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Comprehensive Review on the
Dynamic and Seismic Behavior of
Flat-Bottom Cylindrical Silos Filled
With Granular Material
Sulyman Mansour1*, Luca Pieraccini 2, Michele Palermo2, Dora Foti 1, Giada Gasparini 2,
Tomaso Trombetti 2 and Stefano Silvestri 2

1Department DICAR, Polytechnic University of Bari, Bari, Italy, 2Department DICAM, University of Bologna, Bologna, Italy

The seismic design of industrial flat-bottom ground-supported silos filled with granular
material still presents several challenges to be addressed. They are related to the main
aspects which differentiate silo structures containing granular material from other civil
structural typologies: 1) the relatively low silo structure mass as compared to the ensiled
content mass; 2) the granular nature of the ensiled material. Indeed, the internal actions in
the structural members are governed by the complex dynamic interactions along the
interfaces between granular content and silo wall or base, or even the internal interaction
between particles. More in detail, even though the scientific interest in such complex
interactions dates back to the middle of the 19th century, several issues are still unclear
such as the dependency of the fundamental dynamic properties (period of vibration and
damping ratio) on the characteristics of the dynamic excitation (intensity, frequency
content, duration) or the amount of ensiled material mass activated during a seismic
excitation and provoking extra pressures on the wall (effective mass). Therefore, most of
current seismic code provisions for silos are grounded on rather approximate and
simplified assumptions leading to often over-conservative evaluations. The present
paper intends to provide a comprehensive summary of the mainly acknowledged
experimental and theoretical advances in the dynamic and seismic behavior of silos,
supporting the potential researcher in the field to understand the real differences between
the code assumptions and recommendations and the actual conditions, as well as
illustrating the open issues to be still further investigated.

Keywords: silo, flat-bottom, granular material, earthquake, effective mass, frequency, damping ratio

INTRODUCTION

Storage containers of bulk material are known as bins (or grain bins), silos or even bunkers. Although
there is no globally accepted definition for each of the previous terms, “bins” or “bunkers” are
commonly used to refer to squat containers with a shallow filling condition of a variety of material
like coal, ore, gravel and crushed stones, while slender containers of food supplies (e.g., wheat, corn
. . .) and cement are usually called “silos” (Li, 1994). The European design provisions EN 1991-4:
2006, EN 1998-4:2006 and EN 1993-4:2007 (European Committee for Standardization, 2006a;
European Committee for Standardization, 2006b; European Committee for Standardization, 2007)
adopt the term “silo” as an inclusive term for all structures for the storage of granular solid, whilst the
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term “bin” is common in the north American countries
(ANSI-ASAE S433.1: 2019). Flat-bottom ground-supported
silos, typically made of steel or reinforced concrete (r.c.), are
storage structures that are directly placed on a r.c. plate
foundation. Typically, cast in-situ r.c. silos present circular
hollow section with uniform thickness; while steel silos are
made up either of isotropic flat wall or orthotropic corrugated
cold-formed wall with variable thicknesses, usually supported
with bolted C- or open hat-shaped vertical stiffeners.

The type of granular material (wheat, corn, rice, sugar, soya
beans, maize, barley, . . .) has to be clearly specified in the design
phase, since its mechanical properties (which can substantially
change from a product to another one, as per the Table E.1 of
Annex E of EN 1991-4:2006) strongly affect both the static and
the dynamic behavior of the filled silo system and the choice of
the more appropriate wall section (e.g., flat-walled section is
commonly used for powder content, whist corrugated-walled
section is preferred for bulk solids).

Steel silos are thin-walled structures which are very sensitive to
human made mistakes and construction errors, as well as to
damages occurred during shipment and transportation.
Moreover, special care should be paid during the first filling
procedure, considering even the adjacent silos (i.e., the whole silo
battery), since specific filling programs on different steps should
be envisaged to guarantee the stability of the whole silo battery
without causing any differential settlements leading eventually to
structural defects that might also affect the dynamic response of
silos during seismic events.

Several earthquakes, that occurred in the last decades, had
catastrophic consequences on storage facilities and mainly silos.
Description of damages and main causes of collapses can be
found in the in-situ post-earthquake surveys reports (Dogangun
et al., 2009; Fierro et al., 2011; Uckan et al., 2015). In December
1988, Northern Armenia was hit by a M6.8 earthquake with
devastating consequences on several industrial facilities including
silos mainly due to construction imperfections accompanied by
inadequate inspections (Arze, 1992, Arze, 1993; Griffin et al.,
1995). Another interesting case was noticed after the M6.3
L’Aquila (Central Italy) earthquake, where the failure was
reported of three adjacent tall steel silos in a chemical facility
near L’Aquila city due to the collision with a close r.c. structure
(Grimaz, 2014). During the M8.8 2010 Chile earthquake,
extensive damages and collapses stroke many silos in an
industrial facility in the city of Concepción, where two rows of
silos collapsed due to the failure of the base connections
(Villalobos and Mendoza. 2011). In addition, several silo
failures occurred across the region, where some fully filled
silos up to 5,000 tons capacity showed different failure modes,
including global overturning and bucklingmechanisms due to the
lack of stiffening elements (Grossi et al., 2010). In May 2012,
Emilia-Romagna region (Northern Italy) was hit by two M5.8
earthquakes and several metal silos collapsed in various ways,
including plastic hinge development near the silo base (Augenti
et al., 2013; Gioncu and Mazzolani, 2014). In general, most of the
reported failures were associated with brittle behavior in the
absence of structural redundancy and alternative resisting
mechanisms, which represents an inherent common deficiency

due to the structural configuration of silos. Finally, the majority of
the reported silo failures (85%) are related to incorrect adopted
design concepts, or executive construction problems (Arze,
1992). Figure 1 schematically represents the most common
failure mechanisms during earthquake events.

It is thus clear that the proper evaluation of the forces
transmitted by the stored material to the silo structure, during
both filling and discharging phases or in the event of an
earthquake ground-motion, is of fundamental importance.
This task is particularly complex since the granular nature of
the ensiled content triggers off a highly non-linear behaviour
strongly affecting the highly vulnerable thin cylindrical wall
(especially, in empty conditions or asymmetric discharging
conditions). Specific additional loading cases accounting for
the potential eccentric pipe flow phenomenon (e.g., when side
discharging is required), and empty conditions loading
combinations (at least one for wind and one for seismic loads)
must be considered since it might lead to buckling problems or
deformations with a strong impact on the filled silo system
behavior during the seismic event. In this respect, specific
design recommendations for silo structures can be found in
several international building codes, including the Eurocode
provisions (EN 1991-4: 2006; EN 1993-4: 2006; EN 1998-4:
2006), U.S. building codes FEMA P-750 (ASCE-7, 2005; UBC,
1994; American Concrete Institute, 1997), and the Japanese
building code (Architectural Institute of Japan (AIJ), 2010).
Nevertheless, most of the mentioned design provisions are
based on rather approximate and over-conservative
assumptions which reflect the current state of knowledge
regarding the dynamic behavior and complex interaction of
the granular solid with the silo structure.

In light of this (Seismic Design of Silos: Main Issues and
Current Provisions), this work intends to present a
comprehensive overview of the available research works on the
dynamic behavior of filled silo systems. The experimental works
aimed at characterizing the dynamic properties of the granular
materials and the dynamic response of small- and full-scaled silos
are summarized (Dynamic Experimental Tests on Granular
Media, Empty and Filled Silo Systems), as well as the main
theoretical studies and numerical investigations to develop
predictive models (Theoretical Studies and Numerical
Modelling on the Dynamic Behavior of Filled Silo Systems). The
final objective is to identify the main challenges for future
research (Future Research Challenges).

SEISMIC DESIGN OF SILOS: MAIN ISSUES
AND CURRENT PROVISIONS

The structural response of storage units filled with granular solid,
in static but particularly in dynamic conditions, is strongly
affected by the not fully understood interaction between the
structural elements and the stored content particles. This
aspect is especially important for steel silos characterized by a
very low self-weight with respect to the stored material. In this
respect, the essential matters far from being fully understood
might be outlined in two points:
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• the effective mass, or the portion of the overall particulate
material interacting with the silo structure wall under
seismic conditions and provoking additional dynamic
overpressures onto the shell wall of the silo;

• the fundamental period (or, equivalently, the fundamental
frequency) corresponding to the first mode of vibration of
the filled silo system, due to uncertainties concerning both
the above-mentioned effective mass and the lateral stiffness
provided by the ensiled material.

Both aspects are of central importance for the evaluation of the
earthquake actions since, in practice, the seismic design of silos is
generally conducted by means of equivalent static analysis. In
detail, the static horizontal forces are usually given in terms of
dynamic overpressures (additional horizontal pressures with
respect to the static ones) generated by the stored material
onto the wall of the silo and are related to the effective mass.
The ensiled content, pushing on the silo wall, tends to lean against
the wall due to the particle-wall friction, exerting non-negligible
actions, as reported by numerous theoretical studies and
experimental research works since the end of the 19th century
(Janssen, 1895; Naito, 1988; Nielsen, 1998; Vanel and Clément,
1999; Ovarlez et al., 2003; Rotter, 2008; Qadir et al., 2010; Silvestri
et al., 2012; Pieraccini et al., 2015; Qadir et al., 2016; Silvestri et al.,
2016; Silvestri et al., 2021). A brief review of the current
provisions in standards is presented hereafter with specific
reference to the two above-mentioned issues.

UBC (Uniform Building Code, 1994) provisions recommend
to design ground-supported silos using the procedures for rigid
structures (defined by a fundamental period of vibration smaller
than 0.06 s), considering a seismic force resulting from an
effective mass composed by the total mass of the silo structure
and the whole content material.

ACI 313-97 (American Concrete Institute, 1997) provisions
suggest that the effective mass should be estimated at 80% of the
actual mass of the stored material in order to calculate the lateral
seismic inertia forces. Lateral force reduction is permitted due to
energy loss caused by intergranular motion and internal frictional
conditions in the ensiled solid, as found by both Chandrasekaran

and Jain (1968) and Harris and Von Nad (1985), which the
standard expressly refers to. Moreover, the provisions highlight
the necessity of rational method to evaluate the period of
vibration.

EN 1998-4 (European Committee for Standardization, 2006b)
provisions provide general principles and practical application
rules for the earthquake design of elevated and ground-supported
silos. They refer to: 1) the evaluation of the extra horizontal
pressures during a seismic event onto the wall height; 2) seismic
analysis methods; 3) numerical modelling of silos for seismic
analysis. Silo structures are supposed to operate in the elastic field;
thus, the elastic analysis of the silo shell wall is to be considered. In
the absence of more accurate evaluations, global seismic response
should be evaluated modelling the particulate material as an
effective mass with related rotational inertia located at the center
of mass based on the assumption that particulate contents move
in unison with the wall. Barring a more accurate evaluation, 80%
of the stored material can be assumed as activated effective mass.
If the dynamic response and the mechanical properties of the
particulate material are not explicitly represented and accurately
considered in the analysis (by adopting adequate modelling
techniques to reproduce its dynamic response and mechanical
properties), the effect on the silo wall of the solid particulate’s
response to the horizontal component of the seismic input may be
summarized in additional horizontal pressures onto the wall
(leading to normal radial and tangential circumferential
components). The provisions recommend structural damping
ratio of 5% and contents damping ratio of 10% (in the absence of
specific information). The provisions of EN 1998-4: 2006 are
mainly based on: 1) the theoretical formulation by Trahair et al.
(1983) proposing the dynamic overpressure exerted by the stored
material under seismic excitation onto the wall and 2) the
numerical study findings of Rotter and Hull (1989).

FEMA P-750 (NEHRP, 2009) provisions classify silos as “non-
building structures not similar to buildings”. They provide
guidelines on the evaluation of: 1) the global horizontal
seismic action on the silo, and 2) the distribution of
overpressures acting on the silo wall. Only the impulsive type
of global lateral seismic forces is considered due to the

FIGURE 1 | Common failure mechanisms of flat-bottom filled silo systems during earthquake events.
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fundamental period of vibration of the silo itself, which is
considered to be noticeably short, corresponding to the highest
acceleration value from the design spectral response (in the
plateau area of the spectrum). Global lateral seismic forces
should be determined on the basis of an effective mass
equal to the total volume weight of the filled material
reduced by two multiplication factors: effective mass and
density factors, where the product of those two factors
should not be less than 0.5, in addition to the self-weight of
the silo. Concerning the forces distribution on the silo wall and
foundation, the standard suggests using the formula proposed
by Trahair et al. (1983) according to the filling aspect ratio, that
results in significant reductions in the effective mass for the
squat silo case.

ASCE 7-10 (2010) provisions provide guidelines regarding the
evaluation of: 1) the global lateral actions applied on a silo and 2)
the distribution of these forces on the shell wall and foundation.
The horizontal forces applied on silos are to be evaluated using a
short period structure acceleration value. The effective mass is
introduced as the fraction of the total stored material interacting
with the silo shell during the seismic event and should be used for
the evaluation of the total inertial shear force as well as the
overturning moment at the base level of the silo. It is also
reported that the effective mass is affected by: 1) the
physical and mechanical properties of stored solids; 2) the
silo filling aspect ratio; 3) the intensity of the earthquake
ground motion. The shear force portion transferred to the
base by the inter-granular behavior (friction) of the stored
material should be considered when evaluating the value of the
effective mass. However, the standard does not provide any
formulae to estimate the effective mass.

Architectural Institute of Japan (AIJ) (2010) provisions mainly
refer to the impulsive mass (i.e., the effective mass) that interacts
with the silo wall at the structure’s base. Owing to loss of energy
triggered by the friction between the silo wall and particles as well
as by the internal friction within the granular material itself, the
impulsive mass is smaller than the total ensiled mass.
Nevertheless, it should be considered not lower than 80% of
the whole mass. Design seismic loads evaluation for the ground-
supported storage silos can be performed by two methods: 1) the
“modified seismic coefficient method” and 2) the classical modal
analysis. The former uses the “Equivalent Lateral Force”method,

assuming a value of 0.60 s for the first period of the filled silo
system (if unknown), to evaluate horizontal design acceleration.
The latter models the filled silo system as a cantilever beam with
different point masses (lumped masses model) to evaluate the
actions exerted on the structure. The standard does not provide a
specific value of the damping ratio on which the parameters
necessary for the two aforementioned methods are based on (Saj:
design acceleration response spectrum corresponding to the first
natural period, Dh: coefficient determined by the radiation
damping of the silo basement and depending on the area of
the silo foundation).

Table 1 compares the afore-mentioned provisions
highlighting the main shortcomings. In detail, for each code,
Table 1 shows: 1) the effective mass (meff) expressed as a
percentage of the total mass; 2) the presence of specific
formulae to estimate the horizontal overpressures (Δp)
exerted on the silo wall; 3) suggested values for the
fundamental period of vibration (T); 4) the proposed seismic
analysis methods.

As concluding remarks on the code provisions, it is generally
acknowledged that the building seismic standards are not directly
applicable to agricultural/industrial facilities and storage units
(Arze, 1992), such as silos. Indeed, the absence of a widely
accepted theoretical framework on the dynamic response of
filled silo systems highlights significant shortcomings in the
existing provisions for seismic design (Brown and Nielsen,
1998; Holler and Meskouris 2006; Carson and Craig 2015).
Consequently, significant scientific progress is required for a
wider understanding of the topic, as acknowledged by some of
the most pre-eminent researchers (Dowrick, 1988; Ayuga et al.,
2001; Ayuga et al., 2005; Holler and Meskouris, 2006; Rotter,
2008) and experienced professionals (Carson and Craig, 2015) in
the field.

Figure 2 conceptually summarises the differences between the
state-of-art of the scientific knowledge for the filled silos
systems and the frame structures. The graphical
representation takes inspiration from the set theory; the
idea is that the size of the oval is somehow proportional to
the extent of the knowledge or the accuracy of the code
provisions. The knowledge is still limited for silos and
consequently the code provisions are far to be accurate and
comprehensive, in contrast to the case of frame structures.

TABLE 1 | Summary of the provisions in current standards.

Code meff [%] Δp T Methods of analysis

UBC (1994) 100 Not given ≤0.06 s ELF
ACI 313-97 (1997) 80 Not given To be predicted using a rational method ELF
EN 1998-4 (2006) ≥80 Given — ELF

MRS
NLS
NLTH

FEMA P-750 (2009) ≥50 Reference to Trahair et al. (1983) ≤0.06 s ELF
ASCE 7-10 (2010) — Not given ≤0.06 s ELF
Architectural Institute of Japan (AIJ) (2010) ≥80 Not given 0.60 s (if unknown) ELF

MRS

ELF, Equivalent Lateral Force; MRS, Modal Response Spectrum; NLS, Non-Linear Static; NLTH, Non-Linear Time History.
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DYNAMIC EXPERIMENTAL TESTS ON
GRANULAR MEDIA, EMPTY AND FILLED
SILO SYSTEMS
This section provides a summary of the essential results from
experimental investigations on the dynamic and seismic response
of granular material and of cylindrical flat-bottom ground-
supported silos.

Experimental Dynamic Tests on the
Granular Solid
Granular material state [jammed, glassy or fluid (Raihane et al.,
2009)] is highly affected by the seismic input nature and the
physical/mechanical properties of the particles. Several
experimental studies were developed trying to investigate the
transition limits between such states in both qualitative and
quantitative ways. These tests were usually conducted by
imposing a harmonic motion (characterized by a certain
frequency content f with a maximum acceleration amplitude
a, commonly indicated in units of gravity acceleration g) at the
base of a rectangular box containing granular material
(Figure 3).

Ristow et al. (1997) tried to understand the dynamic behavior
of granular solid, by studying the response of a thin 20-mm layer
of Ballottini glass (with a small average diameter 0.5–0.6 mm)

using a horizontal shaking apparatus (Figure 3A). Particles do
not move at low frequencies; they begin to move as the frequency
increases. Then, the granular solid showed a complete transition
into a fluidized phase beyond a critical value of the frequency.

Metcalfe et al. (2002) performed an experimental study on the
transition limits of the granular material under the effect of
horizontal shaking (sand, glass beads). Analysis of the system
evolution involved keeping the frequency constant while
gradually increasing the acceleration a. A critical value of a
(0.40–0.60 g) results in a loose behavior characterized by
dilatation response and strong sloshing of the solid at the
surface level as particles exceed friction, including a small
number of “sliders” (free particles) at the surface level that
move for any a value. For frequencies between 2 and 8 Hz,
fluid state appears at a critical acceleration value acu. acu
seemingly depends on the material’s physical properties and
increases for rougher particles.

Raihane et al. (2009) studied the impact of the vibrations
induced by a harmonic sinusoidal input on a 3-dimensional sand
granular medium (as in Figure 3B). The container base was
subjected to widely variable frequency content range (from 20 up
to 300 Hz) sinusoidal vibrations with an acceleration amplitude
between 0.10 and 8.00 g. Particles movement during vibrations
was monitored using ultra-fast acquisition video recording. At a
given acceleration value (around 0.40 g, similar to that found in
other studies), the state of granular media changes from

FIGURE 2 | Code provisions vs. scientific knowledge vs. actual behavior: filled silo systems vs. frame structures.

FIGURE 3 | General setup for the shaking bed test of granular material: (A) thin-layer; (B) full 3D geometry.
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uniformly rigid to multi state layered over the depth, with
fluidized particles at the top surface.

Dynamic Tests on Cylindrical Flat-Bottom
Ground-Supported Silos
Various experimental tests were performed starting from the
second half of the last century to study the dynamic behavior of
ground-supported cylindrical silos and comprehend the complex
interaction of shell wall and particulate material under seismic
excitation. Shaking table tests were used in almost all the
investigations. Different types of dynamic inputs have been
commonly used: 1) white noise “random input” signals
(referred to as WN), 2) impulsive loads (IL), 3) stationary
“sinusoidal” harmonic signals (HS), and 4) earthquake
recorded signals (EQK). Scientific literature also reports on
some free vibration tests (FV).

Chandrasekaran and Jain (1968) performed the first vibrating
motion tests on cylindrical containers filled with granular
material. Two silos of steel and perspex were equipped with
vibration transducers and strain gauges. The silos were tested in
empty and different filling conditions, where the corresponding
aspect ratio in the maximum filling condition hc/dc (hc: filling
height, dc: silo diameter) was close to 10. Silo specimens were
filled with different materials, like sand, cement and wheat. The
silos were excited by means of the sudden releasing of the silo
after forcing an initial displacement, allowing for free vibrations
(FV) to be developed. Later, the effective mass was evaluated
using a theoretical formula proposed by Chandrasekaran and
Saini (1969). The effective mass values, evaluated for 25 different
configurations, were found to be significantly lower than the unity
(barely exceeding 50%).

Lee (1981) conducted an experimental shaking table campaign
on a scaled lucite cylindrical silo (h � 1,500 mm as “silo height”, dc
� 300 mm) specimen filled with sand at different filling heights
(hc). The specimen was equipped with 6 accelerometers over the
wall height and several longitudinal and circumferential strain
gauges. The test included free vibration tests (FV) and sinusoidal
inputs (HS) to investigate: the profile of the horizontal
accelerations (related to dynamic amplification) over the wall
height, the equivalent damping ratio, the fundamental period of
vibration, as well as the stresses experienced by the wall. It was
found that the fundamental frequency of vibration decreases as
the filling height increases, while the damping ratio varies with
input frequency till reaching a maximum value at the resonance
frequency.

Yokota et al. (1983) performed a series of shaking table tests on
a scaled acrylic resin cylindrical silo (h � dc � 1,500 mm) filled
with coal and instrumented with different accelerometers either
on the wall or within the filled material, in addition to strain
gauges and earth pressure sensors. Different configurations were
considered including empty and fully filled conditions, and with/
without lid/roof too. The testing program encompassed free
vibration (FV) tests on the empty silo and random white noise
vibration (WN) tests on the filled silo systems. The main objective
of the campaign was to identify the natural frequencies, the modal

shapes, the damping ratios of the silo, and the differences in the
measured values of horizontal accelerations between the wall and
the ensiled material. In fully filled conditions, the damping ratio
was four times larger than the one obtained in the empty silo case,
while the dynamic amplification factor at the top level was around
3.0 under HS excitation.

Shimamoto et al. (1984) studied the response of a silo filled
with coal system through shaking table tests on four scaled PVC
and steel silos (h � 1,600 mm, dc � 1,500 mm). The specimens
were instrumented with accelerometers on the wall (along the
input direction) and in the middle of the filled material. The
testing program was performed considering stationary sinusoidal
waves (HS) and real seismic records (EQK). Under HS excitation,
rigid body motion occurs for input with a much lower frequency
than the fundamental one of the filled silo system and
acceleration amplitude a≤0.20 g. Noticeable differences were
observed in the vertical profiles (over the silo height) of the
horizontal acceleration of the filled material near the wall and
along the central line when the input frequency content was close
to the first or the second natural silo frequencies. By introducing
the real seismic records (EQK), the maximum response of the
acceleration amplitude value measured from all controlled points
(either on the wall or inside the filled material) was registered at
the same time instant at which the maximum peak table
acceleration happened; the highest dynamic amplifications
noticed at the silo wall upper part were around 1–4; dynamic
amplifications inside the granular material increased from the
base to the solid surface, reaching an amplification factor of
around 2–5.

Harris and von Nad (1985) performed shaking tests on two
very slender steel silos (h � 3,050 mm, dc � 457 and h � 1,520 mm,
dc � 203 mm) filled with sand and wheat. The silo base was
welded to an elastic support frame, and a hydraulic actuator was
used to apply horizontal harmonic excitation (HS). Displacement
measurements at the base and at the top of the silo were
registered. The tests were performed with the purpose of
determining the effective mass, as the unknown quantity of
the dynamic equilibrium equations with known displacements
(coinciding with the recorded ones) assuming flexible bending
silo response and considering the rotational and translational
flexibility of the support frame. The obtained results from their
approach supported the 80% effective mass rule as suggested by
some standards in that period.

Sasaki and Yoshimura (1984) conducted shaking table tests on
a scaled uniform mortar cylindrical silo filled with brown rice.
They used a stave-silo (h � 2030 mm, dc � 1,020 mm) constructed
with blocks of mortar and confined by steel hoops, and they filled
it with various materials. Empty and filled conditions of the silo
model were tested. Both harmonic (HS) and seismic (EQK) tests
were performed. In general, it was noticed that 1) the stored
materials produced distinct changes in the vibration
characteristics of the silo system, where the resonant frequency
gets lowered by filling the silo; 2) the interaction between the silo
wall and granular solid during a seismic event can be different due
to the variation of the filled material; and 3) the maximum
registered horizontal dynamic overpressure distribution was
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quasi uniform over the entire height, except for an unexpected
peak which was observed near the base.

Sasaki and Yoshimura (1988) performed tests on two scaled
silos (h � 1985mm, dc � 820 mm): a stave silo model obtained
with mortar blocks and circumferential steel hoops, in addition to
another silo model realized as a continuous uniform mortar
model, in order to study the structural discontinuity effect on
the actual earthquake response of the silo model. The silo
specimens were filled with rice and equipped with different
instrumentation: strain gauges, accelerometers, lateral pressure
sensors. The tests were performed by using both sinusoidal inputs
(HS) and real recorded earthquakes (EQK) (Tokachu-oki 1968
and Nemurohanto-oki 1973) in empty and full conditions. Under
harmonic excitation, the presence of the ensiled material reduced
the fundamental resonance frequency of the stave silo model
where the effect of the joints of staves produced the degradation
of stiffness. Moreover, a gradual decrease of acceleration response
(amplification) factor was noticed with the increase of the peak
table acceleration.

Naito (1988) reported on shaking table tests (Kawazoe et al.,
1983 in Japanese) performed on a scaled steel coal silo (h � dc �
1,500 mm). The silo was equipped with accelerometers
positioned over the height along the center vertical line inside the
storedmaterial, while the silo wall was instrumented by strain gauges.
The base plate and silo wall rested on two different load cells to
measure the global shear force at the wall base level and at the table
level. Sinusoidal inputs (HS) were used to provoke and investigate
resonance response of the granular material. It was found that the
resonance frequency and response magnification at resonance
frequency decrease with increasing excitation. Moreover, the
response decreases at frequencies above the first resonance and
with increasing frequency, which becomes less steep with the
increment of frequency.

Holler and Meskouris (2006) reported some results of shaking
table tests (performed at Saclay in France) on a scaled steel silo (h �
1,100 mm, dc � 1,000 mm) filled with sand. The silo wall was
equipped with three pressure sensors and one accelerometer placed
on the table. The experimental results were used to calibrate a
representative Finite Element (FE) model in order to verify load
assumptions stipulated in current European standards.

Tatko and Kobielak (2008) excited a scaled flat-bottom slender
silo (h � 1,200mm, dc � 400mm) filled with sand with horizontal
impulsive loads (IL). The silo was supported by a spring system to
simulate different soil stiffness, since the main objective was to
analyze the dynamic interaction between the silo structure and the
soil. The specimen was instrumented by horizontal pressure sensors
placed at different heights of the silo wall. Dynamic inputs were
generated using a ballistic pendulum in the form of a single pulse
applied horizontally to the bottom plate. Fundamental frequencies,
horizontal time-pressure variation and radial overpressure vertical
profiles were measured. The dynamic overpressures over the silo
height are influenced by subsoil stiffness. Moreover, the distribution
of the maximum dynamic pressures over wall height is nonlinear,
while the overpressure value changes depending on the direction.
Nonetheless, the relationship between the average lateral dynamic
pressure exerted by the ensiled solid and the maximum acceleration
amplitude of subsoil is nonlinear.

Silvestri et al. (2016) conducted shaking table tests on two
scaled polycarbonate silos (h � 1,500 mm, dc � 1200 mm) filled
with Ballottini glass beads and equipped with an upper stiffening
ring. Three different configurations were tested to account for two
wall friction conditions and two aspect ratios (0.5 and 1.0). The
silos were instrumented with accelerometers (on the wall along the
input direction at various heights, and over three vertical lines
inside the granular solid), strain gauges over the wall height and
around the circumference to evaluate the internal actions in the
wall and a Linear Variable Displacement Transducer to measure
the lateral displacements of the upper stiffening ring. The silos were
subjected to: 1) white noise (WN) excitation; 2) harmonic
excitation (HS), and 3) recorded earthquakes (EQK). Natural
frequencies were evaluated from WN tests. The main purpose
of the tests was to experimentally verify the analytical model
proposed by Silvestri et al. (2012) for the estimation of the peak
global forces at the silo base (shear force and overturningmoment).
The findings showed that the particle-wall friction influences the
wall base overturning moment and the effective mass for the squat
silo is considerably lower than 80%.

Recently, Silvestri et al. (2021) performed a large experimental
campaign of shaking table tests on a full-scale flat-bottom steel
manufactured silo (h � 5,500 mm, dc � 3,640 mm) characterized
by a horizontally corrugated wall profile, open C hat-shaped
vertical stiffeners and a paneled conically shaped roof. The filling
material was soft wheat achieving an aspect ratio of around 0.9,
corresponding to a squat silo case according to EN 1991-4:2006
classification. The filled silo system was tested under two base
conditions: fixed and seismically isolated (Figure 4). The testing
program included white noise signals (WN), low-frequency (0.5 and
1 Hz) sinusoidal signals (HS), and three earthquake records (EQK):
an artificial earthquake record, a real “far-from-resonance frequency
content” input, and a second real “close-to-resonance frequency
content” input. The main findings are summarized hereafter: “The
damping ratio increases with increasing acceleration (enhanced
frictional dissipative mechanisms associated to relative sliding of
granular particles) . . . [omissis] . . . The resonance frequency . . .
[omissis] . . . slightly decreases with increasing acceleration (increasing
of damping ratio and larger effective mass) and it slightly increases
with increasing compaction (higher stiffness provided by the granular
material). No significant dynamic amplification was observed for the
whole filled silo system (both the silo wall and the ensiled granular
material) for low-frequency sinusoidal inputs. For the most
demanding earthquake input (in terms of close-to resonance
frequency content), the dynamic amplification factor increased
along the silo wall height up to values around 1.4 at the top
surface of the solid content [omissis] . . . The measured dynamic
overpressures seemed to increase slightly more than linearly with
depth from the top to the bottom.”

General Observations
The previous section introduced the main available experimental
studies (see Table 2 for a detailed comparison of their main
findings) on the dynamic behavior of filled silo systems in the
literature. It can be noticed that the majority of the experimental
campaign was conducted during the 1980s. After then, the rate of
interest became less mainly due to the technical difficulties and
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the expensive costs, even if the academic focus on this field could
not give definite answers leaving various open issues.
Nevertheless, the main remarks from the above summarized
experimental works are:

1- The nature of the dynamic base excitation, the frequency
content and the peak acceleration values have a strong impact
on the dynamic response of the filled silo system. This is
caused by the non-steady state of the stored granular material
depending on the input properties (e.g., a granular material
characterized by high intergranular friction properties and high
particle-wall friction coefficient typically leads to a relatively
high damping ratio and a high activated portion of the stored
material as an effective mass) that leads to a non-linear
response of the filled silo system.

2- The effective mass was evaluated using different methods,
which might affect the reliability of the results (analysis of the
variation of the frequency between empty and filled silos, or
interpretation of the dynamic overpressure measurements, or
global assessment evaluation of the overturning bending
moment at the silo base). Moreover, it resulted to be
influenced by the input properties. For instance, a high
effective mass was always obtained as a result of the
application of an input with a frequency content close the
resonance of the filled silo system.

3- The acceleration measurements recorded by the accelerometers
placed along the centerline of the stored material showed
higher amplification factors than those recorded from the
monitored points over the silo wall height.

4- In most cases, the small size of the adopted scaled silo models
was not suitable to account for the role of the vertical stiffeners.
In addition, the effect of the silo roof on the silo system
response was included only in few works.

THEORETICAL STUDIES AND NUMERICAL
MODELLING ON THE DYNAMIC BEHAVIOR
OF FILLED SILO SYSTEMS
This section provides a summary of the theoretical studies and
numerical modelling techniques presented in the scientific

literature for the estimation of the dynamic behavior of
ground supported cylindrical silos.

Analytical Models
Yang (1976) and Haroun (1980) studied the dynamic behavior of
a liquid-filled cylindrical shell. Although focusing on liquid
storage containers, the works provided a novel analytical
method for evaluating the fundamental period of cylindrical
storage tanks. The tank wall was modelled as a uniform
linear-elastic cantilever beam, considering both shear and
flexural deformations when determining the vibration
properties of the liquid-filled shell system. The entire liquid
mass was considered rigidly attached to the tank wall to
determine the fundamental period of vibration.

Lee (1981) proposed an analytical model to estimate the
effective mass of ground-supported cylindrical silos subjected
to harmonic base excitation. More specifically, the effective mass
is obtained from the variation of the fundamental frequency of
vibration in empty and full conditions. The analytical framework
includes the following hypotheses: 1) the stored material does not
provide any additional stiffness to the equivalent system; 2) the
participating mass of the equivalent system in the motion consists
of the wall mass plus the activated portion of stored material
under seismic excitation; 3) the filled silo system behaves like a
uniform flexible cantilever beam in terms of the distribution of
mass, inertia and material. The analytical framework is based on
the works by Chandrasekaran and Saini (1969) and
Chandrasekaran and Jain (1968).

Trahair et al. (1983) proposed the first analytical simple
formulae to estimate the distribution of the dynamic
overpressures (additional with respect to the static pressures)
depending on the filling height of the content; two categories of
ground-supported structures were identified (squat and slender)
depending on the aspect ratio. The analytical model was first
proposed for the rectangular silo and then extended to the case of
the circular one. A uniform static horizontal body force
corresponding to a time-constant acceleration was considered.
For the slender silo, the model assumes a total mass participation,
reflected in a uniform overpressure profile along the height of the
silo wall. For the squat silo, the activated mass is lower than the
total one depending on the filling height. The formulation does

FIGURE 4 | The tested flat-bottom steel silo of the SERA-SILOS project (Silvestri et al., 2021): (A) fully restrained and (B) seismically isolated.
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TABLE 2 | Summary of the main experimental results of dynamic tests on filled silo systems found in the scientific literature.

References Specimen silo properties Input Main results

Scaling
factor

Wall
material

Filling
height
hc

(mm)

Silo
diameter

dc

(mm)

Aspect
ratio
hc/dc

(-)

Ensiled
material

Type Acceleration
a (g)

HS
frequency

f
(Hz)

Effective
mass
meff

(-)

Fund.
frequency

f1
(Hz)

Damping
ratio
ξ

(%)

Chandrasekaran and Jain
(1968)

— Perspex — — 5.3–10.6 Sand, cement, wheat,
aggregate

FV — — 0.22–0.48 — —

— Steel — — 4.9–9.8 FV — — 0.27–0.54 — —

Lee (1981) 3:5 Lucite 1,500 300 empty — HS/FV 0.5 15 0 26 3
1.3 Sand 0.04 23 6
2.5 0.18 14 9
3.8 0.46 8 5
5.0 0.68 6 3

Yokota et al. (1983) — Acrylic resin 1,500 1,500 empty — FV 76 4
1.0 Coal WN 0.05 — — 19 10

Shimamoto et al. (1984) 3:80 PVC resin 1,600 1,500 1.0 Coal HS/EQK 0.1–0.3 5–45 — 14–21 —

3:80 Steel 1,600 1,500 1.0 HS/EQK 0.1–0.3 5–45 — 23 —

Harris and Von Nad (1985) — Steel 3,050 457 6.7 Sand, wheat HS — 1–9 0.60–0.90 — —

— 1,520 203 7.5 HS — 1–9 0.58–0.85 — —

Sasaki and Yoshimura
(1988)

1:8 Stave/shell 1985 820 empty — HS/EQK 0.3–1.0 5–50 — 31–46 —

1.9 Rice HS/EQK 0.1–1.0 5–50 — 19–30 —

Naito (1988) — Steel 1,500 1,500 1.0 Coal HS 0.02–0.2 — — 15–20 —

Kawazoe et al. (1983)
Tatko and Kobielak (2008) — Steel 1,200 400 3.0 Coarse sand IL 0.06–0.23 — — — —

Silvestri et al. (2016) — Polycarbonate
(smooth)

1,200 1,200 empty — WN 0.1 — — 30–35 1–4
1.0 Ballottini glass WN/

HS/EQK
0.05–0.55 1–2 0.32 14 6–21

Polycarbonate
(roughened)

600 and
1,200

0.5–1.0 Ballottini glass WN/HS 0.05–1.20 1–2 0.43 16 10

Silvestri et al. (2021) 1:1 Steel (corrugated wall) 3,300 3,640 0.9 Soft wheat WN/
HS/EQK

0.05–0.6 0.5–8 — 10–12 5–25
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not account for the shear stresses developed along the particle-
wall interface (Rotter and Hull 1989).

Younan and Veletsos (1998) and Veletsos and Younan (1998)
investigated the response of cylindrical containers characterized
by both rigid and flexible vertical walls, and filled with
homogeneous, linear, viscoelastic media under dynamic
excitation, with the following fundamental assumptions: 1) the
container with the filled material is modelled by a cantilever
shear-beam (identified with a natural frequency); 2) the entire
mass of the viscoelastic material dynamically interacts with the
cylinder shell; 3) the sliding of the contained material with respect
to the base is not allowed. The dynamic response of the filled
container system was described in terms of vertical and radial
modes. The fundamental circular frequency of the system
depends on the stored material physical and mechanical
properties, wall roughness, frictional interfaces conditions and
slenderness ratio of the silo. The natural frequencies of the
equivalent model are not affected by the wall mechanical
properties. “For liquid-containing flexible tanks, the effective
mass is effectively equal to or only somewhat smaller than that
for the corresponding rigid tanks, whereas the amplification factor
AF may be substantially larger than the unit value appropriate for
rigid tanks. By contrast, for solid-containing flexible tanks, not
only is the effective mass significantly smaller than for the
corresponding rigid tanks, but the AF, . . . [omissis] . . ., is of
the same order of magnitude as, or substantially higher than,
for the corresponding rigid tanks”. Due to these opposite effects
regarding effective mass and amplification factor, “the critical
responses of the solid-containing systemsmay be higher than, equal
to, or lower than those induced in tanks of the same dimensions by
liquids of the same density”.

Silvestri et al. (2012) extended the Janssen (1895) and Koenen
(1896) static model to derive analytical formulae for the
additional dynamic overpressures provoked by the stored
material on the wall of flat-bottom silos. The first analytical
theory, later refined by Pieraccini et al. (2015), was developed
for “an idealized system of a cylindrical silo filled with an
incompressible compacted material under idealized dynamic
conditions such as a time-constant acceleration input”. The
proposed theoretical model considers the particle-wall friction
coefficient, as well as the potential sliding of the contained
material with respect to the base. The model subdivides the
filled material into a central portion transfering its inertial
forces directly to the ground by means of base friction, and an
effective mass interacting with the silo wall. For shallow filled silo
systems (commonly classified as “squat”), the model predicts a
noticeably smaller activated portion of the material than the
entire mass.

Durmuş and Livaoglu (2015) presented analytical formulae to
estimate the fundamental period of vibration of a filled silo
system. The formulae are derived assuming an equivalent
Single-Degree-Of-Freedom (SDOF) model as an inverted
pendulum fixed at the bottom with a top lumped mass,
corresponding to a cantilever beam with flexural response. The
stored material is treated as an elastic homogeneous medium. The
overall mass of the model accounts for the self-weight of the silo
and 2/3 of the entire solid weight (reduced according to the ACI

371R-98). The equivalent lateral stiffness of the model is provided
by the silo wall section (flexural stiffness) and the interacting
portion of the confined granular particles.

Numerical Simulations
Yokota et al. (1983) built a linear Finite Element (FE)
representative model of the silo specimen in empty and filled-
with-coal conditions, to interpret the experimental results of the
tests described in Dynamic Tests on Cylindrical Flat-Bottom
Ground-Supported Silos. The empty container was modeled as
a shell structure with cylindrical shape using 26 linear elements,
while the filled one consisted of 253 triangular-shaped
axisymmetric elements. The stored material was modeled as a
multi-layered element with different elastic moduli (Young’s
modulus decreases going from the bottom to the top surface)
to consider the effects of the corresponding confining pressure
and strain level at each elevation as resulted from dynamic triaxial
tests. On one hand, the first natural frequency obtained from the
analytical results of the empty silo case moderately exceeded the
experimental value, whilst the analytical and experimental
frequency values resulted closer for the higher modes. On the
other hand, the filled model gave close frequency values for the
first two modes of vibration, whilst the gap was larger for the
higher modes.

Shimamoto et al. (1984) developed a FE model of the tested
silos using shell elements with a conical shape. The stored coal
was modelled using non-linear asymmetric solid elements. Cyclic
triaxial tests were performed on coal samples for the experimental
assessment of the mechanical properties (shear modulus) of the
coal material. The dependency of the coal’s dynamic properties
on the experimental strain was considered through the
application of the equivalent linear analysis method, which
was originally developed by Schanable et al. (1972).
Numerically simulated and experimental results were
compared for two peak acceleration values (a � 0.03 and
0.10 g). The developed model was able to well capture the
resonance frequency in both cases, and also to reproduce the
dynamic amplification effects for the lower acceleration value, but
not for the higher acceleration value, due to particles sliding
phenomena that occurred after exceeding an acceleration limit.

Naito (1988) studied numerically the non-linear behavior of
filled silo systems under dynamic conditions. Solid axisymmetric
elements were used to build the FE model for both the cylindrical
wall and the silo content. The mechanical properties of the stored
material (coal) were selected on the basis of elastic wave velocity
diagnosing method for different confining pressure conditions.
The proposed numerical model was verified by comparing the
obtained results with shaking table results.

Rotter and Hull (1989) simulated the seismic response of a
cylindrical silo filled with granular material in shallow filling
condition corresponding to a “squat” aspect ratio. The FE model
considered an axisymmetric body assuming the elastic response
of both the cylindrical silo wall and the particulate material under
dynamic excitations. The dynamic input consisted of a uniform
lateral acceleration without accounting for any amplification over
the height. The simulation assumed no vertical slipping
phenomena between the silo wall and adjacent particles and
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replicated their synchronized movement. The roof was ignored
because it provided negligible effects in containing the wall upper
part displacements. The base of the silo wall was fixed, and the
particle-wall interface was ideally rough. The membrane stresses
in the wall were examined by performing a parametric study
accounting for the variation in different geometrical aspects and
material properties. The findings indicated that stresses increase
with increasing filling condition from “squat” to “slender” (with a
stable value in case of slender silos) and with increasing radius-to-
wall thickness ratio.

Sasaki and Yoshimura (1992) reproduced numerically the
dynamic testing conditions of a 1:8 scaled model (hc/dc ≈ 2.0)
of a stave-silo reported in previous research works (Sasaki and
Yoshimura, 1984; Sasaki et al., 1986; Sasaki and Yoshimura,
1988), i.e., a rice-filled silo characterized by structural
discontinuities. The silo wall was modelled using a so-called
“stave silo element”, using the shell element theory to account
for the stiffness provided from the shell. The participation of the
granular material in the seismic interaction was assured by using
a “fictitious mass density” giving an effective mass of 0.70 to fit the
resonance curves from the experimental tests.

Holler and Meskouris (2006) developed a numerical model to
study the dynamic behavior of filled silo systems based on the
assemblage of the filled material, the wall of the silo, the wall-
particle friction interface, the silo foundation, as well as the
surrounding soil to consider Soil-Structure-Interaction effects.
Elastic shell elements were adopted to model the silo wall. The
filled material nonlinearity was considered by assigning a
hypoplastic behavior to the representative solid elements. The
frictional interface of the material particles with the wall was
modelled by means of contact elements preserving the essential
geometrical compatibility between the structure and content. The
model was calibrated on the basis of reported results of shaking
table test, so that it was able to capture the dynamic overpressure
profile exerted by the stored material. The modelling approach
was applied to the cases of steel slender and squat silos and
allowed the comparison of the obtained radial and
circumferential dynamic overpressures with the theoretical
predictions suggested by prEN 1998-4 (CEN 2003b). The
numerical findings highlighted that, for the squat case, the
inertia force corresponding to a considerable fraction of the
total filled material is transmitted directly to the ground by
means of the particle-base friction, resulting in the theoretical
overestimation of the dynamic overpressure by the European
standard for this slenderness category.

Lately and due to the lack of the experimental comparable
results for full-scale models, the research trend was drifted
towards the numerical investigation of the filled silo system
behavior. Different shell and solid elements were implemented
to simulate the container and the content behavior in linear and
non-linear conditions, and different techniques were applied to
model the friction interface between the main granular solid and
silo flat wall (Nateghi and Yakhchalian, 2011; Nateghi and
Yakhchalian, 2012; Jagtap et al., 2015; Livaoğlu and Durmus,
2015; Guo et al., 2016; Livaoğlu and Durmuş, 2016; Katsanos
et al., 2018). The differences of the modelling techniques and
assumptions have strong impact on the outcomes of these works.

General Observations
The theoretical studies, either accompanied or not by experimental
validation, aim usually at investigating the suitability of the Single
Degree Of Freedom model to approximate the dynamic behavior
of the filled/empty silo system. Furthermore, a clear effort was
devoted to the effect of the filling aspect ratio on the seismic
behavior (Trahair et al., 1983; Silvestri et al., 2012; Pieraccini et al.,
2015); in this respect, the reduction of the effective mass was
identified for squat silos. In addition, various numerical modelling
attempts were performed to reproduce the real silos conditions
which showed some promising results despite the strong
assumptions on the granular solid behavior and the various
interfaces conditions. The main shortcomings of these works
can be associated with neglecting the effect of the intergranular
friction throughmodelling the granular solid as a solid layer, beside
neglecting the effect of the possible sliding of the particles over the
base when exceeding a certain input magnitude limit (acceleration)
corresponding to the friction coefficient of the stored particles with
basematerial. Moreover, the adopted numerical models considered
always simple silos with a flat wall section in order to reduce the
computation cost, which leaves many uncertainties by not
accounting for the effect of the vertical stiffeners and the
connection details (e.g., base plate connections, roof details,
sheet overlapping areas and the bolted connection between the
sheets and the stiffeners) on the system response or even the
variant corrugated wall sections as well.

Table 3 shows a summary of the essential characteristics of the
previously introduced numerical research works.

FUTURE RESEARCH CHALLENGES

The dynamic response of filled silo systems is different from the
one of any other type of structures due to the complicated nature
of the components and the potential interaction conditions
varying in accordance with filling aspect ratios, and physical
and mechanical properties of the stored material. Therefore, a
careful planning for future research is indeed necessary, especially
for the experimental studies which are fundamental to verify
analytical and numerical models. Many unexpected problems
may arise either related to the testing conditions or to the
functionality of the instrumentations (the technical difficulties
may increase with the use of corrugated walls, vertical stiffeners
and paneled roof). Advancements in the analytical models are still
necessary to fill the gap concerning reliable formulae for the
estimation of the fundamental frequency and the effective mass.
Finally, numerical results are very sensitive to the modelling
techniques and input parameters, where it is very hard to develop
a representative model capable of giving trustworthy results.
Thus, potential developments in the future should consider
different aspects as detailed below, either experimentally or
theoretically.

In the experimental field:

1- The frictional properties of the ensiled granular material may
change from static conditions (silo at rest) to dynamic
conditions (seismic excitation, filling and discharging).
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Different friction coefficients may lead to considerably
different overpressures.

2-The effects of the wall corrugation on the particle-wall effective
friction coefficient and on the global dynamic and seismic
response of the filled silo system have to be still fully
understood. Furthermore, the loads transferred by means of
the vertical stiffeners to the ground should be assessed. That
would allow to expand the current knowledge on the effects of
the flat and corrugated wall sections, in terms of captured
vertical forces, from the static to the seismic conditions.

3-The actual after-filling conditions on the dynamic response should
be better considered,mainly in terms of the obtained eccentricity of
the top pile, since the current standards account for it in static
conditions only after exceeding a certain limit.

4- The difference in terms of dynamic amplification captured in
the granular material between the centerline of the whole
granular volume and the near-wall position should be
understood. It is thus suggested monitoring those locations
carefully by using 3-axial accelerometers and pressure cells, in
order to understand the relationships between the measured
accelerations and the provoked dynamic overpressures.

5-A critical point is also represented by the full understanding of
the dependence of the overpressure distribution and effective
mass on the different filling heights and thus on different aspect
ratios.

6-The effect of the base roughness should be considered, to
understand the possible movement of the granular mass as
solid mass under high magnitude seismic input conditions.

7-The effect of the vertical component of the seismic input should
be also accounted for in future studies.

In the theoretical field:

1- An overall theoretical framework is still missing which
accounts for the effects of frictional properties of the
granular material, the aspect ratios, the input acceleration
level, etc.

2- The local distribution of the dynamic overpressure components
along the section circumference and over the silo height should
be further assessed, allowing for more robust design formula
since the majority of the analytical studies assume uniform

distribution of overpressures and the majority of the standards
do not approach this problem.

3- A reliable formula for the prediction of the fundamental
frequency of the filled silo system is needed, in which the
effective mass would play a fundamental role as well as the
effect of the additional stiffness provided by the granular
material. Although this issue was already faced in some
previous works, major differences were noticed in terms of
the considered behavior of the equivalent SDOF model
assumed for the filled silo system.

In conclusion, research advances in the field are urgently
needed. Otherwise, in the lack of a full understanding, the
solution would be represented by a design-oriented approach
which must consider larger safety factors, as suggested by Carson
(2001).

CONCLUSION

This paper reviews the main steps of the historical developments of
research work in the field of the dynamic and seismic behavior of flat-
bottom filled silo systems. A comprehensive summary of the essential
experimental, theoretical and numerical studies since the 1960s has
been reported, highlighting the main findings along with the open
issues still to be investigated.

The challenging side of such a topic is deeply related to the
nonlinear behavior of the granular material due to the non-stable
friction conditions varying with the input type and pressure level, as
well as the complicated interaction with the silo structure considering
different possible interfaces (flat or corrugated wall section).

Despite the considerable number of the performed experimental
works in the last decades, it is not surprising that the main outputs
helped only underlining the main aspects of the system behavior,
treating some topics like the dynamic overpressure qualitatively
and leaving the quantitative assessment as an unresolved matter.
However, the experimental findings related to the fundamental
frequency and the corresponding equivalent damping ratio are of
a great importance. Furthermore, many theoretical studies were
developed in parallel with the experimental ones looking for a more
mature understanding of the problem.

TABLE 3 | Summary of the main characteristics in the cited numerical studies found in scientific literature.

References Modelling techniques Analyzing method Motivation Experimental
validation (Yes/No)silo wall Ensiled material Particle-wall interface SSI

Yokota et al. (1983) LE shell LE solid — — M natural frequencies Y
Shimamoto et al. (1984) LE shell NLE solid — — ELS resonance curves Y
Naito (1988) LE shell NLE solid — — ELS resonance curves Y
Rotter and Hull (1989) LE shell LE solid — — PS wall stresses N
Sasaki and Yoshimura (1992) LE shell - — — TH resonance curves Y
Hardin et al. (1996) LE shell NLE solid — — ELS seismic response N
Holler and Meskouris (2006) LE shell HP solid contact element yes TH wall pressures Y

LE shell LE solid — yes M natural frequencies N
LE shell - — — ELS wall stresses N

LE, Linear Elastic; NLE, Non-Linear Elastic; HP, Hypo-Plastic; M, Modal; ELS, Equivalent Linear Static; PS, Pseudo-Static; TH, Time-History.
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Finally, it must be highlighted that the performed research studies
are not capable of providing definite answers yet. That is reflected
through the absence of a universally accepted theoretical framework
to predict the seismic response of the filled silo system, hence the lack
of design formulae in almost all the standards. Thus, additional
research is necessary to address the unresolved issues by proposing
efficient analytical models, mainly related to the estimation of the
fundamental frequency and the effectivemass of the filled silo system.
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Graph Rewriting Techniques in
Engineering Design
Lothar Kolbeck*, Simon Vilgertshofer, Jimmy Abualdenien and André Borrmann†

Chair of Computational Modeling and Simulation, TUM School of Engineering and Design, Technical University of Munich,
Munich, Germany

Capturing human knowledge underlying the design and engineering of products has been
among the main goals of computational engineering since its very beginning. Over the last
decades, various approaches have been proposed to tackle this objective. Among the
most promising approaches is the application of graph theory for representing product
structures by defining nodes representing entities and edges representing relations among
them. The concrete meaning of these structures ranges from geometry representations
over hierarchical product breakdowns to functional descriptions and flows of information
or resources. On top of these graph structures, graph rewriting techniques provide another
powerful layer of technology. By enabling the formal definition of rules for transforming
graph structures, they allow on the one hand side to formally capture the engineering
development process. On the other hand, the assembly of rewriting rules into graph
grammars allows for an exhaustive search of the solution space of the engineering problem
at hand. In combination with search strategies, an automated optimization of the design
under given constraints and objectives can be realized. The paper provides an overview of
the current state-of-the-art in graph rewriting and its applications in engineering design,
with a focus on the built environment. It concludes with a discussion of the progress
achieved and the missing research gaps.

Keywords: graph grammars, spatial grammars, graph theory, design synthesis, graph rewriting

1 INTRODUCTION

With the advance of modern information technology, computers take over work that was considered
to be reserved for humans. Initially, repetitive and error-prone tasks in data processing were
significantly accelerated, while computation today complements human intelligence in domains
requiring creativity. To this end, graphs have proven their capabilities and flexibility to provide the
necessary representations for numerous real-world problems. As a data structure, graphs provide a
rich foundation to represent engineering product models with entities of arbitrarily abstract and
concrete meaning. In the same context, the manipulation of graphs was investigated for decades and
proven to be powerful for complex problems in various domains. Most prominently, the method of
graph rewriting is well established to capture manipulation patterns in the form of rules.

Solving a design problem by graph rewriting methods requires twofold: a graph representation of
particular world entities and rewriting rules that operate on this model to manipulate its nodes,
edges, and their attributes. The rules formalize domain knowledge by declaring design processes as
graphlets consisting each of a conditional and a rewriting pattern. Once formalized, mature software
frameworks ensure an efficient application of the rules to evolve the design representation. Graph
rewriting allows an engineer to define a design not directly as an end result, but in terms of a
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procedural construction history. Arranging the rules in a flow
they may be applied in, an engineering product can be gradually
synthesized. In order to generate an illustrative variety of a prior
unknown design, the engineer may vary the rules selected, the
matches chosen, and variable parameters along that flow. The
exploration of such a solution space may suggest creative, new
ideas and then may be further restricted. This is achieved by
either specifying the generation process or by directed stochastic
search.

Originally, all rewriting methods emerged from linguistics
(Chomsky, 1959), with fundamental branches dealing with
shapes (Stiny, 1980), biological modeling (Lindenmayer, 1968),
and later graphs (Nagl, 1979). Thanks to this background, a large
part of the terminology used is related to linguistics. A grammar is
formed when a set of rewriting rules, a rewriting system, is
complemented by a start symbol, sometimes called axiom, a
set of non-terminal symbols, and a set of terminal symbols.
The terminal and non-terminal symbols are often referred to
as vocabulary of the grammar. A defined grammar may be
applied to exhaustively generate all possible different
combinations of rule applications and parameters, constituting
the language, the constituted solution space. The linguistic theory
of formal grammars is rich and provides mathematical notations,
terminology, and taxonomy available to many specific
applications. Yet, the abstractness and extensiveness of the
field also motivated researchers to enter specialized debates. In

engineering design, expert systems were an early attempt to give a
framework to the use of rewriting rules for design tasks. The
research greatly decreased in the 1990s and is widely inactive
today, due to various reasons, ranging from the difficulty of expert
system maintenance and extensibility (Puppe, 1990).

Instead, several other frameworks emerged around the
millennium. Cagan et al. (2005) achieved to encompass several
schools of thought and several strategies for automated design
synthesis along a simple, generic framework. The four key steps
are the representation of the problem, the generation of solutions,
their evaluation, and finally the guidance of the subsequent cycle
of search. This framework is agreed to cover wide ranges of
automation efforts under the collective term computational design
synthesis (CDS). As one important stream, Chakrabarti et al. (2011)
distinguished grammar-based synthesis. In parallel to the
harmonization attempts of CDS, Rudolph (2002) motivated the so-
called graph-based design languages as a powerful graph- and graph
rewriting based methodology. Certainly complying with the broad
definition of CDS, the field of graph-based design languages can be
seen as a specification of themethod. However, it is based on a stricter
mathematical treatment of design objects and the formal design
process (Riestenpatt and Rudolph, 2019).

In this review paper, we aim to break down this broad and
extensive research field to the essential technological and conceptual
questions. At a first glance, graph rewriting methods and the covering
frameworks may appear very abstract. Yet, treating distinctly the

FIGURE 1 | Visualized outline of the review, following the cycle inherent to rewriting methods: The representation of a problem, the formulation of rules, and the
application of rules.
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essential steps of representation, rule definition, and the later
application of rules, we aim to make comprehensible associated
concepts. Following the outline shown in Figure 1, we hope to
communicate the relevancy, potentials, and challenges to a broader
audience. The review starts with a bibliography analysis where we
attempted to quantify the scientific interest to graph rewriting
methods, with special attention to the building sector. To make
current developments comprehensible to readers with little prior
knowledge, we introduce the fundamentals of graph theory and
graph rewriting in chapter 3. Chapter 4 draws attention to the
various approaches for forming a graph representation of an
engineering model with semantic and geometric meaning1.
Supports to the development and organization of rewriting rules
are introduced in chapter 5. Finally, chapter 6 focuses on issues of
automatically applying rewriting rules for design generation while

chapter 7 concludes the review by summarizing potentials and
shortcomings for further research2.

2 BIBLIOGRAPHY ANALYSIS

The terms Graph Rewriting and Graph Transformation appear in
the literature along with the keywords Engineering and Design
since the 1970s. Although combining multiple keywords reduces
the search scope, there are numerous engineering and design
domains that have investigated graph rewriting for their
challenges. Figure 2 depicts the citation network between
journals when searching for those keywords combined. The
journals of computer science and software engineering
(appearing at the center) are the most dominant journals for
this field, where graph rewriting was used as a technique for

FIGURE 2 |Bibliography analysis of citations between publication sources. Label and circle sizes correspond to the total number of documents. These results were
collected by searching Scopus1 for the keywords Graph Rewriting, Engineering, and Design. The visualization was performed using VOSViewer2.

1https://www.scopus.com/ 2vosviewer.com
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manipulating data structures, source codes, and more. Zooming
out of the center, other application domains appear, such as
biotechnology, business and engineering.

To get more insights into the involved research domains,
Figure 3 shows a grouped list of search domains and their
corresponding publication counts. The field of Information
and Computing Sciences provides a high percentage of the
publications, as graph rewriting was introduced and developed
by this domain. The rest of the domains typically adapt and
apply the techniques developed in computer science to their
particular challenges. Among others, engineering is ranked
third, with 115 publications, whereas built environment and
design is ranked eighth.

From this broad overview in engineering and design, a more
detailed literature analysis was conducted with a special focus on
publications that additionally include Building Information
Modeling as a keyword. The first papers that appeared in the
literature that included both Graph Rewriting and Building
Information Modeling are from 2010 (Tratt, 2010).
Afterward, there is a trend in increasing the number of
relevant publications per year, as shown in Figure 4, where
23 relevant papers were published in 2018 alone and 58 in total
until the year 2020.

The conducted bibliography analysis provides the necessary
ground for the reviewed publications in the following sections.

In this regard, the fundamentals of graph representations,
graph rewriting, and the used software frameworks are
described3.

3 FUNDAMENTALS

3.1 Graph Representations
3.1.1 Theoretical Specifications
All graphs G � (V, E) have in common that they consist of a set of
nodes or vertices V and edges E, with each edge being represented
by an ordered or unordered list of nodes. This generic definition
encompasses a variety of specifications. In engineering design, it
is commonly implied a typed and attributed graph, sometimes
referred to as property graph (Robinson et al., 2015). Types,
sometimes referred to as labels or tags, can serve to specify
different categories of objects within a system. In an
architectural context, this might serve to distinguish
different room types (Langenhan et al., 2013), different
building elements (Abualdenien and Borrmann, 2021), or
load-bearing elements and their joints (Vestartas, 2021).
Attributes in turn can serve to store relevant data about

FIGURE 3 | An ordered grouped list of publications according to their research categories. These results were collected by searching Scopus3 for the keywords
Graph Rewriting, Engineering, and Design.

3https://www.scopus.com/
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the objects in the form of key-value pairs. This data might be
as simple as an identifier, a reference to external data sources,
or as complex as a parametrization of geometric descriptions,
see Section 4.2. Thus, graph structures are an expressive
means to represent engineering systems as a network of
objects with rich semantic and geometric meanings.
However, most engineers find it difficult to formulate and
solve their problems employing graph theory, except for of
well-known applications like path planning. A look at two key
motivations for the use of the data structure explains the
difficulty.

One key advantage of graph theory is its ability to formally and
flexibly represent relationships between entities. Large networks
of objects can be created and queried for certain patterns of
relationship to analyze or manipulate the represented system.
However, the scale of these networks easily gets overwhelming.
Therefore, there are specialized graph types that facilitate
structuring complex domains and thus are better suited for
certain applications4. As one example, trees, are special graphs
that may serve to simplify analysis and manipulation of problems
with an inherently hierarchical structure. Such a hierarchy can be
applied to model the spatial structure of buildings, for example,
where a site may comprise multiple buildings, each building may
comprise multiple stories and each story comprises a number of
spaces or rooms (Wonka et al., 2003; Grabska et al., 2012). To give
a second example, port graphs, sometimes labeled composition

graphs (Strug et al., 2022), are special graph types that distinguish
two types of nodes: Object nodes and connector nodes. The
connector nodes, the ports, restrict how the object nodes are
allowed to be coupled to each other. This may be extremely useful
for tasks that formalize assembly processes, as in the context of
chemical reactions, bond graphs (Helms and Shea, 2012), or the
design of segmented structures (Rossi and Tessmann, 2017a;
Kolbeck et al., 2021). Many more specifications originate from
the need to efficiently depict and manage complex networks, even
leading to complex combinations like hierarchical hypergraphs
(Drewes et al., 2002) and others currently experimented within
engineering (Strug et al., 2022). Encountering all those
specifications may easily overdemand a learning person,
whereas all specifications branch off from the simple and
comprehensible notation given above.

A second key advantage is the flexibility of graphs to adapt to
arbitrary levels of scale and abstraction. For example, nodes and
edges can represent geometric vertices and edges, but may also
stand for complex objects such as walls or a building story. To
illustrate the range of semantics a graph model can have in a
design context, we discuss diverse applications in the building
sector in the next section. Thereby, we highlight the
characteristics of graph models used for the transformation of
design by a comparison to the ones used for analysis tasks.

3.1.2 Applications in Architecture and Civil
Engineering
An old stream of research aims to depict engineering systems as a
graph to perform efficient analysis of the data structure. The well-

FIGURE 4 | An ordered grouped list of publications according to their publication year. These results were collected by searching Scopus4 for the keywordsGraph
Rewriting and Building Information Modeling.

4https://www.scopus.com/
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known Dijkstra algorithm or the A* algorithm for path planning
is familiar to most engineers. For a building, this can be adopted
by translating architectural rooms and their mutual accessibility
into a navigation graph, see Figure 5. A similar graph model of a
building may be used to suggest architects preferable room

layouts when dividing a floor into spaces (Langenhan et al.,
2013). Equally, structural aspects of construction can be
represented. Vestartas (2021) used a graph model to describe
the different joints of crooked wooden beams. Braun et al. (2015)
recorded the precedence relationships of construction

FIGURE 5 | Generation of a navigation graph from building geometry (Kneidl et al., 2012).

FIGURE 6 | A precedence relationship graph represents the order of erection of individual building components and their mutual dependencies (Braun et al., 2015).
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execution in a graph, where every node represents a column,
wall, or floor and edges represent precedence relationships.
The resulting graph model, depicted in Figure 6, was
generated through a spatio-temporal analysis of the
building construction process.

From a formal point of view, graph models for the dynamic
manipulation of a design are identical to the ones for the analysis
of a static design. However, a crucial difference is that design
activities require a much greater amount of topological and
geometrical adaptivity. Property graphs commonly enable
topological extensibility while dynamic geometric
transformations pose a less common challenge. In concrete
terms, it is comparably easy to construct the system entities
and their relationships for a coffee machine (Tonhäuser and
Rudolph, 2017) or a bridge (Slusarczyk and Strug, 2017). Still, a
valid topological and semantic configuration does not guarantee
to make the components form a valid and harmonic assembly,
without collisions and gaps at emerging interfaces. In
comparison, a graph structure that merely analyzes a static
design must capture the exact geometry only once. Without
the need to dynamically change it, the geometry may even be
stored and referenced employing external databases, for example
in a point cloud format (Braun et al., 2015; Vestartas, 2021).

The characteristics of graph structures for dynamic
manipulation of design is subject to further discussion in
chapter 4. Since a representation for design is strongly linked
to the manipulation mechanisms applied to evolve it, the next
sections attempt to give a fundamental understanding of graph
rewriting methods before.

3.2 Graph Rewriting
3.2.1 Theoretical Specifications
Graph rewriting, also referred to as graph transformation,
describes the process of manipulating a graph structure by
adding, removing, and altering nodes and edges, steered by
declaratively defined rules. Each rule consists of a left-hand
side (LHS or pattern graph) and a right-hand side (RHS or
rewrite graph). Providing a host graph and a set of rules, the
matches of the LHS in this host graph can be identified and be
replaced by the RHS to generate the result graph as depicted in
Figure 7. A preservation morphism r can be defined in order to

specify that parts of the LHS are matched to the RHS to ensure
that they are preserved.

Several characteristics can increase the expressiveness of a
rewriting rule. Rules may be more concise by including attributes
and multiple labels per node. For example, a graph representation
of a building may enable a matching for objects labeled both
“wall” and “load-bearing,” with an attribute “height” at a certain
value. Further, a rule may be context-sensitive, meaning that it
specifies conditions that exclude possible matches depending on
the surrounding of the pattern. These application conditions may
concern the left or the right side of the rule (Habel et al., 1996).
Rules can be defined to be more flexible for a wider range of
applications by defining them parametrically, computing
variables instead of fixed values. In order to span a wide
solution space in a generative application of rules, variable rule
parameters may be stochastically chosen.

Rules, potentially defined with all described characteristics,
need to be applied to a host graph (H). To this end, it is necessary
to detect correctly typed and attributed matches for the LHS (or
pattern graph), as well as their rewriting to produce a valid result
graph (H’) containing the RHS (or rewrite graph) inserted. Efforts
have been undertaken to significantly improve the computational
complexity of match detection algorithms (Geiß et al., 2006; Batz
et al., 2008). As well, a variety of rewriting methods has been
researched for decades. In distinction to the algorithmic

FIGURE 7 | A graph rewriting rule, graphically described in the middle, is applied to the host graph on the left side. The result graph is depicted on the right side.
Here, the preservation morphism r is defined by the mapping of the grey nodes.

FIGURE 8 | Basic principle of graph rewriting using the Single Pushout
Approach according to Geiß (2008) and Jakumeit et al. (2010).
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approaches, the prevailing algebraic approaches consider graph
rewriting as a mapping problem between two algebras of nodes
and edges. The main algebraic methods are the single pushout
approach (SPO), shown in Figure 8, and the double pushout
approach (DPO). The fundamental difference between both lies
in the greater expressiveness of the SPO, which conducts the
rewriting in a single step. On the other hand, the DPO introduces
an intermediary gluing graph that allows a more restrictive
avoidance of problematic situations, as for dangling edges in
the result graph (Corradini et al., 1997). For further reading on
the fundamentals of algebraic graph transformation approaches,
we refer to Rozenberg (1997) and Ehrig (2006), while an
application-oriented introduction to graph rewriting can be
found in Heckel (2006).

3.2.2 Software Frameworks for Graph Rewriting
The modeling of graph representations and their transformations
can be conducted with diverse software frameworks. The term
framework describes an assembly of specialized tools. This
includes at least an interpreter that processes human-readable
descriptions of graph metamodels as well as graph rewriting rules
and gives feedback in case of errors. A compiler then translates this
into source code or libraries for further use. Most frameworks also
have some sort of graphical user interface to display graphs and
visualize rule execution. In this section, we give a short overview of
themajor frameworks that are available (see Figure 9). This list is not
meant to be complete as there exist many further frameworks,
although many of them are not maintained anymore. Extensive but
rather outdated lists are provided in Nagl et al. (2003) and Rensink
and Taentzer (2007).More recent comparisons were documented by
Aouat et al. (2012), Bak (2015) and Kahani et al. (2019). Tools
addressing graph transformation are also regularly presented
amongst others in the annual Transformation ToolContest5 that
aims to evaluate and compare the expressiveness, usability, and
performance of transformation tools for structured data.

A widely used graph transformation framework is the Graph
Rewrite Generator GRGEN.NET for the .NET environment (Jakumeit
et al., 2010; Jakumeit et al., 2021). GRGEN.NET offers declarative
languages for graph modeling, pattern matching, and rewriting.
GrGen allows users to define an object-oriented graphmetamodel, a

blueprint of the desired design representation, describing node and
edge types including attributes and inheritance. Themetamodel may
also include connection assertions that define the allowed
connections of nodes and edges in a graph. The frameworks
offers many possibilities when defining rewriting rules including
negative application conditions which may be applied with logical
and iterative control of their application. Rewriting is generally based
on the SPO approach, but also the DPO approach may be used. As
GRGEN.NET creates . NET libraries for the graph metamodel and
transformation rules defined in its own language, it can be easily
used in custom projects. A major benefit is that the software
including its documentation is regularly updated and well
maintained. A quantification of the computational efficiency of
GrGen can be found in (Geiß et al., 2006), including a relative
comparison to the following two frameworks.

The Attributed Graph Grammar AGG is a rule-based visual
language supporting an algebraic approach to graph
transformation implemented in Java (Ermel et al., 1999; Runge
et al., 2011). AGG allows the definition of attributed type graphs
with inheritance. The defined graphs may be attributed by Java
objects and types. A main feature is that the framework provides
graphical editors for graphs and rules and a text editor for Java
expressions including visual interpretation and validation. AGG
is primarily based on the SPO approach but offers the possibility
to enable rewriting based on the DPO approach. The main
functionality of the framework is provided by a graph
transformation engine that is independent of the graphical
environment. Therefore, the transformation functionalities
may also be used by other software. The last major update for
AGG has been released in 2017, whereas a patch has been
published in early 2021, so it can be considered to be maintained.

Another sophisticated and well established framework is
PROGRES (PROgrammed Graph REwriting Systems) which is
being developed at RWTH Aachen since 1989 (Schürr et al.,
1995). It is based on directed, attributed and typed graphs, which
can represent extensive and complicated issues in a clear and
structured manner. PROGRES consists on the one hand of a
specification language and on the other hand of a complex,
integrated environment. The framework allows the
specification of a graph schema with inheritance and edge
cardinalities that can be used for type-checking of
productions. Besides the graph schema, graph transformations
can be specified graphically and textually. The PROGRES

FIGURE 9 |Not all of the presented frameworks are still continued andmaintained. This figure gives an overview of the times of development and reference and use
in research projects. Smaller bars indicate that only small updates were published or references only list the tool without using it.

5https://www.transformation-tool-contest.eu/aims_and_scope.html.
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environment consists of three integrated frameworks. Graph
schema and transformations can be defined in a syntax-
controlled editor that highlights violations. The interpreter
with a corresponding graph browser assists the user in
debugging and the compiler automatically translates the
specification into C or Java source code. However, PROGRES
is not regularly maintained and has been last updated in 2005.
While it is regularly referenced in recent articles giving an
overview of graph rewriting frameworks, the last publication
that describes its use in a project dates back to 2015.

The GROOVE tool set (Graph-based Object-Oriented
VErification) is being developed since 2004 and is still regularly
updated (Rensink, 2003; Ghamarian et al., 2012). With GROOVE
simple graphs can be used for modeling the design-time, compile-
time, and run-time structure of object-oriented systems. Therefore, it
provides graph transformations as a basis for model transformation
and operational semantics. GROOVE is a general-purpose graph
transformation framework that uses simple labeled graphs and
transformation rules based on the SPO approach. The framework
is Java-based and provides an intuitive interface that allows graphical
editing of rules and graphs.

Among this rich body of available alternatives, an engineer
can deliberate the choice of a framework for specialized
applications in design. This deliberation is a problem-specific
evaluation of necessary and desirable characteristics in
modeling, development, and execution. Building upon this
fundamental understanding of both graph theory and the
implications of rewriting, we address approaches to represent
engineering products in the next chapter.

4 REPRESENTATION APPROACHES

Graph structures for design synthesis approaches require an
efficient approach to both the representation and manipulation
of the geometry of relevant design objects. In the aspect of
identifying the crucial objects and linking them elegantly to a
geometric representation, we see the key problem to the successful

use of graph rewriting methods in design synthesis. Thereby, a first
stream follows the idea of a very fine-grained representation and
control of geometry, giving the graph an intuitive geometric
meaning. The second stream attempts to further abstract
objects, making it easier to define and describe transformations
on a semantically higher level of abstraction. Both are discussed in
the following sections.

4.1 Low-Level Representation of Geometry
An engineer familiar with computational geometry would likely
associate the terms “graph” and “geometry” with well-known
classical data structures. As such, the vertex-edge-face graph,
illustrated in Figure 10, may be mentioned, used in boundary
representation approaches. Two key advantages of such graph
models with a strong linkage of topology and geometry may be
highlighted:

They give a very fine-grained control of the geometry of
objects, down to every single geodetic point. For an
engineering model with objects in such a representation,
efficient and detailed spatial-topological queries and
consistency checks exist (Borrmann and Rank, 2009; Jabi
et al., 2018). Another advantage to the low-level integration of
topology and geometry is the geometric intuitiveness of a graph
model. This is both beneficial to the development of rules, and the
analysis of structures, e.g., when evaluating them by defining cost
functions. Many applications illustrate these benefits. An early
and widely known example is the optimal truss generation
problem (Shea, 1997; Kaveh and Koohestani, 2008;
Hooshmand and Campbell, 2016). Thereby, nodes commonly
represent joins, while edges represent the beams of the truss.
Describing and manipulating more complex structures is equally
possible, as shown by the origami figures of Chen et al. (2019) or
the walls and floors described in the architectural solid grammars
by Heisserman (1994).

Despite not being specific to engineering, the implementation
of shape grammars utilizing graph models must be mentioned in
this context, too. For these implementations, graphs were
recognized to have beneficial characteristics as a model of

FIGURE 10 | A pyramid represented by a vertex-edge-face graph, illustrated geometrically (left) and topologically (right).
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geometry. On the one hand, graphs were proven capable of
implementing shape grammars that support the recognition of
emergent shapes (Knight, 2003), i.e., to cope with ambiguous
recognition problems as in the Sierpinski-triangle. More relevant
to engineering applications is the question of topological-
associative shape recognition (Grasl and Economou, 2013;
Wortmann, 2013). Instead of depending on similarity
transformations to geometrically match LHS patterns
(Krishnamurti and Earl, 1992), graphs enable efficient queries
for topological patterns of geometric entities. This enables the
formulation of much more flexible and expressive rewriting rules.
A rule defined for a quadrilateral may apply to any quadrilateral
in a shape of a design.

This leads to two significant downsides of graph models in
such a high resolution of geometry. First, what does a human
intend when he defines a rewriting pattern that consists of a
closed loop of four vertices and lines? Can the matching
algorithm assume that orthogonal and parallel lines play a
role or not? Did the human intend a void quadrilateral or may
the pattern intersect itself or be intersected by other elements?
Krishnamurti and Earl (1992) discuss why it is a very difficult
task to capture the exact designer’s intent. Recently, these
questions were revisited by Stouffs (2019). Second, is it really
necessary and desirable to have such high flexibility and
control of geometry? It must be weighed up that this comes
with the toll of defining rules that may easily become very
complex.

These two problems have been known for a very long time and
two main responses exist to remedy them. On the one hand, the
introduction of an additional layer of abstraction, i.e., a user
interface, could help humans to more intuitively express their
intentions of a rule. Such an abstraction layer may be either
graphical or textual (Dy and Stouffs, 2018), as further discussed in
Section 5.1. Another remedy is to move from a geometrical to a
more object-oriented view of design artifacts. If an architect
wanted to formulate rules for the design of a house in natural
language, likely very little would be explicitly stated about the
relations between points, lines, and faces. Instead, the architect
would reference columns, walls, and slabs (Mitchell, 1991). Many
of those symbolic objects may be sufficiently described by a fixed
or parametrized geometry. A column may be described by a
point, a diameter, and a height. Instead of a large graph pattern
with nodes representing points, lines and faces, a node with three
key-value pairs may be precise enough for the scope of many
practical problems.

This is the basic idea of a group of grammars for design that
follow an object-oriented idea of design: instead of reasoning
geometrically, set grammars discretize a design problem to a
set of comprehensible entities. Those entities are processed in
the grammar by rules that allow the set-theoretic operations of
union, intersection, and difference among them. In the context
of design problems, such entities are commonly tangible
objects like stories, walls, or windows (Wonka et al., 2003),
with complex geometry such as a parametrized solid (Alber
and Rudolph, 2003). This enables the formulation of rules on a
more natural level of abstraction and simplifies geometrical

challenges as e.g. the shape recognition problem
(Krishnamurti and Earl, 1992).

However, the relations between shape grammars and set
grammars often are unclear due to fuzzy terminology in the
field (Lienhard, 2017). Many terms circulate and may be
confusing as they treat very similar concepts. An early attempt
to give a taxonomy to the various terms encountered is found in
Krishnamurti and Stouffs (1993): all grammars with strong
geometric implications may be subsumed under the term
spatial grammar, including L-systems (Lindenmayer, 1968) as
well as classical shape grammars (Stiny, 1980). Set grammars may
be defined for a variety of objects, like strings, shapes, or graphs.
Graphs recently were also used to implement shape grammars
(Grasl and Economou, 2013; Wortmann, 2013). Our
understanding of the different terms we summarized in
Figure 11. The next section will focus on the intersection of
graph grammars and set grammars.

4.2 High-Level Representations of
Geometry
4.2.1 Set Grammar Approaches
In the former section, we discussed that many practical
engineering problems allow the system to be represented as a
composition of objects that can be sufficiently described by high-
level geometric primitives. Thereby, one may roughly
differentiate two types of object descriptions.

The first type associates an object to an individual from a set of
strictly uniform geometries. This may be a column of a fixed
diameter and height (Mitchell, 1991) or standardized, serially
prefabricated parts. The expressiveness may be increased by
discretizing the vocabulary as groups of the same object type,
e.g., by introducing five columns with slightly different heights
and diameters. Then, eventually, a wide enough solution space is
opened up, while ensuring a geometrically elegant and
comprehensible way of processing and interpreting the graph.

FIGURE 11 | Taxonomy of formal grammars utilized for engineering
design problems.
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Further, a sufficient degree of discreteness is certainly helpful to
simplify the reasoning with rules (Peyshakov and Regli, 2003).

The second type relies on geometric descriptions with a
parametrization defined by continuous or discrete variables.
As a first example, Alber and Rudolph (2003) described the
assembly of electricity pylons from a few, adaptive segments.
As a second example, Vogel (2016) developed a method to
construct exhaust filter systems by various, adaptive pieces of
tubes and joints. One example from the building sector is the split
grammar of Wonka et al. (2003), where buildings are efficiently
generated by allowing every RHS pattern to be only a subset of a
LHS object. In concrete terms, this results in a hierarchical
“sculpturing” of buildings from a mass model over stories
over walls to windows, following a strictly hierarchical order
of the vocabulary. The split grammars were brought into a
graph model by Lipp et al. (2008), with graph rewriting rules
definable and applicable according to a concept by Patow
(2012). To give a second example from the building sector,
Abualdenien and Borrmann (2021) adopted the object
parametrizations of commercial BIM software to capture
design patterns in the context of high-rise buildings. Even
though not using a graph data structure, Hoisl and Shea
(2011, 2013) implemented the spatial grammar interpreter
Spapper with a wide range of parametrized solid objects,
ranging from tori to ellipsoids.

They mention, however, that the expressiveness of the
interpreter could be further improved by including powerful
procedures like sweeps or extrusions. This is an inherent
restriction of the set grammar idea that defines vocabulary
according to the objects present in the final design
configuration (Hou and Stouffs, 2018). An alternative is to
explicitly introduce operations that apply a certain
transformation to the input objects. This idea, commonly
known by techniques like constructive solid geometry (CSG),
motivated another stream of graph structures for design
discussed in the next section.

4.2.2 Explicit Description of Operations
The use of graph models for the geometric design of engineering
products is, unconsciously, familiar to many engineers. In many
undergraduate courses, the CSG approach is commonly taught.
Intuitively, the technique allows applying Boolean operators
(union, difference, intersection) on high-level geometric
primitives. A procedural construction history based on CSG
operations may be formally depicted as a directed, bipartite
and hierarchical graph pointing toward one final geometry.
The graph is bipartite because nodes can either represent
objects or operations. Essentially, the visual programming
interfaces of computer-aided drawing (CAD) software like
Grasshopper Rhinoceros (Mc Neel and Associates, 2021) can
also be represented as a directed graph, with nodes being either
input objects or operations, performing imperative logic on the
input objects. Because these procedural parametric models abide
by the formal definitions of graph theory, they can also be refined
by graph rewriting patterns. This basic idea of refining a
procedural definition with a rule-based paradigm is illustrated
in Figure 12. Therein, a simple CSG operation is manipulated,
computing the difference between a square and a circle. The RHS
pattern of the rule replaces the square with a rectangle. The
rectangle is generated by a union operation that merges two new
leaf nodes that each represent a square.

Procedural parametric modeling approaches draw their
expressiveness from explicitly introducing operations as a part
of the grammar vocabulary. The difference to other design
grammar approaches is subtle but important. The greater part
of grammars for design declare rules as a static configuration
pattern before and after a rewriting step. When applying the rule,
an interpreter derives from the difference between the sides the
necessary procedures to take, i.e., manipulations, additions, and
removals of objects. However, some operations may be much
more intuitive to be stated in an imperative manner. To give an
example from the building sector, Vilgertshofer and Borrmann
(2017) distinguished “Sketch Nodes” and “Procedural Nodes” for

FIGURE 12 | Refinement of a CSG tree based on a graph rewriting rule.
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refining tunnel geometry, see Figure 13. The former described the
composition of sketches, e.g. describing a tunnel profile. On the
other hand, the procedural nodes enabled the transformation of
geometry, e.g., by extrusion of a tunnel profile. These
development steps are illustrated in Figure 14.

The introduction of explicit operations enables the
straightforward integration of powerful features accessible by
programming interfaces of CAD software. Silva et al. (2013) gave
another example of a graphmodel that explicitly includes operations,
in this case related to urban model generation. Thinking of a graph
model as a network of objects or operations can make graph models
in design much more expressive.

Finally, a noteworthy trend in the field of grammars and
computational geometry is the investigation of mixed
programming paradigms. Of course, it is more elegant to
define a design problem within one of the various paradigms
of procedural modeling. Yet, for considerations of efficiency, the
combination of paradigms is worth further investigation. Many of

the design grammars published partially needed to use imperative
programming techniques (Hohmann et al., 2010). Leblanc et al.
(2011) presented a modeling language based on CSG techniques,
with imperative as well as rewriting characteristics. A second
example, given by Hohmann et al. (2010), employs rewriting rules
to refine commands of the stack-based, generative modeling
language GML (Havemann, 2005). Certainly, these approaches
are difficult to classify at a first glance. However, they may be a
promising way to the pragmatic and widespread use of rewriting
rules, specialized to the situations in which they are beneficial.

In the context of grammar-based design, any representation is
just an important means for a purpose. This purpose is the
development of a design from an initial state towards a goal
state. This is performed by defining rules, which may be applied
to incrementally evolve the design representation. Unarguably,
the finding of appropriate and expressive rules is a demanding
step. Therefore, we dedicate the next chapter to research treating
the process of grammar development.

FIGURE 13 | A stage in the graph-driven design development process presented in Vilgertshofer and Borrmann (2017). Left-hand side: Graph structure consisting
of entities and procedural operations, created by graph transformation. Right-hand: Interpretation of the graph by a parametric CAD system.
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5 DEVELOPMENT OF GRAPH REWRITING
APPROACHES

The variety of grammars published is commonly described as
original pieces of handcraft. The representation chosen is
demonstrated to have captured the essence of the problem and
the rules to allow steering an efficient evolution of the system. Still,
scientifically valid questions are “polemically” (Economou andGrasl,
2018) left out: why did the engineer choose these and not other rules?
Did the developers follow certain guidelines to make the approach
transparent and extensible? Is the approach transferable to other
problems? Developing answers to such questions might be difficult,
but is indispensable to make rewriting methods better understood
and widespread. In this review, we distinguish two fields of research
that attempt to make the development of grammars more
transparent and streamlined: first, the facilitated creation of
grammars and second, the idea of using rewriting methods
within a standardized system modeling language, synthesizing a
design solution from an abstract network of functions.

5.1 Facilitated Development of Rewriting
Rules
In the practice of grammar development, a significant problem to
be remedied is that domain experts are rarely familiar with the
computational aspects of rewriting. A simple solution might be to
let developers and domain experts collaborate, which was the
strategy in expert systems research. Unfortunately, this strategy
needed to be omitted, acknowledging that experts have limited
time, motivation and that arising communication barriers may
cause frustration (Puppe, 1990).

As a first alternative, one may attempt to not let domain
experts define the grammar, but to generate the rules based on

design artifacts they produced in the past. The problem of
automatically “learning” or creating a grammar from a given
dataset is referred to as inverse procedural modeling and is
commonly assessed to be very complex (Puppe, 1990;
Lienhard, 2017). Nevertheless, a modest amount of research
has been classified by Lienhard (2017). One set of works
attempts to adapt relatively generic template grammars to a
given dataset, mostly in the context of facade parsing (Nishida
et al., 2016). This approach likely has a limited potential to
generally automate the development of grammars as any
template grammar needs to be developed a priori and
relatively specialized on the problems to be covered. Instead,
the second class of research deals with the induction of set
grammar vocabulary and rules with the help of statistical
models. These approaches were considered to require very
structured and annotated data structures, as in a hierarchical
tree structure (Leblanc et al., 2011). Otherwise, it was thought to
be impossible to identify the nodes representing the vocabulary of
the grammar (Talton et al., 2012). However, recent efforts
indicate that it might be possible to induce grammars for
more unstructured datasets, including hierarchical and non-
hierarchial, one- and more dimensional representations
(Whiting et al., 2018). Despite these efforts, this research field
is certainly still at a very fundamental level and inverse grammar
modeling is not yet applicable to a wider range of engineering
design problems.

A second alternative is to look for solutions that empower a
wide range of domain experts to develop grammars. Besides
guidelines to teach non-specialists good practices in the
definition and organization of rewriting patterns (McCormack
et al., 2008; Oster and McCormack, 2011), attention is drawn to
provide less technical interfaces. As first example of this trend,
Abualdenien and Borrmann (2021) recently proposed a method

FIGURE 14 | Gradual Refinement of tunnel geometry by means of graph rewriting and according to a level of development concept (Vilgertshofer and Borrmann,
2017).
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to graphically capture architectural detailing patterns through the
interfaces of common BIM software. The translation of these
patterns to rewriting rules and the later application of rules is
possible without knowledge of the underlying computational
processes. A conceptual sketch of the workflow is shown in
Figure 15.

Comparable in intention, Rossi (2021) developed a largely
graphical interface to define vocabulary, rules, and a geometrically
constrained search procedure for the assembly of segmented structures
(Rossi and Tessmann, 2017b). Patow (2012) made the split grammars
of Wonka et al. (2003) accessible in an interactive graph visualization
and allowed users to refine a procedure by rewriting patterns. Equally,
the interfaces of spatial grammar interpreters incrementally require less
technical knowledge to define geometrically and semantically complex
grammars. Hoisl and Shea (2011), Dy and Stouffs (2018) and Grasl
(2021) developed largely graphical interfaces to their spatial grammar
interpreters, requiring little knowledge of the underlying computational
processes. These interfaces can be advantageous when learning a
specific implementation of a rewriting formalism or for the rapid
prototyping of design grammars departing from their geometrical
frontend.

The interfaces discussed make it easier to define smaller sets of
rules. From a certain amount of rules captured, a stricter
organization or modularization of the rule sets is important. A
promising approach to this end offers the research field of
function-based design synthesis.

5.2 Function-Based Design Synthesis
Graphs have the ability to represent a system in any degree of
abstraction. This property is exploited in model-based systems
engineering (Haberfellner et al., 2019; Hick et al., 2021), also
referred to as function-based design synthesis (Cagan et al., 2005;
Chakrabarti et al., 2011). The fundamental idea is to begin the

design with a set of requirements a system needs to fulfill and to
convert respectively map them to a network of functions, the
functions to subfunctions, and finally, the subfunctions to
components, sometimes structures. Only the latter are assigned
concrete geometry. Each of those layers can be represented as a
network of objects, i.e. in a graph-based representation. The most
common modeling conventions have been adopted by standard
modeling languages like SysML (2021).

Graph rewriting can be employed within the scope of
function-based design synthesis in two ways: first, for model-
to-model transformations between the different abstraction
layers. If a subfunction can be met by different components,
different rules can be created to depict these possible
transformations. By exploring the possible options, different
concepts of an engineering system can be generated. This has
been illustrated for mechanical engineering products by Bryant
et al. (2006) or for the conceptual design of bridges by Slusarczyk
and Strug (2017). A second use of graph rewriting techniques is of
course on the structural level of abstraction, where rules can be
embedded to determine the (optimal) configuration of function-
derived elements. Tonhäuser and Rudolph (2017) show the entire
process revisiting the well-known coffee maker example.

The abstraction involved in function-based design synthesis is
a burden and a potential at the same time. Engineers naturally
tend to details and visualizations, but thereby run the risk to get
stuck in fixed ideas of design (Haberfellner et al., 2019). The
abstraction of products by requirements and functions is a
demanding and time-consuming process but may enable a
better focus on the product essentials and trigger creativity.
Further, it can simplify the definition and organization of
rewriting rules (Helms and Shea, 2012). To understand the
difference, the classification of engineering problems by Puppe
(1990) can be referred to: deriving the structural components of a

FIGURE 15 | Worfklow proposing a user-oriented interface to formalize architectural design patterns without knowledge of underlying representation and
algorithms (Abualdenien and Borrmann, 2021).
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design from a model-based representation of functionality results
in a combination of an assignment and a configuration problem.
For further search and optimization tasks, this is easier to solve
than the planning task most design grammars aim to solve.
Nevertheless, it is also possible to use a set of rules to evolve a
design through an optimized sequence of actions, traversing
various incomplete, intermediary states. Techniques to guide
such a generation process are discussed in the next chapter.

6 GENERATIVE USE OF REWRITING RULES

6.1 Classification of Approaches
A graph rewriting system represents a set of process steps,
without specifying their logic of application. Thus, besides the
rules, the process of applying them to one or a range of specific
problems must be designed. This difference is essential, whereas
often the misconception is encountered that a given grammar can
simply “crank out” (Krishnamurti and Stouffs, 1993) design
solutions. Likely, this misconception comes from the fact that
many early grammars for design, e.g., the palladian grammar
(Stiny and Mitchell, 1978), included a lot of domain knowledge.
These rules were restricted to be applied in a relatively specific
order and to relatively specific problems. Further, another set of
grammars must be taken into consideration. These grammars
have very generic rules, applicable to a variety of problems. Most
grammars that aim to solve the truss optimization problem (Shea,
1997) belong to this type. These grammars heavily rely on a sound
description of their dynamic application to a variable
environment. To highlight the difference between these two
types of grammars, Ruiz-Montiel et al. (2013) introduced the
terms expert grammars and naive grammars. This classification is
comprehensible, even though there can be observed some hybrid
approaches combining naive and expert rules (Puentes et al.,
2020).

The distinction of reasoning approaches according to the
problem-specificity of rules is certainly comprehensible but is
not the only one. Hou and Stouffs (2018) prefer to categorize
grammars according to the generation logic involved,
distinguishing an object-oriented and a goal-oriented type. The
former studies the configuration of the desired design outcome
and restricts the vocabulary to the subsystems which are finally
present, e.g., the building elements of a built house (Mitchell,
1991). This principle, found in the set grammars discussed in
Section 4.2, facilitates the definition of rules and the exploration
of design alternatives. The goal-oriented type, instead, defines
rules by reflecting the most concise design process, commonly
leading to more abstract non-terminal vocabulary and
intermediary design states. To prioritize among the many
options of action that may lead to the desired goal state, either
a global search with an evaluation of the entire design or a local
reasoning mechanism is applied. This categorization into object-
oriented and goal-oriented approaches is equally comprehensible
and applicable to most works discussed in this review.

The presented criteria enable to reflect a given grammar by it’s
specificity to one application environment and by the
characteristics of the vocabulary. However, there is no

commonly agreed taxonomy that can subsume a wide range of
grammar-based reasoning techniques or could even practically
support engineers in the design of their rule application strategy.
Of course, not every grammar needs to be utilized with a
sophisticated process control. Especially for expert grammars
and object-oriented grammars, engineers often can constrain the
search to a few variable parameters and few necessary choices. If
this is possible, the exploration of the solution space may be
achieved manually, by combinatorial methods as the enumerative
generation or black-box methods as generate and test
optimization algorithms. These three methods are commonly
understood and agreed (Cagan et al., 2005; Grasl and Economou,
2013; Ruiz-Montiel et al., 2013). Still, some research should be
mentioned that attempts to get more fine-grained control of the
generation process. Thereby, a body of research can be subsumed
into the paradigm of agent-based modeling, e.g., Heckel (2006),
Ruiz-Montiel et al. (2013), McComb et al. (2017), and Puentes
et al. (2020), another one to the use of logical descriptions
(Duarte, 2005; Stouffs, 2015; Hou and Stouffs, 2019). The cited
literature is referred to for further reading, while the following
sections are limited to the well-established approaches.

6.2 Search Strategies
6.2.1 Enumerative Generation
If the engineer is able to define a sequence of rule applications that
likely lead to valid designs, it is possible to simply enumerate all
possible outcomes. Thereby, a search tree may be used to depict
the options of generation. This tree commonly has as root the
initial design state, and as edges the applicable rewriting rules.
The linked children nodes are derived designs (Campbell et al.,
2009). Filtered for repetitive and invalid leaf nodes, the search tree
can serve for an enumerative generation of designs. This is a
relatively old idea (Stiny and Mitchell, 1978), but still popular,
due to the good impression it gives about the strictness,
respectively expressiveness of a given grammar. To remedy the
computational load and complexity of filtering the entire solution
space, some remedies exist. Lienhard (2017) proposed clustering
methods for building designs that make the solution space more
comprehensible to a user. Campbell et al. (2009) and Kumar et al.
(2014) propose to only generate a small set of possible solutions
from a search tree. Depending on the quality of the produced
designs, the later generations are optimized by updating the
probabilities of decisions that led to good designs.

This is essentially the idea of a set of optimization algorithms
that can be summarized as generate and test approaches.
Generate-and test approaches do not use search trees but
optimize only the input parameters of a generation process
based on the cost of the outcome. No formal model of the
generation process is required, wherefore one may think of it
as a black-box process. Iteratively, the configuration shall be
improved until only one or a set of few good designs remain. The
two main algorithmic ideas used are simulated annealing and
genetic programming (Ruiz-Montiel et al., 2013).

6.2.2 Optimization Algorithms
Simulated annealing optimizes a single design configuration
based on the analogy of the cooling of metal. A steadily
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decreasing “temperature” curve quantifies the willingness to
accept deteriorations of cost by a rule application. An in-depth
explanation of the algorithmic ideas is given by Cagan and
Mitchell (1993), some recent applications include the
optimization of piping systems of exhaust filters (Vogel, 2016)
or rollerblade wheels (Zimmermann et al., 2018). For simulated
annealing and a similar optimization algorithm, Königseder
(2015) introduced methods to better understand the internals
of grammars in a search process, e.g., the sensitivity and
frequency of rules used. Remedying the restriction of
simulated annealing to a single design solution, McComb et al.
(2017) or Zimmermann et al. (2018) discuss the organization of
multiple optimizations in parallel.

Genetic programming relies on a biological “survival of the
fittest” principle. In every cycle, a set of designs is created where
only the best ones are selected to go into the next phase or cycle.
During every generation process, rules can be applied to conduct
mutations of individuals. Further, the cross-over exchange of
parameters is a desirable mechanism to create diversity within a
population. The latter is desirable but very difficult as grammar-
generated designs often do not share a common configuration of
objects (van Diepen and Shea, 2019; Grzesiak-Kopeć et al., 2021).
For hierarchical and well-structured representations, the works of
Alber and Rudolph (2003), Talton et al. (2012), and Lienhard
(2017) propose a possible solution: instead of processing the
individual designs generated, it might be more promising to
consider the rules the subject of a genetic optimization.
Different variants are generated by different grammars in the
first step. In further cycles, the grammars authoring the most
successful individuals may be merged, by splitting and merging
their vocabulary. This approach requires a deeper understanding
of reasoning with grammars, but may contribute to make genetic
optimization more powerful.

This concludes the overview of approaches to the reasoning
for grammar-based design. In the last chapter, both potentials
and shortcomings for further applications in the building sector
are summarized.

7 CONCLUSION

7.1 Potentials
Graph models provide a powerful and flexible representation for
many engineering products. For engineering design, the use of
graph rewriting methods can enable the automation of complex
design sequences. To this end, a variety of representation
approaches can be distinguished, which can be classified
according to the geometric meaning of the graph entities
chosen. Low-level geometry representations give a high control
and intuitiveness regarding geometric aspects, even though they
require the introduction of higher-level textual or graphical
interfaces. Set grammar approaches allow defining the design
and design steps in a semantically more intuitive, object-oriented
way. The extension of employed graph structures to entities of
imperative logic or the combination of different programming
paradigmsmay leverage the practical applicability of grammars in
a broader context.

The development of graph rewriting systems for applications
in engineering design receives increasingly more support. On the
one hand, domain experts and learners with little knowledge
about the underlying technology are encouraged by less technical
and more graphical interfaces. In order to generate and optimize
designs based on graph rewriting systems, established approaches
can be relied on to perform an efficient search of vast solution
spaces.

7.2 Shortcomings
To date, only a few industrial applications of graph rewriting
methods have been known in engineering design. This may be
owed to several challenges we discussed. One aspect is that the
representation of a design problem by a graph model requires
abstracting the system in a suitable manner. A variety of different
approaches exists, with advantages and disadvantages. A key factor
thereby is to represent and manipulate the geometry of engineering
products properly. Approaches with a low-level representation of
geometry often have the shortcoming of not enabling the definition
of rules at a level of abstraction natural to engineers. Approaches
with a high-level representation of geometry pose the challenge to
efficiently store, transform, and interpret geometry. Despite a rich
body of applied works, there is little theoretical discussion about the
demanding task of defining a graph representation for a synthesis
problem. Ideally, guidelines should be available to support engineers
in the conceptual and technical design.

Given a meaningful representation, the efficient design of
small sets of rules is a comparably resolved challenge. Still, the
technical organization of grammars with larger rule sets to enable an
efficient but variable generation of designs is a challenge. To this end,
the use of function-based synthesis approaches seems promising, but
yet has very few applications in the building sector. Further, the design
of search methodologies in combination with a grammar is
challenging. A large set of reasoning approaches have been
described, differing by the way domain knowledge is formalized,
the type of vocabulary, or the locality of evaluation criteria. However, a
better uniform characterization and supportive guidelines could
support engineers to better understand and design the
functionalities of grammars for a generative design process.
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Machine Learning in Structural
Design: An Opinionated Review
Christian Málaga-Chuquitaype*

Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom

The prominence gained by Artificial Intelligence (AI) over all aspects of human activity today
cannot be overstated. This technology is no newcomer to structural engineering, with
logic-based AI systems used to carry out design explorations as early as the 1980s.
Nevertheless, the advent of low-cost data collection and processing capabilities have
granted new impetus and a degree of ubiquity to AI-based engineering solutions. This
review paper ends by posing the question of how long will the human engineer be needed
in structural design. However, the paper does not aim to answer this question, not least
because all such predictions have a history of going wrong. Instead, the paper assumes
throughout as valid the claim that the need for human engineers in conventional design
practice has its days numbered. In order to build the case towards the final question, the
paper starts with a general description of the currently available AI frameworks and their
Machine Learning (ML) sub-classes. The paper then proceeds to review a selected
number of studies on the application of AI in structural engineering design. A
discussion of specific challenges and future needs is presented with emphasis on the
much exalted roles of “engineering intuition” and “creativity”. Finally, the conclusion section
of the paper compiles the findings and outlines the challenges and future research
directions.

Keywords: artificial intelligence, machine learning, structural design, structural engineering, design space

1 INTRODUCTION

We call structural design the process by which the number, distribution, shape and size of structural
elements, and their connectivity is determined so that a given design objective is achieved while
meeting a number of constraints of serviceability and resistance. The objective can be the
minimization of material consumption but in practice, it is more likely to be related to cost
minimization and to involve trade-offs between manufacturing, logistical and sometimes
sustainability considerations. At the beginning of the structural design process, human engineers
are usually provided with the overall geometry—through Building Information Models (Jung and
Joo, 2011), for example—and their task is to come up with specifications of the distribution of
structural elements including their materials and sections. This process is carried out using a diverse
collection of computational tools, from information modelling to structural analysis; sampling from
catalogues involving hundreds of structural sections and with constant reference to thousands of
pages of codes of practice. Consequently, as it stands today, structural design entails a significant and
oftentimes tedious solution-searching process involving various complex and non-fully overlapping
multi-dimensional domains, multiple constraints and large uncertainties, whereby arriving to a
global optima would be a prohibitively time-consuming endeavour. Therefore, more often than not,
the engineer’s search will be brief and they will settle for the first sub-optimal design that satisfies all
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the hard constraints. Unsurprisingly, a range of tools have been
proposed to carry out the optimization of some of the better-
posed problems involving a relatively low number of structural
elements, e.g., (Jewett and Carstensen, 2019; Amir and Shakour,
2018; Tsavdaridis et al., 2015); and more recently these tools have
started to incorporate additional and more realistic complexities
like dynamic actions (Giraldo-Londoño and Paulino, 2021),
manufacturing processes (Zegard and Paulino, 2016;
Carstensen, 2020), etc. However, the emphasis of this paper is
not on the generation of targeted topology-optimized solutions
for which excellent review articles can be found elsewhere, e.g.,
(Thomas et al., 2021). Instead, this opinionated review
concentrates on the exploration of large and complex
integrated design spaces with the aid of artificial intelligence
(AI) and, more specifically, the increasing role that Machine
Learning (ML) algorithms are playing in this search.

Artificial Intelligence (AI) is the branch of science that is
concerned with the re-creation of human cognitive functions by
artificial means. Although this is most commonly attempted via
digital computers, other media, notably biological systems (Qian
et al., 2011; Sarkar et al., 2021), have been and continue to be used
with this purpose. This paper, however, focuses on the role of
intelligent algorithms for digital computers; or more precisely,
algorithms whose distinctive feature is their ability to learn. In
this context, Machine Learning (ML) is a branch of AI whose
central advantage is its potential to automatically detect patterns
in data under uncertainty (Murphy, 2012). This uncertainty arises
inevitably from the limited size of the datasets employed but it
also reflects errors in data collection (including measurement) as
well as hard epistemic paucities.

One of the first approaches to replicate human cognition was
to organize “knowledge” as a collection of mutually related facts.
Once a database of facts was built, so the belief went, inference
rules could be used to query it, revealing the interconnections and
allowing questions, including those related to engineering design,
to be answered. The use of this type of AI in structural design was
discussed as early as 1978 by Fenves and Norabhoompipat (1978)
and application examples appeared in the early 1980s. For
example, Bennett et al. (1978) developed a program consisting
of 170 production rules and 140 consultation parameters to assist
the engineer in the application of Finite Element Analysis (FEA)
to the design of building structures. Also, Maher and Fenves
(1985) constructed an expert system for the preliminary design of
high-rise framed buildings. They used weighing factors to
compare different gravity and lateral resisting structural
systems highlighting the “best” design according to the
criterion of a linear evaluation function. Other researchers like
Ishizuka et al. (1981) used rule-based systems to infer seismic
damage on the basis of a database of earthquake accelerograms
and visual inspection reports. However, it soon became apparent
that hard rules can not replicate the human inferential process
and that their contribution to design would be limited, not least
because the world for which engineers design is brimming with
uncertainty but also because exceptions to the rule are all too
common. Logic-based AI was abandoned.

With the passage of time, probabilistic reasoning made its way
into ML and message passing architectures, which model

intelligence on the basis of human neural information passing
(Rumelhart et al., 1986), started to take the computational
demands on storage and processing down to manageable
levels. By the end of the 1980s, Bayesian Networks (BN) had
become a practical scheme for ML (Pearl, 1988). BN have proven
useful in evaluating the reliability of structures and infrastructure
systems with multiple components andmultiple failure sequences
(Mahadevan et al., 2001). And Naive Bayes classifiers have been
used to construct damage fragilities, e.g. (Kiani et al., 2019),
predict the strength of structural components, e.g. (Mangalathu
and Jeon, 2018), or estimate structural failure modes, e.g.
(Mangalathu et al., 2020).

Meanwhile, Artificial Neural Networks, or Neural Networks
(NN) for short, started to be used in all branches of engineering
design. One of the first studies to apply back-propagation
NN—an approach initially devised by Rumelhart et al.
(1986)—to structural engineering was conducted by
Vanluchene and Sun (1990). In their pioneering study,
Vanluchene and Sun (1990) applied NN to the pattern
recognition of a loaded beam, to the design of a simply
supported reinforced concrete beam and to the structural
analysis of a plate. NNs are abstractions of the functioning of
the human brain that aim to replicate its ability to acquire
knowledge through learning and storing in the form of
interconnecting synaptic weights. In true fashion of the
process originally hypothesised by Rumelhart et al. (Figure 1)
the network takes a set of features as inputs and applies complex

FIGURE 1 | (Rumelhart, 1994) Message Center near the end of
processing when the semantics of the imput have been well defined.
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feature fusion operations through a series of layers of neurons.
The final layer outputs the end response either as a prediction or
as a form of classification.

NN models (and their deep learning variants) have become
extremely popular nowadays driven by the media coverage of
their superb feature recognition capabilities and the notorious
increase in computational power together with the wide
accessibility of tools and libraries. Accordingly, NN have been
used in seismic response prediction, e.g., Morfidis and Kostinakis
(2017); Lagaros and Fragiadakis (2007), system identification,
e.g., Sivandi-Pour et al. (2020), damage localization, e.g., Bani-
Hani et al. (1999); Gharehbaghi et al. (2021) and in structural
control, e.g., (Khalatbarisoltani et al., 2019; Suresh et al., 2010),
among other structural engineering tasks. The literature on NN
(and indeed ML) applications to structural engineering is vast.
Sun et al. (2021) provide a comprehensive review of ML methods
used to predict and asses structural performance and to identify
structural conditions. Some of these can be used in support of
structural design but do not directly deal with structural design
per se, defined in the form presented earlier in this paper. In fact,
issues related to ML and structural design, as defined above, are
not particularly well covered in the literature despite the proven
potential brought about by leveraging AI technologies and ML
algorithms to improve the exploration of design alternatives
beyond current human cognitive levels.

It follows from the previous discussion that existing design
optimization methods concentrate on individual structural
subassemblies and do not serve to automate the design of
entire structures. By contrast, this paper will explore the use of
ML algorithms to automate structural designs stricto sensu. To
this end, this paper proceeds to review a selected number of
studies on the application of ML in structural engineering
design. A discussion of specific challenges and future needs is
presented with emphasis on the much exalted roles of
‘engineering intuition’ and ‘creativity’. Finally, the
conclusion section of the paper compiles the findings and
outlines the challenges and future research directions. But first,

the paper will provide a general introduction to AI and ML
methods.

2 BACKGROUND ON AI AND ML

As mentioned above, central to AI and ML algorithms is the
ability to learn, potentially achieving the super-human ability of
recognising patters in high-dimensional datasets that have
remained impenetrable to the human mind. Figure 2
compares the way traditional and AI software operate. In a
traditional piece of software, the coder writes a
“comprehensive” set of rules that the program must follow.
Therefore, it is the sole responsibility of the programmer to
consider all possible scenarios and to hard-code into the
algorithm all the appropriate responses to these scenarios. It
should be possible, in principle, to arrive to the precise output by
following the path through the code given a specific input. By
contrast, in AI algorithms the rules are created by the algorithm
itself and the coder only provides the scaffold (or architecture)
and feeds data into it. The AI algorithm will analyse the data and
fill this scaffold with its own through training. Once those rules
are established, they can then be used in the traditional way to
predict other outputs given an input. The fact that the coder is
exempt from considering and including all potential scenarios
makes AI particularly useful when dealing with large datasets or
complex processes.

The differences in construction and operation between
traditional and AI software express themselves in a number of
ways. Traditional code is naturally transparent and generally easy
to predict while ML can be obscure and may produce unexpected
results or include biases that are not always easy to detect. On the
other hand, traditional algorithms will be limited to what the
coder has predicted at first, while AI software is in principle easy
to adapt without significant changes in the code. Traditional
software demands the coder to capture carefully and accurately all
the potential scenarios, while AI can handle complex problems

FIGURE 2 | Traditional vs. AI algorithms.
FIGURE 3 | Categories of ML algorithms.
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more efficiently than humans, especially when they involve
multiple dimensions or large datasets.

Broadly speaking, ML algorithms can be categorized in three
main groups: supervised, unsupervised and reinforcement
learning, depicted in Figure 3. Supervised learning is probably
the closest to human learning. A series of “examples” is used by
the ML algorithm to build “knowledge” about a given task in a
similar way to how humans build and use “past experience”
(Dietterich, 1996) like when small children are guided in their
association of words to meanings. To this end, supervised models
are given a set of features as input and labels as output. Then, the
models attempt to find a set of rules to match a given set of
features to the correct label guided by some measure of success.
The process employs statistical methods for the learning
operations and manual adjustments are usually not required.
However, supervised ML relies on large amounts of correctly
labelled input data, in quantities that can be significantly larger
than those required by humans (Kühl et al., 2020).

On the other hand, unsupervised learning can be applied to
different data types. In this approach, labels are not required, just
features. The model is given those features and its algorithm then
groups them according to some unknown property. In general,
unsupervised models try to do one of three things: either cluster
the data provided, find an anomaly in it, or reduce the number of
dimensions in which to express the dataset. Grouping works by
clustering data points that share some features without knowing
what labels or indeed what categories are present. In anomaly
detection or pattern recognition, a defining set of features is found
and the model classifies the data point as either part of the set or
as an anomaly. This is very helpful in failure identification or
structural characterization. Reinforcement learning builds on
these ideas and sometimes uses the algorithms developed for
supervised and unsupervised learning. It is used in situations

where it is difficult to get perfectly correct labels. In such cases, the
algorithm is provided with an input and a reward function that
gives an indication of how well or bad the algorithm is doing. The
algorithm then learns how to maximise the reward.

In general, the creation of a typical AI algorithm involves four
main stages. It starts with the data preparation. This is a crucial
stage that can take longer than the others. It involves the
acquisition of data, its analysis and pre-processing. The quality
and quantity of data are determinant for a good output of the
model. The second stage is the design of the model, which is
followed by the third stage of training and evaluation. It is not
uncommon that at the end of this process, the coder realises that
changes are required in the data or the model architecture, and
the design should be re-adjusted. Once the model is considered
well designed and trained it is ready to enter its final stage of
deployment.

3 AI AND THE DESIGN OF SPATIAL
STRUCTURES

Although shells, vaults and other spatial structures are already
among the most efficient structural forms and have a notoriously
complex structural response, they have been fertile ground for
many structural design optimization explorations. This may be
because shells can be discretised as meshes with known support
locations which, despite requiring hundreds of variables, are
usually single-layered and lend themselves more easily to
parametrization than the reticulated multi-storey frames with
a multitude of potential element locations, sizes and connection
types used in buildings. However, even if a highly parametrized
design space is used, its sheer size still makes it trackless to the
human mind. Therefore, the basic capability of machine learning

FIGURE 4 | Latent space representation of the data points coloured depending on the occupancy of the arches (a measure of the material usage) for the seismic
design scenario. The latent space (A) is presented together with the plot of the mean occupancy of each cluster (B) and sample shapes from the best selected cluster
(C). Adapted from Palmeri et al. (2021) based on the CAE model of Maqdah et al. (2021).
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to discover and rebuild complicated underlying connections
between input and output variables from a relatively big
dataset (Liu et al., 2020) can be of great use while designing
spatial structures.

Mirra and Pugnale (2021) examined AI-generated design
spaces built using Variational Autoencoder (VAE) models, and
compared their outputs with those coming from a human-
generated explicit definition of design variables. Two relatively
simple but realistic cases were explored by Mirra and Pugnale
involving triangular and square footprints. A dataset of 800 depth
maps obtained from 3D models were used to train the VAE.
Three objectives were set for the optimization, including: 1) the
maximisation of the structural performance, quantified in terms
of deformations obtained from Finite Element Analysis (FEA), 2)
the maximisation of the height of the shell openings, and 3) the
minimisation of the difference between the final and target
footprints. They found that the AI-generated outputs had a
greater diversity and responded better to the performance
criteria in comparison with the solutions obtained from
human-defined generative designs. Besides, AI solutions
included structural configurations that would not have been
possible to find within the human-defined design space. This
hints to one of the main advantages of using AI in design: the
possibility of exploring design options beyond those traditionally
developed by human intelligence (Mueller, 2014).

The exploration of diverse design options brought about by AI
was also exploited by Maqdah et al. (2021) and Palmeri et al.
(2021) while studying the provision of structurally-efficient
regolith-based arch forms for extraterrestrial construction.
They built unsupervised machine learning models
(Convolutional Autoencoders, CAE) capable of detecting
patterns and differentiating between arch geometries and their
stress and deformation contours (Figure 4). These models were
then used to search for optimal sectional geometries considering
the effects of extreme thermal changes and seismic action under
low-gravity conditions. Various datasets, each one with over 500
thermal and static FEA analysis and a 60–40% training-validation
split were constructed for this purpose. Although the optimal
configurations found resembled those obtained by more
traditional approaches (McLean et al., 2021), the possibility of
including a diversity of design actions (gravity, thermal, and
seismic) and a substantial number of dimensions that are then
reduced to a smaller latent space where a holistic search process
can be used was featured as a clear contribution of AI. Moreover,
Maqdah et al. (2021) and Palmeri et al. (2021) were able to
elucidate some of the dependencies of the latent space (reduced)
dimensions on geometric and structural parameters which can be
helpful in making informed (partially explainable) searches.
Alongside the CAE, regression models were used to allow the
visualisation of the changes in the arch shape and stress fields
when moving towards a certain direction in the design space.

The works of Zheng et al. (2020) and Fuhrimann et al. (2018)
have explored the use of ML in leveraging the fundamental
relationship between force and form in shells. Zheng et al.
(2020) trained a NN model to predict the relations between
subdivision rules and structural and constructional performance
metrics on the basis of graphic statics results. This surrogate use

of ML models to enable a rapid exploration of design spaces
constitutes one of many important attempts to improve the
machine-human collaboration. Unfortunately, the parameters
employed; notably for constructibility (i.e., number of faces
with areas greater than a given threshold), may seem too
simple proxies to capture the complexities of the
manufacturing and construction challenges. On the other
hand, Fuhrimann et al. (2018) also explored the potential of
combining form-finding with ML in the form of Combinatorial
Equilibrium Modelling and Self Organizing Maps. Central to
these works is the need to grasp a complex space of solutions in
order to both increase its diversity and to make it manageable to
the designer.

The previously mentioned works have highlighted the basic
capability of ML to discover and rebuild complicated underlying
connections between input and output variables and to find
relationships between structural shape and performance. Once
those relationships are established, the corresponding
optimization of the structural configuration is simplified (Liu
et al., 2020). However, to set an optimization process where the
design parameters are chosen automatically by the machine
(algorithm) without human intervention remains difficult. This
is because these parameters must exist in a low-dimensional space
that can be optimized while not sacrificing their representational
capacity. An issue that was also observed while optimizing the
design of materials (Xue et al., 2020).

An alternative approach was followed by Danhaive and
Mueller (2021) who tackled the design of a long span roof
structure. For this purpose, they used variational auto
encoders (VAE) to train low-dimensional (2D) models that
are intuitive to explore by the human engineer. By
conditioning the models on different performance indicators,
the models can adapt their mappings. A new performance-driven
sampling algorithm was proposed to generate databases that are
biased towards design regions with high performing structures.
The structural performance indicators employed in the case study
are only mass dependent and are normalized so they are evenly
distributed on the unit segment. A total of 36 design variables,
mainly topological, were used in the design and dimensioning of
the truss elements using the cross-section optimizer available in
Karamba (Preisinger and Heimrath, 2014). The salient feature of
this approach is that it gives the human designer a greater control
over performance trade-offs standing in the middle between
optimization methods, on the one side, and undirected search
algorithms, on the other.

The support provided by ML algorithms to the design of
spatial structures are not conscripted to structural calculations
but can include the quantification of traditionally less quantifiable
metrics such as aesthetics. For example, Zheng (2019) developed
a NN that could be used to quantitatively evaluate the personal
taste of an architect. By using force diagrams of polyhedral
geometries with unique and distinguishable forms and a clear
data structure and asking the human architect to score the inputs,
a NN was trained to learn their design preferences. The results,
which may seem unsurprising at first sight, put in evidence the
capability of ML to express what may be considered as inexplicit.
In doing so, Zheng demonstrated not only that solutions with

Frontiers in Built Environment | www.frontiersin.org February 2022 | Volume 8 | Article 8157175

Málaga-Chuquitaype Machine Learning in Structural Design

41

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


higher scores can be generated with a higher probability of
satisfying any personal design taste, but what is more
important, that ML can learn relationships that may be
difficult to articulate in human parlance. It should be noted
that, given the natural difficulties human designers face when
asked to score many forms consistently to the same standard. In
these cases, the scores were mapped into a grading scale, from A
to D, which considers the number of times the forms have been
selected. This explains the final selection presented in Figure 5
where a structure with an initial score of 0.729 is chosen on top of
another with a score of 0.864. This is a compromised solution, but
one that massively narrows down the variety of forms from which
the designer has to choose. Thus, the door is open to integrate
both mechanistic and quantifiable metrics with other kinds of
design considerations and to apply this to a diversity of
design tasks.

4 AI APPLIED TO THE DESIGN OF
BUILDING STRUCTURES

The rationalization of the design process of building structures,
within a structural optimization framework, has usually been
separated into three components (Havelia, 2016): 1) topology,
which involves decisions on the number and connectivity of
members, usually done without optimizing the connection itself;
2) shape, which involves decisions related to the location of
elements and the layout of joints; and 3) sizing, which
involves defining member cross sections. More often than not,
these components are treated separately in the scientific
literature, however, they are strongly interrelated and decisions
involving one will greatly affect the others. Usually, the layout
space is reduced by architectural considerations, but it will still
encompass a large number of potential locations that are difficult
to explore without any pre-determining guiding principle.
Besides, early estimates of the building cost are usually based
on weight, however, the majority of the total cost can sometimes
be attributed to fabrication and erection which are not always
directly proportional to weight (Kang and Miranda, 2005) In

addition, material costs depend not only on tonnage, but also on
the type and size of cross sections utilized and erection costs are
also highly contingent on geography and local market conditions
Klanšek and Kravanja (2006). These facts will automatically
render impractical most topology optimization studies carried
out to date.

Some studies have incorporated, albeit in a simplified manner,
the design complexities outlined above. For example, Torii et al.
(2016) developed an optimization algorithm that penalizes the
number of members and joints in the structure in proportion to
the number of connected elements. Unfortunately, this was only
applied to trusses and no consideration was given to the fact that
the connection type is determinant in their cost. Hassett and
Putkey (2002) collected a comprehensive list of cost drivers and
their values for the most common moment-resisting and pinned
connections in the AISC catalogue. And Zhu et al. (2014)
considered constructibility issues in the optimization of frames
and demonstrated that some structures with a less efficient load
path can improve constructibility and lead to overall lower costs.
Zolfagharian and Irizarry (2017) used Principal Component
Analysis, a clustering ML technique, to group constructibility
factors into six major categories. To this end, they assembled a
dataset, via industry interviews, on 79 different constructibility
factors with given scores. As the design space increases
exponentially with the number of structural elements, the
number of structural typologies analysed, their connectivity
and the constructibility considerations, most currently
available optimization methods are rendered impractical for
full-scale real implementation. Other proposals, like that of
Havelia (2016) have used methods based on topology and
sizing optimization within a multi-disciplinary architecture
suitable for 2D steel framed buildings. Again, Havelia’s study
showed that a heavier structure can be more economical than its
lighter counterpart when connection and fabrication costs are
taken into account. One drawback of this study is that
serviceability constraints like maximum deflection or
vibrations are not considered and therefore its applicability to
real designs is hampered. On the other hand, high profile
applications of structural optimization like the Chicago 800

FIGURE 5 | Selection of form-found structures considering user taste by Zheng (2019).
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West Fulton Market or Shezhen’s Financial Center do not aim to
optimize the whole building economy or constructibility but are
concerned with only a small proportion of its load carrying
elements.

One of the first studies that departs from the above mentioned
trend is that of Ranalli (2021) who proposed a new AI-based
optimization module for the design of a flooring system with
varying degrees of composite action. User-defined variables
employed include the depth of the slab, the height of the steel
deck, the properties of concrete, a range of possible cambers, the
option to use shoring during construction, the degree of
composite action, and the range of wide flange sections. The
optimization framework iterates through each beam and girder,
automatically determines its static scheme, computes the
governing moment and deflection demands under the applied
loads, and efficiently iterates through the set of available design
options to find the most economical and feasible solution.
Serviceability limits are considered and material and labour
rates are assigned to arrive to an optimal solution through a
scenario exploration. However, the gravity resisting columns are
not considered, nor are issues related to their continuity and the
rotational restraint (or flexibility) they provide to the floor.
Nevertheless, the main strengths of Ranalli’s AI-driven
optimization framework are its computational scalability and
its readiness of applicability to new steel frame designs with
minimal pre-processing efforts.

Another interesting work was performed by Chang and Cheng
(2020) who re-formulate building frames as graphs (Figure 6)and
use Graph NN (or GNN) trained on simulation results that can
learn to suggest optimal beam and column cross-sections. This is
one of the first attempts to use GNN in the realm of design
optimization aided by differentiable approximators. The
optimization objective employed by Chang and Cheng (2020)
is simplistic, involving only mass minimization, but a variety of
constraints is considered together with serviceability limits to
produce optimal designs. The results are reported to be consistent
with typical engineering designs and also comparable to outputs
from Genetic Algorithm optimizations. The main limitations of
this work are related to the absence of slab continuity effects and
the treatment of the building skeleton as an input. However, the
possibility of implementing a graph representation and
generation algorithm in the initial phases of design to provide

an end-do-end solution generating tool is worth exploring
further.

Similarly, Ampanavos et al. (2021) developed a ML system for
the automatic generation of building layouts aimed at helping
architects present structurally feasible solutions during the early
stages of the project. A peculiarity of the system is that it does not
aim to estimate the full structure to start with, but uses an iterative
approach where the neural network gradually extends the
solution as necessary. In this way, the NN has better changes
of identifying patterns on a small building area at each step.
However, this approach is also prone to error accumulation for
large structures, although this error is dependent on the size of the
training dataset. Besides, the column positioning can be noisy.
However, future combinations of this approach with element
sizing tools andmore sound structural considerations are likely to
produce a scalable and helpful methodology.

In his thesis, Ranalli (2021), mentioned above, also considered
the problem of sizing lateral load resisting systems against strong
loads typical of earthquakes. The author treated this problem in
two iterative phases, the first of which searches for the most
economical solution that meets strength, constructibility and
ductility criteria. The second phase checks for lateral drift
compliance and design load combinations. An energy based
analysis is performed in case particular floors need to be adapted
to comply with the drift limits. The strength of this study is that
is able to combine commonly used analysis tools and relatively
justified cost functions to provide a whole-encompassing
approach to building design. It is also worth noting that a
high variance of cost across different design scenarios was
observed highlighting the important role of even small
changes in the variables on the overall building cost.

The above mentioned studies are mainly devoted to steel
framed solutions, where the domain is discrete since only a
certain number of steel sections are available. This may
simplify and reduce the design space and facilitate the
consideration of constructibility functions. By contrast,
designing concrete structures may introduce additional
complications since a relatively broader design space is to be
considered with added variations in member detailing. These
issues were approached by Pizarro and Massone (2021) who
aimed at supporting the design of reinforced concrete buildings
by keeping track of previously accepted design solutions, in

FIGURE 6 | An example building structure and its structural graph representation suitable for analysis by GNN, from Chang and Cheng (2020).
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contrast with other topology optimization methods based on
more heuristic approaches like those proposed by Zhang and
Mueller (2017), which do not have this feature.

Pizarro and Massone (2021) proposed a predictive model for
the length and thickness of reinforced concrete building walls
based on Deep NN trained with 165 Chilean residential projects.
The walls were described in both geometrical and topological
domains and three variations of the data, achieved by modifying
the building plan angle and its scale, were considered. Highly
accurate predictions of wall thickness and length were obtained
and the authors recommend the method to provide the engineer
with a preliminary but reliable wall plan. Although not holistic in
its scope, this work stresses the potential of ML-based tools to
enhance the engineer-architect interaction via the machine.
Besides, although important in number, the database of 165
building designs employed puts in evidence the small-data
nature of most structural engineering problems. In addition,
the regressive model proposed by Pizarro and Massone (2021)
does not incorporate contextual information and can lead to poor
estimations of wall translation.

In a companion paper, Pizarro et al. (2021) improve upon
their previous work and present Convolutional NN models
that take the architectural data as input and can output the
final engineering floor plan. To this end, two regressive
models are used to predict the thickness, length, and
translations of the wall. A second prediction of plan is
obtained by using a model that generates a likely image of
each wall. Both independently predicted plans are combined
to lead to the final engineering design as shown in Figure 7.
This methodology was proven to be a feasible option to
accelerate decisions regarding the building layout and can
be adapted to incorporate estimations of building drift
demands or force distributions.

Along the same vein as the above-mentioned studies, the work
of Liao et al. (2021) uses generative adversarial networks (GAN),
that have been previously used to generate building floor plans
(Chaillou, 2020), to perform structural designs of shear wall
residential buildings. To this end, the authors use a semantic
process to extract essential architectural and structural features
from technical drawings of around 250 pairs of architectural-

structural human designs. The outputs of the GAN model are
evaluated in two case studies where their safety and economy are
compared against designs carried out by competent human
engineers. It is concluded that GAN-generated designs can
improve significantly the speed at which new designs are
generated without compromising the quality of building
structures. Similarly, Lou et al. (2021) optimized the shear wall
layout of high-rise buildings through a tabu search algorithm.
Support vector machines (SVM) were used to construct surrogate
models and speed-up the analysis time. Their objective was to
minimize the structural weight with constraints on the period
ratio and story drift. Through a series of case studies, the authors
showed that the proposed approach works well. In this case,
however, a meta-heuristic algorithm was used for the
optimization part and the ML model was employed only to
reduce the computational cost due to repetitive structural
analyses.

5 THE GRAILS OF CREATIVITY AND
INTUITION

Modelling human intelligence on the perceived way we process
and understand information has lead to remarkable tools that can
augment the engineers’ design skills, allowing them to operate
over large datasets and make ever more accurate predictions of
response and performance. However, understanding and
reasoning are not the only, or even the most frequent, ways
engineers use to solve problems (Graziano and Leone, 2019).
Intuition, understood as “a form of recognition” (Simon, 1995),
or the ability to understand something almost instinctively
without concious reasoning, plays an important role in
engineering decisions. In fact, engineers, who may prefer to
call it judgement, use intuition even when developing
computer models such as when framing the design question
the model is set to answer or deciding what to include and what to
leave out of that question. Appeals to recognize the importance of
intuition in engineering design have grown almost in parallel with
the proliferation of computational tools in engineering (Young,
2018).

FIGURE 7 | Predicted plan obtained by Pizarro et al. (2021).
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Recent pioneering research has started to look at ways to
integrate intuition into AI and ML with encouraging results in
areas as diverse as chemical engineering (Duros et al., 2019),
automated planning (Kim et al., 2017), and mathematics (Davies
et al., 2021). In all these cases, the authors propose schemes for
the incorporation of a human experimenter as part of the
solution-generation process. For example, Davies et al. (2021)
approach is akin to a “test bed for intuition”whereML algorithms
guide the experimenter by: 1) verifying the existence of a
hypothesized mathematical pattern using supervised ML; and
2) if the pattern exists, by helping in understanding it using
Attribution Techniques. Likewise, Duros et al. (2019) propose the
integration of human and machine in the selection of potential
chemical experiments within a single decision-making loop. In all
these cases, by making human and machine work together, a
significantly higher performance is achieved than either of them
could achieve individually.

In the structural engineering field, a relatively similar
approach has been attempted by Danhaive and Mueller
(2021). In their work, briefly described in the previous section,
Danhaive andMueller allow the design engineer access to a family
of 2D latent spaces that can be adapted by changing the user-
defined performance condition. This feature encourages
designers to investigate different trade-offs between
performance and other design features and opens the door for
a more integrated machine-designer collaboration that does not
aim to replace intuition with deterministic and quantitative
rules but instead to incorporate it within the design process.
However, to make the latent space intuitive and apt for human
exploration, Danhaive and Mueller have to limit it to two
dimensions. This highlights a defining feature of human
intuition: that it emerges from the natural inability of the
human mind to process scenarios with multiple variables
(Halford et al., 2005). It is when faced with high
uncertainties and multiple unknowns that the engineer
resorts to intuition to be able to define a direction of
exploration without getting boggled by the details. One
would expect that the growing ability of AI to identify
complex patterns in high-dimensional spaces will supersede
the advantages of rules of thumb and educated guesses in
determining high level features of the design process. Until
then, the integration of human and machine intelligence offers a
promising alternative. In addition, intuition’s deciding role
during the initial design stages fades down as the design is
gradually informed by mechanics and structural analyses.
Nevertheless, intuition remains as one of the last strongholds
of traditional structural engineering practice as it adapts and
responds to the challenges of digitalization. The other being
creativity.

Creativity is usually defined as the generation of novel and
useful ideas (Jung et al., 2013). This immediately invokes the
existence of a judge, a person to whom the idea, or in our case the
design, would appear novel or useful. It is perhaps this subjective
strength of the term the reason for its recent prominence in the
discussions around the training of the next generation of
structural engineers (Ibell, 2015) where it is usually pitted
against the more quantifiable (and declining) numerical skills.

However, this subjectivity is not amorphous or ethereal since
creativity does not emerge in the vacuum but is rather tied to
socially contextualized phenomena (Kaufman and Sternberg,
2010). As such it will appear that creativity can be taught and
learnt, if by humans also by machines. In this regard, the
examples presented in previous sections have highlighted the
possibility of incorporating measures of taste in ML tools and
algorithms have been shown to enhance the diversity of the
solutions found. In this context, it has been argued that
novelty constitutes a critical issue to address with
computational approaches, e.g., (Amabile, 2020). This is due
to the fact that training of ML models usually relies on
minimizing a loss expectation function and therefore the
model is encouraged to perform well in the most common
elements of already established knowledge.

A number of approaches could be taken to improve the
“creativity” of ML algorithms (Boden, 1998), namely: 1) by
producing novel designs from the combination of familiar
solutions, 2) by discovering new paths in conceptual spaces,
and 3) by disrupting the design space with solutions that were
not previously considered. Consequently, it would seem that
there are yet many routes to encourage artificial creativity.
These aspects are in fact being developed within (and are
probably more suited to) reinforcement learning approaches.
Similarly, efforts to incorporate heuristic thinking into AI have
been trialled in other branches of design (Nanda and Koder,
2010) and it may be beneficial to explore those in structural
engineering also. At the end of the day, heuristics (intuition) is
already routinely used by engineers to reduce the search space
of potentially feasible designs, e.g., (Maqdah et al., 2021;
Palmeri et al., 2021; Danhaive and Mueller, 2021). A
perceived hurdle, however, comes form the fact that much
of the progress of ML and AI has come from the formalization
of mathematical and logical approaches aiming at well defined
problems with clear goals. To answer this, may be the
distinction between: 1) algorithms that search the entire
decision space, and 2) those that perform bounded searches
to provide satisfactory solutions (Simon, 2019) can be helpful
here. Ultimately, much to the regret of the new breed of
curriculum transformation proposers, computer programs
constitute a body of empirical phenomena to which the
student of design can address himself and which he can
seek to understand. There is no question, since these
programs exist, of the design process hiding behind the
cloak of “judgment” or “experience” (Simon, 2019). To
which we may add:“ or creativity”.

None of the above mentioned explorations to embed artificial
intuition or to enhance artificial creativity in machine
intelligence has yet been fully explored in structural
engineering design. This constitutes an area of great research
potential. Since much of the ML research has been based on
mimicking the theories of human cognition it is entirely possible
that the restrictions of human creativity and intuition are in turn
limiting machine intelligence. This calls for a re-evaluation of
the human-machine creative partnership. New investigations
that take at face value the human-machine duo, like it has been
done in other creative industries (Nika and Bresson, 2021), are
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likely to benefit the realm of structural design with fresh and
surprising views. So it seems that in the short term we may be
seeing more design cooperation between human and machine
where the role of ML, however, is not circumscribed to repetitive
tasks but can assist in the creative work itself.

6 CONCLUSION

It has been suggested (Gero, 1994) that there are three views that
can be taken about artificial intelligence in design: 1) AI as a
framework in which to explore ideas about design; 2) AI as
provider of a schema to model human design; and 3) AI as a
means to allow the development of tools for human designers.
This review paper has concerned itself with a strong version of the
third view, by highlighting the path not only towards the
development and proliferation of ML tools but also towards
the automation of entire parts of the design process. In fact, a
multitude of ML tools have been proposed aimed at different
individual tasks along the design chain (like predicting the
strength or condition of a given element, or the optimization
of a section or connection). Design, however, is more complex
than any of these individual tasks andMLmethods aimed at it are
more scarce.

It has been shown that ML tools have now started to appear
that allow engineers to access complex multi-dimensional spaces
beyond the ability of human intelligence alone. It was argued that
the defining characteristic of ML to identify complex patterns and
use those to predict or propose new engineering design solutions
will form the basis for the automatization of increasingly large
portions of the design endeavour. Importantly, these ML-enabled
explorations can include not only hard mechanistic constraints
but also metrics of taste and intuition. Indeed, although currently
still producing timid results, the learning capacity of ML
algorithms can be used to incorporate aesthetic and creative
criteria that is sometimes difficult to articulate but which
nevertheless the machine can learn. In addition, this learning
can feed not only from engineering precedents at large but from
the “best” precedents we currently have.

Another advantage of ML algorithms applied to design is
found in the increased diversity of outputs produced. ML
algorithms have been shown to increase the design diversity
by recombining the features that characterise individual
designs producing solutions beyond those which would
have been imagined by human engineers. This
recombination is usually neglected in engineering designs
due to the large demands of data and time associated with

it. However, with the use of data augmentation tools and
computer simulation, it is expected that this hurdle will be
solved sooner rather than later.

Nonetheless, the data requirements of ML algorithms will
continue to be a limiting factor, particularly in the structural
engineering field. If the ML-enabled design automation is to be
attained, larger datasets of real-world designs should be made
freely available. Most of the ML algorithms reviewed herein have
used training datasets in the order of the hundreds. This is “small
data” science and requires specific data augmentation techniques
that the focus on “big data” is currently concealing. Data
acquisition and curation is indeed the single most important
step in the development of ML models. Robust, complete and
reliable data sources should be produced and shared. Echoing
current public demands in the sustainability and industrial
ecology quarters of the design enterprise (in terms of
environmental impact, LCA, etc.) (D’Amico et al., 2019) the
field of structural ML design also needs all its stakeholders to
contribute their design databases. Only then, truly optimal and
“out of the box” ML-enabled design solutions can be realistically
proposed paving the way towards more resilient, economical and
sustainable new structures.

All in all, we should continue to guard against the well
known dangers lurking around ML implementation. To this
end, issues of interpretability and overfitting should continue
to be raised and efforts made to increase model explainability
(by conducting and reporting sensitivity tests and marginal
effects studies for example), increase data sources, improve
noise filtering processes and carefully select the ML models (to
reduce overfitting) should carry on. Finally, it has been said
that ML tremendous success so far has been achieved by
showing that some cognitive processes thought to be
complex and difficult are, in fact, not so. This, taken
together with the acceptance that routine design is broadly
defined as that activity that occurs when all the necessary
knowledge is available (Gero, 1994); should prepare us well to
be less surprised when the next generation of ML tools hits the
structural design enterprise with the automation of large
portions of the design process. Hence the question of how
long until, not if, the human engineer is superseded in
structural design.
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Predicting the Response of Laminated
Composite Beams: A Comparison of
Machine Learning Algorithms
George C. Tsiatas1*, Sotiris Kotsiantis1 and Aristotelis E. Charalampakis2

1Department of Mathematics, University of Patras, Patras, Greece, 2Department of Civil Engineering, University of West Attica,
Athens, Greece

A comparative study of machine learning regression algorithms for predicting the deflection
of laminated composite beams is presented herein. The problem of the scarcity of
experimental data is solved by ample numerically prepared data, which are necessary
for the training, validation, and testing of the algorithms. To this end, the pertinent
geometric and material properties of the beam are discretized appropriately, and a
refined higher-order beam theory is employed for the accurate evaluation of the
deflection in each case. The results indicate that the Extra-Trees algorithm performs
best, demonstrating excellent predictive capabilities.

Keywords: machine learning, regression models, composite beams, orthotropic material model, higher-order beam
theories

INTRODUCTION

Beams as structural components are crucial in many structural systems. The prediction of
their deflection is essential since excessive values can lead to the structural system losing
its operational serviceability (Serviceability Limit State—SLS). On the other hand,
composite materials are increasingly used in structural engineering due to their enhanced
stiffness combined with reduced weight. Several shear deformation theories have been
developed so far to evaluate the response of thin, moderately thick, or deep beams.
They fall into three main categories: the Euler-Bernoulli beam theory (or Classical
Beam Theory—CBT), the Timoshenko beam theory (or First Order Beam
Theory—FOBT) and the Higher-Order Beam Theories (HOBTs). CBT is applicable for
thin beams with no shear effect. In the FOBT, a constant state of transverse shear strain is
assumed that does not satisfy the zero shear stress condition at the top and bottom edges
of the beam and thus requires a shear correction factor to compensate for this error (see,
e.g., Wang et al., 2000; Eisenberger, 2003; Civalek and Kiracioglu, 2010; Lin and Zhang, 2011;
Endo, 2016). In general, the HOBTs adopt a specific function (parabolic, trigonometric,
exponential, or hyperbolic) to more accurately represent the shear stress distribution along
the beam’s thickness and do not require the shear correction factor (see e.g., Reddy, 1984;
Heyliger and Reddy, 1988; Khdeir and Reddy, 1997; Murthy et al., 2005; Vo and Thai, 2012;
Pawar et al., 2015; Nguyen et al., 2017; Srinivasan et al., 2019). The literature contains a
plethora of publications on the subject, and the interested reader is referred to the excellent
review paper of Liew et al. (2019). In this investigation, a refined higher-order beam theory
is utilized for the analysis of laminated composite beams based on Reddy-Bickford’s third-
order beam theory (Wang et al., 2000) which was derived independently by Bickford (1982) and
Reddy (1984).

Edited by:
Makoto Ohsaki,

Kyoto University, Japan

Reviewed by:
Ömer Civalek,

Akdeniz University, Turkey
Ahmad N. Tarawneh,

Hashemite University, Jordan

*Correspondence:
George C. Tsiatas

gtsiatas@upatras.gr

Specialty section:
This article was submitted to

Computational Methods in Structural
Engineering,

a section of the journal
Frontiers in Built Environment

Received: 14 January 2022
Accepted: 31 January 2022

Published: 21 February 2022

Citation:
Tsiatas GC, Kotsiantis S and

Charalampakis AE (2022) Predicting
the Response of Laminated

Composite Beams: A Comparison of
Machine Learning Algorithms.
Front. Built Environ. 8:855112.
doi: 10.3389/fbuil.2022.855112

Frontiers in Built Environment | www.frontiersin.org February 2022 | Volume 8 | Article 8551121

ORIGINAL RESEARCH
published: 21 February 2022

doi: 10.3389/fbuil.2022.855112

49

http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2022.855112&domain=pdf&date_stamp=2022-02-21
https://www.frontiersin.org/articles/10.3389/fbuil.2022.855112/full
https://www.frontiersin.org/articles/10.3389/fbuil.2022.855112/full
https://www.frontiersin.org/articles/10.3389/fbuil.2022.855112/full
http://creativecommons.org/licenses/by/4.0/
mailto:gtsiatas@upatras.gr
https://doi.org/10.3389/fbuil.2022.855112
https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2022.855112


Utilizing higher-order beam theories for more accurate
analyses entails a significant increase in complexity as
compared to low-order theories, as the latter are
mathematically simpler and more widely used. The main
motivation of this work is to bridge this gap and provide a
simple computational tool to allow for the fast design of beams
while keeping the best of both worlds, i.e., the more accurate
results of a refined high-order theory and the ease of
application of the low-order theories. In order to achieve
that, the geometric and material variables are discretized
within fairly wide, yet reasonable ranges. After applying the
high-order analyses, the results are collected, tabulated, and
used as input for multiple machine learning algorithms,
i.e., regression models. These models provide a fast and
easy-to-use computational tool that can be used for
preliminary design and optimization. Regression analysis
also yields important insights regarding the performance of
each model, the effect of boundary conditions, and the relative
importance of each input variable for the problem at hand.

The rest of the paper is organized as follows. A theoretical
formulation of the problem is carried out and explained in detail
next, followed by a summary of the regression methods utilized in
this work. The numerical results are presented next, along with
their discussion. Finally, the conclusions drawn based on the
findings of this work are presented.

THEORETICAL FORMULATION

Consider an elastic symmetric cross-ply laminated rectangular
beam (b × h) of length l, with x being the axial coordinate and z
being the coordinate along the thickness of the beam. The fibers
of each ply are aligned at an angle θ with respect to the x axis (see
Figure 1).

The beam is subjected to a transverse distributed loading pz,
respectively. Based on the higher-order theory for laminated
composite plates introduced by Reddy (1984), the
displacement field of an arbitrary point on the beam cross-
section is given by

u1(x, z) � z[ψ(x) − 4
3
z2

h2
(ψ(x) + zw(x)

zx
)] (1)

u2(x, z) � 0 (2)
u3(x, z) � w(x) (3)

where w(x) is the transverse displacement of the midplane
(z � 0); ψ(x) is the rotation of a normal to the midplane, and
x, z are the axial and thickness coordinates of the beam.

Splitting the transverse displacement w(x) into a bending
wb(x) and a shear ws(x) component, i.e., Vo and Thai (2012).

w(x) � wb(x) + ws(x) (4)
and introducing the transformation

zws(x)
zx

� ψ(x) + zw(x)
zx

orψ(x) � −[zw(x)
zx

− zws(x)
zx

]
� −zwb(x)

zx
(5)

Equations 1–3 can be rewritten in the following form

u1(x, z) � −z zwb(x)
zx

− f(z) zws(x)
zx

(6)
u2(x, z) � 0 (7)

u3(x, z) � wb(x) + ws(x) (8)
where f(z) � 4

3
z3

h2. The displacement field given above yields the
following nonzero components of the strain tensor

εx � −z z
2wb

zx2
− f(z) z

2ws

zx2
(9)

γxz � [1 − df(z)
dz

] zws

zx
� g(z) zws

zx
(10)

where g(z) � (1 − 4z2
h2 ), and for reasons of brevity wb � wb(x)

and ws � ws(x).
Substituting Eqs 9, 10 into the stress-strain relations for the

kth lamina in the lamina coordinate we obtain (Khdeir and
Reddy, 1997)

σ(k)
x � �Q

(k)
11 εx (11)

τ(k)xz � �Q
(k)
55 γxz (12)

with �Q
(k)
11 , �Q

(k)
55 being the well-known transformed elastic

stiffnesses

�Q
(k)
11 � Q(k)

11 cos4θk + 2(Q(k)
12 + 2Q(k)

66 )sin2θk cos
2θk + Q(k)

22 sin4θk

(13)
�Q
(k)
55 � Q(k)

44 sin2θk + Q(k)
55 cos2θk (14)

and Q(k)
11 , Q

(k)
12 , Q

(k)
22 , Q

(k)
44 , and Q(k)

55 are

Q(k)
11 � E(k)

1

1 − ](k)12 ]
(k)
21

, Q(k)
12 � E(k)

2 ](k)12

1 − ](k)12 ]
(k)
21

, Q(k)
22 � E(k)

2

1 − ](k)12 ]
(k)
21

(15)

Q(k)
44 � G(k)

23 , Q
(k)
55 � G(k)

13 , Q
(k)
66 � G(k)

12 (16)
while θk is the angle between the principal material axis and the
coordinate x axis.

Applying the Principle of Virtual Work

∫l
0

∫
A

[σ(k)
x δεx + τ(k)xz δγxz]dAdx − ∫l

0

[pzδ(wb + ws)]dx � 0 (17)

FIGURE 1 | Geometry of a cross-ply laminated composite beam.
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and substituting Eqs 9, 10 yields

∫l
0

∫
A

{σ(k)x [ − z
z2δwb

zx2 − f(z) z
2δws

zx2 ] + τ(k)xz g(z)
zδws

zx
}dAdx

−∫l
0

[pz(δwb + δws)]dx � 0

(18)
Introducing now the following stress resultants

Mb � ∫
A

zσ(k)x dA, Ms � ∫
A

f(z)σ(k)x dA, Q � ∫
A

g(z)τ(k)xz dA (19)

Eq. 18 become

∫l
0

( −Mb
z2δwb

zx2
−Ms

z2δws

zx2
+ Q

zδws

zx
)dx − ∫l

0

[pz(δwb + δws)]dx � 0

(20)
Integrating the appropriate terms in the above equation and

collecting the coefficients of δwb, and δws we obtain the following
governing equations

z2Mb

zx2
� −pz (21)

z2Ms

zx2
+ zQ

zx
� −pz (22)

together with the following associated boundary conditions of the
form: specify

wb orQb ≡
zMb

zx
(23)

ws orQs ≡
zMs

zx
+ Q (24)

zwb

zx
orMb (25)

zws

zx
orMs (26)

Substituting Eqs 11, 12 into Eq. 19 and using Eqs 9, 10 yields
the stress resultants in terms of the displacements as

Mb � −D11
z2wb

zx2
− F11

z2ws

zx2
(27)

Ms � −F11
z2wb

zx2
−H11

z2ws

zx2
, Q � A55

zws

zx
(28)

where

D11 � b ∫h/2
−h/2

�Q
(k)
11 z

2dz, F11 � b ∫h/2
−h/2

�Q
(k)
11 zf(z)dz,

H11 � b ∫h/2
−h/2

�Q
(k)
11 f

2(z)dz (29)

A55 � b ∫h/2
−h/2

�Q
(k)
55 g

2(z)dz (30)

Finally, after the substitution of the stress resultants, Eqs 27,
28 into Eqs 21, 22, we arrive at the equilibrium equations in terms
of the displacements

−D11
z4wb

zx4
− F11

z4ws

zx4
� −pz (31)

−F11
z4wb

zx4
−H11

z4ws

zx4
+ A55

z2ws

zx2
� −pz (32)

which together with the pertinent boundary conditions (23)–(26)
constitute the boundary value problem solved using the Analog
Equation Method (AEM), a robust numerical method based on
an integral equation technique (Katsikadelis and Tsiatas, 2003;
Tsiatas et al., 2018).

REGRESSION MODELS

In this work, several linear and nonlinear regression models are
comparatively examined. Linear regression is a linear model that
assumes a linear relationship between the input variables and the
output variable, and the predicted value can be calculated from a
linear combination of the input variables (Narula and
Wellington, 1982). The distance from each data point to the
predicted values is calculated and sum all these squared errors
together. This quantity is minimized by the ordinary least squares
method to estimate the optimal values for the coefficients of each
independent variable.

There are extensions of the linear model called regularization
methods. These methods seek to both minimize the sum of the
squared error of the model on the training set but also to reduce the
complexity of the model. Two popular regularization methods for
linear regression are the Lasso Regression (Zou et al., 2007) where
Ordinary Least Squares is modified to also minimize the absolute
sum of the coefficients (L1 regularization), and the Ridge Regression
(Hoerl et al., 1985) where Ordinary Least Squares is modified to also
minimize the squared absolute sum of the coefficients (L2
regularization). A Bayesian view of ridge regression is obtained
by noting that the minimizer can be considered as the posterior
mean of a model (Tipping, 2001). The elastic net (Friedman et al.,

TABLE 1 | Boundary conditions examined for the prediction of the maximum
deflection max �w.

Boundary conditions x � 0 x � l

Clamped-Clamped (CC) wb � 0, ws � 0 wb � 0, ws � 0
zwb
zx � 0, zwb

zs � 0 zwb
zx � 0, zwb

zs � 0
Simply Supported (SS) wb � 0, ws � 0 wb � 0, ws � 0

Mb � 0, Ms � 0 Mb � 0, Ms � 0
Clamped-Roller (CR) wb � 0, ws � 0 wb � 0, ws � 0

zwb
zx � 0, zwb

zs � 0 Mb � 0, Ms � 0

Clamped-Free (CF) wb � 0, ws � 0 Mb � 0, Ms � 0
zwb
zx � 0, zwb

zs � 0 Qb � 0, Qs � 0
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2010) is a regularized regression method that linearly combines the
L1 and L2 penalties of the lasso and ridgemethods. Huber’s criterion
is a hybrid of squared error for relatively small errors and absolute
error for relatively large ones. Lambert-Lacroix and Zwald (2011)
proposed Huber regressor to combine Huber’s criterion with
concomitant scale and Lasso.

An L1 penalty minimizes the size of all coefficients and allows any
coefficient to go to the value of zero, acting as a type of feature
selection method since removes input features from the model. Least
Angle Regression (Efron et al., 2004) is a forward stepwise version of
feature selection for regression that can be adapted for the Lasso not
to require a hyperparameter that controls the weighting of the penalty
in the loss function since the weighting is discovered automatically by
Least Angle Regression method via cross-validation. LassoLars is a
lasso model implemented using the Least Angle Regression
algorithm, where unlike the implementation based on coordinate
descent, this yields the exact solution, which is piecewise linear as a
function of the norm of its coefficients.

Orthogonal matching pursuit (Pati et al., 1993) tries to find the
solution for the L0-norm minimization problem, while Least
Angle Regression solves the L1-norm minimization problem.
Although these methods solve different minimization
problems, they both depend on a greedy framework. They
start from an all-zero solution, and then iteratively construct a
sparse solution based on the correlation between features of the
training set and the output variable. They converge to the final
solution when the norm approaches zero.

K Neighbors Regressor (KNN) algorithm uses feature similarity
to predict the values of new instances (Altman, 1992). The distance
between the new instance and each training instance is calculated,
the closest k instances are selected based on the preferred distance
and finally, the prediction for the new instance is the average value of
the dependent variable of these k instances.

Unlike linear regression, Classification and Regression Tree
(CART) does not create a prediction equation, but data are
partitioned into subsets at each node according to homogeneous
values of the dependent variable and a decision tree is built to be used
for making predictions about new instances (Breiman et al., 1984).
We can enlarge the tree until always gives the correct value in the
training set. However, this tree would overfit the data and not
generalize well to new data. The correct policy is to use some
combination of a minimum number of instances in a tree node
and maximum depth of tree to avoid overfitting.

TABLE 2 | Evaluation metrics for the clamped-clamped beam.

Model MAE MSE RMSE R2 RMSLE MAPE

Extra Trees Regressor 0.0251 0.0074 0.0834 0.9994 0.0132 0.0148
Random Forest Regressor 0.0381 0.0135 0.1148 0.9988 0.0157 0.0187
Decision Tree Regressor 0.0556 0.0301 0.1705 0.9975 0.0242 0.0271
Light Gradient Boosting Machine 0.0598 0.0203 0.1407 0.9983 0.0257 0.1170
Gradient Boosting Regressor 0.2771 0.3469 0.5881 0.9706 0.1271 0.8407
K Neighbors Regressor 0.3146 1.3540 1.1630 0.8856 0.1017 0.0909
AdaBoost Regressor 1.0111 2.0725 1.4199 0.8252 0.3944 3.6655
Huber Regressor 1.0685 7.6780 2.7694 0.3521 0.3831 4.0658
Elastic Net 1.3421 7.9422 2.8167 0.3297 0.4896 3.1981
Lasso Regression 1.4131 8.3905 2.8951 0.2919 0.5120 3.6771
Bayesian Ridge 1.4203 6.2225 2.4931 0.4749 0.5315 8.7274
Ridge Regression 1.4205 6.2225 2.4931 0.4749 0.5316 8.7319
Linear Regression 1.4206 6.2225 2.4931 0.4749 0.5317 8.7329
Least Angle Regression 1.4206 6.2225 2.4931 0.4749 0.5317 8.7329
Orthogonal Matching Pursuit 1.5371 8.2780 2.8759 0.3011 0.5044 4.2803
Passive Aggressive Regressor 1.9945 11.1782 3.3257 0.0605 0.7021 10.8439
Lasso Least Angle Regression 1.9986 11.8425 3.4402 0.0001 0.7724 11.0424

FIGURE 2 | (A) Feature importance plot and (B) correlation matrix
heatmap for the clamped-clamped beam.
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The basic idea of Boosting is to combine several weak learners
into a stronger one. AdaBoost (Freund and Schapire, 1997) fits a
regression tree on the training set and then retrains a new
regression tree on the same dataset but the weights of each
instance are adjusted according to the error of the previous
tree predictions. In this way, subsequent regressors focus more
on difficult instances.

Random Forests algorithm (Breiman, 2001) builds several trees
with the CART algorithm using for each tree a bootstrap replica of
the training set with a modification. At each test node, the optimal
split is derived by searching a random subset of size K of candidate
features without replacement from the full feature set.

Like Random Forests, Gradient Boosting (Friedman, 2001) is
an ensemble of trees, however, there are two main differences.
Firstly, the Random forests algorithm builds each tree
independently while Gradient Boosting builds one tree at a
time since it works in a forward stage-wise manner,
introducing a weak learner to improve the shortcomings of
existing weak learners. Secondly, Random Forests combine
results at the end (by averaging the result of each tree) while
Gradient Boosting combines results during the process.

LightGBM (Ke et al., 2017) extends the gradient boosting
algorithm by adding automatic feature selection and focusing on
instances with larger gradients to speed up training and
sometimes even improve predictive performance.

The Extra-Trees algorithm (Geurts et al., 2006) creates an
ensemble of unpruned regression trees according to the well-
known top-down procedure of the regression trees. The main
differences concerning other tree-based ensemble methods are
that the Extra-Trees algorithm splits nodes by choosing fully at
random cut-points and that uses the whole learning set (instead
of a bootstrap replica) to grow the trees.

Passive-Aggressive regressor (Crammer et al., 2006) is generally
used for large-scale learning since it is an online learning algorithm.
In online learning, the input data come sequentially, and the learning
model is updated step-by-step, as opposed to batch learning, where
the entire dataset is used at once.

NUMERICAL RESULTS AND DISCUSSION

The scope of the current study is to exploit predictive models for
the maximum deflection maxw of a symmetric cross-ply (θ°1/ θ

°
2/

θ°3) rectangular beam for various span-to-depth ratios and

TABLE 3 | Evaluation metrics for the simply supported beam.

Model MAE MSE RMSE R2 RMSLE MAPE

Extra Trees Regressor 0.0749 0.0767 0.2718 0.9994 0.0157 0.0135
Random Forest Regressor 0.1127 0.1591 0.3935 0.9987 0.0187 0.0180
Decision Tree Regressor 0.1465 0.2294 0.4735 0.9981 0.0265 0.0258
Light Gradient Boosting Machine 0.2106 0.3258 0.5617 0.9973 0.0479 0.1556
K Neighbors Regressor 0.8682 12.9351 3.5942 0.8948 0.1158 0.0934
Gradient Boosting Regressor 1.1417 6.0163 2.4496 0.9510 0.2931 1.8173
AdaBoost Regressor 3.0602 22.0956 4.6723 0.8184 0.5993 4.5067
Huber Regressor 3.5208 82.9872 9.1049 0.3260 0.6283 7.3794
Elastic Net 4.1196 77.5224 8.7998 0.3705 0.7620 5.9456
Lasso Regression 4.2209 71.8424 8.4713 0.4166 0.7876 10.1221
Bayesian Ridge 4.6000 68.3098 8.2607 0.4452 0.9092 16.0915
Ridge Regression 4.6008 68.3098 8.2607 0.4452 0.9094 16.1014
Linear Regression 4.6010 68.3098 8.2607 0.4452 0.9094 16.1033
Least Angle Regression 4.6010 68.3098 8.2607 0.4452 0.9094 16.1033
Passive Aggressive Regressor 4.6651 90.8374 9.5039 0.2608 0.8824 10.9468
Orthogonal Matching Pursuit 4.8283 83.9710 9.1597 0.3178 0.8392 9.1774
Lasso Least Angle Regression 6.4298 123.0726 11.0899 0.0002 1.2440 19.9475

FIGURE 3 | (A) Feature importance plot and (B) correlation matrix
heatmap for the simply supported beam.

Frontiers in Built Environment | www.frontiersin.org February 2022 | Volume 8 | Article 8551125

Tsiatas et al. Predicting the Response of Laminated Composite Beams

53

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


boundary conditions subjected to a uniformly distributed load pz.
All laminates are of equal thickness and made of the same
orthotropic material. The main parameters that influence the
response of the composite beams are the moduli of elasticity
E1, E2, the span-to-depth L � l/h and the ply angles θ°1/ θ

°
2/ θ

°
3.

The range of values of the parameters together with the material

properties are given as: E1, E2 � {1, 2, 3, ...15}, G12 � G13 � 0.5E2,
G23 � 0.2E2, ]12 � 0.25, L � l/h � {1, 2, 3, 4, 5},
θ1, θ2 � {0, π/8, π/4, 3π/4, π/2}, and θ1 � θ3 (due to symmetry).
For the given range of the parameters, Eqs 31, 32 are solved
numerically producing a comprehensive database for each one of
the examined boundary conditions presented in Table 1. This
dataset contains 15 × 15 × 5 × 5 × 5 � 28125 values of maxw
which are used in the regression analysis.

A plethora of regression algorithms, presented in the previous
section, were employed for building corresponding predictive
models of the maxw using pyCaret (Ali, 2020), which is an open-
source software machine learning library. A 5-fold cross-
validation resampling procedure was used for evaluating the
performance of the predictive models. The dataset was
randomly divided into five folds of equal size and each fold
was used for evaluating the performance of the model trained on
the rest folds, whereas the final measure was the average value of
the computed evaluation metrics on each test fold. Evaluation
metrics are a measure of how well a model performs. The most
popularly used evaluation metrics for regression problems are the
mean absolute error (MAE), the mean absolute percentage error
(MAPE), the mean square error (MSE), the root mean square
error (RMSE), the root mean squared log error (RMSLE) and the
coefficient of determination. The lower the value of these metrics
the better the model. The perfect value of metrics is 0, indicating
that the prediction model is perfect. To quantify the accuracy of
the examined algorithms, the following evaluation metrics are
used herein:

Mean absolute error (MAE)

MAE � 1
n
∑n

i�1

∣∣∣∣∣∣∣∣∣y′i − yi

∣∣∣∣∣∣∣∣∣ (33)

Mean absolute percentage error (MAPE)

MAPE � 1
n
∑n

i�1(∣∣∣∣y′
i − yi

∣∣∣∣)/∣∣∣∣y′
i

∣∣∣∣ (34)

TABLE 4 | Evaluation metrics for the clamped-roller beam.

Model MAE MSE RMSE R2 RMSLE MAPE

Extra Trees Regressor 0.0397 0.0210 0.1403 0.9993 0.0142 0.0142
Random Forest Regressor 0.0601 0.0376 0.1918 0.9987 0.0172 0.0186
Decision Tree Regressor 0.0852 0.0721 0.2638 0.9976 0.0254 0.0268
Light Gradient Boosting Machine 0.0993 0.0666 0.2549 0.9978 0.0332 0.1292
K Neighbors Regressor 0.4656 3.2736 1.8083 0.8909 0.1071 0.0919
Gradient Boosting Regressor 0.5088 1.1518 1.0700 0.9615 0.1890 1.2013
Huber Regressor 1.7188 19.7571 4.4425 0.3424 0.4678 5.1283
AdaBoost Regressor 1.9549 6.6004 2.5493 0.7802 0.5716 4.7368
Lasso Regression 2.0176 18.5644 4.3062 0.3821 0.5470 4.0458
Elastic Net 2.0676 19.4144 4.4038 0.3538 0.5769 3.7886
Bayesian Ridge 2.2615 16.1679 4.0188 0.4618 0.6690 11.0123
Ridge Regression 2.2619 16.1679 4.0188 0.4618 0.6691 11.0184
Linear Regression 2.2620 16.1679 4.0188 0.4618 0.6691 11.0197
Least Angle Regression 2.2620 16.1679 4.0188 0.4618 0.6691 11.0197
Passive Aggressive Regressor 2.3236 22.4124 4.7312 0.2528 0.6799 8.8763
Orthogonal Matching Pursuit 2.4143 20.6503 4.5424 0.3123 0.6195 5.8559
Lasso Least Angle Regression 3.1842 30.0259 5.4778 0.0001 0.9493 13.8389

FIGURE 4 | (A) Feature importance plot and (B) correlation matrix
heatmap for the clamped-roller beam.
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Mean square error (MSE)

MSE � 1
n
∑n

i�1(y′
i − yi)2 (35)

Root mean square error (RMSE)

RMSE �
��������������
1
n
∑n

i�1(y′
i − yi)2√

(36)

Root mean squared log error (RMSLE)

RMSLE �
����������������������������
1
n
∑n

i�1(log(y′
i + 1) − log(yi + 1))2√

(37)

Coefficient of determination (R2)

R2 � SSreg
SStot

� ∑j(y′
i − �y)2∑i(yi − �y)2 , (38)

where y′i refers to predicted values, and yi refers to true values.
SSreg is the regression sum of squares (i.e., explained sum of
squares), and SStot is the total sum of squares, which is
proportional to the variance of the data. The coefficient of
determination (R2) is the square of the correlation between
the actual and predicted variable and ranges from 0 to 1. A
zero value indicates that the model cannot explain any of the
predicted variables. A value of 1 indicates that the regression
model explains perfectly the predicted variable.

Apart from the evaluation metrics of the machine learning
algorithms, two other useful tools are presented for the predictive
analysis of the maxw. First, the feature importance is a technique
for assigning scores to input features that indicate the relative
importance of each feature for the prediction. The scores can
highlight which features are most relevant to the target and the
opposite, i.e., which features are the least relevant. Most
importance scores are calculated using the most accurate
predictive model that has been fit on our data (Louppe et al.,
2013). Second, the correlation matrix heatmap illustrates the
correlation dependence between the variables of the database.
That is, each square of the matrix represents the correlation
between the attributes paired on the two axes. A value of +1 (or
−1) indicates a perfect correlation between two variables, with +1
indicating a positive correlation and −1 a negative (inverse)

TABLE 5 | Evaluation metrics for the clamped-free beam.

Model MAE MSE RMSE R2 RMSLE MAPE

Extra Trees Regressor 0.5528 4.8885 2.1609 0.9995 0.0207 0.0122
Random Forest Regressor 0.8671 11.6799 3.3623 0.9987 0.0230 0.0165
Decision Tree Regressor 1.0436 17.3124 4.0909 0.9982 0.0314 0.0228
Light Gradient Boosting Machine 1.8359 25.0335 4.9130 0.9973 0.1280 0.2147
K Neighbors Regressor 7.1088 960.7922 30.9752 0.8967 0.1458 0.0958
Gradient Boosting Regressor 10.4671 513.5992 22.6138 0.9448 0.7340 3.1057
AdaBoost Regressor 27.1617 1772.9870 41.8579 0.8069 1.1216 6.1978
Huber Regressor 30.9933 6409.2110 80.0145 0.3120 1.2242 11.7426
Passive Aggressive Regressor 32.4646 6467.0355 80.3816 0.3054 1.3298 14.5124
Elastic Net 36.0246 5755.0187 75.8199 0.3823 1.4109 11.3018
Lasso Regression 39.6877 5288.4303 72.6848 0.4323 1.6179 24.8280
Bayesian Ridge 40.2698 5283.6727 72.6527 0.4328 1.6414 26.0519
Ridge Regression 40.2777 5283.6730 72.6527 0.4328 1.6417 26.0694
Linear Regression 40.2791 5283.6732 72.6527 0.4328 1.6418 26.0725
Least Angle Regression 40.2791 5283.6734 72.6527 0.4328 1.6418 26.0725
Orthogonal Matching Pursuit 41.8498 6342.4469 79.6055 0.3189 1.5624 15.6819
Lasso Least Angle Regression 55.7829 9312.0379 96.4636 0.0002 2.0693 32.0586

FIGURE 5 | (A) Feature importance plot and (B) correlation matrix
heatmap for the clamped-free beam.
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correlation; a value in the range from 0.6 to 1 (or from −0.6 to −1)
indicates a strong correlation; a value between 0.4 and 0.6 (or
between −0.4 and −0.6) indicates a moderate correlation; a value
in the range from 0 to 0.4 (or from 0 to −0.4) indicates a weak
correlation.

Clamped-Clamped Beam
First, a clamped-clamped beam is analyzed. The evaluation
metrics of the employed regression algorithms are tabulated in
Table 2. The Extra-Trees Regressor algorithm is the most
effective algorithm reaching a R2 value of 0.9994, followed by
the Random Forest Regressor and the Decision Tree Regressor.
By examination of the evaluation metrics, it is obvious that there
are significant differences in the effectiveness between algorithms.
Nevertheless, the algorithms that perform best do so consistently
for all problems, as will be demonstrated.

From the feature importance plot (see Figure 2A), it is
observed that the most important parameters for predicting
the target attribute maxw is the modulus of elasticity E2 and
the span-to-depth ratio L(� l/h). Next comes the ply angle
th1(� θ°1) which is more important than E1, and th2(� θ°2).
Moreover, the correlation matrix heatmap has been evaluated
for this problem; in this figure, the blue color indicates a negative
correlation between the two parameters, while the red one
indicates a positive correlation. Moreover, the intensity of the
color implies how strongly these attributes are correlated,
meaning that the deeper color corresponds to a stronger
correlation. The correlation matrix heatmap of Figure 2B
reveals that the maximum deflection is positively correlated
with the parameters L, θ°1, θ

°
2 and negatively correlated with

E1 and E2. This means that increase of the span-to-depth ratio or
increase of the angles of the plies leads to an increase of the
maximum deflection. Conversely, an increase of either elastic
moduli leads to a decrease in the maximum deflection.
Nevertheless, E2 is more strongly correlated with maxw than
E1. Finally, the ply angle θ°1 seems to be more important than the
angle θ°2 in making the beam stiffer, yet the difference is small.

Simply Supported Beam
In this second example, a simply supported beam is analyzed. The
Extra-Trees Regressor algorithm outperforms the other
regression algorithms once again (see Table 3). The feature
importance plot (see Figure 3A) shows an importance
sequence different from that of the previous example. That is,
the span-to-depth ratio L(� l/h) is more important than the
modulus of elasticity E2, while the ply angle th1(� θ°1) is more
important than E1 and th2(� θ°2). Furthermore, the correlation
matrix heatmap shown in Figure 3B reveals that, again, the
maximum deflection is positively correlated with the parameters
L, θ°1, θ

°
2 and negatively correlated with E1 and E2. As previously,

the correlation of E2 is significantly stronger than that of E1. The
ply angles exhibit weak positive correlations with the maximum
deflection, with th1(� θ°1) being the prevailing one.

Clamped-Roller Beam
In this example, a clamped-roller beam is analyzed. InTable 4 it is
shown that the Extra-Trees Regressor algorithm is again the most
effective, as compared to the other regression algorithms. The
feature importance plot (see Figure 4A) shows once more a
similar to the clamped-clamped beam importance sequence. That
is, the most important parameter is the modulus of elasticity E2,
followed closely by the span-to-depth ratio L(� l/h). The ply
angle th1(� θ°1) is more important than E1, and th2(� θ°2).
Furthermore, the correlation matrix heatmap shown in
Figure 4B reveals that, again, the maximum deflection is
positively correlated with the parameters L, θ°1, θ°2 and
negatively correlated with E1 and E2. The elastic modulus E2

exhibits a stronger correlation with the maximum deflection than
E1. As in the case of the clamped-clamped beam, the ply angle θ°1
is more important than the angle θ°2.

Clamped-free Beam
In the case of a clamped-free beam (cantilever), while the
evaluation metrics designates once more the Extra-Trees
Regressor algorithm superiority (see Table 5), the feature

TABLE 6 | Friedman ranking.

Model Rank (w.r.t.
MAE)

Model Rank (w.r.t.
MAPE)

Model Rank (w.r.t.
R2)

Extra-Trees Regressor 1 Extra-Trees Regressor 1 Extra-Trees Regressor 1
Random Forest Regressor 2 Random Forest Regressor 2 Random Forest Regressor 2
Decision Tree Regressor 3 Decision Tree Regressor 3 Light Gradient Boosting Machine 3.5
Light Gradient Boosting Machine 4 K Neighbors Regressor 4 Decision Tree Regressor 3.5
K Neighbors Regressor 5.25 Light Gradient Boosting Machine 5 Gradient Boosting Regressor 5
Gradient Boosting Regressor 5.75 Gradient Boosting Regressor 6 K Neighbors Regressor 6
AdaBoost Regressor 7.25 Elastic Net 7.5 AdaBoost Regressor 7
Huber Regressor 7.75 AdaBoost Regressor 7.75 Ridge Regression 9.5
Elastic Net 9.5 Huber Regressor 9.5 Linear Regression 9.5
Lasso Regression 10 Lasso Regression 10 Bayesian Ridge 9.5
Bayesian Ridge 11.25 Orthogonal Matching Pursuit 10.75 Least Angle Regression 9.5
Ridge Regression 12.25 Passive Aggressive Regressor 12.5 Lasso Regression 12.75
Passive Aggressive Regressor 13.75 Bayesian Ridge 12.75 Elastic Net 13
Linear Regression 13.75 Ridge Regression 13.75 Huber Regressor 13.75
Least Angle Regression 13.75 Linear Regression 15.25 Orthogonal Matching Pursuit 14.5
Orthogonal Matching Pursuit 15.75 Least Angle Regression 15.25 Passive Aggressive Regressor 16
Lasso Least Angle Regression 17 Lasso Least Angle Regression 17 Lasso Least Angle Regression 17
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importance plot (see Figure 5A) presents a similar to the simply
supported beam importance sequence. That is, the most
important parameter is the span-to-depth ratio L(� l/h)
followed the modulus of elasticity E2. The ply angle th1(� θ°1)
is more important than E1, and th2(� θ°2).

The correlation matrix heatmap (see Figure 5B) again shows
that the maxw is positively correlated with the parameters L, θ°1,
θ°2 and negatively correlated with E1 and E2. In this case, the ply
angle θ°1 is significantly more strongly correlated with the
maximum deflection than the angle θ°2.

Friedman Ranking
Finally, to better assess the results obtained from each algorithm,
the Friedman test methodology proposed by Demšar (2006) was
employed for the comparison of several algorithms over multiple
datasets (Table 6). As was expected, the Extra-Trees Regressor
algorithm is the most accurate in our case. A simple
computational tool, written in JAVA programming language
using Weka API (Hall et al., 2009) along with the relevant
data, is provided to the interested reader as Supplementary
Data to this article.

CONCLUSION

In this paper, several machine learning regression models were
employed for the prediction of the deflection of symmetric
laminated composite beams subjected to a uniformly distributed
load. Training, validation, and testing of the models require large
amounts of data that cannot be provided by the scarce experiments.
Instead, ample amounts of data are generated numerically using a
refined higher-order beam theory for various span-to-depth ratios
and boundary conditions, by appropriate discretization of all
pertinent geometric and material properties.

Themain conclusion that can be drawn from this investigation
are as follows:

• Regarding the regression models, the Extra-Trees algorithm
is, without doubt, the best performer for all cases of
boundary conditions, followed by the Random Forest
Regressor, the Decision Tree Regressor, the Light
Gradient Boosting Machine, and the K Neighbors
Regressor.

• The prediction errors of the best-performing models are
adequately small for engineering purposes. This allows for

the rapid design of the composite beams without resolving
to a mathematical implementation of higher-order beam
theories. Moreover, these models can be integrated into
modern metaheuristic optimization algorithms which use
only payoff data (i.e., no derivative data) to allow for the fast
and reliable optimization of such beams.

• Regarding the relative importance of the design variables for
the evaluation of the deflection, the span-to-depth ratio and
the modulus of elasticity E2 are unambiguously the most
important features. The next level of importance includes
the angle ply θ1 and the modulus of elasticity E1.
Surprisingly, the angle θ2 is the least important variable.

• The span-to-depth ratio L has the strongest positive correlation
to the target attribute maxw for all cases of boundary
conditions, as evidenced by the correlation matrices. In all
cases, the maximum deflection is positively correlated with the
parameters L, θ1, θ2 and negatively correlated with E1 and E2.

• An easy-to-use computational tool has been implemented
which is provided as Supplementary Material to the
present article.
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Performance-Based Wind
Engineering: Background and State of
the Art
Seymour M. J. Spence* and Srinivasan Arunachalam

Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States

This paper surveys the rapidly growing field of performance-based wind engineering
(PBWE) of engineered systems, with focus on not only how PBWE has evolved since its
early incarnations inspired by performance-based seismic engineering, but also the unique
challenges of PBWE and the research that continues to emerge to tackle them. The
limitations of traditional prescriptive wind design approaches are discussed with the aim of
illustrating how such approaches are inadequate for providing acceptable building
performance during extreme wind events, thus motivating why performance-based
strategies for wind engineering are gaining traction and are poised to complement, if
not replace, current approaches to wind design. In this respect, the current state of
knowledge on the factors that affect building performance via extreme structural response,
damage to the envelope system, and nonstructural components, is reviewed and
challenges are identified. Lastly, the potential benefit of integrating optimization
methods is identified while acknowledging the computational difficulty associated with
such approaches.

Keywords: performance-based wind engineering, hurricanes, building envelopes, probabilistic damage and loss
modeling, extreme winds, performance-based design optimization

1 INTRODUCTION

With the burgeoning growth of high-rise building construction around the globe and an increased
awareness for the creation of sustainable urban habitats, solutions for performance-oriented efficient
and economical building systems are in great need. To address this, extensive research has been
carried out over the past four decades in the area of performance-based engineering (PBE). While
initial focus was on developing methods for achieving buildings systems with greater earthquake
resistance (e.g., Moehle and Deierlein (2004)), the concepts of PBE have extended to other hazards,
including wind, fire and tsunamis (e.g., Ciampoli et al. (2011);Wang et al. (2012); Attary et al. (2017).
Furthermore, the successful development of performance-based seismic engineering (PBSE) and its
adoption in codes and practice over the past two decades has provided strong evidence for, not only
the application of similar approaches for other natural and man-made hazards, but also risk-
consistent multi-hazard design approaches (Gardoni and LaFave (2016); Suksuwan and Spence
(2018); Kwag et al. (2021). To successfully transfer this knowledge to wind engineering, the
fundamental differences between seismic and wind effects for both structural and non-structural
components, especially the envelope system, must be embraced while respecting the unique
characteristics of wind loading and concurrent hazards (e.g., rainfall and debris impact).

Wind-excited structures have been historically designed to respond elastically under strength-
level loads. In transitioning to a PBE setting, there is growing interest in allowing controlled inelastic
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deformation in specifically designed members under extreme
winds (ASCE/SEI, 2019). The advantages of such a design
approach are two fold, first it provides a means to engineer
more economic systems through enabling the exploration of the
full resistance of materials and components, secondly, it provides
a means to design innovative systems for resisting both wind and
seismic actions when they are comparable. These advantages
come at the price of requiring careful assessment of the response
of both the deformation-controlled components as well as the
system as a whole. This implies the need for development of
design guidelines that are informed by research on the hysteretic
response and damage accumulation until collapse of structures
designed with controlled inelasticity, as well as the consequences
of such a design philosophy on the performance metrics and
reliabilities of such systems. In the same vein, performance
assessment frameworks for the building envelope (i.e. cladding
system) and nonstructural components/systems need to be
capable of quantifying potential damage arising from dynamic
wind pressures, structural response, wind-driven rain, and wind-
borne debris. Fundamental to such an assessment is the proper
capture of the dependence between structural response and the
net pressure demands of the envelope system as this will dictate
the capacity of the cladding system to resist the hazards (Ouyang
and Spence, 2019).

This paper is written and organized to serve as a review of the
origins of PBWE. Through reflecting on the beginnings of PBSE,
the major considerations enabling the leap from the current state-
of-practice to a PBWE setting are discussed. The unique
challenges and the latest developments in this transition are
outlined. The potential benefits and challenges to integrating
PBWE with optimization are also discussed.

2 PERFORMANCE-BASED ENGINEERING

Performance-based engineering may be defined as the practice of
thinking and working in terms of ends rather than means
(Gibson, 1982; Ellingwood, 1998). Considering a building
system as an example, performance-based design (PBD)
centers on what the building system is required to do rather
than explicitly prescribing how it is to be constructed.While there
is a strong interest in moving towards such an approach when it
comes to designing buildings to resist natural hazards, most
building codes are still prescriptive in nature (Meacham,
2010). In a typical building design process, design
professionals select, proportion, and detail components to
satisfy prescriptive criteria contained within a building code.
Many of these criteria were developed with the intent to
provide some level of performance; however, the intended
performance levels are often fuzzy, and the actual ability of
the resulting designs to provide the intended reliability is
seldom evaluated or understood (Federal Emergency
Management Agency (FEMA), 2012a; Ellingwood, 2001). An
area of structural engineering that has been particularly active
in attempting to apply the principles of PBD is that concerning
the design of buildings to resist earthquakes.

3 PERFORMANCE-BASED SEISMIC
ENGINEERING
3.1 First Generation of Performance-Based
Seismic Engineering
Traditional prescriptive provisions for seismic design were
developed commencing from the late 1920s (Applied
Technology Council (ATC), 1995a) and can be viewed as
implicitly performance-oriented in that they were developed
with the intent of achieving specific performance, that is
avoidance of collapse and assurance of life safety. However,
damage assessments made on buildings following minor,
moderate and intense ground shaking over the past 80+ years
have shown that these implicit performance targets cannot be
reliably realized following such an approach (Whittaker et al.,
2003). The significant economic losses, as well as the loss of
function of critical facilities, during the 1989 Loma Prieta and
1994 Northridge earthquakes may be seen as the events that
spurred the initial development of modern performance-based
seismic design with the aim of developing resilient, loss-resistant
communities (Whittaker et al., 2003; Ghobarah, 2001). Indeed, in
the early to mid 1990s, FEMA funded the Applied Technology
Council (ATC) and the Building Seismic Safety Council (BSSC)
with the aim of developing procedures for the implementation of
performance-based seismic design (PBSD). This led to the
publication of the NEHRP Guidelines and Commentary for
Seismic Rehabilitation of Buildings (Federal Emergency
Management Agency (FEMA), 1997). The concepts and
procedures proposed in this work are generally considered to
constitute the foundation of the first generation of PBSD
methods. In particular, several important earthquake-related
concepts that may now be considered not only as a baseline
for understanding the underlying philosophy of PBSD, but also
the starting point for applying the principles of PBD to resist
other natural and man-made hazards, were conceptualized
(Whittaker et al., 2003; Moehle and Deierlein, 2004). Other
important pioneering PBSD efforts that significantly
contributed to this end include the SEAOC’s Vision 2000
(Structural Engineers Association of California (SEAOC),
1995), ATC-32 (Applied Technology Council (ATC), 1996a)
and ATC-40 (Applied Technology Council (ATC), 1996b)
reports as well as the FEMA 356 (Federal Emergency
Management Agency (FEMA), 2000a) report. The key concept
introduced by the aforementioned works was the idea of
performance objective, consisting of a design event of specified
intensity (earthquake hazard), which the building is to be
designed to resist, and a permissible level of damage
(performance level) given that the design event occurs. In
particular, standard performance levels with performance-
oriented descriptions (Fully Operational, Functional - referred
to as Immediate Occupancy in Applied Technology Council
(ATC) (1995b) - Life Safety, and Near Collapse - referred to
as Collapse Prevention in Applied Technology Council (ATC)
(1995b)) - were introduced for quantifying both structural and
non-structural damage in terms of typical response parameters
(inter-story drifts, inelastic member deformations, member
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forces etc.) therefore defining a number of standard performance
objectives as illustrated in Figure 1 for three different occupancy
categories. For this first generation of PBSD procedures, a
building was said to satisfy its global objectives if structural
analyses indicated that the member forces or deformations
imposed on each element did not exceed predefined limits
(Porter, 2003).

3.2 Current State of Research for
Performance-Based Seismic Engineering
While the first generation of PBSDmethodologies represented an
important milestone in the practical application of PBD
principles to earthquake resilient design, several shortcomings
were identified (Porter, 2003; Whittaker et al., 2003; Moehle and
Deierlein, 2004). Among these were: 1) the performance of the
system is identified on the basis of damage sustained at a
component-level; 2) the inherent uncertainty that affects all
aspects of the structural response prediction was not explicitly
modeled (Ellingwood, 2008); and 3) the standard discrete
performance levels did not directly address some primary
stakeholders’ concerns, such as probable repair costs and time
of occupancy loss in the building, due to earthquake induced
damage. To address these and other limitations, FEMA published
an action plan (Federal Emergency Management Agency
(FEMA), 2000b; Federal Emergency Management Agency
(FEMA), 2006) for the development of the next generation of
PBSD procedures. This resulted in the publication by FEMA of
the P-58 volumes (Federal Emergency Management Agency
(FEMA), 2012a; 2012b; 2012c). These volumes outline a
general methodology for the seismic performance assessment
of individual buildings that explicitly accounts for the inevitable
uncertainty in the ability to accurately predict response while
communicating performance through system-level measures that

are easily understood by decision-makers and/or stakeholders, i.e.
probable consequences, in terms of human losses (deaths and
serious injuries), direct economic losses (building repair or
replacement costs), and indirect losses. The recent completion
of phase 2 of the FEMA P-58 project, in which, among other
products, the performance of a suite of archetype code
conforming buildings were evaluated in terms of the P-58
performance metrics (Federal Emergency Management Agency
(FEMA), 2018), promise to continue the evolution of seismic
standards and codes towards the principles of PBE. The technical
backbone of the procedure is based on the well-known analytical
framework developed by the researchers at the Pacific Earthquake
Engineering Research Center (PEER) during the period between
1997 and 2010 (Cornell and Krawinkler, 2000; Moehle and
Deierlein, 2004; Yang et al., 2009; Günay and Mosalam, 2013).
Unlike the first generation of PBD methodologies, in order to
provide results that can be used by a multitude of decision
models, performance can be assessed for a particular
earthquake scenario or intensity, or considering all
earthquakes that could occur, and the likelihood of each, over
a specified period of time. While the framework was developed
for PBSD, it is relatively general and can be considered as a
convenient analytical language with which to implement the
principles of PBD for obtaining resilient and risk-consistent
structures to mitigate the effects of other natural hazards.

4 WIND ENGINEERING

4.1 Current Practice
The current state-of-the-practice in wind engineering involves
the selection of hazard intensities, derived from an appropriate
code or standard, with which to carry out performance
assessments and therefore design the structural elements of a
building or facility. Taking for example the ASCE 7-16 (ASCE 7-
16 (2016)), the hazard intensity is given by the maximum 3-s gust
wind speed with prescribed mean recurrence interval (MRI).
Which MRI to consider is generally governed by the level of
resilience that the designer/stakeholder wishes to give the
structure, e.g., in the ASCE 7-16 a risk category I, II, III, or IV
is selected. Based on the wind speed with prescribed MRI, wind
loads are derived that account for aspects such as wind exposure,
topography, wind directionality as well as the external geometry
of the building under consideration. The loads so obtained are in
general to be used for strength level design, i.e., the ultimate limit
state that has the purpose of ensuring life safety. Serviceability
design is generally left to the purview of the engineer and
stakeholder. Once the loads are defined for a given building/
facility, an appropriate material code (e.g., ACI 318-11 (2012) for
reinforced concrete buildings and AISC 360-16 (2016) for
structural steel buildings) is generally adopted for designing
the structural elements. These provide detailed prescriptive
requirements that the design engineer should comply with in
order to ensure life safety. While the procedure outlined above is
relatively effective in ensuring the adequacy of the main wind
force resisting system (MWFRS), some observations can be made:
1) the process is prescriptive, therefore the actual performance of

FIGURE 1 | Standard performance objectives, SEAOC’s Vision 2000
(Structural Engineers Association of California (SEAOC), 1995).
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the system is not known, it is only implicitly assumed to be
achieved through following the prescriptions (Griffis et al., 2013;
Ghosn et al., 2016b,a); 2) the process is largely deterministic, even
though it is known that modeling assumptions greatly affect the
results of the procedure (Griffis et al., 2013; Ghosn et al., 2016b,a);
3) the damage sustained by non-structural elements due to
excessive drift of the MWFRS is not explicitly contemplated
even though it often plays an important economic role in
defining the overall building performance (Griffis, 1993;
Aswegan et al., 2015; Ghosn et al., 2016b,a); 4) only
prescriptive measures, instructions to use impact resistant
glazing or storm shutters in wind prone regions etc., are
considered for mitigating the risk of debris impact to the
building envelope, i.e., no explicit assessment of the risk
associated with this important loss mechanism (ASTM,
2007a,b; Vickery, 1970; Wyatt and May 1971; Tsujita et al.,
1998; Ohkuma et al., 1998; Chen and Davenport, 2000;
Tamura et al., 2001; Hong, 2004; Gani and Légeron, 2011;
Vamvatsikos and Cornell, 2002; Maier, 1979; König and
Maier, 1981; König, 1987; Maier and Munro, 1982; Maier and
Lloyd-Smith, 1986) is contemplated; and 5) losses associated with
water ingress due to wind-driven rain, and therefore damage to
interior non-structural elements such as partitions, fixed
furniture, ceilings, doors etc., are not considered even though
they can account for a significant portion of the total losses
associated with extreme wind events (Maier et al., 2000).

4.2 Limitations of Current Practice
The limitations outlined above of current wind engineering
practice can only be rectified through the definition of a full
PBD philosophy similar to that outlined in Section 3 concerning
the earthquake resistant design of structures. However, the direct
transfer of these concepts to the field of wind engineering is not
possible due to: 1) the unique excitation mechanism associated
with complex phenomena such as turbulence, detached flow and
vortex shedding, that are the driving forces behind pressure
induced damage to the building envelope; 2) the difference in
the ultimate performance of wind excited structures compared to
earthquake excited structures (e.g., wind excited structural
components generally experience less damage than non-
structural components); 3) the considerably longer duration of
wind excitation that makes progressive and interdependent
damage mechanisms the norm; and 4) the important role
played by performance objectives, such as envelope
penetration due to debris or water ingress, that are not
contemplated in earthquake resistant design. Notwithstanding
these differences, the framework proposed by FEMA in Federal
Emergency Management Agency (FEMA) (2012a,b,c) represents
a useful and established language with which the principles of
PBD can be applied to other natural hazards, including severe
windstorms. Additionally, it is important to recognize that while
performance objectives, such as fully operational and immediate
occupancy, originate in PBSE (as discussed in Section 3.1), they
represent statements of desired building functionality at specified
load intensities. Therefore, in defining target performance
objectives for wind excited structures, the qualitative goals of
the aforementioned performance objectives can be retained.

Having said this, it should be recognized that additional
performance objectives, such as those associated with
evacuation prior to severe hurricanes, may be required in
developing frameworks for the effective implementation
of PBWE.

5 PERFORMANCE-BASED WIND
ENGINEERING: THE FRONTIER

5.1 Beginnings
The devastation and significant economic losses caused by
hurricanes Andrew [$27.3 billion (1992 USD)], Iniki
[$3.1 billion (1992 USD)] and Opal [$4.7 billion (1995 USD)]
during the 1990s, together with the growing acceptance of PBSE,
can be seen as events that spurred initial interest in applying the
principles of PBE in the assessment and design of wind excited
structures (Ellingwood et al., 2004). One of the first frameworks
to be proposed for PBWE focused on the performance assessment
of residential wood structures (Rosowsky and Ellingwood, 2002).
Important contributions of this work included the
conceptualization of a suite of performance objectives (from
serviceability to ultimate load levels) for wind excited
residential buildings, the identification of the need for system-
level analysis (as opposed to traditional component-level
analysis) if greater confidence in performance predictions were
to be achieved, as well as the need to consider uncertainty.
Subsequent to this work, the possibility of modeling the
performance of wind excited engineered structures within a
PBWE setting began to take root (Paulotto et al., 2004; Bashor
and Kareem, 2007; Augusti and Ciampoli, 2008; Ciampoli et al.,
2011). The initial focus of these works was primarily on
establishing the applicability of the PEER framework (Cornell
and Krawinkler, 2000; Yang et al., 2009; Günay and Mosalam,
2013), or similar (i.e. reliability integral), to the performance
assessment of wind excited tall buildings and long span bridges.
Since these initial research efforts, PBWE has seen an explosion of
interest with numerous frameworks being proposed for both
residential buildings (Rosowsky and Ellingwood, 2002; Barbato
et al., 2013; Baheru et al., 2015; Peng et al., 2016; Unnikrishnan
and Barbato, 2017) as well as engineered systems (Ciampoli et al.,
2011; Griffis et al., 2013; Spence and Kareem, 2014; Bernardini
et al., 2015; Judd and Charney, 2015; Chuang and Spence, 2017;
Cui and Caracoglia, 2018; Judd, 2018; Chuang and Spence, 2019;
Ierimonti et al., 2019; Micheli et al., 2019; Mohammadi et al.,
2019; Cui and Caracoglia, 2020; Ouyang and Spence, 2020).

5.2 Current Status
Over the past decade, significant progress has been made towards
the development of general PBWE frameworks for the
probabilistic assessment and optimal design of engineered
systems subject to severe winds. Major breakthroughs have
been achieved in modeling structural and non-structural
damage and loss due to both synoptic and hurricane winds
through probabilistic system-level metrics associated with
repair costs, downtime, life cycle costs, as well as occupant
comfort (Ciampoli et al., 2011; Petrini and Ciampoli, 2012;
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Griffis et al., 2013; Spence and Kareem, 2014; Bernardini et al.,
2015; Judd and Charney, 2015; Chuang and Spence, 2017; Cui
and Caracoglia, 2018; Judd, 2018; Ierimonti et al., 2019;
Mohammadi et al., 2019; Chuang and Spence, 2019; Micheli
et al., 2019; Cui and Caracoglia, 2020; Ouyang and Spence, 2020).
Progress has also been made to extend PBWE for non-synoptic
wind events characterized by intricate vortical flows, such as those
found in tornadoes and thunderstorm downbursts (Le and
Caracoglia, 2018, 2020; Masoomi and van de Lindt, 2016).
Notwithstanding these efforts, there is still a lack of consensus
on the most appropriate wind field models for capturing the
complexities of tornado and thunderstorm downburst flows
within a PBWE setting, as well as a need for more general
models for simulating the non-stationary and non-straight
fluctuating load component while retaining computational
efficiency. Interestingly, the closer relationship of non-synoptic
winds (as compared to synoptic) to seismic loading may indicate
the possibility of translating some of the approaches used in seismic
engineering for dissipating energy throughmaterial nonlinearity to
PBWE. The adoption of such an approach, however, would require
careful validation, since non-synoptic winds are not necessarily
zero-mean. As will be discussed in more detail in Section 6,
approaches have also been proposed for the single-/multi-
objective design optimization within the space of the
aforementioned probabilistic system-level metrics (Spence and
Kareem, 2014; Spence, 2018; Suksuwan and Spence, 2019b,a;
Venanzi et al., 2020; Petrini et al., 2020). While many of these
frameworks were initially inspired by the fragility/consequence
function-based damage/loss modeling approaches introduced by
the PEER framework (and subsequently refined in the P-58
methodologies), they have since evolved to include additional
metrics, e.g., life cycle costs, as well as wind specific
performance criteria associated with, for example, occupant
comfort (Bernardini et al., 2015). Importantly, during this
evolution, they have generally preserved the fundamental idea
underpinning the PEER framework of explicit evaluation of
probabilistic system-level metrics that can be understood by a
wide range of technical and non-technical decision makers.

Two important limitations of many of the aforementioned
frameworks include: 1) the neglect of damage to the envelope
system due to direct action of local net wind pressures; and 2) the
assumption that the MWFRS can be modeled as elastic (structural
damage is only implicitlymodeled through fragility functions evaluated
from demands estimated from elastic models of the MWFRS).

With respect to the first point, recent extensions of the Florida
Public Hurricane Loss Model (FPHLM) to mid-rise residential
buildings (e.g. Pita et al. (2016)) have considered these aspects.
Nevertheless, the intent of the FPHLM is the performance
assessment of portfolios containing hundreds of buildings. The
detail with which each building is modeled is not therefore at the
level of PBWE where the focus is on the performance assessment
of individual buildings. With an explicit focus on individual
buildings and PBWE, a fragility-based progressive damage
model was recently introduced in Ouyang and Spence (2019).
Within the framework, each component of the envelope system is
modeled as susceptible to multiple coupled damage states
characterized through suites of fragility functions. Demands

are modeled through dynamic drift and net pressure
characterized through non-Gaussian stochastic models
calibrated to specific wind tunnel tests. To model the wind
driven rain on the envelope due to the rain event that
inevitably accompanies severe windstorms, Eulerian
multiphase models based on computational fluid dynamics
were adopted. The approach was subsequently embedded with
a conditional stochastic simulation scheme, therefore defining a
PBWE framework capable of estimating system-level loss and
consequences related to decision variables such as repair costs
and ingressed water due to envelope damage (Ouyang and
Spence, 2020). This approach has recently been extended to
consider nonlinearity in the MWFRS (Ouyang and Spence,
2021b) as well as more complex representations of the wind
hazard, i.e., the non-stationary/-straight/Gaussian wind pressures
that are characteristic of hurricanes before idealization (Ouyang
and Spence, 2021a).

With respect to the second point, the neglect of potential
nonlinearity in the MWFRS can be traced back to the following
difficulties: 1) the long duration (in the order of hours) of typical
dynamic wind loads, therefore creating a significant
computational barrier to propagating uncertainty through
nonlinear models of the MWFRS in determining the
probabilistic performance metrics; and 2) the complexity of
modeling the nonlinear response of the MWFRS where the
presence of a substantial mean wind load component (for
certain wind directions) creates theoretical difficulties in
applying state-of-the-art nonlinear modeling approaches that
have been calibrated to zero mean seismic loads. The long
duration and substantial mean wind load for certain directions
also make the exploitation of nonlinear material behavior for
energy dissipation less straightforward than in seismic
engineering, since potential issues can arise due to low-cycle
fatigue failure and lack of complete internal force reversal in the
structural elements. Notwithstanding these challenges, the
neglect of potential damage to the MWFRS is fundamentally
contrary to the concept of PBE that is based on the explicit
modeling of performance of the system over a full range of hazard
intensities. This has inspired interest in developing methods that
can explicitly treat damage through nonlinear modeling of the
MWFRS. In addition to studies that have looked at understanding
specific aspects of inelasticity from a fundamental standpoint, e.g.
(Hong, 2004; Gani and Légeron, 2011; Feng and Chen, 2017,
2018; Bezabeh et al., 2021a,b), two approaches have essentially
been investigated within the setting of PBWE. The first is based
on application of the theory of plasticity through defining the
state of dynamic shakedown as a collapse prevention
performance objective (Tabbuso et al., 2016; Chuang and
Spence, 2017, 2019; Chuang and Spence, 2020; Chuang and
Spence, 2022), while the second is based on directly applying
nonlinear modeling approaches developed in seismic engineering
for the nonlinear analysis of the MWFRS (Judd and Charney,
2015; Mohammadi et al., 2019; Nikellis et al., 2019; Ouyang and
Spence, 2021b; Ghaffary and Moustafa, 2021; Huang and Chen,
2022). The intent of the first approach is to rapidly provide a
means for identifying a region in which inelasticity can occur
safely, i.e. without potential failure due to low-cycle fatigue
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(acrosswind failure), ratcheting (alongwind failure),
instantaneous plastic collapse, or excessive plastic deformation.
The computational efficacy of the approach enables evaluation of
reliability through direct stochastic simulation (Chuang and
Spence, 2022). While the second approach provides greater
modeling flexibility, a major challenge lies in the huge
computational effort necessary to propagate uncertainty
through the nonlinear finite element models (due to the long
duration of wind events as compared to earthquakes) and
therefore estimate general system-level damage/loss metrics
that are consistent with current PBWE frameworks.

The need to bring low-rise buildings under the umbrella of
PBWE is strongly recognized as they represent the majority of the
building stock in the United States. Better damage assessment
through frameworks that are based on the principles of PBWE
would support improved residential building practices, and limit
economic losses and social disruption (Ellingwood et al., 2008).
Interestingly, as mentioned in Section 5.1, one of the earliest
works in conceptualizing PBWE concerned the performance
assessment of residential wood structures (Rosowsky and
Ellingwood, 2002). Although research in the area of PBWE of
low-rise buildings has lagged that of engineered buildings, some
notable recent research efforts include the development of initial
PBWE frameworks for non-engineered buildings with multi-
hazard considerations (Unnikrishnan and Barbato, 2017,
2016), introduction of scales for classifying post-disaster
structural functionality within the setting of PBWE (Nevill and
Lombardo, 2020), wind-induced damage assessment of low-rise
building envelopes with potential openings (Ji et al., 2020), and
the experimental investigation of the propagation of wind-driven
rain into the building interior of low-rise buildings (Raji et al.,
2020).

5.3 Translation to Codes and Standards
The important research developments outlined in Section 5.2,
coupled with the significant interest from industry to implement
PBWE in practice, has culminated in the recent publication by the
American Society of Civil Engineers (ASCE) of the Prestandard
on PBWD (ASCE/SEI, 2019). Major innovations of this
document are the introduction of limit states that explicitly
allow (for the first time) nonlinearity in the MWFRS, the
explicit integration of acceptance criteria related to the
performance of the envelope system, and the definition of
performance objectives over a full range of hazard intensities.

The performance objectives span occupant comfort through
serviceability to ultimate strength where additional capacity
arising from controlled inelasticity is permitted. To
demonstrate building functionality across the range of
objectives, linear elastic analysis is permitted for evaluating
occupant comfort and operational performance targets since
the system itself is required to remain elastic, whereas
advanced analysis procedures can be employed to evaluate the
continuous occupancy performance objective. To this end, three
methods have been proposed, with two of them requiring
nonlinear response history analysis at collapse or reliability-
based dynamic shakedown to evaluate the intended
performance of the deformation-controlled elements. The

Prestandard has also explicitly included performance objectives
and acceptance criteria for the evaluation of the building envelope
and non-structural components.

As a relevant example of adoption in building design/construction
practices of performance-based engineering, PBSE took around
25–30 years to advance from conception to widespread acceptance
in practice. As highlighted in Section 2, first-generation of PBSE
began in the early 1990s with second-generation PBSE starting in the
early 2000s and achieving a certain maturity by the mid-2010s with
widespread acceptance and adoption by industry thereafter. Similarly,
since the beginning of focused research on PBWE in the late 2000s,
significant progress has beenmade over the past decade. The release of
the Prestandard on PBWD is a major milestone and, if current
research and standards development efforts continue, a similar trend
as seen for PBSE can be expected, leading to the widespread
implementation in practice of PBWE in the next 10–15 years.

6 THE ROLE OF OPTIMIZATION IN
PERFORMANCE-BASED WIND
ENGINEERING
6.1 General Comments
As has been outlined in the previous sections, the practical
implementation of modern PBD requires the rigorous use of

FIGURE 2 | The role of optimization in PBD.

Frontiers in Built Environment | www.frontiersin.org March 2022 | Volume 8 | Article 8302076

Spence and Arunachalam PBWE

64

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


reliability/probabilistic models for the performance evaluation of
the system. Compared to traditional deterministic design, this
approach therefore entails the use of more complex and
computationally cumbersome models. This makes the
traditional trial-and-error approach to finding designs that
satisfy the multiple performance objectives both time-
consuming and non-intuitive. This is further compounded if
systems that are economically optimum in meeting the
performance goals are also desired. To overcome these
difficulties, PBD procedures must be coupled with
optimization algorithms, as shown in Figure 2, that are
capable of rigorously handling the reliability/probabilistic
performance assessment models of current PBWE frameworks.
A class of optimization methodologies that respond to this need is
constituted by the reliability-based design optimization (RBDO)
algorithms (Schuëller and Jensen, 2008; Valdebenito and
Schuëller, 2010). Indeed, in RBDO the aim is the resolution of
problems that are characterized by generally deterministic cost/
objective functions subject to a number of probabilistic
constraints (e.g., Valdebenito and Schuëller (2010)). The
recent boom in computational power has spawn intense
research in this area as it has opened the door to the
possibility of solving problems that were previously deemed
intractable. Notwithstanding these research efforts, there is still
need for the development of specific RBDO algorithms that
efficiently yield optimum solutions to practical probabilistic
PBD problems that are often posed in terms of multiple
performance constraints, high-dimensional random variable
vectors as well as discrete high-dimensional design variable
vectors. As outlined in Federal Emergency Management
Agency (FEMA) (2006), each of these characteristics makes
the RBDO problem non-trivial due to the implicit nature, in
terms of the design variable vector, of the probabilistic constraints
and the inherently nested nature of the reliability analysis within
the optimization loop (Aoues and Chateauneuf, 2010;
Valdebenito and Schuëller, 2010).

6.2 Challenges, Existing Solutions and
Opportunities
The main difficulty in solving the optimization loop outlined in
Figure 2 is presented by the probabilistic nature of the
performance assessment that essentially requires the resolution
of a reliability integral similar to that of the classic PEER
framework (Ouyang and Spence, 2020; 2021b). Indeed, the
treatment of this type of integral within an optimization
problem is characterized by the following difficulties: 1) it is
implicit in the design variable vector therefore hindering
sensitivity analyses; and 2) its evaluation requires probabilistic
analyses which will in general be computationally cumbersome.
These difficulties are further compounded if the design variable
vector is of high dimensions (hundreds of components), as is the
case for many practical applications, and if the number of
constraints to be considered is also elevated. Further
complication is added if the uncertain vector has more than a
handful of components as this will practically eliminate the
possibility of using approximate reliability analysis (first or

second order reliability methods) due to the increasing
difficulty this produces in finding the design point (Schuëller
et al., 2003). In addition, the various methods that have been
developed over the years for optimizing stochastic systems
modeled through large and complex finite element models
(e.g., metamodeling approaches (Zhu et al., 2011; Chen et al.,
2015; Moustapha et al., 2016), subset simulation optimization
(SSO) (Taflanidis and Beck, 2009; Jia and Taflanidis, 2013; Jia
et al., 2015), and sequential optimization methods (Du and Chen,
2004; Zou and Mahadevan, 2006; Jensen et al., 2008; Valdebenito
and Schuëller, 2011; Jensen et al., 2012)), are not generally
applicable to systems with more than a dozen or so free
design parameters. The main reason for this can be traced
back to how the focus of the aforementioned approaches is
mainly on treating problems with complex and generally
nonlinear response behaviors. In the case of the large-scale
structures often found in practice, this can represent a
significant limitation as these systems are generally designed in
terms of hundreds of free parameters. A philosophical approach
that can in theory efficiently treat problems with high-
dimensional design spaces is that based on decoupling the
probabilistic analysis from the optimization loop through
approximations that are constructed from information
pertaining to a limited number of probabilistic analyses
(Spence and Gioffrè, 2012; Royset et al., 2001; Du and Chen,
2004; Zou and Mahadevan, 2006; Ching and Hsieh, 2007; Jensen
et al., 2008; Valdebenito and Schuëller, 2011). This approach has
been explored within the context of PBWE with the introduction
of schemes for both single and multi-objective optimization while
considering performance metrics ranging from accelerations at
the performance objective of occupant comfort (Spence, 2018),
through drifts and component responses at the performance
objectives of serviceability and continuous occupancy (Spence
and Kareem, 2014), to explicit evaluation of system-level loss
metrics (Suksuwan and Spence, 2019b,a; Subgranon and Spence,
2021). This approach has also been extended to topology
optimization formulated explicitly in the space of PBWE
metrics (Kareem et al., 2013; Bobby et al., 2014; Bobby et al.,
2016). The difficulty associated with optimizing in high-
dimensional spaces of design variables can be avoided by
choosing small subsets of parameters that are most influential
to the performance metrics. For example, recent works have
looked at optimally choosing the parameters of auxiliary damping
devices for minimizing a variety of performance metrics (Petrini
et al., 2020; Venanzi et al., 2020).

7 SUMMARY AND CONCLUSION

This paper reviewed the origins and current state-of-the-art of
PBWE that is poised to inform the next generation of load and
design codes for wind. A historical account is presented and
pioneering works are briefly summarized with key emphasis on
the differences between PBSE and PBWE. The current state of
practice is reviewed, and its limitations are highlighted. The broad
areas of active research within PBWE are identified as the
inelastic modeling/design of wind excited structures and the
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modeling of the envelope performance that includes
consideration of the risk from wind driven rain and debris
impact. The role of optimization was discussed within the
context of optimally satisfying the performance objectives
associated with occupant comfort, serviceability and ultimate
capacity. Additional areas of future research include the
experimental validation of the state-of-the-art numerical
frameworks associated with, but not limited to, wind load
modeling and nonlinear structural analysis, with particular
attention on assessing the validity of models/tools borrowed
from seismic engineering. In a similar vein, the applicability of
the R-factor (force reduction factor), ductile detailing concepts
and innovative damping devices in PBWE, and more in general,
in mixed hazard environments, requires investigation. Additional
research developments that would be of relevance concern the
assimilation in the models of field data on cladding performance
during hurricane events. This would enable the establishment of
better semi-empirical fragility functions as well as damage states
and consequence functions for describing building envelope
performance. More research on PBWE of low-rise structures
as well as PBWE for non-synoptic winds is also needed. In
conclusion, the significant advances in PBWE of the past
decade are changing the way buildings are assessed and
designed against wind. Although there is still much to be
done, the continued development of PBWE promises to

enhance the resilience of future communities to extreme wind
events while increasing sustainability through enabling greater
design innovation.
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Applications of Machine Learning to
Wind Engineering
Teng Wu1* and Reda Snaiki 2

1Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, United States, 2Department of
Construction Engineering, École de Technologie Supérieure, University of Quebec, Montreal, QC, Canada

Advances of the analytical, numerical, experimental and field-measurement approaches in
wind engineering offers unprecedented volume of data that, together with rapidly evolving
learning algorithms and high-performance computational hardware, provide an
opportunity for the community to embrace and harness full potential of machine
learning (ML). This contribution examines the state of research and practice of ML for
its applications to wind engineering. In addition to ML applications to wind climate, terrain/
topography, aerodynamics/aeroelasticity and structural dynamics (following traditional
Alan G. Davenport Wind Loading Chain), the review also extends to cover wind damage
assessment and wind-related hazard mitigation and response (considering emerging
performance-based and resilience-based wind design methodologies). This state-of-the-
art review suggests to what extend ML has been utilized in each of these topic areas within
wind engineering and provides a comprehensive summary to improve understanding how
learning algorithms work and when these schemes succeed or fail. Moreover, critical
challenges and prospects of ML applications in wind engineering are identified to facilitate
future research efforts.

Keywords: machine learning, wind engineering, wind climate, terrain and topography, aerodynamics and
aeroelasticity, structural dynamics, wind damage assessment, hazard mitigation and response

1 INTRODUCTION

Wind engineering is an interdisciplinary field to provide rational treatment of interaction between
the atmospheric boundary-layer winds and human activities (Cermak 1975). There is a long and
significant history for machine learning (ML) applications in several subfields involved in wind
engineering, such as fluid mechanics (Brunton et al., 2020), meteorology (Chen et al., 2020) and
mechanics of structures (Salehi and Burgueño 2018). The application of statistical learning to
turbulence modeling in early 1940s (Kolmogorov 1941) and perceptron learning to structural
design in late 1980s (Adeli and Yeh 1989) are representative examples. On the other hand, it seems
similar passions have not been shared by researchers in the wind engineering community. Actually,
ML-based wind engineering is still in its infancy stage and the full-capacity of ML has not been
leveraged yet. However, the exceptional performance of ML to extract hidden informative features
from data shows great promise for addressing unresolved complexities and issues originated from
first principles investigations in the field of wind engineering. In addition, recent advances in
performance-/resilience-based wind engineering have placed new demands on wind
characterization, aerodynamics modeling and structural analysis that need powerful simulation
tools such as ML to overcome the emerging challenges by simultaneously achieving high
computational efficiency and accuracy. It is reasonable to expect the revitalization of ML
within the wind engineering field that is fueled by 1) rapidly evolving learning algorithms and
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high-performance computational hardware, 2) unprecedented
volume of data generated with improved wind engineering
techniques and methodologies, and 3) urgent needs for more
accurate and efficient learning and modeling of complex
phenomena in wind-related problems.

As a key subfield of artificial intelligence (AI) [that together with
natural intelligence plays a role of the computational part of the
ability to achieve goals in the world (McCarthy 2007)], ML
develops learning algorithms that use inputs from a sample
generator and observations from a system to generate an
approximation of its outputs (Cherkassky and Mulier 2007).
The evolution of learning algorithms started when McCulloch
and Pitts (1943) invented the first mathematical model of a neural
network. In 1952, Arthur Samuel from IBM introduced the first
self-learning computer program to play the game of checkers
(Wiederhold et al., 1990). Then, Rosenblatt (1957) designed the
first neural network for computers (the perceptron) that set the
foundation of deep neural networks (DNNs). Kelley (1960)
presented the method of gradients (or method of steepest
descent) in his analytical development of flight performance
optimization, which was used to develop the basics of a
continuous backpropagation model for training feedforward
neural networks (Rumelhart et al., 1986). On the other hand,
Hopfield (1982) created a feedback neural network that was
considered as the first recurrent neural network (RNN). LeCun
et al. (1989) combined convolutional neural network (CNN) and
backpropagation algorithm to recognize handwritten digits.
Watkins (1989) introduced the concept of Q-learning based on
Markov process to significantly enhance the practicability and
feasibility of reinforcement learning. Later, Cortes and Vapnik
(1995) designed a support-vector network considered as a new
learning machine for two-group classification problems with high
generalization ability. Hochreiter and Schmidhuber (1997)
introduced a long short-term memory cell to address the long-
term dependency issue in RNN. To overcome the learning
difficulty in DNNs, Hinton et al. (2006) derived a fast, greedy
algorithm that can learn deep, directed belief networks one layer at
a time and hence facilitate the rapid development of deep learning.
Recently, Goodfellow et al. (2014) proposed a generative
adversarial network consisting of two models (i.e., generative
and discriminative models) that compete with each other in a
zero-sum game. The sophisticated ML algorithm needs the help of
advanced computational hardware [e.g., graphics processing unit
(GPU) and tensor processing unit (TPU)] to unlock its full
potential (Berggren et al., 2020). For example, the great success
of AlexNet (a deep CNN on GPU) is essentially attributed to its
ability to leverage GPU for training (Krizhevsky et al., 2012).

Equipped with both sophisticated algorithms and advanced
computational hardware, the learning machine (LM) is driven by
data. Both the quantity (data rich and comprehensive) and quality
of the training/testing data are important to ensure good
performance of ML applications. Wind engineering by nature is
a data-rich field (e.g., high spatial and temporal resolution), and it
is rapidly becoming a data-comprehensive domain due to recent
advances of analytical, numerical, experimental and field-
measurement methods (Kareem and Wu 2013; Hangan et al.,
2017). The data of spatiotemporally varying wind flows are

extended from synoptic events measured by airport wind
observation system with traditional anemometers to non-
synoptic events measured by several field campaigns with
advanced doppler radars and Lidars (Light Detection and
Ranging) [e.g., Verification of the Origins of Rotation in
Tornadoes Experiment (VORTEX) and Radar Observations of
Tornadoes and Thunderstorms Experiment (ROTATE)
campaigns for tornado events and Severe Convective OUtflow
in Thunderstorms (SCOUT) and Wind Ports and Sea (WPS)
campaigns for thunderstorm downburst events]. Massive wind
data over complex terrain/topography are collected by continuous-
wave short-range WindScanner systems (e.g., Berg et al., 2013).
The low Reynolds-number, straight-line-wind, stationary
aerodynamics data generated in conventional boundary-layer
wind tunnels are extended to 1) high-Reynolds-number
aerodynamics data resulting from recently built large-scale
facilities [e.g., windstorm simulation facility at Insurance
Institute for Business and Home Safety (IBHS), Wall of Wind
(WOW) at Florida International University andWind Engineering
Energy and Environment (WindEEE) at Western University], 2)
vortex-flow aerodynamics data produced by tornado simulators
(e.g., tornado-like vortex simulator at Iowa State University and
VorTECH at Texas Tech University), and 3) transient
aerodynamics data generated in emerging actively controlled
wind tunnels (e.g., individually-controlled multi-fan wind
tunnels at Tongji University, University at Buffalo and
University of Florida). Also, significant nonlinear and inelastic
structural dynamics data under strong winds are being created in
laboratories due to advances in performance-based wind design
methodology (Abdullah et al., 2020). In addition to the
experimental and field-measurement approaches the
comprehensive data are further enriched by high-fidelity large-
scale simulation tools that are advanced by theoretical
developments in wind engineering field (Blocken 2014; Kareem
2020), such as computational fluid dynamics/computational
structural dynamics (CFS/CSI)-based hybrid modeling of
transient structural response (Hao and Wu 2018) and statistics-
based synthesis of nonstationary wind field (Wang andWu 2021).
The Computational Modeling and Simulation Center (SimCenter)
of the Natural Hazards Engineering Research Infrastructure
(NHERI) program provides an effective way to integrate various
simulation tools (Deierlein and Zsarnóczay 2021). Furthermore,
novel real-time aerodynamics hybrid simulation techniques are
emerging to effectively generate nonlinear and full-scale data in
wind engineering by seamlessly stitching the numerical modeling
in computer and physical testing in wind tunnel (Wu et al., 2019;
Wu and Song 2019). Data quality is essential to facilitate curation
and reuse of the diverse and large datasets generated in the field of
wind engineering. There are numerous methods and criteria
specified by various wind engineering research groups/centers
to ensure the high data quality, and the NHERI DesignSafe
cyberinfrastructure platform recently suggested the best
practices for detailed data quality assessment in terms of
metadata quality, data content quality, data completeness and
representation and data publications review (Rathje et al., 2017).

The improved understanding concerning the complex nature of
wind fields (e.g., nonstationary and non-Gaussian features), the
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associated structural aerodynamics/aeroelasticity (e.g., transient and
nonlinear features) and the resulting load effects (e.g., nonlinear and
inelastic structural response), as well as the necessary shift from a
prescriptive design approach to performance-based design
methodology and further to resilience-based design philosophy
(i.e., improving the rapidity, robustness, resourcefulness and
redundancy), poses new challenges in wind engineering field.
Hence, there is an urgent need of more accurate and efficient
learning and modeling tools for effective solutions. The
conventional stationary and linear analysis framework for wind-
structure interactions established by Robert H. Scanlan
(1914–2001) and Alan G. Davenport (1932–2009) has been very
successful due to its simplicity and applicability, however, its
shortcomings have begun to surface since the underlying
complexities associated with many wind engineering problems
clearly show a departure from implicit assumptions of
stationarity, Gaussianity and linear features. A number of semi-
empirical nonlinear reduced-order models have been developed in
this context and improvement in their efficiency and robustness is a
topic of cutting-edge research in the wind engineering community
(Wu 2013). Unfortunately, these reduced-order models do not
always have a satisfactory representation of the full nonlinear
equations which govern the complex phenomena in wind-related
problems. An alternate way is to utilize the CFD techniques,
however, their computational effort is too high considering the
three-dimensional nature of winds and associated bluff-body
aerodynamics. While CFD plays a significant role in generating
high-fidelity data of complex wind-structure interactions, its high
computational cost makes it not easy to be used either in an
informational mode to enhance wind hazard-related planning
and development activities (e.g., risk mitigation that needs to
quickly run thousands of scenarios at minimal computational
expense) or in an operational mode to support emergency
management and response associated with a wind hazard (e.g.,
decisionmaking that needs real-time prediction capability under an
uncertain environment). To address the emerging challenges, data-
drivenmachine learning offers a promising approach that is capable
of processing big data in wind engineering field as well as modeling
associated complex phenomena with high computational efficiency
and simulation accuracy.

With the rapid development of ML applications in wind
engineering due to the confluence of advanced learning
algorithms, high-performance computational hardware and
big data, it is believed that a systematic review on this
subject is important to suggest to what extend ML has been
utilized in each of the topic areas within wind engineering and
provide a comprehensive summary to improve understanding
how learning algorithms work and when these schemes succeed
or fail. Specifically, a total of 65 ML algorithms (Appendix A)
are identified for their applications in the five topic areas of wind
climate, terrain/topography, aerodynamics/aeroelasticity,
structural dynamics and damage assessment, and mitigation
and response. This review first presents technical background of
typical ML approaches in terms of supervised learning,
unsupervised learning, semi-supervised learning and
reinforcement learning (RL), followed by the state of research
and practice of ML applications to each topic area within wind

engineering field, and concluded with critical research gaps and
future prospects. While ML can augment the analytical
approaches [e.g., data-driven discovery of closure models
(Raissi et al., 2019)], numerical schemes [e.g., data-driven
turbulence modeling (Duraisamy et al., 2019)], experimental
tests [e.g., data-driven active control of transient wind
simulation (Li et al., 2021a)] and field measurements [e.g.,
data-driven sparse sensor placement (Manohar et al., 2018)]
in wind engineering, the review only focuses on its role to
complement existing methodologies and hence potentially
extend/transform current lines of wind engineering research
and practice.

2 BACKGROUND OF MACHINE LEARNING

Machine learning (ML) is a subclass of artificial intelligence (AI)
that extracts the underlying pattern within a set of data (e.g.,
Murphy 2012; Goodfellow et al., 2016; Mohri et al., 2018). To
acquire the hidden pattern and knowledge of a problem, the
learning process involves in general five important steps, namely
data collection, data preparation, training, evaluation and
parameters tuning. Once the learning machine is trained based
on the available data (usually retrieved from analytical solutions,
numerical simulations, experimental tests or full-scale
measurements), it can predict future or unseen events. Based
on the data fed into the learning machine, ML algorithms can be
classified into four categories, namely supervised learning,
unsupervised learning, semi-supervised learning and
reinforcement learning (Figure 1).

To train the algorithm, the supervised learning fully depends
on labeled data, the unsupervised learning relies purely on
unlabeled data and the semi-supervised learning combines
limited labeled data with a large amount of unlabeled data.
For reinforcement learning (RL), there is essentially no
predefined data. Although RL is occasionally treated as semi-
supervised learning considering the agent learns from its own
experiences in terms of infrequent and partial rewards, it is
classified here into separate category to highlight there is no
explicit, external supervisory information provided to the
learning agent. It is noted the kriging and polynomial chaos
expansions as two widely-used, data-driven statistical
interpolation approaches are not reviewed in this study.

2.1 Supervised Learning
Supervised learning models are a set of algorithms that learn the
mapping, from given labeled training data, between known inputs
and outputs. The trainable parameters of these models are
determined based on the minimization of the loss function.
Supervised learning models usually require a large amount of
reliable and unbiased data for training which might not be always
available. These algorithms can be employed for two important
tasks, namely regression and classification.

2.1.1 Regression
Regression is a type of supervised learning in which the output is a
numeric variable. Among many regression models, feed-forward

Frontiers in Built Environment | www.frontiersin.org March 2022 | Volume 8 | Article 8114603

Wu and Snaiki ML Applications to Wind Engineering

72

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


neural networks (FFNN) are widely utilized in wind engineering
field [Figure 2]. They are statistical models inspired by biological
learning (McCulloch and Pitts 1943) and characterized by
adaptive weights between neurons which are tuned using a
learning algorithm from observed training data. For simplicity,
the FFNN is also denoted as artificial neural network (ANN) in
this study.

Deep neural networks (DNN) are also a type of FFNN
characterized by a deep architecture equipped with multiple
layers, and hence allows for better generalization and accuracy
(Deng and Yu 2014; Pouyanfar et al., 2018). The convolutional
neural networks (CNN) is another important FFNN with sparse
convolutional matrices that are usually employed for pattern
recognition and image classification (Krizhevsky et al., 2012;
Goodfellow et al., 2016). Recurrent neural networks (RNN) are
a class of feedback neural networks that allow previous outputs to
be used as inputs while having hidden states and are suited to
model time-dependent regression problems (e.g., Medsker and Jain
1999; Mandic and Chambers 2001). Long short-term memory
(LSTM) are an advanced version of RNN to alleviate the gradient
vanishing and exploding issue by only keeping necessary past
information in future model states (Bengio et al., 1994).

2.1.2 Classification
Classification is another type of supervised learning in which the
output is a categorical variable or a class. Support vector machines
(SVM) (Scholkopf and Smola 2018) and random forest (RF)
(Breiman 2001) are two classical examples of classification
algorithms. SVM classifier identifies a hyperplane in a high-
dimensional space in which a simple linear classification can be
performed. RF classifier, on the other hand, fits a number of
decision tree classifiers on various sub-samples of the dataset,
then averages the results to improve outcome accuracy [Figure 3].

2.2 Unsupervised Learning
Unsupervised learning models draw inferences from datasets to
describe hidden structures from unlabeled data based on

FIGURE 1 | Machine learning categories.

FIGURE 2 | Architecture of a typical FFNN.

FIGURE 3 | Architecture of a typical random forest classifier.
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inherent characteristics (Russell and Norvig 2016). These
models usually group instances of input data using a defined
similarity index (global criterion). Clustering and
dimensionality reduction are two standard examples of
unsupervised learning applications.

2.2.1 Clustering
Clustering is an unsupervised learning task used for pattern
recognition that automatically discovers natural groups or clusters
in data. A cluster refers to a collection of data points aggregated
togetherwith similar features (Maulik andBandyopadhyay 2002). The
k-means clustering is one of the simplest unsupervised MLmodels. It
is a centroid-based algorithm that partitions the data into k clusters.
Mean-shift clustering is another unsupervised model with a sliding-
window-based algorithm to identify dense areas of data points. Other
clustering algorithms such as the density-based spatial clustering of
applications with noise, the expectation–maximization clustering
using gaussian mixture models and the agglomerative hierarchical
clustering are also popularly used for statistical data analysis.

2.2.2 Dimensionality Reduction
Dimensionality reduction aims to find the most important
features within the dataset by identifying lower-dimensional
representations for high-dimensional data. It minimizes the
storage space, reduces the computation time and avoids
overfitting. The ML-based dimensionality reduction can be
divided into linear and nonlinear algorithms. The principal
component analysis (PCA) is a commonly used linear
technique that can be regarded as a two-layer neural network
with a linear activation function. It essentially provides new
uncorrelated variables, also denoted as principal components,
which maximize the variance. The nonlinear autoencoder is a
specific type of FFNN that compresses the initial input space into
a reduced dimensional space using the encoder and then
decompresses the obtained latent space back to the original
input space using the decoder. Accordingly, deep autoencoders
have a “bottleneck” architecture designed for extraction of
representative features [Figure 4]. The autoencoder algorithm

has been attracting attention in fluid mechanics community for
efficient development of reduced-order models.

2.3 Semi-Supervised Learning
Semi-supervised learning models operate based on limited
labeled data with a large amount of unlabeled data. Hence,
they can be regarded as combination results of supervised
learning and unsupervised learning algorithms. The generative
adversarial network (GAN) is a well-known semi-supervised
learning algorithm for estimating generative models via an
adversarial process. One important feature of semi-supervised
learning algorithms is their labelled-data efficiency. To this end, it
may be reasonable to consider the physics-informed deep
learning (PIDL) as a semi-supervised model that leverages
physics-based equations in the augmented loss function to
significantly reduce the data demand during training process.

2.3.1 Generative Adversarial Network
The GAN model consists of two competing neural networks,
namely the generator and the discriminator (Goodfellow et al.,
2014). It generates new data based on a probability distribution
that approximately represents the training data (true or labelled
data). Specifically, the generator produces fake samples to imitate
the distribution of a real dataset, then the discriminator tries to
distinguish (through a classification process) between the real
samples and fake ones (from the generator). The GAN model is
trained such that the new generated samples accurately represent
the underlying mechanisms of the studied system. The
architecture of a typical GAN model is illustrated in Figure 5.

2.3.2 Physics-Informed Deep Learning
The concept of PIDL models was originally proposed several
decades ago (Psichogios and Ungar 1992; Dissanayake and Phan-
Thien 1994) in which prior knowledge (in terms of the physics-
based governing equations) is integrated within the neural
networks to reduce the high-volume of required training data.
Typically, a small amount of labelled data along with a large
number of unlabeled data that satisfy the underlying physics of
the system of interest (also denoted as collocations points) are
used to train these models. Hence, self-supervision plays a
significant role in PIDL models. Recently, Raissi et al. (2017a,

FIGURE 5 | Architecture of a typical GAN model.

FIGURE 4 | Architecture of a typical autoencoder model.

Frontiers in Built Environment | www.frontiersin.org March 2022 | Volume 8 | Article 8114605

Wu and Snaiki ML Applications to Wind Engineering

74

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


b) advanced the PIDL models by leveraging the automatic
differentiation technique to solve partial differential equations.
The architecture of a typical PIDL model is presented in Figure 6.

2.4 Reinforcement Learning
RL algorithm is usually formulated based on Markov decision
process (Sutton and Barto, 2018). The core part of RL is its agent
that interacts with its environment. Accordingly, the agent learns a
policy thatmaps the states to the actions bymaximizing the expected
cumulative reward using an automated trial-and-error process (e.g.,
Mnih et al., 2015; Silver et al., 2017). Typical reinforcement learning
models include value-based models (e.g., Q-learning or deep
Q-learning) (Watkins and Dayan 1992), policy-based models
(e.g., deep deterministic policy gradient) (Lillicrap et al., 2015)
and hybrid models (e.g., actor-critic) (Williams 1992). Recently,
the deep RL (with DNN-based policy) has been gaining attention in
wind engineering community as an efficient way for dynamic
control and shape optimization (Li et al., 2021a; 2021b). The
architecture of a typical deep RL is depicted in Figure 7.

3 APPLICATIONS OF MACHINE LEARNING
TO WIND ENGINEERING

This section provides a comprehensive review of the state of
research and practice of ML for its applications to wind
engineering. In addition to ML applications to wind climate,
terrain/topography, aerodynamics/aeroelasticity and structural

dynamics (following traditional Alan G. Davenport Wind
Loading Chain), the review also extends to cover wind damage
assessment and wind-related hazard mitigation and response
(considering emerging performance-based and resilience-based
wind design methodologies). Considering the overwhelming
number of existing research publications, this review is by no
means exhaustive. Rather, it attempts to provide a state-of-the-art
perspective on ML applications to wind engineering-related
fields.

3.1 Wind Climate
The review of ML applications to wind climate is organized by
classifying it into classical boundary-layer winds, tropical
cyclones and non-synoptic events. By leveraging the
increasingly available datasets (e.g., satellite data), ML has
become a supporting tool or even a reliable competitor of
classical approaches for wind climate modeling (e.g., CFD).
Most reviewed articles employed ML algorithms as a
regression (e.g., long-term prediction of surface wind speed) or
a classification (e.g., downburst occurrence prediction) tool. The
selected metrics to evaluate the performance of ML algorithms
included the root mean square (RMS), coefficient of correlation,
mean squared error (MSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), coefficient of determination
(R2), among others.

3.1.1 Classical Boundary-Layer Winds
Air movement in the planetary boundary layer plays a
fundamental role in current wind design of structures and
infrastructure. Although a detailed universal description of
flow characteristics in the boundary-layer region has not been
possible, the classical boundary-layer winds in gales from large
depressions or in monsoons can be well represented by a number
of empirical or semi-empirical models [e.g., power-law profile for
distribution of mean wind speed (Davenport 1960) and power
spectrum for turbulent fluctuations (Panofsky and McCormick
1960)]. The major research efforts have been focused on the
accurate estimate of design wind speed in a statistical analysis
framework (Simiu and Scanlan 1978). Specifically, long-term
wind data from meteorological observations are analyzed
based on extreme value theory to obtain the design wind
speed at each location. However, the accurate forecast of

FIGURE 6 | Architecture of a typical PIDL model.

FIGURE 7 | Architecture of a typical RL.
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classical boundary-layer winds is very challenging since it
involves a large range of various temporal and spatial scales
(e.g., from fractions of a meter to several thousand kilometers for
spatial scale and from fractions of seconds to several years for
time scales). Usually, the temporal and spatial resolutions from
the state-of-the-art weather forecast models [e.g., global forecast
system from National Oceanic and Atmospheric Administration
(NOAA)] are not sufficient for wind engineering purpose. On the
other hand, the unprecedented volumes of data from field
measurements (e.g., weather station and satellite) provide a
solid foundation to advance ML applications for classical
boundary-layer winds.

Table 1 presents the reviewed applications of ML for classical
boundary-layer winds, where the ML model, training scheme,
input data, output data, data source and performance metric are
summarized for each application. The training/testing data were
essentially retrieved from field measurements. From Table 1, it
can be concluded that most applications used ML as a regression
model for prediction of mean wind speed (averaging time
ranged from minutes to months), while the short-term
prediction of turbulent fluctuations that are very important
to structural dynamics is very limited. In many applications,
the selection of ML models is simply based on gut feeling or past
experience. Although several researchers conducted comparison
studies to select good ML models for their specific applications,
it might be very challenging to generalize the obtained results to
other applications due to a lack of a systematic comparison
framework.

3.1.2 Tropical Cyclones
Tropical cyclones (TCs), also commonly known as hurricanes
in North Atlantic, typhoons in western North Pacific and
cyclones in Australia, are low-pressure storms that form over
a warm ocean surface (Holton and Hakim 2013). With an
average of 90 events reported annually (Zhao et al., 2012),
TCs and their cascading hazards (e.g., wind, rain, storm surge
and wave) pose a serious threat to public safety, livelihoods
and local economies in many coastal regions around the
globe. Hence, significant efforts have been made in
modeling and predicting TCs and relatively well-
established mesoscale numerical weather prediction
frameworks [e.g., Weather Research and Forecasting
(WRF) model] are available for high-fidelity simulations.
However, the high-fidelity computationally expensive
models might not be always appropriate for planning
activities in an uncertain environment where Monte Carlo
simulations are needed or emergency managements where
real-time or near-real-time predictions are required. The
high demand for a rapid and reliable technique used to
assist decision-makers and planers results in many ML
models for efficient simulations of key stages in the life
cycle of a TC. These ML applications to TCs are fueled by
increasingly available remotely-sensed and high-fidelity
numerical data. The review in this section is organized
following the four important components of full track of a
TC, namely genesis, translation, intensity and wind field.

3.1.2.1 Tropical Cyclone Genesis
TC genesis requires several necessary environmental conditions
(e.g., existence of low-pressure area and sea surface temperature
of at least 26°C), however, the exact mechanisms of TC formation
are still not well understood (Gray 1968, 1979; Emanuel 2003;
Holton and Hakim 2013). To predict the TC genesis, both
numerical and statistical models were developed. The
numerical models (e.g., global forecast system) are essentially
based on the physical principles and their performance heavily
depends on improved understanding of TC genesis mechanism.
The statistical models (e.g., Michael 2017; Chen and Duan 2018;
Cui and Caracoglia 2019) linearly relate the TC genesis to a few
selected environmental factors, and hence show poor
interpolation and limited predictability. The lack of a deep
understanding of underlying mechanisms stimulated data-
driven techniques for TC genesis simulations. As a result,
increasing ML applications are available to accurately predict
TC genesis. Table 2i presents the reviewed applications of ML for
TC genesis, where the ML model, training scheme, input data,
output data, data source and performance metric are summarized
for each application. The training/testing data were essentially
retrieved from satellite measurements along with reanalysis
results. It is expected the improved spatial resolution of
currently available datasets will further enhance simulation
results of ML models. From Table 2i, it can be concluded that
most applications used ML as a classification model for either
short-term or long-term forecasting of TC genesis. Although
more dynamic and thermodynamic environmental factors can be
retrieved using advanced remote sensing technologies in recent
years, the identification of the most appropriate set of inputs to
ML models (predictors) is still very challenging.

3.1.2.2 Tropical Cyclone Translation
Numerical forecast models have been successfully applied in
forecasting normal TC trajectories, but they are
computationally expensive. Although several statistical models
were also developed based on a large amount of historical TC path
records (e.g., Vickery et al., 2000,2009; Emanuel et al., 2006; Hall
and Jewson 2007; Chen and Duan 2018; Snaiki and Wu 2020a;
Snaiki and Wu 2020b), their linear nature makes them incapable
of capturing the inherent nonlinearities in such a complex
dynamic system (Zhang and Nishijima 2012). Both numerical
and statistical models or their combinations (statistical-dynamics
models) show poor performance in forecasting sudden speed
change, recurvature and stagnation in TCmovement (Chen et al.,
2020). To satisfy both simulation accuracy and efficiency,
increasing ML applications emerged for TC path prediction.
Table 2ii presents the reviewed applications of ML for TC
translation, where the ML model, training scheme, input data,
output data, data source and performance metric are summarized
for each application. The training/testing data were essentially
retrieved from meteorological databases (e.g., satellite data) and
reanalysis results. Typically, the TC track information is available
only at each 6-h interval. From Table 2ii, it can be concluded that
most applications used ML as a regression model for TC path
prediction. Since the forecast of TC track can be regarded as a
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TABLE 1 | Summary of ML applications for classical boundary-layer winds.

Application ML model Training scheme Input data Output data Data source Performance
metric

Remarks

Forecasting
mean hourly
wind speed
time series
Sfetsos (2000)

LNN-ANN-NLN-
RBF-ANFIS-ERNN

Gradient descent,
Levenberg Marquardt

Past mean hourly
data (six past
measurements)

Next mean hourly
wind speed

Field
measurements at
the Odigitria of the
Greek island of
Crete on March
1996 (total of
744 h)

RMS NLN with logic
rule outperformed
all other models

Forecasting
daily, weekly
and monthly
mean wind
speeds More
and Deo
(2003)

ANN-JRNN Back-propagation,
cascade correlation

Past daily-,
weekly- and
monthly averaged
mean wind speed

Next daily, weekly
and monthly
averaged mean
wind speeds

Field
measurements
from 1989 to 2000
in two locations in
Mumbai, India

Coefficient of
correlation

Best performance
by RNN trained
with the cascade
correlation

Prediction of
the next daily
mean wind
speed
Mohandes
et al. (2004)

ANN-SVM Levenberg-Marquardt mean daily wind
speed of previous
days (ranging
between 1 and 11)

Next daily mean
wind speed

12 years of mean
daily wind speed in
Medina city, Saudi
Arabia

MSE SVM model
outperformed the
ANN model

Long-term
wind speed
and power
forecasting
Barbounis
et al. (2006)

IIRANN, DRNN,
LAFMN

Global recursive
prediction error

3-days forecast of
wind speed and
direction provided
by meteorological
models at four
nearby sites

Hourly meanwind
speed and power
for up to 72-h

Atmospheric
modeling system
SKIRON and wind
turbines data from
April 1st, 2000 until
31 December
2000 in Rokas’
wind park on the
Greek island of
Crete

MAE-RMS Similar
performance
results for the
three models

Short-term
mean wind
speed
forecasting
Potter and
Negnevitsky
(2006)

ANFIS least-squares estimator
and the gradient descent

4 to 6 past mean
wind speeds and
direction with a
2.5 min time step

Next mean wind
speed and
direction at
2.5 min

21-month time
series of 2.5 min
mean wind from
Hydro Tasmania at
Tasmania,
Australia

Mean absolute
percentage error

ANFIS model
outperformed a
locally developed
persistence
model

Prediction of
the next hourly
mean wind
speed Li and
Shi (2010)

ANN, RBF, ALEN Levenberg–Marquardt Past hourly mean
wind speed
observations (up
to 8 observations)

Next hourly mean
wind speed

Anemometers
data for 1 year
(2002) in two sites
in North Dakota

Mean absolute
error and RMSE

ANN
outperformed
other models

Prediction of
the hourly
mean wind
speed and
direction
Lahouar and
Slama (2014)

SVM (radial basis
kernel)

- Past hourly mean
wind speed and
direction in the site
(up to 10 past
samples)

Next hourly mean
wind speed and
direction for a
lead time up
to 10 h

Sidi Daoud wind
farm in Tunisia
from 2010 to 2011

RMSE and MAE Satisfactory
results

Short-term
wind direction
forecasting
Tagliaferri et al.
(2015)

ANN, SVM (RBF
kernel)

Gradient descent Wind direction at
past minutes

Next 1–2 min
wind direction

34 days data from
the 34th America’s
Cup in 2013, San
Francisco

Mean absolute
error and mean
effectiveness
index

SVM model
outperformed the
ANN model

Prediction of
the monthly
averaged
mean wind
speed Kumar
and Malik
(2016)

ANN, GRNN Missing 10 variables (e.g.,
latitude, longitude,
earth temperature,
atmospheric
pressure)

Monthly averaged
mean wind speed

Data retrieved from
NASA
corresponding to
various cities in
India

MSE and RMSE GRNN
outperformed the
ANN model

Predict of
short-term

Hybrid model
(wavelet packet

- Past values of the
wind speeds

Mean wind speed
for up to 1 day

Data from several
sites in the Sichuan

MAE and RMSE WPD-DBSCAN-
ENN

(Continued on following page)
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TABLE 1 | (Continued) Summary of ML applications for classical boundary-layer winds.

Application ML model Training scheme Input data Output data Data source Performance
metric

Remarks

mean wind
speed Yu et al.
(2018)

decomposition
[WPD] + density-
based spatial
clustering of
applications with
noise [DBSCAN] +
ENN), WPD-
ENN, ENN

determined based
on the gradient
boosted
regression trees

with a 10-min
time step

Province, China
over 16 days with
an average wind
speed of 10 min

outperformed all
other models

Time-series
prediction of
mean wind
speed
Khosravi et al.
(2018a)

ANN, SVR, FIS,
ANFIS, GMDH

Bayesian Regularization,
Scaled Conjugate
Gradient, BFGS Quasi-
Newton, Levenberg
Marquardt and Resilient
backpropagation

Past values of
wind speed
(number not
mentioned)

Mean wind speed
for approximately
361-time steps
ahead with
several time
intervals (e.g., 5-
min and 30-min)

Osorio wind farm
in the south of
Brazil

RMSE, MSE SVR, GMDH and
ANFIS models
preformed the
best. The
prediction
accuracy of
ANFIS was
increased when
coupled with
particle swarm
optimization
(PSO) and genetic
algorithm (GA).
The Levenberg
Marquardt
performed the
best

Prediction of
the mean wind
speed,
direction and
power
Khosravi et al.
(2018b)

ANN, SVR (with
radial basis
function), ANFIS

Levenberg Marquardt,
Conjugate Gradient and
Bayesian Regularization

Pressure, local
time, temperature
and relative
humidity

Mean wind
speed, direction
and power (in 5-
min, 10-min, 30-
min and 1-h
intervals) for up
to 24 h

Wind farm in
Bushehr, Iran

RMSE Levenberg
Marquardt and
Bayesian
Regularization
algorithms gave
the best
performance
for ANN.
SVR was the best
to simulate the
wind speed. Low
prediction results
were obtained by
the 3 models for
the wind direction

Short-term
prediction of
wind speed
and direction
Chitsazan et al.
(2019)

ESN, ANFIS,
NESN-P with
polynomial
functions and
NESN-MP with
multivariable
polynomials

- Past values of
wind speed and
direction at time
interval of 10 min
(the exact number
was not specified)

Mean wind speed
and direction at
10 min intervals
for up to 1 day
and 6 days,
respectively

Several Nevada
weather
information
stations in Reno,
Nevada

RMSE The best
prediction results
given by the
NESN-MP

Probabilistic
prediction of
the wind gusts
Wang et al.
(2020)

Ensemble of 3
machines models
(RF, LSTM and
GPR), RF, LSTM
and GBRT

Adaptive momentum
estimation

Past values of
wind speed (the
number was
determined based
on the partial
autocorrelation
function)

Wind gusts for up
to 72 h

Sutong Cable-
Stayed Bridge in
Jiangsu province
of China (sampling
frequency of 1 Hz
with a total of a
total of 720 h)

RMSE, MAE and
the mean
absolute percent
error (MAPE)

The ensemble
model achieves
the highest
accuracy

Prediction of
mean wind
speed Sharma
et al. (2020)

MFQL, SVR, KNN - 7 intrinsic mode
functions obtained
from past wind
speed values
using empirical
model
decomposition
technique

1-min ahead
mean wind speed

National Institute of
Wind Energy and
Wind Resource
Assessment data
portal (in ten Indian
cities)

Mean Absolute
Percentage Error
(MAPE)

MFQL
outperformed the
other models

-
(Continued on following page)
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time series prediction problem, the feedback neural networks
such as RNNs and LSTMs are preferred and lead to good
performance. However, their performance within each 6-h
interval is unknown due to the sampling limitation in the
training data.

3.1.2.3 Tropical Cyclone Intensity
The TC intensity (over ocean or land) can be measured in terms
of central pressure or maximum sustained wind speed. It is
impacted by several complicated physical phenomena (e.g.,
atmosphere-ocean interaction and vertical wind shear), and hence
remains one of themost challenging issues in TC forecasting especially
for rapid intensification prediction. To avoid the high computational
cost of numerical forecast models, both statistics-based (e.g., Vickey
et al., 2000; DeMaria et al., 2005; Hall and Jewson 2007; Vickey et al.,
2009) and physics-based (e.g., Snaiki and Wu 2020a) tools were
developed for fast prediction of TC intensity. However, neither
statistical nor physical models guarantee prediction accuracy of TC
intensity due essentially to the over-simplification of such a
complicated dynamic system. To improve simulation accuracy
while keeping a high efficiency, increasing ML applications are
available for TC intensity prediction. Table 2iii presents the
reviewed applications of ML for TC intensity, where the ML
model, training scheme, input data, output data, data source and
performance metric are summarized for each application. The
training/testing data were essentially retrieved from meteorological
databased (e.g., satellite data) and reanalysis results. FromTable 2iii, it
can be concluded that most applications usedML as a regression (or a
classification) model for estimation of intensity time series (or levels).
Although encouraging simulation results indicate a good performance
ofMLmodels in predicting TC intensity for their specific applications,
the selection of the most appropriate set of inputs (including the
number of predictors and previous time steps) is still very challenging.
In addition, it is not easy to conduct a systematic comparison among
reviewed ML models since the used performance metrics differ
substantially from one application to another.

3.1.2.4 Tropical Cyclone Wind Field
TC wind hazard is of great significance since it (directly) induces
significant damage to life and property and (indirectly) triggers
other TC-induced hazards (e.g., storm surge and waves).
Substantial research efforts have been made for development of
numerical models (e.g.,WRF) or analytical models (e.g., Snaiki and

Wu 2017a; Snaiki andWu 2017b; Snaiki and Wu 2018; Snaiki and
Wu 2020c; Fang et al., 2018; He et al., 2019) to simulate the
boundary-layer wind field. However, none of these models can
simultaneously achieve simulation accuracy and efficiency. To
address this issue, increasing ML applications emerged for TC
boundary-layer wind field simulation. Table 2iv presents the
reviewed applications of ML for TC wind field, where the ML
model, training scheme, input data, output data, data source and
performance metric are summarized for each application. The
training/testing data were essentially retrieved frommeteorological
databases (e.g., satellite data) and high-fidelity simulations. It is
expected the improved spatial resolution of currently available
datasets will further enhance simulation results of ML models.
FromTable 2iv, it can be concluded that most applications useML
as a regression model for prediction of surface wind speed. Since
these ML models were often trained and fine-tuned to predict the
TC wind field at a specific region, it might be very challenging to
generalize the obtained results to other locations. It is noted that
only wind field at a certain altitude is available in most ML
applications due essentially to training data sparsity issue in
vertical dimension. The widely-used logarithmic or power-law
profiles are typically employed to obtain the TC boundary-layer
winds. Accordingly, the supergradient winds that may have
significant implications to the wind design of tall buildings is
not captured (Snaiki and Wu 2020c).

3.1.3 Non-synoptic Winds
Unlike synoptic winds that are associated with large-scale
meteorological systems characterized by horizontal scales of
thousands of kilometers and time scales of days, the non-
synoptic wind systems are local phenomena (e.g., a horizontal
scale of several hundreds of meters) and short lived (e.g., a time
scale of a few minutes) (Chowdhury andWu 2021). Furthermore,
the transient nature of non-synoptic winds makes them exhibit
time-varying mean wind speeds and nonstationary/non-
Gaussian fluctuations. Accordingly, the detection,
measurement, and modeling of non-synoptic wind systems lag
behind those of synoptic winds. However, numerous studies have
demonstrated the importance of the non-synoptic wind events on
the structural design (e.g., Holmes 1999; Letchford et al., 2002;
Hao and Wu 2017). For example, the design wind speeds with
relatively high return periods are usually dominated by the
thunderstorm downbursts (Twisdale and Vickery 1992; Solari

TABLE 1 | (Continued) Summary of ML applications for classical boundary-layer winds.

Application ML model Training scheme Input data Output data Data source Performance
metric

Remarks

Prediction of
mean wind
speed
Zhongda Tian
et al. (2020)

LSSVM optimized
with four
algorithms

Past values of
mean (hourly) wind
speed (50 values)

1-h mean wind
speed (next
1-48 h)

The training data
were sampled
every 1-h from a
wind farm in
Jinzhou, China

RMSE, MAE,
mean absolute
percentile error
(MAPE),
R-square and
reliability

LSSVM optimized
with the
backtracking
search
optimization
algorithm
outperformed all
other models

Backtracking
search, genetic
algorithm, particle
swarm, and
improved feature
selection
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et al., 2015) and the ASCE 7–22 includes the first-ever criteria for
tornado-resistant design (ASCE, 2021). Recently, there is a rapid
development of field-measurement networks (e.g., THUNDERR
project at University of Genova) and laboratory facilities (e.g.,
WindEEE at Western University) for improved understanding of
non-synoptic wind systems. These advances offer an
unprecedented volume of data, and hence provide an
opportunity to facilitate ML applications to non-synoptic
winds. Although the non-synoptic wind systems can be
originated from various mechanisms (e.g., convective storm,
gravity wave or negative buoyancy) (Bluestein 2021), the
review only focuses on those associated with convective
storms. Specifically, ML applications to thunderstorms
(subsynoptic-scale weather system) are first presented,
followed by detailed reviews of its applications to two
important types of non-synoptic wind events associated with
thunderstorms, namely downbursts and tornadoes.

3.1.3.1 Thunderstorms
A thunderstorm is short-lived atmospheric weather system
accompanied by lightning and thunder, gusty winds, heavy rain,
and sometimes hail (Solari 2020). The life cycle of a thunderstorm
usually consists of cumulus stage, mature stage and dissipative stage,
and it typically lasts around 30min. Both mesoscale and microscale
numerical models have been developed for simulation of
thunderstorms (Hawbecker 2021). Mesoscale modeling covers a
large-scale computational domain (and hence fully considers physics
involved), however, it is limited to a low spatiotemporal resolution.
Microscale modeling utilizes a high spatiotemporal resolution (and
hence obtains important small-scale features in the simulation of
winds), however, it is limited to a relatively small-scale
computational domain resulting in insufficiently reliable
boundary conditions. To avoid shortcomings of currently
available numerical models, ML models may provide a promising
approach for efficient and accurate simulation of key stages in the life
cycle of a thunderstorm. Table 3i presents the reviewed applications
of ML thunderstorms, where the ML model, training scheme, input
data, output data, data source and performance metric are
summarized for each application. The training/testing data were
essentially retrieved from meteorological databases and reanalysis
results. From Table 3i, it can be concluded that most applications
usedML as either a classification or a regressionmodel for prediction
of thunderstorm occurrence. Obviously, there is still room for more
comprehensive applications of ML in terms of modeling and
forecasting each aspect of the thunderstorm from formation to
dissipation. In addition, most ML applications to thunderstorm
were limited to simple models with standard algorithms (e.g., ANN
with backpropagation).

3.1.3.2 Downbursts
Downbursts are one of the most spectacular and dangerous
events resulting from thunderstorms (Solari 2020). Their radial
outflows and ring vortices after touchdown produce strong wind
gusts very close to the ground and therefore lead to substantial
structural damages (e.g., Yang et al., 2018). Downbursts are
typically simulated numerically using CFD (e.g., Mason et al.,
2009; Aboshosha et al., 2015; Haines and Taylor 2018; Hao and

Wu 2018; Oreskovic et al., 2018; Oreskovic and Savory 2018; Iida
and Uematsu 2019) or experimentally using wind tunnels (e.g.,
Jesson et al., 2015; Jubayer et al., 2016; Hoshino et al., 2018;
Aboutabikh et al., 2019; Asano et al., 2019; Junayed et al., 2019;
Romanic et al., 2019). Both numerical and experimental
approaches to obtain wind fields associated with downbursts
are very time consuming (either computational expensive or
labor intensive). This shortcoming motivated increasing use of
ML tools for efficient and accurate simulations of downbursts.
Table 3ii presents the reviewed applications of ML for
downbursts, where the ML model, training scheme, input data,
output data, data source and performance metric are summarized
for each application. The training/testing data were essentially
retrieved from field measurement. From Table 3ii, it can be
concluded that most applications used ML as a classification
model for prediction of the occurrence of downburst or
probability of damaging wind. There are a very limited
number of ML applications for modeling and forecasting the
downburst wind field, hence more research efforts are needed in
this aspect. It is noted that the reviewed ML applications usually
involved a high number of predictors. The employment of
relatively high number of input variables may be necessary
due to the complexity of downburst prediction. However, it
makes the ML models not easy to use since these input
variables might not be always available.

3.1.3.3 Tornadoes
Tornadoes are characterized by a rotating column of air
descending from supercell thunderstorms lasting from several
minutes to few hours. They are the most intense of all non-
synoptic wind events, and hence result in significant damage and
collapse of structures (Hao and Wu 2016, 2020). Several
analytical and empirical models have been developed to
simulate the vertical and radial wind profiles of tornado-like
vortices (e.g., Wen and Chu 1973; Baker and Sterling 2017). These
models are clearly over-simplified. The tornado wind fields are
also modeled using CFD simulations (e.g., Kuai et al., 2008;
Ishihara et al., 2011; Liu and Ishihara 2015; Eguchi et al.,
2018; Gairola and Bitsuamlak 2019; Kawaguchi et al., 2019;
Huo et al., 2020; Liu et al., 2021) or laboratory tests (e.g.,
Sarkar et al., 2006; Refan and Hangan 2016; Razavi and Sarkar
2018; Tang et al., 2018; Ashton et al., 2019; Gillmeier et al., 2019;
Hou and Sarkar 2020; Razavi and Sarkar 2021). However, CFD
simulations of tornadoes are computational expensive while the
laboratory tests are labor intensive. These shortcomings
motivated increasing use of ML tools for efficient and accurate
modeling of tornadoes. Table 3iii presents the reviewed
applications of ML for tornadoes, where the ML model,
training scheme, input data, output data, data source and
performance metric are summarized for each application. The
training/testing data were essentially retrieved from
meteorological datasets (e.g., Radio-based data). From
Table 3iii, it can be concluded that most applications use ML
as a classification or a regression model for prediction of tornado
occurrence. Obviously, there is still room for more
comprehensive applications of ML in terms of simulation of
the full track of a tornado (including its intensity and associated

Frontiers in Built Environment | www.frontiersin.org March 2022 | Volume 8 | Article 81146011

Wu and Snaiki ML Applications to Wind Engineering

80

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


TABLE 2 | Summary of ML applications for tropical cyclones.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

i) Genesis Prediction of the
number of TCs in
the northwest of
Australia Richman
and Leslie (2012)

SVR with radial
basis function
coupled with
sequential
minimal
optimization
algorithm, MLR

- Nine predictors (e.g., El
Niño Southern
Oscillation)

Number of TCs in
the northwest of
Australia

Australian
Government, Bureau
of Meteorology
website

RMSE, MAE, R2 SVR outperformed
the MLR model – The
prediction accuracy
was further improved
by coupling the SVR
model with Quasi-
Biennial Oscillation

Prediction of TC
genesis in the
South Pacific
Ocean and
Australian region
Wijnands et al.
(2014)

SVM with
polynomial
kernel, LDA

- El Niño—Southern
Oscillation indices,
Multivariate ENSO
Index, El Niño Modoki
Index, Dipole Mode
Index and the Southern
Oscillation Index

TC genesis
(number of TCs) in
the South Pacific
Ocean and
Australian region

Bureau of
Meteorology’s
National Climate
Center - Australia

MAE SVM outperformed
LDA model. Overall
prediction
performance for both
models is low

Prediction of TCs
genesis in the
western North
Pacific region
Zhang et al. (2015)

DT (C4.5
algorithm)

- Sea surface
temperature, rainfall
intensity, divergence
averaged between
1000- and 500-hPa
levels, maximum 800-
hPa relative vorticity
and the 300-hPa air
temperature anomaly

TCs genesis in the
western North
Pacific region

Navy Operational
Global Atmospheric
Prediction System
and the Tropical
Rainfall Measuring
Mission (TRMM)
Microwave Imager
(TMI) from 2004 to
2013

Prediction
accuracy =
(correctly classified
samples/number
of samples in the
whole dataset)

Satisfactory results
were obtained based
on the C4.5 algorithm

Variable selection
and prediction of
TC genesis
Wijnands et al.
(2016)

LR and Peter-
Clark algorithm

- Selected variables:
relative vorticity
(925 hPa), potential
vorticity (600 hPa) and
vertical wind shear
(200–700 hPa)

TCs genesis in
region between
30°N and 30°S

IBTrACS, tropical
cloud cluster (TCC)
and ERA-Interim
(1979–2014)

p-value and area
under the receiver
operating
characteristic
(ROC) curve

Top ranked variables
include the relative
vorticity (925 hPa),
potential vorticity
(600 hPa) and vertical
wind shear
(200–700 hPa)

Development a TC
genesis detection
model over the
western North
Pacific Park et al.
(2016)

DT (C5.0
algorithm)

- 8 WindSat-derived
indices tested and 2
were selected as the
most dominant
predictors: circulation
symmetry and intensity

TC genesis WindSat satellite data
(wind and rainfall)
were used to extract
the training/testing
data from 2005 to
2009 over the
western North Pacific

Prediction
accuracy =
(correctly classified
samples/number
of samples in the
whole dataset)

Good simulation
results were obtained

Prediction of the
number of seasonal
TCs in the North
Atlantic region
Richman et al.
(2017)

SVR (with 2
kernels:
polynomial and
radial basis
function)

- SST and El Niño 3.4
were the best
attributes

Number of
seasonal TCs in the
North Atlantic
region

Hurricane database in
the North Atlantic
basin and Hadley
Centre Sea Ice and
Sea Surface
Temperature dataset

RMSE The SVR model gave
enhanced prediction
compared to an
operational statistical
model that was
developed by
Colorado State
University. The
polynomial kernel
gave a slightly
improved simulation
results compared to
the RBF kernel

Prediction of TC
formation from
mesoscale
convective system
Zhang et al. (2019)

LR, NB, DT,
KNN, ANN, QDA,
SVM (with a radial
basis function
kernel),
AdaBoostRF.

- Several
thermodynamic and
dynamic predictors
were employed in this
study (e.g., genesis
potential index, 850-
hPa vorticity and
vertical wind shear)

Genesis prediction
at different lead
times (e.g., 6 h)

Mesoscale convective
system (MCS)
dataset, IBTrACS,
and ERA-Interim
(1985–2008)

F1-score accuracy AdaBoost algorithm
was the best
classifier. Both the
genesis potential
index and the low-
level vorticity were the
most dominant
predictors for the
tropical cyclone
genesis

Detection of TC
genesis over the
western North
Pacific Kim M et al.
(2019)

DT, RF, SVM
(with three
different kernels:
linear,
polynomial, and
radial basis
functions), LDA

- 8 dynamic and
hydrological predictors
(e.g., rain rate, circular
variance of wind
speed)

Genesis detection
for a lead time up
to 30 h

WindSat satellite
measurements from
2005 to 2009 over the
western North Pacific
basin

F1-score accuracy
and PSS score

Best performance
from the SVM model
with a radial basis
function kernel

ii)
Translation

Prediction of
cyclone track over

ANN Pseudo invert
learning

12 h of past track
observations (in terms

24 h of cyclone
track over the

Joint Typhoon
Warning Center

MAE Acceptable accuracy

(Continued on following page)
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TABLE 2 | (Continued) Summary of ML applications for tropical cyclones.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

the Indian Ocean Ali
et al. (2007)

of latitude and
longitude)

Indian Ocean at 6 h
intervals

(JTWC) from 1971 to
2002

Prediction of TCs
track of over the
western North
Pacific basin Wang
et al. (2011)

ANN Levenberg
Marquardt

2 previous 6-h
positions and the
current one (in terms of
latitude and longitude)

24 h of cyclone
track over the
western North
Pacific basin at 6
hourly intervals

20 years of historical
tack data from the
JTWC

Correlation
coefficient

Good simulation
results

Trajectory
Prediction of
Atlantic Hurricanes
Moradi
Kordmahalleh et al.
(2016)

RNN Genetic algorithm Past hurricane track
locations which are
selected by the RNN
model (6-hourly
hurricane center’s
latitude and longitude)

hurricane track for
up to 12 h in
advance

National Oceanic and
Atmospheric
Administration
(NOAA) from 1900 to
2013

MAE Acceptable accuracy

Cyclone track
prediction over the
South Indian ocean
Zhang et al. (2018)

MNN, RNN,
LSTM, GRU

Backpropagation Past hurricane
trajectories
-automatically selected
by the algorithm-

1-step of 6-h ahead
TC trajectory (in
terms of latitude
and longitude)

JTWC between 1985
and 2013 in the South
Indian ocean

RMSE MNN-based model
outperformed the
three recurrent neural
networks

Prediction of
hurricane
trajectories over the
Atlantic basin
Alemany et al.
(2019)

Grid-based RNN,
sparse RNN

Backpropagation Past hurricane
locations (6-hourly
distributed)

Hurricane tracks
over the Atlantic
basin up to 120 h

NOAA database MSE, RMSE The grid-based
algorithm
outperformed the
sparse RNN

Prediction of a
typhoon track in the
Korean Peninsula
Rüttgers et al.
(2019)

GAN Backpropagation Satellite images Typhoon tracks in
the Korean
Peninsula at 6 h
lead time

Korean
Meteorological
Administration and
the ERA-interim
databases with a total
of 76 typhoons that hit
the Korean peninsula
from 1993 till 2017

Average absolute
error

Acceptable accuracy

Prediction of the
spatial-temporal
hurricane trajectory
Kim S et al. (2019)

ConvLSTM AdaGrad Last 5 consecutive
hurricane density-
maps

Spatial-temporal
hurricane trajectory
(up to 15-h) with a
3-h time steps

Community
Atmospheric Model
v5 from 1995 to 2015

RMSE The error increased
with the increasing
leading time

Tropical cyclone
track forecasting
Giffard-Roisin et al.
(2020)

CNN Adam Atmospheric fields
(image-like data)
corresponding to the
current and past data
(with a 6-h time step)
including the latitude,
longitude and
geospatial height fields
at three pressure
levels: 700, 500, and
225 hPa (e.g., wind
speed components)

TC trajectory (in
terms of latitude
and longitude) for
up to 24-h leading
time

TCs data in both
hemispheres from
NOAA, IBTrACS and
ERA-Interim since
1979 (more than
3,000 storms with 6-h
time steps)

RMSE, MAE The proposed model
outperformed the
statistical CLP5
model

iii) Intensity Prediction of
typhoon intensity
changes in the
western North
Pacific basin Baik
and Paek (2000)

ANN, MLR Backpropagation 11 predictors (e.g.,
initial storm intensity,
initial storm latitude,
vertical wind shear and
850-mb horizontal
moisture flux)

Typhoon intensity
changes in the
western North
Pacific basin from
12-h and up to 72-
h (1 output)

National Centers for
Environmental
Prediction/National
Center for
Atmospheric
Research (NCEP/
NCAR) reanalysis
from 1983 to 1996

Average error The ANN-based
model outperformed
THE MLR model

Prediction of the
cyclone intensity
over the Arabian
Sea and Bay of
Bengal Chaudhuri
et al. (2013)

ANN, RBF,
MLR, OLR

Backpropagation 5 predictors: sea
surface temperature,
central pressure,
pressure drop,
maximum sustained
surface wind speed
and total ozone column

Cyclone intensity
over the Arabian
Sea and Bay of
Bengal for
approximately 72 h
lead time (1 output)

Indian Meteorological
Department from
2005 to 2010

RMSE, MAE ANN model provided
the best prediction
results

Prediction of the
cyclone intensity
levels Chen et al.
(2018)

ANN, MLR, SVM Backpropagation Multispectral Imagery Cyclone intensity
level (class labels)

Tropical cyclone
Nalgae data from 04/
08/2017 till 06/08/
2017 retrieved from
No. 4 meteorological
satellite (FY-4) of
China

Kappa coefficient
and overall
accuracy (%)

The three models
provided comparable
classification results

Prediction of time
series of typhoon

RNN Backpropagation 3 previous time steps
along with the current

Time series
prediction of

Western North Pacific
typhoon database

Average forecast
error

Performance
comparable to the

(Continued on following page)
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TABLE 2 | (Continued) Summary of ML applications for tropical cyclones.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

intensity Pan et al.
(2019)

time of typhoon
location and intensity

intensity up to 48 h
with a 6 h time step

from the Chinese
Meteorological
Administration and
the Shanghai
Typhoon Institute
from 1949 till 2016

Japanese
Meteorological
Agency-Global
Spectral model

Cyclone intensify
forecasting over the
Western Pacific,
Eastern Pacific and
North Atlantic
basins Chen et al.
(2019)

Hybrid CNN-
LSTMmodel (2D-
CNN, 3D-CNN
and LSTM)

Gradient descent
and Adam

3-D atmospheric
variables (wind
components,
temperature, relative
humidity and
geopotential height)
and 2-D sea surface
variables (sea surface
temperature)

Intensity (24-h lead
time) with a 6 h
time step

International Best
Track Archive for
Climate Stewardship
(IBTrACS) and ERA-
Interim reanalysis

MAE Good simulation
results comparable to
other operational
forecast models (e.g.,
Hurricane Weather
and Research
Forecasting Model)

TC intensity
prediction over the
Pacific Northwest
and Atlantic Ocean
Wei Tian et al.
(2020)

CNN Adam Satellite images of TCs
in real time

TC intensity in near
real time

Satellite outputs from
2003 till 2016 from the
Meteorological
Satellite Research
Cooperation Institute
and JWTC

RMSE Good simulation
results

Hurricane intensity
prediction Maskey
et al. (2020)

CNN Adam Satellite images of TCs
in real time

TC intensity in near
real time

U.S. Naval research
laboratory and the
NOAA Geostationary
Operational
Environmental
Satellite from 2000
through 2019

RMSE Acceptable
simulation results

iv) Wind
field hazard

Estimation of
surface wind field
based on satellite
data Stiles et al.
(2014)

ANN (a total of 3
were used)

Levenberg-
Marquardt

ANN 1: SeaWinds
scatterometer
measurements

ANN 1: wind speed
from 0 to 20 m/s

QuikSCAT mission
and H*Wind between
1999 and 2009 for all
basins (globally)

MAE Good simulation
results for the surface
wind speed were
obtainedANN 2: Outputs of

ANN 1
ANN 2: corrected
wind speed over
20 m/s (retrieved
from H*Wind)

ANN 3: 6 predictors
(outputs of the first two
ANNs, QuikSCAT
radiometer rain rate
and rain impact
quantity, maximum
likelihood estimation
direction interval wind
speed and cross-track
distance)

ANN 3: final
optimized wind
speed with a
12.5 km resolution

Forecasting surface
wind speeds during
tropical cyclones
Wei (2015)

SVM with 4
kernels: linear,
polynomial, radial
basis function
and Pearson VII

- 13 features are
considered (e.g.,
central pressure,
latitude, longitude, sea
surface pressure)
based on stepwise
regression method

Surface wind
speed (1-h
average) for up to
6 h over two
offshore islands
near Taiwan

Central Weather
Bureau of Taiwan
from 2000 till 2012
(84 typhoon events)

RMSE -Pearson VII SVR
model is the most
accurate technique
among all other
tested kernel-based
SVM models
-Resolution not
discussed

Estimation of TCs
inner-core surface
wind structure
based on infrared
satellite images
Zhang et al. (2017)

LSSVM, RBFNN,
linear regression

- TC age, center latitude
and maximum surface
wind speed

Critical wind radii of
34- and 50-kt
winds in real time

National Satellite
Meteorological Centre
of China and the
Shanghai Typhoon
Institute from 2005 to
2008

MAE LSSVM
outperformed all
other models

Simulation of TC
boundary-layer
winds Snaiki and
Wu (2019)

KEDL L-BFGS-B Storm parameters
(e.g., spatial
coordinates, storm size
and intensity)

Hurricane
boundary-layer
winds

H*Wind snapshots RMSE Good simulation
results were obtained

Surface wind
simulation in near
real time Wei (2019)

DNN Back-
propagation
algorithm

16 inputs for Taipei and
14 for Keelung
corresponding to the
typhoon
characteristics (e.g.,
central pressure) and
surface meteorological
data (e.g., relative
humidity)

Hourly surface wind
field with 1-degree
by 1-degree
resolution in 2
locations in Taiwan
(Taipei and
Keelung)

Central Weather
Bureau of Taiwan and
Weather Research
and Forecasting (47
typhoons from 2000
till 2017)

RMSE Good consistency
between the
simulated and WRF
results
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TABLE 3 | Summary of ML applications for non-synoptic winds.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

i)
Thunderstorm

Prediction of severe
thunderstorms McCann
(1992)

ANN Backpropagation Lifted index and surface
moisture convergence

Value between 0 and 1
representing the likelihood
of the thunderstorm
occurrence for a 3-7 h lead
time

Centralized Storm
Information System of the
National Severe Storms
Forecast Center (NSSFC)
from April to August 1990
over the eastern two-thirds
of the United States

critical success
index

Acceptable results

Prediction of the surface
peak gust wind speed
during thunderstorm
events Chaudhuri and
Middey (2011)

ANFIS, ANN,
RBFNN, MLR

Gradient descent and
the least squares
estimate

Lift index, Convective
Inhibition Energy,
Convective Available
Potential Energy and bulk
Richardson number

Surface peak gust wind
speed in Kolkata, India
with a lead time up to 12 h

Radiosonde and
rawinsonde from the
Department of
Atmospheric Sciences,
University of Wyoming for
the location of Kolkata,
India from 1997 till 2009

RMSE, MAE ANFIS model outperformed the
other machine learning models

Prediction of
thunderstorms
occurrences Litta et al.
(2012)

ANN Levenberg Marquardt,
Momentum, Conjugate
Gradient, Delta Bar
Delta, Quick Propagation
and Step

Wind speed, humidity and
mean sea level pressure

Hourly temperature during
thunderstorm, proxy for
thunderstorm occurrence,
over the northeastern
region of India

Indian meteorological
department from 2007 to
2009 (hourly data)

RMSE, MAE,
correlation
coefficient

Best results with
Levenberg–Marquardt learning
algorithm

Prediction of severe
thunderstorms
occurrences Chakrabarty
et al. (2013)

ANN, KNN Gradient descent 2 predictors at 5
geopotential heights: dry
adiabatic lapse rate and
moisture difference (a total
of 10 inputs)

Likelihood of occurrence of
severe thunderstorms with
a lead time between 10
and 14 h over the
northeastern region of
India

Indian Meteorological
Department from 1969 to
2008

Correlation
coefficient

KNNmodel was the best classifier

Prediction of thunderstorm
occurrence Yasen et al.
(2017)

ANN, Bayes Network,
C4.5 decision

Artificial Bee Colony
(ABC), gradient descent

31 thermodynamic and
dynamic predictors

Thunderstorm occurrence METeorological Aerodrome
Reports and Surface
Synoptic observation from
December 2015 to
November 2016 at lake
Charles airport in Louisiana

Accuracy, AUC, and
F-measure

ANN model optimized with ABC
algorithm outperformed the other
classifiers in detecting
thunderstorms

Tree, KNN

Prediction of thunderstorm
occurrence Ukkonen et al.
(2017)

ANN Scaled conjugate
gradient

15 inputs (e.g., most
unstable lifted index and
relative humidity near
700 hPa) identified based
on skill scores

Thunderstorm occurrence
in the next 6-h period

ERA-Interim database from
2002 to 2015 over Finland

Heidke skill score Acceptable results

Forecasting
thunderstorms
occurrence Kamangir et al.
(2020)

SD-AE Stochastic gradient
descent

38 features (e.g., total
predictable water and
convective precipitation)

Thunderstorm occurrence
through cloud-to-ground
lightning parameter for a
maximum lead time of 15 h
and within 400 km2 of a
selected site in South
Texas

North American Mesoscale
Forecast System and the
National Lightning Data
Network from the
2004–2012

Peirce skill score The SD-AE model outperformed
an ANN model developed by
Collins and Tissot (2015, 2016) for
the same region and with similar
lead time

Forecasting the
occurrence of
thunderstorms events
(Chen and Lombardo
2020)

CNN Backpropagation 91-min time series of wind
speed and direction

Event type (thunderstorm
or non-thunderstorm
event)

Automated Surface
Observing System (ASOS)
(1-min averaged data) from
2000 to 2018 with a total of
76,480 time series of
91 min of wind speed and
direction

F1 score and
average success
rate

Reliable classifier for
thunderstorms occurrences
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TABLE 3 | (Continued) Summary of ML applications for non-synoptic winds.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

ii) Downburst Prediction of damaging
wind from tornadic and
straight-line events
(including downbursts)
(Marzban and Stumpf
1998)

ANN Conjugate gradient 23 radar-derived predictors
characterizing the
circulations (e.g., depth of
circulation, maximum
rotational velocity and low
altitude shear)

Probability of damaging
wind (with a damaging
wind excessing 25 m/s)
with a lead time of 20-min

National Severe Storms
Laboratory (NSSL)
Mesocyclone Detection
Algorithm (MDA)

Fraction Correct
and Heidke’s Skill
Score

Acceptable results

Classification of damaging
downburst winds (Smith
et al. (2004)

LDA - 26 reflectivity and radial
velocity-based attributes
(e.g., cell volume, max
reflectivity and height of the
max reflectivity)

Severity of downburst
winds (severe or non-
severe events) with a
maximum lead time of
15 min

WSR-88D radars (in several
locations within the U.S.)
from the National Climatic
Data Center’s Storm. It
contains 91 events that
produced severe
downbursts and 1247
events that did not produce
severe downbursts

median Heidke skill Acceptable results for the
prediction of severe downburst
events

Prediction of the
probability of occurrence
of damaging straight-line
winds (including
downbursts) from storm
cells Lagerquist et al.
(2017)

LR, LR with an elastic
network, ANN, RF, GBTE

Gradient descent 431 predictors. They can
be divided into 4 main
categories, namely radar
statistics, storm shape
parameters, storm motion
and sounding indices

Probability of occurrence
of damaging winds with a
lead time up to 90 min

Near-surface wind
observations (from the
Meteorological Assimilation
Data Ingest System, the
Oklahoma Mesonet, and
the National Weather
Service), radar scans (from
the Multiyear Reanalysis of
Remotely Sensed Storms)
and soundings (from the
Rapid Update Cycle and
the North American
Regional Reanalysis) [from
2001 to 2011]

AUC - The simulation results indicated
that storm motion and sounding
indices are the dominant
predictors
- Both random forest and
gradient-boosted tree ensembles
gave the best simulation results

Downburst wind speed
forecasting Li and Li (2018)

LSSVM (coupled with
variational mode
decomposition and
particle swarm) – with
several kernels (linear,
polynomial, Mexican Hat,
radial basis function, and
Morlet wavelet)

- Time series of downburst
wind (up to 1600 s)

Time series of downburst
wind from 1600 s through
1800 s

Time series of downburst
wind from two
measurements data
consisting of 450 sample
points with a sampling
frequency of 0.25 Hz for a
total of 1800 s (the data
source was not mentioned)

MAE, RMSE, 2-
norms relative error
and Pearson
correlation
coefficient

The combined Morlet wavelet and
radial basis kernel functions (RBF)
gave the best simulation results

Identification of the
downburst occurrence
Medina et al. (2019)

RF - 8 dual-polarization radar
signatures (e.g., maximum
vertically integrated liquid
and temperature colder
than 0°C)

Downburst related events
or null events around the
Cape Canaveral Air Force
Station and Kennedy
Space Center

Weather observation
towers around the Cape
Canaveral Air Force Station
and Kennedy Space Center
from 2015 to 2016

Mean Decrease
Accuracy (MDA) and
Mean Decrease
Gini (MDG)

Although the model provided
good simulation results, strong
events were better classified
compared to weaker ones

iii) Tornado Prediction of the tornado’s
occurrences Marzban and
Stumpf (1996); Marzban
et al. (1997); Marzban
(2000)

ANN Conjugate Gradient 23 input variables (e.g.,
maximum shear, low- and
mid-altitude convergence)

occurrence/non-
occurrence of tornados for
a given mesoscale
circulation in the next
20 min

National Severe Storms
Laboratory’s (NSSL)
Mesocyclone Detection
Algorithm (MDA) with a total
of 3258 circulation events

Critical Success
Index

The ANN model outperformed
other statistical models such as
the discriminant analysis bur still
the performance is low

Detection of the tornado’s
occurrences Lakshmanan
et al. (2005)

ANN Resilient
backpropagation

13 features (e.g., rotational
velocity)

Tornado occurrence from
given circulations in the
next 20 min

National Severe Storms
Laboratory based on the
Mesocyclone Detection
Algorithm (MDA) and the
near-storm environment
(NSE) with 110 storm days

Heidke Skill Score Simulation results acceptable
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TABLE 3 | (Continued) Summary of ML applications for non-synoptic winds.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

Prediction of the tornado
occurrence Santosa
(2007)

SVM, LDA, BNN Backpropagation 34 input features (e.g.,
meso core depth and meso
low-level shear)

Tornado occurrence in the
next 20 min

Weather Surveillance Radar
1998 Doppler

Heidke Skill Score - linear programming support
vector machine was used for
feature selection
- BNN model gave the best
performance in detecting
tornados from given circulations

Prediction of the tornado
occurrence Adrianto et al.
(2009)

SVM with 3 kernels (linear,
polynomial and RBF),
ANN, LDA

Backpropagation 53 input features (e.g.,
azimuthal shear low level
average, gradient direction
maximum and reflectivity
aloft average)

Tornado occurrence in the
next 30 min

Radar measurements from
the National Climatic Data
center with a total of 33
storm days sampled at
30 min

Heidke Skill Score -The best classifier was the SVM
model with the RBF kernel
-SVM model outperformed the
other algorithms

Prediction of the tornado
occurrence Trafalis et al.
(2014)

SVM (radial basis function
kernel), LR, RF, rotation
forest

- 22 attributes (e.g., wind
shear and humidity)

Tornado occurrence from
mesocyclones events (no
leading time indicated)

MDA and NSE databases
with 111 storm days

Heidke Skill Score -Feature selection was performed
using the SVM-Recursive Feature
Elimination algorithm with a radial
basis function kernel
- SVM with threshold adjustment
outperformed all other classifiers

Prediction of the
probability of occurrence
of a tornado Lagerquist
et al. (2018), (2020)

CNN Adam Storm-centered radar
image and a proximity
sounding

Probability of occurrence
of a tornado in the next-
hour

Multiyear Reanalysis of
Remotely Sensed Storms
(MRRSS) in the [period from
2000 to 2011] and Gridded
NEXRAD WSR-88D Radar
(GNWR) [period from 2011
to 2018]

Area under the
receiver-operating-
characteristic curve
(AUC) score

Excellent simulation results

Predicting property
damage from tornadoes
Diaz and Joseph (2019)

ANN (2) AdaGrad Storm, land cover,
socioeconomic and
demographic features

ANN1: occurrence or non-
occurrence of damage due
to a tornado event

NOAA’s tornado database,
the National Land Cover
database and the American
Community Survey

AUC, MSE, R2 -Only the initial tornado
coordinates are accounted for
rather than the tornado path

ANN2: level of damage
when it occurs

-Acceptable results

Prediction of the
occurrence of tornadic
events Coffer et al. (2020)

RF, CNN Stochastic gradient
descent

222 input features at
various geopotential
heights were initially
selected (e.g., temperature,
pressure) –Exact final
parameters not mentioned-

Tornadic and non-tornadic
events

Rapid Update Cycle
sounding data from the
National Climatic Data
Center from 2003 to 2017

Overall accuracy
score (in %)

-The input feature selection was
carried out using RF which
indicated that the pressure terms
are not as important as the other
environmental parameters (e.g.,
v-wind component)
- RF outperformed CNN
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TABLE 4 | Summary of ML applications for terrain and topography.

Application ML model Training scheme Input data Output data Data source Performance
metric

Remarks

Modeling the effects of
topography on the
wind profile
Bitsuamlak (2004);
Bitsuamlak et al.
(2002), (2006), (2007)

ANN Cascade correlation 6 inputs including
simple geometric
properties
(i.e., “Windward
slope of the hill”,
“Distance between
hills”, “Height from
the crest of the hill”
and “Longitudinal
location”),
roughness element
and hill count

Fractional speed-
up ratio

CFD simulations
corresponding to
different
topographic
configurations:
single and multiple
hills and
escarpments

R2 coefficient -Comparison
with experimental
data from wind
tunnel
-Good
performance

Wind field simulation
considering terrain
effects
Martínez-Vázquez and
Rodríguez-Cuevas
(2007)

ANN
combined
with
conditional
simulation
technique

Backpropagation Terrain roughness,
mean wind profile
and spectral density

Wind velocity time
series (3 min of
time series with a
time step of 0.1 s)
at different points

The time series of
wind speed were
generated using
the procedure of
Simiu and Scanlan
(1978) at two
heights (i.e., 10
and 200 m) with 11
local velocities
(from 0.5 to 100 m/
s) and surface
roughness
between 0.001
and 0.050 m

MSE -The conditional
simulation
technique
significantly
decreased the
number of
required layers in
the ANN
-Good simulation
results

Estimation of the effect
of wind direction on
wind speed prediction
in complex terrain
Lopez et al. (2008)

ANN Bayesian regularization 4 inputs: 10-min
mean wind speed
from 3 stations
nearby and wind
direction from
another nearby
station

Annual average
wind speed at a
given site with
complex terrain
configuration

Meteo-Galicia
during 2003 at the
Galicia region in the
northwest Spain
corresponding to 5
stations and
representing
various terrain
conditions (e.g.,
inland and offshore
conditions) and
elevations

RMS -Wind direction is
important to be
considered to
improve the
simulation results
for a site with
complex terrain

Prediction of typhoon
wind speed and profile
over complex terrain
Huang and Xu (2013)

ANN Backpropagation Upstream wind
speed and direction
at height z

Wind speed and
direction at height
z on a bridge site

Reynolds-
averaged Navier-
Stokes simulations
which provides the
wind profiles at the
bridge site given an
inlet upstream
wind field (which
does not account
for topographic
effects)

MAE Good simulation
results for both
wind speed and
direction

Prediction of the wind
flow over complex
topographies Mayo
et al. (2018)

DNN Proximal adagrad 3 cartesian
coordinates (x,y,z)
of the selected point
and the incoming
uniform mean wind
speed

Mean wind speed
over a given site
with complex
topography

4 CFD simulations
of the wind field in a
given coastal dune
system with
complex terrain

MAE Acceptable
simulation results

Selection of the
experimental
hardware within a wind
tunnel Abdi et al.
(2009)

ANN (2) cascade correlation ANN1: height from
floor, the bottom-
spire width, the
surface roughness
and the top spire
width

ANN1: mean
longitudinal wind
velocity and
turbulence
intensity

RWDI USA LLC
wind tunnel in
Miramar, Florida

No error scores
were provided

- Visual
inspection of the
predicted wind
profile and
turbulence
intensity of the
first neural
network

(Continued on following page)
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wind field). Just like ML applications to downbursts, a high
number of input variables (predictors) were utilized for the
reviewed ML models. The identification of the most
appropriate set of predictors is still very challenging, and a
trail-and error approach was typically employed. In addition,
it is not easy to conduct a systematic comparison among reviewed
ML models since the used performance metrics differ
substantially from one application to another.

3.2 Terrain and Topography
Wind characteristics including mean wind speeds and turbulent
fluctuations are much affected by the surrounding terrain and
topography. As a consequence, careful consideration of local
terrain roughness and topographic features as well as
surrounding obstacles is vital to the accurate determination of
wind pressures on structures and pedestrian level winds. Wind
codes and standards consider the terrain effects corresponding to
limited (and simplified) terrain geometries (e.g., escarpment and

single hill) through correction factors. To examine the effects of
complex terrain condition on wind fields, wind tunnel tests are
usually employed with a very small geometric scale (e.g., 1:500).
Alternatively, numerical schemes such as the mass-conservation
or momentum-conservation model can be used to capture the
terrain effects on oncoming wind fields. Although the
topographic effects can be well simulated based on
momentum-conservation models (e.g., using Reynolds-
averaged Navier-Stokes equations), the needed computational
time makes it impractical for use as a real-time decision support
tool. The mass-conservation model computes wind fields over
complex terrain in seconds to a few minutes (Forthofer et al.,
2014a; 2014b), but the accuracy of simulation may be poor
because nonlinear momentum effects are not considered
(Jackson and Hunt 1975). Considering the complex terrain-
wind data from high-fidelity CFD simulations, wind tunnel
tests and field measurements are increasingly available, ML
tools can be utilized (as computationally efficient reduced-

TABLE 4 | (Continued) Summary of ML applications for terrain and topography.

Application ML model Training scheme Input data Output data Data source Performance
metric

Remarks

indicated good
simulation results

ANN2: target mean
longitudinal wind
speed, target
turbulence intensity
and height from floor

ANN2: difference
between top and
bottom spire
width and the
surface roughness

- Results from
ANN2 were not
satisfactory

Prediction of wind
properties in urban
environments based
on wind tunnel tests
Varshney and Poddar
(2012)

ANN (2) Lavenberg–Marquardt ANN1: number of
roughness
elements, number of
barriers, height from
floor and slot width

ANN1: mean wind
speed, turbulence
intensity and
length scale factor

Boundary-layer
wind tunnel tests of
the National Wind
Tunnel Facility in
Kanpur, India (18
configurations)

No error scores
were provided

- Visual
inspection of the
predicted results
indicated
satisfactory
simulationsANN2: number of

roughness
elements, number of
barriers and slot
width

ANN2:
instantaneous
velocity

Designing laboratory
wind simulations
Križan et al. (2015)

ANN (2) RPROP Riedmiller and
Braun (1993)

ANN1: basis barrier
height, barrier
castellation height,
surface roughness
elements’ spacing
density, surface
roughness
elements’ height
and height of
measurement
points

ANN1: mean wind
speed, turbulent
intensities (in the
three directions),
length scales (in
the three
directions) and
turbulent
Reynolds stress

Boundary-layer
wind tunnel at the
Technische
Universität
München with a
total of 23
configurations of
hardware setups

R2 -ANN1: except
the turbulent
length scale in the
x-direction (not
that accurate) all
other results were
good

ANN2: basis barrier
height, surface
roughness
elements’ spacing
density, surface
roughness
elements’ height,
frequency and
height of
measurement
points

ANN2: power
spectral densities
of the velocity
fluctuations in the
three directions

- ANN2: good
simulation results
were obtained
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order models that possess high simulation accuracy of complex
nonlinear systems) to provide rapid estimation of wind flows over
various terrain conditions. However, ML development for terrain
and topographic considerations is still at an early stage with a
limited number of studies reported in the literature. Table 4
presents the reviewed applications of ML for terrain and
topography, where the ML model, training scheme, input data,
output data, data source and performance metric are summarized
for each application. The training/testing data were essentially
retrieved from either CFD simulations or wind tunnel tests. From
Table 4, it can be concluded that most applications used ML as a
regression model for prediction of wind fields over various terrain
conditions and topographic configurations. There are a few
studies that applied ML techniques to assist in efficient search
for a correct layout of passive flow altering devices (e.g., spires and
roughness elements) in the boundary-layer wind tunnel. It is
noted that the current ML applications to consider topographic
effects on wind fields are usually limited to terrain configurations
that can be characterized by several parameters, hence, the
employed ML models and training schemes are simple and
standard (e.g., ANN with backpropagation). However, several
advanced ML models such as autoencoder (e.g., Fukami et al.,
2019) and GAN (Kim and Lee 2020) have been utilized to assist in
the generation of turbulent inflow (as a realistic inlet boundary
condition of CFD simulations).

3.3 Aerodynamics and Aeroelasticity
The bluff-body aerodynamics and aeroelasticity play a critical
role in the safe and cost-effective design of wind-sensitive
structures, and their considerations rely heavily on boundary-
layer wind tunnels. In addition to the Reynolds number effects
(due to very small model scales), wind tunnel tests are very time
consuming and labor intensive. To this end, CFD techniques have
been rapidly developed for simulations of structural
aerodynamics (gust-induced effects) and aeroelasticity
(motion-induced effects). The purpose is to make CFD
simulations serve as a complementary or even alternative
approach to wind tunnel tests. Despite significant advances of
hardware and algorithms, the reliable CFD simulations of wind-
structure interactions are still computationally very expensive due
to three-dimensional nature of wakes and intensive flow
separations from structures. Hence, a number of reduced-
order models have been developed to efficiently model
structural aerodynamics and aeroelasticity (Wu and Kareem
2013). Unfortunately, these reduced-order models do not
always have a satisfactory representation of the full nonlinear
equations that govern the wind-structure interactions.
Specifically, modern bridge decks and super tall buildings with
unusually geometries all exhibit nonlinear unsteady
aerodynamics and aeroelasticity that limit the applicability of
the state-of-the-art reduced-order modeling methodologies. On
the other hand, the Kolmogorov Neural Network existence
theorem offers mathematical foundation for applying
multilayer neural networks to approximate arbitrary nonlinear
systems with any precision (Huang and Lippmann 1988; Hornik,
1991). With high-fidelity data and advanced algorithms, ML
models can simultaneously achieve great simulation efficiency

and accuracy. It is noted that there are numerous ML applications
to aerodynamics and aeroelasticity of both bluff bodies (e.g.,
circular cylinder) and streamlined bodies (e.g., airfoil) in fluid
mechanics community (e.g., Kutz 2017; Brunton et al., 2020),
however, they are not discussed here. The review in this section
only covers wind-sensitive structures in civil engineering. TheML
applications for bridge aerodynamics and aeroelasticity are first
reviewed in Table 5i and then followed by buildings and other
structures in Table 5ii, where the ML model, training scheme,
input data, output data, data source and performance metric are
summarized for each application. The training/testing data were
essentially retrieved from either CFD simulations or wind tunnel
tests. From Table 5, it can be concluded that most applications
used ML as a regression model for prediction of steady-state force
coefficients, flutter derivatives and vortex-induced vibrations
(VIV) of various bridges and for modeling of wind pressure
coefficients of various buildings (as well as estimation of the
interference factors for adjacent buildings). The different
aerodynamic representations in bridges (mainly using global
quantities such as force coefficients) and buildings (mainly
using local quantities such as pressure coefficients) are
partially due to available data types from wind tunnel tests.
Although satisfactory ML simulation results have been
obtained (in terms of interpolations), most reviewed
applications do not necessarily have good performance in
terms of extrapolations outside the training datasets. It is
noted that the currently available ML models of aerodynamics
and aeroelasticity are developed for the main purpose of being
used as preliminary design tools to avoid the high-cost wind
tunnel tests in the early design stage. There is a lack of systematic
comparison among various ML models, hence, their selection for
specific applications is rather rudimentary.

3.4 Structural Dynamics and Damage
Assessment
Due to the computational complexity of numerical techniques
(e.g., finite element method) for solving wind-induced nonlinear
structural response, reduced-order models (e.g., ANN) have been
developed to alleviate the computational cost of the high-fidelity
models. The ML models have been used for structural dynamics
and damage assessment for several decades mainly in the field of
earthquake engineering (e.g., Wu et al., 1992; Masri et al., 1993;
Jiang and Adeli 2005; Pei et al., 2005; Gholizadeh et al., 2009;
Facchini et al., 2014; Derkevorkian et al., 2015; Liang 2019; Wu
and Jahanshahi 2019; Yu et al., 2020). However, similar
applications have not emerged in wind engineering
community until recently due essentially to the linear
consideration of the wind-induced structural response [ASCE
7-16 (ASCE, 2017)]. Recent advances of performance-based wind
design methodology have placed increasing importance on
effective simulations of nonlinear, inelastic structural dynamics
response under strong winds. The numerical estimation of wind-
induced nonlinear structural response using a high-fidelity finite
element model is computationally very expensive due to its small
time-step size and long simulation duration. Accordingly, several
ML applications to wind-induced structural dynamics have been
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TABLE 5 | Summary of ML applications for aerodynamics and aeroelasticity.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

i) Bridges Estimation of
aeroelastic parameters
of bridge decks Jung
et al. (2004)

ANN Resilient
backpropagation
Riedmiller and Braun
(1993)

100 inputs:90 inputs
representing the
section geometry and
10 inputs for the
nondimensional
velocity

Flutter derivatives (6)
of a rectangular
section

Wind tunnel test
(total of 17
experiments)

MSE Acceptable
performance

Prediction of flutter
derivatives of a
rectangular section
model Chen et al.
(2008)

ANN (total
of 8)

Gradient descent Width-to-depth ratio
and a set of reduced
frequency

8 flutter derivatives
(each given by 1
ANN separately) of
rectangular section
model

Experimental data
from wind tunnel
tests

No error metrics From the graphical
results, the
simulation results
were in good
agreement with the
experimental ones

Prediction of flutter
derivatives of a cable
stayed bridge Lute
et al. (2009)

SVM (RBF
kernel)

- Non-dimensional
velocity and width to
depth ratio of bridge
deck

8 flutter derivatives
of a cable stayed
bridge

Wind tunnel tests
were retrieved form
Matsumoto et al.
(1996)

MSE Good simulation
results

Estimation of flutter
derivatives of a
rectangular section
Chung et al. (2012)

ANN (total
of 8)

Backpropagation Width-to-depth ratio,
reduced frequency
and reduced
velocities

8 flutter derivatives
(each given by 1
ANN separately) of
rectangular section
model

CFD simulations and
forced-vibration test
in a wind tunnel

No error metrics Good performance

Modeling vortex-
induced vibration of a
long-span suspension
bridge Li et al. (2018)

DT, SVR
(with
Gaussian
radial basis
kernel)

- DT: incoming wind
speed and direction
at three locations on
the bridge deck

DT: VIV modes (a
total of 6)

Field measurements
of a full-scale
suspension bridge
over a period of 6-
years (2010–2015)
located in the
eastern ocean of
China

RMSE, accuracy
(%), squared
correlation
coefficient

Good simulation
results

SVR: same inputs as
DT model at the
current step along
with the response of
the previous step

SVR: VIV amplitudes

Prediction of nonlinear
unsteady bridge
aerodynamics Li et al.
(2020)

LSTM Back-pass algorithm Bridge deck motions Motion-induced
aerodynamic forces

CFD simulations
(total of
14,880 input-output
data corresponding
to a 2-D bridge deck
cross-section)

No error metrics Excellent
agreement (through
visual inspection)
between the LSTM
model and CFD
was obtained

Prediction of
aeroelastic response of
bridge decks Abbas
et al. (2020)

ANN Levenberg-Marquardt 18 inputs
corresponding to the
response for heave
and pitch (in terms of
displacement,
velocity and
acceleration) at
previous time steps
with three lag terms

Normalized lift force
and torsional
moment coefficients
at current time step

2 dimensional CFD
simulations for the
two bridge cross-
sections

MSE Good simulation
results were
obtained

Prediction of the flutter
velocity of suspension
bridges Rizzo and
Caracoglia (2020)

ANN
(different
topologies)

Levenberg-Marquardt 1st ANN category:
deck chord, deck
weight or the ratio
between the 1st
torsional and the 1st
vertical circular
frequencies of the
bridge, structural
damping, air density
and the flutter
derivatives

Critical flutter
velocity of
suspension bridge
with closed box
deck sections

Wind tunnel
experiments along
with finite element-
based simulation
corresponding to
various geometrical
and mechanical
parameters of the
bridge deck cross-
section

R2 While the
performance of the
ANN models varied
according to the
topology, their
performance was
good

2nd ANN category:
deck chord, the ratio
between the first
torsional and the first
vertical circular
frequencies of the
bridge, and the flutter
derivatives

(Continued on following page)
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TABLE 5 | (Continued) Summary of ML applications for aerodynamics and aeroelasticity.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

ii) Building
& other
structures

Prediction of wind load
distribution for air-
supported structures
Turkkan and
Srivastava (1995)

ANN Gradient descent Hemispherical
membrane: internal
pressure ratio and
two spatial
orientations

Steady-state wind
pressure coefficient
for air-supported
structures (e.g.,
cylindrical and
hemispherical
membranes)

Wind tunnel tests R2 Acceptable results

Cylindrical
membrane: Similar
inputs as the first
case + membrane
aspect ratio

Modelling wind-
induced interference
effects on high-rise
buildings Khanduri
et al. (1997)

ANN Generalized delta rule Spacing between two
adjacent buildings in
the along- and
across-wind
directions

Mean and dynamic
along- and across-
wind directions
interference factors

Wind-tunnel tests
from two references
Saunders and
Melbourne (1980);
Taniike and Inaoka
(1988)

No error metrics -

Modelling wind-
induced interference
effects on high-rise
buildings English and
Fricke (1999)

ANN Backpropagation Building aspect ratio,
normalized
separation distance
and power law index

Interference index Wind tunnel tests
from several sources
e.g., Zambrano and
Peterka (1978);
Blessmann and
Riera (1985)

No error metrics -

Interpolation of wind-
induced pressure time
series on a scaled
model Chen et al.
(2002)

ANN Levenberg–Marquardt 4 adjacent
experimental
pressure taps at the
next time step (t+1)
and values of the
pressure taps at
current & two
previous time steps in
the target tap
(central one)

Wind pressure
coefficient at the
next time step

Wind tunnel tests of
a 1:50 scale model

R2 Good simulation
results

Prediction of pressure
coefficients on roofs of
low buildings Chen
et al. (2003)

ANN (2
models)

Levenberg–Marquardt Roof height, wind
direction and two
normalized roof
coordinates (for the
two models)

ANN1: mean
pressure coefficients
on a gable roof of
low-rise building

Wind tunnels
experimental data

MSE Good simulation
results

ANN2: root-mean-
square pressure
coefficients on a
gable roof of low-rise
building

Prediction of building
interference effects
Zhang and Zhang
(2004)

ANN,
RBFNN (with
Gaussian
kernel)

Backpropagation Ground roughness,
relative orientation of
two buildings

Inference factor Experimental data
from literature e.g.,
Bailey and Kwok
(1985)

MSE RBF outperformed
the ANN model

Prediction of wind
loads on a large flat
roof Fu et al., (2006),
(2007)

FNN (2
models)

Backpropagation FNN1: wind direction
and the positions of
the available pressure
taps

FNN1: Mean
pressure coefficients
on a large flat roof

Boundary-layer wind
tunnels tests

MSE - Acceptable results
for the 1st FNN
model

FNN2: wind direction
and the frequency for
the few selected tap
locations

FNN2: Power
spectral density (at
given input
frequencies) at few
locations in the roof
corners and leading
edge

- No error metrics
were reported for
the 2nd FNN model

Wind load evaluation
for the design of roof
cladding of spherical
domes Uematsu and
Tsuruishi (2008)

ANN (4
models)

Quickprop algorithm
Fahlman (1988)

‘2 geometric
parameters of the
dome’, ‘2
coordinates
parameters x and y’,
‘turbulence intensity
of the incoming wind
at the mean roof
height’

Statistics of wind
pressure coefficient
on the roof of a
spherical dome:
mean, standard
deviation, skewness
and kurtosis

Experimental wind
tunnel tests

Predefined error
index (normalized
by the standard
deviation of the
target data)

- Acceptable results

Estimation of the wind
force coefficients on a
rectangular building
Wang et al. (2013),

ANN,
RBFNN,
GRNN

Backpropagation Aspect & side ratio
and ground
roughness

Along-wind mean
coefficient of base
shear of a
rectangular building

Wind tunnel tests RMSE RBFNN
outperformed all
other models

(Continued on following page)

Frontiers in Built Environment | www.frontiersin.org March 2022 | Volume 8 | Article 81146022

Wu and Snaiki ML Applications to Wind Engineering

91

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


TABLE 5 | (Continued) Summary of ML applications for aerodynamics and aeroelasticity.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

Wang and Cheng
(2015), (2017)
Wind load prediction of
large-span dry coal
sheds Sun et al. (2017)

GRNN - rise-span ratio,
depth-span ratio,
wind angle, and local
coordinates

Statistics of the
pressure
coefficients: mean,
RMS. Skewness,
kurtosis of pressure
coefficients, three
auto-correlation
coefficients and
coherence exponent

Wind tunnel tests R2 While the mean
pressure coefficient
was predicted
accurately, the
kurtosis of the
pressure coefficient
was poorly
predicted

Prediction of wind
loads on high-rise
building Huang et al.
(2017)

ANN (2
models)

Levenberg–Marquardt ANN1: coordinates
(x, y, z) of the
pressure taps

ANN1: mean or
root-mean-square
pressure coefficients
on a high-rise
building

Wind tunnel tests RMSE - No error metric
was reported for
the 1st ANN model

ANN2: coordinates
(x, y, z) of the
pressure taps and
time

ANN2: time series of
wind-induced
pressures on a high-
rise building

- Good simulation
results for the 2nd
ANN model based
on RMSE.

Prediction of wind
pressure coefficients
on building surfaces
Bre et al. (2018)

ANN (3
models for
flat-, gable,
and hip-
roofed low-
rise
buildings)

Levenberg–Marquardt Wind direction and
building
characteristics (1
parameter for the flat-
roofed building, and 2
parameters for the
gable roofed and hip-
roofed buildings)

Mean pressure
coefficients over few
locations on the
roofs and walls (5
outputs for the flat-
roofed, 6 for the
gable-roofed and 8
for the hip-roofed)

Tokyo Polytechnique
University
experimental
database

MSE, R2 Good simulation
accuracies

Prediction of roof
pressures on a low-rise
structure
Fernández-Cabán
et al. (2018)

ANN Levenberg–Marquardt Turbulence intensity
(at eave height) and 2
normalized roof
coordinates

Mean, root-mean-
square, and peak
pressure coefficients
on the roof (at 152
roof taps) of 3 scaled
low-rise buildings (1:
50, 1:30, and 1:20)

Wind tunnel tests RMSE, MAE, R2 The accuracy of
simulation results
depends on the
pressure taps
location

Modeling for unsteady
flows around bluff
bodies of various
shapes Hasegawa
et al. (2019), (2020)

CNN-AE +
LSTM

Adam Temporal variation of
the flow field around
different 2-D cross-
sections shapes: 2
velocity components
and pressure

Temporal variation
(next time step) of
the flow field around
different 2-D cross-
sections shapes: 2
velocity components
and pressure

Direct numerical
simulation (DNS):
100 different bluff-
bodies shapes (in 2-
D space) with 500
instantaneous time-
series flow fields
each

MSE -The use of CNN-
AE allows the
mapping between
the high-
dimensional space
and a low-
dimensional latent
space which
facilitates the
training of the LSTM
model
- Excellent
performance

Prediction of wind
pressures on a tall
building under
interference effects Hu
et al. (2020)

DT, RF,
XGBoost,
GAN

- GAN: wind direction
and location of the
interfering building

GAN: mean and
fluctuating pressure
coefficients over all
faces of the building

Aerodynamic
database of Tokyo
Polytechnic
University

R2 The GANs-based
model
outperformed the
other threemachine
learning algorithms
and provided
accurate mean and
fluctuating pressure
coefficients on the
principle building

DT, RF, XGBoost:
wind direction, the
coordinates of the
pressure tap and the
location of the
interfering building

DT, RF, XGBoost:
mean and
fluctuating pressure
coefficient at one
point on the building
surface

Prediction of low-rise
gable roof building
pressures Jianqiao
Tian et al. (2020)

DNN Levenberg–Marquardt Prediction’s location
(x, y, z) and the
incoming wind
direction

Mean and peak wind
pressure coefficients
on the surface of a
scale model
corresponding to a
low-rise, gable roof
building

Wind tunnel tests R2 Excellent
performance
results

Predicting wind
pressures around
circular cylinders Hu
and Kwok (2020)

RF, DT,
GBRT

Gradient descent Turbulence intensity,
incoming wind,
Reynolds number
and circumferential
angle of the cylinder

Mean and
fluctuating wind
pressures around a
circular cylinder for
high Reynolds
numbers

From published
papers e.g., Cheng
et al. (2016), Gao
et al. (2017)

R2 GBRT
outperformed all
other models
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TABLE 6 | Summary of ML applications for structural dynamics and damage assessment.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

i) Structural
dynamics

Modeling
hysteretic
nonlinear
behavior of bridge
aerodynamics
Wu and Kareem
(2011)

ANN Gradient descent 12 inputs: mean
wind velocity in
the current and
next time steps,
fluctuating
components in
the longitudinal
and vertical
direction in the
current and next
time steps, and
the vertical and
torsional
displacement
with their first
and second
derivatives in the
current time step

Vertical (torsional)
acceleration of
the bridge deck
section in the next
time step

Tongji-1 wind
tunnel at State Key
Lab in Tongji
University

No error metrics - Cellular
automata-
based system
was employed
to optimize the
ANN
configuration
- The visual
inspection of the
results indicated
the good
agreement
between the
simulated and
measured
- ANN model
showed good
promise in
simulating the
hysteretic
nonlinear
behavior of the
bridge deck
which interacts
with the
incoming
fluctuating wind

Analysis of tall
building for
across wind
response
Vyavahare et al.
(2012)

ANN Backpropagation Building shape
(height, breadth
and depth), the
terrain category
and incoming
wind speed

Shear force and
bending
moments of tall
buildings

Data generated
from numerical
examples

No error metrics From visual
inspection, it
can be
concluded that
a good
agreement
between the
simulated and
numerical
results has been
obtained

Identification of
the dynamic
properties high-
rise buildings
subjected to wind
Oh et al. (2017)

ERBFN Genetic
algorithm

Wind speed and
direction

Column stress of
a tall building
subjected to wind
loads

Wind tunnel tests RMSE,
maximum error
between the
measured and
estimated values

Good simulation
results were
obtained

Identification of
the dynamic
properties high-
rise buildings
subjected to wind
Nikose and
Sonparote
(2019a); (2019b),
(2020)

ANN Backpropagation Building
geometry
(height, breadth
and depth),
incoming wind
velocity and
terrain category

Dynamic
response in the
along-wind and
across-wind in
terms of base
shear and base
bending moment

Dataset were
generated based
on the Indian Wind
Code (IWC) for
various building
configurations

RMSE Good simulation
results were
obtained

Wind-induced
response
estimation for tall
buildings Oh et al.
(2019)

CNN Backpropagation Top-level (top
floor of a tall
building) wind
induced
displacement in
both time and
frequency
domain and
measured wind
speed in the

Maximum and
minimum strains
of the building
columns

Wind tunnel tests RMSE Good simulation
results were
obtained

(Continued on following page)
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TABLE 6 | (Continued) Summary of ML applications for structural dynamics and damage assessment.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

frequency
domain

Wind-induced
nonlinear
structural
dynamic analysis
Wang and Wu
(2020)

KE-LSTM AdaMax Wavelet
coefficients of
the normalized
wind excitation
(external wind
force)

Normalized
structural
displacement at
different nodes

Numerically for the
case of SDOF and
MDOF

MAE - The governing
equation of
motion was
embedded
within the loss
function
- Excellent
simulation
results

Prediction of
structural
response of wind-
excited tall
buildings Micheli
et al. (2020)

AWN Backpropagation Wind load and
high-
performance
control systems
(HPCS)
characteristics

Maximum
absolute
acceleration of
the structure

Dataset generated
numerically
corresponding to
a 39-stoery steel-
frame system
building subjected
to wind load and
equipped with
several equipment
(e.g., damping
devices, sensors
and global
controller)

RMSE - AWN
parameters
were updated
sequentially
each time data
arrives (online
training)
- Good
simulation
results

ii) Damage
assessment

Constructing and
validating
geographically
refined HAZUS-
MH4 hurricane
wind risk models
Subramanian
et al. (2013)

Ensemble
models
composed
of 50
bagged DT

- 10 predictors
were identified
(e.g., number of
floors, terrain
roughness, wind
speed and
direction)

Classification:
Structures that
were correctly or
not well predicted
by HAZUS-MH4
(in terms of
hurricane induced
wind damage) in
1-km square
blocks

The data contains
the damage states
and corresponds
to approximately
700,000
residences in the
Harris County
following hurricane
Ike (2008)

Accuracy (%)
and customized
error metric

- The results of
this study
suggest that
HAZUS-MH4
fragility curves
for certain home
types, need to
be refined to
improve the
prediction
results

Probabilistic
damage
estimation for
asphalt shingle
roofing Huang
et al. (2015)

ANN Backpropagation 8 predictors:
wind speed,
angle of attack,
shingle
resistance,
building length,
building width,
building height,
roof slope and
surface
roughness

Mean damage
ratio of an asphalt
shingle roof

Boundary-layer
wind tunnel tests
from the University
ofWestern Ontario

Accuracy (%) Good
performance

Estimatin of the
fatigue damage of
coastal bridges
under coupled
loads Zhu and
Zhang (2018)

SVR (with
Gaussian
kernel)

- Gross vehicle
weight; 10-min
wind speed;
significant wave
height; and peak
wave period

Daily equivalent
fatigue damage
accumulation

Traffic data from a
cable-stayed
bridge located in
southern China
coastal regions &
the wind/wave
data from
Meteorological
Observatory near
the bridge location
from 1980 to 2012

RMSE, MAE,
MAPE

Good simulation
results were
obtained

Performance
assessment of a
vertical structure
subjected to non-
stationary,
tornadic wind

ANN Levenberg-
Marquadt

Maximum mean
tangential
velocity of the
tornado and its
radial length
scale

Fragility values
associated with
each intensity
measures
combination

Numerically
generated in
which the Monte
Carlo simulation
was employed

Absolute
differences

Various
architectures
were tested and
the best ANN
model has one

(Continued on following page)
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developed in recent years for simultaneously achieving high
simulation accuracy and efficiency. The performance-based
(and further resilience-ba sed) wind design philosophies also
require accurate damage assessment of structures and
infrastructure under extreme storms. The structural damages
under winds depend on numerous factors including wind
features (e.g., wind speed/direction and topography) and built
environment characteristics (e.g., building opening and roof
slope), hence its assessment and quantification are extremely
challenging. On the other hand, increasingly available field-
measurement data characterizing structural damages under
strong wind events [e.g., resulting from post-disaster
reconnaissance activities such NHERI Natural Hazards
Reconnaissance (RAPID) Facility and NSF Structural Extreme
Events Reconnaissance (StEER) Network] provide a great
opportunity to learn from data by using various ML models.
The ML applications for structural dynamics are first reviewed
in Table 6i and then followed by damage assessment in Table 6ii,
where theMLmodel, training scheme, input data, output data, data
source and performance metric are summarized for each
application. The training/testing data were essentially retrieved
from numerical simulations, wind tunnel tests and field
measurements. From Table 6, it can be concluded that most
applications used ML as a regression model for modeling
structural dynamics and as a regression or a classification model
for structural damage assessment. While many applications
employed simple ML models and standard training schemes
(e.g., ANN with backpropagation), some advanced schemes
such as knowledge-enhanced LSTM have been successfully
applied to predict time series of wind-induced nonlinear
structural response. It is noted that the selection of the most

appropriate set of inputs to ML models for damage assessment
(predictors or features) is still very challenging.

3.5 Mitigation and Response
Both long-term and short-term strategies are needed to enhance
resilience of individual structures or communities to withstand
wind-related hazards. One important long-term consideration is
to mitigate structural response/vibration subjected to winds
through structural optimization and/or control. For structural
optimization under winds, the shape optimization is probably the
most effective approach to reduce aerodynamic loading. For
wind-induced vibration control, both aerodynamic and
mechanical measures are well recognized in wind engineering
community. Although the structural performance evaluation
under winds is typically a very complicated task, the
corresponding simulations during optimization or (active)
control process is required to be efficient and accurate because
they need to be conducted either repeatedly for numerous
scenarios or in a (near) real-time sense. As noted earlier, the
MLmodels are very promising to simultaneously achieve the high
simulation efficiency and accuracy goal. In addition, the RL
models that have gained increasing popularity in recent years
can be used as very effective optimization or control algorithms
compared to conventional approaches (Silver et al., 2017). In the
consideration of short-term actions, efficient management
strategies are critically important. Although the ML models
used in the disaster (including wind-related hazard)
management framework (i.e., covering preparedness, response
and recovery) have recently been systematically reviewed (e.g.,
Sun et al., 2020), its applications to social media-informed
response are still discussed here since the unprecedentedly

TABLE 6 | (Continued) Summary of ML applications for structural dynamics and damage assessment.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

loads Le and
Caracoglia (2020)

hidden layer
with 4 neurons

Object detection
in aerial imagery
for disaster
response and
recovery after the
occurrence of
hurricanes Pi et al.
(2020)

Series of
CNN trained
using
transfer
learning

Backpropagation Digital images
and videos

Bounding boxes
of the ground
objects of interest
(i.e., flooded area,
building roofs
damage, debris,
vegetation and
cars) and their
corresponding
class labels (e.g.,
damaged or
undamaged)

-The models were
pretrained on the
common objects
in context/visual
object classes
(COCO/VOC)
databases
Everingham et al.
(2010); Lin et al.
(2017)

Mean average
precision

Acceptable
results

- Then they were
retrained on new
aerial video
dataset Volan
2018
(corresponding to
hurricanes that
occurred in
2017–2018)
obtained using
web mining
algorithms
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TABLE 7 | Summary of ML applications for mitigation and response.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

i) Structural
optimization &
control under
winds

Vibration control of
wind-induced
response of tall
buildings with active
tuned mass damper
Bani-Hani (2007)

ANN (2
models)

Backpropagation ANN1&2: 20 inputs-
absolute wind-
induced
acceleration of 3
selected floors at
the current and
previous 4-time
steps, and the active
tuned mass damper
control forces at the
current and
previous 4-time
steps

ANN1: 4-time steps
ahead the absolute
acceleration of three
floors (i.e., 50th, 60th
and 70th)

Numerically generated
using a SIMULINK
model with a total of
50 s of data and a
sampling time of 0.001s
for a tall building with
76-stoery (data
generated with and
without random white
noise control force of up
to 5 Hz frequency)

RMS and defined
dimensionless
performance
indexes

The coupled ANN
models were able to
reduce substantially
the peak
displacement and the
absolute acceleration
response of the
building storeys

ANN2: future control
force at the next time
step of the active
tuned mass damper

Aerodynamic shape
optimization of tall
buildings Elshaer
et al. (2016), (2017)

ANN with a
genetic
algorithm

- Geometric variables
of the cross section
and the wind angle
of attacks

Objective function =
the mean drag
coefficient or the
standard deviation of
the lift coefficient

LES simulations of a
two-dimensional flow
corresponding to
different geometric
properties of the cross
section

R2 - Good simulation
results
- Significant
optimization of the
mean drag coefficient
and standard
deviation of the lift
coefficient

Aerodynamic shape
optimization of tall
buildings Li et al.
(2021a)

KE-DRL Gradient descent State: external
shape of the
structure

Action: design
adjustment of the
cross section to
maximize the
aerodynamic
mitigation (by
minimizing the drag
of a high-rise building)

RANS and LES
simulation of a 2-D
cross section example

- - Both specific direct-
domain and cross-
domain knowledge
are leveraged through
transfer-learning and
meta-learning
- The deep
deterministic policy
gradient algorithm
(DDPG) was used for
the RL algorithm
- RL-based shape
optimizer
outperformed the
basic gradient
descent, particle
swarm optimization
(PSO) and typical RL
without knowledge

Bluff body active flow
control in
experiments and
simulations Fan et al.
(2020)

DRL Adam States: drag and lift
coefficients

Action: ratio of the
rotation rate for each
rotating cylinder and
the maximum
rotation rate to
minimize the drag in
both simulations and
experiments

Entropy-viscosity-
based large eddy
simulation (LES) (for the
numerical simulation)
and an experimental
setup

- -The Twin Delayed
Deep Deterministic
policy gradient
algorithm was
selected as the RL-
algorithm to update
the agent
- The RL-agent was
capable to efficiently
learn a control
strategy, for both
experiment and
simulation, that will
allow the
reattachment of flow
behind the cylinder
and reduce the drag
coefficient

ii) Disaster
response
informed by
social media

Information
classification from
disaster-related
messages in twitter
Imran et al. (2013)

NB (2
classifiers)

- NB1: tweets NB1: classification of
tweets as personal,
direct informative,
indirect informative
direct-indirect
informative and other
following the tornado
event in Joplin,
Missouri (2011)

206,764 tweets
collected during the
Joplin tornado of 2011
in Joplin, Missouri

F1 score Acceptable
performance

(Continued on following page)
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abundant data from various powerful communication tools (e.g.,
Twitter) greatly facilitate the rapid ML model developments in
this field. Table 7i,ii respectively present the reviewed
applications of ML for mitigation and response, where the ML

model, training scheme, input data, output data, data source and
performance metric are summarized for each application. The
training/testing data were essentially retrieved from CFD
simulations and experimental tests for structural mitigation or

TABLE 7 | (Continued) Summary of ML applications for mitigation and response.

Application ML model Training
scheme

Input
data

Output
data

Data
source

Performance
metric

Remarks

NB2: informative
tweets

NB2: classification of
informative tweets as
caution, donation,
advice, or information
source

Classification of
tweets to inform
disaster response
Ashktorab et al.
(2014)

SLDA, LR,
KNN, NB, DT

- Tweets Classification of
tweets to identify
those that reported
human casualties or
structural damage
(requiring
intervention)

17 million tweets
collected during 12
different natural
disasters in the U.S
since 2006 (e.g.,
tornado and hurricane)

AUC The LR was the best
classifier

Information
classification from
disaster-related
messages in twitter
Imran et al. (2016)

RF, SVM, NB - Tweets 9 classes (e.g.,
injured or dead
people, infrastructure
and utilities damage,
displaced people and
evacuations, caution
and advice)

52 million tweets for
events related to 19
natural hazards and
crisis (e.g., typhoon,
floods and earthquake)
occurring between
2013 and 2015 in
different parts of the
world was used

Area under ROC
curve

- Good results were
obtained for all
classes (for the three
classifiers) except for
the “missing trapped
or found people” -
poor classification-

Information
classification from
disaster-related
events O’Neal et al.
(2018)

SVM, KNN,
GNB, MNB,
BNB,
DT, SGD

- Images Image classes in
terms of human roles:
rescuees or rescuers

The images were
collected from August
17th to 3 September
2017 based on private
social media platforms
(e.g., twitter) during
Hurricane Harvey
(2017)

Average
precision

SVM-based model
gave the best
prediction accuracy

Real-time disaster
communication
Robertson et al.
(2019)

VGG-16
CNN, ANN

Adam Tweeter-based
images

VGG-16 CNN:
informative features
(pre-storm, landfall
and the period after
landfall)

A total of 17,483
images were extracted
from Twitter between
17th August and 17
September 2017 from
Hurricane Harvey
(2017)

Accuracy Acceptable
simulation results

ANN: urgency level
(highly urgent,
moderately urgent,
somewhat urgent,
not urgent, and
unrelated to the
hurricane event)

Information
classification from
disaster-related
events Manna and
Nakai (2019)

ANN, SVM,
NB, LR

- Tweets 2 classes: crisis-
related tweets and
non-crisis-related
tweets

6 crisis related datasets
were used (e.g.,
hurricane Harvey 2017
and the 2011 Joplin
Tornado) with
approximately 10,000
tweets for each event

Accuracy ANN classifier
outperformed all
other classifiers

Real-time information
classification from
hurricane-related
events Yu et al.,
(2019)

CNN,
SVM, LR

RMSprop Tweets 5 classes:
Information Sources,
Caution and Advice,
Infrastructure and
Resources,
Casualties and
Damage, and
Donation and Aid

3 manually labeled
datasets were used
corresponding to
hurricane Sandy (2012),
Irma (2017) and Harvey
(2017), respectively
with approximatively
2000–3000 tweets per
each event

Accuracy CNN outperformed
other classifiers

Identification of social
media-based
requests for urgent
help during
hurricanes Devaraj
et al., (2020)

DT, SVM,
ANN, LR,
NB,
AdaBoost,
RR

- Tweets Tweets from people
requiring or not
urgent rescue by first
responders

2,072,715 tweets
related to Hurricane
Harvey (2017) event

F1-score CNN, SVM and ANN
achieve the best
simulation results
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from social media platforms for disaster response. From Table 7i,
it can be concluded that the structural performance evaluations in
mitigation applications usually used ML as a regression model
while RL was typically utilized as an effective optimization or
control algorithm. It is noted that relatively few ML applications
for structural optimization and control under winds have been
generated compared to those in earthquake engineering
community (e.g., Ghaboussi and Joghataie 1995; Adam and
Smith 2008; Jiang and Adeli 2008; Yakut and Alli 2011;
Subasri et al., 2014; Khodabandehlou et al., 2018;
Khalatbarisoltani et al., 2019; Hayashi and Ohsaki 2020). From
Table 7ii, it can be concluded that most social media-informed
response applications used ML as a classification model for
disaster rescue and relief information dissemination. Although
these ML applications present promising results in terms of
effectively supporting timely decision-making, there is a
concern of using information from social media platforms due
to a lack of data quality control.

3.6 Summary
TheML applications in each topical area of wind engineering are
summarized in Figure 8. As shown in the figure, ML models are
unevenly distributed among these areas. The wind climate area
has the most ML applications followed by the aerodynamics and
aeroelasticity area, and they are respectively contributed by wind
engineering-related fields of meteorology and fluid mechanics.
On the other hand, the wind engineering-exclusive field of
terrain and topography has the least applications of ML.
Although ML models have been instrumental in modern
structural design for winds, their developments are in a very
preliminary stage and there is still a long way to go before they
can complement or even replace existing approaches of wind

tunnel tests andCFD simulations. In general, the supervised learning
dominates theML applications inwind engineeringwith the podium
position attributed to simple models with standard algorithms (e.g.,
ANN with backpropagation). Actually, the selection of various ML
models is rather rudimentary since there is a lack of systematic
comparison among them (e.g., in terms of model complexity and
performance). It is noted that the great potential of semi-supervised
learning and unsupervised learning (as well as RL) with little or no
labelled data is not leveraged yet. Accordingly, the current ML
developments in wind engineering heavily rely on available
labelled data. For example, the ML applications to non-synoptic
winds are much less than those of synoptic winds due essentially to
the difficulty in obtaining the data of local and short-lived storms.
On the other hand, the recent emergence of numerous ML
applications to social media-informed disaster response is due
mainly to the unprecedentedly abundant data from various
powerful communication tools. For the reviewed ML
applications, the training/testing data are retrieved from several
major sources (e.g., field measurements, wind tunnel tests,
numerical simulations and social media platforms). In the
determination of ML model inputs and outputs, a good
understanding of underlying physics of each application is critical
to effectively select an appropriate set of predictors (ML inputs)
while the output types heavily depend on the needs of traditional
analysis procedure in each application (e.g., local wind pressures for
building design and global wind forces for bridge design).

4 CHALLENGES AND PROSPECTS

The rapidly increasing ML applications to wind engineering have
generated a large volume of datasets associated with a large set of

FIGURE 8 | Overview of reviewed ML applications in wind engineering (following Alan G. Davenport Wind Loading Chain).
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domain-specific algorithms. It is strongly believed that the
platforms encouraging open sharing of these datasets and
algorithms would greatly benefit the ML research progress in
wind engineering. The openly available wind engineering datasets
will greatly reduce efforts for their creation/collection and pre-
processing, and open-source ML algorithms will save significant
time for their re-implementation. The reduced need of time and
effort to use the state-of-the-art or latest developed ML tools
under such a culture of openness would spur interests among
researchers in wind engineering, and hence result in more related
ML applications. Moreover, the developed cyberinfrastructure to
store and share data usually has a systematic curation procedure
to ensure the high quality of its standardized benchmark datasets.
Also, the open-source software allows the hidden bugs/tricks of
ML algorithms to be easily uncovered and accordingly makes
them more robust. In addition to availability, the reproducibility
and testability of wind engineering data and domain-specific
algorithms due to a culture of openness would also facilitate
the adoption of the obtained transparent and trustworthy ML
tools in real-world problems. Although the wind engineering
community has started to embrace the prevalent openness of ML
community (e.g., NHERI DesignSafe platform), the culture of
openness is still in its early stage. It is expected that more
incentives based on the existing reward system (e.g., a digital
object identifier for each dataset or algorithm published by the
platform) are needed to motivate the ML wind engineering
community towards open science. Given a potential open-
science environment with openly available datasets and open-
source algorithms (supported by open-access scientific
publications), some remaining challenges and future prospects
are discussed in terms of data in wind engineering and algorithms
in ML. It is noted that both challenge and prospect lists are not
exhaustive.

4.1 Challenges and Research Gaps
The reviewed various ML models for a wide range of topics in
wind engineering suggests that their cross field has recently
attracted much interest. However, there are still numerous
challenges to advance ML applications to wind engineering
from conception and research into practice. These remaining
challenges of data in wind engineering and algorithms in ML are
discussed in this sub-section.

4.1.1 Wind Engineering Data Challenges
Wind engineering data could be rich in some dimensions but may
be poor in others. For example, a large volume of flow data or
pressure data could be obtained by one wind tunnel test (using
advancedmeasurement systems with high resolution in space and
high sampling rate in time), however, all these data would be
located at a point in the Reynolds number dimension. For
structural response under winds, most of the data are located
in the linear elastic domain, while very limited nonlinear inelastic
data needed to advance implementation of performance-based
wind design are available. Another example is that the
anemometric monitoring network typically generates abundant
data in time dimension but sparse data in space. More
importantly, it is usually very challenging or expensive to

create extra points in currently data-scarce dimensions. Wind
engineering data could be short in time span of their collection.
For example, the climate changing impacts are not easy to be
considered based on the currently available wind data since their
record period is much shorter than the time scale of climate
changing. Also, few structural performance data under winds are
long enough to take the life-span deterioration behaviors into
account. Essentially, the learningmachine based on current wind-
structure interaction data cannot be used for accurately
predicting future long-term behaviors of the same wind-
structure system. Wind engineering data could be highly
heterogeneous for collaborative or large-scale ML applications.
Many complex tasks (e.g., life-cycle performance evaluation of
structures under winds) and/or real-world problems (e.g.,
hurricane resilience assessment of coastal communities) in
wind engineering need collaborative efforts and/or large-scale
implementations. The datasets generated from these activities
may result from various CFD simulation tools or field
measurement devices, and they are typically interpreted by
different entities before sent to a central processing platform.
Accordingly, significant processing efforts (e.g., data cleaning,
data aggregation, dimension reduction and data standardization)
are needed for these heterogeneous datasets with high variability
of data types and formats (e.g., mixtures of structured, semi-
structured and unstructured data). In addition, advanced
powerful learning machines are necessary to generate new
knowledge from large, heterogeneous sets of wind
engineering data.

4.1.2 Machine Learning Algorithm Challenges
ML algorithms commonly-used in wind engineering are standard
ones designed for solving problems in other fields (e.g., handwriting
recognition or computer vision). While these classical algorithms
(e.g., ANN with backpropagation) achieved great success for simple
wind engineering applications, they are not necessarily concise and
efficient. More importantly, the immediate applications of these
popular algorithms to modern wind engineering (involving
nonstationary and non-Gaussian wind flow, transient and
nonlinear aerodynamics, nonlinear and inelastic structural
dynamics, or time-variant wind-structure system under a
changing climate) may be very challenging. On the other hand,
the newly developed ML algorithms (e.g., advanced LSTM and
GAN) need to be carefully scrutinized for their applicability to these
complex problems. ML algorithms commonly-used in wind
engineering are supervised ones that need a significant amount of
labelled data. Although the cost of obtaining/collecting the data from
various sources (e.g., numerical simulations, wind tunnel tests, or
field measurements) is greatly reduced and accordingly
unprecedented volume of data are increasingly available, these
datasets may be limited to unlabeled due to a lack of sufficient
human resources (with expert knowledge) for data labeling. ML
algorithms commonly-used in wind engineering are purely data-
driven ones that are usually consider as black boxes. Furthermore,
currently available ML models usually present a conflict between
their advances (and hence performance) and explainability. One
important feature of human intelligence is the ability to explain the
rationale behind its decisions to others, hence, the explainability of
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learning machines is often an essential prerequisite for establishing a
trust relationship between human intelligence and artificial
intelligence. The highly non-transparent nature of ML algorithms
may be acceptable for some applications in wind engineering (e.g., a
CNNmapping the oncoming winds to pressure fields on or velocity
fields around various bridge decks), however, it may be a clear
drawback for many high-stake applications (e.g., evacuation
planning or transportation infrastructure management under a
landfalling hurricane) since any error in prediction may have
catastrophic consequences. It is noted that the high-stake
applications also place a high demand for quantification of
uncertainties involved in ML algorithm selection, training and
performance evaluation (along with data collection), whereas the
formalization of uncertainty quantification for purely data-
driven approaches is very challenging and not well
established yet. ML algorithms commonly-used in wind
engineering are typically selected based on past experience
(or simply by “gut feeling”) and the associated model
hyperparameters (e.g., layer and neuron numbers,
activation function and learning rate) are usually obtained
by extensive trial and error. While the selected ML
algorithms present good performance for the particular
applications of interest, they are not necessarily an
optimal choice. A systematic approach to identify the
most appropriate ML model and associated best
hyperparameters essentially needs a global optimization
within a high dimensional space, and is currently very
challenging for wind engineering applications.

4.2 Prospects and Future Directions
The remaining challenges, while not trivial, provide new research
opportunities for the development of more effective ML tools.
The identified prospects of data in wind engineering and
algorithms in ML are discussed in this sub-section.

4.2.1 Wind Engineering Data Prospects
To generate/collect wind engineering data that are scarce in
certain dimensions, advanced full-scale/laboratory/numerical
tools and technologies need to be utilized or developed. In
addition to large-scale facilities (e.g., WindEEE), various high-
fidelity and efficient modern CFD techniques (e.g., hybrid large
eddy simulation/Reynolds-averaged Navier-Stokes schemes)
should be exploited to generate data of high-Reynolds number
scenarios. The rational loading protocols for extreme wind
performance cyclic testing of deformation-controlled MWFRS
(Main Wind Force Resisting System) members need to be
designed to generate the wind-induced nonlinear inelastic
structural response data. Also, data reconstructions using
linear/nonlinear dimensionality reduction techniques (e.g.,
singular value decomposition/autoencoder) should be
employed to enhance spatial resolution of full-scale
measurements. To generate/collect wind engineering data that
cover sufficiently-long time span of structural behaviors, more
reliable long-term structural health monitoring systems should be
established in addition to high-fidelity modeling of aging and
deterioration of wind-sensitive structures. For the consideration
of wind engineering data under a changing climate, synthesized

wind fields (resulting from tropical cyclones, extratropical
cyclones or local non-synoptic storms) need to be generated
by global climate models coupled with accurate and efficient
downscaling exercises under projected climate conditions [e.g.,
various RCP (Representative Concentration Pathway) scenarios].
To effectively learn from heterogeneous data that need to be first
unified, they can be efficiently processed by advanced big data
analytics. For example, unsupervised or semi-supervised
clustering techniques could be used for data cleaning, data
fusion techniques of Kalman filters could be used for data
aggregation, and linear principal component analysis or
nonlinear self-organizing map could be used for dimensional
reduction.

4.2.2 ML Algorithm Prospects
To facilitate ML applications to complex wind engineering
problems, the state-of-the-art or latest algorithms emerging in
ML community could be leveraged. For example, the GAN could
be used for effectively generating nonstationary and non-
Gaussian wind flow through its two competing sub-networks,
the CNN could be employed for efficiently mapping oncoming
winds to pressure fields (characterizing transient and nonlinear
aerodynamics) on structures with an arbitrary shape because it is
particularly good at handling input-output data with a known
grid-like topology, the LSTM could be utilized for accurately
simulating nonlinear and inelastic structural dynamics since its
forget gates ensure a reliable consideration of long-term
dependencies (where the structural response at the current
time depends on not only the current wind load but also the
load history), and the lifelong learning networks should be
explored for adaptively modeling time-variant wind-structure
system assuming their underlying parameters can be
continuously modified to accommodate new data inputs. The
direct or immediate applications of the advanced ML algorithms
to complex wind engineering problems may not necessarily result
in parsimonious models that may need specialized customization
for each application. To reduce the demand for labelled data in
ML applications to wind engineering, both unsupervised learning
and semi-supervised learning (including physics-informed
machine learning) are promising alternatives to popularly used
supervised learning. In addition, advanced ML algorithms have
been emerging (e.g., reservoir computing) for processing
information generated by complicated dynamical systems
using very small training datasets. To open the ML black box,
model explainability and interpretability in wind engineering
applications needs to be enhanced. Various general techniques
have been developed to improve understanding of the ML model
predictions, such as sensitivity analysis and layer-wise relevance
propagation. On the other hand, the definitions of explainability
and interpretability are typically domain dependent, hence, the
domain knowledge in wind engineering should be leveraged for
enhanced explainability/interpretability of each ML application.
It is expected that the explainability/interpretability analysis
(along with uncertain quantification) will likely become a
fundamental building block for bounding the overall
confidence in ML applications in wind engineering (parallel to
verification and validation in CFD simulations). To enable an
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automatic search ofMLmodel hyperparameters inwind engineering
applications, increasingly available optimization schemes with
improved efficiency and accuracy (e.g., grid search, random
search, Bayesian optimization and population-based training) can
be utilized to find the best configuration for each task. On the other
hand, it is believed that a practical guide to selection ofMLmodels in
wind engineering applications will greatly facilitate their appropriate
use. The best practices for model selection in each application are
essentially consistent with the principle of Ockham’s razo by first
testing simple linear MLmodels (due to their easy to implement and
high model explainability), and then followed by more complex
nonlinear models (without data overfitting). Among ML models
with similar complexity, a predetermined performance metric is
typically used for further model selection. Since iteration is generally
needed in a purely performance-driven ML model selection, the
domain knowledge is suggested to be utilized for a more effective
search process.

4.3 Knowledge-Enhanced Machine
Learning
As discussed in preceding sections, domain knowledge could be
leveraged for improved selection of ML model and its inputs and
outputs in wind engineering applications. Hence, a good
understanding of fundamental physics and other types of
domain knowledge underlying each subfield of wind
engineering would enable more effective use of ML tools. It is
noted that the fundamental physics in terms of governing
equations is a special type of domain knowledge, and recent
studies have demonstrated that the required labelled datasets
could be significantly reduced by incorporating the underlying
physics into training process (and hence enhancing the
regularization mechanism) (e.g., Raissi et al., 2017a; 2017b).
Other equation-based domain knowledge such as empirical/
semi-empirical formulas were also employed as part of the
loss function in deep learning to provide machine-readable
prior knowledge that facilitates the effective regularization
of the neural networks for simulations of tropical cyclone
winds (Snaiki and Wu 2019) and nonlinear structural
dynamics (Wang and Wu 2020). In addition, the equation-free
domain knowledge has been integrated into a deep RL-based
aerodynamic shape optimizer (via the transfer-learning and
meta-learning techniques) to remarkably enhance the training
efficiency for wind engineering applications (Li et al., 2021a).
These emerging successful applications indicate that this novel
scheme of knowledge-enhanced machine learning (KEML) could
significantly enhance ML applications to wind engineering. To
fully embrace the promising potential of KEML, systematic
research efforts are needed to efficiently identify knowledge
representations (invariances, physics equations, empirical

formulas, probabilistic relations, logic rules, simulation results,
field observations, human feedback, and others) in various
subfields of wind engineering and then to effectively integrate
them into each module of machine learning pipeline (data
preparation, model selection, model training, and others).
While domain knowledge could be employed to enhance
purely data-driven ML tools, it is expected that learning
machines could be utilized for harnessing data to discover new
knowledge in wind engineering (e.g., governing laws
characterizing transport of turbulence quantities or
optimization of wind-structure system).

5 CONCLUDING REMARKS

A total of 65 machine learning (ML) algorithms were reviewed in
terms of their applications to each topical area of wind
engineering, namely wind climate, terrain/topography,
aerodynamics/aeroelasticity, structural dynamics, wind damage
assessment and wind-related hazard mitigation and response.
The most ML applications were found in wind climate area, while
the terrain/topography area had the least applications of ML.
Although the ML-based wind engineering is fueled by the
unprecedented volume of analytical, numerical,
experimental and field-measurement data together with
rapidly evolving learning algorithms and high-
performance computational hardware, it is still at an early
stage of development. Most of wind engineering applications
employed supervised learning with standard ML models
designed for solving problems in other fields, and the
promising unsupervised and semi-supervised learning
tools were rarely used to reduce the high demand of
labelled data. For the selection of ML models and
associated hyperparameters in wind engineering
applications, it was typically based on expertise and
extensive trial and error. In this review, the culture of
openness, explainability/interpretability and uncertainty
quantification were identified as important research gaps
that need to be addressed in ML-based wind engineering
community. Furthermore, the knowledge-enhanced machine
learning was considered as a very promising scheme to
enhance ML applications to wind engineering.
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APPENDIX A: LIST OF REVIEWED
MACHINE LEARNING ALGORITHMS
(NOTE: ACRONYMS WITH * REPRESENT
THOSE REVIEWED IN THIS
CONTRIBUTION).

A2C advantage actor critic

AdaBoost* adaptive boosting

AE* autoencoder

ALEN* adaptive linear element network

ANFIS* adaptive neuro-fuzzy inference system

ANN* artificial neural network

AWN* adaptive wavelet network

BNB* Bernoulli naive Bayes

BNN* Bayesian neural network

CGAN conditional GAN

CNN* convolutional neural network

CNN-AE* convolutional neural network-based autoencoder

ConvLSTM* convolutional Long Short-Term Memory

DCGAN deep convolutional GAN

DDPG* deep deterministic policy gradient

DDQN double deep Q-network

DNN* deep neural network

DQN deep Q-network

DRL* deep reinforcement learning

DRNN* diagonal recurrent neural networks

DT* decision tree

ENN* Elman neural network

ERBFN* radial basis function neural network

ERNN* Elman recurrent neural networks

FIS* fuzzy inference system

FNN* fuzzy neural network

GAN* generative adversarial network

GBRT* gradient boosted regression trees

GBTE* gradient-boosted tree ensembles

GMDH* group method of data handling

GNB* gaussian naïve Bayes

GPR* gaussian process regression

GRU* gated recurrent unit network

GRNN* generalized regression neural network

ICA independent component analysis

IIRANN* infinite impulse response artificial neural network

JRNN* Jordan recurrent neural networks

KEDL* knowledge-enhanced deep learning

KE-DRL* knowledge-enhanced deep reinforcement learning

KE-LSTM* knowledge enhanced long short-term memory

KM k-means

KNN* k-nearest neighbors

LAFMN* local activation feedback multilayer network

LDA* linear discriminant analysis

LNN* linear neural network

LR* logistic regression

LSSVM* least squares support vector machine

LSTM* long short-term memory

MC* multiple correlation

MFQL* modified fuzzy Q-learning

MLR* multiple linear regression

MNB* multinomial naive Bayes

MNN* matrix neural network

MSC mean-shift clustering

NB* naïve Bayes

NESN* nonlinear echo state networks

NLN* neural logic network

OLR* ordinary linear regression

PCA principal component analysis

PI* Physics-informed

PPO proximal policy optimization

QDA* quadratic discriminant analysis

QL* Q-learning

RBF* radial basis function

RBFNN* radial basis function neural network

RF* random forest

RL* reinforcement learning

RNN* recurrent neural networks

RR* ridge regression

SC spectral clustering

SD-AE* stacked denoising autoencoder

SLDA* supervised latent Dirichlet Allocation

SGD* stochastic gradient descent

SVM* support vector machines

SVR* support vector regression

TRPO trust region policy optimization

WGAN Wasserstein GAN

XGBoost* extreme gradient boosting
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Performance-Based Design of Tall
Timber Buildings Under Earthquake
and Wind Multi-Hazard Loads: Past,
Present, and Future
S. Tesfamariam*

School of Engineering, The University of British Columbia, Kelowna, BC, Canada

The rapid growth of the urban population and associated environmental concerns are
challenging city planners and developers to consider sustainable and cost-efficient
building systems. Timber-based buildings, such as sustainable systems, are
increasingly used. The timber buildings, however, being lighter and flexible, can
be vulnerable to earthquakes and wind loads. This paper gives a state-of-the-art
review on performance-based design (PBD) considerations and future direction for
timber and timber-based hybrid buildings. The PBD review covered both earthquake
and wind loads and multi-hazard design considerations. The review also provided 1)
current practice and future direction in consideration of hazard, response, and loss
assessment within the multi-hazard PBD, 2) damping and energy dissipation devices,
3) optimization under uncertainty, and 4) future of surrogate and multi-fidelity
modeling in PBD.

Keywords: multi-hazard design, tall-timber building, damping, multi-fidelity models, energy dissipation devices,
optimization

INTRODUCTION

Evolution of Tall-Timber and Hybrid Buildings
The rapid growth of the urban population and associated environmental concerns challenged
city planners to consider sustainable and cost-efficient building systems (Nygaard et al., 2019;
Foster and Reynolds 2018; Smith and Frangi 2014). With the recent introduction of
manufactured mass timber elements, such as cross-laminated timber (CLT), laminated
veneer lumber, and glued laminated timber (glulam), sustainable tall-timber buildings
have become a viable option (Tesfamariam et al., 2021a, 2019, 2015; Tesfamariam and Das
2021; van de Lindt et al., 2020; Ahmed and Arocho 2020; Ramage et al., 2017; Malo et al., 2016;
Pei et al., 2015). What constitutes a “tall building” is relative to the time (Jennings 1970),
and the definition of “tallness” in a mass-timber building is evolving (Foster et al., 2016).
Figure 1 depicts the evolution of constructed, under construction, and proposed tall-timber
buildings.

Tall-timber buildings are lighter and more flexible (Foster and Reynolds 2018) and
consequently are vulnerable to wind loads due to limited overturning moment resistance
capacity and excessive vibration demand (Bezabeh et al., 2020a; Bezabeh et al., 2018a).
Limited studies are published on wind performance of timber and timber-based hybrid
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structure substantiated with wind tunnel tests (e.g., Bezabeh
et al., 2020b; Bezabeh et al., 2018a). Bezabeh et al. (2020a)
carried out high-frequency pressure integration wind tunnel
tests on tall-timber buildings (10, 15, 20, 30, and 40 stories).
The dynamic response and serviceability-performance limits
were assessed with respect to the 2015 National Building Code
of Canada (NBC) (NRC 2015). With height beyond 10 stories,
lateral drift and stiffness requirements can govern
serviceability limit state and require stringent wind design
consideration. Bezabeh et al. (2018c) experimentally and
analytically assessed the performance of a 10-story mass-
timber building under tornado-like laboratory simulations
and atmospheric boundary layer flow at Western University,
Canada. The results highlight that strong tornadoes pose
significant damage to drift-sensitive nonstructural
components.

Knowledge of damping in tall-timber buildings is limited
and uncertain (Bezabeh et al., 2018b; Edskär and Lidelöw 2019;
Reynolds et al., 2016; Kareem and Gurley 1996; Pagnini and
Solari 1988). With emerging tall-timber building construction
(e.g., Figure 1), the importance of damping was noted, and
practical solutions were provided. “Treet” (Malo et al., 2016),
for example, a 14-story timber apartment building in Norway,
is using the lateral-force resisting system that is diagonal
glulam beams. The CLT was used for the elevator shaft and
stairways, with additional concrete topped floor to improve the
wind performance. “Scotia Place” (Moore 2000) is a 12-story
steel-frame apartment building located in a high seismic zone
in New Zealand. Using the wood floor, the overall weight was
reduced with additional cost savings in material and floor
finishing. However, the lighter structure showed
vulnerability to wind and the need for supplemental
damping. Considering different levels of uncertain damping
values, Bezabeh et al. (2018a) showed the required damping
values to satisfy the NBC criteria.

Motivation
Different national and international seismic design codes, e.g.,
NBC (NRC 2015), International Building Code (ICC 2017),
follow prescriptive (deterministic) and force-based design. The
wind load design is mainly considering the first mode vibration
and serviceability limit state (e.g., cladding failure, occupant
comfort) (e.g., Ouyang and Spence 2021; Bezabeh et al., 2018a;
Bernardini et al., 2014). The seismic design principles are for
first mode deformation response and collapse prevention limit
state. This is not suitable for tall-timber buildings that have
higher mode contributions (Ramage et al., 2017; Willford et al.,
2008; Jennings 1970). In addition, under severe earthquakes,
the building can sustain irreparable damage with post-
earthquake occupancy and community recovery
implications (Takagi and Wada 2019). For the tall-timber
and hybrid buildings that are outside of the code-oriented
practice, performance-based design (PBD) is a viable approach
(Golesorkhi et al., 2017; Bezabeh et al., 2015; PEER 2017; Loss
et al., 2018; LATBSDC 2020; Alinejad et al., 2021; Tesfamariam
et al., 2021a). In wind engineering, there is a departure from
prescriptive to PBD for wind as reflected in ASCE (2019) pre-
standard.

The current building design codes use combination rules
(e.g., dead load and earthquake load) to achieve uniform
reliability (Crosti et al., 2010; Duthinh and Simiu, 2010). In
combination with other loads (dead load, live loads, snow
loads, etc.), the design is governed by earthquake or wind loads
(NBC 2015; ASCE 2017). The risk of exceeding a given
limit state is implicitly assumed to be the same in the
region where earthquake or wind is the dominant load
(Kwag et al., 2021; Duthinh and Simiu 2010). In cities, such
as Vancouver (high seismic zone) and Boston (low seismic
zone), for example, the challenge for structural designers is an
earthquake, and wind can be competing design loads (Wen and
Kang 2001a; Mahmoud and Cheng 2017; Tesfamariam et al.,

FIGURE 1 | Evolution of tall-timber design and construction (compiled from the Council on Tall Buildings and Urban Habitat database on January 1, 2022).
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2019). The earthquake and wind loads multi-hazard (MH)
design might not necessarily be governed by higher intensity
single hazard but be dominated by the lower intensity and
more frequent hazard (Wen and Kang 2001a; Wen 2001). Wen
(1990) proposed a uniform reliability design rule of
combination. With increasing building height, the need for
MH design consideration of tall building design is apparent
(e.g., Suksuwan and Spence 2018).

With increasing demand in the design and construction of tall-
timber buildings, MH PBD principles beyond the current design
guideline are needed. The PBD framework for wind, earthquake,
and MH tall-timber design is depicted in Figure 2. From the
current literature review, for PBD of tall-timber building, issues
related to modeling, consideration of site-specific soil–structure
interaction (SSI), energy dissipation devices, efficient
optimization algorithms, and damping are apparent
(Figure 2). Thus, this paper is a state-of-the-art review of the
MH design consideration and discussion on the emerging
modeling consideration for tall-timber design and future
implementation.

Objectives
In this paper, the first high-level review of the current PBD for
seismic and wind loads is provided. In addition, the review is
extended for the earthquake and wind MH framework. Within
the PBD framework, emerging challenges for tall-timber
buildings in quantifying site-specific hazard engineering
demand parameters are discussed. The problem of PBD is

faced with a plethora of information and computationally
expensive models. This entails the use of machine learning
techniques for surrogate models; emerging multi-fidelity
models are discussed in more detail. The review provided in
this paper is outlined below.

• Detailed review and evolution of PBD design for earthquake
(e.g., FEMA 2012; PEER 2017; LATBSDC 2020) and wind
(Spence and Kareem 2014; Cui and Caracoglia 2018;
Bezabeh et al., 2020b; Hou and Jafari 2020; Kareem
2020) are provided in the cited literature. Thus, the
review provided here is brief to set the context for the
MH design consideration and emerging modeling
consideration.

• With limited tall-timber buildings designed, the damping
value to use for design and analysis is an ongoing
challenge. This paper provides a review of the source of
damping and damping values obtained from in situ
measurements.

• SSI is highlighted to be important in the damping
quantification and review, and future direction is
provided.

• The lighter and tall-timber buildings are vulnerable to wind,
and this can be mitigated using damping technologies. The
different damping technologies are briefly reviewed, and
current applications are highlighted. Detailed reviews on
different damping technologies and applications to tall
buildings are discussed in the literature (e.g., Soong and

FIGURE 2 | Earthquake and wind MH design framework.
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Spencer Jr 2002; Christopoulos and Filiatrault 2006;
Takewaki 2011; Lago et al., 2018).

• Finally, with evolving computational tools, the different
optimization techniques and surrogate models are
reviewed. With the computationally intensive design and
optimization, the current application of the multi-fidelity
models is reviewed.

This paper is intended to give a highlight and opportunity for
current state-of-the-art and future research direction.

PERFORMANCE-BASED DESIGN FOR
EARTHQUAKE LOADS

In the 1990s, PBD was introduced as a new structural design
procedure to meet targeted building performance subject to
ground shaking (SEAOC 1995; FEMA 1997). Although the
first-generation PBD methods considered actual seismic
demand and nonlinear building capacity, they were
deterministic in nature. The second generation of
performance-based earthquake engineering (PBEE)
methodology was proposed to quantify the mean annual rate
of exceedance of earthquake impact λE(dv) by capturing the
uncertainty in ground shaking, building behavior, and decision
variables (Cornell and Krawinkler 2000; Porter 2003). The PBEE
framework (summarized in Table 1) was put forward by the
Pacific Earthquake Engineering Research Center (PEER) (Porter
2003).

The PEER framework has been applied in the seismic design
and evaluation of buildings (e.g., O’Reilly and Calvi 2019;
Shome et al., 2015; Jayaram et al., 2012; Zareian and
Krawinkler 2012; Liel et al., 2011; Goulet et al., 2007). The
PEER’s triple integral implicitly assumes that damage measure
(dm) conditioned-on-engineering demand parameter (edp) is
independent of intensity measure (im), and decision variable
(dv) conditioned-on-dm is independent of im and edp. The
seismic impact quantification is decomposed into subtasks that
can be carried out by a different group of experts (Der
Kiureghian 2005). This conditional independence of the

PEER framework has enabled other researchers to extend it
to PBD for fire (e.g., Lange et al., 2014), hurricane (Barbato
et al., 2013), tsunami (Attary et al., 2017; Goda et al., 2021),
and wind (e.g., Ciampoli et al., 2011; Petrini and Ciampoli,
2012).

Computing the mean annual rate of exceedance of dvs is
computationally intensive, and different approximations are
proposed. The triple integral in the PEER framework can be
computed using computationally intensive Monte Carlo
simulations (e.g., Jayaram et al., 2012; Goulet et al., 2007).
Different stochastic models, such as Poisson, Markov, semi-
Markov, renewal, or trigger type, have been considered for
earthquake modeling (Anagnos and Kiremidjian 1984). With
Poisson’s occurrence of the earthquake load assumption, Der
Kiureghian (2005) formulated a closed-form solution of the PEER
framework. The closed-form solution of the mean annual rate is
identical to the PEER framework. However, when the PEER
framework is extended beyond 1 year, it gives a conservative
result (Der Kiureghian 2005). Similarly, with Poisson’s
earthquake arrival assumption, Wen and Kang (2001a)
developed a closed-form solution for earthquake load
formulated under life cycle cost (LCC) (Table 2). The LCC
equation shown in Table 2 is a generalized equation that can
be used for earthquake, wind, and earthquake and wind MH. In
addition, it accounts for the coincidence rate of earthquake and
wind hazard in the calculation of the LCC. Takahashi et al. (2004)
considered a renewal model of earthquake occurrences in the
LCC analysis. The LCC approach has been used in buildings’
seismic design applications (e.g., Wen and Kang 2001b; Liu et al.,
2003; Mitropoulou et al., 2011; Castaldo et al., 2016). Mahsuli and
Haukaas (2013) proposed a reliability-based approach to solving
the loss assessment.

PERFORMANCE-BASED DESIGN FOR
WIND LOADS

The current wind load design follows the Davenport wind
loading chain (Davenport 1967; Isyumov 2012). In the wind
loading chain, the wind response of tall buildings is determined

TABLE 1 | PEER performance based design framework.

References Equation

Cornell and Krawinkler (2000), PEER (2017) λE(dv) � ∫
dm

∫
edp

∫
im

G(dv|dm)|dG(dm|edp)||dG(edp|im)||dλ(im)|

λE(dv) = mean annual rate of exceedance of earthquake impact; dv = decision variable corresponding to the performance
metric (for example, repair cost, downtime); dm = damage measure; edp = engineering demand parameter; im = intensity
measure for the ground motion; λ(im) = mean annual rate that a certain level of im is exceeded, G (x|y) = complementary
cumulative distribution function of x given y

Ciampoli et al. (2011) λW(dv) � ∫
dm

∫
edp

∫
ip

∫
im

G(dv|dm)|dG(dm|edp)||dG(edp|im, ip)||dG(ip|im)||dλ(im)|

λW(dv) =mean annual rate of exceedance of wind impact; dv = decision variable corresponding to the performance metric
(for example, repair cost); dm = damage measure; edp = engineering demand parameter; ip = wind–structure interaction;
im = intensity measure for the wind; dλ(im) = mean annual rate that a certain level of im is exceeded, G (x|y,z) =
complementary cumulative distribution function of x given y and z. The structural response (edp) is characterized conditional
on the wind–structure interaction (ip) in addition to the wind effects (im)
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by considering local wind climatology, local wind exposure
and topography, structural aerodynamic characteristics
(governed by building shape), and structural dynamic
properties (Kareem et al., 2019; Bezabeh et al., 2020b; Solari
2020). The framework was developed for synoptic and
stationary winds. Non-stationarity of the wind load,
however, has been identified as an important factor to
consider (Kareem and Wu 2013; Solari et al., 2015; Hong
2016). Kareem et al. (2019) generalized the Davenport wind
loading chain to account for a non-stationary
wind–force–response relationship. Unlike earthquake load,
for wind load, the building’s aerodynamic interactions are
evolving with the change in the built environment
(Davenport 1983; Elshaer et al., 2017). Thus, the design for
wind loads should account for the evolution of the built
environment.

Bezabeh et al. (2020b) have provided a state-of-the-art review
on PBD for wind loads. The PEER framework was extended for
“Performance-Based Wind Engineering” (PBWE, Table 1,
Ciampoli et al., 2011). Different researchers have used the
PBWE framework (e.g., Augusti and Ciampoli 2008; Ciampoli
et al., 2011; Ciampoli and Petrini 2012; Spence and Kareem 2014;
Chuang and Spence 2017; Suksuwan and Spence 2019; Ouyang
and Spence 2021). Similar to PBEE, the PBWE framework is
computationally intensive and requires quantifying the
probabilistic hazard to loss assessment. Wen and Kang
(2001a) proposed an LCC-based closed-form solution of the
probabilistic wind design framework (Table 2). The LCC
framework has been applied for tall building wind load design
(e.g., Le and Caracoglia 2021; Micheli et al., 2019, 2021; Cui and
Caracoglia 2018, Cui and Caracoglia 2020; Ierimonti et al., 2017;
Ierimonti et al., 2018). Bezabeh et al. (2018a, 2018b) extended the
Davenport wind loading chain to account for uncertainties and
formulated it in a reliability framework.

The wind load design was mainly undertaken for a linear
response that will consequently furnish over designed system
(Alinejad and Kang, 2020). The consideration of nonlinear
wind design is an emerging area (e.g., Alinejad et al., 2020,
2021; Bezabeh et al., 2020b; Elezaby and El Damatty 2020;
Huang and Chen 2022). To ameliorate this, the ASCE (2019)
pre-standard has put forward a PBWD of buildings for wind
load, where both linear elastic and nonlinear time history
analysis (NLTHA) can be utilized. Chuang and Spence

(2017) presented a wind PBD framework to account both
for collapse and non-collapse limit states. Bezabeh et al.
(2021a, 2021b) proposed a PBWD for a nonlinear wind
design framework. Bezabeh et al. (2020b) proposed
using self-centering systems to overcome the
progressive unidirectional accumulation of plastic
deformations.

MULTI-HAZARD DESIGN UNDER
EARTHQUAKE AND WIND LOADS

For earthquake and wind MH design framework, fragility-
based (Zheng et al., 2021; Li et al., 2021; Li et al., 2020), LCC-
based (Kleingesinds and Lavan 2021; Kleingesinds et al., 2021;
Venanzi et al., 2018; Mahmoud and Cheng 2017; Wen and
Kang 2001a; Wen and Kang 2001b), and risk-based (Crosti
et al., 2010; Duthinh and Simiu 2010; Suksuwan and Spence
2018; Wang M. et al., 2021; Kwag et al., 2021; Roy et al., 2021;
Zheng et al., 2021) framework have been proposed to meet
different performance objectives (e.g., serviceability/comfort,
life safety).

Wen and Kang (2001a) formulated a generalized LCC
framework that considers both correlated and uncorrelated
earthquake and wind loads (Table 2). The MH framework
assumed that earthquake and wind hazards follow a Poisson
model (Wen 1990). The MH PBD framework considers
uncertainties in hazard, demand, capacity, and initial
construction Co and damage costs. The earthquake and wind
loads vary over time; however, the co-occurrence of the
maximum values for earthquake and wind loads is small, and
this correlation can be ignored (Wen and Kang 2001a; Wen
2001). Suksuwan and Spence (2018) and Chulahwat and
Mahmoud (2017), for example, integrated the PEER
earthquake λE(dv) and wind λW(dv) PBD frameworks
(Table 1) for earthquake and wind MH design, λMH(DV), as:

λMH(dv) � λE(dv) + λW(dv) (1)
With an increasing body of knowledge in the MH design
framework, there is no reported study for tall-timber
buildings. The MH framework for the tall-timber building is
presented in Figure 2.

TABLE 2 | LCC performance based design framework.

Reference Equation

Wen and Kang 2001a; Wen and Kang 2001b E[C(t,X)] � Co(X) + CF(X)(1−e−λtλ ) + Cm(X)
λ (1 − e−λt)

E (·) = expected value, Co = initial cost; X = design variable; e−λt = discounted factor over time t, λ = constant discount rate
per year; Cm = operation and maintenance cost per year; and CF(X) = total expected cost due to all (k) limit states;
defined as

CF(X) � ∑k
l�1Cl[∑n

i�1υiPi
l(X) +∑n−1

i�1 ∑n
j�i+1υijP

ij
l (X) + + ∑n−2

i
∑n−1

j�1+1 ∑n
k�j+1υijkP

ijk
l (X) +/]

υi = mean occurrence rate of hazard i; υij = υiυj(μdi + μdj ) = coincidence rate of hazards i and j; mean occurrence rate of

hazard i;; υijk = υiυjυk(μdiμdj + μdj
μdk

+ μdiμdk ) = coincidence rate of hazards i, j and k; mean occurrence rate of hazard i; Pi
l =

probability of limit-state l given the coincidence of hazard i; Pij
l = probability of limit-state l given the coincidence of hazard i

and j; Pijk
l = probability of limit-state l given the coincidence of hazard i, j and k; μdi = mean duration of hazard i
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SITE-SPECIFIC HAZARD AND
ENGINEERING DEMAND PARAMETERS

In 1910, the Seismology Society of America identified three
emerging areas (McGuire 2004): 1) earthquake event, 2)
associated ground motions, and 3) effect on structures. The
three emerging areas are still valid today for innovative
building systems to reliably quantify the im and edps. In wind
engineering, it has gone through similar evolution with the wind
loading chain (e.g., Kareem et al., 2019; Bezabeh et al., 2020b;
Solari 2020).

The edps in the PBD framework (Table 1) are structural
responses, such as acceleration and inter-story drift ratio (e.g.,
Tesfamariam and Goda 2015; Cui and Caracoglia 2020), obtained
through NLTHA. The site-specific hazard can be undertaken
using probabilistic seismic hazard analysis (McGuire 2004;
Atkinson and Goda 2013; Bommer and Stafford 2020)
framework, considering empirical equations (Shahi and Baker
2011; Stafford 2014) or physics-based (Atkinson and Silva 2000;
Yamamoto and Baker 2013) ground motion characterization.
Finally, different ground motion selection algorithms are used to
carry out the NLTHA (e.g., Bradley et al., 2015; Goda, 2015).

Advances in computational resources have enabled
researchers to develop high-resolution coupled physics-based
ground motion sources to structural simulation models
(Kenawy et al., 2021; McCallen et al., 2021). This eliminates
the epistemic uncertainty in quantifying free field and foundation
level shaking. This model, however, requires a detailed site-
specific source model and is computationally intensive. The
computationally intensive PBD simulations can be ameliorated
with a cloud-enabled computational platform (Deierlein et al.,
2020; Kareem 2020). This might not be suitable for preliminary
design iterations and verifications; however, it can be used for
final design validation.

Once the im at the site is obtained through the hazard analysis,
the im and edp relation is established through fragility curves
(e.g., Goda and Tesfamariam 2015; De Risi et al., 2019; Cui and
Caracoglia 2020; Le and Caracoglia 2021; Silva et al., 2021). Other
important areas that warrant investigation for tall-timber
buildings are the effect of long-duration earthquakes (Jennings
1970; Tesfamariam and Goda 2017), mainshock and aftershock
earthquake sequences (Goda 2015; Tesfamariam and Goda, 2017;
Tesfamariam and Goda 2015), a dependency between edps (Goda
and Tesfamariam 2015; De Risi et al., 2019), and directionality of
wind loads (e.g., Cui and Caracoglia 2020).

LOSS ASSESSMENT

The accuracy of the loss assessment is influenced by the available
data and the choices of relevant models and parameters
(Hosseinpour et al., 2021; Cremen and Baker 2021; O’Reilly
and Calvi 2019; Baker and Cornell 2008). In North America,
the current seismic loss assessment has evolved from expert-
driven (e.g., ATC 13, ATC 1985) to detailed simulation-based
models (HAZUS, FEMA–NIBS 2003; FEMA P58, FEMA 2000).
In a case where historical data are scarce, simulation-based

methods are viable options (Yang et al., 2009; Zareian and
Krawinkler 2012). HAZUS (FEMA–NIBS 2003; Kircher et al.,
2006) quantifies the loss assessment using the maximum inter-
story drift ratio obtained through simulation. Response of tall
buildings are subject to multimodal response, and the loss
assessment is better captured using a nonuniform evaluation
of loss distribution over the height (Shome and Luco 2010; Shome
et al., 2015). FEMA P58 (FEMA 2012; ATC 2018) developed a
fragility-based loss assessment tool named performance
assessment calculation tool. The performance assessment
calculation tool contains a large database consisting of the
mean and dispersion values of different consequence functions
(repair cost, repair time, casualty, and dollar loss). Aslani and
Miranda (2005) proposed a story-based loss assessment by
considering the damage, downtime due to business
interruption, injuries, and loss of lives. Different authors have
now developed simplified story-based loss assessments (e.g.,
Papadopoulos et al., 2019; Shahnazaryan et al., 2021). Similar
trends are followed in the loss assessment under wind load (e.g.,
Le and Caracoglia 2021; Micheli et al., 2019; Micheli et al., 2021;
Cui and Caracoglia 2018, 2020; Ierimonti et al., 2017; Ierimonti
et al., 2018).

The current state-of-the-art evaluation and design are moving
from loss quantification to post-earthquake recovery, called
resiliency (Cimellaro et al., 2010; Cimellaro 2013; McAllister
2016; Almufti and Willford 2021; Furley et al., 2021). A
comprehensive resilience rating system, Resilience-Based
Earthquake Design Initiative, was developed by Arup (Almufti
and Willford 2021). Wilson et al. (2021) implemented loss
assessment for CLT building using FEMA P58. Furley et al.
(2021) implemented a stochastic model to quantify the
resiliency of a two-story self-centering CLT building.

SOIL–STRUCTURE INTERACTION

SSI is influenced by the site conditions, foundation embedment,
flexibility, and shape on foundation impedance (Stewart et al.,
1999; Sotiriadis et al., 2020). This interaction is complex, and it
can have both beneficial and detrimental effects on the response
(Mylonakis and Gazetas 2000). Low-fidelity spring models (e.g.,
Stewart et al., 1999; Sotiriadis et al., 2020) and high-fidelity finite
element models (e.g., Rahmani et al., 2014; Arboleda-Monsalve
et al., 2020; McCallen et al., 2021) have been used for SSI. Low-
fidelity, linear, and nonlinear spring models can be used at the
foundation of the building structure (e.g., Stewart et al., 1999;
Sotiriadis et al., 2020). Lesgidis et al. (2018) proposed frequency-
and intensity-dependent spring models for SSI.

The SSI is an important intrinsic source of damping for tall
buildings (e.g., Cruz and Miranda, 2017). The SSI will
consequently impact the response of tall buildings under
earthquake and wind loads. However, the SSI effect is not
considered in the current tall-timber building design literature.
Liu et al. (2008) showed that for a wind-induced response of tall
buildings incorporating tuned mass damper (TMD), neglecting
the SSI overestimated the response and underestimated the
effectiveness of the TMD. Zhou et al. (2018), for eddy current
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TMD and wind-load application on tall buildings, showed that,
with consideration of SSI, the short return period acceleration
response exceeded the human comfort limit states.

DAMPING

Damping mechanisms in tall buildings are associated with
intrinsic/inherent (or structural), aerodynamic, hysteretic, and
supplemental/additional (Smith et al., 2010; Lago et al., 2018).
Factors that contribute to the damping are as follows (Yeh et al.,
1971; Cruz and Miranda, 2016, 2017): material, friction between
members and connections, structural system and joint types,
foundation and soil types, interior partitions, exterior cladding,
other nonstructural members, and vibration amplitude.

The damping associated with different mass timber building
typologies and connections can be quantified from field
measurement (e.g., Smith et al., 2010; Kijewski-Correa and
Pirnia, 2007). With in situ ambient vibration measurements,
Edskär and Lidelöw (2019) and Reynolds et al. (2016)
reported building height and damping relationship (Figure 3).
From Figure 3, it is apparent that, as expected, with the increase
in building height, the damping values are decreasing. The
damping–height empirical equations for steel, concrete, and
steel/concrete buildings reported in Smith et al. (2010) are
plotted in Figure 3. Overall, both have a similar trend, and
some of the timber-building damping values are bounded
between the empirical equation for steel and RC damping
values. The variability in the damping values for the timber
building is high, and this warrants more investigation to
understand the causal relation of different explanatory factors.
The current analytical studies reported on mass timber building
do not consider the SSI. Thus, the response obtained through the
in situmeasurements and analytical studies can be different (e.g.,
Edskär and Lidelöw 2017, 2019). Thus, future analytical studies
should incorporate the SSI in the damping calculations. The
building height and frequency relationship is shown in Figure 4.
One of the main explanatory factors for the reduction in damping

and frequency can be intrinsic damping (e.g., Tamura and
Suganuma 1996; Smith et al., 2010).

ENERGY DISSIPATION DEVICES

Motions of a building, due to earthquake and wind loads, are
traditionally controlled through mass and stiffness
proportioning. Increasing the stiffness, however, can increase
the acceleration demand. In addition, it can reduce the overall
seismic energy dissipation capacity with consequent unintended
failure of connections and capacity-protected elements (ASCE
2019). Using supplemental energy dissipators, the exceedance of
serviceability limit state can be reduced. Figure 5 depicts the
high-level category of the different supplemental energy
dissipation devices.

The supplemental energy dissipation devices can be
categorized as passive, active, semiactive, and hybrid damping
systems and seismic isolation systems (Soong and Spencer Jr
2002; Takewaki 2011; Lago et al., 2018; De Domenico et al., 2019;
Jafari and Alipour 2021b; Takewaki and Akehashi 2021).
Traditional passive control damping, such as TMD and tuned
liquid damper, are tuned to the fundamental period of the
structure and are not suitable for earthquake response
mitigation (Willford et al., 2008; Lago et al., 2018). Under
severe earthquake loads, the structural response will undergo
yielding and consequent period elongation. On the other hand,
metallic damper used for earthquake loads will not be suitable for
wind loads, as the serviceability wind loads will not yield metallic
dampers (Willford et al., 2008). Viscoelastic dampers
(Christopoulos and Montgomery 2013) are attractive damping
technology that can be used both for earthquake and wind loads.
Under MH design consideration, finding the right damper and
location by satisfying the MH performance limit states can be cast
as an optimization problem (e.g., Suksuwan and Spence 2018; Roy
et al., 2021).

Different papers are published on the application of energy
dissipation devices for tall buildings: earthquake (e.g.,

FIGURE 3 | Variation of damping with height. FIGURE 4 | Variation of frequency with height.
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Christopoulos and Montgomery 2013; Kasagi et al., 2016;
Nakamura and Hanzawa 2017; Zhou et al., 2018; Hashizume
and Takewaki 2020; Uemura et al., 2021), wind (e.g., Liu et al.,
2008; Giaralis and Petrini 2017), and MH (earthquake and wind)
(e.g., Roy and Matsagar 2019, 2020; Wang M. et al., 2021; Li et al.,
2021) loads. Use of base isolations for tall buildings under
earthquake (e.g., Taniguchi et al., 2016; Makita et al., 2018),
wind (e.g., Chen and Ahmadi 1992; Vulcano 1998; Cheng
et al., 2002), and MH (earthquake and wind) (e.g., Roy et al.,
2021) loads are also reported in the literature. Liu et al. (2008) and

Zhou et al. (2018), respectively, considered the influence of SSI on
TMD and eddy-current TMD on tall building response under
wind loads. Façades of buildings often are considered
nonstructural elements. Recent innovative
connections, however, are paving the way for the potential
use of the façades as distributed dampers (Jafari and Alipour
2021a,c).

The application of dampers in timber building is limited
(e.g., Huang and Chang 2018; Hashemi et al., 2020). The
damping for the mass timber is mostly considered with

FIGURE 5 | General classification of supplemental energy dissipation devices.
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energy dissipating connectors (e.g., Pu et al., 2016; Fitzgerald
et al., 2020). More studies, however, in light timber structures
are reported (Bolmsvik and Brandt 2013; Jayamon et al., 2018;
Ugalde et al., 2019; Tesfamariam et al., 2021b; Nakamura and
Fujii 2021).

OPTIMIZATION

The MH design optimization problems are subject to
uncertainties both on the demand and capacity (e.g.,
Rosenblueth 1986; Wen 2001; Franchin 2004; Der Kiureghian
and Ditlevsen 2009; Spence and Kareem 2014; Kleingesinds et al.,
2021). Different optimization under uncertainty algorithms is
proposed. The design optimization, under uncertainty, can be
cast under reliability-based design optimization (RBDO) (Aoues
and Chateauneuf 2010; Valdebenito and Schuëller 2010; Song
et al., 2021) and robust design optimization (RDO) (Chatterjee
et al., 2019; Chakraborty et al., 2021; Das et al., 2021) frameworks.
Subsequently, the problem is solved using gradient (e.g., Franchin
et al., 2018; Kleingesinds and Lavan 2021) or non-gradient
(derivate-free) (e.g., Hare et al., 2013; Afshari et al., 2019;
Umeura et al., 2021) optimization algorithms. In addition, the
design requirements to satisfy both earthquake and wind MH
loads can be conflicting, and the problem can be formulated
under a multi-objective optimization framework (e.g., Afshari
et al., 2019).

Reliability-Based Design Optimization
The RBDO technique has proven its utility for optimization
under uncertainty (Song et al., 2021). In RBDO, although user-
defined performance functions are optimized, probability
failure criterion is added as a constraint. The solution for
RBDO can be classified as formulated, among others, as two-
level and decoupled methods (De et al., 2021). The two-level
optimization, which is computationally intensive, entails the
use of two nested loops, i.e., the inner loop to solve the
reliability analysis and the outer loop to carry out the
design optimization. The decoupled method, which is less
computationally intensive, entails carrying out deterministic
RBDO by replacing the inner-loop reliability analysis (Madsen
and Hansen 1992). Spence et al. (2016) proposed an efficient
algorithm for the RBDO of a large-scale uncertain system.
Chakraborty and Roy (2011) used RBDO for the optimal
design of TMD under earthquake load. Altieri et al. (2018)
investigated the optimal design of a nonlinear viscous damper
using RBDO under earthquake load. Das et al. (2020) showed
the effectiveness of the estimation of tuning parameters of
nonlinear energy sink using RBDO. Ontiveros-Perez et al.
(2019) used RBDO of passive friction damper for mitigation
of earthquake-induced vibration. To enhance the seismic
performance of the base-isolated structure, Peng et al.
(2021) proposed a reliability-based optimization technique
for an adaptive sliding base isolation system. Zou et al.
(2010) studied the reliability-based optimization of the
base-isolated concrete building considering the drift of the
superstructure as a performance criterion.

Robust Design Optimization
A system is called robust when the system is insensitive to the
effects of uncertainty. The RDO method propagates uncertainty
by minimizing the mean and standard deviators of the structural
responses. This problem is solved as a multi-objective
optimization problem. Miguel et al. (2014) showed the optimal
location and parameters of friction damper using RDO. Yu et al.
(2013) carried out a reliability-based RDO of TMD tomitigate the
earthquake-induced vibration of building structures. The
effectiveness and robustness of TMD were studied by Greco
et al. (2015) to mitigate the seismic-induced vibration for
buildings. Lagaros and Fragiadakis (2007) proposed an LCC-
based RDO for the design of steel moment-resisting frames. The
RDO, for estimating the tuning parameters of nonlinear energy
sink with negative stiffness, was investigated by Chakraborty et al.
(2021) and Das et al. (2021).

Topology Optimization
With advances in finite element modeling, optimizing the shape
and form of the tall-timber building can be undertaken under
topology optimization. The topology optimization, for a
prescribed structural domain, under a set of the objective
function and design constraints, provides a rational approach
to obtain optimal layout (Sigmund and Maute 2013). Beghini
et al. (2014) presented a review of structural topology
optimization and highlighted the means of finding the balance
between engineering and architecture. This can be of particular
interest in tall-timber buildings, as it can integrate aesthetics and
structural factors in design. Martin and Deierlein (2020)
proposed modal compliance-based topology optimization for
the tall building subjected to dynamic seismic excitation.
Suksuwan and Spence (2018) proposed a simulation-centered
performance-based MH topology optimization framework for
earthquake and wind loads. Goli et al. (2021) showed the
parametric topology optimization of the lateral bracing
systems for tall buildings subjected to wind and gravity loads
using bidirectional evolutionary structural optimization. Gomez
et al. (2020, 2021) showed the topology optimization of the
building subjected to seismic and wind stochastic excitations,
respectively. Bobby et al. (2016, 2017) proposed a data-driven and
reliability-based topology optimization of uncertain wind-excited
tall buildings, respectively. Bobby et al. (2014) proposed a
performance-based topology optimization framework for
wind-excited tall buildings.

MULTI-FIDELITY SURROGATE MODELS

High-fidelity and detailed three-dimensional building models can
be used for the NLTHA of buildings (e.g., Rinaldin and
Fragiacomo 2016; Lu et al., 2018; Wang and Wu 2020;
Tesfamariam et al., 2021a). For computationally intensive
three-dimensional models or experimental data, however, the
use of a physics-informed neural network, surrogate models, and
multi-fidelity models can be the future direction (Peherstorfer
et al., 2018; Swischuk et al., 2019; Deierlein et al., 2020;
Chakraborty 2021; Karniadakis et al., 2021).
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Surrogate Models
For computationally expensive design and optimization, a
surrogate model (e.g., artificial neural network, Lehký et al.,
2018; response surface method, Foschi et al., 2002), constructed
using few training samples, can replace the original limit state.
In the surrogate model development, adaptive sampling
techniques can be considered to enhance the reliability of the
prediction. Such sampling techniques, for example, are Kriging
(e.g., Dubourg et al., 2011; Bernardini et al., 2014; Li et al., 2016;
Zhang et al., 2017), adaptive Kriging (Das and Tesfamariam
2020; Kroetz et al., 2020; Zhang et al., 2022), adaptive Bayesian
support vector regression (Wang J. et al., 2021), polynomial
chaos-based Kriging (Das et al., 2020), spectral representation
(Zhao et al., 2021), Kriging and adaptive wavelet network
(Micheli et al., 2020a), and Bayesian deep learning (Luo and
Kareem 2020). In uncertainty propagation, assemble of
surrogate models can be used (e.g., Wang et al., 2019; Das
et al., 2021). Micheli et al. (2020b) used multiple-surrogate
models for probabilistic performance assessment of wind-
excited tall buildings.

Physics-Informed Neural Network
A physics-based (informed) neural network (Wu et al., 2018;
Beucler et al., 2021; Haghighat and Juanes 2021) is an
emerging and promising modeling technique. In a physics-
based neural network, the physics of the problem (e.g.,
structural model output) is coupled with machine learning
(e.g., neural network) to develop surrogate models. Lai et al.
(2021) presented structural identification with physics-
informed neural ordinary differential equations. Yucesan
et al. (2021) proposed a framework using a physics-
informed neural network for adjusting the outputs of
torsional vibration dampers to experimental data. De
(2021) applied a physics-based neural network model for
base-isolated buildings and wind-excited tall structures.
Wang and Wu (2020) implemented a physics-informed
neural network for wind-induced nonlinear structural
dynamic analysis.

Multi-Fidelity Models
A state-of-the-art review on multi-fidelity models is discussed in
Peherstorfer et al. (2018). The multi-fidelity approach considers
the integration of a high-fidelity (higher accuracy, higher
computational cost) model with low fidelity (lower accuracy,
lower computational cost). The integration in the multi-fidelity
approach entails adaptation (i.e., enhancing the low-fidelity
model), fusion (i.e., combining the low- and high-fidelity
results), and filtering (i.e., the high-fidelity model is invoked
after filter using the low-fidelity results) (Peherstorfer et al., 2018).

The multi-fidelity approach is now applied to earthquake
engineering problems. Zhang et al. (2022) developed adaptive
multi-fidelity Gaussian process reliability analysis to solve
reliability problems. Royset et al. (2019) presented a multi-
fidelity analysis for risk-adaptive statistical learning method to
predict structural response. Yang and Perdikaris (2019) presented
conditional deep surrogate models for probabilistic data fusion

and multi-fidelity modeling of stochastic systems. Patsialis and
Taflanidis (2021) used a multi-fidelity Monte Carlo simulation
for seismic risk assessment. Sevieri et al. (2021) presented a multi-
fidelity Bayesian framework for robust seismic fragility analysis.
Chatzidaki and Vamvatsikos (2021) used a multi-fidelity model
for probabilistic seismic demand models for fragility assessment.
Zhou and Tang (2021) used multi-fidelity data fusion for the
efficient characterization of dynamic response variation. Li and
Jia (2020) used a multi-fidelity Gaussian process model
integrating low- and high-fidelity data considering censoring.
Xu et al. (2016) proposed a computational framework for regional
seismic simulation of buildings with multiple-fidelity models.
This risk assessment is suitable for regional seismic and wind
hazards loss assessment. Dey et al. (2021) used a multi-fidelity
approach for uncertainty quantification of buried pipeline
response undergoing fault rupture displacements. Lopez-
Caballero (2021) utilized a multi-fidelity approach for
probabilistic seismic analysis of liquefiable embankment.

Similar multi-fidelity approaches can be considered for
computing the edps under wind loads. To compute the edps in
the wind loading chain, high-frequency pressure integration wind
tunnel tests (Bezabeh et al., 2021a) or computational fluid dynamics
(CFD) (Kareem 2020) can be considered. Moni et al. (2020)
implemented an aeroelastic hybrid simulation of a base-pivoting
building model in a wind tunnel. The experimental testing is not
readily available for preliminary design and iteration. Reducing our
reliance on physical testing was one of the grand challenges put
forward by Masters (2016). Kareem (2020) and Ding and Kareem
(2018) implemented amulti-fidelity CFDmodeling approach, where
the results of low-fidelity (e.g., Reynolds-averaged Navier–Stokes)
and high-fidelity (e.g., large eddy simulation) simulations can be
combined. Lamberti and Gorlé (2021) implemented a multi-fidelity
machine learning framework to predict wind loads on buildings.
Karem and Kwon (2017) proposed cyber-based data-enabled wind
load effects on civil infrastructures. Bobby et al. (2016) proposed a
data-driven simulation-based framework for the effective topology
optimization of uncertain and dynamic wind-excited tall buildings.
Bernardini et al. (2014) proposed an aerodynamic shape
optimization of civil structures using a CFD-enabled
surrogate model.

CONCLUSION AND FUTURE DIRECTION

The rapid growth of the urban population and associated
environmental concerns challenged city planners and
developers to consider sustainable and cost-efficient building
systems. Mass timbers, such as CLT panels and glulam
members, have been used as viable, sustainable tall-timber
buildings. The tall-timber buildings, however, are lighter and
more flexible, which can make those buildings vulnerable to
earthquakes and wind loads. With emerging computational
tools and analytical models, carrying out PBD with high-
fidelity models is apparent. With the current and future
research direction in consideration, in this paper, we carried
out a state-of-the-art review on PBD for earthquake, wind, and
MH loads. The state-of-the-art review has highlighted the
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challenge and future direction for tall-timber building, which is
summarized below.

• With increasing complexity in the tall-timber buildings, the
need for a high-fidelity model and validation through
experimental work is apparent. Subsequently, multi-
fidelity modeling can be developed for design and
optimization.

• Damping is a critical factor that influences the response of
the building under earthquake and wind loads. As more tall-
timber buildings are constructed, quantifying the damping
values for tall-timber buildings is vital. This will enhance the
knowledge and confidence in designing the buildings under
MH. With more data collected on tall-timber buildings,
data-driven models (e.g., Spence and Kareem 2013) are a
viable alternative in the preliminary design phase.
Frequency dependency of the intrinsic damping and
different excitation levels, ameliorating the earthquake
and windMH design implementation, are challenging tasks.

• Current studies on tall-timber design and analysis do not
take the SSI into consideration. The importance of the SSI
was highlighted, and in this direction, future concerted
efforts should be made. To reduce the computational

cost, a multi-fidelity model of SSI, e.g., finite element and
spring models, can be implemented.

• For the MH design framework, component-based fragility
curves and loss data for tall-timber buildings should be
developed and ameliorated in the FEMA P58 database.

• The design of tall-timber buildings under MH loads is
complex and subject to uncertainties. This paper has
provided a review on design optimization under
uncertainty, with consideration of RBDO, RDO, and
topology optimization.
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Blockchain is a technology that allows the recording of information in a way that it is difficult
or practically impossible to alter, hack, or cheat. It is a new, promising technology,
considered by many as a general-purpose technology (GPT). GPTs are technologies
that have the potential to affect an entire economy, impacting economic growth and
transforming both everyday life and the ways in which we conduct business. We present a
bibliometric analysis of the relevant literature, followed by a discussion about monetary
mediums and the evolution of bitcoin, as the first digital medium managing to solve the
“double-spending” problem and the first successful implementation of blockchain
technology. The computational operations involved in blockchain are presented,
together with the cryptographic technologies associated with it, its unique
characteristics, and the advantages it offers as a technology. A comprehensive
literature review is provided, of the current state of the art in blockchain in the fields of
civil engineering, architecture and the construction industry. Six important application
areas are identified, and the relevant literature is investigated. Namely, building information
modelling and computer aided design, contract management and smart contracts,
construction project management, smart buildings and smart cities, construction
supply chain management, and real estate. Finally, we discuss the future applications,
the challenges and the opportunities that blockchain technology brings to these fields.

Keywords: blockchain, general purpose technology (GPT), distributed ledger, civil engineering, architecture,
construction, engineering

1 INTRODUCTION

Construction is arguably one of the largest industries in the world, creating infrastructure which is
the backbone of productivity and economic growth. The Architecture, Engineering, and
Construction (AEC) industry has entered a period of major disruption caused by a host of new
and more mature digital technologies, such as Artificial Intelligence (AI), the Internet of Things
(IoT), Virtual Reality (VR), Geographic Information Systems (GIS), digital photogrammetry,
Building Information Modelling (BIM), 3D printing, laser scanning, global positioning systems
(GPS), radio frequency identification devices (RFID), augmented reality (AR), sensors, robotics, big
data management, and others (Wang et al., 2020). These technologies have been proven helpful due
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to the numerous benefits they offer to project stakeholders, such
as increased productivity, reduction in building waste, sustainable
performance, enhanced visualization, safety improvement and
improved data sharing.

Lately, another innovative digital technology, blockchain, has
appeared, promising to change the way people do transactions,
keep records, validate data andmuchmore. For many, blockchain
is a new general-purpose technology that can transform both our
everyday lives and the ways we do business. Bitcoin was the first
successful application of this technology and its first description
as an algorithmic idea can be found in the work by (Nakamoto
2008). Blockchain was the technology which allowed Bitcoin to
transfer value in a decentralized network, for the very first time in
history. Many desirable characteristics of blockchain already exist
in Bitcoin, even though Bitcoin was only the first application of
the technology and further developments and improvements
have been made since. For this reason, the present study will
start with discussing monetary mediums, problems related to
transferring value using digital currency and how blockchain
technology managed to solve the well-known “double spending”
problem in digital currency, opening horizons for other
important applications of the technology.

Although blockchain is still at its early stages today, it probably
has the potential to play a significant role in construction industry
in the future, or even reshape it drastically to the better (Shojaei
2019). explored the applications of blockchain in improving
information management systems in the construction industry.
The author concludes that blockchain has the potential of
addressing common problems of the construction industry,
while it can be adaptable to the construction industry
structure and the way it is practiced (Nawari and Ravindran
2019b). reviewed blockchain and how it is related to the built
environment. They explored potential applications in the AEC
industry, focusing mainly on Building Information Modeling
(BIM) and highlighting its potential and its limitations.

(Tezel et al., 2022) examined blockchain opportunities and
related issues in the Built Environment, with particular emphasis
on its potential influence on trust, transparency and
cybersecurity. The authors also provide directions for future
research, contributing to the cyber-physical convergence in
Construction 4.0 (Li et al., 2019). identified recent challenges
in the construction industry and explored blockchain as a
potential solution to some of these challenges. They performed
a review of blockchain uses in the built environment and
identified seven distinct areas of applications, namely 1) Smart
Cities and the Sharing Economy, 2) Smart Energy, 3) Smart
Homes, 4) Smart Government, 5) Intelligent Transport, 6) BIM
and Construction Management, and 7) Business Models and
Organizational Structures.

(Cheng et al., 2021) reviewed the present status and
investigated the benefits, challenges, and future research
opportunities of blockchain meeting the AEC industry. Their
results show that relevant research on blockchain remains new
and fragmented. Nevertheless, they managed to identify five
relevant areas of benefit, namely 1) supply chain management,
2) information management, 3) contract management, 4)
integration management, and 5) stakeholder management

(Shojaei et al., 2021). investigated blockchain as a promising
technology for the facilitation of a circular economy (CE) in the
built environment. They presented and tested a blockchain model
through a synthetic case study to provide a proof of concept as to
the feasibility of blockchain as an enabler of a CE in the built
environment. They conclude that blockchain is shown to be a
feasible and novel approach for employing CE concepts in the
built environment domain as it can provide full material and
energy traceability, enabling the user to make predictions for the
recycling and reuse of materials and goods used in the built
environment.

The aim of this study is to formulate a picture of the current
state and practice of the use of blockchain technology in fields
related to the built environment such as civil engineering,
architecture and construction industry areas, to identify the
current state of the art and to examine the challenges and
opportunities ahead. The study also summarizes and
highlights specific application areas related to the AEC
industry, where blockchain has the potential to provide new
solutions, and how these solutions can be adopted to improve
performance, sustainability, and safety in the future. The
structure of the paper is as follows: Section 1 is the
introduction, followed by the bibliometric analysis of Section
2. Section 3 presents the idea of monetary mediums, from
bartering to digital money, the double spending problem and
how it was first solved using blockchain technology. Section 4
focuses on technical details of the technology, while Section 5
discusses the applications of blockchain in the civil, architectural
and construction industry, where six application areas as
identified and discussed in detail. The conclusions and a
relevant discussion are provided in Section 6.

2 BIBLIOMETRIC ANALYSIS

2.1 Papers Published in the Field
A simple look at the most recent scientific literature can reveal
how important blockchain has become for the scientific
community lately. The word “blockchain” returns 28,600
document results in Scopus when searching within “Article
title, Abstract and Keywords” (Query string: “TITLE-ABS-KEY
(blockchain)”). 28,355 of these results (99.14%) have a
publication year of 2017 or later (i.e. last 5 years), as only 245
papers were published in the topic between 1990–2016. Even
more interestingly, 85.77% of the results (24,531 documents) have
a publication year of 2019 or later, i.e. published in the last 3 years.
The same search, limited within the “Engineering” field only
(Query string: “TITLE-ABS-KEY (blockchain) AND (LIMIT-TO
(SUBJAREA,"ENGI”))”) returns 11,969 document results. These
queries were made on 6 March 2022. Figure 1 shows these search
results, per year, for the years from 2013 to 2021. Year 2022 was
excluded from the plot as it is still a year in progress. It has to be
noted that even for year 2021 the process of indexing and adding
papers is still a work in progress in Scopus. The exponential
growth in the production of scientific papers is clearly visible,
showing the latest impact of blockchain in all scientific fields,
engineering included.
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2.2 Top Keywords
We performed a co-occurrence analysis of the top keywords,
including author keywords and index keywords from the Scopus
database. For this, we search Scopus with the word “blockchain”
within “Article title, Abstract and Keywords” and we limit the
search to the “Engineering” field and also to the years 2017–2022
(6 years in total). The full query string, performed on 7 March
2022, is therefore “TITLE-ABS-KEY(blockchain) AND (LIMIT-
TO ( SUBJAREA,“ENGI”) ) AND (LIMIT-TO ( PUBYEAR, 2022)
OR LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR,
2020) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO
(PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017))”. The
query returned 11,926 documents. Within this result, we
found the top-30 keywords of the papers. Similar keywords
needed to be merged manually, as follows: blockchain (block-
chain, blockchains, blockchain technology), internet of things
(iot, internet of things (iot), internet of thing (iot)), smart contract
(smart contracts), supply chain (supply chains, supply chain

management), building information model (bim, building
information model - bim, building information modeling,
building information modelling), where the word in bold is
the main keyword and the words in parentheses are the
different variations that have been merged within the main
keyword. The network visualization of the co-occurrence of
the top-30 keywords is presented in Figure 2, generated using
the VOSviewer software (van Eck and Waltman 2007), with 5
clusters presented with different colors, and minimum strength
equal to 60.

In this map, the links (lines) between keywords express the
frequency of co-occurrence of the keywords in the documents,
while the size of each bubble (keyword) expresses the number of
occurrences of a specific keyword. As expected, the keyword
“blockchain” appears in the center of the network as the strongest
keyword (10,135 occurrences), followed by “internet of things”
(2072), “smart contract” (1873), “network security” (1,168),
“digital storage” (1,058) and “security” (928). Interestingly, the

FIGURE 1 | Papers in “blockchain” in Scopus database, per year: (A) General search (all fields), (B) Search limited within the “Engineering” field.
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keyword “bitcoin” appears as a small bubble on the top-right,
which shows that despite it being the first application of
blockchain, it is now somehow isolated as simply one of the
numerous applications of the broader technology.

A clear cluster related to engineering applications is the yellow
one, having to do with power markets and electric power
transmission networks. Interestingly, keywords related to the
civil engineering and the construction industry are not present
in this network visualization, although the search has been
limited to the “engineering” field. This shows that blockchain
applications in these areas are still at a very premature state. It
also confirms that the fact that the construction industry has been
traditionally slow in adapting new digital technologies.

Next, we limit the search to areas related to civil engineering
and the construction industry. For this, we search within the
“Article title, Abstract and Keywords” with the query “blockchain
AND (“construction industry” OR “civil engineering” OR
“construction management” OR “building information
modelling” OR “smart buildings” OR “real estate")”, which
returns 365 document results. We apply the same technique
for merging similar keywords as we did before. Setting a
minimum strength of connections equal to 10, and 5 clusters,
we obtain the bibliometric map of Figure 3.

Again, the keyword “blockchain” is in the center of the
network as the strongest keyword (280 occurrences), followed
by “smart contract” (91), “construction industry” (76), “building
information model” (56), “architectural design” (50), “internet of
things” (49), “supply chain” (45) and “project management” (28).
This map reveals some trends and the most important application
areas of the technology in the civil engineering and the
construction industry fields. It also shows the connections of
different applications, for example the construction industry (as a
central node) with BIM, architectural design, smart contract,
information management and others.

2.3 Top Countries
Figure 4 is based on the same data from Scopus as Figure 3, but
now the focus is on the co-authorship of the top countries in the
field. Setting the minimum documents for a country to 2, the
largest set of connected countries is found to be 27. The map is
presented in Figure 4 with the minimum connection strength set
equal to zero.

In this map, the links (lines) between countries represent the
frequency of co-authorship between the countries, while the size
of each bubble (country) expresses the number of publications in
the field by a specific country. In terms of the number of

FIGURE 2 | Bibliometric map of the co-occurrence of top-30 keywords of documents including “blockchain” in the “Engineering” field, in Scopus (2017–2022).
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FIGURE 3 |Bibliometric map of the co-occurrence of the top-30 keywords of documents including blockchain in the civil engineering and the construction industry,
in Scopus.

FIGURE 4 |Bibliometric map of the co-authorship of the top countries with documents including blockchain in the civil engineering and the construction industry, in
Scopus.
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documents published in the field, the most active country is India
with 47 documents and 157 citations, followed by China (35,
446), the United Kingdom (34, 388), the US (32, 505), Australia
(26, 440), Hong Kong (16, 135) and Italy (16, 44). It is not
surprising that India leads this map, as in India IT is a vast
industry comprising information technology services, consulting,
and outsourcing, accounting for 8% of India’s GDP in 2020.

3 MONETARY MEDIUMS: FROM
BARTERING TO DIGITAL MONEY

In the long past, there were no monetary mediums. People in
primitive societies would simply exchange goods using a fair
barter arrangement. Bartering has to do with the exchange of
services and goods between two people or parties without the use
of money. It is based on equivalent estimates of the value of
services and goods. This approach has significant limitations, one
of the most important ones being not being able to store wealth in
the long term.

Then came money, a monetary medium in the form of a metal
coin, a piece of paper or even a shell or other object, that people
could use as a medium of exchange, a unit for measuring value
and a means to store wealth. The value of money depends mostly
on the importance that the people place on it. The invention of
money had an important role in the evolution and development
of human societies as it allowed people to trade services and goods
indirectly, providing also a very effective and direct way to store
wealth. Historians believe that objects made of metal were first
used as money as early as 5,000 BC. Around the second half of the
7th century B.C., the Lydians were the first western civilization to
make coins. The Lydian stater was the first coin officially issued
by a state in the world history and was the model for virtually all
subsequent coinage (Kroll 2012). Later on, other civilizations
began to mint their own coins, having specific properties and
values. Around 700 B.C., the Chinese moved to paper money. In
Europe, the first banknotes were issued in 1,666 by the Bank of
Stockholm while in the US, the Massachusetts Bay Colony was
said to have issued the first paper money in 1,690.

3.1 Digital Money and the Need for a Trusted
Third Party
The 21st century and the evolution of computers and digital
technology gave rise to a new form of currency, digital money,
allowing digital, mobile payments between different parties.
Mobile payments can be used to buy a service or product
through the use of a portable electronic device, such as a
smartphone, tablet, laptop or desktop computer, to name a
few. Money nowadays needs not have a physical form. It can
merely sit in bank accounts, waiting to be used online for
whatever necessary. Mobile payments offer the advantage that
the parties involved in a transaction do not have to be in the same
physical location for a successful transaction to take place. Unlike
hand-to-hand physical payments by cash, digital payments can be
made remotely, through an institution (usually a bank). The bank
acts as an intermediary or a “trusted third party”. When Alice

pays Bob the amount of $100 remotely, she makes the relevant
request at a bank online. The bank needs to verify and process the
transaction. First, it checks if Alice has $100 at her disposal, in her
account. If yes, it proceeds with the payment to Bob. For the bank
this is simply a couple of records in the transactions’ ledger. The
bank will debit Alice’s account with the amount of $100 and
simultaneously credit Bob’ account with the same amount.
Everything happens at the level of the bank ledger which is a
“book” in which account transactions are recorded. In such
bookkeeping system with double entries, credits and debits are
simply entries that are made in the account ledgers to record
changes in value, as a result of transactions.

As mentioned, such online payments need a trusted third
party to act as an intermediary. Unlike cash transactions, that are
truly “peer-to-peer” from one party to the other, traditional
online payments need to go through a bank. This causes
problems and difficulties in certain cases. First of all, the bank
needs to be online, it needs to be working during the transaction
and it needs to be there to validate the payment. Although these
may seem to be small problems in the real world, there are other
more significant problems and difficulties arising from the fact
that an intermediary is always necessary. For example, banks may
delay or even censor transactions, while in some cases transaction
fees may be too high. This is the case with international payments
between two banks in different, distant countries and especially
when a third world country is involved. In addition, one needs to
open a bank account to send or receive such payments. All banks
have specific regulations. There are certain requirements for
opening an account and rules on who can pay or who can get
paid. According to the 2019 National Survey of Household Use of
Banking and Financial Services by FDIC (Federal Deposit
Insurance Corporation 2020), 5.4% of households in the US
had no access to a checking or savings account at a bank or
credit union. This represents approximately 7 million U.S.
households or a total of approximately 14 million American
adults who are literally unbanked. Interestingly, nearly half of
them reported that they did not have a bank account due to lack
of enough money to meet minimum requirements, while
approximately 1/3 of unbanked households reported that they
did not have an account because they do not trust banks (Federal
Deposit Insurance Corporation 2020). Privacy is a major concern
as a lot of personal information is revealed in every transaction
and the bank or a bank employee have access to this sensitive
information.

3.2 The “Beauty” of Cash, Digital Cash and
the “Double-Spending Problem”
Cash payments do not have these issues. The “beauty” of cash lies
in its simplicity and on the fact that it is truly “peer-to-peer”,
without the need of any intermediaries. But cash has other
problems: For example, when Alice gives Bob a bank note, the
two parties need to be in the same place at the same time for the
physical object (the bank note) to be handed from one person to
the other. In addition, cash is bulky and therefore it cannot be
easily used for big transactions. At this point the question arises:
Could we have online, digital payments that are just like cash, i.e.
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peer-to-peer, with no need for intermediaries, no banks, no
delays, no censorship and no privacy issues? Is there a way to
have digital money that would behave just like cash?

Many researchers had tried to deal with this issue, but they
faced the so called “double-spending problem.” Unlike physical
currencies that cannot be easily replicated, digital currencies can
be easily reproduced digitally. Double spending has to do with the
problem of a digital currency or token being spent twice, which
should not be allowed in a fair system. In other words, if
somebody tries to use a digital token for a second time, after
it has been already spent, the system should be able to detect it
and reject the second transaction.

3.3 The Solution to the Double-Spending
Problem
In 2008, Satoshi Nakamoto introduced Bitcoin to the world. In
his novel work (Nakamoto 2008) the brilliant idea of a system for
electronic transactions which does not rely on a “trusted third
party” is explained. This system was the first successful
application managing to solve the double-spending problem
and the first implementation of blockchain technology. It is a
peer-to-peer electronic cash system which uses cryptography and
the concept of “proof-of-work” (PoW) to record the history of
transactions. The real identity of Satoshi Nakamoto remains a
matter of dispute until today.

The code of Bitcoin was released in 2009, after the original
paper was published in 2008. In Bitcoin, there is no bank, no
central system, no single institution in the middle playing a
special role. That’s why it is called a “decentralized network”.
All parties in this network are equal and there is no central
authority or special player. The technology that enabled Bitcoin
to make this breakthrough, is called blockchain. Bitcoin and other
cryptocurrencies, all based on blockchain technology, offer peer-
to-peer transactions with privacy for any amount of money, just
like cash.

The system uses a decentralized approach which is based on
the creation of blocks which are linked together, forming a chain
of blocks, the so-called “block chain”. This is what we nowadays
call blockchain technology. In the blockchain, every transaction
and every block have a timestamp and blocks are linked together
with their hash values and “proof-of-work”. The record of a
transaction is distributed among many nodes in the system which
makes it practically impossible for a bad actor to gain control of
the system and manipulate the ledger to their advantage. Using
proof of work, the amount of computational power needed to
reverse or change a transaction is enormous. This technology
allows bitcoin to transfer value in a decentralized way without the
need for any intermediary, or a trusted third party such as a bank.
In addition, the system uses public-key cryptography which
allows users to transact anonymously or more accurately,
pseudonymously.

Bitcoin has a market capitalization of more than $700 billion
(as of 6 March 2022) and it is the largest application of blockchain
technology until today. Despite its widespread fame and its high
value, Bitcoin itself remains a controversy. For many, it is the
ultimate democratic tool and the currency of the future. They

highlight its advantages, such as payment freedom, availability,
total control of one’s money, security, transparency and low fees.
On the other hand, some economists and other experts have
characterized Bitcoin as a speculative bubble or even an advanced
Ponzi scheme. They criticize Bitcoin for its use in illegal
transactions, large carbon footprint, price volatility, scalability
problems and low speed.

4 BLOCKCHAIN

4.1 Technical Details
4.1.1 Asymmetric Cryptography
Asymmetric cryptography, also known as public-key
cryptography uses a pair of keys, a Public and a Private key to
encrypt and decrypt a message. Each user has a pair of keys. The
two keys are mathematically related. The private key cannot be
shared with others and works similarly to a password, while the
public key can be shared with and is visible to everyone. Both keys
are needed to perform an operation. A message which is
encrypted with the private key can only be decrypted with the
public key, and vice-versa: a message or data encrypted with the
public key can only be decrypted with the private key. Based on
which key is used first, there are two main uses of asymmetric
cryptography, as shown schematically in Figure 5.

In the first case depicted in Figure 5, called Digital signature or
Sender authentication, data is encrypted with the private key of
the sender and can be decrypted with the corresponding public
key. This ensures that the message came from the stated sender.
Example: Alice sends a message to Bob and she encrypts it with
her private key. Bob receives the message. He decrypts it using the
public key of Alice and that guarantees that the message came
indeed from Alice.

In the second case, called Digital envelope or Receiver
authentication, data is encrypted with the public key of the
recipient and can be decrypted with the corresponding private
key. This ensures that the message can only be read by the
intended recipient. Example: Alice sends a message to Bob and
she encrypts it using the public key of Bob. Then Bob is the only
one who can decrypt and read themessage as only he has access to
the pairing private key. This ensures confidentiality of a message.

Together, the two keys help ensure the security of the
exchanged data. Asymmetric encryption has many applications
such as in key exchange, email security and web security. In
Bitcoin and other blockchain applications, asymmetric
encryption is used to ensure the integrity of transactions.
Bitcoin uses the ECDSA algorithm (Elliptic Curve Digital
Signature Algorithm) and in particular the Secp256k1 elliptic
curve and the double-SHA hash to implement its public key
cryptography.

When a person creates a crypto wallet, the system generates a
pair of keys. The private key can generate the public key, but the
public key cannot be converted back into the private key. The
public key itself is not a bitcoin address. The address of a wallet,
which is similar to a bank account number (where one can receive
payments) is derived from the public key by putting the public
key into a hash function (see next subsection). Bitcoin addresses
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are 34-digit alphanumeric. An example Bitcoin address is
“1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy”. Such an
address appears most commonly as the recipient of funds.
Note that several of the characters in an address are used as a
checksum. This way typographical errors can be automatically
found and rejected by the system.

On the other hand, the private key is used for the digital
signature of the transactions, and it provides access to the funds
in the wallet. In other words, it is equivalent to a password or
PIN code that provides control over a bank account.
Mathematically speaking, a signature is generated from a
hash of something to be signed, plus a private key. When
Alice sends Bob an amount of Bitcoin, she presents her
public key and a signature (transaction fingerprint). The
signature, which is different each time, is created with her
private key and can only be produced by someone who has
access to Alice’s private key. However, anyone in the network
can verify the signature if they have access to the public key and
the transaction fingerprint. In other words, it is ensured that
only Alice, having the private key, can spend the bitcoin she has
in her account, but anyone in the network, having her public
key, can easily verify that it is Alice who made the payment.

4.1.2 Cryptographic Hash Functions
A hash function is a one-way function that maps data of an
arbitrary size to fix-sized values (Estébanez et al., 2014). The
return of a hash function is called the hash value, digest, hash
code, or simply hash. A hash function is deterministic, meaning
that for a given input value it should always generate the same
output. Hash functions are designed to be irreversible, a property
which is usually referred to as pre-image resistance, which means
that it is not possible to generate the input from the hash, and
therefore a hash function is essentially a one-way function.

A cryptographic hash function has additionally some desired
special properties:

• Quick computation: The hash value is computationally
inexpensive to compute, for a given message.

• It is practically impossible to generate a message that will
give a given hash

• Collision resistance: Practically, it is impossible to find two
messages giving the same hash value.

• Avalanche effect: A slight change in a message will result to a
drastic change in the hash value, so that the new hash
appears to be completely different and uncorrelated to the
old one.

Bitcoin uses the SHA-256 hashing algorithm, which belongs to
the SHA-2 set of cryptographic hash functions designed by the
US NSA (National Security Agency). The algorithm was first
published in 2001 (Penard and van Werkhoven 2008).
Irrespective of the size of the message, the hash values of
SHA-256 will always be 256 bits and they are represented by
64 hexadecimal “digits” (each one taken from the set
“0123456789abcdef” containing 16 such “digits”).

The value set of SHA-256 contains 2256 = 1664 ≈ 1077 different
message digests, an unfathomably large number considering that,
for example, it is estimated that there are between 1078 to 1082

atoms in the known, observable Universe. Examples of SHA-256
hash values can be found in Table 1. One can see that the hash
value of the message “This is a message” is completely different
than the one of “This is a message.” with an added dot in the end,
which shows the avalanche effect. Also, it is seen that the hash
value remains always the same length (64 digits), even for longer
messages.

Other than Bitcoin, the SHA algorithm is used in many
applications, such as Digital Signature Verification, Secure
Sockets Layer (SSL) Handshake, Integrity Checks, Password
Hashing and others. For example, using password hashing, the
password of a user need not to be stored in a website’s database.
Instead, the hash value of the password is stored. This is enough
to validate a given password when a user tries to log in. On the
other hand, if a hacker gets access to the database, all they will find
is the hashes of the passwords and not the passwords themselves,
which increases security.

4.1.3 Blockchain Definition, Characteristics and
Structure
Distributed Ledger Technology (DLT) or simply blockchain is a
technology able to simplify and secure transactions among

FIGURE 5 | Uses of asymmetric cryptography in message sending.
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parties and record keeping in general. It has to do with a
growing number of blocks containing records. These records
are usually transaction data and timestamps, but it can be
virtually anything that can be recorded. The blocks are
linked together using hash values created with a
cryptographic hash function. The innovation lies in the
connection of each new block of data with the previous one,
using the cryptographic hash. In particular, the hash value of a
given block is part of the information stored in the next block.
Any small change in a block would lead to a new hash value for
the block, which would automatically invalidate all subsequent
blocks. In addition, the ledger is not stored in a central location,
but it is distributed in thousands of copies among the nodes of
the network, which are also asked to validate the blocks
containing the transactions. Blockchain technology uses a
decentralized architecture based on distributed computing,
crypto-chain block structures to store data, node consensus
algorithms to verify data and smart contracts to program data
(Xu et al., 2021).

The structure of a blockchain is depicted in a simplistic way
in Figure 6. Note that in this example, for illustration
purposes, we use simple hash values with 8 digits instead of
real SHA-256 hashes with 64 digits. After several transactions
have taken place within a predefined time interval, a miner
node will pack the transaction data into a new block, together
with some additional information, with a timestamp and a
signature. As shown, each block contains the hash value of the
previous block, making a chain of blocks. The miner node will
send the package to all the other nodes of the network. After

the block is validated by the other nodes, it is added to the main
chain and all the nodes of the network are synchronized with
the latest main chain. Each block has its unique hash value,
which is not included in the block itself (it can be easily
calculated anytime), but it is added to the next block in
the chain.

In Bitcoin and similar systems relying on blockchain to
transfer value, the steps needed for a transaction to get into
the blockchain are the following:

• A peer-to-peer transaction is requested by a user.
• Each user has a private key and a public key. A transaction is
signed with the private key of the user, for authentication
purposes.

• The transaction is sent first to the closest node of the
network, and it is verified and propagated to other nodes.

• The transaction waits until a miner picks it up to include it
in the next block to be mined

• The transaction, together with a number of other
transactions are packed together in a block by a miner.
Other miners may try to create other blocks using probably
different combinations of transactions.

• The first miner achieving to solve the “Proof of Work”
cryptographic puzzle adds the block to the main chain and
receives a reward in cryptocurrency

• The update in the blockchain is distributed across the
network

• Other nodes verify the result and propagate the block
• The transaction is complete.

TABLE 1 | Examples of hash values generated by the SHA-256 hash algorithm.

Message Hash Value

Empty string SHA256(“") e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
This is a message a826c7e389ec9f379cafdc544d7e9a4395ff7bfb58917bbebee51b3d0b1c996a
This is a message. a3964890912366008dee9864a4dfddf88446f354b989e340f826e21b2e83bd9c
This is a longer message. But the hash length remains always the same! 4a7af8b298b8988523ab80bf572960aca294e0fd47ae860ee9c0f80f0b233645

FIGURE 6 | An example of a simple blockchain.
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If a bad actor goes back in time and tries to change a
transaction record in a given old block, this will cause a
change in the hash of the block and the block will be no
longer connected to the next block in the chain. Such an
attempt will be easily spotted and be denied by the decent
nodes of the blockchain network.

4.1.4 Proof of Work
As mentioned, calculating the hash function of a block would be a
computationally easy operation as SHA-256 hashes are easy to
calculate on any modern computer. In other words, generating
any hash for a given set of transactions is trivial. The bitcoin
protocol and other similar blockchain networks make this harder
by introducing a level of difficulty in the hashing operation. In
particular, a miner has to add some special info into the header of
the block, an integer number known as a nonce (“number used
once”), to achieve a hash that has a value which is lower than a
predefined threshold value, or in other words it has a number of
leading zeros. Since hash values cannot be predicted and the
outcome is completely “random” (although deterministic), a
miner node has to try many times with different nonces until
it finds the right nonce that will give the hash with the desired
properties.

In Bitcoin, this mechanism aims to add a new block to the
blockchain every 10 min, on average. To do so, it adjusts the
difficulty of the cryptographic puzzle depending on how quickly
miner nodes are adding blocks. If miners have high
computational power and add blocks too quickly, the difficulty
increases, and hash computations become harder. In contrast, if
blocks are added too slowly, hash computations become easier.
This concept, called “Proof of work” (PoW) is a consensus
mechanism requiring members in a decentralized network to
do some computational work in order to prevent bad actors from
gaming the system.

In the simple example of Figure 6, we see that the hash values
of the blocks, all have 3 leading zeros, which means that some
“work” was needed for finding the proper nonce that would
provide the hash for each block. As a practical example and a case
study, Table 2 shows some properties of Block 712,650 of the
Bitcoin blockchain, mined on 05 December 2021 at 7:45 AM
(GMT+3). We see that the block has a hash value with 19 leading
zeros. To achieve this number of leading zeros, one would need to

try on average approximately 1619 ≈ 7.55579·1022 hashes with
different nonces. A more accurate estimation for the needed
number of tries is in fact given by formula D·232, where D is the
difficulty of the block, shown in Table 2 for Block 712,650. In our
case, this formula will result to 22335659268936.39*232 =
9.59309·1022 hashes. Since a block is created every 10 min
(600 s) on average. In Table 2, we see that the hash value of
the block has 19 leading zeros (in bold), as a result of mining and
the relevant difficulty. The computational power of the bitcoin
network for the time period related to the generation of block
712,650 can be calculated as 9.59309·1022 hashes/600 s ≈ 160
million TH/s (tera hash per second) = 160 EH/s (exa hash per
second). This shows how computationally demanding Bitcoin
mining has become lately. It also has a huge effect on the carbon
footprint of Bitcoin.

Miners race and compete to solve the cryptographic puzzle
first, i.e. to find the nonce that produces a target hash that is below
the threshold set by the block difficulty. The winning miner
receives two kinds of reward: 1) in the form of newly mined
crypto coins (currently 6.25 BTC per block), and 2) transaction
fees. In the example of Block 712,650, the miner will receive 6.25 +
0.20322136 = 6.45322136 BTC as the total reward.

The first reward is set by the bitcoin protocol. The rate at
which new Bitcoins are generated (mined) is reduced over time,
as rewards are halved every approximately 4 years. Today, there
have been three halving events. When bitcoin started in 2008, the
reward was 50 BTC which was halved to 25 BTC in 2012, 12.5
BTC in 2016 and lately 6.25 BTC in 2020. Bitcoin last halved on
11 May 2020, around 3 p.m. EST, resulting in a block reward of
12.5/2 = 6.25 BTC. Halving occurs after every 210,000 blocks are
mined. Given that a block is produced every 10 min on average,
210,000 blocks require 2,100,000 min which is 1,458.33 days or
3.99 years (considering each year equal to 365.25 days). The
maximum supply of BTC coins will be 21 million coins, after
all bitcoins have been “mined”.

Eventually, after all bitcoins have been generated, miners
will keep receiving only the second reward, in the form of
transaction fees. Transaction fees are therefore used to 1)
avoid spam transactions in the bitcoin network, and 2) give
incentive to the miners to keep mining even after the
generation of new bitcoin has come to end. Transaction
fees also reflect the speed with which one would like their

TABLE 2 | Details of Block 712,650 of the Bitcoin blockchain.

Property Value

Hash 00000000000000000001a4110f39e05a871b04fdc43ccdb5d1fbe45e14a97249
Timestamp 2021-12-05 07:45
Height 712,650
Number of Transactions 129
Difficulty 22,335,659,268,936.39
Merkle root 9ef36627c62611d1cfa6fd2ce4e29b4c8c709fbe45325de542dd65666f4a00a0
Size 1,861,938 bytes
Nonce 3,134,706,325
Transaction Volume 739.76,687,155 BTC
Block Reward 6.25 BTC
Fee Reward 0.20322136 BTC
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transaction to be validated in the system. Transactions with
higher fees are more likely to be processed first, as miners have
the incentive to include them in their blocks, in order to get a
higher cumulative mining reward.

PoW is an efficient mechanism which protects the network
against malicious and fraudulent actors. In a hypothetic scenario
concerning Block 712,650, we suppose that after 30min another 3
blocks have been added to the chain (i.e. blocks 712,651, 712,652,
712,653) and at that time everybody is working on making the next
block, i.e. block 712,654. Bill, a bad actor, instead of building the next
block wants to alter a transaction in block 712,650 to his favor. If Bill
does that, then the hash of the block will be changed and the link of
the blockchain will be broken. The community will simply reject the
copy of the blockchain presented to them, unless Bill manages to
properly “redo” the next blocks, i.e. 712651, 712,652, 712,653 before
the other nodes manage to generate block 712,654. This is the only
way that Bill can cheat the network and alter an existing transaction
in the blockchain. To do so, Bill must be fast enough, whichmeans he
needs to have at least 51% of the computational power of the whole
network, which is very difficult to achieve. If 51% or more of the
computational power remains in good hands, then this assures that
the network will work in a decent way, rejecting such fraudulent
attempts.

4.1.5 Proof of Stake: An Alternative to PoW
Validators in a blockchain network have to carry out the task of
appending a block of transactions to the blockchain. In most cases,
they will receive a reward for doing so. For security purposes, the
blockchain protocol must have a mechanism to prevent a bad actor
from taking over the majority of validation. PoW systems use
validation based on computational power to verify transactions,
which incentivizes consuming huge quantities of energy. Although
PoW offers some advantages, such as a decentralized way of verifying
transactions, high security level, and allowingminers to earn rewards,
it also has disadvantages and limitations. Its main drawbacks are high
energy usage, slow transaction speeds, and scalability problems. PoW
has mathematical limitations on scalability, as the block size and the
block creation frequency need to be within certain bounds, to
maintain security. For Bitcoin, these bounds set a limit of a few
transactions per second (TPS), far below requirements for worldwide
adaption and practical applications at a global scale. At this time,
Bitcoin executes around 5 TPS, compared, for example, to VISA’s
24,000 TPS. To make things even worse, the energy needed for a
single Bitcoin transaction is equivalent to the one needed for several
hundreds of thousands of VISA transactions.

Another promising approach is Proof of Stake (PoS), which
extends the voting power to the stakeholders of the system. In
PoS, participants owning crypto coins can stake them, which
will give them the right to check new blocks, validate them and
add them to the blockchain. The first functioning
implementation of a PoS cryptocurrency was Peercoin,
introduced in 2012. PoS is tremendously more energy-
efficient than PoW (Bach et al., 2018). did a comparative
analysis of typical consensus mechanisms and some of their
contemporaries that are in use in modern blockchains. The
analysis focused on the algorithms, scalability issues, reward
mechanisms and security risks.

In PoS, when a block is ready, the system chooses a node to
act as its reviewer and validator. The validator will check if the
transactions are accurate. In this case, they will add the block
to the blockchain and they will receive a reward. The
probability of being selected to act as a validator is
proportional to the number of staked coins one has. The
more coins one has staked, the more probable it is to be
selected as validator. In case a validator validates a block
which has inaccurate information in it, there will be a penalty
and the validator will lose part of their staked coins. In such a
system, the mining power is proportional to the number of
staked coins one has. Unlike PoW, which uses a difficult
computational puzzle, requiring tremendous amounts of
computing power and electricity with a huge carbon
footprint, PoS is simpler, faster and more eco-friendly.

Consensus mechanisms, such as PoW and PoS, usually deal
with the trilemma of decentralization, scalability and security.
Both PoW and pure PoS have a decentralized nature where all
participants have the right to participate in validation. An
alternative approach is the so-called “Delegated PoS”, which is
a more centralized system where only a limited number of
people with known identities have the power to validate
transactions and generate blocks.

4.1.6 Merkle Tree
A Merkle tree is an inverse tree structure where every leaf node
has a label which is the cryptographic hash of a transaction (or
any other data) and every non-leaf node has a label which is the
hash of the labels of its child nodes. A simple Merkle tree is
depicted in Figure 7.

This structure allows for an efficient and secure validation
of records of large data structures. The validation that a leaf
node is part of the tree requires the computation of a number
of hashes which is proportional to the logarithm of the
number of the leaf nodes in the tree. Merkle trees are used
in Bitcoin and other crypto networks. An average Bitcoin
block contains over 1,000 transactions, so the Merkle tree is in
fact much larger than the one presented in Figure 7. A full
(“thick”) node of the network has full, complete blocks. On the
other hand, a “thin” node has only headers but still needs to be
able to verify transactions. In thin nodes, the Merkle tree is
used to verify a specific transaction without the need to
download the whole blockchain. For example, in Figure 7,
to verify that Transaction B is included in the Block, we have
to query the network about HA and HCD, only. Given HB and
HA, we calculate HAB. Then, given HAB and HCD, we
calculate HABCD and we compare it with the Merkle root
of the tree, which is part of the header. The transaction is
proved to be valid, unaltered and part of the block if the final
hash is equal to the Merkle root of the tree, on top of it. In a
Merkle tree with 1,000 transactions, one would need to have
only about 10 hash outputs to validate a given transaction.

4.2 General Purpose Technologies
General Purpose Technologies (GPTs) can affect an entire
economy. They can impact economic growth and transform
both our everyday lives and the ways we do business. Such
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technologies have the inherent potential for technical
improvements, and innovational complementarities, giving rise
to increasing returns-to-scale (Bresnahan and Trajtenberg 1995).
Thus, they can drastically alter societies and foster generalized
productivity gains through their impact on pre-existing economic
and social structures. Examples of GPTs include electricity, the
electric motor, the steam engine, the computer and the internet.
These technologies fundamentally impacted how we live,
expanded our lives (physically and emotionally), helped build
our cities and changed how people interact with the world.

4.3 Blockchain as GPT
Given its unique characteristics, such as immutability,
transparency, and distribution (Sandner and Schulden 2019),
blockchain is recognized by many as a new form of GPT.
Naturally, it takes time for a GPT to diffuse through the
economy. Although blockchain is still at the infrastructure
building stage, it is expected to unleash several applications
across different verticals within the next 5–15 years. Like the
internet in its first years, blockchain is difficult to predict or even
understand well, but in the future, it could become ubiquitous in
the exchange of physical and digital goods, record keeping,
information, and online platforms. According to an article by
Harvard Business Review, “Blockchain is the first native digital
medium for value, just as the internet was the first native digital
medium for information.”

4.4 The Properties of Distributed Ledger
Technology
A distributed ledger has some specific properties. In particular,
it is:

• Programmable. For example, it can be programmed to run
specific smart contracts

• Secure. All the records are encrypted
• Immutable. The validated records cannot be deleted or
changed as they are irreversible.

• Anonymous. The identity of participants can be either fully
anonymous or pseudonymous.

• Unanimous. The participants agree to the validity of the
records.

• Distributed. Copies of the ledger are distributed to all
participants, for complete transparency.

• Time-stamped. Every block and every transaction have a
timestamp.

4.5 Decentralized and Centralized Ledgers
In a fully decentralized blockchain, e.g. Bitcoin, anyone can
participate and transact on the ledger. There are no
“privileged” users, and a distributed consensus protocol is
used. As a result of this system design, there should be
mechanisms in place to combat the vulnerabilities arising from
it. These mechanisms prevent people from corrupting the system
and ensure that transactions are correct. Bitcoin uses Proof-of-
Work (PoW) and “mining” for this.

In a centralized blockchain, not anyone can transact on the
ledger. There are a few trusted centralized authorities that have
the right to validate transactions and modify the ledger. In this
case the blockchain can still be distributed, meaning that many
parties can again hold copies of the ledger. Yet, the validity of
the system comes from the fact that only some credible and
reputable participants can modify the ledger. And because
participants’ identities are known, their transactions can
therefore be audited.

Centralization can undermine the technology’s purpose
as a shared ledger. Too much power can be placed in the
control of a single entity or a few special “players”. The past
has shown that when a single entity takes too much power
then it may no longer operate for the benefit of the society.
Fully decentralized distributed systems can mitigate risk
and prevent attacks while centralized systems are more
prone to them. A centralized ledger would essentially act
like a third-party and thus the concept of peer-to-peer, fully
distributed network without intermediaries would no longer
be valid.

FIGURE 7 | A simple Merkle tree.
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5 BLOCKCHAIN IN THE CIVIL,
ARCHITECTURAL AND CONSTRUCTION
INDUSTRY
In this section we identify several key areas of the civil,
architectural and construction industry where blockchain can
be applied, and we investigate the current state of the art, the
benefits that blockchain technology can offer and the challenges
and opportunities ahead. The summarized results are presented
in Table 3, while the following sub-sections provide further
details and a relevant discussion for each application area.

5.1 Building Information Modelling and
Computer Aided Design
Blockchain can be used to provide live and trustworthy
information for BIM, by information sharing among present
and future information owners. Furthermore, it can help enhance
the benefits of BIM by allowing architects and engineers to design

on the same BIM model with clear ownership, while design and
construction decisions can be recorded on the blockchain for
future analysis and liability.

Information exchange in BIM is critical yet complex due to the
multi-party collaboration nature of a construction project.
Bimchain, funded in 2017, is a blockchain technology software
aiming at accelerating the BIM revolution in the Building
Industry by integrating the BIM software and processes to
create a binding traceability of data exchanges. As paper-based
solutions are often insufficient, (Pradeep et al., 2020), investigated
the use of blockchain technology and in particular the
commercial software Bimchain for improving Trust in BIM
Data Exchange. Their work showed that Bimchain manages to
accomplish most of its objectives, such as improving data
reliability, limiting the scope of liability, and clarifying
stakeholder responsibilities, among others. However, the legal
validity of the tool’s proofs is still untested and therefore it is still
not able to establish a global acceptance for real-world
applications.

TABLE 3 | Key areas of the civil, architectural and construction industry where blockchain can be applied.

Application Area References

1. Building information modelling and Computer Aided Design Pradeep et al., (2020)
Nawari and Ravindran (2019c)
Das et al. (2021)
Lemeš and Lemeš (2020)
Dounas et al. (2021)
Lee et al. (2021)
Zheng et al. (2019)
Nawari and Ravindran (2019a)
Androulaki et al. (2018)

2. Contract management and smart contracts Vigliotti. (2021)
McNamara and Sepasgozar. (2021)
Hamledari and Fischer (2021b)
Ahmadisheykhsarmast and Sonmez (2020)
Nanayakkara et al. (2021)
Xu et al. (2021)

3. Construction project management Perera et al., (2020)
Udokwu et al., (2021)
Hargaden et al., (2019)
Hewavitharana et al. (2019)
Turk and Klinc. (2017)
Li et al. (2021)

4. Smart buildings and smart cities Berglund et al. (2020)
Lam et al., (2018)
Valtanen. (2021)
Liu et al., (2021)
Tiwari and Batra. (2021)
Bindra et al. (2021)

5. Construction supply chain management Qian and Papadonikolaki. (2021)
Tezel et al., (2020)
Tezel et al. (2021)
Hamledari and Fischer. (2021a)
Yoon and Pishdad-Bozorgi (2022)

6. Real estate Mehendale et al. (2019)
Perera et al. (2021)
Mishra et al. (2021)
Wouda and Opdenakker (2019)
Nasarre-Aznar (2018)
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(Nawari and Ravindran 2019c) proposed the use of blockchain
in a BIM workflow environment. They presented an overview of
the blockchain and discussed its integration with the Building
information process, focusing on how blockchain can help in
improving the BIM working environment by providing reliable
data storage and management of permissions, reinforcing
network security, and ensuring data ownership and change
tracing (Das et al., 2021). presented a comprehensive study on
the requirements of BIM security, claiming that although the
technologies to support BIM security are available in research and
on the market, they are not customized in existing collaborative
BIM platforms to support security. They proposed a conceptual
encryption strategy for securing BIM data distribution and a
distributed blockchain-based framework for BIM change
recording.

(Lemeš and Lemeš 2020) presented a work on using
blockchain technology in Distributed and collaborative CAD
(Computer Aided Design) environments, such as BIM and
Geographical Information Systems (GIS). They argue that
blockchain can provide answers to key issues such as data
integrity and confidence in information stored in information
systems (Dounas et al., 2021). introduced a framework for
decentralized architectural design BIM and blockchain
integration in the context of the 4th industrial revolution. The
authors examined the constraints of BIM regarding collaboration
and trust. Then they introduced a blockchain solution for
creating new operational and business models for architectural
design, through scaling collaboration, project governance, and
shifting trust to the infrastructure. They focused on the design
process and validated the framework with a prototype of BIM
design optimization integrated with blockchain.

(Lee et al., 2021) proposed an integrated digital twin and
blockchain solution to support accountable information sharing
in construction projects. In this implementation, the digital twin
updates the BIM in nearly real-time using sensors and internet of
things, while the blockchain has the role of authentication and
adding confidence to the transaction data. The framework was
tested with a case study where virtual positioning data from a
prefabricated brick was transmitted to a digital twin in real-time
and recorded on the blockchain using time stamps (Zheng et al.,
2019). presented a novel BIM system called bcBIM to facilitate
BIM data audit for historical modifications by blockchain in
mobile cloud with big data sharing. The authors proposed a
method of BIM data organization based on private or public
blockchains. Using blockchain, the system can trace, authenticate
and prevent tampering of historical data related to BIM (Nawari
N. and Ravindran S. 2019). proposed a new framework with the
integration of BIM and blockchain to improve the efficiency of
building permit processes in post-disaster events, with the
application of smart contracts and Hyperledger Fabric (HLF)
(Androulaki et al., 2018).

5.2 Contract Management and Smart
Contracts
A Smart Contract is a computer program that works based on an
“if/then” principle. Smart contracts can identify accountabilities

and trigger payments based on milestones (Vigliotti 2021). They
are executed automatically reducing the necessity of
intermediaries and as a result time and money can be saved.
They can be used to automate agreements, thus revolutionizing
construction contracts and payments which usually rely on
traditional methods.

(McNamara and Sepasgozar 2021) discussed and investigated
the use of blockchain and intelligent contracts (iContracts) for the
digitalization of the construction industry. The authors identified
9 influencing factors based on 46 studies and presented a
conceptual three-dimensional model for iContract system
adoption. The study aims to identify key considerations for
such contracts, develop a theoretical adoption model and offer
an agenda of 6 research directions for the future (Hamledari and
Fischer 2021b). investigated the role of smart contracts in the
automation of construction progress payments. Current
computerized payment applications cannot support reliable
automation of progress payments due to the fact that they rely
on centralized control mechanisms and no guaranteed execution.
The authors argue that decentralized smart contracts based on
blockchain can address these limitations in an effective way. They
explore the conceptual underpinning for the design of an
automated payment system and investigate the role of smart
contracts in enabling reliable and autonomous conditioning of
cash flow on product flow status. They also use a test case for
payments based on progress and smart contracts in the context of
unmanned aerial vehicle-based progress monitoring.

(Ahmadisheykhsarmast and Sonmez 2020) proposed the use
of smart contracts for securing the payments in construction
contracts. This can guarantee payments while eliminating
administrative costs and burdens related to trusted
intermediaries, by employing an automated protocol running
on a decentralized blockchain. On the other hand (Nanayakkara
et al., 2021), investigated the suitability of blockchain and smart
contracts for dealing with payment issues in the construction
industry. They concluded that solutions based on blockchain and
smart contracts can mitigate the payment and the related
financial issues in the construction industry, including non-
payments, partial payments, long payment cycle, cost of
finance, retention, security of payments, among others.

In the structural engineering field, very powerful capabilities
are available today for the simulation and analysis of structures,
given the development of computational methods, numerical
analysis software and hardware during the last decades
(Plevris and Tsiatas 2018). In this area (Xu et al., 2021),
presented a work on the application of a blockchain network
and smart contracts in structural healthmonitoring (SHM). Their
results showed that such a system can provide several advantages,
such as monitoring authority verification, generation of abnormal
alerts, data immutability, resistance to attacks, and
traceability query.

5.3 Construction Project Management
Construction project management (CPM) can potentially benefit
from an agile and more decentralized approach based on
blockchain, with high transparency, and the parties being
compensated for outcomes and for work performed. Given
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that the construction industry has been historically reported as
one of the slowest sectors in the adaptation of information
technology, the question of whether blockchain as a
technology is hype or real in the construction industry was
addressed by (Perera et al., 2020). Their work aimed at
analyzing the potential of blockchain applications in
construction through case analyses and a comprehensive
literature review. According to the study, blockchain has
indeed a credible potential in the construction industry, due to
its exponential general use, the investments involved, and a
number of start-up businesses contributing to Industry 4.0.

In the work of (Udokwu et al., 2021), a blockchain-based CPM
platform implementing smart contract technologies was
presented for facilitating the peer-to-peer collaboration
between parties in the construction industry, leading to
improved information flow, cost and time reduction, and
improvement in the quality of the services. The system relies
on diligent up-front requirement studies with a coherent system
architecture and the use of cooperation protocols (Hargaden
et al., 2019). examined the role of blockchain technologies in
CPM, providing insights into the performance of blockchain in
construction and investigating the feasibility of its potential
adoption with case studies. The authors claim that blockchain
can increase the efficiency of processes within the construction
industry and eliminate current issues related to trust, verification
and transparency (Hewavitharana et al., 2019). examined how
blockchain can address the project management perspectives in
the construction industry regarding the guidelines mentioned in
the Project Management Body of Knowledge (PMBOK). Five
criteria were selected for the analysis using the relevant
guidelines, namely 1) contract management, 2) purchase
management, 3) finance management, 4) asset and inventory
management, and 5) subcontractor management. It was
identified that blockchain can indeed assist in all these areas.

(Turk and Klinc 2017) presented an investigation on the
potential of blockchain for construction management. The
authors highlighted that blockchain can improve the
trustworthiness and reliability of logbooks in construction,
while it can also help secure storing of sensitive data. They
concluded that blockchain can offer solutions to various
problems in construction information management while
decentralizing the construction processes (Li et al., 2021).
proposed the use of a 2-layer adaptive supervision model
based on blockchain for off-site modular housing production,
where the 1st layer includes the adaptive private sidechains of
participants and the 2nd is the main blockchain for trading and
communication among all participants. The blockchain-based
methodology has the benefit of avoiding tampering of the
operation records, while driving the participants to promptly
publish their operation records, without any privacy risks.

5.4 Smart Buildings and Smart Cities
As urbanization is increasing rapidly, offering improved livability
and a higher standard of living, the concept of “smart cities” are
one of the main focus areas of many governments across the
globe. Many countries attempt to establish special strategies for
transforming their cities into smart cities, utilizing the potential

opportunities and limiting any relevant threats arising from
urbanization. Smart cities enable operational efficiency,
maximize environmental sustainability efforts and create new
citizen services. Blockchain innovation can be utilized to make
smarter cities. Blockchain-based solutions can be utilized to
enhance our cities and provide for better economic
development and livability, by offering enhanced security,
immutability, resilience and transparency.

(Berglund et al., 2020) investigated the role of civil engineering
in smart cities and smart infrastructures. They examined a
number of smart technologies that can be used for
infrastructure management, such as crowdsourcing and citizen
science, sensors, data transmission, actuators, big data analytics,
data visualization, Internet of Things, and blockchain. They
identified the gaps in the application of such technologies for
infrastructure systems and they highlighted how civil engineering
can adopt new roles toward the development of applications
related to smart cities (Lam et al., 2018). investigated the use of a
blockchain system in smart cities, claiming that malpractices
related to civil engineering can be avoided if there are transparent,
timely, and unalterable records of the relevant activities, based on
a blockchain (Valtanen 2021). identified several design challenges
regarding the development of blockchain-enabled capabilities of a
smart home. They analyzed and classified these challenges and
did an organized literature review to identify the best practices
and find possible solutions (Liu et al., 2021). explored the impact
of integrating BIM and blockchain into a smart city environment,
on making more sustainable buildings. They investigated the
relationships between BIM, blockchain, and sustainable building
throughout the life cycle of a construction project.

(Tiwari and Batra 2021) examined the application of
blockchain-based solutions for the reparations in smart
buildings, proposing a prototype simulating the system
architecture and discussing how blockchain can further
expedite security, automation, and transparency in smart
buildings. The work focused on the use of smart contracts in
smart buildings, for repairs and service. On the other hand
(Bindra et al., 2021), investigated the use of blockchain
technology and smart contracts for the flexible, decentralized
access control of smart buildings. According to the study, visitor
and occupant access to equipment and spaces within the
buildings continue to be managed in a conservative, old-
fashioned, and inflexible way, through inefficient,
unsystematic, and human-intensive processes. Their work
describes a methodology relying on blockchain and smart
contracts that can securely and flexibly manage building access
privileges for both short-term visitors and long-term occupants,
taking into consideration the risk associated with accessing a
space in the building, in an efficient, decentralized way.

5.5 Construction Supply ChainManagement
The construction industry is characterized by fragmentation in
processes, operations and services. One of its major problems is
the disconnect between construction and design, due to the lack
of trustworthy and open information across the supply chain.
Blockchain has the potential to adverse these issues using open
and transparent transactions. It can be used to trace physical
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objects from the origin to the destination. It can also improve
payment settlements, compliance management and material
planning, while smart contracts can be implemented to
automatically purchase, track, and verify items in the supply
chain, in real-time.

According to the study of (Qian and Papadonikolaki 2021),
supply chainmanagement (SCM) has long been committed to the
reduction of cost and increase of efficiency, while trying to reduce
fragmentation and optimize resources. Since trust has always
been a significant factor in managing SCM relationships, the
study aimed at examining how trust can be affected by
introducing blockchain technology in the construction SCM.
Based on semi-structured interviews and information from
experts, the study suggests that blockchain can help enhance
trust in SCM and provide supply chain partners with proper
protection mechanisms to avoid the risks and costs associated
with opportunistic behaviour in collaboration. This can shift trust
from relational to system-based and cognition-based. However,
the authors highlight that the extent to which blockchain can
develop and spread will ultimately depend on the readiness of the
social capital to accept decentralised governance schemes.

(Tezel et al., 2020) examined the potential and future
directions of blockchain applied to construction supply chains.
For this, the authors collected empirical data through semi-
structured interviews with seventeen experts in the field. They
used SWOT analysis to present the strengths, weaknesses,
opportunities and threats involved and they also exhibited the
requirements for and steps toward a construction supply
structure facilitated by blockchain technology. The same group
(Tezel et al., 2021) later investigated the implementation of
blockchain in construction, presenting discussions on SCM
applications of blockchain for construction by collecting
feedback for 3 models based on blockchain: reverse auction-
based tendering for bidding, project bank accounts for payment
purposes, and asset tokenization for the financing of projects. A
set of general and model-specific challenges and opportunities
were identified for the implementation of blockchain in
construction.

(Hamledari and Fischer 2021a) presented the
implementation of crypto assets based on blockchain for the
integration of the physical and financial supply chains in the
construction industry. The paper demonstrated how
blockchain-based crypto assets used for payments made
conditionally on the flow of products can address the
limitations of physical and financial supply chains due to
high fragmentation and relying on financial institutions. The
study also highlights the problem of price volatility and
examines potential solutions (Yoon and Pishdad-Bozorgi
2022). aimed to explore the applications of blockchain in
addressing issues related to CSC. They identified the main
problems in CSC as related to collaboration, information
sharing and sustainability. Although these issues have been
dealt with individually in the past, they are essentially
coupled and interconnected. Blockchain technology can
provide a holistic system view approach to address all of
them together, i.e., enhance sustainability, promote
collaboration, and facilitate information sharing, all at once.

5.6 Real Estate: Property Ownership, Land
Titles, Asset Management andMaintenance
Real estate is known as one of the most important sectors of the
economy, playing a crucial role in the lives of people across the
world. The size of the global real estate assets managed
professionally was estimated at $8.5 trillion in 2017. Real
estate investments provide better returns than the stock
market without as much volatility, providing also tax benefits
in many cases. Although real estate is so important and despite
the technological advancements that have affected other sectors,
it has not changed much during the last decades. It is still a “pen
and pencil” business, relying on archaic methods for keeping
records and doing transactions. The industry suffers from various
problems, such as limited participation due to barriers to enter,
slow and costly verification procedures involving a lot of
intermediaries and very limited foreign investments, to name
only a few.

Figure 8 presents the real estate ecosystem today and depicts
the number of different parties involved and the relevant
interactions. This traditional model has several drawbacks and
limitations:

• There are a lot of intermediaries, that increase the cost and
reduce the transactions’ speed.

• The current approach requires significant time and effort
for due diligence and financial verification.

• Foreign investments are difficult, expensive, and slow.
International bank accounts, accreditation, financing,
credit score, cash requirements, access to sponsors, fund
managers, even citizenship, might be needed for investing in
real estate in a foreign country. As a result, the real estate
business remains very “local”, in geographical terms.

• Real estate transactions are done via wire transfers and
require costly and slow verification processes with increased
likelihood or error.

• Real estate investment can be very expensive and as a result
there is limited participation. Although everybody is
interested in housing, real estate is the investment choice
of the rich and not open to all. People with small amounts of
money are not allowed to invest in expensive real estate
assets as the current system does not support fractional
ownership. One needs to either buy a whole building/
apartment or nothing.

• Low liquidity. Real estate assets are traditionally difficult to
trade or convert to cash because of their high value and the
cost of the intermediaries, each time a transaction is made.

Real estate is entering the blockchain era and it can benefit
from the numerous advantages that the technology can offer.
Traditionally, real estate transaction records are housed in central
servers controlled by a single administration point. With
Blockchain, all real estate ownership and transaction records
can be stored securely as tamper-proof digital records on the
blockchain, in a decentralized way. Such records are fully
accurate, safe, and immutable. Blockchain immutability proves
ownership and facilitates transactions. In addition, with the use of
blockchain, verification becomes an easy task which does not
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require lengthy procedures, high cost and intermediaries
(Mehendale et al., 2019). discussed how blockchain can
revolutionize the real estate industry, by reducing the
paperwork and the time needed for property assessment,
document collection, the preparation of contracts, and others
(Perera et al., 2021). highlighted the potential of blockchain in
real estate, with respect to property transactions, where
businesses depend on the reliability of transaction records and
blockchain can be user to enhance trust and ensure ownership.
Their paper demonstrates a methodology for developing a
blockchain system starting from problem analysis, selection of
blockchain platform, system modelling, prototype development,
and evaluation. Their findings provide the foundation for
developing proofs of concept for other potential applications
of blockchain in the built environment.

Information and data related to the building or structure need
to be tracked at every stage of its life cycle. Blockchain can provide
a living ledger that records everything happening with the asset.
Blockchain can allow tracking and access to all the necessary
information and data through the life cycle of the asset. In case of
any refurbishments or other improvements to a building, these
changes can be documented and recorded, and the whole
repository can be transferred to new owners when the
property is sold. In the future, each property will come with a
universally shared data set, which will include background
information such as past sales, repairs and amenities. This
digital history of transactions will help every stakeholder prove
their ownership, increase transparency and eliminate fraud
attempts. This alone will have tremendous consequences in
countries where one cannot rely on public authorities because
of corruption. The transactions can be made easy, safe, and
inexpensive due to the use of blockchain technology which

offers quick and costless verification (Mishra et al., 2021).
discussed the digitalization of land records using blockchain
technology. According to the authors, the immutable,
auditable and traceable features of blockchain entice
governments around the world to implement decentralized
technology within the process of land registration.

In addition, real estate assets can be fully tokenized in the
blockchain system, allowing participation to people having
limited amounts of savings. Real estate tokenization is the
process of creating a digital asset that represents a property on
the blockchain. The tokenization process addresses various
challenges in capital formation and liquidity, although it
requires a legal wrapper around the property, to securitize and
create an investment vehicle. The use of intermediaries can be
minimized, while the system can facilitate foreign real estate
investments and liquidity as anyone will be able to buy or sell even
tiny shares of real estate assets (Wouda and Opdenakker 2019).
investigate the application of a blockchain solution for improving
the transaction process of an office building in the Netherlands.
The authors highlight the problems of the current system, such as
lack of market transparency, slow speed and inefficiency
(Nasarre-Aznar 2018). investigate the relationship between
collaborative housing and blockchain. The authors conclude
that the technology has the potential to facilitate access to
housing through the reduction of cost and time and
minimizing the role of intermediaries.

6 CONCLUSION AND DISCUSSION

We are moving to a digital economy where financial and physical
assets will increasingly have digital representations. According to

FIGURE 8 | The Real Estate ecosystem today.

Frontiers in Built Environment | www.frontiersin.org March 2022 | Volume 8 | Article 84030317

Plevris et al. Blockchain in Civil Engineering, Architecture and Construction

144

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


the World Economic Forum, by 2025, blockchains will store
around 10% of the world’s GPD. Countries are trying to make the
necessary legislative and regulatory changes to adapt to the new
environment and make this change a reality. New opportunities
arise. Looking towards the future, it appears that blockchain is
something that we will be hearing a lot more of. Although nobody
can predict the degree to which it will affect the economy, our
lives and every single sector particularly in the long run, most
experts agree that it has the potential to play a significant role in
the future, in a wide range of fields across different verticals. This
is evidenced by the fast-growing occurrence of blockchain-related
articles in the scientific literature during the very recent years, in
several scientific areas, including engineering.

The present study briefly examined the technical details, main
concepts and aspects of blockchain technology and aimed at
formulating a picture of the current state and practice of its use in
fields related to civil, architectural and construction engineering.
The study also summarized and highlighted specific application
areas related to the Architecture, Engineering, and Construction
(AEC) industry where blockchain has the potential to provide
new solutions, and how they can be adopted to improve
performance, sustainability, and safety in the future. We

identified six important application areas and examined the
relevant challenges and opportunities ahead, namely in: 1)
Building information modelling (BIM) and Computer Aided
Design (CAD); 2) Contract management and smart contracts;
3) Construction project management; 4) Smart buildings and
smart cities; 5) Construction supply chain management; and 6)
Property ownership, land titles, asset management and
maintenance in real estate. The conclusion of the study is that
although blockchain technology is new and there are certainly
several early challenges to tackle, it has great potential to become
an extremely positive force of change in the construction
industry. As engineers, it is our inherent responsibility to
facilitate the digital transformation of the AEC industry and to
make it ready for the challenges and opportunities of the future,
and blockchain is bound to play a pivotal role in this
transformation.
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Optimized Strengthening Based on
Concrete Jacketing for Minimum
Eccentricity
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1Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens,
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The coupled lateral-torsional response is observed in building structures subjected to
dynamic excitation due to lack of symmetry in terms of mass/stiffness in any of the stories’
plan views; such structural systems are called eccentric. Much damage and even collapse
are concerned with building structures with asymmetric plan views. Combined torsional-
translational vibration of their structural system results in higher ductility demands,
especially to vertical structural elements located at the perimeter of the plan view. This
study examines the minimization problem of the torsional response of an eccentric, multi-
story reinforced concrete (RC) building by strengthening its vertical structural elements with
RC jackets. The problem of minimizing the eccentricity between mass and rigidity centers
for all story layouts and the corresponding minimization problem of the eccentricity
between mass and strength centers for all stories are considered two separate
formulations for the reduction of the torsional response optimization problem. Based
on recent studies, the center of strength is preferable for assessing the torsional response
of buildings in case of inelastic response. The imperialist competitive algorithm (ICA), a
member of the family of evolutionary search algorithms, is used to solve the two
optimization problems. The optimization problems are formulated for the case study
building considered after assessing its structural behavior and capacity through nonlinear
static analyses before and after strengthening. The later process was implemented tomeet
code requirements and examine the improvements achieved through optimization.

Keywords: strength eccentricity, stiffness eccentricity, metaheuristics, column strengthening, concrete jacketing,
optimization

1 INTRODUCTION

During the structural design phase, which remains the subject of research for engineers and
scientists, the goal is to develop a structural system that can reliably and predictably withstand
dynamic excitation (i.e., due to extreme actions such as blast loading or seismic excitation). Coupling
translational with torsional response can be observed due to either variance between actual and
considered mass distribution and stiffness or dynamic excitations that introduce a torsional
component on the structural response. This component is developed due to eccentricity between
the centers of mass (CM) and rigidity (CR) of the structural system. Such a structural system is called
eccentric or torsionally unbalanced. When this kind of structural system is subject to horizontal
dynamic excitations, the inertia forces developed can be represented by point loads passing through

Edited by:
Vagelis Plevris,

Qatar University, Qatar

Reviewed by:
Michele Palermo,

University of Bologna, Italy
Rajai Zuheir Al Rousan,

Jordan University of Science and
Technology, Jordan

Sameh Samir F. Mehanny,
Cairo University, Egypt

*Correspondence:
Nikos D. Lagaros

nlagaros@central.ntua.gr

Specialty section:
This article was submitted to

Computational Methods in Structural
Engineering,

a section of the journal
Frontiers in Built Environment

Received: 17 January 2022
Accepted: 09 March 2022
Published: 14 April 2022

Citation:
Mitropoulou CC, Naziris IA,

Kallioras NA and Lagaros ND (2022)
Optimized Strengthening Based on

Concrete Jacketing for
Minimum Eccentricity.

Front. Built Environ. 8:856380.
doi: 10.3389/fbuil.2022.856380

Frontiers in Built Environment | www.frontiersin.org April 2022 | Volume 8 | Article 8563801

ORIGINAL RESEARCH
published: 14 April 2022

doi: 10.3389/fbuil.2022.856380

147

http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2022.856380&domain=pdf&date_stamp=2022-04-14
https://www.frontiersin.org/articles/10.3389/fbuil.2022.856380/full
https://www.frontiersin.org/articles/10.3389/fbuil.2022.856380/full
https://www.frontiersin.org/articles/10.3389/fbuil.2022.856380/full
http://creativecommons.org/licenses/by/4.0/
mailto:nlagaros@central.ntua.gr
https://doi.org/10.3389/fbuil.2022.856380
https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2022.856380


the mass center, while the forces modeling the resisting extreme
action can be represented as point loads passing through the
stiffness center. This pair of opposing point loads generates the
torsional component of the response on the structural system
coupled with the translational one.

It is worth mentioning that the foundations of modern
research on the dynamic behavior of single and multi-story
asymmetric structures were set by a series of studies that
identified some of the key parameters influencing the
performance of such systems. For instance, Goel and Chopra
(1990) and Kan and Chopra (1977) identified and assessed the
distribution of stiffness and strength and the torsional coupling,
respectively. Further influential studies regarding the response of
one-story structures are included in the works of Peruš and Fajfar
(2005), Palermo et al. (2013), Palermo et al. (2017), and
Trombetti and Conte (2005). Additionally, Fajfar (2000) and
Fischinger (Fajfar and Fischinger, 1988; Fajfar and Gašperšič,
1996; Marušić and Fajfar, 2005) analyzed the nonlinear response
of multi-story buildings under seismic loads. Bosco et al. (2012),
Bosco et al. (2013), Bosco et al. (2015) also approached the
behavior of multi-story asymmetric buildings, while De
Stefano and Pintucchi (2008) presented a useful overview of
the research advancements about the seismic response of both
the plan and vertically irregular structures.

As proved by Kan and Chopra (1977) and presented in more
detail by Reem and Chopra (1987), accurate and reliable
prediction and assessment of the response of eccentric multi-
story buildings in the elastic stage cannot be determined because,
in multi-story buildings, except in a special case, the center of
rigidity is not defined unambiguously but depends on seismic
loading. Eurocode 8 (1994) and its Greek national annex
provided the definition of a fictitious axis of rotation
(optimum torsion axis) from which static eccentricity is
measured. Regarding the post-elastic structural response stage,
things are even vaguer. For example, Stathopoulos and
Anagnostopoulos (2005) questioned the adoption of a single
coefficient of behavior q provided by modern earthquake
design provisions. However, during the past 30 years, research
efforts were performed in this direction (estimating and
predicting the response of eccentric buildings), and various
design criteria/estimation of torsional action have been
proposed (Stathi et al., 2015).

In buildings designed with older regulations (before 1995 and
especially before 1985), significant non-uniformities are observed
during the formation of the static system. On the contrary, new
buildings are characterized by greater regularity, thanks to the
provisions of modern earthquake design codes (Anastassiadis
et al., 1998; Makarios and Anastassiadis, 1998; Xenidis et al.,
2006). Modern earthquake design codes try to provide general
directions (simple as possible structural systems, arrangement of
strong stiffness elements in the perimeter, etc.), aiming to derive
as rigid as possible buildings but also with limitations in terms of
geometry and distribution of stiffness and mass along the height
and floor plans. However, in relevant provisions based on
simplified shear-beam, one-story models, the “flexible” side
frames exhibit higher ductility demands than the “stiff” side
ones (Stathopoulos and Anagnostopoulos, 2005). The

advancements of computational techniques and algorithms
have allowed scientists in several fields to approach multiple
complex problems in new and efficient ways. Particularly in
engineering, such techniques have significantly contributed to
the shift from traditional trial-and-error practices to fully
automated ones, incorporating search algorithms. There are
many examples from the past where researchers have explored
the potential of implementing optimization approaches to
structural engineering challenges. Furthermore, the behavior of
asymmetric structures subjected to horizontal loads, such as
earthquakes, especially regarding their torsional response, is
addressed in numerous research studies, which in some cases
also incorporate optimization approaches to solve the arising
problems.

Specifically, Terzi and Athanatopoulou (2021) proposed a
measure to define the optimum torsion axis through the twist
axis. This measure demands the sum of story translational
displacements of the axis to be minimal. Dang et al. (2021)
developed a two-stage optimization approach for designing
isolated buildings incorporating genetic algorithms to identify
the optimal parameters of the isolated layer. Almazán and de la
Llera (2009) showed that the optimal damper location depends
on the static eccentricity and frequency ratio of the bare structure,
the total amount of supplemental damping considered, and the
frequency content of the excitation. Li and Han (2003) optimized
the positioning of multiple tuned mass dampers (MTMD) for
asymmetric structures, while Ismail (2015) aimed at forcing the
isolated asymmetric structures to behave as symmetric structures,
eliminating torsional responses. Similarly, Georgoussis (2015)
suggested a way to minimize the torsional response of inelastic
multi-story buildings with simple eccentricity, and Yiu et al.
(2014) introduced a practical method for evaluating lateral-
torsional coupling in the elastic earthquake response of
asymmetric multi-story buildings. In order to minimize the
torsional effects in asymmetric tall buildings, Şahin (2012)
proposed a new algorithm in MATLAB. Lagaros et al., in two
studies (2006 and 2009), developed optimum design approaches
for improving the seismic performance of 3D RC buildings,
including the minimization of the rigidity eccentricity. In the
same context, Duan and Chandler (1997) developed an optimized
procedure for designing torsionally unbalanced structures
subjected to earthquake loading, considering both the
serviceability and the ultimate limit states. Three studies (Li
et al., 2008a; Li et al., 2008b; Li et al., 2008c) extensively dealt
with the properties of soil-asymmetric building-active multiple
tuned mass dampers (AMTMD) interaction system, suggesting
guidelines for the design and implementation in earthquake
reduction of asymmetric structures built on soft soil
foundation. Guo and Li (2009) established a model of
primary-secondary systems concerning lateral-torsion coupling
and interaction between primary and secondary systems and used
a complex mode theory and pattern research method for the
secondary system’s optimal position. They also analyzed the
influencing factors of optimal position, such as eccentricity of
the primary system, direction of earthquake input, site of different
classification, mass, frequency, and damping ratio of the
secondary system. Chandler et al. (1995) examined the
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influence of accidental eccentricity on inelastic seismic torsional
effects in buildings reaching some useful conclusions regarding
the effectiveness of code accidental torsional provisions and the
ductility demand for the flexible-edge element in torsionally
unbalanced structures. Finally, Etedali and Kareshk (2022)
proposed a procedure for the optimal design of isolators in the
base story of asymmetric base-isolated structures to mitigate
torsional responses. In this work, the minimum eccentricity
optimization problem is formulated for the case of multi-story
reinforced concrete (RC) building structures associated with the
problem of selecting the characteristics of their vertical structural
elements strengthening strategy. In order to offer the designer/
practitioner a tool to understand the procedures described in the
study, an open-access web application is provided, where
optimization-based strengthening is provided, among others
(LINK).

2 ECCENTRICITY IN MULTI-STORY
BUILDING STRUCTURES

2.1 Equations of Motion
Contrary to what is observed for the case of single-story building
structures, in the case of multi-story ones, the centers of mass,
rigidity, and strength do not lie over a vertical axis. Another
difference observed in the case of multi-story buildings is that the
locations of the centers of stiffness, twist, and shear depend on the
stiffness of the system and the torsional or lateral loads exerted.
However, a special type of multi-story buildings can be designed
where, in each story, these centers coincide, laying over a
common, vertical axis independent of lateral loading. The
typical centers that can be defined for each story of the multi-
story building are the following: stiffness center (also called
rigidity center) is the location on each floor where any set of
static horizontal forces of arbitrary magnitude and direction is
applied to cause no rotation or twisting on any of the stories
(Hejal and Chopra, 1989). Another definition of the stiffness
center of a building is that it corresponds to the location on
each floor where if a static horizontal force is applied, it
develops translational deformation without rotation or
twisting. However, the rest of the floors may rotate or twist
(Humar, 1984). The principal axes of a floor are two orthogonal
axes passing through its center of rigidity. If a set of static
horizontal loads is applied along one of the two principal axes
of each floor, then the floor is deformed along the direction of the
applied loads, without a twist. The mass center is the location on
the diaphragm where the component of the inertial forces of the
floor passes. If the masses of the vertical elements are negligible
compared to those of the floor and the mass distribution on the
floors of the building is uniform, then the center of mass coincides
with the geometric center of the floor. The static eccentricity of
the ith story refers to the distance between mass and stiffness
centers.

The equations of motion of a multi-story building, considering
linear behavior, where damping is ignored for simplicity in the
description, for the case of a dynamic action along the x- and
y-axis, developing accelerations agx(t) and agy(t), respectively,

are formulated as follows for various reference points. With
reference to a randomly selected reference point O,

⎡⎢⎢⎢⎢⎢⎣ m 0 −myCM

0 m mxCM

−myCM mxCM J0

⎤⎥⎥⎥⎥⎥⎦⎧⎪⎨⎪⎩ €ux

€uy

€uθ

⎫⎪⎬⎪⎭ +⎡⎢⎢⎢⎢⎢⎣ Kx Kxy Kxθ

Kyx Ky Kyθ

Kθx Kθy Kθ

⎤⎥⎥⎥⎥⎥⎦⎧⎪⎨⎪⎩ ux

uy

uθ

⎫⎪⎬⎪⎭
�−

⎧⎪⎨⎪⎩ mIagx(t)
mIagy(t)

−yCMmIagx(t)+xCMmIagy(t)
⎫⎪⎬⎪⎭,

(1)
with reference to the center of mass CM,

⎡⎢⎢⎢⎢⎢⎣m 0 0
0 m 0
0 0 JM

⎤⎥⎥⎥⎥⎥⎦⎧⎪⎨⎪⎩ €ux

€uy

€uθ

⎫⎪⎬⎪⎭ + ⎡⎢⎢⎢⎢⎢⎣ Kx Kxy Kxθ

Kyx Ky Kyθ

Kθx Kθy Kθ

⎤⎥⎥⎥⎥⎥⎦⎧⎪⎨⎪⎩ ux

uy

uθ

⎫⎪⎬⎪⎭
� −

⎧⎪⎨⎪⎩ mIagx(t)
mIagy(t)

0

⎫⎪⎬⎪⎭, (2)

with reference to the rigidity center CR,

⎡⎢⎢⎢⎢⎢⎣ m 0 −mey
0 m mex

−mey mex JR

⎤⎥⎥⎥⎥⎥⎦⎧⎪⎨⎪⎩
€~ux
€~uy

€uθ

⎫⎪⎬⎪⎭ + ⎡⎢⎢⎢⎢⎢⎢⎣ ~Kx
~Kxy 0

~Kyx
~Ky 0

0 0 ~Kθ

⎤⎥⎥⎥⎥⎥⎥⎦⎧⎪⎨⎪⎩ ~ux

~uy

uθ

⎫⎪⎬⎪⎭
� −

⎧⎪⎨⎪⎩ mIagx(t)
m1agy(t)

−eym1agx(t) + exm1agy(t)
⎫⎪⎬⎪⎭,

(3)
where I denotes a vector of ones of dimension N; €ux, €uy, and €uθ
denote vectors of dimension N; J0 is the diagonal matrix of
dimension N (number of stories in a multi-story building
structure) and its elements J0,j denote the polar moment of
inertia of the jth story with respect to point Oj; r is the radius
of rotation; xCM and yCM are diagonal matrices of dimension N
and their elements xCM,j and yCM,j denote the coordinates of the
mass center (CM) of the jth story with respect to the reference
systemXjOjYj; JM is the diagonal matrix of dimensionN where
its elements JM,j � mjr2j represent the polar moment of inertia of
the jth story with reference to its mass center; JR denotes the
diagonal matrix of dimension N and its elements JR,j �
mj(e2j + r2j) denote the polar moment of inertia of the jth

story with respect to the center of stiffness; and ex and ey are
diagonal matrices of dimensionN and their elements are defined
as follows:

exj � xCMj − xCRj, (4a)
eyj � yCMj − yCRj, (4b)

where scalars exj and eyj are the components of the static
eccentricity of thejth story along the x- and y-axis and xCRj
and yCRj are coordinates of the stiffness center of the jth story
with respect to the reference system XjOjYj.

2.2 Location of Stiffness or Rigidity Center
To calculate the coordinates of the stiffness center (also called
rigidity center) for the case of a multi-story building structure, let
us consider the stiffness matrix of Eq. 1, which is defined
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according to degrees of freedom (DOF) u at a randomly selected
reference point O. Hence, for calculating the coordinates, the
following transformation of u (corresponding to reference point
O) to ~u (corresponding to reference point CR) is considered:

u �
⎧⎪⎨⎪⎩ ux

uy

uθ

⎫⎪⎬⎪⎭ � ⎡⎢⎢⎢⎢⎢⎣ I 0 yCR

0 I −xCR

0 0 I

⎤⎥⎥⎥⎥⎥⎦⎧⎪⎨⎪⎩ ~u
~u
uθ

⎫⎪⎬⎪⎭ � ~a~u. (5)

Thus,

~Κ � ~aTK~a5~Κ

� ⎡⎢⎢⎢⎢⎢⎣ Kx Kxy KxyCR −KxyxCR +Kxθ

Kyx Ky KyxyCR −KyxCR +Kyθ

Kθx + yCRKx − xCRKyx Kθy + yCRKxy − xCRKy
~Kθ

⎤⎥⎥⎥⎥⎥⎦,
(6)

where ~Kθ � Kθ + 2KθxyCR − 2K
θyxCR + Kxy2

CR − 2KxyxCRyCR + Kyx2
CR, given that Eq. 6

refers to the stiffness matrix with reference to CR, and as
denoted in Eq. 3, the off-diagonal coefficients of the stiffness
matrix that correspond to the coupling of translational with
rotational DOF are equal to zero:

Kθx + yCRKx − xCRKyx � 0, (7a)
Kθy + yCRKxy − xCRKy � 0, (7b)

Thus, solving the system of Eq. 7a, Eq. 7b, with respect to the
unknowns xCR and yCR that denote diagonal matrices containing
the coordinates of the rigidity centers along the stories of the
building structure and their coefficients (Kθx, Kx, etc.,) referring
to square matrices, the following expressions are derived:

xCR � Kyθ − KyxK−1
x Kxθ

Ky −KyxK−1
x Kxy

, (8a)

yCR � −Kxθ − KxyK−1
y Kyθ

Kx −KxyK−1
y Kyx

. (8b)

However, Eq. 8a, Eq. 8b do not always lead to diagonal
matrices, thus unique definition of the centers of stiffness.
Unique locations of stiffness centers do not always exist. They
depend on loading; that is, different load distributions lead to
different locations of the stiffness centers. In such a case, the
coordinates of the stiffness centers can be derived through the
following procedure:

~P � ~K~u5

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P̃x

P̃y

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
� ⎡⎢⎢⎢⎢⎢⎣ Kx Kxy KxyCR − KxyxCR + Kxθ

Kyx Ky KyxyCR − KyxCR + Kyθ

Kθx + yCRKx − xCRKyx Kθy + yCRKxy − xCRKy
~Kθ

⎤⎥⎥⎥⎥⎥⎦
⎧⎪⎨⎪⎩ ~ux

~uy

uθ

⎫⎪⎬⎪⎭, (9)

where static lateral loads are introduced along the height of the
building structure, leading to the following expressions:

xCR � [P̃y]−1
Kθy −KθxK−1

x Kxy

Ky − KyxK−1
x Kxy

P̃y, (10a)

yCR � −[P̃x]−1Kθx −KθyK−1
y Kyx

Kx − KxyK−1
y Kyx

P̃x, (10b)

where P̃x and P̃y are diagonal matrices. Therefore, the location of
the stiffness centers is unique and dependent on the applied load.
It is possible to identify unique stiffness centers along the floors of
multi-story building structures, regardless of the horizontal loads,
for a special type of multi-story buildings that allows the
identification of unique centers and has the following
properties: 1) the mass centers of all floors lie along a vertical
axis and 2) the vertical structural elements are arranged in such a
way that their local axes form an orthogonal grid in the floor plan
view and are connected to each floor by a rigid diaphragm. The
result of the last two characteristics is that the stiffness centers of
all floors are on the same vertical axis. The static eccentricities of
the floors are also the same (Lagaros et al., 2006; Lagaros et al.,
2009).

2.3 Location of Strength Center
As mentioned earlier, the regulations are based on an elastic
response; the simulation of the torsional effect, however, needs to
consider the inelastic state of the body (determination of the
torsional axis in the inelastic phase, ability to receive the shear
forces of torsion from the structural elements) that will determine
the collapse mechanisms of the building and thus give the ability
to the engineer to estimate the required ductility of the
components and compare it with the available one. There are
many relevant ones in the literature (e.g., Stathopoulos and
Anagnostopoulos, 2005). It has been proposed to replace the
rigidity center (CR) with that of the strength center (CV). The
center of strength (CV) is the position of the diaphragm through
which the recommended strength of all vertical elements passes.
Strictly unrestrained is a building whose mass and stiffness
centers are not identical (eccentric) (Paulay, 1998; Penelis and
Penelis, 2019). According to the above, the CV endurance center
is determined as follows:

xCV � ΣiVyi ·xi

ΣiVyi
, (11a)

yCV � ∑iVxi ·y∑iVxi
, (11b)

where xi and yi are the coordinates of the vertical elements’
center of mass of the ith story with respect to the typical reference
system on the specific story, Vxi and Vyi denote the horizontal
(shear) nominal resistance (strength) of the vertical elements
along the directions x and y, respectively, which are calculated in
case of a fragile element:

Vy � min{Mx

Ls,k
;VRy}, (12a)

Vx � min{My

Ls,k
;VRx}, (12b)

with Ls,k denoting the distance of the extreme cross section k = 1,
2 of the specific element from the position of zero moments
(shear length), where the shear strength of the element along the
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two directions (VRy and VRx) is calculated based on appendix 7Γ
of Kanepe (2017).

3 STRENGTHENING OF RC BUILDING
STRUCTURES

Several options are available for intervention aiming to retrofit
structures (Costa et al., 2017; Ganguly, 2020). 1)
Repair–reinforcement of critical areas on existing structural
elements: jacketing is the most popular method of this
category, contributing to strengthening and retrofitting
structural elements. It is adopted to upgrade bearing load
capacity based on improvements on the structural design or
restore its integrity due to failures on the structural elements
(steel jacketing, reinforced concrete jacketing, glass fiber
reinforced polymer jacketing, fiber-reinforced polymer
(FRP) jacketing, hybrid jacketing and shape memory alloy
(SMA) wire jacketing, near-surface mounted (NSM) fiber-
reinforced polymer (FRP) jacketing, etc.). 2) Add new load-
bearing elements (new structural system, shear walls, steel
frame, etc.): filling shear walls of the load-bearing frame
structural system, expansion (reinforcement of existing
brickwork, demolition of brickwork and addition of RC
shear walls, steel stiffeners/dampers). 3) Addition of
dampers: seismic isolation systems. All the above-
mentioned options are part of a structural intervention
strategy.

3.1 Structural Intervention Aiming to
Remove Irregularities in the Floor Plan
In order to choose how and where to intervene in the building
aiming to improve its structural performance is to increase
stiffness and flexural strength of some structural elements
selectively, for example, for the case of columns aiming to
modify the location of the centers of elastic stiffness and
strength and possibly minimize the corresponding
eccentricities. According to Tassios (1982), a selective increase
in stiffness takes place 1) after low-intensity random actions (e.g.,
low-intensity explosions and small earthquakes), 2) when the
building is very flexible, and 3) when it is necessary to correct
irregularities in the distribution of stiffness in height or extent.
Selective increase of flexural strength occurs due to 1) irregularity
of strengths in height or plan (i.e., torsion might be observed
during yield of some elements) and 2) insufficiency of flexural
strength locally or damage of a structural element. Such problems
require a selective increase in stiffness and flexural strength of the
columns. The most suitable strengthening method is the use of
reinforced concrete jacketing (Kanepe, 2017).

3.2 Column Jacketing
The construction of jackets on RC columns is a repair and
reinforcement method successfully applied in numerous cases.
The method is used to repair or strengthen the element (local
or total jacketing). In addition to improving the three basic

features of the column, jacketing also does not affect the
architectural characteristics of the strengthened section,
reduces slenderness of the strengthened element, improves
the structural performance of the columns due to confinement,
and increases the level of fire protection. Based on the type of
concrete, jacketing is classified into two different categories.
Jacketing made of cast concrete is used in jackets where the
thickness exceeds 8 cm (t ≥ 8 cm), while their construction
requires formwork. Casting is implemented by means of low
pressure, and the size of the aggregates should not be large. The
use of fluids and admixtures that prevent drying shrinkage is
recommended. The disadvantages of this technique are the
difficulty of concreting, especially at the top of the column. In
cases where the total thickness is less than 10 cm (t ≤ 10 cm),
Jacketing made of sprayed/shot concrete is used, while no
formwork is required for pouring or placing into them.
Particular attention should be paid to ensuring the vertical
surface of the jackets via guides usage. The drying shrinkage in
this type of concrete jackets is greater. Thus, proper
maintenance is required.

The construction provisions of RC jackets are the result of
research and experience from the application of the method in
practice: For sprayed/shot concrete jacketing, the minimum
thickness must be 5 cm; for cast concrete jacketing with one
row of reinforcements, the thickness must be 8–12 cm; and for
cast concrete jacketing with two rows of reinforcement, the
minimum thickness must be 12 cm. In the case where the
thickness of the jacketing is small (i.e., less than 7.50 cm), the
provisions of the concrete regulations related to the coatings of
the reinforcement bars are not satisfied together with those
related to the form of hooks at the ends of the stirrups. Thus,
in case of a small thickness of the jacket, the ends of the stirrups
need to be welded.

4 THE MINIMUM ECCENTRICITY
PROBLEM COMBINED WITH COLUMNS
STRENGTHENING FOR RC BUILDING
STRUCTURES

4.1 Problem Formulation
The main objective of this study is to formulate optimization
problems that will lead to the redesign of existing RC structures,
which may have been reinforced to meet the required safety
conditions of the applicable Regulations, in order to create
designs with the minimal torsional response and therefore
improved behavior. The wording used in this work is based
on the problem of minimizing the eCM−CV eccentricity of
centers of mass (CM) and strength (CV) for each story.
Design variables (in the case of existing buildings) are the
thickness and the longitudinal reinforcement of the RC
jackets. Restrictions refer to the value ranges in which these
variables move due to construction and regulatory requirements.
The problem refers to a mixed optimization problem
mathematically expressed as follows:
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min
[t]

eCM−CR([t]) �
�������������������������������������������(xj

CM ([t]) − xj
CR ([t]))2 + (yj

CM ([t]) − yj
CR ([t]))2√

, j

� 1 2, /, nstoreys,

(13a)
min[t,p] eCM−CV([t, p]) � ����������������������������������������������������(xj

CM ([t, p]) − xj
CV ([t, p]))2 + (yj

CM ([t, p]) − yj
CV ([t, p]))2√

, j

� 1 2, /, nstoreys,

(13b)

where [xj
CM , yj

CM ], [xj
CR , y

j
CR ], and [xjCV , yj

CV ] are the
positions of the mass, rigidity, and strength centers of the jth

story, nstoreys is the total number of floors of the building, t �
[tNS, tS] are the RC jackets’ thicknesses of the non-strengthened
and strengthened (based on safety criteria) columns, respectively,
ncolumns,NS and ncolumns,S denote the total number of non-
strengthened and strengthened columns of the story,
respectively, p denote the percentage of longitudinal
reinforcement of the RC jackets, and ncolumns � ncolumns,NS +
ncolumns,S is the total number of columns of the story.

The notations marked in Figure 1 are the following: ttot � t0 +
tnew is the total thickness of the RC jacket resulting from the
strength requirements plus the one needed to minimize
eccentricity, As,ini,y is the initial longitudinal reinforcement of
the cross section, perpendicular to the y direction, and As,ini,x is
the initial longitudinal reinforcement of the cross section,
perpendicular to X direction. Accordingly, As,tot � As,0 + As,new

is the total reinforcement of the RC jacket resulting from the
strength requirements plus the one needed to minimize
eccentricity. In order to calculate the strength moment and the
corresponding shear forces, the cross section is discretized into
layers of number:

lx � round[h + 2ttot
hl

], // with direction x , (14a)

ly � round[b + 2ttot
hl

], // with direction y, (14b)

where hl is the thickness of the layer, after trial-and-error tests, to
achieve a compromise between convergence to acceptable results
and velocity hl � 1.0 cm.

The following assumptions are considered for the
implementation of the algorithm. First assumption: a
common RC jacket is constructed with thickness ttot � t0 +
tnew and reinforcement lying on the same level as shown in
Figure 1. Second assumption: in order to calculate the
bending moment resistance, only the longitudinal
reinforcement distributed along the edge of the cross
section perpendicular to the specific direction is used
because the contribution of the rest is rather limited. Third
assumption: uniform distribution of the stresses over the layer
thickness is considered equal to its upper limit. Fourth
assumption: 3 cm reinforcement coating is considered for
the initial cross section and RC jacket.

4.1.1 Calculation of the Objective Functions
The steps of the algorithm for calculating the rigidity eccentricity
eCM−CR for each floor are as follows, for each column and in each
direction:

Step 1: calculation of the moment of inertia along the directions
of local axes x and y for each column by the method of the
equivalent cross section.

Step 2: calculation of the cracked stiffness of the cross section for
each column.

Step 3: calculation of CR stiffness center coordinates (for the pure
frame or wall system).

Step 4: calculation of the objective function according to Eq.13a.

Accordingly, the steps of the algorithm for calculating the
strength eccentricity eCM−CV for each floor are as follows, for each
column and in each direction:

Step 1: discretization of the cross section according to Eq. 14b,
Eq. 14a.

Step 2: calculation of bending moment resistance for combined
loading of bending and axial loading. Given that the
element is considered monolithic, its strength was
reduced by coefficient kr � 0.90 according to KANEPE
(Code of Structural Interventions).

Step 3: calculation of shear strength considering a bending failure
according to Eq. 12a, Eq. 12b.

Then, given that the shear strength of the columns is available
along the two principal axes, the following steps are performed:

Step 4: calculation of the coordinates of the center of resistance.
Step 5: calculation of the objective function according to Eq.13b.

4.1.2 Data Entry
In order to introduce the information required by the problem
formulation, a common matrix of the input data is used [data
(N,14)], where N � ncolumns is the number of columns in each
story. The 14 columns of the matrix correspond to (c1) column
dimension parallel to the x-axis [b (m)], (c2) column dimension

FIGURE 1 | Strengthening of RC cross section to calculate its resistance
to axial bending with axial force.
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parallel to the y-axis [h (m)], (c3) initial mechanical percentage of
reinforcement (p), (c4) abscissa of the column’s section mass
center [x (m)], (c5) ordinate of the column’s section mass center
[y (m)], (c6) stiffness reduction coefficient due to cracking, (c7)
initial reinforcement thickness (element strength requirements),
(m), (c8) mechanical reinforcement rate of initial reinforcement,
(c9) additional reinforcement thickness resulting from
minimizing construction eccentricity [tnew (m)], (c10)
mechanical percentage of additional reinforcement (ρnew),
(c11) modulus of elasticity of concrete [Ec (kPa)], (c12)
modulus of elasticity of steel reinforcement [Es (kPa)], (c13)
column length [L (m)], and (c14) axial compressive strength
of concrete for the combination G + 0.3Q (with positive sign),
[N (kN)].

4.2 Solving the Optimization Problem
Search algorithms represent an iterative procedure that requires
an initial guess of the problem solution. Then, a sequence of
improved designs are generated until the optimal or the best
compromise solution is achieved. The type of strategy that the
algorithm relies on for generating the new designs categorizes the
optimization procedure. The search algorithm is characterized by
robustness, in which the algorithm needs to be able to handle a
variety of problems efficiently; efficiency, in which the algorithm
should not require too much computing power to converge; and
accuracy in which the algorithm needs to be able to recognize an
acceptable solution accurately, without being sensitive to
arithmetic errors.

A fast algorithm may require too much storage to deal with
problems with many design variables. On the contrary, a
highly robust algorithm may require many iterations, thus
increasing computational time to reach the optimal design.
Some algorithms preserve part of the information from the
previous designs, while others only use information from the
current design. As far as the type of information, the
algorithms are classified into zero-, first-, or second-order
algorithms. Zero-order algorithms use the information
obtained through objective function value only during the
search process. First-order algorithms, in addition to the
objective function value, make use of the information
obtained through the first-order derivative of the objective
function. In contrast, second-order algorithms, in addition to
the objective function value and its first derivative, use the
information obtained through the second-order derivative of
the objective function.

Zero-order algorithms are divided into deterministic or
mathematical and stochastic algorithms, depending on how
the new designs are generated. In general, deterministic ones
approach the optimal design very quickly. Their main
disadvantage is that they are easily trapped in local minima.
Stochastic algorithms search for the optimal solution through
random processes, generating better designs based on the existing
ones. They are not as easily trapped into local minima as
deterministic algorithms. They require much more computing
power to converge. For many years, deterministic algorithms
were the exclusive tool for solving structural design optimization
problems. However, stochastic algorithms have been explored

since the 1960s. During the last 2 decades, stochastic algorithms
have been extensively applied in the field of structural design
optimization at the research level and have managed to provide
solutions to particularly demanding and complex problems.
Search algorithms are also classified into algorithms that, in
each iteration, deal with one design only and those that deal
with a population of designs. All deterministic algorithms deal
with one design in each iteration. Concerning the stochastic
algorithms, simulated annealing is the most popular search
algorithm that also deals with one design in each iteration.

A large and very popular category of stochastic search
algorithms that deal with a population of designs in each
iteration are the well-known evolutionary or Darwinian
algorithms. They usually model a natural, social, or biological
process. Evolutionary algorithms are characterized by robustness
and the ability to identify the area of the global optimum design
due to the random search process. However, they require a large
number of function evaluations. Genetic algorithms and
evolution strategies are the best-known evolutionary
algorithms. For dealing with the optimization problems
addressed in the framework of the IMSFARE project, the
imperialist competitive algorithm (ICA) was employed, which
is briefly described in the next section.

4.3 Imperial Competitive Algorithm
ICA (Atashpaz-Gargari and Lucas, 2007) is an evolutionary
search algorithm inspired by imperialist competition. So far, it
has been used successfully in different optimization problems of
numerous areas of engineering and science. The independent
populations are called countries and are of two types, colonies
and imperialists, all of which together form empires. The
colonial/imperialistic competition between empires is the basis
of the algorithm. During this competition, the weak empires
collapse while the strong ones take over the colonies of the weak
empires. This competition successfully converges to the stage
where there is only one empire after the collapse of all the rest,
whose colonies are positioned in the same location with the
imperialist, having the same cost (i.e., the same objective function
value). From one point of view, ICA can be considered the social
equivalent of genetic algorithms. ICA is the mathematical model
and computational simulation of human social evolution, while
genetic algorithms are based on the biological evolution of
species. Subsequently, the steps of the algorithm and how the
imperialist competition between empires is modeled is provided
in more detail.

Step 1 (creation of initial empires): like any other evolutionary
algorithm, ICA starts with a random initial population (countries
in the world). Some of the countries are chosen to be the
colonialists/imperialists and the rest form the colonies of these
imperialists. These original colonies are divided among the
imperialists according to their power, proportional to their
cost. It should be mentioned that the cost of a country
(design) refers to the objective function value. Let p1, p2,/pn

denote the design variables required to model the optimization
problem at hand. Thus, a country is defined with the vector
country � [p1, p2,/pn]. The design variables take various
values randomly chosen over the design space, and thus the
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initial population of sizeNpop is formed (in the framework of this
study and the applications of the IMSFARE project, an initial
population of 200 countries was used). The cost of each country is
calculated by means of the objective function F of the problem in
the variables (p1, p2,/pn). Thus, cost � F(country) �
F([p1, p2,/pN]).

Depending on the initial cost of the countries, they are divided
into Nimp (for the needs of this study and the IMSFARE project
Nimp was considered equal to 8) where the most powerful ones
define the first imperialists and the remaining countries Ncol

represent the initial colonies (Nimp +Ncol � Npop). Depending
on the cost of the imperialists, the colonies are divided among the
imperialists in order to form the initial empires. For this purpose,
the normalized cost of each imperialist is defined as
Cn � cn −max{c1, c2,/cNimp}, where cn is the cost of nth

imperialist and Cn is its normalized cost value. Based on the
normalized cost value, the power, pn, of each colonialist can be
calculated as follows:

pn �
∣∣∣∣∣∣∣∣∣∣∣ Cn∑Nimp

i�1 Ci

∣∣∣∣∣∣∣∣∣∣∣. (15)

Thus, the original colonies pass into the possession of each
colonialist and form the first empires, depending on the power of
each colonialist according to the relationNCn � round(pn ·Ncol),
which denotes the initial number of colonies in the nth empire.
NCn are randomly selected and assigned to the nth empire.
Figure 2A shows the initial population of each empire. The
strongest empires own the largest number of colonies while the
weakest ones possess the smallest.

FIGURE 2 | The imperial competitive algorithm. (A) Formation of the initial empires. (B) Movement of colonies toward their associated colonialist. (C) Moving
colonies to their associated colonialist with a possible deviant address. (D) Imperialist competition. The stronger an empire, the more likely it is to take possession of the
weakest colony of the weakest empire.
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Step 2 (movement of colonies of an empire to the imperialist):
once the colonies are divided into empires, they start moving
toward their imperialist. In this way, the imperialists improve
their colonies by moving the whole population of countries
toward positions of lower cost. This movement takes place
along the vector joining the colony to the imperialist, as
shown in Figure 2B. The colony travels a distance of x units
in the direction of this vector, which is considered a random
variable with uniform distribution x ≈ U(0, β · d), where β is a
number greater than 1 and d is the Euclidean distance between a
colony and its imperialist. In most applications, the value β � 2
gives rapid convergence of countries to the global best. Aiming to
enable the search process for the colony in different places around
its imperialist, a random deviation in the direction of the
movement is provided. This is implemented with the random
deviation angle θ (Figure 2C), which is a random number with a
uniform distribution θ ≈ U(−γ, γ). In most applications, the
value γ � π/4 gives rapid convergence of countries to the
global best.

Step 3 (change of position between the colonialist and a
colony): if a colony moving toward the colonialist identifies a
better position of lower cost than the colonialist, then they change
their positions. In other words, this colony becomes the new
colonialist of the empire. The algorithm continues with the new
colonialist, and the colonies of the empire (including the former
colonialist) move toward the new colonialist.

Step 4 (total power of the empire): The total cost of the nth
empire is calculated as follows:

cn,total � cn + ξ · average(F(countryi)), i � 1, 2,/, NCn, (16)
where the value ξ � 0.1 is used in most applications.

Step 5 (imperialist competition): imperialist rivalry gradually
leads to loss of power for the weakest empires and strengthening
the strongest ones, while all empires try to take possession of
colonies of other empires. This is modeled in the algorithm by
selecting some of the weakest colonies of the weakest empires and
making competition between the other empires over who will
acquire these colonies (Figure 2D). The empires with the greatest
power are most likely to dominate this competition. The
normalized cost of the empire is given by
Cn,total � cn,total −max{c1,total, c2,total,/cNimp,total}, and its power

ppn �
∣∣∣∣∣∣∣∣∣∣∣ Cn,total∑Nimp

i�1 Ci,total

∣∣∣∣∣∣∣∣∣∣∣. (17)

Vector D is defined as D � P − R � [d1, d2,/, dNimp] �
[pp1 − r1, pp2 − r2,/, ppNimp − rNimp], where P represents the
power vector of the empires and R is a vector with random
numbers uniformly distributed in the space (0, 1). With reference
to vectorD, the referenced colonies will be brought to the empire
whose element in vector D is the maximum.

Step 6 (exclusion of powerless empires): empires left without
colonies are considered collapsing and excluded from the
competition.

Step 7 (convergence): in the end, only one empire will remain
(the most powerful) after the collapse of the rest, and all colonies

FIGURE 3 | Typical floor plan of the case study building structure and its simulation.
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will be under its occupation. At this point, all colonies are in the
same place and have the same cost to each other as to the colonial.
In this ideal world, there is no difference between colonies and the
colonialist.

5 NUMERICAL TESTS

This section provides the numerical tests for describing the
implementation of the proposed design framework to achieve
the optimized strengthening of the vertical structural elements of
an RC building structure. Aiming to assess and then minimize the
torsional response, a three-story RC building structure is
considered. The plan view, common for all stories, is gamma-
shaped (Figure 3) with an area of 89 m2, and the storys’ height is
equal to 3 m. It corresponds to a residential building and is
located in the Municipality of Zografou (hazard zone Z1,
according to the Greek hazard map for the city of Athens
(Papazachos et al., 1993).

The building is analyzed as a space frame structural system,
where the contribution of infill walls on the structural response
against the horizontal loads of the random action (e.g., explosion
and earthquake) is neglected. Therefore, it is assumed that these
loads are received from the other structural elements, namely,
beams, columns, and shear walls, the first two of which are
simulated with frame elements having 6-DOF. The slabs are
not inserted in the model, but the diaphragm function of the
floors is ensured by coupling the story’s model nodes, while the
ground supports are considered to be fully fixed.

Some characteristics of the construction materials were used.
Concrete: the original structural system was considered to use
concrete of quality C20/25 with a modulus of elasticity Ecm =
29 Gpa. Given that the case study refers to an existing structure
that will be assessed by means of inelastic analyses, the average
strength is considered, fc � fck+8

γm
� (20 + 8)

1.10 � 25.454MPa. Steel:

regarding reinforcing steel quality, S400 was considered, with a
modulus of elasticity of Εs = 200 Gpa. It was also considered
post-yield hardening of 1.10; that is, the failure stress is equal to

TABLE 1 | Calculation of moment-chord rotation angles θy , θum, and θu,pl , for the structural elements.

Element b/h (cm) db (m) Lnet (m) Ls (m) (1/R)y (1/R)u My(kNm) Mu(kNm) θy θum θu,pl

Beams

Δ1 30/50 0.016 4.63 2.31 0.0057 0.0579 176.38 194.37 0.0078 0.0566 0.0488
Δ2 30/60 0.020 5.60 2.80 0.0045 0.0579 206.17 242.40 0.0076 0.0568 0.0493
Δ3 30/50 0.016 4.65 2.33 0.0057 0.0579 176.38 194.37 0.0078 0.0568 0.0489
Δ4 30/60 0.020 4.60 2.30 0.0045 0.0579 206.17 242.40 0.0069 0.0530 0.0461
Δ5 30/50 0.016 4.60 2.30 0.0057 0.0579 176.38 194.37 0.0078 0.0565 0.0487
Δ6 30/60 0.020 4.63 2.31 0.0045 0.0579 206.17 242.40 0.0069 0.0531 0.0462
Δ7 30/60 0.020 5.60 2.80 0.0045 0.0579 206.17 242.40 0.0076 0.0568 0.0493
Δ8 30/50 0.016 4.65 2.33 0.0057 0.0579 176.38 194.37 0.0078 0.0568 0.0489
Δ9 30/50 0.016 4.63 2.31 0.0057 0.0579 176.38 194.37 0.0078 0.0566 0.0488
Δ10 30/50 0.016 4.65 2.33 0.0057 0.0579 176.38 194.37 0.0078 0.0568 0.0489

Columns

K11 35/35 0.02 3.00 1.5 −258.15 0.0091 0.0526 98.37 124.69 0.0090 0.0610
K12 45/45 0.02 3.00 1.5 −698.90 0.0066 0.0439 187.81 253.48 0.0073 0.0595
K13 45/45 0.02 3.00 1.5 −364.74 0.0066 0.0439 187.81 253.48 0.0073 0.0550
K14 45/45 0.02 3.00 1.5 −605.59 0.0066 0.0439 187.81 253.48 0.0073 0.0582
K15 45/45 0.02 3.00 1.5 −1,012.96 0.0066 0.0439 187.81 253.48 0.0073 0.0640
K16 45/45 0.02 3.00 1.5 −327.93 0.0066 0.0439 187.81 253.48 0.0073 0.0546
K17 35/35 0.02 3.00 1.5 −276.97 0.0091 0.0526 98.37 124.69 0.0090 0.0614
K18 35/35 0.02 3.00 1.5 −265.58 0.0091 0.0526 98.37 124.69 0.0090 0.0612
K21 35/35 0.02 3.00 1.5 −172.53 0.0091 0.0526 98.37 124.69 0.0090 0.0590
K22 45/45 0.02 3.00 1.5 −465.53 0.0066 0.0439 187.81 253.48 0.0073 0.0564
K23 45/45 0.02 3.00 1.5 −243.19 0.0066 0.0439 187.81 253.48 0.0073 0.0535
K24 45/45 0.02 3.00 1.5 −403.56 0.0066 0.0439 187.81 253.48 0.0073 0.0556
K25 45/45 0.02 3.00 1.5 −675.45 0.0066 0.0439 187.81 253.48 0.0073 0.0592
K26 45/45 0.02 3.00 1.5 −218.41 0.0066 0.0439 187.81 253.48 0.0073 0.0532
K27 35/35 0.02 3.00 1.5 −184.53 0.0091 0.0526 98.37 124.69 0.0090 0.0593
K28 35/35 0.02 3.00 1.5 −177.96 0.0091 0.0526 98.37 124.69 0.0090 0.0591
K31 35/35 0.02 3.00 1.5 −83.29 0.0091 0.0526 98.37 124.69 0.0090 0.0570
K32 45/45 0.02 3.00 1.5 −233.54 0.0066 0.0439 187.81 253.48 0.0073 0.0534
K33 45/45 0.02 3.00 1.5 −120.23 0.0066 0.0439 187.81 253.48 0.0073 0.0520
K34 45/45 0.02 3.00 1.5 −201.29 0.0066 0.0439 187.81 253.48 0.0073 0.0530
K35 45/45 0.02 3.00 1.5 −347.56 0.0066 0.0439 187.81 253.48 0.0073 0.0548
K36 45/45 0.02 3.00 1.5 −106.91 0.0066 0.0439 187.81 253.48 0.0073 0.0518
K37 35/35 0.02 3.00 1.5 −90.86 0.0091 0.0526 98.37 124.69 0.0090 0.0572
K38 35/35 0.02 3.00 1.5 −86.50 0.0091 0.0526 98.37 124.69 0.0090 0.0571
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ftk � 440MP and the yield stress is calculated as follows:
fsy � fyk

γm
� 400

1.10 � 363.636MPa. Beams and columns were
grouped according to their dimensions and reinforcement. The
longitudinal reinforcement of the original design was 8Ø20 for
beams labelled as Δ2, Δ4, Δ6, and Δ7; 10Ø16 for beams Δ1, Δ3,
Δ5, Δ8, Δ9, and Δ10; 8Ø20 for columns Κ1, Κ7, and Κ8; and
12Ø20 for columns Κ2, Κ3, Κ4, Κ5, and Κ6. The active stiffness of
the structural elements is less than the geometric one due to
cracking. The reduction of the stiffness was implemented
according to the regulation (Earthquake Planning and
Protection Organization, 2017). In order to consider the

stiffness reduction in analysis/design software, the Keff

Kel

coefficient is introduced on the modifiers of each section at
the moment of inertia.

The vertical loads considered for assessing the building
comply with Eurocode 1 (1995). Permanent loading: self-
weight of slabs (considering the thickness of 18 cm) is equal to
4.5 kN/m2, roof covering 1.5 kN/m2, and infill walls 1.7 kN/m.
Live loading: rooms 2.0 kN/m2. The elastic design spectrum used
to evaluate the building in implementing the ATC-40 (Applied
Technology Council, 1996) methodology was defined based on
EC8. In the specific building, the parameters are Ζ1 (agR = 0.16),
significance II (γI = 1.00), and ground B (ΤB = 0.15, ΤC = 0.50, TD
= 2.50, S = 1.20). Initially, a maximum number of 12 eigenmodes
is selected. As already mentioned, the vibrating mass is set for the
combination of G + 0.3Q.

It is observed that the first eigenmode is the fundamental one
for the Y direction with a mass participation rate of around 83%,
while the second eigenmode is the fundamental one for the X
direction with a participation rate of around 81%. The primary
step in introducing the non-linearity of the members is to define
the non-linear properties of the materials. For concrete failure,
deformation in compression and bending was considered equal to
2‰ and 3.5‰, respectively, while for steel, the failure
deformation was considered equal to 20‰. The ETABS for
the extraction of the baring capacity curve during the static
inelastic analysis is based on the step-by-step method, that is,
the formation of concentrated plastic hinges on the elements until
the establishment of the baring collapse mechanism implementing a
force-control approach. The next step is the definition of the location
of plastic hinges in the structural elements and the definition of their
inelastic behavior, that is, the formation of their behavior curve in
terms of the moment-chord rotation angle. Given the values of φy
and φu, the value of chord rotation angle for yield and failure, and θy
and θum, respectively, for the structural elements, the required
quantities are calculated according to KANEPE (Earthquake
Planning and Protection Organization, 2017). Note here that ρs �
ρd � 0 was considered.

For the calculations in the case of columns, it is necessary to
determine the axial forces for the load combination G + 0.3Q
(Table 1) for beams and columns. In Table 1, the first index for
the column elements denotes the story and the second one its
location in the plan view; that is, K34 is K4 (as denoted in
Figure 4) at the third story. In Table 1, b and h refer to the
dimensions of the rectangular cross section; db denotes the mean
diameter of the longitudinal steel reinforcement; Lnet and Ls
denote the net length of the element and the distance of
extreme cross section from the location of zero bending
moment, respectively; (1/R)y and (1/R)u represent the yield
and ultimate capacity values of the curvature; and My and Mu

symbolize the yield and ultimate bending capacity of the element. A
plastic failure mode is selected, and then, depending on the element
for which the plastic hinge is defined, the critical failure mode is
selected (bending based for the beams and interaction of bending
and axial one for the columns). The performance levels of the
element are also defined on the curve. Note here that all elements
were considered primary, and the positions of the plastic hinge
formation are defined at the ends of the beams and columns.

FIGURE 4 | Deformation view of the structural system at the
performance point for the different distributions of the horizontal loads.
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5.1 Assessment of the Original RC Building
Structural System
5.1.1 Distributions of Horizontal Loads
According to KANEPE, for the needs of the nonlinear static
analyses, the application of at least two different load
distributions in height is required. Thus, the “uniform” and
the “eigenmode-based” distributions are used. The eigenmode-
based distribution is in line with the shape of the fundamental

eigenmode along the direction examined. As observed through
the eigenmode analysis, the fundamental eigenmode along the X
direction is the second one, while for the Y direction, it is the first.
For spatial superposing of the random actions, the structure
according to KANEPE is analyzed for loads in two directions,
where the base shear relative contribution 10:3 and 3:10,
“positive” and “negative” sign, is also considered and
assessment takes place for the most unfavorable stress/strain

TABLE 2 | Status of plastic hinge in the various steps of pushover analysis.

Step D (m) V (kN) AtoB BtoIO IOtoLS LStoCP CPtoC CtoD DtoE >E Total

Uniform X + 03Y

3 −0.0494 1,121.98 89 2 17 0 0 0 0 0 108
4 −0.0711 1,218.44 81 4 23 0 0 0 0 0 108
5 −0.0887 1,261.43 72 9 27 0 0 0 0 0 108
6 −0.1206 1,311.10 71 3 23 11 0 0 0 0 108

Uniform −X−03Y

4 0.0534 1,147.39 87 1 20 0 0 0 0 0 108
5 0.0747 1,228.96 79 6 23 0 0 0 0 0 108
6 0.0876 1,262.43 73 10 25 0 0 0 0 0 108
7 0.1082 1,294.30 70 5 25 8 0 0 0 0 108

Uniform Y + 0.3X

5 −0.0127 1,126.46 90 2 16 0 0 0 0 0 108
6 −0.0159 1,222.84 80 4 24 0 0 0 0 0 108
7 −0.0185 1,277.45 72 5 31 0 0 0 0 0 108
8 −0.0220 1,323.28 70 4 27 7 0 0 0 0 108

Uniform −Y−0.3X

5 0.0121 1,098.54 93 1 14 0 0 0 0 0 108
6 0.0156 1,209.40 81 1 26 0 0 0 0 0 108
7 0.0190 1,283.93 72 4 32 0 0 0 0 0 108
8 0.0221 1,325.93 70 4 29 5 0 0 0 0 108

Eigenmode-based X−0.3Y

4 −0.0603 1,029.09 83 5 20 0 0 0 0 0 108
5 −0.0822 1,088.46 74 6 28 0 0 0 0 0 108
6 −0.1134 1,138.67 67 5 33 3 0 0 0 0 108
7 −0.1334 1,168.37 66 3 28 11 0 0 0 0 108

Eigenmode-based −X + 0.3Y

4 0.0482 967.23 89 7 12 0 0 0 0 0 108
5 0.0715 1,065.27 76 7 25 0 0 0 0 0 108
6 0.1012 1,121.53 69 4 34 1 0 0 0 0 108
7 0.1283 1,159.93 66 3 30 8 0 0 1 0 108

Eigenmode-based Y−0.3X

5 0.0101 988.06 86 2 20 0 0 0 0 0 108
6 0.0122 1,046.97 78 2 28 0 0 0 0 0 108
7 0.0144 1,096.85 73 1 34 0 0 0 0 0 108
8 0.0182 1,156.52 68 1 32 7 0 0 0 0 108

Eigenmode-based −Y + 0.3X

5 −0.0085 930.48 93 4 11 0 0 0 0 0 108
6 −0.0111 1,019.58 81 3 24 0 0 0 0 0 108
7 −0.0140 1,087.01 71 2 35 0 0 0 0 0 108
8 −0.0174 1,140.84 68 2 34 4 0 0 0 0 108
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quantities observed for each structural element. In particular for
both uniform and eigenmode-based distribution + X + 0.3Y and +
X−0.3Y (positive direction X); X + 0.3Y and −X−0.3Y (negative
direction X), accordingly for Y direction, the application of loads
is performed in two phases. Initially, the vertical loads
(combination G + 0.3Q) are applied, followed by sixteen
nonlinear static analyses for the combination of horizontal loads.

5.1.2 Results of the Assessment
Figure 4 depicts the performance point (PP) along with the
previous and next steps of the base shear-deformation (V-D)
resistance curve together with the view of the deformed structural
system with the location of the formation of the plastic hinges for
the eight most unfavorable combinations of horizontal loads. The
definition of PP is carried out according to Procedure A described
in ATC-40 report [Applied Technology Council (ATC), 1996],
and the target displacement is calculated through an iterative
procedure using the elastic demand diagram for equivalent
damping ratio updated during the iterations. According to
Procedure A, the capacity of a structure to resist lateral forces
is compared to the demand given by a response spectrum. The
response spectrum represents the demand, while the pushover
curve (or the “capacity curve”) represents the available capacity.
The steps of the method are briefly summarized. 1) Perform
pushover analysis and determine the capacity curve in base shear
(Vb) versus roof displacement of the building (D). This diagram is
then converted to acceleration–displacement terms (AD) using
an equivalent single degree of system (ESDOF). The conversion is
performed using the first mode participation factor C0

(Dp � D/C0) and the modal mass (A � Vb/M). 2) Plot the
capacity diagram on the same graph with the 5%-damped
elastic response spectrum that is also in AD format. 3) Select a
trial peak deformation demand dpt and determine the
corresponding pseudo-acceleration A from the capacity
diagram, initially assuming ζ � 5%. 4) Compute ductility μ �
Dp/uy and calculate the hysteretic damping ζh as
ζh � 2(μ − 1)/πμ. The equivalent damping ratio is evaluated
from a relationship of the form ζeq � ζeq + κζh, where κ is a
damping modification factor that depends on the hysteretic

behavior of the system. Update the estimate of dpt using the
elastic demand diagram for ζeq. 5) Check for convergence of the
displacement dpt . When convergence has been achieved, the target
displacement of the MDOF system is equal to dt � C0dpt .

In particular, for the uniform distribution by + X (the most
unfavorable combination is X + 0.3Y), the analysis based on the
uniform X + 0.3Y distribution of the horizontal loading was
performed in seven steps. The performance point (V, D) =
(1,242.32, −0.0810) was observed between steps 4 and 5. In
Table 2, it is observed that plastic hinges have been formed in
9 + 27 = 36 edges of structural elements (denoted in pink (BtoIO)
and blue (IOtoLS) columns). However, the limit of the chord
rotation angle for the “life safety” performance level (blue) has not
been exceeded for any of them. The building is therefore
considered safe for this distribution of horizontal loads.

For the uniform distribution by −X (worst combination o
−X−0.3Y), the analysis based on the uniform −X−0.3Y
distribution of the horizontal loading was performed in eight
steps. The performance point (V,D) = (1,241.47, 0.080) was
observed between steps 5 and 6. In Table 2, it is observed that
plastic hinges have been formed in 10 + 25 = 35 edges of structural
elements (denoted in pink (BtoIO) and blue (IOtoLS) columns).
However, the limit of the chord rotation angle for the “life safety”
performance level (blue) has been exceeded for any of them. The
building is therefore considered safe for this distribution of
horizontal loads. For the uniform distribution by + Y (the
most unfavorable combination is Y + 0.3X), the analysis based
on the uniform Y + 0.3X distribution of the horizontal loading
was performed in eleven steps. The performance point (V, D) =
(1,245.32, −0.0170) was observed between steps 6 and 7. In
Table 2, it is observed that plastic hinges have been formed in
5 + 31 = 36 edges of structural elements (denoted in pink (BtoIO)
and blue (IOtoLS) columns). However, the limit of the chord
rotation angle for the “life safety” performance level (blue) has
been exceeded for any of them. The building is therefore
considered safe for this distribution of horizontal loads. For
the uniform distribution by −Y (worst combination −Y−0.3X),
the analysis based on the uniform −Y−0.3X distribution of the
horizontal loading was performed in eleven steps. The
performance point (V, D) = (1,241.52, 0.017) was observed
between steps 6 and 7. In Table 2, it is observed that plastic
hinges have been formed in 4 + 32 = 36 edges of structural
elements (denoted in pink (BtoIO) and blue (IOtoLS) columns).
However, the limit of the chord rotation angle for the “life safety”
performance level (blue) has been exceeded for any of them. The
building is therefore considered safe for this distribution of
horizontal loads.

Accordingly, for the eigenmode-based distribution by + X (the
most unfavorable combination is X−0.3Y), the analysis based on
the eigenmode-based X−0.3Y distribution of the horizontal
loading was performed in eight steps. The performance point
(V, D) = (1,105.41, −0.093) was observed between steps 5 and 6.
In Table 2, it is observed that plastic hinges have been formed in
5 + 33 + 3 = 41 edges of structural elements [denoted in pink
(BtoIO), blue (IOtoLS), and light blue (LStoCP) columns)]. In
three of them, the limit of the chord rotation angle was exceeded
for the “life safety” performance level (blue). These elements

FIGURE 5 | A typical moment rotation curve (M: moment, My: yield
moment, R: rotation, SF: safety factor).

Frontiers in Built Environment | www.frontiersin.org April 2022 | Volume 8 | Article 85638013

Mitropoulou et al. Optimized Concrete Jacketing

159

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


correspond to beams Δ4 and Δ10 of the ground floor and column
K18. For the eigenmode-based distribution by −X (most
unfavorable combination o −X + 0.3Y), the analysis based on
the eigenmode-based −X + 0.3Y distribution of the horizontal
loading was performed in seven steps. The performance point (V,
D) = (1,106.05, 0.093) was observed between steps 5 and 6. In
Table 2, it is observed that plastic hinges have been formed in 4 +
34 + 1 = 39 edges of structural elements [denoted in pink (BtoIO),

blue (IOtoLS), and light blue (LStoCP) columns)]. In one of them,
the limit of the chord rotation angle was exceeded for the “life
safety” performance level (blue). This element corresponds to
column K17. For the eigenmode-based distribution by + Y (the
worst combination is Y−0.3X), the analysis based on the
eigenmode-based Y−0.3X distribution of the horizontal
loading was performed in ten steps. The performance point
(V, D) = (1,065.75, 0.013) was observed between steps 6 and

TABLE 3 | Status of plastic hinges in the various steps of pushover analysis.

Step D (m) V (kN) AtoB BtoIO IOtoLS LStoCP CPtoC CtoD DtoE >E Total

Uniform X + 03Y

PP init −0.0810 1,242.32 — — — — — — — — —

5 −0.0887 1,261.43 72 9 27 0 0 0 0 0 108
PP streng −0.0770 1,356.83 — — — — — — — — —

5 −0.0772 1,359.61 78 5 25 0 0 0 0 0 108

Uniform −X−03Y

PP init 0.0800 1,241.47 — — — — — — — — —

6 0.0876 1,262.43 73 10 25 0 0 0 0 0 108
PP streng 0.0770 1,347.15 — — — — — — — — —

5 0.0935 1,402.22 72 6 30 0 0 0 0 0 108

Uniform Y + 0.3X

PP init −0.0170 1,245.32 — — — — — — — — —

7 −0.0185 1,277.45 72 5 31 0 0 0 0 0 108
PP streng −0.0170 1,369.07 — — — — — — — — —

4 −0.0194 1,439.69 68 6 34 0 0 0 0 0 108

Uniform −Y−0.3X

PP init 0.0170 1,241.52 — — — — — — — — —

7 0.0190 1,283.93 72 4 32 0 0 0 0 0 108
PP streng 0.0170 1,354.49 — — — — — — — — —

6 0.0177 1,373.64 77 2 29 0 0 0 0 0 108

Eigenmode-based X−0.3Y

PP init −0.0930 1,105.41 — — — — — — — — —

6 −0.1134 1,138.67 67 5 33 3 0 0 0 0 108
PP streng −0.0880 1,195.85 — — — — — — — — —

6 −0.1026 1,224.96 65 7 36 0 0 0 0 0 108

Eigenmode-based −X + 0.3Y

PP init 0.0930 1,106.05 — — — — — — — — —

6 0.1012 1,121.53 69 4 34 1 0 0 0 0 108
PP streng 0.0890 1,200.39 — — — — — — — — —

6 0.0924 1,208.42 68 7 33 0 0 0 0 0 108

Eigenmode-based Y−0.3X

PP init 0.0130 1,065.75 — — — — — — — — —

7 0.0144 1,096.85 73 1 34 0 0 0 0 0 108
PP streng 0.0130 1,136.45 — — — — — — — — —

6 0.0135 1,141.22 76 2 30 0 0 0 0 0 108

Eigenmode-based −Y + 0.3X

PP init -−0.0130 1,065.47 — — — — — — — — —

7 −0.0140 1,087.01 71 2 35 0 0 0 0 0 108
PP streng −0.0130 1,141.32 — — — — — — — — —

6 −0.0134 1,142.45 73 4 31 0 0 0 0 0 108
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7. In Table 2, it is observed that plastic hinges have been formed in
1 + 34 = 35 edges of structural elements [denoted in pink (BtoIO)
and blue (IOtoLS) columns]. However, none of them has exceeded
the limit of the chord rotation angle for the “life safety” performance
level (blue). The building is therefore considered safe for this
distribution of horizontal loads. For the eigenmode-based
distribution by −Y (worst combination o −Y + 0.3X), the analysis
based on the eigenmode-based −Y + 0.3X distribution of the
horizontal loading was performed in ten steps. The performance
point (V, D) = (1,065.47, −0.013) was observed between steps 6 and
7. In Table 2, it is observed that plastic hinges have been formed in
2 + 35 = 37 edges of structural elements [denoted in pink (BtoIO)
and blue (IOtoLS) columns]. However, none of them has exceeded
the limit of the chord rotation angle for the “life safety” performance
level (blue). The building is therefore considered safe for this
distribution of horizontal loads. A typical moment rotation curve
along with the notation of the PP and the coloring of Table 2 and
those that follow is provided in Figure 5.

Based on the most unfavorable responses of the structural
system obtained for the random design action of EC8 (European
Committee for standardization ENV 1998-1-1:1994) through the
various distributions of horizontal loads, it is concluded that the
structural system as a whole is not safe for the specific intensity of
the random action because structural elements Δ6 and Δ10 of the
ground floor, K17 and K18, develop deformations larger than the
acceptable ones, those defined by the “life safety” performance
level in terms of the chord rotation angle. The next step is to
strengthen some of these elements to enter the safe region.

5.2 Strengthening Based on Design
Provisions
Based on the investigation of the previous section during the
assessment of the structural system presented, for some elements
(Δ6 and Δ10 of the ground floor, K17, K18), the chord rotation
angle exceeded the limit set for “life safety” performance level
defined by Kanepe (2017); that is, these elements during the
design earthquake develop damage greater than acceptable. Given
that all the structural elements are considered primary, the
specific structural system as a whole is not considered safe.
For this reason, in this part of the investigation, strengthening
interventions of these elements will be examined so that the
redesigned structural system meets the design goal B1 of Kanepe
(2017), that is, for the design earthquake (10% probability of

exceeding within the conventional life time of 50 years), all
structural elements of the construction to be located before the
level corresponding to the “life safety” performance level. After
various tests of interventions that did not always have positive
results for the redesigned structural system, strengthening column
K7 along its height with RC jacketing was selected. The process of
strengthening and re-assessment of the redesigned structural
system, during which this new design is considered safe (meeting
the design objective), is described in this section.

A 10 cm RC jacketing with 8Ø20 reinforcement is used to
strengthen column K7. The strengthened structural system is
assessed by means of nonlinear static analyses based on the
distributions of the horizontal loads. Note that for the
strengthened structural system, the first eigenmode is the
fundamental one along the Y direction while the second one is
along the X direction. In Table 3, the performance points for the
strengthened structural system are compared with those of the
original one.

As observed from Table 3, the performance points of the
strengthened structural system for the various loading
combinations show a small increase of the base shear by
90–130 kN, of the order of about 8%. As far as the target
displacements are concerned, they are significantly reduced for
the distributions of the X direction while they practically remain
unchanged for the distributions of the Y direction. This can be
partially explained as follows: in the X direction, column K7
participates in the baring frame K7-Δ10-K8, where both columns
K7 and K8 contribute with the less rigid orientation of their cross
section. Thus, it becomes the weakest one among all baring
frames of the structural system. Along the Y direction,
strengthening did not contribute significantly because the
Y-baring frames were originally more rigid. Due to the
reduction of target displacements along the X direction, no
structural element of the redesigned structural system develops
any longer damage for the design earthquake larger than the
acceptable ones, those defined by the “life safety” performance
level. For the original structural system, distributions along the X
direction developed structural elements exceeding this
performance level. In addition, the number of edges entering
the plastic zone was also reduced in most loading distributions.
As a general conclusion, it can be said that the specific
strengthening operation is considered successful because the
redesigned structural system is now safe and shows better
structural behavior for the design earthquake.

TABLE 4 | Ground floor data register.

Elem b (m) h (m) ρ x (m) y (m) cc to (m) ρo Es(kPa) Ecm(kPa) l (m) Ng (kN) N1 (kN) N2 (kN)

K1 0.35 0.35 0.0205 0.175 10.225 0.6 0 0 29.106 30.5·106 3 239.01 159.10 76.6
K2 0.45 0.45 0.0186 5.225 10.175 0.6 0 0 29.106 30.5·106 3 723.36 482.33 242.33
K3 0.45 0.45 0.0186 11.225 10.175 0.6 0 0 29.106 30.5·106 3 365.24 243.71 120.41
K4 0.45 0.45 0.0186 0.225 5.175 0.6 0 0 29.106 30.5·106 3 620.43 413.29 206.32
K5 0.45 0.45 0.0186 5.225 5.175 0.6 0 0 29.106 30.5·106 3 995.15 663.24 340.53
K6 0.45 0.45 0.0186 11.225 5.175 0.6 0 0 29.106 30.5·106 3 333.69 221.20 108.23
K7 0.35 0.35 0.0205 0.175 0.175 0.6 0.1 0.014 29.106 30.5·106 3 321.73 214.91 107.3
K8 0.35 0.35 0.0205 5.275 0.175 0.6 0 0 29.106 30.5·106 3 248.54 165.75 79.95
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5.3 Strengthening Based on Minimizing
Torsional Response
In this part of the study, the process described previously for
calculating the components of the problem formulations is
integrated into the ICA algorithm, aiming to minimize the
torsional response of the building. Previously, the structural
system was strengthened to meet the design target B1 of Kanepe
(2017); then, two cases are considered for strengthening the
structural system based on improved torsional response:
minimum stiffness and strength eccentricities. As a result, the
following information is obtained through the solution of the two
optimization problems: 1) thickness of RC jacketing to strengthen
the columns, in case of minimizing stiffness eccentricity, and 2)
thickness and reinforcement of RC jacketing to strengthen the
columns, in case of minimizing the eccentricity of strengths. The
designs obtained for the two cases are assessed bymeans of nonlinear
static analyses in comparison with the original design (OD: original
design) and the re-design based on strengthening by Kanepe (2017)
(KSD: KANEPE based strengthened design). For the
implementation of the ICA-based strengthening design

framework, a set of data needs to be provided required by the
formulation of the optimization problem. Based on these data and
with reference to the problem formulation (rigidity or strength
eccentricity) during the iterations of the ICA search procedure,
new designs, defined with respect to the location, width, and
reinforcement of the RC jacketing of each vertical structural
element, are derived. For handling the discrete design variables,
the procedure described by Lagaros et al. (2022) is followed,
according to which they are treated as equivalent continuous
variables, using the correction function of the following simple
expression:

tj �
floor(tj × 10)

10
, for discrete variables of 0.1 step size.

(18)

5.3.1 Entry of Building Data Into Problem Formulation
According to the previous description, the data required for the
two problem formulations are configured (Table 4) below.

The plan view is the same for all stories, and the only
difference can be found in the last column corresponding to
the axial forces of the columns. The axial forces of the columns
are obtained by means of linear analyses of KBD for the
combination G + 0.3Q. Regarding the minimization
problem of strength eccentricity, three cases will be
examined (one for each story). The solution corresponding
to the best compromise solution will be adopted, where lower
eccentricities for all three stories are derived. The data required
(columns 2 to 13 of Table 4) for solving the minimization

TABLE 5 | Stiffness and strength eccentricities for the two structural systems.

Stiffness eccentricity Strength eccentricity

Same for all stories Ground story 1st story 2nd story

Original Strengthened Original Strengthened Original Strengthened Original Strengthened

xCR (m) 5.77 4.67 5.29 4.75 5.33 4.73 5.40 4.72
yCR (m) 6.52 5.27 6.33 5.68 6.33 5.61 6.33 5.52
eCM-CR or eCM-CV (m) 1.03 0.86 0.52 0.44 0.55 0.50 0.63 0.60
Variation (%) −17% −15% −9% −5%

TABLE 6 | Column reinforcement thickness to minimize the strength eccentricity of the second floor.

Column 2nd story (Problem A) 1st story (Problem B) Ground story (Problem C)

RC jacket RC jacket RC jacket

Thickness
(cm)

Reinforcement
percentage

Thickness
(cm)

Reinforcement
percentage

Thickness
(cm)

Reinforcement
percentage

K1 20 0.0260 0 0.0 20 0.0290
K2 20 0.0167 20 0.0400 0 0
K3 16 0.0278 0 0.0 0 0
K4 0 0.0 16 0.0314 0 0
K5 20 0.0400 0 0.0 20 0.0216
K6 0 0.0 20 0.0100 15 0.0296
K7 10 0.0400 0 0.0 10 0.0100
K8 15 0.0400 20 0.0255 0 0

TABLE 7 | Minimized strength eccentricity values obtained for the tree problems.

Story eCM-CV (m)

Problem A Problem B Problem C

Ground 0.0290 0.0094 0.0003
1st 0.0162 0.0018 0.0143
2nd 0.00063 0.0065 0.0260
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problem of stiffness eccentricity are the same for all three
stories. In particular, for each vertical structural element, ρ and
ρo denote the percentage of longitudinal reinforcement and the
one of existing RC jackets, respectively; to refers to the width of
the RC jackets; x and y denote the coordinates of the center of
mass; and cc is the cracking coefficient; that is, Ng stands for
the axial force of the ground floor, N1 of the first floor, and N2
for the second one. For the RC jacketing, concrete quality C20/
25 is considered, as well as steel reinforcement B500C. The
mass centers of all floors coincide because the plan view is the
same for all stories, thus creating a centripetal axis for the
building. Uniform distribution of the vertical loads was
considered on the floor slabs; thus, the mass center
coincides with the geometric center of the floors.

5.3.2 Eccentricities of Initial and Strengthened by
KANEPE Structural System
The eccentricities of the original structural system and those of
the strengthened one are calculated first (Table 5), where
variation stands for the reduction of the eccentricity values
corresponding to the strengthened design compared to the
ones of the original design. The axial forces used to calculate
the strength eccentrics are derived from linear analyses
performed for the two structural systems (OD and KBD) for
the combination G + 0.3Q. For the case of KBD, they are identical
to those of Table 4.

5.3.3 Minimize Stiffness Eccentricity
In this part of the study, the problem of the minimum rigidity
eccentricity problem is solved and the results obtained are

discussed. The specific problem is formulated once. Thus, a
unique solution is derived for all three stories. Given that ICA
is an evolutionary search algorithm, it operates based on a
population of solutions. The convergence history records the
best solution found so far and that of the average value among the
population members. Although the convergence history of the
optimization procedure takes place shortly before the 2000
iterations, ICA managed to significantly reduce the stiffness
eccentricity (cost function) value in less than 500 iterations.
When an empire is left, the average cost is equal to the
minimum. The optimal solution is located in the position
(imperialist position) (0.19, 0.20, 0, 0.20, 0.15, 0.20, 0, 0.19)
and has a cost, that is, giving value to the objective function of
the problem (imperialist cost) equal to e = 0.0074 m ≈ 7 mm.
Each column will therefore be reinforced accordingly. The K7
column is already reinforced with a 10 cm RC jacket. Its final RC
jacket will be 10 cm. The RC jackets, for the design of the new
body with the minimized rigidity eccentricity, are introduced
with the minimum mechanical reinforcement rate of 1%.

5.3.4 Minimize Strength Eccentricity
In this part of the study, the minimum strength eccentricity
problem is solved and the results obtained are discussed. The
iteration histories of the problems solved independently for the
three stories are obtained. Similar to the problem of minimum
rigidity, the convergence history is recorded for each of the three
problems solved, with respect to the best solution found so far and
the average objective function value. The strength eccentricity
minimization problem is more time-consuming (1 min/iteration)
in contrast to the stiffness eccentricity one, where 2,500 iterations

FIGURE 6 | Capacity curves.
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TABLE 8 | Status of plastic hinges in the various steps of pushover analysis.

Step D (m) V (kN) AtoB BtoIO IOtoLs LStoCP CPtoC CtoD DtoE >E Total

Uniform X + 03Y

PP IN −0.0810 1,242.32 — — — — — — — — —

5 −0.0887 1,261.43 72 9 27 0 0 0 0 0 108
PP DC −0.0770 1,356.83 — — — — — — — — —

5 −0.0772 1,359.61 78 5 25 0 0 0 0 0 108
PP CR −0.0530 2,715.96 — — — — — — — — —

6 −0.0707 2,789.60 69 1 38 0 0 0 0 0 108
PP CV −0.0610 2,947.67 — — — — — — — — —

4 −0.0610 2,954.88 73 9 26 0 0 0 0 0 108

Uniform −X−03Y

PP IN 0.0800 1,241.47 — — — — — — — — —

6 0.0876 1,262.43 73 10 25 0 0 0 0 0 108
PP DC 0.0770 1,347.15 — — — — — — — — —

5 0.0935 1,402.22 72 6 30 0 0 0 0 0 108
PP CR 0.0540 2,714.78 — — — — — — — — —

6 0.0851 2,830.27 68 0 40 0 0 0 0 0 108
PP CV 5 0.0600 2,942.17 — — — — — — — — —

5 0.0614 2,960.08 70 11 27 0 0 0 0 0 108

Uniform Y + 0.3X

PP IN −0.0170 1,245.32 — — — — — — — — —

7 −0.0185 1,277.45 72 5 31 0 0 0 0 0 108
PP DC -0.0170 1,369.07 — — — — — — — — —

4 −0.0194 1,439.69 68 6 34 0 0 0 0 0 108
PP CR −0.0130 2,762.90 — — — — — — — — —

6 −0.0168 2,950.89 68 1 39 0 0 0 0 0 108
PP CV −0.0140 2,987.62 — — — — — — — — —

3 −0.0139 2,984.51 74 7 27 0 0 0 0 0 108

Uniform −Y−0.3X

PP IN 0.0170 1,241.52 — — — — — — — — —

7 0.0190 1,283.93 72 4 32 0 0 0 0 0 108
PP DC 0.0170 1,354.49 — — — — — — — — —

6 0.0177 1,373.64 77 2 29 0 0 0 0 0 108
PP CR 0.0130 2,769.07 — — — — — — — — —

4 0.0188 3,023.95 68 1 39 0 0 0 0 0 108
PP CV 0.0140 2,966.24 — — — — — — — — —

4 0.0141 2,974.64 73 5 30 0 0 0 0 0 108

Eigenmode-based X−0.3Y

PP IN −0.0930 1,105.41 — — — — — — — — —

6 −0.1134 1,138.67 67 5 33 3 0 0 0 0 108
PP DC −0.0880 1,195.85 — — — — — — — — —

6 −0.1026 1,224.96 65 7 36 0 0 0 0 0 108
PP CR −0.0640 2063.18 — — — — — — — — —

6 −0.0808 2,113.77 70 0 38 0 0 0 0 0 108
PP CV −0.0690 2,241.80 — — — — — — — — —

5 −0.0745 2,289.60 68 9 31 0 0 0 0 0 108

Eigenmode-based −X + 0.3Y

PP IN 0.0930 1,106.05 — — — — — — — — —

6 0.1012 1,121.53 69 4 34 1 0 0 0 0 108
PP DC 0.0890 1,200.39 — — — — — — — — —

6 0.0924 1,208.42 68 7 33 0 0 0 0 0 108
PP CR 0.0630 2059.63 — — — — — — — — —

6 0.0751 2093.18 68 3 37 0 0 0 0 0 108
PP CV 0.0690 2,240.31 — — — — — — — — —

5 0.0747 2,293.44 68 11 29 0 0 0 0 0 108
(Continued on following page)
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were performed in just a few minutes. Thus, fewer iterations were
chosen to identify convergence (around 100). However, as shown
in the above history diagrams, the strength eccentricity value is
reduced quickly, reaching zero during the first 40 to 80 iterations.
Specifically, the optimal solution is located in the position
(imperialist position) reported for all three stories in Table 6.

The cost values obtained for the three problems A, B, and C
along with the eccentricities of the other two stories are provided
in Table 7. For Problem A, the imperialist cost value is equal to e
= 0.00063 m < 1 mm. For Problem B, the imperialist cost value is
equal to e = 0.0018 m ≈ 2 mm. For Problem C, the imperialist cost
value is equal to e = 0.0003 m < 1 mm. For this solution, the
strength eccentricities of the other floors of the building are as
follows:

It can be noticed that the optimal floor solutions show a
sensitivity because they differ quite a lot from floor to floor.
Nevertheless, the optimal solution obtained for the first floor
(Problem B) gives low values of eccentricity to the other floors
(less than 1 cm). Therefore, it is neither realistic nor practical to
use different RC jacketing for a given column along the stories of
the building. The strengthening solution obtained through
Problem B, according to Table 7, is used.

5.4 Assessment of the Strengthened
Structural Systems
5.4.1 Eigenmode Analyses
The results of the eigenmode analyses performed for each of the
two new structural systems derived through minimization of the
eccentricities are presented below. Based on the eigenvalue
analyses results, it seems that, for both structural systems, the
first eigenmode is the fundamental one along the Y direction
while the second eigenmode is the fundamental one along the X
direction. It is also worth mentioning that the first three
eigenperiod values were significantly reduced in relation to the

ones of the original structural system, as expected because due to
strengthening, the structural systems became significantly more
rigid compared to the original one. Also, note that the mass
participation rate of the third eigenmode, which is mainly
torsional, was decreased.

5.4.2 Nonlinear Static Analyses
Nonlinear static analyses are performed for the two new
structural systems. Their seismic behavior is compared with
the corresponding one of the original and the strengthened
ones designed to meet the B1 goal of Kanepe (2017). The 16
distributions of the horizontal loads mentioned earlier are also
used to perform these analyses. The capacity curves derived are
presented first (Figure 6), where an estimate of how the
interventions affected the overall behavior of the structural
systems can be obtained. For every horizontal load
distribution, two groups of curves are obtained: those of the
original and strengthened designs and those of the designs
obtained through eccentricities minimization. These two
groups of curves show similar stiffness and capacity. As
observed in Figure 6, the ultimate load capacity and the initial
stiffness of the designs obtained through eccentricity
minimization were almost doubled, while the post-cracking
stiffness was increased slightly.

Subsequently, the behavior of the structural systems measured
for the design earthquake (target displacement, yield base shear
demand) for the most unfavorable distributions per direction is
presented. Finally, the tables containing the ductility demand of
the columns also for the design earthquake are presented. The
structural systems derived through the optimization process in
comparison to the original and strengthened based on Kanepe
(2017) depict a large increase in the stiffness and bearing capacity
(almost doubled) and a significant increase in ductility due to the
extensive use of RC jackets at the columns. In Table 8 the
following notations are used, performance points for the initial

TABLE 8 | (Continued) Status of plastic hinges in the various steps of pushover analysis.

Step D (m) V (kN) AtoB BtoIO IOtoLs LStoCP CPtoC CtoD DtoE >E Total

Eigenmode-based Y−0.3X

PP IN 0.0930 1,106.05 — — — — — — — — —

6 0.1012 1,121.53 69 4 34 1 0 0 0 0 108
PP DC 0.0890 1,200.39 — — — — — — — — —

6 0.0924 1,208.42 68 7 33 0 0 0 0 0 108
PP CR 0.0630 2059.63 — — — — — — — — —

6 0.0751 2093.18 68 3 37 0 0 0 0 0 108
PP CV 0.069 2,240.31 — — — — — — — — —

5 0.0747 2,293.44 68 11 29 0 0 0 0 0 108

Eigenmode-based −Y + 0.3X

PP IN −0.0130 1,065.47 — — — — — — — — —

7 −0.0140 1,087.01 71 2 35 0 0 0 0 0 108
PP DC −0.0130 1,141.32 — — — — — — — — —

6 −0.0134 1,142.45 73 4 31 0 0 0 0 0 108
PP CR −0.0160 2,138.10 — — — — — — — — —

6 −0.0188 2,221.73 67 1 40 0 0 0 0 0 108
PP CV −0.0160 2,311.81 — — — — — — — — —

5 −0.0164 2,317.61 69 8 31 0 0 0 0 0 108
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TABLE 9 | Required ductility values of the columns for the distributions of the horizontal loads.

Initial design Strengthened by

Code min (CM-CR) min (CM-CV)

θy θpl,dem μdem θy θpl,dem μdem θy θpl,dem μdem θy θpl,dem μdem

Ground floor columns—uniform distribution X + 0.3Y

K11up 0.0090 0.0000 1.00 0.0090 0.0000 1.00 0.0081 0.0000 1.00 0.0090 0.0000 1.00
K11dn 0.0096 2.07 0.0072 1.80 0.0041 1.51 0.0000 1.00
K12up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0078 0.0000 1.00 0.0087 0.0000 1.00
K12dn 0.0107 2.47 0.0086 2.18 0.0046 1.59 0.0000 1.00
K13up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0073 0.0000 1.00
K13dn 0.0106 2.45 0.0086 2.17 0.0033 1.45 0.0009 1.12
K14up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0078 0.0000 1.00 0.0084 0.0000 1.00
K14dn 0.0094 2.29 0.0069 1.94 0.0045 1.58 0.0004 1.05
K15up 0.0073 0.0004 1.06 0.0073 0.0000 1.00 0.0085 0.0000 1.00 0.0073 0.0000 1.00
K15dn 0.0100 2.37 0.0074 2.01 0.0044 1.51 0.0004 1.06
K16up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0078 0.0000 1.00 0.0077 0.0000 1.00
K16dn 0.0103 2.41 0.0076 2.04 0.0046 1.59 0.0023 1.30
K17up 0.0090 0.0000 1.00 0.0094 0.0000 1.00 0.0098 0.0000 1.00 0.0098 0.0000 1.00
K17dn 0.0085 1.95 0.0072 1.76 0.0031 1.32 0.0009 1.09
K18up 0.0090 0.0003 1.04 0.0090 0.0000 1.00 0.0081 0.0000 1.00 0.0085 0.0000 1.00
K18dn 0.0100 2.11 0.0067 1.75 0.0042 1.52 0.0008 1.09
μ — — 1.64 — — 1.48 — — 1.26 — — 1.04
σ — — 0.64 — — 0.49 — — 0.26 — — 0.08
CoV — — 0.39 — — 0.33 — — 0.21 — — 0.07

1st story columns—uniform distribution X + 0.3Y

K21up 0.0090 0.0009 1.10 0.0090 0.0000 1.00 0.0081 0.0000 1.00 0.0090 0.0000 1.00
K21dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K22up 0.0073 0.0024 1.33 0.0073 0.0013 1.18 0.0078 0.0000 1.00 0.0087 0.0000 1.00
K22dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K23up 0.0073 0.0013 1.17 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0073 0.0000 1.00
K23dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K24up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0078 0.0000 1.00 0.0084 0.0000 1.00
K24dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K25up 0.0073 0.0028 1.38 0.0073 0.0012 1.17 0.0085 0.0000 1.00 0.0073 0.0000 1.00
K25dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K26up 0.0073 0.0013 1.18 0.0073 0.0000 1.00 0.0078 0.0000 1.00 0.0077 0.0000 1.00
K26dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K27up 0.0090 0.0011 1.13 0.0094 0.0000 1.00 0.0098 0.0000 1.00 0.0098 0.0000 1.00
K27dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K28up 0.0090 0.0026 1.29 0.0090 0.0008 1.09 0.0081 0.0000 1.00 0.0085 0.0000 1.00
K28dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
μ — — 1.10 — — 1.03 — — 1.00 — — 1.00
σ — — 0.13 — — 0.06 — — 0.00 — — 0.00
CoV — — 0.12 — — 0.06 — — 0.00 — — 0.00

2nd story columns—uniform distribution X + 0.3Y

K31up 0.0090 0.0000 1.00 0.0090 0.0000 1.00 0.0081 0.0000 1.00 0.0090 0.0014 1.16
K31dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K32up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0078 0.0000 1.00 0.0087 0.0000 1.00
K32dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K33up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0040 0.0000 1.00
K33dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K34up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0078 0.0000 1.00 0.0084 0.0000 1.00
K34dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K35up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0085 0.0000 1.00 0.0073 0.0019 1.26
K35dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K36up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0078 0.0000 1.00 0.0077 0.0000 1.00
K36dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K37up 0.0090 0.0000 1.00 0.0098 0.0000 1.00 0.0098 0.0000 1.00 0.0098 0.0000 1.00
K37dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K38up 0.0090 0.0000 1.00 0.0090 0.0000 1.00 0.0081 0.0000 1.00 0.0085 0.0000 1.00
K38dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
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TABLE 9 | (Continued) Required ductility values of the columns for the distributions of the horizontal loads.

Initial design Strengthened by

Code min (CM-CR) min (CM-CV)

θy θpl,dem μdem θy θpl,dem μdem θy θpl,dem μdem θy θpl,dem μdem

μ — — 1.00 — — 1.00 — — 1.00 — — 1.03
σ — — 0.00 — — 0.00 — — 0.00 — — 0.07
CoV — — 0.00 — — 0.00 — — 0.00 — — 0.07

Ground floor columns—uniform distribution Y + 0.3X

K11up 0.0090 0.0003 1.03 0.0090 0.0000 1.00 0.0081 0.0000 1.00 0.0090 0.0000 1.00
K11dn 0.0028 1.32 0.0022 1.25 0.0016 1.19 0.0000 1.00
K12up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0078 0.0000 1.00 0.0087 0.0000 1.00
K12dn 0.0034 1.46 0.0027 1.37 0.0016 1.21 0.0000 1.00
K13up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0073 0.0000 1.00
K13dn 0.0035 1.48 0.0027 1.37 0.0014 1.19 0.0004 1.05
K14up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0078 0.0000 1.00 0.0084 0.0000 1.00
K14dn 0.0030 1.40 0.0030 1.41 0.0016 1.20 0.0001 1.02
K15up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0085 0.0000 1.00 0.0073 0.0000 1.00
K15dn 0.0033 1.45 0.0035 1.48 0.0013 1.16 0.0002 1.03
K16up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0078 0.0000 1.00 0.0077 0.0000 1.00
K16dn 0.0024 1.33 0.0027 1.37 0.0016 1.21 0.0007 1.10
K17up 0.0090 0.0000 1.00 0.0094 0.0000 1.00 0.0098 0.0000 1.00 0.0098 0.0000 1.00
K17dn 0.0033 1.37 0.0035 1.37 0.0014 1.14 0.0003 1.03
K18up 0.0090 0.0000 1.00 0.0090 0.0000 1.00 0.0081 0.0000 1.00 0.0085 0.0000 1.00
K18dn 0.0024 1.26 0.0036 1.40 0.0017 1.21 0.0002 1.03
μ — — 1.19 — — 1.19 — — 1.09 — — 1.02
σ — — 0.20 — — 0.19 — — 0.10 — — 0.03
CoV — — 0.16 — — 0.16 — — 0.09 — — 0.03

1st story columns—uniform distribution Y + 0.3X

K21up 0.0090 0.0006 1.07 0.0090 0.0004 1.05 0.0081 0.0000 1.00 0.0090 0.0000 1.00
K21dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K22up 0.0073 0.0006 1.08 0.0073 0.0003 1.04 0.0078 0.0000 1.00 0.0087 0.0000 1.00
K22dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K23up 0.0073 0.0030 1.41 0.0073 0.0002 1.03 0.0073 0.0000 1.00 0.0073 0.0000 1.00
K23dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K24up 0.0073 0.0007 1.10 0.0073 0.0005 1.06 0.0078 0.0000 1.00 0.0084 0.0000 1.00
K24dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K25up 0.0073 0.0006 1.08 0.0073 0.0005 1.07 0.0085 0.0000 1.00 0.0073 0.0000 1.00
K25dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K26up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0078 0.0000 1.00 0.0077 0.0000 1.00
K26dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K27up 0.0090 0.0007 1.08 0.0094 0.0000 1.00 0.0098 0.0000 1.00 0.0098 0.0000 1.00
K27dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K28up 0.0090 0.0005 1.06 0.0090 0.0038 1.42 0.0081 0.0000 1.00 0.0085 0.0000 1.00
K28dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
μ — — 1.05 — — 1.04 — — 1.00 — — 1.00
σ — — 0.10 — — 0.10 — — 0.00 — — 0.00
CoV — — 0.09 — — 0.10 — — 0.00 — — 0.00

2nd story columns—uniform distribution Y + 0.3X

K31up 0.0090 0.0000 1.00 0.0090 0.0000 1.00 0.0081 0.0000 1.00 0.0090 0.0002 1.03
K31dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K32up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0078 0.0000 1.00 0.0087 0.0000 1.00
K32dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K33up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0040 0.0000 1.00
K33dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K34up 0.0073 0.0000 1.00 0.0073 0.0001 1.01 0.0078 0.0000 1.00 0.0084 0.0000 1.00
K34dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K35up 0.0073 0.0000 1.00 0.0073 0.0001 1.01 0.0085 0.0000 1.00 0.0073 0.0006 1.08
K35dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K36up 0.0073 0.0000 1.00 0.0073 0.0000 1.00 0.0078 0.0000 1.00 0.0077 0.0000 1.00
K36dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
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design (PP IN), strengthened based on the design code (PP DC),
strengthened based on minimum rigidity eccentricity (PP CR),
and strengthened based on minimum strength eccentricity
(PP CV).

Comparing the performance points (PPs) of the structural
systems derived through the optimization process with the
original one and the strengthened one based on the design
code (Kanepe, 2017), the following observations can be stated:
1) the base shear value for PP was almost doubled for both new
structural systems. 2) The deformation for PP was significantly
reduced for almost all horizontal load combinations examined
(by 25%–30%). These results were more or less expected because,
as observed previously, the rigidity and bearing capacity of the
two new structural systems increased significantly compared to
the original and strengthened ones. However, it is worth noting
that 3) both new structural systems derived are considered safe
because no end of structural element exceeds the “life safety”
performance level. The number of ends of columns that enter the
plastic zone is reduced (limited to the bottom ends of the ground
floor columns). However, the total number of edges of the
structural elements that enter the plastic zone does not change
substantially. This is due to increase of base shear. Thus, beams
without being strengthened further take over larger forces,
resulting in plasticized ends. Even so, no beam exceeded the
“life safety” performance level.

5.4.3 Ductility Demand of the Columns
The view of the structure where deformation due to torsion is
added to the one due to translational motion is called the “flexible
view,” while the view on which deformation due to torsion is
subtracted due to translational motion is called “rigid view.” It
was observed through nonlinear static analyses that increased
inelastic deformation is observed for the flexible side and reduced
for the rigid in comparison to the corresponding deformation of
symmetrical structural systems. Therefore, the unbalanced
distribution of the ductility demand to eccentric buildings can
lead to failures due to unexpected excitations (Stathopoulos and
Anagnostopoulos, 2005; Anagnostopoulos et al., 2015). In this
section, the distribution of ductility demand for the design
earthquake will be measured for the columns of each floor for
all four structural systems. In order to control the distribution
of ductility demand, the coefficient of variation (CoV) will be
used, which is a measure of the relative variability and

measures the spread of the data in relation to the mean
value defined as

CoV � StDev

Mean
(19)

where StDev is the standard deviation and Mean is the mean
value of data. The ductility of beams or columns is defined as
follows:

μθ � 1 + θpl
θy

, (20)

where θpl is the plastic rotation angle at the edges of the
structural elements and θy is the yield rotation angle, both
calculated based on Kanepe (2017). In order to calculate the
required ductility, the value of θpl, for each edge of the column
structural element for the design earthquake of EC8, is
calculated. Based on the values of θpl and θy of the ends of
the columns and using Eq. 19, Table 9 is formed. Based on the
results presented in Table 9, it can be observed that the
distribution of ductility in the columns for the two
optimization-based strengthening designs is more balanced
in relation to the original structural system and the one
strengthened based on the design goal B1 of Kanepe (2017),
resulting into more controllable structural performance.

The ground floor is a representative story to identify changes in
ductility distribution over the columns where plastic hinges are
formed at the edges of all columns in each structural system. On the
ground floor, it is observed that CoV of ductility demand decreases
for the designs resulting from the optimization process. Thus,
unbalanced distribution of ductility demand over the columns is
mitigated. For the first story, in the case of the structural systems
derived through the solution of the minimum stiffness and strength
eccentricity problems due to higher stiffness, no plastic hinge was
created, while for the second story where, as expected, due to the
lowest stress intensity developed, none plastic hinge was formed in
any of the four structural systems.

6 CONCLUSION AND DISCUSSION

In the present study, the aim was to minimize the torsional response
of a multi-story reinforced concrete (RC) building by strengthening
its columns. The ultimate goal was to improve its structural behavior

TABLE 9 | (Continued) Required ductility values of the columns for the distributions of the horizontal loads.

Initial design Strengthened by

Code min (CM-CR) min (CM-CV)

θy θpl,dem μdem θy θpl,dem μdem θy θpl,dem μdem θy θpl,dem μdem

K37up 0.0090 0.0000 1.00 0.0098 0.0000 1.00 0.0098 0.0000 1.00 0.0098 0.0000 1.00
K37dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
K38up 0.0090 0.0000 1.00 0.0090 0.0000 1.00 0.0081 0.0000 1.00 0.0085 0.0000 1.00
K38dn 0.0000 1.00 0.0000 1.00 0.0000 1.00 0.0000 1.00
μ — — 1.00 — — 1.00 — — 1.00 — — 1.01
σ — — 0.00 — — 0.00 — — 0.00 — — 0.02
CoV — — 0.00 — — 0.00 — — 0.00 — — 0.02
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through an automized procedure that could be easily utilized in
relevant structural analysis and design software. In this direction,
design optimization problems were formulated based on the
torsional response criterion. Therefore, the problem was
mathematically developed with two independent formulations:
minimization of the eccentricity between mass and rigidity
centers and minimization of the eccentricity between mass and
strength centers. The first one was formulated as a discrete structural
optimization problem, where the dimensions of the columns’ cross
sections were the unknowns. In contrast, the second was formulated
as a mixed one, where, in addition to the dimensions, the percentage
of the reinforcement was the unknowns. The two problems were
solved using the evolutionary algorithm called the imperialist
competitive algorithm (ICA).

In the first part of the investigation, the case study building was
assessed based on nonlinear static analyses aiming to assess its
behavior for the case of the design earthquake. The nonlinear
static analyses revealed that larger deformations are observed
along the X direction. Subsequently, strengthening interventions
were to be decided on some of the structural elements aiming to
meet the B1 design goal of Kanepe (2017), that is, for the design
seismic action, the structural system should not exceed the “life
safety” performance level. Given that all structural elements were
considered primary ones, none of them should exceed the specified
performance level. In order to meet these needs, it was decided to
strengthen column K7 using RC jacketing, resulting in the reduction
of target deformation demands along the X direction, and no
structural element of the structural system developed damage
larger than the acceptable one for the design earthquake.

The next step, in terms of strengthening, used the
optimization framework developed to minimize stiffness and
strength eccentricities. By means of nonlinear static analyses
performed for the two new structural systems resulting by
solving the two optimization problems, it was found that the
bearing capacity and stiffness almost doubled compared to the

original and the strengthened ones based on Kanepe (2017),
while their ductility was significantly increased. The deformation
corresponding to the performance point was significantly
reduced for almost all horizontal load combinations examined
by 25%–30%. Due to the large increase in the base shear at the
performance point, the number of plastic hinges at the ends of
the beams was increased since the cross sections of the columns
were strengthened. Even so, none beam exceeded the “life safety”
performance level. These results were expected due to extensive
strengthening of the columns. The main conclusion that
emerged is that the distribution of ductility in the columns is
more balanced in relation to the original structural system and
the one strengthened based on the design goal B1 of Kanepe
(2017).
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