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Editorial on the Research Topic

Magnetoencephalography: Methodological innovation paves the way
for scientific discoveries and new clinical applications

In 1971, less than five decades after the inception of electroencephalography

(EEG), the first real-time magnetoencephalogram was obtained at MIT using a SQUID

magnetometer, propelling magnetoencephalography (MEG) as a feasible approach for

studying the human brain (1, 2). Then, in 1992, a multidisciplinary research group

at the Low-Temperature Laboratory (LTL) of the Helsinki University of Technology

(now part of Aalto University) produced the first whole-head MEG system with more

than 100 channels (3). The key to this success was the fruitful interactions between

the neuroscientists, physicists, mathematicians, engineers, and clinicians who worked

together on the instrumentation, analysis methods, and actual neuroscience and clinical

applications. Their success reverberated into several research laboratories worldwide,

paving the way for MEG to become a recognized method for studying the brain.

During the 21st century, both basic neuroscience and clinical MEG studies have

benefited from the use of high-quality open-source academic software packages, which

have enhanced the rigor and reproducibility of scientific investigations using MEG. In

addition, Optically PumpedMagnetometers (OPMs), novel room-temperature magnetic

field sensors, hold promise for significantly improving the spatial resolution and

sensitivity of MEG (4). These new devices will also enable the adaptation of the MEG

array to the size of the head so that a high signal-to-noise ratio can be achieved, even in
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studies of early brain development (5). To fully capitalize

on these advances, one needs improvements to forward and

inverse modeling techniques, as well as to the biophysical

models of assemblies of neurons. The latter make it possible

to suggest mechanisms underlying the observed macroscopic

neural currents, lead to new testable hypotheses, and provide

links between recordings in animal models and humanMEG (6).

Portable and real-time brain-computer MEG-based interfaces

will likely become more integrated in the future (2, 7, 8).

The only established clinical applications of MEG, however,

are the localization and characterization of epileptic activity

(9) and presurgical mapping of the eloquent cortex (10). New

studies give hope that MEG, used in combination with EEG and

other non-invasive brain imaging methods, will in the future

be harnessed for better diagnosis and for monitoring treatment

efficacy in several neurological and psychiatric diseases (11, 12).

To that end, MEG has already changed clinical approaches

and improved surgical outcomes in epilepsy (13–19), but,

paradoxically, it has not yet secured its place in clinical practice

(20–23). Furthermore, among the over 20 million patients with

drug-resistant epilepsy (DRE) worldwide (2, 24), millions of

potential surgical candidates continue to suffer unnecessarily

because of the vast underutilization of surgery for epilepsy

(2, 15, 25, 26). It appears that the epilepsy community does not

have an efficient solution for this cardinal challenge (15, 25–27).

Perhaps the blatant lack of synergies betweenMEG practitioners

and the epilepsy community represents an opportunity to

change this unfavorable clinical reality; i.e., these two groups

could come together to promote non-pharmacologic DRE

treatment options and thereby considerably increase the number

of comprehensively evaluated patients, including many who

could unquestionably benefit from an MEG (9, 23, 28). Yet

it seems that previously initiated (i.e., currently stagnant and

challenging) efforts to harmonize clinical MEG practice must

materialize before we can expect MEG to take its proper place

and be used at proper volume in clinical practice (29, 30).

Considering that epilepsy surgery is an underutilized tool at

large, this possibly applies even more to the underuse of MEG in

the context of non-invasive presurgical mapping of the eloquent

cortices as part of preparation for surgical interventions (9, 10,

23), where variability in clinical practice may be even greater

and the concerted efforts of clinical magnetoencephalographers

and neurosurgeons are necessary. In addition to the promise

of possible new uses, such as ictal MEG (31, 32), real-world

advances have been complicated by logistical concerns, e.g.,

the duration of recording; monetary, regulatory, or simply

practice styles (e.g., handling referrals in less well-established

indications such as non-surgical EEG-negative epilepsies); or

attitudes toward research (33). However, this has opened doors

that allow a more thoughtful approach to applying forward and

inverse solutions between old, well-known, and practical ones,

like single-point (i.e., single equivalent current dipole) solutions,

and perhaps theoretically better and more realistic ones that are

already gaining momentum after a slight lag taking advantage

of computational and hardware exponential advances. Another

ongoing challenge is the lack of a good platform for worldwide

data repositories, as well as of consortia that would allow real-

time collaboration in an area still practiced in the form of

medical art and expert consensus. This is not just a problemwith

MEG, but with epilepsy surgery in general.

In this collection, we aimed to provide a comprehensive

update on the most recent advances in MEG utilization in

clinical pre-surgical evaluation, functional mapping, cognitive

neuroscience, source localization techniques, and the most

recent technological advances. We also highlight network

analysis as a newly emerged technique that has approached

the pathophysiology of epilepsy from different perspectives. In

no particular order: Laohathai et al. discussed fundamental

proficiency in the practice of MEG in clinical epilepsy care.

Cao et al. presented a perspective on using quantitative network

analysis methods for assessing the epileptogenic zone. Sun

et al. used magnetoencephalography and graph theory analysis

to reveal the dynamics of functional connectivity networks

during seizure termination in patients with childhood absence

epilepsy. Aung et al. discussed how MEG’s excellent temporal

and spatial resolutions contribute to the understanding of a

subject with both clinical and surgical importance: i.e., what

constitutes the boundary between focal, frontal, and generalized

epilepsies. Khan et al. reported on different frequency-specific

hubs accounting for age-specific maturation. Matsubara et al.

discovered that specific functional connectivity was bolstered

in patients with benign adult familial myoclonus epilepsy,

implying that ipsilateral sensorimotor responses may be a

pathologically enhanced motor response homologous to the

giant component. Jousmäki offered a unique set of skills and

tools that enhance or complement existing commercial solutions

with practical mapping applications both in clinical research

and in practice. Similarly, Anastasopoulou et al. presented

an innovative system that derived kinematic profiles of oro-

facial movements during speech, with multiple potential cross-

disciplinary applications. Clarke et al. presented a practical

approach to addressing noise in data via pre-processing

and demonstrated it with infant MEG data. Lastly, Mylonas

et al. presented a multimodal, non-invasive neurophysiological

approach for sleep spindle source localization and discussed its

potential clinical applications.

Since its early clinical studies, MEG has provided a non-

invasive tool with almost unparalleled temporal and spatial

resolutions for various clinical and investigative situations. It

has not yet settled in the clinical mainstream, mainly due to

the lack of awareness about its indications and potential among

practicing physicians, along with its suboptimal representation

in the clinical training curricula. This is in addition to the known

practical challenges in clinical settings, with their complex and

expensive technical prerequisites and environments that are

hardly ideal for investigating the true breadth of potential

clinical applications. Furthermore, practical implementation of

theoretical advances in the software and hardware solutions
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could potentially replace current, more invasive clinical

approaches—for instance, by accurately assessing deep sources

and subcortical structures.We believe this journal issue provides

a stepping-stone in the right direction to future scientific

discoveries and new clinical applications.
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Magnetoencephalography (MEG) is a neurophysiologic test that offers a functional

localization of epileptic sources in patients considered for epilepsy surgery. The

understanding of clinical MEG concepts, and the interpretation of these clinical studies,

are very involving processes that demand both clinical and procedural expertise. One

of the major obstacles in acquiring necessary proficiency is the scarcity of fundamental

clinical literature. To fill this knowledge gap, this review aims to explain the basic practical

concepts of clinical MEG relevant to epilepsy with an emphasis on single equivalent

dipole (sECD), which is one the most clinically validated and ubiquitously used source

localization method, and illustrate and explain the regional topology and source dynamics

relevant for clinical interpretation of MEG-EEG.

Keywords: magnetoencephalography, magnetic source imaging, equivalent current dipole, epilepsy, epilepsy

surgery

INTRODUCTION

Epilepsy surgery continues to not only be a necessity, but the most effective option for many
patients with drug resistant epilepsy (DRE) (1). The availability of these procedures has grown,
as reflected by the expansion of National Association of Epilepsy Centers (NAEC) accredited
epilepsy centers from 133 centers in 2011 (2) to 261 centers in 2021 (NAEC Webinar, April
6th, 2021). The cohort of patients who presented for presurgical evaluation has also changed,
with increased representation of extratemporal epilepsy surgery (3). Extratemporal epilepsy, in
comparison with temporal lobe epilepsy, has been associated with worse outcomes (1) and
requires additional specific investigations. Magnetoencephalography (MEG) is one of these
neurophysiologic assessments (4, 5).

MEG is a non-invasive recording of cerebral activity as reflected outside of the skull in
the form of magnetic fields generated by neuronal electrical currents (6). In comparison to
electroencephalography (EEG), MEG is more sensitive to tangential sources from sulci and cortical
planes. As the cortical surface consists of many gyrations and fissures, simulated computation
analysis suggests that MEG can record 95% of cortical activity, significantly more than EEG which
is more attuned to radial sources (7). Source localization by MEG is followed by co-registration
with brain MRI, which provides anatomical correlation (magnetic source imaging; MSI) (8). MEG
data has been proven to show correlation with electrocorticography in specific cases (9). In a study
of 69 patients with suspected neocortical epilepsy, MEG provided non-redundant information in
33% of the patients and benefited 21% of patients who received surgery (10). Post-operative seizure
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freedom at 12-month has been associated with both complete
intracranial sampling (62 vs. 25% seizure freedom) and complete
resection (88 vs. 52% seizure freedom; complete defined by ≥

70% dipole removal) of MEG clusters (11).
However, despite the considerable growth of surgical epilepsy

centers and increased representation of extratemporal epilepsy,
the availability of MEG remains relatively scarce. There are
only 22 American Clinical Magnetoencephalography Society
(ACMEGS) affiliated centers in the United States, representing
less than 17% of the total NAEC accredited epilepsy centers (12).
This is likely an outcome of multiple institutional (e.g., practice
setting, economic priorities, strength of epilepsy program, patient
profile, available personnel) and systemic (e.g., regulatory issues,
insurers landscape) factors that are incompletely understood but
are strongly influenced by the deeply habituated patterns of
clinical practice (12). Given limited availability, the experience in
MEG analysis and interpretation has been relatively constrained
to the selected institutions with pre-existing technology and
experienced personnel. The initial steps toward learning clinical
magnetoencephalography can prove difficult even for clinical
neurophysiologists and epileptologists outside of clinically
productive MEG centers. This barrier is, in part, due to the lack
of appropriate basic clinical literature. We view that an accessible
review on practical fundamentals of clinical MEG localization
and interpretation in epilepsy is much needed to narrow this
knowledge gap.

This narrative review aims to explain the basic practical
concepts of clinical MEG relevant to epilepsy with an emphasis
on single equivalent dipole (sECD), which is one the most
clinically validated and ubiquitously used source localization
method, and illustrate the regional topology and source dynamics
relevant for clinical interpretation of MEG-EEG (13). The
information presented is gathered through an extensive review of
available literature, supplemented by clinical examples provided
by the authors, and supported by clinical experience from authors
with long-term experience in the clinical MEG field. The article
strives to make MEG localization and interpretation in epilepsy
more understandable so that readers can recognize its utilities
and limitations, facilitate the learning of clinical MEG, and raise
awareness of clinical MEG’s relevance to epilepsy surgery.

BASIC CONCEPTS OF CLINICAL MEG

Basic Concepts of Source Localization and
Methodologies
Neuronal activity consists of an intracellular “primary current,”
whose circuit is completed by an induced extracellular “volume
current.” The extracellular volume current creates scalp
potentials that can be recorded by electroencephalography
(EEG). The primary current and volume current simultaneously
produce a magnetic field that can be recorded by MEG. For
a given primary current, the calculation of corresponding
scalp potential and the external magnetic field is termed a
“forward problem.” In contrast, the “inverse problem” is
the modeling of the implied primary current and its source
location from the recorded MEG or EEG. The goal of clinical

MEG in epilepsy is predominantly aimed toward solving this
inverse problem.

MEG is recorded by relatively large coils in a variety
of configurations (magnetometers, axial gradiometers, or
planar gradiometers) in sensor space that are coupled with
superconducting quantum interference devices (SQUIDs) to
detect the magnetic field. Most MEG software will automatically
and implicitly handle the integration of magnetic fields passing
through these coils. The primary requirement for the sensor
model is the accurate registration of the patient’s scalp to the
MEG helmet (14).

Solving the forward problem adequately requires adequate
knowledge of the patient’s head geometry. In epilepsy, a patient’s
recent MRI acquired with an epilepsy protocol that includes
a sequence showing detailed cerebral anatomy (e.g., SPGR,
BRAVO,MPRAGE,MULTI-ECHO) with 1mm thickness or less,
skin to skin, is used as the basis for the head model. Assumptions
about the head model is where MEG and EEG have their greatest
differences. Since external magnetic fields are less affected by
tissue conductivity, a MEG head model represented as a single
compartment sphere fitted to the inner skull surface, or as a
tessellation of just the inner skull surface is generally adequate
(15). A more sophisticated head model would first tessellate the
inner skull, outer skull, and scalp as mesh of interconnected
triangles, which has a much more realistic appearance than
simple spheres. Solving, however, the electromagnetic fields
on these triangles requires a more complicated mathematical
approach and software, known as the Boundary Element Method
(BEM). A study ofMEG in epilepsy found no differences between
three spherical shells and BEM models for single focal source
localization (16). EEG, in contrast, is critically sensitive to the
parameters of a multi-centric sphere or to the tessellation of the
skull and scalp boundaries, requiring an accurate specification of
skull and scalp thickness, and the conductivity values of the brain,
skull, and scalp (17, 18).

This paper will primarily address source modeling of MEG
data, while considering scalp EEG data and its temporal
dynamics when it assists in the interpretation of MEG
results. An example of the basics of data acquisition and
minimum practice standards can be found in the ACMEGS’s
clinical practice guideline (5). Having described the head
and sensor models that are registered to the patient, we
next discuss the generation and interpretation of the primary
neuronal current.

Conceptual and Practical Aspects of
Equivalent Current Dipole (ECD) Modeling
MEG is a non-invasive measure of neural activity, and it is
widely-assumed that this activity arises from the columnar
organization of cortical gray matter. Because of the inherent
distance from outside the scalp to the cortex, these models are of
a macro scale, such that the term “primary current” summarizes
all of the fine micro-scale features of intracellular sources, sinks,
induced currents, and transmembrane currents into a single
conceptual primary current that traverses up and down the
cortical column (19).
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Basic cortical modeling assumptions of an evoked response
suggest that MEG data represent the summed post-synaptic
potentials (PSP) of approximately onemillion pyramidal neurons
(6). For an evoked response, this resultant PSP current represents
approximately 10 µA flowing along an effective cortical depth of
2mm. Accordingly, the primary current is modeled as a “current
dipole” of 20 µA/mm, which is equivalently and more generally
expressed as 20 nano-ampere-meters (nAm). In contrast, an
epileptic spike is 5–25 times stronger, about 100 to 500 nAm,
which would require a larger number of pyramidal cells. The
constant value of maximum dipole moment density across
mammalian species ranges from 1 to 2 nAm/mm2 (referred to
here as Okada’s Constant of 1 nAm/mm2) (20); therefore, we can
reasonably infer that MEG measures the activity of a relatively
large “patch” of cortex.

Using this physiologic interpretation of the primary current,
we can propose that the equivalent current dipole (ECD) is a
simple, but plausible model for it. The ECD model represents
both a source location and orientation, the latter expressing the
direction of current flow (Figure 1A). In particular, the single
equivalent current dipole (sECD) models the data as if it is
arising from a single spot on the cortex. Six parameters define the
sECD: 1) x, y, z of location, 2) azimuth and elevation orientation,
and 3) dipolar strength. ACMEGS clinical practice guideline
(CPG) advised that clinically relevant dipoles should have current
strength between 50 and 500 nAm (21). Additional general
approach to determine whether this model is indeed appropriate
for measured data will be discussed later in this review.

Selection of Discharges and Model
Worthiness
The selection of MEG discharges for modeling is a multi-
faceted approach, involving three fundamental components: 1)
waveform morphology, 2) corresponding magnetic field, and 3)
anatomical localization. One approach is to first determine that a
waveform is epileptiform, i.e., spike like, followed by confirming
that its field is appropriately dipolar, and finally ensuring that
the dipole solution is localized near an appropriately oriented
cortex (Figure 2). However, these three concepts have many
finer points, which will be covered in this section. The criteria
for general acceptance of individual dipoles, commonly termed
“fitting,” will be discussed in a separate segment.

By standard consensus, typical waveform morphologies that
favor ECDmodeling are those that fit the definition of traditional
spikes and sharp waves (21). It has been found that MEG
spikes have a tendency to have a shorter duration and sharper
morphology than simultaneously recorded EEG waveforms
(22). MEG spikes had a duration in range of 27–120ms
when correlated with simultaneous intracranial recording (23).
However, in the same way that focal slowing in EEG may reflect
underlying epileptic activity (24), MEG signals are subjected
to noise which can decrease visibility of epileptic waveform
and its magnetic isofield contour map. For waveforms that are
potentially epileptiform but not suitable for individual modeling
due to small peak magnitude, signal averaging is a method that
increases the signal to noise ratio (SNR) resulting in increased

visibility (21, 25) (Figure 3). Although methods can differ across
laboratories, the authors average only waveforms with similar
magnetic isofield locations and morphology, and similar electro-
magnetic field patterns. This prevents dipole mislocalization if
multiple sources are present, and avoids signal cancellation that
can occur especially with intra-sulcal sources. The disadvantage
of averaging is that it can be complex, and require experience.

An important practice to follow in averaging is consistency
of waveform selection. In order to increase the SNR of a spike
type accurately, selection of the averaging trigger point must be
constant, such as the waveform’s peak or a given point on its
rising phase. The number of waveforms required for optimal
averaging is patient dependent. A study in one patient, which
included analysis of MEG averaging, showed that signal-to-noise
of epileptic activity does not increase in the same way as an
evoked response, but still exhibited a significant increase with
averaging, and noise bias was resolved after averaging of 10
spikes (26).

After a waveform is selected, its field patternmust be evaluated
prior to modeling. Important points to consider are the number
of polarities, distance between extremas, and the spatio-temporal
progression. A single focal source best suited for sECD modeling
should produce one distinct dipolar field (Figure 1B). If a source
shows multiple polarities, one can attempt to identify an early or
dominant magnetic field that is consistently present, or consider
other methods such as multiple ECDs or extended source
modeling methods. It must be noted that basal sources close to
the edge of sensor array can be less conspicuous. Extremas in
close proximity would also suggest that the source is close to
the sensors.

Spatio-temporal progression of a magnetic field during a
waveform’s rise to peak must also be evaluated (21). A stable
source would exhibit a near-constant field pattern throughout
its time course from rise to peak, typically with increasing
field strength. The modeling of these sources at the peak is
comparatively reliable, and signal peaks are often selected by
some practitioners for ease of averaging. However, there are some
signals that exhibit rotation and progression from rise to peak,
which suggests a propagating pattern (Figure 4).

Finally, localization is one of the critical elements of a dipole’s
“model worthiness” (21). Recent observations have concluded
that dipoles localized to peri-Sylvian, supramarginal, and peri-
Rolandic regions frequently represent benign MEG variants
(27). Epileptic semiology, imaging data, corresponding EEG
findings, and overall MEG localization need to be considered
for the interpretation of dipoles localized to these regions.
Clinical interpretation though integration of multiple data can be
complex, and is further detailed in the latter part of this review.

General Approach to Acceptance and
Interpretation of Individual Dipoles
MEG software programs can always “fit” dipoles to the data
at any particular time; however, the fit will generally be poor
or unacceptable by statistical standards. The universal three
questions asked of any fitting routine for a given source model
are: 1) is the model in error, 2) are the parameters significant,
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FIGURE 1 | (A) From the measured magnetic field, an equivalent current dipole model can solve the inverse problem and provide a representation of primary current

as shown here. The cortical source is represented by rounded dipole (a.k.a. “head”) whereas the direction of primary current flow (green arrow) is represented by the

dipole orientation (a.k.a. “vector” or “tail”). (B) Schematic representation of a dipolar magnetic field pattern produced from a single electrical current source. The

distance between the extremas would also signify the depth of the source in respect to the sensor.

FIGURE 2 | Steps in the analysis of an MEG spike include reviewing: (A) MEG tracing, (B) EEG tracing, (C) MEG signal selection from (D) magnetic isofield map,

(E) dipolar electro-magnetic field pattern where the primary current is represented by an arrow (green), and (F) localization through sECD method yielding a dipole

model (yellow) that is coregistered to MRI.
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FIGURE 3 | Utilization of averaging to increase signal to noise for signal detection and modeling. (A) MEG-EEG recording that showed MEG signals (channel

MEG1442, MEG2612) with a right temporal isofield that lacked an epileptiform morphology and EEG correlate. The averaged MEG signals showed a better

epileptiform morphology and EEG correlate. (B) MEG-EEG recording that showed a small right hemispheric EEG signal with a comparatively less visible MEG

correlate, having a right temporal isofield. Averaged EEG and MEG signals show an improved epileptiform morphology.

FIGURE 4 | Comparison between stable and propagating sources. (A) Stable source with earliest localizing dipole (yellow), sequential dipoles (blue), and dipole at

MEG peak (green), showed similar sublobar localization. (B) Propagating sources showed earliest localizing dipole (yellow) over the left mid-superior temporal gyrus,

but sequential dipoles (blue) and dipole at MEG peak (green) showed propagation to the posterior middle temporal gyrus.

and 3) are the parameters interpretable. The sECD model meets
the third criterion readily, since the sECD represents a relatively
focal patch of cortical activity, which makes it a workhorse

for source modeling in clinical evaluations for epilepsy surgery.
In contrast, models that comprise many overlapping ECDs or
more distributed source models are comparatively lacking in this
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third point, as they can create many alternate interpretations
or possibilities for the clinician. Accordingly, the sECD model
is the most commonly used and comprehensively validated
technique, and gained acceptance as the standard method for
clinical MEG performed for presurgical evaluation of epilepsy by
the ACMEGS (21).

The test for error of a sECD model answers the first
critical question. Crucial to this test is to establish the normal
“noise” or “baseline” of the data. The methods of baseline noise
measurement can differ across laboratories. In our laboratories,
the noise calculation is achieved using the variance and cross-
covariance of each channel of data during a baseline period
before the spike. The residual is then normalized by this baseline
to calculate “goodness of fit” (GOF), which is a test for error
that is accomplished through several means and often reported
as “normalized variance not explained.” The goodness of fit of
greater than 70% is a frequently used parameter of acceptance
(5). An alternative, and probably better measure of error, is the
“chi-square” test which sums the normalized squared error into a
single chi-square statistic (28). If the resultant statistic is too large
relative to the number of channels, also known as the degrees of
freedom, the model is considered in error and rejected.

If the model is not rejected due to error, the second question
is whether or not it is “significant.” Our institutional preference
is to confirm the confidence volume (CV), or volume of error,
of the dipole localization (29). The CV is the region that
encompasses the uncertainty of dipole location due to noise that
was established at baseline. If the SNR is low, either because the
source is weak or deeply located, the noise would dominate the
location estimate resulting in a large CV, which would reject the
model as “not significant.” There can also be unacceptable CV’s
at higher SNR, if the selected region of interest from the sensor
array is too small, or if the sECDmodel is too close to the edge of
the sensor array. Therefore, a small CV indicates that 1) the SNR
of the ECD is adequate, 2) enough sensors were used for source
modeling, and 3) the model was not too close to the edge of the
recording array.

It must again be emphasized that a source model must pass
both the initial test for error (chi-square; GOF), and subsequent
one for significance (CV; SNR). Once accomplished, a sECD can
be interpreted as a model of abnormal epileptic activity. The
sECD models shown in this paper were accepted based upon the
following fit parameters: “reduced chi-square” less than 2 (i.e.,
the chi-square statistic is not greater than twice the number of
channels), GOF ≥ 80% (defined as 100% minus the normalized
variance not explained), CV less than 1,000 mm3, and dipole
strength between 100 and 500 nAm.

Clinical Integration of Dipoles (MSI) and
Conventional EEG
It is accepted that MEG and EEG are complementary, each
providing a different perspective. More importantly, in MEG
performed for epilepsy surgery evaluation, simultaneous MEG
and EEG recordings are recommended as a clinical standard
(21, 30, 31). We would further endorse this to the extent that
simultaneous MEG and EEG recordings are, in fact, required for

MEG performed for epilepsy surgery. The importance of EEG
recording in MSI are to 1) exclude known benign-epileptiform
EEG variants that can present in MEG, 2) evaluate significance of
dipoles localized to regions associated with benign MEG-unique
variants, 3) increase detection of MEG waveforms with low SNR,
4) determine source localization credibility, and 5) distinguish
EEG unique spike types.

It has been shown that benign epileptiform EEG variants such
as sleep transients can be presented in MEG, and simultaneous
EEG recording can prevent these waveforms from being modeled
and erroneous reported as pathologic. Benign MEG-unique
variants were also briefly alluded to during the discussion of
model worthiness and will continued to be discussed in relation
to illustrated anatomical contexts. In summary, this is a term
describing MEG sharps or spikes without epileptiform EEG
correlate that are localized to specific cortical regions, and are
unlikely to have pathologic significance in most patients (27, 30).
However, if these MEG spikes were shown to have epileptiform
EEG correlate, these spikes would be considered pathologic
and their models would be reported. Without concurrent EEG
recording, the interpretation of these MEG dipoles would be
limited. From these standpoints, EEG recording is necessary for
accurate dipole interpretation for epilepsy surgery.

EEG recording also aids the detection of less visible MEG
signals. MEG is attuned to sources localized to deep sulci,
fissures, and cortical planes with tangential fields, but has
less detection capability in sources that are radially oriented.
However, predominant radial sources can still have some smaller
tangential component, and EEG can be utilized as a detection
tool. In this context, the MEG signals from these sources can
be detected through averaging using the EEG as the trigger
(Figure 3B).

The EEG is also used to support an MSI result. There are
two important points to consider for comparative MEG and EEG
analysis, which are 1) MEG-EEG peak latency differences, and 2)
congruent source orientation. The latencies between MEG and
EEG peaks are useful in determining whether MSI is likely to
represent the source or propagation pattern. A MEG peak that
is significantly delayed compared to the EEG peak may suggest
that the MEG peak is potentially a propagated activity. An MEG-
EEG peak latency difference of greater than 10ms is considered
significant in our laboratories. However, it should also be noted
that a study of frontotemporal lobe spikes demonstrated that
the observed propagation of peak activity can be more rapid
in EEG, whereas propagation of the MEG peak had a velocity
similar to the intracranial EEG recording (32). The congruence
of source orientation has to also be considered, and this can be
preliminarily determined from the EEG field map (Figure 5).

MEG and EEG unique discharges can occur across studies
(33, 34). Such EEG waveforms should always be averaged to
assess underlying MEG signals. If no MEG correlate is found,
the presence of these EEG-unique discharges must be noted, as
they can represent different sources. Furthermore, it is clinically
useful and important to confirm that typical epileptiform EEG
discharges of concern were captured during the MEG study.

Comprehensive MEG interpretation must take into
consideration the EEG correlate, particularly if the MEG

Frontiers in Neurology | www.frontiersin.org 6 October 2021 | Volume 12 | Article 72298614

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Laohathai et al. Clinical MEG Interpretation in Epilepsy

FIGURE 5 | Importance of MEG-EEG integrative analysis (red dots: time of MEG peaks; blue dots: time of EEG peaks; green arrow: MEG source localization).

(A) Right temporal MEG spike peak lags that of the EEG (15.9ms). Although the dipoles are congruent, the earlier EEG spike with an anterior field pattern raises the

possibility of a preceding anterior source. (B) Left temporal MEG spike without a significant MEG-EEG peak latency difference. Although this patient’s 22-channel

scalp EEG tracing showed bifrontal maximal negativity, this EEG field pattern can be explained by both the MEG and EEG dipole sources.

peaks are significantly delayed compared to EEG, if the MEG
and EEG field patterns are discordant, and when there are EEG-
unique sources without an MEG correlate even after averaging.
Under these conditions, the source representation through MSI
would be incomplete, and EEG source imaging (ESI) would be
beneficial (30). Although the current version of the ACEMGS
clinical practice guideline (21) does not indicate an inclusion of
ESI with MSI as a standard procedure, this may change in the
next iteration (35).

Reflection on Integrated Use of MSI and
ESI
ESI is a source localization technique using the EEG signal,
which adds an additional dimension to results obtained from
MSI. Specifically, it provides confirmation of MEG source
configuration, adds the source’s radial component, assists in
evaluation of sources where the EEG significantly precedes
MEG and where MEG may represent a propagated activity, and
localizes EEG-unique radial sources. Some physiologic limiting
factors exist with ESI, since an EEG spike require a larger
cortical activation area (36), and the localization results are
typically deeper than MEG (30). ESI also requires an increased
number of electrodes than that typically used to increase
source localization accuracy, such as at least 32 channels (37).
From forward modeling using a human skull phantom and

comparing 122 channel MEG to 64 channel EEG recording,
the averaged localization error from EEG (BEM: 7.63mm;
spherical 8mm) is greater than MEG (BEM 3.4mm; spherical
4.14mm) (38).

Despite some localizing limitations, there is utility to ESI given
that it complements MSI, and EEG data is readily available.
However, implementation of ESI is limited by the complexity of
its volume conductor model (36, 39). In contrast to a magnetic
field, electrical activity traversing from the cortex to the skull
passes through spaces with different conductivity values. Because
of this, a conductor model for ESI is more complicated, and
typically includes at least 3 layers comprising of brain, skull,
and skin. There are models with even a greater number of
compartments, and localization depends on conductivity values
and ratios (17, 18).

The strengths and weaknesses of ESI in clinical practice
has been reviewed (36, 39). Aside from certain conditions that
were described here, the authors have noted the ability of ESI
to assist localization of temporal and basal sources, whereas
it has limitations in frontal lobe epilepsy. These two reviews
supplement the original article on the combination of MEG and
EEG source modeling (30). It must be emphasized that the added
benefit of ESI should always be considered in patients possessing
EEG spikes that precede MEG spikes and EEG-unique spike
types. However, as there is no current national or international
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practice guideline for ESI (35), its usage remains complementary
to MSI (5) and conventional EEG analysis.

Dipole Clusters: Definition, Types, Clinical
Interpretation, and Significance
A “cluster” is a frequently used term in sECD modeling to
describe a pattern of distribution or grouping of individual
spike dipoles that are localized closely together within a volume.
Although this is a commonly used term in clinical MEG, it
currently does not have a standard definition. There are two
variables that would define a cluster, first is the number of
dipoles, and second is the volume which it occupies. Different
author groups have proposed and used varying numbers, but
the number of at least five dipoles used in some publications
(11, 40) is probably conservative and falls in line with the
ACMEGS recommendation that a minimum number of 5 model
worthy MEG epileptiform discharges should be present in
a study to be clinically sufficient for interpretation (5). The
volume of involvement also differs in the literature, as different
criteria reflecting either anatomical regions (11) or mathematical
measurements (41) have been used. Since there is no standard
definition, epileptologists typically refer to dipoles that are
localized closely together as “a cluster,” and those that are more
loosely dispersed as “a scatter” or simply scattered. It is likely that
this definition gap will be closed in the future as the work on
harmonizing clinical MEG practice internationally is advancing
(35) (Figure 6).

Dipole clusters can provide insight into the nature of
underlying pathology, and guide subsequent surgical planning.
Three factors that should be considered when approaching dipole
clusters are 1) the number of clusters and their distribution, 2)
density of dipoles within a given cluster and their orientation
uniformity, and 3) presence of a radiologic correlation. Patients
with a single dipole cluster (42–45) and those whose dipoles are
confined to the same lobe (46) have been found to have more
favorable post-operative outcomes. This is additionally supported
by the finding that a monofocal cluster is more likely to overlap
with the ictal onset zone, while multifocal clusters may reflect
a widespread epileptic network (42). Lower dipole density may
suggest a regional hypothesis, as evidenced by the finding that the
cluster in Type 1 focal cortical dysplasia, commonly associated
with lobar atrophy (47, 48), are looser or scattered in comparison
to Type 2 and 3 (40), and those with dense clusters have better
post-operative seizure freedom outcome (49). Dysplastic tissues
are associated with less spike-variance (50), and inconsistent
dipole orientations can signify underlying widespread epileptic
network (51). These understandings are further substantiated
by the recent study which associated monofocal clusters and
dense dipole clusters with uniform orientation with a better
operative outcome (11). A very recent study in MRI-negative
pediatric patients, using inter-dipole distance of 15mm to define
“clusterness,” also showed that dipoles that clustered were closer
to seizure onset zone (16.2mm) than those that were scattered
(30.4mm) (52).

Radiologic correlation is also an important factor in the
integration of dipole clusters. The presence of a contributory

lesion close to a MEG cluster would supports its epileptogenicity
(53). The role of MEG also extends to the identification of a
probable contributory lesion in MRIs with multiple lesions, or
in lesions of indeterminate significance (54). In MRI-negative
epilepsy, the presence of an MEG cluster should prompt a
radiologic review, especially since MRI abnormalities may not
be readily appreciated from initial interpretations (55–57). It
should be noted that an MEG can identify epileptogenic lesions
that remained unidentified under conventional three Tesla MRI
(57, 58). The size of the dipole cluster compared to the size of the
imaged lesion is also variable. In a study of focal cortical dysplasia
with 1.5T MRI that used a correlation coefficient of greater than
98% and a CV limit of 5 cm3 as an acceptance parameter, more
than half of the dipole clusters were larger than the lesion (n =

11/21); 33% were similar to the lesion (n = 7/21); and 14% were
smaller than the lesion (n = 3/21) (41). A non-Type 2 cortical
dysplasia was also more likely to have a cluster larger than the
MRI lesion as compared to Type 2 (70 vs. 36%) (41).

Aside from the fact that underlying pathology affects the
size of a dipole cluster, evidence also exists that modeling
parameters can also affect dipole density. SNR has an inverse
relationship with CV (59), and it has been shown that a
cluster would become more dispersed with incremental noise
introduction (60). As such, localization of dipoles with large CV
or modeling sources with low SNR can result in loose clusters
or scattered dipoles. Clinical MEG practitioners must be aware
of these issues and their potentially misleading effect on the
incorporation of the MEG results in an implantation scheme and
resection plan.

The finding of a monofocal and dense MEG dipole
cluster with uniform orientation and a corresponding MRI
lesion would nicely satisfy a restricted focal hypothesis.
In practice, supplemental electrocorticography may still
be required to establish the full extent of the irritative
zone (61). The presence of scattered dipoles, multifocal
clusters, or loose clusters with variable dipole orientation
and the absence of a corresponding lesion, are all factors
that support a regional or network hypothesis. This is
especially when these loose clusters or scattered dipoles
are observed under fit parameters that utilized small CV
limits or higher SNR values. However, even in these cases
MEG remains useful as it can provide an approximate
anatomical location of the involved regions from which
epileptologists can formulate an epileptic network prior to
invasive recording.

ECD Modeling of Ictal Onset
Ictal events can occur during MEG studies, and a recent
review reported seizures during MEG in 7–24% of patients
(62). Ictal MEG provides useful source information at the
time of seizure onset, in addition to that of interictal spikes.
However, in addition to the modeling challenges and necessary
cautions, limitations on ictal data interpretation can occur
if the signal is of low amplitude or there is excessive
myogenic artifact.

Currently, there is no consensus on how to model the MEG
of ictal onset. We have identified 14 articles on ictal MEG to
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FIGURE 6 | MEG-MRI coregistration summary demonstrating varied cluster patterns. (A) Monofocal tight cluster with uniform vector orientation localized to the left

pre-central region, with dipoles posteriorly oriented. (B) Monofocal loose cluster with variable vector orientation localized to the right dorsolateral frontal region, with

additional posterior scattered dipoles. (C) Multifocal and scattered dipoles over the right fontal and left parieto-occipital regions.

compare their approaches, including modeling methods and
localization findings. ECD modeling was used utilized in 8
publications (63–70), distributed source modeling in 4 articles
(68–72), beamformers analysis in 3 studies (69, 72, 73), multiple
signal classification (MUSIC) in 1 report (69), and maximum
entropy of mean (MEM) in 1 study (74). Some authors usedmore
than one modeling method (68, 69, 72). In one report the source
localization method could not be determined (75). From these
data, we found that ECD modeling is still a widely used method
for MEG ictal onset localization.

Despite this, we have also found that ECD modeling
methodologies also differ among the groups. There appear to
be two basic approaches: 1) modeling individual early ictal
waveforms (5 groups) (63–67), and 2) modeling averaged early
discharges (2 groups) (68, 70). Modeling methods also varied
between single dipole fit, sequential dipole fit, or multiple dipoles
fitting. One study that utilized ECD modeling did not detail
its procedure (69). Although ECD modeling techniques showed
differences across the publications, the resultant outcome of
all appears to be favorable. One older study advocated that an
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FIGURE 7 | (A) Ictal MEG-EEG recording of a patient showing MEG onset at the left occipital channels (MEG1922; MEG1942; MEG1933; MEG1733) with

corresponding left parieto-occipital EEG changes. Single ECD analysis of (B) sentinel MEG sharp wave and (C) averaged MEG rhythmic activity showed consistent

localization at the left inferior occipital lobe. (D) Ictal MEG of a patient with broad left hemispheric encephalomalacia who lacked interictal MEG and EEG discharges,

with ictal EEG onset showed oscillating activity over the left mid-parasagittal region and MEG channels showing a corresponding sustained faster frequency

(MEG0712). (E) Early oscillating signals during the initial 120ms were averaged showing a dipolar field suitable for modeling, which was localized to the left frontal

region and used to guide electrocorticography.

ictal MEG as at least equivalent to invasive EEG in 5 out of 6
patients (64).

In our practice, we have adopted both the modeling of
individual and averaged early ictal waveforms (Figures 7A–C).
The isofield of the sentinel waveform is analyzed to determine
its stability prior to modeling. In cases with multiple repetitive
spiking, the source of each would be analyzed individually
and chronologically. However, the modeling of sentinel spikes
does have limitations, since ictal onset pattern may be low
signal-to-noise fast activity, while later more visible ictal spikes
are in fact propagated activities (21). Despite its high spatial
resolution, sECD localization of the ictal origin depends on
modeling of the earliest recognizable ictal MEG activity and
not subsequent propagated activity (76). This is a factor to
consider always when modeling ictal discharges, especially those
from sources in the interhemispheric fissures that are prone to
fast contralateral propagation. These propagated signals may be
more visible which can result in false lateralization. Averaging
of early ictal waveforms or oscillations can be a useful method
for modeling of seizure onset, as it increases SNR and reduces
dipole variance (Figures 7D,E). Bandpass filtering of 3–15Hz for

temporal seizures and 3–25Hz for extratemporal seizures can
be used to improve MEG and EEG ictal data with excessive
noise or artifacts that significantly impair signal selection and
source analysis.

Sometimes seizures cannot be analyzed by an ECD. In a study
of 44 patients with ictal MEG, sECD modeling was successful
in at least one seizure in 66% of the patients, but there were
other seizures that could not be modeled in this way and
required extended source models (63). This group suggested
that a resection area guided by MNE has a stronger correlation
with seizure freedom, and they advocated using extended-source
localization as a primary method of ictal MEG analysis. In
contrast, another study that implemented multiple methods
[sECD, sLORETA,MUSIC, and SAM(g2)] reported no difference
between localizations using sECD and extended source models
(69). We view that magnetoencephalographers should also learn
to use extended source modeling techniques, especially since
ECD modeling of ictal onset may be unsuccessful or the result
questionable. When in doubt, a magnetoencephalogrpher should
compare the ECD model of ictal onset with the result obtained
from another modeling method.
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CLINICAL INTERPRETATION OF DIPOLES
BASED ON ANATOMICAL LOCATION

Temporal Lobe Dipoles
The temporal lobe is a complex anatomical structure, with
many surfaces and varied propagation patterns. Classification
of temporal dipoles into those of anterior and posterior
regions have been suggested (77). These can be further sub-
classified into three groups: anterior temporal horizontal (ATH),
anterior temporal vertical (ATV), and posterior temporal vertical
(PTV), that correlate with temporal tip, anterior superior, and
posterior superior temporal planes sources, respectively (77).
The orientation of these dipoles are in reference to the cortical
anatomy. The ATH and ATV dipoles are associated with anterior
temporal sources (mesial, entorhinal, temporal tip), and some
ATV can represent a later ATH propagation activity. The PTV
dipoles are more commonly associated with lateral neocortical
surface, superior temporal plane, temporal base, and structural
lesions, but invasive recordings have shown that seizure onsets
associated with PTV dipoles can also be unlocalized or mesial
in origin. This anterior and posterior classification was later
reaffirmed (78).

It was hypothesized that the source origins of ATH and
ATV dipoles should lie within the resection boundary of
standard temporal lobectomy (77). Surgical outcomes through
this approach was later investigated in patients diagnosed with
temporal lobe epilepsy (79). Using the central sulcus as the
landmark, the patients were classified as anterior temporal group
if there were greater than 70% of dipoles localized to the
temporal lobe anterior to the central sulcus. In the absence
of neocortical lesion, standard anterior temporal lobectomy in
anterior temporal MEG group was associated with good outcome
(100% Engel 1; n= 5/5). In contrast, the outcome in non-anterior
MEG group were variable (67% Engel 1; n= 4/6), and presence of
extratemporal dipoles were noted in some of these patients who
continued to have seizures.

A study in patients with established mesial temporal lobe
epilepsy found that the patient’s MEG dipoles were localized
to the anterior temporal region, without posterior or extra-
temporal localization (80). Another study in mesial temporal
lobe epilepsy also reported that the dipoles were localized to
the anterior temporal lobe, with the majority of the dipoles
being horizontal or mixed (81). This study also noted that
non-concordant localizations were found with predominantly
vertical dipoles suggesting propagated activity, but the presence
of posterior temporal dipoles was not mentioned. Presence
of temporoparietal MEG propagation in mesial temporal
epilepsy has also been associated with continued seizures
after epilepsy surgery (82). The initial separation of the
temporal MEG dipoles into anterior and posterior divisions
is a practical approach with surgical relevance, and the
presence of predominantly anterior temporal dipoles is more
convincingly suggestive of anterior or mesial temporal sources
(Figure 8).

Posterior temporal dipoles are comparatively more variable
and can be divided into three categories: 1) benign MEG-
unique variant, 2) pathologic and lesional, and 3) pathologic

but non-lesional. Benign MEG-unique variants can be observed
in the posterior temporal region over the peri-Sylvian area,
and dipoles localized here are typically benign especially if
they are bilateral or have 180 degree opposing orientations
(27). Suggestive features of epileptogenicity, aside from EEG
correlation, may include unilaterality, uniform orientation, and
clinical suspicion. For pathologic PTV dipoles, the presence
of a corresponding lateral temporal lesion would suggests that
these dipoles are likely from a lateral temporal source (78).
However, additional possibilities need to be considered in non-
lesional patients as PTV dipoles have also been observed in
patients with seizures of mesial temporal (77) and operculo-
insular onset (83). Similarly, we have also observed PTV
dipoles that are unlikely to originate from lateral temporal
lobe in our practice (Figure 9). Subdural EEG recordings in
some patients with temporal epilepsy and PTV dipoles also
reported widespread seizure onset involving both medial and
lateral temporal contacts (78). Clinical context and experience is
therefore needed to interpret dipoles localized to the posterior
temporal region.

Frontal Lobe Dipoles
The frontal lobe is the most frequent location for MEG spikes
in extratemporal epilepsies (84, 85), and for this lobe MEG
has shown a better yield as a localizing test than EEG (86).
Using easily identifiable anatomical fissure boundaries (Sylvian,
interhemispheric, and Rolandic fissures), the frontal lobe
can be separated into four anatomical surfaces: orbitofrontal
(inferior), lateral, medial interhemispheric, and posterior
peri-Rolandic (posterior) surfaces. The interhemispheric
and peri-Rolandic sources of frontal origins will discussed
in the later segment, but dipoles from these sources would
typically exhibit orientation toward the frontal lobe (87, 88)
(Figures 10, 11A).

Orbitofrontal epilepsy can have variable electrographic and
clinical findings, and the literature has demonstrated cases
where MEG is a useful localizing tool (86, 89) even when
other ancillary studies were negative (90). The data on MEG
dipoles from this source is limited, but it is observed that MEG
dipoles from this region are typically of basal frontal origin
with upward tail orientation. Lateral orbitofrontal dipoles are
oriented more medially and medial orbitofrontal dipoles more
laterally. However, dipoles localized to the lateral orbitofrontal
region should also raise the possibility of anteriormesial temporal
sources, given its close proximity and common situations where
mesial temporal discharges to propagate to the orbitofrontal
cortex (91).

The lateral frontal surface comprises of the majority of the
frontal cortical area, andMEG dipoles localizations to this region
are variable. The interpretation of MEG dipoles in this location
relies on cluster topology. A single, dense, and uniform cluster is
exceedingly helpful in defining a focal area of interest in such a
large anatomical region (11).

MEG has been shown to improve surgical outcome in frontal
lobe epilepsies (44). Case series has shown that 90% of MEG
dipoles in frontal lobe epilepsy are localized to within 3 cm of the
lesion, but data also suggest that underlying pathology may play
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FIGURE 8 | MEG-MRI coregistration summary in two patients with temporal dipoles. (A) Frequent anterior temporal dipoles were suggestive of anterior temporal

source. Imaging review revealed temporal tip encephalocele. (B) Temporal dipoles broadly distributed over anterior and posterior temporal region provides

comparatively limited suggestion of seizure onset in the absence of a lateral temporal lesion.

a role in the proximity of dipole to lesion (43). However, it must
be emphasized that frontal MEG findings can be influenced by
the depth of the interhemispheric sources (92), rapid propagation
time (93), and the mesial temporal-orbitofrontal connection
(91). Consideration of potential propagated activity should be
always be factored in the interpretation of MEG results in non-
lesional patients.

Posterior Cortex (Parietal and Occipital
Lobes) Dipoles
MEG is also useful in the localization of posterior
cortex epilepsies (4, 94), including those patients with
electro-radiographic discordance (95) or false-lateralizing
EEG findings (96). Posterior cortex sources are less common,
and represent only approximately five percent of MEG findings
in patients with refractory epilepsies in a large study (85),
which limits the available literature. A case series of MEG
in posterior cortex epilepsies, using linearly constrained
minimum variance (LCMV) and MUSIC algorithms, showed
accurate detection of irritative and epileptogenic zones with
MEG (97). Negative results tended to be from medial and
basal sources, which is similar to a study that reported
less MEG sensitivity in other anterior basal regions (98).

Localization of these basal sources were still feasible in
some patients.

Careful consideration is required in the analysis of posterior
cortex discharges, given that somatosensory, posterior peri-
Sylvian, supramarginal (27) and medial occipital (30, 99) cortices
are sites of common benign MEG variants. Interpretation of
MEG-unique dipoles localized to these regions would require
additional ancillary features to determine their significance, and
an EEG correlate spike is an important distinguishing feature.
Similar to posterior temporal dipoles, bilateral localization, 180
degree opposing orientations, and absence of an EEG correlate
are features that would suggest that these discharges are probably
benign (27). Clinical context will be required to determine their
significance (Figure 12).

Posterior cortex epilepsies have increased representation in
pediatric population in the form of benign occipital epilepsy.
Although typically self-limited, there are case reports of patients
who continued to have intractable epilepsy (100). Given that
MEG is typically performed as a part of pre-surgical evaluation,
recognizing MEG features of benign focal epileptic syndrome
in contrast to a potentially resective etiology is important in
pediatric patients. Benign occipital epilepsy of childhood (101),
like benign Rolandic epilepsy (87), has sulcal localizations.
The dipoles are frequently observed in the parietooccipital
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FIGURE 9 | Example of posterior temporal vertical dipoles that represent propagated activity. This MEG was performed in a patient with prior subdural recording

which indicated a left frontal onset, but continued to have seizure after resection. The MEG study contained both (A) independent focal left posterior temporal

discharges that formed a tight and uniform cluster and (B) bilateral posterior temporal discharges that were rapidly synchronous (upper middle diagram at

302925.4ms; initial peak defined as 0ms; left-right peak difference < 10ms). Data from prior subdural recording and the presence of bilateral synchronous

discharges suggest alternate source of origin for this MEG cluster. The MEG current (arrow plot) suggested an underlying left frontotemporal current that cannot be

modeled. These findings were described to the referring epileptologist.

and calcarine sulcus, and occasionally in the central sulcus.
The variable sulcal locations of MEG dipoles, especially the
involvement of the central sulcus, can be an important
distinguishing feature of benign epileptic syndromes. However,
the study also demonstrated that the dipoles in benign occipital
epilepsy can show significant clustering with uniform vectors

(a.k.a. dipole orientation), and can be unilateral in some patients
(101). This conceivably would lead to its possible presentation as
a monofocal sulcal cluster, similar to those commonly associated
with lesional, bottom of the sulcus, focal cortical dysplasia (41).
This finding should prompt an imaging review, and possibly
usage of higher resolution MRI, as such dysplasia can be missed
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FIGURE 10 | Illustrations representing typical dipoles (blue) in correlation to frontal spike sources (electric symbol). (A) Peri-Rolandic frontal sources exhibit dipoles

with anterior vector orientation. (B) Left medial frontal source exhibit lateral vector orientation to the left. (C) Fronto-opercular source exhibit upward vector orientation.

(D) Orbitofrontal sources exhibit superior vector orientation similar to fronto-opercular source, but somewhat more oblique. Dipole tails of lateral orbitofrontal sources

point more medially and those of medial orbitofrontal sources more laterally. (E) Lateral frontal dipole is shown here with dipole direction oriented toward the source,

but its localization would also be dependent on the dipole cluster topology. This diagram can also be applied to parietal and occipital dipoles.

during initial imaging analysis (56, 57, 102). However, the MRI

can continue to be negative despite repeated reviews (103), and a

surgical recommendation will heavily rely on the epileptologist’s

clinical assessment. Additionally, MEG can also play a role as

a prognostic marker in children with benign occipital epilepsy,

as the presence of MEG dipoles outside of these typical sulcal

regions have been reported in patient with atypical course and
medication resistance (104).

Interhemispheric Fissures and Major Sulci
Dipoles
The study of MEG spikes from benign Rolandic epilepsy showed
localization to the Rolandic, Sylvian, and interhemispheric
fissures and further suggested that the dipoles located in
interhemispheric fissures andmajor sulci had tails that were likely
to orient toward the lobe of seizure onset (87). This hypothesis
was subsequently investigated in patients with lesional epilepsies
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FIGURE 11 | (A) MEG-MRI coregistration summary demonstrating predominantly interhemispheric frontal dipoles. The uniform vector orientation toward the right

suggests a right hemispheric source lateralization. Intracranial recording confirmed the finding, with seizure freedom for 5-years after right frontal resection. (B) This

patient developed late seizure recurrence, with tight and uniform dipole cluster at the resection margin. Note the dipole orientation suggestive of positivity at the

resection surface as a result of disruption of normal cortical laminar organization.

(105), which supported that the dipole of MEG spikes would
consistently orient toward the lobe of seizure onset when located
in the central (100%; 4/4) and sagittal interhemispheric sulci
(100%; n = 4/4). This is a useful lateralizing feature, but with
some reservations, as early MEG activity can be less visible
due to lower SNR when compared to propagated activity, and
medial frontal sources are known to have rapid contralateral
propagation (93), hence modeling of interhemispheric MEG
spike peaks may at times represent contralateral propagated
activity. Experienced magnetoencephalographers would always
ensure that the earliest signals were analyzed, and consider
the possibility of contralateral propagated activity if the MEG
lateralization is discordant to clinical semiology and other
ancillary findings. Another important point to also consider
is that a spike can be multiphasic, and the dipole orientation
is dependent on the phase which was modeled. Considering
this factor, it is a practice standard to routinely show examples
MEG spike morphology that were modeled, to model the same
phase consistently, and to describe phase-dependent orientation
variability, if present (Figure 13).

The MEG spikes localized to the Sylvian fissures appeared to
have variable orientation in respect to the lobe of seizure onset.

In a study of Sylvian dipoles which included 8 patients with
temporal lobe epilepsy, it was reported that 73% of the MEG
dipoles were oriented toward the temporal lobe while 27% were
oriented toward to the frontal lobe (105). In contrast, a study
of 4 patients with fronto-parietal opercular epilepsy showed that
the dipoles were orientated toward the lobe of seizure onset
(88). Although these data would suggest that fronto-parietal
Sylvian sources are associated with MEG dipoles that are more
consistently oriented toward the lobe of origin when compared
to temporal sources, the limited number of studied patients and
possible orientation variability necessitate that clinical context
must be considered in the interpretation of Sylvian dipoles.
Furthermore, as previously stated, the posterior peri-Sylvian
region is a common location of common benign MEG-unique
variants, adding to interpretation complexity (Figure 14).

Insular/Peri-Insular Dipoles
In clinical practice, MEG has shown utility as a localizing tool in
insular epilepsies even in the absence of interictal EEG findings
or identifiable structural lesions (83, 106), despite theoretical
modeling studies that otherwise suggested an insufficient
MEG SNR over this region (107). This importance cannot
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FIGURE 12 | MEG-MRI coregistration summary demonstrating dipoles in a patient with extensive right hemispheric cortical malformation. (A) A cluster of likely

pathologic right temporal dipoles (yellow) was identified. (B) Bilateral parietal dipoles (blue) were also identified in proximity to somatosensory dipoles (red). These

dipoles near the somatosensory area, and without an EEG correlate, were considered benign and were not included in final surgical plan.

be overstated, since insular epilepsies have variable clinical
presentation and non-specific EEG findings (108). However,
utilization of MEG dipoles localized to the insular region can still
be a challenge, and at times these are omitted from final surgical
resection, given that they can represent propagated activity rather
than seizure onset (109).

MEG spikes, depending on source orientation and signal
strength, can occur without or with an EEG correlate. The
longer history of EEG, and recent recognition of MEG benign
variants, support the belief in clinical practice that MEG spikes
with an EEG correlate (MEG-EEG spikes) are more likely
to be epileptiform. However, due to the lower signal-to-noise
properties of electromagnetic signals localized to the insular
region, it has been found that dipoles of MEG-unique (a.k.a.
“MEG exclusive”) insular discharges can be credibly pathologic
and correctly localizing, in contrast to those with an EEG
correlate that can often represent a remote propagated activity
(110). The analysis of insular MEG sources requires careful
consideration of benign vs. pathologic MEG-unique discharges,
as well as hypotheses of source of origin based on clinical
semiology and known propagation patterns.

It has been shown that anterior insular sources are associated
with anterior operculo-insular MEG dipole clusters with anterior
vector orientation, typically toward the frontal region (111),

and early more anterior source propagation (112). This region
is unlikely to be associated with benign MEG-unique variants
which are more posterior in location. Hence, it can be stated that
the MEG dipoles located in the anterior operculo-insular regions
are more likely pathologic and suggestive of an underlying
anterior insular source.

In contrast, the interpretation of MEG dipoles localized
to the posterior operculo-insular region requires additional
consideration. Although posterior operculo-insular MEG
clusters with a posterior dipole orientation can be associated
with a posterior insular source (111), the increased possibility
of benign MEG variants from this region necessitates a more
cautious interpretation, particularly if these discharges are
MEG-unique. Sometimes evidence of an EEG correlation can
only be found by averaging triggered off MEG spike peaks.
However, pathologic insular MEG dipoles can still lack an
EEG correlate even after averaging (106). Clinical context is
required to determine the significance of such MEG spikes.
Unilaterality and uniform dipole orientation would provide
additional support that these discharges are pathologic. One
should also note that dipoles associated with insular sources can
appear dispersed (111), and posterior insular sources can exhibit
early propagation to comparatively remote posterior parietal
regions (112) (Figure 15).
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FIGURE 13 | Multiphasic MEG signal with phase-dependent orientation. (A) The early peak of lower amplitude was occasionally observed, with dipole oriented

inferiorly, likely represents the initial depolarization of deeper laminae. (B) The later peak of higher amplitude was a more consistently observed, with dipole oriented

superiorly suggestive of frontal operculum localization. Although the area of dipole origin was consistent, the appearance of multiphasic MEG discharges across major

sulci can affect the application of orientation-based localization, given that the orientation is dependent of which phase of the discharge was modeled. EEG can assist

in determining more pertinent depolarization in these circumstances.

FIGURE 14 | MEG-MRI coregistration summary demonstrating supra-Sylvian dipoles in the same patient. (A) The pathologic right mid-supra-Sylvian cluster (yellow) is

tight and uniformed, and correlated with a small right fronto-opercular MRI lesion upon imaging repeated review. (B) Benign left posterior supra-Sylvian cluster (blue) is

loose with fairly uniform orientation. This is a cluster of benign normal variant that has neither EEG correlation nor clinical suggestions, and was not included in the

clinical summary report.

Frontiers in Neurology | www.frontiersin.org 17 October 2021 | Volume 12 | Article 72298625

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Laohathai et al. Clinical MEG Interpretation in Epilepsy

FIGURE 15 | MEG-MRI coregistration summary in a patient with a previous right anterior temporal laser ablation who underwent posterior insular resection.

(A) Pre-operative MEG showed multifocal clusters over the right supramarginal, posterior basal temporal, and anterior temporal regions. The supramarginal cluster in

this patient was pathologic due to presence of an epileptiform correlate. Invasive EEG recording confirmed interictal spiking concordant with MEG. (B) Post-operative

MEG after the posterior insular resection showed disappearance of the supramarginal cluster, but the temporal dipoles remained.

Dipoles in Post-operative Recurrence and
Changed Anatomy
MEG should always be performed in post-operative patients with
seizure recurrence who consider a reoperation (9, 113). As the
MEG signals are not influenced by the skull breech and changed
anatomy, unlike EEG, source localization by MEG is superior.
Improved seizure outcome has been observed in patients who
underwent re-operation when MEG is utilized (114). In this
specific population, it has been reported that more than half of
the patients have at least one dipole cluster at the surgical margin
(115). The presence of these dipoles can indicate a possible ictal
onset zone and is particularly useful in patients with a broad
resection cavity. However, the possibility also exists that dipoles
at resection margins are a result of the resection itself, while the
pathology is elsewhere. This is exemplified by the report of a
patient with early post-operative seizure recurrence, whose MEG
showed both a peri-resectional cluster and another remote cluster
at a distant cortical abnormality (56). Accurate assessment of
the significance of MEG dipoles near a surgical site is reliant on
a variety of factors including prior pathology, character of the
resection, changes in seizure semiology, and the timing of seizure
recurrence. Dipoles located near the resection cavity in patients
with late seizure recurrence are more likely associated with the

ictal origin, whereas additional distant foci must be considered in
early recurrence (116). Nonetheless, it has been shown that more
than half of patients with early seizure recurrence have clinically
relevant spikes modellable by dipoles at the resection margin
(9), and most reoperations are focused at the prior resection
margin (115).

There is also a suggestion that MEG spike dipoles following
extratemporal resections may be more localizing (117). A study
of recurrent epilepsy after frontal and temporal lobectomy
demonstrated that frontal dipoles were more closely localized
to the post-operative margin (117). In post-temporal lobectomy,
although MEG identified activity in remnant mesial temporal
structures that led to successful re-operation, the majority
of patients had dipoles localized over the lateral or basal
temporal regions further away from the resection margin. The
localizing value of these comparatively distant dipoles were not
further explored.

It is notable that the tail of MEG dipoles, that typically orients
toward the activated cortex, does so under the condition of
normal cortical laminar organization. Removal of the superficial
cortex can result in dipole orientation changes, particularly if
the underside of nearby cortex is exposed in the process. In
such cases, residual dipoles may have an opposite orientation
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(Figure 11B). This finding is similar to positive EEG spikes
that similarly can occur as a result of prior surgical procedures
or trauma (118, 119). In neocortical epilepsies where dipole
orientation can serve as a guide toward the epileptogenic cortex,
such situations are noteworthy.

CRITICAL IMPORTANCE OF MEG
REPORTING AND PROPER
COMMUNICATION WITH REFERRING
PHYSICIANS

As referring physicians may not be familiar with MEG
techniques and results, MEG reporting and communication
are practical issues of critical importance. A clinical MEG
report should be ACMEGS CPG-compliant (13), complete,
concise, and appropriately structured. Since a simultaneous
EEG recording is a required component of every clinical MEG
study for epilepsy, its absence or deviation from the 10–
20 system must be acknowledged and explained. The MEG
information should describe the morphology, location, and
frequency of detected MEG discharges, and their localization
results. The MEG findings must also be compared with their
EEG correlates, and their mutual dynamics explored to the
best possible degree. EEG unique discharges must be noted,
as this can represent alternate sources not identified by MEG.
The impression and conclusion should be concise, providing
an anatomical localization summary, pattern of distribution,
and accurate representative population frequency (120). Finally,
the report must correlate MEG-EEG findings to the clinical
context, considering both semiology and radiographic findings
into its interpretation. To ensure that all relevant clinical
priors are considered during the data acquisition and study
interpretation, a channel of communication between clinical
magnetoencephalographers and referring epileptologists should
be present and maintained until the final delivery of the report.
The MEG report must answer the questions from the referring
physician, and overall constructed for optimal incorporation to
future surgical planning.

CONCLUSION

This article is written to serve as a practical introduction to
clinical MEG interpretation in epilepsy. It reflects the variability
in the strength and degree of evidence for different practically
relevant aspects of clinical MEG practice. Naturally, unusual
circumstances outside of what have been discussed here can
and will occur in the course of one’s daily practice. To achieve
a comprehensive understanding of MEG, a practitioner must
gain procedural experience through extensive clinical use and
knowledge through continued literature review. We hope that
the information contained in this article has achieved its goal
of increasing the understanding of clinical MEG localization
and interpretation, elevating the level of clinical MEG service,
and improving the surgical outcome of our patients with
epilepsy. Ultimately, we hope our effort synergizes with others
in the epilepsy and clinical MEG communities to promote
clinically indicated but greatly underutilized surgical treatments
for patients with DRE.
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Objective: Our aim was to investigate the dynamics of functional connectivity (FC)

networks during seizure termination in patients with childhood absence epilepsy (CAE)

using magnetoencephalography (MEG) and graph theory (GT) analysis.

Methods: MEG data were recorded from 22 drug-naïve patients diagnosed with CAE.

FC analysis was performed to evaluate the FC networks in seven frequency bands of the

MEG data. GT analysis was used to assess the topological properties of FC networks in

different frequency bands.

Results: The patterns of FC networks involving the frontal cortex were altered

significantly during seizure termination compared with those during the ictal period.

Changes in the topological parameters of FC networks were observed in specific

frequency bands during seizure termination compared with those in the ictal period. In

addition, the connectivity strength at 250–500Hz during the ictal period was negatively

correlated with seizure frequency.

Conclusions: FC networks associated with the frontal cortex were involved in the

termination of absence seizures. The topological properties of FC networks in different

frequency bands could be used as new biomarkers to characterize the dynamics of FC

networks related to seizure termination.

Keywords: childhood absence epilepsy, functional connectivity, magnetoencephalography, seizure termination,

multifrequency

INTRODUCTION

Childhood absence epilepsy (CAE), with typical electroencephalography (EEG) signals showing
3Hz spike andwave discharges (SWDs), is one of themost common epilepsy syndromes that occurs
in childhood and accounts for 10–17% of epilepsies in children (1, 2). CAE has been historically
considered a benign childhood epilepsy syndrome. However, an increasing number of studies
have observed that brain function in children with CAE is persistently impaired (3, 4). Repeated
seizures and epileptic discharges may impair brain function (5). Therefore, it is necessary to prevent
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frequent epileptic seizures in children with CAE to alleviate the
damage to brain function caused by seizures.

Epileptic seizures were considered the result of
hypersynchronous and abnormal discharges among neurons.
It was found that the synchronicity of neural activity was
enhanced during ictal episodes (6). Some scholars have
reported that hypersynchronized neuronal activity increases the
chance of epileptic discharges and eventually leads to epileptic
seizures (7–9). Therefore, it is possible that the decrease in
neuronal synchronization could be a necessary process during
seizure termination. However, inconsistent with the previous
assumption, the synchronization of neural activity was reported
to increase during seizure termination in several studies (10–
12). Currently, the specific mechanism underlying seizure
termination is still unclear. Understanding the mechanism
contributing to seizure termination could offer new insights
into its pathophysiological mechanism and be helpful for the
development of novel treatments for epilepsy.

The brain can be seen as a complex network in which nodes
of a network represent brain areas, and edges reflect either
structural or functional connections between different nodes (6).
An increasing amount of evidence has indicated that epilepsy is a
network disease and that epileptic discharges spread to the whole
brain through the network (6, 13–15). Previous studies have also
revealed altered functional and structural networks in patients
with epilepsy (13, 16–18).

Graph theory (GT) is an ideal tool for quantitative analysis of
brain networks. It characterizes topological properties of brain
networks through a line of parameters (19, 20). The clustering
coefficient and shortest path length are the representative
parameters in GT. Also, brain networks could be classified into
three types, including small-world networks, random networks,
and regular networks, according to these parameters (6, 19).
Specific altered topological characteristics were observed in
patients with epilepsy reported by several studies (21–23).
Moreover, some network parameters were also suggested to
be related to clinical features, such as cognitive function and
duration of epilepsy, in patients with epilepsy (18, 24). Hence,
topological parameters in GT could be used as new biomarkers
for describing brain function and identifying the dynamic
changes in brain function during seizure termination.

Magnetoencephalography (MEG) is an ideal method
for investigating functional networks. MEG can detect
magnetic signals from the brain through a non-invasive
approach, which is usually used for patient evaluation
before epileptic surgery (25, 26). MEG has a higher spatial
resolution than EEG, as magnetic signals recorded by MEG are
unaffected by the skin and skull (27). Moreover, the temporal
resolution of MEG is higher than that of magnetic resonance
imaging (fMRI) (27).

The aim of this study was to investigate the dynamic changes
in functional connectivity (FC) networks from low- to high-
frequency bands during seizure termination in children with
CAE by using MEG. We analyzed changes in the pattern
and topological properties of the FC networks. In addition,
we assessed the association between FC networks and clinical
features in children with CAE.

METHODS

Subjects
Children who were newly diagnosed with CAE were recruited
from the Department of Neurology at the Nanjing Brain Hospital
and Nanjing Children’s Hospital. The inclusion criteria were
as follows: (1) typical CAE diagnosed by a neurologist was
in line with the International League Against Epilepsy Seizure
Classification (2017), (2) bilaterally synchronous 3Hz SWDs on
normal background waves were detected by routine EEG, (3) the
patients did not take any medication, and (4) MRI scan results
were normal. The exclusion criteria were as follows: (1) history
of any diseases or other types of epilepsy and (2) the presence
of mental implants, such as pacemakers, which would strongly
interfere with MEG recordings. This study was approved by
the medical ethics committees of Nanjing Children’s Hospital,
Nanjing Brain Hospital, and Nanjing Medical University. All
subjects and their guardians signed a written informed consent.

Magnetoencephalography Recording
The MEG data were recorded using a whole-head CTF MEG
system with 275 channels (VSM Medical Technology Company,
Canada) in a magnetically shielded room at the MEG Center at
the Nanjing Brain Hospital. MEG data were acquired at a sample
of 6,000Hz, with noise cancelation of third-order gradients.
MEG data recorded in an empty room were used to identify
background noise. Before MEG recording, three coils were
attached to the nasion and to the left and right preauricular points
of each subject to locate the head position of the subject relative to
the MEG coordinate system. All metals were also removed from
the body of each subject before MEG data acquisition. During
MEG recording, all subjects were instructed to stay still with
their eyes lightly closed. The head movement of each subject was
limited to 5mm for each data recording. An audio-visual system
was used to monitor each subject duringMEG recording. At least
five continuous data files with a duration of 120 s were collected
for each subject. If no SWDs were observed in these data files,
another MEG recording was needed, and the subjects were asked
to hyperventilate to provoke absence seizures.

Magnetic Resonance Imaging Scan
All subjects underwent MRI with a 3.0 T scanner (Siemens,
Germany). The MRI parameters were as follows: the repetition
time was 6,600ms, the echo time was 93ms, the field of view was
250 × 250mm, the flip angle was 9◦, and the matrix was 512 ×

512. Three markers were placed in the same position used for
MEG recording to co-register structural imaging data with the
MEG data. All anatomical landmarks digitized during MEG were
identifiable in the MRI.

Data Analysis
All MEG data without any artifacts or background noise were
retained. The ictal MEG data were determined using a filter
of 1–4Hz. The SWDs with a duration of more than 4 s were
defined as ictal SWDs. The points of seizure onset and offset
were identified by two experienced neurologists. Seizure onset
was defined by the first spike wave component of SWDs, and
seizure termination was defined by the last slow wave in SWDs.
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FIGURE 1 | Schematic diagram of magnetoencephalography (MEG) waveform data. For each MEG recording, two segments with a duration of 3 s represented the

ictal period and termination period, and one 30-s segment was selected as the interictal period.

We selected three specific segments in each MEG recording for
the following analysis. The segment with a duration of 3 s after
seizure onset was defined as the ictal period, and the segment with
the same duration before seizure offset represented the period of
seizure termination. In addition, one segment with a duration of
30 s away from the ictal segment at least 10 s was considered as
the interictal period. All selected segments were analyzed in seven
frequency bands: delta (1–4Hz), theta (4–8Hz), alpha (8–12Hz),
beta (12–30Hz), gamma (30–80Hz), ripple (80–250Hz), and fast
ripple (250–500Hz). Notch filters for 50Hz and its harmonics
were applied to eliminate power-line noise from the MEG data.
The details are shown in Figure 1.

Functional Connectivity Analysis
According to previous studies (28, 29), FC was analyzed at the
source level. To construct source neural networks, we used the
algorithms to estimate the correlation of each pair of virtual
sensors. Specifically, the correlation factors, which were used to
analyze the correlation of virtual sensors, were defined as follows:

R (Xa,Xb) =
C (Xa, Xb)

SXa, Xb
(1)

In Equation (1), R (Xa, Xb) represents the correlation of a source
pair in two locations (“a” and “b”). Xa and Xb represent the
signals from two sources, which were paired for computing
connections. C (Xa, Xb) represents the mean of the signals from
the two sources. Sxa and Sxb represent the standard deviation
of the signals from the two sources. We computed all possible
connections for each pair of virtual sensors at the source level to
avoid possible bias. If the activity in two source pairs were both
increased, the connections were considered as excitatory in MEG
processor computations. If increased activity in one source was
followed by decreased activity in the other, the connections would
be inhibitory. All possible distributions of FC from voxel-based

virtual sensors were co-registered to individual participant MRI
results (28, 30) and visualized in axial, coronal, and sagittal views.
In MRI views, red and blue represent excitatory and inhibitory
connections, respectively.

Graph Theory Analysis
In our study, we used GT to analyze and quantify FC networks
at the source level (31). The FC networks in the entire brain
consist of nodes and edges, where nodes represent the sources
in the brain, and edges indicate the connections between
each source pair. Specifically, four measurements including the
average strength (S), degree (D), path length (L), and clustering
coefficient (C) were computed for each possible source pair
to quantify the global and local topological properties of FC
networks. S indicates the connectivity strength between node
pairs. The average S reflects the average of all connections in the
FC network. D refers to the number of links connected to a node,
and the average D indicates the average degree of all nodes in the
FC network (32, 33). L indicates the shortest distance between
node pairs in the network. The average L reflects the tendency
of global integration in the FC network (34). C represents the
likelihood of connection among the neighbors of a node, and
the average C reflects the tendency of local integration in the
FC network (34). The S, D, L, and C mentioned in our study
indicate the average values of the measurements. The details
of the equations for GT analysis were described in previous
studies (32–34). MEG Processor software was used to analyze
the above data (https://sites.google.com/site/braincloudx/). The
detailed algorithms of the software were reported in previous
articles (28, 29).

To ensure the quality of the data, a threshold was used as a
checkpoint. The FC networks were visible in MRI views if the FC
values were above the threshold. t-values were computed for all
source pairs to determine the thresholding of connections. The
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TABLE 1 | Characteristics of the patients with CAE.

Patient Sex

(F/M)

Age

(years)

Duration of

disease

(months)

Frequency

of seizures

(times/day)

Time between

diagnosis and the

MEG test (day)

1 M 10 5 6 0

2 F 6 5 2 0

3 F 6 5 2 0

4 F 7 5 10 0

5 M 8 6 10 1

6 F 9 5 10 0

7 M 8 6 7 0

8 F 5 6 2 0

9 F 10 12 5 0

10 F 8 16 5 1

11 F 9 14 5 0

12 F 10 11 6 0

13 F 10 12 8 0

14 F 11 23 8 0

15 F 10 32 8 1

16 F 5 3 8 0

17 F 8 8 8 0

18 M 8 5 20 0

19 F 7 4 20 0

20 F 9 12 4 1

21 M 8 4 15 0

22 M 9 15 18 0

F indicates female; M indicates male.

formula to determine t-value was defined as follows:

Tp = R

√

K − 2

1− R2
(2)

In Equation (2), Tp represents the value of a correlation, K
represents the number of data points for connections, and R
indicates the correlation of a source pair. In the present study,
we selected the Tp value corresponding to a p-value <0.05 as the
thresholding to obtain the FC networks and the measurements
including S, D, L, and C.

Statistical Analysis
Fisher’s exact test was used to determine the difference in neural
network patterns between different periods in seven frequency
bands. Student’s t-test was used to assess the changes in the
network parameters (S, D, L, and C) between different periods in
each frequency band. Partial correlation analysis was utilized to
estimate the correlations between clinical characteristics and the
network parameters after adjustment for age, sex, and duration
of epilepsy. We set the p-value threshold as 0.05 in our study.
Bonferroni correction was applied for multiple comparisons.
Then, we controlled type I errors using the false discovery
rate (FDR) controlling procedure. All statistical analyses and
computations were performed in SPSS version 20.0 for Windows
(SPSS Inc., Chicago, IL, USA).

FIGURE 2 | Typical patterns of functional connectivity (FC) networks from

childhood absence epilepsy (CAE) patients in seven frequency bands. Red

indicates excitatory connections, and blue indicates inhibitory connections.

The green arrow indicates significant differences in FC patterns between the

two groups. The above results were significant (p < 0.05) after false discovery

rate (FDR) and Bonferroni correction.

RESULTS

Patients
A total of 22 patients diagnosed with CAE were recruited in the
present study. The mean age was 8.23 ± 1.69 years. The gender
ratio was 6:16 (male: female). The mean course of epilepsy was
9.73 ± 7.12 months. To minimize the error in the frequency of
seizures, we counted the absence seizures observed by parents
of children with CAE in the last 1 week to obtain an average of
seizure frequency. The average seizure frequency was 8.36± 5.41
times/day. A total of 33 ictal MEG data were recorded from all
patients. There were 11 patients with one seizure and the other
half of patients with two seizures during the acquisition. The
duration of the SWDs selected in our analysis is more than 6 s,
and there is no overlap between the ictal period and the seizure
termination. The details of the clinical characteristics of children
with CAE are presented in Table 1.
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FIGURE 3 | Changes in the number of network patterns localized in frontal cortex in the two periods at 30–80Hz. P* < 0.05 after FDR and Bonferroni correction.

Network Pattern
At 1–4Hz, the majority of FC networks (28 of 33 segments)
during the ictal period showed strong connections in the parietal
cortex and posterior brain regions. No significant difference was
observed in the FC network between the ictal period and seizure
termination (26 of 33 segments).

At 4–8, 8–12, and 12–30Hz, the FC networks during the ictal
period (30 of 33 segments) were distributed throughout regions
in the whole brain, including the frontal cortex, parietal cortex,
and posterior brain regions. There was no significant difference in
the FC network between the ictal period and seizure termination
(32 of segments).

At 30–80Hz, the FC networks were mainly limited to the
frontal cortex (31 of 33 segments) during the ictal period.
Notably, the FC networks showed strong connections between
anterior and posterior brain regions (29 of 33 segments) during
seizure termination compared with the connections between
these regions during the ictal period (p < 0.05).

At 80–250 and 250–500Hz, the FC networks showed strong
connections in the frontal cortex (31 of 33 segments). No
significant difference was seen between the ictal period and the
period of seizure termination (30 of 33 segments).

The above results were corrected by Bonferroni correction and
FDR. The details are shown in Figures 2, 3.

Graph Theory Parameters
In our study, we found that S values increased significantly
at 30–80Hz and decreased significantly at 250–500Hz during
seizure termination compared with that during the ictal period
(p< 0.05).D values decreased significantly at 250–500Hz during
seizure termination compared with that during the ictal period
(p < 0.05). C values decreased significantly at 30–80 and 250–
500Hz during seizure termination compared with that during
the ictal period (p < 0.05). L values decreased significantly at
4–8, 8–12, and 30–80Hz and increased significantly at 250–
500Hz during seizure termination compared with that during
the ictal period (p < 0.05). No significant difference was found
in other frequency bands. The above results were obtained

after Bonferroni and FDR correction. The details are shown in
Figure 4.

Clinical Correlation
At 250–500Hz, after adjustment for sex, age, and duration of
epilepsy, our data revealed that S values during the ictal period
were negatively correlated with seizure frequency (r = −0.597, p
= 0.007). There was no significant correlation in other frequency
bands. The detailed correlation analysis is shown in Figure 5.

DISCUSSION

In the present study, we investigated the dynamic changes in
FC networks during seizure termination in absence seizures
using MEG. Our findings revealed that the FC network pattern
was changed significantly at 30–80Hz. Changes in topological
parameters of FC networks were also observed in specific
frequency bands during seizure termination. In addition, the
FC strength at 250–500Hz was significantly correlated with
seizure frequency.

At 30–80Hz, we found that the FC networks were limited
to the frontal region during the ictal period. This finding
supported the idea that the frontal cortex is involved in absence
seizures. According to previous studies, the frontal cortex has
an important role in the initiation and propagation of absence
seizures (15, 35, 36). In addition, the localized pattern of FC
networks found in our study reflected enhanced connections
in local cortical regions and weakened connections among
remote brain regions, which was consistent with previous
publications (37–39). It is supposed that the increase in short-
range synchronization among local neurons along with the
decrease in long-range synchronization between distant brain
regions might contribute to the generation of epileptic discharges
(37–40). Another study also reported that synchronization
in local neural populations plays a critical role in initiating
seizures (41). Hypersynchronized FC networks involving the
frontal cortex were a critical factor in the onset of absence
seizures (15). Recent publications, which suggested that epileptic
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FIGURE 4 | Changes in topological parameters (strength, degree, path length, and clustering coefficient) of FC networks between two groups. P* < 0.05 after FDR

and Bonferroni correction.

discharges during absence seizures originate from the frontal
lobe, could also partially explain the enhanced frontal FC
networks observed in the present study during the ictal period
in absence seizures (36, 42). During seizure termination, we
noticed obvious connections between posterior and anterior
brain regions replacing the limited network connections localized
in frontal regions at 30–80Hz. This difference in connections
suggested that the long-range synchronization among remote
brain regions was increased, leading to an altered FC network
pattern among brain regions, including the frontal lobe, during
seizure termination. In several studies, ictal epileptic networks
were fragmented at seizure onset and then merged with other
cortical regions gradually by long-range synchronization (38, 43,
44). Another study also found that the cortical regions involved
in epileptic networks during seizure termination were wider
than those at seizure onset, indicating that the changes in the
patterns of FC networks participated in seizure termination (45).
Moreover, altered function in the frontal lobe during seizure
termination was reported by recent investigations (46, 47). Given
the literature mentioned above as well as the results found

in our study, we speculated that the changes in FC network
patterns associated with the frontal cortex were involved in the
termination of absence seizures. Further investigations exploring
the specific mechanism of seizure termination involving the
frontal cortex are needed in the future.

At the same time, we noticed frequency-dependent patterns of
FC networks from low- to high-frequency ranges during absence
seizures in our study. A previous study on absence seizures
demonstrated that during the ictal period, FC networks were
more likely to localize in posterior brain regions at low-frequency
ranges and localize in anterior regions at high-frequency bands,
which was consistent with our results (48). Other studies also
found distinct alterations of networks in different frequency
bands in CAE patients (13, 30, 47, 49, 50). According to a
previous report, the types of connections in different frequency
bands had specific interactions that allowed information to
be integrated or shared at different spatiotemporal levels (48).
For instance, low-frequency neural interactions were used to
integrate information over a wider range of cortical regions,
whereas high-frequency neural interactions were suited to
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FIGURE 5 | The y-axis represents the functional connectivity strength. The x-axis represents seizure frequency. Partial correlation analysis showed that the functional

connectivity strength at 250–500Hz during the ictal period was negatively correlated with the frequency of seizures (r = −0.597, p = 0.007) after adjustment for sex,

age, and duration of epilepsy.

communicate with neighboring neurons (30, 51, 52). Therefore,
the changes in the patterns of FC networks observed in specific
frequency bands instead of all frequency bands during seizure
termination could be partially explained by the different roles that
neural activity played in different frequency bands. These changes
and their implications are worthy of further research.

Graph Theory Parameters
GT analysis in our study revealed increased S values and
decreased C and L values at 30–80Hz as well as decreased

S, decreased D, decreased C, and increased L values at 250–
500Hz. These findings suggested that the topological properties
of FC networks in patients with CAE were altered during seizure
termination compared with those during the ictal period.

At 30–80Hz, S values increased during seizure termination
compared with those observed during the ictal period, suggesting
that the synchronization of FC networks in the whole brain was
enhanced significantly. One study on temporal lobe epilepsy also
found similar enhanced synchronization before termination in
the gamma frequency band, which was consistent with our results
(53). Furthermore, increased synchronization of neural activity
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was also observed before seizure offset in other studies and was
thought to be related to seizure termination (10, 11, 44, 54, 55).
Another study reported that vagal nerve stimulation (VNS), a
non-invasive treatment for refractory epilepsy, may influence
cortical activity by increasing gamma frequency synchrony,
reducing the likelihood of seizure onset, or promoting seizure
termination (41). In addition, we noticed that C and L values,
which were considered as representative parameters of small-
world networks, were decreased significantly during termination
compared with those during the ictal period, indicating that the
topological characteristics of FC networks were altered toward
random networks. As reported by several studies, epileptic
networks were more likely to be random networks characterized
by decreased C and L values during the interictal period and
were likely to function as regular networks accompanied by
increased C and L values during the ictal period (13, 34,
56). Moreover, it was reported by other scholars that the C
and L topological properties of epileptic networks increased at
seizure onset and then decreased before seizure offset, again
suggesting randomization trends in epileptic networks during
seizure termination (38, 57, 58). Given that randomized networks
are considered as the usual topological pattern of epileptic
networks in the interictal period, we suppose that the topological
properties of FC networks observed during termination might
serve as transitional states from ictal to interictal periods, thus,
combining the double topological characteristics in ictal and
interictal periods.

At 250–500Hz, the present study revealed that S, D, and
C values were decreased, and L values were increased during
the period of termination compared with those during the
ictal period, which indicated that the topological organization
during seizure termination was far from the optimal structure for
information propagation. High-frequency oscillations (HFOs),
especially fast ripples (ranging from 250 to 500Hz), were
reported to be related to the generation of seizures in recent
literature (22, 30, 49). Therefore, we speculate that the topological
organization at 250–500Hz during the termination phase was a
less efficient structure that might not be helpful for continuous
epileptic discharges from the seizure onset zone (SOZ) andmight
promote seizure termination. The generation mechanisms of
HFOs and gamma oscillations (30–80Hz) were not the same, and
these two oscillations have distinct patterns of network dynamics
during the seizure period (59–61). Therefore, the differences
in generation mechanisms could partially explain the different
network patterns and topological properties we found at 30–80
and 250–500Hz during seizure termination.

In general, we propose that the changes in parameters of
network topology observed during termination at different
frequency bands could be used as new biomarkers for
characterizing the subtle dynamics of networks of CAE
during termination, although the specific causal correlations
between topological parameters and seizure termination warrant
further investigation.

Clinical Correlation
In the present study, we found significant correlations between
the S values of topological parameters at 250–500Hz during the

ictal period and the seizure frequency of CAE patients. According
to previous studies, the brain region generating HFOs represents
the SOZ and is involved in the initiation and propagation of
epilepsy (22, 61). In recent years, HFOs have been used for
mapping epileptic foci for epilepsy surgery (62, 63). Furthermore,
several studies have found that HFOs are associated with the
severity of seizures (43, 64–66). In our study, we suppose that
the topological parameters of networks at 250–500Hz could be
considered as new biomarker options to estimate the severity of
absence seizures.

Limitations
However, there are several limitations in this study. First, the
sample size of this study was relatively small, which may have an
impact on the results. Further studies investigating the potential
mechanisms underlying seizure termination from the perspective
of FC networks should be performed in a larger cohort of
patients. Second, we did not discuss the potential effect of deep
brain areas (DBAs), such as the thalamus, on seizure termination
since the spatial resolution ofMEG for deep brain detection is still
under debate. In the future, this issue could be resolved by taking
measurements with a moving MEG through a wearable system.
Such a device could improve the spatial resolution of MEG
in DBAs and acquire more accurate results than routine MEG
devices (67). Third, although we minimized the artifacts, artifacts
from electromyography and other signals may still be included in
the MEG recordings and affect our results. Further investigations
should be performed to determine whether artifacts have been
eliminated completely. In addition, given the limitations of using
single software program in our study, other imaging software
is needed to confirm the repeatability of the results in further
studies. Last but not least, although functional network analysis is
one method to study the mechanism of seizure termination, the
results and conclusion in the present study need to be verified by
further investigations using different methods.

CONCLUSION

In conclusion, our study demonstrated that the FC networks
during seizure termination differed from those during the
ictal period in specific frequency bands. The pattern of FC
networks involving the frontal cortex was altered during seizure
termination, suggesting that the frontal lobe possibly plays a
critical role in seizure termination. The topological parameters of
FC networks changed during seizure termination, provided new
biomarkers that could be used to characterize the dynamics of
seizure termination, and were helpful for further investigating
the specific relationships between topological properties of the
network and seizure termination. The S values of topological
parameters at 250–500Hz were found to be correlated with
seizure frequency, offering a new biomarker that could be used
to estimate the severity of absence seizures.
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Patients with cortical reflex myoclonus manifest typical neurophysiologic characteristics

due to primary sensorimotor cortex (S1/M1) hyperexcitability, namely, contralateral giant

somatosensory-evoked potentials/fields and a C-reflex (CR) in the stimulated arm.

Some patients show a CR in both arms in response to unilateral stimulation, with

about 10-ms delay in the non-stimulated compared with the stimulated arm. This

bilateral C-reflex (BCR) may reflect strong involvement of bilateral S1/M1. However, the

significance and exact pathophysiology of BCR within 50ms are yet to be established

because it is difficult to identify a true ipsilateral response in the presence of the

giant component in the contralateral hemisphere. We hypothesized that in patients

with BCR, bilateral S1/M1 activity will be detected using MEG source localization and

interhemispheric connectivity will be stronger than in healthy controls (HCs) between

S1/M1 cortices. We recruited five patients with cortical reflex myoclonus with BCR and

15 HCs. All patients had benign adult familial myoclonus epilepsy. The median nerve was

electrically stimulated unilaterally. Ipsilateral activity was investigated in functional regions

of interest that were determined by the N20m response to contralateral stimulation.

Functional connectivity was investigated using weighted phase-lag index (wPLI) in the

time-frequency window of 30–50ms and 30–100Hz. Among seven of the 10 arms of the

patients who showed BCR, the average onset-to-onset delay between the stimulated

and the non-stimulated arm was 8.4ms. Ipsilateral S1/M1 activity was prominent in

patients. The average time difference between bilateral cortical activities was 9.4ms.

The average wPLI was significantly higher in the patients compared with HCs in

specific cortico-cortical connections. These connections included precentral-precentral,

postcentral-precentral, inferior parietal (IP)-precentral, and IP-postcentral cortices

interhemispherically (contralateral region-ipsilateral region), and precentral-IP and

postcentral-IP intrahemispherically (contralateral region-contralateral region). The
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ipsilateral response in patients with BCR may be a pathologically enhanced motor

response homologous to the giant component, which was too weak to be reliably

detected in HCs. Bilateral representation of sensorimotor responses is associated with

disinhibition of the transcallosal inhibitory pathway within homologous motor cortices,

which is mediated by the IP. IP may play a role in suppressing the inappropriate

movements seen in cortical myoclonus.

Keywords: benign adult familial myoclonus epilepsy (BAFME), sensorimotor cortex, ipsilateral somatosensory-

evoked field, C-reflex, transcallosal connectivity

INTRODUCTION

Conventional neurophysiological studies have demonstrated that

one type of myoclonus originates from the cerebral cortex (1–

3). This type of myoclonus is often referred to as cortical
reflex myoclonus, seen in various diseases such as juvenile
myoclonic epilepsy, progressive myoclonic epilepsy, post-anoxic
myoclonus, corticobasal degeneration, Alzheimer’s disease,
advanced Creutzfeldt-Jacob diseases, metabolic encephalopathy
and Celiac disease (1–3). Cortical reflexmyoclonus manifests two
major neurophysiological characteristics that are due to primary
sensorimotor cortex (S1/M1) hyperexcitability (4–7), namely, the
giant somatosensory-evoked potential/field (SEP/SEF) and the
C-reflex (CR; Figure 1). Giant SEP/SEF refers to the enhanced
amplitudes of S1/M1 activation. CR, or long-loop reflex, is
the EMG response associated with myoclonic jerks that is
recorded from the stimulated hand at a latency of around
45ms after stimulation of the median nerve in the wrist
(5, 8, 9). These characteristics are thought to result from a
release effect that causes increased excitability at central synapses
along the pathway that begins from peripheral input to the
spinal cord, the contralateral nucleus of thalamus, contralateral
S1/M1, corticospinal tract, anterior horn cell, and finally to the
stimulated hand muscle (9).

In some patients, an EMG response is demonstrated in the
non-stimulated (opposite) handmuscle (bilateral C-reflex, BCR).
In a few reports of small case series, the latency difference
between CRs in the stimulated and non-stimulated hand muscle
was ∼10ms (CR-BCR time lag, Figure 1) (3, 10–12). This time
lag is compatible with the conduction time of the impulse
between the homologous S1/M1 via the corpus callosum (13, 14).
However, the significance and exact pathophysiology of this BCR
is yet to be established. In previous BCR studies, which all
employed EEG, identifying ipsilateral cortical activity has been
challenging because cross-talk from the giant SEP component
in the contralateral hemisphere can overshadow a true response

Abbreviations:AED, antiepileptic drug; BAFME, benign adult familial myoclonus

epilepsy; BCR, bilateral C-reflex; CR, C-reflex; DK Atlas, Desikan-Killiany

Atlas; dSPM, dynamic statistical parametrical mapping; ECD, equivalent current

dipole; HC, healthy control; IP, inferior parietal cortex; ISI, interstimulus

interval; ITC, intertrial phase coherence; JLA, jerk-locked back averaging; MEG,

magnetoencephalography; PoC, postcentral gyrus; PreC, precentral gyrus; ROI,

region of interest; SD, standard deviation; SEF, somatosensory-evoked field;

SEP, somatosensory-evoked potential; S1/M1, primary sensorimotor cortex; S2,

secondary somatosensory cortex; wPLI, weighted phase-lag index.

in the ipsilateral hemisphere (4). Source localization methods
hold a promise of better dissociating ipsilateral and contralateral
activity and thus may help to reveal the precise pathophysiology
of BCR. Given the close link between the processes involved
in cortical myoclonus and those producing epilepsy (2, 15), the
same mechanisms of spread of cortical excitation may also be
important in some forms of seizure generalization.

The aim of the present study was to examine the
pathophysiological mechanism underlying the early spread
of cortical excitation in the bilateral representation of myoclonic
jerks in patients showing BCR. The presence of a CR-BCR time
lag suggests that (1) ipsilateral cortical activity (i.e., the same
side as the stimulated hand) exists, and (2) the time lag between
the contralateral (i.e., opposite side to the stimulated hand) and
ipsilateral cortical activity corresponds to the CR-BCR time
lag. We hypothesized that in patients with BCR (1) bilateral
S1/M1 activity can be detected by magnetoencephalography
(MEG) source estimation and (2) functional connectivity will be
enhanced transcallosally between the contralateral S1/M1 and
homologous ipsilateral regions.

MATERIALS AND METHODS

Subjects
Five patients with cortical reflex myoclonus (age 40–70 years,
mean age 54.9 years) with BCR were identified from the MEG
database of epilepsy patients (January 2005–June 2019) at Kyushu
University. All patients had benign adult familial myoclonus
epilepsy (BAFME) that fulfilled criteria based on clinical and
electrophysiological findings (12, 16, 17) and were treated with
antiepileptic drugs (AEDs). The diagnosis was made by board-
certified epileptologists (TMa and HS). The cardinal features of
BAFME consisted of six items (18, 19): (1) autosomal dominant
inheritance; (2) cortical tremor, which consists of continuous,
distal, fine twitches of the hands that resemble essential tremor;
(3) infrequent generalized seizure; (4) features of cortical reflex
myoclonus demonstrated in electrophysiological studies; (5) lack
of cognitive decline or other neurological symptoms during the
early stage of the clinical course; and (6) lack of clear progression,
which impairs activities of daily living in the early stage of
the clinical course. Electrophysiological studies included resting-
state scalp EEG, SEP, CR, and jerk-locked back averaging (JLA)
(20). SEP/CR/BCR was performed as a screening; the recording
procedure is described in section SEP and CR/BCR below. JLA,
time-locked pre-myoclonus cortical activity (3, 21, 22) showed
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FIGURE 1 | Typical somatosensory-evoked potential and electromyography recordings following right median nerve stimulation in a patient (Patient 2) with bilateral

C-reflex (BCR). High amplitude P25-N33 components (giant P25) are prominent at the contralateral hand sensory area (C3
′

) electrode, and similar potentials can be

observed at the corresponding ipsilateral electrode (C4
′

). Topographical maps are shown according to components. Ipsilateral activity is unreliable because of

interference from the contralateral giant component. The onset of the C-reflex (CR), which is shown in the stimulated hand, was 42ms, whereas that of the BCR in the

non-stimulated hand was 50ms; thus, the CR-BCR time lag was 8ms.

no preceding positive spikes in any of the patients. Cortical
myoclonus in Celiac diseases and corticobasal degeneration
shows no preceding positive spikes because of repetitive nature
and high frequency of the myoclonus (23), therefore JLA
may sometimes show no activity in cortical tremor. Patient
demographic data are shown in Table 1. A total of 15 healthy
controls (HCs, age 25–51 years, mean 34.6) were recruited. All
subjects gave informed consent, according to the approval by the
Ethical Committee of Kyushu University Hospital.

Stimulus
The median nerve trunk in the wrist was unilaterally stimulated
with an electric square pulse of 0.2ms duration in separate
sessions. The stimulus was applied using a pair of electrodes
placed on the skin 3 cm apart with the cathode proximal
to the anode. Stimulus intensity was just above the motor
threshold of the abductor pollicis brevis muscle. Stimulus
parameters were different for SEP/CR/BCR and SEF recordings
because SEP/CR/BCR was used for diagnostic confirmation of
cortical reflex myoclonus (i.e., long latency), whereas SEF was
measured as part of routine clinical workup for epilepsy patients,
irrespective of seizure type (i.e., short latency) (24).

MEG Recordings
MEG signals were recorded using a whole-head 306 channel
sensor array (Elekta, Neuromag) with 102 identical triple-sensor

elements. Before recording, four head-position-indicator coils
were attached to the subject’s head. Anatomical landmarks
(nasion and bilateral preauricular points) and scalp shape using
∼200 head-surface points were digitized to construct a three-
dimensional head coordinate system co-registered with MRI. At
the beginning of the recording session, the subject’s head position
was measured with respect to the sensor array. The recording was
performed in a quiet magnetically-shielded room while subjects
lay in a supine position with their head positioned inside the
helmet-shaped sensor array. The sampling rate was 1 kHz with an
online band-pass filter of 0.1–330Hz for Patients 1, 2, and 4. For
Patients 3 and 5, the sampling rate was 5 kHz and the data were
downsampled to 1 kHz. A spatiotemporal signal space separation
method was applied to the data offline to reduce external artifact
signals (25).

MRI Scan
High-resolution three-dimensional MRI images were acquired
using a 3-T clinical scanner (Philips Healthcare, Best, the
Netherlands). The whole brain was scanned using a T1-
weighted fast-field echo sequence using the following parameters:
repetition time = 8.2ms; echo time = 3.8ms; flip angle =

8◦; 190 sagittal slices; and 1.0-mm isotropic voxels without
a gap. Cortical surface reconstructions were obtained using
FreeSurfer (26).
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TABLE 1 | Patient demographic information.

Subject Age/sex Family

history

EEG findings Age at

seizure onset

Frequency of

generalized seizures

Cortical

tremor

Medication

Patient 1 40.2/F Family A Generalized

Photoparoxysmal discharges

33 <1/y BUE LEV

Patient 2 70.2/F Family A Generalized

Photoparoxysmal discharges

42 <1/y BUE PHT, LEV

Patient 3 56.1/F Family B W.N.L. None None BUE < BLE CZP

Patient 4 54.2/F Sporadic Generalized

Photoparoxysmal discharges

23 6/y BUE LEV, CZP

Patient 5 53.7/M Family B Generalized

Photomyogenic response*

None None BUE CZP

BUE, bilateral upper extremities; BLE, bilateral lower extremities; LEV, levetiracetam; PHT, phenytoin; CZP, clonazepam.

*Lower extremity myoclonus accompanied with photic stimulation.

Data Analysis
SEP and CR/BCR
CR/BCR and giant SEP were confirmed as a screening prior to
MEG recording on a separate day. Surface EMG was recorded
bilaterally from a pair of cup electrodes placed 3 cm apart on
the belly of the abductor pollicis brevis muscle of the stimulated
side and on the other muscles that produced involuntary jerks
(CR and BCR). For EEG recording, multiple cup electrodes
were placed on the scalp, which included the hand sensory
areas (C3′ and C4′) and Fz according to the International 10–20
system. Electrode impedance was maintained below 5 kOhm. All
electrodes were referenced to linked earlobe electrodes. EEG and
rectified EMG data were fed into a computer and averaged using
the stimulus pulse as the trigger. SEP and CR/BCR were obtained
by stimulating themedian nerve in the wrist using electric shocks,
whichwere delivered at a rate of 1Hz in all patients. The passband
for EEG was set to 0.5–200Hz. Components of giant SEPs were
identified by corresponding components of normal SEPs (27):
an initial negative peak was defined as N20, a following positive
peak as P25, and a second negative peak as N33. An SEP was
judged as a giant SEP when the amplitude of the component
corresponding to N33 measured from the P25 peak was higher
than 8.4 µV (3, 27). CR/BCR was identified when the EMG
amplitude showed a prominent rise from baseline (3). Data from
at least two separate sessions of 200 responses each were obtained
to confirm reproducibility. Typical giant SEP and CR/BCR are
illustrated in Figure 1. It should be noted that ipsilateral activity
in the SEP may mimic the giant component coming from the
contralateral hemisphere (4).

Although all patients demonstrated CR in both arms during
left and right median nerve stimulation, BCR was observed in the
left, right, or both arms. For each arm that showed BCR, we also
measured the time lag between CR and BCR for onset-to-onset
(CR-BCR time lag, Figure 1).

SEF
For Patients 1, 2, and 5, and all HCs, the interstimulus interval
(ISI) was constant at 449ms. For Patient 4 the ISI was 997ms,
and for Patient 3, stimuli were presented using a 2,000-ms ISI
with a 250ms jitter. SEFs were obtained by averaging ∼120

responses offline. Trials exceeding 4,000 fT/cm in amplitude
on a gradiometer and 4,000 fT on a magnetometer were
excluded before averaging. Artifacts, such as eye blinks, other
eye movements, and epileptic spikes, were carefully excluded by
visual inspection. Raw MEG data were band-pass filtered at 1–
120Hz. The analysis time window was 200ms, which included
a pre-stimulus baseline of 100ms. Amplitudes were measured
from baseline. Because of a lack of clear criteria for giant SEF,
activity was judged as a giant SEF when P25m source activity (see
section Source estimation), normalized by the N20m amplitude,
was greater than the average + 2 standard deviations (SD) of
that of HCs. For Patient 5, SEF data from the left median nerve
stimulation were not recorded because of a technical reason.
During the SEF recording, simultaneous EMG was measured in
two of the patients (Patients 2 and 4).

Source Estimation
Source current distributions for the SEFs were estimated using
the minimum-norm estimate (MNE) (28, 29) and noise-
normalized using the dynamic statistical parametrical mapping
(dSPM)method (30). The cortical source space consisted of 8,196
dipoles. The forward solution was computed using a Boundary
Element Method mesh by tessellating the inner skull surface (31).
Source orientation was partially constrained to be perpendicular
to the cortex, with the loose orientation constraint parameter set
to 0.2 (32). The noise covariance matrix was estimated from the
baseline period. Source time courses for each region of interest
(ROI) were obtained by averaging the estimated dSPM time
for all source dipoles within the ROI. The MNE solutions were
regularized by setting the parameter for the expected signal-to-
noise ratio to 3.

Delineating the Primary Sensorimotor Areas
In BAFME patients, SEF typically includes contralateral N20m
and P25m. The N20m represents the normal response from S1
[specifically, it represents the thalamocortical tract (33)]. Indeed,
in our BAFME patients, the amplitude and latency of the N20m
in the sensor space were not significantly different from those in
the HCs (64.5± 42.7 fT/cm vs. 56.8± 24.0 fT/cm for amplitude,
p = 0.44; 21.3 ± 1.3 vs. 22.1 ± 1.5ms for latency, p = 0.07).
In contrast, the contralateral P25m represents a giant response
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FIGURE 2 | Functional S1/M1 regions of interest (ROIs; green shaded areas) are shown in one subject [Patient 2; (A)]. Borders of anatomical regions obtained from

the Desikan-Killiany Atlas are shown in different colors. Estimated somatosensory-evoked field source activity within functional S1/M1 regions of interest in response

to right median nerve stimulation from one patient who showed BCR [Patient 2; (B)] and the grand-average of healthy controls (C). Black lines: contralateral activity;

dotted lines: ipsilateral activity. The figure shows a prominent contralateral giant P25m component. The ipsilateral activity, shown within 50ms, peaks 11ms later than

the contralateral giant component. The amplitudes were individually normalized by contralateral N20m amplitudes.

from S1 and/or M1. Although the generator of the giant P25m
is yet to be established, Mima et al. (6) reported equivalent
current dipoles (ECDs) of P25m were located at the precentral
motor cortex (Brodmann area 4) in 4 patients with cortical
reflex myoclonus among 5 patients. A giant P25m may reflect
the tangential component of an enlarged radial generator source
located at the crown of the precentral gyrus (6, 34). However,
P25m in HCs is rarely recognizable, which is likely related to the
orientation of the generator source; few reports on P25m (P22m)
have been published to date (35, 36).

Because our primary concern is hyperexcitability of S1/M1
in patients with BCR, we first defined functional ROIs to
represent S1/M1. The functional S1/M1 ROIs were delineated
individually for both the patients and HCs based on the
cortical activations at the peak of the contralateral N20m. The
S1/M1 ROIs were located at the border of the anatomical
central sulcus (Figure 2A, green shaded areas). On average, the
delineated S1/M1 ROIs contained 49.8 ± 22.1 dipoles in the
patients and 50.2 ± 16.4 dipoles in HCs (p = 0.28). Because
of the spatial point-spread function, even for a focal source,
the MNE solution can extend across sulcal walls (37, 38);
therefore, it is reasonable to assume that ROIs determined
using the N20m can represent both S1 and M1 activity.
The S1/M1 ROIs were obtained for each stimulus to the left
and right median nerve in all patients except Patient 5. In
Patient 5, who did not have a recording of the left median
nerve stimulation, the right S1/M1 ROI was defined using the

location homologous to that obtained from the right median
nerve stimulation.

The two homologous S1/M1 ROIs were used to investigate
ipsilateral activity evoked by the median nerve stimuli. For
patients with BCR, ipsilateral activity was identified when the
activity increased prominently above baseline and peaked at 20–
50ms. For comparison, the amplitude of any ipsilateral activity
at 20–50ms was investigated in HCs. This time window was
set based on the finding (Table 2) that the average onset time
of BCR was 46 ± 1.8ms (range 43–48ms). Ipsilateral activity
in patients with BCR should be observed after the first cortical
activity (contralateral N20m) and before BCR (i.e., within the
20–50ms latency window). In contrast, HCs were expected to
show no significant ipsilateral activity within 50ms because only
a few studies have demonstrated physiological ipsilateral activity
in SEF within this time range (39–41) due to signal weakness
(42). Focusing on the activity within 50ms also helps to exclude
the possibility of top-down input from secondary somatosensory
cortex S2, which displays initial activation at around 60–70ms
after stimulation (43).

Neural Synchrony
We calculated two indices of neural synchrony: the intertrial
phase coherence (ITC), which represents phase synchronization
with respect to the stimuli, and the weighted phase-lag index
(wPLI), which is a measure of inter-areal phase synchrony. To
compute these measures, we convoluted the epoched time series
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with a dictionary of complex Morlet wavelets (each spanning
seven cycles) in the frequency range of 13–120Hz in 1-Hz steps.
ITC is a measure of the variance in phase across trials and thus
reflects the temporal stability of oscillatory activity (44–47). ITC
values range from 0 to 1, where 0 represents no phase-locking and
1 represents perfectly synchronized phase angles across trials.

The wPLI is based on the phase-lag index (PLI) (48),
which defines connectivity as the absolute value of the average
sign of phase angle differences. PLI detects consistent phase
differences between signals. The wPLI was proposed by Vinck
et al. (49) to improve specificity as well as robustness to
noise and volume conduction-related artifacts. By weighting
each phase difference according to the magnitude of the lag,
phase differences around zero only marginally contribute to the
calculation of the wPLI. This procedure reduces the probability
of detecting false positive connectivity in the case of volume
conducted noise sources with near-zero phase-lag and increases
the sensitivity of detecting phase synchronization (49). Given
that patients with BCR manifested the giant component, which
spread widely to the ipsilateral hemisphere, wPLI is well-suited
to reveal artifact-free connectivity between the contralateral and
ipsilateral hemispheres.

Both indices were computed using MNE-python (28, 50).
ITCs were evaluated in the homologous S1/M1 ROIs (see section
Delineating the primary sensorimotor areas) to determine the
optimal time-frequency window within which the wPLI was
evaluated. Because ITC provides information that is independent
of inter-areal connectivity (i.e., wPLI), its use in determining
the time-frequency window of interest avoids selection bias for
choosing the time-frequency window for the wPLI analysis.

The wPLI was computed (a) between the contralateral and
ipsilateral S1/M1 ROIs, (b) between the contralateral S1/M1 ROI
vs. 64 anatomical regions from the Desikan-Killiany (DK) Atlas
parcellation (51) (Figure 2A), and (c) between all pairs (all-to-
all connectivity) among the 64 anatomical regions. In the all-
to-all connectivity, all interhemispheric pairs of regions were
included as well as intrahemispheric pairs in the contralateral
hemisphere; however, intrahemispheric connectivity within the
ipsilateral hemisphere was omitted because ipsilateral activity
was expected to be too weak to yield reliable results.

Statistical Analysis
For between-group comparisons of the amplitude and latency of
ipsilateral activity, we applied the Mann-Whitney U test, except
for the amplitude and latency of P25m because some HCs lacked
an identifiable P25m. The amplitude of dSPM is affected by
background brain activity, which is expected to differ between
BAFME patients and HCs because the background activity of
BAFME patients is significantly slower (17). Therefore, S1/M1
dSPM source waveforms were normalized by the peak amplitudes
of the contralateral N20m, which were comparable across the
two groups.

The wPLI was averaged over the 30–50ms and 30–100Hz
time-frequency window, determined from the results of the ITC
analysis (see Figure 4A in the Results section). This frequency
window was assumed to represent the reafferent cortical activity
that occurs in a large cortical network to allow integration of
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external somatosensory stimuli (52). For wPLI values, we used
the Mann-Whitney U test and applied correction for multiple
comparisons based on the false discovery rate using a threshold
of 0.05. All statistics were conducted using MNE-Python and
related libraries.

RESULTS

SEP and CR/BCR
In the five patients, a giant SEP was observed in response to
stimulation of six of the 10 arms (Table 2). The average latency
of the P25 was 24.2± 1.5ms (10 arms).

All patients showed CR in both arms, and BCR was further
observed in eight arms. The average onset time of CR was 38.0
± 1.8ms (10 arms). Of the eight arms that showed BCR, MEG
data were available for seven of them. The average onset times of
CR and BCR over these seven arms were 37.6 ± 2.0 and 46.0 ±

1.8ms, respectively, and the average CR-BCR time lag was 8.4 ±
0.8ms (Table 2). This indicated that the onset latency of the long-
loop reflex in the non-stimulated hand was 8ms longer than that
in the stimulated side.

In the two patients (Patients 2 and 4) whose EMG was
recorded during SEF recording, individual CR-BCR time lags
were similar to those obtained prior to the MEG study. This
indicated that the CR-BCR time lag was reproducible over
separate days.

Ipsilateral and Contralateral SEF Activity
For all the seven stimulated arms in the patients that showed
BCR, the MEG data revealed a giant component of P25m in the
contralateral hemisphere (Table 2). The average latency of the
P25m was 26.9 ± 0.9ms (7 arms). Ipsilateral activity showed a
peak latency of 36.3 ± 2.3ms, which had a smaller amplitude
than that of contralateral activity. The amplitude of ipsilateral
activity of the patients was significantly larger than that of the
HCs (p < 0.0001). In the patients, the difference in the time
delay between the peak latencies of the contralateral P25m and
ipsilateral activity was 9.4± 1.9ms, which was similar to the CR-
BCR time lag (see section SEP and CR/BCR). SEF activity of the
functional S1/M1 ROIs of a representative patient (Patient 2) and
the corresponding grand-average activity of HCs are presented
in Figure 2B. In this patient, the contralateral P25m activity
was giant, whereas the ipsilateral activity was prominent with
an 11-ms delay in its peak from P25m activity (Figure 2B). No
prominent ipsilateral activity was observed in HCs (Figure 2C).
Typical spatiotemporal distribution of estimated cortical activity
(Patient 2, right median nerve stimulation) is presented in
Figure 3. Ipsilateral activity was prominent around 40ms, exactly
in the ipsilateral S1/M1 ROI (highlighted in the inset figure
as a green shaded area). The time course of the ipsilateral
activity (Figure 3, lower two panels) was distinct from that of the
contralateral activity (upper two panels), which suggested that the
observed ipsilateral activity in the MEG source estimates is likely
to be a true response and not due to artifactual cross-talk from
the giant contralateral activity.

Neural Synchrony
The time-frequency plots of the grand-averaged ITC showed
prominent early (30–50ms) intertrial phase synchrony in the
frequency range of 30–100Hz in the contralateral S1/M1 ROIs
in both the patients and HCs (Figure 4A). The 30–50ms
time window identified using the ITC corresponded to the
initial findings (see sections SEP and CR/BCR and Ipsilateral
and contralateral SEF activity), where ipsilateral activity at
around 36ms was synchronized after P25m activity (at 27ms)
propagated with a CR-BCR time lag of 8ms. Thus, we computed
the average of the wPLI over the time-frequency window of
30–50ms and 30–100Hz for all subjects. The grand-averaged
wPLI between the homologous S1/M1 ROIs was larger in the
patients than in HCs within this time-frequency window (p =

0.004; Figure 4B). The wPLI for baseline (−100–0ms) was not
significantly different between the groups (p= 0.16).

Figure 5 depicts representative wPLI results of one patient’s
(Patient 2) response to right median nerve stimulation and shows
the evaluation of the connectivity between the contralateral
S1/M1 ROI (left hemisphere) and all cortical locations used
in the MEG source estimation. Interhemispheric connectivity
(Figure 5, lower two panels) was distinct, especially around the
homologous S1/M1 ROI (highlighted in the inset figure) in the
time range of 30–50ms. Similar to the findings in the previous
section, the distinct time courses of the spatial patterns of wPLI in
the right and left hemispheres suggest that the interhemispheric
connectivity results were not caused by artificial cross-talk in the
MEG source estimates.

Analysis of the average wPLI for the time-frequency
window of interest (30–50ms and 30–100Hz) between
the contralateral S1/M1 ROI and all DK regions revealed
significantly higher values in the patients than in HCs for the
homologous ROI, precentral gyrus (PreC), postcentral gyrus
(PoC), and other regions interhemispherically. Interestingly,
the intrahemispheric IP connection was also revealed as highly
significant. All statistically significant connections are listed in
Supplementary Table 1.

The all-to-all connectivity analysis revealed significant
connectivity between several pairs of regions in which S1/M1
was included: PreC-PreC, PoC-PreC, IP-PreC, and IP-PoC
interhemispherically (contralateral region-ipsilateral region),
and PreC-IP and PoC-IP intrahemispherically (contralateral
region-contralateral region; Figure 6). All statistically significant
connections are listed in Supplementary Table 2. These results
suggest that in the patients with BCR the contralateral S1/M1
was strongly connected to the ipsilateral M1 at 30–50ms via the
contralateral IP.

DISCUSSION

The presence of BCR provides concrete neurophysiological
evidence that bilateral M1 are strongly involved in the
response to unilateral somatosensory input. Our results
revealed bilateral SEF activity (Figures 2B, 3) and enhanced
interhemispheric connectivity (Figures 4–6) in patients with
BCR. The time delay between contralateral and ipsilateral
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FIGURE 3 | Spatiotemporal distribution of the estimated cortical activity that generated the somatosensory-evoked field following right median nerve stimulation in

one patient (Patient 2). Ipsilateral activity (right hemisphere) at around 40ms (red rectangle) was observed exactly in the ipsilateral S1/M1 region of interest (ROI; green

shaded area, highlighted in the inset figure). At 45ms, contralateral activity remained prominent, whereas the ipsilateral did not. PoC, postcentral gyrus; PreC,

precentral gyrus.

activity corresponded to the CR-BCR time lag (Table 2). The
early enhanced connectivity between contralateral S1/M1 and
ipsilateral M1 occurred within 50ms, which was mediated by the
contralateral IP (Supplementary Tables 1, 2). The MEG results
provide novel insights into the pathophysiological mechanism
underlying BCR, suggesting that homologous S1/M1 are strongly
connected, probably transcallosally, and that the IP mediates the
transcallosal connectivity.

Cross-Talk Is Prominent in the Presence of
a Giant SEP
Previous EEG studies have shown ipsilateral SEP activity in
patients with BCR. Shibasaki et al. (3) observed a CR-BCR time
delay of 9–11ms in four out of eight patients with progressive
myoclonic epilepsy, and Wilkins et al. (10) found a 10-ms delay
in one out of seven Alzheimer’s disease patients. Ikeda et al. (12)
reported a 9-ms delay in one out of two patients with cortical
tremor, and Brown et al. (11) comprehensively investigated BCR
and reported in three out of nine patients with cortical myoclonus
a delay of 10–16ms. In these EEG studies, ipsilateral hemispheric
activity was also observed with a time delay of 9–15ms (3) and
9–18ms (11), respectively, from the peak of the contralateral
P25 to that of the ipsilateral homologous component. In the

present study the cortical time delay was 7–12ms. The wide
variability in the cortical time delays could be due to differences
in the patient populations among the studies and, perhaps more
importantly, to differences between EEG and MEG in their
sensitivity to specific source components of the evoked response.
As shown in Figure 1, ipsilateral activity measured using EEG
was less clear because of volume conduction effects related to
the giant component (4) and limited spatial resolution (53, 54).
EEG waveforms can be a mixture of overlapping scalp potentials
generated by bilateral activity (55). Thus, investigations of
ipsilateral activity as well as whole-brain connectivity using
EEG is challenging with the presence of prominent contralateral
activity (i.e., a giant component of SEP). To the best of our
knowledge, no previous studies have investigated bilateral SEF
activity with a giant component in myoclonus patients. In the
current study using MEG, the spatiotemporal distribution of the
estimated ipsilateral activity was clearly spatially distinct from
that of contralateral activity (Figures 2B, 3). This suggests that
the MNE source localization can ameliorate leakage effects (56,
57), thereby making it possible to dissociate ipsilateral activity
from the giant contralateral activity.

The difference in the observed cortical time delay (9.4ms) and
the CR-BCR onset time lag (8.4ms) may be due to the use of
the peak latencies of the cortical responses. Measuring the onset
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FIGURE 4 | Measures of cortical synchrony following median nerve

stimulation. (A) Time-frequency plots of grand-averaged intertrial phase

coherence (ITC) in contralateral and ipsilateral S1/M1 regions of interest (ROIs;

left and right panels, respectively). (B) Time-frequency plots of weighted

phase-lag index (wPLI) between homologous S1/M1 ROIs. Upper panels:

patients with bilateral C-reflex; lower panels: healthy controls. White rectangles

show the time window of 30–50ms and the frequency window of 30–100Hz.

rather than the peak times of the motor cortex activity in each
hemispheremight provide a delay time closer to that observed for
the CR-BCR time lag. However, because contralateral N20m and
P25m are close in time and space, it is very difficult to determine
the precise onset of the P25m reliably.

As an alternative approach to modeling the bilateral S1/M1
sources, we also attempted to use a double ECD model (58).
However, we found a good fit in only one patient; presumably the
small magnitude of the ipsilateral S1/M1 sources made the two-
dipole fitting unstable in our cases. An advantage of distributed
source models like the MNE is that only minimal assumptions
are required; for example, there is no need to specify a priori the
number of sources. For the localization of contralateral S1, MNE
of SEP has been found to provide accuracy comparable to that
obtained with ECD (59).

Ipsilateral Activity in Patients With BCR as
a Homologous Motor Response of the
Contralateral Giant Component
The precise generator source of the giant SEP/SEF has not been
fully elucidated; however, motor cortical hyperexcitability has
been suggested to be involved (6, 7, 60, 61). Specifically, in
a transcranial magnetic stimulation (TMS) study using short-
interval intracortical inhibition, Hanajima et al. (61) suggested
a pathological mechanism in patients with cortical reflex
myoclonus whereby inhibitory GABAergic interneurons of the
motor cortex are directly affected.

Our findings suggest that ipsilateral activity is homologous to
the giant P25m component. First, the time difference between
the peak latency of the giant P25m and CR onset was 10.7 ±

2.1ms. This time difference indicates the conduction time from

the contralateral M1 to the stimulated muscle, in response to
the electrical stimulation (1, 3, 5, 9, 13, 62). Similarly, the time
difference between the peak latency of ipsilateral activity and
BCR onset was 9.7 ± 3.3ms. This time difference is assumed to
correspond to the conduction time from the ipsilateral M1 to the
non-stimulated muscle associated with BCR.

Second, the connectivity analysis indicated a strong
connection between the homologous motor cortices in patients
with BCR (Figure 6; Supplementary Tables 1, 2). Significant
connections were revealed interhemispherically between PreC–
PreC and PoC–PreC, but not between PoC–PoC (contralateral
region-ipsilateral region, Figure 6 and Supplementary Table 2).
This finding is compatible with a previous report by Terada
et al. (63), which suggested that there is no interhemispheric
connection between bilateral somatosensory areas in humans.
Instead, bilateral motor cortices may be strongly related to
BCR. Sensory inputs to the M1 have been suggested to be
closely associated with the performance of the opposite M1
transcallosally (13, 64, 65). It is generally accepted that the
transcallosal connection is inhibitory (66); interhemispheric
inhibition of TMS is mediated by a facilitatory transcallosal
population synapsing onto a local inhibitory population in the
motor cortices (67), and the local deficit in inhibitory GABAergic
neurons was shown in the motor cortices of patients with cortical
reflex myoclonus (61). On the basis of inhibitory transcallosal
connections, we hypothesize that the enhanced connection
between the bilateral motor cortices may be compensating for
the physiological inhibitory connection of hyperexcitable motor
cortices in patients with BCR. This could be confirmed in a
future TMS study.

Ipsilateral Activity Within 50ms in Healthy
Controls Cannot Be Detected Reliably
HCs did not show prominent ipsilateral SEF activity within
50ms (Figure 2B). Bilateral receptive fields have been reported
in non-human primates (68). In the human brain, various
approaches have been used to search for an equivalent bilateral
representation of somatosensory information at the lower level.
These approaches included SEP/SEF (39–41, 69–75) and fMRI
(76, 77). However, these studies demonstrated that detection
of ipsilateral responses in humans is highly variable and are
not reliably found in the left or right hemispheres (42).
Early physiological ipsilateral SEP/SEF activity is weak and is
difficult to detect reliably using sensor-space analysis, which is
susceptive to volume-conduction (41, 69, 70, 73–75), or source-
based analysis, which relies on a complete source model (39,
40, 71, 72). Moreover, most results showed ipsilateral activity
after 50ms. Considering that S2 activation arises after 50ms,
it remains controversial whether somatosensory information
carried by the median nerve reaches lower level sensorimotor
areas of both the ipsilateral and contralateral hemispheres within
50ms. In one paper that used blind source decomposition
(42), ipsilateral SEP activity within 50ms was observed in
healthy subjects in both the left and right hemispheres.
Therefore, we believe that our results of ipsilateral activity
in patients with BCR represent excessive enhancement of the
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FIGURE 5 | Spatiotemporal distribution of the weighted phase-lag index (wPLI) between the contralateral S1/M1 region of interest (ROI; green shaded area in the left

hemisphere) and the rest of the cortex following right median nerve stimulation (Patient 2). The wPLI was averaged over the 30–100Hz frequency window, which was

identified using the intertrial phase coherence (see Figure 4A). Top two panels: interhemispheric connectivity; bottom two panels: intrahemispheric connectivity.

Interhemispheric connectivity was distinct in the time range of 30–50ms, especially in the S1/M1 ROI, whereas intrahemispheric connectivity showed a different

pattern in the temporoparietal region. The inset shows a magnified view of the ipsilateral S1/M1 region at 40ms, which corresponds to the red rectangle. PoC,

postcentral gyrus; PreC, precentral gyrus.

physiological components of normal ipsilateral activity, rather
than occurrence of an abnormal component. This assumption
is consistent with previous studies of giant SEPs, which suggest
that a giant contralateral SEP may result from pathological
enhancement of certain cortical components of a normal
SEP (4, 78).

Pathophysiology of Initiation of BCR via a
Hyperexcitable Transcallosal Pathway
Possible pathways initiating the BCR include the transcallosal
pathway, direct input to the ipsilateral M1, the thalamic
ascending projection, and top-down inputs from S2. Our
findings suggest that the transcallosal pathway is the most
likely (3, 10, 11). First, direct peripheral input to ipsilateral M1
and direct input from the contralateral nucleus of thalamus
are unlikely because these pathways cannot explain the CR-
BCR time lag or cortical delay between the ipsilateral and
contralateral hemispheres. Kanno et al. (39) reported two
epilepsy patients who showed ipsilateral SEF activity without
CR/BCR. These patients who had severe left hemispheric
damage showed no contralateral activity in response to right

median nerve stimulation, however, they showed ipsilateral
activity in S1. The authors suggested that the ipsilateral
activity was due to direct peripheral input to the ipsilateral
S1. However, ipsilateral activity in their study occurred after
50ms. Thus, this abnormal ipsilateral response differs from
the activity related to BCR. Second, given that S2 displays
initial activation at around 60–70ms after stimulation (43), the
early spread of cortical excitation in BCR occurring within
50ms is too early to be consistent with top-down inputs
from S2 (43). Furthermore, in patients with cortical reflex
myoclonus, excitability of S2 is not pathologically enhanced (6).
Thus, the involvement of S2 is unlikely to be the pathway of
BCR. Instead, the transcallosal pathway is the most reasonable
explanation for the initiation of BCR. Moreover, this is
compatible with the aforementioned physiology of inhibitory
transcallosal connection.

The Modulating Role of IP in Disinhibition
of Transcallosal Inhibitory Process
Our results suggest that the bilateral representation of
sensorimotor responses is associated with pathologically
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FIGURE 6 | Results of the all-to-all connectivity analysis visualized on a circular representation, showing only the connections involving the S1/M1 regions.

Connectivity was measured using the averaged weighted phase-lag index value over the 30–50ms and 30–100Hz time-frequency window of interest. A negative

10-based logarithm of uncorrected p values (uncorrected p < 5 × 10−4) is indicated by the color bar. The schematic image of significant connections that contains

each of PreC, PoC, and IP is shown in the subfigure.

enhanced disinhibition of transcallosal inhibitory processes
within M1 cortices. In addition to the connections between
homologous S1/M1, connectivity (i.e., wPLI) was significantly
enhanced between the contralateral IP and bilateral S1/M1
(Figure 6; Supplementary Tables 1, 2). These results suggest
that the contralateral IP mediates BCR by involving bilateral
S1/M1. The healthy motor cortex orchestrates movement, and it
is likely that transcallosal inhibition acts to transform elemental
mass movement into a meaningful pattern of synergistic
activity. Upon receiving a movement command from higher
centers, i.e., IP, this cortical inhibition enables an appropriate
output to be produced and inappropriate movements to be
suppressed (79). IP is crucial for sensorimotor transformation

(80–82) and contains a rich variety of transcallosal neurons
that are responsive to different sensory stimuli that discharge
in association with different types of movements (83, 84).
Moreover, it has a physiological facilitatory transcallosal
connection to bilateral M1 (67, 85). Therefore, IP may have an
important role on controlling motor movements seen in BAFME
patients with BCR. The wPLI is a correlation-based measure
that as such cannot determine whether the involvement of IP
is direct or indirect. However, it is reasonable to assume that
the involvement of IP is indirect: the primary contribution in
BCR is likely to be the interhemispheric connection between
bilateral S1/M1. IP may have a secondary or modulating role
in BCR. Based on this assumption, we propose that modulation
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of IP excitability may be beneficial for controlling BAFME
symptoms. This should be investigated in a prospective study
using non-invasive TMS.

Limitations
The stimulus parameters were not consistent among subjects
or within subjects (SEP and SEF) because SEP and SEF were
measured with different clinical purposes (long latency vs. short
latency). AEDs may have affected SEP/SEF and connectivity
analyses. Several studies have reported no significant differences
in SEP during treatment with AEDs (86–88); however, one study
showed suppressed amplitude of giant SEPs under AEDs (12).
Patient 2 was treated with a sodium channel blocker sometimes
worsening the myoclonus. Since replacement to other AEDs had
worsened the myoclonus, we continued the current regimen.
Therefore, drug naïve patients would be desirable.

The rarity of the BCR caused several concerns. First, the
number of participants were small. We disregarded hemispheric
dominance and concatenated the conditions for analysis to
obtain significant statistics (7 vs. 30 arms). The wPLI results
may have been affected by hemisphere dominance when
the IP, a higher cognitive area, was involved. However, we
found minimal differences in wPLI from the IP between the
dominant and non-dominant hemispheres. Second, the types
of participants in the current retrospective study were limited
to BAFME patients among the cortical reflex myoclonus.
A recent study suggested that the cortical excitability of
BAFME may be different from that of other non-BAFME
diseases (89). Thus, the current findings may be more specific
to BAFME rather than other diseases with cortical reflex
myoclonus in general. Therefore, more patients need to be
recruited to fully investigate the general pathophysiology
of BCR.

Conclusions
The current MEG results confirmed bilateral SEF activity in
patients with BCR and suggested that the transcallosal pathway
is the probable pathway that initiates BCR. Disinhibition
of transcallosal inhibitory processes within M1 cortices
were related to the bilateral representation of sensorimotor
responses. Hyperexcitable motor cortices were mediated by the
contralateral IP.
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Experimental designs are of utmost importance in neuroimaging. Experimental repertoire

needs to be designed with the understanding of physiology, clinical feasibility, and

constraints posed by a particular neuroimaging method. Innovations in introducing

natural, ecologically-relevant stimuli, with successful collaboration across disciplines,

correct timing, and a bit of luck may cultivate novel experiments, new discoveries, and

open pathways to new clinical practices. Here I introduce some gizmos that I have

initiated in magnetoencephalography (MEG) and applied with my collaborators in my

home laboratory and in several other laboratories. These gizmos have been applied to

address neuronal correlates of audiotactile interactions, tactile sense, active and passive

movements, speech processing, and intermittent photic stimulation (IPS) in humans. This

review also includes additional notes on the ideas behind the gizmos, their evolution, and

results obtained.

Keywords: accelerometer, audiotactile, illusion, somatosensory, motor, stimulation

INTRODUCTION

Although life is multisensory in nature, it is worth investigating sensory modalities with dedicated
stimulators separately with neuroimaging methods. For this purpose, we need natural, ecologically-
relevant stimuli which stimulate each sensory modality specifically and do not interfere with the
neuroimaging modality used.

For example, magnetoencephalography (MEG) and electroencephalography (EEG) provide us
tools to evaluate a given sensory system and its neuronal correlates and use the results in clinical
assessments as guided in the clinical practice guidelines (1). For example, electric stimulation
applied over the peripheral nerve is preferred to elicit somatosensory-evoked potentials (SEPs)
and somatosensory-evoked fields (SEFs). Such a strong and non-specific sensory stimulus works
perfectly to address neuroscientific questions, for example, what is the given peak latency and
where the corresponding cortical representation is located. To be honest, such an approach works
in most of the cases perfectly. However, such a sensory stimulus does not stimulate peripheral
mechanoreceptors, for example, Pacinian corpuscles, proprioceptors, and slowly conducting tactile
fibers specifically. Thus, we may miss some specific attributes in stimulation to address more
detailed possibilities in basic research and clinical practice.

Why do not we have ecologically relevant, naturalistic stimulators in use in MEG? The answer is
very simple—they are not commercially available. Availability may be limited due to the estimated
market size which is typically considered to be not large enough for introducing new stimulators
taking into account regulatory processes needed for medical devices.

There are two main approaches to introduce a novel stimulator in MEG. One approach is to use
an original idea in basic research, apply it with an in-house built and locally-approved stimulator

57

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2021.814573
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2021.814573&domain=pdf&date_stamp=2022-01-27
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:veikko.jousmaki@aalto.fi
https://doi.org/10.3389/fneur.2021.814573
https://www.frontiersin.org/articles/10.3389/fneur.2021.814573/full


Jousmäki Gizmos for MEG

within a small number of subjects as investigator-initiated
studies, and publish the results. The other approach is
to file invention disclosures and proceed with patent
applications to protect the immaterial property rights
(IPRs) first and then proceed to collect the evidence in a
multicenter study with the documented stimulator. Both
approaches will take time and effort without any promise of the
final outcome.

Here, I will present a few cases that I have initiated in MEG
and, together with my collaborators, used successfully to discover
novel findings. I have used mostly the basic research approach in
introducing gizmos for MEG research.

MEG MARKET

Before entering to the gizmos, it is worth checking the status
quo in MEG including the market size, market forecast, main
vendors, and stimulators. With more than 200 MEG devices
in active use, non-invasive MEG plays a vital role in basic
research and clinical applications. The clinical use of MEG is
presented in recent surveys (2–7). With two clinical applications,
namely presurgical functional mapping and localizing of epileptic
foci, MEG is very useful in epilepsy and presurgical evaluation.
Although MEG performed only in a fraction of epilepsy patients,
it has a huge potential in epilepsy centers.

At present, all commercially available whole-head MEG
systems approved by US Food and Drug Administration (FDA)
are using superconducting quantum interference (SQUID)
technology with liquid helium. Whole-head MEG systems
utilizing optically pumped magnetometer (OPM) technology are
now available for research purposes (8–13).

The main market areas for MEG are Northern America,
Europe, and Asia. MEG market is gradually expanding.
According to a recent market review by Verified Market
Research (https://www.verifiedmarketresearch.com/product/
magnetoencephalography-market), the MEG market size was
valued∼200 million USD in 2020 and is projected to reach∼300
million USD by 2028. The main fuels for the market rise are the
prevalence of brain diseases and growing popularity due to its
non-invasive nature. The MEG market growth is estimated to
be driven by the increase of MEG centers and advancements in
OPM technology.

Main MEG vendors, for example, CTF (CTF MEG Neuro
Innovations Inc, Coquitlam, BC, Canada; http://ctf.com),
MEGIN (MEGIN Oy, Helsinki, Finland; http://megin.fi),
NeuroScan (Compumedics Limited, Abbotsford, Victoria,
Australia; https://compumedicsneuroscan.com), and Ricoh
(Ricoh USA Inc., Tustin, CA; https://www.ricoh-usa.com),
typically list a limited number of validated stimulators. These
stimulators for visual, somatosensory, and auditory modalities
have been tested according to the regulatory requirements
concerning medical devices. Here, it is the FDA since the
main market resides in the USA. Local approvals, for example,
CE marking in the European Economic Area, may also be
required. FDA-approved stimulators are typically provided by
another vendor selling these devices also for other functional

neuroimaging modalities, and these stimulators have been tested
as a part of the MEG system.

Typically, a stimulation system in MEG is controlled with
a commercial software package, for example, Presentation
(Neurobehavioral Systems Inc., Berkeley, CA; https://www.
neurobs.com), Stim2 (Compumedics Limited, Abbotsford,
Victoria, Australia; https://compumedicsneuroscan.com), or
E-Prime (Psychology Software Tools, Inc., Pittsburgh, PA;
https://pstnet.com/). Many experienced and technically strong
MEG teams have their own in-house built or third-party
stimulators and software in use, for example, PsychoPy (https://
psychopy.org) and Psychophysics Toolbox (http://psychtoolbox.
org). Given the efforts needed for FDA clearance, third-party
software packages and toolboxes are typically more flexible
for research-oriented MEG compared with FDA-cleared
software packages.

DESIGNING GIZMOS

Magnetoencephalography and electroencephalography share the
same origin of signals and temporal resolution. These aspects at
theoretical, instrumentational, mathematical, and practical levels
are depicted in details in Hari and Puce (14) and Hämäläinen
et al. (15). Most of the commercially available stimulators and
monitoring devices used commonly in other neuroimaging
modalities, for example, functional magnetic resonance imaging
(fMRI) and EEG, are not readily MEG compatible. Why MEG
is so vulnerable to interferences? MEG sensors are very prone to
magnetic and radiofrequency fields—this is the main reason for
using the magnetically shielded room (MSR) in MEG to suppress
ambient electromagnetic noise and to keep MEG sensors within
their dynamic range.

Artifacts in MEG include several sources inside and outside
the MSR, for example, ambient noise, various physiological
signals, movement artifacts, and intrinsic MEG noise (16). Here,
we focus on those elicited by stimulators and monitoring devices.
Interfering artifacts inside the MSR may be elicited by magnetic
materials moving close to MEG sensors, electric currents, ground
loops, and radiofrequency disturbances associated with a given
stimulator. For example, magnetic materials close to the MEG
sensors combined with deep breathing, task-related movements,
utterances, and ballistocardiographic body movements may
give rise to disturbing artifacts in MEG. Here, the distance
really matters—devices next to the MEG sensors need to be
carefully tested for possible magnetic artifacts whereas devices
fixed on the floor at a distance from the MEG sensors may
contain some magnetic particles. Although noise suppression
methods, for example, high-pass filtering, may help to attenuate,
these low-frequency artifacts in MEG signals of interest may
overlap with, for example, movement frequency. In such cases,
more advanced noise suppression algorithms, for example, the
temporal extension of signal space separation (17), maybe useful
to attenuate artifacts leaving brain signals intact (18, 19).

It is important to note that implanted stimulators, for
example, cardiac pacemakers, deep brain stimulators, and vagal
nerve stimulators, contain magnetic particles and will cause
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severe artifacts in MEG. Given the dynamic range of the modern
superconducting MEG systems, MEG measurements are feasible
although off-line processing is needed to separate artifacts from
the brain signals (20–23).

Digital signals cause RF interferences, and thus, analog signals
are preferred inside the MSR. Cables entering the MSR should be
filtered to rule out any potential RF interference since cables may
act as antennas bringing external RF interference to the MSR.
Direct current battery-operated devices are preferred to reduce
possible interferences and ground loops to avoid deteriorated
MEG signal quality.

Safety aspects and regulations concerning medical devices
need to be taken into account, too.

Sensor manufactures, vendors, and suppliers provide huge
selection of sensors and materials to choose from finding suitable
ones for MEG purposes which take testing, time, effort, and luck.
Vendors and suppliers do not specify MEG compatibility, and
non-magnetic does not necessarily mean non-magnetic in MEG.
Materials should be tested and selected carefully, and an MEG
device can be utilized to find suitable materials since it picks up
magnetic disturbances easily.

Material selection and manufacturing processes are of major
importance in MEG. Most materials, for example, wood, plastic,
and metals, can be used in MEG which provided that they
are non-magnetic. However, some dyes are magnetic, and
some materials typically considered to be non-magnetic, for
example, aluminum and copper, may turn out to be magnetic
due to the recycling processes introducing magnetic deposits.
Manufacturing processes may also introduce magnetic artifacts,
for example, a chrome-tipped solder iron will leave magnetic
chrome deposits in soldering whereas copper tip does not cause
such problems. In addition, some manufacturing processes,
for example, modern gold-plating technique with magnetic
nickel sublayer, cause major disturbances in MEG. Once again,
the distance matters. A gold-plated EEG electrode typically
introduces artifacts in MEG since it will be next to the
MEG sensors and it will move with respect to the MEG
sensors due to breathing, task-related movements, utterances,
and ballistocardiographic movements whereas a gold-plated
connector fixed on the floor of the MSR can easily be used
without any artifacts in MEG.

Taking all these together, a novel stimulator or monitoring
device has to be safe and easy to use, fulfill the local regulations,
have local approvals, compatible with existing MEG systems,
and should synchronize with the MEG data acquisition and
stimulation systems precisely. As a physicist, I would like to say
that the task is well-defined and feasible. Let me now introduce
some gizmos.

AUDIOTACTILE INTERACTIONS

Investigational approaches and their evolutions in multisensory
interaction studies are well-covered in multisensory textbooks
(24–26). Multisensory research is dominated by audiovisual
research whereas audiotactile interactions, that is, how tones or
noise bursts affect roughness perception (27), are scarce.

Magnetoencephalography has a huge advantage over
fMRI especially in auditory and audiotactile domain since
MEG acquisition is practically silent whereas fMRI involves
concomitant high-intensity ambient noise associated with
gradient coils and cryocooler. In addition, direct coupling to
neuronal activity facilitates MS precision in MEG, and thus very
detailed investigations related to neuronal processing involved.

We started to study the brain mechanisms underlying the
largely unexplored audiotactile interactions in MEG in the
90’s. Obviously, these experiments also required a novel MEG-
compatible vibrotactile stimulation device.

It all started with an authentic audiotactile illusion discovered
while testing an MEG-compatible microphone system. We
coined the illusion as a parchment skin illusion (28) in which
concomitant auditory feedback of the self-performed hand
rubbing sound changes the perceived tactile sensation of the
hands. The illusion is an excellent example of multisensory
top–down processing in the brain. Later, the parchment skin
illusion has been listed as one of the seven ways to fool your
sense of touch freaky feelings (29) by New Scientist magazine.
Charles Spence with his coauthors has exploited audiotactile
illusions utilizing similar approaches in multisensory studies
concerning, for example, roughness estimation (30) and crispness
and staleness of potato chips (31) which earned them the Ig Nobel
Prize in 2008.

I have learned audiotactile interactions in my childhood while
playing with my two congenitally deaf cousins. Deaf persons use
their tactile systems, that is, mechanoreceptors on the skin, for
example, to efficiently control their voice and listen to music.
With this background, we conducted a very unconventional
experiment to demonstrate the activation of the auditory cortices
in response to vibrotactile stimulation in a congenitally deaf
adult. My new vibrotactile stimulator (see Figure 1), was crucial
for the success of this study, which resulted in the first MEG
publication showing a novel evidence on the plasticity in the
auditory cortices in a congenitally deaf adult (32).

Investigations on audiotactile interactions with the
vibrotactile stimulator have shed light on how hands help
and activate auditory cortices in normal hearing subjects by
means of MEG and fMRI recordings (33–35).

I consider that devices based on audiotactile interactions
could be used efficiently in improving speech perception in noisy
environments and hearing-disabled persons. In addition, such
devices could be useful for rehabilitation purposes.

TACTILE STIMULATION

The human tactile system provides us with an amazing
spectrum of feedback, which enables us to perform tasks
that require utterly precise motor control, such as playing
musical instruments, and to sense minute vibrations. Touch even
carries social and affective information (36) which is essential
in our non-verbal communication. Unfortunately, fine-tuned
tactile MEG-compatible stimulators are not readily available,
largely preventing investigation of the tactile system with such
ecologically-relevant stimuli.
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FIGURE 1 | Left: The evolution of the house-built vibrotactile stimulator. The original vibrotactile stimulator was used to investigate a congenitally deaf adult (32). Right:

The evolution version with a dedicated band-pass (100–500Hz) filter was used later (33–35). Note that the original version has a balloon which vibrates by sound

elicited by a standard loudspeaker whereas the later version uses a blind-ended silicone tube contributing to the reduced auditory contamination. White noise

masking was typically used to reduce the auditory contamination.

My original motivation was to find a way to get a precise
trigger from the onset of the touch associated with von Frey
monofilaments, which is used commonly for testing sensory
thresholds of the human skin. It would open new pathways
to study subthreshold tactile stimulation in MEG. Finally,
I managed to discover a working solution comprising of
a multifilament optic cable (Schott AG, Mainz, Germany)
and an optosensor (Omron, Osaka, Japan) (see Figure 2).
Multifilament optic cables consisting of hundreds of 50-µmfibers
are used commonly for lightning in harsh environments. The
multifilament cables are rather flexible and usable for infrared
and visible light without any major attenuation. My approach
is based on the idea that multifilament optic cable can be
divided into two halves—one half for emitting the light from the
optosensor and the other half to detect the reflection from the
object. This innovation allowed us to generate a trigger from the
skin contact at an accuracy of 1mm in MEG recordings.

The first experiments with the novel brush stimulator, as
we coined it at the time, were carried out at the National
Rehabilitation Center (Tokorozawa, Japan). We used the brush
stimulator to stimulate skin at the fingertip and lip and located
the corresponding cortical sources (37). Later, the same approach
has been used in several unique experiments shedding light on
differences in pure observing and self vs. externally produced
tactile stimulation with accurate and precise tactile stimulation
in MEG (38, 39).

SENSORIMOTOR MAPPING

As we know, motor cortices control actual movements,
and peripheral feedback is used to fine-tune motor actions
continuously. Such a closed-loop offers interesting options for
monitoring efference and afference involved.

Magnetoencephalography has been used for functional
sensorimotor mapping. Unfortunately, MEG recordings may
be disturbed by large movements during the recordings, and
thus, motor activities are typically limited to isometric muscle
contractions or finger and foot movements. These issues can

FIGURE 2 | The original design for the tactile stimulator, a.k.a. woodpecker,

used in tactile stimulation studiers (37, 39) is based on multifilament optical

fiber (Schott Spectraflex; Schott AG, Mainz, Germany) and photosensor

(Omron, Osaka, Japan). Note that the design of the handle limits the maximum

force on the skin similarly as in an aesthesiometer based on von Frey filaments.

be mitigated using appropriate signal processing algorithms
to compensate head movements, for example, signal space
separation method (17). Such methods produce sufficient MEG
signal quality to compensate low-frequency, smooth body
movements but are limited to compensate for strong, brisk, and
fast body movements.

Clinical practice guidelines list several protocols, for example,
recording the premovement shift and corticomuscular coherence
(CMC), for evaluating and locating motor cortices in MEG (1,
40). Typically, protocols require cooperation and results depend
on the subject’s performance level. In particular, disabled subjects
may find these protocols very difficult to perform. On the other
hand, motor mapping is clinically important in the preoperative
evaluation of patients undergoing neurosurgery and could also be
used during rehabilitation following a stroke or accident.

Frontiers in Neurology | www.frontiersin.org 4 January 2022 | Volume 12 | Article 81457360

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Jousmäki Gizmos for MEG

FIGURE 3 | A typical setting in corticokinematic coherence studies (42–44)

with a lightweight accelerometer (ADXL335; Analog Devices Inc, Norwood,

MA) attached on the finger nail to pick up hand movements. Note that flexible

cable allows natural hand movements.

My motivation was to find an alternative solution for motor
mapping using accelerometers to combine hand movements
and MEG signals. The first accelerometers, for example, 40G
Motorola accelerometers, that I tested in the late 90’s were
designed for the car industry and were far too magnetic and
insensitive for the purpose. Ten years later, I stumbled upon an
MEG-compatible 3D accelerometer ADXL330 (Analog Devices
Inc., Norwood, MA) with analog output and 3G range—
such accelerometers were used, for example, in Wii remote
by Nintendo Co (Osaka, Japan). The component itself is
non-magnetic although the operating current introduces some
magnetic signals at a close distance, say within 50 cm from the
MEG sensors.

At first, I envisioned three uses of the accelerometer in
MEG: monitoring self-paced hand movements, monitoring
the fundamental frequency of the voice, and using it as a
response pad. Soon, we discovered that a similar approach
had been already used to detect the onset of the motor
movements (41). We set out to investigate possibilities for motor
mapping using an accelerometer to record continuous self-paced
movements at the Hôpital Erasme (Université Libre de Bruxelles,
Brussels, Belgium).

We conducted measurements in MEG with an accelerometer
attached to the finger (see Figure 3), whereas the subject
was mimicking Parkinsonian tremor for three min. We could
easily see a systematic coherence between the accelerometer
and MEG signals. This discovery heralded the use of a new
method to locate and monitor the activity at the primary
somatomotor cortices during active and passive movements, and
we coined the approach as corticokinematic coherence (CKC)
in which coherence is calculated between movement kinematics
monitored with an accelerometer and MEG signals (42).

Corticokinematic coherence studies published have shed
light to address, for example, self-paced and externally paced

FIGURE 4 | A 4-channel movement actuator system based on PAMs. Similar

PAMs were used in studies using computer-controlled PAM stimulator. Note

that the uppermost artificial muscle is contracting due to compressed air pulse

applied on the muscle and the muscle is relaxed when it is depressurized. The

maximum movement range of the muscle in the figure is about 10mm, that is,

20% of the original length.

movements (43), kinematics of the movements at various
movement rates, and comparisons between hand-action-related
acceleration, force, pressure, and electromyogram as a reference
for CKC (44). CKC seems to reflect mainly movement-related
proprioceptive afference (45), and thus, it is a very attracting tool
to study proprioceptive systems in healthy and disabled subjects.
In addition, CMC and CKC methods seem to complement each
other (46). CKC studies have also provided a starting point
to a possible bedside testing protocol to assess sensorimotor
integration in newborns (47, 48).

Magnetoencephalography -compatible accelerometers have
also been used successfully to study speech perception in humans
to address coupling to the speech real-life situations (49–51). In
addition, such accelerometers can be used to pick up utterances in
a language testing paradigm in transcranial magnetic stimulation
studies (52).

Since both self-paced and externally paced movements
activate the same network in the brain, a computer-controlled
stimulator for delivering precise and accurate finger movements
comes very attractive. I discovered pneumatic artificial muscles
(PAMs), originally invented in the 50’s. These actuators are like
badly designed pneumatic tubes expanding and shortening when
pressurized (see Figure 4). Aramid fibers in the tube will push the
muscle to its original length when the pressure is released. Such
an actuator can be easily controlled by pneumatic relays outside
the MSR.

Pneumatic artificial muscle-based stimulators have been used
in MEG, for example, in healthy subjects (53), Parkinson’s
patients (54), and Friedreich ataxia patients (55, 56) to explain
proprioceptive afference and its impairment. Another PAM-
based device (see Figure 5), has been used in investigations on
slowly conducting tactile, that is, CT fibers contributing to gentle
touch in MEG (57). In addition, PAM-based devices have been
successfully used in fMRI studies (58–60).
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FIGURE 5 | Left: The brush robot at NatMEG (Karolinska Institutet, Stockholm, Sweden) used to study gentle touch, that is, slowly conducting tactile (CT) fibers (57).

Right: The brush robot uses similar PAMs as the PAM stimulator as the device in the Figure 4. Note that the computer-controlled device contains two PAMs for lifting

and moving the brush, load cell to measure the force applied on the skin, accelerometer to monitor the movement, and two multifilament optic fibers to pick up the

velocity of the brush movement and skin contact of the brush.

FIGURE 6 | The design sketch of the Euphotic intermittent photic stimulation device (patents pending) using a unique diffuse light concept both in eyes-open and

eyes-closed conditions. Note that the Euphotic IPS device allows unique option for simultaneous visual stimulation in eyes-open condition.

INTERMITTENT PHOTIC STIMULATION

Clinical practice guidelines in MEG (https://www.acmegs.org/
clinical-resources/practice-guidelines) define widely accepted
clinical practices and provide an excellent view to the present
state in clinical MEG. Comparison of the clinical practice
guidelines in EEG (https://www.acns.org/practice/guidelines)
indicates that MEG is still limited in use since clinical EEG has
several applications that MEG misses. For example, intermittent
photic stimulation (IPS) test is a vital part of clinical EEG with
benefits whereas it is not mentioned in clinical MEG since
commercial MEG-compatible IPS devices are not available.

Intermittent photic stimulation test is used in clinical EEG to
study the cortical excitability during eyes open and eyes closed
conditions (61). In patients with photosensitive epilepsy, IPSmay
cause epileptiform activity and even epileptic seizures (62).

Intermittent photic stimulation stimulators have progressed
from the early xenon-based stimulator to modern LED-based
devices (63). However, both types of IPS devices are not
MEG compatible.

The idea to introduce novel IPS stimulator was triggered by
the missing definition IPS in MEG in clinical practice guidelines.
In this case, I filed an invention disclosure at Aalto University,
and we have filed US and European patent applications to protect
the ideas for potential commercial use. The euphotic team at

Aalto University (Espoo, Finland) is developing the novel diffuse
light concept in IPS further. With the novel Euphotic IPS device
(see Figure 6), it is feasible to stimulate one or two eyes at the
same time and use diffuse light both in eyes-open and eyes-
closed conditions. In addition, it is a portable system and does not
require eye fixation or focusing on the IPS device. The Euphotic
IPS device is fully MEG compatible.

At present, the Euphotic project has established a preliminary
business plan to take the authentic idea further and faster than in
my previous innovations. The Euphotic project aims to collect
patient and normative database and analysis tools to help to
introduce IPS in clinical MEG.

Feasibility studies with Euphotic IPS device have ethical
approvals at Cognitive Neuroimaging Centre (Nanyang
Technological University, Singapore) and Aalto NeuroImaging
(Aalto University, Espoo, Finland). Unfortunately, the COVID-
19 outbreak has caused severe delays in MEG measurements in
healthy subjects both in Singapore and Finland.

CONCLUSIONS

As I have shown above, investigating sensory systems with
natural, ecologically-relevant stimuli is feasible in MEG. First,
Pacinian corpuscles can be selectively stimulated in MEG, and
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such stimuli can be utilized to study audiotactile interactions
in congenitally deaf and normal hearing subjects. These novel
findings help us to understand plasticity in the brain and how
tactile sense affects the auditory sense and vice versa. Second,
glabrous skin and lips can be stimulated with natural, ecologically
relevant stimuli with MS precision in MEG. Such stimuli could
be utilized in presurgical mapping and to monitor the recovery
of peripheral nerve damages since given axons and associated
sensory perceptions recover gradually. Third, active and passive
movements can be investigated by utilizing accelerometers in
MEG. The CKC method developed has proven to be very useful
in investigating sensorimotor processing in healthy and diseased.
Specifically, passive movements produced by MEG-compatible
actuators, that are, PAMs, offer novel possibilities for presurgical
mapping and designing novel experiments in MEG and fMRI.
For example, such stimulators can be utilized to investigate gentle
touch, that is, CT afferents, in MEG with ms precision. Fourth,
the novel approach to use diffuse flickering light introduces
MEG-compatible IPS device and opens novel ways to analyze
cortical responses in epilepsy and healthy subjects.

These results mentioned above may open new avenues
in research and translational clinical applications. It is
important to notice that these steps from the bench to
bedside involve multidisciplinary collaborators, time, effort, and
reasonable funding.

Unfortunately, the gizmos that I have described here have not
been FDA nor CE cleared, and thus, they are for investigational
use only. We have plans to commercialize the Euphotic IPS
device and we have a plan to collect evidence for the approvals
in the forthcoming multicenter MEG study. We also have a plan
to apply for FDA approval for the Euphotic IPS as a Class II
medical device.

Both basic research and IPR-based solutions seem to work
although the documentation load in the latter is elevated. On
the other hand, IPR-based solution opens new paths for potential
commercialization in the future once the evidence is available.
The potential market could be easily expanded by designing
stimulators and monitoring devices to be compatible with MEG
and fMRI.

One of the major limiting factors for realizing novel ideas
and stimulators is funding for basic research projects including
preparing a prototype, creating preliminary documentation,
initial recordings, and evidence to show that the idea works in
reality. Universities would be optimal research sites for these
steps whereas commercialization projects typically require a
new company or contributions from well-established companies.

Special research-to-business funding is available in several
countries to facilitate the processes although such secured
funding is limited and heavily competed. It also requires a
realistic market estimate, strong business plan, global partners,
and clear focus area. On the other hand, the valuation task can be
very demanding since clinical practice guidelines do not support,
for example, IPS in clinical MEG.

As shown above, I have created several gizmos for basic
research and some of them are taking the first steps from the
bench to the bedside. It has been fun and I have really enjoyed
the work and collaboration with my global network.
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Background: Stroke is the second leading cause of death worldwide and it causes

important long-term cognitive and physical deficits that hamper patients’ daily activity.

Neuropsychological rehabilitation (NR) has increasingly become more important to

recover from cognitive disability and to improve the functionality and quality of life

of these patients. Since in most stroke cases, restoration of functional connectivity

(FC) precedes or accompanies cognitive and behavioral recovery, understanding the

electrophysiological signatures underlying stroke recovery mechanisms is a crucial

scientific and clinical goal.

Methods: For this purpose, a longitudinal study was carried out with a sample

of 10 stroke patients, who underwent two neuropsychological assessments and two

resting-state magnetoencephalographic (MEG) recordings, before and after undergoing

a NR program. Moreover, to understand the degree of cognitive and neurophysiological

impairment after stroke and the mechanisms of recovery after cognitive rehabilitation,

stroke patients were compared to 10 healthy controls matched for age, sex, and

educational level.

Findings: After intra and inter group comparisons, we found the following results:

(1) Within the stroke group who received cognitive rehabilitation, almost all cognitive

domains improved relatively or totally; (2) They exhibit a pattern of widespread increased

in FC within the beta band that was related to the recovery process (there were no

significant differences between patients who underwent rehabilitation and controls); (3)

These FC recovery changes were related with the enhanced of cognitive performance.

Furthermore, we explored the capacity of the neuropsychological scores before

rehabilitation, to predict the FC changes in the brain network. Significant correlations

were found in global indexes from the WAIS-III: Performance IQ (PIQ) and Perceptual

Organization index (POI) (i.e., Picture Completion, Matrix Reasoning, and Block Design).

Keywords: stroke, functional connectivity (FC), MEG (magnetoencephalography), cognitive performance,

neuropsychological rehabilitation
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INTRODUCTION

Stroke is considered the second leading cause of death and
the third leading cause of disability worldwide (1). It is a
heterogeneous pathology with diverse clinical manifestations due
to its possible etiologies (i.e., hemorrhagic, or ischemic), locations
(i.e., different vascular vessels or arteries), and size of the lesion (2,
3). However, most stroke survivors suffer from different degrees
of cognitive disabilities (4–6). These patients may have damage
in general cognitive performance with important functional
disability, which has been broadly reported in the scientific
literature (7–9). Although stroke tends to impact on attention
and executive function compared with its impact on memory,
a malfunction in these cognitive domains could worsen the
performance in other cognitive areas (3, 4, 6, 10). In any case,
it is important to highlight the role of non-pharmacological
rehabilitation especially neuropsychological rehabilitation (NR)
in order to improve cognitive abilities and daily functions (10,
11). Neuropsychological rehabilitation is a systematic therapeutic
activity oriented functionally based on the assessment and
understanding of the cognitive deficits, emotional disturbances,
disruptive behaviors, and functional disorders of patients (12,
13), and includes interventions that might be compensatory,
educational, or restorative (10).

According to some authors and approaches post-stroke
deficits have long been considered to be fundamentally associated
with the location of the lesion (14). This could be particularly true
for sensorimotor or language deficits, which are closely related to
the damage to the specific eloquent cortex. However, it has been
shown that although structural damage from stroke is usually
focal, remote disturbances may occur in brain distant regions
from the primary area of damage (15, 16). This phenomenon
was previously associated with the concept of diaschisis, but
it is currently explained by the disruption of structural and
functional connectivity (FC) between brain areas (17). This way
of understanding the functioning of the brain gives a crucial
role to NR in the process of cognitive recovery, since it allows a
holistic management of cognitive impairment in contrast to other
more goal-oriented therapies.

In this context, as the restoration of FC precedes or
accompanies in most cases, cognitive and behavioral recovery in
stroke patients (18, 19), understanding the electrophysiological
signatures underlying stroke recovery mechanisms is a crucial
scientific goal. This information could help the clinical
community to anticipate and modify NR programs to achieve
a more effective cognitive recovery, and consequently, improve
patients’ quality of life. With this purpose, in the present study we
used the magnetoencephalography (MEG), a neurophysiological
technique that allows a comprehensive analysis of brain dynamics
(20, 21). While the functional magnetic resonance image (fMRI)
is intrinsically limited by the hemodynamic response, MEG
directly measures cortical neural activity. That means that the
modified vasomotor reactivity and neurovascular uncoupling in
stroke easily affects the blood oxygen level-dependent (BOLD)
response but leaves theMEG signal intact (22). The study ofMEG
signatures is well-established for early detection and prognosis
in neurodegenerative disorders, such as multiple sclerosis (23)

or Alzheimer’s disease (24). Moreover, MEG has previously been
used to demonstrate the disruption and recovery of functional
networks, and even its relationship with cognitive improvement
after undergoing a NR program in acquired brain pathologies
such as stroke (22, 25, 26) or traumatic brain injury (TBI)
(13, 27). Thanks to the relevance of the neurophysiological
changes found in previous literature, it seems plausible that MEG
may provide interesting information about how NR may induce
specific cognitive recovery in stroke patients.

According to the aforementioned antecedents, the aims of the
present exploratory study are: (1) to understand the cognitive
improvement achieved in stroke patients that received NR; (2) to
explore the possible neurophysiological mechanisms underlying
the recovery process, by using FC on frequency bands obtained
with MEG; and (3) to evaluate if these neurophysiological
changes are related with cognitive improvement. For this
purpose, we carried out a longitudinal study in which a sample
of 10 stroke patients (stroke patients) were examined at two
different time points. The first was before NR (from now on
we will say pre-condition), and the second was after NR (from
now on we will say post-condition). At both time points patients
were cognitively evaluated and underwent resting-state MEG
recordings. Moreover, to understand the degree of cognitive
and neurophysiological disruption after stroke, and the recovery
mechanisms in stroke patients who were enrolled on the NR, data
for a control group were included with 10 healthy controls paired
in age, sex, and educational level.

MATERIALS AND METHODS

Participants
The total dataset consisted of 20 subjects: 10 stroke patients (2
females/8 males; mean age 44.9 ± 8.94; mean level of education
4.44 ± 0.97) and 10 healthy controls (2 females/8 males; mean
age 43 ± 12.72; mean level of education 4.78 ± 0.67). The
mean time from the onset of the stroke to the start of the
study was 6.3 months, and the rehabilitation program lasted 7
months. The patient’s lesions were both ischemic (i.e., infarction;
n = 5) and hemorrhagic (i.e., intracerebral hemorrhage; n = 5)
and the stroke was located in different brain areas (for patient
detailed descriptive data see Table 1). To be enrolled in the study,
patients had to be diagnosed with a first-ever stroke, showing
a compatible lesion observed on computerized tomography
(CT) or magnetic resonance imaging (MRI). Although initially,
after the stroke some patients showed loss of consciousness [as
reported in Table 1 with the Glasgow Coma Scale (28)], at the
beginning of the study all patients were neurologically stable
without alterations in consciousness or alertness, and none of
them showed epileptiform discharges on MEG recordings.

Exclusion criteria were the following: a stroke involving
the brainstem or cerebellum, a diagnosis of neurological or
psychiatric diseases other than stroke, and a history of TBI, drug,
or alcohol abuse.

Patients were recruited from the National Brain Injury
Rehabilitation Center and from Lescer Brain Injury
Rehabilitation Center (Madrid, Spain), and all of them were
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TABLE 1 | Clinical and sociodemographic characteristics of the patients.

Patient Age Sex Education GCS Stroke etiology Stroke lesion

1 44 M 3 12 Ischemia Right fronto-parietal

2 45 F 5 7 Ischemia Right middle cerebral artery

3 47 M 5 9 Ischemia Left middle cerebral artery

4 47 M 4 12 Ischemia Right middle and anterior cerebral arteries

5 60 M 3 12 Ischemia Left middle cerebral artery

6 28 F 4 7 Hemorrhage Thalamus and left basal ganglia

7 35 M 4 8 Hemorrhage Right intraparenchymal

8 41 M 5 7 Hemorrhage Left basal ganglia

9 49 M 6 9 Hemorrhage Right basal ganglia

10 53 M 5 9 Hemorrhage Left thalamus

N = 10 44.9 ± 8.9 8 M/2 F 4.4 ± 0.9 9.2 ± 2.1 5 isch/5 hem

Education (1, illiterate/functional illiterate; 2, elemental studies; 3, school graduate; 4, high school studies; 5, university graduate studies; 6, university post-graduate studies).

enrolled in a NR program. Healthy controls were matched with
patients for age, sex, and education level, and they did not have a
previous history of psychiatric or neurological disorders.

As previously mentioned, patients underwent MEG
recordings and neuropsychological evaluation in two different
moments: (1) Pre-condition (Pre): at the beginning of the
study, before NR program; and (2) Post-condition (Post): after
completing the NR program. In the case of healthy controls, both
data, neuropsychological and neurophysiological, were obtained
only once, at the beginning of the study.

Ethics Statement
Methods were carried out in accordance with approved
guidelines and regulations. The study was approved by the
National Brain Injury Rehabilitation Center Ethics Committee
(Madrid), and all participants or legal representatives signed a
written informed consent prior to participation.

Neuropsychological Assessment
All participants underwent a comprehensive neuropsychological
evaluation with the aim to identify their cognitive status
in multiple cognitive domains (attention, memory, language,
executive functions, and visuospatial abilities) as well as
their functional performance. The extensive neuropsychological
assessment included: the Wechsler Adult Intelligence Scale III
(WAIS III) (29), the Brief Test of Attention (BTA) (30), the
Trail Making Test (TMT) (31), the Stroop Color Word Test
(32, 33), the Wisconsin Card Sorting Test (WCST) (34), the
Tower of Hanoi (35), the Zoo Map Test [from the Behavioral
Assessment of the Dysexecutive Syndrome (36)], the Boston
Naming Test (BNT) (37), the Digit Span Test [Wechsler Memory
Scale III (29)], the Visual Span Test [WMS-III; (29)], Logical
Memory andVisual Reproduction [WMS-III (29)], the Phonemic
and Semantic Fluency [Controlled Oral Word Association Test,
COWAT (38)], the Five Digit Test [FDT (39)], the Dysexecutive
Questionnaire [DEX (36)], and the Patient Competency Rating
Scale [PCRS (40)].

Neuropsychological Rehabilitation
Program
All stroke patients received an integrated treatment based on
the holistic-comprehensive model proposed by Ben-Yishay and
Diller (41). This program consists of 1 h/day of occupational
therapy, 1 h/2 days/week of neuropsychological therapy, and
2 h/day of group cognitive therapy (memory and executive
function/social skills). Neuropsychological therapy aimed to
improve attention, working memory, learning, memory and
problem solving/executive functions, and emotional-behavioral
problems, through evidence-based techniques that included both
restorative and compensatory strategies. Neuropsychological
treatment goals in each case were defined to achieve maximum
cognitive independence in daily living. In addition, patients
underwent 1 h of physiotherapy and half an hour of speech
therapy, in those cases that needed it. This rehabilitation plan
met the following requirements: (1) agreed by the family
and all professionals involved; (2) formulated in a specific
and operational manner (3) focused on meaningful goals
for the patients that allow them to achieve greater personal
autonomy, community integration, and adaptation to their
deficits; and (4) reviewed monthly. In addition, all patients
attended psychotherapy sessions to help them in the process of
accepting their new situation.

Magnetoencephalographic Recordings
Magnetic fields were recorded using a 148-channel whole-head
magnetometer (4D-MAGNES_2500 WH, 4-D Neuroimaging)
confined in a magnetically shielded room at the Universidad
Complutense of Madrid (Spain). Fields were measured during a
2-min resting-state eyes-closed condition and were sampled at a
frequency rate of 618.17Hz. Ocular, cardiac, muscular, and jump
artifacts were identified first, by a visual inspection of an expert in
MEG, and then removed using ICA (42) in Brainstorm software
(43). Then, clean data were segmented into 4 s trial length, with
a minimum of 20 artifact-free segments for each subject. The
MEG data were filtered in the classical frequency bands: delta
(2–4Hz), theta (4–8Hz), alpha (8–12Hz), beta (12–30Hz), and
gamma (30–45Hz) for further analysis.
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Source Reconstruction and Connectivity
Analysis
To reconstruct MEG sources, we used the default anatomy
(15,000 vertices) of the MNI/Colin27 brain (44) in Brainstorm.
This template was warped according to the polhemus points
(nasion and both preauricular) acquired during the head
digitalization to obtain a better approximation of the real
shape of the subject’s head. The overlapping sphere model
was calculated as the forward modeling of MEG measures.
Next, a noise covariance matrix was calculated to estimate
noise level in the MEG recordings. Sources were reconstructed
using the weighted Minimum Norm Estimation (wMNE) (45).
Weighted Minimum Norm Estimation is well-suited for the
estimation of large-scale FC networks, since it addresses the
problem of volume conduction, reducing the correlations of
spurious signals (46, 47). Magnetoencephalography sources
were grouped into 68 anatomical regions of interest (ROI)
based on Brainstorm atlas Desikan-Killiany (48). For more
details about the brain areas used, referred to Supplementary
Material for Supplementary Table 1.We selected themean as the
representative time series for each brain area delimited with the
aforementioned atlas.

Functional connectivity was assessed using the corrected
version of the imaginary phase locking value (ciPLV), a phase
synchronization measure that evaluates the distribution of phase
differences extracted from each of two sensor time series (49, 50).
Corrected version of the imaginary phase locking value (Equation
1) was proposed by Bruña et al. (50) to remove the contribution
of the zero phase differences of PLV. Thus, this measure is
insensitive to zero-lag effects, and it is corrected to remove the
instantaneous phase contribution, which could be mainly due to
volume conduction.

ciPLVX,Y (t) =
1
T I{e

−i(φX(t)−φY (t))
}

√

1− ( 1TR{e
−i(φX(t)−φY (t))})

2
(1)

where ϕx and ϕy represent the phases of each of the two-time
series and stands for the imaginary part of the numerator and

the real part in the denominator. See Figure 1 for the analysis
flow chart of the MEG data.

Statistical Analyses
This study aims to find the possible neurophysiological substrates
of the recovery network underlying the cognitive enhancement
found stroke patient’s sample in the post condition (after NR),
by using cognitive tests, functional scales, and FC measures.
In this context, we performed exploratory analyses with the
data obtained from stroke patients and healthy controls. The
analysis of demographic data showed that there were no
statistical differences in age, sex, and level of education between
patients and controls (p > 0.05), so we did not include
them as confounding variables for the following explorations.
Non-parametric tests were used for all comparisons because
variables were non-normally distributed and because of the small
sample size. Specifically, the Mann-Whitney U test was used for
between groups analyses (stroke patients vs. healthy controls)

and Wilcoxon paired test for within-group comparison (Pre vs.
Post conditions in the stroke patients’ group). In the case of
neuropsychological variables, significant results were considered
with a p-value < 0.05 after applying false discovery rate (FDR)
corrected for multiple comparisons. For FC data, a total of
10,000 permutations were used for each significant FC link,
and results were considered significant with a p-value <0.005
after applying FDR (51). Finally, with the aim to explore the
relationships between FC and cognition, Spearman’s correlation
analysis was employed. For all analyses the Matlab Statistical
Toolbox was used.

RESULTS

Cognitive Changes After
Neuropsychological Rehabilitation
As described before, the patients underwent a comprehensive
neuropsychological evaluation before and after the NR program.
From the total of battery tests, those scores with at least nine
reported patients (46 scores in total) were included for the
statistical analysis. Pre-condition results indicated that stroke
patients performed significantly worse compared with healthy
controls in all cognitive domains (p < 0.05). Comparing pre
and post conditions in the stroke patients’ group, results showed
an important cognitive improvement with 33 scores (72% of
the 46 total scores) significantly different between conditions.
Of these, 21 scores (46% of the 46 total scores), could be
considered relatively enhanced since in the post-condition, they
were significantly different to those corresponding to the healthy
controls (see Figure 2). The remaining 12 scores (26% of the 46
total scores) from the post-condition did not show significant
differences with the healthy control group, indicating a total
improvement. To simplify the interpretation of these results, all
scores were clustered into several aggregated groups depending
on different cognitive domains: Functional performance, 4 scores
(of DEX and PCRS); Executive Functions, 10 scores (of WCST,
Tower of Hanoi, FDT and TMT); Attention, 1 score (of Brief
Test of Attention); Language, 2 scores (of BNT and FAS);
Episodic Memory, 4 scores (of WMS-III) and Working Memory,
9 scores (of WMS-III and WAIS-III). The last three columns
of Figure 2 correspond to the cognitive index of WAIS-III,
including all their subtests: Verbal Comprehension Index (VCI,
4 scores); Processing Speed Index (PSI, 3 scores), and Perceptual
Organization Index (POI, 4 scores). In addition, the three
general indices of WAIS-III were also included [Verbal IQ,
Performance IQ (PIQ), and Full-Scale IQ], as well as subtests
Picture Arrangement and Comprehension. In summary, we
found that all cognitive domains of the stroke patients’ group
were fully or partially enhanced in the post-condition (see
Figure 2). It is important to note that the VCI (that includes
the WAIS-III index and all its subtests), was a cognitive domain
without improvement in any of the four measures; and the four
scores maintained significant differences when comparing the
second scores of stroke patients with the healthy controls scores.
However, it is important to know that this index, already in the
pre-condition, shows a normal score (103.5) unlike the results of
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FIGURE 1 | (Top) Sample description (stroke patients and healthy control groups). Description of the protocol followed by each group and the variables collected for

this study. (Bottom) MEG Analysis flowchart. Sequential pipeline of the analysis performed on the MEG data.

the other cognitive index of the WAIS-III (WMI 91.9; PSI 80.3;
PRI 82.4) and the others all cognitive tests. In addition, their
result in the post-condition was 105, although it continues to be
statistically different from the healthy control group (117.6).

Functional Connectivity Disruption After
Stroke: Differences Between Stroke
Patients and Healthy Controls
In order to assess the possible disruption of the patients’
network due to the stroke, their FC in the pre-condition was
compared with the FC of the healthy controls. Stroke patients
exhibited significant FC reduction in the beta band (p < 0.005,
FDR corrected) that comprised intra and inter-hemispheric
connections (Figure 3). No significant results were found in
other frequency bands.

Functional Connectivity After
Rehabilitation: The Recovery Network
When assessing the possible FC differences between stroke
patients’ conditions, a clear pattern of widespread increased

FC within the beta band was found. Stroke patients showed
significantly (p < 0.005) higher FC in the post-condition
compared to the pre-condition in a variety of links comprising
intra and inter-hemispheric, and antero-posterior long-range
connections (Figure 4).

Moreover, when assessing the possible differences in FC
between groups (post-condition and healthy controls) we did not
find any statistically significant differences. This result indicated
that the original FC disruption in the beta band was restored in
stroke patients who went through the NR.

No significant results were found in other frequency bands in
the pre and post comparison after FDR correction (p < 0.005).
Nevertheless, there is a clear pattern of enhanced connectivity
in low frequency bands (delta and theta) in the pre stage when
compared with the brain activity of stroke patients recorded
after the rehabilitation when a less restrictive statistical threshold
was used (p < 0.05). Detailed description of these results
could be found in the Supplementary Material, Appendix 3.
These results were not included in the main findings of the
present study because we wanted to focus on the most reliable
FC signature, keeping the p < 0.005 value as the go/no go
statistical limit.
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FIGURE 2 | Neuropsychological tests’ changes after NR. Functional Performance (4 scores: DEX and PCRS); Executive Functions (10 scores: WCST, Tower of Hanoi,

FDT, and TMT); Attention (1 score: Brief Test of Attention); Language (2 scores: BNT and FAS); Episodic Memory (4 scores: WMS-III); Working Memory (9 scores:

WAIS-III and WMS-III). The last three columns correspond to cognitive indices of WAIS-III, including all their subtests: VCI (verbal comprehension, 4 scores); PSI

(speed processing, 3 scores); and POI (perceptual organization, 4 scores). Percentages were calculated intra-domain. Test scores included. DEX, DEX-family,

DEX-difference; PCRS, PCRS-family, PCRS-difference; WCST, WCST-categories, WCST-conceptual, WCST-persevering; Tower of Hanoi, TH-3D-time,

TH-3D-movements, TH-4D-time, TH-4D-movements; Five Digit Test, FDT-switching, FDT-flexibility; Brief Test of Attention, BTA-total score; BNT, BNT-total score; FAS,

FAS-total score; WMS-III-episodic-memory, WMS-III-logical memory 1, WMS-III-logical memory 2, WMS-III-visual reproduction 1, WMS-III-visual reproduction 2;

WMS-working memory, WMS-III-forward digit span, WMS-III-backward digit span, WMS-III-forward visual span, WMS-III-backward visual span; WAIS-working

memory, WAIS-digit span, WAIS-arithmetic, WAIS-letter number sequencing, WAIS-working memory index; WAIS-VCI, WAIS-vocabulary, WAIS-information,

WAIS-similarities, WAIS-verbal comprehension index; WAIS-PSI, WAIS-symbol search, WAIS-digit symbol, WAIS-processing speed index; WAIS-POI, WAIS-block

design, WAIS-matrix reasoning, WAIS-picture completion; WAIS-perceptual organization index.

Correlations Between the Brain and
Cognitive Recovery Patterns
With the aim to explore if FC changes were related with the
enhanced cognitive performance in the stroke patients’ group,
we firstly calculated a ratio considering the strength of each
functional link that differed between both conditions (FC ratio
= Post/Pre). Then, we averaged these FC link ratios in just
one value for each stroke patient. This provided a unique
FC marker for each patient that condensed the information
obtained by the whole network and the two MEG sessions.
Next, for cognitive scores, we calculated the performance
differences (D) for the most representative tests of each
neuropsychological domain between pre and post conditions
in the stroke patients’ group (D = Post–Pre), with the aim
of finding the strongest cognitive improvement, to reduce the
redundancy of the information (since several scores measured
the similar aspects of the same cognitive domain) and to
avoid the statistical pitfall of multiple comparisons. Regarding
the selection of the most representative scores included for

the correlation analyses, the neuropsychological experts’ team
choose: Functional Performance (DEX-F), Executive functions
(WCST-Persevering, Tower of Hanoi-3D-T), Attention (BTA),
Episodic memory (WMS-III-LM1), Working memory (Digit span
test), and Language (BNT). Moreover, the WAIS-III general
indexes and some WAIS-III cognitive indexes were included
(FIQ, PIQ, VIQ, PSI, POI). We finally included for the
Spearman’s correlation analyses the average FC strength ratio
and 12 neuropsychological scores differences, illustrative of the
cognitive improvement, for each stroke patient.

In order to facilitate the understanding of each patient

cognitive improvement an extended material about individual
neuropsychological performance was added in Appendix 2

in Supplementary Material. There, the punctuations
for each patient before and after the rehabilitation are
described in detail for those tests included in the present

correlation analysis.
We found three positive and significant recovery signatures

correlations between the FC strength ratio and three cognitive
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FIGURE 3 | (A) Significant FC results (p < 0.005, corrected) in the beta band (12–30Hz) when comparing healthy controls vs. stroke patients in the pre-condition.

Line thickness of significant links is proportional to FC values (a higher value corresponds to thicker lines, and vice versa); (B) Significant FC links in the beta band are

represented as bar graphs. Red color represents higher connectivity values for healthy controls compared to stroke patients and blue color illustrates lower

connectivity values for stroke patients compared to healthy controls. ROIs included: rmOrbG, Right Medial Orbito Frontal Gyrus; lmOrbG, Left Medial Orbito Frontal

Gyrus; rMFG, Right Middle Frontal Gyrus; rOrbG, Lateral Orbito Frontal Gyrus; rIFGtri, Right Inferior Frontal Parstriangularis; lITG, Left Inferior Temporal Gyrus; rITG,

Right Inferior Temporal Gyrus; lPHG, Left Parahippocampal Gyrus; rPHG, Right Parahippocampal Gyrus; rMCC, Right Posterior Cingulate Gyrus; rPoCG, Right

Postcentral Gyrus; rSMG, Right Supramarginal Gyrus; rLING, Right Lingual Cortex; lMOG, Left Lateral Occipital Gyrus.

measures: Full Scale IQ of WAIS-III (R= 0.833; p= 0.015), BNT
(R = 0.756; p = 0.035), and LM1 of WMS-III (R = 0.854; p =

0.010) (Figure 5).

Prediction of Brain FC Recovery Based on
Cognitive Performance After Stroke
Lastly, with the aim of exploring the predictive capacity of the
neuropsychological test scores and the brain network recovery,
we correlated the cognitive scores of the pre-condition and the
FC strength ratio (by using Spearman correlation analyses).

Thus, we observed two markers for recovery prediction in
two global cognitive domains: (1) PIQ, with a significant positive
correlation between FC strength ratio and the PIQ scores (R =

0.850, p = 0.011); (2) Perceptual Organization, with a significant
positive correlation between FC strength ratio and the POI scores
(R = 0.874, p = 0.007). Furthermore, within POI, we found a
positive association with Picture Completion (R = 0.732; p =

0.048), Matrix Reasoning (R = 0.795; p = 0.023), and Block
Design (R= 0.857; p= 0.010) (Figure 6).

DISCUSSION

The present study aimed to provide evidence of the
neurophysiological mechanisms underlying cognitive deficits
and changes in brain function associated with the recovery of
cognitive processes in stroke patients who underwent a NR.

Additionally, this study is focused on the exploration of the
nature of the relationships between neurophysiological and
neuropsychological changes.

In this sense, our results indicate a positive effect in acute
stroke patients who received cognitive rehabilitation on both
levels, the cognitive system and brain functioning. Nevertheless,
the lack of a clinical control group (i.e., stroke patients without
rehabilitation) did not allow us to make causality assumptions,
assuring that cognitive improvement is due specifically or
uniquely to cognitive rehabilitation because it could also
represent some degree of spontaneous clinical recovery after
stroke. Then, according to the results of the present study, stroke
patients who undertook rehabilitation significantly improved
their performance in 72% of cognitive and functional scores.
But we also found than in neuropsychological scores related to
specific cognitive domains such as executive functions, attention,
language, episodic, and working memory, stroke patients showed
a relative improvement (46% improved but there were significant
differences between the post-condition and the control group),
or even a total enhancement (26% improved, and there were no
differences between post-condition and control group). These
two degrees of positive changes were also found in scores
related to global cognitive functioning such as Full-Scale IQ,
PIQ, Speed Processing Index, Working Memory Index, or POI.
In addition, some indicators related to functional performance,
such as DEX or PCRS (completed by relatives of patients),
also improved after rehabilitation. This trend could represent
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FIGURE 4 | (A) Significant FC results (p < 0.005, corrected) in the beta band (12–30Hz) when comparing within the stroke patients’ group, the pre-condition and the

post- condition. Line thickness of significant links is proportional to FC values (a higher value corresponds to thicker lines, and vice versa); (B) Significant functional

connectivity links in the beta band are represented as bar graphs. Red color represents higher connectivity values for pre-condition compared to post-condition and

blue color illustrates lower connectivity values for pre-condition compared to post-condition. ROIs included: lMFG, Left Middle Frontal Gyrus; rMFG, Right Middle

Frontal Gyrus; lIFG, Left Inferior Frontal Parstriangularis; rIFG, Right Inferior Frontal Parstriangularis; rmOrbG, Right Medial Orbito Frontal Gyrus; lACCr, Left Rostral

Anterior Cingulate; rACCr, Right Rostral Anterior Cingulate; lOrbG, Left Lateral Orbito Frontal Gyrus; rIFGorb, Right Inferior Frontal Orbital; lIFGop, Left Inferior Frontal

Gyrus Opercular; lSTG, Left Superior Temporal Gyrus; rPreCG, Right Precentral Gyrus; rSTG, Right Superior Temporal Gyrus; lMTG, Left Middle Temporal Gyrus;

rPoCG, Right Poscentral Gyrus; lPHG, Left Parahipocampal Gyrus; rSMG, Right Supramarginal Gyrus; lSMG, Left Supramarginal Gyrus; lPCUN, Left Precuneus;

lstroke patientsL, Left Superior Parietal Lobule; rstroke patientsL, Right Superior Parietal Lobule; rLING, Right Lingual Cortex; rCAL, Right Calcarine; lMOG, Left

Lateral Occipital Gyrus; rMOG, Right Lateral Occipital Gyrus.

a partial cognitive and functional improvement and may have
clinically relevant implications, since it may be considered as
an indicator of recovery. To rule out the possibility that the
learning effect could be influencing the improvement of some
cognitive scores, we have other complementary data related to
changes in brain function. Specifically, the stroke patients of this
study exhibited a widespread increased FC pattern within the
beta band, indicating that their original disruption was restored
in the recording performed after NR in that frequency band.
We also obtained two very important results associated with the
relationships between cognitive scores and changes in FC. On
the one hand, we found three positive and significant recovery
signatures correlations between the FC strength ratio and three
cognitive measures changes (in Full-Scale IQ, BNT, and LM1),
and on the other hand, we observed the predictive capacity of
some neuropsychological test scores (in the pre-condition) and
the recovery of the brain network (in the FC strength ratio). In
this sense, we found two predictive markers of brain recovery
related to two global cognitive domains, PIQ and Perceptual
Organization (both from the WAIS-III scale).

Based on these data, we can affirm that these stroke patients
experienced at least some recovery in their global cognitive
capacity, despite the different etiology and location of their
lesions. Nonetheless the previous literature about the effect of
NR on specific cognitive domains remains unclear. Low to
moderate effects of rehabilitation in executive functions (6),
attention (4, 52), or memory (53) have been reported. These
results could have low consistency for different reasons: (1)
the low methodological quality or insufficient description (2, 4,
52) the use of small samples; (3) the absence of comparisons
between intervention and no intervention or placebo conditions
(4, 6) the deficit of randomized control trials (4, 5, 52) the
need for standardized definition and outcome measures (53, 54);
and (6) the lack of inclusion of functional ability measures in
the rehabilitation outcome evaluation (52). It seems important
to find the most effective procedures to try recovering the
cognitive deficits associated with stroke, considering that the
prevalence of post-stroke cognitive impairment is 53.4% (55),
since it causes an increase in the institutionalization rate and
costs of care (56, 57) and a decrease in the quality of life (58).
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FIGURE 5 | Recovery signatures correlations. Statistically significant

correlations between cognitive differences and the mean beta strength ratio in

the stroke patients’ group. (A) Full Scale IQ (of WAIS-III); (B) BNT (Boston

Naming Test); (C) WMS-LM1 (Logical Memory 1 of WMS-III).

In addition, if stroke is a central factor in the development of
cognitive impairment, or if this depends on the severity, subtype,
location, or its recurrence, it becomes essential to understand the
brain mechanisms that produce both deficits and their recovery.
There is agreement around the idea that cognitive rehabilitation
interventions aim to improve the impaired brain functions in
stroke patients, and that it must be related to the damaged
anatomical substrate (10). Usually, rehabilitation facilitates the
development of behavioral and cognitive strategies that have a
positive impact on the structural and functional recovery of the
brain (53, 59). In this sense, it seems worthy to have inmind other
promising complementary interventions including for example

non-invasive transcranial magnetic stimulation to enhance some
cognitive recoveries in stroke patients (60).

Restoration interventions aim to regain the cognitive abilities
of stroke patients, including domain-specific interventions and
treatments for generalized cognitive impairment (10). The
patients of our study received an integrated treatment based on
the holistic-comprehensive model proposed by Ben-Yishay and
Diller (41), which is consistent with the interventions suggested
by some experts in post-stroke cognitive rehabilitation in terms
of their global treatment approach. This type of treatment could
be very successful for this type of patients, insofar as it produces
more clearly a pattern of overall improvement, both at behavioral
and brain level. Other types of cognitive interventions, such as
computer-assisted cognitive rehabilitation that has increased in
recent years, although show some efficacy in improving attention,
memory, executive function, or visuo-spatial neglect in stroke
patients (61, 62), present very limited effects on working memory
and even no effects on cognitive function compared to healthy
controls (63).

As discussed above, overall review studies on the effectiveness
of cognitive intervention with stroke patients do not provide
clear conclusions. However, we must know that one of the most
important issues regarding the functioning of the human mind
has to do with the factor of interdependence between the different
cognitive domains. This aspect is often overlooked in cognitive
performance studies, and review studies of the effectiveness of
cognitive treatments do not usually consider it. For example,
there are studies that focus on improving attention after having
specifically trained it, and thus with the rest of cognitive domains,
without evaluating the impact of attention deficit or executive
deficit in other domains such as memory or language. However,
cognitive interdependence makes it very exceptional for patients
who have brain injuries to suffer a specific cognitive deficit
in a specific cognitive domain. The cognitive deficit of brain
injury patients usually affects several domains, for example,
visuo-spatial attention, working memory, executive functions,
and episodic memory. Thus, trying to understand functioning
of human cognition from independent cognitive domains, is
probably an incorrect approach that hinders the interpretation of
the results in neuropsychology. Usual intervention in the clinical
setting is not as domain specific as studies suggest, since isolating
cognitive processes in habitual actions is not easy. However, the
neuropsychological literature continues to try to understand the
effect of rehabilitation on each cognitive domain individually.
This discrepancy requires a revision and a paradigm shift.

Furthermore, our intention was to go one step further
trying to understand whether this recovery process seen at a
cognitive and behavioral level could have some reflection in
brain functioning. Cognitive functions depend on the integrated
functioning of large-scale distributed brain networks (64).
Specifically, recent evidence suggests that FC between brain
regions may play an important role when difficulties arise from
deficits in attention, memory, or other cognitive functions (65).
In this context, we firstly looked for a FC pattern related to stroke.
We found a disruption in the pattern of brain functioning, with
a significant decrease in the beta band FC for intra and inter-
hemispheric connections in stroke patients before rehabilitation
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FIGURE 6 | Recovery prediction. Statistically significant differences between the cognitive scores in the pre-condition and the mean beta strength ratio (post/pre) in

the stroke patients’ group. (A) Performance IQ (WAIS-III); (B) POI (Perceptual Organization Index of WAIS-III); (C) Block Design, Matrix Reasoning, and Picture

Completion (of WAIS-III). Note that the tests represented in this figure are related to each other, since Block Design, Matrix Reasoning, and Picture Completion are the

tests included in Perceptual Organization Index, and POI (Perceptual Organization Index) is included in Performance IQ (on the WAIS-III scale).

compared to healthy controls. General disruption of dynamic
networks after stroke have been previously reported in MEG
studies (25). Alterations in beta band activity have been especially
related to stroke compared to healthy controls (26), supporting
our results.

On the other hand, understanding the interaction between
brain regions within a network (i.e., their FC), and the
interactions among networks are both important for efficient
cognitive function (66). Therefore, exploring the possible
neurophysiological mechanisms underlying the recovery process
after stroke seems to be a crucial point in understanding the
effect of cognitive rehabilitation on the brain. By observing
stroke patients before and after the rehabilitation, a specific
brain recovery pattern emerged, characterized by a widespread
increased FC in the beta in the post-condition. The functioning
of the beta frequency band has previously been related, in
healthy population, to different cognitive tasks such as working
memory (67–69), attention (70), and motor performance (71).
On the contrary, our neurophysiological data were acquired
during resting state (RS) which has been shown that is the most
stable condition across patients with different symptomatology
and it also has been considered a hallmark for clinical diagnosis
and monitoring the recovery of patients that underwent a
rehabilitation, both in MRI (18, 72) and MEG studies (22, 73).

Previous results have described the role of RS FC as a predictor
of motor learning ability in beta-band for healthy participants
(74) or as a predictor of post-stroke motor recovery in alpha-
band (75). Furthermore, the reorganization in FC in the beta-
band during resting-state has previously been associated with the
success of cognitive and physical interventions (13, 76, 77).

Up to this point, two independent markers of functional
recovery (i.e., cognitive, and neurophysiological) were found
in our stroke patients who went through the NR, but we
developed further analyses to discover the possible relation
between them. As mentioned before, trying to understand
complex systems such as human cognition or brain functioning
focusing on only some of their components gives partial
information of the entire process. Therefore, with the aim
to simplify the dimensionality of the data and to explore
relationships between cognitive and neurophysiological findings,
the difference (D = Post–Pre) of the most representative
cognitive scores and the ratio of change (post/pre) of the total
FC beta network strength were used. Three positive correlations
between recovery signatures (i.e., cognitive and neurophysiology)
were observed for stroke patients, corresponding to Full
Scale IQ of WAIS-III, Boston Naming Test, and Logical
Memory 1 of WMS-III. These results showed that the beta
connectivity changes after the NR, compared with the data
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obtained in the first recording are, in fact, the reflection of
the cognitive improvement in the brain. The measures related
with improvement represent global neuropsychological indices,
which contain different cognitive domains such as sustained
and switching attention, visuo-spatial attention, visuo-spatial
working memory, planning, flexibility, or processing speed,
but also episodic memory or verbal denomination. Initially,
the neuropsychological deficit observed in stroke patients was
global and their subsequent cognitive recovery, although not
complete, was also general. The scope of cognitive changes
after NR was really wide, probably due to the type of
intervention, which was holistic and not only focused on
specific cognitive functions, including global and interdependent
domains, and focusing on individual cognitive, functional,
emotional, and behavioral imbalances. All these evidences are
consistent with the brain network global changes observed in
stroke patients.

While addressing brain and cognitive changes in stroke
patients is important to understand the underlying mechanisms
of stroke and brain plasticity, the early detection of patterns
or biomarkers is also relevant to predict which subjects are
more likely to improve and benefit from neurorehabilitation.
In this regard, adjustments can be made for those patients
who will not benefit from this option. Thus, we performed
an additional correlation analysis in which the pre-condition
cognitive measures and the ratio of change (post/pre) of the
total FC beta network strength were taken into account. Two
global cognitive markers were stated as predictors of brain
functioning recovery, PIQ and POI. Furthermore, within POI,
we found a significant association for every subtest included in
the global index (i.e., Picture Completion, Matrix Reasoning,
and Block Design). In the clinical setting, the role of prediction
in terms of the degree of future recovery has always been
important, however it is a complex and complicated issue.
Until now we only had clinical, cognitive, behavioral, and
social variables, but these results indicate that the relationship
between behavior and the brain can contribute to this topic.
In this case, the results indicate that the initial state around
some cognitive domains such as visuo-spatial attention, visuo-
spatial working memory, or planning capacity, could have
a very relevant role in the evolution and recovery of the
brain network of stroke patients. This information is not only
important to predict the patients who will improve the most,
but it can also serve to think about more powerful intervention
procedures for those patients who have a more serious deficit
around these cognitive domains. This result has very relevant
clinical implications.

In conclusion, if NR aims to improve people’s cognitive
function in order to restore their general performance and
independence in functional activities, the results of the
present study are in line with this objective, showing a clear
improvement pattern in stroke patients who received NR both
cognitively and brain function. We are also sure that this
study points out the importance of including neuropsychological
and neurophysiological variables in the assessment of the
outcome and effectiveness of psychological interventions of
stroke patients.

LIMITATIONS AND FUTURE RESEARCH

An important contribution of this study may be that, unlike
most studies, functional brain connectivity was measured with
MEG. Despite the intrinsic limitations of BOLD fMRI, MEG
is a measure of brain activity with incredibly high temporal
resolution (ms). Despite its advantages, MEG is an underused
neuroimaging tool in clinical and research contexts. Although
the sample of this exploratory study size was small, we were able
to identify a pattern of recovery of FC in the beta band related
to cognitive enhancement in stroke patients who underwent a
NR. Additionally, we were able to make predictions based on
the cognitive performance of stroke patients before rehabilitation
about the future functional restoration of the brain network.
Thus, larger MEG studies with stroke patients are needed to
demonstrate the power of this neurophysiological tool within
this neurological field. Another limitation that this study faces
is the heterogeneity of stroke patients, in terms of etiology and
location of the injury. However, we believe that this heterogeneity
has provided an interesting approach to the study since it
has allowed us to explore the effect of cognitive intervention
both at cognitive and neurophysiological level in stroke patients
with different etiology. Furthermore, another limitation of the
study is the absence of a clinical control group (i.e., stroke
patients without rehabilitation). Considering this limitation, we
cannot assure that cognitive improvement is due specifically
or uniquely to cognitive rehabilitation because it could also
represent some degree of spontaneous clinical recovery after
stroke. In accordance with the aforementioned obstacles, future
studies should include a group of stroke patients without
cognitive intervention (e.g., on the waiting list), and larger
samples of patients that allow comparisons based on the etiology
and the location of the lesion. Finally, it would be interesting to
focus on different networks of the brain (78) such as the default
mode, the salience, or the executive control networks (79), to
explore specific changes in each network recovery pattern, and
its possible relationship to particular improvements in cognition
after stroke.
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The mismatch response (MMR) is thought to be a neurophysiological measure

of novel auditory detection that could serve as a translational biomarker of

various neurological diseases. When recorded with electroencephalography (EEG) or

magnetoencephalography (MEG), the MMR is traditionally extracted by subtracting

the event-related potential/field (ERP/ERF) elicited in response to “deviant” sounds

that occur randomly within a train of repetitive “standard” sounds. However, there

are several problems with such a subtraction, which include increased noise and the

neural adaptation problem. On the basis of the original theory underlying MMR (i.e.,

the memory-comparison process), the MMR should be present only in deviant epochs.

Therefore, we proposed a novel method called weighted-BSST/k, which uses only the

deviant response to derive the MMR. Deviant concatenation and weight assignment

are the primary procedures of weighted-BSST/k, which maximize the benefits of

time-delayed correlation. We hypothesized that this novel weighted-BSST/k method

highlights responses related to the detection of the deviant stimulus and is more sensitive

than independent component analysis (ICA). To test this hypothesis and the validity and

efficacy of the weighted-BSST/k in comparison with ICA (infomax), we evaluated the

methods in 12 healthy adults. Auditory stimuli were presented at a constant rate of

2Hz. Frequency MMRs at a sensor level were obtained from the bilateral temporal lobes

with the subtraction approach at 96–276ms (the MMR time range), defined based on

spatio-temporal cluster permutation analysis. In the application of the weighted-BSST/k,

the deviant responses were given a constant weight using a rectangular window on the

MMR time range. The ERF elicited by the weighted deviant responses demonstrated one

or a few dominant components representing the MMR that fitted well with that of the

sensor space analysis using the conventional subtraction approach. In contrast, infomax

or weighted-infomax revealed many minor or pseudo components as constituents of the
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MMR. Our single-trial, contrast-free approach may assist in using the MMR in basic and

clinical research, and it opens a new and potentially useful way to analyze event-related

MEG/EEG data.

Keywords: mismatch response (MMR), blind source separation (BSS), magnetoencephalography (MEG), time-

delayed correlation, independent component analysis (ICA), T/k (fractional) type of decorrelation method,

weighted blind source separation, deviant concatenation

INTRODUCTION

The mismatch negativity component in electroencephalography
(EEG), and its magnetoencephalographic (MEG) counterpart
the mismatch field (or mismatch response, MMR), are event-
related responses (EPRs/ERFs) widely used to measure auditory
processing in cognitive neuroscience (1–6). The MMR is
recorded using an oddball paradigm, where the repeated
presentation of a stimulus (standard) is occasionally replaced
by a different stimulus (deviant). The MMR is then computed
as the difference between the deviant and standard responses.
This difference representing the MMR is typically found around
100–250ms after the onset of the deviant stimulus (7). Previous
studies have revealed a cortical network consisting mainly of
the bilateral temporal regions, but also the frontal and parietal
regions, which is involved in the generation of the MMR (8–
10). The prevailing view is that the MMR reflects the detection
of change in the auditory system that can be measured without
attention, although alternative interpretations exist (11–14).
The MMR has therefore been widely used to assess auditory
processing in children and clinical groups (10, 15, 16).

Originally, it was suggested that the occurrence of the
MMR relates to the presence of a short-term memory trace
where the memory-comparison process detects a discrepancy
between the neural representation of the regularity inherent in
the recent stimulation and the representation of the current
deviant stimulus (17). On the basis of this hypothesis, obtaining
a difference waveform by subtracting the standard response
from the deviant response is the only way to identify the
MMR. However, there are several problems associated with the
subtraction approach. First, the subtraction reduces the signal-
to-noise ratio (SNR) because the noise present in the standard
responses is added to the noise in the deviant responses. Second,
the neural adaptation process, especially with frequency MMR,
can affect the difference waveform. The auditory system has a
tonotopic organization from the cochlea through to the cortex
(18). Stimulus repetition leads to repeated initiation of patterns
of neural activity (e.g., the M100) that habituates as a function
of the repetition rate (19, 20). In the classic oddball protocol,
the neural response to standard stimuli is attenuated by these

Abbreviations: MMR, mismatch response; EEG, electroencephalography;

MEG, magnetoencephalography; DC, decorrelation method; ERP, event-related

potential; ERF, event-related field; BSS, blind source separation; SNR, signal-to-

noise ratio; ICA, independent component analysis; SOBI, second-order blind

identification; BSST/k, T/k (fractional) type of decorrelation method; SOA,

stimulus onset asynchrony; TSSS, temporal signal space separation method;

LU, left upper; RU, right upper; LL, left lower; RL, right lower; PCA, principal

component analysis; rmANOVA, repeated-measures analysis of variance.

repetition suppression effects. This suppression is greater for
the standard stimuli than for the less frequent deviant stimuli.
The adapted and non-adapted neural activity presents not only
different amplitudes, but also different temporal dynamics. Thus,
the subtraction approach does not simply reflect the MMR (i.e.,
a memory-based comparison) but also the differential adaptation
of neurons (13). Therefore, the study of the temporal dynamics
of the MMR might convey critical information regarding the
nature of the underlying neural generators. Hence, to effectively
reveal the MMR, another approach considering the temporal
information, instead of the subtraction approach, is desirable.

Each EEG electrode or MEG sensor records a linear
combination of signals from several sources (21). Multi-
channel EEG/MEG, which typically involves hundreds of
sensors, provides detailed spatio-temporal distribution patterns,
which obviously complicate the interpretation of signals and
topographies. Independent component analysis (ICA), which is a
blind source separation (BSS) method, is a stochastic method that
can be used to decompose such complex data into a set of spatio-
temporal components, each of which comprises a fixed spatial
distribution and an associated signal (22, 23). Each component
signal is a weighted sum of the sensor or electrode signals,
which in turn are weighted sums of the dynamics of the neural
sources (24). ICA/BSS can provide signal sources without any a
priori information about their occurrence in biological signals.
In general, the single-trial approach of ICA/BSS can utilize
temporal information, because the contraction of information
occurs during the averaging process of the ERP/ERF. A single
trial may contain all kinds of non-brain artifacts and spontaneous
EEG/MEG processes, whereas decomposing an average of all
trials not only minimizes the contributions of those neural
and artifactual processes that are not reliably time- and phase-
locked to experimental events but also removes event-related
brain dynamics among trials (25). As artifacts often exhibit
stereotypical patterns that differ from those of brain activity,
ICA/BSS can mostly be used to separate artifactual patterns (26–
28). In fact, ICA/BSS has been used to extract event-related
activities in only a handful of previous studies (29–33). Owing
to the components being computed based purely based on their
statistical independence, physiological perspectives are not taken
into account (28, 34). Considering that regional brain activities
substantially correlate with each other, an approach requiring
strong independence may not be the most fruitful (35–38).

An approach for refining ICA/BSS using time-delayed
correlation, or the decorrelation method (DC) has also been
considered (39). Time-delayed correlation takes account of
the characteristic time structure of the signals of interest,
including the periodicity and/ormorphology. Thus, time-delayed
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correlation measures the correlation between two signals, then
maximizes the correlation between components. For example,
several studies applied DC to second-order blind identification
(SOBI) to separate periodic signals, such as cardiac and
oscillatory brain activity, because periodic signals are well-
correlated with delayed signals and non-delayed original signals
(40, 41). As a result, well-correlated signals were extracted in
one (or a few) components. However, in SOBI, most approaches
examine the time structure of the target signals subjectively.
When parameters are highly specified, featured components
are more independent, and therefore target signals collapse
because of strong independence and the SOBI method becomes
equivalent to ICA (39–41).

In an attempt to develop solutions to address the limitations
of ICA and SOBI, we proposed a novel method of BSS called
the T/k (fractional) type of DC (BSST/k) (35–38). This method
shares the fundamental concept underlying DC such as SOBI but
is more focused on the periodicity of the target signal. The BSST/k

method is based on extracting time points (i.e., time-delayed
parameters) determined by the parameters T and k, which
represent periodicity concerning a fundamental and harmonics
(Supplementary Data (1) and Supplementary Figure 1). BSST/k

allows weak independence among the components. Setting time-
delayed parameters in this way results in highlighting the
characteristics of target ERFs that are periodically presented.
Previously, we demonstrated that somatosensory-evoked fields
in response to periodic electrical stimuli can be decomposed
into a few components using the BSST/k algorithm in 64
channel magnetometers of CTF (35–38). Using a generalization
of BSST/k, non-periodic interictal epileptiform discharges that
were assumed to originate in a single epileptogenic zone were
decomposed into one dominant component (42).

For the MMR paradigm, where deviant stimuli are presented
in random order, we proposed to use a modification of BSST/k,
which we termed weighted-BSST/k (43). In weighted-BSST/k,
we only used deviant responses that were concatenated into a
periodical arrangement. Then, deviant responses were assigned
a constant weight (rectangular window) on the specific time
interval that represents MMR (i.e., the MMR time range).
This is known as a window function in the time domain.
The MMR time range was defined in a data-driven manner
using sensor space subtraction (i.e., the reference standard).
Through these procedures, the correlation between MMR and
the responses outside of the MMR time range (e.g., the M100)
can be minimized; thus, weighted-BSST/k, which underlies
time-delayed correlation, can effectively extract the MMR. We
hypothesized that weighted-BSST/k would extract one or a few
dominant components that can discriminate the MMR from
background brain noise and other artifacts or other irrelevant
ERFs. As the first application in the cognitive neuroscience
of weighted-BSST/k using only deviant epochs, we aimed to
extract components that resemble the reference standard because
subtraction is currently the gold standard for identifying MMR.
We applied both BSST/k and infomax (ICA) separately to
the same weighted multi-channel MEG data (weighted-BSST/k

and weighted-infomax, respectively), and used the subtraction
approach (subtraction-BSST/k and subtraction-infomax) as a

more general approach to investigate how the single-trial
approach works, and then, statistically compared the similarity
of each component to the reference standard to test a further
hypothesis that BSST/k is more sensitive than infomax.

It was not our aim to use the subtraction-BSST/k/weighted-
BSST/k to separate independent MMR sources. Typically,
statistically independent components separated by preprocessing
with ICA are expected to be associated with one or two
dipolar sources (9, 23, 44, 45). We instead made a more
general assumption that a component extracted by subtraction-
BSST/k/weighted-BSST/k will relate to multiple sources or a
network of activity generating the MMR. In this sense, few
decomposed components are better than many, as long as they
represent the reference standard. Thus, the extraction of MMR in
a few components would simplify the interpretation of MMR in
regard to clinical and research applications.

MATERIALS AND METHODS

Participants
The participants in the experiment were 12 healthy adults
(aged 25.4–41.9 years, mean 33.7 years; six women). None of
the participants reported a history of head injury, neurological
disease, hearing problems, severe medical illness, or drug abuse.
The experiment was approved by the Ethics Committee of
Kyushu University.

Stimuli and Procedures
The paradigm consisted of auditory stimulus sequences
composed of standard stimuli with a probability of 80% and
deviant stimuli with a probability of 20%, which were delivered in
random order until at least 150 deviant stimuli were presented.
Tone bursts of 500Hz for standard stimuli and 550Hz for
deviant stimuli (10-ms rise and 20-ms fall) with a 100-ms
duration were delivered monaurally through plastic tubes
(length, 6m; inner diameter, 8mm). The hearing threshold was
determined for each ear of each subject, and stimuli generated
by a tone-burst-generator (Kyushu-Keisokuki, Fukuoka, Japan)
were delivered at intensities of 50 dB above the threshold (46).
The stimulus onset asynchrony (SOA) was 500ms, and the
presentation rate of the stimuli represented by fp was 2Hz.
Stimuli were delivered to each ear in separate runs, with masking
noises delivered to the contralateral ear to avoid cross-hearing
(47). Inversed stimuli (550Hz for standard and 500Hz for
deviant) were presented monaurally in separate runs. These
stimuli were counterbalanced. In the current study, only data
from right-ear stimulation and using 500-Hz standard/550-Hz
deviant stimuli were analyzed. Subjects were instructed to ignore
the auditory stimuli while they lay on the bed and watched a
silent movie (16).

Data Acquisition
MEGwas acquired using a 306-channel (204 planar gradiometers
and 102 magnetometers) whole-head system (Elekta-Neuromag,
Helsinki, Finland) in amagnetically shielded room. The sampling
rate was 1,000Hz, with a band-pass filter of 0.03–330Hz. EEG
was simultaneously recorded using 19 scalp electrodes according

Frontiers in Neurology | www.frontiersin.org 3 February 2022 | Volume 13 | Article 76249782

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Matsubara et al. Weighted-BSS(T/k) Decomposing Mismatch Response

to the international 10–20 system, although the sparse EEG data
were not analyzed in the current study.

Data Analysis
Preliminary Process
The temporal signal space separation method (TSSS) using
MaxFilter 2.2.13 (Elekta-Neuromag, Helsinki, Finland) was
applied to the sensor level data with the default setting of an
inside expansion order of 8, an outside expansion order of
3, automatic optimization of both inside and outside bases, a
subspace correlation limit of 0.980, and a raw data buffer length
of 10 s (48, 49). Notch filters were applied to suppress power line
frequency and its harmonics (60, 100, 120, 180, 200, 240, and
300Hz). Data from the 204 planar gradiometers were used for
all subsequent analyses. Hereafter, all analysis steps are shown in
Figure 1 and summarized in Figure 2.

The Subtraction Approach
The conventional subtraction approach for sensor space analysis
was used as a reference (Figures 1A, 2A). Before averaging across
epochs, the data were low pass filtered at 30Hz and, epochs
exceeding 4,000 fT/cm on any planar gradiometer channel were
excluded from the average. Based on our experience, some ocular
artifacts leak into the good epochs. Therefore we took extra
care and visually inspected the data to remove eye movements.
However, the impact of this procedure was minimal because
the number of epochs removed for each subject was 0–1. Each
epoch contained a 600-ms time window ranging from 100ms
pre-stimulus to 500ms post-stimulus onset, with the stimuli
being periodically presented (SOA = 500ms or fp = 2Hz).
The MMR difference sensor waveform (i.e., xsub) was calculated
by subtracting the averaged deviant ERFs from the averaged
standard ERFs for each subject (Figures 1A, 2A);

xsub (n) : = xdev (n) − xstd(n), (1)

where x (n) represents the MEG sensor data at the discrete time,
n. x (n) reflects the averaged sensor waveform of x (n) across
epochs. xstd (n) and xdev(n) are averaged standard and deviant
responses, respectively.

Decomposition Process
The decompositionmethods of BSST/k and infomax were applied
separately to each subject’s sensor dataset, which contained 204
sensors. The sensor data were originally decomposed into a set of
spatio-temporal components;

x (n) = As (n) , (2)

where A is a mixing matrix, and s is a signal source. BSST/k

was applied;

x (n) = ADCsDC (n) , (3)

whereADC is amixingmatrix of BSST/k, and sDC is a signal source
of BSST/k. Hereafter, we refer to BSSq (q = 1, 2, 3, . . . , 204) as
a specific component obtained after the application of BSST/k.
We briefly describe the BSST/k method here; full details are

provided in previous studies (36, 38). As a preliminary step, we
conducted a sphering procedure to orthogonalize and normalize
the time-series data for input sensors. We then conducted an
iterative Givens rotation to minimize the absolute sum of off-
diagonal elements of the normalized correlation matrices at
the parameters. Specifically, the Jacobi-like algorithm proposed
by Cardoso and Souloumiac (50, 51) was used in the BSST/k

method to approximately solve the simultaneous diagonalization
problem at specific times. Regarding the period T = 1/fp with
sampling frequency fs, the time-delayed parameters τ can be
defined by:

BSST/k : τm = [fs/fp]/m, m = 1, 2, . . . , k. (4)

where [. . . ] rounds the value to the nearest integer. Here,T= 0.5 s
and fp = 2Hz, with the repetitive stimuli constantly presented at a
rate of 2Hz (subsection Stimuli and Procedures). We determined
k= 8 in a data-driven manner (36, 38) [Supplementary Data (1)

and Supplementary Figure 1]. These parameters gave τ (ms) as
500, 250, 166, 125, 100, 83, 71, and 62 according to Eq. (4).

For ICA, we used the infomax algorithm (25, 49), which was
implemented in MNE-python (52) using the default setting;

x(n) = AICAsICA(n), (5)

where AICA is the mixing matrix of infomax, and sICA is the
signal source of infomax. Hereafter, we refer to ICAq (q = 1, 2,
3, . . . , 204) as a specific component obtained after application
of infomax. The number of principal components from the
pre-whitening step that was passed to the ICA algorithm was
204, which corresponded with the number of sensor inputs.
Accordingly, we obtained 204 components with associated time
courses and spatial distributions.

Two Different Approaches (Subtraction and

Weighted)
After applying the decompositionmethods (BSST/k and infomax)
to the sensor space data, we obtained the MMR difference source
waveform (i.e., ssub; Figures 1B, 2B) in the same way as in
the subtraction approach for sensor space analysis [subsection
The Subtraction Approach; Eq. (1); Figures 1A, 2A], which
corresponds to the two decompositionmethods (i.e., subtraction-
BSST/k and subtraction-infomax; Figures 1B, 2B);

sDCsub (n) : = sDCdev (n) − sDCstd (n), (6)

sICAsub (n) : = sICAdev (n) − sICAstd (n), (7)

where sstd (n) and sdev (n) are the averaged source waveforms
across epochs (i.e., ERFs) elicited by the standard
and deviant stimulus, respectively, obtained from each
decomposition method.

The novel method, the weighted-BSST/k, is expected to be a
more sensitive approach of extracting the MMR. The basics of
the method lie in the periodical arrangements and assignments
of weights on the MMR time range. Although our BSST/k

method is expected to highlight periodic signals, the deviant
epochs occur randomly, not periodically. To obtain periodical
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FIGURE 1 | Analysis steps. (A) The conventional subtraction approach for sensor space analysis. Sensor data (x) consist of standard (std) and deviant (dev) epochs.

The MMR difference sensor waveform (xsub) is calculated by subtracting the event-related field (ERF) to the standard (xstd ) stimulus from the ERF to the deviant (xdev )

stimulus. BSST/k , fractional type of decorrelation method; MMR, mismatch response; SOA, stimulus onset asynchrony; fp, presentation rate of stimuli. (B) The

subtraction approach with two decomposition methods (BSST/k or infomax). Data from 204 sensors (x) are decomposed into 204 components (s). The subtraction

approach is followed for each component; subtraction of the deviant ERF (sdev ) from the standard ERF (sstd ) makes the MMR difference source waveform (ssub). Note

that deviant epochs occur randomly, not periodically. (C) Deviant epochs of sensor data are concatenated and new raw data are made (xdev ). This process makes

periodical arrangements of deviant epochs. (D) Sensor data (xϕ ) are assigned with a weight on the MMR time (from n1 to n2, highlighted in purple shadows) on xdev
using a window function. The window function is shown in the inset figure. (E) Data with 204 sensors assigned with a weight (xϕ ) are decomposed into 204

components (sϕ ) with two decomposition methods. In each component, the ERF of the deviant epochs assigned with a weight is obtained (sϕ ). The inverted black

arrows between A and B and between D and E represent the back-projection process in a group of several components.

arrangements, we concatenated the deviant epochs to form
new raw data (xdev (n); Figure 1C). To highlight the MMR
that was included in the deviant epochs, we then weighted
the MMR time range (around 100–250ms, from n1 to n2)
defined by the spatio-temporal cluster permutation (subsection
Spatio-Temporal Cluster Permutation to Define the MMR Time
Ranges and Sensors or the Reference Standard), with the weight
described by the window function of the rectangular window
(inset between Figures 1C,D);

xϕ(n) : = ϕ ∗ xdev (n) , (8)

where ϕ describes a window function and the ∗ reflects its repeat
operation. The segmentation of data (epoch number, mean 174.3
± 19.6 [standard deviation]) was multiplied by the window
function values. Equation (8) indicates,

{

xϕ (n) = 1 · xdev (n) , n1 ≤ m ≤ n2,
xϕ (n) = 0.2 · xdev (n) , m < n1, n2 < m,

(9)

where n =
(

Index of deviant epoch− 1
)

· SOA + m. Here, m
is the given time point within every deviant epoch. Equation
(8) indicates that this window function, Eq. (9), was applied

repeatedly (Figure 1D, purple shadow) to the concatenated
sensor data (xdev (n)). We then applied the BSST/k and infomax
methods separately to the weighted data (weighted-BSST/k and
weighted-infomax; Figure 1E);

xϕ (n) = A
ϕ
DCs

ϕ
DC(n), (10)

xϕ (n) = A
ϕ
ICAs

ϕ
ICA(n). (11)

Finally, after lowpass filtering (30Hz), we obtained the ERFs (i.e.,
sϕ ; Figures 1E, 2C). That is, s

ϕ
DC(n) and s

ϕ
ICA(n), elicited by the

weighted deviant stimulus, instead of subtraction.
Two assumptions underlie the successful decomposition of

the weighted-BSST/k. First, the MMR occurs in the MMR
time (n1 ≤ n ≤ n2) only in deviant epochs. Second,
exogenous/obligatory ERFs (e.g., the M100) highly correlate
with themselves in the non-MMR time (n < n1, n2 < n).
The offset response of the M100 often intrudes on the MMR
within the MMR time, which is one of the reasons why the
subtraction approach is necessary (53). To minimize the joint
M100 and MMR effect, a rectangular window in the non-MMR
time is used to keep the correlation of the offset and onset
of the M100 and extract these as distinct components from
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FIGURE 2 | Block diagram of the procedure for the subtraction (A,B) and weighted approaches (C) for each decomposition method (BSST/k or infomax). The main

analysis parts are shown in double squares. BSST/k , fractional type of decorrelation method; DC, decorrelation method; ERF, event-related field; ICA, independent

component analysis.

an MMR component using weighted-BSST/k, which underlies
time-delayed correlation. However, it is expected that weighted-
infomax, in contrast to weighted-BSST/k, does not decompose
the MMR effectively because infomax does not depend on
time structure.

Spatio-Temporal Cluster Permutation to Define the

MMR Time Ranges and Sensors or the Reference

Standard
Currently, the only way to identify MMR is via sensor-space
subtraction. We therefore used sensor-space subtraction as a
reference standard. A data-driven approach was used to find
significant MMR time ranges and sensors in all subjects. Among
the 12 subjects, two did not exhibit a prominent MMR during
the initial screening of the visual inspection of sensor space
subtraction (confirmed by three independent inspectors, TMat,
SK, and KK.) and were thus excluded from further analysis.

Individual MMR difference sensor waveforms, xsub, were tested
if they were different from 0 across the 10 subjects, with the
multiple comparison problem being addressed using a cluster-
level permutation test across space and time (54). We used 1,024
permutations, and the cluster-defining threshold was set at p =

0.01. Selected samples were clustered based on both spatial and
temporal adjacency (i.e., spatio-temporal cluster permutation).
Our motivation to use the spatio-temporal cluster permutation
method was to verify the empirical knowledge that MMR occurs
around 100–250ms in the bilateral front-temporal sensors (7,
17) in a data-driven manner in our cohort of 10 subjects.
Figure 3A demonstrates the results of the spatio-temporal cluster
permutation. Six clusters (less than the critical alpha level of
0.05) were found. Among these six clusters, two (#1 and #2)
contained temporal and/or frontal sensors within approximately
100–250ms; one (#1) contained 20 left temporal sensors at 96–
276ms and the other (#2) contained 24 right front-temporal
sensors at 105–266ms. Thus, we defined the MMR time range
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FIGURE 3 | Sensor space waveform. (A) The results of the spatio-temporal cluster permutation analysis. Six significant spatial and temporal clusters are shown in

white circles within the averaged t-statistics (absolute value) and in orange shading within the averaged waveforms, respectively. Blue lines, standard; green lines,

deviant; red lines, difference. (B) Grand-averaged ERFs elicited by standard (xstd ) and deviant (xdev ) stimuli and the MMR difference sensor waveform (xsub) from 10

subjects. The MMR time is indicated by the purple line in the standard and deviant ERFs and by the blue shading in the MMR difference sensor waveform. The red

and pink lines in the MMR difference sensor waveform represent the MMR sensors from the left and right clusters, respectively. The topographical map represents the

peak activity in the bilateral temporal and right frontal sensors (white circles). The onset of the M100 (arrows) is outside of the MMR time range, whereas the offset of

the M100 (textured arrows) is included in the MMR time range seen in standard and deviant responses.

as 96–276ms (n1 = 96, n2 = 276) and the MMR sensors as
these 44 sensors. The reference standard was defined individually
(Figure 2A);

xRef : = Fxsub(n), n1 ≤ n ≤ n2, (12)

where xRef ∈ R
L×(n2−n1) and F ∈ R

L×N is the matrix that
select L = 44 rows corresponding to the MMR sensors out
of xsub containing all N = 204 sensors. In other words, the
reference standard was the 44 MMR sensors selected from the
204 gradiometers within the MMR time.

We confirmed that the different setting of the cluster-defining
threshold (p = 0.005) gave the similar spatio-temporal clusters
(Supplementary Figure 2). This means that the clusters obtained
were robust.

Component Evaluation: Cosine Similarity
To investigate the resemblance of each component to the
reference standard individually, or goodness of fit, we measured
cosine similarity (C) as spatial similarity and morphology
similarity (M) as temporal similarity.
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Cosine similarity refers to the similarity between two column
vectors (42, 55);

Cosine similarity (C) : C
(

a(n), b
)

=

∣

∣

∣
â(n)T b̂

∣

∣

∣
, n1 ≤ n ≤ n2,

(13)

where â(n) = a(n)/ |a| is the normalized column vector
containing the spatial distribution of the reference standard

(xRef ), and b̂ = b/
∣

∣b
∣

∣ is a normalized column vector of A in
Eqs. (3, 5, 10, and 11). The symbol T is the transpose of â(n).
Because of its definition, 0 ≤ C

(

a (n) , b
)

≤ 1. In the following,
we used the maximum of C (Cmax) across the MMR time
range for the four methods (i.e., subtraction-BSST/k, subtraction-
infomax, weighted-BSST/k, and weighted-infomax), denoted by

CDC
max, C

ICA
max, C

DC_ϕ
max , and C

ICA_ϕ
max . Cmax represents how maximally

similar each component is to the reference standard in regard to
spatial information.

Component Evaluation: Back-Projection and

Morphology Similarity
Temporal similarity should include information about the
temporal correlation between each component and the
reference standard as well as the amplitude difference
between each component and the reference standard.
Because the components derived from BSST/k and infomax
(MDC (n) , MICA (n) , M

ϕ
DC (n) , and M

ϕ
ICA(n)) are differently

normalized, their ERFs cannot be directly compared according
to their amplitudes. Thus, each component was projected back
into the sensor space (back-projection) (56). Here, we assumed
a general situation for the sake of the following subsection
The Cumulative Back-Projection of Salient Components, the
cumulative back-projection. When a group of q components,
where Q= {q} is selected from 204 components,

x
q
# (n) = A

q
#s
q
#(n) (14)

provides back-projected data in the sensor space (inverted black
arrow between Figures 1A,B), where A

q
# ∈ R

204×q and s
q
#(n)

represents source vectors corresponding to Q. Here, the suffix
symbol # indicates DC or ICA. The same formula was applied to
the weighted data (inverted black arrow between Figures 1D,E).
The ERF was then computed using the subtraction or weighted
approach. For the subtraction approach, we applied

x#_sub
(

n, q
)

: = x#_dev
(

n, q
)

− x#_std
(

n, q
)

, (15)

where x#_std(n, q) and x#_dev(n, q) are ERFs in the sensor
space elicited by standard and deviant stimuli, respectively,
obtained from each decomposition method (DC or ICA). For
the weighted approach, x

ϕ
#

(

n, q
)

is the ERF obtained from each
decompositionmethod (DC or ICA). Then, corresponding to Eq.
(12), we applied

x#_sub(q) : = F x#_sub
(

n, q
)

, n1 ≤ n ≤ n2, (16)

x
ϕ
# (q) : = F x

ϕ
#

(

n, q
)

, n1 ≤ n ≤ n2, (17)

where x#_sub
(

q
)

and x
ϕ
# ∈ R

L×(n2− n1).

We investigated the correlation between one sensor and the
reference standard;

rl =
(Xl,Yl)

‖Xl‖ ‖Yl‖
, l = 1, 2, 3, . . . , 44. (18)

where (X, Y) is the inner product. Here, X is one row vector
(l) of the reference standard (xRef ), which corresponds to one
sensor, and Y is one row vector (l) of the same sensor of
Z, where Z(q) is defined as Eq. (16) or Eq. (17). Notably,
x#_sub

(

n, q
)

and x
ϕ
#

(

n, q
)

∈ R
L×SOA and Z(q) ∈ R

L×(n2−n1).
Equation (18) is the same formula as that for the Pearson
coefficient. Then,

Morphology similarity (M) : rl ‖Yl‖ =
(Xl,Yl)

‖Xl‖
l = 1, 2, 3, . . . , 44.

(19)

was applied to calculate morphology similarity (M), where M
is the comparison of the similarity of the waveforms between
the reference standard and back-projected waveforms regarding
the temporal correlation and amplitude in the given sensor.
Among the 44 MMR sensors, we took the maximum of M
(Mmax) across the MMR sensors for each method, denoted
by MDC

max, MICA
max, M

DC_ϕ
max , and M

ICA_ϕ
max . Mmax refers to how

maximally similar Q components are to the reference standard
regarding temporal information when back-projected into the
sensor space. Specifically, when one component was selected (q
= 1), Mmax represented the maximal temporal resemblance to
the reference standard when the corresponding component was
back-projected into the sensor space. Accordingly, the scatter
plot of Cmax and Mmax shows the relationship between the
spatial and temporal resemblance to the reference standard in
each component.

Z-Score and Principal Component Analysis for the

Component Distribution Pattern
Two-hundred and four components from each subject should
be divided into several groups; MMR-related components
(“salient component”) and non-MMR-related components
(“inconsequential component”). To classify components, each
Mmax and Cmax value derived from all components from all
methods (204 × 4 = 816) were individually standardized (i.e.,
z-scored). Thus, the scatter plot of z-scored Mmax and Cmax

reflected the component distribution pattern. For each method
(subtraction-BSST/k, subtraction-infomax, weighted-BSST/k,
and weighted-infomax), the component locations were classified
into four quadrants (left upper [LU]; right upper [RU]; left
lower [LL]; and right lower [RL]) by setting the z-score > 1.65
(90%) for both Mmax and Cmax, with right referring to high
Mmax and upper referring to high Cmax. “Salient components”
were defined individually in the LU, RU, and RL quadrants. A
component in the RU quadrant may be a “major component”
with a high contribution to the MMR, whereas a component
in the LU quadrant, which has low Mmax and high Cmax, is
considered a “minor component” of the MMR; most of these
components have either small amplitudes or low correlations
with the reference standard. A component in the RL quadrant
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TABLE 1 | Distribution patterns of the salient components.

Number of salient

components

(Z-score > 1.65)

Number of salient

components

(Z-score > 1.96)

Z-scored

Mmax of the

center

Z-scored Cmax

of the center

Slope of the first

PCA component

Variance of the first

PCA component

Subtraction-BSST/k (± SD) 16.7 ± 2.8

(range, 3–16)

12.9 ± 2.3

(2–9)

3.1 ± 1.4 0.6 ± 0.4 0.29 ± 0.2 0.84 ± 0.07

Weighted-BSST/k (± SD) 8.0 ± 4.4

(13–21)

5.3 ± 2.5

(10–17)

3.7 ± 1.4 1.6 ± 0.5 0.14 ± 0.1 0.94 ± 0.04

Subtraction-infomax (± SD) 36.0 ± 15.3

(16–37)

20.7 ± 8.2

(5–30)

0.8 ± 0.5 1.6 ± 0.7 −0.60 ± 0.4 0.84 ± 0.10

Weighted-infomax (± SD) 26.5 ± 7.5

(16–71)

15.0 ± 7.7

(10–33)

0.7 ± 0.5 1.6 ± 0.6 −0.60 ± 0.4 0.84 ± 0.10

BSST/k , T/k (fractional) type of decorrelation method; PCA, principal component analysis; SD, standard deviation.

may be a “pseudo-component” regarding the MMR, which
suggests that the temporal resemblance is high only in a limited
number of MMR sensors. This component may relate to a false
(or network) or partial generator of MMRs. A component in the
LL quadrant (“inconsequential component”) means irrelevant
regarding the MMR or is a component that is related to other
ERFs or artifacts.

With successful decomposition, it is expected that only a few
components will fall within the RU quadrant, and the rest of the
components will fall within the LU, RL, and LL quadrants near
the borderlines of coordinate origin. In contrast, unsuccessful
decomposition will provide a component distribution pattern
where no components fall within the RU quadrant, and all
components will fall near the LL quadrant. To investigate
the distribution pattern of the salient components, principal
component analysis (PCA) was applied to z-scored Mmax and
Cmax. Two individual PCA components were obtained, with
most of the variance being captured by the subspace of the first
PCA component (more than 84%; Table 1). The center of the
distribution of salient components, taken as the cross-point of
the first and second PCA components, and the slope of the first
PCA component were obtained.

If a z-score > 1.96 (95%) was set, the number of salient
components was small (Table 1), especially in the weighted-
BSST/k. PCA seemed unreliable when the input data were <5;
thus, a z-score > 1.65 (90%) was applied.

The Cumulative Back-Projection of Salient

Components
To investigate the contribution of each component to the MMR,
components were cumulatively projected back into sensor
space (subsection Component Evaluation: Back-Projection and
Morphology Similarity), and the spatio-temporal resemblance
was compared with the reference standard (subsections
Component Evaluation: Cosine Similarity and Component
Evaluation: Back-Projection and Morphology Similarity). It is
expected that the more components that contribute to the MMR
are cumulatively back-projected, the more the back-projected
sensors resemble the reference standard. The order of cumulation
was determined after sorting by the first PCA component axis
(Supplementary Figure 3). Salient components were selected

for cumulative back-projection because components below
thresholds (inconsequential components in the LL quadrant)
are expected to contribute little to the MMR. Corresponding to
Eq. (19), M was investigated for the cumulative back-projection.
The back-projected data in sensor space derived from more
than two components have a dynamic topography over time,
whereas those derived from one component have a fixed field
distribution. Thus, in the cumulative back-projection, M was
obtained for an average of 44 MMR sensors, notMmax;

Mave : = mean(M). (20)

Thus, Mave represents both spatial and temporal information
regarding the MMR, which reflects the average resemblance to
the reference standard. Corresponding to each method, Mave

becomesMDC
ave ,M

ICA
ave ,M

DC_ϕ
ave , andM

ICA_ ϕ
ave .

Relative Contribution
The contribution of a salient component to the MMR or
the reference standard is high if a prominent Mave increment
is observed when cumulatively reconstructing one salient
component. Thus, the contribution of each component to MMR
was defined as

Relative contribution (RC) :
Mave (c) − Mave (c− 1)

Mave

(

qall
) ,

c = 1, 2, . . . , #end. (21)

where qall means Q = {1, 2, 3, . . . , 204}, c represents an index
number of the salient component according to the sorted order
when cumulated (subsection The Cumulative Back-Projection of
Salient Components), and #end is the index number of the last
one. The denominator of Eq. (21) is Mave when q= qall in Eq.
(16), then

Z
(

qall
)

= F x#_sub
(

n, qall
)

, n1 ≤ n ≤ n2, (22)

= xRef ∈ R
L×(n2− n1).

Thus, the denominator of Eq. (21) represents Mave of the
reference standard. Corresponding to each method, RC becomes
RCDC, RCICA, RCDC_ϕ , and RCICA_ϕ .
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As it is expected thatRCwill decrease as c increases, we applied
the exponential function approximation to the plotted data in the
c-RC plane;

y = βe−αx, (23)

where x implies c, and y represents RC with coefficients α and β .

Statistics
To compare the component distribution patterns between
the four methods, a two-way repeated-measures analysis of
variance (rmANOVA) was used to analyze the center (z-scored
Mmax and z-scored Cmax, respectively), and slope of the first
PCA component with within-subjects factors of APPROACH
(subtraction vs. weighted) and DECOMPOSITION (BSST/k vs.
infomax). For the post hoc tests, multiple comparisons were
performed using paired t-tests with Bonferroni correction. The
significance level was set at p < 0.05.

We counted c, where the non-linear approximation reached
the 5% threshold. It was assumed that components above the 5%
threshold significantly contributed to the MMR and were defined
as “dominant components,” whereas those that did not meet the
threshold did not contribute to the MMR.

RESULTS

The analysis comprised four parts (Figure 2, double squares):
(i) defining the reference standard based on the spatio-
temporal cluster permutation from the sensor-space analysis;
(ii) qualitative evaluation of each component based on its
similarity to the reference standard; (iii) statistical assessment of
component distribution patterns with the z-scored scatter plot;
and (iv) the relative contribution of each component.

Spatio-Temporal Cluster Permutation and
Reference Standard
The results of the spatio-temporal cluster permutation are shown
in Figure 3A. Among the six clusters, Clusters #1 and #2 (20 left
temporal sensors at 96–276ms with the alpha level of p = 0.004,
24 right front-temporal sensors at 105–266ms with the alpha
level of p= 0.008) were consistent with the empirical findings. On
the other hand, Clusters #3, #4, and #6 contained the late latency
and with lower alpha levels of p = 0.01. The Cluster #5 was at
102–212ms mainly from parietal sensors with the alpha level of
p = 0.008. Therefore, Clusters #1 and #2 were selected to define
the reference standard (i.e., a selection of MMR sensors from 44
left temporal and right front-temporal sensors at an MMR time
range of 96–276 ms).

Figure 3B represents the grand-averaged ERFs elicited by
standard and deviant stimuli and the MMR difference sensor
waveforms in sensor space (xsub). As indicated by the results
of the cluster permutation (Figure 3A topographical map in
Clusters #1 and #2), prominent activity occurred in the bilateral
temporal and right frontal sensors at the peak latency (Figure 3B
topographical map). Note that the offset of the M100 was
included in the MMR time for both standard and deviant ERFs
(textured arrows in Figure 3B).

Qualitative Evaluation of Each Component
Figure 4 represents the results of the decomposition together
with the sensor space analysis of a representative subject (Subject
2). The resemblance of the reference standard (Figure 4A)
from this subject was compared with each component
from four methods (subtraction-BSST/k, weighted-BSST/k,
subtraction-infomax, and weighted-infomax, in Figure 4B(i-iv),
respectively). One component in the weighted-BSST/k was
discriminable with similar morphology [Figure 4B(ii) upper
panel, red line, BSS107] and topographical map [Figure 4B(ii)
right] to the reference standard of the peak time (Figure 4A,
140ms). When this component was back-projected into the
sensor space (Figure 5, red lines), the left and right temporal
sensors (dotted areas) within MMR sensors at MMR time
range closely represented the reference standard (blue lines).
Accordingly, the corresponding component had discriminable

M
DC_ϕ
max and C

DC_ϕ
max among other components in the scatter

plot [Figure 4B(ii) lower panel, red arrow]. Moreover,
this component showed a minor additional topographical
representation in the left temporal sensors, which corresponded
with the reference standard of 260ms. No components were
discriminable using the infomax methods [Figure 4B(iii,
iv)]. The subtraction-BSST/k [Figure 4B(i)] provided two
components (red and green arrows) that had a moderate value of
MDC

max and CDC
max.

Scatter plots of Mmax and Cmax for each component
are depicted for the four different methods for all subjects
(Figure 6A). While most of components had lower Mmax and
Cmax values in the four methods, in the weighted-BSST/k

[Figure 6A(ii)], one or a few components represented high

M
DC_ϕ
max and C

DC_ϕ
max values individually. The z-scored plot shows

the distribution of salient (MMR-related) and inconsequential
(non-MMR-related) components according to the quadrants
based on a 90% z-score (Figure 6B). The salient components
were mostly located in the RU quadrant (major) in the
weighted-BSST/k [Figure 6B(ii)], whereas in the subtraction-
BSST/k [Figure 6B(i)], they were equally distributed between
the RU (major) and RL (pseudo) quadrants. The two infomax
methods [Figure 6B(iii and iv)] had salient components mostly
in the LU (minor) or RL (pseudo) quadrants. Most components
are inconsequential components in all four methods (the
numbers of salient components are shown in Table 1).

Statistical Assessment of the Component
Distribution Pattern
The component distribution patterns of these salient components
(major, minor and pseudo) were further investigated using PCA.
The averaged center of the distribution of the salient components
and the first PCA component are superimposed on the z-scored
plots of salient components in Figure 7 (individual plots are
shown in Supplementary Figure 3). The average z-scoredMmax,
Cmax, and slope for the four methods were 3.1 ± 1.4, 0.6 ± 0.4,
and 0.29± 0.2, respectively, for subtraction-BSST/k [Figure 7(i)],
3.7 ± 1.4, 1.6 ± 0.5, and 0.14 ± 0.1, respectively, for weighted-
BSST/k [Figure 7(ii)], 0.8 ± 0.5, 1.6 ± 0.7, and −0.60 ± 0.4,
respectively, for subtraction-infomax [Figure 7(iii)], and 0.7 ±

Frontiers in Neurology | www.frontiersin.org 10 February 2022 | Volume 13 | Article 76249789

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Matsubara et al. Weighted-BSS(T/k) Decomposing Mismatch Response

FIGURE 4 | Results from Subject 2. (A) Sensor space analysis using subtraction. Red and pink lines from MMR sensors (white circles) within the MMR time (purple

line) refer to the reference standard. Decomposition results are shown in (B) (i), (ii), (iii), and (iv) for subtraction-BSST/k , weighted-BSST/k , subtraction-infomax, and

weighted-infomax, respectively. Upper panels: source waveforms (ssub or s
ϕ ), lower panels: scatter plots of Mmax and Cmax for each component. The color map in the

scatter plot indicates the value of Cmax (from 0 to 1). In each decomposition result, three components are depicted in different colors (red, green, and yellow) with their

corresponding topographical maps. In the scatter plots, the arrows with the same color correspond to the components. These components were selected based on

the order of cumulation of the first three components (see subsection The Cumulative Back-Projection of Salient Components). Hereafter, the topographical map

takes an arbitrary unit due to matrix A in Eq. (2).

0.5, 1.6 ± 0.6, and −0.60 ± 0.4, respectively, for weighted-
infomax [Figure 7(iv); Table 1].

The rmANOVA results of the z-scored Mmax of the
center (Figure 8A) revealed a significant main effect of
DECOMPOSITION [F(1,9) = 76.9, p < 0.001], which
indicated that the z-scored Mmax in both BSST/k methods
was significantly larger than that in both infomax methods.
There was no significant interaction between APPROACH
and DECOMPOSITION [F(1,9) = 2.7, p = 0.1] or main
effect of APPROACH [F(1,9) = 0.9, p = 0.4]. These results
suggested that the salient components of both BSST/k

methods were located in the right quadrant, whereas
those of both infomax methods were located in the
left quadrant.

The rmANOVA results of the z-scored Cmax of the
center (Figure 8A) revealed a significant interaction between
APPROACH and DECOMPOSITION [F(1,9) = 60.4, p < 0.001]

and significant main effects of APPROACH [F(1,9) = 40.2, p
< 0.001] and DECOMPOSITION [F(1,9) = 9.7, p < 0.01]. The
post hoc analysis revealed that the z-scored Cmax of subtraction-
BSST/k was significantly lower than that of weighted-BSST/k

and those of both infomax methods (weighted-BSST/k, p <

0.0001; weighted-infomax, p < 0.0005; subtraction-infomax, p <

0.001). These results suggested that the salient components of the
weighted-BSST/k and both infomax methods were located at the
border between the upper and lower quadrants, whereas those of
the subtraction-BSST/k were located in the lower quadrant.

The rmANOVA results of the slope of the first PCA
component (Figure 8B) revealed a significant main effect of
DECOMPOSITION [F(1,9) = 65.5, p < 0.001], which indicated
that the slope in both BSST/k methods was significantly larger
than that in both infomax methods. There was no significant
interaction between APPROACH and DECOMPOSITION
[F(1,9) = 0.2, p = 0.6] and no main effect of APPROACH [F(1,9)
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FIGURE 5 | Back-projection of one component (q = 1, BSS107) from the weighted-BSST/k in Subject 2. The blue lines [xsub (n)] indicate the MMR difference sensor

waveform obtained using the conventional subtraction approach. The blue lines in the MMR sensors (bold black areas) within the MMR time range (blue shadows)

refer to the reference standard [xRef (n)]. After the back-projection of one component, the ERF was obtained [red lines, x
ϕ

DC

(

n, BSS107
)

]. The maximum of the

morphology similarity (Mmax) as the temporal resemblance of these two waveforms in each MMR sensor within the MMR time range were investigated. Two

representative right and left MMR sensors are shown (dotted area). n, discrete time.

= 2.4, p = 0.2]. These results indicated that the locations of the
salient components in both BSST/k methods had positive spatio-
temporal correlations regarding the MMR (i.e., the slope had
a positive value), whereas those of both infomax methods had
negative correlations (i.e., the slope had a negative value).

In conclusion, the distribution of the salient components

was mostly in the RU quadrant (major) with weighted-

BSST/k [Figures 6B(ii), 7(ii)], the RL quadrant (pseudo) with

subtraction-BSST/k [Figures 6B(i), 7(i)], and the LU (minor)

or RL (pseudo) quadrants with the two infomax methods
[Figures 6B(iii and iv), 7(iii and iv)]. Both BSST/k methods
[Figures 6B(i and ii), 7(i and ii)] showed positive spatio-temporal
correlations while both infomax methods showed negative
correlations [Figures 6B(iii and iv), 7(iii and iv)].

The Cumulative Back-Projection and
Relative Contribution
Figure 9 shows the results of Mave after cumulative back-
projection in a representative subject (Subject 2). The curvature
of the weighted-BSST/k [Figure 9(ii)] was steep in the first
component (c = 1, red arrow, corresponding to BSS107), which
suggested that in the weighted-BSST/k, only one component
contributed highly to the MMR. Note that this component
was a major component localized on the RU quadrant
[Figure 6B(ii)]. On a contrary, other components represent
a minimal increase in Mave [e.g., green and yellow arrows
from weighted-BSST/k in Figure 9(ii) or all three arrows
from two infomax methods in Figure 9(iii and iv)]. These
were either pseudo- or minor components (Figure 6B). In
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FIGURE 6 | Scatter plots of Mmax and Cmax for each component in the four methods for all subjects (A). Z-scored scatter plots represent the distribution pattern of

salient and inconsequential components (B). The four quadrants are divided by red dotted lines (z-score > 1.65 [90%]). Red, green and yellow arrows indicate the

corresponding components from Subject 2 in Figure 4.

addition, it is notable that the third component of subtraction-
infomax [Figure 9(iii), yellow arrow, corresponding to pseudo-
component in Figure 6B(iii)] negatively contributed to the
MMR. Moreover, the first component of subtraction-BSST/k

[Figure 9(i), red arrow] showed a mild increment in Mave,
which corresponds to this component being classified as a major
component in Figure 6B(i).

Supplementary Figure 4 shows the RC lines (upper panels)
together with their approximate lines (lower panels) in individual
subjects. In Subject 2, the approximate lines of the weighted-
BSST/k show that the first component (red arrow) represented a
contribution as high as 30%, whereas later components (green
and yellow arrows) provided much lower contributions. We
counted c, where the non-linear approximation reached the 5%
threshold (gray dotted lines; i.e., the dominant components).
The number of dominant components is shown in Table 2. In
the weighted-BSST/k, 1–3 components significantly contributed
to the MMR, except for one subject (Subject 5). In the
subtraction-BSST/k, 2–6 components contributed to the MMR.
The two infomax methods had few components that significantly
contributed to the MMR. These results indicated that one
or a few dominant components contributed to the MMR in
weighted-BSST/k, whereas no components represented the MMR
in infomax.

DISCUSSION

In the current multi-channel MEG study, we demonstrated
that our novel weighted-BSST/k method using only deviant
epochs (deviant concatenation) could extract an MMR confined
to one or a few dominant components (Figures 4, 6, 9,
Supplementary Figure 4, and Table 2). In the subtraction-
BSST/k/weighted-BSST/k, the salient components showed
positive spatio-temporal correlations with the MMR (Figures 7,
8, and Supplementary Figure 3). However, ICA decomposed
the MMR into an assembly of minor or pseudo components with
negative spatio-temporal correlations. Specifically, our method
avoids having to use the conventional subtraction approach to
reveal the MMR. Our method may help with the use of the MMR
in basic and clinical research.

The Conventional Subtraction Approach to
Reveal the MMR
The MMR has been widely used in many fields of human
neuroscience (10, 15, 16). Conventionally, the subtraction
approach was needed to extract the MMR from other auditory
ERP/ERF. However, there are several problems with such
a method, which include increased noise and the inability
to exclude neural adaptation. Several approaches have been
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FIGURE 7 | The averaged center of the distribution of the salient components and the slope of the first PCA component superimposed onto the z-scored plots of the

salient components. Red dotted lines indicate z-scores > 1.65 (90%). Error bars indicate standard errors (SE).

proposed to avoid the neural adaptation problem (53, 57);
however, all such approaches depend on subtraction. Our
novel approach avoids subtraction. In general, the MMR is a
relative component because a common response is included
in standard and deviant ERFs, and the MMR is then defined
as the difference waveform based on the original theory
underlying the MMR (i.e., the memory-comparison process).
The MMR should be present in deviant epochs but not in

standard epochs. Thus, only deviant epochs are needed for
its decomposition.

Periodical Arrangements and Weight
Assignments
We made two assumptions underlying the successful
decomposition of the weighted-BSST/k: (1) The MMR occurs
periodically within a specific time range (i.e., the MMR time
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FIGURE 8 | Z-scored Mmax of the center (A) (upper panel), z-scored Cmax of the center (A) (lower panel), and the slope of the first PCA component (B). Error bars

indicate standard errors. See Table 1 for each value. ** < 0.005.

range) and in the deviant epochs; (2) Exogenous/obligatory
ERFs highly correlate with themselves in the non-MMR time.
Originally, BSST/k was expected to highlight periodic signals
using T (35–38). The MMR time range (96–276ms) was defined
according to the spatio-temporal cluster permutation analysis,
which was assumed to reveal the statistically significant time
range in which the MMR occurs. Both the offset response of
the M100 and the MMR fall into this time range, whereas
the onset response of the M100 occurs outside of the time
range (Figure 3B). Assigning a weight to this time range may
minimize the joint M100 and MMR effect. The weighting
emphasizes the target response (i.e., the MMR) within the
window, whereas the response outside the window (i.e., the
onset of the M100) takes away the response (i.e., the offset
of the M100) if they are highly correlated. Analogous to the
subtraction approach (as subtraction separates such responses
by subtracting deviant responses from standard responses), the
weight assignment on a specific time range may differentiate
the MMR from other responses. Supplementary Data (2-1)

and Supplementary Figure 5 support our assumptions;
the assignment of the weight outside the M100 in the standard
epochs did not result in the extraction of remarkable components
that represent the M100 (Supplementary Figure 5B).

Significance of our Approach
We obtained four main findings. First, the weighted-BSST/k

decomposed one or a few components (< 3) that manifested
the MMR among the many components obtained from
multi-channel data (Figures 4, 6, 9, Supplementary Figure 4,

and Table 2). We refer to this decomposition result as
specification. Multi-channel recordings of electromagnetic
fields emerging from neural currents in the brain generate
large amounts of data (28). Thus, this specification makes
interpretation and comparisons among groups easier. Our
primary aimwas to extractMMR in a few dominant components.
The dominant component was the component that had the most
discriminable Mmax and Cmax, and thus, it contributed most
highly to the MMR (Figure 9, Supplementary Figure 4, and
Table 2). We do not assume that the dominant component
manifests a single MMR source; instead, it may represent
the network or a series of MMR sources (Figure 4). Other
irrelevant activities were redistributed among the remaining
components. Since our method (BSST/k) depends on the
theory that utilized correlations between components instead
of strong independence (i.e., ICA), it would result in extracting
components with keeping physiological correlation that may
represent several generators or network of MMR. If bitemporal
and frontal MMR sources are highly correlated, with a certain
delay, these sources should be extracted in a few components
using our time-delayed correlation method. Indeed, it is known
that these sources have separate temporal dynamics (58) but
interact with each other (59). In contrast, it is difficult to identify
any dominant components using ICA, where each extracted
component represents one or two dipolar sources. This is
discussed in the following section.

Second, the decomposed components revealed positive
spatio-temporal correlations regarding the MMR, and the center
of the distribution of the salient components was in the RU
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FIGURE 9 | The cumulative back-projection and result of Mave for the four methods in one subject (Subject 2). The order of cumulation is determined after sorting by

the first PCA component axis (Supplementary Figure 3). The number of components reconstructed depended on the number of salient components. Red, green

and yellow arrows indicate the corresponding components from Subject 2 in Figure 4.

(major) quadrant (Figures 6–8, Supplementary Figure 3, and
Table 1). According to Eq. (2), the decomposed component
contains the mixing matrix (spatial) and signal source
(temporal). A positive spatio-temporal correlation in the
decomposed component suggests that the component is
physiologically meaningful (9). In turn, with a positive spatio-
temporal correlation, a component that shows the most
similar morphology regarding the MMR also has the most
similar topography regarding the MMR. This relationship
is particularly important when targeting the response with
an unknown generator source. The temporal information
can be mutually applicable to the detection of the target,
without a priori knowledge of its precise generator. For
example, in Figure 4B(ii), if the MMR topography is unknown,
BSS107 can be selected as the MMR component based on its
discriminable amplitude.

Third, each component was obtained from individual data
and the results were statistically significant. This indicated that

weighted-BSST/k is generally applicable to individual subjects,
unlike group-ICA.

Fourth, a new cohort from subjects with low SNR in
the sensor-space analysis regarding MMR (subsection Spatio-
Temporal Cluster Permutation to Define the MMR Time
Ranges and Sensors or the Reference Standard) demonstrated
a few MMR-related components in weighted-BSST/k when the
same MMR time range was used for the weight assignment
[Supplementary Data (2-2) and Supplementary Figure 6]. This
MMR time range was independently determined in this cohort.
These results may indicate that the generous setting of the weight
time range can be available as long as the crucial time range
is covered.

Based on these results, the application of our approach
provides potential benefits that the sensor-space subtraction
method does not, despite its status as the current gold
standard for revealing MMR. Our single-trial, contrast-free
approach would minimize the effect of refractoriness and
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TABLE 2 | Numbers of dominant components.

Subject No. Subtraction-

BSST/k

Weighted-

BSST/k

Subtraction-

infomax

Weighted-infomax

Subject 1 5 2 None None

Subject 2 3 1 1 None

Subject 3 6 3 None None

Subject 4 2 2 None 1

Subject 5 3 None None None

Subject 6 3 1 2 None

Subject 7 4 2 None None

Subject 8 5 3 None None

Subject 9 4 1 None 1

Subject 10 4 3 None None

BSST/k , T/k (fractional) type of decorrelation method.

maximize the temporal information underlying the neural
mechanism of MMR. Our approach would therefore provide
a new approach toward investigating further insights into the
physiology of MMR.

Comparison With ICA
Both ICA methods (subtraction- and weighted-infomax)
consisted of a collection of minor or pseudo components
(Figures 4, 6, 9, Supplementary Figure 4, and Table 2). Most
components were located in the LU (minor) or RL (pseudo)
quadrants (Figures 6–8 and Table 1). The slope of the first
PCA component showed a negative spatio-temporal correlation
(Figures 7, 8, Supplementary Figure 3, and Table 1). There
were no dominant components that manifested the MMR in
either of the ICA methods (Table 2). The decomposition method
in ICA is based on stochastic properties and does not depend on
the time structure; thus, spatio-temporal dissociations may occur
(34). Several papers have reported successful decomposition
of the MMR using ICA (9, 25, 60–64); however, most results
were derived from oligo-channel recordings. When the number
of sensors/channels sensing the MMR is relatively small, the
MMR can be extracted by one or a few components. However,
such specification in multi-channel data is rarely shown in ICA
studies because a greater number of channels results in poorer
estimation accuracy of the components (25). If we assume
fewer numbers of sources (e.g., tens) but use larger numbers
(204) of sensors for ICA decomposition, the components of
interest will likely be (i) split into sub-components and (ii)
located where the SNR of each component is reduced. This is
consistent with our previous work where ICA decomposition
showed fragments of interictal epileptiform discharges from a
single epileptogenic zone (42). Furthermore, most ICA studies
are based on cluster analysis (e.g., group-ICA), not individual
analysis. Generalization of the application of ICA to the MMR
was not demonstrated in these studies.

Lastly, although subtraction-BSST/k follows the conventional
subtraction approach, it performed better than the two ICA
methods, especially the subtraction-infomax. The center of the
distribution of the salient components was in the RL quadrant
(pseudo), yet it maintained a positive spatio-temporal correlation

(Figures 6–8, Supplementary Figure 3, and Table 1). A possible
interpretation of these findings is that these components
may represent the partial generators of MMR sensors. The
difference between subtraction-BSST/k and subtraction-infomax
may explain the theoretical difference between BSST/k and
infomax (time-delayed correlation vs. strong independence). The
decomposition of the subtraction-BSST/k was less successful
than that of the weighted-BSST/k. There were more dominant
components (< 6; Table 2) in the subtraction-BSST/k than
there were in the weighted-BSST/k. From the viewpoint of
specification, fewer dominant components are desired. In
conclusion, both BSST/k methods, which use time structure,
performed well in extracting the MMR; however, the weighted
approach was the most sensitive.

Future Perspectives
The current study aimed to extract the MMR as a distinct
component using a combination of the periodical arrangement
and assignment of a weight. The specific effect of each
technique should be investigated in a future study, which
may help achieve a better understanding of the physiology of
the MMR.

Because there was no confidence in terms of source
localization of extracted components, although there are several
ICA and SOBI studies (9, 32, 41), this view may provide
potential benefits given that components may encompass several
sources or networks of MMR. This should be investigated in
future studies.

Our method is not dependent on the number of components.
Our motivation was not to apply dimension reduction to
maximize themulti-channelMEG data. However, the application
of our method to different numbers of sensors, different
MEG systems, or another type of sensor (magnetometer) is
an interesting but open question. Theoretically, our weighted
method can possibly be applied to any clinical neurophysiology
data to investigate ERFs, which include higher cognitive
functions where the elicitation of the target requires subtraction,
and the target is subject to a specific assumption about the
time window in which it occurs in multi-channel data. In a
paradigm where stimuli are jittered and thus are not periodic,
our weighted method will also be applicable by concatenating
the epochs.

LIMITATIONS

There are several methodological concerns to our study: (i) The
spatio-temporal cluster permutation provided several clusters
(Figure 3A); however, we did not select all of these. We selected
the most reliable clusters that covered 100–250ms and the
bitemporal sensors (7, 17) since the vast majority of EEG studies
of MMR generators confirmed these; however, the parietal
generator in the later latency (e.g., Figure 3A Clusters #5 and
#6) was suggested in several studies (9, 10) and should be
investigated in a future study. (ii) The SOA of the current study
was relatively short so that the brain response could return
to the baseline. This short time range may have concatenation
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artifacts when deviant concatenation. However, in the weighted-
BSST/k method, the amplitude outside of the window was 0.2
(Eq. 9). Therefore, concatenation artifacts, if any, should be
limited. (iii) The window function was set as a rectangular
window, which may cause a tingling effect. The selection of
a window function should be based on a hypothesis; in the
current study, we assumed that the crucial time range of MMR
is equally distributed at 96–276ms based on our data-driven
approach, even though this time range is not assumed to have a
unique significance. However, the non-rectangular window can
be used according to the hypothesis. Therefore, we uploaded
the source code of weighted-BSST/k to GitHub (https://github.
com/fractionalTypeBSS/BSSTk.git) to enable users to apply it
according to their hypothesis and select so that users can use
it based on their hypothesis to choose the window function
and time range. (iv) The sample size was relatively small
for fully describing the performance of our new approach.
However, generalization, as well as the validity of our approach,
is supported by our additional analysis in a separate cohort
[Supplementary Data (2-2) and Supplementary Figure 6].

CONCLUSIONS

We proposed a novel weighted method for extracting the
MMR from multi-channel MEG data. Compared with ICA, our
weighted-BSST/k method was more sensitive in highlighting the
MMR in one or a few dominant components with positive
spatio-temporal correlations. This new approachwhich used only
deviant epochs could replace or complement the conventional
subtraction approach. Our method may facilitate the use
of the MMR in basic and clinical research and provide a
novel approach to analyze complex event-related MEG and
EEG data.
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We discuss specific challenges and solutions in infant MEG, which is one of the most

technically challenging areas of MEG studies. Our results can be generalized to a variety

of challenging scenarios for MEG data acquisition, including clinical settings. We cover a

wide range of steps in pre-processing, including movement compensation, suppression

of magnetic interference from sources inside and outside the magnetically shielded room,

suppression of specific physiological artifact components such as cardiac artifacts. In the

assessment of the outcome of the pre-processing algorithms, we focus on comparing

signal representation before and after pre-processing and discuss the importance of the

different components of the main processing steps. We discuss the importance of taking

the noise covariance structure into account in inverse modeling and present the proper

treatment of the noise covariance matrix to accurately reflect the processing that was

applied to the data. Using example cases, we investigate the level of source localization

error before and after processing. One of our main findings is that statistical metrics of

source reconstruction may erroneously indicate that the results are reliable even in cases

where the data are severely distorted by head movements. As a consequence, we stress

the importance of proper signal processing in infant MEG.

Keywords: magnetoencephalography (MEG), artifact, movement compensation, infant, signal space separation,

brain, signal space projection, signal processing

INTRODUCTION

Magnetoencephalography (MEG) is a functional imaging technique that offers excellent temporal
resolution and good spatial resolution. The sensors in the MEG helmet measure the weak
magnetic fields associated with electrical currents produced in the brain, e.g., during sensory,
motor or cognitive tasks. The spatial sources of the detected magnetic fields can be estimated
using a combination of anatomical information (digitized head shape, structural MRI) and known
properties of electromagnetic field propagation, a process known as “source localization.” MEG is
also passive, silent, and non-invasive, making it an excellent tool to study neural dynamics in the
developing brain. However, MEG is known to be extremely sensitive to artifacts and distortions
that can affect source localization. In adult populations, some artifacts can be minimized by, e.g.,
asking participants to stay still during the measurement, which reduces signal distortions caused by
head movements. Such approaches fail in measurement sessions with awake infant subjects, and,
therefore, efficient signal processing methods for movement compensation are essential for reliable
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infant MEG analysis. Additionally, other infant-specific
distortion mechanisms exist, and based on our experience, the
three most significant issues in infant MEG data that bias source
localization are: (1) frequent head movement; (2) decreased
signal-to-noise ratio (SNR) from increased scalp-to-sensor
distance; and (3) strong cardiac artifacts which resemble brain
signals in their spatial distribution. The SNR issue is mainly
related to the relative positioning of the MEG sensor array and
the infant head, and in this paper we focus on the methodology
concerning points (1) and (3) above.

A number of processing methods have been developed to
address the issues listed above, many of which exist in both adult
and infant data. For example, head movement, its effect on MEG
data and subsequent results after the application of movement
compensation has been shown in adults (1), school-aged children
(2), infants (3), as well as in clinical populations (4). In this
paper, we review some of the most relevant methodological
aspects of processing and analysis of infant MEG data. Special
emphasis is given to the infant-specific mechanisms of signal
distortion leading to source localization errors. Using real
movement information from a set of 6, 7, and 12-month-old
subjects, we show the effects of these distortions on magnetic
field topographies and source localization, using several different
processing approaches. Notably, we demonstrate that statistical
metrics, such as the goodness-of-fit of equivalent current dipole
models, do not necessarily capture source localization bias,
meaning that significant source localization errors may remain
undetected in data that have not been processed with movement
compensation algorithms.

SIGNAL DISTORTIONS AND THEIR
CORRECTION IN INFANT MEG

External Artifacts
External artifacts arise from generators of magnetic fields that
lie outside the body of the MEG subject. Common sources are
power lines, elevators, electronic devices, moving vehicles, and
mechanic vibration of the room housing the MEG instrument.
Signal space separation (SSS) (5, 6) and its temporal extension,
temporal signal space separation (tSSS) (7, 8) are commonly
used methods that compensate for external interference artifacts
in MEG data. The signal space separation method (SSS) is
based onMaxwell’s equations, where spatially discretized samples
of magnetic flux (MEG data) are decomposed into amplitude
coefficients of basis functions that span detectable magnetic fields
in space that is free of sources of magnetic fields, i.e., in the
region where MEG sensors are located. Since separate linearly
independent basis functions exist for signals generated inside and
outside the sensor volume, SSS provides a straightforward means
of removing field components attributable to external sources. In
cases where the artifact sources are not clearly distinguishable as
internal or external, the temporal extension of SSS (tSSS) can be
used to detect and remove components arising from these nearby
artifact sources. Other efficient and widely used interference
suppression methods include, e.g., signal space projection (SSP)

(9) and reference sensor-based methods (10). For a review of
MEG artifacts and their suppression, see Taulu et al. (11).

Physiological Artifacts
MEG is also sensitive to physiological artifacts which arise from
generators inside the body of the subject (e.g., heart, eyes, skeletal
muscles). Blink- and saccade-related artifacts tend to occur less
frequently in infants than adults, as the mean spontaneous blink
rate in infants is <2 blinks per minute (12). In contrast, infant
and child cardiac artifacts are often more than an order of
magnitude larger than the brain signals of interest (13) and
appear as volume currents within the skull due to the shorter
distance between the heart and the MEG sensors. Additionally,
infant heart rate is much faster than adults: from newborn to 6
months of age the mean heart rate is 125–145 beats per minute
(bpm), compared to a mean heart rate of 80 bpm in adolescents
and adults (14). Furthermore, the QRS peak is narrower for
infants than for adults, ranging from 50 to 80ms in duration,
contributing electromagnetic activity in the 12.5 to 20Hz range
(14). Adolescents, on the other hand, have a QRS complex lasting
between 90 and 110ms (15). Both the increased proximity and
frequency of magnetic contributions from the heart make it
essential to properly characterize and remove cardiac artifacts in
infant data.

Common methods used to remove both ocular and cardiac
artifacts in MEG data include independent component
analysis (ICA) (16–23) and SSP based on principal component
analysis (PCA).

Movement Related Artifacts
Headmovements are generally unavoidable in infant populations
(3), due to the larger space available for head movements (in
common adult sized helmets) and infants’ inability to remain
still on command. Such movements distort the magnetic field
distribution across theMEG sensors and can result in large errors
in source localization (1). Fortunately, movement compensation
algorithms have been developed to repair such artifacts (6,
24). Using head position indicator (HPI) coils that emit high-
frequency sinusoidal fields, the head position can be continuously
and accurately determined during an MEG recording. By forcing
the spatial “expansion origin” of the internal basis functions
derived from SSS to match the origin of the head coordinate
system (even as the head moves over time), one can decompose
the MEG signals into a representation that is specific to the
brain regardless of its location with respect to the sensors. Thus,
by continuously tracking the head position, the basis function
coefficients can be interpreted in a static head coordinate system,
as if the subject had remained still. Typically, the coefficients
are used to create a virtual sensor-level signal representation
corresponding to some target head position defined by the user.
This is the basis of head movement compensation, and it is
an essential task in the processing of infant data as will be
demonstrated in subsequent sections.

Effect of Noise Covariance
Sensor covariance matrices, which quantify the spatial
correlation structure between each pair of sensors, are central
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to many MEG source localization algorithms such as minimum
norm estimation, equivalent current dipole fits, mixed-norm
solvers, and beamformers, as well as many applications of
machine learning to MEG data. Covariance matrices are typically
estimated from the data, either from specific segments during a
subject recording (e.g., the baseline period before each trial as a
“noise covariance,” or during the trial for a “data covariance”)
or from data recorded just before or after the experimental
session (“empty-room” data). It is important that the true
underlying sensor covariance structure is accurately reflected in
the estimated noise covariances, otherwise a reduction in SNR
and errors in source localization can be introduced (25). In the
context of source localization of movement-compensated data
in particular, it is also important that full (rather than diagonal)
noise covariances are used (3).

Fortunately, direct empirical source covariance estimates can
be improved by using automated regularization techniques (26).
However, even when using such techniques, it is important to
properly account for the rank of the data. In source imaging for
example, the pseudo-inverse square root of the noise covariance
matrix must be computed to whiten the data. During this
computation, the rank of the data must be explicitly accounted
for in order to avoid amplifying data components that are
numerical noise. Common operations such as SSP, ICA, and SSS
can all reduce the rank of the data, and this must be explicitly
taken into account (26). In other words, the noise covariance
rank (and effective null space) directly affect the accuracy of
source localization (and by extension, other methods that rely on
covariance estimates).

In the context of movement compensation, the data rankmust
be taken into account carefully. The number of components used
to reconstruct data can vary as a function of time, as the different
head positions can yield different regularized internal bases in
MNE-Python’s implementation of Maxwell filtering. While a
sensor covariance computed from the movement-compensated
data can directly reflect this, empty-room data processed directly
using SSS by default will not—it will reflect the rank of non-
movement-compensated data (i.e., as if the head remained
stationary), which will likely differ. Therefore, it is important
that empty room data are processed the same way as movement
compensated data, i.e., by using the same initial device-to-head
transformation, expansion origin (in the head coordinate frame),
and time-varying head position parameters as the actual data,
despite the fact that there was no actual subject motion during
the empty room recording.

Reduced SNR of Infant MEG
Measurements
Magnetic fields from any source (including sources in the brain)
decay rapidly with distance. In traditional adult superconducting
quantum interference device (SQUID)-based MEG systems,
helmets are designed to place the sensors as close as possible
to the helmet’s inner surface, given the restrictions posed by
thermal insulation between the head and the liquid helium vessel
containing the SQUID sensors. When this larger helmet is used
with infants, the distance reduces the strength of the measured

magnetic field and negatively affects the SNR. At the same time,
infants’ smaller heads allow for a considerable range ofmovement
inside adult-sized helmets. In SQUID systems, the sensors are
not attached to the head, and therefore movement of the head
relative to the sensors significantly distorts the distribution of
the magnetic signals and thus biases source localization. While
this effect is not an artifact in the strict sense, the resulting
reduced strength of magnetic field components originating from
the brain makes the suppression of external and physiological
artifacts all the more critical. In the rest of this paper, we illustrate
some of the above-mentioned artifact suppression approaches
and demonstrate some common pitfalls when processing infant
MEG data.

METHODS

To quantify the effects of SSS, movement compensation, and
noise covariance on source localization of infant MEG data, we
simulated data based on real infant head movements. Simulated
datasets were analyzed using four different methods: (1) no
artifact suppression (Raw), (2) Maxwell filtering (SSS), and (3,
4) Maxwell filtering with movement compensation using two
different covariance estimation methods (see Data Processing,
below). In addition to simulated data (where ground truth source
locations are known), we show the effect of each approach on real
infant data to illustrate what the effects look like in practice.

Subjects and Data Acquisition
Data from nine 6-month, twenty-three 7-month, and fourteen
12-month-old typically developing subjects were drawn from two
previously conducted studies at the University of Washington
Institute for Learning and Brain Sciences. All infants were from
monolingual English-speaking environments, had no reported
hearing difficulties, no history of ear infections, and were
born full-term (between 39 and 42 weeks of gestational age).
Both studies were in accordance with the ethical standards of
the institutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. Informed consent was obtained
from parents or caregivers of all infants included in both studies.
MEG data were recorded in a magnetically shielded room with
a whole head adult-sized 306 channel Elekta Neuromag R© MEG
system (Elekta Oy, Helsinki, Finland). Prior to scanning, each
subject had a fabric cap fitted to the head, with five (83,143, 203,
263, 323Hz) HPI coils attached. Anatomical landmarks (left and
right preauricular points, nasion), HPI coils and additional points
along the head surface were digitized using Fastrak R© 3D digitizer
(Polhemus, Colchester, VT, USA) to construct an individual
Cartesian head-centric coordinate system. Infants were seated in
a custom-made chair under the MEG helmet while listening to
various auditory stimuli. For specific details about the paradigm,
see Kuhl et al. (27) and Mittag et al. (28).

Data Processing
MEG data were pre-processed using MNE-Python (29, 30).
All data were analyzed using four different methods: (1) no
artifact suppression (Raw), (2) Maxwell filtering only (tSSS for
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FIGURE 1 | Field topographies of bilateral evoked auditory responses (at 150ms) in a 6-month-old participant. (A) Raw data (no artifact suppression), (B) data

processed with tSSS, and (C) data processed with tSSS + movement compensation. Black arrows represent estimation of equivalent current flow at the MEG sensor

locations.

experimental data and SSS for simulated data), and (3, 4) two
versions of Maxwell filtering with movement compensation and
translation to the time-averaged head position: one localized
using a covariance from (simulated) empty-room data processed
using plain SSS (MCerm−cov); and one using a noise covariance
computed from the baseline of the simulated data (MC). Note
that, based on how the simulations were set up, a noise covariance
calculated from simulated empty-room data that had been
processed using the same time-varying position parameters as
the simulated data would be equal to the baseline covariance
computed from the actual data, and hence the difference between
(3) and (4) tells us the importance of processing empty-room data
using the same time-varying position information as task data.

For data processed with SSS, an internal expansion order of
6 and an external order of 3 was used. The internal order is
smaller than the default of 8, which is typically used in adult
measurements, and it is justified by the fact that the infant head
is smaller and the overall source-to-sensor distance tends to be
larger than in adult subjects. Data processed with movement
compensation were transformed to the mean of each individual’s
head positions. To examine the effect of cardiac artifacts, PCA
was used to identify cardiac artifacts from ECG electrodes. Signal
space projection (SSP) was used to suppress the cardiac signal in
theMEG data by estimating two orthogonal vectors capturing the
spatial structure of heartbeats.

Data Simulations
For each subject, real subject time-varying head movements
were applied to the simulated brain sources to yield simulated
sensor data that mimicked the movement distortions seen in real
recordings. Source space activations were constructed by fitting a
sphere to the points along the head surface which were collected
during the digitization process. The sphere was used to create
a volumetric grid in which sources with random orientations
were simulated along 2 cm spacing at least 10◦ away from radial
orientations relative to the center of the sphere as in Larson and
Taulu (3). The dipole spacing was fixed across subjects, but due
to differences in head sizes, the number of dipoles differed across

subjects, averaging (mean± 1 SD) of 88.2± 13.7, 93.3± 7.6, and
112.3± 15.3 for the 6, 7, and 12 month groups, respectively.

The source time course for each subject was constructed
by individually activating a 100-nAm peak single source every
50ms. In addition to these activations, the source time course
included a (−200, 0) ms baseline period with no simulated
brain activity, to be used in the noise covariance estimation. In
addition, Gaussian noise was added to the sensors. For additional
details see (3). Each of the simulated datasets were then analyzed
using the four differentmethods: Raw, SSS,MCerm-cov, andMC.

Fitting of Equivalent Current Dipoles
To investigate the accuracy and reliability of source localization,
we fit equivalent current dipoles (ECD) to the simulated data.
This procedure entails choosing the location, orientation, and
strength of current dipoles so as to reconstruct the data as
accurately as possible. Mathematically, a non-linear optimization
algorithm searches for the best ECD parameters until the
goodness-of-fit (GOF) value is maximized. Expressing the
measured or simulated whitened data vector and the modeled
whitened data vector as d and m, respectively, the GOF value
is given as GOF = 1–(d-m)T(d-m)/dTd, where T indicates
transpose. Thus, the numerical value of GOF is in the range
0...1 (0...100% fit). We define the localization error as e =

|rq-re|, where rq and re are the true and estimated ECD
location, respectively.

RESULTS AND RECOMMENDATIONS

Compensation for Movement-Related Field
Distortions
Figure 1 shows field topographies of real data from a 6-month-
old subject from Mittag et al. (28), averaged across trials with
an auditory stimulus, processed in three different ways. In
Figure 1A no compensation is done for subject movement, and
the magnetic field topography of the evoked response is clearly
adversely affected by external artifacts and subject movement.
After the application of tSSS to the raw data (Figure 1B), the field
pattern resembles comparable adult data, and after application
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of movement compensation (Figure 1C) the spatial details of the
modeled field are further improved. In particular, the movement-
induced smooth appearance of the topography is compensated
for in Figure 1C as compared to Figure 1B.

Source Localization Error
Using simulated data distorted by head movements from real
recordings, we analyzed localization bias and goodness-of-
fit under the four different processing strategies described in
Methods: Data Processing. The head movements were drawn
from Kuhl et al. (27) (7 mo) & Mittag et al. (28) (6 and 12 mo).
The top panel of Figure 2 shows that between the first experiment
(27) and the second experiment (28), there was an improvement
in subject compliance in terms of reducedmovement, as reflected
in less subject deviation from the mean head position. For the
6, 7, and 12 month groups, paired t-tests of the bias of the
two movement compensation modes for each group were p =

0.1100, 0.0061, and 0.0334, respectively. Nevertheless, even the
smaller head movements seen in the later study yield localization
biases in excess of 10mm when movement compensation is
not applied to the data (Figure 2, second panel). Notably, if
we source localize using a noise covariance from empty-room
data processed with plain SSS (without applying equivalent
movement compensation to the empty-room recording), we find
that source localization is adversely affected, most noticeably
in the data simulated from 7-month-old’s head movements. In
all cases, acceptable goodness-of-fit values are obtained (>80%
in all cases), even when mean localization bias exceeds 20mm.
In some cases the GOF values are actually higher in the Raw
and SSS conditions compared to the movement-compensated
conditions, showing that high GOF does not necessarily indicate
high localization accuracy.

Looking at systematic effects observed in the localization bias,
we see that inward bias (as quantified by the radius of the true
source minus the radius of the ECD fit location, relative to
the head center) for raw and SSS-processed data is positive for
6 and 12 months, and negative for 7 months (see Figure 3).
If the subject-by-subject inward bias is compared to their
average upward movement (+Z in MEG device coordinates),
a very strong Pearson correlation is observed for both Raw
(R2 = 0.51, p = 1e-8) and SSS-processed data (R2 = 0.54,
p = 5e-9), suggesting that subject head deviation from the
initial position upward or downward in the MEG helmet
tends to manifest as inward and outward source localization
bias, respectively.

Suppression of Cardiac Artifacts
As mentioned above, infant heart rates tend to be much higher
compared to adolescent or adult heart rates, and the QRS
complex of infant heart artifacts has a shorter duration as well
(Figure 4).

Additionally, in our experience a characteristic difference
between cardiac artifacts in infants and adults is the fact that in
infants, the spatial field distribution of the cardiac artifact often
tends to be very similar to a plausible brain signal (Figure 5),
which makes its algorithmic suppression inherently important
and difficult. This observation is confirmed by the fact that in

FIGURE 2 | In the top row, the mean plus or minus standard error (across

subjects) of the position deviation (from each subject’s mean head position)

shows smaller movements in the more recent recording (published in 2021)

compared to an older recording (published in 2014). In the second row,

localization bias is reduced by movement compensation, with greater

reduction in bias when the covariance is computed from

movement-compensated data. There are systematic outward and inward

(relative to the head center) localization biases shown for the newer (2021) and

older (2014) data, respectively. In the last row, mean goodness of fit values

exceed 80% in all cases.

many cases SSS reconstruction leaves the cardiac artifact intact,
cf. Figure 6.

Generally speaking, it is possible to overcome these challenges
by choosing among different artifact suppression methods. For
example, ICA may be more successful than SSP for some infant
datasets, and both are likely to be more successful than SSS alone
(though SSS is still useful for suppression of external artifacts, and
can be used alongside SSP or ICA; cf. Figure 6).

DISCUSSION

In this paper, we have reviewed the most important challenges
that may distort infant MEG data and thereby cause bias to
the associated source estimates. The topics covered are based
on our extensive experience with awake infant subjects and
many of these aspects are relevant to clinical MEG as well,
e.g., in epilepsy studies (4) or other settings where patients
may have difficulties staying still during the recording. We also
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FIGURE 3 | The average position in device coordinates relative to the initial position (x axis; +Z means upward) is strongly correlated with the inward bias of the ECD fit

dipoles relative to the true source locations for raw and SSS-processed data (first and second columns), but not either movement-compensated case (p > 0.05, both).

FIGURE 4 | The average QRS complex from exemplar infant (left) and adult (right) MEG recordings.

reviewed some of the most efficient processing methods that can
correct for these distortions along with results that demonstrate
the processing results and the associated accuracy of source
localization (see Figure 7; a schematic of data processing in the
Supplementary Material). Most importantly, we demonstrated
that without application of movement compensation the source
localization accuracy in infant MEG is severely compromised,
with localization errors >20mm in many cases, while statistical
metrics such as the goodness-of-fit erroneously indicate high
reliability of the obtained estimates based on non-compensated
data. However, even with large head movements, the SSS-
based movement compensation method is efficient, significantly
reducing source localization bias to a few millimeters while the
GOF value of source localization is almost intact compared to

the uncompensated data. Consequently, one cannot solely rely
on statistical confidence metrics of source modeling methods
in the case of MEG signals that have been distorted by head
movements. The reason is that the topography of the MEG
signal distribution may resemble the pattern of a plausible brain
signal despite movement-induced spatial modulation, which has
to be compensated for in order to obtain robust interpretation
of the data. This is a new consideration in the context of
infant MEG and it was not investigated in Larson and Taulu
(3), which otherwise demonstrated the efficacy of movement
compensation methodology.

Regarding the inadequacy of statistical metrics to perfectly
represent the integrity of obtained source estimation
results, the same is generally true for other algorithmic
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FIGURE 5 | Topographic maps of cardiac fields for sample infant and adult MEG recordings. (Top) SSP projector fields computed from a 100ms window surrounding

the average QRS peak from this figure was sufficient to capture the artifact. (Bottom) latent sources and field maps for cardiac-related latent components computed

with ICA. Both approaches show that fields from heart-generated volume currents in the brain may appear shallow or asymmetrical compared to adult cardiac fields.

interpretations of data. Therefore, we strongly recommend
visual inspection of data, before and after signal processing
and statistical analyses. For example, if an experienced
MEG researcher is unable to observe any interesting
effects on visual inspection of averaged sensor-level evoked
responses related to their neuroscientific question, then

any subsequent statistically significant interpretations
may be questionable. To prevent such problems, it is
advisable to expect poor SNR in infant MEG and plan
data acquisition accordingly, e.g., by over-collecting data to
account for time periods when the head has moved far from
the sensors.
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FIGURE 6 | Cardiac artifact on a subset of channels after different pre-processing approaches. Top: No processing; Second Panel: SSS only; Third Panel: SSS

followed by SSP (2 orthogonal projectors); Bottom Panel: SSS followed by ICA (4 cardiac-related latent sources removed). In the third and bottom panels the cardiac

artifacts have been successfully repaired. The spatial distribution of the cardiac artifact stays virtually intact in the SSS process, indicating that most of its signal energy

comes from the internal SSS volume where the head is located.

Frontiers in Neurology | www.frontiersin.org 8 March 2022 | Volume 13 | Article 827529107

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Clarke et al. Infant MEG Processing

Besides the movement distortions and other obvious infant-
related MEG challenges, we have observed that cardiac artifacts
are potentially especially problematic in infant MEG due to the
fact that they are often very close to plausible brain signals
in terms of their spatial topography. While spatial-domain
suppression of these artifacts with the help of SSP or ICA tends to
be efficient, there is a concern that removal of the artifact patterns
could cause bias to brain signals that is difficult to compensate for.
Further studies are needed to address this concern.

The above discussion relates to MEG research conducted by
standard SQUID-basedMEG instruments. Some of the described
signal distortions may become less significant when wearable
MEG systems [see, e.g., Boto et al. (31)], will be taken to use.
Specifically, movement-modulated distortions should be absent
in recordings conducted with sensors that are attached to the
head, but movement-related artifacts still remain when the
sensors are moving in the background magnetic field unless this
field has been perfectly compensated for.

The main purpose of our paper was to provide information
on specific challenges in infant MEG recordings that are not
necessarily obvious from the experience gathered from adult
MEG, and to demonstrate methodology that can be applied for
robust source reconstruction results in infant MEG despite the
challenges. Our recent paper on best practices of infant MEG
(submitted) provides a more general and practical perspective on
different aspects of a successful infant MEG study starting from
paradigm planning and data acquisition while this paper contains
a more detailed description of the methodology that should be
useful for anyone planning to conduct infant MEG experiments.

LIMITATIONS

As discussed throughout, one of the main difficulties of infant
MEG is the mismatch between an adult-sized MEG helmet and
small infant heads (due both to larger scalp-to-sensor distances
and to increased space for head movement, combined with
infants’ tendency toward frequent motion). A general limitation
is that if the head becomes too far from the sensor array (due
to large head movements), the brain signal will drop below the
level of sensor noise (i.e., reduced SNR). In addition, in such
a situation, the ability to estimate the head position from the
HPI coils deteriorates. One possible improvement would be to
use infant-specific MEG hardware, such as the Artemis123 (32)
or Baby MEG (33) systems, which would reduce the scalp-to-
sensor distance and allow less room for movement. Obviously,
this is a strategy with a multi-year implementation schedule
that can only be undertaken at an institutional level. As for
strategies that individual researchers might employ given their
existing data collection systems, it is probably clear from the
preceding sections that there is no magic bullet to fix poor
SNR in an existing recording (this is equally true of adult data
as of infant data). In most cases the best to be done with
existing data is to meticulously apply the methods of artifact
suppression described above, perhaps choosing a representative
sample of the data to test a few different parameter settings of
the algorithms employed, to ensure that the artifact suppression

algorithms are not overly aggressive and possibly suppressing
brain signal.

For collection of new data, perhaps the most practical advice is
to expect poor SNR and plan task designs and recruitment efforts
accordingly. Factoring in demographic controls, participants
exhibiting varying degrees of uncooperative behavior, the various
artifact and noise issues described here, and (for longitudinal
studies) participant attrition, it would not be unheard of for the
fraction of “usable” participants to be well-below 50% of the
total number recruited. While not a decision to be taken lightly,
sometimes throwing away data is both necessary and justified.
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There is an urgent need for more informative quantitative techniques that

non-invasively and objectively assess strategies for epilepsy surgery. Invasive intracranial

electroencephalography (iEEG) remains the clinical gold standard to investigate the

nature of the epileptogenic zone (EZ) before surgical resection. However, there are major

limitations of iEEG, such as the limited spatial sampling and the degree of subjectivity

inherent in the analysis and clinical interpretation of iEEG data. Recent advances in

network analysis and dynamical network modeling provide a novel aspect toward a

more objective assessment of the EZ. The advantage of such approaches is that they

are data-driven and require less or no human input. Multiple studies have demonstrated

success using these approaches when applied to iEEG data in characterizing the EZ

and predicting surgical outcomes. However, the limitations of iEEG recordings equally

apply to these studies—limited spatial sampling and the implicit assumption that iEEG

electrodes, whether strip, grid, depth or stereo EEG (sEEG) arrays, are placed in the

correct location. Therefore, it is of interest to clinicians and scientists to see whether the

same analysis and modeling techniques can be applied to whole-brain, non-invasive

neuroimaging data (from MRI-based techniques) and neurophysiological data (from

MEG and scalp EEG recordings), thus removing the limitation of spatial sampling, while

safely and objectively characterizing the EZ. This review aims to summarize current state

of the art non-invasive methods that inform epilepsy surgery using network analysis

and dynamical network models. We also present perspectives on future directions and

clinical applications of these promising approaches.

Keywords: dynamical network models, non-invasive, EEG, MEG, epilepsy, epilepsy surgery

1. INTRODUCTION

Epilepsy is a debilitating neurological disorder that affects 1–2% of the population worldwide (1).
About two thirds of epilepsy patients may have their seizures controlled using anti-epileptic drugs
(AEDs), while at least one third of patients do not adequately respond to medications (2, 3). More
crucially, this ratio of pharmaco-refractory patients has not changed with the introduction of new
first-line AEDs each year (4). For those pharmaco-refractory patients, surgical intervention (with
the removal of brain tissue driving ictogenesis) can serve as a viable option for the treatment of
drug-refractory epilepsy (5).
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The success rate of epilepsy surgery is between 30 and
70% (6, 7). A recent multi-center study suggests the success
rate of epilepsy surgery is about 50% (8). While the role
of epilepsy surgery is well-established, the estimated ratio
of operated to potentially eligible patients is only 1:25–50
(9). Accurate localization of the epileptogenic zone (EZ)—
the minimum brain area to be removed to render a patient
seizure free—is the ultimate goal in the pre-surgical evaluation
of these patients (5, 10). Invasive intracranial monitoring
(with direct recordings of local field potentials generated by
pathological brain tissue) is still the gold standard to delineate
the EZ presurgically (1, 5, 6). However, it is not a true gold
standard because intracranial recordings have multiple key
limitations (11). These include high cost, significant patient
morbidity, and the element of subjectivity involved in the
identification of the iEEG-defined seizure onset zone (SOZ)
(8, 11). The analysis of ictal iEEG is typically restricted to
visual inspection; however, a more objective approach to the
analysis of iEEG data is beginning to emerge in the clinical
setting (12–14). For instance, a number of investigators have
developed quantitative approaches (12–14) to the analysis of
clinical EEG to reduce the degree of subjectivity involved in
the clinical interpretation of these complex datasets. Of the
various forms of iEEG (classical sEEG, isolated depth electrodes,
intraoperative monitoring, subdural grids, and strips), it is
sEEG (with its more extensive sampling capacity) that has
fostered a deeper understanding of the network nature of the
EZ, challenging the clinical view that the EZ is a discrete
unifocal zone.

Network analysis and network models have assumed
important roles in the present-day imaging of brain networks
and their functions (15–17). As a fast-evolving research area, the
recent advances in network analysis and network models enable
the study of both normal and pathological brain dynamics by
taking into account high-dimensional information obtained
using neurophysiological and neuroimaging approaches
(18–20). Aided by techniques from neuroscience and
neuroimaging, a large number of studies using network
analysis and network models have shed new light on our
understanding of the enormous complexity of the epileptic
brain (21).

Dynamical network models provide great capacity to probe
the mechanisms underlying complex neural dynamics (15,
17, 22, 23). Inspired by pioneering studies of excitatory and
inhibitory neurons as well as the alpha rhythm of the thalamus
(24–26), investigators have developed dynamical models of
neural mass and neural mass networks, which connect an
ensemble of neural mass models into macroscopic neural
systems (27, 28). Employing dynamical networkmodels, multiple
attempts have been made to understand the mechanisms
underlying normal and pathological neural dynamics (29–
34). Dynamical network models have also been applied to
neurophysiological data recorded from the human brain to
develop specific hypotheses toward clinical application (20,
29, 31, 35, 36). In this review, recent advances and notable
developments in the field will be examined in the context of
epilepsy surgery.

2. A GENERIC WORKFLOW

A generic workflow of applying network analysis and dynamical
network models to EEG and MEG source signals is depicted
in Figure 1. EEG and MEG signals acquired as part of the
presurgical evaluation are first preprocessed via multiple steps
before they are source modeled (37). After preprocessing,
the head model and source space are constructed using the
individual’s MRI data. Forward and inverse solutions are
then generated for source imaging. Source signals in defined
source space can be then reconstructed. With reconstructed
source signals, functional networks can be constructed using
connectivity approaches.

Network modeling generally requires a connectivity analysis
to obtain a network structure or topology as the basis of
the modeling as the first step. This network structure may
come from structural imaging data such as tractography or
functional connectivity. When using functional connectivity to
determine network structure, a series of time-evolving functional
networks may be used (19) or a time-domain averaged functional
network may be used. Some models also offer the capacity to
use directional networks and hence effective connectivity and
causal relationships may be integrated into the network structure
(33, 38). Nodal level neural dynamics can then be embedded
into network nodes. Multiple models of neural dynamics using
different mathematical mechanisms can be employed in this
step. Some models also offer flexibility by accommodating the
use of different models to configure nodal neural dynamics.
Network simulations can then be run with or without external
inputs, such as perturbatory white noise. By introducing external
noise, “stimulation,” or change in parameters, models can effect a
transition from non-seizure states to seizure states (39–42).

Each model generates a probability map that depicts the
likelihood of brain areas being responsible for interictal or ictal
source activity depending on the nature and the assumptions that
a method or model employs. Such probability maps can then be
used to assess the concordance level with resection bed. Using
concordance levels and post-surgical outcomes, the performance
of models and approaches can be tested. Two patient examples
are given in Figure 2.

3. FUNCTIONAL AND STRUCTURAL
NETWORKS IN FOCAL EPILEPSY

With ongoing advances in neuroimaging techniques, high-
resolution functional and structural neuroimaging data can
be obtained from epilepsy patients for assessment, diagnosis,
treatment, and research. Connectivity methods have commonly
been used to construct functional and structural networks
using neuroimaging data. This subsection discusses findings
from studies using functional and structural connectivity and
problems and limitations associated with connectivity analysis
in epilepsy.

3.1. Structural Networks in Focal Epilepsy
When studying functional brain networks, an intuitive question
to ask is how structural networks constrain functional
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FIGURE 1 | A generic workflow. EEG and MEG signals are acquired for presurgical evaluation. Preprocessing of EEG and MEG signals is often required before source

modeling to remove artifacts. The head model and the co-registered source space are then prepared using individual structural MRI data to generate a forward

solution. Inverse solutions can be then generated using forward solutions and EEG/MEG signals. Using inverse solutions, source activity can be localized and

reconstructed. Next, functional networks can be constructed using source signals and dynamical network models can be applied to identify brain areas that are

responsible for ictal or interictal discharges. Dynamical network models can be then clinically validated against surgical resection margins linked to histology and

post-surgical outcome.
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FIGURE 2 | Examples of applying dynamical network models to non-invasive (MEG) and invasive (iEEG) data to identify brain areas that are responsible for

ictogenesis. Three approaches are applied to MEG and iEEG data, respectively, to identify brain areas that are responsible for seizure generation (red highlight). These

areas are then compared against the resection margin and surgical outcomes to validate the results of employed approaches. The Sync approach uses

synchronizability and control centrality (19) to identify nodes that increase or decrease of the stability of the synchronous states of the network. AEC-VIZ and MI-VIZ

represent the ictogenic zone identified using virtual iEEG signals reconstructed by ictal MEG and dynamical network models. Amplitude Envelope Correlation (AEC)

and Mutual Information (MI) can be used to construct functional networks that are then fed to dynamical network models. Here, a Theta model is used to simulate ictal

waveforms and a virtual resection technique to estimate the influence of each node on ictogenicity. The Epileptogenicity Index (EI) (43) estimates spectral and temporal

features of ictal iEEG signals and provides a quantitative measure to identify epileptogenic areas. iEEG SOZ is the conventional clinical analysis of ictal iEEG signals to

identify iEEG electrodes where seizures arise. For both patients, brain areas involved in epileptogenesis identified by noninvasive dynamical approaches are

comparable to the areas identified by traditional invasive intracranial means. Both patients had an Engel 1 outcome—Patient 1 (left) had focal cortical dysplasia Type

1 and Patient 2 (right) had post-infectious cortical gliosis.

networks. MRI techniques and structural connectivity have
been introduced to address this. MRI techniques are widely used
in clinical workup to localize pathological brain regions and
understand epileptogenesis (1, 44). Diffusion MRI (dMRI) is a
variant of standard MRI and one of the mainstream structural
imaging techniques (45).

In a typical connectivity analysis, a standard MRI scan is
required to capture an individual’s neuroanatomical structure.
Analytical software, such as Freesurfer (46), can be used to
segregate the whole brain into subregions based on a standard
brain atlas or customized boundaries (47, 48). With dMRI,
software that tracks fiber density or integrity can be then
used to detect, count and quantitatively characterize fibers
that communicate between parcelated brain regions. This fiber
density analysis results in a two-dimensional connectivity matrix,
representing how strongly subregions are interconnected via
white matter. This two-dimensional connectivity matrix may
become a “fingerprint” of an individual’s structural networks.
Properties of the individualized connectivity matrix may
characterize critical features of a pathological brain (49, 50).
Early studies using dMRI and connectivity analysis suggest a
change in structural connectivity in the epileptogenic zone and
surrounding brain regions in focal epilepsy (44, 51, 52).

More specifically, in temporal lobe epilepsy (TLE) patients,
structural alterations were reported in the epileptogenic zone
in frontal and temporal lobes, but particularly at the temporal
poles. These structural alterations revealed by tractography and
connectivity analysis indicate distinct unilateral features and
specific impacts on global structural connectivity (52). Despite
variance introduced by individual differences and heterogeneous
pathologies in group-level analysis, studies comparing TLE
patients and healthy cohorts demonstrate extensive weakened
temporo-parietal connections in TLE structural networks,
which support the clinical observation of cognitive impairment
in memory and speech (53, 54). Focke et al. (54) also
demonstrate altered structural connectivity between para-
hippocampal structures, providing a neuroanatomical basis
for theoretical models of seizure propagation. In frontal lobe
epilepsy, structural connectivity may remain intact in frontal
regions, while nearby regions can be affected by interictal
and ictal activity (55). Epilepsy involving mesial frontal areas
preserves a robust connectivity in the supplementary motor area.
Similar lower fiber intensity found in the superior longitudinal
fasciculus, but not in the cingulum, suggests particular functional
abnormalities for children with focal epilepsies (56). Diffusion
imaging may also be used in animal models to study the extent of
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white matter impairment. A rat model of focal epilepsy has been
studied using dMRI and shows widespread reductions in white
matter density in extensive brain regions beyond the epileptic
focus, indicating the impaired efficiency of functional networks
(57). Animal models, however, are not the focus of this review.

Structural networks defined by structural connectivity are
not a complete representation of a pathological brain. Due
to limitations of current techniques, structural MRI can only
capture a small proportion of network connections on the
macroscopic level. Whether this limitation affects interpretation
of current studies in focal epilepsy remains unclear (45).
Computer simulations show structural alterations are not
necessary to generate seizure-like activity and epileptic networks
are also believed to be fast-evolving dynamical networks
(58). Therefore, rather than characterizing interconnected
brain regions, static structural connectivity is more likely to
answer how functional networks can be constrained by their
corresponding structural substrates. This is important to keep
in mind when interpreting findings on functional networks in
focal epilepsy.

3.2. Functional Networks in Focal Epilepsy
Previous studies using functional connectivity mainly focus on
time-series analysis of interictal and ictal events and report
on network structural alterations over time before, during and
after a seizure. To gain insights into the fast-evolving functional
networks of seizure activity, recording techniques with high
sampling rates, such as EEG, iEEG, and MEG, are broadly
employed for epilepsy research. A number of studies have
demonstrated the capacity of functional network structures of
fast-evolving seizures to reflect properties of the putative EZ
(13, 18, 58–61).

Using sEEG recordings, Bartolomei et al. (14) are credited as
the first study to apply network analysis to explore non-linear
relationships between different brain regions in temporal lobe
epilepsy patients. Bartolomei et al. (62) offers a comprehensive
review of network analysis specific to sEEG in epilepsy surgery.
Khambhati et al. (19) show functional connectivity changes
rapidly over time before focal seizure onset but not as much as
it does during the seizure. By clustering time windows of iEEG
data based on functional connectivity commonalities, Khambhati
et al. (63) also find higher levels of synchronization in brain
states that are close to focal seizure termination as opposed
to brain states at the beginning or the middle of the seizure.
These findings indicate that the epileptic brain has different
functional network structures underlying seizure generation vs.
termination. Schindler et al. (64) also demonstrated the shift in
functional network structure toward a normal network state with
transition from the pre-ictal to the ictal state.

Studies have reported that the ictal network structure for
generalized seizures was more regular than the corresponding
interictal network structure, thus suggesting that seizure events
with seemingly “random” functional connectivity may preserve
common patterns (65–67). Distinct patterns of functional
connectivity have also been reported around seizure onset.
Kramer et al. (68) demonstrated the SOZ presents a dominant
regular sub-network with densely connected nodes. As a seizure

progresses, the sub-network becomes divided into smaller
randomnetworks and hence the authors argue that these network
features during the seizure progression may reflect decreased
susceptibility of the network to become synchronized (68).

Interictal brain networks have also been examined in
functional network studies. Resting-state EEG and MEG
recordings in focal epilepsy patients show an increase in
functional connectivity, which could reflect increased cortical
excitability predisposing to epileptic seizures (69, 70). These
authors also identified a decrease in network efficiency
compared to control networks, perhaps indicating brain network
disruption associated with interictal activity. Others employing
network analysis of interictal data report conflicting results.
Bartolomei et al. (71) presented decreased clustering coefficients
and path lengths, while Horstmann et al. (72) show an
increase in the same metrics. These inconsistencies could be
due to differences in patient selection and methodologies.
Current techniques representing functional networks may well
need further refinement to characterize a pathological brain,
particularly a brain predisposed to seizures.

Functional networks have also been studied using fMRI in
generalized and focal epilepsies. In temporal lobe epilepsy, a
general decrease in functional connectivity has been reported
in the ipsilateral hemisphere and subcortical structures (73,
74). Another study reports that besides a general decrease
in global functional networks, there is a relative increase in
functional connectivity within the affected temporal lobe (75). In
generalized epilepsy, a decreased intra-hemispheric connectivity
and an increased inter-hemispheric connectivity are reported
(76). Although associations between hemodynamic signals and
electromagnetic signals require more investigation, these fMRI
findings provide a different perspective on network behavior
based on interictal data.

3.3. Relationship Between Structural and
Functional Connectivity and Limitations of
Connectivity Analysis
To date, a well-defined relationship between functional and
structural connectivity is still missing in the literature for
several reasons. First, functional connectivity in meso-scale
brain networks still lacks sufficiently accurate neurophysiological
and neuroanatomical substrates to interpret findings; to begin
with, the coupling of structural to functional networks is not
straightforward as findings from structural connectivity may
not directly translate to neural dynamics governing interictal
and ictal states. Second, structural connectivity is not always
static and, as revealed by work in neuroplasticity, can change
over longer time scales. Therefore, studies with different follow-
up protocols are not always comparable. Third, individual
differences make findings difficult to generalize statistically,
especially when dealing with pathological substrates. For
example, pathologies residing in different cortical regions may
result in different functional and structural network structures
complicating group analysis and potentially introducing errors
to epileptic network modeling at the level of the individual.
Such limitations of current connectivity analysis make it
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difficult to clearly define the extent by which structural
connectivity constrains functional connectivity. In the context
of epilepsy, multiple factors potentially influence connectivity
analysis findings. For example, the effect of anti-epileptic drugs
(AEDs) on functional and structural connectivity is unclear (59).
Heterogeneity of epilepsy patients is also non-trivial. Different
lesion types and locations might exert different effects on
functional and structural connectivity properties (77). Normally
in epilepsy studies, patients with the same pathology and similar
locations are grouped and studied together. Patients with the
same pathology and similar locations may have very different
ictal or interictal electrographic activity, while patients with
different pathologies may demonstrate similar electrographic
features (59). These factors need to be considered when
validating network models in cohorts obeying conventional
patient selection.

Contradictory results from different imaging modalities also
influence how findings should be interpreted. EEG and MEG
studies usually show global increases in functional connectivity
compared to healthy controls, while fMRI studies show a general
decrease. This might reflect fundamental differences between
hemodynamic coupling and electrophysiological dynamics
in epilepsy, not least in their respective temporal and spatial
resolutions (78). Future studies that assess the relationship
between neurophysiologic and hemodynamic connectivity
are needed, possibly through simultaneous multi-modal
neuroimaging studies (16, 59, 79, 80).

4. NETWORK ANALYSIS OF FUNCTIONAL
BRAIN NETWORKS

Networks are an abstract mathematical construction that aim
to represent the interaction of complex real-world systems.
This concept has been introduced to many disciplines including
physics, biology, ecology and neuroscience, to describe the
mathematical behavior of complex systems. In neuroscience,
networks are generally derived from functional and structural
connectivity pathways, where “nodes” stand for different brain
regions and “links” represent anatomical paths between brain
regions or statistical correlations between neural activity (81).
Network analysis using graph theoretical metrics, for example,
has offered insights into how different brain regions are
structurally connected and how different brain regions interact
with each other spatio-temporally (49).

Over the last 5 years, network analysis has become a hot topic
in clinical neuroscience research, as a pathological brain shows
distinct features in structural and functional networks against
a healthy brain (66, 67, 82). These brain network features can
be used as biomarkers for clinical application. As epilepsy is
becoming more recognized as a brain network disorder, network
analysis allows us to study epilepsy and epileptic seizures from a
novel perspective (18, 83, 84). The next section discusses how to
define networks using connectivity methods and extract network
features using graph-theoretical metrics. It also discusses findings
and their interpretation from network analysis, and potential
biomarkers that can be used for clinical applications.

4.1. Nodes and Edges
A network is composed of nodes and edges that link nodes. In
functional brain networks, nodes stand for different brain areas
and edges stand for functional dependence between regional
activities (85). The way nodes and edges are defined often
depends on the imaging modality that is used. For example, with
fMRI, we can use a voxel, or several neighboring voxels as a node
(86); independent component analysis (ICA) can also be used
to aggregate voxels into nodes (87). Time-series of nodes that
have the same independent component can be aggregated into
a node. For sensor-based modalities, such as EEG and MEG, the
preference is to directly use sensors as nodes or assign nodes in
reconstructed source space (88). Brain parcelations of structural
MRI also provides a sophisticated means of assigning brain areas
to nodes, although this requires a-priori knowledge of individual
brain structures and a standard brain atlas (89).

Edges are typically estimated by quantifying statistical
dependency of neural activity between two regions (90).
However, edges are not necessarily equal to connectivity
matrices, as network edges can be binary (edge is either zero
and not connected, or one and connected) or weighted (when
normally a graph filter is applied to extract important edges). The
reason to apply a graph filter is that functional connectivity can
be affected by noise and other measures and graph filtering can
remove such connections (91).

There are multiple ways to apply graph filters to brain
networks. Setting a threshold to connectivity matrices can extract
dominant connections. However, one of the problems with
setting a hard threshold to a matrix is that edge weights can
significantly increase or decrease depending on the brain state.
Therefore, a constant hard threshold for different time windows
may bias global network structures. Proportional thresholding
can help with time window problems as it iteratively extracts top-
ranked connections. However, a common problem of network
thresholding is that without defining connections of interest,
dominant connections across a certain time window could be
irrelevant to analysis or might have even been generated by
artifacts (92). In an effort to address such issues, Langer et al.
(92) proposed the use of sophisticated statistics in their study, but
given the enormous complexity of neural activity, it is difficult to
select neural activities that are relevant for study by examining
whether or not they are statistically correlated.

4.2. Graph Theoretical Metrics
With established functional networks, graph-theoretical metrics
can be applied to study network properties. A number of graph-
theoretical metrics have been developed to measure different
network topological features and each of them has specific
assumptions and requirements of the network (81). In general,
graph-theoretical metrics extract four categories of network
features: integration, segregation, motif, and centrality (93).
For example, clustering coefficients and community detection
metrics quantify how densely subgroups are connected in a
network. Shortest path metrics, such as global efficiency and
characteristic path length, estimate levels of network integration.
Betweenness centrality and closeness centrality detect important
hubs that bridge multiple sub-groups. Different metrics, by their
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TABLE 1 | Commonly used graph-theoretical metrics and their scales, features, and requirements (81, 93).

Scale Metric
Features Requirements/

ConnectedCategory Weighted Directed Negative

Whole

brain

network

Characteristic

path length
Integration Yes Yes No Yes

Global

efficiency
Integration Yes Yes No No

Clustering

coefficient
Segregation Yes Yes No No

Local efficiency Segregation Yes Yes No No

Modularity Segregation Yes Yes Yes No

Sub-

networks

Motifs Motif Yes Yes No No

Transitivity Segregation Yes Yes No No

Edge

betweenness
Segregation Yes Yes No No

Nodes

Degree Basic metric Yes Yes No N/A

Number of

triangles around

a node

Basic metric

for

segregation

Yes Yes No N/A

Shortest path

length

Basic metric

for

segregation

Yes Yes No N/A

Closeness

centrality
Centrality Yes Yes No No

Betweenness

centrality
Centrality Yes Yes No No

definition, extract different network properties, as shown in
Table 1.

Selecting appropriate graph-theoretical metrics in studies
is non-trivial. This metric selection normally depends on the
research question, assumptions, and hypothesis (78). Several
questions may be asked when choosing metrics, such as does the
study focus on whole brain networks or sub-region networks? Is
the study assuming its networks are fully connected or operating
as isolated nodes or sub-groups? Does the study look at important
nodes in networks? Specific hypotheses may lead studies to
mainly look at a subset of nodes and edges, which may require
tailored metrics to extract features of interest. Metric selection
should also consider what imaging modality functional networks
are derived from. Just as different imaging modalities have
different spatio-temporal resolutions and reflect neural dynamics
at different spatio-temporal scales, functional networks have
different features and properties (94). Graph-theoretical metrics
applied to these networks should take the inherent assumptions
of specific network properties into account.

Thorough statistical tests of networkmodels are critical. There
are two ways of testing network models: (1) compare against
numerically simulated reference models and (2) compare with
models derived from other conditions, such as task vs. resting-
state or healthy vs. pathologic (93). A statistically “null model” is
often used as a reference model to test whether the phenomena
that a model observes is random (95). However, a null model is
not always statistically random. A null model is often assigned

properties that the derived model shares. For example, a null
model normally has the same node degree distribution and
similar modular structure. Although network link weights of a
null model usually remain random, they still follow distributions
of the derived model (96).

4.3. Interpretation and Biomarkers
A question that is often raised when results are obtained from
network analysis is how to interpret findings. Unfortunately, this
question is not easy to answer. As discussed in previous sections,
connectivity methods and graph-theoretical metrics reduce the
dimensions of neuroimaging data but also increase levels of
abstraction (97). Although new information can be obtained
with higher levels of abstraction, we also lose the ability to
directly interpret results and to understand neurophysiological
substrates (98). Specifically, a small change in original neural
signals will propagate through levels of abstraction, along with
added complexity. In other words, any change at a high level
of abstraction may not have a one-to-one mapping to original
signals. Current studies use variable-control strategies to rule out
factors that do not affect final results (99). However, this strategy
may not be available when using complex approaches, such as
network analysis. Interpreting results has remained a challenge
in this area and current studies are generally conservative and
cautious with interpretation.

Although interpreting findings from complex network
analysis remains challenging, these findings can still be used
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as potential biomarkers for clinical applications. For example,
functional and structural coupling and decoupling have been
found to be complex and mechanisms remain unknown
(100). However, distinct patterns of decoupled functional and
structural network structures may reflect long-term impairment
in idiopathic generalized epilepsy patients and may be used
as a biomarker to detect subtle brain abnormalities (100).
Zweiphenning et al. (101) found high-frequency functional
networks have distinct biomarkers that statistically predict the
location of the seizure onset zone using interictal iEEG data.
These biomarkers are useful for patients who do not have
frequent clinical or sub-clinical seizures on iEEG monitoring.
Studies using network modeling and network analysis have also
discovered biomarkers with the potential to predict outcomes
of epilepsy surgery (19, 29, 32, 102). These biomarkers may
prove to be useful for presurgical evaluation if findings
can be validated clinically through prospective studies and
clinical trials.

4.4. Volume Conduction and Source
Connectivity
The biophysical nature of volume conduction from neural
sources to recorded signals can introduce field spread or
smearing in connectivity calculations, whereby instantaneously
correlated signals are reconstructed in localized brain areas
and spurious connections are identified by conventional
connectivity analysis. The early work in the biophysics of brain
volume conductor modeling for electrophysiological signals has
discussed this issue and is summarized in the review by Vorwerk
et al. (103).

Unfortunately, this issue is not alleviated when simpler
forward solutions are applied to MEG source reconstruction.
Volume conduction also raises the concern as to whether or
not non-invasive source analysis can achieve the spatial accuracy
of invasive intracranial approaches. This is because volume
conduction smears the electrical potential field (as well as the
magnetic field) generated by a current dipole in the brain,
particularly when the smeared field is observed from far afield.
Fortunately, volume conduction only “mixes” neural activity
in a linear fashion with zero delay in phase synchrony. This
opens the door to find ways to limit volume-conduction related
spurious connections interfering with connectivity calculations.
By understanding the principle of volume conduction, various
techniques have been developed over the last two decades to
remove instantaneous correlation and phase synchrony between
a pair of signals (65, 104–108). Unfortunately, a recent study
that assesses these techniques demonstrates that none guarantee
full identification and removal of spurious connections (109).
Some approaches perform better than others in certain simulated
paradigms but these may also turn out to be too conservative
to remove real connections (110). While volume conduction can
complicate the use of brain network approaches for the study of
neural mechanisms, some argue that volume conduction is not
a major concern when a biomarker of a certain phenomenon
is the goal.

4.5. Studies Using Network Analysis for
Epilepsy Surgery
Early work by Kramer at al. (111) looked at pre-seizure,
seizure and post-seizure functional networks in four patients
and uncovered localized brain structures that appear to
facilitate seizure generation. This finding suggested that network
analysis can assist identification of pathological brain areas and
potentially target these areas for surgical treatment (111). Later,
Wilke et al. (112) used directional networks and graph theoretical
metrics to investigate interictal and ictal iEEG networks. More
recently, a new technique, virtual cortical resection, has been
developed using functional networks and validated against
clinical iEEG data (19, 63, 94, 113). By analysing functional
connectivity patterns of ictal iEEG data, Khambati et al. (63)
developed a framework that statistically describes network
dynamics in seizure generation, propagation, and termination.
The topographic and geometrical changes captured by their
model suggest strengthened synchronous connectivity near
foci may help seizure termination. This finding suggests that
modulating certain circuits near pathologic foci may disrupt
seizure propagation or control seizure generation. Khambhati
et al. (19) later extended the network model by analysing focal
seizures with and without secondary generalization. The authors
hypothesized that focal seizures with secondary generalization
are more likely to synchronize in the pre-seizure state and there
is a regulatory network mechanism that controls whether a focal
seizure generalizes secondarily. A measure, synchronizability,
which has been used in stability analysis of complex systems
(114), was used to quantify stability and heterogeneity of time-
varying functional networks in the model. And a novel metric,
control centrality, was proposed to quantitatively estimate how
the synchronizability of a network changes when a node is
virtually removed from the network (virtual cortical resection).
Counter-intuitively, brain regions that regulate seizure dynamics
and control secondary generalization were often found to sit
outside the SOZ. The implication here is that surgical resection
of the SOZ alone does not necessarily lead to long-term seizure
freedom. Their novel approach also provides a framework to
develop techniques that can computationally simulate epilepsy
surgery in order to provide an optimal surgical strategy. Kini
et al. (113) further extend the framework using ictal events from
iEEG and provide a statistical bio-marker that supports the idea
that synchronizing nodes in the network should be removed in
surgery, pending overlap with eloquent cortex.

A study by Jiang et al. (115) independently revealed similar
“push-pull” dynamics that regulate secondary generalization
of focal seizures. Differing from the specific gamma band
of Khambhati et al. (19), Jiang et al.’s (115) push-pull
dynamics comes from within- and across- frequency oscillations.
Sohrabpour et al. (20) applied network analysis to the EEG source
space to provide a non-invasively derived prediction of the EZ.

Other studies (112, 116) use directional networks to identify
a subset of brain areas for potential surgical removal. Hassan
et al. (117) and Juarez-Martinez et al. (118) extend network
approaches to EEG and MEG source space with relatively small
numbers of patients compared to Sohrabpour et al. (20). These
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studies provide further insights into how network analysis can
be translated from invasively recorded data to non-invasively
recorded and ideally whole-brain data. Other network analysis
studies using pre- and post-operative EEG, MEG, and fMRI data
also found significant changes in functional connectivity patterns
that were predictive of surgical outcomes (13, 18, 119, 120). A
summary of studies using network analysis is given in Table 2

and a comparison of network analysis and network modeling
approaches by modality and source-sensor space is given in
Table 3.

Despite the growing number of studies using network analysis
for epilepsy surgical localization, prospective clinical studies
are lacking. The numbers of patients included in studies has
increased from one patient (117) to 36 patients (20). The
retrospective nature and modest number of patients combine
to limit the applicability and generalizability of network analysis
approaches to clinical work-up for epilepsy surgery.

5. NETWORK MODELS FOR EPILEPSY
SURGERY

Dynamical network modeling is a branch of network science
employing mathematical and computational techniques to
depict, analyse and understand the dynamical behavior of the
network i.e., how a specific network structure impacts on the
system behavior, particularly state transitions and bifurcations,
through a set of evolution equations that yields quantitatively
accurate depiction and prediction (123). Such techniques enable
the properties of patient-specific functional network structures
to be interrogated and the ensuing dynamics to be explained
and predicted. In the case of diseased brain networks such
as epilepsy, the evaluation and prediction of pathological state
transitions such as seizures is invaluable in a clinical context such
as epilepsy surgery. As opposed to network analysis, network
models use established network structures as a basis and embed
dynamical mathematical models to network nodes coupled by
edge weights to simulate overall network dynamics. The process
uses static functional networks derived from time-series data to a
dynamical mathematical system that changes over time such that
various states of brain networks can be numerically simulated for
analysis. Here we present established networkmodels for epilepsy
surgery and include studies that have applied these models to
empirical data.

5.1. Network Models
Four main network modeling techniques have been applied to
epilepsy surgery: “Virtual Epileptic Patient” using the “Epileptor”
model from Jirsa et al. (36), “Virtual Cortical Resection”
model using network synchronizability and control centrality
from Khambhati et al. (19), a computational model using
network excitability from Goodfellow et al. (29) and another
computational model similarly using network excitability from
Sinha et al. (31).

The Virtual Epileptic Patient (VEP) model is a hybrid
model using a phenomenologically derived neural field model,
the Epileptor model (124). Each network node is defined in

combination with structural networks and hypotheses derived
from MRI lesions and other clinical information. This model
uses the theory of fast-slow non-linear dynamics to characterize
the bifurcations for seizure onset and offset. The VEP model
demonstrates the prediction of ictal spatial patterns and
confirmation of presurgical hypotheses (30, 124, 125), which
may benefit presurgical evaluation and planning of invasive
intracranial monitoring. It models epileptiform discharges in
computational simulations and identifies the similar bifurcation
mechanisms that produce epileptiform discharges using real data.
The Epileptor model has demonstrated a capacity to predict
seizure propagation using ictal sEEG data (124, 125).

Later work (21, 30, 36, 126) proposed an individualized whole-
brain model that incorporates functional and structural network
models. The Epileptor signifies an advance in mathematical
modeling of epileptic seizures not only because the model
provides a form of taxonomy of seizure activity using nonlinear
coupled oscillators, but it also provides a mathematical etiology
of seizure dynamics. Another advantage of this Virtual Epileptic
Patient (VEP) is that, by combining the modeling of neural
dynamics with the modeling of structural networks, the
approach provides explanatory and predictive capacity in a
clinical setting. Using sEEG combined with structural imaging
modalities, this integrated approach virtually reproduces the
seizure spread over the network that predicts the EZ (36).
It is worth noting though that the VEP model requires
sophisticated iEEG and neuroimaging workup and demands
much of computing resources.

Although neuroimaging modalities, including DTI and fMRI,
have been routinely used by some centers in presurgical epilepsy
workup, scanner availability and scanning time are still limited in
many surgical centers, especially those in developing countries.
Despite the limitations of the VEP model, the findings encourage
the use of the VEP model in a multi-center clinical trial. Such an
integrated approach has the potential to be extended to the study
of normal brain networks and to other neurological diseases.

The virtual cortical resection model provides specific insights
into seizure evolution, particularly seizure initiation, and
termination (19). Unlike the Virtual Epileptic Patient (36), the
virtual cortical resection model only uses data from invasive
intracranial recordings. By converting intracranial signals into
fast evolving functional networks over time, two network
metrics from network control theory (synchronizability and
control centrality) are used to explore the contribution a
node makes to the network dynamics. The virtual resection
technique employed Master Stability Function (MSF) to estimate
stability of synchronization (i.e., synchronizability) by looking
at eigenspectra over time. However, MSF treats each node
in the network as identical and synchronized and hence, is
less concerned with individual dynamics (127). By correlating
the mathematical change in functional network structure to
clinical resection margins and surgical outcomes, the model
suggests network nodes with high control centrality are likely
to be included in the resection when a patient achieves a
favorable outcome. The synchronizability values of functional
networks using data before seizure onset successfully predict
whether a focal seizure secondarily generalizes. This model
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TABLE 2 | A summary of network analysis studies for epilepsy surgery.

References Functional

network

Patient

number

Clinical data Pathology Findings Comments

Bartolomei et al. (14) Undirectional&

directional

18 Ictal SEEG Various pathologies in

temporal lobes

Confirmation of network phenomena

during temporal lobe epilepsy

seizures

The first study that analyzed

the network phenomena in

focal epilepsy

Jiang et al. (115) Directional 24 Ictal iEEG Various pathologies and

locations

Secondary generalization of focal

seizures is regulated by cross

frequency push-pull dynamics

Second publication in

literature on push-pull

mechanisms of focal seizure

Sohrapour et al. (20) Directional 36 Interictal & ictal iEEG +

numerical simulations

Various pathologies and

locations

Khambhati et al. (19) Undirectional 10 Peri-ictal iEEG Various pathologies and

locations

Identify a push-pull mechanism that

regulates focal seizure secondary

generalization

First paper reported such

finding

Kini et al. (113) Undirectional 28 Ictal iEEG Various pathologies and

locations

Synchronizing nodes should be

considered to remove in surgical

planning

Subsequent work of

Khambhati et al. 2016 (19)

Lin et al. (116) Undirectional 13 Ictal iEEG Not available

Wilke et al. (112) Directional +

graph theory

25 Ictal and interictal iEEG Various pathologies and

locations

Kramer et al. (111) Undirectional 4 Ictal iEEG Various pathologies and

locations

Localized brain areas that facilitate

seizures and potential target for

surgical removal

Early work analysing

functional networks of ictal

events using iEEG

Juarez-Marineza et al. (118) Undirectional

+ source

imaging

9 Ictal sEEG + interictal MEG Various pathologies and

locations

Reproduce seizure onset zone

non-invasively and potentially identify

biomarker for EZ

First MEG non-invasive

source space analysis

Hassan et al. (117) Undirectional

+ source

imaging

1 Ictal sEEG + ictal EEG Not available Identify epileptic focus that also

matches findings from sEEG

recordings
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TABLE 3 | A comparison matrix demonstrates current state of each direction of network analysis and network models using different imaging modalities.

Network analysis/

Models
Network analysis Network mode

MEG

Source

Main field

(diagnosis, prognosis, surgical strategy),

but no comparison against source localization

No

Sensor
Sensor-level analysis is more significantly affected by

volume conduction and field spread than source space
No

Scalp EEG

Source

Main field

(diagnosis, prognosis, surgical strategy),

but no comparison against source localization

(121) is the first study.

One study from Lopes et al. (122)

Sensor
Main field

(diagnosis, prognosis, seizure prediction)

Main field

(diagnosis, prognosis, seizure prediction)

iEEG

Source No No

Sensor
Main field

(diagnosis, prognosis, surgical strategy)

Main field

(diagnosis, prognosis, surgical strategy)

provides important insights into this field. It offers an objective
approach for surgery and carries the potential to optimize the
surgical strategy.

The computational model from Goodfellow et al. (29) uses
the Wendling Model (33, 128) to describe nodal level neural
dynamics from functional connectivity analysis of ictal iEEG
signals. While each node has the same dynamics characteristics,
the network topology determines how the network transitions
from the non-seizure state to the seizure state. The model is
calibrated to assume that 50% of the nodes in the network
transition into a seizure state with the whole network spending
50% of its time in a seizure state (29, 35). The total amount
of time the network spends in the seizure state may increase,
decrease, or remain the same when the network topology is
changed with the removal of a given node. The assumption
of this model is that virtually removed nodes that shorten
seizure state time should be removed to reduce the risk of
ictogenesis. A series of studies based on the theta model (35),
which is a simplified version of the Wendling model, showed a
correlation between model prediction and surgical outcome. By
doing so, the model offers an opportunity to optimize surgical
strategy for cases with unfavorable surgical outcomes. Another
computational model from Sinha et al. (31) uses a similar
mathematical framework (23, 129) to predict surgical outcomes
and alternative surgical strategies.

5.2. Studies Using Network Models for
Epilepsy Surgery
The work from Goodfellow et al. (29) and Jirsa et al. (36) are
the early attempts to apply network models to intracranial data
obtained for epilepsy surgery. These fundamental contributions
motivated by earlier theoretical work (23, 124, 129–131) led to a
series of publications aiming to more objectively and accurately
predict the EZ. Goodfellow et al. (29) employed a full Wendling
model to simulate excitability at the nodal level and predict

surgical outcomes based on degree of overlap between model-
predicted ictogenic nodes and resection margins. The study
suggested that at least one node of high ictogenicity should be
included in the surgical resection to achieve a more favorable
surgical outcome. To better understand the relationship between
SOZ and EZ, another measure, Seizure Likelihood was developed
together with an earlier measure, Node Ictogenicity (NI) (29)
to systematically compare the SOZ with the EZ. It was found
that the SOZ may not be the best predictor of the EZ when
there is significant heterogeneity in network topology and node
excitability (132). This is perhaps in line with the clinical
observation that SOZ-based resections do not always provide
optimal outcomes (5). A later study on the same dataset reveals
that a so-called “rich-club” organization (133) (a structure with
multiple hub nodes that densely interconnect sub-networks) can
be found in epilepsy surgical candidates and that disruption of
rich-club modules might optimize surgical outcomes (35). This
finding is also predicted by simulations using the same theoretical
model that is simpler than the Wendling model. The most recent
work by Lopes et al. (122) has extended their network model
to non-invasive EEG source space. Using a simplified Wendling
model and minimum-norm estimation, EEG source signals are
modeled in a similar fashion to iEEG signals. Their results
suggest that the network model predicts the lateralization of
epileptogenic sources with modest spatial resolution. This work
represents an important step in the effort to more objectively
characterize the EZ non-invasively using source space signals and
network models.

By extending the work of Jansen et al. (134) to also include a
slow inhibitory population, Wendling et al. (129) model seizure
onset by mathematically simulating the fast and slow oscillations
of both excitatory and inhibitory neuronal populations. This
model was used by Terry et al. (23) to inversely fit intracranial
EEG data. Bettus et al. (69) andWendling et al. (135) also applied
the model to both intracranial EEG and scalp EEG. Wendling
et al. (136) then extend the network model to understand seizure
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generation and propagation networks. More recent work has
looked at the effects of disrupting network nodes that regulate
seizure propagation (19, 113, 137) with results that challenge the
traditional approach of SOZ resection as best practice for epilepsy
surgery (19, 29, 94, 113, 132).

A multi-level computational model has lately been proposed
to better replicate observed signals from experimental data for
improved prediction of ictogenesis. This networkmodel has been
extended to EEG source space with promising results that reflect
a good match between the interictal EEG source network and
the interictal sEEG network (138). The study also found that the
multi-level network model performs better in the localization of
multi-focal epilepsy.

5.3. Summary of Network Models for
Epilepsy Surgery
It is difficult to compare different studies using network models
to predict the EZ owing to differences in the initial modeling
assumptions and variation in patient cohorts, iEEG approaches,
pathologies, and post-operative follow-up. The dominance of
small studies and single case reports also limits the translatability
of these approaches to the clinical setting. As presented in
Table 4, there is accumulating evidence that network models
can (a) predict the EZ using invasive neurophysiological data
and non-invasive EEG data, (b) help unravel mechanisms of
ictal and interictal discharge generation and propagation, and (c)
allow the study of brain networks to be conducted in a patient-
specific fashion. Long-term prospective studies are now needed,
particularly with network modeling approaches based on the
use of non-invasive, whole-brain data in an effort to reduce our
reliance on invasively acquired data.

6. DISCUSSION

Dynamical network models have the potential to improve
characterization and delineation of the EZ. While initially based
on iEEG recordings, these models have more recently been
extended to the analysis of non-invasive EEG and MEG whole-
brain recordings that, unlike iEEG, are not affected by limited
spatial sampling, nor sensor positions.

6.1. Advantages of This Approach
Dynamical network modeling approaches represent an
important shift away from a subjective interpretation of
iEEG recordings toward an objective quantification of the
putative EZ with their novel analyses of EEG and MEG interictal
and ictal electrophysiological signals. By testing the effects
of candidate epileptogenic nodes on network excitability and
seizure transition states, these approaches permit deliberate,
step-wise hypothesis testing of neural pathways that are
critical for seizure generation and propagation before any
surgical intervention takes place (29, 31, 32, 35). And, while
not the focus of this review, in patients who are not deemed
surgical candidates, these approaches may still be useful for
neuromodulation targets. Recent work from Li et al. (40) and
Scheid et al. (39) suggests “weak” nodes can be identified using
network models for which neuromodulation strategies may

be devised to reduce seizure susceptibility. Further study is
required to clinically validate this concept. The interrogation of
whole-brain structural and functional networks overcomes the
major limitation of traditional invasive monitoring that is highly
dependent on the implicit assumption that iEEG electrodes are
placed in the ideal position for accurate delineation of the EZ
(20). The approach also minimizes the influence of subjective
clinical interpretation of seizure semiology in the pre-surgical
work-up of these patients. For pre-operative planning, the
quantifiable nature of dynamical network modeling facilitates an
objective comparison with traditional non-invasive methods of
EZ mapping, such as PET (positron emission tomography) and
SPECT (single-photon emission computed tomography).

6.2. Limitations of This Approach
There are several limitations of dynamical network modeling
combined with EEG and MEG source imaging. As discussed
previously, field spread and signal leakage reduces the spatial
resolution of source solutions and may limit the capacity of
models to accurately identify the EZ (109, 140). Modeling is
also dependent on the acquisition of high quality EEG or
MEG interictal and ictal signals with minimal noise and artifact
interference (141, 142). As also noted, all network models have
underlying mathematical and physiological assumptions that
may not be entirely valid such that, to date, no favored systematic
approach exists (33). The veracity of these assumptions
can only be rigorously tested with prospective epilepsy
surgery studies, which are currently lacking. Indeed, dynamic
network modeling is still in its infancy and the relationship
between structural networks and functional networks is not
yet clear, particularly with respect to a complex problem
such as epilepsy. To date, these approaches cannot reliably
distinguish between different anatomical structures based on the
specific pathology.

6.3. Next Steps
Multi-modal neuroimaging techniques have assisted pre-surgical
characterization of the putative EZ in pharmaco-refractory
focal epilepsy. Better techniques are needed for the more
challenging patients withMRI-normal and complex lesional focal
epilepsy (141, 143, 144). To this end, network analysis and
dynamical network models have shown considerable promise
with their more objective computational approach to finding
a surgical solution in these difficult cases (29–31). As pointed
out here and by others (13, 18, 50, 113, 145), large cohorts
are required to assess the effectiveness of these approaches
in the clinical setting. Dynamical modeling may further assist
by combining with different neuroimaging techniques, such as
fMRI and tractography, to better model patient-specific brain
structures and pathological dynamics to improve the efficacy
and clinical utility of epilepsy surgery. How such a combined
approach provides clinical value is yet to be fully elucidated
but recent achievements by Jirsa et al. (124) and Proix et al.
(30) demonstrate the merit of incorporating functional and
structural information into the predictive model. It is conceivable
that whole brain dynamic network modeling approaches may
eventually render intracranial exploration unnecessary or even
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TABLE 4 | A summary of studies using network models for epilepsy surgery.

References Network model Patient

number

Clinical data Pathology Findings Comments

Goodfellow et al. (29) Wendling model 16 Ictal iEEG (grid) + numerical

simulations

Various, lesional and

nonlesional

Predict surgical outcome. Alternative

or optimal surgical strategy can be

offered

First attempt on clinical data

in this series

Lopes et al. (32) Wendling + Theta

model

16 Peri-ictal & Ictal iEEG (grid)

+ numerical simulations

Various, lesional and

nonlesional

Alternative or optimal strategy may be

offered by removing rich-club

structures

Subsequent work of

Goodfellow et al. (29)

Lopes et al. (35) Theta model 16 Peri-ictal iEEG (grid) Various, lesional, and

nonlesional

Predict surgical outcome using a

metric derived from network model

Subsequent work of Lopes

et al. (32)

Lopes et al. (132) Theta model 16 iEEG (grid) Various, lesional, and

nonlesional

SOZ is not a good predictor of EZ for

focal epilepsies with a multi-focal

nature

Subsequent work of Lopes

et al. (35)

Lopes et al. (122) Theta model 15 Scalp EEG Various, lesional and

nonlesional

Lateralization of EZ Non-invasive EEG source

space

Jirsa et al. (124) Epileptor model 24 iEEG + data from animal

model

Various, lesional, and

nonlesional

Reproduce seizure propagation in

brain networks as observed by iEEG

Propose the model

Proix and Jirsa (125) Epileptor model 18 Ictal sEEG Various, lesional, and

nonlesional

Predict the seizure propagation First attempt to use clinical

data

Jirsa et al. (36) Epileptor model +

structural brain

network

1 Ictal sEEG + structural

neuroimaging data

Nonlesional Individualized model, predict subset

of brain structure responsible for

seizure generation

Subsequent work of Jirsa

et al. (124)

Proix et al. (30) Epileptor model +

structural brain

network

15 Ictal sEEG + structural

neuroimaging data

Various, lesional, and

nonlesional

Structural networks are able to

explain change in functional

connectivity

Subsequent work of Jirsa

et al. (124)

Wendling et al. (129) Wendling model 5 Ictal sEEG + numerical

simulations

mTLE (lesional and

nonlesional)

Theoretical model produces realistic

epileptic signals that match sEEG

recordings from mTLE

The original theoretical work

along with data validation

Wendling et al. (136) Wendling model +

Functional

connectivity

1 sEEG mTLE Potential to identify epileptogenic

networks

Subsequent work of

Wendling et al. (129)

Wendling et al. (139) Wendling model 1 sEEG + animal model mTLE Replicate observed signals and

predict the mechanisms validated by

experiments and clinical data

A multi-level computational

model
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obsolete. The limitations of intracranial monitoring in its current
forms disqualifies it as a true gold standard for mapping
EZ networks. The evolution of more sophisticated whole-
brain dynamic modeling approaches, which can overcome the
sampling problem, might establish a new standard for pre-
surgical epilepsy planning that is closer to the ground truth for
unraveling EZ pathways. Potential benefits for epilepsy surgery
patients might include reduced peri-operative morbidity and
improved post-operative outcome. Routine clinical application
might help elucidate the structural and functional substrates that
link seizure semiology to seizure onset and propagation (146)
with less clinical subjectivity to the point where elements of the
semiology, not routinely included in existingmodels, could refine
future network modeling strategies.

7. CONCLUSION

This review provides an update on the emerging roles of network
analysis and dynamical network modeling in the surgical work-
up of patients with pharmaco-resistant epilepsy. While still
in their relative infancy, these novel approaches lend more
objectivity to identification of the epileptogenic zone and they
add much-needed specificity and flexibility to hypothesis testing
of neural networks that are involved in epileptogenesis at the
individual patient level in the spirit of twenty-first century

“precision” medicine. The increasing sophistication of structural
and functional connectivity analysis (from MRI, fMRI, DTI,
EEG, and MEG) has paved the way for the evolution of
many promising dynamical network modeling strategies. Most
importantly, in the clinical context of epilepsy surgery, the aim is
to improve patient evaluation and perform a successful resection
that grants patients long-term seizure freedom for a better
quality of life. The potential clinical impact of dynamical network
modeling to improve post-surgical outcomes and to limit the
subjectivity and invasiveness tied to current-day intracranial
monitoring will only be realized with successful translation of
these approaches to large prospective clinical studies.
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According to the latest operational 2017 ILAE classification of epileptic seizures, the

generalized epileptic seizure is still conceptualized as “originating at some point within

and rapidly engaging, bilaterally distributed networks.” In contrast, the focal epileptic

seizure is defined as “originating within networks limited to one hemisphere.” Hence, one

of the main concepts of “generalized” and “focal” epilepsy comes from EEG descriptions

before the era of source localization, and a presumed simultaneous bilateral onset and

bi-synchrony of epileptiform discharges remains a hallmark for generalized seizures.

Current literature on the pathophysiology of generalized epilepsy supports the concept of

a cortical epileptogenic focus triggering rapidly generalized epileptic discharges involving

intact corticothalamic and corticocortical networks, known as the cortical focus theory.

Likewise, focal epilepsy with rich connectivity can give rise to generalized spike and

wave discharges resulting from widespread bilateral synchronization. Therefore, making

this key distinction between generalized and focal epilepsy may be challenging in some

cases, and for the first time, a combined generalized and focal epilepsy is categorized

in the 2017 ILAE classification. Nevertheless, treatment options, such as the choice of

antiseizure medications or surgical treatment, are the reason behind the importance

of accurate epilepsy classification. Over the past several decades, plentiful scientific

research on the pathophysiology of generalized epilepsy has been conducted using

non–invasive neuroimaging and postprocessing of the electromagnetic neural signal

by measuring the spatiotemporal and interhemispheric latency of bi-synchronous or

generalized epileptiform discharges as well as network analysis to identify diagnostic

and prognostic biomarkers for accurate diagnosis of the two major types of epilepsy.

Among all the advanced techniques, magnetoencephalography (MEG) andmultiple other

methods provide excellent temporal and spatial resolution, inherently suited to analyzing

and visualizing the propagation of generalized EEG activities. This article aims to provide a
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comprehensive literature review of recent innovations in MEG methodology using source

localization and network analysis techniques that contributed to the literature of idiopathic

generalized epilepsy in terms of pathophysiology and clinical prognosis, thus further

blurring the boundary between focal and generalized epilepsy.

Keywords: magnetoencephalography, source localization, generalized genetic epilepsy, absence epilepsy,

myoclonus epilepsy, epilepsy classification

INTRODUCTION

Epilepsy is one of the most common neurological disorders
affecting almost 3.5 million in the USA and 65 million
worldwide and is getting increased public health attention as
patients with epilepsy have a noticeable reduction in quality
of life and employment prospects (1). Two major classification
categories are whether an epilepsy is focal or generalized.
According to the latest operational 2017 ILAE classification of
epileptic seizures, the generalized seizure is still conceptualized
as “originating at some point within and rapidly engaging,
bilaterally distributed networks.” In contrast, the focal seizure is
defined as “originating within networks limited to one hemisphere”
(2). The definitions for generalized and focal seizures are
retained from the 1981 ILAE classification, and the presumed
simultaneous bilateral onset and bisynchrony of the epileptic
discharges in electroencephalography (EEG) remains a hallmark
for generalized seizures (2–4).

In 1952, Tükel and Jasper et al. reported that a mesial frontal
cortical lesion could give rise to diffuse interictal spike-and-wave
discharges; hence the term “secondary bilateral synchronization”
and blurring the boundary of focal and generalized epilepsy
(5). In addition to the frontal lobe, focal epilepsy with rich
connectivity, such as posterior parietal, temporal, or even
occipital lobe epilepsy, can give rise to diffuse “generalized” spike
and wave discharges (GSWD) resulting fromwidespread bilateral
synchronization, especially in the pediatric population and can
be misclassified as generalized epilepsy (6–10). On the contrary,
current literature validates that focal EEG features can be found
in generalized epilepsy (11). Consequently, generalized epilepsy
can also be misclassified as focal epilepsy. Therefore, making
a distinction between generalized and focal epilepsy may be
challenging in selected clinical cases (7–10). However, the 2017
ILAE classification proposes the combined generalized and focal

Abbreviations: GSWD, generalized spikes wave discharge; IEDs, Interictal

epileptiform discharges; CAE, childhood absence epilepsy; JAE, juvenile

absence epilepsy; JME, juvenile myoclonus epilepsy; GGE, genetic generalized

epilepsy; TCS, tonic-clonic seizure; MEG, magnetoencephalography; EC, effective

connectivity; EEG, electroencephalography; fMRI, functional magnetic resonance

imaging; SAM, synthetic aperture magnetometry; LORETA, standardized low-

resolution brain electromagnetic topography; sLORETA, standardized low-

resolution brain electromagnetic topography; ms, milliseconds; LCMV, Linear

constraint minimum variance; ASI, accumulated source imaging; DICS, Dynamic

imaging of coherent sources; dMSI, Dynamic magnetic source imaging; dSPM,

Dynamic statistical parameter mapping; ECD, equivalent dipole model; PLV,

phase-locking value; MUSIC, multiple signal characteristic; wMNE, weighted

minimum-norm estimation; pMEM, pairwise maximum entropy model; CFC,

cross-frequency coupling; ms, milliseconds; s, seconds; m, months; y, years; F,

female; M, male; ASM, antiseizure medication.

epilepsy as one of the categories of the epilepsy classification
for ambiguous cases. Nevertheless, treatment options, such as
the choice of antiseizure medications (ASMs), neuromodulation,
or surgical treatment alternatives, are the reason behind
the importance of accurate differentiation between focal and
generalized epilepsy. When epilepsy becomes drug-resistant,
defined as failure to control the seizures with two appropriate
ASMs, surgical resection or disruption of the epileptogenic zone
(EZ) may be a way to achieve seizure freedom or reduce seizure
burden in focal epilepsy, but those with generalized epilepsy
are often not considered as epilepsy surgery candidates (12–
16). Although neuromodulatory treatments such as vagal nerve
stimulators (VNS) (17), responsive neurostimulator (RNS) (18),
and deep brain stimulators (DBS) (19) are treatment alternatives
for those patients who are not resective surgical candidates,
the study and indications of all those neurostimulators are
mostly based on focal epilepsy (20). Thus, the treatment that
we could offer for drug-resistant generalized epilepsy is more
limited than for focal epilepsy. There have beenmultiple works of
literature supporting the usage of the neurostimulators, especially
the RNS and DBS targeting different parts of the thalamus
and cortices in patients with generalized epilepsy. However,
the outcome is highly dependent upon electrode placement in
relation to different thalamic nuclei, stimulation parameters,
subtypes of generalized epilepsy, or even individual cortical-
subcortical connectivity profiles (20, 21).

To improve the treatment options in generalized epilepsy,
plentiful scientific research on its pathophysiology has been
conducted over the past several decades, using advanced non–
invasive investigations and postprocessing of the neuromagnetic
signal by reflecting the spatiotemporal and interhemispheric
latency of bi-synchronous or generalized epileptiform discharges
in both animals and humans (22–24). Using invasive intracranial
electroencephalographic (icEEG) data, Chen et al. reported
that two hemispheres could still function independently with
different focal network structures and properties under a
strong global epileptic network in generalized epilepsy; the
focal epileptic network from the leading hemisphere might
be activating the global epileptic network. By resecting the
part of the region of the leading hemisphere, five pediatric
patients with generalized epilepsy with tonic/atonic and atypical
absence seizures resulted in seizure freedom (24). Although
the diagnosis of generalized epilepsy in the case series was
disputable as all the resective brain tissue showed abnormal
pathology (3 with focal cortical dysplasia type 1A, one with
focal cortical dysplasia type 1B with polymicrogyria, and one
with tuberous sclerosis), the conclusion was based on EEG
and clinical semiology of the seizures. non-etheless, the author
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highlighted one of the current clinical challenges in accurately
categorizing the epileptic patients into either focal or generalized
epilepsy (24). In addition, accumulating evidence has shown
that epilepsy is an archetypical neural network disorder. With
ongoing debates, current literature on the pathophysiology
of generalized epilepsy supports the concept of a cortical
epileptogenic focus triggering the rapidly generalized epileptic
discharges involving intact corticothalamic and corticocortical
networks, which is known as the cortical focus theory (22, 23,
25).

Among all advanced non–invasive techniques,
magnetoencephalography (MEG) provides excellent temporal
and spatial resolution, inherently suited for analyzing the
propagation of generalized EEG activities and determining
whole-brain functional connectivity network patterns (26–29).
The current clinical application of MEG for epilepsy in the
form of magnetic source imaging (MSI) mostly uses the single
equivalent current dipole (ECD) model (30, 31), especially in
the United States (32). However, the traditional ECD model
is restricted if the underlying assumption of focality is not
fulfilled, for example, when the epileptiform activity occurs
simultaneously across the various regions (33–35). Alternative
source localization techniques, such as beamformer and low-
resolution brain electromagnetic topography (LORETA), as well
as various connectivity analyses, have played a prominent role
in improving the localization of deep sources (further details in
section 2) (34–40). Although there is an overall improvement
in the strength of localization of the neuromagnetic activity
using various source localization algorithms, there are still major
limitations in analyzing deep sources with MEG (41–44). The
magnetic field intensity is inversely proportional to the square
of the distance between the sources and the sensors (45), and
thus there is decreased signal in deeper structures of the brain,
either deep cortices or the thalamus. Since GSWDs typically
have very high voltages, it is postulated that MEG may be able
to overcome this particular limitation in generalized epilepsy.
Unfortunately, there are limitations in precise localization
of the deeper structures, such as individual thalamic nuclei.
Compared to MEG, functional magnetic resonance imaging
(fMRI) has a better spatial but weaker temporal resolution (46).
With advances in technology, there have been publications
(40, 44, 47, 48) focusing on the multimodal integration of
MEG with other neuroimaging techniques, mainly fMRI, to
complement one modality with the other to further edify the
underlying pathophysiology of the GSWDs.

In this review article, we searched PubMed, Medline,
and Embase databases using the following search algorithm:
“Magnetoencephalography (MEG)” and “Generalized Epilepsy”
or “absence epilepsy” or “myoclonus epilepsy” or “generalized
genetic epilepsy” limited to publications in English. The last
date of the search was September 30th, 2021. We screened the
titles, abstracts, and references of all search results to identify
potentially relevant studies. We included only publications
of MEG recordings in human subjects. We excluded poster
publications and any study with abnormal MRI in generalized
epilepsy patients. This article aimed to provide a comprehensive
literature review of how the recent innovation in the MEG

methodology contributed to the literature of the idiopathic
generalized epilepsy in terms of physiopathology, treatment, and
prognosis, thus further blurring the boundary between focal and
generalized epilepsy.

DIFFERENT SOURCE LOCALIZATION
MODELS, TECHNIQUES AND
CONNECTIVITY ANALYSES

Cohen et al. were the first to record neural magnetic signals
using a single-channel MEG (49). Since then, the MEG recording
technique has been enhanced, and now the neural magnetic
signals can be recorded using more than 200–300 sensors (31,
43). With this advancement, source estimation models have
been developed to localize the neural magnetic signals (26, 30–
32, 37, 39, 40, 43, 50). Source analysis usually occurs in the
source space rather than sensor space, where the neural signal
is acquired at each measurement sensor. Due to the various
ambiguities associated with sensor level analysis, source analysis
is preferred, but sensor level analysis can be performed when
there are not enough sensors, e.g., analyzing 10–20 EEG neural
signals, to accurately localize sources (42, 51). The goal of source
localization is to correctly estimate the location and orientation of
the neuromagnetic source using the inverse model (37). Multiple
mathematical algorithms have been developed, but non-e is felt
to be superior for every clinical situation. Each algorithm comes
with its own advantages and limitations. Besides, there have
been studies showing overall agreement in estimating the sources
when compared to intracranial EEG (52–54).

Dipole Model
Dipole models are characterized by a single or few neural sources
that are analyzed in the brain model and then sequentially
moved until the projected single pattern matches the recorded
pattern (30, 31). Among all, the single equivalent current dipole
model (sECD) is the most well accepted, but the traditional ECD
model is limited if the underlying assumption of focality is not
fulfilled (30–32). Using point source analysis, the dipolemodeling
becomes limited and unreliable if the source is complex, multiple
sources are generated over the same temporal course, or the
source is generated from extended areas of the brain (26, 33–35,
55).

Multiple Signal Classification
Multiple signal classification (MUSIC) can analyze complex
and asynchronous sources that typically require multiple
simultaneous source localization by scanning all possible
positions of the brain in three-dimensions. However, two
assumptions need to be met for accurate localization, an absence
of noise and an accurate head model (34, 56, 57). Unlike ECD,
the recursive MUSIC (R-MUSIC) algorithm can localize multiple
synchronous sources using the spatio-temporal independent
topographies (IT) model (58).

Beamforming
Instead of estimating or reconstructing the source distribution,
beamforming uses spatial filters to optimize predefined regions
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of interest or sources with a maximum signal while suppressing
activity from other regions, including noise (59). Beamforming
can be further divided into either linear, linearly constrained
minimum variance (LCMV) (60) or non-linear, synthetic
aperture magnetometry (SAM) (61). LCMV beamforming can
be analyzed either in time domain using covariance metrics or
in the frequency domain using cross-spectral density metrics,
such as dynamic imaging of coherent sources (DICS) or
accumulated spectrograms, such as accumulated source imaging
(ASI) (59–63). Compared with ECD, beamforming can analyze
multiple sources, either synchronous or asynchronous. Contrary
to MUSIC, the neural signal analyzed with beamforming is
less altered by the presence of noise. One of the limitations
of beamforming, especially SAM with excess kurtosis, is
performance loss when the sources are correlated. In addition,
SAM with excess kurtosis [SAM(g2)] ignores frequent events,
and thus it is limited in analyzing frequent discharges (59,
61).

Current Density Models
Current density models directly compute a current distribution
throughout the full brain volume: minimum norm estimate
(MNE), standardized low-resolution brain electromagnetic
tomography (sLORETA), exact low-resolution brain
electromagnetic tomography (eLORETA), sLORETA weighted
accurate minimum norm (SWARM), dynamical statistical
parametric mapping (dSPM), and the multiresolution focal
underdetermined system solution (MR-FOCUSS) (64–67). In
MNE, dipoles are analyzed simultaneously in two-dimensions
by limiting the space so their strengths can be estimated as the
function of time (68). MNE has an excellent spatial resolution
for the superficial sources, especially complex sources, but
not for deeper sources due to the model limitation (69). To
improve the superficial source bias, sLORETA performs further
post-processing of the current density map obtained from the
MNE by replacing the noise covariance with theoretical data
covariance (65). Another normalization method of the MNE
current density is dSPM which computes the normalization
based on the noise covariance (70, 71). In addition, the
presence of biological noise has no localization bias in the
source estimation of the neural signals by sLORETA (67).
dSPM and LORETA improve the localization error when
compared to MNE (67, 72). To improve the analysis of complex
dynamic sources using the time domain, particular models are
a promising technique for the ictal dynamic data, especially
MR-FOCUSS (73).

Entropy Measures
Maximum entropy on the mean (MEM) is a technique
to analyze synchronous sources in specific frequency
bands and is sensitive to spatially extended sources using
data-driven parcellation of the cortical surface into non–
overlapping parcels. By maximizing the entropy of a probability
distribution, the parcels that are not contributing to the
measured data are excluded from the analysis (74). Pairwise
MEM (pMEM), a statistical model of pairwise regional

coactivation from empirical data using frequency-specific
MEG resting oscillatory activity, can analyze the dynamic
state’s multi-stability (75, 76). The limitation of MEM is that
a priori information on the number of cortical parcels is
required (77).

Connectivity Measures
Over the past decades, studies have been focused on
analyzing various cortical networks using diverse connectivity
measures to describe the disruption of the disease state
from the normal functional neural networks (78–80). In
contrast to anatomical connectivity, where networks of
physical white matter structural connections or synaptic
connections between various (distinct) regions of the brain
analyzed at the micro or macroscopic occurs, functional
and effective connectivity describes the functional aspects
of neural networks (81). Functional connectivity measures
the temporal correlation of distinct cortical regions,
whereas effective connectivity analyzes the direction of
the influence of one cortical region over distinct cortex
(79, 81–86). Therefore, functional connectivity analyzes
whether neural activities of the two regions are linked, i.e.,
undirected information flow, while effective connectivity
scrutinizes the direction of the communication, i.e., directed
connectivity (87–89).

Correlation and coherence are the most classical measures
of functional connectivity and analyze the similarity between
neural signals in the time and frequency domains, respectively
(90). Other functional connectivity methods are based upon
quantifying the waveforms in amplitude and oscillations
of neural activity, such as phase lag index, phase slope
index, or phase-locking index (91, 92). If the directional
interactions are pre-defined, structural equation modeling
(SEM) can be used, whereas Granger causality measures
the connectivity on directional interactions derived from the
data (82, 89, 93). Other effective connectivity methods are
directed coherence, dynamic causal modeling, linear non–
Gaussian, conditional Bayes, and Bayes network methods (94–
99). The main difference between functional and effective
connectivity is that functional connectivity illustrates statistical
dependencies, whereas effective connectivity is based on a
mechanistic model of the causal effects that generated the
data (87, 100).

Graph theory provides models of complex dynamic networks
in the brain, allowing one to better understand the relations
between and/or the processes taking place in network structures.
After the connectivity matrices are calculated, these values can
be used to describe features of the network using graph theory,
i.e., the network is defined as a set of nodes that are connected by
edges or lines. This allows the investigator to calculate measures
of different graphmetrics, such as degree (number of connections
to a node), node strength, path length, global efficiency, clustering
coefficients, between centrality, synchronizability, small world
index and centrality, to identify the critical components of the
network (101–105).
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FIRST CLINICAL MEG RECORDING IN
GENERALIZED EPILEPSY (SOURCE
LOCALIZATION ERA)

Hughes et al. were the first to report a clinical MEG recording
of 3Hz generalized spike and wave discharges (GSWDs) in
humans using simultaneous EEG and MEG recording (106).
Interestingly, they observed that MEGwas excellent in displaying
the spikes and less evidence of waves when compared to the
EEG. In addition, MEG waveforms were noted to precede the
corresponding EEG spike activity in most patients’ recordings.
Ricci et al. studied the 3Hz spike-wave using single-channel
MEG with a phantom brain model and showed cortical activity
was scattered bilaterally, mainly over frontal and temporal
regions, often with more involvement over one hemisphere,
while bilateral synchronous activity seemed to have originated
from a deeper structure (107, 108). The study was the first
to demonstrate evidence of primary cortical involvement in
GSWDs in generalized epilepsy using neuromagnetic cortical
source localization. The authors couldn’t explain the relation
of the cortical source localization to the deep brain structures
given the limitation of the applied methodology with single-
channel recordings (109). Thus, the author recommended further
studies using multichannel capability with newer post-processing
methodology to glean greater insights into the pathophysiology
of generalized epilepsy (109).

CHILDHOOD ABSENCE EPILEPSY

Childhood absence epilepsy (CAE) is the most studied
generalized epilepsy among all genetic or idiopathic generalized
epilepsy subtypes. All the published study characteristics, types of
post-processing signal analysis, and main results are summarized
in Table 1.

Source Localization of GSWDs
Multiple studies were published using different source
localization techniques to analyze interictal, preictal, and
ictal parts of the GSWDs of CAE, as shown in Table 1. Westmijse
et al. applied source analysis to ictal GSWDs of human CAE
with an average seizure duration of 9s (4–22 s) using non–linear
association with the beamformer technique, synthetic aperture
magnetometry (SAM). At the onset, sources were localized to
cortical brain regions, including left or right frontal, central
and parietal, during the spike portion of GSWDs. The sources
became generalized during the slow-wave phase (110). A similar
finding was reported by Hu et al. using the same technique while
analyzing the peak of the spike of GSWD (111). Five out of 13
CAE patients’ GSWDs (38.5%) were able to source localized to
bilateral frontal regions. The study findings validated the clear
cortical sources of activity during the spikes of GSWDs over the
bilateral frontal regions and supported the theory of the cortical
focus in the generation of generalized epilepsy (111). However,
no conclusion could be made regarding deep brain sources
(mainly thalamus) due to the limitation of the recording and
analysis technique, including the limited high frequency to 70Hz.

Similar to the findings from Rucci et al. (107, 108) and
Tenney et al. reported the preictal MEG changes occurred an
average of 694ms before the initial spike of the EEG (112,
114). The same research group (112) aimed to investigate the
relative timing of the cortical and thalamus activity in the
generation of absence seizures by combining SAM beamformer
and standardized low-resolution electromagnetic tomography
(sLORETA) to analyze the preictal state, 50 milliseconds (ms)
before and after the first ictal spike of ictal GSWDs, in 12 drug-
naïve CAE patients. At−50ms, the seizures were source localized
to the frontal cortex, mainly the lateral inferior frontal lobe or
thalamus. At the EEG onset (0ms), focal sources were detected
in the frontal cortex with decreased thalamic localization.
Following the first ictal spike (50ms), localization became more
widespread. Thus, after the initial frontal and thalamic source,
the ictal activity gradually recruited the remaining cortices,
i.e., parietal, temporal, and occipital. Later, the same group
analyzed the same ictal dataset using time-frequency analysis
with different frequency bandwidths (up to 150Hz) and source
localization using sLORETA (113). Tenney et al. were the
first to report the network’s frequency-dependent nature in
CAE (113). The high-frequency oscillations (HFO) 70–150Hz
were localized to the frontal lobe during absence seizures.
At lower frequencies, sources were significantly localized to
the parietal cortex. Thus, the authors proposed a hypothesis
that different oscillations and frequencies favored different
types of connections and/or different spatiotemporal levels of
information integration. In addition, the finding suggested that
the co-occurring frontal and parietal corticothalamic networks
interacted to produce a pathological state that contributed to the
generation of GSWDs.

The above findings were confirmed by Miao et al. using
different beamformer analysis, dynamicmagnetic source imaging
(dMSI) (115, 116). Miao et al. validated that the source of
HFOs (80–500Hz) in the ictal stage was focal and located in
the medial prefrontal cortex (MPFC) compared to the spike
portions of the interictal GSWDs, which were widespread (116).
In addition, Miao et al. reported that fast ripples (250–500Hz)
were associated with increased seizure frequency (115). Besides,
same research group also confirmed the involvement of the
default mode network, by reciprocal propagation betweenmedial
prefrontal cortex, pre-supplementary motor area, precuneus,
and medial occipital cortices, through cortico-cortical pathways
via medial portion of the brain or cortico-thalamus-cortical
pathway via thalamus, in the ictal generation and propagation
of the seizure activity in CAE (115). Compared to the ictal
stage, Xiang et al. studied HFO activity during the interictal
stage and compared it with age- and sex-matched healthy
controls (117). The authors revealed that patients with CAE
had higher odds of interictal HFO activity (either 200–1,000
or 1,000–2,000Hz) in the parieto-occipito-temporal junction
and medial frontal cortices. No significant differences in the
deep brain area was reported. Thus, all the above results
indicated that CAE had significantly aberrant brain connectivity
activity during the interictal as well as the ictal phase, and the
above electrophysiological findings could potentially serve as
biomarkers for the CAE.
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TABLE 1 | Showing all the published study characteristics and main outcomes on childhood absence epilespy.

Article name Type

of

genetic

epilepsy

No. of

patients
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in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

frequency

bandwith

Main result

CAE (interictal/ictal GSWDs)

Westmijse et

al. (110)

CAE 5 2F: 3M Ictal 9.5

(7–12)

NA NA 5 Yes

(EEG−28, MEG

151 for the first 4

patients and 275

for the 1 patient)

(1,200Hz)

Beamformer

(SAM)

(1–70Hz)

• Beamformer technique

supported the local

or even focal cortical

involvement in the

occurrence of the spike in

the train of GSWDs.

• GSWDs had local frontal

and parietal cortical sites

before the onset of the

generalized pattern

of GSWDs

Hu et al.

(111)*

CAE 13 10F: 3M Ictal 8.4

(0.17-

−12)

NA 1.6

(3–36)

NA* No

(MEG 275)

(1,200Hz)

Beamformer

(SAM)

(20–

70Hz)

• Cortical epileptic foci

were localized only 5 out

of 13 cases over the

bilateral frontal regions.

Tenney et al.

(112)**

CAE 12 7F: 5M Ictal 8.8 (6.4–

11.8)

8.8 (6.4–

11.8)

∼ one

week

0 Yes

(EEG– 25,

MEG −275)

(4,000Hz)

Beamformer

(SAM),

sLORETA

(1–70Hz)

• Beamformer analysis

using SAM confirmed

the presence of the

independent thalamic and

cortical activities.

• sLORETA analysis

showed sources during

the absence seizures are

most likely to be localized

to the frontal cortex and

thalamus at −50ms.
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TABLE 1 | Continued

Article name Type

of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

frequency

bandwith

Main result

• At the onset of the

absence seizure (0ms),

focal source localization

was seen in the lateral

frontal cortex with

decreased thalamus

localization.

• Following the onset of the

spike, localization

between more

widespread and gradually

recruited throughout

the cortex.

Tenney et al.

(113)**,#
CAE 12 7F: 5M Ictal 8.8 (6.4–

11.8)

8.8 (6.4–

11.8)

∼ one

week

0 Yes

(EEG– 25,

MEG −275)

(4,000Hz)

Time-

frequency

analysis

with

different

frequency

bandwidths

(1–20,

20–70,

70–

150Hz),

sLORETA

• First to report on the

frequency-dependent

nature of the neural

network and about HFO

• During the absence

seizure, frontal cortex

source localization

was noted at the low–

(3–20Hz) and gamma-

frequency bandwidths

(70–150Hz).

• At low-frequency

bandwidths, more

sources localized to the

parietal lobes during

absence seizure.
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TABLE 1 | Continued

Article name Type

of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

frequency

bandwith

Main result

Jacobs-

Brichford

(114)#

CAE 12 7F: 5M Preictal 8.8 (6.4–

11.8)

8.8 (6.4–

11.8)

∼one

week

0 Yes

(EEG−23,

MEG−275)

(4,000Hz)

sLORETA

(1–70Hz)

• Preictal MEG frequency

changes were detected at

a mean of 694ms before

the initial GSWDs on the

EEG, and focal sources

were localized to the

frontal cortex

and thalamus

Miao et al.

(115)

CAE 14 9F:5M Ictal 8.5

(5–12)

NA 7.1

(1–24)

0 No

(MEG−275)

(300Hz)

Beamformer

(wavelength-

based),

Dynamic

magnetic

source

imaging

(dMSI)

(1–

140Hz)

• Initial ictal activity was

source localized

predominately to left

frontal and posterior

cortices. Frontal sources

were left medial prefrontal

cortex, pre-SMA, primary

motor cortex, and lateral

prefrontal cortex. The

posterior cortical regions

were the left precuneus

and medial occipital

cortex.
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TABLE 1 | Continued

Article name Type

of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

frequency

bandwith

Main result

• After initialization, the ictal

activity showed

involvement of medial

prefrontal cortex and

precuneus, and recursive

propagation between

frontal and posterior

cortices via either medial

portion of the brain (9/14)

or thalamus

(5/14), respectively.

Miao et al.

(116)

CAE 10 7F: 3M ictal 8.3

(5–11)

NA 5.9

(1–12)

0 No

(MEG−275)

(6,000Hz)

Beamformer

(wavelength-

based),

Dynamic

magnetic

source

imaging

(dMSI)

(14–70,

80–

500Hz)

• HFO ranging from 80–

500Hz was located in all

patients.

• The total time of fast

ripples (250–500Hz)

was greater than that of

ripple (80–250Hz) during

absence seizures.

• Compared to spikes, the

source localization of

HFOs appeared to be

more focal.

(Continued)
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TABLE 1 | Continued

Article name Type

of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

frequency

bandwith

Main result

• HFO duration was

significantly longer when

co-occurring with spikes

and localized in the medial

prefrontal cortex, whereas

spikes were widespread

to the various brain

regions during the seizure.

• HFO (fast ripples) was

associated with increased

seizure frequency

Xiang et al.

(117)

CAE 10 3F: 7M Interictal 8

(6.4–10)

8

(6.4–10)

∼one

week

0 No

(MEG−275)

(4,000Hz)

Beamformer

(ASI),

correlation

analysis

at

Source

level with

multi-

frequency

analysis

(1–4,

4–8,

8–12,

12–30,

30–55,

65–90,

90–200,

200–

1,000,

1,000–

2,000Hz)

• Compared with healthy

control, CAE patients had

higher odds of interictal

HFO in 200–1,000 and

1,000–2,000Hz in medial

frontal regions and

parieto-occipito-

temporal junction.
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TABLE 1 | Continued

Article name Type

of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

frequency

bandwith

Main result

Tang et al.

(118)

CAE 12 8F: 4M Preictal/

ictal

8.17

(5–12)

7.75

(5–11)

7.08

(1–20)

0 No

(MEG−275)

(6,000Hz)

Beamformer

(ASI),

correlation

analysis

at

Sensor

and

source

level with

multi-

frequency

analysis

(1–4,

4–8,

8–12,

12–30,

30–45,

55–90,

90–200,

200–

1,000Hz)

• Interictal to ictal period,

neuromagnetic changes

predominantly occurred

in the medial prefrontal

cortex and parieto-

occipito-temporal junction

at the low-frequency band

at <30Hz.

• A strong correlation

between the source

strength of ictal HFOs in

200–1,000Hz and the

frequency of daily

seizures was reported.

CAE (Ictal network connectivity)

Gupta et al.

(119)

CAE 5 NA Preictal 9.5

(7–12)

NA NA 5 No

(MEG −151 for

4 patients, MEG

−275 for

1 ptaient)

(1,200Hz)

Connectivity–

Source level

Beamformer

(DICS),

Graphic

theory,

non-

linear

coherence,

source

analysis

(0–50Hz)

• Beamforming showed a

consistent appearance of

a low-frequency frontal

cortical source preceded

by the low-frequency

occipital source before

the first ictal GSWDs.
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TABLE 1 | Continued

Article name Type

of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

frequency

bandwith

Main result

with low-

frequency

band

2–4Hz

and high-

frequency

band

20–25Hz

• There was a decrease in

local connectivity and

higher global connections

at the preictal stage (1 s

from the first ictal GSWD),

suggesting a pathological

predisposed preictal state

toward synchronous

seizures networks.

Wu et al.

(120)

CAE 14 9F: 5M Preictal 8.1

(5.3–11)

NA 8

(0.5–36)

0 No

(MEG −275)

(6,000Hz)

Connectivity–

Source level

Beamformer

(ASI),

Graph

theory,

Granger

causality,

correlation

analysis

at source

level with

multi-

frequency

analysis

(1–4,

4–8,

8–12,12–

30,

30–80,

80–250,

250–

500Hz)

• At the preictal period,

low frequency 1–80Hz

activities were localized

to the frontal cortex and

parieto-occipito-temporal

junction, whereas high-

frequency 80–250Hz

oscillations showed

predominant activities

localized in the deep brain

region as well as medial

frontal cortex.

• Increased

cortico-thalamic effective

connectivity was

observed around seizures

in both low and

high-frequency ranges.

(Continued)
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TABLE 1 | Continued

Article name Type

of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

frequency

bandwith

Main result

• At the early preictal

period, the predominant

direction of the

cortico-thalamic effective

connectivity was

observed from cortex to

thalamus, but the cortex

that drove connectivity

varied among subjects.

Youssofzadeh

et al. (121)

CAE 16 9F: 7M Preictal 8.7

(6–12)

NA NA 0 Yes

(EEG−25,

MEG−275)

(4,000Hz)

Connectivity-

Sensor

level

Beamformer

(LCMV),

Graphic

theory,

phase-

locking

value

(PLV) at

broadband

frequency

(1–40Hz)

• During absence seizures,

highly connected brain

areas or hubs were

present in the bilateral

precuneus, posterior

cingulate, thalamus, and

cerebellar regions

Jiang et al.

(122)

CAE 15 11F:4M Ictal

(termination)

(5–11) NA 18.1

(2–63)

0 No

(MEG−275)

(6,000Hz)

Connectivity-

Source

level

Beamformer

(ASI),

Graph

theory,

Granger

causality,

correlation

analysis

at the

source

level

• At the seizure termination

transition, activities at low

frequency (1–80Hz) were

predominantly distributed

in the frontal cortical and

parieto–occipito–temporal

junction, whereas high

frequency

(Continued)
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TABLE 1 | Continued

Article name Type

of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

frequency

bandwith

Main result

with

multi–

frequency

analysis

(1–4,

4–8,

8–12,

12–30,

30–80,

80–250,

250–

500Hz)

(80–500Hz) activities were

localized in the medial frontal

cortex and deep brain areas

(mainly thalamus).

• Cortico–thalamic effective

connectivity was

enhanced at all frequency

bands, the direction of

which was primarily from

various cortical regions to

the thalamus

Sun et al.

(123)θ
CAE 22 15F: 7M Preictal 8.5

(5–14)

NA 7.61

(4–13)

7 Yes

(EEG−23,

EEG−275)

(6,000Hz)

Connectivity–

Source

level

Beamformer

(ASI),

correlation

analysis

at source

level in 6

frequency

bandwidths

(1–4,

4–8,

8–12,

12–30,

30–80,

80–

250Hz)

• At the preictal stage (1

second from the first

ictal GSWD), overall

network spectral power

increased and distributed

at 2–4, and ictal

spikes simultaneously

showed elevation of

network connectivity,

predominately excitatory.

• HFO was detected in

certain focal areas

(Continued)
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TABLE 1 | Continued

Article name Type

of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

frequency

bandwith

Main result

Sun et al.

(124)

CAE 18 13F: 5M Ictal

(termination)

8.4

(5–11)

NA 10.2

(3–32)

0 No

(MEG−275)

(6,000Hz)

Connectivity–

Source

level

Beamformer

(ASI),

source–

level with

multi–

frequency

analysis

(1–4,

4–8,

8–12,

12–30,

30–80,

80–250,

250–

500Hz)

• At seizure termination,

low–frequency bands at

1–4, 4–8 and 8–12Hz

activities were distributed

mainly in the frontal

and parieto–occipito–

temporal junction. At

12–30 and 30–80, there

was significant reduction

in source activity in frontal

lobe.

• The ictal peak source

strength in 1–4Hz was

negatively correlated with

seizure duration, whereas

the 30–80Hz range was

positively correlated with

epilepsy course

Tenney et al.

(48)#
CAE 13 7F: 6M Ictal

(termination)

8.8 (6.4–

11.8)

8.8 (6.4–

11.8)

∼one

week

0 Yes

(EEG−21,

MEG−275)

(4,000Hz)

Connectivity–

Source level

fMRI

informed

MEG

effective

connectivity

(0.5–

100Hz)

Beamformer

(LCMV),

amplitude/

amplitude

coupling

with

canonical

• During the absence

seizure, there was a strong

coupling between beta

and gamma frequencies

within the left frontal

cortex and between left

frontal and right parietal

regions.

• Strong connectivity

between left frontal and

right parietal nodes was

noted within gamma

band.
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TABLE 1 | Continued

Article name Type

of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

frequency

bandwith

Main result

frequency

bins

(1–4, 4–8,

8–12.5,

12.5–30,

and 30–

59Hz),

multilayer

network

approach

• Multilayer versatility

analysis identified a

cluster of network hubs in

the left frontal region

CAE (Resting-state Connectivity)

Chavez et al.

(125)

CAE 5 NA Resting

state

NA NA NA 5 No

(MEG−151)

(1,250Hz)

Connectivity–

sensor level

Graph

theory,

Linear

coherence

at sensor

level with

multi-

frequency

analysis

(<5, 1–15,

15–24,

24–35,

>35)

• Compared to a healthy

subject, a patient with

CAE had richer

connectivity and

modularity in 5–14Hz

Wu et al. (8) CAE 13 9F: 4M Resting

state

8

(5.3–11)

NA 13

(0.5–60)

0 No

(MEG−275)

(6,000Hz)

Connectivity–

source level

Beamformer

(ASI),

Graph

theory,

Granger

causality,

correlation

analysis

at source

• This is the first study to

reveal that CAE patients

displayed

frequency-specific

abnormalities in the

network pattern during

the resting state.

(Continued)
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TABLE 1 | Continued

Article name Type

of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

frequency

bandwith

Main result

level with

multi-

frequency

analysis

(1–4,

4–8,

8–12,12–

30,

30–80,

80–250,

250–

500,

500–

1,000Hz)

• Compared to the healthy

subject, the network

pattern at 1–4Hz was

altered and, at 2 seconds

before the first ictal

GSWDs, mainly showed a

strong connection in the

frontal and weakened

connection in the anterior-

posterior pathway.

CAE (Difference between interictal and ictal connectivity)

Shi et al. (126) CAE 25 18F: 7M Interictal

and Ictal

7.7

(5–14)

NA 25.52

(1–72)

12 No

(MEG−275)

(6,000Hz)

Connectivity–

source level

Beamformer

(ASI),

correlation

analysis

at source

level in

multifrequency

bandwidths

(1–4,

4–8,

8–12,

12–30,

30–80,

80–250,

250–

500Hz)

(PCC/pC

as seed)

• At 4–8, 8–12, magnetic

sources of interictal

GSWDs mainly located in

PCC/pC while in ictal was

MFC at 80–120Hz.

• During ictal GSWDs,

functional connectivity

network involving

PCC/pC showed strong

connections in anterior to

posterior pathway at

80–250Hz.
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Main result

• During interictal GSWDs,

functional connectivity

was mostly limited to the

posterior cortex region.

Sun et al.

(127)θ
CAE 22 15F: 7M Interictal

and Ictal

8.5

(5–14)

NA 7.61

(4–13)

7 Yes

(EEG−23,

MEG−275)

(6,000Hz)

Connectivity-

Source

level

Beamformer

(ASI),

correlation

analysis

(1–

80Hz)at

source

level in

two

frequency

bandwidths

(1–30,

30–

80Hz)

• At both frequencies, there

was more active source

activity location in ictal

onset period rather than

interictal.

• The frontal lobe,

temporo-parietal

junctions, and parietal

lobe became the main

active areas of source

activity during the ictal

period, while precuneus,

cuneus, and thalamus

were relatively inactive.

CAE (Treatment response)

Tenny et al.

(47)#
CAE 16 9F: 7M Pretreatment

ictal

network

8.8 (6.0–

11.8)

8.8 (6.0–

11.8)

∼1 week No

ASM

f/up at

least 2

y

Yes

(EEG−21,

MEG−275)

(4,000Hz)

Connectivity–

Source level

fMRI

informed

MEG

effective

connectivity

(0.1–

70Hz)

Beamformer

(LCMV),

Phase

• Compared to the ETX

treatment responder, CAE

patients with ETX

treatment non-responder

had decreased

connectivity in the

precuneus region with

thalamus at the
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connectivity

study only)

Type of

analysis

with

analyzed

MEG

frequency
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Main result

slope

index in 3

frequency

bandwidths

(3–4,

13–30,

and 30–

55Hz),

delta frequency and

increased in the frontal

cortex at gamma frequency.

Miao et al.

(128)

CAE 25 19F: 6M Pretreatment

ictal

network

(4–11) 7.3

(3–10)

NA No

ASM

f/up

36–

66m

No

(MEG−275)

(300Hz)

Connectivity–

source level

Beamformer

(ASI) in 2

frequency

bandwidth

1–7Hz

and

8–30,

Graphic

theory—

source

neural

analysis

• Ictal post-DMFC

(dorsal medial frontal

cortex, including medial

primary motor cortex

and supplementary

sensorimotor area) source

at 1–7Hz or 8–30Hz

were observed in all

female patients with LTG

non-responder.

• The

cortico-thalamo-cortical

network at 1–7Hz was

changed according

to age.

Zhang et al.

(129)

CAE 24 19F: 5M Pretreatment

ictal

network

10.8

(2–17)

6.29

(4–10)

6.29

(4–10)

No

ASM

f/up

12–

74m

No

(MEG−275)

(6,000Hz)

Connectivity–

source level

Beamformer

(ASI),

Correlation

analysis

at source

level in 6

frequency

• Compared to the ASM

(both LTG and VPA)

responder, at 8–12and

30–80, the source

location of ASM

non-responders was

mainly in the frontal

cortex, mostly the medial

frontal cortex.
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No. of

female
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of male

(M)

Study
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the time
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recording

(range)

(y)

Mean
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onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the
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MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

frequency

bandwith

Main result

bandwidths

(1–4,

4–8,

8–12,

12–30,

30–80,

80–

250Hz)

• Nonresponders showed

strong positive local

frontal connections and

deficient anterior and

posterior connections

at 80–250Hz.

y, year; m, month; F, female; M, male; ASM, antiseizure medication; MEG, magnetoencephalography; SAM, synthetic aperture magnetometry; GSWD, generalized sharp wave discharge; sLORETA, standardized low-resolution brain

electromagnetic topography; ms, milliseconds; ETX, Ethoxusimide; LCMV, Linear constraint minimum variance; ASI, accumulated source imaging; DICS, Dynamic imaging of coherent sources; LTG, lamotrigine; VPA, valproic acid; PCC,

posterior cingulate cortex; pC, precuneus; MFC, medial frontal cortex; CAE, childhood absence epilepsy; NA, no information or not applicable; Y, yes; N, no.
*All patients stopped ASM 2 days before MEG.

All patients didn’t take any seizure medication at the time of MEG recording and follow up after initiation of ASM.

**Same patients were involved in multiple studies.
θSame patients were involved in multiple studies.
#Overlapped patients.
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Connectivity
Resting-State
Resting-state connectivity of CAE is illustrated in Figure 1.
Chavez et al. compared the modular organization of the brain
networks’ resting-state connectivity between CAE patients taking
ASMs and normal healthy subjects (125). Increased connectivity
with clear modular structures, subsets of units within a network,
was noted in the epileptic brain at the extended alpha band
(5–14Hz). Modularity analysis revealed that nodes of epileptic
brain networks were abnormally linked to different functional
modules in distinct networks compared to the normal healthy
subjects. To confirm whether taking ASM might be the
contributing factor for altering the resting-state connectivity, Wu
et al. studied resting-state connectivity in treatment naïve CAE
by constructing effective connectivity (EC) using correlation
and Granger causality analysis, and were the first to reveal
frequency-specific alteration in EC during the resting state
without 3Hz GSWDs (8). Compared with the healthy control
group, strong connectivity in the frontal lobe and weakened
connectivity in the anterior-posterior pathway were noted within
the delta band (1–4Hz). In the low-frequency band (1–8Hz), the
effective network activity involving the precuneus and posterior
cingulate cortex (PCC/pC) was significantly decreased in patients
with CAE (8). The reduced resting functional connectivity
in PCC/pC has also been reported in patients with attention
deficit disorder and memory impairment (130). Thus, these
particular changes may be partially responsible for behavioral
and cognitive co-morbidities seen in many patients with
CAE (131).

Ictal Network Connectivity
Using dynamic imaging of coherent sources (DICS) beamformer,
Gupta et al. studied the transitions between interictal, preictal,
and ictal periods of absence seizures (within 1s of first ictal
GSWD) and confirmed frequency-dependent source localization
(119). The consistent appearance of low frequency 2–4Hz frontal
and occipital cortical source was noted before the first generalized
spikes, and change in the connectivity networks was noted at the
onset of the GSWD, suggesting the increased connectivity from
preictal pathologically predisposed network toward the rapidly
recruiting synchronous ictal network. Using accumulated source
imaging (ASI) beamformer analysis to quantify the network
connectivity changes from a preictal to an ictal state, Wu et
al. demonstrated that the dynamic changes in neural networks
probably resulted from the cortically initialized cortico-thalamic
network and analyzed neuromagnetic data as low-frequency
(1–80Hz) and high frequency (80–200Hz) (120). During the
transition period, the predominant neuromagnetic activities were
observed at low-frequency (1–80Hz) dominantly in the frontal
and parieto-occipito-temporal cortices, whereas those in the
deep brain areas and medial frontal cortex were at a high-
frequency band (80–500Hz) when compared to the interictal
period. The EC was mainly over the cortical regions during the
interictal period, but when the ictal transition occurred, there
was a strong EC between cortex and deep brain areas in both
low- and high-frequency ranges. Interestingly, the direction of
the EC was predominantly from the cortex to the thalamus in

FIGURE 1 | Adapted with permission from Tenney et al. (47). Figure showing

the resting-state connectivity in CAE, without 3Hz GSWDs, compared with the

healthy control. The three major brain regions have been identified as

responsible for the generalization of the childhood absence seizures (thalamus,

frontal cortex, parietal cortex). Given all the data from Wu and colleagues,

compared with the healthy control group, strong connectivity in the frontal lobe

at 1–4Hz (blue dotted) and a weakened connectivity in the anterior-posterior

pathway was noted within the delta band 1–4Hz (blue stripped). In the

low-frequency band at 1–8Hz (blue solid), the effective network activity

involving the precuneus and posterior cingulate cortex (PCC/pC) was

significantly decreased in patients with CAE (8).

the early ictal period. The same research group conveyed that
indeed the rhythmic ictal spiking activity of GSWDs (within
1 s of the ictal spike onset) played a dominant role in the
synchronization of the CAE epileptic network at the spike of
the GSWDs (at 1–4, 4–8, and 8–12Hz) which was significantly
different from that of the slow-wave of the GSWDs (123). Thus,
the dynamically balanced network was distorted primarily by
the increased excitatory connections subtending a spike part of
the GSWDs. Yet, the connections were mostly excitatory at the
high-frequency band (80–250Hz) regardless of spikes or slow
waves. Thus, the authors suggested that abnormal excitatory
activity of the entire brain required a local cluster of neurons
to initiate the spike discharges, which caused the synchronous
hyper-excitability in the epileptic network. Using whole-brain
connectivity analysis and linear constraint minimum variance
(LCMV) beamformer at the broadband frequency (1–40Hz),
Youssofzadeh et al. tried to reveal the focal components of the
absence seizures in effective connectivity (EC) and investigated
the network contrast between ictal and preictal period (121). The
highly connected brain areas or hubs in the thalami, precuneus
and cingulate cortex generally supported a theory of rapidly
engaging and bilaterally distributed networks responsible for
seizure generation (121).

Not only the ictal transition but also the ictal termination
had been studied. Jiang et al. investigated the network changes
within the 2 s of ictal termination in drug-naïve CAE using
beamformer (ASI) and graph theory connectivity analyses
(122). At the low-frequency (1–80Hz) bands, the activities
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were predominantly distributed in the frontal and parieto–
occipito–temporal junction, whereas sources of HFOs (80–
500Hz) were localized to the medial frontal cortex and deep
brain areas (mainly thalamus) during both interictal period and
the termination transition. Furthermore, an enhanced positive
cortico–thalamic EC was observed around the discharge offset
with its direction primarily from various cortical regions to
the thalamus (122). Sun et al. re-investigated ictal termination
(within the 3 s of transition) of absence seizures and found the
transition to be associated with dynamic frequency-dependent
changes in the functional connectivity (124). At 1–4, 4–8, and 8–
12Hz, the magnetic source during seizure termination appeared
to be consistent over the ictal period and was mainly localized
in the frontal cortex and parieto-occipito-temporal junction.
At ictal termination, source activity and peak source strength
were significantly reduced in the frontal lobe at 12–30 and 30–
80Hz. Thus, the finding from the study, as mentioned above,
suggested that the neuromagnetic activity in different frequency
bands might play a role in activating or deactivating different
cortical networks, such as frontal corticothalamic, parietal
corticothalamic, default mode network, etc., and responsible for
the pathophysiological mechanism of CAE.

To confirm the hypotheses of whether the interaction of
co-occurring networks at distinct frequencies interact through
cross-frequency coupling mechanism effects, Tenney et al.
complemented neuromagnetic signal analysis, beamformer
(LCMV), and cross-frequency canonical analyses with fMRI
to increase the spatial resolution and analyze cross-frequency
coupling (CFC) (48). The fMRI informed MEG effective
connectivity (EC) (spatial map of the ictal network was defined
using the fMRI and used as a prior for MEG connectivity)
study showed beta/gamma CFC and within frequency coupling
in frontoparietal and frontofrontal regions during the CAE
seizures. Strong coupling between beta and gamma frequencies
within the left frontal cortex, and between left frontal and
right parietal regions were observed. There was also strong
connectivity between left frontal and right parietal nodes within
the gamma bands. Multilayer versatility analysis showed that a
cluster of network hubs in the frontal regions and thus frontal
cortical regions were critical for absence seizure generation
(48). Thus, all the findings from the ictal connectivity studies
consistently show different cross-frequency coupling or distinct
frequency-dependent activation and deactivation of cortical
network initiation followed by abrupt synchronization between
cortical and subcortical structures in the generation, propagation,
and the termination of the CAE seizure, which further supports
the cortical focus theory.

Difference Between Ictal and Interictal Connectivity
Ictal and interictal GSWD connectivity were studied using ASI
beamformer and correlation analyses to investigate the clinical
ictal symptoms related to the ictal CAE epileptic network and
illustrated in Figure 2. Shi et al. investigated the differences
between the interictal GSWDs (<4 s) and ictal GSWDs (>10 s)
in CAE (126). The low frequency (4–8Hz and 8–12Hz) magnetic
sources were mainly localized within the posterior cingulate
cortex and precuneus (PCC/pC) during the interictal state. The

high frequency (80–250Hz) magnetic components of the ictal
GSWDs were mainly localized in the medial frontal cortex. In
terms of connectivity (using posterior cingulate and precuneus
(PCC/pC) as the seed), there were strong connections in the
anterior-posterior pathway, mainly the frontal cortex during
the ictal GSWDs. In contrast, the connections were mostly
limited to the posterior cortex region at 80–250Hz during
interictal GSWDs. Thus, there were significant disparities in
the source localization between ictal and interictal GSWDs. The
low-frequency activation in the PCC/pC during the interictal
period might be related to maintaining consciousness during the
interictal GSWDs. Shi et al. concluded that weakened network
connections during the interictal GSWD might be in favor of
preventing overexcitability and relates to the termination of
GSWDs (126). Thus, the finding concurs with the conclusion
made by Wu et al. (8). There is reduced resting functional
connectivity in PCC/pC patients with CAE in not only interictal
but also resting state.

To confirm the findings, the same research group (127)
studied the functional connectivity reorganization of the brain
regions in both interictal without GSWD (30 s of the interictal
period without GSWDs at least 60 s from the ictal period) and
ictal GSWD network using two frequency band activities (1–
30Hz and 30–80Hz). Compared to the interictal period, frontal,
temporoparietal, and parietal regions were more active during
seizures. On the contrary, the precuneus, the cuneus, and the
thalamus were relatively silent during the ictal period compared
with the interictal period. The differences in source localization
between ictal and interictal states were reported, regardless of
seizure duration, seizure frequency, or the age of epilepsy onset.
Thus, the available data suggests the role of different frequency-
dependent initial cortical involvement, most importantly in the
frontal region, with predisposing hyper-excitable corticothalamic
synchronization in the generation of the CAE.

Treatment and Prognostic Biomarker
Miao et al. reported that the presence of fast ripples (250–500Hz)
HFO in absence seizures was associated with increased seizure
frequency (116). Similarly, Tang et al. studied whether the HFO
in drug-naïve CAE was related to seizure severity and reported
that the strength of ictal HFO (200–1,000Hz) was significantly
correlated with the severity of the absence seizures measured by
the number of daily seizures, therefore a potential prognostic
biomarker (118). Sun et al. later reported that the ictal peak
source strength in the 1–4Hz range was negatively correlated
with the ictal duration of the seizure, whereas at 30–80Hz, there
was a positive correlation with the course of epilepsy (124). Yet,
both studies were not able to draw major conclusions due to the
limitation of a cross-sectional study (116, 118).

Thus, a couple of studies were conducted in which patients
with drug-naive CAE underwent a MEG recording at the time
of diagnosis (or within 1 week of diagnosis) and followed up
for at least 1 year. The difference in the pretreatment ictal
connectivity in patients with CAE was studied in response to
ASMs treatment (responder vs. non-responder) and illustrated
in Figure 3. Tenney et al. used fMRI-informed MEG effective
connectivity to study prognostic biomarkers prospectively in
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FIGURE 2 | Adapted with permission from Tenney et al. (47). Figure comparing the interictal (GSWDs < 4 s) and ictal connectivity (GSWDs > 10 s) in CAE. The three

major brain regions have been identified as responsible for the generalization of the childhood absence seizures (thalamus, frontal cortex, posterior cortex). Given all

the data from Shi et al. (126) the low frequency (4–8Hz and 8–12Hz) magnetic sources were mainly localized within the posterior cingulate cortex and precuneus

(PCC/pC) during the interictal state (blue arrow). The high frequency (80–250Hz) magnetic components of the ictal GSWDs were mainly localized in the medial frontal

cortex (blue arrow). In terms of connectivity (using posterior cingulate and precuneus (PCC/pC) as the seed), there were strong connections in the anterior-posterior

pathway, mainly the frontal cortex during the ictal GSWDs (blue stripped). In contrast, the connections were mostly limited to the posterior cortex region at 80–250Hz

during interictal GSWDs (blue stripped). Thus, there were significant disparities in the source localization between ictal and interictal GSWDs.

FIGURE 3 | Adapted with permission from Tenney et al. (47). Figure showing pretreatment ictal connectivity analysis of the antiepileptic (ASM) (ethosuximide,

lamotrigine, and valproic acid) responder and non-responder in CAE. The three major brain regions have been identified as responsible for the generalization of the

childhood absence seizures (thalamus, frontal cortex, parietal cortex). Given all the findings collected from Tenny et al. (47), Miao et al. (128), and Zhang et al. (129),

parietal cortico-thalamic network at the low frequencies (blue solid) and a co-occurring frontal corticothalamic network at higher frequency (blue dotted) and

anterior-posterior/frontoparietal network at higher frequency (blue stripped). Compared to the responder, ASM non–responders have ictal neuromagnetic sources at

1–80Hz localized to the dorsomedial frontal cortex (DMFC) (blue arrow). In addition, the ASM non–responders have decreased parietal cortico-thalamic at 3–4Hz and

frontoparietal network connectivity at 80–250Hz with increased frontal local connectivity at 13–250Hz.

drug-naive CAE patients with a follow-up for at least 2 years after
starting the ethosuximide (ETX) (47). Pretreatment connectivity
demonstrated the strongest connections in the thalamus and

posterior head regions (parietal, posterior cingulate, angular
gyrus, precuneus, and occipital) at low frequency (delta 3–4Hz)
and the co-occurring frontal cortical thalamic network at the
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high frequencies (beta/gamma 13–55Hz). ETX non-responders’
pretreatment connectivity decreased in the precuneus region and
increased in the frontal cortex compared to ETX responders.
This increased frontal cortical connectivity may be a potential
prognostic biomarker of drug-resistance. Miao et al. also studied
the responders and non–responders to the two established ASMs,
lamotrigine (LTG) and valproic acid (VPA), using a beamformer
(ASI) (128). In six LTG-non-responders CAE patients, ictal
source locations were noted in the posterior-dorsal medial frontal
cortex (post-DMFC including medial primary motor cortex and
supplementary sensorimotor area) at 1–7Hz or 8–30Hz but
not in 9 LTG responders, regardless of the age of onset and
the seizure frequency. In addition, the authors suggested that
ictal post-DMFC source localization could be suggestive of a
biomarker for predicting LTG non–responsiveness. Zhang et al.
replicated the same findings in CAE patients using the same
beamformer technique (ASI) (129). The source localization of
the ASMs non-responders was mainly in the frontal cortex
at 8–12 and 30–80Hz, especially the medial frontal cortex at
alpha frequency. The non-responders showed strong positive
local frontal connections and deficient anterior and posterior
connections at 80–250Hz. Thus, while it is likely that no one
single mechanism can explain the pharmacologic responsiveness,
ASM non-responders had more source localized within the
dorsomedial frontal regions with decreased anterior-posterior
network connectivity. At this time, the available preliminary data
shows promising results in prognosticating response to ASM, but
further studies with a larger sample size as well as comparing
types of ASM non-responders are warranted to study the
causality association.

Thus far, neuromagnetic source localization identifies three
major brain areas which are thought to be responsible for
the generation, propagation, and termination of CAE GSWDs:
frontal cortex, parietal cortex, and thalamus with earlier cortical
sources (more than 500 ms), supporting the concept of cortical
focus theory. In addition, the current MEG literature suggests
that the pathophysiology of GSWD in the absence seizure
is a reflection of the co-occurring (excitation or inhibition)
network(s) pathology rather than dysfunction in one particular
brain area. For instance, frontal hyperexcitability and parietal
deactivation involving intact but altered EC networks, such
as corticothalamic, corticocortical and default mode networks,
triggering the rapidly generalized epileptic discharges.

JUVENILE ABSENCE EPILEPSY (JAE)

Although JAE and CAE share many similar clinical
characteristics, CAE absence seizure has more pronounced
impairment of consciousness, and tonic-clonic seizures are less
common than JAE. In terms of EEG, GSWDs of JAE are usually
a higher frequency at 4–5Hz. In terms of prognosis, JAE has a
slightly worse prognosis when compared to CAE (132). Studies
published on JAE are illustrated in Table 2.

Amor et al. explored the spatio-temporal dynamics of
interactions within and between widely distributed cortical
sites using MEG in patients with JAE (133). At the ictal

onset, localized phase synchronization in multiple frontal and
precentral areas was recorded, and the activity preceded the first
ictal EEG GSWDs by 1.5 s. The analyses revealed a reproducible
sequence of changes in the cortical network: (1) long-range
desynchronization, (2) increased local synchronization, and (3)
increased long-range synchronization. However, both local and
long-range synchronization displayed different spatio-temporal
profiles, but the cortical projection within the initiation time
window (500ms before the first ictal GSWDs) overlapped
multifocal fronto-central regions, such as left frontomedial,
frontopolar, right orbitofrontal, and right latero-central regions.
Sakurai et al. studied the source analysis of the GSWDs
in 5 patients with JAE using a dynamic statistic parametric
mapping (dSPM) approach (134). The researchers reported
that the initial activation of the GSWDs appeared in the
focal cortical region with strong activation over the medial
prefrontal activation followed by posterior cingulate and
precuneus in 3 out of 5 patients simultaneously right after
the medial prefrontal activation (134). The area mentioned
above involved the default mode network at the onset of the
GSWD, and thus it wasn’t random diffuse cortical involvement
but rather a selective cortical network, particularly the default
mode network.

COMBINED ABSENCE EPILEPSY
(CHILDHOOD AND JUVENILE ABSENCE
EPILEPSY)

Studies published on combined absence epilepsy (CAE and JAE)
are illustrated in Table 2. Rozendaal et al. attempted to compare
the interictal and ictal periods in absence epilepsy (6CAE and
1JAE) using the SECD model, and source localizations were
most often frontal, central, and parietal regions in either left
or right hemisphere (135). The spatiotemporal assessment of
the interictal epileptiform discharges (IEDs) indicated a stable
localization of the averaged discharges, indicating a single
underlying cortical source. Using LORETA, Gadad et al. studied
the source analysis of the GSWDs at the onset, during, and offset
of the GSWDs based on the duration of GSWDs and divided
into three groups: GSWDs lasting 1 s, more than 1 s but less
than 9.9 s, and equal to more than 10 s (136). The authors
reported that the most common involved regions were caudate,
cingulate, lentiform nucleus, and thalamus at the onset of all
average discharges. Thus this observation substantiated the
previously documented thalamo-cortico-stratum involvement
in the absence of epilepsy (22, 23). During the propagation,
the most frequent localization of sources were at limbic and
frontal lobes, and these sources propagated to fronto-limbic
structures at the ictal offset, irrespective of the duration of
GSWD and subtype of absence epilepsy. The finding indicated
the restricted/sustained network circuitry in fronto-limbic
network involvement in origination and propagation of GSWDs
until the disruption and inhibition. No significant difference
in the source localization or network involvement was noted
between CAE and JAE.
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TABLE 2 | Showing all the published study characteristics and main outcomes on juvenile absence epilepsy and combined absence epilepsy.

Article name Type of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

state of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

Analyzed

MEG

Frequency

bandwith

Main result

JAE

Amor et al.

(133)

JAE 5 4F: 1M Ictal 23.4

(18–31)

NA NA 2 Yes

(EEG−64,

MEG−151)

(1,250Hz)

Connectivity–

source level

Analytical

wavelets

transform

(0.2–

25Hz),

phase-

locking

• At the ictal onset, there

was reproducible

sequence of changes in

the cortical network (i)

long-range

desynchronization, (ii)

increased local

synchronization, and

then followed by (iii)

increased long-

range synchronization.

Sakurai et al.

(134)

JAE 5 2F: 3M Ictal/GSWDs 27.2

(21.38)

NA 16

(12–26)

4 Yes

(EEG−21,

MEG−204)

(600Hz)

Dynamic

statistical

parameter

mapping

(dSPM)

(0.5–

400Hz)

• Initial activation of the

spike of GSWDs was

noted over focal cortical

regions, the medial

prefrontal activation

followed by activation of

posterior cingulate and

precuneus, resulting in

the involvement of

disruption of default

mode network.
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TABLE 2 | Continued

Article name Type of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

state of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

Analyzed

MEG

Frequency

bandwith

Main result

Combined CAE and JAE

Rozendaal et

al. (135)

1JAE,6CAE 7 4F:3M Interictal/

GSWDs

9.4

(7–14)

6.4

(5–12)

NA 7 No

(MEG– either151

or 275)

(1,200Hz)

Equivalent

dipole

model

(ECDs)(3–

70Hz)

• ECDs were localized

most often on frontal,

central, or parietal origin

in either right or left

hemisphere (with stable

locations on averages of

these discharges)

Gadad et al.

(136)

8JAE,

12CAE

20 10F:10M Ictal/

GSWDs

11.15

(7–30)

8.1

(2-19).

32.4

(18–72)

5 Yes

(EEG −23,

MEG−306)

(2,000Hz)

LORETA

(1–70Hz)

• The most common

involved regions were

caudate, cingulate,

lentiform nucleus, and

thalamus at the onset of

all groups of GSWDs (1 s,

>1s but <9 s or >9 s).

• During the propagation,

most frequent locations

of sources were at limbic

and frontal lobes with

either lateralized and

localized, and then

source propagated to

front-limbic structures at

the offset, irrespective of

the duration of GSWD

and subtype of

absence epilepsy.

y, year; m, month; F, female; M, male; ASM, antiseizure medication; MEG, magnetoencephalography; SAM, synthetic aperture magnetometry; GSWD, generalized sharp wave discharge; LORETA, low-resolution brain electromagnetic

topography; ms, milliseconds; ETX, Ethoxusimide; LCMV, Linear constraint minimum variance; ASI, accumulated source imaging; DICS, Dynamic imaging of coherent sources; LTG, lamotrigine; VPA, valproic acid; PCC, posterior

cingulate cortex; pC, precuneus; MFC, medial frontal cortex. CAE, childhood absence epilepsy; JAE, juvenile absence epilepsy; JME, juvenile myoclonus epilepsy; TCS, tonic-clonic seizure; IGE, idiopathic generalized epilepsy; GGE,

genetic confirmed generalized epilepsy; NA, no information or not applicable; Y, yes; N, no.
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Aung et al. Contributions of MEG in Generalized Epilepsy

JUVENILE MYOCLONUS EPILEPSY (JME)

Source Localization of GSWDs
Studies published on JME are illustrated in Table 3. Kotini
et al. reported 2 adults with JME using the multiple signal
characterization (MUSIC) algorithm and showed that the dipolar
sources of the peak of GSWDs were localized at the cerebellar
vermis with an extension up to the occipital region (137). Instead
of analyzing at peak of the spike, Gadad et al. studied the
source analysis of average GSWDs in three different spike phases:
onset (upward phase of the spike from the baseline), peak, and
offset (trailing edge of the spike) using LORETA in 20 patients
with JME. At the onset of the GSWDs, the majority of the
neuromagnetic sources were localized to sublobar regions (31%
of localized discharges) defined as insula, caudate, claustrum,
lentiform nucleus, and thalamus, followed by limbic region
(22%), frontal (22%) and temporal lobe (11%). At the peak of the
discharges, the sources were localized to the frontal lobe (45%),
followed by sublobar regions (23%) (mainly lentiform nucleus).
At the offset of the discharges, the sources were localized to
the sublobar region (28%) (mainly caudate), followed by limbic
(24%) and frontal regions(18%) (138). Therefore, the available
evidence suggests an overall synchronous on and off interaction
of cortico-subcortical structures in generating and propagating
the epileptiform discharges in JME.

Network Connectivity
Resting-State
Three publications from the same research group reported and
studied the 26 JME patients taking ASM using three different
neuromagnetic source localization and connectivity techniques
(142–144). Routley et al. studied resting-state functional
connectivity in 26 patients with JME and reported that the altered
resting-state connectivity could be a neuropathophysiological
hallmark or potential diagnostic biomarker for JME. Compared
to the healthy control group, there was overall increased
connectivity in the posterior head regions in theta and alpha
bands, and decreased connectivity in the pre and post-central
brain region in beta bands. The reported increased connectivity
in the posterior theta-frequency band might be associated with
long-range connections affecting attention and arousal. The
decreased beta band sensorimotor connectivity might be related
to the resting state sensorimotor network and seizure-prone
states in JME (142). Using a pairwise maximum entropy model,
Krzeminski et al. studied the divergent oscillatory power in
different networks: frontoparietal network (FPN) (ROIs: middle
frontal gyrus, pars triangularis, inferior parietal gyrus, superior
parietal gyrus, and angular gyrus), default mode network (ROIs:
orbitofrontal cortex, precuneus, posterior cingulate, anterior
cingulate and angular gyrus), and sensorimotor network (ROIs:
supplementary motor area, precentral gyrus, and postcentral
gyrus). Compared with the healthy control group, JME patients
had fewer local energyminima and had elevated energy values for
the FPN within theta, beta, and gamma bands during the resting
state. No significant changes were noted between the default
mode and sensorimotor networks using this method (143).

Similar to the findings seen in CAE, these results highlighted the
involvement of FPN in the pathophysiology of the JME.

Lopes et al. studied the same cohort of JME patients
to investigate computational biomarkers using brain network
ictogenicity (BNI), a computational modeling method, to
generate the synthetic activity fluctuating between resting and
seizure states (144). The higher values of the BNI represent
a higher inherent propensity of the brain to generate seizure
activity. Lopes et al. reported that patients with the JME had
higher BNI values than healthy controls, and sensitivity was
reported to be 0.77, and specificity was 0.58, with an area under
the curve was 0.72 (144). But the model couldn’t be generalized
beyond JME as there was no study comparing other types
of epilepsy.

Task-Specific Cortical Modulation
Hamandi et al. studied the resting state response in task-
specific cortical modulation in occipital and sensorimotor
cortices in JME compared to healthy control individuals (139).
The authors reported that patients with JME had significantly
reduced pre-movement beta event-related desynchronization
in ipsi- and contralateral sensorimotor areas compared to
controls, before and during the transient movement of motor
tasks. There was no difference between epileptic and health
patients in movement-related gamma synchronization and post-
movement beta rebound. In addition to the physical motor
task, De León et al. reported a case of mental calculation
induced seizure in a patient with JME where the source
was localized to the right premotor frontal cortex using the
weighted minimum norm estimates (140). Similar to the result
presented by Routley et al. and Krzeminski et al. with decreased
sensorimotor connectivity, the current two task-specific JME
patients suggested an abnormality in motor planning in JME
likely related to the altered resting-state sensorimotor network
and seizure-prone states in the JME (142, 143).

COMBINED GENETIC/IDIOPATHIC
GENERALIZED EPILEPSY

Stefan et al. studied a total of 7 patients with various
idiopathic generalized or genetic confirmed generalized epilepsy
(IGE/GGE) using beamformer. After analyzing spike-wave bursts
in all patients and single spikes in 6 patients, source analysis
showed most frequently involved regions were the left or right
frontal (mainly mesial and bilateral frontal areas), peri-insular,
and subcortical/thalamic areas. In addition, all patients had
unilateral frontal accentuation of the activity. In three patients,
two with JME and one with myoclonic absence epilepsy, sources
were mainly present in the central and premotor regions (141).
Thus, the authors concluded that in contrast to pure focal
epilepsy, the distribution of the GSWD is not restricted to one
hemisphere but a predominant region with additional oscillating
connectivity within the thalamocortical network system.

Elshahabi et al. studied the resting-state connectivity of 13
patients with various types of IGE/GGE using beamformer
and graph theoretical network analysis. Compared to normal
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TABLE 3 | Showing all the published study characteristics and main outcomes on juvenile myoclonic epilepsy and combined genetic epilepsy.

Article name Type

of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

Frequency

bandwith

Main result

JME (Interictal/Ictal GSWDs)

Kotini et al.

(137)

JME 2 1F: 1M GSWDs 25.5

(22/29)

17.5

(17/18)

96

(60/132)

2 No

(EEG−18,

MEG−122) (256

Hz )

Multiple

signal

characterization

(MUSIC)

algorithms

(0.3–

40Hz)

• Dipolar sources of

GSWDs were localized at

the cerebellar vermis with

extension upto the

occipital region

Gadad et al.

(138)

JME 20 10F:

10M

GSWDs 23.5 (NA) 16 (NA) 91.2 7 Yes

(EEG−23,

MEG −306)

(2,000Hz)

LORETA

(1–70Hz)

• At the onset of the

GSWDs discharges, the

sources were localized to

sublobar regions, defined

as insula, caudate,

claustrum, lentiform

nucleus, and thalamus,

followed by limbic region,

frontal and temporal lobe.

• At the peak of the

discharges, the sources

were localized to the

frontal lobe, followed by

the sublobar regions

(mainly lentiform nucleus).
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TABLE 3 | Continued

Article name Type

of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

Frequency

bandwith

Main result

• At the offset of the

discharges, the sources

were localized to the

sublobar region(mainly

caudate), followed by

limbic and frontal regions.

JME (Task-Specific)

Hamand et al.

(139)

JME 12 9F:3M Task-

Specific

Resting-

state

24.1

(18–37)

13.8

(8–17)

NA 12 No

(MEG−275)

(1,200Hz)

Beamformer

(SAM)

(15–

30hz,

40–

60Hz,

60–

90Hz)

• Compared to healthy

control, patients with JME

had significantly reduced

pre-movement beta

event-related

desynchronization in the

motor task.

De León et al.

(140)

JME 1 1M Task

Specific

Reflex

Seizure

29 8 252 1 Yes

(EEG−64,

MEG−305)

(1,000Hz)

Forward

and

inverse

modeling,

weighted

minimum-

norm

estimation

(wMNE) (0.1–

330Hz)

• Source localization of ictal

GSWDs was localized to

the premotor

frontal cortex.

(Continued)
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TABLE 3 | Continued

Article name Type

of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

Frequency

bandwith

Main result

GGE (Interictal GSWDs)

Stefan et al.

(141)

IGE (2

JME,

4 AE,

and

6 AE-

TCS)

7 4F,3M GSWDs

(Spike)

27.86

(17–42)

NA NA 6 Combined (5

patients has

simultaneous

MEG-EEG

recording, 2

patients has only

MEG recording)

(EEG−32,

MEG-two sensor

system with 37

first

order gradiometers)

(N/A on

sampling rate)

Equivalent

dipole

model

(Single

dipole

analysis/Single

moving

dipole),

Beamformer

(normalized

scanning

analysis)

(N/A on

frequency

band-

width)

• In all patients, source

analysis showed most

often involvement of

frontal, peri-insular, and

subcortical/thalamic areas

in addition to the unilateral

frontal accentuation.

• In JME and Myoclonic

absence epilepsy, source

analysis showed central

and premotor regions

whereas prefrontal

accentuation in

absence epilepsy.

JME (Resting-state connectivity)

Routley et al.

(142)*

JME 26 19F: 7M Resting-

state

28.5

(18–48)

14

(17–24)

181

(33-488)

26 No

(MEG−275)

(600Hz)

Connectivity—

source

level

Beamformer

(LCMV)(1–

150Hz),

Graphic

theory,

source-

level

analysis

with

correlation

analysis

with

different

frequency

• Compared to healthy

control, patients with JME

had increased

connectivity in the theta

band in the posterior

head region and

decreased connectivity in

the beta band in the

sensorimotor cortex

(Continued)
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TABLE 3 | Continued

Article name Type

of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for

the

Simultaneous

MEG/EEG

recording

No. of EEG,

MEG sensor

with sampling

rate of the

MEG recording

Source or

sensory level

(for the

connectivity

study only)

Type of

analysis

with

analyzed

MEG

Frequency

bandwith

Main result

bandwidth

(1–4, 4–8,

8–13,

13–30,

40–60Hz)

Krzemiński et

al. (143)*

JME 26 19F: 7M Resting-

state

28.5

(18–48)

14 (7–24) 181

(33-488)

26 No

(MEG−275)

(600Hz)

Connectivity—

source

level

Graphic

theory,

source-

level

analysis

with

pairwise

maximum

entropy

model

(pMEM)

with

different

frequency

bandwidth

(4–8,

8–12,

13–30,

350–60Hz)

• Compared to healthy

control, JME patients

showed fewer local

energy minima and

elevated energy values for

frontoparietal networks

within theta, beta, and

gamma bands.

Lopes et al.

(144)*

JME 26 19F: 7M Resting-

state

28.5

(18–48)

14 (7–24) 181(33-

488)

26 No

(MEG−275)

(600Hz)

Beamformer

(LCMV),

Canonical

mathematical

model of

ictogenicity

at alpha

band

• Compared to healthy

control, patients with JME

had a higher propensity to

generate seizures. The

BNI classification

accuracy was 73%

(Continued)

F
ro
n
tie
rs

in
N
e
u
ro
lo
g
y
|
w
w
w
.fro

n
tie
rsin

.o
rg

3
1

A
p
ril2

0
2
2
|
V
o
lu
m
e
1
3
|A

rtic
le
8
3
1
5
4
6

158

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


A
u
n
g
e
t
a
l.

C
o
n
trib

u
tio

n
s
o
f
M
E
G

in
G
e
n
e
ra
lize

d
E
p
ile
p
sy

TABLE 3 | Continued

Article name Type

of

genetic

epilepsy

No. of

patients

included

in

study

No. of

female

(F): No.

of male

(M)

Study

State of

genetic

epilepsy

Mean

age at

the time

of MEG

recording

(range)

(y)

Mean

age of

epilepsy

onset

(range)

(y)

Duration

of

epilepsy

(range)

(m)

No. of

pt. on

ASM

Yes and No for
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(Brain
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BNI)

GGE (Resting State Connectivity)

Elshahabi et

al. (145)

IGE

(5IGE-
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4CAE,2JAE,

1

JME,

1 UN )

13 9F:4M Resting-

state

38.6 ±

15.8

15.5

(4–48)

NA 12 No

(MEG−275)

(3,906.2Hz)

Connectivity

–source level

Beamformer

(DICS),

Graphic

theory,

source

analysis at

different

frequency

bandwidths

(0–4, 4–8,

8–12,

12–20,

21–29,

35–45Hz)

• Compared to the healthy

control, patients with IGE

had a widespread

increase in connectivity,

mainly in the motor

network, mesio-frontal

and temporal cortex.

Stier et al.

(146)

GGE

(5CAE,6JAE,

5JME,

4 TCS

and

5GGE)

25 16F: 9M Resting

state

25

(22–37)

15

(10–17)

204

(96-288)

NA No

(MEG−275)

(585.9Hz)

Connectivity—

sensor

level

Beamformer

(DICS),

Graphic

theory, the

imaginary

part of

coherency,

source

analysis

at

different

• Compared to the healthy

control, patients with

generalized epilepsy

showed widespread

increased functional

connection at the theta

and gamma frequency

band and power in the

delta and gamma

frequency band.
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(0–4,
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32–

48Hz)

• Compared to normal

control, siblings without

epilepsy also had

significantly increased

network connectivity,

predominantly in beta

frequencies, representing

an endophenotype

of GGE

Difference between healthy control, generalized epilepsy, and focal frontal epilepsy

Niso et al.

(147)

JME 15 9F: 6M Resting

state

27

(20–46)

NA NA 15 No

(MEG−306)

(1,000Hz)

Connectivity—

sensor

level

Graphic

theory,

phase

lag value

at sensor

level

analysis

(0.5–

40Hz)

with

multi-

frequency

bandwidth

(0.1–4,

4–8,

8–12,12–

20,

20–28,
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• Generalized epilepsy

showed higher spectral

power for all the

frequencies over the

widespread sensors

except the alpha band,

whereas frontal lobe

epilepsy showed higher

relative power in the beta

band bilaterally over the

frontocentral sensors.

• In generalized epilepsy,

network connectivity

showed greater efficiency

and lower eccentricity

than the control subjects

at high-frequency bands.
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Main result

• Frontal focal epilepsy

patients showed reduced

eccentricity for theta band

over the frontotemporal

and central sensors.

Li Hegner et

al. (148)

IGE (8

IGE-

TCS,

2

CAE,

3

JME,

3 AE-

TCS)

17 12F, 5M Resting

state

33.2

(18–63)

15.3

(6–47)

NA 15 No

(MEG−275)

(586Hz)

Connectivity—

source

level

Beamformer

(DICS),

Graphic

theory,

the

imaginary

part of

coherency,

source

analysis

at

different

frequency

bandwidths

(0–4,

4–8,

8–12,

12–20,

21–29,

30–

46Hz)

• Compared to healthy

control, both focal

frontal and generalized

epilepsy patients showed

widespread increased

functional connectivity.

• Compared to focal

epilepsy, generalized

epilepsy patients had

increased network

connectivity in bilateral

mesio-frontal and

motor regions.

y, year; m, month; F, female; M, male; ASM, antiseizure medication; MEG, magnetoencephalography; SAM, synthetic aperture magnetometry; GSWD, generalized sharp wave discharge; LORETA, standardized low-resolution brain

electromagnetic topography; ms, milliseconds; LCMV, Linear constraint minimum variance; ASI, accumulated source imaging; DICS, Dynamic imaging of coherent sources; CAE, childhood absence epilepsy; JAE, juvenile absence

epilepsy; JME, juvenile myoclonus epilepsy; TCS, tonic-clonic seizure; IGE, idiopathic generalized epilepsy; GGE, genetic confirmed generalized epilepsy; NA, no information or not applicable; Y, yes; N, no.
*Same patients.
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controls, the patients with IGE/GGE had more pronounced
motor network connectivity, mainly superior frontal gyrus,
precentral, postcentral gyri, temporal cortex, and cerebellum. The
authors also found significantly increased regional connectivity
in the temporal lobe (superior and inferior temporal gyri)
and insula (145). However, no conclusion could be made
given that the study was performed on various IGE/GGE
types and the limitation of the sub-cortical localization using a
particular technique.

Stier et al. studied a total of 25 patients with GGE. Compared
to normal healthy individuals, there was an increased functional
connectivity at the multi-frequencies level in patients with GGE.
Compared to normal controls, siblings without epilepsy also
had significantly increased network connectivity, predominantly
in beta frequencies. Compared to the healthy siblings of GGE,
the increased beta connectivity patterns in GGE patients were
less concordant, followed by functional connectivity in theta
and delta frequency bands. Thus, the authors proposed that
increased interictalMEG power and connectivity in frontocentral
and temporo-parietal cortical regions were potential hallmarks of
GGE (146). In addition, changes in these network characteristics
were likely driven by the genetic factor and not by the disease
process or medication effect (146).

DIFFERENCE IN RESTING-STATE
FUNCTIONAL CONNNECTIVITY BETWEEN
FOCAL (FRONTAL) AND GENERALIZED
EPILEPSY

Using the fMRI connectivity analysis, it has been reported that
patient with frontal lobe epilepsy has variable connectivity,
either reduced or increased, various resting-state networks when
compared to healthy pediatric and adult population (149–152).
Still, there is limited literature investigating the resting-state
fMRI functional connectivity comparing frontal lobe epilepsy
with generalized epilepsy. A few publications on MEG resting-
state functional connectivity in temporal lobe epilepsy are
available, but data on frontal lobe epilepsy remains scarce.
Herein, we would like to describe available neuromagnetic data
in comparing the resting state connectivity between focal and
generalized epilepsies.

Difference Between JME and Frontal Lobe
Epilepsy
Niso et al. studied the resting-state functional connectivity of
patients with frontal lobe epilepsy (FLE), generalized epilepsy
(JME), and healthy individuals. Using power spectral analysis
and graph theory assessed by phase synchronization measured
with functional connectivity, the distribution of power and
topographic changes (activation or deactivations) differed among
all three groups. An increased total power indicated local
synchronization. Those with JME had a higher total power for all
frequencies except alpha band over a widespread set of sensors,
whereas the FLE group showed higher relative power in the beta
band bilaterally in the frontocentral sensors; i.e., regional specific
around the epileptic focus. The authors found that functional

networks from generalized epilepsy had greater efficiency and
lower eccentricity than control subjects for higher frequency
bands without a clear topography. Functional networks in FLE
exhibited only reduced eccentricity over the frontotemporal and
central sensors relative to the networks from controls (147).
Thus, JME and FE groups represent a characteristic pattern of
changes as compared to control.

Difference Between IGE/GGE and Frontal
Lobe Epilepsy
Li Hegner et al. studied functional MEG connectivity using graph
theory and coherency between focal and generalized epilepsy
during resting state (with the absence of spikes or GSWDs)
and found significant differences in network connectivity.
Increased network connectivity was noted in bilateral mesio-
frontal and motor regions in patients with IGE/GGE (148).
Thus, the difference in the topography of resting-state functional
connectivity in the mesio-frontal region in IGE/GGE may be a
specific diagnostic biomarker.

CONCLUSION AND FUTURE
PERSPECTIVES

In summary, with the advanced signal processing techniques
combined with excellent temporal resolution properties of
MEG, the cerebral neuromagnetic sources of GSWDs can be
recorded and analyzed with millisecond resolution (153). The
recording and post-processing associated with earlier MEG
recording on GSWDs, especially using the SECD model, has
several limitations, including deep brain structures, signal
analysis of high-frequency oscillation, frequency-dependent
network changes, etc. Later recordings using various advanced
methodologies (various types of the beamformer, LORETA,
pMEM, mathematical brain modeling, frequency coupling,
etc.) advance our understanding not only of the potential
pathophysiology of generalized epilepsy but also shed light on
potential diagnostic, therapeutic and prognostic biomarkers of
generalized epilepsy.

This review clearly illustrates the transition from focal
neuromagnetic source analysis to network-based analysis using
different frequency bandwidths involved in the generation,
propagation and termination of the generalized spikes in various
types of GGE. Earlier neuromagnetic analysis data focused
on one particular brain structure, but recent literature points
out that both cortical and subcortical structures are equally
important in addition to the intact connectivity between various
corticocortical and cortico-subcortical networks, with the leading
initial epileptogenic hubs in the cortical region, mainly frontal
lobe. Overall the current neuromagnetic data in GGE shows the
important role of earlier cortical involvement, mainly frontal and
parietal regions, before triggering the rapid synchronization of
the subcortical and cortical networks, which goes along with
the concept of cortical focus theory (22, 23, 25). The hypothesis
mentioned above is ascertained by the current literature listed
above in Tables 1–3.
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Moreover, all published data suggests that generalized epilepsy
has increased focal epileptogenic hubs, i.e., uneven cortical
excitability in mainly frontal or central or parietal regions
depending on the types of the GGE, with rapid recruitment
via cortico-thalamic oscillation to various topographic locations,
rather than the diffuse involvement of the whole brain. With
the availability of directed connectivity analysis, the presence of
focal hyper-connectivity in the setting of the global network has
been demonstrated. As described above, one of the particular
challenges in the clinical setting is accurately categorizing
epileptic patients into either focal epilepsy or generalized
epilepsy as both have different treatment options in terms
of ASM and non–pharmacological treatment (131). In some
particular cases, it is very challenging to give an accurate
diagnosis. In addition, one doesn’t want to miss the epilepsy
surgery opportunity window in focal epileptic patients with
rich connectivity, especially in the pediatric population, as the
patient is misclassified as generalized epilepsy. In contrast, one
doesn’t want to undergo expensive pre-surgical epilepsy workups
in patients with generalized epilepsy. At present, there is no
scientifically proven diagnostic biomarker available for these
types of challenging cases, but there are some promising findings
by analyzing the neuromagnetic data. As illustrated above, during
the resting state, connectivity patterns are different between
healthy control, focal epilepsy, and GGE. In GGE, there is a
presence of disorganization in the default mode network (GGE,
JME, and AE), frontoparietal network (AE), and sensorimotor
network (JME) during the resting state. In contrast, in focal
frontal lobe epilepsy, there is only focal hyperconnectivity in
the frontal lobe. Thus, the difference between resting MEG
connectivity analyses can be a promising diagnostic biomarker
to differentiate between focal and generalized epilepsy. One of
the well known challenges of network analysis is that there is no
one method superior to the others, and thus lack of standardized
methodologies will be perplexing for future research. More
investigations with increased subjects are also warranted to
compare GE resting connectivity with other types of focal
epilepsy with high connectivity, such as posterior quadrant
epilepsy, for possible diagnostic and prognostic biomarkers
in epilepsy.

In the default mode network, basic network node regions
are responsible for basic incoming and outgoing information,
remains activated when an individual is not engaged in external
tasks, whereas the default state is suspended if the individual
concentrates on a task (154). Compared with controls, effective
connectivity at the posterior cingulate and parietal cortex, which
are part of the default mode network, is decreased in patients
with CAE, suggesting PC/PCCmight be crucial for consciousness
(8). In addition, the reduced resting functional connectivity
in PCC/pC is also reported in patients with attention-deficit
disorder (130) and memory impairment. Thus, given the above
finding, patients with CAE have a higher chance of attention
deficit disorder (131). In JME, in addition to other networks,
there is an altered resting-state sensorimotor network, and hence
it may be a reason for the seizure-prone (motor) states in the JME.
Thus among different GGE subtypes, there are different networks
involved. In epilepsy, quality of life is dependent not only on

seizure frequency but also on the presence of co-morbidities,
such as learning disability, anxiety, and ADHD (131). Without
a doubt, understanding the basic pathophysiology of GGE will
enlighten the clinicians with more therapeutic targets to improve
the quality of life in patients with GGE.

There are promising preliminary neuromagnetic data on
the prognostic biomarkers for drug resistance in patients with
the CAE. CAE patients with the presence of the ictal HFOs
(250–1,000Hz), localized to the medial prefrontal cortex, are
associated with increased seizure frequency (115, 116, 118).
Both ETX and LTG non-responders have increased pretreatment
ictal local frontal connectivity and decreased anteroposterior
/frontoparietal connectivity compared to non-responders (47,
128, 129). Thus, by exploring the pretreatment ictal HFO and
resting-state connectivity of CAE patients, one may be able to
predict whether the patient will be an ASM responder or non-
responder. However, at this time, no causal assumption can be
made between the ASM non-responsiveness and the ictal frontal
and decreased anteroposterior connectivity due to the limited
data. Further studies are needed to confirm the hypothesis using
a large cohort prospective study with a longer follow-up duration.

More and more data suggest that the alterations in the
connectivity of various networks in patients with GGE are
more complex and maybe even more dynamic with various
multi-directionality. As mentioned above, Tenney et al. (47,
48) combined MEG with fMRI, which improved the source
localization over the sub-regions of the deep brain area, such as
different parts of the basal ganglia, and subregions of thalamus
could be explored as the different parts of the basal ganglia
and thalamus has different connectivity and functionality. In
addition, the same research group already presented cross-
frequency coupling showing how dynamic changes occurred
in the various network in the CAE at the preictal stage (47,
48). Although fMRI has better spatial resolution than MEG,
it is still insufficient to accurately localize the neuromagnetic
source to subnuclei of the thalamus (46). In patients with
drug-resistant GGE, one currently available alternative treatment
option after failing the multiple ASMs is neuromodulation.
The treatment outcome of neurostimulators, mainly DBS, is
highly dependent upon the locations of the electrodes placement,
stimulation parameters, subtypes of generalized epilepsy, or even
individual cortical-subcortical connectivity profile (20, 21, 155).
Thus, further studies using multimodality analysis combining
various advanced postprocessing neuromagnetic analysis and
neuroimaging may enlighten the underlying pathophysiology of
underlying network alteration in various ictal or interictal stages
of the patients with various types of IGG in order to improve the
treatment options in generalized epilepsy,

Since absence epilepsy is the most commonGGE, has frequent
seizures, and reduced movement artifact, most of the current
literature on GSWDs has experimented on patients with AE,
mainly CAE. It is unclear whether research findings for CAE
can be generalized to all the various subtypes of generalized
epilepsy. Given all the literature mentioned above, different
subtypes of generalized epilepsy may have shared mechanisms
or connectivity pathways, but this review clearly illustrates
varied topographic cortical involvements in different generalized
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epilepsy based on their symptomatology. Hence, further studies
are warranted to confirm this point of view.

Last but not least, another major limitation is how one can
confirm the findings of the current non–invasive neuromagnetic
data to support the concept of cortical focus theory, in which
a highly connective cortical epileptogenic focus, most likely
frontal hyperexcitability and parietal deactivation, triggering
the rapidly generalized epileptic discharges involving intact
corticothalamic or corticocortical networks. The finding has
been confirmed in the animal model, with the cortical focus
activation being found to be leading the thalamus activation by
500ms (156). Although the ideal confirmation of the concept
in humans should be analyzing intracranial invasive electrical
activities from simultaneous cortical regions, covering bilateral
multi-lobar regions, and various subcortical regions, subnuclei
of bilateral thalami, it will be unethical and impractical to
put multi-electrodes to cover every aspect of the thalamus
and cortical regions. So far, a small study of intraoperative
simultaneous invasive centromedian thalamic nuclei and scalp
EEG recording had shown that generalized paroxysmal fast
activity in patients with the Lennox-Gastaut syndrome appeared
75ms later in thalamic activation when compared to the
scalp frontal EEG activity, supporting a cortical driven process
in generalized epilepsy (157). Another study investigated the
interval relationship of the centromedian thalamus in relation
to the cortical electrical activities in two patients with idiopathic
generalized epilepsy (158). One of the two patients had
bilateral independent discharges restricted only to the bilateral
centromedian thalami, and the other had bilateral cortical
discharges with the belated onset of leading thalamic discharges
at the ictal onset (158). Thus, based on their symptomatology,

the currently available data suggested there were different
topographic cortical involvements in different subtypes of
generalized epilepsy. Given the small sample size, no particular
conclusion could be made. However, the findings from the
CAE may likely be unable to generalize to all the subtypes of
generalized epilepsy. Hence, further studies are warranted for the
emerging development of responsive neurostimulation therapies
for patients with generalized epilepsy.

In conclusion, current MEG literature challenges the
concept of generalized epilepsy being fully generalized.
Advances in recent MEG methodology contribute to the
literature of idiopathic/genetic generalized epilepsy in terms of
physiopathology, treatment and prognosis options, thus further
blurring the boundary between focal and generalized epilepsy.

LIMITATIONS

This review is limited because only three databases were
searched by one reviewer (TA) and included only the published
publication in English. All the posters publications were
excluded. Thus, some of the remarkable pertinent studies might
be missed in the literature review.
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144. Lopes MA, Krzemiński D, Hamandi K, Singh KD, Masuda N,

Terry JR, et al. A computational biomarker of juvenile myoclonic

epilepsy from resting-state MEG. Clinic Neurophysiol. (2021)

132:922–7. doi: 10.1016/j.clinph.2020.12.021

145. Elshahabi A, Klamer S, Sahib AK, Lerche H, Braun C, Focke NK.

Magnetoencephalography reveals a widespread increase in network

connectivity in idiopathic/genetic generalized epilepsy. PLoS ONE. (2015)

10:e0138119. doi: 10.1371/journal.pone.0138119

146. Stier C, Elshahabi A, Li Hegner Y, Kotikalapudi R, Marquetand J, Braun C, et

al. Heritability of magnetoencephalography phenotypes among patients with

genetic generalized epilepsy and their siblings. Neurology. (2021) 97:166–

77. doi: 10.1212/WNL.0000000000012144

147. Niso G, Carrasco S, Gudín M, Maestú F, Del-Pozo F, Pereda E. What graph

theory actually tells us about resting state interictal MEG epileptic activity.

NeuroImage: Clinic. (2015) 8:503–15. doi: 10.1016/j.nicl.2015.05.008

148. Li Hegner Y, Marquetand J, Elshahabi A, Klamer S, Lerche H, Braun

C, et al. Increased functional MEG connectivity as a hallmark of mri-

negative focal and generalized epilepsy. Brain Topogr. (2018) 31:863–

74. doi: 10.1007/s10548-018-0649-4

149. Braakman HMH, Vaessen MJ, Jansen JFA, Debeij-Van Hall MHJA, De

Louw A, Hofman PAM, et al. Frontal lobe connectivity and cognitive

impairment in pediatric frontal lobe epilepsy. Epilepsia. (2013) 54:446–

54. doi: 10.1111/epi.12044

150. Widjaja E, Zamyadi M, Raybaud C, Snead OC, Smith ML. Abnormal

functional network connectivity among resting-state networks

in children with frontal lobe epilepsy. Am J Neuroradiol. (2013)

34:2386–92. doi: 10.3174/ajnr.A3608

151. Cao X, Qian Z, Xu Q, Shen J, Zhang Z, Lu G. Altered intrinsic connectivity

networks in frontal lobe epilepsy: a resting-state fMRI study. Comput Math

Methods Med. (2014) 2014:864979. doi: 10.1155/2014/864979

152. Klugah-Brown B, Luo C, Peng R, He H, Li J, Dong L, et al. Altered

structural and causal connectivity in frontal lobe epilepsy. BMC Neurol.

(2019) 19:130. doi: 10.1186/s12883-019-1300-z

153. Hari R, Salmelin R. Magnetoencephalography: from SQUIDs

to neuroscience. neuroimage 20th anniversary special edition.

NeuroImage. (2012) 61:386–96. doi: 10.1016/j.neuroimage.2011.

11.074

154. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ,

Sonuga-Barke EJS. Default-mode brain dysfunction in mental

disorders: a systematic review. Neurosci Biobehav Rev. (2009)

33:279–96. doi: 10.1016/j.neubiorev.2008.09.002

155. Salanova V. Deep brain stimulation for epilepsy. Epilepsy and Behavior.

(2018) 88:21–4. doi: 10.1016/j.yebeh.2018.06.041

156. Meeren HKM, Pijn JPM, Van Luijtelaar ELJM, Coenen AML,

Da Silva FHL. Cortical focus drives widespread corticothalamic

networks during spontaneous absence seizures in rats. J Neurosci.

(2002) 22:1480–95. doi: 10.1523/JNEUROSCI.22-04-01480.

2002

157. Dalic LJ, Warren AEL, Young JC, Thevathasan W, Roten A, Bulluss

KJ, et al. Cortex leads the thalamic centromedian nucleus in generalized

epileptic discharges in Lennox-Gastaut syndrome. Epilepsia. (2020) 61:2214–

23. doi: 10.1111/epi.16657

158. Martín-López D, Jiménez-Jiménez D, Cabañés-Martínez L, Selway

RP, Valentín A, Alarcón G. The Role of thalamus versus cortex in

epilepsy: evidence from human ictal centromedian recordings in

patients assessed for deep brain stimulation. Int J Neural Syst. (2017)

27:101. doi: 10.1142/S0129065717500101

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
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Sleep spindles, defining oscillations of stage II non-rapid eye movement sleep (N2),

mediate sleep-dependent memory consolidation. Spindles are disrupted in several

neurodevelopmental, neuropsychiatric, and neurodegenerative disorders characterized

by cognitive impairment. Increasing spindles can improve memory suggesting spindles

as a promising physiological target for the development of cognitive enhancing therapies.

This effort would benefit from more comprehensive and spatially precise methods to

characterize spindles. Spindles, as detected with electroencephalography (EEG), are

often widespread across electrodes. Available evidence, however, suggests that they

act locally to enhance cortical plasticity in the service of memory consolidation. Here, we

present a novel method to enhance the spatial specificity of cortical source estimates of

spindles using combined EEG and magnetoencephalography (MEG) data constrained

to the cortex based on structural MRI. To illustrate this method, we used simultaneous

EEG and MEG recordings from 25 healthy adults during a daytime nap. We first validated

source space spindle detection using only EEG data by demonstrating strong temporal

correspondence with sensor space EEG spindle detection (gold standard). We then

demonstrated that spindle source estimates using EEG alone, MEG alone and combined

EEG/MEG are stable across nap sessions. EEG detected more source space spindles

than MEG and eachmodality detected non-overlapping spindles that had distinct cortical

source distributions. Source space EEG was more sensitive to spindles in medial frontal

and lateral prefrontal cortex, while MEG was more sensitive to spindles in somatosensory

and motor cortices. By combining EEG and MEG data this method leverages the

differential spatial sensitivities of the two modalities to obtain a more comprehensive and

spatially specific source estimation of spindles than possible with either modality alone.

Keywords: sleep spindles, MEG (magnetoencephalography), EEG, source localization, cortical sources, stage 2

NREM sleep, sleep oscillations
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INTRODUCTION

Sleep spindles, a defining oscillation of stage II non-rapid
eye movement sleep (N2), are brief (∼1 s) powerful bursts of
12–15Hz activity initiated in the thalamic reticular nucleus
(TRN) (1, 2) and propagated to the cortex via thalamocortical
circuitry (3). Sleep spindles are typically separated based on
their frequency into slow (9–12Hz) and fast spindles [12–
15Hz; (4, 5)]. Although both spindle classes are generated
in TRN they have different cortical topographies with slow
spindles being more prominent at frontal and fast spindles at
central and parietal electrodes (6, 7). In humans sleep spindles
correlate with sleep-dependent memory consolidation, learning
efficiency, and IQ [for a review see (8)]. Sleep spindles are
disrupted in several neurodevelopmental, neuropsychiatric,
and neurodegenerative disorders characterized by cognitive
impairment (9). Importantly, increasing spindles both
pharmacologically (10–12) and using non-invasive brain
stimulation (13) can improve memory, consistent with
evidence from optogenetic studies of rodents indicating a
causal role in memory consolidation (14, 15). This provides
an impetus to target spindles to treat cognitive deficits (16).
Since spindles act locally to mediate memory typically in
regions involved in initial learning (17–20), this effort
would benefit from a more spatially precise measurement
of spindles. In humans, spindles are typically detected with
EEG. Relatively few studies have used magnetoencephalography
(MEG) to complement EEG spindle detection (21–30).
Here we describe a new method using simultaneously
acquired EEG and MEG data from afternoon naps to
comprehensively characterize sleep spindles and to estimate their
cortical sources.

Compared with EEG, MEG is more sensitive to focal cortical
spindle sources but mainly detects sources that are tangential to
the cortical surface (31, 32). In contrast, EEG detects both radial
and tangential sources. Spindles detected only by MEG sensors
tended to be more focal and did not propagate across the cortex,
whereas spindles detected in both modalities were first detected
by MEG and then detected by EEG after spreading to additional
regions (23). These studies suggest that (i) MEG is more sensitive
to the emergence of non-synchronous bursts of focal spindles due
to its more confined spatial sensitivity; (ii) EEG is more likely
to detect spindles that cover extended areas on the cortex, and

(iii) because of their complementarity, MEG and EEG together
provide more accurate source estimation than either technique

alone (33). A more spatially specific estimation of sleep spindle
sources is important given the role of local spindles in mediating
memory (17–20).

Here, we present a novel method to estimate the cortical

sources of spindles using simultaneous EEG/MEG recordings,
constrained to the cortex based on structural MRIs, during

an afternoon nap. To validate this method, we compared
spindles detected in source space to those detected on the scalp
(sensor space) using EEG (gold standard). We next evaluated
the spatial distribution of spindles that were common and
unique to each modality by comparing source space spindle
detection using EEG only, MEG only and combined EEG/MEG.

We conclude by discussing the advantages of using combined
EEG/MEG for detecting and source localizing spindles over
either technique alone.

MATERIALS AND METHODS

Participants
Thirty one healthy adults were recruited from the community
through advertisements and were screened to exclude a history
of mental illness diagnosed sleep disorders, treatment with
sleep medications, pregnancy, and a history of head injury,
neurological disorder and substance abuse or dependence within
the past 6 months. All participants gave written informed consent
and were paid for participation. The study was approved by
the Partners Human Research Committee. Participants were
asked not to consume caffeine or alcohol on the day of the
recording. All 25 participants (age 29 ± 6, 21–42; 19 males) who
produced valid nap data (>10min of artifact rejected N2 sleep)
were included.

Procedure
All participants completed two visits at least 1 week apart. The
first visit (Nap 1) acclimated the participant to napping in the
MEG scanner and was followed by a second visit (Nap 2).
Participants were wired for polysomnography (PSG) and given
a 90min afternoon nap opportunity with simultaneous EEG and
MEG recording while lying supine in the MEG scanner. Before
the nap we recorded 5min of quiet rest during which participants
were instructed to maintain fixation on a cross in the center of
the screen. After their second visit participants returned for an
MRI scan.

EEG/MEG Data Acquisition
Data were recorded using a 306 channels whole-head Elekta-
Neuromag MEG system [Elekta Oy (now MEGIN, Croton
Healthcare), Helsinki, Finland] in a magnetically shielded room
(IMEDCO, Hagendorf, Switzerland) simultaneously with 70
channels of EEG, submental electromyography (EMG) and 2
electrooculography electrodes (EOG). All signals were digitized
at 600Hz. The MEG sensors are arranged as triplets at 102
locations; each location contains one magnetometer and two
orthogonal planar gradiometers. Locations of the EEG electrodes
and ∼200 head shape points were recorded using a 3D digitizer
(Polhemus FastTrack). Four head position index (HPI) coils were
used to continuously track the position of the head relative to
the scanner.

EEG/MEG Data Pre-processing
We applied the signal space separation (SSS) algorithm (34) to
the MEG signals to suppress environmental noise and correct
for head movements using the HPI coils. Sleep data were low-
pass filtered at 60Hz and down-sampled to 200Hz using MNE
software for further analysis (35). Each 30 s epoch of EEG data
was visually scored according to standard criteria as WAKE,
REM, N1, N2, or N3 (36) by expert raters (Table 1). Sleep quality
was quantified using sleep onset latency (SOL), total sleep time
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TABLE 1 | Means, standard deviations of participants’ sleep quality, and

architecture measures.

Mean ± sd (min–max)

Sleep quality

*TIB 92 ± 5 (80–105) min

*TST 65 ± 23 (19–96) min

*SOL 6 ± 7 (1–26) min

*WASO 21 ± 19 (1–65) min

Sleep efficiency 70 ± 24 (21–98)%

Sleep architecture

N1 14 ± 6 (4–23) min

N2 38 ± 19 (11–76) min

N3 10 ± 12 (0–37) min

REM 3 ± 6 (0–20) min

*TIB, Time in bed; TST, Total sleep time; SOL, Sleep onset latency; WASO, Wake after

sleep onset.

(TST), time in bed (TIB), sleep efficiency (TST/TIB), and wake
after sleep onset (WASO).

EEG and MEG data were pre-processed and analyzed using
custom scripts in MATLAB (MathWorks, Natick MA), FieldTrip
(37) and MNE software (35). Sleep data were band-pass filtered
at 0.3–35Hz and electrodes displaying significant artifacts were
spatially interpolated. EEG data were then re-referenced to the
common average. Resting state data were notch-filtered at 60Hz.
Signal space projection [SSP; (38)] implemented in MNE was
used to remove cardiac artifacts, and remaining artifacts were
visually identified and removed. Artifact-free data from N2 sleep
were used for further analyses. Although spindles also occur
during N3 sleep, we restricted our analyses to N2 since spindle
physiology differs across sleep stages and only 8 of 25 participants
had more than 10min of N3.

MRI Acquisition
Anatomical images were acquired on a 3T Siemens Trio
whole-body MRI system (Siemens Medical Systems, Erlangen,
Germany) with a 32-channel head coil. The images were
acquired using a 3D RF-spoiled magnetization prepared rapid
gradient echo (MP-RAGE) sequence (TR = 2,530ms; TE =

1.7/3.6/5.5/7.3ms; Flip Angle = 7◦; FOV = 256mm, 176 in-
plane sagittal 1mm isotropic slices, scan duration 6m 12 s). In
addition, a multi echo flip angle (5◦) FLASH pulse sequence was
employed to obtain data for constructing individual boundary
element model (BEM) surfaces for forward modeling (610Hz per
pixel, TR = 20ms, TE = 1.89 + 2 n ms (n = 0–7), 128 in-plane
sagittal slices sized 1× 1.33mm, 1.33 mm thickness).

Source Reconstruction
Co-registration of the EEG andMEG sensors to each participant’s
structural MRI was implemented in MNE using the digitized
electrodes, fiducials, HPI coils and head shape points. MRI
reconstruction and tissue segmentation were performed using
FreeSurfer (39, 40). The FreeSurfer-derived cortical surface
tessellation was decimated to a regular source dipole grid with

3mm spacing between adjacent source locations, corresponding
to ∼18,500 dipoles. The forward solutions were then computed
using the three-layer BEM (41) using inner, outer skull, and scalp
surfaces from segmentations of the FLASH images.

The cortically constrained minimum-norm estimate of the
cortical currents [MNE; (42, 43)] was computed with source
orientations fixed perpendicular to the local cortical surface
and a regularization factor of 0.1. Noise covariance estimates
were calculated using data from the 5min resting-state scan
filtered at 100–140Hz. We used dynamical statistical parametric
mapping [dSPM; (44)] to reduce the MNE inverse solution
bias toward superficial cortical sources. FreeSurfer was used to
automatically parcellate the cortex into 72 regions (45). After
discarding “medial wall" and “corpus callosum,” these regions
were further parcellated into a total of N = 448 similarly sized
cortical regions using FreeSurfer (46). The resulting source-
space time courses of artifact-free N2 sleep were then computed
in these 448 regions. In order to align the signs of the time
series across dipoles within a label, we used the singular value
decomposition (SVD) of the data. The sign of the dot product
between the first left singular vector and all other time-series in
a label was computed. If this sign was negative, we inverted the
time-series before averaging. The same procedure was followed
to generate three source localization estimates, from EEG alone,
MEG alone, and combined EEG/MEG data. For analytic methods
overview see Figure 1.

Spindle Detection
Slow and fast spindles were automatically detected in the 9–12
and 12–15Hz band-pass-filtered data respectively, at each sensor
and cortical region using a wavelet-based algorithm (47, 48).
Specifically, based on temporally smoothed (window duration
= 0.1 s) wavelet coefficients (from a complex Morlet wavelet
transform), spindles were identified as intervals exceeding 9 times
the median for at least 400ms. The frequency range for spindle
detection, defined based on the full-width half-maximum of
the wavelet amplitude response in the frequency domain (49),
was chosen based on prior studies and to minimize the overlap
between the two spindle classes (Supplementary Figure 1) (4, 47,
48). The threshold for spindle detection was chosen to maximize
the between class (“spindle” vs. “non-spindle”) variance (50)
based on data from healthy participants in a previous study
(47). This detector has been validated against visual inspection in
healthy people, individuals with schizophrenia and children with
autism spectrum disorder (47, 51). The duration of individual
spindles was measured in 2 s epochs centered on the point of
spindle detection as the full width half max of the wavelet energy.

Definition of Spindle Events in Sensor and
Source Space
As there is no one-to-one correspondence between scalp sensors
and source space regions we defined windows of spindle activity
in both so that we could compare spindle detection in each.
To define windows of spindle activity we first assigned a binary
value (yi) to each sensor/region at each time point that was set to
one if a spindle was detected and zero if not. The binary signals
were summed across all sensors/regions resulting in an aggregate
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FIGURE 1 | Schematic description of source space spindle detection. (A) Pre-processing of simultaneously acquired EEG/MEG data. (B) Structural MRI. (C) Sleep

scoring of nap data. (D) Noise covariance estimates calculated using the EEG/MEG data from the 5min resting-state scan filtered at 100–140Hz. (E) Construction of

a three-layer boundary element model (BEM) surfaces (inner, outer skull, and scalp) for forward modeling (F) Cortical reconstruction. (G) Source estimates of N2

calculated using the cortically constrained minimum-norm estimate of cortical currents. (H) Parcellation of the cortical surface into 448 regions. (I) Automatic spindle

detection at each cortical region using a wavelet-based detector.

signal (Y) which was >0 when a spindle was detected at any
of the sensors/regions at any given time-point. After smoothing
Y with a 500ms moving average, we detected the temporal
local maxima using the MATLAB function findpeaks. To avoid
detection of spurious spindle activity a minimum distance
between maxima was set at 500ms and a minimum extent was
set at 1% of sensors/regions. One second windows centered at
the detected local maxima were defined as temporal windows
of spindle activity across sensors/regions (Figure 2). We will
refer to these periods of spindle activity across sensors/regions
as “spindle events” to distinguish them from spindles detected at
each sensor/region (e.g., see Supplementary Figures 1, 4). The
duration of the windows was set at 1 s. The spatial extent of a
spindle event (i.e., the total number of sensors/regions where a
spindle was detected) was quantified as the maximum amplitude

of Y (Figure 2). To account for different sleep durations, we
calculated spindle event density (i.e., spindle events per minute).
In contrast to the typical definition of spindle density at each
sensor/region, spindle event density is based on the definition
of spindle events across multiple sensors/regions. Using this
method, we first compared spindle events from sensor vs. source
space EEG to validate spindle detection in source space. We
then compared the density and spatial extent of source space
spindle events detected in EEG alone, MEG alone and combined
EEG/MEG data.

Validation of Spindle Detection
We first validated spindle detection in source space by
quantifying the correspondence of source space EEG estimates
with scalp EEG (i) between subjects, by correlating the total
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FIGURE 2 | Definition of spindle events. Top: Example of 10 s of N2 signal from 20 EEG electrodes. Detected spindles at each sensor are highlighted in red. Bottom:

The raw aggregate signal (red) and smoothed signal (black). Spindle events were defined as 1 s time-windows around the peaks of the smoothed signal (gray patch).

The maximum amplitude within this window reflects the spatial extent of the detected spindle event. The same definition applies to MEG sensors and source space

analyses.

number of spindle events in source vs. sensor space and (ii)
within subjects, by calculating the temporal overlap using the F1
score of detected spindle events in source vs. sensor space. We
defined temporal overlap as≥20% [F1 scores for different overlap
values (10–50%) and window lengths (0.4–2 s) are presented in
Supplementary Figure 2]. Spindle event density in source vs.
sensor space was compared using a paired t-test.

To calculate F1 scores we defined (i) false positives (FPs),
as spindle events detected in source but not sensor space, (ii)
false negatives (FNs) as spindle events detected in sensor but
not source space, and (iii) true positives (TPs) as spindle events
detected in both sensor and source space. Precision (f P), recall
(f R), and the F1 score were calculated as follows:

fP = TP/(TP + FP);

fR = TP/(TP + FN);

F1 =
2fPfR

fPfR
.

To evaluate whether the spatial extents of spindle events detected
in sensor and source space (i.e., TPs) were related, we correlatedY
in the sensor space (the number of sensors showing that spindle)
with Y in the source space (number of regions).

Since spindle detection in source space was more prone
to FPs than FNs (see Results), we asked where these FPs

were more likely to be detected, by calculating the percent
of FPs detected at each region. We then tested whether
these source-detected “FPs” might actually reflect sub-
threshold sensor space spindle activity. For each FP spindle
event detected in the source space we calculated the sigma
power across all EEG sensors using the squared amplitude
of the Hilbert transform, after bandpass filtering at 9–
12Hz for slow and 12–15Hz for fast spindles. We then
z-normalized it against the power of randomly selected
spindle-free 1 s periods and averaged across time-points
and sensors.

TEST-RETEST RELIABILITY OF
SPINDLE EVENTS

Previous studies have demonstrated that sleep spindles are a
heritable trait-like feature of the scalp EEG (5, 52) and are stable
within individuals across nights and naps (48, 53). Here we
wanted to investigate whether this is also true for spindle events
detected in source space using different modalities.We calculated
intraclass correlation coefficients (ICCs) for scalp EEG, source
EEG, MEG, and EEG/MEG in the 19 subjects who had valid
data from two naps. To calculate ICCs, we estimated between-
and within-subjects variances of spindle event density from
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FIGURE 3 | Spindle events in source vs. sensor space EEG. (A) Spindle event density in source vs. sensor space. Regression line (black solid) and the identity line

(gray dashed) are shown. (B) Correspondence of spindle events detected at the source vs. the sensor space (F1 = 0.83 ± 0.03, fP = 0.80 ± 0.04, fR = 0.86 ± 0.04).

(C) Spatial extent of spindle events in source vs. sensor space with regression line.

regression models with subject as a random effect. To compare
the reliability of spindle event density among modalities we
estimated the 95% confidence intervals (CIs) of the ICCs based
on 1,000 bootstrap samples.

Comparison of EEG Alone, MEG Alone, and
Combined EEG/MEG Detected Spindle
Events in Source Space
To determine whether source-space EEG, MEG, and EEG/MEG
are differentially sensitive to spindles we compared the spindle
events detected by each modality. The density of spindle events
was compared with a linear mixed effects model with Modality
as a fixed effect (EEG, MEG, and EEG/MEG) and Subject as a
random effect. The correspondence of spindle events detected
by EEG, MEG, and EEG/MEG, based on their temporal overlap,
was calculated using the same method as above. To compare the
spatial specificity of the source estimates we first used pairwise
comparisons of the spatial extent of spindle events detected by
EEG, MEG, and EEG/MEG.We then examined the spatial extent
and topography of spindle events detected with only one of two
estimates (e.g., spindle events unique to EEG only). To investigate
whether there were cortical regions at which one modality was
more sensitive to spindle events, for each region we calculated
the percent of spindle events that were detected by only one of
two estimates.

RESULTS

We focus on fast spindles (defined as 12–15Hz), which
are a well-replicated biomarker of overnight memory
consolidation (8) and disrupted in neuropsychiatric disorders,
particularly schizophrenia (9). Slow spindle (defined as 9–
12Hz) findings are described in Supplementary Results and
Supplementary Figures 1, 3, 5–9.

Validation of EEG Source Space Spindle
Detection
Source and sensor space EEG spindle event density were highly
correlated (r2 = 0.90, p < 0.001, slope=1.00 ± 0.07, Intercept:

0.78 ± 0.78; Figure 3A). On average EEG spindle event density
was 7% higher in source space than in sensor space (sensor space:
10.92 ± 2.04; source space: 11.70 ± 2.15; t = 5.72, p < 0.001).
In within-subjects analyses, 86% of spindle events detected in
sensor space temporally overlapped with spindle events detected
in source space, while 80% of spindle events detected in source
space overlapped with spindle events measured in sensor space
(F1= 0.83± 0.03, f P = 0.80± 0.04, f R = 0.86± 0.04; Figure 3B).
Spindle events on the scalp were detected on average at 18/70
(26%) sensors and at 73/448 (21%) cortical regions in source
space. The spatial extent of spindle events in source and sensor
space was highly correlated (r2 = 0.65, p < 0.001; Figure 3C).

Spindle events that were detected in source but not sensor
space (FPs) was more likely to be detected in frontal cortex
(Figure 4). On average, for each subject 36% (range 24–
51%) of spindles detected only in source space (FPs) had
significantly elevated sigma power in sensor space (z >

1.69) suggesting that these FPs might reflect sub-threshold
spindle activity.

Test-Retest Reliability of Spindle Events
As in previous studies (5, 48, 52, 53) sensor space EEG
spindle events were stable within individuals across two naps
[ICC = 0.83, CI: (0.66, 0.91)]. Similarly, source space detected
spindle events were stable across naps and ICCs did not differ
significantly [i.e., their CIs overlapped; EEG: ICC = 0.81, CI:
(0.55, 0.92); MEG: ICC = 0.80, CI: (0.56, 0.93]; EEG/MEG: ICC
= 0.72, CI: (0.42, 0.88); Figure 5].

Comparison of Source Space Spindle
Events Detected With EEG Alone, MEG
Alone, and Combined EEG/MEG
Overall spindle event density differed significantly between
source estimates [F(2,72) = 238.46, p < 0.001): Spindle event
density was lower in MEG than either EEG (44%; t = 15.78, p
< 0.001) or EEG/MEG (40%; t = 16.61, p < 0.001), and lower
for EEG/MEG than EEG (6%, t = 5.12, p < 0.001; Figure 6A).
We excluded the possibility that this result was simply due to a
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higher absolute spindle detection threshold in MEG by showing
that the threshold was higher in EEG (EEG: 2.91 ± 1.86, MEG:
0.62 ± 0.35; Wilcoxon z = 5.65, p < 0.001). Fifty-five percent

FIGURE 4 | Topography of spindle events detected only in source space EEG

(FPs). The color of each region represents the number of FPs expressed in this

region over the total number of FPs as a percentage.

of EEG-detected spindle events had no corresponding event in
MEG. Conversely 19% of MEG-detected spindle events lacked
a corresponding EEG event (Figure 6B). This indicates that
although EEG detects more spindle events than MEG, the two
modalities also detect different events. The combined EEG/MEG
estimate captured more of the spindles present in EEG alone
than MEG alone (t = 18.74, p < 0.001). Similarly, there were
more common spindles between the combined EEG/MEG and
the MEG alone than between the EEG alone and MEG alone (t =
5.95, p< 0.001). These data indicate that the combination of EEG
and MEG provides a more comprehensive account of spindles
than either modality alone.

The spatial distribution of spindle density differed across
modalities with EEG showingmaximum spindle density in lateral
and medial frontal cortex extending into posterior cingulate
cortex, while MEG spindle density was relatively low over
prefrontal cortex and peaked in posterior cingulate cortex
(Supplementary Figure 3).

Spindle events detected by EEG included more regions
than MEG (t = 16.00, p < 0.001) or combined EEG/MEG
(Figure 6C; t = 14.24, p < 0.001). EEG/MEG detected spindle
events were more widespread than those detected by MEG (t
= 15.70, p < 0.001; Figure 6C). More focal spindle events were
less likely to be detected regardless of modality and, contrary
to expectations, MEG was not more sensitive to focal events

FIGURE 5 | Test-retest reliability of spindle events across naps for each modality. Plot of spindle event density for each subject during Nap 1 and Nap 2. Spindle

events were detected (from top to bottom) at scalp EEG, source EEG, MEG, and EEG/MEG.
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FIGURE 6 | Spindle events in source space using EEG alone, MEG alone and combined EEG/MEG. (A) Venn diagram and violin plots depicting spindle event density

in EEG, MEG, and EEG/MEG with p-values for pairwise comparisons. (B) Percent of uniquely detected spindle events by each modality for EEG vs. MEG, EEG vs.

EEG/MEG, and MEG vs. EEG/MEG. (C) Spatial specificity of commonly detected spindle events (intersection of Venn diagrams). Spatial extent of spindle events

detected by EEG and MEG, EEG and EEG/MEG, and MEG and EEG/MEG. Black circles represent individual data.

(Supplementary Figure 4). However, there were topographical
differences between modalities: MEG was less likely than EEG to
detect medial and lateral frontal spindle events (Figure 7A) and
EEG was less likely than MEG to detect spindle events in motor
and somatosensory cortex (Figure 7B).

DISCUSSION

We employed a novel method using simultaneous EEG and
MEG recordings during sleep to estimate the cortical sources of
sleep spindles. We first validated source space spindle detection
with EEG by demonstrating strong agreement with sensor
space (i.e., scalp) EEG spindle detection. We also extended
previous findings that sensor space EEG spindles are stable across
sessions to source space spindle estimates using EEG, MEG,
and EEG/MEG. Finally, we show that by combining EEG/MEG
data, anatomically constrained by structural MRI, we leverage the
differential sensitivities of the two modalities to cortical sources

to obtain a more comprehensive view of spindles and increase
the spatial specificity of the source estimation compared to EEG
or MEG alone.

The density of EEG spindle events detected in source space
showed a good correspondence with those detected in sensor
space, but on average was 7% higher for fast spindles and 19%
higher for slow spindles. The significantly higher agreement
between sensor and source space for fast spindles may reflect
the reduced amplitude and increased variability of EEG slow
spindle spectral peaks (4). During over a third of the spindle
events detected in source but not sensor space, the averaged
sigma power of scalp EEG electrodes was elevated suggesting that
source detection was more sensitive to sub-threshold scalp EEG
spindle activity. This may reflect that each EEG scalp electrode
captures activity from multiple brain regions while the point
spread functions in source space are more focal (31, 32, 54). Some
of the remaining two thirds of spindles detected in source but not
sensor space (i.e., “false positives”) may be more focal spindles
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FIGURE 7 | Topography of spindle events uniquely detected by (A) EEG and (B) MEG. The color represents the percent of spindle events detected in each region

relative to the total spindle events detected.

whose signal is obscured by averaging across all electrodes or they
may be noise.

We replicated previous findings that spindle activity is stable
over sessions within individuals and extended these results to
spindle events detected in source space regardless of modality.
This is consistent with evidence that spindle activity is a heritable
trait-like feature of the sleep EEG (5, 48, 52, 53). Although
this was a nap study, spindle density during naps is a reliable
estimate of overnight spindle density indicating that our findings
can generalize to overnight sleep (55). Spindle event density
using MEG and combined EEG/MEG source estimates was more
variable within subjects compared to EEG, particularly for slow
spindles. The increased number of MEG sensors compared to
EEG (70 EEG vs. 306MEG sensors) could potentially increase the
variability of the measurements across sessions. Another possible
explanation could be that although we track the head position
and take any head motion into account in the post-processing
(56, 57), different head positions across sessions could still affect
the source estimates of MEG alone and EEG/MEG.

Spindle events detected exclusively by EEG or MEG had
distinct topographical distributions. EEG was more sensitive to
spindles in medial and lateral frontal cortex, while MEG was
more sensitive to spindles in somatosensory and motor regions.
These topographies may reflect differential sensitivity of EEG and
MEG to spindles arising from two thalamocortical pathways: the
core pathway that projects to middle cortical layers, particularly
in somatosensory and motor regions, and the matrix pathway
that projects diffusely to more superficial cortical layers (58, 59).
Our findings support the hypothesis that EEG is more sensitive to
widely expressed matrix spindles whereas MEG is more sensitive
to focal core spindles (29, 60). The differential sensitivity of EEG
and MEG may reflect that widely distributed sources lead to
greater signal loss in MEG due to cancellation (61).

Contrary to a prior report (19), MEG detected significantly
fewer spindle events than EEG. This may reflect MEG’s relative
insensitivity to radially oriented and distributed sources of some

spindle activity. Our results are consistent with older studies that
report more spindles detected with EEG than MEG (21, 27).
The inconsistent results could reflect different methodology.
Dehghani et al. (23) detected spindles using a spectral peak
algorithm across EEG andMEG sensors during 2min of N2 sleep
whereas in this study we detected spindles on a sensor/region
basis during all of N2 (mean duration: 38 min).

Spindles are generated in the thalamic reticular nucleus (1, 2)
and are propagated to the cortex via thalamocortical circuitry
(3). Since the contribution of subcortical sources to EEG is weak
and to MEG even weaker, we restricted spindle detection to the
cortical surface (62, 63). The lack of access to thalamic activity
renders the question of what constitutes “true spindle activity”
impossible to answer. Here we used spindle activity detected at
the scalp EEG as the “gold standard,” to validate our spindle
detection method in the source space. The lack of ground truth
precludes any statements of which source estimate of spindles is
the most valid. More sophisticated methods are needed to non-
invasively assess the interaction between cortex and thalamus
during spindle activity (63–65). Because this was an afternoon
nap study, fewer than a third of the participants had more than
10min of N3 sleep, not allowing us to investigate whether our
findings generalize to N3.

Fast spindlesmediate sleep-dependentmemory consolidation,
are disrupted in a number of neurodevelopmental and
neurodegenerative disorders [for a review see (9)] and have
been identified as a mechanistic biomarker of cognitive
dysfunction and a potential treatment target, [e.g., see (16)].
Although spindles can be expressed widely in the cortex,
they act in a spatially specific manner to induce the plasticity
underlying memory consolidation. For example, during the
sleep that follows training on a motor task, increased spindles
and sigma power in the contralateral motor cortex correlates
with improved performance upon awakening (17–20). In
schizophrenia, spindle deficits correlate with both memory
deficits and increased connectivity of the thalamus specifically
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with somatosensory and motor cortex (47, 66). Children
with Rolandic epilepsy have a focal spindle deficit in the
affected regions that correlates with cognitive and motor
dysfunction (67). The spatial specificity that characterizes
both the functionality of spindles in health, and their
disruption in disorders highlights the utility of techniques
with high spatial resolution for both basic and clinical studies of
sleep-dependent cognition.

In summary we present a novel method that leverages
the differential sensitivities of EEG and MEG to reveal the
cortical sources of spindles. Combined EEG and MEG provide
a more comprehensive detection and focal source estimation
than either technique alone. Accurate estimation of spindle
activity will illuminate the function of spindles, how it goes
awry in disorders, and guide the development of more
targeted treatments.
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Cortical hubs identified within resting-state networks (RSNs), areas of the cortex that

have a higher-than-average number of connections, are known to be critical to typical

cognitive functioning and are often implicated in disorders leading to abnormal cognitive

functioning. Functionally defined cortical hubs are also known to change with age in the

developing, maturing brain, mostly based on studies carried out using fMRI. We have

recently used magnetoencephalography (MEG) to study the maturation trajectories of

RSNs and their hubs from age 7 to 29 in 131 healthy participants with high temporal

resolution. We found that maturation trajectories diverge as a function of the underlying

cortical rhythm. Specifically, we found the beta band (13–30Hz)-mediated RSNs became

more locally efficient with maturation, i.e., more organized into clusters and connected

with nearby regions, while gamma (31–80Hz)-mediated RSNs became more globally

efficient with maturation, i.e., prioritizing faster signal transmission between distant

cortical regions. We also found that different sets of hubs were associated with each

of these networks. To better understand the functional significance of this divergence,

we wanted to examine the cortical functions associated with the identified hubs that

grew or shrunk with maturation within each of these networks. To that end, we analyzed

the results of the prior study using Neurosynth, a platform for large-scale, automated

synthesis of fMRI data that links brain coordinates with their probabilistically associated

terms. By mapping the Neurosynth terms associated with each of these hubs, we found

that maturing hubs identified in the gamma band RSNs were more likely to be associated

with bottom-up processes while maturing hubs identified in the beta band RSNs were

more likely to be associated with top-down functions. The results were consistent with

the idea that beta band-mediated networks preferentially support the maturation of

top-down processing, while the gamma band-mediated networks preferentially support

the maturation of bottom-up processing.
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INTRODUCTION

The period from childhood to adolescence is a time window
of extensive developmental changes in the neurophysiological
topology of the brain (1, 2). This period of rapid growth and
reorganization also coincides with a delicate period of increased
vulnerability to neuropsychiatric disorders, further underscoring
the need to gain insight into the changes that underlie this
period. As part of cortical maturation, the distribution of
functional connections also changes so that some brain regions
acquire a higher-than-average number of connections to form
hubs, while other hubs that may have been prominent during
childhood may shrink with maturation. Hubs play a key role
in integrative processing and supporting connectivity between
network modules (3, 4), and are implicated in a range of brain-
based disorders (5). To date, the vast majority of studies of
cortical changes during maturation have focused on resting-state
networks due to their replicability across sites and relevance
to a wide range of psychiatric and neurological disorders (6–
13). Almost all these studies have been carried out using
functional magnetic resonance imaging (fMRI), i.e., with signals
that fluctuate in the infra-slow range. Thus, to date, it has not
been known whether or how hub maturation patterns vary as
a function of the frequency band mediating their connectivity.
This question is relevant because intrinsic cortical rhythms
are themselves functionally significant, and rhythm-specific
alterations emerge are widely reported for a wide range of brain-
based disorders and diseases (14–21). Studying the maturing
and changing distribution and characteristics of hubs formed by
intra-areal synchronization of specific intrinsic brain rhythms is,
therefore, necessary for a better understanding of the maturing
brain and parsing the functional relevance of developing hubs
can offer insights into brain function and underscore sensitive
periods underpinning developmental disorders.

We have previously observed that developmental changes in
the segregation and integration of resting-state networks and
their corresponding hubs are clearly observable within specific
cortical rhythms and vary by rhythm (22). Specifically, we showed
that there were no notable maturational changes mediated by
the slower brain rhythms (delta, 1–3Hz; theta, 4–7Hz; alpha, 8–
12Hz). In contrast, the resting state networks mediated by the
faster beta (13–30Hz) and gamma (30–80Hz) frequency bands
undergo marked topological reorganization during maturation
between the ages 7 and 29. Networks mediated by the beta
brain rhythm become more integrated with maturation, i.e.,
more organized into clusters, i.e., prioritizing communication
between nearby hubs. In contrast, networks mediated by the
gamma brain rhythm become more segregated and distributed
with maturation, i.e., prioritizing faster signal transmission
between distant hubs. As part of that same study, we found
that maturation-driven changes in network topology resulted
in the hubs expanding (getting more connections) or shrinking
(losing connections and potentially losing hub “status”) in
resting-state networks mediated by the beta and gamma bands.
Spatially, maturing hubs in the gamma band-mediated networks
were located in heteromodal regions, such as the posterior
parietal cortex, posterior cingulate cortex, and the anterior
insula, in agreement with fMRI studies (23, 24). Hubs in

the beta-band-mediated network were located in heteromodal-
frontal regions and shrunk with maturation, which is a finding
hitherto unobserved with fMRI.

In our prior study, we speculated that the altered spatial
distribution of hubs in both networks reflects a shift in higher-
order cognitive processes and thus top-down processing, within
the beta band-mediated networks, and in bottom-up sensory
functioning in the gamma band-mediated networks. This
hypothesis was derived from recent data on the putative roles
of the beta and gamma bands in intra-areal synchronization.
It has been demonstrated that intra-areal gamma-band
synchronization mediates bottom-up signaling of sensory inputs
in several studies (17, 25). Relatedly, top-down influences
on sensory processing, such as attentional selection and
cognitive control, are mediated by intra-areal, alpha-beta band
synchronizations (17, 25, 26). The developmental changes in
hubs observed with MEG indicate an increased clustering and
segregation in beta and gamma-mediated networks, respectively.

In this study, we investigated these hypotheses. To that end,
we conducted a meta-analysis that built on the results and data
from the prior paper. Specifically, we used Neurosynth, a meta-
analytic platform that relies on a large-scale, automated synthesis
of fMRI data for data mining (27) to test and substantiate the
interpretations of the results proposed in our prior study. The
Neurosynth platform allows association tests for identifying the
relevance of a brain region to categories of behavioral functions
in a statistically principledmanner and has been used successfully
in multiple studies to gain an understanding of the potential
function of hubs (28–33). The Neurosynth platform can be
tapped in two ways. In the “reverse” direction, called “decoding,”
the input to Neurosynth is the coordinate of interest, i.e., the
coordinate of the hubs, and the output is the terms associated
with these coordinates, ranked by the probability of association.
We hypothesized that maturing hubs identified in the beta band
network will be associated with Neurosynth terms related to top-
down processing while maturing hubs identified in the gamma
band network will be associated with terms related to bottom-
up processing. In the “forward” direction, one enters a brain-
related term of interest. As an output, Neurosynth returns the
coordinates of the brain areas associated with these terms based
on the papers analyzed in its database in probabilistic ranking
order. Therefore, the coordinates most often associated with the
term depression, for instance, will be ranked at the top of the
search results, and so on. We used this approach to test for the
extent of overlap between hubs associated with terms related
to bottom-up or top-down processing, and the hubs identified
in our analyses. We hypothesized that maturing hubs identified
in the beta band network will overlap with hubs associated
with terms related to top-down processing while maturing hubs
identified in the gamma band network will overlap with hubs
associated with terms related to bottom-up processing (22).

MATERIALS AND METHODS

Participants
Magnetoencephalography resting-state data were collected from
145 healthy typically developing participants, aged 7–29. Due to
excessive motion, data from 14 subjects were discarded, resulting
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in 131 high-quality datasets (64 females) with a roughly uniform
age distribution. Because we combined datasets across several
different studies that utilized the MEG at the Martinos Center
at the Massachusetts General Hospital, no single behavioral
measures were available across all the participants. IQ measured
with the Kaufman Brief Intelligence Test – II (34) was available
for 68 of the participants. Within this subgroup, no significant
change in IQ with age was observed, as expected, given that IQ
is normalized by age. All the studies that were pooled for this
analysis were screened for typical development and health. All
the adult (age 18+) participants signed a consent form, agreeing
to participate in the study, and consent forms were signed by the
parents of the participants aged 7–17. The participants aged 14–
17 were also invited to sign a consent form if they wished to do
so. All procedures and forms were approved by theMassachusetts
General Hospital IRB.

Experimental Paradigm
The resting-state paradigm consisted of a fixation cross at the
center of the screen, presented for 5min continuously, while the
participants were seated and instructed to fixate on the cross.
The fixation stimulus was projected through an opening in the
wall onto a back-projection screen placed 100 cm in front of the
participant, inside a magnetically shielded room.

MRI Data Acquisition and Processing
T1-weighted, high-resolution MPRAGE (Magnetization
Prepared Rapid Gradient Echo) structural images were acquired
on either a 1.5 T or a 3.0-T Siemens Trio whole-body MRI
(magnetic resonance) scanner (Siemens Medical Systems) using
either 12 channels or a 32 channel head coil. The structural data
were preprocessed using FreeSurfer (35, 36). After correcting
for topological defects, cortical surfaces were triangulated with
dense meshes with ∼130,000 vertices in each hemisphere. To
expose the sulci in the visualization of cortical data, we used the
inflated surfaces computed by FreeSurfer.

MEG Data Acquisition and Cleaning
Magnetoencephalography data were acquired inside a
magnetically shielded room (37) using a whole-head Elekta
NeuromagVectorView system composed of 306 sensors arranged
in 102 triplets of two orthogonal planar gradiometers and
one magnetometer. The signals were filtered between 0.1 Hz
and 200Hz and sampled at 600Hz. To allow co-registration
of the MEG and MRI data, the locations of three fiduciary
points (nasion and auricular points) that define a head-based
coordinate system, a set of points from the head surface and the
locations of the four HPI coils were determined using a Fastrak
digitizer (Polhemus Inc., Colchester, VT) integrated with the
VectorView system. ECG and horizontal (HEOG) and vertical
electrooculogram (VEOG) signals were recorded. The position
and orientation of the head with respect to the MEG sensor array
were recorded continuously throughout the session with the help
of four head position indicator (HPI) coils (38).

We also monitored the continuous head position, and the
session was restarted if the excessive head movement was
recorded. The session was also restarted if any slouching in the

seated position was observed. Pillows, cushions, and blankets
were fitted to each individual to address slouching and readjusted
as needed. In addition to the human resting-state data, 5min
of data from the empty room was recorded before or after each
session for noise estimation purposes.

Following this, the data were spatially filtered using the
signal space separation (SSS) method (39, 40) with Elekta
NeuromagMaxfilter software to suppress noise generated by
sources outside the brain. This procedure also corrects for head
motion using the continuous head position data described in
the previous section. The heartbeats were identified using in-
house MATLAB code modified from the QRS detector in BioSig
(41). Subsequently, a signal-space projection (SSP) operator was
created separately for magnetometers and gradiometers using
the singular value decomposition (SVD) of the concatenated
data segments, containing the QRS complexes and separately
identified eye blinks (42), using code now implemented into the
open-source MNE-Python software (43). Data were also low-
pass-filtered at 144Hz to eliminate the HPI coil excitation signals.

Artifact cleaning was performed as follows: signal spikes
where the amplitude was higher than 5σ over the mean were
identified and dropped. To remove the effect of microsaccades,
horizontal and vertical EOG channels were filtered at a pass-
band of 31–80Hz. The envelope was then calculated for the
filtered signals and averaged to get REOG. Peaks exceeding three
SDs above the mean calculated over the whole-time course were
identified, and the corresponding periods were discarded from
subsequent analysis. Lastly, head movement recordings from the
HPI coils were used to drop any 1-s blocks where the average
headmovement exceeded 1.7mm/s (an empirical threshold). The
amount of data lost through cleaning was well below 10% and did
not differ significantly with age.

MEG Data Processing
The analysis stream we followed is illustrated in Figure 1, and
details are described below.

Mapping MEG Data Onto Cortical Space
The dense triangulation of the folded cortical surface provided
by FreeSurfer was decimated to a grid of 10,242 dipoles per
hemisphere, corresponding to a spacing of ∼3mm between
adjacent source locations. To compute the forward solution, a
boundary-element model with a single compartment bounded by
the inner surface of the skull was assumed (44). The watershed
algorithm in FreeSurfer was used to generate the inner skull
surface triangulations from the MRI scans of each participant.
The current distribution was estimated using the regularized
minimum-norm estimate (MNE) by fixing the source orientation
to be perpendicular to the cortex. The regularized (regularization
= 0.1) noise covariance matrix that was used to calculate the
inverse operator was estimated from data acquired in the absence
of a subject before each session. This approach has been validated
using intracranial measurements (45). To reduce the bias of
the MNEs toward superficial currents, we incorporated depth
weighting by adjusting the source covariance matrix, which has
been shown to increase spatial specificity (46). All forward and
inverse calculations were done using MNE-C (47).
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FIGURE 1 | Schematic illustration of pipeline. From top left in a clockwise direction: Resting state data were acquired using MEG, cleaned as described above, and

then mapped to the cortical surface. The surface was then divided into regions (parcellated), and envelopes were calculated for each frequency band in each region.

The connectivity between the regions was then computed from the envelopes and used to derive the connectivity metrics. Hubs were then identified using

betweenness centrality. The whole pipeline from raw MEG data to connectivity metrics is available as an MNE-Python example.

Cortical Parcellation (Labels)
FreeSurfer was used to automatically divide the cortex into
72 regions (48). After discarding “medial wall” and “corpus
callosum,” regions were further divided into a total of N = 448
cortical labels so that each label covers a similar area, again using
FreeSurfer. This was done to avoid averaging across a large label
that crosses multiple sulci and gyri and, therefore, could result
in signal cancellation across the label. Lastly, a high-resolution
parcellation also reduces the dependence of the results on the
specific selection of the parcels.

Deriving the Time Series for Each Label
Because of the ambiguity associated with individual vertex
(dipole) orientations, the time series for each vertex within
a label was not averaged directly but first aligned with the
dominant component of the multivariate set of time series before
calculating the label mean. To align the sign of the time series
across vertices, we used the SVD of the data XT

= U6WT .
The sign of the dot product between the first left singular vector
U and all other time series in a label was computed. If this
sign was negative, we inverted the time series before averaging.
The time series were band-pass filtered and downsampled for
faster processing, while making sure that the sampling frequency
was maintained at fs > 3fhi (obeying the Nyquist theorem and
avoiding aliasing artifacts). The chosen frequency bands were
delta (1–4Hz), theta (4–8Hz), alpha (8–12Hz), beta (13–30Hz),

and gamma (31–80Hz). The line frequency at 60Hzwas removed
with a notch filter of bandwidth of 1Hz. Hilbert transform was
then performed on these band-pass data. More specifically, for
each frequency band, the analytic signal X̂(t) was calculated by
combining the original time series with its Hilbert transform into
a complex time series:

X̂(t) = x(t)+  H[x(t)]

The resulting time series X̂(t) can be seen as a rotating vector in
the complex plane whose length corresponds to the envelope of
the original time series x(t) and whose phase grows according to
the dominant frequency. Figure 1, Step 4, shows an example of a
modulated envelope on the top of the bandpass data (carrier).

Deriving the Orthogonal Envelopes
We used envelope correlations to reliably estimate synchronicity
between different cortical labels (49). In contrast to phase-
based connectivity metrics, envelope correlations measure how
the amplitude of an envelope within a frequency band is
synchronously modulated over time across distinct cortical
regions, as illustrated in the fourth panel of Figure 1. Previous
studies (humans and primates) have demonstrated the validity
and functional significance of these synchronous envelope
amplitude modulations (49–53) for both oscillatory and
broadband signals.
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To address the field-spread problem associated with MEG
data (54), we used the previously described orthogonal (55)
variation of the envelope correlation metric. This method
requires any two putatively dependent signals to have non-zero
lag and is thus insensitive to the zero-lag correlations, stemming
from the field spread. Mathematically, the connectivity between
two complex signals X̂ and Ŷ is calculated by “orthogonalizing”
one signal wall-cap concerning the other Ŷ(t, f ) → Ŷ⊥X (t, f ),
and subsequently taking the Pearson correlation between their
envelopes. This is done in both directions, and the two results are
averaged to give the final connectivity measure C⊥(X̂, Ŷ; t, f ).

Ŷ⊥X (t, f ) = I

(

Ŷ(t, f )
X̂†(t, f )

|X̂(t, f )|

)

ê⊥X (t, f )

C⊥

(

X̂, Ŷ; t, f
)

=

Corr
(∣

∣

∣
X̂
∣

∣

∣
,
∣

∣

∣
Ŷ⊥X

∣

∣

∣

)

+ Corr
(∣

∣

∣
Ŷ
∣

∣

∣
,
∣

∣

∣
X̂⊥Y

∣

∣

∣

)

2

Due to the slow time course of these envelopes and to ensure
enough independent samples are available in the correlation
window (55), we calculated the orthogonal connectivity using
an overlapping sliding window of 30 s with a stride of 1/8
of the window size. Note that all 30 epochs that contained a
discontinuity due to a noisy segment that had to be removed were
excluded from the analyses.

Deriving the Connectivity and Adjacency Matrices
As a starting point for calculating the graph-theoretic metrics,
we used the connectivity matrix, which contained the orthogonal
correlations between all N × N node pairs and at each time
window. A separate matrix was computed for each frequency
band. The result of the processing pipeline is a connectivity
array of dimension N × N × NTime × NBands for each subject.
To increase the signal to noise, we collapsed the connectivity
array along the temporal dimension by taking the median
of each pairwise orthogonal correlation across time windows.
Thresholding and binarizing the connectivity matrix result in the
adjacency matrix A.

We used a threshold proportional scheme to retain a given
proportion of the strongest connectivity matrix entries in A.
Specifically, the adjacency matrix A was constructed using a
fixed cost threshold, ensuring that the density or number of
connections of the network is equated across all individuals and
age groups. Cost is a measure of the percentage of connections
for each label about all connections of the network. Since the
total number of connections is the same for all participants and is
determined by the number of nodes being considered, the use of
a fixed cost, i.e., a fixed percentage threshold, allows for exactly
equal numbers of connections across the participants. This is
important to ensure graph metrics can be compared across all
individuals and age groups. As there was no rationale for using a
cost threshold, therefore, we compared graph network properties
for a wide range of costs; we used a thresholding range from 5
to 30% at increments of 5%. For the graph metrics to be reliable,
they should be consistent over the range of thresholds.

The adjacency matrix A defines a graph G in the form of pairs
of nodes that are connected by an edge. Thus, A is defined such

that its binary element Aij is either 1 or 0, depending on whether
the edge eij between nodes vi and vj exists or not:

Aij =

{

1&if ∃ eij
0&if ∄ eij

Path Length
The average shortest path length between all pairs of nodes was
calculated as follows:

L =
1

n(n− 1)

∑

i6=j;vi ,vj∈G

dij

where the topological distance dij between nodes vi and vj is
defined as the minimum number of edges one must traverse to
get from one node to the other

dij=min {n
∣

∣An
[

i,j
]

6= 0
}

where An denotes the nth power of the adjacency matrix A, and i
and j are row and column indices of the resulting matrix.

Degree
The degree (hubness) of a node vi in a Graph G is defined as

Di =

n
∑

j=1,j6=i

eij

where eij is the i th row and j th column edge of adjacency
matrix A.

Clustering Coefficient
The local clustering coefficient in the neighborhood of a vertex vi
is defined as the ratio of actual and maximally possible edges in
the Graph Gi, which is equivalent to the graph density of Gi:

Ci =
2
∣

∣

{

ejk
}
∣

∣

ki
(

ki − 1
) : vj, vk ∈ Gi

Global and Local Efficiencies
Global efficiency measures the efficiency of information transfer
through the entire network and is assessed by mean path length.
While the concept of path length is intuitive in anatomical
networks, it is also relevant for functional networks, since a
particular functional connection may travel different anatomical
paths, and, while the correspondence between the two is generally
high, it is not necessarily identical (56–58). Local efficiency
is related to the clustering of a network, i.e., the extent to
which nearest neighbors are interconnected. Thus, it assesses the
efficiency of connectivity over adjacent brain regions.

The average global efficiency of information transfer in graph
G having n nodes can be calculated from the inverse of the edge
distances di,j

Eglob = E (G) =
1

n (n− 1)

∑

i6=j;vi ,vj∈G

1

dij
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The quantity above is a measure of the global efficiency of
information transfer for the whole graph G. There is also a
local efficiency for each vertex vi, measuring how efficiently its
neighbors can communicate when a vertex vi is removed. If
the subgraph of all neighbors of vi is denoted by Gi, then its
local efficiency E(Gi) is approximately equivalent to the clustering
coefficient Ci (59).

Eloc =
1

n

∑

vi∈G

E (Gi)

Betweenness Centrality
Betweenness centrality pertains to individual nodes in the
network rather than the network as a whole and assesses how
many of the shortest paths between all other node pairs in the
network pass through that node. Nodes with high betweenness
centrality (hubs) are, therefore, more important for overall
network efficiency.

The betweenness centrality of node i is defined as

bi =
∑

m6=i6=n∈G

σmn(i)

σmn

where σmn is the total number of shortest paths (paths with the
shortest path length) from Node m to Node n, and σmn(i) is
the number of shortest paths from Node m to node N that pass
through Node i. Betweenness centrality of a node thus reflects the
control and influence of that node on other nodes. Nodes with
high betweenness centrality have a high impact on information
transferal and collaboration between disparate sub-networks.

Resilience
Resilience is the graph-theoretic metric most critical to the
current analysis and, therefore, merits a more thorough
discussion. Resilience measures the robustness of the network
if the most heavily connected nodes (hubs) are removed. This
measure is inversely related to the capacity of the system for
integrating information in an efficient manner and is also
reflective of the brain’s small-world property, a metric that
determines the balance between cost and efficiency proffered
by the network for information transfer (60, 61). Small world
property and resilience are inversely proportional because both
are computed from the relative strength of local and global
efficiencies, one directly and one inversely. Indeed, this small
world property and resilience for the beta and gamma-mediated
networks showed opposite trajectory directions with maturation.
We chose this measure because it has been studied, mostly using
fMRI, in the context of psychiatric disorders, where multiple
hubs might be functioning abnormally (3, 62). It has also been
shown that greater resilience in a functionally derived task-driven
network is associated with greater inhibitory control cognitively
(63), a function that is often impaired in neurodevelopmental
and psychiatric disorders. Importantly, the measure incorporates
network topology in conjunction with the spatial distribution of
hubs, because it takes the degree, i.e., the number of connections,
of individual nodes into account.

Resilience quantifies Graph G’s robustness to targeted or
random attacks. Targeted attacks remove nodes in the descending

order of importance (i.e., number of connections). At each attack,
global efficiency is computed. Robustness is defined as the ratio of
the original efficiency with efficiency calculated after the attack.
This process is repeated until a predetermined number of hubs,
or all hubs are removed. In this case, to obtain the data shown in
Figures 4, 5, we removed the largest 90 hubs (nodes) associated
with each term in descending order and computed the relative
loss or gain in network efficiency after each removal.

Bootstrapping and Correlation
To visualize the significance of age effects and assess uncertainties
in the graph metrics with respect to age, we used nested
bootstrapping with 1,024 realizations. The nested bootstrap
procedure approximates the joint distribution of age x with the
age-dependent network metric f (yx), where f (yx) is the average
network metric over many subjects of age x (see notes below).
We observed n pairs (xi, yi), where xi is the age and yi the
corresponding imaging data for the ith subject. Ideally, we would
like to observe (xi, Yx), where yx denotes the (conceptual) average
of subjects chosen at random from a population, where each
subject is of age x.

Let f (y) denote the function that maps imaging data to a scalar
metric, describing some aspect of a network. Since yi contains
noise, to visualize and estimate uncertainties in graph metrics,
we can approximate (xi, ȳ x) by (X̄∗ , ȳ

∗
), where the ∗ denotes a

bootstrap sample. We can then evaluate f (yx̄∗) instead of f (yi).
Each realization of bootstrapping yielded one average network

metric and one value for the mean age of the group. Each data
point on the normalized density color map corresponds to one
realization of the bootstrap. To evaluate the relationship between
network quantity and age, we used Spearman correlation. The p-
values were computed after correcting for multiple comparisons
across the correction space of frequency bands, thresholds, and
graph metrics by controlling for a family-wise error rate using
maximum statistics through permutation testing (64).

Specifically, the correction for multiple comparisons was done
by constructing an empirical null distribution. For this purpose,
np = 10,000 realizations were computed by first randomizing age
and then correlating it with all graph metrics at all thresholds and
frequency bands, and finally taking maximum correlation value
across this permuted correction space. The corrected p-values
(pc) were calculated as:

pc =
2(n+ 1)

np + 1

where n is the number of values in the empirical null
distribution greater or lower than the observed positive or
negative correlation value, respectively. The factor of two
stems from the fact that the test is two-tailed. Correlations
resulting in significant p-values were then again tested using
Robust Correlation (65), which strictly checks for false-positive
correlations using bootstrap resampling.

LOESS Regression
LOESS, which stands for Locally Estimated Scatterplot
Smoothing, is a non-parametric regression method that
combines multiple regression models in a k-nearest-neighbor-
based meta model to create a smooth line through a time plot or

Frontiers in Neurology | www.frontiersin.org 6 June 2022 | Volume 13 | Article 814940186

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Khan et al. Cortical Hubs in Brain Development

scatter plot to help visualize the relationships between variables.
We used the non-parametric LOESS regression to fit a curve to
the data (66). To prevent overfitting in estimating bandwidth,
we used 10-fold cross-validation. We generated our predictive
model using the data in the training set, and then measured the
accuracy of the model using the data in the test set. We tested
a range of bandwidths from 0.01 to 0.99 with a 0.01 step. The
bandwidth resulting in the least sum of squares error was then
selected (67).

Neurosynth Decoding for Hubs Word Cloud
Generation
Neurosynth (https://neurosynth.org/) is a platform for large-
scale, automated synthesis of functional magnetic resonance
imaging (fMRI) data. It uses information from several thousand
published studies, reporting the results of fMRI studies, to
determine the statistical association between cortical areas, and
cognitive, disease, or function terms. Thus, every cortical vertex
is assigned a statistical score of how correlated it is with terms
within Neurosynth, and vice versa—every term in Neurosynth
has a ranked by strength of an association list of cortical vertices
associated with this term. This makes it possible to assess
functions or disorders associated with a particular anatomical
region in the cortex, with much greater statistical reliability than
would be possible via visual inspection, for instance.

For Neurosynth decoding, surface maps showing all the
hubs that exhibited significant age-dependent changes in the
betweenness centrality metric (correlation between age and the
betweenness centrality of nodes) in either the beta or gamma
band-mediated networks were transformed using FreeSurfer
from the surface to volume MNI space (mri_surf2vol). The
correlation maps were then run through the Neurosynth
decoding python module for the identification of the relevant
text terms.

The text data significantly associated with the brain regions
can be visually represented using word clouds (also known as
text clouds or tag clouds); the more a specific word appears
in a source of textual data, the bigger and bolder it appears in
the word cloud. The Word cloud was generated using the first
500 most relevant terms from a total of 2,911 terms generated
from the Neurosynth decoding module. The size of the words
(Neurosynth terms) corresponds to its relative correlation with
the maps as inferred by the Neurosynth decoding module. A
Python package entitled “a little word cloud generator” was used
for plotting the word cloud (https://github.com/amueller/word_
cloud). Note that these word clouds are inherently statistical
quantities, since only significant age-dependent changes were
fed to the Neurosynth decoding module, and only significant
correlations were included as part of the word clouds.

Maturation of Resilience, Tested Using
Neurosynth-Derived Hubs
To test the extent to which hubs identified in our primary
analysis overlap with hubs that correspond to specific functions,
we began by choosing 12 brain-function terms and extracting
from Neurosynth the first 90 nodes in descending order of size,
which corresponded to these terms. The sensory and cognitive
terms were chosen because they are all known to mature between

childhood and adulthood and represent a variety of cognitive
functions that are known to rely more heavily on bottom-
up or top-down processing. The DSM-5 terms were chosen
because all the disorders with the exception of autism are
likely to have an onset time in adolescence or early adulthood.
Autism was added due to its high prevalence and our prior
experience with the disorder, as well as due to the fact that
the severity of autism sometimes increases during adolescence
(68, 69). Note that we excluded psychosis and schizophrenia
despite the high prevalence of the onset during adolescence. This
is because these terms were not associated with any “reverse
inference” maps in Neurosynth, i.e., there is no selectivity
for which regions activate with these terms, hence making
them non-specific for target hubs. The terms were entered
exactly as they appear in the results section, except for the
“dorsal visual” term, which was not available on the Neurosynth
website. The term “dorsal visual” was generated to mirror the
term “ventral visual,” using the neurosynth python framework
(github.com/neurosynth), by specifying expression = “dorsal
and visual,” in the dataset.get_studies module.

Reverse inference maps from Neurosynth (27) were
downloaded for each of the examined terms at FDR = 0.05, as
listed in the results section. The resultant meta-analytic reverse
inference map, also known as the association test map, is a map
of z-scores from a two-way ANOVA, testing for the presence of
a non-zero association between the term(s) used and the voxels
activation map. These maps were then projected and registered
onto the FsAverage surface using pysurfer (pysurfer.github.io).
The mean Z-scores from this two-way ANOVA, averaged across
node’s vertices for each of the 448 nodes, were then computed
from these surface-projected maps. This mean z-score is shown
as a textured color map on the cortex. Nodes were then removed
from the graphs in order of their Neurosynth Z-scores, in
descending order, from the highest z-score (i.e., the largest most
important node) downwards. At each removal, the following
two steps were performed: first, global efficiency for each subject
was recalculated and normalized with respect to the original
global efficiency before removal. The result at point M was
the network resilience after the removal of M nodes. Then,
the resultant-normalized global efficiency was correlated with
age using Spearman correlation. The resultant correlations
were then corrected using maximum statistics by permutation
across bands (2 bands—beta and gamma), nodes removed (90
most connected, i.e., largest nodes), and terms (the 12 chosen
from the Neurosynth database) using the methods described
in the previous section. The resultant correlation is plotted at
the maximum correlation. The correlation value for each node
removal is shown as a color map on the top of the correlation
plot, marked with the white line at which LOESS regression
was plotted.

RESULTS

Neurosynth Decoding for Hubs Word Cloud
Generation
As noted in the introduction, in a prior study of resting state
networks, we assessed the developmental trajectory of the graph

Frontiers in Neurology | www.frontiersin.org 7 June 2022 | Volume 13 | Article 814940187

https://neurosynth.org/
https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Khan et al. Cortical Hubs in Brain Development

theoretic metrics of local and global efficiency from age 7
to age 29 by frequency band (22). Specifically, we tested the
maturation of these two graph theoretic efficiency metrics for
each of the 5 intrinsic cortical rhythms—delta (1–4Hz), theta (4–
8Hz), alpha (8–12Hz), beta (13–30Hz), and gamma (31–80Hz).
We found no significant age-dependent differences for either of
these metrics in the three slower frequency bands (delta, theta,
and alpha). In contrast, we found significant age dependence
of network efficiency in both the beta and gamma frequency
bands. More specifically, we found that resting state networks
mediated by the beta brain rhythm become more locally efficient
with maturation, i.e., more organized into clusters and connected
with nearby regions (Figure 2A), while networks mediated by
the gamma brain rhythm become more globally efficient with
maturation, i.e., prioritizing faster signal transmission between
distant cortical regions (Figure 2B). In the same prior study, we
used the betweenness centrality graph metric to identify which
of the hubs associated with each of the two networks changed
significantly in efficiency with age. Two categories of hubs
emerged from this analysis: hubs that grew—i.e., gained nodes—
with maturation, and hubs that shrunk—i.e., lost nodes—with
maturation. The distribution of the hubs that grew or shrunk
significantly with age in the beta band network is shown in
Figure 2C, and the distribution of the hubs that grew or shrunk
significantly with age in the gamma band network is shown in
Figure 2D.

In order to test our hypothesis regarding the functional roles
of the hubs found to grow or shrink with maturation within
each of the two identified networks (in Figures 2C,D), and
thus gain a better understanding of their functional significance,
we then tested which Neurosynth terms were most associated
with these hubs, for networks mediated by either the beta or
gamma bands. To that end, we extracted from Neurosynth the
list of terms associated with each of the regions marked in
Figures 2C,D, as ranked in order of their relevance for that
region, as ranked by Neurosynth. The statistically generated
word cloud associated with these hubs is shown in Figure 2E

for beta band-mediated networks and, in Figure 2F, for gamma
band-mediated networks. The word clouds within each panel
are further broken down by whether the hubs are growing with
maturation (red), or shrinking with maturation (blue), signifying
greater or reduced reliance on these hubs with maturation,
respectively. The larger text corresponds to a higher combined
statistical rank within Neurosynth across the corresponding
regions (growing/shrinking hubs).

Maturation of Resilience, Tested Using
Neurosynth-Derived Hubs
Network resilience is a metric that assesses the relative
significance of a hub for maintaining the network’s capacity to
integrate information by removing hubs from the network, from
largest to smallest in descending order and evaluating network
efficiency relative to the number of nodes removed. Because
resilience is evaluated using hubs, it is very well-suited to assess
the potential functions of hubs. We have previously shown that
resilience in beta band-mediated networks decreased with age,

while resilience in gamma band-mediated networks increased
with age, as illustrated in Figure 3 (22).

To further investigate the functional roles of the mapped
maturing hubs, we statistically mapped and identified the hubs
associated with specific meta-analytic terms and then tested
whether and how their removal from the network affected
the resilience of each of the two networks. To that end, 12
Neurosynth terms were chosen, with a focus on terms that
could help in differentiating bottom-up functions from top-
down functions. We began by selecting three terms associated
with basic visual or motor functions and, therefore, bottom-
up processes: “dorsal visual” stream, “ventral visual” stream,
and “motor system.” We hypothesized that these sensory-
centered networks are more strongly dependent on feedforward
connectivity, and, therefore, should show greater age-dependent
impacts in the gamma band. Indeed, we found that, for all
these terms, removing their associated hubs resulted in no
significant beta-mediated age effects. However, the removal of
these same hubs resulted in highly significant differences in the
gamma band-mediated age-dependent network resilience. More
specifically, for both the dorsal visual stream and the motor
system, removal of the associated hubs resulted in significantly
age-dependent resilience, with greater resilience (i.e., relatively
less decrease in global efficiency) in children relative to adults in
the gamma band. In contrast, removal of the hubs associated with
the ventral visual stream resulted in significantly age-dependent
resilience in the opposite direction in the gamma band, with
adults showing a significantly reduced impact on global efficiency
with removal of the hubs relative to children (Figures 4A–C).

We then repeated the same analysis with three terms
associated with cognitive functions known to be mediated
by top-down processes: “Attention,” “Executive” (for executive
function), and “Decision.” We hypothesized that networks
associated with these terms are more strongly dependent
on feedback connectivity and, therefore, should show greater
age-dependent impacts in the beta band-mediated networks.
Networks associated with these processes are also known
to mature substantially during adolescence. Contrary to our
hypothesis, the results for this group of cognitive terms were
mixed. Using the hubs from the attention network to test
resilience resulted in reduced resilience with age in both the
beta and gamma bands. This means that the younger age groups
were less severely impacted by the removal of the hubs than the
older age groups. Using the hubs from the executive function
network resulted in no effect of age and using the hubs from the
decision network resulted in age-dependent resilience in the beta
band only, with the older age group being less impacted than the
younger age group (Figures 4D–F).

Lastly, we tested resilience using the hubs associated with
DSM-5 disorders that are common in adolescence. This part
of the analysis was data driven rather than hypothesis driven,
and the aim was to test whether resilience changes associated
with each of these terms manifest differentially in the networks
mediated by the beta vs. the gamma bands. Specifically, we
tested the changes in the resilience of the networks, with
the removal of the hubs associated with the following terms:
“Autism,” “Obsessive-Compulsive,” “Eating Disorder,” “Anxiety,”
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FIGURE 2 | Spatial distributions of growing and shrinking hubs and their associated word clouds. (A) The LOESS plot (the solid white line) for the relationship

between age and local network efficiency of beta band-mediated networks. The individual data points are represented using a normalized density color map, where

each data point corresponds to one realization of the bootstrap procedure. (B) Like (A), for gamma band-mediated networks, and global efficiency instead of local

efficiency. (C) The spatial distribution of growing and shrinking hubs in the beta band-mediated networks. (D) Like (C), for the gamma band-mediated networks. (E)

Word clouds generated using wordle for the first 100 terms from Neurosynth for the beta band network- growing and -shrinking hubs. Larger font size reflects higher

probabilistic association. The top (red) cloud was generated using the growing hubs, and the bottom (blue) cloud was generated using the shrinking hubs. (F) Like (E),

for the gamma band-mediated networks. (A–D) have been adopted from Khan et al. (22).

FIGURE 3 | Resilience in beta and gamma-mediated networks follows opposite developmental trajectories. (A)-Left panel: Hubs identified from the beta band

network (Figure 2C) were first transformed to Neurosynth coordinates then and ranked by size. Approximately, 448 nodes in total were identified, and the order of

node removal for testing resilience, by node size, is color coded on the purple color bar, thresholded to avoid saturation. (A)-Right panel: After each removal of a

node, in ranked order, we evaluated whether there was a significant effect of age generated by the removal of that node. Shown is the LOESS plot for one instance of

the effect of age at 54% of nodes removed, where significance of age effect was maximal. The individual data points are represented using a normalized density color

map, where each data point corresponds to one realization of the bootstrap procedure. The top bar, labeled “Beta,” shows how significant the effect of age was at

any number of nodes removed, where significance is color-coded using the “p-value” color bars on the bottom (red for relatively increased resilience with age, blue for

relatively decreased resilience with age). The white notch on the bar under “Beta” is the snapshot, i.e., number of nodes removed at that point; we chose to plot to

show the weakening of resilience with age. (B)-Left panel: Same as (A)-left panel for the gamma band-mediated networks, using the hubs identified for the gamma

band-mediated network (Figure 2D). (B)-Right panel: Same as (A)-right panel for the gamma band-mediated networks.
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FIGURE 4 | Resilience in gamma and beta-mediated networks for relative networks associated with sensory and cognitive terms. This analysis replicated the process

shown in Figure 3, but instead of using the actual hubs of each network, it used the largest 90 hubs determined by Neurosynth to be associated with the term being

tested in descending order of size. The same hubs were used for both the beta and gamma-mediated networks. (A) Left side (subtitled with the relevant term): a

representation on the cortex of the cortical Neurosynth nodes associated with the term “Dorsal Visual,” with a rank indicated by the purple color bar at the bottom,

and thresholded as in Figures 3A,B. The middle panel (subtitled “Beta”): Resulting resilience for the beta band network for one “snapshot” of percentage of nodes

removed, marked by the notch in the bar under the word “Beta.” The right panel (subtitled “Gamma”): Same as the middle panel, but for the gamma band-mediated

network. (B) Same as (A) for the term “Ventral Visual.” (C) Same as (A) for the term “Motor.” (D) Same as (A) for the term “Attention.” (E) Same as (A) for the term

“Executive.” (F) Same as (A) for the term “Decision.” P-value color bars: red indicates resilience increased significantly with age, and blue indicates resilience

decreased significantly with age.

Depression,” and “Substance Abuse.” Removal of the hubs
associated with all of these disorders, with the exception of
autism, resulted in increased resilience in the older participants
relative to the younger participants in the beta band, similarly to
the cognitive decision network. In other words, the removal of
the hubs resulted in less decrease in global efficiency for the older
age group relative to the younger age group. In the gamma band,
an age-dependent change in resilience was observed for the terms
“autism” and “anxiety”; for both of these terms, in the gamma
band, resilience was significantly more impacted in the younger
age groups than in the older ones by the removal of the hubs
(Figures 5A–F).

DISCUSSION

This study aimed to test the hypothesis that maturing (growing or
shrinking) hubs associated with resting state networks mediated
by the beta frequency band are more likely to be associated
with top-down processing while maturing hubs associated with
resting state networks mediated by the gamma frequency band
are more likely to be associated with bottom-up processing. The
results showed that the hubs that we have previously shown

to change during maturation in the gamma band-mediated
network, which increased in global efficiency with age, were
more likely to be statistically associated with sensory and motor
terms in Neurosynth, and thus more likely to be associated
with feedforward, i.e., bottom-up processes. In contrast, the hubs
that we have previously shown to change during maturation
in the beta band-mediated network, which increased in local
efficiency with age, were more likely to be statistically associated
with more terms in Neurosynth that reflect more complex
cognitive function, and thus more likely to be associated
with feedback, i.e., top-down processes. These findings support
the hypothesis that intra-areal beta rhythm synchronizations
preferentially mediate top-down functions, while intra-areal
gamma rhythm synchronizations preferentially mediate bottom-
up functions.

These emergent patterns are consistent with the literature
in the field, showing a preferential role for the gamma band
in mediating bottom-up processes, even if not exclusively so,
and a preferential role for the beta band in mediating top-
down processes, even if not exclusively so. More specifically,
the pattern of shrinking the frontal hubs observed in the
beta band is consistent with studies showing reduced frontal
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FIGURE 5 | Resilience in gamma and beta-mediated networks for relative to networks associated with psychiatric terms. The same as Figure 4, but for the following

6 terms: (A) Autism. (B) Obsessive Compulsive. (C) Eating Disorder. (D) Anxiety. (E) Depression. (F) Substance Abuse.

task-related activation with maturation, for instance, for
inhibitory control, potentially due to increased efficiency of top-
down communication, putatively mediated by the beta band
(25). In line with this, the top Neurosynth terms emerging
from our decoding analysis for the beta band hubs were
“orbitofrontal” (shrinking hubs), “frontoparietal,” and “inferior
parietal” (growing hubs). These regions are associated with
processes that are generally considered to be top-down, such as
attentional control (70), executive control (71), and decision-
making. Gamma-mediated networks showed an increase in
global efficiency with maturation, which is consistent with the
putative role of gamma for mediating bottom-up connectivity
(17, 72) as new connections would have to be formed to
carry information forward to developing frontal brain regions.
Indeed, two of the top Neurosynth terms emerging from
our decoding analysis for the gamma band hubs that were
shrinking or growing with maturation were “primary motor”
(growing) and “lingual gyrus” (shrinking). The observation that
the motor, dorsal visual, and ventral visual systems showed age-
dependent resilience only in the gamma band may reflect the
fact that all of these processes rely heavily on feedforward inputs.
In other words, these regions are associated with processes
that are generally considered to be bottom-up, such as the
generation of motor movements (primary motor), and the
processing of visual inputs (lingual gyrus). Indeed, MEG in
humans (73) and non-human primate studies (72, 74, 75)
demonstrate that gamma rhythms flow up in a bottom-up
direction, spreading from lower-order visual sensory regions to

higher-order regions, while Beta rhythms flow in a top-down
direction, spreading from higher-order multimodal regions to
lower-order sensory regions.

The mixed results in the cognitive domain terms we tested for
overlap in the resilience-based analysis likely reflect the far more
complex processing and complex networks associated with the
chosen terms—attention, executive function, and decision. The
attention network is, indeed, known to be mediated heavily by
both feedforward and feedback inputs in line with our results
and reflects the significance of both beta and gamma to higher-
order functions. The executive function network showed no
age effect likely because, unlike the other terms, there were
no hubs associated with it in the reverse influence analysis,
which may reflect that the meta-analytics maps associated with
it in Neurosynth’s ranking are ambiguously defined. In contrast,
the decision network clearly relies most heavily on feedback
connectivity and, indeed, showed age-dependent resilience only
in the beta band. The differentiation between the three analyzed
groups of terms confirms that the presented results, indeed, have
implications for cognitive function.

The pattern observed for terms describing psychiatric
disorders using this analysis also suggests that the mediating
frequency bands have specific and differential roles. Notably, five
of the six chosen disorder terms are more commonly associated
with the later onset (adolescence to early adulthood) and showed
age-dependent resilience in the beta band. In contrast, the only
disorder on the list that is considered neurodevelopmental, i.e.,
early origin, autism, showed age-dependent resilience only in

Frontiers in Neurology | www.frontiersin.org 11 June 2022 | Volume 13 | Article 814940191

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Khan et al. Cortical Hubs in Brain Development

the gamma band. This suggests that beta band networks might
not undergo normal development in autism during adolescence,
and thus are particularly or more severely impacted in line with
prior findings (12, 22, 76, 77). Anxiety was the only term that
corresponded to networks showing age-dependent trajectories
in both the beta and gamma bands differentiating it from the
other tested terms. It is possible that these anxiety networks
are relatively poorly defined when anxiety type is not specified,
and, thus, multiple networks are captured by this term in
Neurosynth. Indeed, there aremany subtypes of anxiety disorders
that were not differentiated in our Neurosynth search (e.g., social
anxiety, performance anxiety, generalized anxiety, etc.). While
the other disorders tested are typically associated with specific
onset times windows (e.g., childhood for autism, adolescence
for eating disorders or depression), anxiety can arise at any
age, and, therefore, a maturation trajectory for its corresponding
networks may not be as well-defined as it is for the other disorder
terms tested.

A potential limitation of this paper is that it sought to build on
prior results to further refine our understanding of these results.
Because the prior results only showed age-dependent changes in
the beta and gamma band-mediated networks, we only focused
on these two networks here too and did not examine the hubs
associated with the delta, theta, and alpha bands. It is possible
that specific hubs within those networks do show age-dependent
differences even if the network as a whole does not. It is also
possible that age-dependent bandwidth changes within specific
bands, which were not considered in the prior study, might have
an impact on maturation trajectories in the slower frequency
bands in particular. Future studies are needed to further elucidate
these questions.

This study added meta-analytic tools to our prior study of
frequency-specific maturation of resting state networks. The goal
of these additional analyses was to assess the potential functional
significance of the hubs identified in the prior study. While it
is clear that both beta band and gamma band-mediated resting
state network networks are highly complex and contribute to
processing in a multitude of ways that are not necessarily or
exclusively direction specific, the Neurosynth-derived results are,
overall, consistent with our prior hypotheses that beta band-
mediated networks are likely to be more heavily weighted toward
top-down processing, while gamma band-mediated networks
are likely to be more heavily weighted toward bottom-up

processing. Mechanistically, both of these cortical rhythms are

mediated by GABAergic systems (15, 78); the maturation of
GABAergic processes extends well into adolescence and early
adulthood (79), and the maturation of GABAergic systems
likely also underlie the maturation of these cortical networks,
and thus hub topology. Thus, the maturation of GABAergic
systems is highly likely to influence the maturation of both
networks and mediates developmental changes in both bottom-
up and top-down processing. Lastly, this study demonstrates
that Neurosynth can be employed to investigate the functional
role of networks and their hubs, even in the absence of direct
functional data.
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Articulography and functional neuroimaging are two major tools for studying the

neurobiology of speech production. Until recently, however, it has generally not

been possible to use both in the same experimental setup because of technical

incompatibilities between the two methodologies. Here we describe results from a novel

articulography system dubbed Magneto-articulography for the Assessment of Speech

Kinematics (MASK), which we used to derive kinematic profiles of oro-facial movements

during speech. MASK was used to characterize speech kinematics in two healthy

adults, and the results were compared to measurements from a separate participant

with a conventional Electromagnetic Articulography (EMA) system. Analyses targeted

the gestural landmarks of reiterated utterances /ipa/, /api/ and /pataka/. The results

demonstrate that MASK reliably characterizes key kinematic and movement coordination

parameters of speech motor control. Since these parameters are intrinsically registered

in time with concurrent magnetoencephalographic (MEG) measurements of neuromotor

brain activity, this methodology paves the way for innovative cross-disciplinary studies of

the neuromotor control of human speech production, speech development, and speech

motor disorders.

Keywords: magnetoencephalography, speech motor control, speech coordination, speech disorders, speech

kinematics, Articulatory Phonology

INTRODUCTION

While it is relatively straightforward to measure the acoustic consequences of speaking with
audio recordings, measuring, and characterizing the physical movements (motor behaviors) that
produce acoustic speech signals presents some more formidable challenges. These challenges
are due to the inaccessible nature of many of the components of the vocal tract, which are
completely or largely hidden from direct view within the laryngeal cavity, the pharynx, the
nasal cavity, and the oral cavity. One approach is to simply limit measurements to line-of-sight
movements of the lips and jaw, which can be readily characterized with optical (video) tracking
and facial capture systems with added precision from placement of reflective (1–4) or active
(5) markers. When the focus of interest extends to non-line-of-sight movements researchers
must turn to techniques capable of imaging within the cavities of the vocal tract. X-ray
microbeam imaging with tongue pellets (6) was originally applied to track tongue movements,
and the capability to routinely image movements within the oral cavity has subsequently
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been extended with ultrasound techniques (7). The more recent
advent of real time speech MRI (8) extends speech imaging to
visualization of deep soft-tissue structures such as the velum,
pharyngeal wall, and the larynx [for a brief overview of these
methods, see (9)].

Electromagnetic articulography (EMA; also termed
electromagnetic midsagittal articulography or EMMA for
older versions of this technology) was developed to image within
the oral cavity by tracking movements of marker coils placed on
the tongue (10). Movement of the markers within an external
magnetic field induces a current in the marker coils and provides
high temporal and spatial resolution tracking of movements in
real time [see also e.g., Gonzalez et al. (11), Sebkhi et al. (12) for a
more recent and contrasting approach using permanent magnet
markers and external magnetic sensors]. The tracking coils can
also be placed on the lips and jaw and hence this technique
provides a powerful method for studies with a focus of interest
on intra- and inter-articulator coordination during speech
production (13). Relative to other speech tracking techniques,
EMA provides more access to the oral cavity than optical
methods, better spatiotemporal resolution than ultrasound,
and the equipment is considerably more accessible for routine
speech research than X-ray beam and MRI speech imaging. As a
consequence, EMA has become a central and de-facto standard
methodology for research in basic speech science (14) and in
neurological disorders of speech motor control (15, 16).

Commercial EMA systems, the Carstens AG series (Carstens
Medizenelektronik GmbH, Bovenden, Germany), the recently
discontinued NDI Wave [NDI, Waterloo, Canada; see (17)]
and other speech tracking methodologies have been crucially
important in advancing our understanding of normal and
pathological speech behaviors at a very detailed level within
the vocal tract. At the same time at the level of the brain,
functional neuroimaging techniques have strongly advanced
our understanding of the neural activities in centers that
control speech movements of the vocal tract. At the present
time, however, there remains a fundamental mismatch between
the detailed kinematic information available from speech
tracking and our understanding of how these parameters are
represented and implemented by neural systems. This is because
neuroimaging scanners are incompatible with conventional
speech tracking technologies (with the exception of video
tracking): Ferromagnetic components of movement tracking
devices cannot be used within the strong magnetic fields of MRI
scanners; and conversely, the electromagnetic fields generated
by these devices would swamp the magnetic sensors of MEG
scanners. As such, neuroimaging and articulographic studies of
speech motor control are typically conducted separately, usually
by separate teams of investigators, and it remains difficult to
reconcile in detail the results obtained from central vs. peripheral
studies of speech neuromotor control. As a consequence, the
two types of methods have conventionally been developed and
applied in quite separate academic and scientific disciplines:
Articulography has been the preferred method in speech science,
experimental phonology and speech language pathology, while
neuroimaging is a preferred technique in neurolinguistics and
cognitive neuroscience. Hence neuroimaging studies have not

been able to make use of the detailed information about speech
movements of the major articulators provided by articulography,
relying instead on simple indices like speech onsets that
provide only indirect and very limited indications of the precise
movement trajectories of individual articulators. Conversely,
articulography measurements have no access to information
about the neural activities that generate and control speech
movements. The neuroimaging and articulographic aspects of
speech production have therefore developed to date as separate
and largely independent literatures.

Recent advances in our understanding of speech motor
control indicate that it would be advantageous to have access to
both types of information in studies of speech production. Most
notably, a study by Chartier et al. (18) used ultrasound and video
recording of speech movements in conjunction with invasive
electrocorticography (ECoG) measurements of neural activity
in speech motor cortex of human patients prior to surgery for
intractable epilepsy. This study reported that speechmotor cortex
primarily encodes information about kinematic parameters
derived from measurements of the speech movements, rather
than acoustic or phonemic parameters derivable from the
acoustic speech signal.

The recent development of a magnetoencephalograpic (MEG)
scanner-compatible speech tracking system (19) finally opens
the door for studies that combine high precision measurements
of articulator movements with concurrent measurements of the
brain activies that control them, at the same time scale and within
the same experimental setup. Alves et al. (19) termed the speech
tracking system “Magnetoencephalography for the Assessment
of Speech Kinematics (MASK).” The MASK system1 tracks the
independent motion of up to 12 lightweight coils similar in size
and shape to the tracking coils used in EMA [see Alves et al. (19),
Figure 1]. In an EMA setup, position and orientation of coils
are computed from electrical currents passively induced by their
movements within a static magnetic field. In contrast, MASK uses
active coils energized by sinusoidal currents, whose associated
magnetic fields are measured by the MEG sensors. By driving the
tracking coils at frequencies greater than about 200Hz, coil fields
can readily be separated by low pass filtering from brain acitivities
that are primarily found at frequencies less than about 100Hz.
Coil positions are then localized using the same computational
algorithms used in conventional MEG to localize and track head
positioning and movement. Importantly, this system does not
require line-of-sight tracking, allowing for measurements from
all oral articulators including the tongue. As Alves et al. (19) have
reported, the MASK system can track articulator movements at
rates up to 50 cm/s. The spatial accuracy of MASK is dependent
on the distance of the tracking coils from the MEG sensor array.
For coils close to the array (e.g., tongue) accuracy is <1mm
relative position error (as with standard MEG head position
indicator coils); for coils more distant from the helmet sensor

1The current study used a second generation of the equipment described by Alves

et al. (19), with improved electronic design, an increase in number of channels

(from 12 to 16), and an increased current output per channel (from 1 to 2mA) for

greater signal amplitude and improved signal to noise ratio.
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FIGURE 1 | Top: Acoustic and kinematic data for repeated [ipa] stimuli at normal rate in MASK (left) and EMA (right). Shown are (from top to bottom) waveform with

audio signal, tongue body gesture (TB), and bilabial constriction (BC). Vowel positions are indicated for the 5th reiteration in TB signal and lip closure is indicated for

BC signal at same time interval. Bottom: Acoustic and kinematic data for repeated [api] stimuli at normal rate in MASK (left) and EMA (right). Shown are (from top to

bottom) acoustic signal, tongue body gesture (TB), and bilabial constriction (BC). Vowel positions are indicated for the 4th reiteration in TB signal and lip closure is

indicated for BC signal at same time interval.

array (e.g., lower lip) spatial accuracy decreases in a non-linear
manner to∼1–2 mm.

The current study extends the description of MASK motion
tracking capabilities by Alves et al. (19) with a description
of MASK capabilities for extraction of higher level kinematic
and coordination parameters from the basic movement tracking
time series. We aimed to characterize these parameters for
speech productions elicited within a standardized reiterated
speech production paradigm; to provide a comparison of
MASK-derived kinematics with those derived from tracking
signals from a conventional EMA system; and to ground
the current results from both techniques within the context

of the published literature on speech motor control. For
the purposes of this “paves the way” special topic issue,
we restrict the scope of the current report to a detailed
description of MASK-derived kinematics from two participants
and will describe the downstream processing of speech-related
neuromagnetic data from a larger group of participants in
a separate report. Accordingly, the present results pave the
way for novel studies of neuromotor control of speech, by
providing precise kinematic and coordinative characterization
of speech movements, that are intrinsically coregistered in time
with MEG measurements of the brain activities that control
those movements.
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METHODS

Participants
Three healthy adults with typical developmental histories
participated in this study: E1 (F, 30 years, bilingual
Hindi/Canadian English, Hindi native speaker); M1 (F, aged
19 years, unilingual native Australian English speaker); M2
(F, 31 years, bilingual Mandarin/Australia English, Mandarin
native speaker). E1 participated in the EMA experiment at the
Oral Dynamics Lab at the University of Toronto; M1 and M2
participated in the MASK experiment at Macquarie University.
All procedures were approved by the University of Toronto and
Macquarie University Human Research Ethics Committees.

Materials
Time-aligned audio and EMA position signals were recorded
using the AG501 system (Carstens Medizinelektronik GmbH,
Germany) with a large helmet size and automated calibration.
EMA coils were attached on the mid-sagittal vermilion border
of the upper and lower lip, tongue tip (1 cm from the apex),
tongue body (2 cm from the tongue tip), and tongue dorsum
(4 cm from the tongue tip) using surgical glue (Periacryl Blue;
Gluestitch). Three additional coils were placed at fiducial points
on participant’s left and right preauricular points and nasion
for reference purposes (20, 21)]. After coil attachment, the
occlusal bite plane was measured using a custom-made plastic
device with two coils attached in the midline at a fixed
distance of 3 cm. Before the actual session started, positional
information was retrieved to create a standard reference frame
(22). Raw movement signals were sampled at 200Hz and
three-dimensional positions over time were calculated from the
amplitude recordings (23). The acoustic signal was sampled at
16KHz. Measurements were carried out with participants in
upright seated position.

MASK tracking data and neuromagnetic brain activity were
recorded concurrently with a KIT-Macquarie MEG160 (Model
PQ1160R-N2, KIT, Kanazawa, Japan) whole-head MEG system
consisting of 160 first-order axial gradiometers with a 50-
mm baseline (24, 25). MEG data were acquired with analog
filter settings as 0.03Hz high-pass, 1,000Hz low-pass, 4,000Hz
sampling rate and 16-bit quantization precision. Measurements
were carried out with participants in supine position in a
magnetically shielded room (Fujihara Co. Ltd., Tokyo, Japan).
The occlusal plane and head alignment fiducial points were
measured using a hand held digitiser (Polhemus FastTrack;
Colchester, VT) and a plastic protractor with three sensors (13).
MASK coils were placed at mid-sagittal positions as described
above for EMA. Tongue sensors were attached with Epiglu
(MajaK Medical Brisbane; Australia), while lip sensors were
attached with surgical tape. Participant’s head shapes and fiducial
positions were digitized (Polhemus FastTrack; Colchester, VT).
Marker coil positions affixed to an elastic cap were measured
before and after each recording block to quantify participants’
head movement, with a maximum displacement criterion of
<5mm in any direction.

Time-aligned speech acoustics were recorded in an auxiliary
channel of the MEG setup with the same sample rate as the

MEG recordings. An additional speech recording was obtained
with an optical microphone (Optoacoustics, Or-Yehuda, Israel)
fixed on the MEG dewar at a distance of 20 cm away from
the mouth of the speaker; and digitized using a Creative sound
blaster X-Fi Titanium HD sound card with 48 kHz sample
rate and 8-bit quantization precision. The higher sample rate
acoustic recordings were time-aligned off-line with the 4,000Hz
auxiliary speech channel to bring them into time register with the
neuromagnetic data.

Experimental Protocol
Three non- word productions were used as experimental stimuli:
Two disyllabic sequences with a V1CV2 structure /ipa/ and /api/;
and one trisyllabic sequence /pataka/. The di- and tri-syllabic
non-words were selected for measuring intra- (between single
articulator movements) and inter- (between consonant and
vowel gestures) gestural coordination within a single task (26).
The same reiterated stimuli have been used in previous studies
investigating speech motor control strategies in normal and
in disordered populations (26–29). Non-word stimuli with no
linguistic information avoid familiarity issues (29) and have
been widely used in the literature to investigate normal and
pathological function in speech motor control (30, 31).

Participants were presented with a fixation cross on a display
screen and instructed to take a deep breath. The stimulus
non-word then appeared on the screen for 12 s. For the normal
rate production, participants were required to utter productions
at a normal, comfortable rate as they would do while conversing
with a friend, until the stimulus non-word disappeared from
the screen. For the faster rate, they were instructed to produce
the stimuli as fast as possible while maintaining accuracy (28).
Following 24, we refer to the reiterated productions generated
within the span of a breath intake as a “trial set.” For the EMA
session, the subject repeated two trial sets of each production
in a randomized order. A short break was provided after
each trial set. Participants generated about 15–18 individual
productions in each normal rate trial set; and about 20–25
individual productions in each faster rate trial set. Since 100+
individual trials (in this case, individual non-word productions)
are typically required for downstream analyses of MEG data, in
the MASK sessions the number of trials was increased to 10 trial
sets at each rate. For both types of sessions participants were
instructed and trained to avoid incorrect speech productions or
head movements and they were required to produce each task
correctly at the correct rate before data acquisition began.

Analyses
Magneto-articulography for the Assessment of Speech
Kinematics coil position and orientation data initially localized
in the MEG sensor frame of reference at a sample rate of
25Hz was transformed off-line to the occlusal plane and low
pass filtered at 6Hz. These coil locations, orientations, signal
magnitudes strength were imported to EGUANA software
(9, 21). All tracking data were initially screened for movement
artifacts of the acoustic and kinematic signals and subsequent
analyses focused on accurate productions (32). /ipa/ and /api/
productions contain a bilabial closure gesture (BC) for the
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voiceless stop /p/ and two tongue body constriction gestures
(TB) for the vowels production /i/ and /a/. The BC gesture was
calculated from the two dimensional (x = front-back, y = up-
down). Euclidian distance of the upper and lower lip positions
and the TB gesture was derived from the two dimensional (x,y)
Euclidian distance of the tongue body and the nasion reference
coil [see (26)]. /pataka/ contains a bilabial closure (BC) for the
voiceless stop /p/, a tongue body (TB) constriction gesture for the
vowel /a/, a tongue tip (TT) gesture for the alveolar sound /t/ and
a tongue dorsum (TD) gesture for the velar sound /k/. The TT
gesture was calculated by the two dimensional (x,y). Euclidian
distance of the tongue tip and the nasion reference coil. The TD
gesture was calculated by the two dimensional (x,y). Euclidean
distance of the tongue dorsum and the nasion reference coil.

Computation of kinematic parameters (amplitude, duration,
peak velocity, stiffness, and velocity profile parameter; VPP) were
performed for the opening and closing movements of the BC and
TB gestures:

• Movement amplitude (with units of mm) refers to the
maximum displacement from a peak to a valley and vice versa.

• Movement duration (ms) refers to the time needed for the
gesture to move from a peak to a valley and vice versa.

• Peak velocity (mm/s) refers to the maximum velocity achieved
by the gesture while moving from a peak to a valley and
vice versa.

• Stiffness (1/s) refers to the slope of the relationship between
peak velocity and amplitude (33).

• Velocity profile parameter (VPP; arbitrary units), is the
stiffness ∗ duration (34).

Relative phase analysis was used to quantify two types of speech
coordination (26, 35):

• Intra-gestural coordination refers to coordination between
two individual articulators, in which the coordination of their
movement is controlled by the same gesture while.

• Inter-gestural coordination refers to movements controlled by
two separate gestures.

As a first step, the power spectra of the BC and TB signals of each
trial were computed with the Fourier transform using a frequency
resolution of 0.1Hz. The frequency component with greatest
power provides a good estimate of the dominant influence on
movement patterning over time [(26); see also Namasivayam
et al. (36) for more details] and was used as an input for
relative phase analysis. A point-differentiation technique was
used to derive velocity vs. time from the position signals. The
position and velocity signals were then band-pass filtered using
the dominant frequency ±0.2Hz and amplitude normalized.
Continuous estimates of relative phase were obtained from
the normalized position and velocity functions (28). For intra-
gestural coordination, relative phase signals were based on the
vertical motion of the upper and lower lip articulators, while for
inter-gestural coordination relative phase signals were obtained
from gestural data. More specifically, for /ipa/ and /api/ inter-
gestural coordination was based on BC vs. TB gestures while
for /pataka/ inter-gestural coordination was based on TT vs. BC
gestures (for /p/ vs. /t/) and TT vs. TB gestures [for /t/ vs. /k/;
see (26)].

RESULTS

Raw Tracking Results
The productions /ipa/ and /api/ provide a useful contrast in their
mirrored positionings of the tongue and lips and the contrasting
positionings are clearly observed in both the MASK and EMA
measurements of tongue and lip gestures. In Figure 1 peaks and
valleys2 indicate the high and low positions achieved by the
BC and TB gestures during the production of /api/ and /ipa/.
M1 data are from the MASK system and E1 data are from the
EMA system. Thus, valleys occur during the bilabial constriction
gesture and the tongue body gesture for /i/ and peaks occur for
the tongue body gesture of /a/. For /api/, the /p/ closure happens
during the upwardmotion of the TB going from the low /a/ to the
high /i/ position. In contrast, for /ipa/, the /p/ closure happens
during the downward motion of the TB going from high /i/ to
low /a/ position. The gestural movements of /ipa/ and /api/ can
be seen asmirror images, where the relative timing of themotions
of TB and BC gestures is reversed.

Kinematic Properties of Individual Speech
Gestures
Figure 2 depicts relationships between kinematic parameters
(amplitude, duration, and peak velocity) measured for bilabial
closure and tongue body gestures during the production of /ipa/
for participants M1 and M2. These data sets are derived from
10 trial sets (each consisting of about 10 productions) for each
of normal and faster rates and are shown for both opening and
closing movements.

Figures 2, 3A shows that movement peak velocity increased
as an overall linear function of movement amplitude, or in other
words that greater movement peak speeds are associated with
larger movement distances. The clustering of faster rates in the
upper right quadrant of both BC and TB plots implies that M1
used a strategy of using greater movement amplitudes at the
faster rate. Such speaking strategies can be highly idiosyncratic
but in general studies have reported the opposite strategy,
i.e., smaller movement amplitudes with faster speaking rates
(29, 37). Opening and closing movements show comparable
amplitude/velocity relationships indicating that these parameters
are controlled in a similar manner regardless of movement
direction. This roughly linear covariation of amplitude and peak
velocity is a well-known property of speech kinematics and has
been well-described for a variety of articulators, gestures and
utterances (33, 38).

Figures 2, 3B depicts the covariation of kinematic stiffness
with movement duration (STIF = peak velocity/amplitude in
units of 1/s) showing that stiffness systematically decreases as a
curvilinear function of durations less than about 200ms while the
relationship plateaus into a relatively flat line at greater durations.
Clustering of the faster rates is apparent in the lower left quadrant
in both BC and TB plots, as faster rates would be expected to

2For TT, TB and TD gestures low position (valley) indicates being closer to palate,

and high position (peak) indicates further away from palate. For BC, low position

(valley) indicates lips are close together and high position (peak) means lips are

further apart. For individual movements, peaks and valleys correspond to the

direction for that specific dimension (e.g., peak is up and valley is down for

y-dimension).
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FIGURE 2 | Covariation of kinematic parameters of BC and TB gestures for participant M1 for productions of [ipa]. (A) Peak velocity vs. movement amplitude. (B)

Stiffness vs. duration. (C) Velocity profile parameter vs. duration. (D) Velocity profile parameter vs. amplitude.
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FIGURE 3 | Covariation of kinematic parameters of BC and TB gestures for participant M2 for productions of [ipa]. (A) Peak velocity vs. movement amplitude. (B)

Stiffness vs. duration. (C) Velocity profile parameter vs. duration. (D) Velocity profile parameter vs. amplitude.
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have shorter durations. The reason for the greater dispersion
of BC data points at the faster rate is unclear, but overall, the
plots are entirely comparable to those described previously in the
literature (34).

Velocity profile parameter (VPP = STIF ∗ duration scaled in
arbitrary units) is a numerical index of the shape of the velocity
profile of a speech movement, whose value varies as a function
of the shape of the basis velocity function. As such, velocity
profiles have application in motor control both for determining
the shape of the potentially underlying control variable (e.g., a
purely sinusoidal basis function would have a VPP of pi/2); and
for determining if a control parameter pertains or changes across
linguistic conditions. Figure 2D shows that TB VPP is essentially
constant across the range of amplitudes for opening and closing
movements and for normal and faster speaking rates (note that
data points for the faster rate are clustered within a narrower
range than for normal rate). With greater dispersion of data
points, the BC data clearly clusters in a horizontal line centered
at a VPP value that is virtually identical to that obtained for TB.

A key contrast in the VPP control regimes for BC and
TB is shown in Figures 2, 3C, showing that TB VPP remains
constant across durations while BC VPP diverges sharply
from the horizontal to a fairly linearly increasing function for
durations greater than about 175ms, indicating that BC, but
not TB, systematically scales the velocity control parameter for
longer durations. Different velocity control functions at longer
durations could be necessitated by the different elastic and
hydrostatic properties of the lips and tongue.

In summary, the data of Figures 2, 3 show that kinematic
properties derived from speech movements measured with the
MASK system demonstrate with high fidelity a number of key
kinematic features that have previously been described in the
literature. Since these features are highly robust to multiple
sources of variance (e.g., rate, gender, developmental age) in
human speech they are described as “invariant” properties of
speech kinematic movements. Such invariant properties are
widely considered to reflect key aspects of motor control of
human speech.

Comparison of Kinematic Features
Obtained From MASK and EMA
Figure 4 recapitulates the kinematic relationships described for
subjects M1 and M2 (Figures 2, 3), along with the same data
plotted for subject E1. As the EMA session comprised only 2 trial
sets, to facilitate comparison we present data only for the first two
trial sets for the M1 and M2 participants as well. Even with the
lower data sampling, all of the main kinematic features described
for M1 and M2 are also evident in the E1 plots: the generally
linear increase in peak velocity as a function of movement
amplitude (Figure 4A); the curvilinear relationship between
stiffness and movement duration (Figure 4C); a generally linear
relation between VPP and duration for the BC movement
(Figure 4B); and a flat relation between VPP and amplitude, with
notably greater dispersion of data points for the BC movement
relative to the TB movement. Consistent clustering of faster vs.
normal speaker rates are also evident for the TB movements in
Figures 4B–D.

In summary, the key kinematic relationships were clearly
replicated in the two MASK participants M1 and M2; and
both sets of MASK kinematic plots are entirely comparable
with those obtained for EMA participant E1. Keeping in mind
that the three participants had divergent language backgrounds
(Hindi, Mandarin, Australian native English), and that the
MASK and EMA experiments were carried out in separate
laboratories, these results further support the interpretation that
these kinematic profiles reflect relatively stable properties of
speech motor control.

Coordination of Speech Movements
The preceding analyses have focussed on kinematic properties
of individual speech movements: we now turn to the matter
of coordination of articulator movements within and between
speech gestures. In studies of speech motor control coordination
is often defined in terms of relative timing as indexed by relative
phase between two articulators or two gestures [(26, 28, 39);
for alternative conceptualizations of coordination see for e.g.,
Pearson and Pouw (40) and Vilela Barbosa et al. (41)]. As
the present study employed the same stimulus protocol as van
Lieshout et al. (26), we adopted their analytic approach in
order to provide a direct comparison to their published results.
van Lieshout et al. (26) distinguished between “intra-gestural
coordination” wherein relative phase signals are based on upper
and lower lip movements; and “inter-gestural coordination”
where relative phase is calculated from two gestures. TB vs. BC
phase coordination was computed for the /ipa/ and /api/ tasks.
For /pataka/ TT vs. BC was used to index coordination of tongue
and lips movements related to the bilabial and alveolar sound
productions /t/ and /p/; while TT vs. TB was used to index phase
coordination for the alveolar and velar productions /t/ and /k/.

We would expect the relative timing of the UL and LL
to be consistent across different speaking rates to maintain
intelligibility, and indeed intra-gestural coordination of UL and
LL in the three speech tasks (Figure 5, left side) showed highly
similar relative phase relationships across normal and faster
speech rates in all three participants. While the three individuals
showed idiosyncratic patterns of intra-gestural coordination
across the three speech tasks, the standard deviation bars indicate
that the overall variance in intra-gestural coordination was very
low for a given production within a given individual. Overall,
these results indicate that the relative timing of lip movements
is very stable for a given gesture in a specific phonetic context
within a given speaker.

As noted above (raw tracking results) the gestural movements
of /ipa/ and /api/ can be seen as mirror images, where the
relative motions of tongue body and BC gestures are reversed.
This reversal is readily apparent in the inter-gestural timing plots
of Figure 5 (right side), in all three participants. Notably, the
three participants show highly similar relative phase values for
individual productions that are preserved across speaking rates,
and hence highly comparable patterns of relative phase across
the four gestures plotted. These inter-gestural patterns are also
entirely comparable to the inter-gestural patterns described for
the same gestures by van Lieshout et al. [(26), Figure 9]. Taken
together, the present results and the results of van Lieshout et al.
(26) indicate that inter-gestural coordination is a highly stable
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FIGURE 4 | Covariation of kinematic parameters of BC and TB gestures for M1, M2 and E1 for productions of /ipa/. (A) Peak velocity vs. movement amplitude. (B)

Stiffness vs. duration. (C) Velocity profile parameter vs. duration. (D) Velocity profile parameter vs. amplitude.
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FIGURE 5 | Mean and SD of relative phase for inter- and intra- gestural coordination for participants M1, M2 and E1 at normal and faster rates for productions of [ipa],

[api] and [pataka].
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motor control parameter both within and between participants
for these types of tasks.

DISCUSSION

A key characteristic of human speech is that speech goals are
consistently achieved in the face of a truly remarkable amount of
variation in the conditions under which they must be expressed.
The design of the present study captures some aspects of
these variable demands: speech movements were measured from
participants with widely varying speech acquisition backgrounds,
in different laboratories in different countries using different
tracking equipment, in upright vs. supine speaking positions,
and at different speaking rates. The orderly patterns of speech
behaviors that emerge in the present results are thus suggestive
of parameters that play key roles in the motor control of
human speech.

Such findings conform well to concepts within state speech
motor control models such as Articulatory Phonology (AP)
and the associated Task Dynamics framework (TD), which
hold that articulators create functional relationships to cause
local vocal tract constrictions (42). The abstract representations
of these articulatory events during speech production are
called gestures, the basic units of phonological contrasts (43).
Gestures are individual and context-invariant units which can
be combined into larger sequences such as syllables, words,
and phrases to create meaningful language-specific contrasts.
Moreover, gestures are task-specific vocal tract actions which
can be implemented by coordinated activity of the articulators
in a contextually appropriate manner (44). According to Gafos
(45), gestures are described as dynamic spatio-temporal units.
In other words, a gesture can be described as “a member of a
family of functionally equivalent articulatory movement patterns
that are actively controlled with reference to a given speech-
relevant goal” (46). A key feature of the AP/TD framework is
that gestures can be described within a model of a physical
system—the damped mass spring model—with well understood
mathematical characteristics.

Damped Mass Spring Model
In the AP/TD framework, the gestural movements incorporate a
specific type of dynamical system, a point-attractor system which
acts similarly as a dynamical, damped mass-spring-system, i.e.,
movement of a mass attached to a spring moving toward to an
equilibrium position, which produces and releases constrictions
of the end-effectors that are being controlled (47, 48). In other
words, the starting position of a gesture is analogous to the
position of the mass attached to the stretched spring and the
equilibrium position is the target position which aimed to be
approached by the mass after releasing the spring (47). In
this damped mass-spring model there is a specific relationship
between the kinematic properties of the gestures: the movement
amplitude and movement peak velocity are linearly correlated,
and the inverse relationship is observed between the ratio of
the peak velocity and amplitude (gestural stiffness) to movement
duration. Our results are consistent with the main relationships
described in the literature regarding the control system which
governs speech gestures (49). More specifically, we found that

stiffness increased with longer durations in both BC and TB
gestures for all the participants measured with MASK and EMA
while the VPP index tends to increase (26, 50). Velocity profiles
of normal movements were multipeaked [which indicates a less
smooth velocity profile, (51)] while velocity profiles of faster
movements were single peaked. The values of VPP decreased
in faster rates; values were ∼1.57 (π/2) indicating a sinusoidal
velocity profile as defined in a frictionless mass-spring model
of single axis (51). Moreover, the peak velocity was linearly
correlated with movement amplitude thus peak velocity values
tend to increase with larger amplitudes; and VPP was not
correlated with amplitude as indicated by the straight lines in
scatterplots (Figures 2–4).

Into the Brain
MASK speech tracking data is intrinsically co-registered in time
with concurrent MEG measurements of brain activity, providing
new capabilities for moving studies of speech motor control
from the periphery into the brain. Several recent neuroimaging
studies point the direction for how the detailed kinematic
and coordinative data described here can be leveraged to
address fundamental questions of neuromotor control of speech
movements in the human brain. Representational similarity
analysis (RSA) (52, 53) is a commonly-used neuroimaging
analytic approach which characterizes brain representations
in terms of the dissimilarities in brain activity obtained
between each pair of experimental conditions in a multivariate
experimental design. In their fMRI and MEG study of
neuromotor control of hand movements, Kolasinski et al. (54)
obtained detailed tracking data of hand movements with a data
glove setup as well as electromyographic (EMG) measurements
ofmuscle activity. Using RSA they demonstrated spatially distinct
patterns of fMRI activity associated with kinematic and EMG
measurements associated with caudal and rostral regions of
hand motor cortex respectively; as well as temporally distinct
patterns of MEG activity associated with pre-movement and
post-movement time windows respectively.

Comparable RSA analyses have been successfully applied to
speech movements in several recent fMRI studies. Carey et
al. (55) constructed RSA dissimilarity matrices from real-time
MRI measurements of laryngeal movements while participants
produced steady-state vowels in a speech imitation paradigm.
They applied these to fMRI data obtained in a separate
session from the real-time MRI session. Their results showed
widespread and robust cortical and subcortical activations during
per-articulatory sensorimotor transformations during speech
imitation. Zhang et al. (56) have extended this approach using
theoretical articulatory dissimilarity matrices based on known
articulatory dimensions (articulation manner, articulation place,
and voicing) of parametrically-varied CV productions; as well
as participant-specific acoustic dissimilarity matrices based on
acoustic recordings. Their analyses showed that articulatory and
acoustic information was represented in distinct and well-defined
regions of motor and auditory cortex, respectively. In a recent
MEG study, Dash et al. (57) recorded brain signals and jaw
motion while participants produced short phrases, and used a
decoding model to successfully map brain activity to jaw motion.
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The present results show that MASK provides the capability,
for the first time, for deriving subject-specific articulatory
contrast matrices, based on well-established and robust motor
control parameters, in the same experimental setup as the brain
recordings and in temporal and spatial co-register with the
brain data.

A reviewer of a previous version of this manuscript has
noted that it would potentially be of considerable interest to
have the capability to record MEG neural activity at a sampling
rate comparable to that used in acoustic analyses of speech, i.e.,
16 kHz or greater, allowing researchers to probe MEG data for
brain activities associated with high frequency acoustic features
such as fricatives, in addition to the lower frequency speech
movement signals addressed in the present study. This is likely
to be possible in the future with ongoing advances in digital
storage and processing capacities, but maximal sampling rates of
current commercial MEG systems are typically in the range of
circa 4 kHz. For the purposes of the present study the acoustic
data serve as markers of where events have occurred and the
4 kHz sampling rate is sufficient for lower frequency features such
as formants. The time-aligned high sample rate audio signal is
used where a more detailed inspection of the acoustic signals is
required (e.g., to assess speech errors).

Implications for Developmental and
Clinical Studies
The problem of how humans develop speech is a central,
unanswered question of neurolinguistics. The topic has been and
remains conspicuously under-studied (58). Studies of this type
will inform and constrain theoretical models of language and
will have practical implications for significant global medical
and health issues. Speech and language problems are the
most common and frequent developmental concerns of parents
and of speech-language pathologists, general practitioners and
pediatricians. These include developmental speech disorders
such as stuttering and childhood apraxia of speech; and also, the
now well-replicated finding of a greater incidence of comorbid
motor coordination and planning problems in children with
language impairments (59).

The neural control of speech is also highly relevant to acquired
apraxias, and to the burgeoning fields of speech prosthetics
and brain computer interfaces (60). It bears on the study of
hearing loss, which has profound effects on speech production,
and hearing technology including hearing aids and cochlear
implants. A greater understanding of the neurophysiology
of speech motor control is essential for grappling with the
problem that medical interventions can have different effects
on speech and non-speech motor control systems: this has
been reported for treatments as diverse as levodopa therapy,
pallidotomy, fetal, dopamine transplants, and pallidal or thalamic
stimulation (61).

CONCLUSIONS

The present results demonstrate that the MASK technique
can be used to reliably characterize movement profiles and

kinematic parameters that reflect development of speech motor
control, while simultaneously measuring the brain activities
that provide this control. MASK brings articulography into the
brain itself and thereby bridges a crucial methodological gap
between the fields of speech science and cognitive neuroscience.
The importance of this gap has recently been emphasized by
invasive ECoG studies which have demonstrated that speech
motor cortex operates by encoding and computing speech
kinematic parameters that can be derived only with detailed
measurements of the movements of individual articulators,
including non-line-of-sight measurements of the oral cavity. This
new capability sets the stage for innovative cross-disciplinary
efforts to understand the neuromotor control of human speech
production.

The impacts of such research flow from the fact that
articulography, the current state-of-the-art for studies of speech
motor control, measures only the final output of the brain’s
speech production system. Concurrent MEG neuroimaging
powerfully extends the state-of-the-art into the brain itself.
In turn, concurrent articulography promises to dramatically
improve the precision and inferential power of MEG measures
of speech-related brain activity. These studies can therefore
facilitate a shift in the current focus of the field and set the
stage for new collaborative efforts across a number of disciplines
including linguistics, kinesiology, developmental psychology,
neuroscience and speech pathology. The results will bear on
and eventually inform diagnostic methods and interventions
for speech fluency and other motor speech disorders, which
are the most common developmental disorders encountered
by families, speech-language pathologists, pediatricians, and
general practitioners.
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