables. Each module independently controls

the position of its corresponding DoF.

2. OTM DESIGN AND CONTROL

The working principle of the clutchable OTM module is shown
in Figure 3. The device consists of three EM clutches (SO11,
Inertia Dynamics, 5W) used for coupling the output to either
a forward-rotating gear (red), a reverse-rotating gear (blue), or
to lock it (black). Depending on which clutch is engaged, the
module works in four possible states:

– Free: when all the clutches are disengaged, the output velocity
at the pulley is undefined, the output is back-drivable.

– Lock: when the brake is engaged.
– Forward: when the “forward” clutch is engaged, the output

velocity equals the input velocity times the reduction ratio
between the input and output ports.

– Reverse: when the “reverse” clutch is engaged, the output
velocity equals the reverse of the input velocity times the
reduction ratio between the input and output ports.

Table 1 summarizes the states of the module, where the
engagement of each clutch is represented by a binary variable.
Any other pattern of activation is avoided as it would result in
mechanical stall of the prime mover.

2.1. Mechanical Design
Figure 4 shows an exploded view of the functional components
of the module. A pinion is continuously rotated by the prime
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FIGURE 3 | Working principle of a DOF module. ElectroMagnetic (EM)

clutches are used to convert a unidirectional input to a bidirectional output by

coupling an output shaft with either one of two counter-rotating gears; a brake

locks the output in place. Black lines in the plot show the ideal behavior of the

clutches, gray lines the actual one, caused by a delay in engagement and

disengagement of the armature and rotor.

mover and meshes orthogonally with two bevel gears facing
each other. Thanks to this arrangements, the bevel gears rotate
in opposite directions. An aluminum link couples each gear
to the armature of an EM clutch, whose rotor is rigidly
linked to a passing countershaft. When power is applied to
either one of the EM clutches, the armature is coupled to
the rotor, thus effectively linking the countershaft to either
one of the gears. A third, identical clutch, acts as a brake,
locking the countershaft in a static position by coupling it
with the frame. A flexible coupling joins the countershaft to
a pulley (the output of the module); the pulley houses two
cables wrapped in opposite directions and is used to transmit
motion to the exosuit through flexible Bowden cables. Figure 5
shows a photograph of an assembled module, enclosed in a 3D
printed casing.

2.2. Control
Figure 3 shows that the module has three working states:
forward, reverse, and brake. In Canesi et al. (2017), we
proposed a heuristic control approach that consisted in a
feedback state machine to keep the measured trajectory as
close as possible to a reference profile. This strategy, although
being simple, presented fundamental limitations in accuracy
and stability.

TABLE 1 | Possible states of the module.

State Forward clutch Reverse clutch Brake

Free

Forward

Reverse

Lock

In this work, we propose a more principled paradigm to
control this discrete system, based on the work of Karbasi et al.
(2004). The controller is based on Pulse Width Modulation
(PWM) of the three discrete states of the OTM, regulated by a
feedback PI controller, to continuously adjust the average velocity
of the module’s output. The non-linear PI controller translates
the difference between the desired and actual velocity of the
module to a rectangular pulse signal, having value −1 (reverse
clutch), 0 (brake), or 1 (forward clutch), whose duration in time
is dependent on the magnitude of the error.

In the next sections we describe how a tracking error is
converted to a discrete control signal for the clutches for an ideal
PWM-regulated system.

Using a state-space representation, we can describe a non-
linear PWM-controlled system with the following equations:



















dx
dt = u(t)ωin

y(t) = x(t)

e(t) = r(t)− y(t)

u(t) = PWM(e(tk))

where

– u(t) is the control signal for the clutches, bonded to have values
−1, 0, or 1.

– x(t), the state variable; in our case, the angular position of the
module’s pulley, θ .

– e(t) is the error between the reference r(t) and the output y(t).
– ωin is the fixed input velocity of the module.
– tk represents the instant of initiation of the k-th PWM period

(Figure 6, top).
– PWM(e(tk)) is the PWM control operator, defined as:

PWM =
{

sgn(e(tk)) for tk ≤ t ≤ tk + α

0 elsewhere

where we have used α = τ (e(tk))TPWM , for simplifying the
notation, with τ (e(tk)) being the duty ratio function and TPWM

the period of the PWM signal.
The PWM operator basically sets the control signal to 1, 0, or

−1 for a period of time defined by τ (e(tk)).
This duty ratio function, τ (e(tk)), needs to output a value

between 0 and 1, representing the ratio for which the control
signal will be equal to the sign of the error. Sira-Ramirez
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FIGURE 4 | Mechanical design of a One-To-Many (OTM) module. Each module receives power from the prime mover through a pinion, connected to two,

opposite-facing, bevel gears that rotate in opposite directions. Each bevel gear can be coupled to the passing countershaft by engaging an ElectroMagnetic (EM)

clutch, selectively rotating it in either direction. A third EM clutch can connect the countershaft to the frame, acting as a break. The shaft drives a pulley housing the

antagonistic Bowden cables that actuate the soft exosuit.

suggests the following as a good choice for non-linear systems
(Siraramirez, 1989):

τ (e(tk)) =

{

β|e(tk)| for |e(tk)| ≤ 1/β

1 for |e(tk)| > 1/β ,
(1)

that makes the duty ratio proportional to the magnitude of the
error if the error is relatively small (smaller than a threshold 1/β)
and saturates it to 1 if the magnitude of the error is larger than
the threshold.

The big assumption of this controller is that the clutches
behave like ideal switches, i.e., the output velocity of the module
instantaneously equals a multiple of the input velocity when
the clutch is engaged (Figure 3, black). In practice, this is not
the case: the clutches have an intrinsic delay when engaging
(shown in gray in Figure 3) and the velocity of the output decays
in an exponential-like fashion when the clutch is disengaged
(Karbasi et al., 2004).

Skoog and Blankenship (1970) and colleagues have shown
that such phenomenon can be mitigated with the addition of an
integral feedback term. Adding this to Equation (1) makes the
output of the duty ratio function, in the region |e(tk)| ≤ 1/β ,
proportional not only on the magnitude of the error but also to
its history, effectively behaving like a non-linear PI controller.

2.3. Performance
We characterized the performance of the DOF module for
varying control parameters and tested its limits in speed and
torque transmission.

Specifically, we evaluated the ability of the controller to
modulate the output velocity for varying PMW periods TPWM ,
we tested its ramp response and bandwidth for varying input
velocities of the prime mover and, lastly, its maximum load
rating. The DOF module was equipped with an incremental

FIGURE 5 | A single DoF assembled Module.

encoder (AMS, AS5047P, 1,000 pulses/rev), monitoring the
position of the cable pulley.

2.3.1. Velocity Modulation

Figure 6B shows the ability of the PWM controller to adjust the
velocity of the module as its duty cycle changes. The plot shows
the normalized velocity (ωout/ωin), for varying duty ratio of the
PWM signal, where the duty ratio expresses the percentage of
time in TPWM , where the control signal is non-zero, i.e., 1 or
−1. Lines of different color represent different frequencies of the
PWM signal.

The TPWM should be set as small as possible, to ensure
stability, but bigger than the time delay δ, necessary for the
clutches to physically engage once powered. Indeed, very high
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FIGURE 6 | PI-regulated PWM control of the clutchable module. (A) The error between the desired and measured position of the countershaft is passed through a

traditional PI controller that computes the duty cycle of the control signal, according to Equation (2), in cascade with the PWM function defined in Equation (1). This

sets the control signal to 1 or −1 for a fraction of the PWM period that depends on the magnitude of the error. 1 engages the forward clutch, −1 the reverse clutch and

0 the brake. (B) Choosing the period of the PWM signal. Velocity of the output shaft, normalized by the input speed, vs. the duty ratio of the PWM signal controlling

the forward and reverse clutches. Different colors show different PWM frequencies. For high frequency, low and high duty ratios do not affect the output velocity.

FIGURE 7 | Ramp response. (A) Tracking performance of the DOF module with the PI-regulated PWM control. Ramp response for velocities between 10 and 100%

of the input velocity. (B) RMSE between the desired and measured positions of the module’s output, for desired output velocities between -ωin and ωin (x-axis) and

different input velocities (grayscale). The behavior of the controller is symmetric, with increasing error for higher absolute velocities.

frequencies of the PWM do not result in a higher ability to
modulate the output velocity. This is caused by the intrinsic
delay, δ, necessary for the rotor and the armature of the EM
clutches to engage upon the application of power. We chose
TPWM = 0.20 s, being the highest PWM frequency showing a
near-linear trend.

2.3.2. Ramp Response

Figure 7A shows the tracking ability of our PID-modulated
PWM controller to track a ramp position profile of increasing
slope, between 10% and 100% of the input velocity, in steps
of 10%. The experiment was repeated for three fixed input
velocities and showed a consistent behavior, with the tracking
ability of the controller deteriorating as the normalized speed
approached one.

2.3.3. Bandwidth

Figure 8 shows the tracking of sinusoidal trajectories and Bode
plot of the module with the controller proposed in section 2.2.
The module was commanded to follow a sinusoidal trajectory of
the form:

θdout(t) = A sin(2π f0t) (2)

with A corresponding to the amplitude required for a
flexion/extension motion of the elbow of 90 deg and a frequency
f0 evaluated between 0.01 and 1.51Hz, in incremental steps
of 0.02Hz. For each frequency we collected data for 20 s at a
sampling rate of 1 kHz; the first second was discarded for further
analysis to evaluate the performance of the system at steady-state.
This procedure was repeated for three different input velocities of
the prime mover 35, 45, and 55 rad/s.
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FIGURE 8 | Sinusoidal tracking and Bode plot. (A) Sinusoidal tracking accuracy of the OTM module with the PI-regulated PWM control described in section 2.2,

shown for six equally-spaced frequencies, between 0.15 and 0.4 Hz. (B) Bode plot of the transfer function between desired and measured position of the module’s

output, shown for three different velocities of the prime mover. The system has a cut-off frequency of 1.26, 1.51, and 1.30Hz, for a speed of the prime mover of 35,

45, and 55 rad/s, respectively.

FIGURE 9 | Performance testing under load. (A) Testbench used for assessing the performance of the DoF while moving a load. The first motor, i.e., the prime mover,

drives the DoF module; the second motor is used to simulate a load on the output. Mechanical power is transmitted from the DoF module to the load via Bowden

cables. (B) Tracking accuracy of the OTM module, controlled with the PI-regulated PWM controller, under increasing load. The top plot shows the desired (gray) and

measured (colored) position of the module’s output as the load increases between 0 and 0.68N m. The clutches start to slip just before 0.6N m, as quantified by the

increase in RMSE shown in the bottom plot.

For each frequency we performed an analysis in the Fourier
domain to evaluate the amplitude ratio and the phase lag between
the desired s(t) and the measured θout signal. The nth complex
coefficient of the Fourier series has the form:

Cn =
f0
N

∫ N
f0

0
s(t)e−j2πnf0tdt (3)

where f0 is the sampling rate and N is the number of cycles
whereby the signal is repeated. For each driving frequency we
evaluated the response as the ratio between the coefficients of the

fundamental frequency of the measured and desired signals:

H(f0) =
Cmeasured
1

Cdesired
1

. (4)

Figure 8B shows a Bode plot of the system, representing the
transfer function between the measured and desired position of
the module. The device and controller show a cut-off frequency
of 1.26, 1.51, and 1.30Hz, for a speed of the prime mover of 35,
45, and 55 rad/s, respectively. We chose a velocity of 45 rad/s for
all following tests.
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2.3.4. Loaded Behavior

Finally, we tested the tracking accuracy of the module in the
presence of a load. For this testing, we attached the Bowden cables
on a second pulley, driven by a DCmotor (Maxon EC-i 40, 70W,
3.7:1 reduction ratio), to apply a load on the end-effector (shown
in Figure 9A).

The module was set to follow a sinusoidal trajectory while
the load linearly increased between 0 and 0.68Nm (maximum
rated torque for the EM clutches). The test was repeated 5 times.
Indeed, the clutches started slipping, causing a steep deterioration
in tracking accuracy, around 0.6Nm (Figure 9B). This is lower
than their rated value, probably due to friction losses in
the transmission.

Table 2 summarizes the technical characteristics of our OTM
module assembly shown in Figures 4, 5, where the maximum
rated torque and velocity have been mapped to the elbow joint.

3. TESTING ON HUMAN MOVEMENTS

To test the feasibility of the OTM mechanism for assistive
purposes, we compared the performance of an exosuit driven by
the OTMmechanism to that of the exosuit driven by a traditional
DC motor. The performance of the device was assessed through
its effect on the the kinematics and muscular activity of
its wearer.

3.1. Exosuit Design and Control
The exosuit is shown in Figure 10. The device consists of a frame
of soft material that wraps around the arm and forearm and
transmits torque to the elbow through artificial tendons. A pair
of Bowden cables transmits power from the actuation unit to the
joint (Supplementary Material).

The suit is equipped with a force sensor (Futek, LCM300),
secured on the distal anchor point, that measures the tension
in the flexing tendon, and an absolute encoder (AMS, AS5047P,
1,000 pulses/rev), mounted on a 3D-printed joint between the
arm and forearm straps, that monitors the angular position of
the joint.

The device provides assistance to its wearer through an
admittance-based controller, detailed in Chiaradia et al. (2018).
The control paradigm is designed to have the dual purpose of
compensating for gravitational forces acting on the forearm and
allowing the exosuit to move in concert with its wearer.

A schematic diagram of the controller is shown in Figure 10B.
It comprises an outer torque loop and an inner position loop.
The former is responsible for tracking the position-dependent
torque profile at the elbow, equal and opposite to gravity. A PID-
admittance converts the error between the desired and assistive
torque at the elbow to a position reference for the actuation stage.

The torque acting on the elbow joint as a result of gravity is
estimated using a simple single-joint model and assuming that
the arm is adducted on the side of the trunk:

τg = mglc sin θe, (5)

with m being the combined mass of the forearm and hand, lc
the distance of the center of gravity of the forearm and hand

TABLE 2 | Technical specifications.

Characteristics Values

Module

Weight [Kg] 0.534

Dimensions [cm] 15× 6× 5

35 rad/s 45 rad/s 55 rad/s

Bandwidth [Hz] 1.26 1.51 1.30

Assembly

DOF 2

Weight [Kg] 2.2

Dimensions [cm] 26× 18× 12

Motor power [W] 90

Max torquea [Nm] 3.4

Max velocitya [deg/s] 424

aAt the elbow joint.

from the center of rotation of the elbow joint, g the acceleration
of gravity and θe the elbow angle, assumed to be zero in the
fully-extended configuration.

The assistive torque is estimated by multiplying the tension
measured by the load cell, f , by its moment arm P(θe) (refer to
Xiloyannis et al., 2017 for a full formulation):

τexo = P(θe)f . (6)

Using the notation shown in Figure 10B, the difference between
τg and τexo is converted to a reference position for the actuation
stage, by a specified admittance. The admittance assumes the
form of a PID controller (Yu et al., 2011):

Y(s) =
θe

τg − τexo
= P +

I

s
+ Ds, (7)

with the P, I, and D constants governing the characteristics
of the relation between the interaction force and the exosuit’s
kinematics. An additional positive feedback term, proportional
to the speed of the elbow joint, increases the sensitivity of the
device to its wearer’s movements.

3.2. Experiments and Data Analysis
The aim of this experiment was to compare the effect on human
movements of the exosuit driven by an OTM module to that
of the exosuit driven by a traditional DC motor. We included
a third condition, consisting in unpowered movements, to have
a physiological baseline. In all three conditions, we evaluated
smoothness and accuracy of movement, biological torque and
muscular activation patterns of a healthy subject performing
controlled movements of the elbow. The experimental procedure
was similar to the one we used in Xiloyannis et al. (2019) to
quantify the effects of a soft wearable exosuit on movements of
the upper limbs.

The testing was done on one male subject presenting no
evidence or known history of skeletal or neurological diseases,
and exhibiting intact joint range of motion and muscle strength.
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FIGURE 10 | Design and control of the exosuit for the elbow, actuated by a DoF module. (A) The suit is driven by Bowden cables that pull together two anchor points

on the arm and forearm, generating a torque on the elbow joint. A load cell senses the tension on the cables and an encoder measures the join position. (B)

Experimental setup and high-level control of the suit. The participant was asked to follow the movement of an avatar on a screen while the suit followed the subject

and provided a torque on the elbow equal and opposite to gravity. This was achieved with an admittance controller, using the PWM controller described in section 2.2

as an inner position loop.

At the beginning of each experimental session the participant was
informed of the procedure and he signed an informed consent.
The procedures, in agreement with the Declaration of Helsinki,
was approved by the Institutional Review Board at Nanyang
Technological University.

The participant had to follow a reference movement
performed by a dummy character on a screen. The position
of his own elbow was displayed as a superimposed replica
of the reference one to provide visual feedback. In the
unpowered condition, the exosuit’s tendons were unhooked
from the distal anchor point and the motor’s power source was
turned off.

The reference motion consisted of series of 10 Minimum Jerk
Trajectories (MJT), known to correspond well to the movements
of healthy subjects (Flash and Hogan, 1985), with amplitude
of 80 deg and a peak velocity of 60 deg/s, corresponding to
approximally 50% of the average speed in activities of daily living
(Buckley et al., 1996).

Raw data from the suit’s absolute encoder and load cell
was low-pass filtered (second order Butterworth filter, 10Hz
cut-off frequency) and segmented to isolate the 10 movements
comprising each condition. The accuracy of movement was
quantified by evaluating the Root Mean Square Error (RMSE)
between the measured and reference trajectory.

To quantify kinematic smoothness, we used the SPectral
ARC length (SPARC) index proposed in Balasubramanian et al.
(2015). The SPARC index was estimated on the norm of the
elbow’s speed.

The measured force on the flexing tendon was mapped to
a torque on the joint using Equation (6), this was used as
an estimate of the assistive moment delivered by the exosuit,
τexo. The total torque, τ , required to perform the movement
was derived from the inverse dynamics of the human elbow,
represented as a simple pendulum using a second order model.

The difference between the total and assistive torque,

τbio = τ − τexo, (8)

was used to estimate the biological torque exerted by the subject
to perform the movement or hold the position.

The output EMG signal of the Delsys Trigno system was
processed to extract its linear average envelope using the
procedure suggested in Clancy et al. (2002). The Root Mean
Square (RMS) of the processed EMG signal was used as an index
of the level of activation of a muscle.

3.3. Results
Figure 11 compares the characteristics of the elbow’s trajectory
for the three tested conditions. In Figure 11A, the zoomed-
in area shows the overlapping trajectories for the unpowered
(gray), powered by an OTM module (red), and powered by a
DC (blue) cases: the second condition clearly being more jerky
than movements with the DC motor. This is confirmed by a
quantitative analysis of the smoothness of movement, evaluated
through the SPARC index and shown in Figure 11B.

Figure 11C shows the mean and standard error of the mean of
the root mean square error between the reference MJT trajectory
and the measured one, in the three conditions. When assisted by
the exosuit, whether using the OTM module or a traditional DC
motor, movements are less accurate. A smaller difference inmean
values exists between the OTM and DC motor cases.

An analysis of the forces transmitted by the exosuit during
movement gives further insight on the performance of the OTM
module. Figures 11D–F shows the profile and average values
of the biological torque, calculated using Equation (8). In the
unpowered case, the entire moment required for movement
is exerted by the subject; in the OTM case, the positive
torque required for movement is reduces, but the exosuit

Frontiers in Neurorobotics | www.frontiersin.org 9 June 2019 | Volume 13 | Article 3963



Xiloyannis et al. One-To-Many Actuator for Soft Exosuits

FIGURE 11 | Comparison of the effects of the OTM module and DC motor actuation strategies on the kinetics and kinematics of human movement. (A) Trajectories of

the elbow when wearing the exosuit in the three tested conditions: unpowered (gray), powered by the OTM module (red), and powered by a traditional DC motor

(blue). (B) Smoothness of movements as measured by the SPARC coefficient in the three tested conditions. Translucent dots are individual values over the 20

sub-movements of the task, while opaque dots show their mean. (C) Accuracy in tracking the reference trajectory, measured by calculating the RMSE, for the three

conditions. Movements assisted by the OTM module have similar accuracy to movements assisted by a traditional DC motor. (D) Average (solid) and standard

deviation across repetitions of the biological torque profiles for the unpowered (gray) condition, for the powered by an OTM module (red) and powered by a traditional

DC motor (blue). (E) Mean and standard error of the biological torque, averaged across repetitions, for the three tested conditions. (F) Change in the overall biological

torque required for lifting the arm when assisted by the exosuit. Values are in percentage change of the unpowered case.

introduces a substantial negative component in the descending
phase (Figure 11D).

Figure 11E shows the mean and standard error of the
mean, for the positive and negative biological torques exerted
in the three conditions. Wearing the exosuit introduces
a negative component, required to initiate the downwards
motion, both when powered by the DC motor and OTM
module. In the latter case, however, the magnitude of negative
torque is substantially higher. Overall, the OTM reduces the
biological torque at the joint of 46.2%, compared to the
unpowered condition, while the DC motor achieves an average
−86.3% change.

Finally, Figure 12 analyses the activity of the two major
antagonistic muscles involved in delivering power to the elbow
joint, namely the biceps brachii and the long head of the triceps
brachii. An average and standard deviation of the profile of
activation of these muscles is shown in Figure 12A, for the
three conditions.

When the suit is unpowered, the biceps brachii reaches a
peak activation of 7% of his MVC, while the triceps muscles is
relaxed for most of the duration of the movement. When the
exosuit, powered by a traditional DC motor, assists its wearer,
the activation of the biceps muscles is substantially reduced, with
a peak activation during the transient lifting phase. When the
device is powered by the OTM module, the agonist muscle’s
activity is lower than the unpowered condition but presents a
slightly different activation pattern, while the triceps shows a peak
during the descending phase.

Figure 12B shows the average over repetitions and time, of
the RMS of the activity of both muscles for the OTM and DC
conditions, expressed in percentage change of the unpowered
case. Using a traditional DC motor to actuate the exosuit reduces
the activation of the biceps muscle by 57.1% and increases that
of the triceps muscle of 8.84%. When the OTM powered the suit,
the activation of the biceps muscle was reduced by an average
30% while its antagonist increased by 74%.
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FIGURE 12 | Muscular activation of the biceps brachii and long head of the triceps brachii. (A) Average (solid) and standard deviation (shaded) across repetitions of

the muscular activation profile during one lifting repetition of the forearm, shown for the unpowered condition (gray), for the exosuit powered by the OTM condition

(red), and the exosuit powered by a traditional DC motor (blue). (B) Percentage change in the RMS of the muscular activity of the antagonistic muscles, averaged

over repetitions.

4. DISCUSSION

Power consumption, weight and size of wearable robots have
a fundamental impact on their performance. Soft exosuits,
adopting clothing-like materials instead of rigid frames,
represent a significant step toward making assistive wearable
devices ubiquitous in the near future. Yet, because of the
unparalleled complexity of our bodies’ biomechanics, we
are bounded to either use a high number of motors or
underactuation solutions that constrain the natural kinematics of
human movements.

The implementation of an actuator that can exploit the torque
generated by a single motor to drive multiple DoF would cut
down cost, weight and size of the actuation module, reducing the
complexity of the control and increasing the overall autonomy
of device.

In this study we presented the design and control, and
proposed a human-in-the-loop validation of a clutchable
modular unit to implement the OTM paradigm for a soft
exosuit. The following subsections discuss the implications
of our findings first by looking purely at the technical
performance of the device and then evaluating its effects on
human biomechanics.

4.1. On the Performance of the PWM
Controller
Figure 6B shows that as the frequency of the PWM controller
increases, the output velocity stays null for low duty cycles
and saturates to the input velocity earlier, effectively reducing
the range of duty cycle where one can modulate the output
velocity. This effect is caused by the delay δ, necessary for the
armature and rotor of the EM clutches to engage/disengage
upon the application of power. Our results are consistent
with the observations of Karbasi et al. (2004), who found a
similar behavior with wrap-spring clutches: when increasing the

PWM frequency, the period TPWM decreases and, for small
duty-ratios, 1t becomes smaller than δ, effectively causing the
clutch never to engage. For high duty ratios, on the other
hand, the disengagement time, TPWM − 1t is smaller than the
minimum time required for the clutch to disengage, causing a
permanent engagement.

The bandwidth of each module, with a PI-regulated PWM
controller, varied for input velocities of 35, 45, and 55 rad/ s, with
the maximum 1.51Hz obtained for 45 rad/ s. This result echoes
our previous findings, where Canesi et al. (2017) tested the same
device for higher input velocity and found a saturation effect of its
bandwidth for higher velocities of the primemover. This suggests
that the limiting dynamic at high frequencies is not given by the
rotating speed of the prime mover but by the engaging dynamics
of the clutches (Karbasi et al., 2004).

Assuming a sinusoidalmotion of the elbowwith a peak to peak
movement of 90 deg, 1.51Hz corresponds to a maximum velocity
of the joint of 426 deg/s, which is sufficient for everyday tasks
such as drinking from a glass (269 deg/s), eating with a spoon
(126 deg/s), and pouring from a bottle (92 deg/s), but not for
more demanding working tasks such as hammering (842 deg/s)
(Buckley et al., 1996).

The maximum load that each module can handle is bounded
by the maximum rated torque of the EM clutches. This can be
mapped, using Equation (6), to an estimated average torque at the
elbow joint of 3.4Nm, which is just above the torque required
to keep the average human male forearm in a static posture
of 90 deg.

It is worth comparing the performance achieved here with EM
clutches with the results reported in Yadmellat et al. (2014), using
Magneto-Rheological ones. Yadmellat and colleagues present
custom-built clutches, each able to transmit a maximum torque
of 15Nm and shown to accurately track a 2Hz sinusoidal
trajectory. Their clutches weigh 2.2 kg each, with a volume of over
650 cm2 but, unlike EM cluthces, allow to achieve a smooth and
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continuous regulation of the output torque, solving the problem
of jerky movements typical of discrete systems.

4.2. On the Effect on Human Movements
It is increasingly important to evaluate novel wearable assistive
technologies based on their effect on the end-user. We believe
that this human-in-the-loop validation approach can provide
important insights on the limitations and advantages of the
innovation, allowing a data-driven design process.

In this work, we compared the performance of of the OTM
module with that of a traditional DCmotor by looking at its effect
on the kinematics and physiology of healthy movements.

Overall, when driven by the OTMmodule, the assistive device
provided fewer benefits in terms of muscular activation and
had a more marked effect on movement kinematics than when
driven by a traditional DC motor. Specifically, wearing the
exosuit powered by the OTM module resulted in more jerky
movements, as measured by the SPARC index. This is probably
a direct consequence of the discrete nature of the mechanism,
driving the assisted joint with small step-like motions along
the desired trajectory (see Figure 7 or Figure 8). These fast-
changing dynamics are filtered by the compliant transmission
between the pulley and the joint but still affect the wearer’s
movement. We believe that switching to particle-based megneto-
rheological clutches, that allow a continuous modulation of the
torque being transferred between their input and output shafts,
would attenuate or even solve this problem. Previous studies
support this proposition (Yadmellat et al., 2014).

Movements assisted by the OTMmodule resulted in an overall
46.2% reduction in biological torque, vs. an 86.3% reduction
achieved with a traditional DC motor, when compared to the
unpowered case. This poorer performance of the OTMmodule is
partly caused by: (1) the upper torque limit of the EM clutches,
restraining the magnitude of assistance that the actuation can
provide; (2) the lower bandwidth of the module, that does not
allow it to move fast enough to accommodate the user’s intention.
This last point is clearly visible in Figure 11D, in red, where the
biological torque shows a significant negative peak during the
descending phase of the joint (15 s): the user had to push down
against the exosuit to extend the elbow.

A corollary of the increase in negative torque, when using the
OTM actuation module, is an increase in the activation of the
long head of the triceps brachii. Figure 12A shows a peak in the
activation of the extensor muscle (bottom plot, in red), of up
to 2% of the MVC, during the descending phase of movement
(15 s). This peak is present also in the other two conditions, but
with much smaller amplitude. Overall, the activity of the triceps
brachii increased notably when wearing the exosuit powered by
the OTM module, while the biceps brachii was reduced by 30%,
when compared to the unpowered condition.

It is useful to compare the technical characteristics of the
proposed OTM systemwith the traditional approach of using one
motor per elbow. In the latter case one would require at least
a 70W motor with an appropriate reduction stage and a motor
controller per DoF, which would result in nomore than 600 g and
560 cm3 per DoF (e.g., Maxon EC-i 40, 70W, 2-stage planetary
gearhead and an ESCON 50/5 module motor driver). Figure 13

FIGURE 13 | Scalability of the OTM design proposed herein, compared to a

traditional one-to-one approach. Volume and weight of the actuation strategy

using an OTM paradigm, compared to a setup having similar torque and

velocity rating but using one electric motor per DoF.

shows how the volume and weight of the actuation stage scale
with increasing DoF, for a typical one-to-one paradigm and for
the OTM strategy proposed here. With the current hardware, the
actuation stage would weigh less only for 4 or more DoF. It is
worth highlighting, however, that the OTM system only requires
one motor controller overall and three simple relay switches
per DoF, thus reducing the cost and idle power consumption of
the electronics compared to the traditional approach. There is,
moreover, ample room for improvement of the size and weight
of the OTMmodules.

In the present work we explored the potential of an OTM
module and compared its performance with a direct drive DC
motor, using a wearable device as a test bench for human
testing. The DC motor showed higher benefits in assisting
human kinematics thanks to its higher bandwidth and smoother
motion. However, the OTM paradigm lends itself well to scalable
applications, that require independent control of multiple DoFs.
This is a common problem in wearable technology, where
the complexity of human biomechanics results in an increase
in weight, power consumption and control intricacy of the
device. If on one side the OTM startegy showed limitations in
trajectory tracking, on the other, multiple OTM modules can
be driven using a single drive and their control strategy might
be optimized reducing the task manifold. In our experiment we
used a wearable device for upper limb, and it is known that
replicating the dexterity of a human arm is a complex task; we
believe that with further improvement on the hardware design,
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the OTM paradigm has the potential to allow independent
control of multiple DoF in a power- and size-effective manner.
A different result, for example, might be obtained for well-
defined tasks with periodic velocity profiles such as walking,
where joint coordination can be achieved by means of synergistic
and intermittent assistance on each leg (Asbeck et al., 2015).
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We present a model for the autonomous and simultaneous learning of active binocular

and motion vision. The model is based on the Active Efficient Coding (AEC) framework, a

recent generalization of classic efficient coding theories to active perception. The model

learns how to efficiently encode the incoming visual signals generated by an object

moving in 3-D through sparse coding. Simultaneously, it learns how to produce eye

movements that further improve the efficiency of the sensory coding. This learning is

driven by an intrinsic motivation to maximize the system’s coding efficiency. We test

our approach on the humanoid robot iCub using simulations. The model demonstrates

self-calibration of accurate object fixation and tracking of moving objects. Our results

show that the model keeps improving until it hits physical constraints such as camera

or motor resolution, or limits on its internal coding capacity. Furthermore, we show

that the emerging sensory tuning properties are in line with results on disparity, motion,

and motion-in-depth tuning in the visual cortex of mammals. The model suggests that

vergence and tracking eye movements can be viewed as fundamentally having the same

objective of maximizing the coding efficiency of the visual system and that they can be

learned and calibrated jointly through AEC.

Keywords: autonomous learning, active perception, binocular vision, optokinetic nystagmus, smooth pursuit,

efficient coding, intrinsic motivation

1. INTRODUCTION

The development of sensorimotor and cognitive skills in humans and other animals provides a rich
source of inspiration for research in robotics and artificial intelligence. For example, how can we
build robots that acquire intelligent behavior in an autonomous and open-ended developmental
process mimicking that of human infants? And, in turn, can we use such robotic models to better
understand the computational principles underlying human development?

Early stages of human development are largely concerned with learning to control various
sensorimotor systems. These systems form the foundation for the later development of higher
cognitive functions. Specifically, some of the earliest sensorimotor skills developing in human
infants are related to active visual perception. The infant needs to make sense of the signals arriving
at her eyes and she needs to learn how to move her eyes to facilitate perception of the world around
her. For the development of visual representations (in particular early visual representations) the
Efficient Coding Hypothesis has been the most influential theory. Inspired by the development of
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information theory, Attneave (1954) and Barlow (1961) have
argued in their pioneering works that the visual system
exploits the statistical regularities of visual input in order
to encode the visual scene efficiently. Furthermore, Barlow
(1961) conjectured that early sensory systems have evolved to
maximize the amount of information about the visual scene
passed to successive processing stages with a constraint of
minimizing the associated metabolic costs. Later, the work of
Olshausen and Field (1996) established a relation between the
statistical structure of natural images and the response properties
of cortical simple cells. They proposed to represent natural
image patches as linear combinations of sparsely activated basis
functions in order to encode the regularities in the images
efficiently. Their experiments revealed that a model which learns
sparse codes of natural scenes succeeds in developing receptive
fields similar to those in the visual cortex. Since then, many
experiments have supported the idea that efficient coding is
a ubiquitous strategy employed in multiple modalities across
diverse organisms (Olshausen and Field, 2004).

A recent extension of the efficient coding hypothesis is Active
Efficient Coding (AEC). AEC postulates that biological sensory
systems do not just seek to encode the sensory input efficiently,
but that they also utilizemotor behaviors, such as eyemovements,
to further improve their coding efficiency (Zhao et al., 2012;
Lonini et al., 2013b). Thus, AEC studies efficient coding in the
context of behavior and considers the full perception-action
cycle and how the organism’s behavior shapes the statistics
of the sensory signals. AEC works by combining a sparse
coding model with a reinforcement learner, which is responsible
for generating actions. The sparse coding model learns to
efficiently encode the visual input, which serves as a state
representation for the reinforcement learner. The reinforcement
learner generates actions in order to increase the coding efficiency
of the sparse coder.

In previous work, we have successfully applied the AEC
approach to model the development of disparity tuning and
vergence eye movements using both discrete (Zhao et al., 2012;
Lonini et al., 2013b) and continuous actions (Klimmasch et al.,
2017). In addition, we have shown that the AEC framework can
also be used to model the development of other eye movements
such as smooth pursuit (Zhang et al., 2014) and the optokinetic
nystagmus (Zhang et al., 2016). Furthermore, the approach has
been extended to also learn attention shifts via overt saccadic eye
movements (Zhu et al., 2017). In the present study, we present an
integrated model of the autonomous learning of active depth and
3-D motion perception using the AEC framework. The model
autonomously learns to generate vergence and smooth pursuit
eye movements in the presence of a stimulus moving in 3-D.
Learning is driven by the agent’s intrinsic motivation tomaximize
its coding efficiency. The advancement to our previous work is
the integration of learning to perceive and fixate stimuli located
in 3-D and to perceive and track the 3-D motion of respective
stimuli. Our results show that the model self-calibrates its eye
movement control, improving its performance until it either
hits a physical constraint (camera or motor resolution) or runs
out of internal resources (capacity of the sparse coding model).
Thereby we show and explain the limitations of the model.

Furthermore, we show that the model’s learned representation of
the visual input matches recent findings on the tuning properties
of neurons in visual cortex coding for 3-D motion. Thus, the
model offers an explanation of how these tuning properties
develop in biological vision systems.

2. MATERIALS AND METHODS

2.1. Model Overview
Our model consists of three distinct parts (see Figure 1)
explained in detail below. At first, one image per camera is
preprocessed and dissected into sets of patches. These are
encoded by spatio-temporal basis functions of a sparse coding
model. This forms a state representation of the sensory input. The
state information is processed by a reinforcement learner, which
generates camera movements. The negative reconstruction error
of the sparse coding stage serves as an indicator of the efficiency
of sensory encoding and is used as the reward signal of the
reinforcement learner. After execution of the calculated camera
movement, the next image pair is sensed and the perception-
action cycle starts anew.

2.2. Simulation
We simulate the perception-action cycle by using Gazebo1, a
well known open-source robot simulation platform. Our agent
operates the iCub2 robot in a rendered virtual environment
by moving its cameras (see Figure 2). The two cameras have
a horizontal field of view (FOV) of 90◦ and a resolution of
320 px × 240 px. The distance between the cameras is dE =

0.068m. The visual stimuli presented to the agent were taken
from the man made section of the McGill Calibrated Color
Image Database (Olmos and Kingdom, 2004), which contains
natural images of urban scenes. Each stimulus had a resolution
of 600 px × 600 px. The stimuli were placed on a 1.5m × 1.5m
plane, perpendicular to the gaze direction. The plane moved
within ±30◦ vertically and horizontally from the agent’s center
of FOV and [1, 2.5]m in depth. The background image in our
virtual environment was taken from Frank Schwichtenberg3 and
is licensed under CreativeCommons (CC BY-SA 4.0).

2.3. Image Processing
At first the images from the left and right camera are gray
scaled and convolved with a combined whitening/low-pass
filter, a method described by Olshausen and Field (2004). The

frequency response of that filter is defined by R(f ) = fe
−( f

f0
)n
,

where we set the cutoff frequency f0 = 96 px/image and
the steepness parameter n = 4. Olshausen and Field (2004)
stated that such a filter not only reduces various challenges in
operating on digitized natural images but roughly resembles
the spatial-frequency response characteristic of retinal ganglion
cells. Following Lonini et al. (2013b) we use multiple spatial
scales to increase the operating range and robustness of our

1http://gazebosim.org/
2http://www.icub.org/
3https://commons.wikimedia.org/wiki/File:Uetersen_Langes_Tannen_Panorama_
02.jpg
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FIGURE 1 | Overview of the active vision architecture. From the binocular visual input at time points t− 1 and t, patches of different resolutions are extracted for the

coarse pc (blue) and fine pf (red) scale. These patches are encoded by spatio-temporal basis functions of the coarse scale (blue) and fine scale (red) sparse coders.

The activations of both sparse coders’ basis functions φc and φf form the state vector st. The negative reconstruction error indicates the encoding efficiency and is

used as the reward signal rt for the reinforcement learner. The Critic computes from rt and st a TD-error δt and three distinct actors generate from st movement

actions αpan,t, αtilt,t, αvergence,t for the respective camera joints.

FIGURE 2 | The agent operating the iCub robot inside the virtual environment

rendered by the Gazebo simulator.

model. Specifically, we extract two sub-windows with different
resolutions from the preprocessed left and right camera image.
The first sub-window is a coarse scale 128 px × 128 px image,
which covers 36◦ FOV and corresponds approximately to the
human near peripheral vision. To simulate the coarser resolution
in the peripheral parts of the human FOV, this image is down-
sampled by a factor of 4 via a Gaussian pyramid, resulting in
a 32 px × 32 px coarse scale input. The second sub-window is
a fine scale 64 px × 64 px image, which covers 18◦ FOV and
corresponds approximately to humanmacular vision. This image
is not down-sampled. Each pixel in the coarse (fine) scale image
corresponds to 1.125 (0.281) degrees. Subsequently, patches of
8 px × 8 px size with a stride of 4 px are cut for each scale and
camera and normalized to zero mean and unit norm. At each
point in time of the simulation, respective patches of the left

and right camera image for the current and last iteration are
combined to a 16 px × 16 px binocular spatio-temporal patch.
This is conducted for each scale and the sets of patches are then
encoded by the respective sparse coders.

2.4. Sparse Coding
The sensory input is encoded by sparse coding models for the
two scales. For each scale S ∈ {c, f } there is a corresponding
dictionary BS of spatio-temporal basis functions φS,i with |BS| =

600. For the coarse scale, there are |pc| = 49 spatio-temporal
patches and for the fine scale there are |pf | = 225. Each spatio-
temporal patch pS,j is encoded by a linear combination of 10 basis
functions φS,i to form an approximation p̂S,j of the respective
patch by

p̂S,j =
|BS|
∑

i=1

κ
j
S,iφS,i . (1)

This is accomplished by the matching pursuit algorithm (Mallat

and Zhang, 1993), where we restrict that 10 κ
j
S,i are non-zero.

Hence, we ensure a sparse encoding by using only a subset of 10
basis functions from the dictionary to approximate each image
patch. The error of this approximation is the reconstruction error
ES (Lonini et al., 2013b), defined as

ES =

|pS|
∑

j=1

||pS,j − p̂S,j||2

||pS,j||2
. (2)

We use the negative of the total reconstruction error E = Ec+Ef
as the reinforcement signal in the next stage of the procedure.
The sparse coding model creates as the last step a feature vector
st of size 2|BS|, which serves as the sensory state information
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for the reinforcement learner. Every entry in st corresponds to

the mean squared κ
j
S,i over all patches. This state representation

is motivated by the results of Freeman and Ohzawa (1990)
who demonstrated that the response of complex cells could be
modeled by summing the squared outputs of preceding simple
cells. In our case one can interpret the φS,i as receptive fields of
simple cells in the visual cortex and the entries in the feature
vector as activities of complex cells which pool the activities of
simple cells over a larger portion of the visual field.

The receptive field (RF) of a neuron in the visual system refers
to the visual attributes of a stimulus it is confronted with which
generate a response in that cell. The attributes encoded cover a
wide range, such as location within the visual field, orientation,
disparity, motion direction, velocity and contrast to name a few.
Jones and Palmer (1987) have shown that the RFs of neurons
in cat striate cortex are particularly well characterized by 2D
Gabor filters. The idea that visual input is encoded by elementary
components resembling Gabor functions is supported by Bell
and Sejnowski (1997). They demonstrated that orthogonal
decompositions of natural scenes lead to filters which are best
characterized by Gabor-like functions. How RFs arise in living
organisms remains a big topic of investigation. In her review of
retinal waves Wong (1999) provides support that these patterns
of coordinated activity of the premature retina mediate the
shaping of structure and function of the visual system in animals
already before birth. The current point of view is that the
foundations of the visual system are established by spontaneous
activity and molecular cues before eye opening (Huberman et al.,
2008; Hagihara et al., 2015). Subsequently, the system is fine
tuned by visual experience, especially in the so called critical
period of development (Thompson et al., 2017). Chino et al.
(1997) have quantified the fine tuning of response properties of
disparity selective V1 neurons in macaque monkeys during the
first four postnatal weeks. They found that a coarse disparity
selectivity was already present at the sixth postnatal day. In
recent studies it has been shown that RF properties such as
orientation and direction sensitivity are even established in mice
when they are dark-reared (Ko et al., 2014). In view of this
background we initialize our basis functions as Gabor wavelets.
Specifically, we assume that neurons in the visual system have RFs
resembling 2D Gabor functions already before visual experience
is gained. However, we do not assume any correlations in time
representation of pairs of RFs or space representations of left and
right eye encoding RFs. Thus, we initialize each of the four sub-
fields of all φS,i with independent random 2D Gabor functions,
defined by

g(x, y)1 = exp(−
x′2 + β2y′2

2σ 2 ) cos(2π
x′

λ
+ ψ) (3)

1 = {λ, θ ,ψ , σ ,β , xc, yc} (4)

x′ = (x− xc) cos θ + (y− yc) sin θ (5)

y′ = −(x− xc) sin θ + (y− yc) cos θ , (6)

where λ is the wavelength of the sinusoidal factor, θ represents
the orientation, ψ is the phase offset, σ is the standard deviation
of the Gaussian envelope, β is the spatial aspect ratio which

specifies the ellipticity, and xc, yc are the coordinates of the
center. The parameters were drawn from uniform distributions
over the following intervals: λ∼ [ 83 , 16] px, θ∼ [0, 180] deg,
ψ∼ [0, 360] deg, xc, yc ∼ [ 83 , 8] px. The aspect ratio of the
Gaussian envelope was set to β =

λ
0.8·8px and the envelope’s

standard deviation was kept constant σ = 2.5px.
The basis functions are adapted during the training to

represent the visual input in the best way with respect to
its reconstruction. Therefore, the basis functions are updated
through gradient descent on the reconstruction error (Olshausen
and Field, 1996):

1φS = ηκS(pS − p̂S)
1

|pS|
, (7)

where η is the learning rate, which we set to 0.5 for both scales.
After each update step all basis functions are normalized by
their energy.

2.5. Reinforcement Learning
In the course of training our agent learns to use the sensory
state representation to generate camera movements. For this
we use a reinforcement learning approach (Sutton and Barto,
1998) named natural-gradient actor-critic (NAC) with advantage
parameters (Bhatnagar et al., 2009). The critic learns to
approximate the value function given the current state st , which
is represented by the sensory state vector provided by the sparse
coding model. The actor is generating movement commands
on the basis of the current state, which results in a new state
and a reward. The goal of the reinforcement learning is to
select actions which maximize the discounted cumulative future
reward, defined by R(t) =

∑

∞

i=0 γ
irt+i, where we set the reward

rt = −Et and the discount factor γ = 0.3. The value function is
learned by computing the temporal difference (TD) error δt and
approximating the average reward Ĵt . The TD-error is defined by
Equation 8, where V̂t(st) = 〈θVt , st〉 is the critic’s current value
function approximation with θVt being the respective parameter
vector and 〈, 〉 indicating the inner product of two vectors. The
approximation of Ĵt is defined by Equation 9 which is equivalent
to low-pass filtering rt , where ξ = 0.01 is the smoothing factor.
For the value function approximation we use a two layer artificial
neural network (ANN) with |st| input neurons, one output
neuron and θV as weights between the layers. The weights are
updated by Equation 10, where α = 0.4 is the learning rate of the
critic. The low value of γ was found empirically to produce good
performance. As the agent receives a reward in every iteration
there is no issue of delayed rewards and therefore a fairly strong
discounting of future rewards does not disadvantage the learning
or performance.

δt = rt − Ĵt + γ V̂t(st)− V̂t−2(st−2) (8)

Ĵt = (1− ξ )Ĵt−1 + ξ rt (9)

1θVi,t = αδtst−2 (10)

The movement commands are generated by three individual
actors which control the agent’s pan, tilt, and vergence joints of
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the cameras, respectively. Each actor maps the current st to an
action a ∈ A = {−16,−8,−4,−2,−1,−0.5, 0, 0.5, 1, 2, 4, 8, 16}.
The actions of the pan and tilt joint controlling actors are
interpreted as acceleration commands of the cameras, whereas
the vergence joint controlling actor’s output is interpreted as
change in the vergence angle of the cameras. Therefore, the units
for the pan and tilt actions are deg/s2 and deg for the vergence
actions. Each actor is implemented as a two layer ANN with |st|
input neurons, |A| output neurons and θA as weights between the
layers. The activation za,t of the output neuron corresponding to
the respective action a is computed by za,t = 〈θAa,t , st〉. The actions
applied are chosen by sampling from a Softmax policy, where the
probability πa,t for action a is

πa,t =
exp(za,tT−1)

∑|A|

n=1 exp(zn,tT
−1)

, (11)

where T is the temperature parameter, which controls the
exploration vs. exploitation behavior of the agent. We set T = 1
to ensure the agent explores while learning. The actors’ weights
θA are updated by

ζt = ∇θ logπθ (at−2 | st−2) , (12)

1wt = β(δtζt − ζt(ζ
T
t wt−1)) , (13)

1θAt = ηwt , (14)

where ζt are the policy derivatives, wt are the advantage
parameters, β is the learning rate of the natural gradient and η
is the learning rate of the actor. The family of NAC algorithms
are reinforcement learning approaches, which combine learning
from the TD-error δt and a policy gradient. However, instead of
following the regular (vanilla) policy gradient, NAC algorithms
are following the natural gradient to update the actor’s weights
θA. A thorough derivation and discussion of the natural gradient
is provided, e.g., by Peters et al. (2005). The NAC algorithm with
advantage parameters wt does not explicitly store an estimate of
the inverse Fisher information matrix, which the other members
of the NAC family are using to follow the natural gradient
as Bhatnagar et al. (2009) point out. This makes the NAC
algorithm with advantage parameters computationally cheaper
and the approximation of the natural gradient through the
wt is comparable to the other members of the NAC family.
The interested reader is referred to Bhatnagar et al. (2009)
for derivations of Equations 8–10 and Equations 12–14 and
convergence analysis and discussion of various NAC algorithms.
We set for all actors β = 0.16 and η = 0.4. Due to the model’s
architecture, it takes two iteration steps until an action has its full
effect on the state representation. Therefore, we update the critic
and the actors with respect to st−2 and at−2.

2.6. Experimental Procedure
In our experiments we probe the agent’s capability to learn to
fixate and track a moving stimulus. Each experiment consists
of 5 · 105 training iterations, each corresponding to 100ms.
Experiments are repeated 10 times with different randomization

seeds. Training is divided into intervals, each lasting 40 iterations.
At the start of each interval, a stimulus is drawn at random
from a set of 100 images from the McGill dataset and centered
in the agent’s FOV. The stimulus is positioned at a distance to
the agent drawn from a uniform distribution over [1, 2.5]m.
The agent initially fixates on a point directly in front of it
at a distance chosen at random from the interval [0.3, 3]m.
During the interval, the stimulus moves according to velocities
drawn from uniform distributions over [−7.5, 7.5] deg/s in the
horizontal and vertical directions and [−0.375, 0.375]m/s in
depth. The agent updates the pan and tilt velocities of its eyes
and the vergence angle between them according to the policy.
In case any joint exceeds a pre-defined angle boundary (±15 deg
for the pan/tilt joint, [0.2, 16.3] deg for the vergence joint), the
joint velocities are set to zero and the agent’s gaze is reset as
described afore.

3. RESULTS

We start by presenting the quality of sensory state encoding
of our approach. Figure 3A shows the reconstruction error
of both sparse coders vs. training time in solid lines. The
improvement of stimulus reconstruction in both scales over the
course of training clearly shows an increase in coding efficiency.
As we enforce the encoding to be sparse (see Equation 1),
the agent works with the same small amount of resources
throughout training. Hence, by improving the encoding result
using the same amount of resources as at the start of training,
the agent increases its encoding efficiency. We also tested
the encoding performance of the sparse coding model in a
testing procedure (which is described further below) with a
stimulus set disjoint from the training set. As the agent showed
similar reconstruction capabilities in both training and testing
procedures (compare Figure S3), the learned sparse coding
dictionary can be considered generic (at least for urban scenes
and man-made objects as they occur in the data base). In a
control experiment we used the same model but exchanged
the action generation of the reinforcement learning (RL) by
a uniform sampling at random of the pan, tilt and vergence
actions from the same action sets we used before. The encoding
performance of both sparse coders in this control experiment is
shown in Figure 3A in dashed lines. The sparse coders’ coding
efficiency does not significantly improve in this setup in the
course of training compared to the model using RL for action
generation. This shows that the RL does improve the coding
efficiency in our AEC framework. In Figure 3B six representative
spatio-temporal basis functions of the coarse scale dictionary are
depicted at initialization time and at the end of the training. The
fine scale bases look similar. The basis functions were initialized
by random Gabor wavelets, but the sparse coding model has
adjusted the bases to properly encode the stimulus statistics it was
confronted with.

For a qualitative impression of the reconstruction
performance, a stimulus is shown at different processing and
training stages in Figure 4. The comparison of the preprocessed
input images and the respective reconstructions thereof, shows
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FIGURE 3 | (A) Reconstruction error of the sparse coding model. The error is

plotted in arbitrary units vs. training time for the coarse scale (blue) and fine

scale (red) sparse coder in solid lines. The model’s encoding performance in a

control experiment, where the actions were uniformly sampled at random from

the same action sets (RNDCTL) is plotted in dashed lines. (B) Coarse scale

basis functions. Six representative spatio-temporal basis functions of a coarse

scale dictionary are shown at the start (left) and the end of training (right). Every

basis function consists of 4 parts. The rows show the corresponding patch for

the left (top) and right (bottom) eye. The columns represent the patch for time

t− 1 (left) and t (right).

a clear improvement of the reconstruction quality between the
sparse coding model at initialization time and at the end of
training. All images are shown for the left eye and its respective
basis parts at time t are used for encoding and reconstruction.
For a fair comparison between the trained and the untrained
agent the joint angles of the cameras are set to perfectly
fixate the center of the stimulus. The image reconstruction is
already at initialization time fairly decent due to the size of the
sparse coding dictionary, the amount of basis functions used
for individual patch encoding and the perfect fixation of the
stimulus. Though, the encoding and therefore the reconstruction
improves as the basis functions are adapted to the stimulus
statistics. The image reconstruction with white noise initialized
basis functions looks more noisy at initialization time but similar
at the end of training (see Supplementary Material).

We tested the policy at 10 points during training for
50 · 63 = 10800 trials, each corresponding to one of the possible
combinations of 50 stimuli chosen from a set of images from the
McGill database disjoint from the training set and 6 velocities
in each of the three directions (horizontal, vertical and depth).
The velocities were chosen from {±0.1,±0.5,±1} times the
maximum velocities in each direction. Each trial lasted for 10
iterations, as no performance improvement was gained after that.
To correctly track the stimulus, the agent needs to rotate its eyes

with the same speed as the stimulus is moving in the respective
direction. Therefore, the errors for the pan and tilt joints1vwere
measured in deg/iteration as the difference between the speeds of
the object and the eyes at the last iteration of the trial. The error
for the vergence joint 1ξ was defined as the difference between
the actual and desired vergence angle, which was computed by

ξ∗ = 2 arctan

(

dE
2dO

)

, (15)

where dE is the horizontal separation between the eyes and dO
is the object distance. During the performance assessment, the
learning of the sparse coders and the reinforcement learner was
switched off and the actors applied a greedy policy. The testing
performance is depicted in Figure 5A. For each of the respective
joints the median of the absolute error at the last iteration of a
testing trial is plotted in solid lines and one IQR is indicated by
shading. Statistics are computed over all testing trials.

We also examined the influence of the sparse coder’s basis
function dictionary size on the testing performance. Figure 5B
shows the testing performance after training for 5 · 105 iterations
for |BS| ∈ {100, 200, 400, 600} on the same test stimulus set
used before. Each experiment was repeated 3 times with different
randomization seeds. A student’s t-test revealed a significant
improvement (p-values < 10−8) for all comparisons marked
in Figure 5B. The errors decrease with increasing dictionary
size. Calculation of the effect sizes by Cohen’s d (Cohen, 1988)
showed that increasing the dictionary size to 800 results in
a neglectable effect of d < 0.045 compared to |BS| =

600. Therefore, we conclude that the model’s performance
saturates when ∼ 600 basis functions are present. Initializing
the basis functions with white noise yielded similar results (see
Supplementary Material), though the learning progress was less
robust, as the IQRs were bigger before convergence.

In Figure 6 we provide a more detailed view of the learned
policies averaged over 10 agents and the 50 stimuli of the test
set. It shows the probability distributions of the action sets
of the respective pan, tilt and vergence actor over a range
of errors in the corresponding state space. The ideal policy
π∗ is a diagonal in each case. The pan and tilt actor’s policy
was probed by moving the stimulus only along the respective
dimension. For the vergence actor the stimulus’s distance was
varied but the object remained static. Thereby, we avoided any
interference between the actors. The pan and tilt actors perform
more accurately the bigger the absolute speed errors are. For
small speed errors the ideal action is not uniquely identified.
The vergence policy shows the desired diagonal structure only
for negative and small positive vergence errors 1ξ . This is due
to the ranges of initial eye fixations and stimulus depths in our
experimental setup. Specifically, the agent is rarely confronted
with big positive vergence errors and never with1ξ > 3 deg (see
Equation 15). An accurate vergence policy for large positive 1ξ
would require a training setup where such vergence errors are
encountered regularly.

For a qualitative impression of the behavior we show in
Figure 7 good examples of movement trajectories of an agent
for one stimulus. For the pan and tilt dimension the stimulus
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FIGURE 4 | Input image reconstruction. Depicted are column wise from left to right the original whitened camera image, the cropped, down-sampled, and normalized

input image for the coarse scale (top row) and fine scale (bottom row) sparse coders. Right to the preprocessed images are the respective images reconstructed with

random Gabor wavelets at initialization time and the images reconstructed with learned basis functions at the end of training.

speed changed and the respective joint speed was reset to
0 deg/s every 10 iterations. For the vergence dimension the eyes
were initialized with varying 1ξ errors every 10 iterations. We
demonstrate the agent’s performance additionally in a video
(see Supplementary Material) for various stimuli andmovement
speeds. The object tracking is driven by the movement of the
object, as the agent can best encode the visual input stream of the
moving object if the object remains static on the retina (camera
images). The agent manages to establish a static retinal image by
moving its eyes with the same speed as the fixated object moves.

In two additional experiments we investigated the limits of our
model. Both were conducted the same way as described before.
In the first experiment we reduced the camera resolution by
providing no fine scale sparse coder (NFS) to the agent. In the
second experiment we reduced themotor resolution by providing
a coarser action set (CAS) to the agent. The coarser action set
was defined by A = {−16,−8,−4,−2,−1, 0, 1, 2, 4, 8, 16} for all
actors, i.e., the actions ±0.5 have been removed. Figure 8 shows
the results of this analysis. A student’s t-test was used to compare
the performance between the agents with NFS and CAS and an
agent with standard configuration (STD). The difference between
NFS and STD was significant (p-values < 10−57) with an effect
size of Cohen’s d > 0.622 for all joints. The comparison between
the agent with the CAS and STD showed significant differences
for the tilt and vergence actor (p-values < 10−57) with effect
sizes of d > 0.219. The difference between the pan actors was
also significant (p = 0.003), but the effect size of d = 0.041
was relatively small. These results demonstrate that the agent
keeps improving until it hits physical constraints such as camera
or motor resolution, or limits on its internal coding capacity as
shown in Figure 5B.

3.1. Analysis of Basis Function Properties
We investigated whether the learned basis functionsmaintained a
Gabor-like structure and compared their properties to biological
data. For that we fitted 2D Gabor functions (see Equations 3–
6) to the four sub-fields of the basis functions. The squared
norm of the residual of the basis functions r had a mean
of µ = 0.003 ± 0.006 SD at initialization time. After
training the mean of r was µ = 0.038 ± 0.034 SD for
the coarse scale and µ = 0.011 ± 0.016 SD for the fine
scale basis functions. Basis functions initialized with white
noise have a mean of r of µ = 0.188 ± 0.022 SD. Hence,
the basis functions remained Gabor-like. The histograms of
orientation preferences θ of the coarse scale (blue) and fine
scale (red) basis functions are depicted in Figure 9A. Vertical
(∼ 42%) and horizontal (∼ 22%) orientations are most common.
This is in line with biological findings on the so-called
oblique effect, which show an over-representation of vertical
and horizontal RFs in many species such as cats, monkeys
and humans (Appelle, 1972; Li et al., 2003). This bias is
strongly shaped by the stimulus statistics the agent is facing
during training, as there is a prevalence of horizontal and
vertical edges. We have investigated RF properties which arise
from normal and abnormal rearing conditions in more detail
in Klimmasch et al. (2018).

We further analyze the disparity preferences d̂ of the basis
functions for the respective basis sub-parts representing time t
for both scales (see Figure 9B). The disparity preference at time t
is computed by

d̂ =
λ(ψt,left − ψt,right)

2π cos θ
. (16)
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FIGURE 5 | (A) Testing performance vs. training iteration. Depicted are the respective errors in the pan 1v (yellow), tilt 1v (purple), and vergence 1ξ (green) joint of

the testing procedures for all test stimuli and movement speeds over 10 trials at the respective points in time during the training procedure. The lines represent the

median errors and the shaded areas show one inter quartile range. (B) Testing performance at the end of training for agents with different sizes of sparse coding

dictionaries over 3 experiment repetitions. Significant differences (p < 0.05) between two sets of data are assessed by a t-test and marked (*). Horizontal bars indicate

effect size as measured by Cohen’s d.

FIGURE 6 | Learned policy distributions averaged over 10 agents and 50 stimuli. Depicted are action probabilities for the respective pan, tilt and vergence actor as a

function of state errors.

The distribution of preferred disparities is centered
at zero degrees and covers a range of about ±2◦

for the fine scale and ±8◦ for the coarse scale. This
is consistent with the biological finding that the
majority of receptive fields in macaque V1 and middle
temporal (MT) visual cortex are tuned to near zero
disparities (Prince et al., 2002; DeAngelis and Uka, 2003).

The velocity preference v̂ for a given eye, say, the left eye, is
computed by

v̂ =
λ|ψt,left − ψt−1,left|

2π
. (17)

Figure 9C shows that the basis functions have a preference for
encoding low velocities at both coarse and fine scale. Orban
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FIGURE 7 | Movement trajectories of an agent for one stimulus. For pan and tilt the respective joint speed was reset to 0deg/s every 10 iterations as indicated by the

red bars. For the vergence joint the fixation angle ξ was initialized with varying vergence errors every 10 iterations. The actual policy π is plotted, respectively, in yellow

(pan), purple (tilt), and green (vergence) and the desired policy π∗ in black.

FIGURE 8 | Testing performance at the end of training for agents with different configurations. Depicted are the respective errors in the pan 1v (yellow), tilt 1v (purple)
and vergence 1ξ (green) joint for all test stimuli and movement speeds. The configurations span the situations when there is no fine scale sparse coder (NFS), a

coarser action set (CAS), and when the standard configuration is used (STD). Horizontal bars indicate comparisons between two sets of data as assessed by a t-test.
Significant differences (p-values < 0.05) are marked (*) and effect sizes are indicated as measured by Cohen’s d.

et al. (1986) analyzed the velocity preference of V1 and V2
neurons in macaque monkeys and Felleman and Kaas (1984)
have shown for the further visual processing path in cortex of
owl and macaque monkeys that neurons in the MT cortex are
also encoding stimulus velocities but typically higher velocities
than neurons in V1 and V2. This is most likely due to the
increased receptive field size ofMT neurons compared to RF sizes
of neurons in lower areas. The stimulus selectivity of our basis
function sub-parts show similar v̂ distributions to V1 and V2

velocity preference of neurons encoding the central visual field
(compared to Orban et al., 1986). Therefore, our results provide
support for interpreting the sub-parts of our basis functions, i.e.,
the columns, as RFs of binocular simple cells in V1/V2 and a
complete basis as the response of a complex cell pooling activities
from multiple simple cells.

Figure 10A shows the disparity preference d̂ of the basis
functions at time t vs. t − 1. This illustrates that the agent
has learned representations for all situations it was confronted
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FIGURE 9 | Basis functions’ stimulus preferences for the coarse scale (blue) and fine scale (red) from a typical experiment. (A) Histogram of orientation preferences θ .

(B) Histogram of disparity preferences d̂. (C) Histogram of velocity preferences v̂.

with during the training phase. Specifically, 45.5% of the basis
functions are representing a disparity of |d̂| ≤ 1.125 deg =̂ 1 px
in the coarse scale and 40% of the basis functions encode
|d̂| ≤ 0.281 deg =̂ 1 px in the fine scale, respectively. These basis
functions represent the situations where the agent was fixating
the stimulus within 1 px accuracy at time t−1 and kept on fixating
it at time t. Other basis functions show, e.g., tuning for close to
zero disparity at time t− 1 but not at time t. Such basis functions
can detect object movement in depth, where the object leaves the
current fixation plane.

In general, various kinds of motion can be encoded with
our basis functions, such as fronto-parallel and 3-D motion.
In case of equal velocity representation for left and right eye,
a fronto-parallel motion is encoded. Whereas different velocity
preferences in both eyes represent a motion in depth (Czuba
et al., 2014). Figure 10B depicts the results of this analysis
for both scales. The linear correlation between the basis parts
representing the left and right eye shows a correlation coefficient
of ρ = 0.215 for the coarse and ρ = 0.289 for the fine scale.
This indicates that most basis functions are encoding motion in
depth, nevertheless a considerable amount of basis functions are
representing fronto-parallel motion.

Electrophysiological recordings from neurons in the MT area
of macaque visual cortex show that most MT neurons are
tuned to both binocular disparity and the direction of stimulus
motion, and many MT neurons have their disparity and motion
tuning independent of each other (DeAngelis and Newsome,

2004). A more recent study of Sanada and DeAngelis (2014) has
shown that about a half of the neurons in macaque MT cortex
are selective for the direction of motion in depth with some
contribution of disparity cues. In this context we analyzed the
average velocity preference of both eyes vs. the average disparity
preference for t and t − 1 in Figure 10C to study the results of
joint encoding of both velocity and disparity. It is evident from
Figure 10C that the velocity and disparity preferences have no
linear correlation and thus they respond to a combination of
specific disparity andmotion. Despite a peak in near zero velocity
and disparity, as already seen in Figure 9, one can clearly observe
that the learned basis functions are encoding a wide range of
velocities and disparities.

The distribution of preferred disparities in the model
(see Figure 9B) has less variance compared to biological
data (DeAngelis and Uka, 2003; Sprague et al., 2015). We
investigated whether the agent encounters a too narrow range
of disparities during training, as the range of object distances
is small and the objects are planar textures. Hence, we trained
our agent as described before, but at each training interval
the stimulus was at random either tilted or slanted by an
angle uniformly drawn from ±45 deg and the stimulus distance
was uniformly drawn from [0.3, 1.5]m. As suspected, this
manipulation resulted in a larger variance of the distribution of
preferred disparities of the basis functions for both scales. We
verified this by applying a Brown-Forsythe test on distributions
of preferred disparities trained in the standard and the afore
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FIGURE 10 | (A) Basis functions’ disparity preference d̂ at time t vs. t− 1 from a typical experiment. Each dot represents one basis function of the coarse scale (blue)

or the fine scale (red). (B) Basis functions’ velocity preference v̂ at left eye vs. right eye. (C) Basis functions’ velocity v̂ vs. disparity d̂ preference averaged over left and

right eye and time t and t− 1, respectively. Here we show the basis functions’ joint encoding of velocity and disparity. The basis functions are sensitive to a wide range

of combinations of preferred velocities and preferred disparities. The velocity and disparity preferences of basis functions are not correlated.

mentioned modified scenario. For both the coarse scale (p =

1.39 · 10−3) and the fine scale (p = 2.81 · 10−2) the test indicated
a significant increase in the variance of the distributions of
preferred disparities. The testing performance over 10 repetitions
with different randomization seeds in this modified scenario
was similar to the standard scenario. Hence, with our approach
the agent can encode and track non-fronto-parallel objects as
well. The study of Zhu et al. (2017) has demonstrated that
within our AEC framework an agent can also learn to fixate
3D objects. In an additional control experiment we tested the
standard agent with a sphere-shaped object instead of the fronto-
parallel plane and projected the same natural textures on top of
the sphere as in the standard testing procedure. In a video (see
Supplementary Material) we demonstrate that an agent which
was trained with a fronto-parallel plane can also fixate and track
a sphere-shaped object.

The shape of the stimulus does not limit our approach, but the
size of the stimulus does. The extent of the FOV of the agent (see
Seq. 2.3), the amount of patches in the coarse and fine scale, the
formalization of the reconstruction error (see Equation 2) and
the resulting reward signal determine the minimum size of the
stimulus which can still be tracked by our agent. As the agent
strives to minimize the total reconstruction error E, it is fixating
and tracking the image regions that contribute most to E. Hence,
if the stimulus is covering more of the FOV than the background,

it is encoded by more patches of the sparse coders and therefore
the stimulus contributes more to E than the background does.
Hence, if <50% of E is accounted for by the stimulus, the agent
will focus on the background instead. Considering the number of
patches in the fine and coarse scale regions and their overlap, one
can estimate that successful tracking requires that the stimulus
covers ∼ 80% of the area of the fine scale. This means that if the
stimulus width is 0.5m it is not rewarding for the agent to fixate
and track it when the distance to the stimulus is≥ 1m. We show
in a video (see Supplementary Material) the agent’s behavior in
the discussed situations where it is confronted with a 1.5m, 1.2m,
and a 0.3m wide object.

4. DISCUSSION

The fixation of an object in depth and its pursuit with the eyes
when it moves are two elementary visual capabilities that emerge
early during human development. We have demonstrated that
Active Efficient Coding is well suited as a model for the
joint learning of these two basic visual abilities, which were
learned separately in our previous works. Our model learns an
efficient representation of depth andmotion via sparse coding. In
parallel, a reinforcement learning component learns to generate
a behavior which facilitates the efficient encoding of the scene
by the sparse coding component via an intrinsic motivation
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for coding efficiency. Thereby the agent simultaneously learns a
representation of the visual scene and the fixation and pursuit
behavior in a completely autonomous fashion. To the best of
our knowledge, the joint learning of both sensory representation
and behavior is unique to our approach. For example, the recent
approach by Konda and Memisevic (2014) also learns disparity
and motion representations, but it does so from a fixed set of
training videos via supervised learning and it does not include
the learning of any behavior which would change the statistics
of the sensory signals. Conversely, the approach by Gibaldi et al.
(2015) learns to execute vergence eye movements, but the set
of filter banks which are used to process the input images is
predefined and does not adapt to the statistics of the visual input.
Indeed, the majority of existing models for learning vergence or
smooth pursuit have a much narrower focus than our work. Early
models detected only specific velocities or disparities (Rashbass
and Westheimer, 1961; Krishnan and Stark, 1977). Some works
only used synthetic and not natural images (Patel et al., 1997;
Gibaldi et al., 2010). The studies of Hoyer and Hyvärinen (2000),
Hunter and Hibbard (2015), and Chauhan et al. (2018) used
unsupervised approaches to learn binocular disparity selectivity
from natural stereoscopic images. In the work of Burge and
Geisler (2014) disparity selectivity was learned by optimizing
disparity discrimination in natural images. Importantly, the focus
of these studies was on learning representations of still images
and these models do not learn or produce any behavior and
none addresses motion selectivity. Beyeler et al. (2016) show a
model how the motion signal from MT cortex could be further
processed by medial superior temporal (MSTd) cortex. They
present an alternative approach how sparse basis functions,
which show similar tuning properties asmacaqueMSTd neurons,
could emerge fromMT units through a dimensionality reduction
technique. In contrast to our work, their MT units are predefined
and the model does not generate any behavior. Other works
required the engineering of specific image features, knowledge of
the intrinsic parameters of the camera, or a predefined model of
object velocity or disparity. In addition, most works on motion
vision do not address the issue of binocular vision, because they
only consider monocular visual input.

The tasks learned by our model, vergence control and smooth
pursuit, are similar to those learned by the model of Zhang
et al. (2016), vergence control and the optokinetic nystagmus
(OKN). Both smooth pursuit and the OKN are minimizing
the retinal slip, but smooth pursuit is associated with smaller
targets and more voluntary eye movements. The architectures
presented here and in Zhang et al. (2016) are similar in that
they show the same sparse coding based perceptual stage and
the same reinforcement learner for the vergence commands.
However, they differ in the learning of the smooth pursuit/OKN.
Here we use reinforcement learning, but Zhang et al. (2016) use
Hebbian learning combined with scaffolding by a subcortical
pathway. The work here provides a more parsimonious model,
but Zhang et al. (2016) is more consistent with the observed
developmental interactions between the cortical and subcortical
pathways underlying the OKN.

Many experimental studies on binocular disparity tuning
in the brain have found evidence suggesting that the primary
visual cortex (V1) optimally processes the natural binocular

disparity statistics. In this regard, the efficient coding hypothesis
conjectures that the disparity tuning of V1 binocular neurons
reflects the natural range of disparities (Read and Cumming,
2004; Liu et al., 2008) and that eye movement strategy is
such that it minimizes the binocular disparity and motor
inefficiency (Tweed, 1997; Schreiber et al., 2001). These findings
are consistent with our model.

The work of Yu et al. (2005) has shown that neurons in
primary visual cortex exhibit higher coding efficiency when
responding to correlated signals compared to uncorrelated ones.
Our AEC framework similarly exploits correlations in sensory
signals that are generated through its own motor behavior.
Specifically, as our model learns vergence eye movements it
learns to reduce disparities between the eyes and therefore
increases the redundancy between left and right camera
input. Similarly, our model increases the redundancy between
successive images of its cameras as it learns to perform pursuit
eye movements. The agent’s actions ultimately result in a more
efficient encoding of the visual scene, because the model adapts
its basis functions to efficiently exploit the redundancies in
the sensory signals that it is creating through its own learned
motor behavior.

It has been well established in the neuroscience literature
that the RFs in primary visual cortex of certain mammalian
species already have a Gabor-like structure before visual
experience is gathered, i.e., before eye opening. Therefore, we
also initialized the basis functions in our model to already
have Gabor shapes at the start of learning. Importantly,
however, as seems to be the case in biology, the left and right
subfields of the basis functions were statistically independent.
In addition to the experiments presented above, we also
tested if the model can still learn successfully without such a
Gabor initialization of the basis functions. We observed that
the model still learns successfully, when the basis functions
are initialized as independent Gaussian white noise (see
Supplementary Material).

The analysis of the basis functions confirms the findings of
Qian (1994) and Smolyanskaya et al. (2013) that disparity and
motion tuning are largely independent of each other. Czuba et al.
(2014) have shown that MT neurons encode 3-D motion and in
this regard we also observe the presence of basis functions which
have different velocity preferences between left and right eye, thus
being sensitive to 3-Dmotion. Furthermore, some basis functions
are also encoding fronto-parallel movement and overall a broad
range of velocities and disparities. Therefore, they resemble the
encoding properties of real neurons in the visual system.

To the best of our knowledge, apart from our work (Zhang
et al., 2016), research on vergence eye movements and research
on pursuit eye movements and the optokinetic nystagmus
has been progressing independently. In stark contrast to this
tradition, our new model suggests that these phenomena can be
unified and seen as special cases of the general idea of Active
Efficient Coding, i.e., the idea of a sensory system exploiting its
motor degrees of freedom to support the efficient encoding of
information from the environment. In fact, recent work suggests
that torsional eye movements (Zhu et al., 2018) and the control
of accommodation (Triesch et al., 2017) are just two further
instances of this very general idea.
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In previous studies we have shown that our AEC approach
also works on the iCub robot in a real life scenario (Lonini et al.,
2013a; Teulière et al., 2015). As our model presented in this study
shows good performance on the simulated iCub, we are confident
that future studies will prove its robustness on the real iCub. This
should be tested in future work.

The present model may also have implications for
developmental disorders of the visual system such as strabismus
and amblyopia (Eckmann et al., 2018). As a first model of
how sensory and motor aspects of binocular and motion
vision jointly develop and self-calibrate, it may be a useful
testbed for studying what factors can derail this development in
developmental disorders and what treatments may bring it back
on track.
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To this day, despite the increasingmotor capability of robotic devices, elaborating efficient

control strategies is still a key challenge in the field of humanoid robotic arms. In particular,

providing a human “pilot” with efficient ways to drive such a robotic arm requires thorough

testing prior to integration into a finished system. Additionally, when it is needed to

preserve anatomical consistency between pilot and robot, such testing requires to

employ devices showing human-like features. To fulfill this need for a biomimetic test

platform, we present Reachy, a human-like life-scale robotic arm with seven joints from

shoulder to wrist. Although Reachy does not include a poly-articulated hand and is

therefore more suitable for studying reaching than manipulation, a robotic hand prototype

from available third-party projects could be integrated to it. Its 3D-printed structure and

off-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade

robot. Using an open-source architecture, its design makes it broadly connectable and

customizable, so it can be integrated into many applications. To illustrate how Reachy

can connect to external devices, this paper presents several proofs of concept where it

is operated with various control strategies, such as tele-operation or gaze-driven control.

In this way, Reachy can help researchers to explore, develop and test innovative control

strategies and interfaces on a human-like robot.

Keywords: robotic arm, humanoid robot, research testbed, 3D printing, open-source, rehabilitation engineering

1. INTRODUCTION

While robotic systems keep improving in terms of motor capabilities thanks to progress in
mechatronics, developing control strategies and interfaces allowing a human to harness the full
potential of an advanced robotic arm proves to be a key challenge in the field of humanoid
robotics and in particular, rehabilitation engineering. Indeed, user surveys and reviews (Biddiss
and Chau, 2007; Cordella et al., 2016) have already revealed that the lack of functionality and the
necessity of a long and difficult training were some main reasons behind upper-limb prosthesis
abandonment. As examples drawn from some of the most advanced devices currently on the
prosthesis market, Michelangelo (Ottobock) and i-limb quantum (Touch Bionics) hands include
too many actuators for an amputee to operate them independently, and their control relies a lot
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on pre-programmed grip patterns. Even in the case of an able-
bodied human, the gap between robotic devices’ complexity and
available command signals highlights the need for efficient and
usable control interfaces and strategies.

To bridge this gap, researchers have investigated techniques
to retrieve additional input data from the human. One of
these solutions is the sensor fusion approach, which intends
to combine measurements from multiple sensors running at
once. This approach can be used with various devices and
sensing modalities (Novak and Riener, 2015), whether vision-
based, kinematic, or physiological. In particular, as object
recognition from egocentric videos can help grasping actions
for neuroprostheses (de San Roman et al., 2017), recent works
explored how a robotic system could be controlled by fusing
eye-tracking with EMG (Corbett et al., 2013, 2014; Markovic
et al., 2015; Gigli et al., 2017) or ElectroEncephaloGraphy (EEG)
signals (McMullen et al., 2014; Wang et al., 2015). Other works
also investigated how Augmented Reality (AR) can be employed
to provide relevant visual feedback about a robotic arm’s state
(Markovic et al., 2014, 2017), with the aim of improving the
control loop.

Another approach to overcome this limit is to reduce the
need for command signals, by making the robotic system take
charge of part of its own complexity. In this way, techniques are
developed to allow a human to drive a robot through higher-level,
task-relevant commands instead of operating the robot directly
in actuator space. A common implementation of this approach
is to perform endpoint control through Inverse Kinematics (IK),
which convert command signals from the 3D operational space
into the actuator space. IK solving is a key research topic in
the whole field of robotics, including autonomous humanoid
robotics (Bae et al., 2015; Rakita et al., 2018), but can also be
employed to manage the kinematic redundancy of human-driven
robots (Zucker et al., 2015; Rakita et al., 2017;Meeker et al., 2018).

To evaluate the performance of control techniques, virtual
reality (VR) has been employed for more than a decade
(Hauschild et al., 2007; Kaliki et al., 2013; Phelan et al., 2015;
Blana et al., 2016). Recently, this approach also benefits from the
increasing availability of VR development kits on the market,
e.g., Oculus (Facebook Technologies, LLC) and VIVE (HTC
Corporation), making it easier for researchers to integrate a
virtual test environment into their experimental setup. However,
a robotic system simulated within a virtual environment would
not behave the same way as a physical device, inherently subject
to mechanical limits and imperfections. Indeed, VR setups
usually implement a simplified device (e.g., ideal, friction-less
actuators) in a simplified context (e.g., ignoring gravity). As
a result, conclusions drawn from assessments performed in a
virtual test environment may not be directly applicable to an
actual robot.

On the other hand, some researchers use actual robotic arms
to get more realistic data from the testing phase. Works from
the literature are found to employ both commercially available
devices (Rakita et al., 2017; Meeker et al., 2018) and prototype
systems (McMullen et al., 2014; Bae et al., 2015) in their research.
More specifically, in the field of prosthetics, many multi-DoF
devices have been developed as experimental prototypes, such

as the UNB hand (Losier et al., 2011), the Yale hand (Belter and
Dollar, 2013), and the SmartHand (Cipriani et al., 2011).

Among such research devices, the ones developed by Dawson
et al. (2014) and Krausz et al. (2016) were designed with the aim
of being inexpensive and easily available to other researchers, as
open-source systems including 3D-printed parts. Indeed, as 3D-
printing allows to produce complex and custom shapes in small
batches at a low cost, this manufacturing technique is useful when
developing products at the prototype stage. Besides, the fact that
the same parts can be produced by many different 3D printers
participates notably in the shareablity of these designs.

In this paper, we present Reachy, a life-size test platform to be
used by researchers to explore, develop, and test control strategies
and interfaces for human-driven robotics. Relying on technical
solutions drawn from similar works, we aimed at designing
a robot that would be affordable, shareable, and “hackable”
compared to high-end prototypes or commercially available
robotic arms; but also more human-like than industrial-grade
robots. Indeed, Reachy benefits from its closeness to a human
arm in terms of scale and shape, as well as motor features and
joint structure. Additionally, even though its use cases are not
limited to this field, this robotic platform is primarily intended
for applications in prosthetics and rehabilitation engineering.

2. ROBOT DESIGN

2.1. Design Principles
Reachy was created with the aim of providing researchers with a
robotic platform on which to test control interfaces and strategies
that would be employed to drive a robotic arm. In order to
make the robot a relevant tool in the field of rehabilitation
technologies, its structure puts the emphasis on human-likeness.
Indeed, Reachy is meant to emulate the behavior of a life-size
human upper limb, while being fixed at shoulder level on an
unmovable support.

Besides, another major requirement of Reachy’s design
was to ensure that the robot is suitable for a variety of
applications ranging from neuroprostheses to teleoperated
manipulators. Thus, in order for Reachy to be a versatile
platform, we intended to make it extensively customizable,
as well as easily and broadly connectable. Ensuring extensive
experimental reproducibility in this context requires the platform
to allow for thorough hardware modifications, as well as the
sharing of said modifications within the scientific community.
Therefore, we chose to develop Reachy’s design on the following
principles and technical solutions: 3D-printed plastic skeleton
parts; off-the-shelf actuators, mechanical components and
electronics; free and open-source sharing of both software and
hardware resources.

Reachy was designed by the creators of the Poppy project
(Lapeyre et al., 2014), a family of robots for research, art
and education that rely on a common software and hardware
architecture, but display a variety of shapes, features and
purposes. In particular, the first robot of this family, Poppy
Humanoid, was originally designed to investigate the role of
morphology in biped locomotion (Lapeyre et al., 2013), thus
generating the need for a platform whose parts could easily
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be redesigned, produced then assembled. The aforementioned
design principles directly stem from the philosophy and technical
solutions that drove Poppy’s development.

2.2. Hardware
Reachy was initially developed as a “full-length” arm, that is to
say, a prototype comprising the three segments of the human
upper-limb, from shoulder to hand. In this “standard” version,
Reachy weighs 1.4 kg and measures 60 cm from shoulder to
wrist, with dimensions and proportions similar to those of a
human adult’s right arm. These prototypes have been equipped
and tested with various end-effectors (see Figure 1B): a basic
sphere, a jointless anthropomorphic hand, or a two-prong clamp
providing a minimal grasping feature. Furthermore, as the robot
is meant to be customized and “hacked”, Reachy users can adapt
its distal end to fit an existing robotic hand chosen among
available research prototypes (Losier et al., 2011; Belter and
Dollar, 2013; Krausz et al., 2016). For instance, a new prototype
featuring the Brunel hand (OpenBionics) as the end-effector has
undergone development in order to expand the robot’s features
and capabilities.

In its standard version, the robot comprises seven
independent DoF, each of them actuated by a dedicated motor.
The first three motors operate the gleno-scapulo-humeral joint
in a simplified way, by performing three consecutive rotations:
shoulder flexion-extension, shoulder abduction-adduction, and
humeral lateral-medial rotation. The three motors’ rotation axes
intersect at a single point, located at the center of the second
motor’s shaft (see Figure 1A). The shoulder assembly also
comprises two roller bearings to facilitate the operation of the
first and third DoF. In order for the robot to remain reasonably
easy to model and build, this assembly does not reproduce the
system of interdependent rotations and translations forming the

FIGURE 1 | Reachy in its standard version. (A) Architectural diagram

describing the software stack, from the high-level software interface to the

motors. Dashed lines indicate the joints’ rotation axes. (B) Currently available

end-effectors. From top to bottom: spherical, conical, hand-shaped, and

articulated clamp.

gleno-scapulo-humeral complex, but still allows for a wide range
of motion. The fourth and fifth motors operate respectively
elbow flexion-extension and forearm pronation-supination,
the latter being mounted with a ball bearing. Finally, the last
two motors operate the wrist joint by performing consecutively
radial-ulnar deviation and flexion-extension. Their respective
rotation axes are orthogonal, however they do not intersect;
instead, the two motors are linked by a short piece joining the
forearm and end-effector. This interval between rotation axes
shares some resemblance to that which separates a human’s wrist
joint axes, even though it is slightly too large because of the
actuator size.

We chose to employ Robotis Dynamixel servomotors1 to
actuate Reachy’s seven DoF. These motors are all-in-one modules
that provide a good trade-off between accuracy, speed and
robustness in mechanical terms, as well as embedded sensors
monitoring angular speed and position. They also allow the
individual tuning of an internal Proportional-Integral-Derivative
(PID) controller, maximum torque and mechanical compliance.
Due to these features, Dynamixel servomotors enable a high
level of modularity while being able to produce rich motor
behaviors. For that matter, this range of actuators is commonly
used in the field of robotics, including humanoid robots (Ha
et al., 2011; Ly et al., 2011; Hild et al., 2012; Schwarz et al., 2013;
Dawson et al., 2014). Apart from actuators, only few additional
mechanical components are needed to assemble Reachy’s joints,
namely: the three aforementioned bearings, and transmission
wheels to insert on each servomotor’s shaft. In particular, as all
these actuators include an individual gearbox, Reachy’s assembly
does not require extra reduction mechanisms for joint actuation.

Three different models of Dynamixel motors are included in
Reachy’s standard version. The most powerful one is an MX-
106 and operates the most proximal DoF of the robot, shoulder
flexion-extension, while the shoulder’s remaining DoF and elbow
joint are actuated by MX-64. As these four joints support the
heaviest loads while the robot is put inmotion, the corresponding
motors were chosen accordingly. The forearm and wrist joints,
which do not require as much power, are operated by AX-18,
lighter and smaller than MX servomotors, so that the robot’s
weight distribution leans toward the proximal end.

Regarding the robot’s skeleton, the limbs’ design relies on
a trellis-like structure to reduce the weight and keep assembly
simple, by providing easy access to screw holes. This open, low-
density structure also improves motor heat dissipation thanks
to freer air circulation. Prototypes and current versions of
Reachy were printed in polyamide or Poly-Lactic Acid (PLA),
two materials commonly used in the additive manufacturing
industry. Their low cost, availability and compatibility with most
desktop 3D printers make them ideal for prototyping, while
their durability and printing resolution make them adequate for
finished products with good quality standards.

2.3. Electronics and Software
Reachy’s motors are connected with each other in a series using
three-pin connectors and powered by a pair of 12 V×5 A power

1http://en.robotis.com/subindex/dxl_en.php
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supply units, for a total power of 120 W. At one end of the series,
a USB adapter allows for plugging into a computer. The robot
is then controlled through a serial port with a software interface
called Pypot, which handles the communication with Dynamixel
servomotors to drive the robot, e.g., sending motor commands,
retrieving data from embedded sensors. This architecture is
illustrated in Figure 1A.

Developed as part of the Poppy project, this software base
is common to the whole Poppy-Reachy family of Dynamixel-
powered robots. Following an open-source approach, Pypot was
entirely written in Python in order to enable cross-platform
deployment, as this language is compatible with most desktop
operating systems as well as some embedded systems for single-
board computers. Python programming also allows for fast
development by emphasizing code readability and conciseness,
so that developers can efficiently produce clear programs whether
their project is of small or large scale. Besides, Reachy users
can take advantage of numerous Python libraries dedicated to
scientific computing, and already in use within the scientific
community. This allows them to combine Reachy’s features
with techniques such as signal processing or machine learning,
without having to resort to other languages or software.

While its open-source nature provides expert programmers
with extensive freedom over the system, Pypot is also intended
to be accessible to beginners. In particular, it provides high-
level motor commands over the joints’ angular positions and
mechanical compliance, so that any user can program a trajectory
and put the robot in motion with only a few lines of code (see
Supplementary Material). Additionally, tutorials are provided to
Reachy users in the form of Jupyter notebooks (Kluyver et al.,
2016), which are interactive development supports combining
source code, formatted text, plots, and graphical input/output
widgets. Jupyter notebooks can be created from a Web navigator
and don’t require any dedicated code editor. As a result, this
software environment is accessible enough to allow Poppy robots
to be currently used as educational platforms in several middle
and high schools2.

Pypot also includes features to operate a virtual robot within
the simulator V-REP (Freese, 2015), as illustrated in Figure 2. In
this way, users can experiment and verify their developments on
a simulated Reachy before deploying them on an actual robot in a
physical setup.Migrating from a simulated to an actual robot, and
vice versa, does not require any modification on the source code
apart from a single keyword while configuring the connection
to a robot.

2.4. Features
2.4.1. Motor Performance
Reachy’s motors can sustain up to 10 min of continuous
operation and are able to work for as long as a full day when
tasked with short, out-of-charge movements alternating with
short resting periods. They provide a payload capacity of about
500 g at endpoint level, that the robot can handle for a few
minutes. Their embedded load and temperature sensors also
allow to automatically trigger resting phases, in order to prevent

2http://perseverons.espe-aquitaine.fr/sp6-robotique-inria/

FIGURE 2 | An actual Reachy robot (A) and its simulated counterpart (B), set

in the same posture.

overheating during prolonged operation or after exposing the
robot to significant strain. As a result, Reachy can be programmed
to work autonomously for extended periods of time without
putting the actuators at risk.

Out of charge, Dynamixel motors can reach amaximum speed
of 500◦/s and a maximum acceleration of 10,000◦/s2. When they
operate in their nominal angular speed range, their performance
allows the robot’s joint to reach their goal positions with a delay
from 50 to 100 ms. This responsiveness makes it thus possible
to develop real-time control schemes within which a human
is continuously driving the robot. As a consequence, the robot
can move its endpoint safely at a speed up to 2 m/s, with an
acceleration of 10 m/s2.

Thanks to its three DoF at shoulder level, Reachy’s full-length
version can perform complex movements and postures in a wide
range of action in the 3D space. As a result, Reachy benefits from
having a workspace similar to that of a human adult’s arm, within
a 65 cm-radius sphere centered on its shoulder.

2.4.2. Application in Prosthetics
Thanks to its human-like shape and joints, Reachy is suitable for
applications in the field of upper-limb rehabilitation engineering,
as a life-size test platform. Indeed, Reachy can emulate the
behavior of a prosthetic arm in order to test and validate control
schemes before implementing them on a genuine prosthesis. In
this context, it also benefits from being notably cheaper than
most commercially available upper-limb prostheses, thanks to its
hardware architecture.

Indeed, 3D-printing technology has already been employed to
create numerous arm prosthesis prototypes, whose designs are
being developed by creators ranging from DIY enthusiasts and
hobbyists, to researchers and engineers, as detailed in ten Kate
et al. (2017). The fact that more than half of these 3D-printed
devices’ designs are shared online and available for free, shows
how these creators take advantage of the interoperability of most
desktop printers. This review also highlights how the production
cost of these devices is one of the decisive aspects that sparkled
the growth of this category of prosthetic devices, so much so
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that some 3D-printed prosthetic arms have recently went beyond
the prototype stage and entered the market, such as the Hero
Arm (OpenBionics).

Compared to the devices listed in this review, Reachy
stands as one of the few models to address amputation above
the elbow. Additionally, even though the predominance of
transradial amputations among upper-limb disabilities explains
the rarity of this type of prosthesis, Reachy is intended to
enable research at multiple amputation levels. Indeed, the robot
can be employed as a mockup device for any level of upper-
limb amputation, when training a patient to produce muscle
activity before being fit with a myoelectric prosthesis. This
allows a patient to begin training even before being able to
wear a prosthesis, e.g., while the stump is still cicatrizing.
Obviously, such a training cannot replace experience with an
actual prosthesis, especially because of the differences in terms
of point of view, embodiment and perception of weight and
inertia. Nonetheless, it can take place in a patient’s rehabilitation
as a complementary or preliminary training, with the aim of
getting familiar with myoelectric control as well as motors’
responsiveness and accuracy.

In this context, the patient’s lost motor functions are emulated
with Reachy’s corresponding joints while the robot’s more
proximal actuators are locked in a given posture. In this
way, the patient can practice performing appropriate muscle
contractions and receive relevant feedback from the robot
moving accordingly, following a given prosthesis control scheme.
In a more advanced setup, the patient’s residual limb movements
can even be tracked and reproduced on these motors, instead
of being locked. Such a setup could turn out to be useful as
well for testing control strategies using residual limb motion
as input signal to drive the prosthesis (Kaliki et al., 2013;
Merad et al., 2016).

Regarding the end-effector, in respect to grasping with an
arm prosthesis, a fixed wrist often requires the patient to
perform extra shoulder and elbow movements to compensate
for the lack of distal mobility. Thus, enabling wrist motion
proves to be quite useful for a patient (Kanitz et al.,
2018), as it enables a more natural and comfortable use.
In this way, Reachy’s 2-DoF wrist makes it suitable to
address this aspect of prosthesis control. In combination with
forearm rotation, these motor functions at wrist level allow
the robot to put its endpoint in a wide variety of 3D
orientations, enabling different grasping types depending on the
item of interest.

Finally, Reachy’s customizable architecture allows users
to design, print and assemble custom fixings, so that a
part of the robot can be mounted on an actual prosthetis
socket or harness, and worn by an amputee (see Figure 3).
Whether at transradial or transhumeral level, the robot’s
skeleton parts can be modified so that its dimensions are
adjusted to the wearer’s morphology, to fit best with the
stump’s anatomy as well as the sound limb’s proportions.
Obviously, Reachy is not meant to replace a prosthesis
for daily use, but a socket-mounted version of Reachy
could as well be employed for training patients with
myoelectric control.

FIGURE 3 | Virtual illustration of a possible evolution of Reachy:

socket-mounted version worn by a transhumeral amputee.

2.5. Comparison With Existing Robotic
Arms
In order to put Reachy’s performance and abilities in perspective
with existing robotic devices, we compared it with several related
robotic arms, considering various aspects and features.

The Bento Arm (Dawson et al., 2014) is a robotic arm
employed in research and upper-limb rehabilitation to emulate
a myoelectric prosthesis. It includes five joints from humerus to
end-effector, each actuated by a Dynamixel motor. Its mechanical
structure follows human-like shapes and proportions, and relies
mostly on 3D-printed plastic parts. In this sense, this robot is
very similar to Reachy, although the upper arm includes only
a single DoF at humeral level, and none at shoulder level. As a
consequence, its workspace is limited to a 22 cm-wide circular
area centered on the elbow, for a payload capacity of only
300 g. This narrow range of motion and limited upper-arm
actuation make the Bento Arm unsuitable for research on whole-
arm movements, unless it is mounted on a prosthesis socket.
As a rehabilitation device, it focuses on emulating a transradial
prosthesis but appears to be inappropriate with respect to higher
levels of amputation. In particular, it cannot be employed to study
or reproduce coordinations between upper-arm joints.

The GummiArm (Stoelen et al., 2016) is an experimental
bio-inspired robotic arm comprising 10 tendon-driven joints,
actuated by 19 Dynamixel motors. With eight of its joints
enabling variable stiffness, this robot can perform movements
in a workspace similar to that of a human arm while being safe
to physically interact with. Similarly to Reachy, its 3D-printed
skeleton parts and open-source approach allow for replication
and modification by users. However, its higher number of
actuators and tendon-based mechanics make it more expensive
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(over 5,000$ in spare parts, over 11,500$ as a kit) as well as more
suitable for research on bio-inspired actuation and compliant
motor control than on rehabilitation engineering. Indeed, most
upper-arm, elbow and forearm prostheses are actuated by a single
motor per joint in a non-compliant fashion, instead of emulating
human biomechanical structures.

The Modular Prosthetic Limb (MPL) (Johannes et al., 2011)
is an experimental robotic upper-limb prosthesis, comprising 26
joints actuated by 17 motors. Its high-grade components and
anthropomorphic design allow it to reach human-like strength
in the wide range of motion offered by its joints. Compared to
Reachy, this robot offers much better motor performance, such as
a payload capacity of 15 kg and a joint speed of 120◦/s. However,
these abilities also come with a higher power consumption (24 vs.
5 V for Reachy) and a heavier weight (4.7 vs. 1.2 kg for Reachy).

The DLR Hand Arm System (Grebenstein et al., 2011) is an
experimental bio-inspired robotic arm, now integrated to the
humanoid robot David as its upper limb. It includes six DoF in
the arm and 19 in the hand, actuated by a total of 52 motors. Its
tendon-driven mechanical structure allows the robot to operate
dexterously at a speed and in a workspace comparable to those of
a human, making it clearly more capable than Reachy in terms
of motor performance. However, its bidirectional antagonist
joints require numerous motors and mechanical components,
a dedicated transmission architecture and a dense electronics
network managing both actuation and sensing.

Due to their price and complexity in terms of electronics
and mechanics, these advanced robotic devices are much more
difficult to replicate or customize in depth. In this sense, their
users depend significantly on the robot’s designers and makers
to assemble, modify and repair it, whereas Reachy’s design
allows users to handle every step of the fabrication process. Its
architecture is simple enough to allow non-experts to build it and
connect it to a computer. Regarding control and interfacing, both
of these robots rely on complex control architectures (Bridges
et al., 2011; Grebenstein et al., 2011) running in Simulink,
proprietary software owned by MathWorks, Inc. In this regard,
the pieces of software operating these devices are less open and
more difficult for a user to modify or adapt to a given use
case. Conversely, Reachy benefits from its open-source software
architecture providingmany interfacing options, with a variety of
command signals and external software tools.

Although Reachy does not compare to these advanced robots
in terms of performance, its connectability and highly modifiable
structure make it a suitable research platform. In this sense,
we wish to promote Reachy as a complete platform combining
both hardware and software characteristics fostering replication,
customization and versatility. We are not aware of a similar
robotic system that would offer as many possibilities, based on
the comparison detailed in this section.

2.6. Sharing Philosophy
Reachy is developed in partnership with and distributed by Pollen
Robotics3 as a fully open-source project. Besides, users willing

3https://www.pollen-robotics.com/en/our-products/humanoid-robot-arm-
reachy/

to assemble the robot by themselves can buy all the hardware
in spare parts, at a total price below 4,000$ for the standard
version. Any laboratory can build their own Reachy, modify its
components and customize it at will, on both hardware and
software sides. This allows researchers to adapt the robot to their
specific needs and interface it with their own devices and tools.

The source files from the Computer-Aided Design (CAD)
models of the different printable parts are shared under the
Creative Commons BY-SA license4 and available online5. The bill
of materials and software components that are specific to Reachy
are shared under the Lesser GNU General Public License6 and
available online in the project’s repository7. The Pypot library
is shared under the GNU General Public License8 and available
online in a dedicated repository9.

As Reachy relies on the same software and hardware
architecture as Poppy robots, it is worth noting that its users
can benefit from the help and contributions shared by the Poppy
project’s community on its repository10. Indeed, this community
hub gives access to many tips regarding the different aspects of
the robot, from configuring and assembling the servomotors to
setting up the software tools and troubleshooting.

3. PROOFS OF CONCEPT

In order to illustrate Reachy’s interfacing capabilities, we
developed several proofs of concept where the robot’s features
are combined or expanded with various external devices and
software tools. All the proofs of concept described below were
developed in Python, to further demonstrate the interfacing
potential provided by this language.

3.1. Inverse Kinematics for Endpoint
Position Control
Determining a set of motor angles that put a robot’s endpoint at
a target position in its operational space is a common problem in
the field of robotic arms, and is usually referred to as the Inverse
Kinematics (IK) problem. As it comprises seven independent
DoF, Reachy typically displays kinematic redundancy, implying
that there is an infinite number of distinct solutions to this
problem for each reachable target position. Thus, in order to
drive the robot’s endpoint position to a given target, one needs
to determine which set of angles to apply, among the infinity of
possible sets. However, the numerical expression of this under-
constrained geometrical problem is non-linear, which makes
analytic solving impractical and costly in terms of computation.

3.1.1. Local Optimization
Instead, a widespread method used by roboticists to solve IK
problems is to employ local optimization. This method relies on

4http://creativecommons.org/licenses/by-sa/4.0/
5http://cad.onshape.com/documents/66388ae9c63cef53d76acd77/w/
68c2411483d5bc65c7f54234/e/581d46ba9b8ee98de9d636ee
6http://gnu.org/licenses/lgpl-3.0.html
7http://github.com/pollen-robotics/reachy
8http://gnu.org/licenses/gpl.html
9http://github.com/poppy-project/pypot
10http://github.com/poppy-project
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a cost function, attributing a scalar value to any set of angles to
quantify to what extent it is a good solution with respect to the
IK problem: a lower cost means a better solution. Usually, this
cost function is based on the distance between the target and
the endpoint position, which can be analytically determined with
the geometrical model of the robot. Then, through a step-by-step
process, the optimization finds and returns a local minimum of
this cost function, that should correspond to one of the sets of
angles putting the endpoint at the required position.

We used the Python library IKPy (Manceron, 2015), a
generic IK solver, to apply this method on Reachy. The robot’s
software resources include a Universal Robot Description Format
(URDF) file describing Reachy’s mechanical properties, such as
the relative position and orientation of each joint and skeleton
part. These geometrical data can then be imported with IKPy
to build the corresponding kinematic chain, by going through
the sequence of joints from the robot’s base to its endpoint. In
this way, this interfacing between IKPy and Reachy’s software
interface can be performed straight out of the box, and works
as a standalone, without requiring any external device or specific
hardware. As a result, combining IKPy’s features with the motors’
command options provides a new and easy way to control
Reachy by sending 3D coordinates as commands, instead of joint
angles. A code sample showing how to use IKPy with Reachy is
available online11.

IKPy allows to set parameters for the optimization process
(e.g., maximum iteration number, convergence tolerance) when
calling it from another program. Thanks to these options
available in the code, users can fine-tune the process in respect
to the intended use case and available computing power. As an
example, after fine-tuning our setup through a trial-and-error
process, the model was able to reach a sub-centimetric accuracy
with a computing time below 100 ms on a desktop computer.
However, the kinematic chain employed with this method is a
theoretical model of the robot and does not take into account
the robot’s weight and joints’ mechanical play. On a physical
robot, as actual motors are unable to reach the exact angular
positions determined by IKPy, the endpoint tends to undershoot
when driven with this method. To assess endpoint accuracy, the
distance between the endpoint’s actual position and its target was
measured for eighty postures distributed in the robot’s range;
each measurement was performed after the robot moves for 1.5 s
then is asked to hold the posture for 3.5 s. We obtained a mean
distance to target of 87 mm (SD 23 mm), and also observed
that the endpoint usually reaches positions located under the
target. Indeed, position errors along the two cartesian horizontal
axes are roughly centered on zero (mean < 5 mm) whereas
along the vertical axis, this error is subject to a notable offset
(mean= 84 mm).

Nevertheless, this flaw is not blatantly noticeable if no
visible object materializes the target position in the operational
space. Besides, the vertical offset proves to be fairly consistent
over time and reachable space. Therefore, in the context of
a continuous endpoint position control, it can be dealt with

11http://github.com/pollen-robotics/reachy/blob/master/doc/notebook/
Kinematics.ipynb

during a calibration phase performed prior to the control phase.
In this way, this interfacing between IKPy and Reachy can be
conveniently employed in applications where there is no strong
need for endpoint accuracy in the operational space.

To assess repeatability, the robot was tasked to perform several
times the same movement while the endpoint’s position was
recorded with a motion tracking system (Optitrack V120 Trio,
Natural Point Inc.). Firstly, the robot was tasked to travel accross
a 40 cm-wide circle in a frontal plane, in 3.5 s. A comparison of
the recorded trajectories showed that on keyframes distributed
along the movement, for a given set of motor goals, the robot’s
resulting endpoint positions were spread within a 12 mm-radius
sphere. Then, the robot was tasked to reach a given posture
and hold it for several seconds before its endpoint position was
recorded. Over ten repetitions of this movement, the positions
were spread within a 5 mm-radius sphere. These results illustrate
Reachy’s ability to reach the same point in space in response to
the same motor commands, in both static and dynamic contexts.

3.1.2. Supervised Learning With an Artificial Neural

Network
On another hand, this gap between a theoretical model and
Reachy’s actual functioning can be reduced by employing
modeling techniques that do not intend to simulate the robot’s
ideal behavior. One of them consists in recording actual
movements performed by the robot and using them as “ground
truth” examples on which to perform supervised learning. The
goal is to build a set of movements where both motor angles
and endpoint coordinates are synchronously recorded, so that a
supervised learning algorithm can emulate the actual relationship
between these two quantities.

To apply this technique with Reachy, we first defined a
set of robot postures through physical demonstration: with its
motors set as compliant, the robot was manually placed in
various configurations while embedded sensors recorded the
joints’ angles. Then, based on the recorded angles, the robot
performed movements going from one of such demonstrated
postures to another, while the Optitrack V120 recorded the
actual endpoint position. We used an Artificial Neural Network
(ANN) to perform supervised learning on the captured joint
and endpoint data. ANNs are computational tools relying on
elementary logical units called “neurons” and connected between
them by weighted links, generally following a specific network
architecture (Reed and Marks, 1998). For several decades, these
tools have been used to perform supervised learning by tuning
the weights of these links based on the training data. In the field of
robotics, ANNs are typically employed to perform environment
sensing or effector control, including IK solving (Bouganis and
Shanahan, 2010; Duka, 2014; Almusawi et al., 2016).

Our results were obtained with a feed-forward multi-layer
perceptron including two fully connected hidden layers of,
respectively 64 and 128 neurons. We employed the TensorFlow
(Abadi et al., 2015) backend and Keras (Chollet, 2015), a Python
programming interface for ANNs to implement and train this
network to perform IK solving, that is to say: take endpoint
coordinates as input and return corresponding joint angles
as output.
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Relatively to using IKPy, implementing this method is more
demanding and requires to carry out the previously described
two-phase data acquisition process using motion capture
equipment. However, as this technique is based on movements
performed by the physical robot instead of a mechanically perfect
model, the ANN implicitly takes into account the deviations
between the motor commands sent to the robot and the angles
actually reached by the motors. As a result, this method proved
to be more accurate than the local optimization method with an
actual robot (mean distance to target = 25 mm, SD 11 mm). In
particular, it does not suffer from the aforementioned vertical
offset, as the position error along the vertical axis isn’t more off-
centered than along horizontal axes (mean < 14 mm for all three
axes). On another hand, the computing time required to perform
a single IK solving with this method remained consistently under
1ms, proving it to be much faster than local optimization.

Besides, building the training set through manual
demonstration of postures allows users to deliberately introduce
a bias in favor of a certain type of posture. In this way, such a bias
would be implicitly learned and emulated by the network, as its
output would be, by design, similar to the training set’s postures.
For instance, if one only records postures with a horizontal hand
and palm facing downwards, virtually all joint angles returned
by the network should correspond to postures displaying that
same characteristic.

Regarding network structure, we noticed that adding more
hidden layers or increasing their size does not draw significant
benefits and can even result in the network overfitting the
examples, while notably increasing the time required to train it.
Based on these observations, we hypothesize that more complex
network architectures, such as convolutional or recurrent
networks, may not be appropriate for the solving of this
IK problem.

As a conclusion on the topic of IK solving for Reachy, we
presented here two methods with notable differences regarding
accuracy, practicality or convenience. These methods also
illustrate how Reachy benefits from being connectable and
customizable, in the way that various solutions can be employed
to provide similar features, so that users can choose a solution
suitable for their needs. Other approaches could be employed
to perform endpoint position control, either based on existing
techniques from the literature, or developed ad hoc with more
specific requirements.

3.2. Tele-operation
Based on the endpoint position control feature made available
by these IK solving techniques, we developed a second proof
of concept, which we refer to as “tele-operation.” The goal of
this proof of concept is to provide users with an intuitive and
transparent way to drive the robot in real time, that would
not require them to send explicit, quantitative commands such
as joint angles or endpoint coordinates. With this aim, the
tele-operation driving mode works by continuously tracking a
subject’s hand trajectory and simultaneously mapping it on the
robot’s hand, considered its endpoint.

Our implementation of this driving mode makes use of the
Optitrack V120 Trio as the motion tracking system, to determine

the 3D position of a marker placed on the hand. We interfaced
the device with a Python program using OptiRX (Astanin, 2016)
to retrieve marker data in real time at 120 Hz. Before the control
phase, a calibration is performed to set the relation between the
subject’s reference frame, in which marker data is expressed, and
the robot’s reference frame, in which endpoint target coordinates
must be expressed. Then, both the robot and subject’s arms are
placed in the same initial posture: humerus along the body and
elbow flexed at 90◦ (see Figure 4). In this posture, the subject’s
and robot’s hand positions are saved in order to work as origin
points in their respective frames. At each instant of a 10 Hz
control loop, the former is used to compute the instantaneous
displacement vector of the subject’s hand, then the latter is used
to compute the robot’s hand target position, by mapping this
vector in the robot’s frame. Finally, using an IK solving method,
Reachy is put in motion so that its endpoint goes toward this
instantaneous target.

As a result, the subject can drive the robot by performing
natural arm movements, observing how Reachy mirrors them
and using this visual feedback to adjust the robot’s motion.
Obviously, the processing time as well as the fact that the
motors cannot instantly reach the goal angles sent as commands,
introduce a lag between its endpoint’s movement and the
subject’s hand trajectory. In the current setup, this lag is usually
comprised between 350 and 450 ms. This proof of concept
illustrates how one can implement a control strategy with Reachy,
that is: a way to put it in motion based on data acquired
by external devices. It also demonstrates how Reachy can be
controlled in a real-time fashion, while performing smooth and
steady movements.

A video clip showing a subject driving the robot in tele-
operation mode is available online12.

3.3. Gaze-Driven Control
Following on from vision-based assistive devices, we
developed a second proof of concept to explore how eye
movements and gaze behavior could be employed as a
source of commands to put Reachy in motion. With this
aim, we tried to interface the robot with eye-tracking
and image processing tools, in order to allow a subject to
drive Reachy by moving only their eyes instead of their
limbs. Eye tracking is a category of techniques aiming at
measuring eye movements or gaze direction, whether for
observation purposes or as input in an interactive setup
(Duchowski, 2003). In the field of robotics, eye-tracking
techniques have recently been employed to control robotic
arms, especially with applications in rehabilitation and assistive
technologies (Frisoli et al., 2012; McMullen et al., 2014;
Hortal et al., 2015).

The resulting setup relies on a camera filming a scene in
front of the robot, and a computer screen displaying its video
stream to a subject. The camera is placed so that the scene
matches with the robot’s reachable space, and hand-sized objects
of various colors and shapes are located within its range. They
are placed so that no visual occlusion occurs from the point of

12https://www.youtube.com/watch?v=Oa9mHMoDtYI
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FIGURE 4 | Tele-operation setup, shown during the calibration phase. Subject and robot are placed in the same posture while the Optitrack system (on the left)

records the coordinates of the reflecting marker placed on the subject’s hand. See this driving mode in operation at https://www.youtube.com/watch?v=

Oa9mHMoDtYI.

view of the camera, and no physical obstruction occurs when
the robot moves its endpoint toward an object. In this setup,
the screen acts as a 2-dimensional proxy between the robot’s
operational space and the subject’s field of view, in order to
use eye-tracking technology in a simpler context than 3D space.
We employed the GP3 HD eye tracker (Gazepoint) to locate
the focus of the subject’s gaze on the plane of the screen, and
identify the corresponding object in the robot’s reaching space
(see Figure 5). Then, the robot can be put in motion toward
this object’s position, either using pre-recorded postures, or a
combination of inverse kinematics and computer vision in the
scene in front of the robot.

Finally, using a Myo armband (Thalmic Labs Inc.), we
also integrated a basic form of myoelectric control to this
setup. This measuring device allows for the detection of a
specific muscle activation pattern, that can be interpreted as
a command signal. In this way, the subject can perform, for
instance, a voluntary co-contraction of forearm muscles to
trigger a movement by the robot. Whenever such a signal is
detected, the object on which the subject’s gaze is focused is
identified by the eye-tracking system, and Reachy is put in
motion accordingly.

It is worth noting that the processing of gaze data
performed to identify the object of interest remains very
basic in this simplified setup. In a daily life context, the
subject’s posture would be unconstrained. Furthermore, the
environment the subject acts in, performing its instrumental
activities of daily living, is cluttered. The distractors and
scene changes provoke saccades. When maintaining gaze on
the target object, the geometry in a dynamic scene is also
unstable due to micro-saccades. This is why a filtering of
gaze fixation signal along the time is needed (González-Díaz
et al., 2019). Moreover, today a localization of objects in a
gaze-predicted area can be solved together with an object-
recognition task, employing powerful deep CNN classifiers. This

allows for more precise object localization and also adaptation
to the scene dynamics due to the unconstrained motion of
the subject.

The source code employed in this proof of concept is available
online13. A video clip showing a subject performing gaze-driven
control is available online14.

4. CONCLUSION AND PERSPECTIVES

Reachy, a seven-DoF human-like robotic arm, was developed
to act as a test platform for research on human-driven
robotic arms. Following an open-source approach, its
design was elaborated to allow for easy sharing and
low fabrication cost, with the purpose of enabling
extensive customization in a wide variety of applications.
Software and hardware resources were made available
online so that researchers and laypeople can build a
Reachy robot and integrate it in their own experiments
and projects.

In the short term, immediate applications of Reachy
include the exploration, development and testing of control
strategies and interfaces for robotic arms. In this way,
several prototypes were produced and proofs of concepts
were developed in order to illustrate potential use cases
in various fields in relation with human-driven robotics.
As a broadly connectable platform, it allows to investigate
hybrid control strategies, combining biomechanical signals
with motion- or eye-tracking tools and computer vision
techniques (de San Roman et al., 2017; González-Díaz
et al., 2019). Reachy can also help study how vision-
based control strategies would help driving rehabilitation

13http://github.com/pollen-robotics/reachy/blob/master/applications/video_gaze.
py
14https://www.youtube.com/watch?v=qloR67AaqQ4
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FIGURE 5 | Gaze-driven control setup. On the right, various objects are located in front of a left-handed version of Reachy, and the resulting scene is filmed by the

camera placed over the robot’s shoulder. Its video feed is shown on the screen on the left, under which the eye-tracker is placed. The subject wears the Myo armband

on the right forearm to trigger a movement by the robot. See this driving mode in operation at https://www.youtube.com/watch?v=qloR67AaqQ4.

devices, such as an assistive arm fixed to a wheelchair, for
use by patients suffering from Spinal Cord Injury (SCI)
(Corbett et al., 2013, 2014).

On the longer term, Reachy can be employed as a
mockup device for research and training with upper-limb
neuroprostheses. In particular, it can help patients get familiar
with muscle signal production and myoelectric control prior to
being fit with an actual arm prosthesis. Additionally, thanks to its
motors’ control options, Reachy is suitable to address different
levels of amputation, by employing separate control modes to
drive proximal and distal joints. For instance, as a way to emulate
transhumeral amputation, Reachy can be controlled through a
“hybrid” teleoperation mode where shoulder joints reproduce
a patient’s actual shoulder motion while the other motors
are driven with a separate, artificial control strategy. Similar
approaches were investigated in recent works (Kaliki et al., 2013;
Merad et al., 2016), where natural shoulder motion (performed
by a subject) is used to infer artificial elbow and/or wrist motion
(performed by a virtual avatar or a wearable prosthesis). As a
general conclusion, Reachy can prove to be a versatile device
suitable for applications with multiple approaches for the control
of an upper-limb neuroprosthesis.
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Human machine interfaces (HMIs) are employed in a broad range of applications,
spanning from assistive devices for disability to remote manipulation and gaming
controllers. In this study, a new piezoresistive sensors array armband is proposed for
hand gesture recognition. The armband encloses only three sensors targeting specific
forearm muscles, with the aim to discriminate eight hand movements. Each sensor
is made by a force-sensitive resistor (FSR) with a dedicated mechanical coupler and
is designed to sense muscle swelling during contraction. The armband is designed
to be easily wearable and adjustable for any user and was tested on 10 volunteers.
Hand gestures are classified by means of different machine learning algorithms, and
classification performances are assessed applying both, the 10-fold and leave-one-out
cross-validations. A linear support vector machine provided 96% mean accuracy across
all participants. Ultimately, this classifier was implemented on an Arduino platform and
allowed successful control for videogames in real-time. The low power consumption
together with the high level of accuracy suggests the potential of this device for
exergames commonly employed for neuromotor rehabilitation. The reduced number of
sensors makes this HMI also suitable for hand-prosthesis control.

Keywords: muscle sensors array, piezoresistive sensor, human–machine interface, hand gesture recognition,
support vector machine, exergaming

INTRODUCTION

Human machine interfaces (HMIs) are becoming increasingly widespread with applications
spanning from assistive devices for disability, muscle rehabilitation, prosthesis control, remote
manipulation, and gaming controllers (McKirahan and Guccione, 2016; Boy, 2017; Beckerle et al.,
2018). Being the hand extremely important in one’s life, an entire field of HMI is dedicated to
hand gesture recognition applications (Arapi et al., 2018; Shukla et al., 2018). Generally, visual,
electromyographic, or inertial sensors are the most used technologies for detecting hand gestures
(Cho et al., 2017; Ghafoor et al., 2017; Bisi et al., 2018; Polfreman, 2018). Visual-based hand gesture
recognition systems do not need any device to wear, allowing for extreme freedom of use. Such
remote sensing is very attractive, but its performances are heavily influenced by many factors such
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as camera field of view, challenging image processing,
illumination conditions, objects overlapping, etc. (Chakraborty
et al., 2017; Abraham et al., 2018). Devices based on surface
electromyography (sEMG or simply EMG) recordings (Geng
et al., 2016; Du et al., 2017) need electrodes in steady contact with
the skin, and they are prone to motion artifacts, electromagnetic
noise, and crosstalk with other biopotentials. They also require
real-time processing of the raw sEMG signals to extrapolate
useful features (e.g., sEMG envelope/RMS) (Parajuli et al., 2019).
As example, Myo Armband by Thalmic Labs1, a commercial
device based on eight sEMG sensors and an inertial platform,
allows the user to interface via Bluetooth with PCs or mobile
devices to control supported applications (Nymoen et al., 2015;
Sathiyanarayanan and Rajan, 2016; Myoband, 2019) including
robot motion (Bisi et al., 2018).

As an alternative to sEMG, other sensors can monitor the
mechanical muscular activity, and some are briefly presented
below. A pressure sensors array coupled to air-bladders mounted
on an armband was proposed to detect hand motion (accuracy
of 90%) by monitoring the swelling of muscles (Jung et al.,
2015). The air bladders are cumbersome, uncomfortable, and
not widely adaptable. A wristband composed of an array of
barometric pressure sensors was proposed to estimate tendons
and muscle motions during gestures (Zhu et al., 2018), reaching
a classification accuracy of wrist gestures of 98%. A combination
of sEMG electrodes and microphones (Caramiaux et al., 2015)
was used to detect both electrical muscle activity and the
mechanomyogram (MMG – i.e., mechanical vibrations produced
during muscle contraction). The microphones presented high
sensitivity to noise and motion artifacts, in addition to the
aforementioned EMG problems. A conventional ultrasound
probe fixed to the forearm was proposed for finger motion
recognition, proving accuracy of 96% (Huang et al., 2017).
This approach resulted very cumbersome, uncomfortable, and
required a complex image processing for gestures features
extraction. Furthermore, piezoelectric sensors were used to
estimate finger gestures (accuracy of 97%) by recording the
vibrations and shape changes that occur at the wrist due to
muscles and tendons motions (Booth and Goldsmith, 2018).
These kinds of sensors could also be employed to harvest
energy from body movements, including upper limb motion
(Elahi et al., 2018).

Other recent studies (Giovanelli and Farella, 2016) presented
devices for gesture recognition based on an array of force-
sensitive resistors (FSRs2) (Interlink Electronics, 2019).
A combination of two sEMG and four FSR sensors, mounted
on a wrist strap, can be used to classify finger movements
scoring accuracy of 96% (McIntosh et al., 2016). An armband
equipped with 16 FSR sensors positioned on both wrists and
forearms (Jiang et al., 2017) allowed the classification of several
hand gestures with an accuracy of about 97%. A similar device
equipped with eight FSR sensors, tested on amputees (Cho
et al., 2016) while trying to mirror different hand grips in their
residual forearm muscles, yielded an accuracy of 70%. Moreover,

1https://support.getmyo.com
2https://www.interlinkelectronics.com/request-data-sheets

a high-density grid of 126 FSR sensors (Radmand et al., 2016)
embedded in a forearm prosthetic socket and tested on healthy
subjects to recognize arm positions, yielded an accuracy of 99.7%.

However, the approaches proposing pressure sensors wrapped
around the wrist do not directly monitor muscle contraction, but
rather tension of tendons. Moreover, even in the cases of FSR
arrays applied on the forearm, to the best of our knowledge, the
detected signals were not proven to be equivalent to EMG.

The aim of this study was to investigate the possibility to
recognize hand gestures by monitoring the contractions of a
reduced number of specific forearm muscles, via the bespoke
FSR-based sensors, which demonstrated to provide signals
quite similar to the EMG linear envelope (EMG-LE) (Esposito
et al., 2018). To reach this goal, a new gesture recognition
armband is presented; it is equipped with only three FSR-
based sensors, applied on specific forearm muscles to recognize
eight hand gestures. The armband is designed to be easily
wearable and adjustable for any user. Thanks to the similarity
with the EMG-LE (Esposito et al., 2018), the device could
be reconfigured to resemble previous, well-established EMG-
based HMIs (e.g., exergaming applications for patients during
neuromotor rehabilitation) (Ma and Bechkoum, 2008).

MATERIALS AND METHODS

Piezoresistive Array Armband Design
The armband consists of three piezoresistive FSRs (Interlink FSR
402) mounted on an inextensible band by means of 3D printed
rigid supports (Figure 1). An FSR changes its electrical resistance
in the function of the applied force (Interlink Electronics, 2019).
The FSR active area is suitably mechanically coupled to the
muscle through a rigid dome, which enables the measurement
of muscle volume changes during contraction (Esposito et al.,
2018). The support was designed with a housing site for the
FSR, and an opening to allow sensor sliding along the band
and precise positioning on a target muscle. The armband can
be wrapped around user’s forearm and fastened with a Velcro
strip in order to measure muscle contractions and recognize hand
gestures. Indeed, each gesture generates a characteristic force
distribution on the sensors, and this allows discriminating the
intentional movements.

Given the similarity between the FSR-based sensor output and
the EMG-LE (Esposito et al., 2018), the muscle sensors should
be positioned above the muscle belly as for EMG detection.
The chosen muscles should be superficial to allow advantageous
signal to noise ratio. Moreover, since the FSR-based sensors are
embedded in an armband, the pick-up points should belong to
a circumference that wraps around the forearm. Three forearm
muscles were preferred to better discriminate the different hand
gestures. In detail, FSR1 was applied on flexor carpi ulnaris,
FSR2 on flexor carpi radialis, and FSR3 on extensor digitorum.
The armband was positioned proximally at 25% of the distance
between the olecranon and the process styloideus ulnae of
the right forearm (Figure 2). Indeed, a functional–anatomical
analysis of the forearm muscles (Drake et al., 2014) revealed
that flexor carpi ulnaris is mainly involved in wrist flexion and
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FIGURE 1 | Piezoresistive array armband: Left, the armband with three FSRs; Right, an enlargement of the FSR sensor mounted on its 3D printed support with
actual dimensions.

FIGURE 2 | Placements of FSRs on forearm muscles. (A) Ventral view of right forearm: FSR2 sensor on flexor carpi radialis; (B) Dorsal view of the right forearm:
FSR1 on flexor carpi ulnaris and FSR3 on extensor digitorum; (C) Right forearm cross-section: FSRs placement onto the aforementioned muscles.

FIGURE 3 | FSR sensors conditioning circuit based on mirror current circuits.

wrist adduction; flexor carpi radialis in wrist flexion and wrist
abduction; and extensor digitorum in fingers extension, fingers
abduction, and wrist extension.

A current mirror (Figure 3) was used as a conditioning circuit
for each FSR sensor (Esposito et al., 2019a,b). It was made of
a pair of common npn BJT (2N2222), positioned very close to
each other. Basically, the current mirror replicates the FSR sensor
(RFSR) current in the gain resistor (RG), thus providing a linear

load-to-voltage response and allowing the output voltage to swing
through the full voltage supply range. The sensibility of each
muscle sensor can be varied by changing the RG value. Thanks
to its low energy consumption, this conditioning circuit can be
directly supplied by microcontrollers or ADC boards (e.g., 3.3 or
5 V). VCC was set to 5 V, and the gain resistors RG1, RG2, and RG3
were set to 850, 790, and 960 �, respectively, to equalize the gains
of the three channels.
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FIGURE 4 | Performed hand gestures: (A) rest; (B) wrist flexion; (C) wrist
extension; (D) wrist adduction; (E) wrist abduction; (F) wrist rotation
(supination); (G) fingers abduction; (H) clenched fist.

Static calibrations were performed for each FSR sensor to
evaluate the relationship between the muscular force exerted
on the FSR, reported in kilograms, and the voltage output
VOUT (Figure 3; Esposito et al., 2018). Each sensor was placed
on a precision electronic scale, then different weights were
applied on active sensor area perpendicularly to the dome, and
the corresponding output voltages were recorded. The output
signals were acquired at 1 kHz sampling frequency with 12-
bit precision by means of National Instruments NI USB-6008
acquisition board.

Machine Learning Algorithms Applied to
Hand Gesture Classification
The experimental tests involved 10 subjects (eight men and two
women aged from 25 to 64 years), who provided their informed
and written consent. Each participant comfortably sat on an
adjustable height chair, leaning against its fixed seatback, in front
of a desk with a computer screen. He was asked to place his elbow
on the desk, forming an angle of about 45◦ between the forearm
and the desktop. The armband was appropriately positioned on
the forearm, and the pressure at rest was recorded by the sensors
and resulted 100 g/cm2 on average. The subjects were asked to

perform 10 repetitions of each hand gesture class (Figure 4)
in the following order: rest; wrist flexion; wrist extension; wrist
adduction; wrist abduction; wrist rotation (supination); finger
abduction; clenched fist; holding the final hand posture for a
couple of seconds; and resting for a few seconds before the next
movement. After the 10 repetitions of each hand gesture class, the
participant was allowed to rest for about a minute. Simultaneous
recordings from the three FSR sensors (VOUT 1−2−3) were
collected via the NI USB-6008 board at 1 kHz sampling frequency
with 12-bit precision.

The raw signals were firstly pre-processed, by subtracting the
minimum signal values recorded at rest (FSR offsets due to the
armband fastening pressure) and normalizing to the absolute
maximum value (Figure 5). In order to avoid manual selection
of each hand gesture, pre-processed data were automatically
segmented to extract the time intervals corresponding to the
final hand postures. Segmentation was achieved by selecting the
FSR signal with maximum variation (peak-to-peak amplitude)
and applying a heuristically chosen threshold set at 40% of
this value, which guaranteed appropriate segmentation of all
gestures. Means and standard deviations (SDs) of the three
FSR signals were computed for each segment. Then, for each
gesture instance, the three means and the three SDs computed
in the corresponding segment were considered as features. In
detail, the features extracted from all the gestures instances
in a single trial of a subject were assembled in a database
consisting of an 80 × 7 matrix (10 repetitions for each of the
eight hand gestures); each row corresponded to a single gesture
instance and was composed by the following seven elements:
(FSR1_mean, FSR2_mean, FSR3_mean, FSR1_SD, FSR2_SD,
FSR3_SD, and GESTURE_LABEL).

Then, different machine learning algorithms
(linear/polynomial/radial basis function-support vector
machines; linear discriminant analysis; quadratic discriminant
analysis; random forest; K-nearest neighbors, and neural
networks) were used for model training and data classification,
by means of “Weka” software (Frank et al., 2016). The conceptual
scheme of the entire process of hand gestures classification is
depicted in Figure 5.

Classification performances were assessed by applying the
10-fold and leave-one-out cross validations on each of the 10

FIGURE 5 | Schematic illustration of the hand gesture recognition system.
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FIGURE 6 | Real-time HMI: (A) block diagram of the calibration phase; (B) block diagram of the gaming session.

FIGURE 7 | Examples of raw signals (subject #3) recorded by the three FSRs for each performed gesture: (A) rest; (B) wrist flexion, (C) wrist extension, (D) wrist
adduction, (E) wrist abduction, (F) wrist rotation (supination); (G) fingers abduction; (H) clenched fist. Signal amplitudes are expressed in kilograms and different
force scales were used.

subjects’ databases. In 10-fold cross-validation, the dataset is
randomly divided into 10 subsets of equal size, and then each
subset is tested using the classifier trained on the remaining
nine subsets. Then, the obtained 10 classification accuracies
were averaged to provide an overall classification accuracy.
Instead, leave-one-out cross-validation is simply n-fold cross-
validation, where n is the number of instances in the dataset.
Each instance, in turn, is left out, and the learning method

is trained on all the remaining instances. Finally, all the
n classification accuracies were averaged to yield an overall
classification accuracy (Witten et al., 2016).

Furthermore, the classification performances of the different
machine learning algorithms were also tested on a combined
database, obtained by joining all subjects’ databases.

Finally, the possibility to classify gestures with less than three
sensors was tested by considering features from different sensors
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FIGURE 8 | Recording of 10 consecutive clenched fist movements from FSR3 (subject #3): FSR3 raw signal with the superimposed threshold (red line).

FIGURE 9 | Means, standard deviations, and medians related to the
segmented FSR3 signals of 10 clenched fist movements showed in Figure 8.

pairs (FSR1-FSR2, FSR1-FSR3, and FSR2-FSR3) and even from a
single sensor (FSR1, FSR2, and FSR3). In the case of sensors pairs,
each instance is characterized by four features (two means and
two SDs), while for a single sensor, the features reduced to two.

Reproducibility Test
A reproducibility test was also performed to assess the possibility
to use a model trained in a previous trial to classify gestures
performed in a subsequent trial. The data acquired by the 10
subjects (10 repetitions for each of the 8 gestures, as described
in the section “Machine Learning Algorithms Applied to Hand
Gesture Classification”) were used to construct the “linear SVM”
prevision model for each subject. Then, in a subsequent trial,
the same subjects wore again the device and performed a
randomized gestures sequence guided by a video. The video

showed a sequence of icons representing the gestures to be
performed (50 randomly chosen gestures separated by the rest
condition). For each subject, the data collected in this last trial
were classified using the model obtained from the previous trial.
The entire procedure for the reproducibility test was repeated
using an LDA classifier.

Real-Time Implementation of Hand
Gesture Recognition
A linear SVM classifier was implemented on an Arduino
UNO board3 (D’Ausilio, 2012; Arduino, 2019), equipped with
an ATmega328 (Atmel) microcontroller, to provide real-time
gesture recognition. The three outputs of the FSR sensors
conditioning circuit were directly connected to the analog inputs
of the board. In addition, custom graphical user interfaces (GUI)
were designed by means of “Processing” software4 (Processing,
2019) to facilitate interactive armband calibration and to allow
real-time user interaction with a computer. The real-time
application involved the steps described below. The subject was
asked to wear the armband and to perform the same sequence of
gestures described in the section “Machine Learning Algorithms
Applied to Hand Gesture Classification,” for device calibration.
Data were sent to the PC and used to train a linear SVM classifier
by means of Weka software; the trained classifier parameters
were sent to the Arduino board, and the calibration phase
was completed (Figure 6A). The videogame started on the PC
screen and the Arduino board performed real-time classification
of the current gesture: extracting gesture features (mean and

3https://store.arduino.cc/arduino-uno-rev3
4https://processing.org
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FIGURE 10 | Mean values computed for each of the 10 repetitions of each gesture (coded with different colors). FSR1, FSR2, FSR3 correspond to x, y, z axes,
respectively. For each gesture, the centroid is depicted as a black asterisk and the standard deviations in the three directions as continuous black lines.

SD) every 100 ms, making a classification and sending this
information (coded in 1 byte) to the PC at a 10 Hz rate, via
USB communication (Figure 6B). The subject started to play,
and the Arduino board output was used to replace the keyboard
and mouse controls. The subject never removed the armband
between these steps. For each gaming session, the gestures
correctly recognized in real-time were annotated and then their
percentages were computed. Each user was also asked to evaluate
the comfort and effectiveness of the device on a 0-to-10 scale.
The implementation of a real-time LDA classifier was further
tested, repeating the same procedure described for the linear
SVM (Hong et al., 2018).

Moreover, in order to verify a viable real-time classification,
the mean and standard deviation parameters were computed
using shorter FSR signal tracts than the segmented ones (the

section “Machine Learning Algorithms Applied to Hand Gesture
Classification”). However, due to the stationarity properties of the
FSR signal during a particular gesture, these concise statistical
parameters do not differ from those computed on larger time
windows and used to train the classifier.

RESULTS

Signals Pre-processing and Hand
Gestures Classification
Figure 7 shows an example of the FSRs raw signals for each
performed hand gesture (subject #3). Different intensity force
scales were used to better appreciate the signals shapes.
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TABLE 1 | Classification accuracies (in percentage) on 10 different subjects, using different machine learning algorithms [linear SVM (L-SVM), polynomial SVM (P-SVM),
radial basis function SVM (RBF-SVM), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), random forest (RF), K-nearest neighbors (K-NN), and
neural networks (NN)] and different cross-validation methods [10-fold (CV1) and leave-one-out (CV2)].

L-SVM P-SVM RBF-SVM LDA QDA RF KNN NN

CV1 CV2 CV1 CV2 CV1 CV2 CV1 CV2 CV1 CV2 CV1 CV2 CV1 CV2 CV1 CV2

S1 95 95 87.5 81.25 93.25 91.25 97.5 97.5 97.5 97.5 96.25 96.25 91.25 91.25 90 92.5

S2 92.5 87.5 73.75 76.25 90 88.75 95 96.25 96.25 96.25 89 88.75 88.50 88.75 83.75 86.25

S3 98.75 98.75 82.5 78.75 97.5 96.25 97.5 96.25 100 100 97.5 97.5 95 93.75 97 96.25

S4 96.25 96.25 80 83.75 96.25 96.25 96.25 96.25 98.75 98.75 97.5 97.5 100 100 100 100

S5 90 88.75 75 73.75 90 97.5 93.75 92.5 97.5 97.5 93.5 93.75 91 90 91.5 90

S6 100 100 85 86.25 100 100 100 100 98.75 98.75 97.5 97.5 98.75 98.75 98.75 98.75

S7 97.5 97.5 97.5 93.75 97.5 97.5 100 100 98.75 98.75 97.5 95 100 100 98.75 97.5

S8 97.5 96.25 92.5 92.5 97.5 96.25 98.75 98.75 98.75 98.75 100 100 97.5 97.5 98.75 98.75

S9 96.25 96.25 83.75 86.25 97.5 96.25 96.25 96.25 98.75 98.75 98.75 98.75 98.75 98.75 100 100

S10 96.25 95 75 86.25 96.25 96.25 97.5 96.25 93.75 93.75 93.75 93.75 98.75 98.75 97.5 97.5

FIGURE 11 | Means and standard deviations of the accuracies achieved across the 10 participants, by means of the different machine learning algorithms and for
each tested cross-validation method (Left, 10-fold and Right, leave-one-out).

TABLE 2 | Means and standard deviations of classification accuracies (across all
participants) by using linear SVM and LDA algorithms for all sensors combinations.

Selected sensor/s Linear SVM mean
(SD) accuracy (%)

LDA mean (SD)
accuracy (%)

FSR1 80.25 (9.89) 80.62 (8.00)

FSR2 76 (9.12) 82.37 (10.38)

FSR3 73.88 (13.25) 82.05 (8.58)

FSR1 and FSR2 91.75 (8.70) 92.27 (6.96)

FSR1 and FSR3 92.25 (5.26) 91.62 (6.18)

FSR2 and FSR3 90.38 (5.68) 92.87 (4.41)

FSR1 and FSR2 and FSR3 96 (2.93) 97.25 (2.02)

An example of raw signal segmentation is showed in
Figure 8. The segmentation function was achieved by applying a
threshold set at 40% of the FSR3 maximum signal variation. The
segmentation allowed us to extract only the samples associated
with the fully reached gesture while discarding the initial and
final transients.

Moreover, analyzing the values of the segmented signals for
each clenched fist movement in Figure 8, it was found that the
distributions of the occurrences do not seem Gaussian. These
probability distributions showed up also from the segmented
signals related to the other gestures. The median, as an
alternative to the mean, would be another possible feature. As

TABLE 3 | Classification accuracies reached on the combined database by using
linear SVM and LDA for all sensor combinations.

Selected sensor/s Linear SVM accuracy (%) LDA accuracy (%)

FSR1 41.5 32.62

FSR2 38 28.5

FSR3 37.1 33.87

FSR1 and FSR2 49.6 44

FSR1 and FSR3 49.6 37.37

FSR2 and FSR3 51.9 41.12

FSR1 and FSR2 and FSR3 58.5 44.50

an example, Figure 9 shows the means, the standard deviations,
and the medians referred to the segmented signals depicted in
Figure 8. In this case, the percentage variation between the
mean and the median was <2% for each repetition. Comparable
percentages were also found in the segmented signals related to
the other gestures. Hence, there is not practical convenience in
using medians instead of means because it would increase the
computational burden (critical for real-time applications).

As an example, Figure 10 shows the means corresponding
to the 10 repetitions of each gesture (subject #3) with different
colors (see legend of Figure 10) in a three-dimensional space (x, y,
and z axes correspond to FSR1, FSR2, and FSR3, respectively). In
addition, data were enriched by reporting centroids and standard
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TABLE 4 | Linear SVM classification accuracies (in percentage) on 10 different
subjects in recognizing eight hand gestures (classes).

Gesture (class) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Rest 100 100 100 100 100 100 100 100 100 100

Wrist flexion 90 100 100 100 100 100 100 100 100 100

Wrist extension 100 90 100 100 90 100 100 100 100 90

Wrist adduction 100 90 100 100 100 100 90 90 90 80

Wrist abduction 80 70 100 80 60 100 100 90 100 100

Wrist rotation 90 100 90 100 80 100 90 100 100 100

Fingers abduction 100 90 100 90 90 100 100 100 80 100

Clenched fist 100 100 100 100 100 100 100 100 100 100

FIGURE 12 | Confusion matrix (across all participants) presenting the linear
SVM classification accuracies (in percentages): rows correspond to true
performed hand gestures and columns to predicted hand gestures.

deviations (computed in the three directions). Gestures appeared
to be confined in specific regions, which did not overlap with each
other. It is interesting to note that the rest condition was located
around a point that represented the grip force of the armband
(here about 0.1 kg).

TABLE 5 | LDA classification accuracies (in percentage) on 10 different subjects in
recognizing eight hand gestures (classes).

Gesture (class) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Rest 100 100 100 100 100 100 100 100 100 100

Wrist flexion 100 100 100 100 90 100 100 100 100 90

Wrist extension 100 90 100 100 90 100 100 100 100 100

Wrist adduction 100 100 90 80 90 100 100 90 80 90

Wrist abduction 90 70 100 90 90 100 100 100 100 100

Wrist rotation 90 100 90 100 90 100 100 100 100 100

Fingers abduction 100 100 100 100 100 100 100 100 90 100

Clenched fist 100 100 100 100 100 100 100 100 100 100

FIGURE 13 | Confusion matrix (across all participants) presenting the LDA
classification accuracies (in percentages): rows correspond to true performed
hand gestures and columns to predicted hand gestures.

Considering all three FSRs, the classification accuracy
achieved for each subject, by means of the different algorithms
and cross-validation methods, are shown in Table 1.

Figure 11 shows the means and the standard deviations
of the accuracies achieved across all participants, using the
aforementioned machine learning algorithms and the two cross-
validation methods.

Table 1 shows that linear SVM and LDA algorithms
allow to obtain higher classification accuracies with lower
computational complexities, compared to all the other evaluated
machine learning algorithms. Therefore, more extended
analysis was focused on these classifiers, considering the
10-fold cross-validation.

Table 2 summarizes the classification performances achieved
by considering all sensors combinations, reporting means
and standard deviations of the related accuracies (across all
participants). Using a single sensor, the mean classification
accuracy was about 77% for linear SVM, while about 82% for
LDA. Moreover, using two sensors the accuracy increased to
about 91% for linear SVM, while about 92% for LDA.

Table 3 outlines the classification performances obtained for
the combined database (all subjects) by using linear SVM and
LDA for all sensors combinations.

Table 4 shows the classification accuracies reached with linear
SVM, for each subject and hand gesture class. The average
accuracy across all participants resulted 96% (SD: 2.93%), and
the confusion matrix (right and wrong average recognition
percentages across all 10 subjects) is shown in Figure 12.

Table 5 shows the classification accuracies reached with
LDA, for each subject and hand gesture class. The average
accuracy across all participants resulted 97.25% (SD: 2.02%),
and the confusion matrix (right and wrong average recognition
percentages across all 10 subjects) is shown in Figure 13.
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Reproducibility Test
During the reproducibility test, the mean classification
accuracy (across all users) was 78.8% with linear SVM, while
60.25% with LDA.

Graphical Interfaces for Practical HMI
Applications
The custom graphical interface that displays icons corresponding
to the recognized hand gestures was used both for calibration
purposes and for quick assessment of real-time classifier
performances (Figure 6). The real-time gesture recognition
system was used to play various games (e.g., “Pong” videogame5)
by replacing the mouse and keyboards commands with those
provided by the Arduino board (Pong-Game, 2019). The average
percentage (across all users) of correctly recognized gestures
resulted 93% with linear SVM, while 90% with LDA. Subjects
reported that this HMI was comfortable to wear and intuitive to
use, not requiring long training to achieve good results. The mean
“comfort score” was 8.3/10. The “effectiveness score” was 8.1/10
for linear SVM, and 7.8/10 for LDA.

DISCUSSION AND CONCLUSION

A novel piezoresistive array armband for hand gesture
recognition was presented. It was based on a reduced number
of muscle contraction sensors, appropriately positioned on
specific forearm muscles. Nevertheless, it allowed discriminating
eight classes of hand gestures with remarkable accuracy,
regardless of the specific classifier (Table 1). Classifiers based
on linear SVM and LDA have low computational complexities
and can be easily implemented in hardware. Therefore, more
extended analysis was focused on these classifiers. The average
classification accuracy across all subjects, resulted 96% for linear
SVM and 97.25% for LDA. These performances were achieved
by separately considering the databases associated with each
user and averaging the accuracies. Instead, considering the
combined database (all subjects) the linear SVM classification
achieved a maximum accuracy of 58.5%, while LDA scored
44.5%. A significant classification accuracy was also achieved
by considering combinations of only two sensors: the mean
accuracy resulted 91.46% for linear SVM and 92.25% for LDA.
As expected, the use of a single sensor led to a significant
reduction in mean classification accuracy (about 77% for linear
SVM and 82% for LDA). With regard to the reproducibility
test (described in the section “Reproducibility Test”), the
mean classification accuracy (across all subjects) was 78.8%
for linear SVM and 60.25% for LDA. This reduction in
accuracy suggests that each time the device is used, a new
calibration (i.e., classifier training) is advisable for optimal
performances. It could be interesting to extend this study to a
much larger cohort of subjects, in order to obtain more reliable
classification results, and also to investigate the possibility
to discover common muscle activation strategies, to identify
pathological behaviors, etc.

5https://it.wikipedia.org/wiki/pong

The proposed armband is extremely lightweight, simple to
wear, and easily adjustable for any user. It is comfortable
and unobtrusive, as proved by the low grip force values
recorded at rest, and it allows to simultaneously monitor
the contractions of multiple specific forearm muscles. It
is also scalable in the number of sensors, thus giving
the opportunity to avoid their precise positioning onto
specific muscles (e.g., full sensors covered armband could
be used). The extreme simplicity of FSR sensors and their
conditioning circuits, along with the straightforward usability
of the output signals (no additional processing required), allow
to easily implement this system on low-performing, commercial
platforms, also with wireless capabilities (Gargiulo et al., 2010;
Bifulco et al., 2011).

The proposed HMI could be applied in “exergaming”
applications: graphical interfaces can provide patients
with real-time feedback on the quality of the performed
gestures, inducing self-corrections of their movements.
Moreover, the possibility to monitor the contractions
of specific muscles would provide additional clinical
information about patients’ progress. Thus, the exergaming
could be used in clinical practice to make neuromotor
rehabilitation processes more stimulating and enjoyable
(Ordnung et al., 2017).

The encouraging results obtained with few sensors suggest
the possibility to adopt this HMI also in hand prosthesis control
(Polisiero et al., 2013; Bifulco et al., 2017; Sreenivasan et al.,
2018), thanks to the similarity of the FSR-based sensors outputs
and the EMG-LE. Indeed, the small size and flatness of the
sensors make it possible to embed them inside the prosthesis
socket. More generally, the muscle contraction sensors could be
potentially adapted to monitor other muscles (e.g., muscles of
arms, legs, shoulders, etc.), allowing them to develop a wide range
of EMG-based HMI applications.
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Stroke affects one out of every six people on Earth. Approximately 90% of stroke
survivors have some functional disability with mobility being a major impairment, which
not only affects important daily activities but also increases the likelihood of falling.
Originally intended to supplement traditional post-stroke gait rehabilitation, robotic
systems have gained remarkable attention in recent years as a tool to decrease the strain
on physical therapists while increasing the precision and repeatability of the therapy.
While some of the current methods for robot-assisted rehabilitation have had many
positive and promising outcomes, there is moderate evidence of improvement in walking
and motor recovery using robotic devices compared to traditional practice. In order to
better understand how and where robot-assisted rehabilitation has been effective, it
is imperative to identify the main schools of thought that have prevailed. This review
intends to observe those perspectives through three different lenses: the goal and type
of interaction, the physical implementation, and the sensorimotor pathways targeted
by robotic devices. The ways that researchers approach the problem of restoring gait
function are grouped together in an intuitive way. Seeing robot-assisted rehabilitation in
this unique light can naturally provoke the development of new directions to potentially fill
the current research gaps and eventually discover more effective ways to provide therapy.
In particular, the idea of utilizing the human inter-limb coordinationmechanisms is brought
up as an especially promising area for rehabilitation and is extensively discussed.

Keywords: gait rehabilitation, rehabilitation robotics, review, stroke therapy, therapeutic devices

1. INTRODUCTION

Stroke is typically caused by a long-term lack of oxygen to the brain through a blood vessel bursting
or clotting. Since this event usually occurs on one side of the brain, the effects are generally seen on
the contralateral half of the body in the form of hemiparesis. This partial paralysis is common after
stroke and makes a significant impact on daily life. After initial onset, recovery in the early stages is
crucial to mitigate the long-term effects of stroke. More people are in need of stroke rehabilitation
every year, and the cost for post-stroke patients with a need for continuous care is still high and
projected to substantially increase in the next decade (Benjamin et al., 2019). In order to reduce
the cost and increase the efficacy of post-stroke rehabilitation, it is crucial to determine and use the
methods that prove to provide the best outcomes.
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In recent years, robotic and electromechanical systems have
gained increased interest in the rehabilitation community for
their ability to automate the tedious and time intensive therapy
needed for beneficial patient outcomes (Sale et al., 2012;
Calabrò et al., 2016). Because locomotion is the result of
complex dynamic interactions between feedback mechanisms
and a central controller in the brain, the rehabilitation methods
that work the best use a fundamental understanding of this
coordination of human gait (Gassert and Dietz, 2018). It is
well-known that in order to be effective, therapy should begin
as soon as possible and provide an intensive training that
incorporates multiple sensory mechanisms in a structured way
(Poli et al., 2013). Robotic and electromechanical systems for
rehabilitation purposes are designed with the intent of evoking
the muscle activation synergies and neural plasticity through
specific repetitive motor coordination exercises. Because brain
tissue cannot simply be repaired in the exact way as before the
damage, in order to regain a physical ability such as walking,
the brain must be rewired along intact, active neural pathways.
This influences therapies that incorporate various sensory inputs,
experiences, learning, and especially motor training (Poli et al.,
2013), showing there is a link between vigorous multisensory
rehabilitation and recovery in stroke patients. Therefore, neural
pathways that are not normally in use might be triggered to
make up for the lost pathways. The intensity of stimulating those
pathways can be drastically increased by introducing robotic
devices to aid the physical therapists.

Because of the fast pace in which rehabilitation robotics
has grown, robots and autonomous systems are longing to be
the standard in rehabilitation. Due to both a rapid increase
in technological improvements (Reinkensmeyer et al., 2004;
Schmidt et al., 2005b; Hogan et al., 2006; Johnson, 2006; Patton
et al., 2006) and a rapid increase in neurological understanding
of rehabilitation (Kwakkel et al., 2008; Carter et al., 2010; Albert
and Kesselring, 2012), there is a need to summarize where we are
currently at with popular and emerging methods. This paper is
an attempt to organize and categorize the ways in which we think
about stroke rehabilitation, in order to produce more effective
approaches to be developed in the future, while making sure to
learn from past mistakes.

Moreover, there is a significant disparity between engineers
that create devices for rehabilitation, and the underlying
neuroscience related to motor deficits and rehabilitation after
stroke. While this gap is certainly closing, it can be further
bridged by understanding the underlying mechanisms for gait,
gait adaptation, and gait therapy and by connecting promising
technological advances in robotics with promising, related
underlying neural pathways. Many of the studies and methods
shown in this paper have produced promising results, but the
proof of long-term benefits is required for the proper use of
the word rehabilitation. The critical difference of this paper
compared to previous reviews (Dickstein, 2008; Vallery et al.,
2008; Marchal-Crespo and Reinkensmeyer, 2009; Schwartz et al.,
2009; Díaz et al., 2011; Horno et al., 2011; Morone et al., 2011;
Conesa et al., 2012; Mehrholz and Pohl, 2012; Pennycott et al.,
2012; Chang and Kim, 2013; Kelley et al., 2013; Viteckova et al.,
2013;Waldner et al., 2013; Zhang et al., 2013; Swinnen et al., 2014;

Venkatakrishnan et al., 2014; Mehrholz et al., 2017; Agostini
et al., 2018; Bruni et al., 2018), is that each individual point of view
behind the creation of these methods is grouped into schools of
thought, or approaches, based on a fundamental understanding
of rehabilitation. This paper systematically reviews the different
methods used by scientists to study and rehabilitate gait in
humans and discusses the gaps in research that have yet to be
filled, prompting potential new directions in the field. These
schools of thought are the desired goal and type of interaction,
the physical implementation of the method, and the neural
mechanisms that are intended to be targeted or evoked, as
depicted in Figure 1. There are many different tools and ways
of thinking about gait rehabilitation, so within each school of
thought, some of the gaps left behind are put forth.

2. INTERACTION GOAL AND TYPE

Each rehabilitation technique and system known today can fall
under many different categories depending on differing points
of view. One distinction can be made in the area of how the
method will interact with the subject based on the goal of the
therapy. For example, the most popular developments use some
sort of physical connection between the subject and the machine.
Furthermore, there is another distinction made in the objective
of this interaction. In all cases, this physical interaction can be
grouped according to if the interaction is intended to correct
the subject’s pathological gait, or if it is intended to perturb, or
induce error into the gait. There has also been some research
into methods that do not directly interact with the patient’s
gait in a physical way, but offer a form of rehabilitation in a
strictly informational or communicative way. The majority of
the current methods should fit into these three ways of thinking
sub-categories, as it is further discussed below.

2.1. Error Correction via Physical
Interaction
The human gait is often thought to be the result of complex
sensori-motor neuro-mechanical systems that use real-time
feedback to control the different muscle groups. The main
objective of this controller is to produce a steady state walking
pattern, considering any errors produced by the internal sources
such as muscle spasm or overshoot, and external sources such as
ground stiffness changes or interaction forces. In patients with
post-stroke hemiplegia, there is a loss of coordination in muscle
activations in certain muscle groups, or synergies on one side
of the body. This causes the gait patterns in those individuals
to exhibit common undesired traits such as drop-foot (Krebs
et al., 2008). An idea that has been proposed in the past is to try
to minimize those undesired activation patterns through robot-
assisted rehabilitation. The long-term objective of the robotic
intervention in that framework is to minimize the difference
(error) between the normal and the paretic movement of the
limb, while increasing repeatability and intensity of training. In
general, this is through augmenting and precisely automating
movements that would normally be followed through manually
by a physical therapist. Thus, use of a robotic system minimizes
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FIGURE 1 | Depiction of the proposed organizational chart of existing robot-assisted stroke rehabilitation methods.

therapist fatigue and increases repeatability (Freivogel et al., 2009;
Peurala et al., 2009).

Early methods developed were in the form of systems
intended to allow for prolonged training sessions and reduced
therapist workload by automating the process of facilitating
gait patterns (Colombo et al., 2000, 2001; Belforte et al., 2001).
Many researchers use a trajectory tracking based approach to
gait training (Beyl et al., 2008). A robot with upper and lower
limb connections that allowed for walking velocity updates
through generated spatial motions on the sagittal plane for
each foot was developed by authors in Emken et al. (2005).
For ankle assistive devices, authors in Agrawal et al. (2005)
developed an ankle-foot orthosis to assist the tibialis anterior
muscle in maintaining proper foot position for subjects with
ankle flexion/extension control and inversion/eversion control.
To avoid imposing constraints on naturalistic walking due
to a robot’s kinematic structure, the work in Aoyagi et al.
(2007) suggests assisting the pelvic motion during stepping, and
providing a type of compliant assistance to avoid perturbed
rather than assisted stepping. This was intended to be a compliant
robot that could act either in aid of the trainers, or in place
of them if desired, and tailored the desired trajectory for each
subject. Authors in Bharadwaj et al. (2005) and Bharadwaj and
Sugar (2006) also emphasized repetitive task training as an
effective form of rehabilitation for people suffering from stroke
and presented an ankle rehabilitation method based on a tripod
mechanism which moves the ankle in dorsiflexion/plantarflexion
and inversion/eversion.

Some implementations for the seated position were presented
in Bouri et al. (2009) and Chisholm et al. (2014) and then
for the standing position through a deambulator mechanically
interfaced with the verticalized orthoses (Bouri et al., 2006).
Many methods use velocity or moment control (Chen et al.,
2009) or an idea of feedback control of joint trajectories through
modulated friction brakes (Farris et al., 2009a), which are used

in conjunction with electrical stimulation. This unidirectionally
couples hip to knee flexion and aids hip and knee flexion with a
spring assist (Farris et al., 2009b). Specifically used for stair ascent
and descent, powered assistance in the sagittal plane at both hip
and knee joints and can be used in conjunction with an ankle foot
orthosis (Farris et al., 2012) or functional electrical stimulation
(FES) (Ha et al., 2012, 2016). Studies suggest walking with error
correcting devices such as an exoskeleton provides increase in
walking speed and a concomitant decrease in required exertion
relative to walking with other knee-ankle-foot-orthoses (Farris
et al., 2014).

Another ankle robot (Forrester et al., 2013) uses an internal
model-based adaptive controller that both accommodates
individual deficit severities and adapts to changes in patient
performance. In general, the main purpose of an ankle-based
system is to prevent slapping the foot after heel strike, and
to control the ankle joint to actively minimize the fore foot
collision with the ground (Hwang et al., 2006). This can be
achieved by lifting the foot during swing but supporting further
gait movements by controlling of the center of mass (Hesse
et al., 2000). This system was later adapted to simulate level
floor walking as well as climbing up and down stairs (Hesse
et al., 2010). These systems intend to simulate gait-likemovement
through simulating stance and swing phases.

2.2. Error Augmentation via Physical
Interaction
Many researchers have approached rehabilitation with the notion
of a subject learning his or her own walking pattern through
unexpected physical contact made to him or her, which elicits a
reaction response in order to correct for the disturbance. It has
been shown that individuals with cerebral damage from stroke
have a normal capacity to make both reactive and predictive
locomotor adaptations during walking (Choi and Bastian, 2007).
The idea here is that neural plasticity is evoked through the brain
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attempting the gait correction in response to the disturbance.
The brain perceives the error through various senses and neural
pathways in the body and corrects based on this feedback.
Typically, this still involves repetitive and frequent trials in order
for a long-term effect to be realized in many cases.

An early example of this interaction method is the work
presented in Girone et al. (2001), where a Stewart platform
supplies resistive forces in response to virtual reality-based
exercises. Error inducing methods are meant to manipulate
human stepping, but can be used to study the mechanical
properties of different joints as well (Roy et al., 2007). Another
early implementation that emphasizes back-driveability and force
generation capability shows that this method can induce motor
adaptation and long-term after-effects (Reinkensmeyer et al.,
2003). Many robotic tools provide different assistance levels, but
also may havemodes that challenge the subject’s posture (Peshkin
et al., 2005), elicit a stumbling like response (Schmidt et al.,
2005a), regulate force feedback (Barkan et al., 2014), or induce
perturbations (Schmidt andWerner, 2007) and resistance (Saglia
et al., 2009; Klarner, 2010). In some cases, force-field-based
perturbations can cause a subject to adapt to the applied field and
follow normal gait pattern until it is turned off (Koopman et al.,
2013). In other cases, these perturbation-based methods attempt
to induce error by unexpectedly removing the perturbations and
observing the after-effects (Reinkensmeyer et al., 2014), during
treadmill training (Skidmore et al., 2015) or over-ground walking
(Martelli et al., 2019). The idea of augmenting the error feedback
is also shown to reduce some asymmetries in gait (Bishop et al.,
2017). Even after therapeutic intervention, counteracting force
perturbations can lead to improved responses for real-world loss
of balance in regular life (Matjačić et al., 2018) by applying these
force perturbations in a controlled setting (Olenšek et al., 2018).

2.3. Feedback via Non-physical Interaction
The third distinction is made for methods of rehabilitation that
do not directly interact with the subject in a physical manner.
This means that there are no corrections or perturbations evoked
directly or indirectly through the senses. This is much less
common but is emerging and can have the benefit of a greater
patient independence. One of the ways to do this is by having a
socially assistive robot that will give some sort of informational
feedback to the subject through audio or visual means (Matarić
et al., 2007). While this informational feedback is often coupled
with physical contact in some way, it is worth mentioning
briefly on the aspects of the non-physical method. Self-training
is a relatively new method for rehabilitation that is augmented
with robotic assistants that guide and observe patients during
tasks (Gross et al., 2014). This comes with the challenge of
the navigation and perception of humans and human behavior
(Losey and O’Malley, 2019). Described as socially assistive, these
robotic platforms describe a modern thought process for the role
of robots in stroke therapy for survivors that have standing and
walking mobility (Feil-Seifer and Matarić, 2005).

Another non-physical method for rehabilitation could be
communicating information to the subject about how the subject
is progressing in terms of his or her gait by making gait data
accessible for self-correction. This informational feedback can be

data provided to a subject to influence the rehabilitation process
in some way. The distinction is made when the information
is in the form of meaningful data that the subject can use in
independent, self-driven rehabilitation, potentially post-therapy.
This can include displaying movement patterns throughout
the day and comparing with daily goals or informing the
overall physical progress statistics of the subject. To achieve
improvements in all phases of therapy, supplementing the patient
with his or her own data is a potential addition in stroke therapy.

3. PHYSICAL IMPLEMENTATION

The second of the three categories that this paper uses for
grouping the robot-assisted gait rehabilitation approaches, is the
physical way in which each method is implemented. Even if
the type of interaction is non-physical, the implementation of
this method still has a physical attribute. Any robot-assisted
rehabilitationmethod should fit into one of the following physical
implementations. Many of these implementations assist physical
therapists either in determining progress or in alleviating the
strain of high intensity and repetitions by automating the therapy
process. It should be noted that one physical implementation can
use more than one idea from the Type and Goal of Interaction
subcategory; consequently, this is where many gaps can be found.

3.1. Body Weight Support
Body weight supported training has been used in many studies
in the past. Typically coupled with a treadmill, a body weight
support allows the therapist to take a varying degree of weight
off of the subject (Bouri et al., 2006; Seo and Lee, 2009). This
is often used to minimize the effects of balance impairments
or when the patient is unable to independently support his or
her own weight (Stauffer, 2009). Perhaps the earliest form of
mechanically augmented rehabilitation is the use of an over-
ground body weight support (Hesse et al., 1999) as opposed to
other techniques that may use body weight support in treadmill
training. This includes a body weight support system that is
connected to a base with wheels for mobility when a treadmill
may not be desired (Peshkin et al., 2005). In general, proper body
weight support is provided to reduce the balance and postural
control mechanisms for both treadmill (Skidmore et al., 2014)
and over ground studies (Peshkin et al., 2005).

3.2. Foot Plates
Many early physical approaches use only a foot attachment for
rehabilitation and for exercise studies (Homma andUsuba, 2007).
This has the benefit of being applied while a patient is in the early
stages of stroke who may be bedridden (Monaco et al., 2009)
or wheelchair bound (Hesse and Werner, 2009). Early systems
may call these “haptic interfaces” (Girone et al., 2001), however
this term is too broad for modern robotic classifications. With
physical therapist assistance, high intensity training with these
can lead to better gait ability (Hoölig et al., 2007). These can also
apply assistive and resistive training (Saglia et al., 2009). The foot
plate approach differs from other robotic methods in that only
the foot is attached to the external device (Schmidt et al., 2007).
This can have the impression of acting as a robot that actuates
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the foot in a Cartesian space, rather than in a joint space (Tsoi
and Xie, 2008). These are typically actuated to move the foot
into a trajectory (Freivogel et al., 2008) but can also perturb the
normal walking pattern by using error inducing ideas. Since only
the interaction with the foot is controlled, the foot plates have
the advantage of being able to simulate different walking surfaces
such as stairs (Hesse et al., 2000, 2010; Yano et al., 2010), inclines
and uneven surfaces (Iwata et al., 2002). Some foot plates are also
in the form of stationary platforms that allow the patient to sit
(Bouri et al., 2009) or stand (Boian et al., 2005) in place and can
aid in balance (Ding et al., 2010). Individuals who are not able to
support their full body weight onto the legs benefit from the foot
plate approach.

3.3. Exoskeletons and Powered Orthoses
The largest subcategory and the one that has received the most
attention in the area of rehabilitation for many neurological
disabilities including stroke is the exoskeletons and powered
orthoses category. Many of the ways rehabilitation attempts
are made is through an exoskeleton or a powered orthosis.
These attach to the leg of the subject and induce an actuated
torque directly on one or more of the joints (Veneman et al.,
2007). This is most often used in conjunction with motors
and some form of a controller to actively provide precise joint
torques. Depending on the desired interaction goal, these can
be used over ground (Murray et al., 2014) or in conjunction
with a treadmill (Jezernik et al., 2003), and can have improved
functional outcomes results in different aspects of motor recovery
(Hornby et al., 2005; Heller et al., 2007; Mayr et al., 2007; Hidler
et al., 2009; Chang et al., 2012; Krishnan et al., 2012; Nilsson
et al., 2014; Kim et al., 2015). With over-ground systems, much
of the focus has been on compactness (Farris et al., 2011a), and
trajectory (Farris et al., 2011b). It should also be noted that
some exoskeletons focus on spinal cord injured patients and have
mechanical design and control attributes that can transfer to
stroke rehabilitation as well. Seated implementations also have
potential for reducing ankle impairment, as well as studying the
effects of varied feedback on lower extremity motor learning
(Forrester et al., 2011).

Recently, interest has been drawn in the design of interfaces
that can use internal body measurements or intentions while
walking, such as electroencephalography (EEG) signals (He et al.,
2014) or surface electromyography (EMG) signals (Ferris et al.,
2006). These types of systems, such as a brain-computer interface
(BCI), offer an alternative, internal-based method for accessing
information about the human body. The goal of using these
implementations is to use this neuro-physiological information
to provide control-relevant information for a rehabilitation robot
to make decisions considering force and timing for movement.
Surface EMG has been used in the control of trajectories of full
leg manipulation systems (Kawamoto and Sankai, 2007) and
ankle foot systems (Ferris et al., 2005) for rehabilitation. These
provided non-FES aided gait, as opposed to earlier methods
(Goldfarb et al., 2003) that were mainly designed to just provide
significantly better trajectory control and to reduce muscle
fatigue when compared to FES-only gait. Current and future
implementations of this neuro-physiological information have

the challenge of overcoming signal variability, classification
algorithm robustness, and quantifiable performance feedback
indicators (Tariq et al., 2018). Current advances in EMG and EEG
analysis have led to broad applications of this control approach
in rehabilitation robotics, however these challenges still require
solving for thesemethods to become viable parts of rehabilitation,
especially in exoskeleton and orthosis implementations
(Ison and Artemiadis, 2014).

Soft actuation has the advantage of providing a more
compliant way to interact with natural human morphology
and biomechanics (Ortiz et al., 2017). Some successful robotic
exoskeletons have even been redesigned as a version using
cable routing instead of rigid links (Hidayah et al., 2018).
Utilizing soft robotics techniques, a reduction in size and weight
can also be achieved (Jin et al., 2018). As demonstrated in
Awad et al. (2017), a low assistance soft exosuit that functions
in synchrony with a wearer’s paretic limb could facilitate an
immediate increase in the paretic ankle’s swing phase dorsiflexion
and increase in the paretic limb’s generation of forward
propulsion. These improvements can result in a significant
reduction in forward propulsion inter-limb asymmetry and
reduced the energy cost of walking in ambulatory individuals
after stroke, which is an important factor in both lower-
and upper-limb soft rehabilitation robot designs (Xiloyannis
et al., 2019). These compliance and comfort based systems
have shown considerable advantages over traditional rigid
exoskeleton designs, and have shown the ability to have
similar beneficial outcomes such as increased foot clearance in
stroke patient studies (Di Natali et al., 2019). Soft actuation
and interfaces have a very promising future in lower-limb
robot-assisted rehabilitation.

A powered leg orthosis applies suitable forces to move the
leg on a desired trajectory using an assist as needed force-field
controller and linear actuators at hip joint and knee joints in
Banala et al. (2007b,a). This approach resists undesirable gait
motion and provides assistance toward the desirable motion
by applying forces at the foot of the subject (Banala et al.,
2009). Furthermore, the work in Banala et al. (2010) showed
that subjects with a force-field based control and with visual
guidance produced considerable adaptation of their normal gait
pattern toward the prescribed gait pattern when compared to
a separate group receiving only visual guidance. An assist-
as-needed paradigm with visual feedback is also a promising
application for force-field based control methods in exoskeletons
(Srivastava et al., 2015). Another active ankle-foot orthosis
presented in Blaya and Herr (2004) tests the idea of modulating
impedance of the orthotic joint throughout the gait cycle to
treat drop-foot gait. Implementing an adaptive trajectory control
to guide a patient’s limb within a desired path (Bortole et al.,
2013) allowed a deviation based on torque of interaction between
the user and the system. This also used an admittance control
strategy that allows the robotic platform to capture the user’s
movements during assistive training and replicates it during
active training. Experimental results show that an exoskeleton
can adapt a pre-recorded gait pattern of a specific user that can
be adjusted by clinicians, then updated (Bortole et al., 2015) for
future experiments.
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3.4. Treadmill Training
Many of the exoskeleton implementations also make use of a
treadmill for training in order to keep certain variables consistent,
such as average walking speed. However, treadmill training
can be used without use of any direct attachment or robotic
device. The treadmill allows for the execution of many walking
cycles in a relatively small and controlled space (Hesse, 2008).
This allows for any sensors, motion capture camera systems or
other data gathering systems to be placed near the subject for
local experiments and trials. Training with a split-belt treadmill
gives the ability to study of short-term motor adaptations when
walking (Skidmore and Artemiadis, 2015), which have been
shown to have improved long-term effects in post-stroke gait
(Reisman et al., 2012).

3.5. Goal-Directed and Task-Oriented
Training
Many treadmill-based systems have specialized functions that
apply changes to the walking surface. Goal-directed movements
that force the subject to produce specific movements can evoke
muscle activity that may not be shown during normal, level
ground walking. One type of non-conventional surface change
used in rehabilitation is speed or direction variation. This is
shown by authors in Choi and Bastian (2007) that set both sides of
a split-belt treadmill to different speeds or in opposing directions,
showing the ability of human motor adaptation. The authors in
Choi and Bastian (2007) used a split-belt treadmill to induce
motor adaptation by setting both sides of the belt to different
speeds and in opposing directions. This technique has been
shown to also increase gait speed when coupled with a Virtual
Reality (VR) environment (Fung et al., 2006). Furthermore,
inducing an unexpected acceleration of the trailing limb can
have an increase in propulsive forces, which is a common
metric for assessing walking ability (Farrens et al., 2019). This
study also allowed the user to actively change the treadmill
speed in real time, which has also shown promise of higher
walking speed in stroke patients (Ray et al., 2020). Another
split-belt treadmill training method that unilaterally changes
the walking surface compliance has been shown to provide
insight into the role of sensory feedback in perturbed gait, while
highlighting mechanisms of inter-leg coordination (Skidmore
and Artemiadis, 2016b,a). A change in slope, whether simulated
with a tether (Hollerbach et al., 2001), implemented in foot plates
(Iwata et al., 2002), or an actual change in level of a treadmill
(Eng and Fang Tang, 2011), can be used tomanipulate intensity of
gait training and give another way to offer task-specific, eccentric
therapy (Basso et al., 2018). Stair climbing is another intensive
training method that has been tested (Hesse et al., 2010). A goal-
directed or task-oriented therapy can be coupled with visual
feedback to produce resulting muscle changes through obstacle
avoidance or through targeting muscle activation objectives
on a screen.

3.6. Electrical and Magnetic Stimulation
Instead of implementing robotic systems to interact with
the subject, Functional Electrical Stimulation (FES) has been
proposed to implement electrical excitation directly onto the

muscle. When coordinated, induced muscle contractions can
be useful for drop-foot prevention (Peckham and Knutson,
2005). This is used in some exoskeletons for spinal cord injured
individuals (Schmitt et al., 2004; Farris et al., 2009a,b; Quintero
et al., 2010, 2012; Ha et al., 2012, 2016), and to study the effects
of synchronization while walking (Dohring and Daly, 2008). FES
may improve the fitness and strength of stroke patients who still
have a level of voluntary control (Tong et al., 2006). Moreover,
it has been shown to produce positive results when used in
conjunction with a treadmill (Hesse et al., 1995).

Transcranial Magnetic Stimulation (TMS) depolarizes cortical
nerve membranes and discharges groups of neurons by an
induced magnetic field near the cortex of the brain (Lamontagne
et al., 2007). The Motor Evoked Potential (MEP) recorded in
muscles has been studied in the past (Lotze et al., 2003; Forrester
et al., 2006, 2009). This method has been used early on to study
H-reflex (Petersen et al., 1998), stretch reflex (Shemmell et al.,
2009; Zuur et al., 2009), and transcortical reflexes (Christensen
L.O.D. et al., 2000). This disruption of electrical transmissions
in the brain is generally considered safe and reversible (O’Dell
et al., 2009). TMS and other transcranial stimulations have shown
limited use in long-term post-stroke gait rehabilitation, but they
can provide new opportunities to study supraspinal mechanisms
and cortical activations that might provide useful insight for gait
rehabilitation (Lamontagne et al., 2007).

4. TARGETED SENSORIMOTOR
PATHWAYS

Stroke rehabilitation relies on the ability of the brain to recover
through neuroplasticity. Neuroplasticity occurs when brain cells
regenerate, re-establish, and rearrange neural connections in
response to the damage inflicted by a stroke. Specifically on
motor rehabilitation, physical therapy that engages sensori-
motor mechanisms sparks neuroplasticity, encouraging the brain
to correct mental and physical deficits (Morton and Bastian,
2006). This naturally places the third piece of the stroke
rehabilitation puzzle: finding, evoking, and manipulating the
neural mechanisms that take advantage of the brain’s plasticity.
Effective rehabilitation techniques maximize this neuroplasticity
to achieve an optimal outcome for each patient (Gassert and
Dietz, 2018). All rehabilitation methods should use ideas from
this category in order to close the gap between neuroscience-
based problems and engineering solutions.

4.1. Vision
Visual feedback has been utilized as a way provide sensory
input to supraspinal mechanisms related to either the subject’s
position or motion in space. Modalities that have been used
in the past focus on displaying spatial feedback (Unluhisarcikli
et al., 2011) such as position, trajectory, progress, or statistics
about movements, and typically entail moving a mechanical
device attached to the subject’s limb in order to hit some
type of on screen target (Forrester et al., 2013), to maintain
desired force (Forrester et al., 2006), or center of rotation
(Nalam and Lee, 2019). This encourages patients to improve
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their movements (Lunenburger et al., 2004) by activation
of targeted muscle groups in order to improve functional
outcomes. Those methods usually include video game-based
therapy methods to enhance visuo-motor coordination while
increase patient’s engagement (Deutsch et al., 2009). Lately,
Virtual Reality (VR) has been proposed as a more engaging
and effective way to stimulate visuo-motor pathways and induce
plasticity. This is a fast-growing way to implement a Virtual
Environment (VE) most commonly by attaching a headset over
the eyes, covering the entire visual space of the subject with
the virtual environment. With VR, only a program and headset
are required to interact with any physical setting, and can be
even implemented in tele-rehabilitation training (Deutsch et al.,
2007). People with disabilities including stroke show promise
of motor learning within virtual environments (Holden, 2005),
as well as increasing gait speed (Fung et al., 2006). However,
there is a need to better understand the neural mechanisms
that validates VR in the stroke rehabilitation field (Fluet and
Deutsch, 2013). With a trained therapist, these systems can be
used to “monitor, manipulate, and augment the users’ interaction
with their environment” toward functional recovery (Wade
and Winstein, 2011). This has recently been implemented as
a method for studying the effects of perturbations during gait
over ground (Martelli et al., 2019), and showed promise when
coupled with robotic implementations (Boian et al., 2002, 2005;
Mirelman et al., 2009). Typically supplementing rehabilitation
techniques already used, VR provides an environment that
would normally require a real world setting, increasing the
complexity in material set up. If a real-world environment is
desired, distinguished from virtual reality, augmented reality
places animated objects into the real-world environment. This
has the advantage of appearing more realistic to the user and
removes any disorientation stemming from VR environments.
Since this technology is relatively new, implementations for
rehabilitation that are coupled with various other physical
implementations and interaction goals are still waiting to
be discovered.

4.2. Audition
Supplementary feedback such as auditory could supplement or
replace vision for wearable systems (Roby-Brami and Jarrassé,
2018), but is also used for socially assistive robots. These can
use vocal cues to facilitate movement or provide encouragement
and discouragement behavior, and when combined with robotic
gestures, vocal grammar is an important part of interactions
with the real world (Feil-Seifer and Matarić, 2005). Another
application of auditory feedback is rhythmic auditory cueing.
This is an approach that synchronizes gait to a rhythm to improve
gait measures. There is moderate evidence of improved velocity
and stride length in stroke patients after gait training with
rhythmic auditory cueing (Winstein et al., 2016).

4.3. Equilibrioception
The sense of balance is another mechanism that is important
for walking that uses visual and auditory feedback, as well as
proprioception (Peshkin et al., 2005). The proprioceptive sense
includes various muscle afferents with origin in muscle spindles

and Golgi Tendon Organs (GTO’s). Proprioception is the sense
of having a known position of body parts relative to other
parts of the body through regulation of the muscle activation
amplitude during and in the switch between the gait phases
(Rossignol et al., 2006). Because the muscle spindles are in
parallel with the muscle, they provide accurate muscle length
and velocity feedback through neural channels. Similarly, GTO’s
are in series with the tendons of the muscles and sense the
muscle force. While the patient is performing either a static
or dynamic activity the authors in Khan et al. (2018) show a
system for posture training to reduce balance abnormalities by
providing proprioceptive haptic feedback. Center of pressure,
ground reaction forces and center of mass have been proven
to be used by the brain during locomotion. Center of pressure
is studied in a powered limb orthosis (Goldfarb et al., 2011)
for the control interface to offer effective ways of providing
sitting, standing, and walking functionality (Matjačić et al.,
2018). The interplay of visual and proprioceptive feedback has
also been shown through VR systems (Frost et al., 2015) with
promising results.

4.4. Cutaneous and Haptic Perception
Haptic feedback is growing in popularity as a possible way to
stimulate brain plasticity (Poli et al., 2013). The responses elicited
during haptic resistance exercises for healthy individuals (Stegall
et al., 2017) suggest that this feedback modality could be utilized
for rehabilitation. In fact, haptic feedback may even allow for
an increase in motor learning when compared to visual based
error amplification (Marchal-Crespo et al., 2019). This unique
modality has been shown to activate specific brain structures
involved in error-processing (Milot et al., 2018). Haptic feedback
has been used in lower limb exoskeletons for posture control
(Khan et al., 2018) and conveying feedback information about a
desired movement (Olenšek et al., 2018). This type of feedback
is also useful for training in bedridden patients (Chisholm et al.,
2014) and in this case, is especially useful in maintaining patient
engagement (Berezny et al., 2019).

4.5. Inter-limb Coordination Mechanisms
Human walking requires coordination of muscle activation
patterns between both legs, which seems to be achieved by
a flexible neuronal coupling at a spinal level, with each limb
affecting the behavior of the other (Swinnen et al., 2013).
Typically, the initiation of the swing phase of one leg requires
the contralateral leg to simultaneously be in the stance phase.
This inter-limb coordination has been shown to be supraspinal
based on muscle activation latency (Seiterle et al., 2015). From
previous works, it is evident that inter-leg coordination in
gait is a process that involves multiple feedback channels and
processing of those signals in multiple levels (Christensen L.
et al., 2000; Kuo, 2002; Dietz, 2003; Grillner, 2003; Nielsen,
2003; Rossignol et al., 2006; Yang and Gorassini, 2006; Choi
and Bastian, 2007; Field-Fote and Dietz, 2007; Forrester et al.,
2009; Grillner et al., 2008; Guertin, 2009; Norton, 2010; Petersen
et al., 2012). Even though hemiparesis is typically seen as
unilateral, almost all of the leg function is bilaterally organized
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through neural circuitry explained by inter-limb coordination
(Kautz and Patten, 2005).

Motivated by early studies of upper inter-limb coordination
(Dietz and Berger, 1984; Berger et al., 1987; Sparrow et al.,
1987; Kelso et al., 1979), quadrupedal inter-limb coordination
(Forssberg et al., 1980), running (Whitall, 1989), and intra-
limb coordination (Barela et al., 2000; Haddad et al., 2006;
Presacco et al., 2012), unilateral treadmill-based perturbations
have been used to study contralateral muscle responses (Dietz
et al., 1989; Artemiadis and Krebs, 2011a,b; Skidmore and
Artemiadis, 2017). Adults show adapted motor patterns of inter-
limb coordination when experimented on split-belt treadmills
with varying speeds on each side (Reisman et al., 2005). In the
context of hemiparetic gait rehabilitation, the study of inter-
limb coordination mechanisms might be of great significance. In
fact, it has been shown that neural coupling exists in poststroke
patients as it does in healthy subjects (Arya and Pandian, 2014)
and for the upper limbs as well (Yoon et al., 2010). In studies

with poststroke subjects with hemiparesis, it was found that
neural decoupling between the lower limbs perturbs the paretic
lower limb function (Kautz and Patten, 2005). It has been also
shown that forceful interaction with the non-paretic leg elicits
involuntary tension of the resting paretic leg where subjects
are supine (Poskanzer, 1972). The central controller requires
both locomotion patterns from spinal circuits, as well as neural
drive through a multitude of descending pathways, such as
proprioception (Poppele et al., 2003), that trigger desired gait
corrections from various sensory modalities (Frost et al., 2015).
Therefore, both the modeling of muscle activations (Skidmore
and Artemiadis, 2016c) and mapping of the brain areas that seem
to be involved (Debaere et al., 2001) in inter-limb coordination
should be delved into further. From these principles, it is
evident that understanding the sensorimotor network of inter-
limb coordination is of paramount importance toward providing
targeted rehabilitation to hemiparesis and improving the quality
of life of patients suffering from it.

FIGURE 2 | Example of a protocol that uses six components of the proposed organizational chart. A subject wearing a virtual reality headset (visual) while walking on
a split-belt treadmill with body-weight support (treadmill training, body weight support), is experiencing unexpected unilateral walking surface stiffness perturbations
(error augmentation), which specifically evoke contralateral leg responses (inter-limb coordination mechanisms) by disturbing proprioceptive and balance feedback
mechanisms (equilibrioception).
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5. SYNOPSIS AND FUTURE DIRECTIONS

The goal of the paper is to consider previous research on robot-
assisted rehabilitation through three different perspectives: the
goal and type of interaction, the physical implementation, and the
sensorimotor pathways targeted by the robotic devices utilized
in the past. Combinations of approaches across groups that
have not been attempted yet could lead to new approaches
with improved outcomes. As new technologies are developed
and new neural links to stroke affected patients are found, a
increasingly large number of combinations for implementing
these discoveries can be made using the proposed categorization.
In other words, the categorization method presented allows
for future scientists to fill research gaps with a more universal
thought process.

An example of how this categorization could lead to new
methods and approaches is illustrated in Figure 2. In this
method, inter-limb coordination mechanisms are targeted via
error augmentation disturbances in experimental setups that
include treadmill training with body weight support through
the interplay of visual and equilibrioception-based feedback. The
method above is based on preliminary studies that are already

being conducted with a novel device called the variable stiffness
treadmill (VST), shown in Figure 2. The VST is a split-belt
treadmill with which the compliance of the walking surface can
be interactively and dynamically controlled. The VST consists
of a spring-loaded lever mounted on a translational linear track
that can change the effective stiffness under the foot by moving
the linear track. An optical motion capture system monitors the
location of the foot in real-time to control the timing of the
stiffness perturbations throughout the gait cycle. The effective
stiffness of each side/belt of the treadmill can range from 61.7
N/m to theoretically infinite (i.e., rigid walking surface), in 0.13 s.
Furthermore, the resolution of the VST stiffness control is about
0.038 N/m (Skidmore et al., 2014, 2015).

According to the protocol followed in this study, a subject
wearing a virtual reality headset (visual) while walking on a
split-belt treadmill with body-weight support (treadmill training,
body weight support), is experiencing unexpected unilateral
walking surface stiffness perturbations (error augmentation),
that specifically evoke contralateral leg responses (inter-limb
coordination mechanisms) by disturbing proprioceptive and
balance feedback mechanisms (equilibrioception). Preliminary
results with these tools suggest that muscle and brain activity

TABLE 1 | Literature summary categorized via the proposed organization.
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MIT-Skywalker—Artemiadis and Krebs, 2011a,b; Seiterle et al.,
2015

• • • • • • •

Ankle robot—Saglia et al., 2009 • • •

BAR-TM—Matjačić et al., 2018; Olenšek et al., 2018 • • • • • •

VST–Barkan et al., 2014; Skidmore et al., 2014; Frost et al., 2015;
Skidmore and Artemiadis, 2015; Skidmore et al., 2015; Skidmore
and Artemiadis, 2016a,b,c,d, 2017

• • • • • • • • •

LOPES—Veneman et al., 2007; Koopman et al., 2013 • • • • • • • • • •

Active/Passive AFO—Barela et al., 2000; Blaya and Herr, 2004;
Agrawal et al., 2005; Hwang et al., 2006

• • • • • • • •

Anklebot—Roy et al., 2007; Forrester et al., 2011, 2013 • • • • • • •

KineAssist—Peshkin et al., 2005 • • • • • •

BWS treadmill—Hesse et al., 1999; Poppele et al., 2003; Haddad
et al., 2006; Choi and Bastian, 2007; Field-Fote and Dietz, 2007;
Petersen et al., 2012; Presacco et al., 2012; Reisman et al., 2012

• • • • • • • • •

NUVABAT—Ding et al., 2010 • • • • • •

Rutgers ankle—Girone et al., 2001; Boian et al., 2002; Deutsch
et al., 2007

• • • • • • •

The gait master—Iwata et al., 2002 • • • • • •

Lokomat—Colombo et al., 2001; Jezernik et al., 2003; Hornby
et al., 2005; Lunenburger et al., 2004; Mayr et al., 2007; Heller
et al., 2007; Dohring and Daly, 2008; Hidler et al., 2009; Klarner,
2010; Chang et al., 2012; Krishnan et al., 2012

• • • • • • • • • •

ARTHuR—Reinkensmeyer et al., 2003; Emken et al., 2005 • • • • •
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TABLE 2 | Literature summary categorized via the proposed organization (continued).
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HapticWalker—Schmidt et al., 2005a; Schmidt and Werner, 2007 • • • • • •

RMA—Boian et al., 2005 • • • • • • •

Trunk Support Trainer – Khan et al., 2018 • • • •

Lambda—Bouri et al., 2009 • • •

Gait Trainer—Hesse et al., 2000; Peurala et al., 2009; Hoölig et al.,
2007

• • • • • •

Vanderbilt lower limb exoskeleton—Farris et al., 2012; Goldfarb
et al., 2003; Ha et al., 2012, 2016; Farris et al., 2014

• • • • • • •

ALEX—Banala et al., 2007a,b, 2009, 2010; Srivastava et al.,
2015; Stegall et al., 2017; Hidayah et al., 2018; Jin et al., 2018

• • • • • • • • •

HAL—Nilsson et al., 2014; Kawamoto and Sankai, 2007 • • • • • • •

Lokohelp—Freivogel et al., 2008, 2009 • • • • • • • •

G-EO-Systems Robot—Hesse et al., 2010 • • • • • •

ViGGR—Chisholm et al., 2014 • • • •

JCO—Farris et al., 2009a,b; Quintero et al., 2010 • • • • •

Motion Maker—Schmitt et al., 2004 • • • •

DGO—Colombo et al., 2000 • • • • • •

PAM/POGO—Aoyagi et al., 2007 • • • • • •

WALKBOT—Kim et al., 2015 • • • • • • • •

WalkTrainer—Bouri et al., 2006; Stauffer, 2009 • • • • • •

RGT—Bharadwaj et al., 2005; Bharadwaj and Sugar, 2006 • • •

ANdROS—Unluhisarcikli et al., 2011 • • • •

Gait Rehabilitation Exoskeleton—Beyl et al., 2008 • • • •

LLRR– Chen et al., 2009 • • • • •

NEUROBike—Monaco et al., 2009 • • •

ROREAS—Gross et al., 2014 • • • •

is evoked on one leg when the stiffness of the walking surface
for the other leg is perturbed (Skidmore et al., 2014; Skidmore
and Artemiadis, 2015, 2016a,d). The specific outcomes targeted
in this study include evoked activity on the ankle muscles
of the unperturbed leg, which is very encouraging since this
can provide solutions to the problem of drop-foot that most
impaired walkers suffer from, and it is the leading cause
of after-stroke falls. Recent findings with hemiplegic walkers
provide strong evidence that a new method for providing gait
rehabilitation could entail evoking activity on the paretic side
by introducing unilateral perturbations on the healthy side of
hemiplegic walkers (Skidmore and Artemiadis, 2016b, 2017).
Therefore, the combination of this type of interactive treadmill
system with a variety of specifically timed physical perturbations
can significantly broaden our scientific understanding of gait
and can open new avenues of research in rehabilitation
focusing on the neural and mechanical coupling of the legs,
while going beyond the single-leg intervention approaches
currently followed.

The above combination of methods and approaches is not
unique, and by no means exclusive to what needs to be
included in a comprehensive approach in gait rehabilitation.
Ideally, selection of approaches ought to be done in the context
of a review of gaps and weaknesses found in the empirical
evidence. These gaps can be identified using the categorization of
approaches this paper introduces. More specifically, Tables 1, 2
provide a comprehensive list of devices and methods used in the
past for gait rehabilitation, and how these previous studies can
be categorized based on the proposed perspective1. Moreover,
the tables show if the devices have been tested with patients
or not. Although the effectiveness of each approach is not
mentioned—and is quite difficult to be assessed and compared
across studies—it is important and useful to the future researcher

1It must be noted that the entries in the Tables 1, 2 are organized in terms of the
device used, and how each device makes use of the components discussed in this
review paper. When a device has been used in multiple previous works or studies,
the cumulative set of components across all papers listed is shown at the tables.

Frontiers in Neurorobotics | www.frontiersin.org 10 April 2020 | Volume 14 | Article 19116

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Hobbs and Artemiadis Review of Robot-Assisted Lower-Limb Stroke Therapy

to be able to see how each device or method uses the components
of the three categories discussed here, and identify gaps and
potential opportunities.

In conclusion, this paper provides a potential solution to
the overwhelming number of gait therapy methods based
from the need for utilizing the methods that work and
combining them in organized ways to produce new methods,
which can potentially have improved outcomes. An example
of using this categorization to come up with new methods
for rehabilitation, such as perturbation-based approaches using
inter-limb coordination mechanisms, is demonstrated. However,
this is only one of the possible seeds of new approaches that
could sprout from this framework. The authors strongly believe
that this new perspective of mixing and matching hardware,
procedures, algorithms, and intended neural pathways could lead

to more focused research and eventually significant advances in
lower-limb robot-assisted stroke rehabilitation.
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Brain-Computer Interface (BCI), in essence, aims at controlling different assistive devices

through the utilization of brain waves. It is worth noting that the application of BCI is

not limited to medical applications, and hence, the research in this field has gained

due attention. Moreover, the significant number of related publications over the past

two decades further indicates the consistent improvements and breakthroughs that

have been made in this particular field. Nonetheless, it is also worth mentioning

that with these improvements, new challenges are constantly discovered. This article

provides a comprehensive review of the state-of-the-art of a complete BCI system.

First, a brief overview of electroencephalogram (EEG)-based BCI systems is given.

Secondly, a considerable number of popular BCI applications are reviewed in terms

of electrophysiological control signals, feature extraction, classification algorithms, and

performance evaluation metrics. Finally, the challenges to the recent BCI systems are

discussed, and possible solutions to mitigate the issues are recommended.

Keywords: brain-computer interface (BCI), electroencephalogram (EEG), machine learning, classification, feature

extraction

INTRODUCTION

Communication, or social interaction, is one of the key principles of human civilization. This
quality enables one to share emotions, expectations, and creative thoughts amongst human
beings. In the event that this communication is established through speech, gesture, or writing,
human communication becomes easier and devoid of constraints. Nonetheless, people who are
suffering from locked-in syndrome do not have the aforementioned options for interaction.
Patients with locked-in syndrome could not interact or express themselves, although they
are well-cognizant of things around them (Ashok, 2017). Amyotrophic lateral sclerosis (ALS),
cerebral palsy, brain stem stroke, multiple sclerosis, cerebral palsy, and spinal cord injury
are the main causes of locked-in syndrome (Holz et al., 2013). It is almost impossible for
a person who is affected by the locked-in syndrome to communicate with other persons,
and hence, Brain–Computer Interface (BCI) is a promising means to furnish them with
basic communication abilities. Fundamentally, the human brain and devices are interfaced
through the concept of BCI in which the users will have to generate a variety of brain waves
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that will be recognized and converted into commands to the
devices (Volosyak et al., 2017). In its earlier days, researchers
intended to use this technology to develop assistive devices for
medical purposes only. Nonetheless, the employment of this
technology has expanded, and it has found its way into non-
medical applications. It is discernible that over the last 15 years,
a considerable number of original articles as well as reviews
have been published on BCI. An excellent review article on BCI
spelling systems was published in Rezeika et al. (2018), giving
a concise description of some successful recent BCI spelling
models, including their categories, methodologies, and results.
The authors also listed some limitations of the current systems
as well as making recommendations for directions that could be
pursued to overcome the issues. However, it is worth mentioning
that the content of the review emphasized and was restricted
to only BCI spellers. There are other notable BCI reviews that
cater to specific applications, for instance, wheelchair control
(Fernández-Rodríguez et al., 2016; Al-qaysi et al., 2018), BCI
mobile robot (Bi et al., 2013), emotion recognition using EEG
(Al-Nafjan et al., 2017), biometrics (Del Pozo-Banos et al., 2014;
Alariki et al., 2018), and virtual reality and gaming (Kaplan
et al., 2013; Ahn et al., 2014; Cattan et al., 2018). Nevertheless,
some pertinent information was missing or not duly reported,
for instance, descriptions of methodology and evaluation metrics
employed, and/or future directions of the research.

Electroencephalogram (EEG) control signals and their
classifications have been briefly discussed in an excellent review
(Ramadan and Vasilakos, 2017). The authors reviewed state-
of-the-art BCI solutions with regards to both hardware and
software; however, it was noticeable that the applications, as
well as the signal processing methods, were not taken into
consideration. Likewise, Hwang et al. (2013) have summarized
articles related to EEG-based BCI systems published from 2007
to 2011. Notwithstanding, the review did not entirely reflect the
current state-of-the-art and did not provide any future directions
for the research. Conversely, in Abdulkader et al. (2015), the
fundamental aspects that cover the wide spectrum of EEG-based
BCI systems were reviewed; however, the number of articles
reviewed was rather limited. Lotte et al. (2007) provided a review
of the classification algorithms used in EEG-based BCI systems
up to 2006. In their second review (Lotte et al., 2018), the
application of machine learning algorithms used on BCI systems
from 2007 to 2017 was reviewed. In both articles, the authors
surveyed EEG control signals, features, classification methods,
and classification accuracy. Moreover, the authors provided some
guidelines on selecting the appropriate classification algorithms;
nonetheless, the articles lacked evaluation of the performance
metrics. A review on portable and non-invasive modalities such
as EEG-, functional transcranial Doppler (fTCD)-, and near-
infrared spectroscopy (NIRS)-based hybrid BCI was reported in
Banville and Falk (2016). Twenty-two items were investigated
from 55 journal articles published between 2008 and 2014.
The authors reviewed non-invasive modalities, EEG control
signal, experiment protocol, signal processing methods, and
system evaluation, as well as shedding some light on future
directions for EEG-based BCI research. However, a comparison
of the experimental results between the BCI applications or EEG

modalities were notmade available, and a similar observation was
also noticed in Abiri et al. (2019).

Therefore, the objectives of this article are to review EEG-
based BCI systems with regards to the different brain control
signals, feature extraction methods, classification algorithms, and
evaluation metrics utilized. Moreover, a concise overview of
EEG-based BCI systems is presented here so that the reader(s)
may select the most appropriate method for a specific BCI
system. In addition, related research gaps that warrant further
exploration are also presented in this paper. Of note, salient
problems associated with EEG-based BCI systems are listed in
terms of its applications, and possible solutions to mitigate the
issues are also recommended. Moreover, this review, unlike other
published review articles with regards to EEG-based BCI systems
that were specific in nature, particularly with respect to either
its specific applications or part of the methodology employed
(e.g., feature extraction, signal processing, and classification,
amongst others), provides a more comprehensive overview that
can easily be comprehended by the readers to identify the
gaps in the body of knowledge. This article is structured in
the following manner: section Essential Components of BCI
Technology presents a brief discussion on BCI overview, section
Popular EEG Based BCI Applications Aspect illustrates the
review of popular EEG-based BCI applications, section Current
Challenges and Directions discusses the challenges, giving
recommendations, section Conclusion draws the conclusion of
the present review paper.

ESSENTIAL COMPONENTS OF BCI
TECHNOLOGY

Brain–Computer Interface (BCI) is an effective as well as
a powerful tool for user-system communication. Through
this system, from the issuance of the commands to the
completion of the interaction, no external devices or muscle
intervention is required (Van Erp et al., 2012). Nicolas-
Alonso and Gomez-Gil (2012) defined brain–computer interface
(BCI) or brain–machine interface (BMI) as a hardware and
software communications strategy that empowers humans to
interact with their surroundings with no inclusion of peripheral
nerves or muscles by utilizing control signals produced from
electroencephalographic activity. Every BCI system essentially
consists of five components: brain activity measurement,
preprocessing, feature extraction, classification, and translation
into a command (Mason and Birch, 2003). Figure 1 depicts a
typical block diagram that illustrates the different stages of EEG
signal processing for BCI. In the brain activity acquisition phase,
the brain activity from the targeted user is captured through
the various types of EEG sensors (Wolpaw et al., 2006). The
raw EEG data includes a variety of artifacts, and these artifacts
are eliminated in the pre-processing phase (Bashashati et al.,
2007a). Feature extraction aims at describing the signals by a
few relevant values called “features;” often, at this stage, the
selection of significant features is also investigated (Bashashati
et al., 2007a). The extracted features are then classified through
different machine learning and deep learning algorithms in the
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FIGURE 1 | General architecture of a brain-computer interface.

classification phase (Lotte et al., 2007). Finally, the classified
outcomes are translated into device commands to develop real-
life BCI application (Kubler et al., 2006).

Branches of BCI Technology
Generally, BCI frameworks may be separated into a number
of classes. Figure 2 illustrates the three categorization schemes,
namely by dependability, recording technique, and method of
operation (Lotte et al., 2015). Regarding dependability, BCI can
be classed as either dependent or independent BCI. Dependent
BCIs require some form of motor control by the user or healthy
subjects, for instance, gaze control (Lalor et al., 2005). MI-
based BCIs are an ideal example of dependent BCI systems and
have been extensively utilized. Conversely, independent BCIs
do not require any form of motor control by the user; this
type of BCI is ideal for stroke patients or severely impaired
patients. In Tello et al. (2016), an SSVEP-based independent BCI
system was proposed to identify two different targets, and it was
demonstrated to be successful.

With regard to recording method, BCI can be categorized
into invasive and non-invasive. Microelectrode arrays are often
required to be implanted inside the skull for invasive BCIs.
Two common invasive modalities that have been reported in
BCI research are intracortical recording and electrocorticography
(ECoG). Conversely, if the brain signals are acquired by means
of sensors placed on the scalp, it is known as non-invasive BCI.
Amongst the non-invasive modalities often utilized are EEG,
MEG, PET, fMRI, and fNIRS. In BCIs, EEG is the most widely
employed non-invasive modality, where a variety of control
signals, including SCP, SSVEP,MI, ErrP, and P300, can be evoked.

Finally, BCI can have either a synchronous or asynchronous
mode of operation. The interaction between the user and the
system may be either time-dependent or time-independent. In
the event that the interaction is carried out within a certain period
of time upon a cue imposed by the system, then the system is
known as synchronous BCI. In contrast, in asynchronous BCI,
the subject can generate a mental task at any period of time to
interact with the application. In comparison with asynchronous
BCI, synchronous BCIs are not user-friendly, but designing such
a system is much easier than for asynchronous BCI (Bashashati
et al., 2007b).

Brain Activity Measurement Modalities
To avoid the risk of surgery, most BCI researchers prefer the
non-invasive approach. EEG, MEG, PET, fMRI, and fNIRS are
among the non-invasive modalities that are often utilized. The
selection of the measurement method depends on a variety of
parameters, for instance, spatial resolution, temporal resolution,
invasiveness, measured activity, cost, and portability, amongst
others. Owing to its desirable traits, namely high temporal
resolution, low cost, ease of portability, and non-invasiveness,
EEG is the most commonly employed neuroimaging modality
among BCI researchers.

EEG records voltage fluctuations due to the flow of ionic
current during synaptic excitations in the neurons of the brain
(Baillet et al., 2001). In this modality, electrodes are attached to
the scalp to obtain brain signals. Its non-invasive and inexpensive
characteristics havemade EEG themost popular modality among
the BCI research community. The electrode number varies from
1 to 256 for different EEG headsets. The measured EEG signal is
the voltage difference between the active and reference electrode
over time, with its amplitude in micro-volts (µV). Generally, the
EEG amplitude ranges from −100 to +100 microvolts. The EEG
signals can be categorized according to frequency bands, and
each of these bands has specific biological significance. The EEG
frequency bands with relevant characteristics are listed in Table 1

(Wang et al., 2016).

EEG Control Signals Used in BCI
Applications
Some neurophysiological EEG signals have been decoded to
enable the BCI to understand the subject’s intentions, and these
signals are known as EEG control signals. BCI aims to identify
the specific neurophysiological signals of a given subject in order
to associate a command to each of these signals. Some of these
control signals are relatively easy to identify, as well as being
relatively easy to control by the user. The extensively utilized
EEG control signals include SCP, P300, MI, MRCP, ErrP, SSVEP,
SSAEP, and SSSEP.

The movement-related cortical potential (MRCP) is a low-
frequency negative shift in the EEG recording that takes place
∼2 s prior to the production of voluntary movement. MRCP
replicates the cortical processes employed in the planning and
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FIGURE 2 | Classification of BCI systems in terms of dependability, recording method, and mode of operation.

preparation of the movement (Shakeel et al., 2015). It is mainly
beneficial for those BCI applications where the delay between the
intention to act and the feedback from the system is crucial to
induce plasticity.

The error-related potential (ErrP) has recently been utilized
as an ERP component that can be used to correct BCI errors.
The ErrP occurs when there is a mismatch between a subject’s
intention to perform a given task and the response provided by
the BCI (Abiri et al., 2019). For instance, if a user wishes to move
a cursor from the middle of a monitor to the left side of the
monitor but the cursor erroneously moves to the right, an error-
related potential will be generated. The ErrP is most pronounced
at the frontal and central lobes. The delay and non-stationarity
characteristics of this signal are still a challenge for real-time BCI
implementation (Abiri et al., 2019).

Spontaneous signals are generated voluntarily by the
user, without external stimulation, following an internal

cognitive process. The most typical spontaneous signals used
are undoubtedly sensorimotor rhythms. However, other
neurophysiological signals have been used, such as slow cortical
potentials or non-motor cognitive signals.

Slow Cortical Potentials (SCP) are very slow variations in
cortical activity that can last from hundreds of milliseconds
(ms) to several seconds (s) (Kleber and Birbaumer, 2005). It is
possible to make these variations positive or negative via operant
conditioning. As the control of SCP is achieved by operant
conditioning, mastering such a signal generally requires a very
long training time. This training by operant conditioning is
even longer for SCP than for motor rhythms (Birbaumer, 2006).
However, it seems that SCP would be a more stable signal.

Non-motor cognitive processing tasks are also extensively
used to operate a BCI. These tasks are, for instance, mental
mathematical computations, mental rotation of geometric
figures, visual counting, mental generation of words, and music
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TABLE 1 | EEG frequency bands with properties.

Band Frequency (Hz) Amplitude (µV) Location Activity

Delta 0.5–4Hz 100–200 Frontal Deep sleep

Theta 4–8Hz 5–10 Various Drowsiness, light sleep

Alpha 8–13Hz 20–80 Posterior region of head Relaxed

Beta 13–30Hz 1–5 Left and right side,
symmetrical distribution,
most evident frontally

Active thinking, alert

Gamma >30Hz 0.5–2 Somatosensory cortex Hyperactivity

imagination, amongst others (Chiappa and Bengio, 2004). All
of these mental tasks generate specific EEG signal variations in
specific cortical regions and frequency bands, which make them
relatively easy to identify.

Steady-State Evoked Potentials (SSEP)
SSEP appears when the user perceives a periodic stimulus
like a flickering photo or an amplitude-modulated sound. An
important characteristic of SSEP is that the stimulation frequency
or harmonics is equivalent to the EEG signal frequencies (Gouy-
Pailler et al., 2007). The stimulation of a fixed frequency evokes
SSEP by yielding EEG activity of the identical frequency as
the stimulation is generated (Maye et al., 2011). According
to visual, auditory, and somatosensory stimulation, SSEP can
be further divided into Steady-State Visually Evoked Potentials
(SSVEP) (Valbuena et al., 2010), Steady-State Auditory Evoked
Potentials (SSAEP) (Fairclough and Gilleade, 2014), and Steady-
State Somatosensory Evoked Potentials (SSSEP) (Muller-Putz
et al., 2006).

Every SSVEP-based BCI needs a specific number of visual
stimuli that indicate specific BCI output commands. These
stimuli flicker continuously, with distinguishable frequency
bands ranging from 6 to 30Hz. In the event that a subject
concentrates on a particular flickering stimulus, an SSVEP with
an identical frequency to that of the target flicker is generated.
For example, if the frequency of the targeted stimulus is 15Hz,
the frequency of the generated SSVEP will also be 15Hz.
Therefore, the user pays attention visually to a target, and the BCI
determines the target through analyzing the SSVEP features.

SSAEP are commonly extracted by trains of click stimuli,
tone pulses, or amplitude-modulated tones, with a repetition or
modulation rate between 20 and 100Hz. The resulting brain
response can be localized at the primary auditory cortex (Hill and
Schölkopf, 2012). Although the SSAEP-based BCI system yielded
promising results, only highly experienced users could maintain
the high level of attention needed in order to obtain high accuracy
(Punsawad and Wongsawat, 2017).

In the SSSEP paradigm, vibrotactile sensors are placed at
pre-determined parts of the body, and these sensors generate
stimulations at different frequencies (Hamada et al., 2014). The
stimulations of these sensors will then be reflected in EEG
signals recorded from the scalp. In comparison to visual- or
sensorimotor rhythm-based BCI research, limited studies of

SSSEP have been published. This is primarily due to the lack of
a well-designed standard tactile stimulator with which to extract
the SSSEP signals.

P300
BCI systems with P300 rely upon stimuli that flash in succession.
These stimuli may be symbols or letters and are used for different
BCI applications, for instance, controlling a robot arm, cursor,
or mobile robot. P300 is generated in the Pz areas of the brain,
∼300ms after the stimulus is presented (Farwell and Donchin,
1988). It has been reported in the literature that the response’s
peak amplitude is much larger, even with less probable stimulus
(John et al., 1996). Amongst the advantageous features of P300-
based BCIs is that they do not require any form of training.
However, it is worth mentioning that in the event that infrequent
stimulus decreases the amplitude of P300 that, in turn, reduces
the overall performance of the system.

Motor Imagery
Moving a limb or even contracting a single muscle changes brain
activity in the cortex. Preparation for themovement or imagining
movement [also known as motor imagery (MI)] generates
oscillations in the brain motor areas known as sensorimotor
rhythms (SMR). Increase and decrease of oscillatory activity
in a particular frequency band are referred to as event-related
synchronization (ERS) and event-related desynchronization
(ERD), respectively. The most influential frequency bands for
motor imagery are the alpha and beta brain waves. Activity
invoked by the left and right hand MI is generated from the
C3 and C4 areas of the brain, respectively, whereas the foot
movement imagery is originated from Cz. Left and right foot
movements are almost impossible to distinguish in EEG due to
the fact that the corresponding cortical regions are extremely
close. The cortical areas must be large enough to produce
detectable patterns in the background EEG. The cortical areas
of the left hand, right hand, tongue, and foot, are large and
distinguishable. Thus, the movement of those body limbs via
imagination can be controlled by BCI applications (Schlögl et al.,
2005).

EEG Acquisition Framework for BCI
Application
The human brain consists of two main parts, i.e., the
cerebral cortex and subcortical regions. The essential and vital
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FIGURE 3 | Standardized electrode placement scheme.

functions, including body temperature, respiration, heart rate,
and emotional responses, including reflexes, fear, learning, and
memory, are controlled by the subcortical regions. Conversely,
the cerebral cortex, commonly known as the cerebrum, regulates
sensory and motor processing as well as higher-level functions,
for example, language processing, pattern recognition, reasoning,
and planning. The cerebral cortex is partitioned into two
hemispheres, in which every hemisphere is classified into four
lobes, namely the parietal, occipital, frontal, and temporal lobes.
The parietal lobe is in charge of numerous functions, for
instance, spelling, objects, manipulation, perception, and spatial
awareness. Conversely, the language, memory, recognizing
faces, and generating emotions are the main functions of the
temporal lobe. The third lobe, i.e., the frontal lobe, involves
organizing, social skills, planning, flexible thinking, problem-
solving, conscious movement, attention, and emotional and
behavioral control. The occipital lobe is related to interpreting
visual stimuli. Additionally, another essential system of the
human body is the nervous system, which is classified into two
main parts: the central and peripheral systems. The spinal cord
and the brain are the two parts of the central nervous system. In
contrast, the peripheral nervous system includes the autonomic
nervous system, which controls functions such as digestion,
secretion of hormones, breathing, and heart rate.

The 10/20 system is a universally recognized method that
indicates the locations of electrodes on the scalp. The system
depends on the connection between the electrode location and
the underlying area of the cerebral cortex. The numbers 10 and 20
indicate that the distances among adjacent electrodes are either

10 or 20% of the total front-back or right-left distance of the
skull. In each site, a letter is used to denote the lobe, whereas
the hemisphere location is represented by a number. In the 10/20
system, the frontal, parietal, temporal, and occipital lobes can be
denoted by the letters F, P, T, and O, respectively, as depicted in
Figure 3. The central lobe is not included; the letter C is utilized
only for identification purposes. Z (zero) implies that an electrode
is placed on the midline. Even numbers (2, 4, 6, 8) are utilized to
indicate the right hemispheres electrode positions, whereas left-
hemisphere electrode positions are denoted by odd numbers (1,
3, 5, 7) (Rojas et al., 2018).

Hardware Technology for EEG Signal Acquisition
There are two main methods of acquiring EEG signals: wireless
or wired. Typically, EEG signal measurements are performed
using a number of electrodes varying from 1 to about 256. These
electrodes are generally attached using an elastic cap. The contact
between the electrodes and the skin is commonly enhanced
through the utilization of a conductive gel or paste. However, this
makes the electrode embedding procedure a generally tedious
and lengthy operation. Nonetheless, it is worth noting that the
use of dry electrodes, which do not require conductive gels or
pastes, has been proposed and validated (Popescu et al., 2007). In
spite of this success, it is worth pointing out that the performance
of this method in terms of maximum information rate is, on
average, 30% lower than that obtained with a BCI based on
electrodes that employ conductive gels or pastes. Though the
wired system is well-established, it has some notable limitations.
It is evident that connection using wires between the electrodes
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TABLE 2 | Summary table of recent EEG devices.

Device name No. of channels Sampling frequency Communication No. of publications

NeuroScan SynAmps:64
Grael:32

NuAmps:40
Siesta:32

SynAmps:20 kHz
Grael:4,096Hz

NuAmps:1,000Hz
Siesta:1,024Hz

Wired 12,300

Brain Products LiveAmp: 8/16/32 Between 250, 500, and
1,000Hz

Wireless 6,690

BioSemi 16, 32, or 64 2/4/8/16KHz Wired 5,750

Emotiv INSIGHT: 5
EPOC+: 14

EPOC FLEX: 32

128Hz Wireless 3,990

NeuroSky 1 512Hz Wireless 2,290

Advanced brain monitoring ABM B-Alert X24: 24 256Hz Wireless 790

g.tec nautilus 64 500Hz Wireless 430

AntNeuro eego 64 2,048Hz Wireless 340

Neuroelectrics Enobio 32 32 500Hz Wireless 317

Muse 4 256Hz Wireless 207

OpenBCI Up to 16 channels 256Hz Wireless 201

Cognionics Mobile 72 500–1,000Hz Wireless 128

mBrainTrain 24 250–500Hz Wireless 38

MyndBand EEG headset 3 512Hz Wireless

Enobio 8, 20, or 32 500Hz Wireless

and the acquisition part is often complicated, as it is a rather
time-consuming procedure. Moreover, the user’s movement is
restricted owing to the tethered nature of cable constraints.
Hence, wireless BCI systems have gained due attention, primarily
owing to their ability to mitigate the aforesaid restrictions. One of
the attractive natures of the wireless EEG headset is that it is non-
invasive. Moreover, it does not hinder the motion of the user.
Table 2 lists the types of EEG devices that have been reported
in the literature with their specifications. It is evident that the
selection of the type of EEG headset or device is dependent on
the BCI application itself1.

EEG Data Pre-processing Strategies
A small SNR and different noise sources are amongst the greatest
challenges in EEG-based BCI application studies. Unwanted
signals contained in the main signal can be termed noise,
artifacts, or interference. There are two sources of EEG artifacts:
external or environmental source and physiological source. The
external sources of noise include AC power lines, lighting, and a
large array of electronic equipment (from computers, displays,
and TVs to wireless routers, notebooks, and mobile phones,
amongst others). Physiological noise arises from an assortment
of body activities due to movement, other bioelectrical
potentials, or skin resistance fluctuations. The predominant
physiological noises include electrooculographic activity (EOG,
eye), electrocardiographic activity (ECG, heart), scalp-recorded

1Top 14 EEG Hardware Companies [Ranked]. Available online at: https://
imotions.com/blog/top-14-eeg-hardware-companies-ranked/ (accessed February
03, 2019).

electromyographic activity (EMG, muscle), ballistocardiographic
activity (heart-related pulsatile motion), and respiration (Somers
et al., 2018).

Pre-processing is a non-trivial process, as it is carried out
to remove any unwanted components embedded within the
EEG signal. Good preprocessing leads to an increase in the
signal quality, which in turn results in better feature separability
and classification performance. Simple low, high, and band-
pass filters are the primary attempts to attenuate artifacts in
the measured EEG. However, these are only effective when
the frequency bands of the signal do not overlap (Sweeney
et al., 2012). In case of spectral overlap, where artifacts are
recorded with the EEG, alternative artifact removal techniques
are required such as adaptive filtering, Wiener filtering, Bayes
filtering (Sweeney et al., 2012), surface Laplacian transforms
(Fitzgibbon et al., 2013), regression (Gratton et al., 1983),
Common Average Referencing (CAR) (Zaizu Ilyas et al.,
2015), EOG correction (Croft and Barry, 2000), and blind
source separation (BSS) (Oosugi et al., 2017), as well as
more modern attempts, for instance, the wavelet transform
(WT) method (Punsawad and Wongsawat, 2017), empirical
mode decomposition (EMD) (Zhang et al., 2008), Canonical
Correlation Analysis (CCA) (de Clercq et al., 2006), and non-
linear mode decomposition (NMD) (Iatsenko et al., 2015). It is
worth noting that the BSS methods are also called component-
based techniques, as they employ principal component analysis
(PCA) or independent component analysis (ICA). Kilicarslan
et al. (1976) proposed a quick artifact segment identification
technique through the combination of dynamic time warping
(DTW) and temporal motifs. Chavez et al. (2018) proposed a
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data-driven algorithm, namely surrogate-based artifact removal
(SuBAR), to remove muscular and ocular artifacts effectively
from EEG. A joint approach combining BSS and REG, the online
EEG artifact attenuation technique, has also been proposed for
BCI applications (Guarnieri et al., 2018). Although there is no
single gold standard in EEG artifact removal algorithms, the
authors of Urigüen and Garcia-Zapirain (2015) recommend
using an ICA algorithm based upon second-order blind
identification (SOBI) due to its success in removing different
types of EEG contaminants.

Real-time BCI applications require artifact removal methods
that are automatic and of low computational cost. Regression
and filtering approaches can be executed automatically when
they have a reference signal. Moreover, BSS methods will be
automatic when there is a subsequent procedure. Although
ICA is the most commonly used technique among these BSS
methods, it disregards the temporal or spatial relations within
sources, which will result in the loss of relevant information.
Nevertheless, a CCA algorithm can mitigate this problem as
it takes little computational time, which makes the algorithm
applicable for real-time performance. Another factor that should
be taken into account is the number of measurement channels.
It should be noted that for home healthcare environments,
fewer channels are often expected. BBS algorithms cannot be
utilized in such a situation, due to the principle of BSS that
it requires more channels in order to allow it to be more
accurate. However, it should be noted that wavelet transform
and EMD-based methods can be executed with a single channel,
as they can decompose from a single record into multiple
components (Chen et al., 2014). However, a reduction in
the number of measurement channels will cause an increase
in computational complexity, which will not be suitable for
BCI applications.

In addition, it is worth noting that automatic methods are not
commonly used for artifact removal, as there are multiple types
of artifacts that exist in the recordings. Hence, the availability
of reference signals will improve the accuracy and robustness
of artifact removal by providing satisfactory complementary
information. Also, the information on the artifact epochs
obtained by the reference channel will reduce the computational
cost. However, having a reference channel for each muscle
contributing to EEG muscle artifacts is not feasible. Apart from
the aforementioned methods, there are plenty of innovative and
efficient approaches for artifact removal that have been recently
proposed. One recently emerging BSS algorithm, independent
vector analysis (IVA), integrates the advantages of CCA and
ICA into one single framework. This technique could remove
muscle artifacts by synchronously extracting the sources with
maximal independence and maximal autocorrelation (Chen
et al., 2017a,b). In addition, the combination of EEMD and
IVA has been demonstrated to outperform other existing
methods in a situation where there are few channels (Xu X.
et al., 2018). More recently, a modified joint BSS approach
and quadrature regression IVA (q-IVA) provided a more
effective artifact removal technique in both the time and
frequency domains, paving the way for future research (Lee
S. et al., 2019). Dhindsa (2017) proposed a filter-bank-based

supervised machine learning approach to detect artifacts from
a single channel, and the approach outperformed statistical
thresholding for EEG artifact rejection due to its ability to
identify small artifacts in the presence of high-amplitude
EEG. Mohammadpour and Rahmani (2017) have utilized an
HMM architecture to remove eyeblink artifacts. Contrary to
conventional algorithms, machine learning-based approaches
have gained due attention, particularly for their ability to
identify artifacts. To attenuate eye blink artifacts, a multichannel
Weighted Weiner filter has been proposed (Manojprabu and
Sarma Dhulipala, 2020), where Hierarchical Fully Connected
Topology (HFCT) and Ad-hoc Nearest-Neighbor Topology
(ANNT) are utilized. The proposed approach provides 5% better
results for artifact attenuation when compared with the other
existing approaches like PCA and ICA. However, it should be
noted that the proposed approach has not been employed in real
medical devices.

Feature Extraction Approaches in
EEG-Based BCI Systems
After the noise removal phase, the most discriminative and non-
redundant information within the EEG is extracted through
different feature extraction techniques. Time-domain, frequency-
domain, time-frequency domain, and spatial domain are
the popular types of feature extraction techniques in EEG-
based BCIs.

A typical time-domain-based feature extraction approach,
autoregressive (AR)modeling, is a linear regression of the current
observation of the series against one ormore earlier observations.
A combination strategy of feature extraction, where each feature
vector consists of AR coefficients and approximate entropies, was
also proposed. In many recent articles (Lawhern et al., 2012;
Zhang and Xiaomin, 2015; Chai et al., 2017b), the AR model
has been implemented as the strategy of feature extraction in
EEG-based BCI systems. AR models are preferred by researchers
due to their resolution, smoother spectra, and applicability to
short segments of data. Lower model orders represent the signal
poorly, while higher orders increase noise. Hence, identifying
the appropriate AR modeling order is an open challenge.
Conventional ways of modeling order estimation incorporate a
Bayesian information criterion, Final prediction error, or Akaike
Information Criterion (AIC). It was hypothesized in Atyabi
et al. (2016) that an adequate mixture of AR features derived
from various AR modeling orders is a better representative
of the underlying signal compared with any fixed modeling
order. For the detection of drowsiness state from EEG signals,
the analysis of respiratory rate variability from EEG (Guede-
Fernández et al., 2019), adaptive Hermite decomposition (Taran
and Bajaj, 2018), and RR time series (Tripathy and Rajendra
Acharya, 2018) have been employed to extract features. In
emotion recognition using an EEG signal, the fractal dimension
of raw signals has been implemented to extract the feature by
using the Higuchi technique (Anh et al., 2012; Kaur et al., 2018).
In AydIn et al. (2009), the authors proposed the use of log
energy entropy to extract EEG features; this approach could
investigate how much randomness is captured in the signal. A
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hybrid feature extraction technique consists of PCA, and the
cross-covariance technique has been developed in Zarei et al.
(2017) to excerpt discriminatory information from the mental
states of EEG.

Frequency-domain analysis has also been employed to extract
features from different EEG-based BCIs. Among frequency-
domain-based techniques, there are those that use fast Fourier
transform (FFT) (Hortal et al., 2015; Djamal et al., 2017; Bousseta
et al., 2018; Yang C. et al., 2018), power spectral density (PSD)
(Chiappa and Bengio, 2004; Carlson and Millan, 2013; Mara
et al., 2013; Pham et al., 2013; Bascil et al., 2016; Liu Y. et al.,
2017; Nguyen et al., 2017; Chakladar and Chakraborty, 2018b),
band power (Mandel et al., 2009; Serdar Bascil et al., 2015;
Kreilinger et al., 2016), and spectral centroid (Murugappan et al.,
2014). The PSD of a signal can be calculated through the FFT
and Welch’s method (Oikonomou et al., 2017). Welch’s method
reduces the artifacts in the PSD, in contrast to FFT, but produces
a poorer frequency resolution. Another frequency domain-
based feature extraction technique that does not require FFT
to compute the PSD is local characteristic-scale decomposition
(Liu A. et al., 2017). This procedure disintegrates the raw
data into inherent segments that convey the properties of the
primary signal. Fourier analysis decomposes the signal into its
frequency components and determines their relative strengths.
Due to the non-stationarity and non-Gaussianity properties of
the EEG signals, classic spectral analysis techniques are not
suitable for extracting useful and important information. Gursel
Ozmen et al. (2018) introduced a biologically inspired frequency
domain-based feature extraction approach that extracts the
most discriminative spectral features from the PSD of the
EEG signals. Meziani et al. (2019) presented novel spectral
estimators, namely the quantile periodogram, and the lasso
quantile periodogram, which are based on quantile regression
and L1-norm regularization, respectively.

The use of spectral characteristics for feature extraction
is sometimes ineffective due to the absence of temporal
characteristics. Similarly, time-domain interpretation
occasionally neglects spectral characteristics that may be
important to the classifier. To overcome the shortcomings of a
single domain that is either time domain or frequency domain,
time-frequency analysis is assumed to be able tomitigate the issue
as it leverages both domains. This approach could be promising
for EEG-based BCIs. A variety of time-frequency-based feature
extraction approaches have been employed in EEG-based
BCIs. The most widespread approaches are short-time Fourier
transform (STFT) (Tabar and Halici, 2017; Chaudhary et al.,
2019; Ha and Jeong, 2019; Tian and Liu, 2019), continuous
wavelet transform (CWT) (Borisoff et al., 2004; Lee and Choi,
2019; Ieracitano et al., 2020), discrete wavelet transform (DWT)
(Guo et al., 2015; Bajwa and Dantu, 2016; Djamal and Lodaya,
2017; Ji et al., 2019; Lin and She, 2020), and wavelet packet
decomposition (WPD) (Bong et al., 2017; Dhiman et al., 2018;
Wang et al., 2019). CWT (Ortiz-Echeverri et al., 2019; Mammone
et al., 2020), and STFT (Dai et al., 2019) have been utilized to
generate spectral images that can be classified through deep
learning approaches. An EEG-basedmotor planning exercise was
investigated by Mammone et al. (2020), where a time-frequency

map, generated through beamforming and CWT, was utilized
as input to the CNN. Decomposition techniques, for instance,
DWT and WPD, are efficacious because significant information
is carried in different EEG bands (Kevric and Subasi, 2017), and
these approaches are capable of decomposing the brain waves at
multiresolution and multiscale (Li et al., 2016a). Moreover, they
are able to extract dynamic features, which is crucial for EEG
signals due to their non-stationary and non-linear characteristics
(Kevric and Subasi, 2017). In Kevric and Subasi (2017), three
distinct decomposition techniques, namely, WPD, EMD, and
DWT, have been investigated to gain optimum accuracy.
Higher-order statistics (HOS) features have been extracted from
the decomposed EEG sub-bands. The frequency resolution of
DWT coefficients is comparatively lower than that of WPD,
and the deficiencies of wavelet strategies could be neutralized
by HOS.

Zhou et al. (2018) combined the utilization of DWT and
Hilbert transform (HT) for feature extraction. The EEG signal
is decomposed through DWT, and the wavelet envelope of the
decomposed sub-bands was computed throughHT. They utilized
both time-series and envelope information, which assisted in
obtaining optimum accuracy. Göksu (2018) proposed wavelet
packet analysis (WPA) to extract features from an EEG-SCP
response. The WPA sub-images were further studied through
log energy entropy. Yang et al. (2016), proposed Fisher wavelet
packet decomposition (WPD)-CSP for extracting features, in
which EEG channels are decomposed byWPA, the average power
of each subband is calculated, and then, finally, CSP is employed
to the selected subbands.

Another powerful feature extraction approach known as the
common spatial pattern is extensively utilized in EEG-based BCI
(Zhang R. et al., 2019). This technique utilizes a spatial filtering
method that converts brain waves into a unique space where
the variance of one group is magnified, while lower variance is
seen in the remaining group. The pure CSP approach sometimes
cannot achieve sufficient performance due to the subject-specific
optimal frequency band. Hence, the choice of an optimized filter
band may enhance performance, but the selection of the optimal
sub-band through pure CSP takes a large amount of time. To
overcome this issue, numerous changes have been applied to
the CSP. The common spatio-spectral pattern approach (CSSP)
combines an FIR filter with a CSP algorithm and was observed to
improve performance relative to pure CSP (Reddy et al., 2019).
Common sparse spatio-spectral patterns (CSSSP) (Dornhege
et al., 2006) are a comparatively more advanced procedure where
the common spectral patterns across channels are investigated.
In sub-band common spatial pattern (SBCSP) (Khan et al.,
2019), EEG is first filtered at different sub-bands, and then
CSP features are calculated for each of the bands. Frequency
bands of the CSP, for instance, filter bank CSP (FBCSP), were
implemented in Korik et al. (2019), whereas wavelet CSP (WCSP)
has been implemented (Lin et al., 2019) by considering the
effect of frequency resolutions. However, these strategies are not
significantly relevant to EEG data from selected electrodes. To
mitigate this issue, a new technique for feature extraction from
selected channels known as regularized CSP (RCSP) has been
proposed (Jin et al., 2019).
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The efficient frequency recognition algorithm in SSVEP-based
BCIs performs a crucial role in overall system performance.
Among these algorithms, the most prevalent are based
on multivariate statistical algorithms, for instance, canonical
correlation analysis (CCA) (Chen et al., 2015) and multivariate
synchronization index (MSI) (Zhang Y. et al., 2016). Recently,
another MSI-based frequency recognition approach known as
CORRCA, which is based on correlated component analysis
(COCA), has been proposed (Zhang et al., 2018). The CORRCA
approach performs substantially better than the state-of-art
CCA process. Authors in Zhang Y. et al. (2019) proposed
a hierarchical feature fusion architecture that consists of
the spatial dimension and frequency dimension to improve
the performance of frequency identification techniques in
SSVEP-based BCI.

Batres-Mendoza et al. (2016) proposed a novel feature
extraction approach based on quaternions, which represent
objects within a three-dimensional space with regards to
their orientation and rotation. Islam et al. (2018) proposed
a multiband tangent space mapping with sub-band selection
(MTSMS) approach to improve EEG-MI classification accuracy,
and the authors claim that the proposed framework outperforms
state-of-the-art methods. Authors in Lee S. B. et al. (2019)
investigated the comparative analysis of EEG features in
three different domains, namely spectral, temporal, and
spatial, to classify multi-class MI data. According to their
investigation, the time-domain parameter (TDP) has been
observed to be superior as compared to the CSP and PSD.
Another study explored the use of tunable Q-factor wavelet
transform (TQWT) for the identification of drowsiness EEG
signals (Al Ghayab et al., 2019). With this approach, TQWT
decomposes the EEG signals into band-limited sub-bands,
and the drowsiness and alertness EEG signal characteristics
from TQWT-provided sub-bands are extracted using time-
domain measures. These measures are based on the statistics
of Hjorth mobility. Moreover, a novel hybrid feature extraction
technique has been proposed (Asadur Rahman et al., 2019),
which consists of PCA and t-statistics. In Guede-Fernández
et al. (2019), the analysis of respiratory rate variability of
EEG has been utilized to monitor the state of drowsiness in
a driver.

Classification Methods
To operate a BCI system, the subject needs to create various
brain activity patterns that can be identified by the system
and translated into commands. It is worth noting that either
regression or classification algorithms could be utilized to
achieve the said objective. However, the usage of classification
algorithms is presently reported to be the most popular
approach (Lotte et al., 2007). The design of the classification
step includes the choice of one or several classification
algorithms from many alternatives. Numerous classification
algorithms have been presented in the published EEG-based
BCI literature, for instance, support vector machine (SVM),
neural network (NN), linear discriminant analysis (LDA),
Bayesian classifier, k-nearest neighbor (k-NN), as well as deep
learning and its iterations. The aforesaid classifiers are described

briefly, and their essential properties for BCI applications
are highlighted.

Conventional Machine Learning Approaches in

EEG-Based BCIs
The k-NN algorithm depends on the principle that the features
corresponding to the several classes will form individual clusters
in feature space. The features that are closer to each other are
recognized as neighbors and are therefore grouped together.
This classifier takes k metric distances into account between
the test sample features and those of the nearest classes in
order to classify a test feature vector. The metric distances are a
measure of the similarities between the features of the test vector
and the features of each class (Nicolas-Alonso and Gomez-Gil,
2012). It is worth highlighting that the k-NN algorithms are not
exceptionally popular in the BCI community because they are
known to be very sensitive to the dimensionality of the feature
vector (Borisoff et al., 2004). Nonetheless, when the algorithm
is utilized in BCI systems with low-dimensional feature vectors,
the algorithm could be useful. Thus, the k-NN algorithm can
provide good results when it is combined with other efficient
feature selection and reduction algorithms. In k-NN architecture,
the number of neighbors and the type of distance metrics are the
key factors.

LDA is employed to find the linear combinations of feature
vectors that describe the characteristics of the corresponding
signal. The LDA seeks to separate two or more classes of objects
or events representing different classes. It utilizes hyperplanes to
accomplish this mission. The isolating hyperplane is achieved
by searching for the projection that maximizes the distance
among the classes’ means and minimizes the interclass variance
(Abdulkader et al., 2015). This technique has a very low
computational requirement, and it is simple to use. The LDA
has been successfully applied in a variety of BCI systems, for
example, motor imagery-based BCI, P300 speller, multiclass,
or asynchronous BCI (Long et al., 2012a). However, while
it provides expected outcomes due to its immunity to non-
stationary issues, its linearity can cause performance degradation
in a few circumstances containing complex non-linear EEG data.
Moreover, numerous updated algorithms have been presented
depending on LDA, for example, Fisher LDA (FLDA) as well as
Bayesian LDA (BLDA) (Hoffmann et al., 2008). FLDA does not
work well if the number of features becomes too large in relation
to the number of training examples. This issue is called the small
sample size problem (Hoffmann et al., 2008). On the other hand,
the BLDA is considered as an expansion of FLDA that mitigates
the small sample size problem through the incorporation of
a statistical method called regularization. The regularization is
estimated through Bayesian analysis of training data and is
utilized to prevent the overfitting problem of high-dimensional
as well as possibly noisy datasets. Overfitting means that the
classifier has lost generality and is therefore undesirable in a
classifier. If a classifier is overfitted, it is only able to classify the
training data or similar data. Unlike FLDA, the BLDA algorithm
gives higher classification accuracy and bitrates, particularly in
those situations where the size of the training sample is large
(Hoffmann et al., 2008). Furthermore, BLDA requires slightly
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more computational time, which is a crucial constraint in real
BCI systems.

SVM is a classifier that builds a hyperplane or set of
hyperplanes for separating the feature vectors into several classes.
However, in contrast to LDA, SVM selects the hyperplanes
that maximize the margins, that is, the distance between the
nearest training samples and the hyperplanes (Burges, 1998).
SVM that empowers classification by utilizing linear decision
boundaries is called linear SVM. This type of classifier has
been applied successfully to a moderately large number of
synchronous BCI problems (Garrett et al., 2003; Rakotomamonjy
et al., 2005). However, it is advantageous to make non-linear
decision boundaries with a low increment of the classifier’s
complexity by utilizing the “kernel trick.” The kernel usually
utilized for BCI research is the Gaussian or Radial Basis Function
(RBF) kernel. The corresponding SVM is called Gaussian SVM
or RBF SVM. The RBF SVM has also shown to be robust for
achieving good results in BCI applications (Garrett et al., 2003;
Kaper et al., 2004; Rakotomamonjy et al., 2005). Generally, the
SVM has been broadly recognized as the simpler algorithm used
in BCI applications. In addition, the algorithm is shown to be
robust with a high-dimensional dataset, which implies that a large
training set is not required for good outcomes, even with high-
dimensional feature vectors (Kaper et al., 2004). It is worth noting
that these favorable circumstances do not hinder the execution
speed during the integration of real-time BCIs (Thulasidas et al.,
2006).

The neural network (NN) has the special capacity to extract
patterns and identify trends that seem to be complicated, either
by humans or by computerized techniques. A trained NN
system can be considered as an “expert” in the classification of
information that it has been provided to analyze. This algorithm
is one of the fundamental tools utilized in machine learning. The
term “neural” denotes that it is considered to be a brain-inspired
system that is intended to replicate the way that humans learn.
A NN consists of input, output, and hidden layers. A hidden
layer consists of units that transform the input into something
that the output layer can utilize. It is an excellent tool for
discovering patterns that are too complex or numerous for a
human programmer to extract and to teach the machine to
perceive. One of the most well-known ANN structures is the
multilayer perceptron (MLP) introduced by Rumelhart et al.
(1986). MLPs are flexible classifiers with the ability to classify
any number of classes as well as to adapt to various different sets
of problems. In BCIs, the MLP has been applied to classify two,
three, and five tasks and to design synchronous (Haselsteiner
and Pfurtscheller, 2000) as well as asynchronous (Millan and
Mourino, 2003) BCIs. Additionally, the MLP has been utilized
to preprocess EEG signals prior to the feature extraction step
rather than the classification step to improve the separability of
EEG features (Coyle et al., 2010). Other than MLP, numerous
sorts of NN architecture have been utilized in the design of BCI
systems, including Fuzzy ARTMAP Neural Networks, Finite
Impulse Response Neural Networks (FIRNN) or Probability
estimating Guarded Neural Classifiers (PeGNC), Probabilistic
Neural Networks (PNN), Time-Delay Neural Networks
(TDNN) or Gamma dynamic Neural Networks (GDNN),

Learning Vector Quantization (LVQ) Neural Networks,
Bayesian Logistic Regression Neural Networks (BLRNN),
RBF Neural Networks, and Adaptive Logic Networks (ALN),
amongst others.

A Hidden Markov Model (HMM) is a Bayesian classifier
that produces non-linear decision boundaries. An HMM is a
sort of probabilistic automaton that gives the likelihood of
observing a given sequence of feature vectors (Rabiner, 1989).
For BCI, generally, these probabilities are Gaussian Mixture
Models (GMM) (Obermaier et al., 2001). HMMs are perfectly
appropriate algorithms for the classification of time series
(Rabiner, 1989). As the EEG components that are used to
operate BCI have specific time courses, HMM is applicable to the
classification of temporal sequences of BCI features (Obermaier
et al., 2001; Cincotti et al., 2003), even for classifying raw
EEG signals.

Deep Learning Approaches in EEG-Based BCIs
The ability to acquire a robust automatic classification of EEG
signals is an essential step toward making the use of EEG
more practical in many applications and less reliant on trained
professionals (Alexander et al., 2018). It is worth noting that
although conventional BCI systems have made tremendous
advances in the past few decades, nonetheless, the research still
faces significant challenges in EEG classification. The challenges
include various biological and environmental artifacts in EEG,
a low SNR, and dependency on human expertise for extracting
meaningful features. In addition, most existing machine learning
research, if not all, centers on static data and, hence, is not able
to classify rapidly changing brain signals accurately (Lotte et al.,
2018). Of late, the availability of large EEG data sets has led to
the utilization of Deep Learning (DL) architectures, especially
to uncover relevant information from the signals that were not
possible to acquire via conventional approaches and has shown
success in addressing the aforesaid challenges. Fundamentally,
DL is a specific machine learning algorithm in which the
features and the classifier are jointly learned directly from data
(Zhang X. et al., 2019). DL algorithms have been explored for
almost all major types of EEG-based BCI systems, namely P300,
SSVEP, motor imagery (MI), SCP, and passive BCI (for emotions
and workload detection). Here, a number of prevalent DL
models including convolutional neural networks (CNN), deep
belief networks (DBN) restricted Boltzmann machines (RBM),
recurrent neural networks (RNN), a stacked autoencoder (SAE),
and generative adversarial networks (GAN) will be discussed
briefly with regards to their employment in BCI research.

A Convolutional Neural Network (CNN) is a special
type of neural network architecture that is specialized in
spatial information exploration. CNN contains at least one
convolutional layer, and this layer maps input to an output
through a convolution operator (Fan et al., 2019; Zhang X.
et al., 2019). In BCI research, CNN is assumed to capture
the distinctive dependencies amongst the patterns associated
with different brain signals (Lotte et al., 2018). Recently, a
considerable amount of studies (Tang et al., 2017; Aznan et al.,
2018; Dose et al., 2018; El-Fiqi et al., 2018; Shojaedini et al.,
2018; Wang et al., 2018; Waytowich et al., 2018; Amber et al.,
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2019; Amin et al., 2019; Nguyen and Chung, 2019; Olivas-Padilla
and Chacon-Murguia, 2019; Tayeb et al., 2019; Xu et al., 2019)
on the employment of CNN architecture in EEG-based BCI
systems have been published. In Olivas-Padilla and Chacon-
Murguia (2019), the classification of multiple MI using CNN
was explored, with the features being extracted by a variety of
Discriminative Filter Bank Common Spatial Patterns (DFBCSP).
Conversely, the authors in Xu et al. (2019) presented a wavelet
transform time-frequency image coupled with a CNN-based
approach in classifying EEG MI, and a classification accuracy
of 92.75% was attained. Tayeb et al. (2019) classified raw EEG
MI signals using a CNN architecture, achieving an accuracy of
84%, and this model has been successfully adopted in a real-
time robotic arm control system. ACNN-basedmultilevel feature
fusion model was proposed in Amin et al. (2019) for motor
imagery EEG classification. Three other studies also employed
CNN for EEG MI classification with reported the classification
accuracies of 80, 93, and 86%, respectively (Tang et al., 2017;
Dose et al., 2018; Wang et al., 2018). It should also be noted
that the CNN model has also been employed in SSVEP-based
BCI systems. A novel CNN approach for the classification of
raw SSVEP EEG signals was proposed in Aznan et al. (2018).
Here, the CNN architecture achieved a classification accuracy
of 96%, which is significantly better than other competing
DL approaches. In El-Fiqi et al. (2018), raw SSVEPs were
classified using CNN for person identification and verification.
In addition, a 1-D CNN was employed for SSVEP frequency
detection with an average accuracy of 97.4% (Nguyen and Chung,
2019). A compact-CNN approach was proposed in Waytowich
et al. (2018), and it was able to decode signals from a 12-class
SSVEP dataset with a mean accuracy of ∼80%. With regard
to the use of CNN on P300, Amber et al. (2019) presented a
lie detection system from the P300 signals with an accuracy
of 99.6%. In addition, a new adaptive hyperparameter-tuning
method is proposed in Shojaedini et al. (2018) to improve the
training of CNN in P300 signal detection. It was established
from the study that the proposed method is able to improve the
classification accuracy by 6.44% against the conventional Naive
hyperparameter tuning method.

A deep belief network (DBN) is a probabilistic generative
model consisting of a sequence of restricted Boltzmann machine
(RBM) architectures (Abbas et al., 2019). The top two layers in
DBN are connected without directions, while the lower layers
are connected with directions. The RBM consists of a visible
layer and a hidden layer, and the connection lines between
these two layers are undirectional (Abbas et al., 2019). Several
studies have exploredMI classification with DBN (An et al., 2014;
Tang et al., 2015; Lu et al., 2017; Ortega et al., 2017). In Lu
et al. (2017), a novel deep learning scheme based on RBM was
proposed for EEG MI classification in which FFT and wavelet
package decomposition are obtained to train three RBMs. These
RBMs are then stacked up with an extra output layer to form
a four-layer frequential DBN. The authors of Tang et al. (2015)
proposed an EEG MI data recognition technique using DBN.
The findings from the study showed that the recognition rate
of EEG MI data based on a DBN is better than that with the
conventional SVM model. A novel technique of classification of

imagined speech in EEG was proposed in Lee and Sim (2015),
where the classification accuracy obtained was 87.96% with DBN.
A P300-based Guilty Knowledge Test system was proposed in
Kulasingham et al. (2016). Here, the DBN architecture was used
to classify the P300 wave with an accuracy of 86.9%, and the input
to this classifier was the filtered EEG signal without any feature
extraction. Another P300 potential detection method based on
DBN has been proposed in Lu et al. (2018), where the average
accuracy attained was 84.3%. A DBN architecture has also
been exploited successfully for EEG-based emotion recognition
(Zheng and Lu, 2015; Huang et al., 2017). An EEG-based emotion
classification framework based on combining emotional patches
and a DBNmodel was proposed in Huang et al. (2017), and it was
reported that a classification accuracy of 94.92% was achieved,
outperforming other traditional methods. The authors of Kawde
and Verma (2017) implemented an effective recognition system
to examine the emotional state of a human being based on
DBN. The experiment was performed on a benchmark DEAP
database, and the accuracies achieved were 78.28, 70.33, and
70.16% for valence, arousal, and dominance, respectively. In
Bablani et al. (2018), a system for identifying deceit from EEG
has also been proposed. A DBN was developed with four RBMs
stacked together, and EEG data in the form of time-frequency was
fed to this DBN. The accuracy of this systemwas recorded at 81%.
In Chai et al. (2017a), an EEG-based driver fatigue classification
between fatigue and alert states was investigated. The system
employs an AR model as the feature extraction algorithm and a
sparse-DBN as the classification algorithm. It was shown from
the study that a classification accuracy of 93.1% was attained.

RNN architecture is a powerful deep learning classification
method that is specifically applied to sequential data. This type
of DL architecture is able to analyze the overall logical sequence
between the input information. These logical sequences are rich
in content and possess a complex time relationship with each
other. The key concept of RNN is that the hidden state of the
current network will retain the previous input information, and
it is used for the next current network (Li et al., 2019). There are
two typical RNN architectures that have attracted much attention
and achieved great success: long short-term memory (LSTM)
and gated recurrent units (GRU). Two notable studies have been
carried out to recognize the EEG-based sleep stage using RNN
architecture (Michielli et al., 2019;Wang andWu, 2019; Zhang T.
et al., 2019). A novel cascaded RNN architecture based on LSTM
blocks was proposed in (Michielli et al., 2019) for the automated
scoring of sleep stages using EEG, and an average classification
accuracy of 86.7% was achieved. The authors of Wang and Wu
(2019) also developed an automatic sleep stage classification
system where they proposed an RNN based on the attention
mechanism and bidirectional LSTM. This architecture provided
better performance than the C-CNN model but requires more
training time. A novel DL framework called spatial-temporal
RNN (STRNN) was proposed in Zhang T. et al. (2019), where
both spatial and temporal information were integrated for feature
learning. The authors claimed that the experimental results based
on STRNN were more competitive than the state-of-the-art
methods for emotion recognition. In another study (Liu et al.,
2018), the combination of temporal attention and band attention
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mechanisms based on multi-layer LSTM-RNN architecture was
proposed for emotion recognition. Another study (Jawed et al.,
2018) distinguished visual and non-visual learners by considering
the wavelet features of EEG alpha and beta bands. The LSTM-
based RNN framework was also used for classification purposes,
and the mean training accuracy was 87.5 and 86% for beta and
alpha bands, respectively. In relation to EEG MI classification,
Ma et al. (2018) proposed a pure RNN-based parallel method for
encoding spatial and temporal raw data with bidirectional LSTM
and standard LSTM, respectively, reporting an average accuracy
of 68.20%. A deep RNN with a sliding window cropping strategy
(SWCS) to classify EEG MI signals was investigated in Luo et al.
(2018). In addition, an LSTM-RNN architecture for an EEG MI
classification model was proposed in Li et al. (2016b), where
DWT was applied to extract the time-frequency features. A novel
system for cross-day workload estimation using EEG has also
been proposed by Hefron et al. (2017), where the authors applied
an LSTM-based RNN architecture, and the average classification
accuracy achieved was 93.0%.

An autoencoder (AE) is a DL approach used for unsupervised
feature learning with efficient data encoding and decoding.
In the encoding phase, the input samples are often mapped
in the lower dimensional feature space with a constructive
feature representation (Alom et al., 2019). This approach can
be repeated until the desired feature dimensional space is
reached. Conversely, in the decoding phase, actual features are
regenerated from the lower-dimensional features with reverse
processing (Alom et al., 2019). It should be pointed out that
the target output of the autoencoder is the autoencoder input
itself. There are a number of notable AE architectures, i.e.,
Stacked Autoencoder (SAE), Variational Autoencoder (VAE),
and Generative Adversarial Networks (GAN), that have been
employed in EEG signal processing investigations (Tsinalis
et al., 2016; Vareka and Mautner, 2017; Yin and Zhang, 2017;
Ditthapron et al., 2018; Idowu et al., 2018; Nair et al., 2018; Rundo
et al., 2019). The authors of Rundo et al. (2019) developed a
drowsiness detection system from EEG using stacked AE and
achieved an accuracy of 100% in discriminating drowsy from
wakeful. Idowu et al. (2018) proposed a DL-based classification
of EEG signals for given visual stimuli by showing familiar and
unfamiliar faces. The preprocessed signal was fed to an AE that
yielded a mean accuracy of 82.21%. In Nair et al. (2018), five-class
EEG MI data was classified, where SAE was applied to generate
the features, and a softmax layer was then used for classification
purposes. The proposed method produced an overall accuracy
of 98.9%. In Ditthapron et al. (2018), the authors proposed a
multitask autoencoder-based model known as the ERP encoder
network (ERPENet) that can be applied to any ERP-related
tasks. In Vareka and Mautner (2017), an SAE architecture was
proposed for P300 wave detection, and the trained SAE achieved
a classification accuracy of 69.2%. An automatic sleep stage
scoring model that uses a single channel of EEG was proposed
in Tsinalis et al. (2016). Here, the methodology is based on time-
frequency analysis and stacked sparse autoencoders (SSAEs).
The overall accuracy attained was 78%. With regard to the
mental workload (MW) classification, several studies have been
carried out (Yin and Zhang, 2017; Yang et al., 2019; Yin et al.,

2019). An adaptive Stacked Denoising Auto Encoder (SDAE)
was developed in Attia et al. (2018) to tackle cross-session MW
classification from EEG, and it was reported that the proposed
classifier achieved an accuracy of 95.5%.

Apart from the aforesaid standalone DL models, researchers
have attempted to hybridize different DL models in EEG-based
BCI investigations (Narejo et al., 2016; Attia et al., 2018; Yang J.
et al., 2018; Dai et al., 2019; Kanjo et al., 2019), with encouraging
classification accuracies. In Narejo et al. (2016), the authors
developed a system for predicting eye state from EEG signals
using a hybrid DL architecture consisting of DBN and SAE. The
accuracy of this hybrid model was reported to be as high as
98.9%. Another hybrid DL architecture based on CNN-RNN was
proposed in Attia et al. (2018) to classify SSVEP signals in the
time domain directly, and it achieved an accuracy of 93.59%.
Kanjo et al. (2019) proposed a hybrid approach that applied CNN
and LSTM-RNN on the raw sensor data. Through this method,
the need for manual feature extraction is eliminated. The results
show that the adoption of DL approaches is effective in human
emotion classification when a large number of sensor inputs are
utilized (with an average classification accuracy of 95%). Dai et al.
(2019) proposed a hybrid DL model where a CNN architecture
was combined with a VAE for EEGMI classification. In addition,
an LSTM-CNN-based hybrid model has also been proposed by
Yang J. et al. (2018) for EEG MI classification.

The fundamental idea of a Riemannian geometry classifier
(RGC) is to map the data directly onto a geometrical space
equipped with a suitable metric (Lotte et al., 2018). In such
a space, data can be easily manipulated for several purposes,
such as averaging, smoothing, interpolating, extrapolating, and
classifying. In the case of EEG data, the power and the spatial
distribution of EEG sources can be considered fixed for a given
mental state, and such information can be coded by a covariance
matrix (Lotte et al., 2018). Riemannian geometry studies smooth
curved spaces that can be locally and linearly approximated. The
curved space is named manifold, and its linear approximation
at each point is known as the tangent space (Lotte et al., 2018).
Riemannian geometry has been successfully utilized in many BCI
classification problems (Kalunga et al., 2016; Congedo et al., 2017;
Wu et al., 2017; Yger et al., 2017; Gaur et al., 2018; Guan et al.,
2019; Han et al., 2019; Majidov and Whangbo, 2019) and has
demonstrated superior performance. In Han et al. (2019), the
authors implemented an EEG-based endogenous BCI system for
online binary communication by a completely paralyzed patient.
An online classification accuracy of 87.5% was achieved when the
Riemannian geometry-based classification was applied to real-
time EEG data. A number of investigations (Gaur et al., 2018;
Guan et al., 2019; Majidov and Whangbo, 2019) have employed
Riemannian geometry for EEG MI classification purposes. The
authors of Majidov andWhangbo (2019) proposed a Riemannian
geometry-based architecture for EEG MI classification. They
combined the PSD features with covariance matrices mapped
onto the tangent space of a Riemannian manifold, and an average
classification accuracy of 87.94% was obtained. The use of a
Riemannian geometry framework for EEG MI classification has
also been presented in Gaur et al. (2018), where the EEG signals
were preprocessed using a subject-specific multivariate empirical
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mode decomposition (SS-MEMD)-based filtering method. They
achieved a mean Kappa value of 0.60. Kalunga et al. (2016)
investigated the efficiency of Riemannian geometry on SSVEP
wave classification for a four-class BCI application. In the study,
the minimum distance to Riemannian mean (MDRM) algorithm
achieved an average classification accuracy of 90.47+/7.8% and
an ITR of 16.37 ± 5.3 bits/min. A novel feature extraction
approach based on Riemannian geometry was proposed in Wu
et al. (2017), in which a spatial filter is first used to increase
the EEG signal quality and to reduce the dimensionality of the
covariance matrix, and then, finally, the Riemannian tangent
space features are extracted. Moreover, it is worth noting that
there are two review articles (Congedo et al., 2017; Yger et al.,
2017) on the application of Riemannian geometry for BCI
systems, which may be an excellent source of information for
interested readers.

Performance Evaluation of BCI Systems
Overall, BCI performance depends entirely on classifier
performance (Nicolas-Alonso et al., 2015). For the classification
algorithm, the most basic performance measure is classification
accuracy. Sometimes, the Kappa metric or the confusion matrix
are also used to provide further information on the performance
of a classifier (Fatourechi et al., 2008). The sensitivity-specificity
pair or precision can be calculated from the confusion matrix.
When the classification relies on a continuous parameter, the
Receiver Operating Characteristic (ROC) curve, as well as
the Area Under the Curve (AUC), is often utilized. Classifier
performance is generally computed offline on pre-recorded data
utilizing a hold-out strategy: some datasets are set aside to be
utilized for the evaluation and are not part of the training dataset.
However, some authors also reported cross-validation measures
estimated on training data, which may over-rate the performance
(Lotte et al., 2018; Raschka, 2018). A number of researchers
(Farwell and Donchin, 1988; Iturrate et al., 2009a; Yeom et al.,
2014; Obeidat et al., 2015; Ansari and Singla, 2016; Chang et al.,
2016; Cao et al., 2017) also reported either the information
transfer rate (ITR) or the practical bit rate (PBR) (Farwell and
Donchin, 1988). Many articles (Allison et al., 2012; Long et al.,
2012a; Li Y. et al., 2013; Cao et al., 2014; Wang H. et al., 2014)
used task-specific metrics, including task completion time and
the number of successful trials. These metrics are tailored for
each BCI paradigm and/or application, and therefore do not
allow comparisons between studies.

POPULAR EEG-BASED BCI
APPLICATIONS

In BCI technology, human brain signals can be detected
and translated into device commands for controlling assistive
devices. Besides medical applications, the area of this technology
has been expanded to non-medical applications. Recently, the
possibility of a variety of BCI applications is being investigated by
researchers around the world. The most important achievements
in EEG-based BCIs include spelling systems, wheelchair control,
robot control, mental workload, virtual reality, and gaming,

environment control, driver fatigue monitoring, biometrics
system, and emotion recognition.

BCI Wheelchair Control
One of the essential objectives of a BCI wheelchair is to upgrade
the life quality as well as the autonomy of people affected
by motor neuron diseases (MND), for instance, amyotrophic
lateral sclerosis (ALS). This innovation assists the disabled users
to operate the wheelchair using their brain activity, granting
autonomy to travel through an experimental environment. In
2013, Bi et al. (2013) conducted a survey of BCI-controlled
mobile robots, which is partially connected to this field. However,
two articles (Fernández-Rodríguez et al., 2016; Al-qaysi et al.,
2018; Tariq et al., 2018) have been published that contain
extensive reviews on BCI wheelchairs. Four types of EEG control
signal are used to handle BCI wheelchairs, which are MI (Li
J. et al., 2013; Varona-Moya et al., 2015; Tang et al., 2018),
P300 (Rebsamen et al., 2007; Iturrate et al., 2009a; Alqasemi and
Dubey, 2010; Shin et al., 2010; Lopes et al., 2013), SSVEP (Mandel
et al., 2009; Xu et al., 2012; Mara et al., 2013; Duan et al., 2014;
Ng et al., 2014), and hybrid (Li Y. et al., 2013; Cao et al., 2014)
signals. The feature extraction methods are quite heterogeneous;
however, CSP is the most used EEG feature in BCI wheelchair
applications (Li J. et al., 2013; Li Z. et al., 2013; Cao et al., 2014;
Wang H. et al., 2014; Zhang R. et al., 2016). Other researchers
used methods such as PSD (Varona-Moya et al., 2015; Tang et al.,
2018), FFT (Duan et al., 2014), logarithmic band power (Arabnia
and Tran, 2011; Duan et al., 2014), signal averaging techniques
(Alqasemi and Dubey, 2010; Shin et al., 2010; Zhang R. et al.,
2016), the amplitude of the target frequency (Mandel et al., 2009;
Mara et al., 2013; Ng et al., 2014), CCA (Xu et al., 2012; Duan
et al., 2014), and other methods (Rebsamen et al., 2007; Iturrate
et al., 2009a; Lopes et al., 2013). With regard to the classification
techniques, the most widely used algorithm is SVM (Rebsamen
et al., 2007; Shin et al., 2010; Li J. et al., 2013; Li Y. et al., 2013;
Zhang R. et al., 2016), followed by LDA (Iturrate et al., 2009a; Cao
et al., 2014). Performance evaluation is the most challenging part
in BCI research, as it is the most heterogeneous area. However,
the most commonmetrics reported are success rate, classification
accuracy, information transfer rate, path length, time required,
path length optimality ratio, time optimality ratio, number of
user commands, and number of collisions. Cao et al. (2014) used
the highest number of metrics, namely ITR, CA, Collision, Time
Required, Useful Command, Useless Command, and Stopping
Task Time to evaluate their research. Table 3 shows a summary
of some articles regarding EEG-based wheelchair BCI.

BCI Cursor Control
The first attempt to control a cursor by EEG signal was described
in Wolpaw et al. (1991). Here, vertical movement of a cursor
on a video screen was maintained by changing mu-rhythm
amplitude such that the cursor was moved upward by large
amplitude mu-rhythm, while downward movement required
small mu-rhythm amplitudes. The second experiment conducted
by some of the same authors (McFarland et al., 1993) achieved
a target hit rate of 54.85%. The promising result obtained
encouraged other researchers to develop this research further.
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TABLE 3 | Summary of EEG-based BCI wheelchair studies.

References No. of subjects EEG control

signal

No. and types of

control command

EEG features Classification

algorithm

Performance evaluation

Cao et al. (2014) 3 MI+SSVEP 8; Left, Right, Forward,
Acceleration,
Deceleration, Uniform
Velocity, Turn ON,
Turn OFF

CSP for MI;
CCA for SSVEP

RBF SVM ITR: 295.20;
CA: 90.63%;
Collision: 0;
Time required: 370 ± 41;
Useful command: 5 ± 3;
Useless command: 2 ± 2;
Stopping task time: 35 ± 4;

Iturrate et al.
(2009a)

5 P300 18; Fifteen Locations,
Left, Right,
Validate selection

Moving average
technique

Stepwise LDA
(SWLDA)

Success rate: 100%,
Time: 659 s,
Path length: 39.3m.

Long et al. (2012a) 2 MI+P300 4; Left, Right,
Acceleration, Deceleration

CSP LDA Accuracy: 100%,
Path length (pixel): 2843.46
± 105.41,
Time: 84.42 ± 4.63 s,
Collisions: 0.

Mara et al. (2013) 9 SSVEP 4; Right, left,
Forward, Stop

PSD Decision tree Success rate: 83 ± 15%,
ITR: 70.3 ± 28.8 bits/min.

Li J. et al. (2013) 3 MI 3; Right, Left, Forward CSP SVM Success rate: 82.56%

Li Y. et al. (2013) 5 P300+SSVEP 4; Forward, Stop, Turn
ON, Turn OFF

Statistic average
Minimum
energy combination

SVM Task duration: 4.30
s/command;
TPR: 14.18 event/min, FPR:
0.49 event/min, ITR:
21.11 bit/min.

TABLE 4 | Summary of EEG-based BCI cursor control studies.

References No. of

subjects

Control

signal

No. and types of

control command

EEG

features

Classification

algorithm

(CA)

Performance

evaluation

Serdar Bascil
et al. (2015)

2 MI 2; Left/Right BP PNN CA: PNN: 93.05%

Long et al.
(2012b)

11 MI+P300 4; Left, Right, Up,
Down

CSP SVM Success rate: 93.99%
Duration per
trial: 18.19 s

Bascil et al.
(2016)

5 MI 4; Left, Right, Up,
Down

PSD SVM CA: 81.22%;

Chakladar
and
Chakraborty
(2018b)

1 MI 4; Left, Right, Up,
Down

PSD DB-Scan Execution time:
4.663min,
Success rate: 70.36%

Single control signals and hybrid control signals have both
been suggested. Li et al. (2010) presented a BCI that enabled
the subjects to control vertical movement as well as horizontal
movement through P300 and ERD activity, respectively. The
subjects could hit one of the four targets with hit rates between
82 and 96%, with average selection times between 25 and 26 s. In
their second (Long et al., 2012b) experiment, the trial duration
and average accuracy of the target selection were 18.19 s and
93.99%, respectively. The overall outcomes of the experiments
were excellent, and the subjects could move the cursor
diagonally by executing both sorts of activities simultaneously.
However, the cursor control achieved by this system is

not continuous. Allison et al. (2012), meanwhile, introduced
MI/SSVEP-based hybrid BCI for simultaneous cursor control
in two dimensions. The features and classification techniques
utilized in this application are heterogeneous. Table 4 shows a
summary of some recent investigations in the domain of BCI
cursor control.

BCI Spellers
An excellent review article (Rezeika et al., 2018) have been
published where almost all types of recent BCI spellers have
been summarized. Table 5 tabulates the methodology that has
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TABLE 5 | Summary of EEG-based BCI speller studies.

References No. of

subjects

Control

signal

Method Classification

algorithm

Typing speed Success RATE

Obeidat et al.
(2015)

14 P300 Stimuli variation Bayesian BLDA 13.7 bits/min 93.3%

Cao et al. (2017) 3 MI Oct-O-spell SVM 67.33 bits/min 98.23%

Ansari and Singla
(2016)

20 SSVEP Multi-phase spellers SVM 13 chars/min 96.04%

Chang et al. (2016) 10 SSVEP+P300 Hybrid speller CCA, SWLDA 31.8 bits/min 93%

Käthner et al.
(2015)

19 P300 Familiar faces and
symbols

SWLDA 15.85 bits/min 95%

been applied along with the performance of some recent EEG-
based BCI speller system. In 1988, Farwell and Donchin (1988)
presented a P300 speller is known as the matrix speller. It was
the first BCI speller and had a maximum accuracy of 95% and
a speed of 12 bits/min. An adjacency problem arises in the
matrix speller, in that it is difficult to identify a target with a
lot of similar objects surrounding it. This problem was avoided
by a random-set representation and edges paradigm (Obeidat
et al., 2015). Another sort of P300 base speller flashed up a
familiar face over a character to improve the speed of spelling
(Kaufmann and Kübler, 2014). The checkerboard paradigm
(CBP) was presented in Townsend et al. (2010) for avoiding
the adjacency-distraction problem and double flash issues. This
paradigm achieved better accuracy and was more comfortable
than a row-column paradigm (RCP) in ALS patients. A different
sort of P300 base paradigm, namely a gaze-independent block
speller, was also introduced (Pires et al., 2011), which has the
ability to be utilized without ocular movement. Additionally,
this paradigm creates almost the same information transfer
rates as standard to a row-column speller. Acqualagnav et al.
(2010) proposed rapid serial visual presentation (RSVP) with
the aim of forming an efficient gaze-independent ERP speller.
The subject showed better performance with the colored letters
than with monochrome ones. The accuracy of the RSUP speller
is better than that of the matrix speller. It is worth noting
that one of the earliest high-speed SSVEP-based BCI spellers
is the Bremen BCI speller (Volosyak et al., 2009). The efficacy
of this speller was examined on both healthy and disabled
people. The average ITR reported was 25.67 bits/min, with an
accuracy of 93.27%. Furthermore, Cao et al. (2011) proposed a
multi-phage SSVEP-based speller system that allows the input
of 42 characters comprising letters, digits, and symbols. The
mean ITR and mean accuracy of this speller are 61.64 bits/min
and 98.78%, respectively. However, this speller did not include
MND patients as subjects to test the system. In the same
vein, Nakanishi et al. (2018) proposed a multi-target one-
phase SSVEP speller by achieving an 89.83% accuracy and
325.33 bits/min ITR. In general, it is worth noting that a
higher number of targets in SSVEP-based BCI is shown to
increase the spelling speed but also to increase eye fatigue and
target misclassification.

A Hex-O-Spell, which depends on imaginary movement, has
also been reported on Blankertz et al. (2006). The speller was
demonstrated to offer higher performance than the conventional
matrix speller. A recent MI-based speller, namely Oct-O-Spell,
was introduced in Cao et al. (2017), involving an octagon
divided equally into eight sections. These sections contained a
total of 26 letters, characters, digits, or symbols. The interface
showed a similar performance to hybrid BCI spellers. Similarly,
a hybrid BCI speller based on SSVEP and P300 was presented
in Chang et al. (2016), again featuring an octagon divided
equally into eight sections. Each section consisted of a total of
26 letters, characters, digits, or symbols. The interface showed
a similar performance to hybrid BCI spellers. The authors
of Nguyen et al. (2018) proposed a high-speed BCI spelling
system using eye closure and double-blink EEG by means of
an SVM classification algorithm. It was demonstrated from the
investigation that the proposed system is able to achieve an
average classification accuracy of 92.5% with an ITR of five letters
per minute.

BCI Biometrics
Biometrics is the process of identifying one individual among
others by biological means. Biometrics, including iris, face, and
fingerprint recognition, is frequently applied to avoid security
breaches. Nonetheless, the possibility of imitating, replicating,
or stealing original information has made these tools unreliable.
As a result, there has been a growing interest in finding a
better biometric system and brain activity-based biometrics. An
EEG system-based biometric has been identified to have the
advantage of being quite impossible to mimic (Alariki et al.,
2018). Using 15 human participants, Ruiz Blondet et al. (2015)
studied the stability of EEG brainwaves over a 6-month period.
Based on their findings, it was shown that the accuracy of
EEG signals for biometric systems and the stability of human
brain activities could remain stable over a long time. Bashar
et al. (2016) proposed a method for human identification
using EEG signals. The authors used a bandpass FIR filter
to remove noise and then divided the EEG signals into two
sections. Multi-scale Wavelet Packet Statistics (WPS), Multi-
scale Shape Description (MSD), and multi-scale Wavelet Packet
Energy Statistics (WPES) were utilized as the features in this
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TABLE 6 | Summary of EEG-based BCI biometrics research.

References Application No. of

subject

EEG features Classification

algorithm

Performance

evaluation

Pham et al. (2013) Person authentication
system

9 PSD SVM Multiple matched policy
is highly secured

Bajwa and Dantu
(2016)

Cancelable
biometrics-based key
generation

Data-1: 7,
Data-2: 120

DFT, DWT SVM CA: Data-set-1:
98.46%;
Data-set-2: 91.05%

Hu (2018) EEG-based gender
recognition

28 Fuzzy entropy Vote classifier Average accuracy:
99.8%

Nguyen et al.
(2017)

Cryptographic key
generation

125 PSD Enroll and KeyGen Success rate: 99%

Bashar et al.
(2016)

Human identification 9 MSD, WPS, WPES SVM The highest accuracy:
94.44%

Ruiz-Blondet et al.
(2016)

Biometric identification 50 Average ERP SVM Accuracy: 100%

method, which were in the time-frequency domain, and SVM
was the classifier. A true positive rate of 94.44% in the aforesaid
method was achieved using nine subjects in an experiment.
Ruiz-Blondet et al. (2016) proposed an ERP-based highly
accurate biometric recognition system designed to extract unique
individual responses from the brain. The authors reportedly
achieved 100% identification accuracy using 50 subjects. Table 6
shows a summary of some BC-based biometrics and other
related research.

BCI Emotion Recognition
Data acquisition from brain signals connected to human emotion
is one of the core steps toward emotional intelligence. Picard
stated that emotions play a vital role in rational decision-making,
learning, and perception, as well as in a variety of functions
(Picard, 2003). The identification of emotion changes from EEG
signals has recently achieved attention among BCI researchers in
the process of developing different BCI devices. There are three
excellent review articles (Al-Nafjan et al., 2017; Soroush et al.,
2018; Xu T. et al., 2018) on EEG-based emotion recognition.
These articles might be of help to the interested readers to further
have an insight of the EEG-based emotion recognition.

A number of emotion-recognition studies have been carried
out by BCI researchers in the last 20 years. Table 7 summarizes
some recent emotion recognition approaches in terms of
the number of subjects, stimulation, emotion types, feature
extraction, classification method, and performance. Mu Li
and Bao-Liang Lu (2009) utilized EEG signals for emotion
recognition in response to emotional pictures. Their study
gained a recognition rate of 93.5% for two emotional states.
Petrantonakis and Hadjileontiadis (2010) presented a user-
independent emotion recognition strategy that achieved an
83.33% recognition rate for six emotion categories. Wei et al.
(2017) proposed a combination of features for achieving
higher accuracy. The experimental outcomes showed that the
combination of Power Spectral Density (PSD), Signal Power (SP),
and Common Spatial Pattern (CSP) as the features achieved
the highest accuracy of 86.83% with LDA as the classification
algorithm, whereas, the accuracy of individual features was

64.73%. Chakladar and Chakraborty (2018a) introduced a
correlation-based subset selection technique for dimensional
reduction and used higher-order statistical features (mean,
skewness, kurtosis, etc.) for classification. The authors classified
four classes of emotion through employing an LDA algorithm,
and an overall accuracy of 82% was attained. Moreover, Anh
et al. (2012) proposed an emotion identification scheme to
identify 2 valence classes and 2 arousal classes, which resulted
in a combination of 4 fundamental emotions (happy, sorrowful,
angry, and relaxed) and the neutral state. The authors affirmed
the fractal dimension for feature selection and SVM as a classifier,
where the average accuracy across all subjects was 70.5%. Liu Y.
et al. (2017) designed a movie-induced feelings recognizer using
EEG. This framework reached 92.26% accuracy in recognizing
neutrality from high arousal with valence emotions and 86.63%
to classify negative from positive emotions. The authors similarly
classified 3 positive emotions and 4 negative emotions with
86.43 and 65.09% accuracy, respectively. Here, STFT was for
feature extraction and SVM for classification. Another study
reported the recognition of three classes of human emotion,
namely sorrowful, excited, and relaxed, in real time using
Wavelet and Learning Vector Quantization (LVQ) with an
accuracy of 72–87% (Djamal and Lodaya, 2017). Moreover, a
group of features, namely power, standard deviation, variance,
and entropy, were classified by utilizing the k-NN algorithm.
Happiness, anger, and calmwere categorized in Kaur et al. (2018).
Here, the fractal dimension feature was classified by utilizing
RBF SVM with 60% accuracy. In another study, a human-vehicle
collaborative driving (HVCD) simulation systemwas designed by
integrating visual information and human intentions to achieve
a comfortable and safe driving experience (Li et al., 2018).
The average accuracy and ITR achieved were 91.1% and 85.80
bit/min, respectively.

BCI Virtual Reality and Gaming
This section has been inspired by some excellent review articles
on BCI-based VR and games that are reported in Cattan
et al. (2018), Ahn et al. (2014), and Kaplan et al. (2013).
The research on BCI systems for healthy subjects has attracted
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TABLE 7 | Summary of EEG-based BCI emotion recognition studies.

References No. of subjects Stimulation Emotion types EEG

features

Classification

algorithm

Performance evaluation

Wei et al.
(2017)

12 Pictures Positive and negative PSD, SP, CSP LDA Average accuracy:
86.83%

Wang X.-W.
et al. (2014)

6 Movie clips Positive and negative PSD LDA CA: 91.77%

Liu Y. et al.
(2017)

30 Movie clips Joy, anger, fear, sadness,
disgust, and neutrality

PSD LIBSVM Average accuracy:
89.45%

Kaur et al.
(2018)

10 Video clips Calm, angry, and happy FD RBF SVM CA: 60%

Özerdem and
Polat (2017)

32 Music clips Positive and negative DWT MLPNN CA: 77.14%

Pan et al.
(2016)

6 Photos Happiness and sadness CSP SVM CA: 74.17%

Djamal and
Lodaya
(2017)

10 Music Excited, relaxed, and sad WT LVQ CA: 87%

Murugappan
(2011)

20 Video clips Disgust, happiness, fear,
surprise, and neutral

Entropy K-NN CA: 82.87%

TABLE 8 | Summary of EEG-based BCI gaming and VR studies.

References No. of

subjects

Control

signal

EEG feature Classification

algorithm

Performance

evaluation

Kreilinger et al.
(2016)

10 MI BP LDA “Upper 10%” MI
detection rates: >70%

Bonnet et al.
(2013)

10 MI CSP LDA CA: >70%

Maby et al. (2012) 2 P300 Shannon
entropy

LDA Average accuracy:
82%

Djamal et al.
(2017)

10 MI FFT LVQ Average accuracy:
70%

considerable interest. The prototypes of BCI-based video games
in existence are based on three BCI paradigms: steady-state
evoked potential (SSVEP), P300 event-related potential (ERP),
and mental imagery (MI). Table 8 shows a summary of some
recent EEG-based virtual reality and gaming systems. Finke et al.
presented a P300-based BCI game known as Mind Game in
which the user moves a character from one field to another on
a game board (Finke et al., 2009). For Mind Game, the authors
reported a 66% mean accuracy (specifically, this was the rate at
which the correct target was selected out of 12 possible targets).
Other P300-based BCI games have also been proposed (Mühl
et al., 2010; Congedo et al., 2011; Angeloni et al., 2012; Ganin
et al., 2013).

Some famous video games, including Pong, Pacman, and
similar games, can be played with motor imagery (Krepki et al.,
2007). The Pacman produces one step every 1.5–2 s with the aim
of giving the gamer enough time to perform a control command.
In another study, a pinball game was developed in order to
illustrate that it is possible to successfully apply non-invasive
recording techniques for complex control tasks (Krauledat et al.,
2009).

Moreover, external evoked potentials have been utilized for
game implementations. Middendorf et al. (2000) designed a
simple flight simulator that is controlled by a BCI based on
Steady-State Visual-Evoked Response (SSVER). This simulator
was very modest, and only two control actions were possible.
The position could only be moved to the left or right.
Two methods were tested over the airplane control trials.
On the other hand, the control command (right or left)
was detected according to the strength of the SSVERs. The
selection was identified by reference to the frequency of
SSVER. The results of the trials with able-bodied participants
showed that the last one was preferred because it required
little or no training since the system capitalized on naturally
occurring responses. Lalor et al. (2005) proposed a game named
Mind Balance in which healthy subjects needed to hold a
tightrope walker in balance. The application was based on
SSVEP, which is generated as a response to phase-reversing
checkerboard patterns.

A final interesting example of this application was recently
presented at the Cybathlon 2016, a competition for participants
with disabilities who compete against each other using assistive
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TABLE 9 | Summary of EEG-based BCI robotic arm studies.

References No. of

subjects

Control

signal

EEG feature Classification

algorithm

Performance

evaluation

Yang C. et al.
(2018)

2 SSVEP FFT CCA Five tasks performed

Hortal et al.
(2015)

2 MI FFT SVM CA: 70%

Bhattacharyya
et al. (2015)

11 MI MFDFA ANFIS Success rate: >60%

Bousseta
et al. (2018)

4 MI FFT RBF SVM Success rate: 85.45%

Roy et al.
(2016)

5 MI WT, PSD SVM CA: 75.77%

technologies. In the BCI discipline, 11 participants with
tetraplegia competed against each other in a virtual environment
where their avatars raced along a virtual obstacle course (Novak
et al., 2018). Since external visual stimuli were not allowed
at the Cybathlon, the participants could not make use of
SSVEPs and P300; instead, they relied on motor control and/or
mental imagery to control their avatars. As expected, the
results varied strongly between the 11 participants, with the
best participant completing the race in the 90 s and the worst
completing it in 196 s. In this competition, every team used
gelled electrodes, indicating that they did not consider dry or
water-based electrodes reliable enough for use in uncontrolled
environments. Similarly, every team used laboratory-grade EEG
amplifiers, suggesting that no team trusted consumer-grade
devices to provide sufficiently good performance. Furthermore,
the competition emphasized the importance of effective BCI
training for the users, as the teams all had very different
participant-training strategies and the winning team stated that
their effective BCI training regimen likely had a major effect on
their success.

BCI Robotic Arm
Because of the advances in robot control (RC) systems, they
are playing an increasingly important role in a wide range of
fields. The relationship between humans and robots has become
increasingly intimate, and many human-robot collaboration
systems have been developed. However, it is hard for a disabled
person to operate a robot because of their loss of motion capacity
or reduced sensing ability (Yang C. et al., 2018). Many studies
have been dedicated to solving this problem (see Table 9). Yang
C. et al. (2018) presented a shared control system by combining
an SSVEP-based BCI and visual servoing (VS) technology
to enable mind control of a robot manipulator. To enhance
the intelligence and accuracy of the shared control system,
the authors proposed an adaptive color adjustment for object
detection, the least squares method (LSM) for camera calibration,
and the coordination of task motion and self-motion (CTS) for
obstacle avoidance. However, the authors tested the system using
only two healthy subjects. Furthermore, Bousseta et al. (2018)
proposed a preliminary outcome for the movement control of a
robot arm for four directions: left, right, up, and down through

mental tasks. Spectral analysis with FFT transformwas combined
with a PCA strategy to produce optimal features to feed into
an RBF Kernel SVM classifier aimed at distinguishing the four
movements. The experiments performed by four volunteers
produced an average accuracy of 85.45%. A hybrid BCI system
consisting of SSVEP andMIwas proposed inDuan et al. (2015) to
provide control commands to a brain-actuated robot. The SSVEP
responses were utilized to tell the robot to move forward, turn
left, and turn right, whereas the MI was utilized to perform the
grasp motion. The authors also developed a visual servo module
to perform the grasping with higher accuracy.

BCI Environmental Control
An important application of EEG-based BCIs is environmental
control, which can improve the quality of life and increase
the independence of paralyzed patients. Various EEG-based
environmental control systems have been developed in
recent years.

Aloise et al. developed a P300-based BCI home electronics
control system that included a DVD player, electric lights, etc.
(Aydin et al., 2018) where the subjects suffered from chronic
neurological disorders. Shyu et al. (2010) proposed a steady-
state visual evoked potential (SSVEP)-based BCI multimedia
control system. Specifically, four flickering buttons were utilized
to perform four different control commands: play or pause the
selected multimedia file, scroll through displayed items, stop the
multimedia system, and adjust the volume up and down. In
another study, the authors proposed the application of an SSVEP-
based BCI hospital bed nursing system (Kleber and Birbaumer,
2005) that enabled the users to move the entire bed up and
down and control the power of the massaging cushion. In a
study carried out by Corralejo et al. (2014), several patients
with different degrees of motor impairment were able to operate
home electronics, including a TV, DVD player, and lights, via
a P300-based BCI. Edlinger and Guger (2012) suggested a non-
invasive subject dependent P300 stimulus-based BCI system that
provides the subject with a stimulus and records his reaction as
an input. The user is provided with a GUI with various icons
representing different tasks like turning a light on/off, opening
a door/window, switching TV channels, etc. In the worst-case
scenario, this system obtained 30% accuracy with 12 participants,
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TABLE 10 | Summary of EEG-based BCI environmental control studies.

References BCI application Control signal No. of subject Method Performance

evaluation

Shyu et al.
(2013)

Hospital bed nursing
system

SSVEP 15 FPGA Accuracy: 92.5%,
ITR: 5.22 s/command

Zhang et al.
(2017)

Environmental
control system

ERP 3 Classifier: BLDA Accuracy: 89.2%

Aydin et al.
(2018)

Environmental
control system

P300 10 Classifier: LDA Accuracy: 93.71%

Kosmyna
et al. (2016)

Control of a smart
home with a BCI

P300, SSVEP 12 Minimum Distance
Classifiers

Average accuracy:
81–77%

whereas, in the best-case scenario, a 100% accuracy was achieved
from one of the subjects.

In another perspective, Carabalona et al. (2010) suggested
a non-invasive visual P300-based BCI system for physically
impaired users to control a smart home environment. The
user is provided with a 6 × 6 matrix of icons. Each icon
represents a command related to an everyday device. The icons
flash on the computer screen one by one. Once the desired
icon is reached, a peak is observed in the neural signals of
the user. This peak is considered to be icon selection. The
system was tested using four participants, and the accuracy rate
observed varied from 33 to 100% among different users. Kim
et al. (2013) also suggested a non-invasive P300 stimulus-based
BCI system to switch TV channels from a viewing distance of
3 meters and a 46-inch TV screen. A total of eight subjects
were provided with a visual stimulus in the form of a flashing
green cursor in the top left corner of each channel icon.
Once the desired channel was reached, a peak in the subject’s
neural signals was considered as input for channel selection.
An average of 92.3% accuracy was attained from the system.
In two other studies (Edlinger and Guger, 2012; Lin et al.,
2014), the authors proposed non-invasive subject-dependent BCI
to control electrical home appliances. Two physiological states
(drowsiness or alertness) of users were used and translated
into commands to interact with different electronic appliances.
Similarly, Akman Aydin et al. (2015) suggested a region-
based selection paradigm for a smart home control system
for physically impaired users. The proposed system is a non-
invasive P300 stimulus-based BCI system that flashes each
region five times on the screen to invoke a response from
the user. Upon acquiring a peak in the neural signals of the
subject, the system considers it as a selection command for that
particular region. The proposed system was able to achieve 95%
accuracy for 49 household tasks using five subjects without any
physical impairment. Masood et al. (2016) suggested a non-
invasive BCI that uses the blink of an eye as a control input
to interact with home appliances. The selection and control
of the device are performed using a GUI. The system has the
potential to be enhanced by adding more devices. However,
the currently proposed system has only 70% accuracy. Table 10
summarizes some recent findings with regard to EEG-based BCI
environmental control.

Recent Achievements and Innovations in
EEG-Based BCIs
In its early days, BCI technology was regarded as unattractive for
genuine scientific investigation, primarily owing to its restricted
resolution and the unreliability of the information from the brain
as well as its high variability. Furthermore, the data acquisition
of such technology was somewhat expensive. Therefore, brain
activity research was typically constrained to medical use or
exploration of brain functions in the laboratory. However, this
scenario has changed dramatically over the past two decades
due to advances in technology, which have brought down its
associated costs to some degree. Meanwhile, BCI research has
expanded to non-medical applications as well. Over the last
15 years, the number of studies regarding BCI has increased
substantially. Figure 4 depicts the number of companies that
manufacture BCI-based products around the globe2. The two
most well-known technology providers for BCI devices are
Neurosky and Emotive.

The leading social media platform, Facebook, funded a
research project at UCSF that aims to restore the communication
ability of disabled people through their thoughts at a speed of
100 words per minute. Eventually, this company is planning to
launch an EEG headset that lets users control music or interact
in virtual reality using their thoughts. Some findings of this
project were published in Moses et al. (2019), where the authors
demonstrated that high-resolution recordings directly from the
cortical surface can be used to decode both perceived and
produced speech in real time. By integrating what participants
hear and say, they leveraged an interactive question-and-
answer behavioral paradigm that can be used in a real-world
assistive communication setting. Together, these results represent
an important step in the development of a clinically viable
speech neuroprosthesis.

SpaceX and Tesla CEO Elon Musk founded Neuralink, which
is aiming to design ultrafine threads (more tenuous than a
human hair) that can be embedded into the brain to recognize
neural activity. It builds arrays of small and flexible electrode
“threads,” with as many as 3,072 electrodes per array distributed
across 96 threads Musk (2019). This company has also built

2Companies - BNCIHorizon 2020Available online at: at: http://bnci-horizon-2020.
eu/community/companies (accessed February 02, 2019).
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FIGURE 4 | Distribution of BCI companies around the world.

a neurosurgical robot that is capable of inserting six threads
(192 electrodes) per minute. Each thread can be individually
inserted into the brain with micron precision for the avoidance
of surface vasculature and to target specific brain regions. The
electrode array is packaged into a small implantable device that
contains custom chips for low-power onboard amplification
and digitization: the package for 3,072 channels occupies <23
× 18.5 × 2 mm3. The size and composition of the thin-film
probes are a better match for the material properties of brain
tissue than commonly used silicon probes and may, therefore,
exhibit enhanced biocompatibility (Chung et al., 2019). A single
USB-C cable provides full-bandwidth data streaming from the
device, recording from all channels simultaneously. This system
has achieved a spiking yield of up to 70% in chronically
implanted electrodes.

Jiang et al. (2019) have presented BrainNet, which is the
first multi-person non-invasive direct brain-to-brain interface
for collaborative problem-solving. The interface combines EEG
to record brain signals and transcranial magnetic stimulation
(TMS) to deliver information non-invasively to the brain.
Among the three human subjects, two subjects are designated
as “Senders” whose brain signals are decoded using real-time
EEG data analysis. The decoding process extracts each Sender’s
decision about whether to rotate a block in a Tetris-like game
before it is dropped to fill a line. The Senders’ decisions are
transmitted via the Internet to the brain of a third subject,
the “Receiver,” who cannot see the game screen. The Receiver
integrates the information received from the two Senders and
uses an EEG interface to make a decision about either turning the
block or keeping it in the same orientation. Five groups, each with

three human subjects, successfully used BrainNet to perform the
collaborative task, with an average accuracy of 81.25%. This result
points the way to future brain-to-brain interfaces that enable
cooperative problem solving by humans using a “social network”
of connected brains.

Boston area company Neurable has created a brain-controlled
game called Awakening, the central character of which is a child
with telekinetic powers. The character is set the task of escaping
from a laboratory by using mind power to pick up toys such
as a balloon dog and rainbow rings. Players wear a headband
studded with electrodes that connect to a virtual reality headset.
Their brain signals are picked up and analyzed by software that
determines how the character will move. Players are then able to
train their brains to produce the right signals to pick up the toys
(iHuman, 2019).

Over the last two decades, evidence has accumulated on the
capacity of neural interfaces such as those using transcranial
direct current stimulation (tDCS) to enhance performance in
cognitive areas such as working memory and attention as
well as in physical activities such as cycling (Ke et al., 2019).
tDCS involves the use of a headset and electrodes that are
typically contained in sponge bags, with saline solution used
to conduct electricity from the electrodes to the scalp (Cincotti
et al., 2003). Adverse effects are rare—users have reported mild
tingling sensations and occasionally headaches or fatigue. One
study showed how tDCS improved the ability of US Air Force
personnel to “multitask” (Nelson et al., 2016). The participants,
all stationed at the Wright-Patterson Air Force Base in Ohio,
USA, were asked to monitor and respond to four independent
tasks on one computer screen. Their tasks were to: keep dial
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markers centered in a “system monitoring” box; change the
communications channel frequencies as requested by an audible
prompt; keep a target centered in a “targeting” box, and keep
fluids moving in a “resource management” box by turning
tanks on and off. The 10 participants who received active
tDCS stimulation from the headsets, provided by Wales-based
company Magstim, performed about 30% better than those
who did not.

CURRENT CHALLENGES AND
DIRECTIONS

In the past few years, substantial BCI research has been
performed to invent some potential assistive technologies. From
the current status of BCIs, it can be predicted unquestionably
that BCI technology will very soon be launched in the market.
In fact, a few commercial BCI appliances have already been
launched in themarket. A remarkable program, namely the BNCI
Horizon 2020 project, has proposed a future agenda regarding
BCIs. However, some crucial issues and challenges exist in every
component of the BCI paradigm, and these issues should be
addressed by the BCI community to make further advances
in BCIs.

Issues in EEG Modalities for BCI
Applications
The most preferred EEG modalities, namely MI, SSVEP, and
P300, are continuously facing signal processing issues, especially
the identification of the most applicable approaches for feature
extraction and feature reduction. This is primarily owing to the
nature of the EEG signals, namely extremely non-linear, non-
stationary, and artifact-prone. Other notable issues involve data
fusion, in particular how the data from numerous electrodes are
merged to be able to lessen the data dimensionality as well as
to make improvements to the classification results. It is evident
that once individuals have been taught properly, MI strategies
often deliver remarkable outcomes. For an MI-based BCI to be
handled by a targeted user, plenty of training trials are needed
from the targeted user, causing the calibration period to be
unacceptably long for a realistic model. Thus, investigations
should be concentrated on cutting down the calibration period
as well as effective training strategies. P300 shows greater average
ITRs, and it does not call for a training process, although the
degree of severity and variety of the disease may considerably
affect the performance of this modality. Nevertheless, a good
number of studies have also found that even individuals with LIS
are capable of handling a P300-based BCI for long durations.
However, with regards to ITR, it is worth noting that the
healthy individual group yields higher bit rates than disabled
subjects in practically all the previous findings regarding P300-
BCI (Lazarou et al., 2018). The method of stimulation is so
difficult that the experimental process could not be carried out
by the patients. Moreover, a wide range of instructions in a P300-
based BCI system increases the number of trials, which, in turn,
causes reduced overall performance. The coupling of the generic
models with online training could be an excellent alternative

to reduce the calibration period and enhance P300-based BCI
system performance together with consumer satisfaction (Jin
et al., 2020). The SSVEP approach obviates the calibration or
subject training. Hence, this type of speller should be faster in
comparison with P300 spellers. However, a certain number of
individuals generate extremely poor SSVEP responses, which
is tough to explore. Therefore, a hybrid approach could be
an excellent alternative to the use of a single EEG modality.
Further investigations are necessary in order to identify which
EEG modality is the most appropriate type for BCI application.
For instance, MI-based approaches are considered the most
appropriate to handle a prosthetic arm or leg. However, in the
operation of digital radio, an SSVEP-based approach with a 4-
option menu including volume-up, volume down, station-up,
and station-down options may be much intuitive than an MI-
based technique with imaginedmovements being associated with
television controls. Intuitiveness should be a crucial factor at the
time of the initial decision stage when selections of technology
and BCI category are being made. Additional investigations are
also needed to figure out the more appropriate feature set and
classification frameworks for specific EEG modalities. Research
with regards to features and classifiers also need emphasize
figuring out the optimal options to be employed for individuals
affected by CNS injury.

Issues With EEG Headsets
The quality of EEG data for BCI application mostly depends
on the EEG headset. There are some issues regarding EEG
headsets that need to be resolved. First of all, most of the
EEG headsets require gel or liquid on electrodes, which are
very uncomfortable to the user. For practical applications,
users prefer dry electrodes, as it is not mandatory to use
any conductive gel between the scalp skin and electrode pad.
However, it is a matter of open debate as to whether this
type of electrode offers identical signal properties. It has
been reported that the EEG from dry electrodes contains
considerably more artifacts and noise than wet electrodes,
whereas another study reported that the signal properties are
almost identical for wet and dry electrodes. Hence, an in-
depth investigation should be carried out to further validate
the efficacy of dry electrodes. It is worth noting that newly
proposed water-based EEG electrodes are now being investigated.
In Mihajlovi and Peuscher (2012), the authors pointed out
that the performance of dry and water-based electrodes with
shorter hair is comparably superior to gel-based electrodes.
They also recommended continuing further investigation for
the refinement of electrodes to make them applicable with
longer hair and further suggested that dry and water-based
electrodes have the potential to replace gel electrodes. To date,
headsets with dry electrodes are available in the market, but
these contain very few electrodes, and the procedure has not
yet been standardized. There are thousands of EEG headsets
that have already been launched by different companies for
BCI applications. The number of electrodes (for example, 1,
3, 4, 8, 14, 16, 20, 24, 32, or 64) is varied from headset to
headset, and these headsets are not compatible with each other.
Hence, the minimum number of electrodes for specific EEG
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modalities should be standardized. High ownership cost of an
EEG headset is another challenge in allowing BCI technology
to become affordable for the general public around the world
(Abiyev et al., 2016). Hence, the reduction of the price of such
EEG headsets is much lauded. The portability of the BCI model is
also a crucial matter: headsets that transfer data wirelessly permit
individuals to move freely, whereas a wired headset somewhat
limits movements.

Lack of Ideal Data Analysis Methods
Although most of the artifact removal algorithms offer good
performance, the methods listed in section EEG Data Pre-
processing Strategies suffer from different limitations when
utilized in a particular EEG-based application. Indeed, some
methods are only focused on the detection and removal of
particular artifacts. Some methods need reference channels to
enhance the accuracy of artifact removal, which is not feasible for
some specific applications. ICA-based algorithms can deal with
all kinds of artifacts occurring in EEG recordings. Regression
and adaptive filters are more feasible choices when the reference
channels for specific artifacts are available. Apart from ICA, CCA
and its combination with other methods seem to be a good
choice for the removal of muscle artifacts. For application to a
few channels, EMD, IVA, and its hybrid methods with BSS or
WT can be an ideal choice. Moreover, EMD can significantly
improve the signal quality by eliminating noise with fewer
data (Zhang Z. et al., 2019). However, the requirement for a
reference signal limits adaptive filter or regression methods to
the removal of particular types of artifact. Wavelet transform
fails to completely identify artifacts that overlap with spectral
properties. EMD also suffers from the drawback of mode-
mixing. Therefore, it is quite difficult to find a single method
that is both efficient and accurate enough to satisfy all the
conditions perfectly. Thus, one of the future objectives of the
effective attenuation of artifacts is to develop an application-
specific algorithm with better time-efficiency and accuracy.
Also, from the current trend of artifact removal, it can be
concluded that future directions will combine machine learning
and traditional approaches for effective automatic artifact
removal. Apart from that, new artifact removal algorithms for
numerous types of artifacts in multiple scenarios still need to
be identified.

Regarding feature extraction techniques, a wide range of
features have been extracted to figure out the significant
information from the EEG. From previous studies, it has
been seen that the performance of CSP and its modified
algorithms is comparatively encouraging when applied to EEG
motor imagery data. In the case of emotion recognition
or mental workload classification, spectral features are more
suitable, whereas frequency-domain based features perform
better with SSVEP data. However, it is too early to state the
optimum feature extraction technique for a specific EEG control
signal modality.

Based on previous studies, SVM is the most robust classifier
for classifying high-dimensionality feature vectors. Sometimes,
HMM may deal with a high-dimensionality feature set by
analyzing the sequence of feature vectors. In order to avoid

computational complexity, a low-dimensional feature vector
should be preferred. However, feature reduction or selection
algorithms could be considered in the case of high-dimensional
feature sets. Several deep learning approaches have been
implemented to classify MI, SSVEP, emotion recognition, and
ERP data. The architecture of deep networks entirely depends
on network structure and input formalization. Previous studies
showed that CNN- and RNN-based deep learning approaches
outperformed other deep learning methods. Moreover, CNN
offered optimum accuracy when time-series values or spectral
images were utilized as inputs. Hence, it has been suggested
that there should be comprehensive study of the combination
of network architectures, especially the structure and number
of distinctive layers, for example, RBMs, convolutional layers,
fully connected layers, and recurrent layers. Besides network
structure, further studies need to be conducted to distinguish
how deep learning approaches interpret raw EEG against artifact-
prone EEG, as these sorts of studies have not yet been explicitly
conducted. In this article, a wide range of classifiers have been
surveyed that are evaluated in an offline manner. As every BCI
application is essentially an online scenario, the classifiers should
be validated online. Moreover, the classifier model should be
tested to assure lower computational complexity and calibrated
quickly in real-time operation. To design calibration-free BCIs,
domain adaptation, and transfer learning can be an effective
alternative where the combination of superior feature sets, for
example, covariancematrices and domain adaptation algorithms,
may enhance the invariance capability of BCIs. The design of a
stable estimator of the Riemannian median is an open challenge.
This property could make the Riemannian geometry classifiers
more robust.

Performance Evaluation Metrics
It is evident from the previous studies that a variety of
performance evaluation metrics are employed to evaluate BCI
systems. It is almost impossible to compare the same types of
BCI systems when they are evaluated by dissimilar performance
metrics. Hence, the BCI research community should recommend
a standard and systematic approach or a single metric to
quantify a specific BCI application. For example, number
of control commands, types of control commands, distance
covered, time required, number of collisions, classification
accuracy, average success rate, amongst others, should be
utilized to evaluate the performance of a BCI wheelchair
control. If the same performance metrics are used for a
given BCI application, then a direct comparison between
different BCI experiments is possible. Not only are training
models not liable to limit the overall performance of the
system, but testing data can also be utilized. A large number
of BCIs are designed to substitute CNS functionality, and
these BCIs are actually assessed on healthy individuals inside
a controlled laboratory environment. This may misguide to
defective outcomes if the targeted users of these systems
would be disabled patients; for example, BCI performance
seems to be poorer for patients affected by spinal cord
injuries when compared with healthy subjects. Thus, researchers
should emphasize specifying similar performance evaluation
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metrics and, in the meantime, ensure system assessment by
valid data.

Trends in Lab-Based BCI Technology
One of the major concerns regarding BCIs is that almost
all of BCI experiments have been conducted in a controlled
lab, regardless of the realistic environment of the targeted
users. Therefore, these EEG data are a crucial factor in the
initial evaluation of signal processing approaches as well as the
advancement of considerably more robust systems. As pointed
out before, heart rate and cortisol may considerably affect the
characteristics of brain waves. Outside the lab, different sensory
stimulations found in the surroundings, like sounds, movements,
and smells, may affect the quality of EEG signals. Hence, during
the design of any BCI system, engineers should consider the
particular environment where the proposed technology will be
employed. For example, the design criteria may not be identical
for the operation of home appliances in a home environment
as compared to the detection of the attention level of a pilot
using EEG while flying a plane. Thus, at the time of system
design, it is important to examine the basic criteria of the system,
environmental aspects, situation, and target users in-depth.

Low ITR of BCI Systems
Higher ITR is the primary requirement of any effective BCI
system. ITR is the metric that is most employed in the BCI
community to assess the performance of BCI prototypes. The
ITR of a given BCI system depends upon three criteria: the
number of classes, target detection accuracy, and target detection
time (Wolpaw et al., 2002; Ramadan and Vasilakos, 2017).
The target detection accuracy can be boosted with the aid of
the enhancement of the Signal-to-Noise Ratio (SNR). Several
strategies are usually employed in the preprocessing phase in
order to increase the SNR, as described in section EEG Control
Signals Used in BCI Applications. Once high ITR is achieved,
more sophisticated applications may be developed by increasing
the variety of classes. A variety of stimulus coding strategies,
for instance, CDMA, TDMA, and FDMA, have already been
adapted for BCI systems (Bin et al., 2011; Jin et al., 2011). In
order to code the intended stimuli, TDMA has been utilized
with P300, whereas CDMA and FDMA have been employed
in those BCIs that deal with VEP. Finally, minimizing the
target recognition period, which assists in boosting the ITR, is
another crucial aspect of BCIs. To accomplish this, adaptive
approaches, namely “dynamic stopping,” may be an excellent
alternative. Moreover, single-trail classifications using machine
learning frameworks and optimized stimulus demonstrations
can also contribute to reducing the target recognition period
(Schreuder et al., 2013).

Commercialization of EEG-Based BCI
Technology
The main consumer of BCI technology is this particular group
of disabled patients, and commercialization is the only way to
spread this technology all over the world. Hence, the BCI research
community should identify the actual causes that prevent the
commercialization of this technology. To further illustrate the

TABLE 11 | Essential features for BCI systems.

Key feature Description

Effectiveness The BCI system should be really helpful to users

Robustness The system must be stable during regular use and robust
with respect to anomalies

Quick operation Task execution time should be as low as possible

More functionality The system should allow the user to perform as many
tasks as possible to increase the autonomy of the user

Safety The system must pose no danger to user health

Comfort The EEG cap should be comfortable to wear for several
hours

Mobility To ensure mobility, the BCI system should be wireless,
lightweight, and compact

User-friendliness The system should be simple to operate and need no
expert help for daily use

Cost-effectiveness The price should be affordable for all kinds of users

obstacles that are preventing the commercialization of BCI
technology, Vansteensel et al. (2017) supplied a set of questions
to more than 3,500 BCI researchers in the field of EEG or
EMG technologies throughout the world. Almost all of the
experts were confident that a particular BCI application would
be launched to the market within the next 5–10 years. This
survey suggests that upcoming research ought to concentrate on
sensor development as well as the overall system performance
of non-invasive BCIs. Kristo et al. (2013) also concluded that
the BCI research community should focus on boosting ITR
(Speier et al., 2013) and exploring the signal processing platform.
In addition to these, there are also some major issues that
prevent the commercialization of an EEG-based BCI system
among the targeted users. First of all, existing BCIs cannot be
handled by disabled patients. Expert assistance is mandatory to
set up the signal-receiving electrodes of current BCIs. Moreover,
almost all of the BCI devices are still under investigation and,
hence, are not readily available for home-usage. Therefore, future
BCI systems should cater for disabled patients lacking any
assistance from experts. BCI illiteracy is an additional barrier
to the widespread use of EEG-based BCI systems. When an
individual is unable to operate the BCI device due to low-quality
brain signals being produced, this phenomenon is regarded as
BCI illiteracy. EEG signal quality may be improved with the
aid of a collaborative co-learning strategy that gives the end-
user audio or visual feedback. Continuous use of BCIs makes
frequent use of specific neural pathways (Padfield et al., 2019),
and additional study needs to figure out the possible health
risks or variations in brain functionality due to such prolonged
exposure. The BCI system should be similar to other ideal off-
the-shelf technologies with regards to its ease-of-use. The BCI
devices should also be user-friendly and have in-built safeguards
to prevent untoward situations. Furthermore, advanced BCI
technology should also be capable of providing stable results
when it is used in multisensory environments such as in a noisy
family home. Table 11 lists the essential features that enable the
commercialization of BCI systems. These features are deemed
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necessary to increase the quality of BCI systems (Miralles et al.,
2015).

Issues in Specific EEG-Based BCI
Applications
The use of P300 in a BCI wheelchair has numerous drawbacks,
for example, when a patient suffers from a neural disease,
specifically ALS (Bashashati et al., 2007a; Kodi et al., 2013).
Usually, BCIs that use a P300 modality have a poor ITR.
Additionally, several studies have stated in their findings that
performance may drop after a long period owing to the
reduction of the P300 amplitude due to familiarization (Iturrate
et al., 2009a; Choi, 2012; Amiri et al., 2013). In a real-time
system, the user needs to concentrate on the mission without
interruption (Iturrate et al., 2009b), which is another weakness
of such a scheme. If users focus on such visual stimuli for
a significant period, they feel fatigued or suffer from sore
eyes (Puanhvuan and Wongsawat, 2012; Chai et al., 2014).
Therefore, such physiological control signals are neither suitable
nor effective for wheelchair operation. Despite the advantages
of using navigation systems that assist the control of the
wheelchair with shared control, limited findings have been
reported. However, it is worth noting that several cases, for
instance, wheelchair operation in a corridor or a free area with
unfamiliar impediments, need to be addressed. In such cases,
a complete wheelchair control system with its main navigation
components including mapping, localization, path planning, and
obstacle avoidance is highly recommended (Widyotriatmo and
Suprijanto, 2015).

With regards to BCI cursor control, only three articles
have reported a success rate of above 90% (Long et al.,
2012b). This information somewhat suggests that an insufficient
number of experiments have yet been carried out in this
area. Therefore, more experiments are needed to explore the
exact limitation behind the low success rate. Although MI,
P300, and hybrid approaches (MI+P300, MI+SSVEP) have
been used in BCI cursor control, it was observed that the
hybrid approach yields the best results (Long et al., 2012b).
However, it is too early to remark on which hybrid strategy
is optimal for multidimensional cursor control, and, hence,
more experiments are needed to evaluate efficacy. Different
factors should be taken into consideration to make a robust
system, such as literacy rate, target size, timeout interval, user
preferences, volume of electrodes, training period, invasiveness,
and movement time.

Most of the previous studies of BCI spellers have been carried
out utilizing the P300 modality owing to its credibility among
researchers. Hence, there are more development opportunities in
the other BCI paradigms, for example, MI, SSVEP, and hybrid.
Almost all of the studies employed mean accuracy and ITR
to evaluate their experiments. Nonetheless, it is noteworthy to
mention that amongst a selected paradigm, the performance
of one study varies from another owing to the utilization
of different experimental resources. The aforesaid resources
include EEG caps, electrodes, GUI, software, and data from
healthy or disabled subjects, as well as the number of subjects.

Hence, for conducting a comparison between different BCI
spellers, the first step should be that the identical hardware
and software must be used. Hitherto, to operate a BCI speller,
users require expert help to set up electrodes at specific
positions. Portability is another challenge to the current BCI
spellers. Typing errors are another issue, as it necessitates a
correction period and influences the spelling rate. Hence, further
enhancements should be made to provide faster, accurate, and
user-friendly spellers.

Some constituents, including data preprocessing strategy,
classification model design, have a considerable impact on the
performance of BCI-based person identification. Although a
variety of features and classifiers have been employed to figure
out the superior approach, the optimum technique has not
been explored. Hence, more experiments should be carried
out to identify the most appropriate technique. Moreover,
more attention should be given to removing artifacts from
EMG, EOG, and ECG. In an EEG-based authentication system,
different paradigms like P300, SSVEP, and MI can be used,
although each paradigm has its own merits and demerits.
Thus, the best paradigm for EEG should be identified based
on the person’s authentication. Moreover, the EEG acquisition
protocols should be user-friendly. Brain activity acquisition
for biometric usage is a crucial matter that has not received
enough attention from researchers (Campisi and La Rocca,
2014). Few partial studies have been conducted, and these
studies emphasized session-wise EEG stability. Moreover, in
these studies, the variation in data acquisition time lay
between 1 week and 5 months (La Rocca et al., 2013; Lee
et al., 2013; Palaniappan and Revett, 2014). Additionally,
the human brain is very sensitive to emotion (Marcel and
Millan, 2007; Lee et al., 2013). No publication has clarified
the stability of EEG regarding the emotional diversity of
BCI-based biometrics. Hence, the emotional diversity of the
human mind should be carefully considered for a realistic BCI
biometric system. Moreover, permanence in terms of elicitation
strategy, applied protocol, and feature selection should also be
investigated critically.

Researchers have attempted to recognize human emotion
or mental state using EEG. However, there are still many
challenges in this particular research domain. The EEG signal
is very weak and is easily disturbed by external factors, such
as subjects’ movements and environment noise. Noise-free
and accurate EEG is the greatest challenge in recognizing
emotional states. The way in which emotions are evoked
contributes significantly in emotion recognition systems. There
are numerous methods of stimulation, i.e., pictures, video clips,
music, memories, self-induction, environmental elicitation like
light, humidity, and temperature, and games, amongst others.
By using good and strong stimulation, emotion recognition is
more likely to be performed with better results and higher
accuracy. A number of emotion types also sometimes affect the
system’s performance. Another crucial matter that significantly
influences the performance of the system is the signal processing
platform, which includes data denoising, filtering, suitable
feature set selection, and classification model design. A variety
of feature extraction and classification algorithms have been
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carried out by the researchers, but it is still difficult to
identify which model is optimal. However, PSD and SVM
have been most widely used for feature extraction and
classification, respectively.

Most BCI games demonstrate very low accuracy and speed
as compared to conventional interfaces, suggesting that there
are issues that must be addressed to facilitate the acceptance of
BCI games. One of the most prevalent issues is the selection
of the EEG control signal. Among SSVEP, P300, and MI, the
P300 paradigm is favored by researchers for BCI-based games.
With regards to tagging problems and hardware impediments,
an optimal setup should be employed, for instance, an EEG
headset, VR machine, and motion sensor can be integrated,
and this joint system may able to trace the rotation together
with the position of the targeted users (De Vos et al., 2014). A
number of notable BCI-based games have been recommended
in Marshall et al. (2013). Although the P300 modality has
been employed to good effect in puzzle games, this system
may be upgraded by motion-based technology. A turn-based
strategy allows the users to pick options at their own pace,
whereas a variety of simulation and adventure games are
more relevant for a BCI+VR game. The performance of real-
time BCI with moving users is a controversial issue. When
the users are walking or moving, the P300 modality can be
stimulated, but the overall performance drops (Debener et al.,
2012). A camera and accelerators can be used for identifying
user movement as well as removing the corresponding EEG
signal from the analysis (Ahn et al., 2014). To ensure noise-
free EEG, a real-time artifact elimination strategy has been
recommended (Barachant et al., 2013). Additionally, some
novel features, including the weighted phase lag index, can be
employed when the subjects are walking (Lau et al., 2012).
However, we have noticed that there is still a lack of studies
outside of a controlled environment, such as Debener et al.
(2012).

A limited number of studies have reported on the use of
BCI in robotic arm control, suggesting that there is more room
for exploration. Moreover, it is apparent that the performance
of these reported systems is still at an unsatisfactory level,
indicating that more experiments should be carried out. Due to
a lack of necessary adaptation and training, the time taken for
such activity to transpire is somewhat lengthened; nonetheless,
this problem can be mitigated through proper training. Some
BCI-based home appliances may able to handle only one
application a time, which does not reflect effectiveness in real-
life scenarios. Hence, the activities of daily living (ADL) of
paralyzed patients will be easier when many home appliances
at a time can be utilized through an independent system.
Most of the proposed environmental control systems have been
assessed on healthy users. Thus, there is a crucial question as
to whether the performance of healthy users is identical to
that of disabled people. Until now, the possibility of the use
of environmental control systems by severely disabled people
has been investigated in very few studies, and, hence, more
effort should be applied to evaluating data obtained from
disabled patients.

CONCLUSION

A thorough review analysis has been carried out in this article
on EEG-based BCI, particularly to investigate its methodological
advantages and disadvantages and the essential contributions
required in this field of research. Each BCI application has been
explored in terms of data acquisition technique, control signals,
EEG feature extraction, classification methods, and performance
evaluation metrics. Finally, potential complications with EEG-
based BCI systems have been addressed, and promising
alternative options have been recommended. Patients with CNS
injury may be able to rehabilitate their motor function through
the progress of emerging BCIs. Owing to wireless recording,
portability of EEG headsets, cost-effective amplifiers, significant
temporal resolution, and proficient signal analysis strategies,
there is keen attention on EEG-based BCI technology for such
purposes. In spite of the many outstanding breakthroughs that
have been achieved in BCI research, some issues still need to
be resolved. First of all, a general BCI standard is currently
the main issue. The BCI community should declare a general
BCI standard that must be adhered to by BCI researchers.
Secondly, the existing BCIs offer somewhat poor ITR for
any type of effectual BCI application. Hence, future research
should concentrate on increasing the ITR of BCI systems.
Moreover, matching the most relevant EEG control signal with
the intended BCI application is another important issue in
EEG-based BCI research. Owing to the present accessibility of
computational resources, researchers have begun to move away
from conventional machine learning models to deep learning
approaches. The use of such contemporary techniques allows
for the classification of non-stationary EEG. Most of the studies
on BCI have used different evaluation metrics on their own
as per their convenience without any uniformity, which makes
it difficult to choose the most efficient method, especially for
new researchers in this field. Hence, it could be of interest
to establish standardized BCI metrics so that all related works
may follow the standard. These metrics would be formed based
on BCI application or EEG modalities. Through this, a fair
comparison could be made between related works accurately
and conveniently, which would help new researchers to pursue
their intended research direction. Finally, the majority of BCI
applications are at the investigative phase, and they are not
readily available for the ADL of the general populace. In addition,
the lack of commercialization of BCI technology is also partly
responsible for impeding its popularity around the world. If the
abovementioned concerns can be addressed, BCI systems could
be an emerging means of human-machine interaction in the
foreseeable near-future.

AUTHOR CONTRIBUTIONS

MR and NS: conceptualization. MR and BB: methodology. MR:
investigation and writing—original draft preparation. MR, AA,
and BB: resources. MR, AP, RM, BB, and SK: writing—review and
editing. NS: supervision and project administration. NS, AP, AA,
RM, and SK: funding acquisition.

Frontiers in Neurorobotics | www.frontiersin.org 26 June 2020 | Volume 14 | Article 25148

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rashid et al. EEG-Based BCI Technology: A Review

FUNDING

This work was supported by the Universiti
Malaysia Pahang, Malaysia, through research grant
FRGS/1/2018/TK04/UMP/02/3 (RDU190109).

ACKNOWLEDGMENTS

The authors would like to acknowledge support from the Faculty
of Electrical & Electronics Engineering Technology, Universiti
Malaysia Pahang, Malaysia.

REFERENCES

Abbas, Q., Ibrahim, M. E. A., and Jaffar, M. A. (2019). A comprehensive review
of recent advances on deep vision systems. Artif. Intell. Rev. 52, 39–76.
doi: 10.1007/s10462-018-9633-3

Abdulkader, S. N., Atia, A., and Mostafa, M. S. M. (2015). Brain computer
interfacing: applications and challenges. Egypt. Informatics J. 16, 213–230.
doi: 10.1016/j.eij.2015.06.002

Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y., and Zhao, X. (2019). A
comprehensive review of EEG-based brain–computer interface paradigms. J.
Neural Eng. 16:011001. doi: 10.1088/1741-2552/aaf12e

Abiyev, R. H., Akkaya, N., Aytac, E., Günsel, I., and Çagman, A. (2016). Brain-
computer interface for control of wheelchair using fuzzy neural networks.
Biomed Res. Int. 2016:9359868. doi: 10.1155/2016/9359868

Acqualagnav, L., Treder, M. S., Schreuder, M., and Blankertz, B. (2010).
“A novel brain-computer interface based on the rapid serial visual
presentation paradigm,” in 2010 Annual International Conference of the
IEEE Engineering in Medicine and Biology (Buenos Aires: IEEE), 2686–2689.
doi: 10.1109/IEMBS.2010.5626548

Ahn, M., Lee, M., Choi, J., and Jun, S. (2014). A review of brain-computer interface
games and an opinion survey from researchers, developers and users. Sensors
14, 14601–14633. doi: 10.3390/s140814601

Akman Aydin, E., Bay, O. F., and Guler, I. (2015). “Region based Brain
Computer Interface for a home control application,” in 2015 37th Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC) (Milan: IEEE), 1075–1078. doi: 10.1109/EMBC.2015.
7318551

Al Ghayab, H. R., Li, Y., Siuly, S., and Abdulla, S. (2019). A feature
extraction technique based on tunable Q-factor wavelet transform
for brain signal classification. J. Neurosci. Methods 312, 43–52.
doi: 10.1016/j.jneumeth.2018.11.014

Alariki, A. A., Ibrahimi, A. W., Wardak, M., and Wall, J. (2018). A review study
of brian activity-based biometric authentication. J. Comput. Sci. 14, 173–181.
doi: 10.3844/jcssp.2018.173.181

Alexander, C., Yongtian, H., and Jose, L., C.-V. (2018). Deep learning for
electroencephalogram (EEG) classification tasks: a review. J. Neural Eng.
16:031001. doi: 10.1016/S0165-0114(98)00202-4

Allison, B. Z., Brunner, C., Altstätter, C., Wagner, I. C., Grissmann, S., and
Neuper, C. (2012). A hybrid ERD/SSVEP BCI for continuous simultaneous
two dimensional cursor control. J. Neurosci. Methods 209, 299–307.
doi: 10.1016/j.jneumeth.2012.06.022

Al-Nafjan, A., Hosny, M., Al-Ohali, Y., Al-Wabil, A., Al-Nafjan, A., Hosny,
M., et al. (2017). Review and classification of emotion recognition based on
EEG brain-computer interface system research: a systematic review. Appl. Sci.
7:1239. doi: 10.3390/app7121239

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin,
M. S., et al. (2019). A state-of-the-art survey on deep learning
theory and architectures. Electronics 8:292. doi: 10.3390/electronics80
30292

Alqasemi, R., and Dubey, R. (2010). “A 9-DoF wheelchair-mounted robotic arm
system: design, control, brain-computer interfacing, and testing,” in Advances
in Robot Manipulators (InTech). doi: 10.5772/9678

Al-qaysi, Z. T., Zaidan, B. B., Zaidan, A. A., and Suzani, M. S. (2018). A
review of disability EEG based wheelchair control system: coherent taxonomy,
open challenges and recommendations. Comput. Methods Progr. Biomed. 164,
221–237. doi: 10.1016/J.CMPB.2018.06.012

Amber, F., Yousaf, A., Imran, M., and Khurshid, K. (2019). “P300 based deception
detection using convolutional neural network,” in 2019 2nd International

Conference on Communication, Computing and Digital Systems (C-CODE)
(Islamabad: IEEE), 201–204. doi: 10.1109/C-CODE.2019.8681025

Amin, S. U., Alsulaiman, M., Muhammad, G., Bencherif, M. A., and Hossain,
M. S. (2019). Multilevel weighted feature fusion using convolutional neural
networks for EEG motor imagery classification. IEEE Access 7, 18940–18950.
doi: 10.1109/ACCESS.2019.2895688

Amiri, S., Fazel-Rezai, R., and Asadpour, V. (2013). A review of hybrid brain-
computer interface systems. Adv. Human-Computer Interact.2013:187024.
doi: 10.1155/2013/187024

An, X., Kuang, D., Guo, X., Zhao, Y., and He, L. (2014). A deep learning
method for classification of EEG data based on motor imagery,” in Intelligent
Computing in Bioinformatics. ICIC 2014. Lecture Notes in Computer Science,
Vol. 8590, D. S. Huang, K. Han, and M. Gromiha (Cham: Springer), 203–210.
doi: 10.1007/978-3-319-09330-7_25

Angeloni, C., Salter, D., Corbit, V., Lorence, T., Yu, Y.-C., and Gabel, L. A. (2012).
“P300-based brain-computer interface memory game to improve motivation
and performance,” in 2012 38th Annual Northeast Bioengineering Conference
(NEBEC) (Philadelphia, PA: IEEE), 35–36. doi: 10.1109/NEBC.2012.6206949

Anh, V. H., Van, M. N., Ha, B. B., and Quyet, T. H. (2012).” A real-time model
based Support Vector Machine for emotion recognition through EEG,” in 2012
International Conference on Control, Automation and Information Sciences
(ICCAIS) (Ho Chi Minh City: IEEE), 191–196. doi: 10.1109/ICCAIS.2012.
6466585

Ansari, I. A., and Singla, R. (2016). BCI: an optimised speller using SSVEP. Int. J.
Biomed. Eng. Technol. 22:31. doi: 10.1504/IJBET.2016.078988

Arabnia, H. R., and Tran, Q.-N. (eds.). (2011). Software Tools and Algorithms for
Biological Systems. New York, NY: Springer. doi: 10.1007/978-1-4419-7046-6

Asadur Rahman, M., Foisal Hossain, M., Hossain, M., and Ahmmed, R.
(2019). Employing PCA and t-statistical approach for feature extraction and
classification of emotion from multichannel EEG signal. Egypt. Inform. J. 21,
23-45. doi: 10.1016/j.eij.2019.10.002

Ashok, S. (2017). High-level hands-free control of wheelchair–a review. J. Med.
Eng. Technol. 41, 46-64. doi: 10.1080/03091902.2016.1210685

Attia, M., Hettiarachchi, I., Hossny, M., and Nahavandi, S. (2018). “A time
domain classification of steady-state visual evoked potentials using deep
recurrent-convolutional neural networks,” in 2018 IEEE 15th International
Symposium on Biomedical Imaging (ISBI 2018) (Washington, DC: IEEE),
766–769. doi: 10.1109/ISBI.2018.8363685

Atyabi, A., Shic, F., and Naples, A. (2016). Mixture of autoregressive modeling
orders and its implication on single trial EEG classification. Expert Syst. Appl.
65, 164–180. doi: 10.1016/J.ESWA.2016.08.044

Aydin, E. A., Bay, O. F., and Guler, I. (2018). P300-based asynchronous brain
computer interface for environmental control system. IEEE J. Biomed. Heal.
Inform. 22, 653–663. doi: 10.1109/JBHI.2017.2690801

AydIn, S., Saraoglu, H. M., and Kara, S. (2009). Log energy entropy-Based EEG
classification with multilayer neural networks in seizure. Ann. Biomed. Eng. 37,
2626–2630. doi: 10.1007/s10439-009-9795-x

Aznan, N. K. N., Bonner, S., Connolly, J. D., Al Moubayed, N., and Breckon,
T. P. (2018). “On the classification of SSVEP-based dry-EEG signals via
convolutional neural networks,” in 2018 IEEE International Conference on
Systems, Man, and Cybernetics (SMC2018) (Miyazaki; Piscataway, NJ: IEEE),
3726–3731. doi: 10.1109/SMC.2018.00631

Bablani, A., Edla, D. R., and Kuppili, V. (2018). “Deceit identification test on
EEG data using deep belief network,” in 2018 9th International Conference
on Computing, Communication and Networking Technologies (ICCCNT)
(Bangalore: IEEE), 1–6. doi: 10.1109/ICCCNT.2018.8494124

Baillet, S., Mosher, J. C., and Leahy, R. M. (2001). Electromagnetic brain mapping.
IEEE Signal Process. Mag. 18, 14–30. doi: 10.1109/79.962275

Frontiers in Neurorobotics | www.frontiersin.org 27 June 2020 | Volume 14 | Article 25149

https://doi.org/10.1007/s10462-018-9633-3
https://doi.org/10.1016/j.eij.2015.06.002
https://doi.org/10.1088/1741-2552/aaf12e
https://doi.org/10.1155/2016/9359868
https://doi.org/10.1109/IEMBS.2010.5626548
https://doi.org/10.3390/s140814601
https://doi.org/10.1109/EMBC.2015.7318551
https://doi.org/10.1016/j.jneumeth.2018.11.014
https://doi.org/10.3844/jcssp.2018.173.181
https://doi.org/10.1016/S0165-0114(98)00202-4
https://doi.org/10.1016/j.jneumeth.2012.06.022
https://doi.org/10.3390/app7121239
https://doi.org/10.3390/electronics8030292
https://doi.org/10.5772/9678
https://doi.org/10.1016/J.CMPB.2018.06.012
https://doi.org/10.1109/C-CODE.2019.8681025
https://doi.org/10.1109/ACCESS.2019.2895688
https://doi.org/10.1155/2013/187024
https://doi.org/10.1007/978-3-319-09330-7_25
https://doi.org/10.1109/NEBC.2012.6206949
https://doi.org/10.1109/ICCAIS.2012.6466585
https://doi.org/10.1504/IJBET.2016.078988
https://doi.org/10.1007/978-1-4419-7046-6
https://doi.org/10.1016/j.eij.2019.10.002
https://doi.org/10.1080/03091902.2016.1210685
https://doi.org/10.1109/ISBI.2018.8363685
https://doi.org/10.1016/J.ESWA.2016.08.044
https://doi.org/10.1109/JBHI.2017.2690801
https://doi.org/10.1007/s10439-009-9795-x
https://doi.org/10.1109/SMC.2018.00631
https://doi.org/10.1109/ICCCNT.2018.8494124
https://doi.org/10.1109/79.962275
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rashid et al. EEG-Based BCI Technology: A Review

Bajwa, G., and Dantu, R. (2016). Neurokey: towards a new paradigm of cancelable
biometrics-based key generation using electroencephalograms. Comput. Secur.
62, 95–113. doi: 10.1016/J.COSE.2016.06.001

Banville, H., and Falk, T. H. (2016). Recent advances and open challenges in hybrid
brain-computer interfacing: a technological review of non-invasive human
research. Brain Comput. Interf. 3, 9–46. doi: 10.1080/2326263X.2015.1134958

Barachant, A., Andreev, A., Congedo, M., Barachant, A., Andreev, A., and
Congedo, M. (2013). “The riemannian potato: an automatic and adaptive
artifact detection method for online experiments using Riemannian geometry,”
in TOBI Workshop lV (Sion), 19–20.

Bascil, M. S., Tesneli, A. Y., and Temurtas, F. (2016). Spectral feature extraction
of EEG signals and pattern recognition during mental tasks of 2-D cursor
movements for BCI using SVM and ANN. Australas. Phys. Eng. Sci. Med. 39,
665–676. doi: 10.1007/s13246-016-0462-x

Bashar,M. K., Chiaki, I., and Yoshida, H. (2016). “Human identification from brain
EEG signals using advanced machine learning method EEG-based biometrics,”
in 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences
(IECBES) (Kuala Lumpur: IEEE), 475–479. doi: 10.1109/IECBES.2016.7843496

Bashashati, A., Fatourechi, M., Ward, R. K., and Birch, G. E. (2007a). A survey of
signal processing algorithms in brain–computer interfaces based on electrical
brain signals. J. Neural Eng. 4, R32–R57. doi: 10.1088/1741-2560/4/2/R03

Bashashati, A., Ward, R. K., and Birch, G. E. (2007b). Towards development of a 3-
state self-paced brain-computer interface.Comput. Intell. Neurosci. 2007:84386.
doi: 10.1155/2007/84386

Batres-Mendoza, P., Montoro-Sanjose, C. R., Guerra-Hernandez, E. I., Almanza-
Ojeda, D. L., Rostro-Gonzalez, H., Romero-Troncoso, R. J., et al. (2016).
Quaternion-based signal analysis for motor imagery classification from
electroencephalographic signals. Sensors 16:336. doi: 10.3390/s16030336

Bhattacharyya, S., Basu, D., Konar, A., and Tibarewala, D. N. (2015). Interval
type-2 fuzzy logic based multiclass ANFIS algorithm for real-time EEG
based movement control of a robot arm. Rob. Auton. Syst. 68, 104–115.
doi: 10.1016/J.ROBOT.2015.01.007

Bi, L., Fan, X.-A., and Liu, Y. (2013). EEG-based brain-controlled
mobile robots: a Survey. IEEE Trans. Hum. Mach. Syst. 43, 161–176.
doi: 10.1109/TSMCC.2012.2219046

Bin, G., Gao, X., Wang, Y., Li, Y., Hong, B., and Gao, S. (2011). A high-
speed BCI based on code modulation VEP. J. Neural Eng. 8:025015.
doi: 10.1088/1741-2560/8/2/025015

Birbaumer, N. (2006). Breaking the silence: brain?computer interfaces (BCI)
for communication and motor control. Psychophysiology 43, 517–532.
doi: 10.1111/j.1469-8986.2006.00456.x

Blankertz, B., Dornhege, G., Krauledat, M., Schröder, M., Williamson, J., Murray-
Smith, R., et al. (2006). “The berlin brain-computer interface presents the
novel mental typewriter Hex-O-Spell,” in Proceedings of the 3rd International
Brain-Computer Interface Workshop and Training Course (Graz).

Bong, S. Z., Wan, K., Murugappan, M., Ibrahim, N. M., Rajamanickam, Y., and
Mohamad, K. (2017). Implementation of wavelet packet transform and non
linear analysis for emotion classification in stroke patient using brain signals.
Biomed. Signal Process. Control 36, 102–112. doi: 10.1016/J.BSPC.2017.03.016

Bonnet, L., Lotte, F., and Lécuyer, A. (2013). Two brains, one game: design
and evaluation of a multiuser bci video game based on motor imagery. IEEE
Trans. Comput. Intell. AI Games 5, 185–198. doi: 10.1109/TCIAIG.2012.22
37173

Borisoff, J. F., Mason, S. G., Bashashati, A., and Birch, G. E. (2004). Brain–computer
interface design for asynchronous control applications: improvements to the
LF-ASD asynchronous brain switch. IEEE Trans. Biomed. Eng. 51, 985–992.
doi: 10.1109/TBME.2004.827078

Bousseta, R., El Ouakouak, I., Gharbi, M., and Regragui, F. (2018). EEG based brain
computer interface for controlling a robot arm movement through thought.
IRBM 39, 129–135. doi: 10.1016/J.IRBM.2018.02.001

Burges, C. J. C. (1998). A tutorial on support vector machines
for pattern recognition. Data Min. Knowl. Discov. 2, 121–167.
doi: 10.1023/A:1009715923555

Campisi, P., and La Rocca, D. (2014). Brain waves for automatic biometric-
based user recognition. IEEE Trans. Inf. Forensics Secur. 9, 782–800.
doi: 10.1109/TIFS.2014.2308640

Cao, L., Li, J., Ji, H., and Jiang, C. (2014). A hybrid brain computer
interface system based on the neurophysiological protocol and

brain-actuated switch for wheelchair control. J. Neurosci. Methods. 229,
33–43.doi: 10.1016/j.jneumeth.2014.03.011

Cao, L., Xia, B., Maysam, O., Li, J., Xie, H., and Birbaumer, N. (2017).
A synchronous motor imagery based neural physiological paradigm
for brain computer interface speller. Front. Hum. Neurosci. 11:274.
doi: 10.3389/fnhum.2017.00274

Cao, T., Wang, X., Wang, B., Wong, C. M., Wan, F., Mak, P. U., et al. (2011). “A
high rate online SSVEP based brain-computer interface speller,” in 2011 5th
International IEEE/EMBS Conference on Neural Engineering (Cancun: IEEE),
465–468. doi: 10.1109/NER.2011.5910587

Carabalona, R., Grossi, F., Tessadri, A., Caracciolo, A., Castiglioni, P., and
Don Carlo Gnocchi Onlus, I. D. M. F. (2010). “Home smart home: brain-
computer interface control for real smart home environments,” in International
Convention on Rehabilitation Engineering and Assistive Technology (Shanghai).

Carlson, T., and Millan, J. D. R. (2013). Brain-controlled wheelchairs:
a robotic architecture. IEEE Robot. Autom. Mag. 20, 65–73.
doi: 10.1109/MRA.2012.2229936

Cattan, G., Mendoza, C., Andreev, A., and Congedo, M. (2018). Recommendations
for integrating a P300-based brain computer interface in virtual reality
environments for gaming. Computers 7:34. doi: 10.3390/computers7020034

Chai, R., Ling, S. H., Hunter, G. P., Tran, Y., and Nguyen, H. T. (2014). Brain-
computer interface classifier for wheelchair commands using neural network
with fuzzy particle swarm optimization. IEEE J. Biomed. Heal. Informatics. 18,
1614-1624. doi: 10.1109/JBHI.2013.2295006

Chai, R., Ling, S. H., San, P. P., Naik, G. R., Nguyen, T. N., Tran, Y., et al.
(2017a). Improving EEG-based driver fatigue classification using sparse-deep
belief networks. Front. Neurosci. 11:103. doi: 10.3389/fnins.2017.00103

Chai, R., Naik, G. R., Nguyen, T. N., Ling, S. H., Tran, Y., Craig, A., et al.
(2017b). Driver fatigue classification with independent component by entropy
rate bound minimization analysis in an EEG-based system. IEEE J. Biomed.
Heal. Informatics 21, 715–724. doi: 10.1109/JBHI.2016.2532354

Chakladar, D. D., and Chakraborty, S. (2018a). EEG based emotion classification
using “correlation based subset selection.” Biol. Inspired Cogn. Archit. 24,
98–106. doi: 10.1016/j.bica.2018.04.012

Chakladar, D. D., and Chakraborty, S. (2018b). Multi-target way of cursor
movement in brain computer interface using unsupervised learning. Biol.
Inspired Cogn. Archit. 25, 88–100. doi: 10.1016/J.BICA.2018.06.001

Chang, M. H., Lee, J. S., Heo, J., and Park, K. S. (2016). Eliciting dual-frequency
SSVEP using a hybrid SSVEP-P300 BCI. J. Neurosci. Methods 258, 104–113.
doi: 10.1016/j.jneumeth.2015.11.001

Chaudhary, S., Taran, S., Bajaj, V., and Sengur, A. (2019). Convolutional
neural network based approach towards motor imagery tasks EEG signals
classification. IEEE Sens. J. 19, 4494–4500. doi: 10.1109/JSEN.2019.2899645

Chavez, M., Grosselin, F., Bussalb, A., de Vico Fallani, F., and Navarro-Sune,
X. (2018). Surrogate-based artifact removal from single-channel EEG. IEEE
Trans. Neural Syst. Rehabil. Eng. 26, 540–550. doi: 10.1109/TNSRE.2018.
2794184

Chen, X., Liu, A., Chen, Q., Liu, Y., Zou, L., and McKeown, M. J.
(2017a). Simultaneous ocular and muscle artifact removal from EEG
data by exploiting diverse statistics. Comput. Biol. Med. 88, 1–10.
doi: 10.1016/j.compbiomed.2017.06.013

Chen, X., Liu, A., Peng, H., and Ward, R. K. (2014). A preliminary study of
muscular artifact cancellation in single-channel EEG. Sensors 14, 18370–18389.
doi: 10.3390/s141018370

Chen, X., Peng, H., Yu, F., and Wang, K. (2017b). Independent vector analysis
applied to remove muscle artifacts in EEG data. IEEE Trans. Instrum. Meas. 66,
1770–1779. doi: 10.1109/TIM.2016.2608479

Chen, X., Wang, Y., Gao, S., Jung, T.-P., and Gao, X. (2015). Filter
bank canonical correlation analysis for implementing a high-speed
SSVEP-based brain-computer interface. J. Neural Eng. 12:046008.
doi: 10.1088/1741-2560/12/4/046008

Chiappa, S., and Bengio, S. (2004). “HMMand IOHMMmodeling of EEG rhythms
for asynchronous BCI systems,” in European Symposium on Artificial Neural
Networks (Bruges), 199–204.

Choi, K. (2012). Control of a vehicle with EEG signals in real-time and system
evaluation. Eur. J. Appl. Physiol. 112, 755–766. doi: 10.1007/s00421-011-2029-6

Chung, J. E., Joo, H. R., Fan, J. L., Liu, D. F., Barnett, A. H., Chen, S., et al.
(2019). High-density, long-lasting, and multi-region electrophysiological

Frontiers in Neurorobotics | www.frontiersin.org 28 June 2020 | Volume 14 | Article 25150

https://doi.org/10.1016/J.COSE.2016.06.001
https://doi.org/10.1080/2326263X.2015.1134958
https://doi.org/10.1007/s13246-016-0462-x
https://doi.org/10.1109/IECBES.2016.7843496
https://doi.org/10.1088/1741-2560/4/2/R03
https://doi.org/10.1155/2007/84386
https://doi.org/10.3390/s16030336
https://doi.org/10.1016/J.ROBOT.2015.01.007
https://doi.org/10.1109/TSMCC.2012.2219046
https://doi.org/10.1088/1741-2560/8/2/025015
https://doi.org/10.1111/j.1469-8986.2006.00456.x
https://doi.org/10.1016/J.BSPC.2017.03.016
https://doi.org/10.1109/TCIAIG.2012.2237173
https://doi.org/10.1109/TBME.2004.827078
https://doi.org/10.1016/J.IRBM.2018.02.001
https://doi.org/10.1023/A:1009715923555
https://doi.org/10.1109/TIFS.2014.2308640
https://doi.org/10.1016/j.jneumeth.2014.03.011
https://doi.org/10.3389/fnhum.2017.00274
https://doi.org/10.1109/NER.2011.5910587
https://doi.org/10.1109/MRA.2012.2229936
https://doi.org/10.3390/computers7020034
https://doi.org/10.1109/JBHI.2013.2295006
https://doi.org/10.3389/fnins.2017.00103
https://doi.org/10.1109/JBHI.2016.2532354
https://doi.org/10.1016/j.bica.2018.04.012
https://doi.org/10.1016/J.BICA.2018.06.001
https://doi.org/10.1016/j.jneumeth.2015.11.001
https://doi.org/10.1109/JSEN.2019.2899645
https://doi.org/10.1109/TNSRE.2018.2794184
https://doi.org/10.1016/j.compbiomed.2017.06.013
https://doi.org/10.3390/s141018370
https://doi.org/10.1109/TIM.2016.2608479
https://doi.org/10.1088/1741-2560/12/4/046008
https://doi.org/10.1007/s00421-011-2029-6
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rashid et al. EEG-Based BCI Technology: A Review

recordings using polymer electrode arrays. Neurona 101, 21-31.e5.
doi: 10.1016/j.neuron.2018.11.002

Cincotti, F., Scipione, A., Timperi, A., Mattia, D., Marciani, A. G., Millan, J.,
et al. (2003). “Comparison of different feature classifiers for brain computer
interfaces,” in Proceedings of Conference on First International IEEE EMBS
Conference on Neural Engineering, 2003 (Capri Island: IEEE), 645–647.
doi: 10.1109/CNE.2003.1196911

Congedo, M., Barachant, A., and Bhatia, R. (2017). Riemannian geometry for EEG-
based brain-computer interfaces; a primer and a review. Brain Comput. Interf.
4, 155–174. doi: 10.1080/2326263X.2017.1297192

Congedo, M., Goyat, M., Tarrin, N., Ionescu, G., Varnet, L., Rivet, B., et al.
(2011). “Brain invaders: a prototype of an open-source P300- based video game
working with the OpenViBE platform,” in 5th International Brain-Computer
Interface Conference (Graz), 280–283.

Corralejo, R., Nicolás-Alonso, L. F., Álvarez, D., and Hornero, R. (2014). A
P300-based brain–computer interface aimed at operating electronic devices
at home for severely disabled people. Med. Biol. Eng. Comput. 52, 861–872.
doi: 10.1007/s11517-014-1191-5

Coyle, D., McGinnity, T. M., and Prasad, G. (2010). Improving the
separability of multiple EEG features for a BCI by neural-time-series-
prediction-preprocessing. Biomed. Signal Process. Control 5, 196–204.
doi: 10.1016/J.BSPC.2010.03.004

Croft, R. J., and Barry, R. J. (2000). Removal of ocular artifact from
the EEG: a review. Neurophysiol. Clin. Neurophysiol. 30, 5–19.
doi: 10.1016/S0987-7053(00)00055-1

Dai, M., Zheng, D., Na, R., Wang, S., Zhang, S., Dai, M., et al. (2019). EEG
classification of motor imagery using a novel deep learning framework. Sensors
19:551. doi: 10.3390/s19030551

de Clercq, W., Vergult, A., Vanrumste, B., van Paesschen, W., and van Huffel,
S. (2006). Canonical correlation analysis applied to remove muscle artifacts
from the electroencephalogram. IEEE Trans. Biomed. Eng. 53, 2583–2587.
doi: 10.1109/TBME.2006.879459

De Vos, M., Kroesen, M., Emkes, R., and Debener, S. (2014). P300 speller BCI
with a mobile EEG system: comparison to a traditional amplifier. J. Neural Eng.
11:036008. doi: 10.1088/1741-2560/11/3/036008

Debener, S., Minow, F., Emkes, R., Gandras, K., and de Vos, M. (2012). How about
taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 49,
1617–1621. doi: 10.1111/j.1469-8986.2012.01471.x

Del Pozo-Banos, M., Alonso, J. B., Ticay-Rivas, J. R., and Travieso, C. M. (2014).
Electroencephalogram subject identification: a review. Expert Syst. Appl. 41,
6537–6554. doi: 10.1016/j.eswa.2014.05.013

Dhiman, R., Priyanka, N. A., and Saini, J. S. (2018). Motor imagery classification
from human EEG signatures. Int. J. Biomed. Eng. Technol. 26, 101–110.
doi: 10.1504/IJBET.2018.089265

Dhindsa, K. (2017). Filter-bank artifact rejection: high performance real-time
single-channel artifact detection for EEG. Biomed. Signal Process. Control 38,
224–235. doi: 10.1016/j.bspc.2017.06.012

Ditthapron, A., Banluesombatkul, N., Ketrat, S., Chuangsuwanich, E.,
and Wilaiprasitporn, T. (2018). Universal joint feature extraction for
P300 EEG classification using multi-task. Autoencoder 2019:2919143.
doi: 10.1109/ACCESS.2019.2919143

Djamal, E. C., Abdullah, M. Y., and Renaldi, F. (2017). Brain computer interface
game controlling using fast fourier transform and learning vector quantization.
J. Telecommun. Electron. Comput. Eng. 9, 71–74.

Djamal, E. C., and Lodaya, P. (2017). “EEG based emotion monitoring
using wavelet and learning vector quantization” in 2017 4th
International Conference on Electrical Engineering, Computer Science
and Informatics (EECSI) (Yogyakarta: IEEE). doi: 10.1109/EECSI.2017.82
39090

Dornhege, G., Blankertz, B., Krauledat, M., Losch, F., Curio, G., and Müller, K. R.
(2006). Combined optimization of spatial and temporal filters for improving
brain-computer interfacing. IEEE Trans. Biomed. Eng. 53, 2274–2281.
doi: 10.1109/TBME.2006.883649

Dose, H., Møller, J. S., Iversen, H. K., and Puthusserypady, S. (2018).
An end-to-end deep learning approach to MI-EEG signal classification
for BCIs. Expert Syst. Appl. 114, 532–542. doi: 10.1016/J.ESWA.2018.
08.031

Duan, F., Lin, D., Li, W., and Zhang, Z. (2015). Design of a multimodal EEG-based
hybrid BCI system with visual servo module. IEEE Trans. Auton. Ment. Dev. 7,
332–341. doi: 10.1109/TAMD.2015.2434951

Duan, J., Li, Z., Yang, C., and Xu, P. (2014). “Shared control of a
brain-actuated intelligent wheelchair,” in Proceeding of the 11th World
Congress on Intelligent Control and Automation (Shenyang: IEEE), 341–346.
doi: 10.1109/WCICA.2014.7052737

Edlinger, G., and Guger, C. (2012). “A hybrid Brain-Computer Interface for
improving the usability of a smart home control,” in 2012 ICME International
Conference on Complex Medical Engineering (CME) (Kobe: IEEE), 182–185.
doi: 10.1109/ICCME.2012.6275714

El-Fiqi, H., Wang, M., Salimi, N., Kasmarik, K., Barlow, M., and Abbass, H. (2018).
“Convolution neural networks for person identification and verification using
steady state visual evoked potential,” in 2018 IEEE International Conference
on Systems, Man, and Cybernetics (SMC) (Miyazaki: IEEE), 1062–1069.
doi: 10.1109/SMC.2018.00188

Fairclough, S. H., and Gilleade, K. (eds.). (2014). Advances in Physiological
Computing. London: Springer. doi: 10.1007/978-1-4471-6392-3

Fan, J., Ma, C., and Zhong, Y. (2019). A Selective Overview of Deep Learning.
Available online at: http://arxiv.org/abs/1904.05526 (accessed July 15, 2019).

Farwell, L. A., and Donchin, E. (1988). Talking off the top of your head: toward
a mental prosthesis utilizing event-related brain potentials. Electroencephalogr.
Clin. Neurophysiol. 70, 510–523.

Fatourechi, M., Ward, R. K., Mason, S. G., Huggins, J., Schlögl, A., and Birch,
G. E. (2008). “Comparison of evaluation metrics in classification applications
with imbalanced datasets,” in 2008 Seventh International Conference on
Machine Learning and Applications (San Diego, CA: IEEE), 777–782.
doi: 10.1109/ICMLA.2008.34

Fernández-Rodríguez, Á., Velasco-Álvarez, F., and Ron-Angevin, R. (2016).
Review of real brain-controlled wheelchairs. J. Neural Eng. 13:061001.
doi: 10.1088/1741-2560/13/6/061001

Finke, A., Lenhardt, A., and Ritter, H. (2009). The mindgame: a P300-
based brain–computer interface game. Neural Netw. 22, 1329–1333.
doi: 10.1016/J.NEUNET.2009.07.003

Fitzgibbon, S. P., Lewis, T. W., Powers, D. M. W., Whitham, E. W., Willoughby, J.
O., and Pope, K. J. (2013). Surface laplacian of central scalp electrical signals
is insensitive to muscle contamination. IEEE Trans. Biomed. Eng. 60, 4–9.
doi: 10.1109/TBME.2012.2195662

Ganin, I. P., Shishkin, S. L., and Kaplan, A. Y. (2013). A P300-based brain-
computer interface with Stimuli on moving objects: four-session single-trial
and triple-trial tests with a game-like task design. PLoS ONE 8:e77755.
doi: 10.1371/journal.pone.0077755

Garrett, D., Peterson, D. A., Anderson, C. W., and Thaut, M. H. (2003).
Comparison of linear, nonlinear, and feature selection methods for eeg
signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 141–144.
doi: 10.1109/TNSRE.2003.814441

Gaur, P., Pachori, R. B., Wang, H., and Prasad, G. (2018). A multi-class EEG-
based BCI classification using multivariate empirical mode decomposition
based filtering and Riemannian geometry. Expert Syst. Appl. 95, 201–211.
doi: 10.1016/J.ESWA.2017.11.007

Göksu, H. (2018). BCI Oriented EEG analysis using log energy entropy
of wavelet packets. Biomed. Signal Process. Control 44, 101–109.
doi: 10.1016/j.bspc.2018.04.002

Gouy-Pailler, C., Achard, S., Rivet, B., Jutten, C., Maby, E., Souloumiac, A.,
et al. (2007). “Topographical dynamics of brain connections for the design of
asynchronous brain-computer interfaces,” in 2007 29th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (Lyon:
IEEE), 2520–2523. doi: 10.1109/IEMBS.2007.4352841

Gratton, G., Coles, M. G., and Donchin, E. (1983). A new method for off-line
removal of ocular artifact. Electroencephalogr. Clin. Neurophysiol. 55, 468–484.
doi: 10.1016/0013-4694(83)90135-9

Guan, S., Zhao, K., and Yang, S. (2019). Motor imagery EEG classification based on
decision tree framework and riemannian geometry. Comput. Intell. Neurosci.
2019:5627156. doi: 10.1155/2019/5627156

Guarnieri, R., Marino, M., Barban, F., Ganzetti, M., andMantini, D. (2018). Online
EEG artifact removal for BCI applications by adaptive spatial filtering. J. Neural
Eng. 15:056009. doi: 10.1088/1741-2552/aacfdf

Frontiers in Neurorobotics | www.frontiersin.org 29 June 2020 | Volume 14 | Article 25151

https://doi.org/10.1016/j.neuron.2018.11.002
https://doi.org/10.1109/CNE.2003.1196911
https://doi.org/10.1080/2326263X.2017.1297192
https://doi.org/10.1007/s11517-014-1191-5
https://doi.org/10.1016/J.BSPC.2010.03.004
https://doi.org/10.1016/S0987-7053(00)00055-1
https://doi.org/10.3390/s19030551
https://doi.org/10.1109/TBME.2006.879459
https://doi.org/10.1088/1741-2560/11/3/036008
https://doi.org/10.1111/j.1469-8986.2012.01471.x
https://doi.org/10.1016/j.eswa.2014.05.013
https://doi.org/10.1504/IJBET.2018.089265
https://doi.org/10.1016/j.bspc.2017.06.012
https://doi.org/10.1109/ACCESS.2019.2919143
https://doi.org/10.1109/EECSI.2017.8239090
https://doi.org/10.1109/TBME.2006.883649
https://doi.org/10.1016/J.ESWA.2018.08.031
https://doi.org/10.1109/TAMD.2015.2434951
https://doi.org/10.1109/WCICA.2014.7052737
https://doi.org/10.1109/ICCME.2012.6275714
https://doi.org/10.1109/SMC.2018.00188
https://doi.org/10.1007/978-1-4471-6392-3
http://arxiv.org/abs/1904.05526
https://doi.org/10.1109/ICMLA.2008.34
https://doi.org/10.1088/1741-2560/13/6/061001
https://doi.org/10.1016/J.NEUNET.2009.07.003
https://doi.org/10.1109/TBME.2012.2195662
https://doi.org/10.1371/journal.pone.0077755
https://doi.org/10.1109/TNSRE.2003.814441
https://doi.org/10.1016/J.ESWA.2017.11.007
https://doi.org/10.1016/j.bspc.2018.04.002
https://doi.org/10.1109/IEMBS.2007.4352841
https://doi.org/10.1016/0013-4694(83)90135-9
https://doi.org/10.1155/2019/5627156
https://doi.org/10.1088/1741-2552/aacfdf
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rashid et al. EEG-Based BCI Technology: A Review

Guede-Fernández, F., Fernández-Chimeno, M., Ramos-Castro, J., and García-
González,M. A. (2019). Driver drowsiness detection based on respiratory signal
analysis. IEEE Access 7, 81826–81838. doi: 10.1109/ACCESS.2019.2924481

Guo, S., Lin, S., and Huang, Z. (2015). “Feature extraction of P300s in EEG signal
with discrete wavelet transform and fisher criterion,” in 2015 8th International
Conference on Biomedical Engineering and Informatics (BMEI) (Shenyang:
IEEE), 200–204. doi: 10.1109/BMEI.2015.7401500

Gursel Ozmen, N., Gumusel, L., and Yang, Y. (2018). A biologically inspired
approach to frequency domain feature extraction for EEG classification.
Comput. Math. Methods Med. 2018, 19–24. doi: 10.1155/2018/9890132

Ha, K.W., and Jeong, J. W. (2019). Motor imagery EEG classification using capsule
networks. Sensors 19 19:2854. doi: 10.3390/s19132854

Hamada, K., Mori, H., Shinoda, H., and Rutkowski, T. M. (2014). Airborne
ultrasonic tactile display brain-computer interface paradigm. Front. Hum.
Neurosci. 9:18. doi: 10.3217/978-3-85125-378-8-18

Han, C.-H., Kim, Y.-W., Kim, D. Y., Kim, S. H., Nenadic, Z., and Im, C.-H.
(2019). Electroencephalography-based endogenous brain–computer interface
for online communication with a completely locked-in patient. J. Neuroeng.
Rehabil. 16:18. doi: 10.1186/s12984-019-0493-0

Haselsteiner, E., and Pfurtscheller, G. (2000). Using time-dependent neural
networks for EEG classification. IEEE Trans. Rehabil. Eng. 8, 457–463.
doi: 10.1109/86.895948

Hefron, R. G., Borghetti, B. J., Christensen, J. C., and Kabban, C. M. S.
(2017). Deep long short-termmemory structuresmodel temporal dependencies
improving cognitive workload estimation. Pattern Recognit. Lett. 94, 96–104.
doi: 10.1016/J.PATREC.2017.05.020

Hill, N. J., and Schölkopf, B. (2012). An online brain–computer interface based
on shifting attention to concurrent streams of auditory stimuli. J. Neural Eng.
9:026011. doi: 10.1088/1741-2560/9/2/026011

Hoffmann, U., Vesin, J.-M., Ebrahimi, T., and Diserens, K. (2008). An efficient
P300-based brain–computer interface for disabled subjects. J. Neurosci.
Methods 167, 115–125. doi: 10.1016/j.jneumeth.2007.03.005

Holz, E. M., Höhne, J., Staiger-Sälzer, P., Tangermann, M., and Kübler, A.
(2013). Brain-computer interface-controlled gaming: evaluation of usability
by severely motor restricted end-users. Artif. Intell. Med. 59, 111-120.
doi: 10.1016/j.artmed.2013.08.001

Hortal, E., Planelles, D., Costa, A., Iáñez, E., Úbeda, A., Azorín, J. M.,
et al. (2015). SVM-based brain–machine interface for controlling a
robot arm through four mental tasks. Neurocomputing 151, 116–121.
doi: 10.1016/J.NEUCOM.2014.09.078

Hu, J. (2018). An approach to EEG-based gender recognition using
entropy measurement methods. Knowledge Based Syst. 140, 134–141.
doi: 10.1016/J.KNOSYS.2017.10.032

Huang, J., Xu, X., and Zhang, T. (2017). “Emotion classification using deep neural
networks and emotional patches,” in 2017 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM) (Kansas City, MO: IEEE), 958–962.
doi: 10.1109/BIBM.2017.8217786

Hwang, H. J., Kim, S., Choi, S., and Im, C. H. (2013). EEG-based brain-computer
interfaces: a thorough literature survey. Int. J. Hum. Comput. Interact. 29,
814–826.doi: 10.1080/10447318.2013.780869

Iatsenko, D., McClintock, P. V. E., and Stefanovska, A. (2015). Nonlinear mode
decomposition: a noise-robust, adaptive decomposition method. Phys. Rev. E
92:032916. doi: 10.1103/PhysRevE.92.032916

Idowu, O. P., Fang, P., Li, X., Xia, Z., Xiong, J., and Li, G. (2018). “Towards control
of EEG-based robotic arm using deep learning via stacked sparse autoencoder,”
in 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO)
(Kuala Lumpur: IEEE), 1053–1057. doi: 10.1109/ROBIO.2018.8665089

Ieracitano, C., Mammone, N., Hussain, A., and Morabito, F. C. (2020).
A novel multi-modal machine learning based approach for automatic
classification of EEG recordings in dementia. Neural Netw. 123, 176–190.
doi: 10.1016/j.neunet.2019.12.006

iHuman (2019). Blurring Lines between Mind and Machine. London. Available
at: https://royalsociety.org/-/media/policy/projects/ihuman/report-neural-
interfaces.pdf (accessed November 05, 2019).

Islam, M. R., Tanaka, T., and Molla, M. K. I. (2018). Multiband tangent space
mapping and feature selection for classification of EEG during motor imagery.
J. Neural Eng. 15:046021. doi: 10.1088/1741-2552/aac313

Iturrate, I., Antelis, J., and Minguez, J. (2009b).” Synchronous EEG brain-
actuated wheelchair with automated navigation,” in 2009 IEEE International
Conference on Robotics and Automation (Kobe: IEEE), 2318–2325.
doi: 10.1109/ROBOT.2009.5152580

Iturrate, I., Antelis, J. M., Kubler, A., and Minguez, J. (2009a). A
noninvasive brain-actuated wheelchair based on a P300 neurophysiological
protocol and automated navigation. IEEE Trans. Robot. 25, 614–627.
doi: 10.1109/TRO.2009.2020347

Jawed, S., Amin, H. U., Malik, A. S., and Faye, I. (2018). “EEG visual and non-visual
learner classification using LSTM recurrent neural networks,” in 2018 IEEE-
EMBS Conference on Biomedical Engineering and Sciences (IECBES) (Sarawak:
IEEE), 467–471. doi: 10.1109/IECBES.2018.8626711

Ji, N., Ma, L., Dong, H., and Zhang, X. (2019). EEG signals feature extraction
based onDWT and EMD combinedwith approximate entropy. Brain Sci. 9:201.
doi: 10.3390/brainsci9080201

Jiang, L., Stocco, A., Losey, D. M., Abernethy, J. A., Prat, C. S., and Rao, R.
P. N. (2019). BrainNet: a multi-person brain-to-brain interface for direct
collaboration between brains. Sci. Rep. 9:7. doi: 10.1038/s41598-019-41895-7

Jin, J., Allison, B. Z., Sellers, E. W., Brunner, C., Horki, P., Wang, X., et al.
(2011). Optimized stimulus presentation patterns for an event-related potential
EEG-based brain-computer interface. Med. Biol. Eng. Comput. 49, 181–191.
doi: 10.1007/s11517-010-0689-8

Jin, J., Li, S., Daly, I., Miao, Y., Liu, C., Wang, X., et al. (2020). The
study of generic model set for reducing calibration time in P300-based
brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 3–12.
doi: 10.1109/TNSRE.2019.2956488

Jin, J., Miao, Y., Daly, I., Zuo, C., Hu, D., and Cichocki, A. (2019). Correlation-
based channel selection and regularized feature optimization forMI-based BCI.
Neural Networks 118, 262–270. doi: 10.1016/j.neunet.2019.07.008

John, P., Ellerson, P. C., and Cohen, J. C. (1996). P300, stimulus intensity, modality,
and probability. Int. J. Psychophysiol. 23, 55–62.

Kalunga, E. K., Chevallier, S., Barthélemy, Q., Djouani, K., Monacelli, E., and
Hamam, Y. (2016). Online SSVEP-based BCI using Riemannian geometry.
Neurocomputing 191, 55–68. doi: 10.1016/J.NEUCOM.2016.01.007

Kanjo, E., Younis, E. M. G., and Ang, C. S. (2019). Deep learning analysis of mobile
physiological, environmental and location sensor data for emotion detection.
Inf. Fusion 49, 46–56. doi: 10.1016/J.INFFUS.2018.09.001

Kaper, M., Meinicke, P., Grossekathoefer, U., Lingner, T., and Ritter, H.
(2004). BCI competition 2003—data set IIb: support vector machines for
the P300 speller paradigm. IEEE Trans. Biomed. Eng. 51, 1073–1076.
doi: 10.1109/TBME.2004.826698

Kaplan, A. Y., Shishkin, S. L., Ganin, I. P., Basyul, I. A., and Zhigalov,
A. Y. (2013). Adapting the P300-based brain–computer interface for
gaming: a review. IEEE Trans. Comput. Intell. AI Games 5, 141–149.
doi: 10.1109/TCIAIG.2012.2237517

Käthner, I., Kübler, A., and Halder, S. (2015). Rapid P300 brain-computer
interface communication with a head-mounted display. Front. Neurosci. 9:207.
doi: 10.3389/fnins.2015.00207

Kaufmann, T., and Kübler, A. (2014). Beyond maximum speed—a
novel two-stimulus paradigm for brain–computer interfaces based
on event-related potentials (P300-BCI). J. Neural Eng. 11:056004.
doi: 10.1088/1741-2560/11/5/056004

Kaur, B., Singh, D., and Roy, P. P. (2018). EEG based emotion
classification mechanism in BCI. Proc. Comput. Sci. 132, 752–758.
doi: 10.1016/J.PROCS.2018.05.087

Kawde, P., and Verma, G. K. (2017). “Deep belief network based affect
recognition from physiological signals,” in 2017 4th IEEE Uttar Pradesh Section
International Conference on Electrical, Computer and Electronics (UPCON)
(Mathura: IEEE), 587–592. doi: 10.1109/UPCON.2017.8251115

Ke, Y., Wang, N., Du, J., Kong, L., Liu, S., Xu, M., et al. (2019). The
effects of transcranial direct current stimulation (tDCS) on working
memory training in healthy young adults. Front. Hum. Neurosci. 13:19.
doi: 10.3389/fnhum.2019.00019

Kevric, J., and Subasi, A. (2017). Comparison of signal decomposition
methods in classification of EEG signals for motor-imagery BCI system.
Biomed. Signal Process. Control 31, 398–406. doi: 10.1016/j.bspc.2016.
09.007

Frontiers in Neurorobotics | www.frontiersin.org 30 June 2020 | Volume 14 | Article 25152

https://doi.org/10.1109/ACCESS.2019.2924481
https://doi.org/10.1109/BMEI.2015.7401500
https://doi.org/10.1155/2018/9890132
https://doi.org/10.3390/s19132854
https://doi.org/10.3217/978-3-85125-378-8-18
https://doi.org/10.1186/s12984-019-0493-0
https://doi.org/10.1109/86.895948
https://doi.org/10.1016/J.PATREC.2017.05.020
https://doi.org/10.1088/1741-2560/9/2/026011
https://doi.org/10.1016/j.jneumeth.2007.03.005
https://doi.org/10.1016/j.artmed.2013.08.001
https://doi.org/10.1016/J.NEUCOM.2014.09.078
https://doi.org/10.1016/J.KNOSYS.2017.10.032
https://doi.org/10.1109/BIBM.2017.8217786
https://doi.org/10.1080/10447318.2013.780869
https://doi.org/10.1103/PhysRevE.92.032916
https://doi.org/10.1109/ROBIO.2018.8665089
https://doi.org/10.1016/j.neunet.2019.12.006
https://royalsociety.org/-/media/policy/projects/ihuman/report-neural-interfaces.pdf
https://royalsociety.org/-/media/policy/projects/ihuman/report-neural-interfaces.pdf
https://doi.org/10.1088/1741-2552/aac313
https://doi.org/10.1109/ROBOT.2009.5152580
https://doi.org/10.1109/TRO.2009.2020347
https://doi.org/10.1109/IECBES.2018.8626711
https://doi.org/10.3390/brainsci9080201
https://doi.org/10.1038/s41598-019-41895-7
https://doi.org/10.1007/s11517-010-0689-8
https://doi.org/10.1109/TNSRE.2019.2956488
https://doi.org/10.1016/j.neunet.2019.07.008
https://doi.org/10.1016/J.NEUCOM.2016.01.007
https://doi.org/10.1016/J.INFFUS.2018.09.001
https://doi.org/10.1109/TBME.2004.826698
https://doi.org/10.1109/TCIAIG.2012.2237517
https://doi.org/10.3389/fnins.2015.00207
https://doi.org/10.1088/1741-2560/11/5/056004
https://doi.org/10.1016/J.PROCS.2018.05.087
https://doi.org/10.1109/UPCON.2017.8251115
https://doi.org/10.3389/fnhum.2019.00019
https://doi.org/10.1016/j.bspc.2016.09.007
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rashid et al. EEG-Based BCI Technology: A Review

Khan, J., Bhatti, M. H., Khan, U. G., and Iqbal, R. (2019). Multiclass EEG motor-
imagery classification with sub-band common spatial patterns. Eurasip J. Wirel.
Commun. Netw. 2019:174. doi: 10.1186/s13638-019-1497-y

Kilicarslan, A., Grossman, R. G., and Contreras-vidal, J. L. (1976). A robust motifs
based artifacts removal technique from EEG. Biomed. Phys. Eng. Express 3,
1–18.

Kim, M., Hwang, T., Oh, E., and Hwangbo, M. (2013). “Toward realistic
implementation of brain-computer interface for TV channel control,” in 2013
IEEE 2nd Global Conference on Consumer Electronics (GCCE) (Tokyo: IEEE),
394–396. doi: 10.1109/GCCE.2013.6664868

Kleber, B., and Birbaumer, N. (2005). Direct brain communication:
neuroelectric and metabolic approaches at Tübingen. Cogn. Process. 6,
65–74. doi: 10.1007/s10339-004-0045-8

Kodi, A., Kumar, D., Kodali, D., and Pasha, I. A. (2013). “EEG-controlled
wheelchair for ALS patients,” in 2013 International Conference on
Communication Systems and Network Technologies (Gwalior: IEEE), 879–883.
doi: 10.1109/CSNT.2013.190

Korik, A., Sosnik, R., Siddique, N., and Coyle, D. (2019). Decoding imagined 3D
arm movement trajectories from EEG to control two virtual arms—a pilot
study. Front. Neurorobot. 13: 94. doi: 10.3389/fnbot.2019.00094

Kosmyna, N., Tarpin-Bernard, F., Bonnefond, N., and Rivet, B. (2016). Feasibility
of BCI Control in a Realistic Smart Home Environment. Front. Hum. Neurosci.
10:416. doi: 10.3389/fnhum.2016.00416

Krauledat, M., Grzeska, K., Sagebaum, M., Blankertz, B., Vidaurre, C., Müller,
K.-R., et al. (2009). “Playing Pinball with non-invasive BCI,” in 21st
International Conference on Neural Information Processing Systems (Vancouver,
BC), 1641–1648.

Kreilinger, A., Hiebel, H., and Muller-Putz, G. R. (2016). Single versus
multiple events error potential detection in a BCI-controlled car game with
continuous and discrete feedback. IEEE Trans. Biomed. Eng. 63, 519–529.
doi: 10.1109/TBME.2015.2465866

Krepki, R., Blankertz, B., Curio, G., and Müller, K.-R. (2007). The Berlin brain-
computer interface (BBCI) – towards a new communication channel for
online control in gaming applications. Multimed. Tools Appl. 33, 73–90.
doi: 10.1007/s11042-006-0094-3

Kristo, G., Real, R., Blefari, M. L., Brunner, C., Blankertz, B., Höhne, J., et al. (2013).
Contribution to Roadmap.Available online at: https://pdfs.semanticscholar.org/
5cb4/11de3db4941d5c7ecfc19de8af9243fb63d5.pdf (accessed November 12,
2019).

Kubler, A., Mushahwar, V. K., Hochberg, L. R., and Donoghue, J. P. (2006).
BCI meeting 2005—workshop on clinical issues and applications. IEEE Trans.
Neural Syst. Rehabil. Eng. 14, 131–134. doi: 10.1109/TNSRE.2006.875585

Kulasingham, J. P., Vibujithan, V., and De Silva, A. C. (2016). “Deep belief
networks and stacked autoencoders for the P300 Guilty Knowledge Test,” in
2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)
(Kuala Lumpur: IEEE), 127–132. doi: 10.1109/IECBES.2016.7843428

La Rocca, D., Campisi, P., and Scarano, G. (2013). “On the repeatability of EEG
features in a biometric recognition framework using a resting state protocol,”
in 6th International Conference on Bio-inspired Systems and Signal Processing
BIOSIGNALS 2013.

Lalor, E. C., Kelly, S. P., Finucane, C., Burke, R., Smith, R., Reilly, R. B., et al. (2005).
Steady-state VEP-based brain-computer interface control in an immersive
3D gaming environment. EURASIP J. Adv. Signal Process. 2005, 3156–3164.
doi: 10.1155/ASP.2005.3156

Lau, T. M., Gwin, J. T., McDowell, K. G., and Ferris, D. P. (2012).
Weighted phase lag index stability as an artifact resistant measure to
detect cognitive EEG activity during locomotion. J. Neuroeng. Rehabil. 9:47.
doi: 10.1186/1743-0003-9-47

Lawhern, V., Hairston, W. D., McDowell, K., Westerfield, M., and Robbins,
K. (2012). Detection and classification of subject-generated artifacts in EEG
signals using autoregressive models. J. Neurosci. Methods 208, 181–189.
doi: 10.1016/j.jneumeth.2012.05.017

Lazarou, I., Nikolopoulos, S., and Petrantonakis, P. C. (2018). EEG-based brain
– computer interfaces for communication and rehabilitation of people with
motor impairment: a novel approach of the 21 st Century. Front. Hum.
Neurosci. 12:14. doi: 10.3389/fnhum.2018.00014

Lee, H. J., Kim, H. S., and Park, K. S. (2013). “A study on the reproducibility of
biometric authentication based on electroencephalogram (EEG),” in 2013 6th

International IEEE/EMBS Conference on Neural Engineering (NER) (San Diego,
CA: IEEE), 13–16. doi: 10.1109/NER.2013.6695859

Lee, H. K., and Choi, Y.-S. (2019). Application of continuous wavelet transform
and convolutional neural network in decoding motor imagery brain-computer
interface. Entropy 21:1199. doi: 10.3390/e21121199

Lee, S., McKeown, M. J., Wang, Z. J., and Chen, X. (2019). Removal of high-voltage
brain stimulation artifacts from simultaneous EEG recordings. IEEE Trans.
Biomed. Eng. 66, 50–60. doi: 10.1109/TBME.2018.2828808

Lee, S. B., Kim, H. J., Kim, H., Jeong, J. H., Lee, S. W., and Kim, D. J. (2019).
Comparative analysis of features extracted from EEG spatial, spectral and
temporal domains for binary and multiclass motor imagery classification. Inf.
Sci. (Ny). 502, 190–200. doi: 10.1016/j.ins.2019.06.008

Lee, T.-J., and Sim, K.-B. (2015). Vowel classification of imagined speech in an
electroencephalogram using the deep belief network. J. Inst. Control. Robot.
Syst. 21, 59–64. doi: 10.5302/J.ICROS.2015.14.0073

Li, G., Lee, C. H., Jung, J. J., Youn, Y. C., and Camacho, D. (2019). Deep
learning for EEG data analytics: a survey. Concurr. Comput. Pract. Exp. e5199.
doi: 10.1002/cpe.5199

Li, J., Liang, J., Zhao, Q., Li, J., Hong, K., and Zhang, L. (2013). Design of assistive
wheelchair system directly steered by human thoughts. Int. J. Neural Syst.
23:1350013. doi: 10.1142/S0129065713500135

Li, M., Luo, X., Yang, J., and Sun, Y. (2016a). Applying a locally linear
embedding algorithm for feature extraction and visualization of MI-EEG. J.
Sens. 2016:7481946. doi: 10.1155/2016/7481946

Li, M., Zhang, M., Luo, X., and Yang, J. (2016b). “Combined long short-
term memory based network employing wavelet coefficients for MI-EEG
recognition,” in 2016 IEEE International Conference on Mechatronics and
Automation (Harbin: IEEE), 1971–1976. doi: 10.1109/ICMA.2016.7558868

Li, W., Duan, F., Sheng, S., Xu, C., Liu, R., Zhang, Z., et al. (2018). A human-
vehicle collaborative simulated driving system based on hybrid brain-computer
interfaces and computer vision. IEEE Trans. Cogn. Dev. Syst. 10, 810–822.
doi: 10.1109/TCDS.2017.2766258

Li, Y., Long, J., Yu, T., Yu, Z., Wang, C., Zhang, H., et al. (2010).
An EEG-based BCI system for 2-D cursor control by combining
Mu/Beta rhythm and P300 potential. IEEE Trans. Biomed. Eng. 57,
2495-2505.doi: 10.1109/TBME.2010.2055564

Li, Y., Pan, J., Wang, F., and Yu, Z. (2013). A hybrid BCI system combining P300
and SSVEP and its application to wheelchair control. IEEE Trans. Biomed. Eng.
60, 3156–3166. doi: 10.1109/TBME.2013.2270283

Li, Z., Lei, S., Su, C.-Y., and Li, G. (2013). “Hybrid brain/muscle-actuated
control of an intelligent wheelchair,” in 2013 IEEE International
Conference on Robotics and Biomimetics (ROBIO) (Shenzhen: IEEE), 19–25.
doi: 10.1109/ROBIO.2013.6739429

Lin, C.-T., Lin, B.-S., Lin, F.-C., and Chang, C.-J. (2014). Brain computer interface-
based smart living environmental auto-adjustment control system in UPnP
home networking. IEEE Syst. J. 8, 363–370. doi: 10.1109/JSYST.2012.2192756

Lin, J., Liu, S., Huang, G., Zhang, Z., and Huang, K. (2019). “The recognition
of driving action based on EEG signals using wavelet-CSP algorithm,” in
International Conference on Digital Signal Processing, DSP (Shanghai: Institute
of Electrical and Electronics Engineers Inc.). doi: 10.1109/ICDSP.2018.8631540

Lin, J. S., and She, B. H. (2020). A BCI system with motor imagery based
on bidirectional long-short term memory. IOP Conf. Ser. Mater. Sci. Eng.
719:012026. doi: 10.1088/1757-899X/719/1/012026

Liu, A., Chen, K., Liu, Q., Ai, Q., Xie, Y., and Chen, A. (2017). Feature selection
for motor imagery EEG classification based on firefly algorithm and learning
automata. Sensors 17:2576. doi: 10.3390/s17112576

Liu, J., Su, Y., and Liu, Y. (2018). Multi-Modal Emotion Recognition with
Temporal-Band Attention Based on LSTM-RNN,” in Advances in Multimedia
Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer
Science, Vol. 10735, eds B. Zeng, Q. Huang, A. El Saddik, H. Li, S. Jiang, and
X. Fan (Cham: Springer), 194–204. doi: 10.1007/978-3-319-77380-3_19

Liu, Y., Yu, M., Zhao, G., Song, J., Ge, Y., and Shi, Y. (2017). Real-time movie-
induced discrete emotion recognition from EEG signals.. IEEE Trans. Affect.
Comput. 9:2660485. doi: 10.1109/TAFFC.2017.2660485

Long, J., Li, Y., Wang, H., Yu, T., Pan, J., and Li, F. (2012a). A hybrid
brain computer interface to control the direction and speed of a simulated
or real wheelchair. IEEE Trans. Neural. Syst. Rehabil. Eng. 20, 720–729.
doi: 10.1109/TNSRE.2012.2197221

Frontiers in Neurorobotics | www.frontiersin.org 31 June 2020 | Volume 14 | Article 25153

https://doi.org/10.1186/s13638-019-1497-y
https://doi.org/10.1109/GCCE.2013.6664868
https://doi.org/10.1007/s10339-004-0045-8
https://doi.org/10.1109/CSNT.2013.190
https://doi.org/10.3389/fnbot.2019.00094
https://doi.org/10.3389/fnhum.2016.00416
https://doi.org/10.1109/TBME.2015.2465866
https://doi.org/10.1007/s11042-006-0094-3
https://pdfs.semanticscholar.org/5cb4/11de3db4941d5c7ecfc19de8af9243fb63d5.pdf
https://pdfs.semanticscholar.org/5cb4/11de3db4941d5c7ecfc19de8af9243fb63d5.pdf
https://doi.org/10.1109/TNSRE.2006.875585
https://doi.org/10.1109/IECBES.2016.7843428
https://doi.org/10.1155/ASP.2005.3156
https://doi.org/10.1186/1743-0003-9-47
https://doi.org/10.1016/j.jneumeth.2012.05.017
https://doi.org/10.3389/fnhum.2018.00014
https://doi.org/10.1109/NER.2013.6695859
https://doi.org/10.3390/e21121199
https://doi.org/10.1109/TBME.2018.2828808
https://doi.org/10.1016/j.ins.2019.06.008
https://doi.org/10.5302/J.ICROS.2015.14.0073
https://doi.org/10.1002/cpe.5199
https://doi.org/10.1142/S0129065713500135
https://doi.org/10.1155/2016/7481946
https://doi.org/10.1109/ICMA.2016.7558868
https://doi.org/10.1109/TCDS.2017.2766258
https://doi.org/10.1109/TBME.2010.2055564
https://doi.org/10.1109/TBME.2013.2270283
https://doi.org/10.1109/ROBIO.2013.6739429
https://doi.org/10.1109/JSYST.2012.2192756
https://doi.org/10.1109/ICDSP.2018.8631540
https://doi.org/10.1088/1757-899X/719/1/012026
https://doi.org/10.3390/s17112576
https://doi.org/10.1007/978-3-319-77380-3_19
https://doi.org/10.1109/TAFFC.2017.2660485
https://doi.org/10.1109/TNSRE.2012.2197221
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rashid et al. EEG-Based BCI Technology: A Review

Long, J., Li, Y., Yu, T., and Gu, Z. (2012b). Target selection with hybrid feature
for BCI-based 2-D cursor control. IEEE Trans. Biomed. Eng. 59, 132–140.
doi: 10.1109/TBME.2011.2167718

Lopes, A. C., Pires, G., and Nunes, U. (2013). Assisted navigation for
a brain-actuated intelligent wheelchair. Rob. Auton. Syst. 61, 245-258.
doi: 10.1016/j.robot.2012.11.002

Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy,
A., et al. (2018). A review of classification algorithms for EEG-based
brain-computer interfaces: a 10-year update. J. Neural Eng. 15:031005.
doi: 10.1088/1741-2552/aab2f2

Lotte, F., Bougrain, L., and Clerc, M. (2015). “Electroencephalography (EEG)-
based brain-computer interfaces,” in Wiley Encyclopedia of Electrical and
Electronics Engineering, ed J. Webster (Hoboken, NJ: John Wiley and Sons,
Inc.), 1–20. doi: 10.1002/047134608X.W8278

Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., and Arnaldi, B. (2007). A review
of classification algorithms for EEG-based brain–computer interfaces. J. Neural
Eng. 4, R1–R13. doi: 10.1088/1741-2560/4/2/R01

Lu, N., Li, T., Ren, X., and Miao, H. (2017). A deep learning scheme for motor
imagery classification based on restricted boltzmann machines. IEEE Trans.
Neural Syst. Rehabil. Eng. 25, 566–576. doi: 10.1109/TNSRE.2016.2601240

Lu, Z., Gao, N., Liu, Y., and Li, Q. (2018). “The detection of P300 potential
based on deep belief network,” in 2018 11th International Congress on Image
and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)
(Beijing: IEEE), 1–5. doi: 10.1109/CISP-BMEI.2018.8633147

Luo, T., Zhou, C., and Chao, F. (2018). Exploring spatial-frequency-sequential
relationships for motor imagery classification with recurrent neural network.
BMC Bioinform. 19:344. doi: 10.1186/s12859-018-2365-1

Ma, X., Qiu, S., Du, C., Xing, J., and He, H. (2018). “Improving EEG-based motor
imagery classification via spatial and temporal recurrent neural networks,”
in 2018 40th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC) (Honolulu, HI: IEEE), 1903–1906.
doi: 10.1109/EMBC.2018.8512590

Maby, E., Perrin, M., Bertrand, O., Sanchez, G., and Mattout, J. (2012). BCI could
make old two-player games even more fun: a proof of concept with “connect
Four.” Adv. Hum.Comput. Interact. 2012:124728. doi: 10.1155/2012/124728

Majidov, I., and Whangbo, T. (2019). Efficient classification of motor imagery
electroencephalography signals using deep learning methods. Sensors 19:1736.
doi: 10.3390/s19071736

Mammone, N., Ieracitano, C., and Morabito, F. C. (2020). A deep CNN
approach to decode motor preparation of upper limbs from time–frequency
maps of EEG signals at source level. Neural Networks 124, 357–372.
doi: 10.1016/j.neunet.2020.01.027

Mandel, C., Luth, T., Laue, T., Rofer, T., Graser, A., and Krieg-Bruckner, B.
(2009). “Navigating a smart wheelchair with a brain-computer interface
interpreting steady-state visual evoked potentials,” in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IEEE), 1118–1125.
doi: 10.1109/IROS.2009.5354534

Manojprabu, M., and Sarma Dhulipala, V. R. (2020). Improved energy efficient
design in software defined wireless electroencephalography sensor networks
(WESN) using distributed architecture to remove artifact. Comput. Commun.
152, 266–271. doi: 10.1016/j.comcom.2019.12.056

Mara, S., Müller, T., Freire, T., Mário, B., and Filho, S. (2013). Proposal of a SSVEP-
BCI to Command a Robotic Wheelchair. J. Control Autom. Electr. Syst. 24,
97–105. doi: 10.1007/s40313-013-0002-9

Marcel, S., and Millan, J. D. R. (2007). Person Authentication Using Brainwaves
(EEG) and maximum a posteriori model adaptation. IEEE Trans. Pattern Anal.
Mach. Intell. 29, 743–752. doi: 10.1109/TPAMI.2007.1012

Marshall, D., Coyle, D., Wilson, S., and Callaghan, M. (2013). Games, gameplay,
and BCI: the state of the Art. IEEE Trans. Comput. Intell. AI Games 5, 82–99.
doi: 10.1109/TCIAIG.2013.2263555

Mason, S. G., and Birch, G. E. (2003). A general framework for brain-
computer interface design. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 70–85.
doi: 10.1109/TNSRE.2003.810426

Masood, M. H., Ahmad, M., Kathia, M. A., Zafar, R. Z., and Zahid, A. N.
(2016). “Brain Computer Interface Based Smart Home Control,” in 2013 IEEE
International Symposium on Consumer Electronics (ISCE) (Hsinchu), 35–36,
doi: 10.1109/ISCE.2013.6570240

Maye, A., Zhang, D., Wang, Y., Gao, S., and Engel, A. K. (2011).
Multimodal brain-computer interfaces. Tsinghua Sci. Technol. 16, 133–139.
doi: 10.1016/S1007-0214(11)70020-7

McFarland, D. J., Neat, G. W., Read, R. F., and Wolpaw, J. R. (1993). An
EEG-based method for graded cursor control. Psychobiology 21, 77–81.
doi: 10.3758/bf03327130

Meziani, A., Djouani, K., Medkour, T., and Chibani, A. (2019). A Lasso quantile
periodogram based feature extraction for EEG-based motor imagery. J.
Neurosci. Methods 328:108434. doi: 10.1016/j.jneumeth.2019.108434

Michielli, N., Acharya, U. R., and Molinari, F. (2019). Cascaded LSTM
recurrent neural network for automated sleep stage classification
using single-channel EEG signals. Comput. Biol. Med. 106, 71–81.
doi: 10.1016/J.COMPBIOMED.2019.01.013

Middendorf, M., McMillan, G., Calhoun, G., and Jones, K. S. (2000). Brain-
computer interfaces based on the steady-state visual-evoked response. IEEE
Trans. Rehabil. Eng. 8, 211–214. doi: 10.1109/86.847819

Mihajlovi, V., and Peuscher, J. (2012). To What Extent Can Dry and
Water-Based EEG Electrodes Replace Conductive Gel Ones? A Steady
State Visual Evoked Potential Brain-Computer Interface Case Study, 14–26.
doi: 10.5220/0003726000140026

Millan, J. D. R., and Mourino, J. (2003). Asynchronous bci and local neural
classifiers: an overview of the adaptive brain interface project. IEEE Trans.
Neural Syst. Rehabil. Eng. 11, 159–161. doi: 10.1109/TNSRE.2003.814435

Miralles, F., Vargiu, E., Dauwalder, S., Sol,à, M., Müller-Putz, G., Wriessnegger,
S. C., et al. (2015). Brain computer interface on track to home. Sci. World J.
2015:623896. doi: 10.1155/2015/623896

Mohammadpour, M., and Rahmani, V. (2017). “A hidden markov model-based
approach to removing EEG artifact,” in 5th Iranian Joint Congress on Fuzzy and
Intelligent Systems - 16th Conference on Fuzzy Systems and 14th Conference on
Intelligent Systems, CFIS 2017 (Qazvin: Institute of Electrical and Electronics
Engineers Inc.), 46–49. doi: 10.1109/CFIS.2017.8003655

Moses, D. A., Leonard, M. K., Makin, J. G., and Chang, E. F. (2019). Real-
time decoding of question-and-answer speech dialogue using human
cortical activity. Nat. Commun. 10:3096. doi: 10.1038/s41467-019-
10994-4

Mu Li, M., and Bao-Liang Lu, B.-L. (2009). “Emotion classification based on
gamma-band EEG,” in 2009 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (Minneapolis, MN: IEEE),
1223–1226. doi: 10.1109/IEMBS.2009.5334139

Mühl, C., Gürkök, H., Bos, D. P.-O., Thurlings, M. E., Scherffig, L., Duvinage, M.,
et al. (2010). “Bacteria hunt: a multimodal, multiparadigm BCI game,” in 5th
International Summer Workshop on Multimodal Interfaces, eNTERFACE 2009
(Genova: University of Genua), 41–62.

Muller-Putz, G., Scherer, R., Neuper, C., and Pfurtscheller, G. (2006). Steady-
state somatosensory evoked potentials: suitable brain signals for brain–
computer interfaces? IEEE Trans. Neurol. Syst. Rehabil. Eng. 14, 30–37.
doi: 10.1093/acprof:oso/9780198528272.003.0001

Murugappan, M. (2011). “Human emotion classification using wavelet transform
and KNN,” in Proceedings of the 2011 International Conference Pattern
Analysis. Intelligence Robot ICPAIR 2011 Vol. 1 (Putrajaya), 148–153.
doi: 10.1109/ICPAIR.2011.5976886

Murugappan, M., Murugappan, S., Balaganapathy, B., and Gerard, C. (2014).
“Wireless EEG signals based neuromarketing system using Fast Fourier
Transform (FFT),” in Proceedings - 2014 IEEE 10th International Colloquium
on Signal Processing and Its Applications, CSPA 2014 (Kuala Lumpur), 25–30.
doi: 10.1109/CSPA.2014.6805714

Musk, E. (2019). An integrated brain-machine interface platform with
thousands of channels. J. Med. Internet Res. 21:e16194. doi: 10.2196/
16194

Nair, A. V., Kumar, K. M., and Mathew, J. (2018). An improved approach for EEG
signal classification using autoencoder,” in 2018 8th International Symposium
on Embedded Computing and System Design (ISED) (Cochin: IEEE), 6–10.
doi: 10.1109/ISED.2018.8704011

Nakanishi, M., Wang, Y., Chen, X., Wang, Y.-T., Gao, X., and Jung, T.-P.
(2018). Enhancing detection of SSVEPs for a high-speed brain speller using
task-related component analysis. IEEE Trans. Biomed. Eng. 65, 104–112.
doi: 10.1109/TBME.2017.2694818

Frontiers in Neurorobotics | www.frontiersin.org 32 June 2020 | Volume 14 | Article 25154

https://doi.org/10.1109/TBME.2011.2167718
https://doi.org/10.1016/j.robot.2012.11.002
https://doi.org/10.1088/1741-2552/aab2f2
https://doi.org/10.1002/047134608X.W8278
https://doi.org/10.1088/1741-2560/4/2/R01
https://doi.org/10.1109/TNSRE.2016.2601240
https://doi.org/10.1109/CISP-BMEI.2018.8633147
https://doi.org/10.1186/s12859-018-2365-1
https://doi.org/10.1109/EMBC.2018.8512590
https://doi.org/10.1155/2012/124728
https://doi.org/10.3390/s19071736
https://doi.org/10.1016/j.neunet.2020.01.027
https://doi.org/10.1109/IROS.2009.5354534
https://doi.org/10.1016/j.comcom.2019.12.056
https://doi.org/10.1007/s40313-013-0002-9
https://doi.org/10.1109/TPAMI.2007.1012
https://doi.org/10.1109/TCIAIG.2013.2263555
https://doi.org/10.1109/TNSRE.2003.810426
https://doi.org/10.1109/ISCE.2013.6570240
https://doi.org/10.1016/S1007-0214(11)70020-7
https://doi.org/10.3758/bf03327130
https://doi.org/10.1016/j.jneumeth.2019.108434
https://doi.org/10.1016/J.COMPBIOMED.2019.01.013
https://doi.org/10.1109/86.847819
https://doi.org/10.5220/0003726000140026
https://doi.org/10.1109/TNSRE.2003.814435
https://doi.org/10.1155/2015/623896
https://doi.org/10.1109/CFIS.2017.8003655
https://doi.org/10.1038/s41467-019-10994-4
https://doi.org/10.1109/IEMBS.2009.5334139
https://doi.org/10.1093/acprof:oso/9780198528272.003.0001
https://doi.org/10.1109/ICPAIR.2011.5976886
https://doi.org/10.1109/CSPA.2014.6805714
https://doi.org/10.2196/16194
https://doi.org/10.1109/ISED.2018.8704011
https://doi.org/10.1109/TBME.2017.2694818
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rashid et al. EEG-Based BCI Technology: A Review

Narejo, S., Pasero, E., and Kulsoom, F. (2016). EEG based eye state classification
using deep belief network and stacked autoEncoder. Int. J. Electr. Comput. Eng.
6:3131. doi: 10.11591/ijece.v6i6.12967

Nelson, J., McKinley, R. A., Phillips, C., McLntire, U., Goodyear, C., Kreiner,
A., et al. (2016). The effects of transcranial direct current stimulation
(tDCS) on multitasking throughput capacity. Front. Hum. Neurosci. 10:589.
doi: 10.3389/fnhum.2016.00589

Ng, D. W.-K., Soh, Y.-W., and Goh, S.-Y. (2014). “Development of an
Autonomous BCI Wheelchair,” in 2014 IEEE Symposium on Computational
Intelligence in Brain Computer Interfaces (CIBCI) (Orlando, FL: IEEE), 1–4.
doi: 10.1109/CIBCI.2014.7007784

Nguyen, D., Tran, D., Sharma, D., and Ma, W. (2017). On the study of
EEG-based cryptographic key generation. Proc. Comput. Sci. 112, 936–945.
doi: 10.1016/JPROCS.2017.08.126

Nguyen, T.-H., and Chung, W.-Y. (2019). A single-channel SSVEP-
based BCI speller using deep learning. IEEE Access 7, 1752–1763.
doi: 10.1109/ACCESS.2018.2886759

Nguyen, T.-H., Yang, D.-L., and Chung, W.-Y. (2018). A high-rate BCI
speller based on eye-closed EEG signal. IEEE Access 6, 33995–34003.
doi: 10.1109/ACCESS.2018.2849358

Nicolas-Alonso, L. F., Corralejo, R., Gomez-Pilar, J., Álvarez, D., and Hornero,
R. (2015). Adaptive semi-supervised classification to reduce intersession non-
stationarity in multiclass motor imagery-based brain-computer interfaces.
Neurocomputing 159, 186–196. doi: 10.1016/j.neucom.2015.02.005

Nicolas-Alonso, L. F., and Gomez-Gil, J. (2012). Brain computer interfaces, a
review. Sensors 12, 1211–1279. doi: 10.3390/s120201211

Novak, D., Sigrist, R., Gerig, N. J., Wyss, D., Bauer, R., Götz, U., et al. (2018).
Benchmarking brain-computer interfaces outside the laboratory: the cybathlon
2016. Front. Neurosci. 11:756. doi: 10.3389/fnins.2017.00756

Obeidat, Q. T., Campbell, T. A., and Kong, J. (2015). Introducing the edges
paradigm: a P300 brain–computer interface for spelling written words. IEEE
Trans. Hum. Mach. Syst. 45, 727–738. doi: 10.1109/THMS.2015.2456017

Obermaier, B., Guger, C., Neuper, C., and Pfurtscheller, G. (2001). Hidden Markov
models for online classification of single trial EEG data. Pattern Recognit. Lett.
22, 1299–1309. doi: 10.1016/S0167-8655(01)00075-7

Oikonomou, V. P., Georgiadis, K., Liaros, G., Nikolopoulos, S., and Kompatsiaris,
I. (2017). “A comparison study on EEG signal processing techniques using
motor imagery EEG data,” in Proceedings - IEEE Symposium on Computer-
Based Medical Systems (Thessaloniki: Institute of Electrical and Electronics
Engineers Inc.), 781–786. doi: 10.1109/CBMS.2017.113

Olivas-Padilla, B. E., and Chacon-Murguia, M. I. (2019). Classification of multiple
motor imagery using deep convolutional neural networks and spatial filters.
Appl. Soft Comput. 75, 461–472. doi: 10.1016/J.ASOC.2018.11.031

Oosugi, N., Kitajo, K., Hasegawa, N., Nagasaka, Y., Okanoya, K., and Fujii, N.
(2017). A new method for quantifying the performance of EEG blind source
separation algorithms by referencing a simultaneously recorded ECoG signal.
Neural Netw. 93, 1–6. doi: 10.1016/J.NEUNET.2017.01.005

Ortega, J., Ortiz, A., Martín-Smith, P., Gan, J. Q., and González-Peñalver, J. (2017)
“Advances in computational intelligence,” in IWANN 2017. Lecture Notes in
Computer Science, Vol. 10305, eds I. Rojas, G. Joya, and A. Catala (Cham:
Springer), 28-39. doi: 10.1007/978-3-319-59153-7_3

Ortiz-Echeverri, C. J., Salazar-Colores, S., Rodríguez-Reséndiz, J., and Gómez-
Loenzo, R. A. (2019). A new approach for motor imagery classification
based on sorted blind source separation, continuous wavelet transform, and
convolutional neural network. Sensors 19:4541. doi: 10.3390/s19204541

Özerdem, M. S., and Polat, H. (2017). Emotion recognition based on EEG
features in movie clips with channel selection. Brain Inform. 4, 241–252.
doi: 10.1007/s40708-017-0069-3

Padfield, N., Zabalza, J., Zhao, H., Masero, V., Ren, J., Padfield, N., et al. (2019).
EEG-based brain-computer interfaces using motor-imagery: techniques and
challenges. Sensors 19:1423. doi: 10.3390/s19061423

Palaniappan, R., and Revett, K. (2014). PIN generation using EEG: a stability study.
Int. J. Biometrics 6, 95–105. doi: 10.1504/IJBM.2014.060960

Pan, J., Li, Y., and Wang, J. (2016). “An EEG-Based brain-computer
interface for emotion recognition,” in 2016 International Joint Conference
on Neural Networks (IJCNN) (Vancouver, BC: IEEE), 2063–2067.
doi: 10.1109/IJCNN.2016.7727453

Petrantonakis, P. C., and Hadjileontiadis, L. J. (2010). Emotion recognition from
EEG using higher order crossings. IEEE Trans. Inf. Technol. Biomed. 14,
186–197. doi: 10.1109/TITB.2009.2034649

Pham, T., Ma, W., Tran, D., Nguyen, P., and Phung, D. (2013). “EEG-based user
authentication in multilevel security systems” in Advanced Data Mining and
Applications. ADMA 2013. Lecture Notes in Computer Science, Vol 8347, eds H.
Motoda, Z. Wu., L. Cao, O. Zaiane, M. Yao, and W. Wang (Berlin, Heidelberg:
Springer), 513–523. doi: 10.1007/978-3-642-53917-6_46

Picard, R. W. (2003). Affective computing: challenges. Int. J. Hum. Comput. Stud.
59, 55–64. doi: 10.1016/S1071-5819(03)00052-1

Pires, G., Nunes, U., and Castelo-Branco, M. (2011). “GIBS block speller: toward
a gaze-independent P300-based BCI,” in 2011 Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (Boston, MA: IEEE),
6360–6364. doi: 10.1109/IEMBS.2011.6091570

Popescu, F., Fazli, S., Badower, Y., Blankertz, B., and Müller, K.-R. (2007). Single
trial classification of motor imagination using 6 dry EEG electrodes. PLoS ONE
2:e637. doi: 10.1371/journal.pone.0000637

Puanhvuan, D., and Wongsawat, Y. (2012). “Semi-automatic P300-based
brain-controlled wheelchair,” in 2012 ICME International Conference
on Complex Medical Engineering (CME) (Kobe: IEEE), 455–460.
doi: 10.1109/ICCME.2012.6275713

Punsawad, Y., and Wongsawat, Y. (2017). Multi-command SSAEP-based BCI
system with training sessions for SSVEP during an eye fatigue state. IEEJ Trans.
Electr. Electron. Eng. 12, S72–S78. doi: 10.1002/tee.22441

Rabiner, L. R. (1989). A tutorial on hidden Markov models and
selected applications in speech recognition. Proc. IEEE 77, 257–286.
doi: 10.1109/5.18626

Rakotomamonjy, A., Guigue, V., Mallet, G., and Alvarado, V. (2005). “Ensemble
of SVMs For Improving Brain Computer Interface P300 Speller Performances,”
in Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN
2005. Lecture Notes in Computer Science, Vol 3696, eds W. Duch, J.
Kacprzyk, E. Oja and S. Zadrozny (Berlin, Heidelberg: Springer), 45–50.
doi: 10.1007/11550822_8

Ramadan, R. A., and Vasilakos, A. V. (2017). Brain computer interface: control
signals review.Neurocomputing 223, 26–44. doi: 10.1016/j.neucom.2016.10.024

Raschka, S. (2018). Model Evaluation, Model Selection, and Algorithm Selection
in Machine Learning. Available online at: http://arxiv.org/abs/1811.12808
(accessed November 17, 2019).

Rebsamen, B., Burdet, E., Guan, C., Teo, C. L., Zeng, Q., Ang, M., et al.
(2007). “Controlling a wheelchair using a BCI with low information transfer
rate,” in 2007 IEEE 10th International Conference on Rehabilitation Robotics
(Noordwijk: IEEE), 1003–1008. doi: 10.1109/ICORR.2007.4428546

Reddy, T. K., Arora, V., Behera, L., Wang, Y. K., and Lin, C. T. (2019).
Multiclass fuzzy time-delay common spatio-spectral patterns with fuzzy
information theoretic optimization for EEG-based regression problems in
Brain-Computer Interface (BCI). IEEE Trans. Fuzzy Syst. 27, 1943–1951.
doi: 10.1109/TFUZZ.2019.2892921

Rezeika, A., Benda, M., Stawicki, P., Gembler, F., Saboor, A., and Volosyak,
I. (2018). Brain–computer interface spellers: a review. Brain Sci. 8:57.
doi: 10.3390/brainsci8040057

Rojas, G. M., Alvarez, C., Montoya, C. E., de la Iglesia-Vay,á, M., Cisternas,
J. E., and Gálvez, M. (2018). Study of resting-state functional connectivity
networks using EEG electrodes position as seed. Front. Neurosci. 12:235.
doi: 10.3389/fnins.2018.00235

Roy, R., Mahadevappa, M., and Kumar, C. S. (2016). Trajectory path planning
of EEG controlled robotic arm using GA. Procedia Comput. Sci. 84, 147–151.
doi: 10.1016/J.PROCS.2016.04.080

Ruiz Blondet, M. V., Laszlo, S., and Jin, Z. (2015). “Assessment of permanence
of non-volitional EEG brainwaves as a biometric,” in IEEE International
Conference on Identity, Security and Behavior Analysis (ISBA 2015) (IEEE), 1–6.
doi: 10.1109/ISBA.2015.7126359

Ruiz-Blondet, M. V., Jin, Z., and Laszlo, S. (2016). CEREBRE: a novel
method for very high accuracy event-related potential biometric identification.
IEEE Trans. Inf. Forensics Secur. 11, 1618–1629. doi: 10.1109/TIFS.2016.
2543524

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). “Learning internal
representations by error propagation,” in Parallel Distributed Processing:

Frontiers in Neurorobotics | www.frontiersin.org 33 June 2020 | Volume 14 | Article 25155

https://doi.org/10.11591/ijece.v6i6.12967
https://doi.org/10.3389/fnhum.2016.00589
https://doi.org/10.1109/CIBCI.2014.7007784
https://doi.org/10.1016/JPROCS.2017.08.126
https://doi.org/10.1109/ACCESS.2018.2886759
https://doi.org/10.1109/ACCESS.2018.2849358
https://doi.org/10.1016/j.neucom.2015.02.005
https://doi.org/10.3390/s120201211
https://doi.org/10.3389/fnins.2017.00756
https://doi.org/10.1109/THMS.2015.2456017
https://doi.org/10.1016/S0167-8655(01)00075-7
https://doi.org/10.1109/CBMS.2017.113
https://doi.org/10.1016/J.ASOC.2018.11.031
https://doi.org/10.1016/J.NEUNET.2017.01.005
https://doi.org/10.1007/978-3-319-59153-7_3
https://doi.org/10.3390/s19204541
https://doi.org/10.1007/s40708-017-0069-3
https://doi.org/10.3390/s19061423
https://doi.org/10.1504/IJBM.2014.060960
https://doi.org/10.1109/IJCNN.2016.7727453
https://doi.org/10.1109/TITB.2009.2034649
https://doi.org/10.1007/978-3-642-53917-6_46
https://doi.org/10.1016/S1071-5819(03)00052-1
https://doi.org/10.1109/IEMBS.2011.6091570
https://doi.org/10.1371/journal.pone.0000637
https://doi.org/10.1109/ICCME.2012.6275713
https://doi.org/10.1002/tee.22441
https://doi.org/10.1109/5.18626
https://doi.org/10.1007/11550822_8
https://doi.org/10.1016/j.neucom.2016.10.024
http://arxiv.org/abs/1811.12808
https://doi.org/10.1109/ICORR.2007.4428546
https://doi.org/10.1109/TFUZZ.2019.2892921
https://doi.org/10.3390/brainsci8040057
https://doi.org/10.3389/fnins.2018.00235
https://doi.org/10.1016/J.PROCS.2016.04.080
https://doi.org/10.1109/ISBA.2015.7126359
https://doi.org/10.1109/TIFS.2016.2543524
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rashid et al. EEG-Based BCI Technology: A Review

Explorations in the Microstructure of Cognition. Vol. 1, eds D. E. Rumelhart,
J. L. McClelland, and the PDP Research Group (MIT Press).

Rundo, F., Rinella, S., Massimino, S., Coco, M., Fallica, G., Parenti, R., et al. (2019).
An innovative deep learning algorithm for drowsiness detection from EEG
signal. Computation 7:13. doi: 10.3390/computation7010013

Schlögl, A., Lee, F., Bischof, H., and Pfurtscheller, G. (2005). Characterization of
four-class motor imagery EEG data for the BCI-competition 2005. J. Neural
Eng. 2, L14–L22. doi: 10.1088/1741-2560/2/4/L02

Schreuder, M., Höhne, J., Blankertz, B., Haufe, S., Dickhaus, T., and Tangermann,
M. (2013). Optimizing event-related potential based brain-computer interfaces:
a systematic evaluation of dynamic stoppingmethods. J. Neural Eng. 10:036025.
doi: 10.1088/1741-2560/10/3/036025

Serdar Bascil, M., Tesneli, A. Y., and Temurtas, F. (2015). Multi-channel
EEG signal feature extraction and pattern recognition on horizontal mental
imagination task of 1-D cursor movement for brain computer interface.
Australas. Phys. Eng. Sci. Med. 38, 229–239. doi: 10.1007/s13246-015-0345-6

Shakeel, A., Navid, M. S., Anwar, M. N., Mazhar, S., Jochumsen, M., and Niazi,
I. K. (2015). A review of techniques for detection of movement intention
using movement-related cortical potentials. Comput. Math. Methods Med.
2015:346217. doi: 10.1155/2015/346217

Shin, B.-G., Kim, T., and Jo, S. (2010). “Non-invasive brain signal
interface for a wheelchair navigation,” in International Conference on
Control Automation and Systems (ICCAS) (Gyeonggi-do), 2257–2260.
doi: 10.1109/ICCAS.2010.5669830

Shojaedini, S., Morabbi, S., and Keyvanpour, M. (2018). A new method for
detecting P300 signals by using deep learning: hyperparameter tuning in high-
dimensional space by minimizing nonconvex error function. J. Med. Signals
Sens. 8, 205–214. doi: 10.4103/jmss.JMSS_7_18

Shyu, K.-K., Chiu, Y.-J., Lee, P.-L., Lee, M.-H., Sie, J.-J., Wu, C.-H., et al.
(2013). Total design of an FPGA-based brain–computer interface control
hospital bed nursing system. IEEE Trans. Ind. Electron. 60, 2731–2739.
doi: 10.1109/TIE.2012.2196897

Shyu, K.-K., Lee, P.-L., Lee, M.-H., Lin, M.-H., Lai, R.-J., and Chiu,
Y.-J. (2010). Development of a low-cost FPGA-based SSVEP BCI
multimedia control system. IEEE Trans. Biomed. Circ. Syst. 4, 125–132.
doi: 10.1109/TBCAS.2010.2042595

Somers, B., Francart, T., and Bertrand, A. (2018). A generic EEG artifact removal
algorithm based on the multi-channel Wiener filter. J. Neural Eng. 15:036007.
doi: 10.1088/1741-2552/aaac92

Soroush, M. Z., Maghooli, K., Setarehdan, S. K., and Nasrabadi, A. M. (2018).
A review on EEG signals based emotion recognition. Int. Clin. Neurosci. J. 4,
118–129. doi: 10.15171/icnj.2017.01

Speier, W., Fried, I., and Pouratian, N. (2013). Improved P300 speller performance
using electrocorticography, spectral features, and natural language processing.
Clin. Neurophysiol. 124, 1321–1328. doi: 10.1016/j.clinph.2013.02.002

Sweeney, K. T., Ward, T. E., and McLoone, S. F. (2012). Artifact removal in
physiological signals—practices and possibilities. IEEE Trans. Inf. Technol.
Biomed. 16, 488–500. doi: 10.1109/TITB.2012.2188536

Tabar, Y. R., and Halici, U. (2017). A novel deep learning approach for
classification of EEG motor imagery signals. J. Neural Eng. 14:016003.
doi: 10.1088/1741-2560/14/1/016003

Tang, J., Liu, Y., Hu, D., and Zhou, Z. (2018). Towards BCI-
actuated smart wheelchair system. Biomed. Eng. Online
17:111. doi: 10.1186/s12938-018-0545-x

Tang, X., Zhou, J., Zhang, N., and Liu, L. (2015). Recognition of motor
imagery EEG based on deep belief network. Inf. Control 44, 717–721.
doi: 10.13976/j.cnki.xk.2015.0717

Tang, Z., Li, C., and Sun, S. (2017). Single-trial EEG classification of motor
imagery using deep convolutional neural networks. Optik 130, 11–18.
doi: 10.1016/J.IJLEO.2016.10.117

Taran, S., and Bajaj, V. (2018). Drowsiness detection using adaptive hermite
decomposition and extreme learning machine for electroencephalogram
signals. IEEE Sens. J. 18, 8855–8862. doi: 10.1109/JSEN.2018.2869775

Tariq, M., Trivailo, P. M., and Simic, M. (2018). EEG-based BCI control
schemes for lower-limb assistive-robots. Front. Hum. Neurosci. 12:312.
doi: 10.3389/fnhum.2018.00312

Tayeb, Z., Fedjaev, J., Ghaboosi, N., Richter, C., Everding, L., Qu, X., et al.
(2019). Validating deep neural networks for online decoding of motor imagery
movements from EEG signals. Sensors 19:210. doi: 10.3390/s19010210

Tello, R. M. G., Müller, S. M. T., Hasan, M. A., Ferreira, A., Krishnan,
S., and Bastos, T. F. (2016). An independent-BCI based on SSVEP using
Figure-Ground Perception (FGP). Biomed. Signal Process. Control 26, 69–79.
doi: 10.1016/J.BSPC.2015.12.010

Thulasidas, M., Guan, C., and Wu, J. (2006). Robust classification of EEG signal
for brain–computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 24–29.
doi: 10.1109/TNSRE.2005.862695

Tian, G., and Liu, Y. (2019). Simple convolutional neural network for left-right
hands motor imagery EEG signals classification. Int. J. Cogn. Informatics Nat.
Intell. 13, 36–49. doi: 10.4018/IJCINI.2019070103

Townsend, G., LaPallo, B. K., Boulay, C. B., Krusienski, D. J., Frye, G. E., Hauser,
C. K., et al. (2010). A novel P300-based brain–computer interface stimulus
presentation paradigm: moving beyond rows and columns. Clin. Neurophysiol.
121, 1109–1120. doi: 10.1016/j.clinph.2010.01.030

Tripathy, R. K., and Rajendra Acharya, U. (2018). Use of features from RR-
time series and EEG signals for automated classification of sleep stages
in deep neural network framework. Biocybern. Biomed. Eng. 38, 890–902.
doi: 10.1016/j.bbe.2018.05.005

Tsinalis, O., Matthews, P. M., and Guo, Y. (2016). Automatic sleep stage scoring
using time-frequency analysis and stacked sparse autoencoders. Ann. Biomed.
Eng. 44, 1587–1597. doi: 10.1007/s10439-015-1444-y

Urigüen, J. A., and Garcia-Zapirain, B. (2015). EEG artifact
removal—state-of-the-art and guidelines. J. Neural Eng. 12:031001.
doi: 10.1088/1741-2560/12/3/031001

Valbuena, D., Volosyak, I., and Gräser, A. (2010). “SBCI: fast detection of steady-
state visual evoked potentials,” 2007 29th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (Buenos Aires: IEEE),
2010:3966–3969. doi: 10.1109/IEMBS.2010.5627990

Van Erp, J. B. F., Lotte, F., and Tangermann, M. (2012). Brain-computer interfaces:
beyond medical applications. Computer 45, 26–34. doi: 10.1109/MC.2012.107

Vansteensel, M. J., Kristo, G., Aarnoutse, E. J., and Ramsey, N. F. (2017). The brain-
computer interface researcher’s questionnaire: from research to application.
Brain Comput. Interf. 4, 236-247. doi: 10.1080/2326263X.2017.1366237

Vareka, L., and Mautner, P. (2017). Stacked autoencoders for the P300 component
detection. Front. Neurosci. 11:302. doi: 10.3389/fnins.2017.00302

Varona-Moya, S., Velasco-Alvarez, F., Sancha-Ros, S., Fernandez-Rodriguez, A.,
Blanca, M. J., and Ron-Angevin, R. (2015). “Wheelchair navigation with an
audio-cued, two-class motor imagery-based brain-computer interface system,”
in 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)
(Montpellier: IEEE), 174–177. doi: 10.1109/NER.2015.7146588

Volosyak, I., Cecotti, H., Valbuena, D., and Graser, A. (2009). “Evaluation of
the Bremen SSVEP based BCI in real world conditions,” in 2009 IEEE
International Conference on Rehabilitation Robotics (Kyoto: IEEE), 322–331.
doi: 10.1109/ICORR.2009.5209543

Volosyak, I., Gembler, F., and Stawicki, P. (2017). Age-related differences
in SSVEP-based BCI performance. Neurocomputing 250, 57–64.
doi: 10.1016/j.neucom.2016.08.121

Wang, H., Li, Y., Long, J., Yu, T., and Gu, Z. (2014). An asynchronous wheelchair
control by hybrid EEG–EOG brain–computer interface. Cogn. Neurodyn. 8,
399-409. doi: 10.1007/s11571-014-9296-y

Wang, L., Lan, Z., Wang, Q., Yang, R., and Li, H. (2019). ELM_kernel and wavelet
packet decomposition based EEG classification algorithm. Autom. Control
Comput. Sci. 53, 452–460. doi: 10.3103/S0146411619050079

Wang, M., Abbass, H. A., Hu, J., and Merrick, K. (2016). “Detecting rare visual
and auditory events from EEG using pairwise-comparison neural networks,”
in Advances in Brain Inspired Cognitive Systems. BICS 2016. Lecture Notes
in Computer Science, Vol. 1002, eds C. L. Liu, A. Hussain, B. Luo, K.Tan,
Y. Zeng, and Z. Zhang (Cham: Springer), 90–101. doi: 10.1007/978-3-319-
49685-6_9

Wang, X.-W., Nie, D., and Lu, B.-L. (2014). Emotional state classification from
EEG data using machine learning approach. Neurocomputing 129, 94–106.
doi: 10.1016/J.NEUCOM.2013.06.046

Wang, Y., and Wu, D. (2019). “Deep Learning for sleep stage classification,” in
Proceedings 2018 Chinese Automation Congress, CAC 2018 (Xi’an), 3833–3838.
doi: 10.1109/CAC.2018.8623637

Wang, Z., Cao, L., Zhang, Z., Gong, X., Sun, Y., and Wang, H. (2018). Short
time fourier transformation and deep neural networks for motor imagery
brain computer interface recognition. Concurr. Comput. Pract. Exp. 30:e4413.
doi: 10.1002/cpe.4413

Frontiers in Neurorobotics | www.frontiersin.org 34 June 2020 | Volume 14 | Article 25156

https://doi.org/10.3390/computation7010013
https://doi.org/10.1088/1741-2560/2/4/L02
https://doi.org/10.1088/1741-2560/10/3/036025
https://doi.org/10.1007/s13246-015-0345-6
https://doi.org/10.1155/2015/346217
https://doi.org/10.1109/ICCAS.2010.5669830
https://doi.org/10.4103/jmss.JMSS_7_18
https://doi.org/10.1109/TIE.2012.2196897
https://doi.org/10.1109/TBCAS.2010.2042595
https://doi.org/10.1088/1741-2552/aaac92
https://doi.org/10.15171/icnj.2017.01
https://doi.org/10.1016/j.clinph.2013.02.002
https://doi.org/10.1109/TITB.2012.2188536
https://doi.org/10.1088/1741-2560/14/1/016003
https://doi.org/10.1186/s12938-018-0545-x
https://doi.org/10.13976/j.cnki.xk.2015.0717
https://doi.org/10.1016/J.IJLEO.2016.10.117
https://doi.org/10.1109/JSEN.2018.2869775
https://doi.org/10.3389/fnhum.2018.00312
https://doi.org/10.3390/s19010210
https://doi.org/10.1016/J.BSPC.2015.12.010
https://doi.org/10.1109/TNSRE.2005.862695
https://doi.org/10.4018/IJCINI.2019070103
https://doi.org/10.1016/j.clinph.2010.01.030
https://doi.org/10.1016/j.bbe.2018.05.005
https://doi.org/10.1007/s10439-015-1444-y
https://doi.org/10.1088/1741-2560/12/3/031001
https://doi.org/10.1109/IEMBS.2010.5627990
https://doi.org/10.1109/MC.2012.107
https://doi.org/10.1080/2326263X.2017.1366237
https://doi.org/10.3389/fnins.2017.00302
https://doi.org/10.1109/NER.2015.7146588
https://doi.org/10.1109/ICORR.2009.5209543
https://doi.org/10.1016/j.neucom.2016.08.121
https://doi.org/10.1007/s11571-014-9296-y
https://doi.org/10.3103/S0146411619050079
https://doi.org/10.1007/978-3-319-49685-6_9
https://doi.org/10.1016/J.NEUCOM.2013.06.046
https://doi.org/10.1109/CAC.2018.8623637
https://doi.org/10.1002/cpe.4413
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rashid et al. EEG-Based BCI Technology: A Review

Waytowich, N. R., Lawhern, V., Garcia, J. O., Cummings, J., Faller, J., Sajda,
P., et al. (2018). Compact convolutional neural networks for classification of
asynchronous steady-state visual evoked potentials. J. Neural Eng. 15:aae5d8.
doi: 10.1088/1741-2552/aae5d8

Wei, Y., Wu, Y., and Tudor, J. (2017). A real-time wearable emotion detection
headband based on EEGmeasurement. Sensors Actuators A Phys. 263, 614–621.
doi: 10.1016/J.SNA.2017.07.012

Widyotriatmo, A., Suprijanto, and Andronicus, S. (2015). “A collaborative
control of brain computer interface and robotic wheelchair,” in 2015
10th Asian Control Conference (ASCC) (Kota Kinabalu: IEEE), 1–6.
doi: 10.1109/ASCC.2015.7244838

Wolpaw, J. R., Birbaumer, N., Mcfarland, D. J., Pfurtscheller, G., and Vaughan,
T. M. (2002). Brain-computer interfaces for communication and control. Clin.
Neurophysiol. 113, 767–791. doi: 10.1016/S1388-2457(02)00057-3

Wolpaw, J. R., Loeb, G. E., Allison, B. Z., Donchin, E., Do Nascimento, O.
F., Heetderks, W. J., et al. (2006). BCI meeting 2005—workshop on signals
and recording methods. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 138–141.
doi: 10.1109/TNSRE.2006.875583

Wolpaw, J. R., Mcfarland, D. J., Neat, G. W., and Forneris, C. A. (1991). An EEG-
based brain-computer interface for cursor control. Electroencephalogr. Clin.
Neurophysiol. 78, 252–259. doi: 10.1016/0013-4694(91)90040-B

Wu, D., Lance, B. J., Lawhern, V. J., Gordon, S., Jung, T.-P., and Lin,
C.-T. (2017). EEG-based user reaction time estimation using Riemannian
geometry features. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 2157–2168.
doi: 10.1109/TNSRE.2017.2699784

Xu, B., Zhang, L., Song, A., Wu, C., Li, W., Zhang, D., et al. (2019).
Wavelet transform time-frequency image and convolutional network-
based motor imagery EEG classification. IEEE Access 7, 6084–6093.
doi: 10.1109/ACCESS.2018.2889093

Xu, T., Zhou, Y., Wang, Z., and Peng, Y. (2018). Learning emotions EEG-based
recognition and brain activity: a survey study on BCI for intelligent tutoring
system. Procedia Comput. Sci. 130, 376–382. doi: 10.1016/j.procs.2018.04.056

Xu, X., Chen, X., and Yu, Z. (2018). Removal of muscle artefacts from
few-channel EEG recordings based on multivariate empirical mode
decomposition and independent vector analysis. Electron. Lett. 54, 866–868.
doi: 10.1049/el.2018.0191

Xu, Z., Li, J., Gu, R., and Xia, B. (2012). “Steady-State Visually Evoked
Potential (SSVEP)-Based Brain-Computer Interface (BCI): A Low-Delayed
Asynchronous Wheelchair Control System (Berlin; Heidelberg: Springer),
305–314. doi: 10.1007/978-3-642-34475-6_37

Yang, B., Li, H., Wang, Q., and Zhang, Y. (2016). Subject-based feature extraction
by using fisher WPD-CSP in brain-computer interfaces. Comput. Methods
Progr. Biomed. 129, 21–28. doi: 10.1016/j.cmpb.2016.02.020

Yang, C., Wu, H., Li, Z., He, W., Wang, N., and Su, C.-Y. (2018). Mind control of
a robotic arm with visual fusion technology. IEEE Trans. Ind. Informatics 14,
3822–3830. doi: 10.1109/TII.2017.2785415

Yang, J., Yao, S., and Wang, J. (2018). Deep fusion feature learning
network for MI-EEG classification. IEEE Access 6, 79050–79059.
doi: 10.1109/ACCESS.2018.2877452

Yang, S., Yin, Z., Wang, Y., Zhang, W., Wang, Y., and Zhang, J. (2019). Assessing
cognitive mental workload via EEG signals and an ensemble deep learning
classifier based on denoising autoencoders. Comput. Biol. Med. 109, 159–170.
doi: 10.1016/J.COMPBIOMED.2019.04.034

Yeom, S.-K., Fazli, S., and Lee, S.-W. (2014). “P300 visual speller based
on random set presentation,” in 2014 International Winter Workshop
on Brain-Computer Interface (BCI) (Jeongsun-kun: IEEE), 1–2.
doi: 10.1109/iww-BCI.2014.6782567

Yger, F., Berar, M., and Lotte, F. (2017). Riemannian approaches in brain-computer
interfaces: a review. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 1753–1762.
doi: 10.1109/TNSRE.2016.2627016

Yin, Z., and Zhang, J. (2017). Cross-session classification of mental workload
levels using EEG and an adaptive deep learning model. Biomed. Signal Process.
Control 33, 30–47. doi: 10.1016/J.BSPC.2016.11.013

Yin, Z., Zhao, M., Zhang, W., Wang, Y., Wang, Y., and Zhang, J. (2019).
Physiological-signal-based mental workload estimation via transfer dynamical
autoencoders in a deep learning framework. Neurocomputing 347, 212–229.
doi: 10.1016/J.NEUCOM.2019.02.061

Zaizu Ilyas, M., Saad, P., and Imran Ahmad, M. (2015). “A survey of analysis
and classification of EEG signals for brain-computer interfaces,” in 2nd
International Conference on Biomedical Engineering (ICoBE) (Penang), 1–6.
doi: 10.1109/ICoBE.2015.7235129

Zarei, R., He, J., Siuly, S., and Zhang, Y. (2017). A PCA aided cross-covariance
scheme for discriminative feature extraction from EEG signals. Comput.
Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.05.009

Zhang, D.-X., Wu, X.-P., and Guo, X. (2008). “The EEG signal preprocessing
based on empirical mode decomposition,” in 2008 2nd International Conference
on Bioinformatics and Biomedical Engineering (Shanghai: IEEE), 2131–2134.
doi: 10.1109/ICBBE.2008.862

Zhang, R., Li, X., Wang, Y., Liu, B., Shi, L., Chen, M., et al. (2019). Using brain
network features to increase the classification accuracy of MI-BCI inefficiency
subject. IEEE Access 7, 74490–74499. doi: 10.1109/ACCESS.2019.2917327

Zhang, R., Li, Y., Yan, Y., Zhang, H., Wu, S., Yu, T., et al. (2016). Control of
a wheelchair in an indoor environment based on a brain-computer interface
and automated navigation. IEEE Trans. Neural. Syst. Rehabil. Eng. 24, 128–39.
doi: 10.1109/TNSRE.2015.2439298

Zhang, R., Wang, Q., Li, K., He, S., Qin, S., Feng, Z., et al. (2017). A BCI-based
environmental control system for patients with severe spinal cord injuries. IEEE
Trans. Biomed. Eng. 64, 1959–1971. doi: 10.1109/TBME.2016.2628861

Zhang, T., Zheng, W., Cui, Z., Zong, Y., and Li, Y. (2019). Spatial–temporal
recurrent neural network for emotion recognition. IEEE Trans. Cybern. 49,
839–847. doi: 10.1109/TCYB.2017.2788081

Zhang, X., Yao, L., Wang, X., Monaghan, J., Mcalpine, D., and Zhang, Y. (2019). A
Survey on Deep Learning based Brain Computer Interface: Recent Advances and
New Frontiers. Available online at: http://arxiv.org/abs/1905.04149 (accessed
July 15, 2019).

Zhang, Y., Guo, D., Xu, P., Zhang, Y., and Yao, D. (2016). Robust
frequency recognition for SSVEP-based BCI with temporally local
multivariate synchronization index. Cogn. Neurodyn. 10, 505–511.
doi: 10.1007/s11571-016-9398-9

Zhang, Y., Xiaomin, J., and Zhang, Y. (2015). “Classification of EEG signals
based on AR model and approximate entropy,” in 2015 International
Joint Conference on Neural Networks (IJCNN) (Killarney: IEEE), 1–6.
doi: 10.1109/IJCNN.2015.7280840

Zhang, Y., Yin, E., Li, F., Zhang, Y., Guo, D., Yao, D., et al. (2019). Hierarchical
feature fusion framework for frequency recognition in SSVEP-based BCIs.
Neural Netw. 119, 1–9. doi: 10.1016/j.neunet.2019.07.007

Zhang, Y., Yin, E., Li, F., Zhang, Y., Tanaka, T., Zhao, Q., et al. (2018). Two-
stage frequency recognition method based on correlated component analysis
for SSVEP-based BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 1314–1323.
doi: 10.1109/TNSRE.2018.2848222

Zhang, Z., Duan, F., Sole-Casals, J., Dinares-Ferran, J., Cichocki, A.,
Yang, Z., et al. (2019). A novel deep learning approach with data
augmentation to classify motor imagery signals. IEEE Access 7, 15945–15954.
doi: 10.1109/ACCESS.2019.2895133

Zheng, W. L., and Lu, B. L. (2015). Investigating critical frequency bands and
channels for EEG-based emotion recognition with deep neural networks. IEEE
Trans. Auton. Ment. Dev. 7, 162–175. doi: 10.1109/TAMD.2015.2431497

Zhou, J., Meng, M., Gao, Y., Ma, Y., and Zhang, Q. (2018). “Classification of
motor imagery EEG using wavelet envelope analysis and LSTM networks,” in
Proceedings of the 30th Chinese Control and Decision Conference, CCDC 2018
(Shenyang: Institute of Electrical and Electronics Engineers Inc.), 5600–5605.
doi: 10.1109/CCDC.2018.8408108

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Rashid, Sulaiman, P. P. Abdul Majeed, Musa, Ab. Nasir, Bari and
Khatun. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 35 June 2020 | Volume 14 | Article 25157

https://doi.org/10.1088/1741-2552/aae5d8
https://doi.org/10.1016/J.SNA.2017.07.012
https://doi.org/10.1109/ASCC.2015.7244838
https://doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1109/TNSRE.2006.875583
https://doi.org/10.1016/0013-4694(91)90040-B
https://doi.org/10.1109/TNSRE.2017.2699784
https://doi.org/10.1109/ACCESS.2018.2889093
https://doi.org/10.1016/j.procs.2018.04.056
https://doi.org/10.1049/el.2018.0191
https://doi.org/10.1007/978-3-642-34475-6_37
https://doi.org/10.1016/j.cmpb.2016.02.020
https://doi.org/10.1109/TII.2017.2785415
https://doi.org/10.1109/ACCESS.2018.2877452
https://doi.org/10.1016/J.COMPBIOMED.2019.04.034
https://doi.org/10.1109/iww-BCI.2014.6782567
https://doi.org/10.1109/TNSRE.2016.2627016
https://doi.org/10.1016/J.BSPC.2016.11.013
https://doi.org/10.1016/J.NEUCOM.2019.02.061
https://doi.org/10.1109/ICoBE.2015.7235129
https://doi.org/10.1016/j.cmpb.2017.05.009
https://doi.org/10.1109/ICBBE.2008.862
https://doi.org/10.1109/ACCESS.2019.2917327
https://doi.org/10.1109/TNSRE.2015.2439298
https://doi.org/10.1109/TBME.2016.2628861
https://doi.org/10.1109/TCYB.2017.2788081
http://arxiv.org/abs/1905.04149
https://doi.org/10.1007/s11571-016-9398-9
https://doi.org/10.1109/IJCNN.2015.7280840
https://doi.org/10.1016/j.neunet.2019.07.007
https://doi.org/10.1109/TNSRE.2018.2848222
https://doi.org/10.1109/ACCESS.2019.2895133
https://doi.org/10.1109/TAMD.2015.2431497
https://doi.org/10.1109/CCDC.2018.8408108
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org

	Cover
	Frontiers eBook Copyright Statement
	Frontiers in Neurorobotics – Editor’s Pick 2021
	Table of Contents
	Tracking People in a Mobile Robot From 2D LIDAR Scans Using Full Convolutional Neural Networks for Security in Cluttered Environments
	1. Introduction
	2. Materials and Methods
	2.1. Orbi-One Robot
	2.2. KIO RTLS
	2.3. PeTra
	2.3.1. Neural Network Configuration
	2.3.2. Operation
	2.3.3. Neural Network Training

	2.4. Leg Detector (LD)
	2.5. Evaluation
	2.5.1. Data Collection
	2.5.2. Evaluation Method


	3. Results
	4. Discussion
	5. Conclusions and Further Work
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	A Differentiable Physics Engine for Deep Learning in Robotics
	1. Introduction
	2. Materials and Methods
	2.1. A 3D Rigid Body Engine
	2.1.1. Throwing a Ball

	2.2. Policy Search

	3. Results
	3.1. Quadrupedal Robot: Computing Speed
	3.2. 4 Degree of Freedom Robot Arm
	3.2.1. Reaching a Fixed Point
	3.2.2. Reaching a Random Point

	3.3. A Quadrupedal Robot: Revisited
	3.4. The Inverted Pendulum With a Camera as Sensor

	4. Discussion
	Author Contributions
	Funding
	Acknowledgments
	References

	Body Randomization Reduces the Sim-to-Real Gap for Compliant Quadruped Locomotion
	1. Introduction
	1.1. Related Work
	1.2. Our Approach

	2. Materials and Methods
	2.1. Robot
	2.2. Calibration
	2.3. Gait Search
	2.3.1. Central Pattern Generator
	2.3.2. Gait Search With CMA-ES

	2.4. Evaluation Methods

	3. Results
	3.1. Calibration
	3.2. Gait Optimization in Simulation
	3.3. Transfer to Real World

	4. Conclusion
	Data Availability
	Author Contributions
	Acknowledgments
	References

	Fast and Flexible Multi-Step Cloth Manipulation Planning Using an Encode-Manipulate-Decode Network (EMD Net)
	Introduction
	Related Work in Cloth Manipulation
	Related Work in Model-Based Learning
	Contributions and Limitations

	Task Design
	System Architecture
	Planning Algorithm
	Plan Generation
	Closed-Loop Planning

	Data Generation
	Data Augmentation
	The Role of Simulation

	Training
	Loss Functions
	Alternative Encoding Consistency Enforcement
	Learning Rate Adjustment and Overfitting Counter-Measures

	Results—Outcome Prediction
	Results—Planning
	Self-Occlusion
	Discussion
	Future Work
	Conclusions
	Author Contributions
	Funding
	References

	Design and Validation of a Modular One-To-Many Actuator for a Soft Wearable Exosuit
	1. Introduction
	2. OTM Design and Control
	2.1. Mechanical Design
	2.2. Control
	2.3. Performance
	2.3.1. Velocity Modulation
	2.3.2. Ramp Response
	2.3.3. Bandwidth
	2.3.4. Loaded Behavior


	3. Testing on Human Movements
	3.1. Exosuit Design and Control
	3.2. Experiments and Data Analysis
	3.3. Results

	4. Discussion
	4.1. On the Performance of the PWM Controller
	4.2. On the Effect on Human Movements

	Data Availability
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Autonomous Development of Active Binocular and Motion Vision Through Active Efficient Coding
	1. Introduction
	2. Materials and Methods
	2.1. Model Overview
	2.2. Simulation
	2.3. Image Processing
	2.4. Sparse Coding
	2.5. Reinforcement Learning
	2.6. Experimental Procedure

	3. Results
	3.1. Analysis of Basis Function Properties

	4. Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Reachy, a 3D-Printed Human-Like Robotic Arm as a Testbed for Human-Robot Control Strategies
	1. Introduction
	2. Robot Design
	2.1. Design Principles
	2.2. Hardware
	2.3. Electronics and Software
	2.4. Features
	2.4.1. Motor Performance
	2.4.2. Application in Prosthetics

	2.5. Comparison With Existing Robotic Arms
	2.6. Sharing Philosophy

	3. Proofs of Concept
	3.1. Inverse Kinematics for Endpoint Position Control
	3.1.1. Local Optimization
	3.1.2. Supervised Learning With an Artificial Neural Network

	3.2. Tele-operation
	3.3. Gaze-Driven Control

	4. Conclusion and Perspectives
	Data Availability
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	A Piezoresistive Array Armband With Reduced Number of Sensors for Hand Gesture Recognition
	Introduction
	Materials and Methods
	Piezoresistive Array Armband Design
	Machine Learning Algorithms Applied to Hand Gesture Classification
	Reproducibility Test
	Real-Time Implementation of Hand Gesture Recognition

	Results
	Signals Pre-processing and Hand Gestures Classification
	Reproducibility Test
	Graphical Interfaces for Practical HMI Applications

	Discussion and Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	References

	A Review of Robot-Assisted Lower-Limb Stroke Therapy: Unexplored Paths and Future Directions in Gait Rehabilitation
	1. Introduction
	2. Interaction Goal and Type
	2.1. Error Correction via Physical Interaction
	2.2. Error Augmentation via Physical Interaction
	2.3. Feedback via Non-physical Interaction

	3. Physical Implementation
	3.1. Body Weight Support
	3.2. Foot Plates
	3.3. Exoskeletons and Powered Orthoses
	3.4. Treadmill Training
	3.5. Goal-Directed and Task-Oriented Training
	3.6. Electrical and Magnetic Stimulation

	4. Targeted Sensorimotor Pathways
	4.1. Vision
	4.2. Audition
	4.3. Equilibrioception
	4.4. Cutaneous and Haptic Perception
	4.5. Inter-limb Coordination Mechanisms

	5. Synopsis and Future Directions
	Author Contributions
	Funding
	References

	Current Status, Challenges, and Possible Solutions of EEG-Based Brain-Computer Interface: A Comprehensive Review
	Introduction
	Essential Components of BCI Technology
	Branches of BCI Technology
	Brain Activity Measurement Modalities
	EEG Control Signals Used in BCI Applications
	Steady-State Evoked Potentials (SSEP)
	P300
	Motor Imagery

	EEG Acquisition Framework for BCI Application
	Hardware Technology for EEG Signal Acquisition

	EEG Data Pre-processing Strategies
	Feature Extraction Approaches in EEG-Based BCI Systems
	Classification Methods
	Conventional Machine Learning Approaches in EEG-Based BCIs
	Deep Learning Approaches in EEG-Based BCIs

	Performance Evaluation of BCI Systems

	Popular EEG-Based BCI Applications
	BCI Wheelchair Control
	BCI Cursor Control
	BCI Spellers
	BCI Biometrics
	BCI Emotion Recognition
	BCI Virtual Reality and Gaming
	BCI Robotic Arm
	BCI Environmental Control
	Recent Achievements and Innovations in EEG-Based BCIs

	Current Challenges and Directions
	Issues in EEG Modalities for BCI Applications
	Issues With EEG Headsets
	Lack of Ideal Data Analysis Methods
	Performance Evaluation Metrics
	Trends in Lab-Based BCI Technology
	Low ITR of BCI Systems
	Commercialization of EEG-Based BCI Technology
	Issues in Specific EEG-Based BCI Applications

	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References

	Back Cover



