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Background: Emerging pieces of evidence demonstrated that the solute carrier family 39 (SLC39A) members are critical for the oncogenic and immune infiltrating targets in multiple types of tumors. However, the precise relationship between the SLC39A family genes and clinical prognosis as well as the pan-cancer tumor cell infiltration has not been fully elucidated.
Methods: In this study, the pan-cancer expression profile, genetic mutation, prognostic effect, functional enrichment, immune infiltrating, and potential therapeutic targets of the SLC39A family members were investigated by analyzing multiple public databases such as the Oncomine, TIMER, GEPIA, cBioPortal, KM-plotter, PrognoScan, GeneMANIA, STRING, DAVID, TIMER 2.0, and CellMiner databases.
Results: The expression levels of most SLC39 family genes in the tumor tissues were found to be significantly upregulated compared to the normal group. In mutation analysis, the mutation frequencies of SLC39A4 and SLC39A1 were found to be higher among all the members (6 and 4%, respectively). Moreover, the overall mutation frequency of the SLC39A family genes ranged from 0.8 to 6% pan-cancer. Also, the function of the SLC39A highly related genes was found to be enriched in functions such as zinc II ion transport across the membrane, steroid hormone biosynthesis, and chemical carcinogenesis. In immune infiltration analysis, the expression level of the SLC39A family genes was found to be notably related to the immune infiltration levels of six types of immune cells in specific types of tumors. In addition, the SLC39A family genes were significantly related to the sensitivity or resistance of 63 antitumor drugs in a variety of tumor cell lines.
Conclusion: These results indicate that the SLC39 family genes are significant for determining cancer progression, immune infiltration, and drug sensitivity in multiple cancers. This study, therefore, provides novel insights into the pan-cancer potential targets of the SLC39 family genes.
Keywords: SLC39 family genes, biomarker, pan-cancer, prognosis, immune infiltration, drug sensitivity
INTRODUCTION
Cancer has gradually emerged as the leading threat to public health worldwide, as estimated by GLOBOCAN 2020, stating 19.3 million newly confirmed cancer cases and nearly 10 million cancer-related deaths (Ferlay et al., 2021; Sung et al., 2021). Indeed, efforts for cancer prevention, screening, diagnosis, and comprehensive treatment have met with tremendous success in various tumors. However, studies on the clinical outcome of most cancers need further improvisation (Chen et al., 2021). The current promising targeted therapy particularly confirms that exploring the mechanism of pan-cancer initiation, maintenance, and development will unfurl new avenues for fighting various malignant tumors (Loomans-Kropp and Umar, 2019). Therefore, identification of the hub tumor-related genes is very urgent and necessary to develop new diagnostic and prognostic biomarkers and therapeutic targets. Presently, massive high-throughput data and multiple available big data online public databases are greatly helpful for finding the tumorigenic genes and conducting pan-cancer studies in multi-omics (Loomans-Kropp and Umar, 2019; Xiao et al., 2021).
The SLC39A family genes encode a family of proteins belonging to the Zrt- and Irt-like protein (ZIP) transport proteins, having 14 family members (SLC39A1-14). It controls the transportation and influx of zinc, with important roles in multiple signaling pathways and physiological processes, like gene transcription, endocrine regulation, cell growth, cell differentiation, and the immune response process (Kimura and Kambe, 2016; Baltaci and Yuce, 2018). Emerging pieces of evidence indicate that the mutation or functional change in the SLC39A family genes leads to the development and progression of multiple malignancies, such as colorectal cancer, breast cancer, esophageal cancer, hepatocellular carcinoma, pancreas cancer, gastric cancer, prostate cancer, and lung cancer (Hoang et al., 2016; To et al., 2020; Prasad, 2012). Besides, recent multi-omics studies have confirmed certain SLC39A family genes to have differential expression and prognostic value in breast, gastric, and lung cancers, acting as potentially promising clinical markers for these cancers (Liu et al., 2020; Zhou et al., 2021; Ding et al., 2019). Some basic studies have demonstrated the targeted regulation of the SLC39A family genes to be capable of changing the biological characteristics of some tumor cells. For example, Jin et al. found that knockdown of SLC39A5 expression significantly inhibits the invasion, proliferation, and migration of esophageal tumor cells (Jin et al., 2015). In addition, Zhu et al. demonstrated the knockdown of SLC39A11 to attenuate the cellular proliferation of the pancreatic cancer Capan-1 with decreased activation of the ERK1/2 pathway (Zhu et al., 2021). Fan et al. have found SLC39A4 gene knockout to inhibit the malignant behavior of the ovarian tumor cells both in vitro and in vivo (Fan et al., 2017). More importantly, the growing studies have shown that SLC transporters not only directly bring the anticancer drugs into cancer cells but also serve as a medium for the uptake of essential nutrients for the growth and survival of the tumor, thereby regulating the sensitivity and resistance of the chemotherapeutic drugs (Li and Shu, 2014). Nevertheless, the underlying mechanism and biological functions of the SLC39A family genes in the tumor progression and as the potential therapeutic target have not been fully elucidated.
This study systematically performed an in-depth analysis on the expression of the SLC39A family genes and their impact on the prognosis, to explore the relationship between the SLC39A family genes and pan-cancer immune cell infiltration. In addition to utilizing the multi-omics and large sample data analysis, the genetic mutation, function enrichment, and drug sensitivity of the SLC39A family genes were investigated across different cancer types. These analyses could provide a new direction for a promising biomarker and potential targeted therapy for treating cancer.
MATERIALS AND METHODS
Expression Profiles Analysis
Three online databases (Oncomine, TIMER, and GEPIA) were applied to investigate the differential expression profiles of the SLC39A family genes between the normal and the tumor tissues in various cancer types. The website of the Oncomine online platform is www.oncomine.org (Rhodes et al., 2007), the website of the TIMER online platform is https://cistrome.shinyapps.io/timer/ (Li et al., 2017), and the website of the GEPIA online platform is http://gepia.cancer-pku.cn/ (Tang et al., 2017). Among them, the p-value was set to 0.01; fold change was set to 1.5; the gene level was set to all, and data type was set to mRNA in the Oncomine database, and the relevant parameters of the TIMER and GEPIA databases were set by default.
Mutation Profiles Analysis
The cBioPortal (http://www.cbioportal.org) (Gao et al., 2013) was exploited for detecting the mutation landscape (amplification, deep deletion, and missense mutations) and general mutation count of the SLC39A family genes in 33 types of tumors from the TCGA database. In addition, the impact of gene mutations in the SLC39A family on the clinical outcomes was surveyed using the cBioPortal database.
Survival Analysis
The relationship between the expression of the SLC39A family gene and the overall survival (OS) and progression-free survival (PFS) in the pan-cancer patients was investigated using the pan-cancer module of the KM-plotter database (http://www.kmplot.com/) (Nagy et al., 2021). In addition, the PrognoScan database (http://dna00.bio.kyutech.ac.jp/PrognoScan/index.html) (Mizuno et al., 2009) was further utilized to confirm the relationship between the expression of the SLC39A family genes and clinical outcome in the different cohorts. Multiple types of survival parameters, including OS, PFS, relapse-free survival (RFS), disease-free survival (DFS), distant recurrence–free survival (DRFS), distant metastasis–free survival (DMFS), and disease-specific survival (DSS) were represented in the current analysis. The hazard ratio (HR), log-rank p-value, and 95% confidence interval were directly displayed on the online platform, and the p-value cut-off value was set to 0.05.
Enrichment Analysis
To seek out the highly related genes of SLC39A family genes, the GeneMANIA database (http://www.genemania.org) (Warde-Farley et al., 2010) and the STRING database (https://string-db.org) (Szklarczyk et al., 2019) were exploited. Then, the DAVID database (Database for Annotation, Visualization, and Integrated Discovery, https://david.ncifcrf.gov) (Huang et al., 2009) was used to conduct the GO (gene ontology) annotation and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis of the SLC39A family highly related genes.
Immune Infiltration Analysis
The TIMER 2.0 (http://cistrome.shinyapps.io/timer) (Li et al., 2020) was used to evaluate the relationship between the SLC39A family gene expression levels and the infiltration of six common immune cells, including the B cells, CD4+ T cells, CD8+ T cells, Treg T cells, macrophages, and neutrophils.
Drug Sensitivity Analysis
The CellMiner database (https://discover.nci.nih.gov/cellminer/) (Shankavaram et al., 2009) was exploited to evaluate the relationship between the SLC39A family gene expression levels and the compound sensitivity or resistance through the NCI-60 analyses tools. Data processing and Pearson correlation analysis visualization used the limma and ggplot2 package, and the scatter plot showed significant correlations sorted by p-value from small to large, and the p-value cut-off value was set to 0.05.
RESULTS
The Expression Profiles of the SLC39A Family Genes in Pan-Cancer
Subsequently, the expression profiles of the SLC39A family genes were explored in various cancer types. The Oncomine, GEPIA, and TIMER databases were exploited to examine and verify the expression levels of the SLC39A family genes in the tumor tissues and the corresponding non-tumor tissues. The Oncomine database reported an increase in the mRNA expression level of other SLC39 family genes in the tumor tissues compared to the normal control group, except for SLC39A8 (Figure 1A). The median expression of the SLC39A family genes in the tumor tissues of all types of tumors was further compared, revealing that most of the SLC39A family genes show relatively high expression in the specific tumor types, such as lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), esophageal carcinoma (ESCA), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), rectum adenocarcinoma (READ), and thymoma (THYM) (Figure 1B). In addition, the expression level of the SLC39A family genes was detected in 33 tumors, and their normal controls match TCGA normal and GTEx data using GEPIA. Similar to the results of the other studies, the SLC39A family genes have notably increased the expression in most tumors compared to the normal controls (Figure 1C and Supplementary Table S1). As shown in Figure 2, the TIMER2.0 database results demonstrated that the transcriptional expression levels of the SLC39A family genes are inconsistent between the tumor tissues and corresponding normal tissues, and most SLC39A families were over-regulated in the tumor tissues, extremely so in the bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), HNSC, kidney renal papillary cell carcinoma (KIRP), lung adenocarcinoma (LUAD), stomach adenocarcinoma (STAD), and thyroid carcinoma (THCA) tumor types.
[image: Figure 1]FIGURE 1 | mRNA expression profiles of the SLC39A family genes in pan-cancer. (A) Transcriptome expression profile of SLC39A family members in pan-cancer was explored in the Oncomine database. In the graph, red represents statistically significant mRNA overexpression of SLC39A family gene mRNA between the tumor and the corresponding normal tissue, blue represents down-expression, and the number represents the number of data sets. p value is set to 0.01; fold change is set to 1.5; gene level is set to all; and data type is set to mRNA in the Oncomine database. (B) Transcriptome expression profiles of SLC39A family genes in pan-cancer were explored in the GEPIA database. The red boxes represent higher SLC39A family gene expression in tumor tissues, while the green boxes represent the lower SLC39A family gene expression in tumor tissues. The inspection standard is set to p-value < 0.05. (C) Expression level of SLC39A family genes in 33 tumors and their normal controls in the match TCGA normal and GTEx data using GEPIA. The data in the figure represents average mRNA expression of SLC39A family genes in different tumors. The colors from blue to red represent the range of values in the figure.
[image: Figure 2]FIGURE 2 | Differential expression of the SLC39A family genes in pan-cancer and corresponding normal tissues. (A) Transcriptome expression of SLC39A1 was explored in the TIMER database. (B) Transcriptome expression of SLC39A2 was explored in the TIMER database. (C) Transcriptome expression of SLC39A3 was explored in the TIMER database. (D) Transcriptome expression of SLC39A4 was explored in the TIMER database. (E) Transcriptome expression of SLC39A5 was explored in the TIMER database. (F) Transcriptome expression of SLC39A6 was explored in the TIMER database. (G) Transcriptome expression of SLC39A7 was explored in the TIMER database. (H) Expression of SLC39A8 was explored in the TIMER database. (I) Transcriptome expression of SLC39A 9 was explored in the TIMER database. (J) Transcriptome expression of SLC39A10 was explored in the TIMER database. (K) Transcriptome expression of SLC39A11 was explored in the TIMER database. (L) Transcriptome expression of SLC39A12 was explored in the TIMER database. (M) Transcriptome expression of SLC39A13 was explored in the TIMER database. (N) Transcriptome expression of SLC39A14 was explored in the TIMER database. (*p < 0.05, **p < 0.01, ***p < 0.001. The red box and the green box represent tumor tissue and normal control tissue, respectively. The middle line of the box represents the median and the lower and upper bounds represent the 25th and 75th percentiles, respectively.)
The Genetic Mutation of the SLC39A Family Genes in Pan-Cancer
The cBioPortal and TCGA database was employed to probe the mutation status of the SLC39A family genes in 10,967 samples in 32 studies of the pan-cancer atlas. Results showed that the mutation frequencies of SLC39A4 and SLC39A1 were higher than those of all the other members, 6 and 4%, respectively, and the overall mutation frequency of the SLC39A family genes ranged from 0.8 to 6% (Figure 3A). As shown in Figure 3B, the mutation frequency of the SLC39A family genes in ovarian serous cystadenocarcinoma (OV), liver hepatocellular carcinoma (LIHC), ESCA, uterine corpus endometrial carcinoma (UCEC), LUAD, skin cutaneous melanoma (SKCM), BLCA, uterine carcinosarcoma (UCS), lung squamous cell carcinoma (LUSC), STAD, and BRCA was relatively higher by more than 30%, and the other types of tumors all exhibited a very low alteration in mutation (<30%). In addition, the Kaplan–Meier plotter results demonstrated that the combined mutation of the SLC39A family genes has no significant effect on OS (p-values, 0.0664) (Figure 3C). However, there are statistical differences in the DSS, PFS, and DFS between the mutation group and the non-mutation group of the SLC39A family genes (p-values, 0.0308, 4.11e-5, and 7.94e-11, respectively) (Figures 3D–F).
[image: Figure 3]FIGURE 3 | Mutation landscape of the SLC39A family genes in pan-cancer derived from the cBioPortal platform. (A) OncoPrint summary of alteration on SLC39A family genes in 10,967 numbers of samples in 32 studies of the pan-cancer atlas. The mutation frequency was shown as green for mutations, red for fusions, blue for sions, and black for multiple mutations. (B) Rectangular graph of the general mutation counts of SLC39A family genes in the pan-cancer atlas. The X- and Y-axis represent the mutation frequency of SLC39A family genes and cancer type, respectively. It was shown as green for missense mutations, violet for fusions, deep blue for truncating, and blue for no mutations. (C) Kaplan–Meier chart of OS of pan-cancer with and without SLC39A family gene mutation. (D) Kaplan–Meier chart of DDS of pan-cancer with and without SLC39A family gene mutation. (E) Kaplan–Meier chart of PFS of pan-cancer with and without SLC39A family gene mutation. (F) Kaplan–Meier chart of DFS of pan-cancer with and without SLC39A family gene mutation. The red line and the blue line represent high and low expression, respectively. The Cox p-value cut-off value was set to 0.05.
The Prognostic Value of SLC39A Family Genes in Pan-Cancer
The association between the mRNA expression of the SLC39A family genes and the clinical outcomes in pan-cancer patients were analyzed using the KM-plotter and PrognoScan databases. As shown in Figure 4, the KM-plotter database revealed that the expression of the SLC39A family genes was significantly related to the OS and RFS in some tumor types. Among them, the high expression of most of the SLC39A family genes presents the risk factor for the OS of BLCA, CESC, HNSC, LIHC, LUAD, LUSC, and PAAD, as well as for the protection factors for OS of BRCA, ESCA, OV, PAAD, STAD, TGCT, and THCA. Similarly, for RFS, the high expression of most SLC39A family genes was significantly related to the inferior survival of BLCA, CESC, KIRP, LUAD, LUSC, PAAD, and TGCT, as well as the better prognosis of BRCA, OV, PCPG, and STAD (Figures 4A,B and Supplementary Tables S2, S3). As shown in Figures 4C–R, the increase in the expression of SLC39A1, SLC39A 3, SLC39A 5, SLC39A 8, SLC39A 10, SLC39A 13, and SLC39A 14 was associated with poor OS, and the upregulation of SLC39A1, SLC39A 4, SLC39A 7, SLC39A 9, and SLC39A 10 was found to lead to poor RFS in the patients with CESC.
[image: Figure 4]FIGURE 4 | Survival analysis of the prognostic value of the SLC39A family genes in pan-cancer derived from the KM-plotter dataset. (A) Heat map shows the hazard ratio (HR) value of the OS in pan-cancer calculated using the KM-plotter database. (B) Heat map shows the hazard ratio (HR) value of the RFS in pan-cancer calculated using the KM-plotter database. (The colors from blue to red represent the range of HR values in the figure. HRs over 5 were replaced with “high.”) (C) Forest plot quantitatively synthesizes the HR and 95% confidence interval of the OS of the SLC39A gene family in CESC. (D) Forest plot quantitatively synthesizes the HR and 95% confidence interval of the PFS of the SLC39A gene family in CESC. (E) Forest plot quantitatively synthesizes the HR and 95% confidence interval of the OS of the SLC39A gene family in BLCA. (F) Forest plot quantitatively synthesizes the HR and 95% confidence interval of the PFS of the SLC39A gene family in BLCA. (G) Survival curve of SLC39A1 on the OS in CESC. (H) Survival curve of SLC39A2 on the OS in CESC. (I) Survival curve of SLC39A3 on the OS in CESC. (J) Survival curve of SLC39A4 on the OS in CESC. (K) Survival curve of SLC39A6 on the OS in CESC. (L) Survival curve of SLC39A8 on the OS in CESC. (M) Survival curve of SLC39A10 on the OS in CESC. (N) Survival curve of SLC39A12 on the OS in CESC. (O) Survival curve of SLC39A13 on the OS in CESC. (P) Survival curve of SLC39A14 on the OS in CESC. The red line and the blue line represent high and low expression, respectively. The Cox p-value cut-off value was set to 0.05.
Then, the PrognoScan platform was used to further assess and verify the prognostic value of the SLC39A family genes in pan-cancer, based on public datasets. The results of PrognoScan indicated that the expression level of the SLC39A family genes was significantly related to the clinical survival of 12 types of tumors, such as colorectal cancer, breast cancer, bladder cancer, lung cancer, ovarian cancer, blood cancer, brain cancer, skin cancer, eye cancer, soft tissue cancer, prostate cancer, and head and neck cancer (Supplementary Table S4). Interestingly, most of the studies and data sets were previously focused on breast, colorectal, lung, and ovarian cancer. The results of the quantitative synthesis of related studies showed that higher expression of the SLC39A family genes indicated a worse survival prognosis for RFS ([HR] = 1.30, 95% confidence interval [CI] = 1.10 to 1.53) and DSS (HR = 1.60, 95% CI = 1.27 to 2.02) in breast cancer (Figures 5A,B). However, the higher expression of the SLC39A family genes was associated with a better prognosis for OS (HR = 0.62, 95% CI = 0.44 to 0.88) and DFS (HR = 0.75, 95% CI = 0.62 to 0.90) in colorectal cancer (Figures 5C,D). In addition, the upregulation of the SLC39A family gene expression was significantly associated with poor OS (HR = 2.12, 95% CI = 1.45 to 3.05) and RFS (HR = 1.79, 95% CI = 1.26 to 2.54) in lung cancer.
[image: Figure 5]FIGURE 5 | Survival analysis of the prognostic value of the SLC39A family genes in pan-cancer derived from the PrognoScan dataset. (A) Forest plot of DDS shows the effect of SLC39A family gene expression on the clinical prognosis of breast cancer. (B) Forest plot of RFS shows the effect of SLC39A family gene expression on the clinical prognosis of breast cancer. (C) Forest plot of OS shows the effect of SLC39A family gene expression on the clinical prognosis of colorectal cancer. (D) Forest plot of DFS shows the effect of SLC39A family gene expression on the clinical prognosis of colorectal cancer. (E) Forest plot of OS shows the effect of SLC39A family gene expression on the clinical prognosis of lung cancer. (F) Forest plot of DFS shows the effect of SLC39A family gene expression on the clinical prognosis of lung cancer.
The Function Enrichment of the SLC39A Family Genes in Pan-Cancer
To investigate the potential mechanism of the SLC39A family genes affecting the prognosis and progression of tumors, the protein–protein interactions (PPIs) of the SLC39A family highly related genes were conducted by using the STRING and GeneMANIA platforms. The STRING web was used to conduct the protein–protein interaction (PPI) network analysis of the SLC39A family genes. As expected, 54 nodes and 410 edges were obtained in the PPI network, and the 10 top-ranked node genes were CBR4, MCAT, CYP17A1, HSD17B6, HEPH, SRD5A1, HSD17B3, CYP11B2, CYP11B1, and CYP19A1 (Figure 6A; Supplementary Table S5 and Supplementary Figure S1). In addition, the GeneMANIA results revealed that a total of 34 genes (including the SLC39A family genes) are associated with co-expression, genetic interactions, physical interactions, and shared protein domains. Among them, relationships of co-expression were predicted between SLC39A1 and SLC39A13, SLC39A1 and SLC39A7, SLC39A4 and SLC39A14, SLC39A5 and SLC39A14, SLC39A5 and SLC39A4, SLC39A6 and SLC39A10, and SLC39A8 and SLC39A14. Genetic interactions were predicted between SLC39A9 and SLC39A8, SLC39A9 and SLC39A3, SLC39A11 and SLC39A13, and SLC39A11 and SLC39A14. Moreover, SLC39A1 and SLC39A2, SLC39A5 and SLC39A10, SLC39A5 and SLC39A6, and SLC39A9 and SLC39A2 were found to share physical interactions. Most of the SLC39A family genes were found to share protein domains (Figure 6B).
[image: Figure 6]FIGURE 6 | Function enrichment of the SLC39A family genes in pan-cancer. (A) Protein–protein interaction of SLC39A family in the STRING dataset. (B) Gene–gene interaction network among SLC39A family members in the GeneMANIA dataset. (C) Bubble chart showing the BP of SLC39A family highly correlated genes. (D) Bubble chart showing the CC of SLC39A family highly correlated genes. (E) Bubble chart showing the MF of SLC39A family highly correlated genes. (H) Bubble chart showing the KEGG of SLC39A family highly correlated genes.
The functional enrichment of the SLC39A family’s highly related genes was predicted by analyzing the GO annotation and KEGG pathway via the DAVID platform. According to the results (Figures 6C–F and Table 1), the function of the SLC39A highly related genes was enriched in the zinc II ion transmembrane transport, cellular zinc ion homeostasis, oxidation-reduction process, androgen biosynthetic process, and zinc II ion transmembrane import in biological processes (BPs). As for the cellular component (CC), the SLC39A family highly related genes were enriched in the integral components of the membrane, endoplasmic reticulum membrane, organelle membrane, cytoplasmic, membrane-bounded vesicle, and endoplasmic reticulum. Moreover, the SLC39A family influenced molecular functions through histone methyltransferase binding. With respect to the molecular function (MF), the SLC39A family of highly related genes was enriched in the zinc ion transmembrane transporter activity, metal ion transmembrane transporter activity, cation transmembrane transporter activity, estradiol 17-beta-dehydrogenase activity, and oxygen binding. Meanwhile, in the KEGG analysis, 10 pathways were significantly enriched, including the steroid hormone biosynthesis, ovarian steroidogenesis, metabolic pathways, mineral absorption, retinol metabolism, metabolism of xenobiotics by cytochrome P450, chemical carcinogenesis, fatty acid metabolism, fatty acid biosynthesis, and aldosterone synthesis and secretion.
TABLE 1 | Top 10 GO and KEGG functional enrichment of SLC39A family highly related genes in pan-cancer derived from STRING, GENEMAIN, and DAVID datasets.
[image: Table 1]The Immune Infiltration of the SLC39A Family of Genes in Pan-Cancer
To explore whether the SLC39A family genes affect the tumor immune infiltrating and microenvironment in pan-cancer, the TIMER 2.0 was used to evaluate the relationship between the SLC39A family gene expression levels and the infiltration of six common immune cells, including B cells, CD4+ T cells, CD8+ T cells, Treg T cells, macrophages, and neutrophils. The results confirmed a positive correlation between B-cell infiltration in ACC, KICH, KIRP, LIHC, PCPG, and PRAD but found a negative relation to B-cell immunity in COAD, DLBC, HNSC, KIRC, OV, SKCM, TGCT, TKYM, UCEC, and UVM (Figure 7A). For the CD4+ T cell, most of the SLC39A family members were positively related to immune infiltration in ESCA, GBM, HNSC, LIHC, and TCGT, while most of the SLC39A family genes were negatively correlated with the immune infiltration in BRCA and THYM (Figure 7B). For the CD8+ T cell, most of the SLC39A family genes were positively correlated with immune infiltration in the ACC, BLCA, DLBC, KICH, PRAD, and UVM, while most of the SLC39A family genes were negatively correlated with the immune infiltration in the HNSC, THYM, and UCEC (Figure 7C). Besides, a positive correlation was observed in most SLC39A family genes and Treg cell infiltration in TGCT and UVM, and a negative correlation was observed in the DLBC and THYM (Figure 7D). Particularly, a negative correlation was observed in most SLC39A family genes and macrophage cell infiltration in the BRCA, DLBC, UCEC, and UVM (Figure 7E). In addition, a positive correlation was observed in most of the SLC39A family genes and neutrophil infiltration (Figure 7F). It is noteworthy that the SLC39A2, SLC39A3, SLC39A3, and SLC39A5 showed a significant negative correlation with the macrophages and neutrophil cell infiltration in most tumor types.
[image: Figure 7]FIGURE 7 | Immune cell infiltration of the SLC39A family genes in pan-cancer derived from the TIMER2.0 dataset. (A) Correlation coefficient between SLC39A family gene expression and B-cell infiltration score in pan-cancer. (B) Correlation coefficient between SLC39A family gene expression and CD4+ T-cell infiltration score in pan-cancer. (C) Correlation coefficient between SLC39A family gene expression and CD8+ T-cell infiltration score in pan-cancer. (D) Correlation coefficient between SLC39A family gene expression and Treg T-cell infiltration score in pan-cancer. (E) Correlation coefficient between SLC39A family gene expression and macrophage cell infiltration score in pan-cancer. (F) Correlation coefficient between SLC39A family gene expression and neutrophil cell infiltration score in pan-cancer. The association was generated with tumor purification adjusted.
Drug Sensitivity Analysis of the SLC39A Family Genes in Pan-Cancer
To explore the potential sensitization or the effects of drug resistance of the SLC39A family genes on the drug response of different human cancer cell lines, a Pearson correlation analysis was performed between the mRNA expression of the SLC39A family genes in the NCI-60 cancer cell line and the drug activity of 263 antitumor drugs (Figure 8; Table 2; and Supplementary Figure S2). The results demonstrated the upregulation of SLC39A1 expression to reduce the drug sensitivity of imisone, oxaliplatin, ifosfamide, eribulin mesylate, palbociclib, and paclitaxel but enhanced the drug sensitivity of Irofulven. An increase in the SLC39A2 expression enhanced the drug sensitivity of Isotretinoin, and the sensitivity of cladribine was found to increase by SLC39A. Various tumor cells with high expression of SLC39A4 were found to be more resistant to the okadaic acid and are more sensitive to 8-chloroadenosine and allopurinol. An increase in the SLC39A5 expression enhanced the drug sensitivity of tegafur, fluorouracil, and BML-277. Notably, the upregulation of SLC39A6 expression was found to increase the sensitivity of raloxifene and fulvestrant. High SLC39A7 expression was found to increase the drug resistance of oxaliplatin, palbociclib, dexrazoxane, entinostat, carfilzomib, epirubicin, and teniposide. However, an elevation in the SLC39A8 gene expression was found to enhance the drug sensitivity of nelarabine, fluphenazine, chelerythrine, fenretinide, imexon, hydroxyurea, cyclophosphamide, and pipobroman. In addition, the SLC39A10 gene expression was found to increase the drug sensitivity of gefitinib, afatinib, erlotinib, lapatinib, vandetanib, ibrutinib, and bosutinib and also increased the tolerance of cell lines to elesclomol, paclitaxel, tyrothricin, and vinorelbine. The SLC39A12 gene expression increased the drug sensitivity of PD-98059, vemurafenib, selumetinib, hypothemycin, and dabrafenib and also increased the tolerance of the cell lines to dasatinib. The expression of SLC39A13 was found to reduce the drug sensitivity of the by-product of CUDC-305, vinorelbine, eribulin mesilate, paclitaxel, oxaliplatin, actinomycin D, nilotinib, homoharringtonine, LDK-378, vinblastine, dolastatin 10, tamoxifen, imatinib, AFP464, tanespimycin, crizotinib, palbociclib, and carfilzomib and enhance the drug sensitivity of simvastatin. At last, the expression of the SLC39A14 gene was also found to increase the resistance of multiple drugs, including AFP464, panobinostat, cyclophosphamide, palbociclib, lificguat, and fulvestrant. On the other hand, the SLC39A14 gene expression was found to increase the drug sensitivity of entinostat.
[image: Figure 8]FIGURE 8 | Association of the SLC39A family gene expression with the drug sensitivity derived from the NCI-60 cell line data. (A) Scatter plot of negative correlation between SLC39A13 expression and the sensitivity of the by-product of CUDC-305. (B) Scatter plot of negative correlation between SLC39A4 expression and the sensitivity of okadaic acid. (C) Scatter plot of positive correlation between SLC39A8 expression and the sensitivity of nelarabine. (D) Scatter plot of positive correlation between SLC39A8 expression and the sensitivity of fluphenazine. (E) Scatter plot of positive correlation between SLC39A4 expression and the sensitivity of 8-chloro-adenosine. (F) Scatter plot of negative correlation between SLC39A13 expression and the sensitivity of chelerythrine. (G) Scatter plot of positive correlation between SLC39A4 expression and the sensitivity of vinorelbine. (H) Scatter plot of positive correlation between SLC39A10 expression and the sensitivity of gefitinib. (I) Scatter plot of negative correlation between SLC39A13 expression and the sensitivity of eribulin mesilate. (J) Scatter plot of negative correlation between SLC39A7 expression and the sensitivity of oxaliplatin. (K) Scatter plot of negative correlation between SLC39A13 expression and the sensitivity of paclitaxel. (L) Scatter plot of positive correlation between SLC39A1 expression and the sensitivity of Irofulven. (M) Scatter plot of negative correlation between SLC39A13 expression and the sensitivity of oxaliplatin. (N) Scatter plot of negative correlation between SLC39A14 expression and the sensitivity of AFP464. (O) Scatter plot of positive correlation between SLC39A8 expression and the sensitivity of fenretinide. (P) Scatter plot of negative correlation between SLC39A13 expression and the sensitivity of actinomycin D. Z-score from test by Pearson’s correlation using NCI-60 cell line data.
TABLE 2 | Relationship between SLC39A family gene expression and drug sensitivity based on the NCI-60 cell line.
[image: Table 2]DISCUSSION
Zinc, as an essential trace element, participates in various physiological events, such as growth, differentiation, development, immunity, apoptosis, and other physiological processes (Kimura and Kambe, 2016). Previous studies have reported that zinc is required for over 300 enzymes’ activity and 2,000 transcription factors to work (Prasad, 2012). Thus, zinc metabolism and homeostasis regulate the normal cell functions in a complex manner. Aberrant Zn transporters have been reported to contribute to specific diseases, including endocrine diseases, neurodegenerative diseases, metabolic diseases, cardiovascular diseases, immune deficiencies, and cancers (Prasad, 2012; Kambe et al., 2014). In particular, current evidence suggests that zinc deficiency and dysregulation of the zinc metabolism are risk factors for tumorigenesis, and zinc is considered a tumor-suppressive agent and a potential tumor treatment target (Grattan and Freake, 2012; Pan et al., 2017; Zhang et al., 2021). In addition, the two groups of zinc transporters, the ZnT transporter (SLC30A) and the ZIP channel (SLC39A), exert strict control over the concentration of zinc in cells, and the SLC39A are known to operate in the influx of zinc across the cytoplasm from the extracellular environment into the cytosol (Hojyo and Fukada, 2016; Pan et al., 2017; Brito et al., 2020). The available data suggest that the mutation or functional change of the SLC39A family of genes develops various diseases such as the tumors of the digestive system, urinary system, and reproductive tract (Prasad, 2012; Hoang et al., 2016; To et al., 2020). Interestingly, the SLC39A family gene knockout animals have revealed many unique phenotypes and the possibility of the clinical targeted application and the possibility of discovery and development of the SLC39A family inhibitors as anticancer drugs and modulators regulating the sensitivity or resistance of chemotherapeutic drugs (Geng et al., 2018; Hu, 2020; Mohammadinejad et al., 2020; Cheng et al., 2021). However, the precise function of the SLC39A family genes in pan-cancer has not been comprehensively determined.
In the current study, compared to the normal control group, the expression levels of most of the SLC39 family genes in the tumor tissues were found to be significantly upregulated. The high expression of SLC39A6 is a dependable marker for breast cancer (luminal A subtype), and elevated SLC39A10 mRNA levels were evident in the cancer cell lines of the highly aggressive breast cancer (Kagara et al., 2007; Hogstrand et al., 2013). Cheng et al. (2017) have found the ESCC tissues to possess an increased mRNA expression level of SLC39A6 compared to the non-tumor tissues. Studies by Li et al. (2007) reported that compared to the human pancreatic ductal epithelium (HPDE) cells, the expression of the SLC39A4 mRNA was significantly increased in the human pancreatic cancer cells. In addition, a bioinformatics study also found increased expression levels of the SLC39A family genes with significant upregulation in the breast cancer, gastric cancer, and lung cancer tissues compared to the normal breast tissues (Ding et al., 2019; Liu et al., 2020; Zhou et al., 2021). There are not many studies on the genetic mutations of the SLC39A family in tumor tissues. Our study reported that the mutation frequencies of the SLC39A4 and SLC39A1 were the highest among all the members and were 6 and 4%, respectively. The overall mutation frequency of the SLC39A family genes was in the general range of 0.8–6.0% in pan-cancer. Moreover, the mutations in the SLC39A family genes were found to have a significant impact on the DSS, PFS, and DFS of the malignant tumor.
For prognostic analysis, the expression of SLC39A family genes was found to be significantly related to the OS and RFS in multiple types using the KM-plotter database. Most SLC39A family genes showed protective effects in BLCA, CESC, HNSC, BRCA, ESCA, and OV. Simultaneously, the PrognoScan results indicated that the SLC39A family gene expression levels were significantly correlated with the prognosis of the colorectal, breast, bladder, lung, ovarian, blood, brain, skin, eye, soft tissue, prostate, and head and neck cancers. Our findings were consistent with those of the previous study, in that high mRNA expression levels of SLC39A6 and SLC39A14 indicated favorable OS, but upregulated SLC39A2-5, SLC39A7, and SLC39A12-13 were associated with poor OS in the patients with breast carcinoma (Liu et al., 2020). Higher expression of SLC39A1, 5–7, and 9 indicated better OS, FPS, and PPS, and increased SLC39A2–4, 8, and SLC39A10 expression indicated poor OS, FP, and PPS in the patients with gastric cancer (Ding et al., 2019). In addition, an increase in the SLC39A7 expression was related to better OS, while the upregulated level of SLC39A3 and SLC39A4 were associated with inferior OS in patients with LUSC (Zhou et al., 2021). Consistent with previous research, the GO function enrichment indicated the SLC39A family genes and their highly related genes to contribute to zinc transport– and homeostasis-related biological processes, such as zinc II ion transmembrane transport, cellular zinc ion homeostasis, oxidation-reduction, androgen biosynthesis, and zinc II ion transmembrane import. The KEGG analysis showed SLC39A family genes to be involved in the hormone regulation, metabolic pathways, mineral absorption, and chemical carcinogenesis pathways (Ding et al., 2019; Zhou et al., 2021). Therefore, the prognostic effect of the SLC39A family genes can be speculated to be closely related to zinc transfer, metabolism, and function (Guo and He, 2020).
Increasing studies have shown that zinc is involved in a variety of important functions of immune cell activation and initiation of immune response in the process of innate immunity and adaptive immunity; thus, zinc deficiency can lead to immune dysfunction (Bin et al., 2018). Given the close relationship between the SLC39A family and zinc transport, the regulatory relationship between the SLC39A family genes and immune infiltration deserves more attention. SLC39A6 and SLC39A10 are the first zinc transporters reported to regulate immune cell functions in mammals. Subsequent studies have confirmed the role of SLC39A8 in regulating various immune cells and playing an irreplaceable role in the process of innate immunity (Kitamura et al., 2006; Liu et al., 2013). The study of Hojyo et al. (2014) reported the SLC39A10 expression to be upregulated in pro-B lymphocytes and SLC39A10 to participate in B-cell immunity by leading the homeostasis and the function of the B cells. Our findings suggested a significant correlation between the SLC39A family gene expression and B-cell infiltration in broad cancer types and CD4+ T cells, CD8+ T cells, Treg T cells, macrophages, and neutrophils in specific tumors. These results provide new possibilities for immunotherapy to improve the prognosis by modulating the SLC39A family genes on the tumors or immune cells. Presently, there have been a few attempts of transformational application research using the SLC39A family to treat or alleviate diseases in animals or cell models. One study showed that in an in vivo xenograft model, the overexpression of the SLC39A1 leads to an increased zinc uptake, reducing the tumor growth (Golovine et al., 2008). Utilizing the characteristics of the zinc SLC39A6 transporter widely expressed in all breast cancer subtypes, Seattle Genetics has designed and constructed a new antibody–drug conjugate called SGN-LIV1A to treat metastatic breast cancer through the targeted regulation of SLC39A6 (Sun et al., 2011). In our study, the Pearson correlation analysis was performed between the mRNA expression of the SLC39A family genes in the NCI-60 cancer cell line and the drug activity of 263 antitumor drugs. The results showed that SLC39A family genes are significantly related to the sensitivity or resistance of 63 antitumor drugs in a variety of tumor cell lines. Among them, SLC39A13 and the by-product of the CUDC-305, SLC39A4, okadaic acid, SLC39A8, and nelarabine are the three most likely connections. Based on these results, the detection and targeted regulation of the expression of the SLC39A family gene have been found to have special potential value for the clinical selection of antitumor drugs.
Despite being the first one to perform a multidimensional and multi-omics analysis of the SLC39A family genes in pan-cancer, this study has some shortcomings worth considering. First, the bioinformatics analysis was carried out through multiple online big data databases, and further in vitro and in vivo experiments are required to verify the prediction results. Second, multiple databases are not completely consistent in the expression and survival prognosis of the SLC39A family genes in certain tumors. Large samples, different populations, and multicenter clinical studies need further clarification. Third, although we have confirmed that the SLC39A family gene expression was significantly related to the immune infiltration and survival outcome of a variety of tumors, the causal relationship between the immune infiltration and prognosis remains elusive. Fourth, analyzing the level of immune infiltrating cells at the tumor tissue level may be error-prone, and hence, single-cell sequencing may be required for further exploration.
CONCLUSION
This pan-cancer study performed a comprehensive and systematic investigation of the expression patterns, genetic mutation, prognostic value, function enrichment, immune infiltrating, and potential therapeutic targets of the SLC39A family of genes. Our results proved that most of the SLC39 family genes’ expression was significantly increased in the tumor tissues and was associated with clinical prognosis in pan-cancer. Moreover, the SLC39A family gene expression was significantly related to the immune cell infiltration levels of six types of immune cells and contributed to the sensitivity or resistance of the drugs in specific types of tumors. Thus, we concluded that the SLC39A of family genes may be crucial for tumorigenesis, the tumor microenvironment, and drug sensitivity, providing novel ideas to develop new targeted therapy for malignant tumors.
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Background: RNA-binding proteins (RBPs) act as important regulators in the progression of tumors. However, their role in the tumorigenesis and prognostic assessment in multiple myeloma (MM), a B-cell hematological cancer, remains elusive. Thus, the current study was designed to explore a novel prognostic B-cell-specific RBP signature and the underlying molecular mechanisms.
Methods: Data used in the current study were obtained from the Gene Expression Omnibus (GEO) database. Significantly upregulated RBPs in B cells were defined as B cell-specific RBPs. The biological functions of B-cell-specific RBPs were analyzed by the cluster Profiler package. Univariate and multivariate regressions were performed to identify robust prognostic B-cell specific RBP signatures, followed by the construction of the risk classification model. Gene set enrichment analysis (GSEA)-identified pathways were enriched in stratified groups. The microenvironment of the low- and high-risk groups was analyzed by single-sample GSEA (ssGSEA). Moreover, the correlations among the risk score and differentially expressed immune checkpoints or differentially distributed immune cells were calculated. The drug sensitivity of the low- and high-risk groups was assessed via Genomics of Drug Sensitivity in Cancer by the pRRophetic algorithm. In addition, we utilized a GEO dataset involving patients with MM receiving bortezomib therapy to estimate the treatment response between different groups.
Results: A total of 56 B-cell-specific RBPs were identified, which were mainly enriched in ribonucleoprotein complex biogenesis and the ribosome pathway. ADAR, FASTKD1 and SNRPD3 were identified as prognostic B-cell specific RBP signatures in MM. The risk model was constructed based on ADAR, FASTKD1 and SNRPD3. Receiver operating characteristic (ROC) curves revealed the good predictive capacity of the risk model. A nomogram based on the risk score and other independent prognostic factors exhibited excellent performance in predicting the overall survival of MM patients. GSEA showed enrichment of the Notch signaling pathway and mRNA cis-splicing via spliceosomes in the high-risk group. Moreover, we found that the infiltration of diverse immune cell subtypes and the expression of CD274, CD276, CTLA4 and VTCN1 were significantly different between the two groups. In addition, the IC50 values of 11 drugs were higher in the low-risk group. Patients in the low-risk group exhibited a higher complete response rate to bortezomib therapy.
Conclusion: Our study identified novel prognostic B-cell-specific RBP biomarkers in MM and constructed a unique risk model for predicting MM outcomes. Moreover, we explored the immune-related mechanisms of B cell-specific RBPs in regulating MM. Our findings could pave the way for developing novel therapeutic strategies to improve the prognosis of MM patients.
Keywords: multiple myeloma, tumor-infiltrating B lymphocyte, RNA-binding protein, prognostic signature, immune-related signature, immunotherapy
1 INTRODUCTION
Multiple myeloma (MM) is a B-cell hematological malignancy. The proliferation of plasma cells further induces end organ dysfunctions, including anemia, hypercalcemia, bone lesions and renal failure (Palumbo and Anderson, 2011). The incidence rate of MM has rapidly increased by 126% globally over the past 2decades (Cowan et al., 2018). The rapidly increasing incidence rate has underscored the urgent need for treatment improvement. Although the overall survival of multiple myeloma has been rapidly improved by the widespread application of stem cell transplantation and novel drugs represented by proteasome inhibitors and immunomodulatory drugs (Attal et al., 2017; Facon et al., 2019; Mikkilineni and Kochenderfer, 2021), MM remains incurable. The highly heterogeneous clinical outcomes of MM patients depend on the tumor burden, tumor cell characteristics, and especially genetic abnormalities. Currently, a risk classification model based on more detailed genetic and molecular information was created by the International Multiple Myeloma Working Group in 2015 (Palumbo et al., 2015). This staging system is widely used in clinical practice. Approximately 75% of patients who present without cytogenetic abnormalities are considered as low risk. These patients present heterogenous clinical outcomes (Binder et al., 2017). There remains a group of patients who are divided into low-risk groups characterized by therapy resistance, rapid refractory periods and short overall survival. Meanwhile, existing classification model fail to identify some of patients with 1q21 amplification and del 17p for very poor outcome. However, no attempts have been made to further sub-stratify such amount of patients (Walker et al., 2018). In light of the limitations of the current staging system, it is necessary to identify novel biomarkers and establish a prognostic model based on cytogenetic characterization to distinguish good prognosis from poor prognosis patients, thereby improving patients’ final prognosis.
The highly heterogeneous outcome of MM is mainly ascribed to the complex genomic landscape, including chromosomal gains or losses, structural variations, and cancer driver gene mutations (Manier et al., 2017). These genomic instabilities contribute to the clonal expansion of disease. As a result of the rapid development of high-throughput sequencing, posttranscript regulation (PTGR) has gained attention throughout the whole process of tumors (Gerstberger et al., 2014). RNA-binding proteins (RBPs) play key roles in posttranscript regulation by affecting gene expression and cellular metabolism (Yan et al., 2021). Studies have found that RBPs are functionally associated with tumor progression in different types of cancers, including multiple myeloma (Konishi et al., 2021; Wang et al., 2021).
The crucial role of the complex bone marrow microenvironment in MM progression and therapeutic response has been well established. The interactive relationship between tumor cells and the bone marrow environment is critical in promoting chromosomal instability in MM(Neuse et al., 2020). Single-cell RNA-sequencing datasets revealed in-depth interactions of stomal cells, myeloma cells and immune cells within the bone marrow microenvironment. These analyses found bone marrow mesenchymal stromal cells, accompanied by immune cells and aberrant genes involved in immune modulation and tumorigenesis (de Jong et al., 2021).
It has been gradually recognized that the success of chemotherapy and immunotherapy relies on the anticancer immune response (Fridman et al., 2017). The correlation between tumor-infiltrating lymphocytes and the clinical outcomes of cancers has been investigated (Fridman et al., 2012). The prognostic value of infiltrating T lymphocytes has been widely accepted. In contrast to T cells, the effects of infiltrating B cells in tumorigenesis and treatment are far from clear.
Growing evidence has indicated that Tumor-infiltrating B (TIL-B) cells contribute to the prognostic effect of tumors by inducing CD4+ T cells and CD8+ T cells, which help to regulate tumor invasion and metastasis (Wouters and Nelson, 2018).
Multiple myeloma is a plasmocytic disease. The core biological process of MM is genetic dysfunction throughout the multistep progression of B cell development (Pawlyn and Morgan, 2017). In the present study, we investigated the TIL-B-related RBP signature in MM. Furthermore, we propose a B-cell-specific RBP prognostic model of MM for the first time by combining immune, RBP and clinical characteristics. This model enables us to predict the clinical prognosis and therapeutic response of MM patients.
2 MATERIALS AND METHODS
2.1 Patient and Tumor Cell Line Data Preparation
Transcriptional data of MM patients were downloaded from GSE24080, GSE4204 and GSE39754. GSE24080, including 559 newly diagnosed patients with MM(Mitchell et al., 2016), was used as the training set. GSE4204, including 538 newly diagnosed MM patients (Driscoll et al., 2010), was used as the validation set. These samples were analyzed on platforms GPL570, Affymetrix Human Genome U133 plus 2.0 array. GSE39754, including gene expression profiling of 170 newly diagnosed MM patients receiving bortezomib therapy (Chauhan et al., 2012), was used to compare the treatment response between different groups. A total of 1,542 RBPs were obtained from a previous study (Gerstberger et al., 2014). Expression data of RBPs in different cell types were downloaded from GSE42058 (4 samples of CD11c + cells), GSE49910 (4 samples of B cells, four samples of neutrophils, 24 samples of T cells, six samples of monocytes, eight samples of erythroblasts and a sample of bone marrow and progenitors), GSE51540 (9 samples of T cells), GSE59237 (10 samples of dendritic cells), GSE6863 (3 samples of dendritic cells), GSE8059 (3 samples of NK cells), GSE13906 (2 samples of gamma-delta T cells and two samples of lymphocytes), GSE23371 (12 samples of dendritic cells), GSE25320 (11 samples of mast cells), GSE27291 (12 samples of T cells), GSE27838 (16 samples of NK cells), GSE28490 (10 samples of monocytes, five samples of B cells, 10 samples of T cells, five samples of NK cells, four samples of eosinophils, five samples of mDCs, three samples of neutrophils and five samples of pDCs), GSE28726 (10 samples of NKT cells, eight samples of CD1d-aGC + Va24- T cells and eight samples of CD4 T cells), and GSE37750 (8 samples of plasmacytoid dendritic cells) and GSE39889 (16 samples of neutrophils). Each dataset was normalized, and all subsequent analyses were performed on normalized datasets.
2.2 Identification and Functional Analysis of Robust Prognostic B-Cell Specific RBP Signatures in MM
The Limma package (Ritchie et al., 2015) was used to screen differentially expressed RBPs among B cells and other cell types by following model: design < - model.matrix (∼group+0). Genes with FDR-corrected p-values below 0.01 were considered differentially expressed genes. Significantly upregulated RBPs in B cells were defined as B cell-specific RBPs. Gene ontology (GO) (Ashburner et al., 2000) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) enrichment analyses of B-cell-specific RBPs were applied by clusterProfiler in the R package (Yu et al., 2012; Wu et al., 2021). K-M analysis was performed to screen B-cell-specific RBPs associated with survival (p < 0.05). Then, univariate and multivariate Cox regressions were performed to further obtain a robust prognostic B-cell-specific RBP signature in MM (p < 0.05).
2.3 Construction of the Risk Model and Nomogram
The calculation formula for the risk score was defined as follows:
ExpGene1*Coef1 + ExpGene2*Coef2+ ExpGene3*Coef3.where Coef indicates the regression coefficients of genes, and Exp is the normalized expression value of each prognostic B cell-specific RBP signature. According to the median value of the risk score, MM patients in the training set were grouped according to the value of the risk score. K-M analysis was performed to identify the overall survival of all risk groups. ROC curves were plotted to evaluate the effectiveness of the risk model using the “survivalROC” routine in the R package. The risk model was tested in the validation set. Thereafter, Cox regression analyses were performed to identify independent prognostic factors for MM patients. The risk predictive model was plotted as a nomogram based on independent prognostic factors. The performance of the nomogram was evaluated by calibration and decision curves.
2.4 Immune Microenvironment of MM Patients in High- and Low-Risk Groups
Twenty-nine immune-related gene sets were used to perform ssGSEA (Subramanian et al., 2005) to calculate the enrichment infiltration of immune cells, pathways or functions in the MM samples. The 29 gene sets represented all types of subtypes of immune cells, potential functions, and related pathways described in a previous study (He Y. et al., 2018). Moreover, the correlations between the risk score and differentially enriched immune cells, pathways or functions and the correlations between the prognostic B-cell specific RBP signature and differentially enriched immune cells, pathways or functions were calculated. At the same time, the expression of immune checkpoints, including CD274 (also named PD-L1), CD276, CTLA4, PDCD1 and VTCNA, was compared between different groups. Additionally, the correlations between the risk score and differentially expressed immune checkpoints were calculated. Correlations were evaluated using Pearson tests.
2.5 Observation of Chemotherapeutic Response in Different Risk Groups
The IC50 values of 20 common chemotherapeutic drugs in the low- and high-risk groups were calculated by the pRRophetic algorithm via the GDSC database (Yang et al., 2013; Geeleher et al., 2014), while the percentages of complete response (CR), very good partial response (VGPR), no response, progression-free (NR) or progression and no response (Prog) were calculated to evaluate the treatment response to bortezomib therapy in the low- and high-risk groups.
2.6 Statistical Analysis
All of the data were analyzed by R software (version 4.0.0). Comparisons between low- and high-risk groups were calculated using Wilcoxon’s test.
3 RESULTS
3.1 Identification and Functional Analysis of 56B-cell-specific RBPs
By comparing the expression of RBPs among B cells and other cell types, we found a total of 56 significantly upregulated RBPs (p < 0.01) and defined them as B cell-specific RBPs. Heatmap displaying differential gene expression in B cells and other cells (Figure 1A). GO enrichment analysis indicated that these B cell-specific RBPs were enriched in ribosome-related and RNA metabolism- and catabolism-associated BP, CC and MF, including ribonucleoprotein complex biogenesis, ribosome biogenesis, mRNA catabolic process, ribosomal subunit and catalytic activity, and acted on RNA. The top 10 BP, CC and MF are shown in Figure 1B. Similar to the GO results, we found that these B cell-specific RBPs were significantly enriched in KEGG pathways of ribosome and ribosome biogenesis in eukaryotes (Figure 1C).
[image: Figure 1]FIGURE 1 | Identification of TILB-RBP related mRNAs. (A). Heatmap of differential RPB gene expression in B cells and other immune cells. (B). GO enrichment analysis of TILB-RBP-related mRNAs. (C). KEGG pathway of TILB-RBPs-related mRNAs.
3.2 Identification of ADAR, FASTKD1 and SNRPD3 as Prognostic Signatures in MM
3.2.1 Purified Immune Cell Data
Thereafter, we investigated the prognostic value of these B cell-specific RBPs. First, according to the expression of each RBP, we divided MM patients into low- and high-RBP expression groups. K-M analysis revealed that patients in the groups with lower expression of FASKD1, SNRPD3, DDX21, MRPL3, ADAR, CPSF3, DROSHA, and CAPRIN2 and higher expression of SART1 had better survival (Figure 2), suggesting that FASKD1, SNRPD3, DDX21, MRPL3, ADAR, CPSF3, DROSHA, CAPRIN2 and SART1 might play important roles in the prognosis of MM patients. Next, univariate Cox regression analysis showed that FASKD1, SNPPD3, DDX21, MRPL3, ADAR, CPSF3 and DROSHA were closely related to the outcomes of patients (p < 0.05, Table 1). To further obtain a robust prognostic signature, we performed multivariate Cox regression algorithm analysis and found that ADAR, FASKD1 and SNRPD3 were significantly correlated with prognosis (p < 0.05, Table 2), and all of them acted as risk factors (HR > 1, Figure 3). Thus, ADAR, FASKD1 and SNRPD3 were identified as prognostic B cell-specific RBP signatures in MM and were used for subsequent construction of the risk model.
[image: Figure 2]FIGURE 2 | K-M analysis of nine differential genes regarding survival. (A–G). Kaplan-Meier survival curves of Multiple myeloma with different expression levels of ADAR, CAPRIN2, CPSF3, DDX21, FASKD1, DROSHA, MRPL3, SART1, and SNRPD3.
TABLE 1 | Univariate Cox regression analysis results of differential RBPs.
[image: Table 1]TABLE 2 | Multivariate Cox regression algorithm analysis of ADAR, FASKD1 and SNRPD3 gene expression with prognosis.
[image: Table 2][image: Figure 3]FIGURE 3 | Forest plot visualizing the HRs of univariate Cox analysis of the TILB-RBPs and prognosis.
3.2.2 Construction of the Risk Score Model and Nomogram Based on the Prognostic B-Cell Specific RBP Signature in MM
The risk scores of each patient were calculated according to the expression levels and coefficients of ADAR, FASKD1 and SNRPD3. Patients in the training set were divided into high- and low-risk groups according to the median risk score (Figure 4A). The distribution of all patients’ survival status in the training set is shown in Figure 4B. Patients in the low-risk group had a survival advantage over patients in the high-risk group (Figure 4C). The areas under the ROC curves for 1-,3–5 years survival were 0.648, 0.642 and 0.626, respectively, suggesting good performance of the risk model in the training set (Figure 4D). The risk model was further tested in the validation set, and similar results were obtained (Figures 5A–D).
[image: Figure 4]FIGURE 4 | Construction of the risk score model based on the prognostic B-cell specific RBP signature in MM. (A). Patient distribution by different risk scores in the training set. (B). Survival status of all patients in the training set. (C). Kaplan-Meier survival curves of patients in the high-risk and low-risk groups. (D). ROC curve analysis according to the 1–5 years survival of the area under the ROC curve value in the training set.
[image: Figure 5]FIGURE 5 | Validation of the risk score model based on the prognostic B-cell specific RBP signature in MM. (A). Patient distribution by different risk scores in the validation set. (B). Survival status of all patients in the validation set. (C). Kaplan-Meier survival curves of patients in the high-risk and low-risk groups. (D). ROC curve analysis according to the 1–5 years survival of the area under the ROC curve value in the validation set.
Next, we conducted univariate and multivariate analyses to detect independent prognostic factors. The univariate results showed that age, B2M, BMPC and risk score were significantly associated with the overall survival of MM patients (Figure 6A). Age, B2M, BMPC and risk score were then included in the multivariate analysis, and we found that the risk score was remarkably related to prognosis (Figure 6B), indicating that the risk score was an independent prognostic factor for poor prognosis in MM.
[image: Figure 6]FIGURE 6 | Independence of the TILB-RBPs. A. Forest plot visualizing the HRs of univariate Cox analysis of the TILBlncSig and clinicopathological factors in (A) the TCGA discovery dataset (B) the TCGA testing dataset; and (C) the GSE31684 dataset.
Thereafter, we constructed a nomogram with a C-index of 0.667 to predict the 1-, 3–5 years survival of MM patients, combined with independent prognostic factors (age, B2M and risk score) obtained by the above multivariate analysis (Figure 7A). The slopes of the calibration curves for 1-, 3–5 years survival were close to 1 (Figure 7B), indicating the high accuracy of the nomogram. In addition, the decision curves, which displayed the clinical utility of each model, indicated that the nomogram had better survival prediction performance than the risk model (Figure 7C).
[image: Figure 7]FIGURE 7 | Construction and verification of the nomogram (A) A nomogram combining clinical signatures and prognostic factors to predict the 1–5 years survival rate of MM patients (B) The 5 years calibration chart verifies the predictive ability of the nomogram (C) The 5 years decision curve analysis of the clinical benefit rate.
3.3 Functional Analysis of Prognostic B-cell-specific RBP Genes by GSEA
To better understand the underlying mechanisms of the prognostic B cell-specific RBP signature in regulating MM, we first analyzed the functions of genes by GSEA. We found that the Notch signaling pathway, prespliceosome, mRNA cis-splicing via spliceosome and U5 snRNP were notably enriched in the high-risk group (p < 0.01), while olfactory receptor activity, sensory perception of smell, response to amphetamine, establishment of pigment granule localization, regulation of renal system process, pigment granule localization, olfactory transduction, mating, and odorant binding were enriched in the low-risk group (p < 0.01, Figure 8).
[image: Figure 8]FIGURE 8 | Functional analysis of genes in the low- and high-risk groups by GSEA. (A). Notch signaling pathway, (B). prespliceosome, (C). mRNA cis-splicing via spliceosome, (D). U5 snRNP.
3.4 Immune Microenvironment of Low- and High-Risk Groups
Next, we performed ssGSEA to detect the enriched distribution of different immune cells, pathways or functions. We analyzed the expression of immune checkpoints further to evaluate the immune microenvironment differences between the two groups. The ssGSEA results showed that the enrichment level of Tfhs was lower in the low-risk group, and other immune cells, including B cells, CD8+ T cells, T cell coinhibition, T cell costimulation, Th1 cells and type II IFN response, DCs, iDCs, APC costimulation, CCR, checkpoint, HLA, inflammation-promoting, macrophages, mast cells, MHC class Ⅰ, and neutrophils, were more highly enriched in the low-risk group (Figure 9A). All of the enrichment levels of the immune cells, except Tfh and MHC class I, were negatively correlated with the expression of ADAR, FASKD1 and SNRPD3 (p < 0.05, Figure 9B). We also found that the risk score was negatively correlated with enrichment levels of the immune cells (p < 0.05, Figure 9C). Consistent with the ssGSEA results, we observed that the expression of immune checkpoints, including CD274, CD276, CTLA4 and VTCN1, was remarkably higher in the low-risk group (p < 0.01, Figure 9D), while the risk score was negatively correlated with the expression of CD274, CD276, CTLA4 and VTCN1 (p < 0.01, Figure 9E). All of these results suggested that the prognostic B-cell-specific RBP signature influenced the immune microenvironment of MM patients, and a higher risk score could indicate lower antitumor immunity in MM patients.
[image: Figure 9]FIGURE 9 | Immune microenvironment of the low- and high-risk groups. (A). Boxplots of the immune cell infiltration cluster in the high- (red)- and low- (green)-risk groups stratified by the TILB RBP prognostic model. (B). Correlation between the expression of ADAR, SNRPD3 and FASTKD1 and the immune cell infiltration cluster. (C). Correlation between the risk score and immune cell infiltration cluster. (D). The differential expression of immune checkpoints, including CD274, CD276, CTLA4 and VTCN1, in the low-risk and high-risk groups. (E). Association between the risk score and the expression of CD274, CD276, CTLA4 and VTCN1.
3.5 Validation of the Prognostic Value of TBIL-RBPs in the Chemotherapeutic Response of MM
Given the different immune microenvironments between the low- and high-risk groups, we hypothesized that the response to drugs might be different between the two groups. The IC50 of A.443,654, A.770,041, ABT.888, AG.014699, AICAR, AKT. inhibitors VIII, ATRA, AUY922, axitinib, AZ628 and AZD7762 were significantly higher in the low-risk group (Figure 10A), indicating that patients in the low-risk group were more sensitive to these drugs. In addition, we compared the treatment response to bortezomib therapy in different risk classification groups. We found that a larger proportion of patients (36.6%) in the low-risk group had CR to bortezomib therapy than that (27.7%) in the high-risk group (Figure 10B), suggesting that the TBIL-RBPs might be a potential biomarker of bortezomib treatment response for MM patients.
[image: Figure 10]FIGURE 10 | Chemotherapeutic response of MM patients in the low- and high-risk groups. (A). Comparison of IC50 of chemotherapeutic drugs between the high-risk and low-risk groups. (B). Bortezomib treatment response of MM patients in the high-risk and low-risk groups.
4 DISCUSSION
Multiple myeloma is a B cell hematological malignancy with insidious onset. Once diagnosed, most patients suffer from multiorgan dysfunction. The incidence rate of MM has increased rapidly over the last decade. Substantial strides have been made in the treatment of MM. However, for some reasons, including a lack of early detection and complex cytogenetic abnormalities, the majority of MM patients continue to relapse, and a minority of MM patients even suffer from early relapse and resistance to chemotherapy and immunotherapy, gaining little benefit from advances in therapy (Kumar et al., 2017). The application of genomic technologies has led to a better understanding of the underlying biology of MM(Lohr et al., 2014). At the same time, it is widely accepted that dysregulated immunological processes in the tumor microenvironment are closely related to the progression of MM(Nakamura et al., 2020; Botta et al., 2021). Thus, we concentrated on the cytogenetic heterogeneity of MM and the correlation between tumor immune cell infiltration and tumor cells. Using RNA sequencing data and clinical data in GEO, we constructed a novel prognostic model based on B cell-specific RBP-associated genes, which are of remarkable importance in the early diagnosis, prognosis prediction and therapeutic evaluation. Subsequently, we verified the predictive value of the model in validation datasets. Furthermore, a nomogram with high accuracy for predicting the overall survival of MM patients was constructed based on the TBIL-RBPs and other independent prognostic factors, as evidenced by calibration and decision curves.
In the present study, we first conducted a comparison analysis among different immune cell lines. Fifty-six highly specifically expressed TILB-RBPs were preferentially observed in B cell lines compared with other immune cell lines. Furthermore, functional enrichment analysis revealed that these B cell-specific RBPs were closely related to the immune response, ribosome biogenesis and RNA metabolism. RBPs play key roles in posttranscriptional regulation via genetic changes, epigenetic alterations, and noncoding RNA mediation, which are essential in the malignant transformation of cancers (Bitaraf et al., 2021). RBPs are also essential in tumorigenesis in hematological malignancies. Insulin-like growth factor 2 mRNA binding proteins (IGF2BPs) are described as major regulators of stem cells. IGF2BP1 and IGF2BP3 are overexpressed in translocation-ETV6/RUNX1-positive B-ALL (Elcheva et al., 2020). Acute myelocytic leukemia patients with high expression of IGF2BP2 had worse overall survival (He X. et al., 2018). Musashi-2 protein (MSI2) is overexpressed in acute myeloid leukemia (AML) cell lines, and high expression of MSI2 promotes proliferation and inhibits apoptosis of AML cells. High expression of MSI2 in AML patients correlates with poorer survival in patients, thereby defining MSI2 as a prognostic biomarker for therapy in AML (Kharas et al., 2010). There have also been several reports of specific low-occurrence mutations in RPL5 and RPL10 and overexpression of RPS9 in MM that were closely related to tumorigenesis and clinical outcomes (Dabbah et al., 2021). These studies were in accordance with our findings that RBPs could be potential prognostic biomarkers.
To further define the role of the TILB-RBPs in the clinical outcomes of MM, the relationship between TILB-RBPs and overall survival was assessed. We identified 3B cell-specific RBP genes -- ADAR, FASTKD1 and SNRPD3—which were significantly correlated with the outcomes of MM patients. ADAR-mediated A-to-I editing is a key form of posttranscriptional regulation in human physiology (Vesely and Jantsch, 2021). ADAR1 is the most abundant and active RNA editing enzyme in MM and is recognized as an oncogenic central driver of cancer cell proliferation (Teoh et al., 2018). ADAR1 promotes malignant regeneration of MM by mediating the recoding of the self-renewal agonist GLI1, which activates the Hh pathway and promotes the production of cancer stem cells (Lazzari et al., 2017). FASTK family proteins have been verified to be linked to mitochondrial diseases by regulating mitochondrial RNA homeostasis (Boehm et al., 2017). Some studies have confirmed that FASTKD1 is related to the occurrence of tumors. For example, FASTKD1 was associated with poor prognosis of ALL in children and adults (Wang et al., 2015). FASTKD1 could also be used as a biomarker of primary endometrial tumors (Colas et al., 2011). SNRPD3, also called SMD3, binds to small nuclear RNA to affect the formation of small nuclear ribonucleoprotein particles (Camasses et al., 1998). Studies have revealed that silencing of SNRPD3 causes overexpression of p53 levels, thereby modulating CDKN1A expression and further influencing the cell cycle arrest and cell death of NSCLC cells (Siebring-van Olst et al., 2017). In addition, a study also found that SNRPD3 might be a novel breast cancer-related biomarker (Zhang et al., 2015). In our study, we found for the first time that FASTKD1 and SNRPD3 are related to the prognosis of multiple myeloma, and the specific function and mechanism of these genes in tumorigenesis in multiple myeloma require further study. At the same time, we calculated the risk score and constructed a predictive model based on these three genes. The results of the ROC curve analysis showed that the model has good predictive effects. In addition, univariate and multivariate regression analyses indicated that the risk score was an independent prognostic factor. At the same time, a nomogram was constructed for predicting the survival of patients with multiple myeloma at 1, 3 and 5 years. The C index and correction curve of the nomogram showed that the prediction model has high prediction accuracy for 1, 3 and 5 years and has clinical value.
To further clarify the role of the TILB-RBPs in stratifying survival, the association of the TILB-RBPs and survival in MM was assessed. Patients were grouped based on the risk score. First, GSEA functional enrichment analysis was performed for all genes in different groups. The results revealed that the Notch signaling pathway and biological processes and cellular components related to RNA splicing were significantly enriched in the high-risk groups. The Notch pathway is crucial to cell cycle regulation. Accumulating evidence has shown that the Notch pathway deregulates MM in tumorigenesis and drug resistance, especially in proteasome inhibitor resistance (Colombo et al., 2013). Deregulation of Notch signaling in MM occurs throughout the pathogenesis of plasma cells (Saltarella et al., 2019). Notch receptors and their ligands affect not only MM cells but also bone marrow stroma to further regulate the adhesive behavior of MM (Nefedova et al., 2004). In addition, the Notch pathway plays a vital role in immune regulation by stimulating the proliferation of T regulatory cells and upregulating TGF-β receptor II to suppress antitumor T-cell responses (Hue et al., 2012). An increasing number of studies have shown that the RNA spliceosome pathway is a major factor in cancer progression. A study revealed that aberrant RNA splicing patterns were relevant to worse survival outcomes of MM patients, which could be used for the risk stratification of patients (Bauer et al., 2021). Moreover, a study showed that inhibition of the spliceosome could synergize with proteasome inhibitors to potentiate antitumor effects. This unreported mechanism of the spliceosome suggests that spliceosome targeting could serve as a potential therapeutic target in myeloma (Huang et al., 2020). The above results are in accordance with our findings that prognostic characteristic genes could affect the prognosis of patients with multiple myeloma by regulating the splicing of precursor mRNA, activation of the Notch pathway and RNase L and ribosomal nucleoprotein synthesis.
Subsequently, we also compared the immune microenvironment in different groups. We found that there were significant differences in immune cell infiltration, immune-related functions, immune-related pathways and the expression of immune checkpoint genes between the two groups. Several single-cell transcriptional studies have revealed that transcriptional programs are associated with aggressive myeloma progression and immune evasion (Ryu et al., 2020; Liu et al., 2021). According to the above findings, we present the hypotheses that the prognostic characteristic genes are highly associated with different immune microenvironments in the two groups. Subsequently, we conducted a correlation analysis of TBIL-RBPs and immune cell infiltration. We found that the expression of ADAR, FASTKD1 and SNRPD3 was negatively correlated with the infiltration, functions and pathways of immune cells. The risk score was also negatively correlated with the expression of immune checkpoints, indicating that ADAR, FASTKD1 and SNRPD3 might interact with the immune microenvironment of multiple myeloma. TBIL-RBPs might further influence the immune response of MM patients, response to treatment, and prognosis.
We finally analyzed the Genomics of Drug Sensitivity in Cancer (GDSC) dataset to further validate the prognostic effect of the risk score. The GDSC is a large dataset including cell viability and response to drugs (Yang et al., 2013). We found that the IC50 of 11 drugs in the low-risk group was significantly higher than that in the high-risk group, indicating that patients in the low-risk group might have greater sensitivity to these 11 drugs. Strikingly, the high-risk group presented less sensitivity to bortezomib treatment. These results, together with previous observations, supported the risk score based on TILB-RBPs and demonstrated good accuracy for prognostic assessment. The TILB-RBPs were shown to have prognostic value not only for chemotherapy but also for immunotherapy. Nonetheless, there are limitations of our current study. First the prognostic model still needs to be further validated in other independent large sample cohorts to ensure the reliability of the model before clinical use. In addition, more functional experiments in vivo and vitro are still needed to further reveal the possible mechanisms for TILB-RBPs.
5 CONCLUSION
In conclusion, in this study, we identified 3 B lymphocyte-specific RBPs significantly related to the overall survival of MM patients and further established a risk model based on these genes. The good predictive value of the model was verified in the validation set. Application of the TBIL-RBPs to immunotherapy datasets revealed that the risk model can assess not only chemotherapy but also immunotherapy response. To the best of our knowledge, our study is the first to investigate B lymphocyte specific RBPs in MM, emphasizing the impact of TILB-RBPs on clinical outcomes and treatment response. The results of this study could provide a basis for individualized precision therapy in the future. The three prognostic genes—ADAR, FASTKD1 and SNRPD3 -- could be potential new prognostic and therapeutic biomarkers of MM.
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Gastric cancer is the fifth most common type of human cancer and the third leading cause of cancer-related death. The purpose of this study is to investigate the immune infiltration signatures of gastric cancer and their relation to prognosis. We identified two distinct subtypes of gastric cancer (C1/C2) characterized by different immune infiltration signatures. C1 is featured by immune resting, epithelial–mesenchymal transition, and angiogenesis pathways, while C2 is featured by enrichment of the MYC target, oxidative phosphorylation, and E2F target pathways. The C2 subtype has a better prognosis than the C1 subtype (HR = 0.61, 95% CI: 0.44–0.85; log-rank test, p = 0.0029). The association of C1/C2 with prognosis remained statistically significant (HR = 0.62, 95% CI: 0.44–0.87; p = 0.006) after controlling for age, gender, and stage. The prognosis prediction of C1/C2 was verified in four independent cohorts (including an internal cohort). In summary, our study is helpful for better understanding of the association between immune infiltration and the prognosis of gastric cancer.
Keywords: gastric cancer, immune signature, molecular subtypes, prognosis, computational biology
INTRODUCTION
Gastric cancer (GC) ranks the fifth most commonly diagnosed cancer type globally and the third leading cause for cancer-related death, which was attributed to its diagnosis usually made at an advanced stage. Although gastric cancer incidence has declined in most countries over the past century, the aging population may contribute to increased diagnosis of gastric cancer (Smyth et al., 2020).
Gastric cancer is a highly heterogeneous disease characterized by histopathologic and epidemiologic features based on molecular and phenotypic levels (Van Cutsem et al., 2016). Next-generation sequencing has showed new insights into the heterogeneity of gastric cancer, and subtyping systems have been proposed (Cancer Genome Atlas Research, 2014; Cristescu et al., 2015; Sohn et al., 2017; Kim et al., 2019; Zhang et al., 2020). The Lauren classification system categorizes gastric cancer into the intestinal and diffuse subtypes (Lauren, 1965), while the WHO system divides gastric cancer into four subtypes (papillary, tubular, mucinous, and poorly cohesive) (Hu et al., 2012). Apart from the aforementioned classification subtypes, researchers from TCGA proposed four subtypes for gastric cancer: Epstein–Barr virus (EBV) positive, microsatellite unstable (MSI), genomically stable (GS), and chromosomal instability (CIN). The EBV subtype has the best prognosis among these four subtypes. Patients with the CIN subtype experienced the greatest benefit from adjuvant chemotherapy (Sohn et al., 2017). The Asia Cancer Research Group (ACRG) proposed four molecular subtypes for GC based on microsatellite instability, epithelial–mesenchymal transition, and TP53 mutation: MSI, MSS/EMT, MSS/TP53+, and MSS/TP53- (Cristescu et al., 2015). The EBV subtype and MSI subtype were reported to potentially benefit from immunotherapy (Pang et al., 2009; Le et al., 2017; Amatatsu et al., 2018; Sundar et al., 2018). However, few gastric cancer subtypes development is based on immune signature and can be used to predict the prognosis of gastric cancer patients.
Immune processes play critical roles in carcinogenesis and progression of solid tumors, and they also affect the treatment and prognosis of patients. Researchers are confused with the association between the immune environment and the prognosis, and much attention has been paid to the tumor immune environment (Cully, 2018; Lim et al., 2018; Kubota et al., 2021). All tumors are potentially immunogenic, and the new knowledge about the interactions between tumor cells, immune cells, and tumor microenvironment allowed for reversal of possible immune resistance (Refolo et al., 2020; Ceresoli and Pasello, 2021). The immune response is a complex multistep process that finely regulates the balance between the recognition of non-self and the prevention of autoimmunity. Cancer cells can use these pathways to suppress tumor immunity as a major mechanism of immune resistance. The recent molecular classifications of gastric cancer by The Cancer Genome Atlas (TCGA) and by the Asian Cancer Research Group (ACRG) networks, together with the identification of multiple biomarkers, open new perspectives for stratification of patients who might benefit from a long-term immune checkpoint therapy (Newman et al., 2015; Jiang et al., 2018; Thorsson et al., 2019; Ceresoli and Pasello, 2021).
The purposes of this study are to characterize different potential molecular classification systems operative in gastric cancer and to identify previously unreported significant immune environments and independent prognosis factors for patients with gastric cancer. We collected 1386 samples from five datasets and applied molecular subtyping on each dataset. We achieved two distinct molecular subtypes of gastric cancer (i.e., C1/C2). The C2 subtype has a better prognosis and more activated immune microenvironment than the C1 subtype.
METHODS
Data Collection and Processing
In total, our study included five gastric cancer datasets: TCGA dataset, three datasets from Gene Expression Omnibus (i.e., GSE62254, GSE15459, and GSE84437), and one internal dataset. TCGA dataset was used as discovery set, whereas the other four datasets as validation sets. The expression matrix of each dataset was normalized individually. The 3151 immune-related genes were collected from previous studies (Supplementary Table S1) (Thorsson et al., 2019). We applied removeBatchEffect from the R limma package (version 3.34.9) to remove the batch effect while combining these five datasets.
Consensus Molecular Subtyping
We conducted survival analysis in TCGA dataset. Genes significant in survival analysis from TCGA dataset were reversed in follow-up molecular subtyping. We applied consensus non-negative matrix factorization (CNMF) clustering for finding molecular patterns from high-dimensional biological datasets. It is combined with a quantitative evaluation of the robustness of the number of clusters. The CNMF method is included in CancerSubtypes (version 1.18.0), an R package for clustering cancer subtypes (Brunet et al., 2004; Xu et al., 2017).
Survival Analysis and Multivariable Cox Regression Analysis
The association of C1/C2 with overall survival was estimated using Kaplan–Meier plots and log-rank tests. Multivariable Cox regression analysis was used to evaluate independent prognostic factors associated with overall survival, including age, gender, and tumor stage. A p value of less than 0.05 was considered statistically significant.
Statistical Analysis
Differentially expressed genes (DEGs) between C1 and C2 were evaluated by edgeR package (version 3.28.1). The clusterProfiler package (version 3.14.3) was used for pathway enrichment.
The CIBERSORT method was used to characterize the composition of 22 kinds of immune cells from RNA expression (Newman et al., 2015). The t-test was used for comparing the CIBERSORT score, and a p value of less than 0.05 was considered statistically significant.
The mutation of significantly mutated genes (SMGs) in C1/C2 was compared in this part (Li et al., 2016). The chi-square test was used for comparing the proportion of some somatic mutations in between C1 and C2. A p value of less than 0.05 was considered statistically significant.
Tumor mutational burden (TMB) was calculated as the number of mutation events per sample. The t-test was used for comparing the CIBERSORT score, and a p value of less than 0.05 was considered statistically significant. All statistical analyses were done by R software (version 3.4.3).
RESULTS
Patients and Clinical Information
The study flowchart was shown in Figure 1. In total, we collected 1386 gastric cancer samples from five datasets. These five datasets include 371 samples from TCGA cohort, 300 from GSE62254, 192 from GSE15459, 433 from GSE84437, and an internal dataset of 90 samples (Tianjin cohort). Patients’ stages ranged from stage 1 to stage 4 (stage 1: 9.5%; stage 2: 28.8%; stage 3: 44.2%; stage 4:15.8%), and all these five cohorts have clinical information including overall survival (OS), vital stage, age, gender, and tumor stage. In addition to this, GSE62254 cohort and GSE15459 cohort also has Lauren type information. In the GSE62254 cohort, 150 (50%) patients are intestinal type, 142 (47%) patients are diffuse type, and 8 (3%) patients are mixed type. In the GSE15459 cohort, 75 (38%) patients are intestinal type, 99 (52%) patients are diffuse type, and 18 (9%) patients are mixed type. The basic information of these cohorts is reported in Table 1.
[image: Figure 1]FIGURE 1 | Study flowchart. We incorporated 1386 gastric cancer (GC) samples in this study. TCGA cohort was used as a discovery set; after evaluating prognosis-related genes, 390 genes were selected to predict GC subtypes. The CNMF model was used to develop GC subtypes on five cohorts; after molecular subtyping, we did survival analysis, immune infiltration analysis, GSEA analysis, and mutation analysis to describe different characteristics between our subtypes. CNMF, consensus non-negative matrix factorization; GSEA, gene set enrichment analysis.
TABLE 1 | Baseline characteristics.
[image: Table 1]Classification of Gastric Cancer Molecular Based on Immune Genes
After determining the correlation with prognosis, 390 genes were chosen to be used to define subtype (Supplementary Table S2). TCGA cohort was used as a discovery set, and four other cohorts (GSE62254 cohort; GSE84437 cohort; GSE15459 cohort; Tianjin cohort) were used as the validation sets. The clustering metrics showed that the optimal cluster number is 2 among these five datasets (Supplementary Figure S1). These two clusters were regarded as two subtypes of gastric cancer, which are called C1 and C2. The heat map of C1 and C2 is shown in Figure 2, which illustrated that the immune gene expression of C1/C2 was significantly different in TCGA cohort. The C1/C2 subtype was compared with other GC microenvironment signatures. The results of Fisher’s exact test illustrate that C1/C2 has association with TME signature and immune landscape subtypes in TCGA cohort, and C1/C2 has association with ACRG subtypes in GSE62254 cohort (p < 0.05) (Cristescu et al., 2015; Thorsson et al., 2019; Zeng et al., 2019) (Supplementary Figure S2).
[image: Figure 2]FIGURE 2 | Heat map of C1/C2 in TCGA cohort. TCGA cohort was used as a discovery set, and 390 immune-related genes were selected for the development of subtypes. Data are presented in a matrix format, in which row represents an individual gene and each column represents a sample. The color in the cells reflects relatively high (yellow) and low (blue) expression levels.
C1/C2 Predict the Survival of Gastric Cancer
The prognosis of C2 is significantly better than that of C1 in TCGA (HR = 0.61, 95% CI: 0.44–0.85, log-rank test: p = 0.0029), GSE62254 (HR = 0.64, 95% CI: 0.46–0.88, log-rank test, p = 0.0055), GSE84437 (HR = 0.70, 95% CI: 0.53–0.92, log-rank test, p = 0.0094),Tianjin (HR = 0.47, 95% CI: 0.25–0.86, log-rank test: p = 0.012), and combined cohorts (HR = 0.67, 95% CI: 0.57–0.78, log-rank test: p < 0.0001) (Figures 3A,B,D–F). The prognosis with C1 and C2 in the GSE15459 cohort has the same trend as other cohorts (GSE15459 cohort, HR = 0.78, 95% CI: 0.52–1.17, log-rank test, p = 0.24) (Figure 3C). In the GSE62254 cohort, C2 has lower recurrence rate (38%) than C1 (56%) (Figure 4). The chi-square test results showed a significant difference in the recurrence rate of C1/C2 (p = 0.0048).
[image: Figure 3]FIGURE 3 | Survival analysis for C1/C2 subtype in (A) TCGA cohort, (B) GSE62254 cohort, (C) GSE15459 cohort, (D) GSE84437 cohort, (E) Tianjin cohort and (F) Combined cohort in C1/C2. Kaplan–Meier plots of overall survival (OS) among patients stratified by C1/C2. Hazard ratio (HR) was calculated by Cox regression analysis. A p value was obtained using the log-rank test.
[image: Figure 4]FIGURE 4 | C1/C2 has different recurrence rates in GSE62254 cohort. In GSE62254 cohort, C2 has lower recurrence rate (38%) than C1 (56%). The chi-square test results showed a significant difference in the recurrence rate of C1/C2 (p = 0.0048).
In addition, multivariable Cox regression in discovery set and validation set demonstrates that together with age, gender, and stage, C1 and C2 are still independent prognostic factors (TCGA cohort, HR = 0.62, 95% CI: 0.44–0.87, log-rank test: p = 0.006; GSE62254 cohort, HR = 0.66, 95% CI: 0.47–0.97, log-rank test, p = 0.019; GSE15459 cohort, HR = 0.69, 95% CI: 0.45–1.05, log-rank test, p = 0.08; GSE84437 cohort, HR = 0.73, 95% CI: 0.56–0.97, log-rank test, p = 0.029; Tianjin cohort, HR = 0.42, 95% CI: 0.22–0.80, log-rank test: p = 0.008) (Figures 5A–E). In the combined cohort, the C2 subtype remained a better prognostic factor than the C1 subtype (Figure 5F).
[image: Figure 5]FIGURE 5 | Multivarate Cox regression analysis of C1/C2 subtype in (A) TCGA cohort, (B) GSE62254 cohort, (C) GSE15459 cohort, (D) GSE84437 cohort, (E) Tianjin cohort and (F) Combined cohort. Multivariable Cox regression analysis was used to evaluate independent prognostic factors associated with overall survival, including age, gender, and tumor stage. A p value of less than 0.05 was considered statistically significant.
In the combined cohort, the proportion of C1/C2 in four stages was calculated. The proportion of C1 is relatively higher in advanced gastric cancer (stage 3: 42.3%; stage 4: 39.2%) (Figure 6B). The proportion of C1/C2 in the Lauren type in the GSE62254 and GSE15459 cohorts was calculated, and C1 accounted for 60.3%, 21.2, and 25.8%, respectively, in the diffuse type, intestinal type, and mixed type. It shows that a higher proportion of C1 was found in the diffuse type, which is the most malignant type (Figure 6C).
[image: Figure 6]FIGURE 6 | Analysis of biological characteristics of C1/C2. (A) Highly expressed genes in C1/C2 were enriched in 20 cancer-related pathways. (B) Proportion of C1/C2 in tumor stages 1–4. (C) Proportion of C1/C2 in Lauren type. (D) Result of CIBERSORT in C1/C2.
C1 and C2 successfully stratify patients by survival in several gastric cancer cohorts. It is also an independent prognosis factor. The results show the reproducibility and clinical significance of C1/C2.
Biological Characteristics of C1/C2
The results of CIBERSORT demonstrated the immune infiltration of C1/C2 in the combined cohort. Most of the immune cells have significant differences between C1 and C2. In C2, such as T-cell CD4 memory activated, NK cells activated, mast cells activated, and dendritic cells activated, the composition of all these four kinds of activated immune cells was significantly higher than C1 (p < 0.05). In contrast, in C1, such as B cells were naive, T-cell memory resting, dendritic cells resting, and mast cells resting, and these kinds of immune resting cells were significantly higher than C2 (p < 0.05) (Figure 6D).
To further investigate the potential biological behavior of the molecular subtype, the DEGs were used for pathway enrichment in the combined cohort (Supplementary Table S3). Finally, 20 cancer-related pathways were enriched (Figure 6A). Genes highly expressed in C1 were enriched in “Epithelial Mesenchymal Transition,” “Angiogenesis,” and “UV Response.” Genes highly expressed in C2 were enriched in “MYC Target,” “Oxidative Phosphorylation,” and “E2F Target.”
The driver gene mutation between C1 and C2 was compared in TCGA cohort. It was observed that C2 had significantly more mutation events than C1 in APC (p = 0.0024), NBEA (p = 0.0026), PIC3CA (p = 0.0114), XIRP2 (p = 0.0131), RNF43 (p = 0.0211), SMAD4 (p = 0.0369), TP53 (p = 0.0398), KRAS (p = 0.043), and BNCA (p = 0.0459), while C1 has significantly more mutation events than C2 in BNC2 (p = 0.0459), CDH1 (p = 0.0488), and CTNNB1 (p = 0.05). The results showed differences in driver genes mutation of C1 and C2 (Supplementary Table S1). The tumor mutation burden (TMB) was also calculated, where C2 has higher TMB than C1 (p < 0.05) (Supplementary Figure S3).
DISCUSSION
The clinical significance of the molecular subtype has been demonstrated in many kinds of cancers. However, few researchers have used immune signatures to predict gastric cancer subtypes.
A major clinically relevant finding in this study is based on signature of 390 immune-related genes; we classify gastric cancer into two prognostically distinct subgroups, namely, C1 and C2. The prognostic significance of C1/C2 was independent of age, gender, and stage. The C1 subtype is featured by “Epithelial Mesenchymal Transition (EMT)” and “Angiogenesis,” which had poorer overall survival, whereas the C2 subtype is characterized by “MYC Target,” “Oxidative Phosphorylation,” and “E2F Target,” with better overall survival than those in C1. Notably, previous research studies reported that EMT was shown to strongly enhance cancer cell motility and dissemination; it plays an important role in cancer metastasis (Brabletz, 2012; Brabletz et al., 2018). Angiogenesis is essential for the late stages of carcinogenesis, allowing the tumor to grow beyond 1–2 mm in diameter; it is associated with the malignancy of tumor (Sharma et al., 2001; Albini et al., 2012). Such processes may cause poor survival in C1.
The results of CIBERSORT suggest that C1 and C2 have very different immune environments. In C2, such as CD4 memory activated, NK cells activated, mast cells activated, and dendritic cells activated, and the composition of all these four kinds of activated immune cells are significantly higher than C1. In contrast, in C1, such as B cells were naive, T cells memory resting, dendritic cells (DC) resting, and mast cells resting, and these kinds of immune resting cells significantly higher than C2. The microenvironment between C1 and C2 shows a marked difference. Previous research studies reported that memory CD4 T cells could make effector cytokines early in response and they could enhance B-cell and CD8 T-cell responses, which enhance immune response (MacLeod et al., 2009). NK cells are important immune cells; they could swiftly kill multiple adjacent cells which show surface markers associated with oncogenic transformation; and they could also magnify immune responses (Shimasaki et al., 2020). Mast cells are evolutionarily ancient cells, and they finely modulate not only immune responses but also the mechanism of several inflammatory disorders, including cancer, autoimmunity, and infection (Frossi et al., 2017). DCs are a diverse group of specialized antigen-presenting cells; they play key roles in the initiation and regulation of innate and adaptive immune responses (Wculek et al., 2020). The activation of these immune cells in C2 may indicate higher immune activity, which leads better prognosis. The resting of these immune cells may cause poor immune activity in C1, which leads to worse prognosis in C1.
The proportion of C1/C2 in four tumor stages demonstrates C1 has higher proportion in advanced gastric cancer, while C2 has higher proportion in early stages. The proportion of C1/C2 in the Lauren type shows that C1 has the highest proportion in the diffuse type, while C2 has higher proportion in the intestinal type. This indicates that C1 has some characteristics of malignant gastric cancer.
The somatic mutation event of SMGs shows significant differences between C1 and C2, and C2 has higher TMB than C1. Previous research reported that TMB can be used as an indicator to predict the response to immunotherapy, and patients with high TMB were observed to have better clinical outcomes (Gibney et al., 2016; Gandara et al., 2018; Mandal et al., 2019). It also reported that high TMB is associated with a better prognosis in gastric cancer (Cai et al., 2020; Wang et al., 2021). The differences in mutation characteristics may lead to different clinical outcomes of C1/C2, and it also could offer some new insights into immunotherapy in gastric cancer.
In total, in this research, we predict C1 and C2, two subtypes of gastric cancer. Much evidence has shown that there are many different biological characteristics between C1 and C2. It makes two subtypes that could predict prognosis in gastric cancer patients. However, this research still has some limitation. First, the sample size is not large enough; therefore, research may not cover all types of gastric cancer. Second, due to the lack of clinical data, the subtypes in this research could only be used to predict the survival of gastric cancer patients but could not predict their response to chemoradiotherapy and immunotherapy. If more gastric cancer chemotherapy and immunotherapy data could be combined, C1/C2 could be given more clinical significance and immune characteristics could provide more insights into gastric cancer treatment.
Our research has developed two molecular subtypes of gastric cancer, and we have analyzed their immune signature and biological function. These findings may offer some new knowledge of molecular mechanisms for study on treatment of gastric cancer.
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Supplementary Figure S1 | The CNMF results of five cohorts and combined cohort. The ordinate “Cophenetic” means cophenetic correlation coefficient. We select the rank value where the magnitude of the cophenetic correlation coefficient begins to fall. The ordinate “Dispersion” between 0 and 1 measures the class assignments’ robustness concerning random initial conditions, closing to 0 or 1 means the model's stability. In five cohorts and combined cohort, 2 is the best number of clusters.
Supplementary Figure S2 | Association between molecular subtype C1/C2 and tumor microenvironment signature. (A) Association between C1/C2 and TME signature in TCGA cohort. (B) Association between C1/C2 and immune landscape subtype in TCGA cohort. (C) Association between C1/C2 and ACRG subtype in GSE62254 cohort
Supplementary Figure S3 | TMB of C1/C2 in TCGA cohort. TMB of TCGA cohort was calculated. In this part, TMB equal to mutation events occur in each sample. TMB of C2 significantly higher than C1 (p <0.05).
Supplementary Table S1 | Mutation prevalence of driver genes in C1 versus C2 in TCGA cohort.
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In light of the rapid accumulation of large-scale omics datasets, numerous studies have attempted to characterize the molecular and clinical features of cancers from a multi-omics perspective. However, there are great challenges in integrating multi-omics using machine learning methods for cancer subtype classification. In this study, MoGCN, a multi-omics integration model based on graph convolutional network (GCN) was developed for cancer subtype classification and analysis. Genomics, transcriptomics and proteomics datasets for 511 breast invasive carcinoma (BRCA) samples were downloaded from the Cancer Genome Atlas (TCGA). The autoencoder (AE) and the similarity network fusion (SNF) methods were used to reduce dimensionality and construct the patient similarity network (PSN), respectively. Then the vector features and the PSN were input into the GCN for training and testing. Feature extraction and network visualization were used for further biological knowledge discovery and subtype classification. In the analysis of multi-dimensional omics data of the BRCA samples in TCGA, MoGCN achieved the highest accuracy in cancer subtype classification compared with several popular algorithms. Moreover, MoGCN can extract the most significant features of each omics layer and provide candidate functional molecules for further analysis of their biological effects. And network visualization showed that MoGCN could make clinically intuitive diagnosis. The generality of MoGCN was proven on the TCGA pan-kidney cancer datasets. MoGCN and datasets are public available at https://github.com/Lifoof/MoGCN. Our study shows that MoGCN performs well for heterogeneous data integration and the interpretability of classification results, which confers great potential for applications in biomarker identification and clinical diagnosis.
Keywords: multi-omics integration, graph convolutional network, autoencoder, similarity network fusion, cancer subtype classification
1 INTRODUCTION
Owing to the recent rapid developments in high-throughput sequencing technology, multi-omics research has strongly promoted the development of precision medicine. However, the application of precision medicine for the prevention, diagnosis, and treatment of tumors is far from satisfactory (Lu and Zhan, 2018). Multi-omics approaches are novel frameworks that can integrate multiple omics datasets generated from the same patients (Heo et al., 2021); thus, an increasing number of studies have tried to characterize the molecular and clinical features of cancers from a multi-omics perspective (Sun and Hu, 2016).
Integrated multi-omics approaches can be divided into two types: the integration of Euclidean structure data or the integration of non-Euclidean structure data (Eicher et al., 2020). The first approach uses the expression matrix as the input, and then trains machine learning models for clustering and classification. For example, Chaudhary et al. were the first to use a deep autoencoder (AE) (Hinton and Salakhutdinov, 2006) model to predict the survival of patients with hepatocellular carcinoma (Chaudhary et al., 2018); Chen et al. designed a deep-learning framework, DeepType, that performs a joint model of supervised classification, unsupervised clustering, and dimensionality reduction to learn cancer-relevant data representation (Chen et al., 2020). These methods can handle large-scale datasets, but require substantial effort to interpret how specific features contribute to the predicted results. On the other hand, the non-Euclidean data integration approach trains models using the network topology data. These methods can identify cancer subtypes by fusing the similarities derived from various omics data, such as similarity network fusion (SNF) (Wang et al., 2014), GrassmannCluster (Ding et al., 2019), and high-order path elucidated similarity (HOPES) (Xu et al., 2019). These network-based processes are clinically intuitive, but existing studies have focused on the unsupervised integration of multi-omics datasets.
Meanwhile, classification of tumor subtypes plays a leading role in the treatment and prognosis of cancers. This is a multi-class classification task and has always presented a challenge in the field of integrating multi-omics using machine learning. There is an urgent need for a multi-class network classification model to handle cancer subtype classification and biomarker identification. Graph convolutional network (GCN) (Kipf and Welling, 2017) is a recently developed approach to incorporate graph structures into a deep learning framework. It classifies unlabeled nodes using information from the topology of the network as well as the feature vectors of the nodes. The network structure makes GCN naturally interpretable. Several studies have been reported to use this model to predict the complex genome-disease association (Xuan et al., 2019) and drug-disease associations (Liu et al., 2020; Yu et al., 2021).
Herein, we developed MoGCN, a multi-omics integration model based on graph convolutional network, for cancer subtype analysis. This study creatively proposes developing a network diagnosis model based on the pipeline of “integrating multi-omics data first and then performing classification”. Specifically, we utilized AE to integrate multi-omics expression data and SNF to integrate a typical network topology data patient similarity network (PSN) (Pai and Bader, 2018), to construct a comprehensive view of cancer patients. Then, we used GCN to combine the AE and SNF results and construct the final model for cancer subtype classification. By applying MoGCN on the breast invasive carcinoma (BRCA) data in The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/), we demonstrated that MoGCN could achieve the best performance in cancer subtype classification among the current algorithms. Similarly, MoGCN achieved good results on the TCGA pan-kidney cancer validation dataset. The case study for breast cancer also shows that our method has great potential for heterogeneous data integration, marker identification, and clinical diagnosis.
2 MATERIALS AND METHODS
MoGCN uses multi-omics expression datasets from patients as inputs, including but not limited to genomics, transcriptomics, and proteomics datasets. First, we applied the autoencoder model to extract patient expression features (expression matrix), and applied the similarity network fusion model to construct a patient similarity network. Then, we used the GCN model to integrate these two types of heterogeneous features and to train the cancer subtype classification model. By integrating network and vector characteristics, MoGCN was able to achieve good classification performance, and effectively addressed the issue of deep learning interpretability in clinical applications. MoGCN is a command-line tool that allows users to integrate multi-omics datasets for cancer subtyping classifications efficiently. The overall workflow is shown in Figure 1.
[image: Figure 1]FIGURE 1 | MoGCN workflow schematic. The input is the multi-omics data. First, the AE and SNF methods are used to reduce dimensionality and to construct the patient similarity network, respectively. Next, the vector features and adjacency matrix are fed into the GCN for training. Feature extraction and network visualization can be used for further biological knowledge discovery.
2.1 Data Preparation
BRCA datasets were downloaded from the UCSC Xena browser (https://xenabrowser.net/) and the Cancer Proteome Atlas (TCPA) portal (https://tcpaportal.org/tcpa/) and processed. Copy number variation (CNV) data at the genomic level, RNA-seq data at the transcriptomic level, reverse phase protein array data (RPPA) at the proteomic level, and clinical data were all available. The breast tumors were classified into four subtypes (Cancer Genome Atlas Network, 2012): Basal-like, typically with no expres-sion of hormone receptors or ERBB2; Her2-enriched, overexpressing the oncogene ERBB2; and Luminal A and B, generally estrogen receptor (ER)-positive tumors expressing epithelial markers (Luminal B shows a higher Ki67 index and worse prognosis than Luminal A); these were similar to results generated by the established and widely used PAM50 assay. Common samples were collected from each omics level; therefore, data from a total of 511 patients in the BRCA dataset were obtained. The details of the dataset are shown in Table 1.
TABLE 1 | Summary of the BRCA dataset.
[image: Table 1]A 10-fold cross validation method was applied to all algorithms implemented in this study. The dataset of 511 samples was first divided randomly into 10 subsets. We successively selected one subset to become a testing dataset, while the others were used as a training dataset. Therefore, 10 combinations of the training dataset and testing dataset were obtained. In each run, we used the training dataset to train the model and the testing dataset to test the model’s performance; the average result of the 10 runs was taken as the final result of the model.
2.2 Multi-Modal Autoencoder
The autoencoder consists of two modules simultaneously: an encoder and a decoder. The encoder (f) maps the original domain X to a new domain named latent space Z with dimension L. Then, the decoder (g) maps Z back to the original input space X. The encoder and decoder are defined as z = f (x) and [image: image] = g (z). By minimizing the reconstruction loss, the model captures the significant features of the data. The loss function to minimize is formalized as: E = argminf,g [Loss (x, g (f (x)))].
As the input data are characterized by multi-omics data types and represented by multiple matrices X1, X2, Xn, corresponding to the genome, transcriptome, proteome matrices, and so on, the autoencoder must have multiple inputs and outputs. A multi-modal autoencoder architecture is proposed. As shown in Figure 1, the model consists of multiple encoders and decoders, which share the same latent layer. The loss function to minimize is formalized as:
[image: image]
Where α, … , β are the weights (prior knowledge) of each data type, and α + … + β = 1.
2.3 Similarity Network Fusion
The SNF algorithm integrates different types of omics data, creating a network for each data type, and ultimately establishing a comprehensive view of the disease or biological process. SNF is able to compute and fuse PSNs for each data type, which enable the exploitation of complementary information from multi-omics data types and outperforms other single data analysis methods. Specifically, the algorithm computes patient-patient similarity matrices for each data type and constructs patient-patient similarity networks. Then, network fusion is performed to enhance strong connections and remove weak connections. Finally, a fused patient similarity network is established.
Based on the assumption that there were n samples (such as patients) and m different data types, for the vth (v = 1, 2, …, m) data type, a scaled exponential similarity matrix was calculated:
[image: image]
[image: image] represents the Euclidean distance between the patient xi and xj [image: image] represents the n × n similarity matrix between patient xi and xj µ is a hyperparameter that can be empirically set, and ε is used to eliminate the scaling problem. Then, the similarity matrix P(v) of all patients and K-nearest similarity matrix S(v) can be defined as
[image: image]
Then, for the case in which there was two types of data, the process was as follows:
a Calculate [image: image], [image: image], [image: image], [image: image]. Let [image: image] = [image: image] and [image: image] = [image: image] represent the initial two status matrices at t = 0.
b Iteratively update the similarity matrix.
[image: image]
c After t steps, the overall state matrix can be calculated by:
[image: image]
For the generalization of m > 2, the update process is:
[image: image]
2.4 Graph Convolutional Network
GCN analysis requires two inputs: the structure of the graph and the features of each node. In this manual, one input is the multi-omics feature matrix X ∈ Rn×d, where n is the number of nodes and d is the number of features. Another input is the PSN, which can be represented by the form of an adjacency matrix A [image: image] Rn×n. The GCN is built by stacking multiple convolutional layers. Specifically, each layer is defined as:
[image: image]
Where [image: image] or [image: image] denotes the normalized graph laplacian; [image: image] denotes the adjacency matrix with added self-connections; [image: image] is the degree matrix of [image: image]; W is the weight matrix learned from training; σ denotes the nonlinear activation function, generally the ReLU activation function; and H(l) is the input of each layer, and notably, H(0) = X.
2.5 Interpretability of MoGCN
Machine learning has great potential for improving products, processes, and research. However, computers usually do not explain their predictions, which is a barrier to the adoption of machine learning. In this study, the interpretability of MoGCN is reflected in both AE feature extraction and PSN visualization. In the autoencoder model, we used sensitivity analysis (Garson, 1991) for feature extraction: 1) multiplying the standard deviation of each input node by its connection weights in the network; 2) extracting top features every 10 epochs; and 3) merging and sorting the extracted features. The weights analysis method allows feature extraction during the training process, but consumes relatively little extra time. Meanwhile, the visualization of the PSN also provides an intuitive explanation for the clinical diagnosis of patient subtyping.
Sensitivity analysis is a valuable method used to describe the importance of input variables in neural networks quantitatively. The importance of a node can be determined by the variance of this feature (also known as variable sensitivity) and the weighted connections that the node contributes to the network (also known as weight sensitivity). Therefore, the importance score of a feature xi can be defined as:
[image: image]
Where σi represents the standard deviation of xi, L is the number of nodes in the next layer, and W is the connection weight of the input nodes to the output nodes.
In order to obtain stable characteristics of AE during training, the process for each omics layer is as follows:
a Calculate Si and extract top N features every 10 epochs to get feature sets G1, G2, …, Gm.
b After training, merge G1, G2, …, Gm and obtain the stable set of essential genes.
The case study on breast cancer demonstrates the promising potential of MoGCN in biological knowledge mining.
2.6 Mainstream Feature Extraction Methods and Classification Methods
We compared AE with the following unsupervised feature extraction algorithms: principal component analysis (PCA), factor analysis (FA), independent component analysis (ICA), and singular value decomposition (SVD). These methods were implemented by calling the built-in functions in the Python scikit-learn library (https://scikit-learn.org/stable/).
We compared GCN with the following state-of-the-art methods: decision tree (DT), K-nearest neighbors (KNN), Gaussian naïve Bayes (GNB), random forests (RF), support vector machine (SVM), deep neural network (DNN) with four layers, GrassmannCluster and HOPES. GrassmannCluster and HOPES were implemented using Matlab. Moreover, other methods were also implemented by calling the built-in functions in the Python scikit-learn library (https://scikit-learn.org/stable/).
2.7 Evaluation Index of Model Performance
In the classification tasks, the prediction results of a model have four basic indicators: true positive (TP), false positive (FP), false negative (FN), and true negative (TN). The accuracy represents the proportion of all samples judged correctly by the classifier, and is defined as:
[image: image]
The F1 score is a measure of classification tasks. It is often used as the final evaluation index in most machine learning competitions. It is the harmonic average of the precision rate and the recall rate, which has a maximum of 1 and a minimum of 0. It is defined as:
[image: image]
Where precision = [image: image], recall = [image: image].
In addition, all results were subjected to 10-fold cross validation.
2.8 Functional Enrichment Analysis
Biological Process (BP) annotation, Molecular Function (MF) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses for selected genes were conducted using David (https://david.ncifcrf.gov/). Gene set variation analysis (GSVA) (Hanzelmann et al., 2013) was performed on the MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/) “c2. cp.reactome.v7.4. symbols.gmt” gene set using the “GSVA” package in R software. p-value of <0.05 was considered statistically significant.
2.9 Kaplan-Meier Survival Analysis
We used the validation breast cancer cohort (n = 1880) from Kaplan–Meier (KM) plotter (https://kmplot.com/analysis/) to validate the prognostic value of genes. 10-years overall survival analysis was performed.
3 RESULTS
3.1 Multi-Omics Integration Using AE Can Improve Classification Performance
Multi-omics data sets are inherently high-dimensional, and their processing may be computationally intensive. Dimensionality reduction is a general strategy to reduce computational burden. Moreover, multi-omics data are highly heterogeneous and the relationship between different data types (also named as layers in data form) is not linear. The extraction of important features from the various layers remains a huge challenge. Here, we used random forest as a benchmark classifier to compare the performance of different dimensionality reduction algorithms (Tables 2, 3). The results in the rows show that AE performs best in most cases. More importantly, the results in the columns show that after the integration of different omics features, the performance of AE-based classification improved, whereas that of other methods slightly decreased or remained unchanged. The potential reasons for this were: 1) a large amount of noise in multi-omics data, so the classification relative information density is low, which interferes with the traditional algorithms; 2) traditional algorithms are linear methods and cannot uncover potential nonlinear relationships within complex biological data.
TABLE 2 | The accuracy of different dimensionality reduction algorithms.
[image: Table 2]TABLE 3 | The F1 score of different dimensionality reduction algorithms.
[image: Table 3]3.2 Integration of PSN for Greater Performance Improvement
After integration of multi-omics data using the AE, we applied the SNF model to construct the patient similarity network (PSN) (Figure 1). Then, we used GCN to integrate the expression data and PSNs to establish a complete pipeline for multi-omics biological data. We compared MoGCN with DT, KNN, GNB, RF, SVM, DNN, GrassmannCluster, and HOPES. Considering that GrassmannCluster and HOPES are algorithms used to construct PSNs and cannot be directly used for classification, we used the GCN to integrate the GrassmannCluster or HOPES algorithm for classification separately. The results showed that the MoGCN method was able to achieve state-of-the-art classification results (Figure 2). The standard deviation of MoGCN was the smallest among all compared methods, indicating that integration of the vector features and the PSN can improve the overall prediction stability. In addition, we found that using the features extracted by AE can help other classification algorithms improve their classification performance further (Supplementary Table S1). We also implemented the ablation experiments to prove that a combination of AE and SNF with GCN (MoGCN) can achieve better prediction performance. As AE and SNF are both unsupervised algorithms, the classifier method GCN is needed for subtype prediction. As shown in Figure 2, MoGCN performed better than AE + GCN and SNF + GCN in accuracy and F1 score.
[image: Figure 2]FIGURE 2 | Performance comparison of different algorithms. 10-fold cross validation (mean ± standard deviation).
3.3 The Interpretability of MoGCN From AE Feature Extraction and PSN Visualization
3.3.1 AE Captured Cancer Gene Mutation Patterns at the CNV Level
We trained the AE for 100 epochs to converge, extracted top 100 genes with the highest scores every 10 epochs, and finally obtained 183 genes. The BP enrichment analysis of the top-scoring genes using David showed that their biological function focused on cell development, cell migration, cell death, signal transduction, and response to estrogen (Figure 3A). The KEGG annotation showed that these genes are significantly enriched in the Wnt, ErbB, PI3K-AKT-mTOR, and tumor necrosis factor (TNF) signaling pathways. The Wnt signaling pathway is highly conserved and it plays a key role in cancer progression. Mutations in the PI3K-AKT-mTOR signaling pathway are the key drivers of tumorigenesis and are related to the resistance of endocrine therapy in breast cancer. The TNF family is a group of cytokines that can cause cell apoptosis, and their expression is strongly associated with the development of various cancers. These results indicated that AE has captured genes with significant mutation patterns in BRCA.
[image: Figure 3]FIGURE 3 | Copy number variation characteristics of breast cancer. (A) Biological Process (BP), Molecular Function (MF), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations for the top-scoring genes using David (p < 0.05). (B) Hierarchical clustering heat map of the mutation distribution of the top-scoring genes selected by AE.
Furthermore, we performed hierarchical clustering analysis of the selected mutation genes in all samples (Figure 3B). We found the local co-amplification of ERBB2 in the Her2-enriched subtype on 17q12-21. The role of ERBB2 as an important predictor of patient outcome and response to various therapies in breast cancer has been clearly established. It is well known that amplification of the 17q12-q21 region is the most common mechanism for ERBB2 activation in breast cancer and that it leads to the simultaneous activation of several other genes. These co-amplified and co-activated genes may have an impact on disease progression and the clinical behavior of ERBB2-positive tumors and thus represent important targets of research (Kauraniemi and Kallioniemi, 2006).
3.3.2 AE Captured the EMT and Epidermal Development Characteristics of Basal-Like Subtype on Transcriptome Level
Similar as CNV data, AE selected a total of 121 candidate genes at the transcriptome level after training for 100 epochs. A cohort of 1880 patients from the KM plotter was used to validate the prognostic value of these genes. We found 70 genes that were significantly associated with 10-years overall survival (logrank p < 0.05), suggesting that they were potential biomarkers for BRCA prognosis (Supplementary Table S2).
The expression heatmap (Figure 4A) of the 121 genes was presented according to the four known subtypes (Luminal A and B, Her2-enriched, and basal-like). The BLBC patients were associated with aggressive behavior and poor prognosis, and do not typically express hormone receptors or HER-2 (the “triple-negative” phenotype). Therefore, patients with basal-like cancers are unlikely to benefit from the currently available targeted systemic therapy (Rakha et al., 2008). We focused on those genes and found that this subtype was related to epidermal development and the epithelial-to-mesenchymal transition (EMT) (Figures 4B,C). Specifically, KRT5, KRT6B, KRT14, and KRT17 are all well-described BLBC markers. KRT81 is one of the main hair proteins that is expressed in the hair cortex. However, it was reported that KRT81 is expressed in clinical specimens from patients with breast cancer (Nanashima et al., 2017). KM survival analysis showed that KRT81 is associated with poor prognosis (Figure 4D). Our results are consistent with previous studies that BLBC expresses basal cytokeratin and other markers of healthy breast myoepithelial cells. The EMT has been associated with various tumor functions, including tumor initiation, malignant progression, tumor stemness, tumor cell migration, intravasation to the blood, metastasis, and resistance to therapy. Matrix metalloproteinase (MMPs) are considered as target genes of the EMT pathway and MMP expression is a late event of the EMT (Han et al., 2018). PRAME plays a tumor-promoting role in triple-negative breast cancer by increasing cancer cell motility through EMT-gene reprogramming (Al-Khadairi et al., 2019). ELF5 is a suppressor of EMT and metastasis through the transcriptional repression of Snail2 in breast cancer (Chakrabarti et al., 2012). LCN2 modulates the degradation, allosteric events, and enzymatic activity of matrix metalloprotease-9 (Santiago-Sanchez et al., 2020). And we found LCN2 is an unfavourable prognostic factor (Figure 4D). SLPI were overexpressed preferentially in human patients that had lung-metastatic relapse (Zhang et al., 2002), its poor prognosis (Figure 4D) suggests that it may be widely related to the drivers of human cancer metastasis progression. Additionally, we found some immune factors with good prognosis, CCL19, CXCL13 and HLA-DQA2 (Figure 4D). In conclusion, these characteristics of the basal-like subtype were supported by the association between basal cytokeratins and poor outcome.
[image: Figure 4]FIGURE 4 | mRNA molecular characteristics of breast cancer. (A) Hierarchical clustering heat map of the top-scoring genes selected by AE. (B) (C) List of genes which are high expressed in basal-like breast cancer (BLBC) subtype and biological process (BP) annotation of these genes using David (p < 0.05). (D) 10-years overall survival analysis (logrank p < 0.05) of CCL19, CXCL13, HLA-DQA2, KRT81, LCN2 and SLPI.
3.3.3 Network Visualization and Pathway Analysis at the Proteome Level
After training the model, we reclassified the subtypes of all patients. We visualized the patient network using Cytoscape (https://cytoscape.org/) and identified the two largest subgraphs with high similarity and strong connections. These were dominated by patients with the basal-like subtype and with the Her2-enriched subtype (Figure 5A). We compared the classification results with the immunohistochemistry results (Figure 5B). In the basal-like subgroup, there were four abnormal patients (Figure 5A). Specifically, the status of GM-A2DH is ER-negative, PR-negative, HER2-negative, and it is located in the center of the basal-like subgraph. Compared with the original label Her2-enriched, it is more reasonable for MoGCN to classify GM-A2DH as basal-like subtype. Although E2-A1B0 (ER−, PR−, HER2+), BH-A209 (ER+, PR+, HER2−), and A8-A08L (ER+, PR−, HER2−) were connected to basal-like patients in the subgraph, their prediction results were consistent with the original labels. We suggested that this was the result of a combination of two features: 1) these patients were located at the edge of the basal-like subgraph, and 2) the multi-omics feature extracted by AE complemented the decision-making of the network. In the Her2-enriched subgroup, there were also four abnormal patients (Figure 5A), which were all predicted by MoGCN predicted as the Her2-enriched subtype. BH-A1F2, D8-A1J9, and BH-A202 were HER2+, indicating that they could benefit from HER2-targeting therapy. D8-A1JK (ER−, PR+, HER2−) did not meet the classification criteria of Her2-enriched and basal-like subtypes. Considering that it is in the Her2-enriched subgroup, MoGCN diagnosed it as Her2-enriched. These results suggested that by integrating the network structure and multi-omics features, MoGCN was able to make clinically interpretable decisions.
[image: Figure 5]FIGURE 5 | Analysis of the results for the proteome and patient similarity network. (A) Visualization of basal-like and Her2-enriched subgroups using Cytoscape. (B) The IHC, original label, and MoGCN -predicted label of patients. “−”, IHC-negative; “+”, IHC-positive; “?”, missing data. (C) GSVA of basal-like subgroup and Her2-enriched subgroup (p < 0.05).
Considering the significant enrichment of the two subgraphs of the basal-like subtype and the Her2-enriched subtype, we performed GSVA analysis on the RPPA data of these samples (Supplementary Table S3). The results showed the statistically different pathways in two subgroups. The basal-like subgroup was more enriched in intense cell cycle activity, DNA damage repair, and the fibroblast growth factor receptors (FGFR) pathways (Figure 5C). The basal-like cell lines express an autocrine FGF2 signaling loop that may also be targetable by monoclonal antibodies (Sharpe et al., 2011), suggesting that patients harboring those tumors may be candidates for FGFR-based targeted therapies. The Her2-enriched subgroup overexpressed ErbB signaling, insulin receptor signaling, and MTOR signaling pathways, which was consistent with the genome level changes. Therefore, combination therapy targeting HER2 can effectively improve patient survival.
3.4 Validation of MoGCN on the TCGA Pan-Kidney Cancer Dataset
To verify the generality of MoGCN, we applied this analysis model to the TCGA pan-kidney cancer (KIPAN) dataset, which consisted of three main subtypes: kidney chromophobe (KICH), kidney clear cell carcinoma (KIRC), and kidney papillary cell carcinoma (KIRP) (Figure 6A). The CNV, mRNA, and RPPA data for the 698 patients were obtained (Figure 6B). In the subtype analysis, the accuracy and F1 score of the MoGCN model reached 97.71 and 97.68% and outperformed all other compared methods (Figure 6C). These results showed that MoGCN has potential applicability for a wide range of multi-omics data mining.
[image: Figure 6]FIGURE 6 | Performance of MoGCN on KIPAN dataset. (A), (B) Summary of the KIPAN dataset. (C) Performance comparison of different algorithms. 10-fold cross validation (mean ± standard deviation).
4 DISCUSSION
Cancer has been widely regarded as a highly heterogeneous disease, and the early diagnosis and prognostic of a cancer type have become the focus of cancer research. The ultimate goal of biology is to achieve systems biology understanding, that is, the integration, interpretation and insight of multi-omics. In the era of big data, efficient data mining of massive biomedical data is an important challenge for bioinformatics research.
We developed MoGCN, a network-based multi-omics integration pipeline for cancer subtype classification. Our study focused on the issues of feature reduction and the interpretation of prediction results. Notably, AE improved performance after integrating multi-omics features, and it also achieved the most optimal performance, which implied that it has the ability to capture the complex nonlinear relationships between multi-omics data. Whereas other mainstream algorithms slightly decreased or remained unchanged. Moreover, by using GCN to integrate the omics features and the PSN, the classification performance of our method was further improved, and displayed the highest accuracy (0.8982) and F1 score (0.9016) compared with the current mainstream cancer subtype prediction algorithms.
MoGCN is interpretative in terms of feature extraction and clinically intuitive diagnosis. Once the model has been trained, MoGCN was able to extract the most signification features of each omics layer for downstream biological knowledge discovery. The mutated genes at genome level were significantly enriched in functions or signaling pathways for cancer development, such as epidermal development, cell migration, Wnt signaling, ErbB signaling, and mTOR signaling. In addition, the genes highly expressed in the basal-like subtype with the worst clinical prognosis were characterized by enrichment in epidermal development and the epithelial-mesenchymal transition. Finally, through the visualization of the PSN, we found that the topological network and omics data features were complementary and could provide intuitive information for clinical diagnosis. The generality of MoGCN was proven on the TCGA pan-kidney cancer dataset. These case studies show that MoGCN performs well for heterogeneous data integration and the interpretability of classification results, which confers great potential for applications in biomarker identification and clinical diagnosis.
5 CONCLUSION
In conclusion, we developed an interpretable deep learning multi-omics integration model, for cancer subtype analysis. The captured features could reveal the molecular characteristics of cancer subtypes and the patient similarity network could provide intuitive information for clinical diagnosis. This study provided a novel method of the multi-omics integration. And the graph-based approach could provide new possibilities to the precision medicine.
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Background: The interleukin10 (IL-10) gene polymorphisms have been indicated to be associated with breast cancer (BC) risk, but the findings are still controversial. To derive a more precise evaluation, we performed a comprehensive meta-analysis.
Methods: A systematic literature search was conducted using PubMed, Embase, CNKI, China biomedical (CBM), and Google Scholar to 29 March 2020. Revman5.3 and Stata 12.0 software analyzed the data, and the strength of the association was identified using the odds ratio (OR) and the corresponding 95% confidence interval (CI).
Results: A total of 23 studies (7,250 cancer cases and 7,675 case-free controls) were included in this meta-analysis. The results show that IL-10 gene polymorphisms were significantly correlated with BC risk based on subgroup analysis by ethnicity. The IL-10 rs1800896 polymorphism was significantly associated with the risk of BC in Asians (G vs. A: OR = 0.78, 95% CI = 0.65–0.95, p = 0.01; GG vs. AA: OR = 0.51, 95% CI = 0.31–0.84, p = 0.007; GA vs. AA: OR = 0.6, 95% CI = 0.44–0.81, p = 0.0009; GG + GA vs. AA: OR = 0.6, 95% CI = 0.45–0.81, p = 0.0007); Moreover, an increased BC risk in Asians were also associated with the IL-10 rs1800872 polymorphism (AA vs CC: OR = 0.74, 95% CI = 0.55–0.99, p = 0.04; A vs C: OR = 0.85, 95% CI = 0.74–0.98, p = 0.03). In addition, The IL-10 rs1800871 (CT vs. TT: OR = 1.8, 95% CI = 1.03–3.13, p = 0.04) and rs1800872 polymorphism (A vs C: OR = 0.65, 95% CI 0.43–0.98, p = 0.04) were associated with BC risk in Caucasians.
Conclusion: Collectively, this meta-analysis demonstrated that IL-10 rs1800896 and rs1800872 (AA vs. CC; A vs. C) polymorphisms significantly increased the risk of BC in Asians, while the rs1800871 and rs1800872 (A vs. C) were associated with the risk of BC in Caucasians. Therefore, this may provide new ideas for predicting and diagnosing BC susceptibility through the detection of IL-10 gene polymorphism.
Systematic Review Registration: [https://www.crd.york.ac.uk/ PROSPERO], identifier [CRD42021266635].
Keywords: interleukin-10, gene polymorphism, breast cancer, meta-analysis, species variation
INTRODUCTION
Breast cancer (BC) is the leading cause of female cancer-related death worldwide and is one of the most common cancer forms (Anastasiadi et al., 2017). BC incidence varies widely, ranging from 27/100,0002 (Central-East Asia and Africa) to 85–94/100,0002 (Australia, North America, and Western Europe). And the incidence of BC in France is the highest in Europe (Sancho-Garnier and Colonna, 2019). In Asian countries, the incidence rate of BC has also been increasing rapidly (Mubarik et al., 2020; Oblak et al., 2020). The pathogenesis of BC is multifactorial. Hereditary BC accounts for only 5–10% of all BC cases and germline mutations, with the two significant BC susceptibility genes, BRCA1 and BRCA2 is responsible for approximately 2–3% of all cases (Kwong et al., 2016). Besides gene tests for identifying high-risk BRCA1 or BRCA2 mutations carriers (Ha et al., 2017), the ability to predict BC development is not well established yet. Although genetic, environmental, and lifestyle factors are associated with BC occurrence, the biological mechanism that causes BC remains unclear.
Inflammation plays a significant role in BC development and is an important part of the BC microenvironment (Mohamed et al., 2018). Interleukin-10 (IL-10) is an important anti-inflammatory and immunomodulatory cytokine in the human immune response. IL-10 is located on chromosome 1 (1q31-1q32), composed of five exons and four introns (Roh et al., 2002). Single nucleotide polymorphism (SNP) is the most common genetic variation. In the SNP database (http://www.ncbi.nlm.nih.gov/snp), three promoter SNPs of IL-10, rs1800896 (-1082A/G), rs1800871 (-819T/C), and rs1800872 (-592A/C) were extensively investigated in many diseases. Because they might affect IL-10 gene transcription and translation, resulting in abnormal cell proliferation and cancer development (Howell and Rose-Zerilli, 2007). The possible mechanism is that IL-10 is activated by the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways through its receptor IL-10 R1 which binds to STAT3. Then STAT3 is translocated into the nucleus, where it binds to STAT-binding elements in the promoters of proliferation-related genes. It has been reported that IL-10 gene polymorphism plays an important role in the occurrence and development of cancers such as BC, gastric cancer, lung cancer (Bhattacharjee et al., 2016; Chen et al., 2019; Zhao et al., 2019). And some studies reported the high IL-10 expression levels in the BC paraffin section and its expression is correlated with worse outcomes in patients with malignant tumors (Li et al., 2014; Zhao et al., 2015).
In recent years, several studies have reported the relationship between IL-10 polymorphisms and BC susceptibility. A study found that: rs1800896 (-1082A/G) polymorphism was correlated with cancer staging and associated with the progression of BC at AA genotype (Abedinzadeh et al., 2018). In the research based on Caucasians, it was found that there was a significant association between the IL10-1082 G/G genotype and the increased risk of BC (Zhu et al., 2020). Another study found that the rs1800871 (-819T/C) polymorphism increased the risk of BC in Han Chinese women (Li et al., 2020). And a study shows the rare allele of rs1800872 (-592A/C) polymorphism may be a potential prognostic indicator of disease-free survival in BC patients (Gerger et al., 2010). These suggest that IL-10 gene polymorphism may affect the risk of human BC (Setrerrahmane and Xu, 2017). However, these results are inconsistent. Moreover, IL-10 polymorphism and BC susceptibility studies are constantly updated, and adjustments vary between included studies based on race, age, lifestyle, and other covariates (Patricia Gallegos-Arreola et al., 2019). Considering the critical role of IL-10 in the development of BC, we conducted this systematic review. And compared with previous meta-analyses, we comprehensively included the latest relevant studies to evaluate the association of IL-10 rs1800896, rs1800871, and rs1800872 polymorphisms with the risk of BC in different ethnic groups. It will provide theoretical evidence for the genetic mechanism of BC.
METHODS
This meta-analysis was conducted according to the PRISMA reporting criteria (Moher et al., 2009).
Search Strategy
Research articles on the relationship between IL-10 gene polymorphisms and BC risk were searched in different databases, including PubMed, Web of Knowledge, Embase, CNKI, CBM, and Google Scholar up to 29 March 2020. And we retrieved with the keywords: (“breast cancer” or “breast tumor” or “breast neoplasm” or “malignant breast tumor” or “breast carcinoma”) and (“Interleukin-10” or “IL-10”) and (“polymorphism” or “SNP” or “single nucleotide polymorphism” or “variation” or “mutation”).
Inclusion and Exclusion Criteria
Inclusion criteria: (1) Clinical BC patients were selected as the case group and healthy people as the control group; (2) Case-control or cohort studies about associations between IL-10 gene polymorphism and BC in humans; (3) Full manuscript in English or Chinese is retrievable; (4) Reporting the number of cases and controls for each genotype and detailed genotyping data, or knowing the odds ratio (OR) helped to calculate the 95% confidence interval (CI).
Exclusion criteria: (1) Abstracts, reviews; (2) Studies on the relationship between IL-10 gene polymorphism and prognosis of BC; (3) studies on the apparent imbalance of baseline between the case group and control group; (4) The cases and control sources were not provided; (5) Repeatedly published literature. If multiple studies from the same case series were available, the one including the most individuals were used in the analysis.
Data Extraction
Two researchers selected the literature according to the inclusion and exclusion criteria, extracted the data, and cross-checked them independently into a standard data collection form. If there were any disputes, we would reach an agreement by discussion or by a third party and strive to reach a consensus on each project. Data were collected from each article included: the first author, year of publication, study location, type of study, ethnicity (classified as Asian, Caucasian, or mixed descent), total number of cases and controls, genotype frequency, genotype detection method, and the source of authority.
Sensitivity Analysis
Sensitivity analysis was performed to assess the stability of the results. The Funnel plot, Begg’s test, and Egger’s test were used to evaluate publication bias. RevMan5.3 and Stata 12.0 software was used for the above statistical analysis.
Statistical Analysis
The correlation between IL-10 gene polymorphisms and BC risk was evaluated by OR and 95% CI as the effect size. 95% CI without one and P(OR) < 0.05 was considered statistically significant. The Z-test determines the significance of the OR value. The effects of heterogeneity were quantified by I2 and P(H) values. In addition, the I2 value is used to quantify the degree of heterogeneity (I2 < 25%: low/no heterogeneity; 25 < I2 < 75%: moderate heterogeneity; I2 > 75%: extreme high heterogeneity). The fixed-effect model is adopted when the I2 < 25%; otherwise, the random effect model is adopted. We further carried out subgroup analyses by ethnicity to get ethnic-specific results.
RESULTS
Search Results
We had a total of 78 articles after removing three duplicated pieces. After the layer-by-layer screening, a total of 23 articles finally met the criteria for inclusion in this meta-analysis. Eligible papers were published between 2004 and 2019. This meta-analysis updated three 2019 case-control studies compared to previous meta-analyses (Dai et al., 2014; Abedinzadeh et al., 2018; Moghimi et al., 2018). A flow diagram schematizing the inclusion and exclusion process of identified articles with the inclusion criteria is presented in Figure 1.
[image: Figure 1]FIGURE 1 | Flowchart of study selection for the present study.
Data Extraction and Quality Assessment
The 23 eligible articles had a total sample size of 14,925 participants, including 7,250 BC patients and 7,675 healthy controls (Smith et al., 2004; Abdolrahim-Zadeh et al., 2005; Guzowski et al., 2005; Langsenlehner et al., 2005; Balasubramanian et al., 2006; Onay et al., 2006; Scola et al., 2006; Gonullu et al., 2007; Pharoah et al., 2007; Kong et al., 2010; He et al., 2012; Pooja et al., 2012; Meijiang, 2014; Wang et al., 2014; Vinod et al., 2015; AlSuhaibani et al., 2016; Atoum, 2016; Maruthi et al., 2017; Sabet et al., 2017; Tian et al., 2017; Azher et al., 2019; Fanyu et al., 2019; Patricia Gallegos-Arreola et al., 2019). The samples were involved in three IL-10 polymorphism sites: rs1800896, rs1800871, and rs1800872. There were 17 studies on rs1800896 (3,308 cases and 3,425 controls), twelve studies on rs1800871 (2,530 cases and 2,698 controls), and 13 studies on rs1800872 (4,702 cases and 4,818 controls). Ten studies were based on Caucasians, six were based on Asians, and the remaining seven studies were mixed-race in the 23 criteria studies. Of these studies, eighteen were hospital-based, and five were population-based. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the included articles (Stang, 2010). And NOS scores ranged from zero to nine. We considered the study’s methodological quality good if the score was ≥ seven. Two authors independently completed our data extraction and quality evaluation. Table 1 and Table 2 show the basic characteristics of the included literature, the distribution of polymorphisms at the studied gene sites, allele frequency, and the quality assessment of the included studies.
TABLE 1 | Characteristics of the studies included in the meta-analysis.
[image: Table 1]TABLE 2 | IL-10 polymorphisms genotype distribution and allele frequency in cases and controls.
[image: Table 2]Meta-Analysis Results
The association between IL-10 gene polymorphisms (rs1800896, rs1800871, and rs1800872) and BC is shown in Table 3 and Figures 2–5. Squares and horizontal lines correspond to study-specific OR and 95% CI. The area of a square reflects the weight (inversely proportional to the variance). The diamond represents the sum of OR and 95% CI.
TABLE 3 | Results of the association of IL-10 polymorphisms with BC risk.
[image: Table 3][image: Figure 2]FIGURE 2 | Forest plots showed a significant association of IL-10 rs1800896 polymorphism and breast cancer risk in Asians. (A) (allele model: G vs. A); (B) (homozygous model: GG vs. AA); (C) (heterozygous model: GA vs. AA); (D) (dominant model: GG + GA vs. AA). The squares and horizontal lines correspond to the study-specific odds ratio (OR) and 95% confidence interval (CI). The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI.
[image: Figure 3]FIGURE 3 | Forest plots showed a significant association of IL-10 rs1800871 polymorphism and breast cancer risk in the Caucasians (heterozygous model: CT vs. TT). The squares and horizontal lines correspond to the study-specific odds ratio (OR) and 95% confidence interval (CI). The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI.
[image: Figure 4]FIGURE 4 | Forest plots showed a significant association of IL-10 rs1800872 polymorphism and breast cancer risk in Asians and Caucasians. (A) IL-10 rs1800872 polymorphism in Asians (homozygous model: AA vs. CC); (B) IL-10 rs1800872 polymorphism in Asians (allele model: A vs. C); (C) IL-10 rs1800872 polymorphism in Caucasians (allele model: A vs. C). The squares and horizontal lines correspond to the study-specific odds ratio (OR) and 95% confidence interval (CI). The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI.
[image: Figure 5]FIGURE 5 | Begg’s and Egger’s funnel plots of IL-10 gene polymorphism and breast cancer risk for publication bias test. (A) rs1800896; (B) rs1800871; (C) rs1800872.
Correlation Between rs1800896 Polymorphism and Breast Cancer
A total of 17 studies were conducted on the association between IL-10 rs1800896 polymorphism and BC risk, with a total sample size of 6,733 cases, including 3,308 patients and 3,425 healthy controls. Overall population heterogeneity test I2 was 82%. The random-effect model results showed that the comparison results of the five gene models showed no statistical significance between rs1800896 polymorphism and BC (Table 3). Subgroups by ethnicity showed that under the four genetic models (allele G vs. A: OR = 0.78, 95% CI = 0.65–0.95, p = 0.01; homozygous GG vs. AA: OR = 0.51, 95% CI = 0.31–0.84, p = 0.007; heterozygous GA vs. AA: OR = 0.6, 95% CI = 0.44–0.81, p = 0.0009; dominant GG + GA vs. AA: OR = 0.6, 95% CI = 0.45–0.81, p = 0.0007) (Figures 2A–D), rs1800896 polymorphism was significantly associated with BC risk in Asians. This result suggests that ethnicity is likely to be the source of heterogeneity, and the rs1800896 polymorphism is significantly associated with the BC risk in Asians.
Correlation Between rs1800871 Polymorphism and Breast Cancer
A total of 12 studies with 2,530 patients and 2,698 controls evaluated the strength of the association between the IL-10 rs1800871 polymorphism and BC. There was no association between BC risk and rs1800871 polymorphism in any genetic model in the overall population. However, when stratified by ethnicity, the rs1800871 polymorphism was associated with BC risk in the heterozygous model in Caucasians (CT vs. TT: OR = 1.8, 95% CI = 1.03–3.13, p = 0.04) (Figure 3). This result indicates that Caucasians with the rs1800871 heterozygous model are more likely to develop BC than individuals with other genotypes.
Correlation Between rs1800872 Polymorphism and Breast Cancer
Thirteen studies (4,702 cases and 4,818 controls) assessed the strength of the association between IL-10 rs1800872 polymorphism and BC susceptibility. As shown in Table 3, the five gene model comparison results showed that the association between IL-10 rs1800872 polymorphism and BC in the overall population was not statistically significant. However, after stratification by ethnicity, the homozygous model of rs1800872 polymorphism was associated with BC risk in Asians (AA vs. CC: OR = 0.74, 95% CI = 0.55–0.99, p = 0.04) (Figure 4A). Allele model of rs1800872 polymorphism was associated with the risk of BC in Asians (A vs. C: OR = 0.85, 95% CI = 0.74–0.98, p = 0.03) (Figure 4B) and Caucasians (A vs. C: OR = 0.65, 95% CI = 0.43–0.98, p = 0.04) (Figure 4C).
Publication Bias
Funnel plot, Begg’s test, and Egger’s test were used to evaluate the publication bias (Stata12.0). As shown in Figure 5, the funnel plot was essentially symmetrical, and the p values of Begg’s test and Egger’s test are all greater than 0.05. It was indicated that there was almost no obvious publication bias at the three loci.
DISCUSSION
IL-10, known initially as cytokine synthesis inhibitory factor (CSIF), is a potent anti-inflammatory cytokine. IL-10 can stimulate the expression of carboxypeptidase B2 (CPB2) in inflammatory BC cells. Thus it increases the cancer cells’ aggressiveness (Mohamed et al., 2018). Moreover, IL-10 is involved in the abnormal proliferation of breast ducts and lobules and stimulates mitotic activity, leading to increased cancer risk (Kong et al., 2010; Moghimi et al., 2018). IL-10 can also induce tumor progression by inhibiting many cytokines such as IL-1a, IL-1b, IL-6, IL-8, IL-12, and IL-18. And IL-10 gene silencing down-regulates the expression of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and B cell lymphoma 2 (Bcl2) and increases the expression levels of BCL2 binding component 3(BBC3), Bax, and caspase3 (Alotaibi et al., 2018). Studies on the mechanism of IL-10 promoting BC have shown that the production of IL-10 may represent a new escape mechanism for BC cells to escape the destruction of the immune system. It might be closely related to the fact that polymorphic variations in the promoter sequences of the IL-10 gene might influence the gene expression and consequently play a specific role in susceptibility and the clinical course of BC. The IL-10 promoter region polymorphisms affected IL-10 gene transcription and translation, resulting in abnormal cell proliferation and cancer development (Moghimi et al., 2018; Sheikhpour et al., 2018).
Studies have shown that the three most common single nucleotide polymorphisms (SNPs) play an important role in regulating IL-10 activity. They are located at the transcriptional starting point of rs1800896 (-1082A/G), rs1800871 (-819T/C), and rs1800872 (-592A/C). And they encode high (GCC), medium (ACC), and low (ATA) expression of IL-10, respectively (Westendorp et al., 1997; Zupin et al., 2014; Hofmann et al., 2018). Several other polymorphic loci of IL-10 (rs1800890, rs6703630, and rs6693899) are also controversial, but few relevant studies are present. Many studies have reported the relationship between race and IL-10 gene polymorphism and BC risk in recent years. For example, the IL-10 rs1800872 polymorphism was associated with BC susceptibility in the Mexican population (Patricia Gallegos-Arreola et al., 2019). Also, the mutant allele and genotypes of IL-10 rs1800896 were significantly associated with Indian postmenopausal BC (Pooja et al., 2012). Since the IL-10 gene polymorphisms were associated with the risk of BC, we hypothesized that race is the key to the association between IL-10 gene polymorphisms and BC. This meta-analysis conducted the most comprehensive analysis of the relationship between three IL-10 polymorphisms (rs1800896, rs1800871, and rs1800872) and the BC risk of different races. In a subgroup analysis by ethnicity (Asian and Caucasian/mixed race), the three IL-10 polymorphisms (rs1800896, rs1800871, and rs1800872) were significantly associated with BC. It showed that rs1800896 (allele G vs. A: OR = 0.78, 95% CI = 0.65–0.95, p = 0.01; homozygous GG vs. AA: OR = 0.51, 95% CI = 0.31–0.84, p = 0.007; heterozygous GA vs. AA: OR = 0.6, 95% CI = 0.44–0.81, p = 0.0009; dominant GG + GA vs. AA: OR = 0.6, 95% CI = 0.45–0.81, p = 0.0007) were significantly correlated with BC risk in Asians. The rs1800871 heterozygote model (CT vs. TT: OR = 1.8, 95% CI = 1.03–3.13, p = 0.04) was associated with BC risk in Caucasians. The rs1800872 homozygous model (AA vs CC: OR = 0.74, 95% CI = 0.55–0.99, p = 0.04) was associated with BC risk in Asians, and the allelic model (A vs. C: OR = 0.85, 95% CI = 0.74–0.98, p = 0.03) was associated with BC risk in Asians and Caucasians (A vs C: OR = 0.65, 95% = CI 0.43–0.98, p = 0.04). The above results indicate that the ethnic subgroup of IL-10 gene polymorphisms is the key factor affecting the susceptibility to BC. It is consistent with the results of previous studies: the relationship between IL-10 gene polymorphism and BC risk is strongly associated with ethnicity (Patricia Gallegos-Arreola et al., 2019).
Previously, three researchers (Dai et al., 2014; Abedinzadeh et al., 2018; Moghimi et al., 2018) have analyzed the correlation between IL-10 gene polymorphisms and BC risk, but their analysis is not comprehensive enough. Because there are few studies included and the ethnic division is not accurate enough in their articles. In addition, Xu and Wang did a meta-analysis on the relationship between various interleukins and BC. Still, their correlations between IL-10 gene polymorphisms and BC risk were inconsistent with ours (Xu and Wang, 2020). It may be related to the different criteria for inclusion and exclusion and quality assessment of the article. Because the quality, quantity, and new studies included in the meta-analysis will directly affect the credibility and stability of the results, we used a broad search strategy to capture all relevant information. This meta-analysis conducted a more comprehensive analysis of the relationship between three IL-10 polymorphisms (rs1800896, rs1800871, and rs1800872) and BC risk by including 23 studies (published between 2004 and 2019) and ruling out the researches with low quality. Moreover, this meta-analysis showed no significant publication bias, and the heterogeneity of the subgroups was small. Sensitivity analysis results were also stable. Therefore, the conclusion of the association between the three IL-10 gene polymorphisms (rs1800896, rs1800871, and rs1800872) and BC in this meta-analysis was reliable and had certain clinical guidance values.
However, this meta-analysis has several limitations that should be acknowledged. Firstly, due to the limited research on the interaction between these three polymorphic sites and their interaction with the environment, it is impossible to estimate the impact of gene-gene and gene-environment interaction on the study results. Secondly, we found that heterogeneity existed in the meta-analysis as indicated by the I2 values. Despite using a random-effects model in some studies, the heterogeneity remained. It is predictable because other factors that affect BC should be considered, such as staging and grading of tumors, age, genetic background, environment, and lifestyle. However, due to the lack of some qualified original data, we cannot calculate the impact of these factors on BC. Moreover, in the future we need to consider more factors influencing BC, such as age, menopausal state, environment, and lifestyle factors, to further validate gene-gene and gene-environment interactions on IL-10 polymorphisms and BC risk.
CONCLUSION
In summary, this meta-analysis provides a new idea for clinical, genetic, and epidemiological studies of BC. Our results show that alleles, homozygotes, and dominant genotypes of IL-10 rs1800896 are significantly associated with the risk of BC in Asians. The homozygous and allele patterns of rs1800872 increase the risk of BC in Asians, while the heterozygous pattern of rs1800871 and the allele pattern of rs1800872 increase the risk of BC in Caucasians. IL-10 gene polymorphisms may be a key regulator of BC susceptibility. Different ethnic groups can predict BC susceptibility by detecting other IL-10 polymorphisms locus. However, the etiology of BC is complex, so we strongly recommend further genetic association studies to explore the effects of gene-gene interactions on disease susceptibility. Large-scale multicenter studies can be conducted in the future to verify further the results of gene-gene and gene-environment interactions on IL-10 gene polymorphisms and BC risk in different environments.
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Background: Lung adenocarcinoma (LUAD) represents one of the highest incidence rates worldwide. Hypoxia is a significant biomarker associated with poor prognosis of LUAD. However, there are no definitive markers of hypoxia-related long non-coding RNAs (lncRNAs) in LUAD.
Methods: From The Cancer Genome Atlas (TCGA) and the Molecular Signatures Database (MSigDB), we acquired the expression of hypoxia-related lncRNAs and corresponding clinical information of LUAD patients. The hypoxia-related prognostic model was constructed by univariable COX regression analysis, least absolute shrinkage and selection operator (LASSO), and multivariable Cox regression analysis. To assess the performance of the model, the Kaplan–Meier (KM) survival and receiver operating characteristic (ROC) curve analyses were performed.
Results: We found seven lncRNAs, AC022613.1, AC026355.1, GSEC, LINC00941, NKILA, HSPC324, and MYO16-AS1, as biomarkers of the potential hypoxia-related prognostic signature. In the low-risk group, patients had a better overall survival (OS). In addition, the results of ROC analysis indicated that the risk score predicted LUAD prognosis exactly. Furthermore, combining the expression of lncRNAs with clinical features, two predictive nomograms were constructed, which could accurately predict OS and had high clinical application value.
Conclusion: In summary, the seven-lncRNA prognostic signature related to hypoxia might be useful in predicting clinical outcomes and provided new molecular targets for the research of LUAD patients.
Keywords: lung adenocarcinoma, hypoxia-related prognostic signature, immune infiltrates, long non-coding RNAs, nomogram
INTRODUCTION
LUAD is the most common pathological subtype in lung cancer, accounting for 40% of all lung cancer incidences (Lemjabbar-Alaoui et al., 2015; Shi et al., 2016). The mean 5-year survival rate of patients was only 15% (Odintsov et al., 2021). The major reason for the high mortality of LUAD is that LUAD is diagnosed at an advanced stage in most patients. Currently, the diagnosis of LUAD is primarily based on symptoms, which included the size and location of the tumor, the location of the tumor in the lymph nodes, and where the cancer has spread (Lemjabbar-Alaoui et al., 2015; Rami-Porta et al., 2017; Carter et al., 2018). Although many potential biomarkers for early detection of LUAD have been studied, such as autophagy-related survival model, immune-related survival model, and ferroptosis-related gene signature, there is still lack of clinically used biomarkers due to lack of sensitivity and validity of these biomarkers on the development of LUAD (Hirsch et al., 2017; Chen et al., 2021; Shi et al., 2021; Wu et al., 2021; Jiang et al., 2021; Li et al., 2021).
As a non–protein-coding RNA, lncRNA has approximately 200 nucleotides in length, and it has attracted much attention because of its ability to regulate gene expression in epigenetic, transcriptional, and posttranscriptional dimensions (Chang et al., 2016; Fang and Fullwood, 2016; Li et al., 2016; Bhan et al., 2017; Peng et al., 2017). LncRNAs significantly affected the development of tumors (Chang et al., 2016; Choudhry et al., 2016). Recently, lncRNA-related prognostic models have been extensively developed for many cancers, including gastric cancer, lung cancer, pancreatic cancer, breast cancer, and colorectal cancer (Guo et al., 2020; Wang et al., 2020; Zhang H et al., 2021).
Hypoxia is one of the main characteristics of the tumor microenvironment (TME) and usually associated with poor prognosis. According to the study, many lncRNAs play a regulatory role in the hypoxia of tumors, such as participating in the regulation of tumor growth, vascular formation, invasion, and metastasis. Under hypoxic conditions, the lncRNA HABON could promote growth and proliferation of hepatocarcinoma cells (Ma C et al., 2021; Ma T et al., 2021). In the hypoxic environment of gastric cancer, the expression of the lncRNA LINC00460 is upregulated and promotes tumor invasiveness (Chen et al., 2020). The hypoxia-regulated lncRNA H19 and PDK1 (pyruvate dehydrogenase kinase 1) expression exhibits strong correlations in primary breast carcinomas, and they promote reprogramming of cancer stem cells (Peng et al., 2018). However, there are no exact prognostic markers related to hypoxia-related lncRNAs in LUAD.
In this study, we identified seven hypoxia-related lncRNAs strongly associated with OS. Meanwhile, a risk signature was constructed. By using the other cohort, the accuracy and reliability of this model were validated. Moreover, we found that the signature was independent of clinical features. In conclusion, we successfully established a risk model associated with hypoxia. Moreover, it may be used for clinical treatment and diagnosis.
MATERIALS AND METHODS
Ethics Statement
The RNA-sequencing and clinical data of LUAD were downloaded from TCGA database (https://cancergenome.nih.gov/). Our study was based on the open resource data that were free for researching and publishing relevant articles with no ethical issues and other conflicts of interest. The process of this study is presented in Figure 1.
[image: Figure 1]FIGURE 1 | Flow chart of data acquisition and analysis.
Data Acquirement of TCGA
The mRNA expression data were derived from 535 LUAD patients and 59 healthy controls. Meanwhile, corresponding clinico-pathological data, including gender; age; pathologic T, M, and N stage; tumor clinical stage; and overall survival (OS) time were also obtained from TCGA database. Twenty-three out of 522 patients were excluded due to lack of information of OS (or the OS time was zero); therefore, lncRNA expression of 499 patients and their clinico-pathologic data were used for analysis. We presented the basic clinical information of these patients in Table 1.
TABLE 1 | Basic clinical information of 499 LUAD patients from TCGA.
[image: Table 1]Hypoxia-Related LnRNA Extraction
We performed Gene Set Enrichment Analysis (GSEA) to research two datasets associated with hypoxia (HARRIS_HYPOXIA, WINTER_HYPOXIA_METAGENE) from the MsigDB database. Then, the genes in all samples were analyzed in the abovementioned gene sets. There were 239 hypoxia-related genes found from the statistically significant gene set. Finally, by Pearson’s correlation analysis, we identified hypoxia-related lncRNAs with the criteria of |correlation coefficient| > 0.3 and p-value < 0.001 and then constructed an mRNA–lncRNA coexpression network connected with hypoxia.
Identification of Hypoxia-Related LncRNAs
The Wilcoxon test was utilized to screen the differential expressed lncRNAs (DELs) between tumor and normal samples. The genes with p-value < 0.05 and |log2 fold-change (FC)| > 1 were defined as DELs. Then, we utilized the R package “WGCNA” to construct a scale-free coexpression network for the all hypoxia-related lncRNAs by setting the soft threshold power value to 4. Finally, we selected two models highly correlated with cancer samples for followed analysis.
Construction and Validation of the Hypoxia-Related LncRNA Prognostic Signature
We first took the intersection of 601 DELs and 617 lncRNAs in the two modules (blue: 394, brown: 223). By using univariate Cox analysis, survival-related lncRNAs associated with hypoxia were identified. Then, LASSO regression analysis was used to further screen genes. At this time, we randomly divided the LUAD samples into two cohorts, training and validation cohorts. Finally, the lncRNAs were selected to construct a multivariate Cox regression model, and the risk score was calculated. Based on the median score of the training cohort, the patients were divided into high- and low-risk subgroups. Between the two groups, KM analysis was used to compare the survival time, and the ROC curve was used to evaluate the predictive power of the signature. In this way, the prognostic signature was constructed. In addition, in the other cohort, we performed the same procedure to evaluate the correctness of it.
Functional Enrichment Analysis
We utilized GSEA v4.1 (http://www.gsea-msigdb.org/gsea/index.jsp) to perform GSEA between the low- and high-risk groups. After that, we carried out the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the differentially expressed mRNAs (DEGs) between the two groups, using “limma” and “clusterProfiler” packages.
Correlation Analysis of the Tumor Microenvironment in 33 the Cancer Genome Atlas Pan-Cancers
We then downloaded 33 cancer types from the UCSC Xena database (https://xenabrowser.net/datapages/), and they are adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), esophageal carcinoma (ESCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), colon adenocarcinoma (COAD), lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), acute myeloid leukemia (LAML), brain lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), mesothelioma (MESO), ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), pheochromocytoma and paraganglioma (PCPG), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), sarcoma (SARC), skin cutaneous melanoma (SKCM), testicular germ cell tumors (TGCT), thyroid carcinoma (THCA), thymoma (THYM), uterine corpus endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS), cholangiocarcinoma (CHOL), stomach adenocarcinoma (STAD), and uveal melanoma (UVM). Meanwhile, six types of immune infiltration, namely, C1 (wound healing), C2 (INF-r dominant), C3 (inflammatory), C4 (lymphocyte depleted), C5 (immunologically quiet), and C6 (TGF-β dominant) were also downloaded from it. Spearman’s analysis was used to calculate the association of the lncRNAs with immune subtypes, tumor mutation burden (TMB), and stemness score (RNAss and DNAss).
Statistical Analysis
All statistical analyses were accomplished with R software (version 4.0.5). The DEGs were identified by the Wilcoxon test. We used Pearson’s correlation analysis to calculate the correlation between lncRNAs and mRNAs associated with hypoxia. Meanwhile, we applied univariate and multivariate Cox regression analyses to evaluate the correlation between the risk score and clinical features. P-value < 0.05 was regarded as a significant outcome.
RESULTS
Identification of Hypoxia-Related LncRNAs in LUAD
Through GSEA, we found that the WINTER_HYPOXIA_METAGEN gene set was significantly enriched [(FDR = 0.040), (Supplementary Table S1)], while the HARRIS_HYPOXIA gene set was not [(FDR = 0.164), (Figures 2A,B)]. Next, 1,629 hypoxia-related lncRNAs were screened according to the significant gene set (Supplementary Table S2).
[image: Figure 2]FIGURE 2 | Hypoxia-related lncRNA extraction. (A,B) GSEA analysis showing the most enriched hypoxia-related pathways. (C,D) Determination of the most suitable power value for scale-free coexpression network. (E) Brown and blue modules were the most correlated with the tumor state. (F) Identification of common genes between DELs and the brown and the blue modules by overlapping them.
We further studied hypoxia-related lncRNAs by the means of the Wilcoxon test and the weighted gene co-expression network (WGCNA) analysis, and we used the 601 differentially expressed hypoxia-related lncRNAs between normal and tumor samples to intersect with the 617 lncRNAs from the two modules of WGCNA analysis (Figures 2C–F).
Construction of Hypoxia-Related LncRNA Prognostic Signature for LUAD
After taking the intersection, we got 262 hypoxia-related lncRNAs (Supplementary Table S3). We then used these lncRNAs to construct the prognostic signature. First, 20 lncRNAs were screened by univariate Cox analysis [(p-value < 0.05), (Supplementary Table S4)]. Then, by using LASSO analysis, 20 variables were reduced to 11 potential predictors (Figures 3A,B). Finally, seven lncRNAs were identified by the multivariate Cox regression analysis in the training cohort. LncRNAs, AC022613.1, AC026355.1, GSEC, LINC00941, NKILA, HSPC324, and MYO16-AS1, were used to calculate the risk score (Figures 3C–E). Prognostic risk genes correlated with hypoxia were constructed (Table 2).
[image: Figure 3]FIGURE 3 | Identification and construction of a hypoxia-related lncRNA signature in the training cohort. (A,B) Robust lncRNAs were screened by LASSO analysis. (C) Forest plot of the multivariate Cox regression model. (D) Sankey diagram shows the lncRNA–mRNA interaction about hypoxia. * represents p < 0.05, ** represents p < 0.01, and *** represents p < 0.001.
TABLE 2 | Information of seven hypoxia-related lncRNAs associated with OS in patients with LUAD.
[image: Table 2]The unique risk score of patients was calculated through multivariate Cox analysis and the expression level. Risk score = expression of AC010980.2 × 0.490289217 + expression of AC026355.1 × −0.417505811 + expression of AL606489.1 × 0.293303854 + expression of ITGB1-DT × 0.289653582 + expression of AL034397.3 × −0.277395699 + expression of LINC01116 × 0.192509771 + expression of LINC01150 × −0.506323639. According to the median of the risk score, there were 123 patients in the high- and low-risk groups, respectively. Additionally, in the other cohort, the number was 130 and 114 patients using the same middle score.
By applying ROC curve analysis, in the training cohort, the area under the curve (AUC) was 0.740 at year 3 and 0.736 at year 5. KM analysis also showed that the model could be a valid prognostic indicator for patients (Figure 4A). Likewise, in the other cohort, the AUC values were 0.600 and 0.634, respectively (Figure 4B). From the result of KM analysis, we got the same trend with the training cohort (Figures 4C,D). Meanwhile, we found that in both cohorts, patients in the low-risk group had more survival time than those in the high-risk group (Figures 4E,F). In addition, in the training cohort, the result of the C-index was 0.715 and 0.643 in the other cohort.
[image: Figure 4]FIGURE 4 | Risk score of the hypoxia-related lncRNA signature for survival prediction in the two cohorts. The ROC analysis showed that the signature was stable (A) in the training and (B) in the validation cohorts. Between low- and high-risk groups, KM analysis was used for comparison of the OS (C) in the training and (D) validation cohorts. Distributions of risk score, survival status, and expression of lncRNAs (E) in the training, and (F) validation cohorts.
Independent Prognostic Value of the Signature
Among these lncRNAs, two lncRNAs in the training cohort (AC026355.1 and HSPC324) were upregulated, while MYO16−AS1, GSEC, NKILA, AC022613.1 and LINC00941 were downregulated in the low-risk group. In addition, similar results were obtained in the validation cohort (Figures 5A,B). Moreover, in both cohorts, we used univariate and multivariate Cox regression analyses to assess whether the risk score could serve as an independent prognostic factor. The risk score was an independent factor revealed by the univariate Cox regression, and the HR of it was 1.442. In the multivariate analysis, the risk score also remained an independent prognostic indicator [p < 0.001, HR = 1.391, 95% CI: 1.258–1.540 (Figures 5C,D)] in the training cohort. In the validation cohort, the risk score was an independent prognostic indicator, too (Figures 5E,F).
[image: Figure 5]FIGURE 5 | Forest plots of the univariate and multivariate Cox analysis in LUAD patients. Heatmap and clinico-pathologic features of the seven hypoxia-related lncRNAs (A) in the training, and (B) validation cohorts. Univariate and multivariate analyses for OS (C,D) in the training and (E,F) validation cohorts.
In addition, to study the applicability of this model, we also conducted validations in different clinical subgroups. The patients were sorted by age (the 65 years or younger group and the more than 65 years group), gender (the male group and the female group), T stage of the tumor (the T1–T2 group and the T3–T4 group), M stage of the tumor (the M0 group and the M1 group), N stage of the tumor (the N0 group and the N1–N3 group), and tumor stage (the stage I–II group and the stage III–IV group). The results showed that the survival rate of high-risk patients with different age, gender, M0, N0, T1–T2, and stage I–II group was significantly different from that of low-risk patients (p-value < 0.05) in the training cohort (Figures 6A–H). In the validation cohort, we obtained the similar result (Supplementary Figure S1).
[image: Figure 6]FIGURE 6 | Stratification analysis of various clinico-pathological factors, nomograms used to predict the OS prognosis, and calibration plots used to predict prognosis in these patients with LUAD. KM curves of OS in the subgroups of (A,B) both the age groups, (C,D) both gender groups, (E) M0 group, (F) T0 group, (G) clinical stage I–II group, and (H) T1–2 group. (I,J) Nomograms to predict the 1-, 3-, 5-, and 10-year OS. Calibration plots for 3-year survival and 5-year survival (K,L) in the training and (M,N) validation cohorts.
We then constructed two nomograms that integrated the risk score of the seven-lncRNA models and clinico-pathological features to predict survival probability of patients. Based on these, we predicted the patient’s 1-, 3-, 5-, and 10-year survival probabilities (Figures 6I,J). In both the nomograms, the higher the total points calculated, the worse the prognosis. Meanwhile, the calibration plot for the prediction of 3-year and 5-year survival also indicated the consistency between observation and prediction in both the cohorts (Figures 6K–N).
Functional Analyses Based on the Risk Model
We used GSEA software to perform KEGG analysis for exploring which pathways were enriched. The results identified that in the high-risk group, processes such as cell cycle, DNA replication, and mismatch repair were enriched by using the training cohort (Figures 7A,B).
[image: Figure 7]FIGURE 7 | Functional analysis. Bubble and barplot graph for (A,B) KEGG pathways and (C,D) GO enrichment based on the DEGs in the training cohort. (E,F) KEGG pathways of GSEA analysis.
We further screened 660 different genes (adjust p-value < 0.05 and |log2FC (fold-change)| > 1) between the high- and low-risk groups and carried out enrichment analysis based on these in the training cohort. GO enrichment analysis indicated that many nuclear biological processes or molecular functions were significantly enriched (Figures 7C,D). Next, KEGG pathway analysis indicated that the biological processes related to cell proliferation were enriched, based on the upregulated genes, while downregulated genes were highly correlated with the immune process (Figures 7E,F and Supplementary Figures S2, S3). It was further verified that hypoxia is related to cell proliferation and immunity.
Comparison of Immune Cell Infiltration Between Subgroups
We calculated the proportion of 22 immune cells of all samples in the training and validation cohorts by using the CIBERSORT algorithm (Figures 8A,C). The violin plot showed that patients in the high-risk group had a higher proportion of activated memory CD4+ T cells, resting NK cells, M0 macrophages, and activated mast cells and a lower proportion of regulatory T cells, resting mast cells, and resting dendritic cells than those in the low-risk group in the training cohort (Figure 8B). In addition, in the validation cohort, CD8+ T cells, activated memory CD4+ T cells, resting NK cells, M0 macrophages, and activated mast cells were higher in the high-risk group than in the other group, whereas monocytes, M2 macrophages, resting mast cells, and resting dendritic cells were lower (Figure 8D). This result indicated that immune-related activities were associated with hypoxia.
[image: Figure 8]FIGURE 8 | Landscape of immune cell infiltration in LUAD. Immune landscape of the patients with LUAD (A) in the training and (C) validation cohorts. Relationships between the risk score and immune cell infiltration (B) in the training and (D) validation cohorts. Red and green represent the high- and low-risk groups, respectively.
In addition, based on the prognostic signature, there was an observably different distribution between high- and low-risk groups through the principal component analysis, which indicated that there was a difference in the hypoxia phenotype of the model (Figures 9A,B).
[image: Figure 9]FIGURE 9 | Expression of lncRNAs in pan-cancer which had more than five normal samples. Principal component analysis based on the lncRNAs of the model (A) in the training and (B) validation cohorts. (C) Expression of lncRNAs of the model is shown by the boxplot in pan-cancer. (D–G) In 18 cancer types, the difference of the expression of lncRNAs between tumor and normal samples is shown. (H) Heatmap showing the difference between normal and tumor samples of the expression of lncRNAs. (I) Relationship calculated by Spearman’s correlation analysis of the lncRNAs in pan-cancer. (J) Association tested by ANOVA in all cancers of four lncRNAs with six immune subtypes.
Association of Model LncRNAs With the Tumor Microenvironment and Immune Infiltration in Pan-Cancer
From the abovementioned results, the seven-model lncRNAs played an important role in LUAD. We then downloaded 33 cancer types to understand the function of the lncRNAs and selected AC022613.1, GSEC, LINC00941, and NKILA for further study. We found that AC022613.1, GSEC, LINC00941, and NKILA were mainly upregulated in tumor samples compared with normal samples (Figures 9D–G). In addition, the expression of these lncRNAs varied in different tumors (Figure 9C). The expressions of LINC00941 and NKILA were highly expressed in CHOL samples than those in the other tumors. In LUAD tissues, the expressions of the four lncRNAs were less than zero (Figure 9H). In addition, we found that LINC00941 and NKILA may have similar functions (Figure 9I).
By plotting KM curves for 32 cancer types, we found that only AC022613.1 significantly affected the survival of patients in many cancer types (Figures 10A–F). Furthermore, we used univariate Cox analysis to investigate the relationship between the expression of AC022613.1 and patient survival. The result showed that the relationship was different in different tumors (Figure 10G). We then explored their role in the six immune subtypes, stromal, ESTIMATE, tumor purity, immune score, tumor stem cells, and TMB. In LUAD patients, we found that AC022613.1 was strongly connected with the tumor stage and GSEC, LINC00941, and NKILA were significantly connected with immune subtypes (Figures 10H,I). Based on the ESTIMATE analysis, we researched the connection between the four lncRNAs and tumor microenvironment in LUAD. The results showed that GSEC had a negative association with stromal, ESTIMATE, and immune score, while LINC00941 had the opposite result (Figure 10J). Meanwhile, the results indicated that in pan-cancer, the four lncRNAs were strongly associated with immune subtypes (Figure 9J). Moreover, we found that they were mainly positively connected with stromal, ESTIMATE, and immune score, while there was a negative correlation between these and tumor purity, RNAss, and DNAss in pan-cancer (Figures 10K–N). Furthermore, we used the radar plots to distribute their association between the four lncRNAs and TMB. Distinctly, we found that NKILA and GSEC had strongly correlation in LUAD patients (Figures 10O–R).
[image: Figure 10]FIGURE 10 | Correlation analysis between the four lncRNAs and patient prognosis and TMB in all cancer types. (A–F) Connection of the four lncRNAs with the prognosis of patients in pan-cancer. (G) Forest plot showing the hazard ratio of AC022613.1 across all cancer types. The correlation between the four lncRNAs and (H) immune subtypes and (I) clinical stage of LUAD. (J) Association of four lncRNAs with tumor stem cell scores and stromal, immune, and ESTIMATE score by Spearman’s correlation analysis. (K–N) The correlation relationship between four lncRNAs and stromal, immune, ESTIMATE, and tumor purity score. In 33 TCGA cancer types, the radar graph showing the association of the expression of (O) AC022613.1, (P) GSEC, (Q) LINC00941, and (R) NKILA with TMB. p < 0.05, p < 0.01, and p < 0.0001 were represented by *, **, and ***, respectively.
DISCUSSION
Overall, in this study, we obtained 239 hypoxia-related genes. According to the expression levels of the 239 genes, we identified 1,629 hypoxia-related lncRNAs using Pearson’s correlation analysis. |Correlation coefficient| > 0.3 and p-value < 0.001 were our selection criteria. In addition, there were many useful tools that could help extract hypoxia-related lncRNAs, such as BioSeq-BLM (Li et al., 2021), BioSeq-Analysis 2.0 (Liu et al., 2019), and starBase v2.0 (Li et al., 2014). However, they were mainly used for residue-level analysis and sequence-level analysis. In this study, according to the expression levels of the transcriptome, we used Pearson’s correlation analysis to identify lncRNAs closely associated with hypoxia. The correlation between the expression levels of mRNAs and lncRNAs was fully considered. Meanwhile, this method was widely used in the computational genomics field of tumors, such as hepatocellular carcinoma (Zhou et al., 2021), bladder cancer (Ma et al., 2021), soft tissue sarcomas (Zhang J et al., 2021), and breast cancer (Zhang L et al., 2021). There were 601 DELs associated with hypoxia between normal and tumor samples. Of them, 530 differentially expressed hypoxia-related lncRNAs were upregulated in the tumor samples, and 71 lncRNAs were downregulated. In addition, by performing WGCNA, we obtained 617 hypoxia-related lncRNAs that were associated with tumor samples. By taking the intersection of the 601 DELs related to hypoxia and 617 hypoxia-related lncRNAs, we got 262 hypoxia-related lncRNAs. Finally, we used univariate Cox analysis, LASSO analysis, and multivariate Cox analysis to generate the hypoxia-related lncRNA signature. We identified seven lncRNAs associated with hypoxia as potential prognostic biomarkers. KM analysis indicated that in the high-risk group, the OS of patients was shorter than that of patients in the low-risk group. Meanwhile, the seven-lncRNA signature was highly sensitive in the prediction of OS time of LUAD patients by taking the ROC analysis, and the results were further verified in the validation cohort. Finally, we constructed two nomograms to calculate a score representing the OS of LUAD patients.
In the signature, there were seven different lncRNAs in total. These lncRNAs were AC026355.1, AC022613.1, GSEC, LINC00941, NKILA, HSPC324, and MYO16-AS1. Among these hypoxia-related lncRNAs, according to reports, AC026355.1 is connected with the development of multiple tumors. It had important prognostic significance in both immune- and autophagy-related models (Li et al., 2020; You et al., 2021; Jiang et al., 2021). LINC00941 is one of the immune-related prognostic models comprising 7 lncRNAs in LUAD (Jin et al., 2020; Li et al., 2021). GSEC has only been described in osteosarcoma cells. In osteosarcoma cells, the overexpression of GSEC can enhance the proliferation and migration of tumor cells (Liu et al., 2020). LINC00941 usually was the risk factor and connected with worse survival (Chang et al., 2021; Fang et al., 2021; Wang et al., 2021). Wang Jie et al. found that in pancreatic cancer, LINC00941 was overexpressed and patients yielded worse prognosis (Wang et al., 2021; Chang et al., 2021). However, this lncRNA has not been reported in LUAD. NKILA is a tumor suppressor that affects the proliferation and metastasis of cancer cells by regulating the STAT3 pathway (Ashrafizadeh et al., 2021). LncRNA HSPC324 plays a crucial role in tumorigenesis of LUAD (Jafarzadeh et al., 2020). MYO16-AS1 was an oncogenic lncRNA in bladder cancer (Jafarzadeh et al., 2020). It has rarely been reported in LUAD. In conclusion, these lncRNAs all play a significant role in the occurrence and development of tumors.
A growing body of evidence suggests that the prognosis of tumor patients is connected with the level of immune invasion of the tumor, and the state of immune invasion is a key determinant of tumor development in the tumor microenvironment (Tao et al., 2021). Hypoxia of tumor tissue plays a vital role in promoting tumor immunosuppression and immunotherapy resistance. In this state, there are often abundant tumor-associated macrophages and Tregs, which inhibit the function of CD8+T cells and CD4+T cells (Dehghani et al., 2012; Sanchez-Martinez et al., 2018). Hypoxia inhibits the activity of effector T cells and NK cells, leading to decreased immune function. In our study CD8+ T cells; resting NK cells; M0, M1, and M2 macrophages; resting dendritic cells; and resting mast cells were found to be differentially infiltrated in LUAD and normal tissues, which is closely related to the development of tumors. This finding supported that the hypoxia-related lncRNA signatures reflected immune infiltration to some extent, providing meaningful information for immunotherapy (Kumar and Gabrilovich, 2014; Labiano et al., 2015; Aponte-Lopez and Munoz-Cruz, 2020).
CONCLUSION
In summary, our study demonstrated that hypoxia is connected with the development of LUAD. Meanwhile, the two predictive nomograms were established for predicting the prognosis of LUAD patients. We anticipated that the study will provide an important basis for studies on the correlation between hypoxia-related genes and LUAD.
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Background: Bladder cancer (BLCA) is a malignant tumor with a complex molecular mechanism and high recurrence rate in the urinary system. Studies have shown that pyroptosis regulates tumor cell proliferation and metastasis and affects the prognosis of cancer patients. However, the role of pyroptosis-related (PR) genes or long non-coding RNAs (lncRNAs) in BLCA development is not fully understood.
Methods: We comprehensively analyzed the molecular biological characteristics of PR genes in BLCA, including copy number variation, mutations, expression and prognostic value based on TCGA database. We then identified PR lncRNAs with prognostic value based on the expression of PR genes and performed a consistent clustering analysis of 407 BLCA patients according to the expression of prognosis-related PR lncRNAs and identified two clusters. The least absolute shrinkage and selection operator (LASSO) regression was used to establish a PR lncRNA signature and calculate the risk score associated with the prognosis of patients with BLCA. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) were used to evaluate the possible functions of PR lncRNA signature. We also evaluated the relationship between the risk score and tumor immune microenvironment (TIME).
Results: A total of 33 PR genes were obtained in our study and 194 prognosis-related PR lncRNAs were identified. We also constructed a signature consisting of eight-PR-lncRNAs and divided patients into high- and low-risk groups. The overall survival rate of patients with a high risk was significantly lower than patients with a low risk. The risk score was significantly correlated with the degree of infiltration of multiple immune cell subtypes and positively correlated with multiple immune checkpoint genes expression in BLCA. Enrichment analyses showed that these lncRNAs are involved in human immune regulatory functions and immune-related pathways.
Conclusion: Our study comprehensively studied the molecular biological characteristics of PR genes BLCA, and the eight-PR-lncRNA signature we identified might play a crucial role in tumor immunity and may be able to predict the prognosis of BLCA patients, providing a theoretical basis for an in-depth study of the relationship between the prognosis and TIME.
Keywords: bladder cancer, pyroptosis, tumor immune microenvironment, lncRNA, prognosis
INTRODUCTION
Bladder cancer (BLCA) is the second-most common cause of death from urological tumors, and the incidence is still on the rise (Siegel et al., 2019). Non-muscle-invasive bladder cancer (NMIBC) accounts for about 75% of all primary bladder cancers. Unfortunately, 25% of cases have already developed into muscle-invasive bladder cancer (MIBC) by the time of the initial diagnosis (Kaufman et al., 2009). According to the pathological characteristics of BLCA patients, the main clinical treatments are surgery, radiotherapy, chemotherapy, bladder irrigation therapy and combination therapy (Ghandour et al., 2019). However, 10–30% of patients with NMIBC progress to MIBC after recurrence (Malmström et al., 2017), which has a high risk of metastasis and a poor prognosis, with only a minority of patients surviving more than 5 years (Chou et al., 2016). Immunotherapy is an emerging approach to oncology. Immune checkpoint inhibitors (ICIs) effectively block the escape of cancer cells from immune system surveillance, and these agents have begun to change the treatment strategy for BLCA. Recent studies have shown that infiltration of different immune cells may affect the response to ICIs (Benitez et al., 2020). Moreover, long non-coding RNAs (lncRNAs) are closely related to the effect of immunotherapy in BLCA, e.g., knockdown of lncRNA UCA1 significantly enhances the effect of immune checkpoint PD-1 blockers (Zhen et al., 2018). BLCA has a complex molecular biological mechanism, which is one of the main reasons for the poor efficacy of most therapies, lncRNA plays an important biological role in the progression, cell proliferation and metastasis of BLCA, for example, LINC00958 can promote BLCA by targeting miR-490-3p and AURKA (Zhen et al., 2021). lncRNAs can also act as competitive endogenous RNAs (ceRNAs) targeting snuclear factor-kappaB (NF-κB)-activated miRNAs to promote tumor development (Mirzaei et al., 2021). In addition, lncRNAs are involved in BLCA drug resistance and progression through various pathways (e.g. NF-κB, PI3K/Akt, Wnt, FOXC2 and EZH2), which has important implications for the treatment and prognosis of BLCA patients (Barth et al., 2020; Ashrafizaveh et al., 2021; Mirzaei et al., 2022). Therefore, the important role of lncRNA in BLCA has also been gradually emphasized in recent years. The development of genome sequencing and bioinformatics can help identify many molecular biomarkers to guide the treatment of BLCA patients, but only a few of these can be applied in a clinical setting (Zhang et al., 2021). Therefore, identifying the drivers and inhibitors of bladder carcinogenesis and understanding their mechanisms are essential for detecting new therapeutic targets and prolonging the survival of BLCA patients.
Pyroptosis, also known as inflammatory necrosis, is a form of programmed cell death involving cellular swelling until the cell membrane ruptures. The release of cellular contents leads to an intense inflammatory response (Loveless et al., 2021). Pyroptosis is also an essential part of the body’s natural immune response and plays a vital role in the fight against infection (Shi et al., 2017). Gasdermin D (GSDMD) is a key effector molecule in the occurrence process of pyroptosis. Under stimulation with foreign substances, the intracellular pattern recognition receptor (nucleotide-binding domain leucine-rich repeat containing [NLR]) binds to the precursor of caspase-1 through the junction protein ASC and then forms a multi-protein complex to activate caspase-1. The activated caspase-1 then cleaves GSDMD to form a peptide containing the active domain of GSDM-NT, which induces the release of contents, cell membrane perforation and cell rupture, causing an inflammatory response. It also activates IL-1β and IL-18, which are released from the cell to recruit inflammatory cells and expand the inflammatory response (Broz et al., 2020; Liu et al., 2021). Pyroptosis may participate in the formation and development of tumors, and different tissues and genetic backgrounds of pyroptosis may have different effects on cancer. It can inhibit tumors but form a microenvironment suitable for the growth of tumor cells and then promote tumor growth (Xia et al., 2019). Studies have shown that pyroptosis can impact tumor cell proliferation, invasion and metastasis and further affect the cancer prognosis (Al Mamun et al., 2021). The expression of GSDMD in gastric cancer cells is lower than that in non-cancer cells, and the low expression of GSDMD promotes the proliferation of gastric cancer cells (Fang et al., 2020). Abnormally up-regulated GSDMB can also enhance the growth and invasive ability of bladder cancer cells (He et al., 2021). In addition, pyroptosis regulates the tumor immune microenvironment (TIME) and is involved in the body’s immune response to tumors (Xi et al., 2019; Zhang et al., 2020). It has been proven that tumor pyroptosis can enhance tumor immunogenicity by attracting more anti-tumor lymphocytes and reconstruct the local or systemic anti-tumor immunity by reversing the immunosuppressive microenvironment around tumor cells (Tan et al., 2021). Therefore, ‘inducing tumor pyroptosis’ is considered a potential cancer treatment strategy. Interestingly, lncRNAs are also mediators of cancer pyroptosis (Chen et al., 2020; Tang et al., 2021). However, the clinical significance of most pyroptosis-related (PR) lncRNAs has not been clearly investigated.
With the deepening of research in pyroptosis, an increasing number of PR genes have been identified. A PR signature has also been identified in various types of tumors, such as ovarian cancer (Ye et al., 2021), gastric cancer (Shao et al., 2021) and lung adenocarcinoma (Lin et al., 2021). Moreover, PR genes signatures have been established to predict the prognosis of patients with BLCA (Chen et al., 2021; Fu and Wang, 2022). Several studies have recently suggested that PR long non-coding RNAs (lncRNAs) may also participate in the formation and development of tumors. miRNA-214 was reported to inhibit the occurrence of glioma cells by directly targeting caspase-1 (Jiang et al., 2017). LncRNA GAS5 overexpression may also induce caspase-1 upregulation and promote pyroptosis in ovarian cancer cells (Li et al., 2018). At present, PR lncRNAs signatures also have been gradually developed in tumor research to predict the TIME changes and prognosis of tumor patients. Fada et al. (Xia et al., 2021) developed a 15 prognostic PR lncRNAs risk model to predict colon adenocarcinoma patients’ prognosis and TIME changes; Similar models have been developed in other tumor types, such as hepatocellular carcinoma (Wu et al., 2021) and kidney renal clear cell carcinoma (Tang et al., 2021). However, at present, few published PR lncRNAs signatures can be used to predict TIME changes and prognosis in patients with BLCA. The role and prognostic value of PR lncRNAs in BLCA have not been clarified.
In the present study, we comprehensively evaluated the molecular characteristics of these PR genes in BLCA and then identified PR lncRNAs with prognostic value based on the expression of PR genes. We performed a consistent clustering analysis of BLCA patients according to the expression of prognosis-related PR lncRNAs and identified two clusters. Based on these findings, the least absolute shrinkage and selection operator (LASSO) regression was used to establish a PR lncRNA signature and calculate the risk score associated with the prognosis of patients with BLCA. We also evaluated the relationship between the risk score and TIME. This study assesses the link between pyroptosis and TIME in BLCA, as well as provides a new reference to predict the prognosis of BLCA patients and identify personalized treatment strategies.
MATERIALS AND METHODS
Acquisition of Data From Patients With Bladder Cancer
We obtained BLCA transcriptome, gene mutation data and clinical data from the TCGA database (https://portal.gdc.cancer.gov/). The mRNA and lncRNA expression profile data were derived from 414 BLCA tissues and 19 normal tissues, and gene mutation data samples were derived from 411 BLCA tissues. Gene copy number variation data were obtained from the UCSC database (https://xenabrowser.net/datapages/), including 413 BLCA samples. The clinical data are shown in Supplementary Table S1, we extracted clinical data from 412 patients. Samples without complete clinical information will be excluded in the subsequent clinical correlation analysis.
Analyses of Molecular Characteristics of Pyroptosis-Related Genes in Bladder Cancer
The 33 PR genes were shown in Supplementary Table S2, and these genes have been proved to be associated with pyroptosis in previously published studies (Man and Kanneganti, 2015; Wang and Yin, 2017; Karki and Kanneganti, 2019; Xia et al., 2019; Chen et al., 2021). We extracted the expression data of 33 PR genes from the BLCA transcriptome data. Using the limma package for the differential expression analysis, we extracted the copy number variation data of 33 PR genes from the data obtained from the UCSC database. We then counted the frequency of copy number variation of these genes in all samples. The RCircos package was used to visualize the change information of gene copy numbers. Similarly, we used the maftools package to analyze the mutation data of 33 PR genes from the mutation data obtained from the TCGA database and counted the mutation frequencies.
We used the Search Tool for Interaction Genes (STRING) database (https://string-db.org/cgi/input.pl) to construct PPI networks for differentially expressed PR genes and used the OncoLnc online analysis tool (http://www.oncolnc.org/) to perform a prognostic analysis of these genes. The OncoLnc tool can be used to analyze the correlation between mRNA, miRNA or lncRNA expression and the prognosis of patients with specific types of tumors based on the prognostic data of the TCGA database (Anaya, 2016).
Identification of Pyroptosis-Related lncRNAs
We removed the samples with incomplete survival data, and 407 BLCA samples remained after merging with the PR lncRNA expression matrix. The co-expression method based on the expression of 33 PR genes was used to identify PR lncRNAs. A total of 812 PR lncRNAs were identified according to the criteria |correlation coefficient| > 0.4 and p < 0.01. The Igraph package was used to visualize the co-expression network. A univariate Cox regression analysis was performed to screen prognosis-related PR lncRNAs at p < 0.05.
Analyzing the Correlation Between Tumor Clusters and Clinical Features
The ConsensusClusterPlus packet is an algorithm that can identify cluster members and their number in datasets (such as microarray gene expression profiles) (Wilkerson and Hayes, 2010). A consistent clustering analysis was used to determine the optimal number of clusters (k) and verify the clustering rationality by a resampling-based approach to assess the stability of the clusters. We used this package to perform a consistent clustering analysis based on the prognosis-related PR lncRNA expression matrix and then performed a prognostic correlation analysis of BLCA clusters. The degree of immune cell infiltration in BLCA was evaluated using the CIBERSORT algorithm (Newman et al., 2015). The results of the correlation analysis between the BLCA clusters and immune cell infiltration were considered significant at p < 0.05.
Construction of Pyroptosis-Related lncRNA Signature
The BLCA patients were randomly divided into training and testing groups in a 1:1 ratio using the caret R package. The expression matrix of PR lncRNAs was combined with the prognosis data of the patients. A LASSO regression analysis was used to develop a PR lncRNA signature in the training group. The testing and entire groups were used to verify the established signature. The risk score of each BLCA patient was calculated according to the following formula:
Risk score = coefficient (lncRNA1) × expression (lncRNA1) + coefficient (lncRNA2) × expression (lncRNA2) + coefficient (lncRNA3) × expression (lncRNA3) + … + coefficient (lncRNAn) × expression (lncRNAn).
The BLCA patients in all groups were then identified as high- and low-risk patients based on the median risk score obtained from the training group.
Analyzing the Prognostic Efficacy of the lncRNA Signature in Bladder Cancer
To determine whether or not the prognosis of the signature was independent of other clinical variables, univariate Cox and multivariate Cox regression analyses were used to calculate the values of the risk and other clinical features in predicting the prognosis of patients. The time-dependent receiver operating characteristic (ROC) curve was plotted using the survROC package. The area under the curve (AUC) at one, three and 5 years was calculated to determine the accuracy and specificity of the signature in predicting the prognosis.
Analyzing the Correlation Between Risk Score and Other Factors
We analyzed the correlation between the patients’ clinical characteristics (including age, gender, grade and stage), tumor clusters and risk score. The expression of tumor immune checkpoint genes (ICGs) PD-1, PD-L1, PD-L2, CTLA-4, LAG3, CD47, CD4, CD8A and IDO1 in BLCA was obtained from the expression profile. The correlation between the risk score and ICGs was then analyzed. The principal component analysis (PCA) of risk in all BLCA patients was performed using the Rtsne R package to determine whether or not the signature could distinguish between high- and low-risk patients based on the expression of eight lncRNAs.
A Gene Set Enrichment Analysis and Gene Enrichment Analysis
To understand the pathways that differ between the two clusters of BLCA in this study, a GSEA analysis among BLCA clusters was performed using the GSEA 4.1.0 software program, and the results of the pathway analysis were considered significant at a false discovery rate (FDR) of <0.05. To understand the functions and pathways that may be involved in differentially expressed genes between high- and low-risk BLCA, the samples were divided into high- and low-risk groups and then subjected to a gene differential expression analysis. The screening criteria for differentially expressed genes (DEGs) were FDR <0.05 and |log fold change (FC)| > 1. After obtaining DEGs, the DAVID 6.8 database (https://david.ncifcrf.gov/) was used to perform GO and KEGG analyses. All analysis results were considered significant at FDR <0.05.
Statistical Analysis
Kaplan-Meier method was used to analyze the prognosis, and the Log rank test was used to determine the difference. The correlation between the two variables was tested by Spearman correlation analysis. Wilcoxon test was used to analyze the differences between high- and low-risk groups. The results of the above statistical analysis were considered significant at p < 0.05. Statistical analyses were performed using R software (version 4.1.2).
RESULTS
Molecular Characterization of Pyroptosis-Related Genes and Identification of Pyroptosis-Related lncRNAs in Bladder Cancer
We extracted the expression data of 33 PR genes and analyzed the differences in the expression between normal and tumor tissues. We found that ELANE, IL6, NLRP1 and NLRP3 had a low differential expression in BLCA; however, AIM2, CASP3, CASP5, CASP6, CASP8, GPX4, GSDMB, GSDMD, NLRP2, NLRP7, PLCG1 and PYCARD had a high differential expression in BLCA (Figure 1A). The univariate Cox regression analysis results showed that GSDMB, CASP9, AIM2, CASP6, CASP8, CASP1 and GSDMD were significantly correlated with the prognosis and were protective factors (Figure 1B). The copy number variation analysis results showed that the copy number changes were consistent with their expression (Figure 1C), with the main copy number changes of AIM2, GSDMC, GSDMD, NLRP7 and NLRP2 showing amplication (gain), and these genes were also highly expressed in BLCA. A mutation analysis identified the three genes (SCAF11, NLRP2 and NLRP7) with the highest mutation rates (Figure 1D).
[image: Figure 1]FIGURE 1 | An analysis of the molecular characteristics of PR genes in BLCA. (A), An expression analysis of PR genes in tumor and normal tissues p < 0.05(*), p < 0.01(**) and p < 0.001(***). (B), Co-expression and univariate Cox regression analyses of PR genes in BLCA. (C) CNV analysis of PR genes in BLCA. (D) Mutation frequency analysis of PR genes in BLCA. (E) Kaplan-Meier survival analysis of GSDMB in BLCA. (F) Kaplan-Meier survival analysis of GSDMD in BLCA.
To clarify the relationships between the roles of pyroptosis genes, we performed a PPI network analysis. We found that PYCARD had the most network nodes, suggesting a possible crucial regulatory role of PYCARD in BLCA (Supplementary Figures S1A-S1B). A Kaplan-Meier survival analysis showed that the expression of GSDMB and GSDMD was significantly correlated with the survival of patients, and the prognosis of patients with a high expression was better than that of patients with a low expression (Figures 1E,F).
According to the criteria |correlation coefficient| > 0.4 and p < 0.01, a total of 812 PR lncRNAs were identified from the TCGA BLCA expression profile data, and the co-expression network of PR genes/lncRNAs was plotted (Supplementary Figure S1C). The prognosis-related PR lncRNAs were screened using a univariate Cox regression analysis, and 194 prognosis-related PR lncRNAs were obtained (Supplementary Figure S1D). These prognosis-related PR lncRNAs were identified for subsequent research.
Results of Consistent Clustering Analysis of BLCA Based on Pyroptosis-Related lncRNAs
A consensus clustering algorithm was used to classify groups of BLCA patients based on the expression of prognosis-related PR lncRNAs. The k = 2-9 cumulative distribution function (CDF) representing the clustering counts. k = 2 was determined as the optimal clustering parameter based on the similarity of the expression of prognosis-related PR lncRNAs and the ratio of the fuzzy clustering metric. The 407 BLCA patients with complete survival information were divided into 2 clusters: cluster 1 (n = 122) and cluster 2 (n = 285) (Figure 2A; Supplementary Table S3).
[image: Figure 2]FIGURE 2 | Consistent clustering analysis based on PR lncRNA of BLCA. (A), The TCGA BLCA cohort divided into two clusters at k = 2. (B), An analysis of the relationship between clusters of BLCA and immune cell infiltration. (C) Kaplan-Meier survival analysis of patients with two clusters of BLCA. (D) Gene set enrichment analysis (GSEA) predicted potential functions and pathways between the two clusters. (E-M), Expression analysis of immune checkpoint genes in two clusters of BLCA. p < 0.05(*), p < 0.01(**) and p < 0.001(***).
The infiltration level of 23 immune cell subtypes in each sample of BLCA was calculated using the CIBERSORT algorithm. The correlation analysis results between BLCA subtypes and infiltration level of immune cells showed significant differences in T cells CD4+ memory activated, T cells regulatory (Tregs), Plasma cells, Macrophages M1 and Neutrophils between different clusters (p < 0.05, Figure 2B). The overall survival of both clusters was calculated by the Kaplan-Meier method, and cluster one had a better prognosis than cluster 2 (p = 0.002, Figure 2C). In the GSEA analysis, we used FDR <0.05 as a filter and found that mainly the following pathways were activated between the two clusters: cell adhesion molecules cams, cell cycle, complement and coagulation cascades, cytokine-cytokine receptor interaction, DNA replication, ECM receptor interaction, focal adhesion and the p53 signaling pathway (Figure 2D).
In addition, we also analyzed the expression of ICGs among different clusters. The expression of all ICGs in cluster two was significantly higher than in cluster 1 (Figures 2E-M). It means that patients in cluster two are more likely to benefit from immunotargeted therapy.
Development of a PR lncRNA Signature
We then evaluated the reliability of PR lncRNAs for predicting the prognosis of patients. The BLCA patients were randomly divided into training (n = 204) and testing groups (n = 203). Eight significant lncRNAs were identified in the training group using a LASSO regression analysis: AC021321.1, LINC00426, STAG3L5P-PVRIG2P-PILRB, SNHG16, NR2F2-AS1, AC068196.1, RBMS3-AS3 and AC104825.1. The corresponding coefficient for each lncRNA was then obtained (Figures 3A,B). Risk scores were calculated for the training, testing and entire groups, as follows:
[image: Figure 3]FIGURE 3 | Construction of the PR lncRNA signature in the training group. (A-B), The adjustment parameter (λ) selected in the LASSO model was cross-validated by a factor of 10 of the minimum criterion. (C), The survival status and lncRNA expression heat map. (D), An analysis of the overall survival of high- and low-risk patients in the training group. (E), ROC curves of sensitivity and specificity of the signature for predicting the prognosis.
Risk score = -0.006334916 × expr (AC021321.1) - 0.123481702 × expr (LINC00426) - 0.095912859 × expr (STAG3L5P-PVRIG2P-PILRB) + 0.0163094 × expr (SNHG16) + 0.835268684 × expr (NR2F2-AS1) - 1.751229658 × expr (AC068196.1) + 0.095237679 × expr (RBMS3-AS3) - 0.042537256 × expr (AC104825.1).
The lncRNAs with positive coefficients in the formula are risk factors (SNHG16, NR2F2-AS1 and RBMS3-AS3), while the lncRNAs with negative coefficients are protective factors (AC021321.1, LINC00426, STAG3L5P-PVRIG2P-PILRB, AC068196.1 and AC104825.1).
The training group’s median risk score (0.8531) was used as the cut-off value, and patients were identified as low- and high-risk patients based on this cut-off value. The results in Figure 3C revealed that the patients with a high risk might have a poor prognosis. The OS analysis of the two groups showed that the OS of the high-risk group was significantly lower than that of the low-risk group (p < 0.001, Figure 3D). We used a time-dependent ROC curve to test the sensitivity and specificity of the diagnostic risk characteristics. In the training group, the AUC for predicting the patient survival at 1 year was 0.777, the AUC for predicting the survival at 3 years was 0.764, and the AUC for predicting the survival at 5 years was 0.767 (Figure 3E).
Validation of the Signature in Other Groups
We then validated the predictive efficacy of the eight-PR-lncRNA signature in the testing and entire groups. The patients in these two groups were identified as high- and low-risk patients using the same methods. Figure 4A and Figure 4B show the relationship between the risk score and survival status in the two groups, respectively, and all results were consistent with the training group. Figures 4C-D show the prognostic differences between the high- and low-risk patients in the testing and entire groups, respectively. These results were also consistent with the training group. The overall survival of the high-risk group was significantly lower than that in the low-risk group (p < 0.001). The time-dependent ROC curve in the testing group is shown in Figure 4E, and the time-dependent ROC curve in the entire group is shown in Figure 4F; all of them obtained an ideal AUC value.
[image: Figure 4]FIGURE 4 | Performance validation of the eight-PR-lncRNA signature. (A), A heat map of the survival status and lncRNA expression in high- and low-risk patients in the testing group. (B), A heat map of the survival status and lncRNA expression in high- and low-risk patients in the entire group. (C), An analysis of the overall survival of high- and low-risk patients in the testing group. (D), An analysis of the overall survival of high- and low-risk patients in the entire group. (E), An assessment of the sensitivity and specificity of the prognostic prediction of the eight-PR-lncRNA signature in the testing group. (F), An assessment of the sensitivity and specificity of the prognostic prediction of the eight-PR-lncRNA signature in the entire group.
We used a PCA analysis to examine the distribution patterns of the eight PR lncRNAs based on the expression profiles of all BLCA patients. The PCA analysis results suggested that the eight-PR-lncRNA signature could divide BLCA patients into high- and low-risk populations (Figures 5A–C).
[image: Figure 5]FIGURE 5 | PCA analysis of the different distribution patterns of eight PR lncRNAs on genome-wide expression profiles. (A), Training cohort. (B), Testing cohort. (C), Entire cohort.
Correlation Between the Eight-PR-lncRNA Signature and Clinical Features
The univariate and multivariate Cox analyses were used to analyze the performance of the signature in the training, testing and entire groups to identify independent factors for the overall survival (OS). The results of the three groups showed that risk was an independent factor associated with a poor prognosis in BLCA patients (p < 0.05; Figures 6A–F). The same analysis was performed in the entire group. The heat map visualized the differences in the expression of eight selected PR lncRNAs between the high- and low-risk groups and annotated clinical information (Figure 6G). Cluster two had a significantly higher risk than cluster 1 (p < 0.001, Figure 6H), consistent with the previous OS analysis results. In addition, the risk score of a high grade for BLCA was significantly higher than that of low-grade disease (Figure 6I). The same results were also obtained for the stage (p < 0.001, Figure 6J), T stage (p < 0.001, Figure 6L) and N stage (p = 0.0015, Figure 6M). However, there was no significant difference between the high- and low-ImmuneScore groups (p = 0.051, Figure 6K).
[image: Figure 6]FIGURE 6 | An independent prognostic analysis of the eight-PR-lncRNA signature and a correlation analysis between the risk score and clinical characteristics. (A) Univariate Cox regression analysis in the training group. (B), Multivariate Cox regression analysis in the training group. (C) Univariate Cox regression analysis in the testing group. (D) Multivariate Cox regression analysis in the testing group. (E) Univariate Cox regression analysis in the entire group. (F) Multivariate Cox regression analysis in the entire group. (G) Heat map of the lncRNA expression and clinicopathological features in high- and low-risk patients. p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***). (H), The distribution of risk score in the two groups of consistent clustering results. (I-J), The distribution of risk score by grade and stage of BLCA. (K), The distribution of risk score in the ImmuneScore-high and ImmuneScore-low groups. (L), The distribution of risk score by T stage. (M), The distribution of risk score by N stage.
A prognostic analysis of high- and low-risk patients in specific clinical characteristics subgroups (age, gender, grade, stage, T, M and N) showed that the prognosis of high-risk patients was poor in all clinical characteristics subgroups, except for the low-grade and M1 subgroups (Figure 7).
[image: Figure 7]FIGURE 7 | Prognostic analysis of high- and low-risk patients in different clinical characteristics subgroups. (A), Age ≥ 70. (B), Age < 70. (C), Female. (D), Male. (E), High grade. (F), M0. (G), N0-N1. (H), N2-N3. (I), Stage I-II. (J), Stage III-IV. (K), T0-T2. (L), T3-T4.
Correlation Between Risk Score and Tumor Immunity
To understand the relationship between the risk score and the TIME of BLCA, we analyzed the correlation between the risk score and the infiltration level of 23 immune cell subtypes, with the results shown in Figure 8A. Interestingly, there was a degree of heterogeneity in the levels of B-cell, T-cell, NK-cell and Dendritic cell infiltration between the high-risk and low-risk groups. We also examined the correlation between the risk score and the expression of ICGs, and the results showed that the risk score was significantly positively correlated with multiple ICGs (p < 0.05; Figures 8B–J).
[image: Figure 8]FIGURE 8 | Correlation between risk score and immune cell infiltration and ICGs (A), Correlation analysis between risk score and immune cell infiltration. (B-J), Correlation analysis between the risk score and immune checkpoint genes.
Expression and Function Analysis of the Eight lncRNAs in the Signature
We also evaluated the expression of eight lncRNAs in BLCA. The results showed that the expression of LINC00426, NR2F2-AS1, RBMS3-AS3 and AC104825.1 in BLCA tissue was lower than that in normal tissues, while the expression of AC021321.1, STAG3L5P-PVRIG2P-PILRB, SNHG16 and AC068196.1 in BLCA tissue was higher than that in normal tissues (Figures 9A,B). Figure 9C demonstrates the regulatory relationship between these lncRNAs and PR genes. In addition, we also analyzed the expression correlation between the ICGs and lncRNAs in the signature. We found that AC021321.1, AC104825.1, AC068196.1 had a negative correlation with all ICGs, while LINC00426 had a positive correlation with all ICGs (p < 0.05; Figure 9D). To understand the possible function and mechanism of these eight lncRNAs in BLCA, we used a co-expression method to find the protein-coding genes (PCGs) of these eight lncRNAs, and the screening criteria were |Pearson correlation coefficient| > 0.4 and p < 0.001 (Gao et al., 2019). A total of 3141 PCGs were obtained, and these PCGs were submitted to the functional enrichment analysis using the DAVID database with FDR <0.05. GO enrichment results showed that these PCGs were mainly enriched in human immune response functions, such as the immune response (BP), inflammatory response (BP), T cell costimulation, regulation of immune response (BP), MHC class II protein complex (CC), T cell receptor complex (CC), immunological synapse (CC), cytokine receptor activity (MF) and MHC class II receptor activity (MF) (Figure 9E). The KEGG pathway enrichment analysis showed that these genes were also mainly enriched in immunomodulatory pathways, such as cytokine−cytokine receptor interaction, T cell receptor signaling pathway, B cell receptor signaling pathway and natural killer cell mediated cytotoxicity (Figure 9F).
[image: Figure 9]FIGURE 9 | Expression and functional analyses of lncRNAs in the signature. (A,B), An expression analysis of the eight lncRNAs in BLCA tissues and normal tissues p < 0.05(*), p < 0.01(**) and p < 0.001(***). (C), The regulatory relationship between the lncRNAs in the signature and PR genes. (D), An analysis of the correlation between the immune checkpoint genes and the eight lncRNA expression (dotted frame). (E), Results of a GO enrichment analysis of the protein-coding genes (PCGs). (F), Results of a KEGG analysis of PCGs.
Results of a Functional Analysis Between High- and Low-Risk Groups and Construction of a Nomogram
We also analyzed the functions and pathways involved in the DEGs in high- and low-risk groups. According to the screening criteria |logFC| > 1 and FDR <0.05, a total of 1017 DEGs were screened. Immune-related functions were found in the GO analysis results, including inflammatory response (BP) (Supplementary Figure S2A), and the KEGG enrichment analysis also identified immune-related pathways, such as cytokine-cytokine receptor interaction (Supplementary Figure S2B).
To facilitate the clinical use of our signature to predict the prognosis of BLCA patients, we also developed a nomogram including risk classification and clinical risk characteristics to predict the one-, three- and 5-year OS (Figure 10A). The risk scores of the prognostic signature had superior predictive power to other clinical factors. The calibration plots showed that the observation and prediction rates of the OS had ideal consistency (Figures 10B–D).
[image: Figure 10]FIGURE 10 | Construction of a nomogram predicting the one-, three- and 5-year overall survival. (A), A nomogram of the probability of predicting prognosis. (B-D), The calibration plot of the nomogram.
DISCUSSION
BLCA is a tumor of the urinary system with a high incidence. Due to its complex pathogenesis, there are several different genetic subtypes of tumors, and these subtypes may have different therapeutic responses to the same treatment. If not correctly treated, BLCA can have a high morbidity and mortality (Kamat et al., 2016).
Cell death is a common topic in life science. Tumor cells have the ability to escape cell death contributes to the origin of tumors. This ability also plays a crucial role in acquiring treatment resistance, developing recurrence and metastasizing (Hanahan and Weinberg, 2011). Pyroptosis is a type of programmed cell death in inflammation mediated by GSDM (Lu et al., 2021). Our findings found that patients with high GSDMD and GSDMB expression had a better prognosis, and the results of the GSDMD analysis were consistent with previously published studies (Fang et al., 2020). However, the better prognosis of patients with high GSDMB expression seems to contradict previous studies finding that high expression of this gene in bladder cancer promotes tumor cell proliferation (He et al., 2021). Currently, there is controversy regarding the role of GSDMB in tumors. GSDMB is also involved in pyroptosis, it can promote atypical pyroptosis by enhancing the activity of caspase-4 and has the function of inhibiting the proliferation of tumor cells (Li et al., 2020). It is still not clear whether the GSDMB protein cleaved by caspase-3/-6/-7 is involved in pyroptosis. Our results further confirm that the role of GSDMB in tumorigenesis is controversial, indicating that GSDMB has great research value in future research.
Human genome sequencing data has shown that most RNA transcripts of non-protein-coding origin are transcribed from more than 90% of the human genome (Mattick and Makunin, 2006). With further research, more studies have shown that lncRNAs also play an essential role in the development and malignant progression of BLCA (Li et al., 2020). It has been reported that lncRNAs are involved in the pathological processes of various diseases through direct or indirect actions on proteins related to the pyroptosis signaling pathway (He et al., 2020). The release of cytokines produced by pyroptosis changes the TIME and promotes the growth of tumors by evading immune surveillance (Loveless et al., 2021). However, at present, there are few PR lncRNA signatures have been developed for BLCA.
We identified 812 PR lncRNAs based on the expression of 33 PR genes, and 194 prognosis-related PR lncRNAs were screened by a univariate Cox regression analysis. The BLCA cohort was then divided into two clusters based on the prognosis-related PR lncRNAs expression using consistent clustering. We found that the degree of infiltration of some immune cells differed significantly among clusters. The expression of the ICGs in cluster two was considerably higher than that in cluster 1, suggesting that patients in cluster two were more likely to have tumor immune escape and benefit from ICI therapy. In addition, the OS of cluster one was better than that of cluster 2, and the tumor grade of cluster one was also lower than that of cluster 2. The results of a GSEA analysis suggested that the following pathways were related to tumor development and metastasis: cell adhesion molecules cams (Cohen et al., 1997; Zhou et al., 2021), cell cycle (Li et al., 2021), cytokine-cytokine receptor interaction (Tang et al., 2020), focal adhesion (Tong et al., 2022) and p53 signaling pathway (Jiao et al., 2020). These results suggest a potential relationship between PR lncRNAs and the progression of BLCA. Consistent cluster analyses based on the PR lncRNA expression may help improve the efficacy of immunotherapy for BLCA.
We next applied LASSO regression to the training group to construct eight-PR-lncRNA signature (including AC021321.1, LINC00426, STAG3L5P-PVRIG2P-PILRB, SNHG16, NR2F2-AS1, AC068196.1, RBMS3-AS3 and AC104825.1). LncRNAs play an integral role in human epigenetic regulatory mechanisms. They participate in biological processes through epigenetic, transcriptional, post-transcriptional and translation regulatory targets, including cell growth, metastasis and apoptosis (Mirzaei et al., 2021, 2022). Their dysfunction is closely related to tumorigenesis (Han et al., 2020; Shigeyasu et al., 2020). Previous studies have shown that LINC00426 and SNHG16 can promote tumor development and participate in the regulation of TIME (Chen et al., 2020; Tao et al., 2020). LINC00426 and SNHG16 play an important role in the occurrence and development of tumors (Li et al., 2020; Wan et al., 2022). NR2F2-AS1 can down-regulate the expression of PDCD4 and inhibit the development of gastric cancer through competitive binding with miR-320b, it can also inhibit miR-494 methylation to regulate oral squamous cell carcinoma cells proliferation (Liang et al., 2022; Luo et al., 2022). Overexpression of RBMS3-AS3 inhibits cell proliferation, migration, invasion, angiogenesis and tumorigenicity of prostate cancer by up-regulating VASH1 (Jiang et al., 2020). The published evidence mentioned above suggests that these PR lncRNAs we identified are indeed associated with tumor development. While other lncRNAs AC021321.1, STAG3L5P-PVRIG2P-PILRB, AC068196.1 and AC104825.1 in our signature have not been reported in any published tumor studies, all were studied for the first time in our study. Our findings may provide evidence for future studies of these lncRNAs.
In the verification group, the signature also showed the same predictive performance as the training group. The OS analysis results indicated that an eight-PR-lncRNA signature could predict the survival rate of BLCA patients to some extent. We also found that risk score from eight-PR-lncRNA signature was an independent prognosis factor for BLCA patients. Patients with high-grade disease had a higher risk score than those with low-grade disease, and the same results were obtained between clusters 1 and 2, which was consistent with the conclusion that the OS of cluster one was better than that of cluster 2. The results of the risk score and ICGs correlation analysis suggested that patients with a high risk were more likely to experience tumor immune escape and benefit more from ICI therapy than others (Gao et al., 2020). Our results were consistent with the published results that pyroptosis can also increase the efficiency of tumor immunotherapy by recruiting immune cells and activating the immune system, its anti-tumor effect is also closely related to multiple ICGs (such as PD-1 or PD-L1) (Li et al., 2021).
To understand the possible function of these eight lncRNAs in BLCA, we used the co-expression method to find the co-expressed PCGs of the eight lncRNAs. The results of PCGs functional enrichment suggested that these eight lncRNAs may have immunomodulatory functions. Similarly, the enrichment analysis of genes that were differentially expressed between the high- and low-risk groups also found immune-related processes and pathways, such as inflammatory response (BP) and cytokine-cytokine receptor interaction (KEGG) (Bao and Cao, 2016). Furthermore, we also developed a nomogram containing risk classification and clinical risk characteristics to facilitate the clinical development and utilization of our findings (Iasonos et al., 2008). All these findings establish a close association between PR lncRNAs and the prognosis of BLCA patients as well as changes in TIME. The shortcoming of this study was the lack of lncRNA expression data from other sources for external validation, this is because we cannot find a suitable dataset containing these eight lncRNAs probes in other source datasets. Therefore, further external validation is needed to verify the reliability of the signature, and experimental validation of the role of these lncRNAs in BLCA cells should also be performed in the future.
CONCLUSIONS
Our study systematically evaluated the molecular biological characteristics and prognostic value of PR genes/lncRNAs in BLCA and identified an eight-PR-lncRNA signature (including AC021321.1, LINC00426, STAG3L5P-PVRIG2P-PILRB, SNHG16, NR2F2-AS1, AC068196.1, RBMS3-AS3 and AC104825.1) related to the prognosis of BLCA patients. We also analyzed the role of this signature in the TIME and its potential regulatory mechanisms, which provides an essential basis for future studies concerning the relationship between PR lncRNAs and BLCA immunity. Our findings will also help identify novel prognostic biomarkers and therapeutic targets for BLCA.
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Non-muscle-invasive bladder cancer (NMIBC) accounts for more than 70% of urothelial cancer. More than half of NMIBC patients experience recurrence, progression, or metastasis, which essentially reduces life quality and survival time. Identifying the high-risk patients prone to progression remains the primary concern of risk management of NMIBC. In this study, we included 1370 NMIBC transcripts data from nine public datasets, identified nine tumor-infiltrating marker cells highly related to the survival of NMIBC, quantified the cells’ proportion by self-defined differentially expressed signature genes, and established a robust immuno-prognostic model dividing NMIBC patients into low-risk versus high-risk progression groups. Our model implies that the loss of crosstalk between tumor cells and adjacent normal epithelium, along with enriched cell proliferation signals, may facilitate tumor progression. Thus, evaluating tumor progression should consider various components in the tumor immune microenvironment instead of the single marker in a single dimension. Moreover, we also appeal to the necessity of using appropriate meta-analysis methods to integrate the evidence from multiple sources in the feature selection step from large-scale heterogeneous omics data such as our study.
Keywords: non-muscle-invasive bladder cancer, tumor immune microenvironment, tumor progression, collagen family, cancer-associated fibroblasts
INTRODUCTION
Bladder cancer contributed to 573,278 new cases and 212,536 deaths worldwide (Sung et al., 2021) in 2020. It is one of the cancers with the most longitudinal costs and consumed resources. Approximately 70–75% of newly diagnosed primary bladder cancers are non-muscle-invasive bladder cancer (NMIBC) (Lenis et al., 2020; Ottley et al., 2020). Up to 21–53% of them eventually progress to life-threatening muscle-invasive bladder cancer (MIBC) (Cookson et al., 1997; van den Bosch and Alfred Witjes, 2011), depending on the stage and grade. Identifying the NMIBC patients with a high progression potential at the early treatment stage remains the primary object of bladder cancer clinical practice.
Several risk classification frameworks have been suggested and applied in NMIBC risk management. European Association of Urology (EAU) prognostic factor risk groups updated the EAU NMIBC Guidelines Panel in 2021 by dividing NMIBC patients into four risk groups: low-, intermediate-, high-, and a new, very high-risk group, with the probability of progression at 5-year of <1%, 3.6–4.9%, 9.6–11%, and >40% (Sylvester et al., 2021). Clinicopathological features employed in the panel included: tumor stage, the World Health Organization (WHO) 1973 or 2004/2016 grade, concomitant carcinoma in situ (CIS or Tis), number of tumors, tumor size, and age. American Urological Association (AUA) and Society of Urologic Oncology (SUO) also amended the AUA/SUO Joint Guideline in 2020 by classifying NMIBC patients into low-, intermediate-, and high-risk groups (Chang et al., 2016; Chang et al., 2020). Apart from the clinical features used in the EAU Panel, AUA risk stratification also took variant histology, preceding recurrent disease, Bacillus Calmette-Guerin (BCG) treatment failure, and involvement of prostatic urethral into consideration. Although such frameworks essentially help the risk management of NMIBC patients and are readily used in bedside patient care, a more precise solution is always in need.
To fulfill the need, molecular subtyping and gene expression modeling based on the omics analysis have become mainstream in clinical decision support scenarios like diagnosis, treatment response prediction, and prognostic stratification. The UROMOL project, a European multicenter prospective study of NMIBC spanning from 2008 to date, identified high-risk class 2a tumors at the transcriptomic level and high-risk class GC3 tumors at the genomic level (Lindskrog et al., 2021). They also revealed that higher immune cell infiltration strongly correlated with lower recurrence rates. However, the association between immune cell infiltration and cancer progression remained unknown. Since there were too few progression events for evaluating its effect on progression-free survival (PFS), Zheng and colleagues developed an immune prognostic signature (IPS) based on 14 overall survival (OS) associated immune genes. Then they proved that high-risk patients assessed by the IPS score had worse OS than those with low-risk scores in validation datasets (Zheng et al., 2020). Ottley et al. studied the correlations between 11 antibodies relating to molecular subtypes or epithelial-to-mesenchymal transition (EMT) and prognosis in high-risk non-muscle-invasive (HGT1) bladder cancer. They found that both stromal tumor-infiltrating lymphocyte (sTIL) levels in noninvasive papillary urothelial carcinoma areas and increased expression of the luminal markers FOXA1 and SCUBE2 are significantly associated with better disease-free survival (DFS), but no EMT markers showed any trend. They suggested that molecular subtype markers, rather than EMT markers, might be preferable to study biomarkers of HGT1 urothelial carcinoma (Ottley et al., 2020). Rouanne et al. focused on stromal lymphocyte infiltration by evaluating the percentage of stromal area infiltrated by mononuclear inflammatory cells over the total intratumoral stromal area (Rouanne et al., 2019). Similarly, a high density of stromal TILs was associated with the tumor invasion depth in pT1 NMIBC, implying tumor aggressiveness was associated with an increased adaptive immune response, but no association between the level of TILs and survival outcome was observed. A clear clue has shown that the activated tumor immune microenvironment (TIME) could prevent NMIBC tumors from progressing. However, additional integration and refinement of these findings are required to provide a robust immuno-prognostic model for predicting progression in NMIBC patients.
In this study, we reported an integrated analysis using a total of 1370 transcriptome data of NMIBC patients from nine public datasets. Candidate tumor-infiltrating immune cells relating to the well-established prognostic risk factors and survival were filtered by a non-weighted voting system of six deconvolution methods and the survival analysis. Differentially expressed genes (DEGs) representing the candidate immune cells were identified. We used the selected DEGs as predefined signature genes in the single-sample gene set enrichment analysis (ssGSEA) to achieve unbiased quantification of the tumor-infiltrating immune cells. Finally, we developed a robust immune-prognostic model based on the immune cell matrix for evaluating the progression of NMIBC patients.
MATERIALS AND METHODS
Transcriptomic Profiles Analyzed
We searched for public datasets using combined keywords of “NMIBC”, “expression profile”, and “human” through GEO (Barrett et al., 2013), ArrayExpress (Athar et al., 2019), and PubMed® databases. Exclusion criteria of ineligible datasets were as follows: 1) datasets lacking cancer grade or TNM stage metadata; 2) datasets with only expression profiles of muscle-invasive bladder cancer (MIBC) samples; 3) datasets providing only processed data with negative expression values. Then we de-duplicated the same samples collected from multiple sources. Notably, our study allowed for the inclusion of datasets sequenced by RNA-Seq and microarray platforms. We also allowed sampling of tumors from both primary and recurrent lesions.
Deconvolution of Tumor-Infiltrating Immune Cells
We employed six in silico deconvolution methods to estimate cell composition in 1370 human transcriptome data. The xCell (Aran et al., 2017) performed an enrichment analysis of 64 immune and stromal cell types, illustrating whether a particular type of cell was present. The immunedeconv (Sturm et al., 2019), an integrated deconvolution tool, implemented the other four cell-type quantification algorithms, including quanTIseq (Finotello et al., 2019), TIMER (Li et al., 2016), MCPCounter (Becht et al., 2016), and EPIC (Racle et al., 2017). Moreover, ESTIMATE (Yoshihara et al., 2013) was used to estimate combined immune, stromal, and ESTIMATE scores without giving any single cell-type proportion. In summary, we assessed 64 tumor-infiltrating immune cell scores and six immune infiltration biomarker scores for each processed sample. Names of the cells and biomarkers with their corresponding alias in the six deconvolution methods are provided in Supplementary Table S3.
Correlations Between Clinicopathological Features and Immune Cells
To avoid methodological bias, we adopted an unweighted voting system to discover tumor-infiltrating immune cells significantly related to the well-established prognostic risk factors of NMIBC patients. In datasets providing age, sex, stage, grade, tumor size, European Organisation for Research and Treatment of Cancer (EORTC) risk score, and CIS in disease course status data, we compared the distribution of 64 tumor-infiltrating cell deconvolution scores across different levels of the risk factors. Student’s t-test and box plots were performed by the “ggplot2” (Wickham, 2016) package of R language (R Core Team, 2021). A cell type in a specific dataset deconvoluted by a particular algorithm with a false discovery rate (FDR) adjusted p-value of student’s t-test in more than two levels less than 0.05 was counted as one vote for the cell. All votes were categorized into 64 cell types to reveal the tumor immune microenvironment that would predict survival (Supplementary Table S4).
Identification of Differentially Expressed Genes of Candidate Immune Cells
The “limma” (Ritchie et al., 2015) package of R language (R Core Team, 2021) was used to identify differentially expressed genes (DEGs) of each candidate immune cell type. Log2-transformed fold changes (log2FC), p-values, and FDR adjusted p-values of every “source dataset—deconvolution method—immune cell—gene name” sets are provided in Supplementary Table S5. Only genes with absolute log2FCs larger than one and FDR p-values less than 0.05 were defined as DEGs for corresponding cell types. Furthermore, we defined candidate “ cell-gene” combinations by the wFisher (Yoon et al., 2021) p-value in all evaluable sets, along with the number of datasets in which the combination was evaluable (Supplementary Table S6). The gene with a mean absolute log2FC larger than 0.2 for NK cells and 0.3 for other cells, a wFisher combined p-value less than 1.151e-6 (0.05/number of genes 43,440), and identified as significant DEGs in more than three databases were defined as representative gene of the immune cell. The “metapro” (Yoon et al., 2021) package in R (R Core Team, 2021) was used to calculate the combined wFisher p values.
Identification of Immune-Cell-Specific DEGs Related to Survival
Faced with dozens to hundreds of DEGs representing one immune cell type, we further narrowed the list by conducting survival analyses in the Kaplan-Meier curve and the forest plot to remove genes that contribute less to survival risk. Divided by the median of candidate genes’ expression, we compared the PFS of E-MTAB-4321, DFS of GSE32894, and OS of GSE13507 in low expressed versus high expressed groups (results provided in Supplementary Table S7). The Kaplan-Meier curve was fitted by the “survfit” function and visualized by the “ggsurvplot” function. The forest plot was fitted by the “coxph” function and visualized by the “ggforest” function. DEGs with log-rank p-values of both analyses less than 0.05 and hazard ratios (HRs) of Cox’s proportional hazards models larger than 2.5 or less than 0.5 were defined as the final biomarker genes of the candidate immune cells. All survival analyses were implemented by the “survival” package (Therneau and Grambsch, 2000; Therneau, 2021) and visualized by the “ggplot2” (Wickham, 2016, 2) package in R (R Core Team, 2021). The “ComplexHeatmap” (Gu et al., 2016) package in R (R Core Team, 2021) was used to generate expression heatmaps of the final gene list.
Gene Ontology and Pathway Enrichment of Candidate DEGs
We conducted Gene Ontology (GO) (Ashburner et al., 2000; Gene Ontology Consortium, 2021) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2021) pathway enrichment analyses of the selected immune-cell-specific DEGs by the “clusterProfiler” (Yu et al., 2012; Wu et al., 2021) package in R (R Core Team, 2021).
Calculation of ssGSEA and Z-Score Based Cell Enrichment Scores
Inspired by previous studies (Barbie et al., 2009; Motzer et al., 2020), we employed two methods to evaluate the nine candidate immune cells using gene lists generated by previous steps. The ssGSEA analysis (Subramanian et al., 2005) was performed on the logged expression matrix by the “GSVA” (Hänzelmann et al., 2013) package in R (R Core Team, 2021), and z-score statistics were performed on the non-logged expression matrix by in-house scripts.
Correlations Between Tumor-Infiltrating Immune Cell Score and Survival
Patients in each dataset were divided by the median of enriched immune cell scores into high and low immune infiltrated groups. Survival analyses and log-rank tests of PFS, DFS, and OS in high versus low immune cell infiltrated groups were conducted by the “survfit” function of the “survival” (Therneau and Grambsch, 2000; Therneau, 2021) package. Kaplan-Meier curves were visualized by the “ggsurvplot” function of the “ggplot2” (Wickham, 2016, 2) package in R (R Core Team, 2021). p values of both analyses and hazard ratios of high infiltrated groups are provided in Supplementary Table S8.
Establishment of the Immuno-Prognostic Model
Using 454 samples from E-MTAB-4321 with evaluable PFS records, we randomly re-sampled 5000 times to build training and test sets in a 1:1 ratio. In each sampling scenario, we established a ridge regression model with an estimated enrichment score matrix of the nine tumor-infiltrating immune cells to predict the risk of progression. In each modeling process, tenfold cross-validation was used to select the optimal fitted model. The prediction performance of the models was evaluated by areas under curves (AUCs) of receiver operating characteristic curves (ROCs) in training and test sets. In R language (R Core Team, 2021), the “glmnet” (Friedman et al., 2010) package was used to build the models, and the “pROC” (Robin et al., 2011) package was used to visualize the results.
Statistical Analysis
p-Values less than 0.05 were considered significant in this study unless otherwise specified.
RESULTS
Summary of Datasets and Basic Workflow
The study design and workflow to develop our model are illustrated in Figure 1. After keyword searching and manual refinement, we brought nine datasets into this study, including 1370 human transcriptome profiles spanning normal bladder tissues, Ta, T1, and CIS urothelial cancers. Metadata of all the datasets and clinicopathological information of all the samples are provided in Table 1; Supplementary Tables S1,S2.
[image: Figure 1]FIGURE 1 | Overview of study design.
TABLE 1 | Demographic and disease characteristics of the 1,370 samples included in this study. Data are median (total number of assessable samples; range; IQR) or n (%). IQR: interquartile range. PFS: progression-free survival. DFS: disease-free survival. OS: overall survival.
[image: Table 1]With the 1370 transcriptomic profiles, we initially screened nine candidate immune cells associated with the well-established NMIBC prognostic risk factors and then identified the differentially expressed genes (DEGs) representing these cells by significance and differentiation. Using the DEGs’ expression matrix, we estimated the proportions of tumor infiltrated immune cells by the gene set enrichment analysis. Using the estimated immune cell score matrix, we established the immune-prognostic model by repeated random sampling, ridge regression modeling, and optimal cutoff confirming.
Tumor-Infiltrating Immune Cells Related to Key NMIBC Prognostic Factors
Several risk factors have been proven to be significantly related to the prognosis of NMIBC patients (Liu et al., 2015; Douglas et al., 2021). Tumor size greater than 3 cm, multifocal lesions, concurrent CIS, more advanced cancer stage, higher histological grade, higher EORTC risk score, and higher frequency of prior recurrences were known risks implying higher rates of recurrence or progression. We first conducted a comparative analysis between these risk factors and 64 deconvoluted tumor-infiltrating cell types in each dataset, then employed an unweighted voting schema to identify top cell types that might contribute to NMIBC prognosis. As shown in Figure 2A, the top voted and most significant tumor-infiltrating cells included cancer-associated fibroblasts (CAFs), B cells, CD4+ T cells, CD8+ T cells, natural killer (NK) cells, dendritic cells (DCs), macrophages, neutrophils, and endothelial cells. Since xCell is typically used to determine the presence or absence of a specific cell type, rather than to calculate the cell proportion, we only used the sum of votes from the other five methods to filter the most relevant cell types (Supplementary Table S4). CD4+ T cells ranked first, being voted in five, three, and six of nine eligible datasets by TIMER (Li et al., 2016), quanTIseq (Finotello et al., 2019), and EPIC (Racle et al., 2017), respectively. Followed by CD4+ T cells, B cells, and CAFs.
[image: Figure 2]FIGURE 2 | Identification of progression-risk-related tumor-infiltrating cells and differentially expressed genes representing them. (A) The non-weighted voting results of Student’s t-tests between tumor-infiltrating cells and well-established clinical progression risk factors. Tumor-infiltrating cell scores evaluated by six immune deconvolution methods were used. Only significant results were counted as valid votes shown in the figure. (B) The network of differentially expressed genes (DEGs) with their representing tumor-infiltrating cells. The blue circles refer to cell types. The pink circles refer to selected DEGs. The size of blue circles indicates the number of DEGs. The thickness of lines indicates the negative log2 of wFisher combined p-value of differential expression testing. Only nodes with more than six adjacent neighbors are shown.
Biomarker Genes Representing the Candidate Tumor-Infiltrating Immune Cells
After targeting candidate tumor-infiltrating cells, we wished to ascertain a set of biomarker genes that were representative of the cells and that were also strongly associated with the survival of NMIBC patients. In identifying differentially expressed genes (DEGs) of the nine candidate immune cells, a total of 2757 “cell-DEG” pairs were recognized as repetitive patterns and included in the following analysis (Supplementary Table S6). We then analyzed all 972 nonredundant genes in the 2757 “cell-DEG” pairs with forest plot and Kaplan-Meier (KM) curve survival analyses against PFS in E-MTAB-4321, DFS in GSE32894, and OS in GSE13507 (Figure 2B). After this, we narrowed the list to 149 unique genes as protective or risk factors of PFS or OS in NMIBC patients. These genes with the cells they represented comprised 368 unique “cell-DEG” pairs (Table 2), of which 254 pairs were associated with PFS and 114 pairs with OS (Supplementary Table S7). DCs and CAFs were the top two cell types, with more than sixty percent (92/149, 91/149) of the biomarker genes associated with them (Table 2).
TABLE 2 | List of biomarker genes representing the nine tumor-infiltrating candidate immune cells.
[image: Table 2]The expression of 110 PFS-related and 41 OS-related biomarker DEGs was visualized in Figures 3A,B. All 99 biomarker DEGs of nine candidate tumor-infiltrating immune cells were subjected to KEGG pathway, GO-biological process (BP), GO-cellular component (CC), and GO-molecular function (MF) terms enrichment analyses (Figures 3C–F). As expected, we found strong evidence pointing to the crosstalk between tumor cells and adjacent normal epithelium, represented by focal adhesion and extracellular matrix (ECM)-receptor interaction. Aberration of these pathways would directly affect the steadiness of tumor cells and thereby cause progression. We also found enriched cell proliferation signals like protein digestion and absorption and the PI3K-Akt signaling pathway. They acted either as energy suppliers or as signal transduction factors to trigger or facilitate the cascade of invasive tumor progression. The chemokine signaling pathway, on the other hand, would help to recruit leukocytes to the site of the inflammation area.
[image: Figure 3]FIGURE 3 | Expression heatmaps and functional enrichment analyses of PFS- and OS-related immune cell-specific DEGs. Expression heatmaps of (A) PFS-related and (B) OS-related DEGs. KEGG (C), GO-biological process (D), GO-cellular component (E), and GO-molecular function (F) enrichment of all the selected DEGs.
Enrichment of Tumor-Infiltrating Immune Cell Scores
Since the datasets included in our study differed in their transcriptome profiling technologies, we cautiously practiced the enrichment analyses with the logarithmic matrix of original expression data. 43,440 transcripts in 1,370 samples with and without log2-transformation were used to proceed with ssGSEA and z-score-based immune cell enrichment analyses. With the biomarker DEGs listed in Table 2 as priori-defined sets of immune cell-specific genes, we quantified the infiltration of all nine tumor-infiltrating immune cells in the tumor microenvironment. Enrichment of the cell scores by ssGSEA in all 1370 NMIBC transcriptomes is shown in Figure 4A.
[image: Figure 4]FIGURE 4 | Proportion assessment and prognostic value of the nine candidate tumor-infiltrating cells. (A) Heatmap of candidate cells and clinical features of all the eligible 1,370 samples included in this study. Grade73 and Grade98 refer to the WHO 1973 and WHO 2004/2016 Classification Systems for Urothelial Carcinoma, respectively. (B) Kaplan-Meier curves of univariate Cox regression in low- versus high-infiltrated groups divided by the nine candidate immune or stromal cells.
To assess the nine immune cells’ ability to distinguish NMIBC patients with poor prognosis, we explored correlations between PFS, DFS, and OS with every tumor-infiltrating immune cell score calculated by ssGSEA and z-score methods. The survival analysis (Supplementary Table S8) showed that B cells, DCs, endothelial cells, CAFs, CD4+ T cells, and CD8+ T cells enriched by the ssGSEA method were significantly related to PFS in E-MTAB-4321 (Figure 4B). Macrophages and CD8+ T-cells enriched by the ssGSEA method were significantly related to OS in GSE13507 (Plots not shown). No cell types were significantly related to DFS in GSE32894.
Robust Immuno-Prognostic Model
To achieve a robust prognostic model independent of the heterogeneous clinical information in eligible datasets, we used the score matrix of all nine candidate immune cells to build our model, although only some subsets of the cells were significantly related to PFS or OS. Since the primary goal of this study was to predict prognosis and risk of progression by key immune features, a total of 454 NMIBC samples from E-MTAB-4321 with assessable progression beyond T2 staging and PFS records were used. With the data, we repeatedly built training and test sets by randomly sampling 5000 times with a 1:1 ratio, fitted immune-prognostic models with the ridge regression, determined the optimal model with the minimum lambda, and evaluated the models with AUCs of ROC curves. Although immune cell enrichment score matrices calculated by both ssGSEA and z-score methods were used in building the immuno-prognostic model, only models built by ssGSEA matrices showed generally higher AUCs (data not shown). The formula of the final model was as follows:
Immuno-Prognostic score = - 0.4111588 + 2.5025813 * Bcells_score - 1.8274560 * DC_score + 6.7589250 * Endothelial_score + 2.6983895 * Fibroblasts_score - 0.1725197 * Macrophages_score + 1.0256969 * Neutrophils_score - 1.8221146 * NKcells_score - 6.0485265 * Tcells_CD4+_score—9.4937697 * Tcells_CD8+_score.
We visualized the prediction effect of the optimal model in Figure 5A, the AUCs were 0.827, 0.888, and 0.947 in the training set (n = 228), test set with all the other samples (n = 226), and test set with balanced progression and non-progression patients (n = 30), respectively. The sampling groups of our optimal model are recorded in the last three columns in Supplementary Table S2. The optimal cutoff of the Immuno-Prognostic score dividing low-risk and high-risk patients was 0.109. In Figures 5A,B conspicuous differentiation of PFS (p < 0.0001, log-rank test) was observed in patients with different predicted outcomes. We also expanded our validation of the model in predicting other types of clinical outcomes. The same trend has been observed, but it showed less significance in predicting DFS (p = 0.21, log-rank test) and OS (p = 0.027, log-rank test). Furthermore, to test the correlation between our model and the well-established survival risk factors of NMIBC, we compared distributions of the predicted immuno-prognostic scores against different levels of CIS in the disease course, EORTC risk score, WHO 1973 or 2004/2016 grade, recurrence, sex, tumor stage, and tumor size. All comparisons showed higher immuno-prognostic scores in higher risk levels, but the trends were insignificant in recurrence status and tumor size. In summary, our model could predict the risk to the progression of NMIBC patients by evaluating the tumor-infiltrating microenvironment. The immuno-prognostic score well reflected the degree of progression risk.
[image: Figure 5]FIGURE 5 | Predictive performance of the immuno-prognostic model. (A) The ROC curve to predict PFS in the training set, test set with all the other samples, and test set with balanced progressed and non-progressed samples. (B) The Kaplan-Meier curve to predict PFS, DFS, and OS*. (C) Box plots comparing risk scores assessed by the immuno-prognostic model in different groups of clinical prognostic risk factors. * In the nine eligible datasets, PFS status was assessed in E-MTAB-4321, GSE13507, and GSE32894, while only E-MTAB-4321 provided survival time. DFS status was assessed in GSE32894, GSE13507, and GSE48075, while only GSE32894 provided survival time. OS status was assessed in GSE13507 and E-MTAB-1940, while only GSE13507 provided survival time. As we plotted here, the survival analyses were only applicable to datasets E-MTAB-4321, GSE32894, and GSE13507.
DISCUSSION
With the assumption that cancer progression was associated with immune cell infiltrating, we performed an integrated analysis for developing a robust immuno-prognostic model to evaluate progression risk in NMIBC patients. We identified nine critical tumor-infiltrating cell types: innate immune cells including macrophages, neutrophils, DCs, and NK cells; adaptive immune cells including B cells, CD4+ T cells, and CD8+ T cells; and sentinel cells including CAFs and endothelial cells. The quantification of these immune cells was conducted by ssGSEA using the DEGs recognized from all eligible datasets. Univariate Cox regression supported that some cells could independently distinguish patients with high progression risk. Based on this, we achieved a more robust model using the enrichment matrix of all the nine tumor-infiltrating immune cells and then validated its performance in predicting different types of survival. The predicted risk scores and survival status showed a high correlation with the actual clinical outcomes; however, considering the precision and significance, we suggested using our model in predicting the PFS of NMIBC patients instead of DFS or OS.
We included nine immune cells in our model, even though some showed no independent prognostic value, since we thought their combination would better reflect the coordinated interaction between innate and adaptive immune systems in preventing the normal tissue from aggressive progression. For one thing, many genes were identified as the DEGs for more than one type of immune cells (Figure 2; Table 2); for another, the functional enrichment analysis of the full set of signature DEGs showed strong evidence of underlying drivers of tumor progression. The collagen family genes, for instance, were independently related to the survival of NMIBC and were simultaneously recognized as the DEG of tumor-infiltrating B cells, CD4+ T cells, CD8+ T cells, DCs, CAFs, macrophages, and endothelial cells. Xu and colleagues reviewed the mechanisms underlying this result (Xu et al., 2019). The complex reticular structure composed of collagen-rich extracellular matrices (ECM) and multiple stromal cells formed dense stromal fibrosis and thereby induced focal hypoxia, leading to increased tumor proliferation and compromised immunotherapy effectiveness (Daniel et al., 2019). The enriched KEGG pathways, including focal adhesion and ECM-receptor interaction (Figure 3C), were consistent with the previous description. The extensive interaction between stromal/immune cells and cancer cancers depicted the complexity of the tumor microenvironment, which was why we used cells instead of genes to build our model.
Another detail of our study was that we emphasized the selection of appropriate meta-analysis methods in the feature selection step and the careful use of renormalization methods. Toro-Domínguez and colleagues reviewed the three main types of meta-analysis strategies based on effect sizes, p-values combination, and rank combination (Toro-Domínguez et al., 2021). We chose wFisher (Yoon et al., 2021), a modified p-value combination method, to filter the DEGs representing candidate immune cells. The wFisher method was suitable for studies from different platforms or conditions. In our case, combining the analysis of nine transcriptomic datasets sequenced by both RNA-Seq and microarray platforms fit the method’s usage characteristics. The method also allowed combining results from heterogeneous analyses without rigorous renormalization. This feature elicited the second focus of our discussion: the renormalization of integrated transcriptomic data. Normalization of bulk RNA data included quantifying transcripts and standardizing data from different sources. The former was thoroughly discussed in the review of RNA sequencing technology (Stark et al., 2019). Here we mainly discussed the latter scenario, as the complexity of cancer biology required integrative studies with combined data from different researches. Shen and Wulff published their evaluations of various normalization methods for integrating large-scale metabolomics data, yielding the same conclusion that choosing the proper normalization method according to the data scale and downstream analysis would vastly improve the confidence of research results (Shen et al., 2016; Wulff and Mitchell, 2018). For transcriptome data, most studies still focused on the transcripts quantification question in the single-source dataset (Dillies et al., 2013; Li et al., 2015), while some of them also evaluated sophisticated frameworks and proposed a protocol to deal with raw RNA-Sequencing (RNA-Seq) data (Sahraeian et al., 2017). We found that few discussion has been made on the systematic renormalization of transcript data from multiple sources by multiple sequencing technologies, but some attempts were separately made and recommended in previous studies (Mooney et al., 2013; Risso et al., 2014; Ayers et al., 2017; Danaher, 2018; Liu et al., 2019). After modeling with both renormalized and non-normalized data (results shown in our Github or Gitee repositories listed in the Data Availability Statement section), we believed the renormalization method combining RNA-Seq and microarray data was still not well-established. We built our model for predicting PFS in NMIBC patients based on RNA-Seq data alone. We suggested that any further applications of our model should consider using RNA-Seq data rather than microarrays.
In conclusion, we identified nine critical tumor-infiltrating immune cells, quantified the cells’ proportion in the tumor immune microenvironment with self-defined signature genes, and established a robust immune-prognostic model for predicting the progression of NMIBC patients. Our study showed system-wide coordination of the immune and stromal cells in defending aberrant cell proliferation and aggressive tumor growth and invasion. Thus, modeling strategies regarding the tumor microenvironment as a whole system may be optimal in clinical decision support applications, which we believe is why multi-omics and integrative studies were replacing single biomarker and single dimension studies. In previous studies, single dimension data, such as the density of stromal TILs evaluated by H&E-stained slides, failed to predict survival outcomes independently (Rouanne et al., 2019; Ottley et al., 2020). Rouanne and colleagues only proved that the stromal TILs were associated with the tumor invasion depth in pT1 NMIBCs. Ottley and colleagues combined the sTILs levels with IHC and ISH biomarkers to improve the prognostic potential. In this shift to complex modeling with multiple dimension data, we raised the importance of appropriate data preprocessing procedures, including but not limited to the selection of appropriate meta-analysis methods. Moreover, some limitations of our research had to be mentioned here. With the inspiration from the UROMOL2021 study (Lindskrog et al., 2021), we initiated our investigation with the hypothesis that dynamic interactions in tumor immune microenvironment would reflect not only the progression risk but also the response to local treatment like intravesical instillation of chemotherapeutic or immunotherapeutic agents. Several efficient predictive biomarkers have been developed and widely evaluated in pan-cancer scenarios, such as the 18-gene gene expression profile (GEP) score (Ayers et al., 2017) has a high discriminatory value in predicting the response to pembrolizumab in Keynote-001, Keynote-012, and Keynote-028. Unfortunately, we did our research and failed to get enough high-quality response data to therapies in NMIBC patients. In the current study, we validated only the prognostic value of our model. Nevertheless, we wish to expand its usage in prognostic and predictive conditions in the future.
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Background: Gene-agnostic genomic biomarkers were recently developed to identify homologous recombination deficiency (HRD) tumors that are likely to respond to treatment with PARP inhibitors. Two machine-learning algorithms that predict HRD status, CHORD, and HRDetect, utilize various HRD-associated features extracted from whole-genome sequencing (WGS) data and show high sensitivity in detecting patients with BRCA1/2 bi-allelic inactivation in all cancer types. When using only DNA mutation data for the detection of potential causes of HRD, both HRDetect and CHORD find that 30–40% of cases that have been classified as HRD are due to unknown causes. Here, we examined the impact of tumor-specific thresholds and measurement of promoter methylation of BRCA1 and RAD51C on unexplained proportions of HRD cases across various tumor types.
Methods: We gathered published CHORD and HRDetect probability scores for 828 samples from breast, ovarian, and pancreatic cancer from previous studies, as well as evidence of their biallelic inactivation (by either DNA alterations or promoter methylation) in HR-related genes. ROC curve analysis evaluated the performance of each classifier in specific cancer. Tenfold nested cross-validation was used to find the optimal threshold values of HRDetect and CHORD for classifying HR-deficient samples within each cancer type.
Results: With the universal threshold, HRDetect has higher sensitivity in the detection of biallelic inactivation in BRCA1/2 than CHORD and resulted in a higher proportion of unexplained cases. When promoter methylation was excluded, in ovarian carcinoma, the proportion of unexplained cases increased from 26.8 to 48.8% for HRDetect and from 14.7 to 41.2% for CHORD. A similar increase was observed in breast cancer. Applying cancer-type-specific thresholds led to similar sensitivity and specificity for both methods. The cancer-type-specific thresholds for HRDetect reduced the number of unexplained cases from 21 to 12.3% without reducing the 96% sensitivity to known events. For CHORD, unexplained cases were reduced from 10 to 9% while sensitivity increased from 85.3 to 93.9%.
Conclusion: These results suggest that WGS-based HRD classifiers should be adjusted for tumor types. When applied, only ∼10% of breast, ovarian, and pancreas cancer cases are not explained by known events in our dataset.
Keywords: homologous recombination deficiency, HRDetect, CHORD, whole-genome sequencing, promoter methylation
INTRODUCTION
The recognition of biallelic germline or somatic mutations in BRCA1/2 is, to date, one of the most clinically relevant and frequently used genetic biomarkers of homologous recombination repair deficiency (HRD) in the clinics (Dougherty et al., 2017; Hoppe et al., 2018). Patients harboring germline pathogenic variants (GPVs) in BRCA1/2 have a higher risk of developing breast and/or ovarian cancer (Mersch et al., 2015). Patients with germline or somatic mutations have an enhanced benefit from targeted therapies such as platinum-based chemotherapy or poly (ADP-ribose) polymerase inhibitors (PARPi) (Hennessy et al., 2010). The terms “BRCAness” or “HRD phenotype” refer to tumors with similar clinicopathological and molecular characteristics to tumors with BRCA1 and BRCA2 GPVs (Lord and Ashworth, 2016). Gene alterations occurring in other homologous recombinant associated genes, such as PALB2 (Tischkowitz et al., 2007; Thomas and Brown, 2015) and RAD51C/D (Kondrashova et al., 2017; Polak et al., 2017), have been linked to the HRD phenotype. Inactivation through promoter methylation of BRCA1 and RAD51C has also been found to result in HRD tumors (Ruscito et al., 2014; Polak et al., 2017; Staaf et al., 2019), and these tumors also demonstrate increased sensitivity to PARPi and platinum (Kondrashova et al., 2018).
Advances in tumor sequencing resulted in the development of methods to identify HRD tumors independently of identifying the cause. Cancer genomes of patients with BRCA1/2 mutations are enriched with particular mutational patterns as well as a high number of distinct LOH regions. In addition, BRCA1/2-deficient tumors include small deletions with ≥4 bp flanking homology. Several structural variations are typical of BRCA1/2-deficient cancer genomes, including deletions up to 100 kb, unclustered tandem duplications of ∼10 kb associated with BRCA1 mutations (Willis et al., 2017), and deletions up to 1-10 kb in cancers are found in patients with BRCA2 mutations (Degasperi et al., 2020). A specific single-base substitution signature (also known as single-nucleotide variants), referred to as COSMIC signature 3, is strongly associated with BRCA1/2 deficiency (Polak et al., 2017).
Whole-genome sequencing (WGS) data enable the detection of different genomic alterations such as base substitutions, indels, rearrangements, and copy number aberrations, which are the result of homologous recombination deficiency. There are two HRD classifiers that are based on features extracted from WGS data. HRDetect (Davies et al., 2017) is a weighted logistic regression model based on six input features: the proportion of small deletions with microhomology at the breakpoint junction, HRD index based on genomic scars, COSMIC signatures 3 and 8, and two rearrangement signatures 3 and 5. This model was trained on BRCA1/2-null breast cancers. The classifier of Homologous Recombination Deficiency (CHORD) (Nguyen et al., 2020) is a random forest model that uses relative counts of somatic mutation contexts from WGS data.
Both classifiers classify >90% of tumors with biallelic inactivation via DNA mutation of BRCA1/2 as HRD and have generally high accuracy as measured by AUC∼0.98 (area under the curve) (Davies et al., 2017; Nguyen et al., 2020). Mutations in PALB2, RAD51C/D, and BARD1 are associated with HRD signatures (Polak et al., 2017; Matis et al., 2021) and account for a small fraction of non-BRCA1/2-mutated HRD cases (Golan et al., 2021). Nguyen et al. (2020), in the paper that introduced CHORD, reported that a substantial proportion (∼40%) of cancer samples identified as HR-deficient did not harbor any mutation in known HR-related genes (Nguyen et al., 2020), while Davies et al. (2017) reported more than 30% of these cases. These findings indicate that conventional testing for mutations in HR genes will miss a considerable number of HRD tumors where HRD is caused by unknown reasons.
The possible source of high unexplained cases could be either technical or biological. Both HRDetect and CHORD are continuous scores, designed to determine if a tumor exhibits HRD. Both use a universal threshold that was not optimized for specific cancer types. HRDetect threshold was developed based on the breast cancer dataset but this cut-off has been used for other cancer types. The CHORD study used a 0.5 cut-off. In addition, BRCA1/RAD51C promoter methylation is not measured in most WGS studies or on only one subset of these samples.
Here, we aim to examine the range of missing proportions of HRD samples across various three tumors where HRD is frequently reported (breast, ovarian and pancreas cancer) and determined the impact of cancer-type-specific thresholds as well as of promoter methylation BRCA1/RAD51C for an available subset of cases. To do so, we used published CHORD and HRDetect scores for these three cancers (Davies et al., 2017; Degasperi et al., 2020; Nguyen et al., 2020), as well as published HRDdetect scores for pancreas cancer (Golan et al., 2021) and CHORD scores that we calculated. In the case of ovarian and breast cancers, we limited our study to the subset of patients with available data for the methylation status of the BRCA1/RAD51C promoter. We determined the proportion of unexplained cases if we use cancer-type specific thresholds (for pancreas, ovarian, and breast cancer) and promoter methylation status (for ovarian and breast cancers).
MATERIALS AND METHODS
Datasets. Studies that performed homologous-recombination deficiency detection analysis on the same samples using the CHORD (Nguyen et al., 2020) and HRDetect (Davies et al., 2017; Degasperi et al., 2020) classifiers were selected. From the selected studies, we made the largest unique intersection of sample names containing prediction scores of HR deficiency for both classifiers, CHORD and HRDetect. The dataset was divided into four major groups of HR-related cancers: breast, pancreatic, and ovarian (Supplementary Table S1), while other cancer types were put into a separate category (Supplementary Table S2) due to the low number of biallelic events and samples labeled as HRD. We included only breast and ovarian cancer samples that had verified BRCA1/2 with respect to methylation (Davies et al., 2017). The methylation status of HR-related gene promotors was considered to be an important underlying cause of HRD in tumors and we wanted to include only samples with validated methylation status to perform the downstream analysis. For the pancreatic dataset, we used 391 pancreatic samples whose data alongside the HRDetect classifier results were provided by Golan et al. (2021). For pancreatic samples, we ran the CHORD classifier using the default setting as it was previously described (Nguyen et al., 2020). The final combined dataset consisted of discrete datasets of 1) 371 breast cancers, 2) 66 ovarian cancers, 3) 391 pancreatic cancers, and 4) 1 238 samples belonging to other cancer types. For each sample in selected studies, we extracted the available methylation status of BRCA1/2 genes for the breast and ovarian cancer samples alongside biallelic and monoallelic alternations in HR-related genes for all cancer types. We considered biallelic germline inactivation to be present when a germline pathogenic variant (GPV) was the first hit with the second hit being loss-of-heterozygosity (LOH) or somatic mutation. Somatic biallelic inactivation was considered where at least one hit was a somatic mutation, while promoter hypermethylation biallelic inactivation was defined as when one hit was promoter methylation and the other one was somatic or LOH. Monoallelic inactivation was considered when only one gene had any mutation other than LOH. Samples carrying biallelic inactivation in HR-related genes were considered to be true HR-deficient tumors. A detailed summary of all biallelic and monoallelic alterations in analyzed HR-related genes can be found in Supplementary Table S1 and Supplementary Table S2, alongside the source of information regarding these gene alterations.
Assessment of the accuracy of CHORD and HRDetect classifiers through ROC and precision-recall curves. To assess the accuracy of each classifier for each of the four major cancer types, we calculated receiver operating characteristics (ROCs) using the R function “roc” from package “pROC” (Robin et al., 2011) and precision-recall (PR) curves using R function “pr.curve” from package “PRROC” (Grau et al., 2015) by comparing CHORD and HRDetect probability scores against samples carrying biallelic inactivation in HR-related genes. Bootstrapping (2000 samples) was performed to estimate the 95% CI of the area under the ROC curve (AUC). Additionally, we compared the performance of these classifiers when no methylation data are available for breast and ovarian cancers to highlight the importance of promoter hypermethylation in HR-deficient tumors.
Determining the optimal threshold. We applied a tenfold nested cross-validation approach to find the optimal threshold values of HRDetect and CHORD for classifying samples as HR-deficient or -proficient within breast, pancreatic, and ovarian cancers. The inner tenfolds were used to calculate the average optimal threshold, while the outer folds in the cross-validation process containing 10% of test data were used to assess the accuracy of the classification of HR-deficient samples. The reported optimal threshold for each classifier was calculated as the mean of all the average thresholds in outer loops for each cancer type.
Statistical analysis. Probabilistic scores from CHORD and HRDetect classifiers were compared with Spearman correlation (Spearman, 1987) using R functions cor () or cor. test (). The one-sided partially overlapping samples z-test for dichotomous variables with R function “Prop.test” from package “Partiallyoverlapping” (Derrick, 2018) was used to determine the statistically significant differences in the proportion of samples classified as HRD samples with and without evidence between CHORD and HRDetect. An one-sided Fisher’s exact test using the R function “pairwise_fisher_test” from package “rstatix” (Kassambara, 2021) was used for testing the differences of explained and unexplained classifications between cancer types within each classifier. For comparison of the different ROC curves, we used the DeLong’s test (two-sided, paired-samples) for two correlated ROC curves using the R function “roc.test” from package “pROC” (Robin et al., 2011). Corrections for multiple hypothesis testing were done using Bonferroni correction, and adjusted p-values were reported. All the analyses were carried out in R statistical programming language version 4.1.0.
RESULTS
Large Proportion of Homologous Recombination Repair Deficiency Classified Tumors Is Explained by Biallelic Inactivation of BRCA1/2
To investigate the performance of CHORD and HRDetect classifiers on the same samples, we utilized the classifiers’ results from previous studies (Davies et al., 2017; Degasperi et al., 2020; Nguyen et al., 2020; Golan et al., 2021) across 2,066 samples from 10 cancer types. Here, we have focused on comparing HRDetect and CHORD scores for a total of 828 tumors, composed of three cancers associated with HR deficiency: breast (n = 371), pancreatic (n = 391), ovarian (n = 66) (Figure 1A), while the remaining seven cancers are shown in the supplementary (Supplementary Figure S2, Supplementary Table S2). When comparing the probability score of a tumor possessing HRD for each sample, we see that CHORD and HRDetect have similar probability scores (Supplementary Figure S1, Spearman correlation of 0.67). Of the total 828 samples belonging to the three important HRD-related cancers, biallelic alterations (either somatic, germline, deep deletion, or promoter hypermethylation) of HR-related genes were found in 163 samples. As expected, samples with higher HRD probability scores (in both classifiers) had a higher number of biallelic inactivation events in BRCA1/2 genes compared to samples with lower scores (Figure 1B). Somatic homozygous deletion, labeled as deep deletion, were observed in BRCA2 in a single breast cancer patient and in pancreatic cancer (RAD51B (n = 2), RAD51C (n = 2) and XRCC2 (n = 1)) (Supplementary Table S1).
[image: Figure 1]FIGURE 1 | Co-mutation plots for breast, pancreas, and ovarian cancers. (A) Mirror bar plot showing the probability score of CHORD (orange) and HRDetect (blue) classifiers for each sample alongside the default threshold value for each classifier (horizontal dashed line, 0.5 for CHORD and 0.7 for HRDetect). Samples are ordered by the CHORD probability score from the lowest to the highest. (B) The biallelic inactivation in genes related to HR deficiency. HRD types (BRCA1 and BRCA2 types) were assigned by the CHORD classifier.
Among other cancer types, we observed four prostate samples with high HRD scores from both classifiers containing biallelic inactivation in BRCA1/2 and one biliary sample with a germline BRCA1 alteration where both HRD scores were above default (Supplementary Figure S1). Due to lack of evidence for HR deficiency in other cancers and the smaller sample size of identified HRD samples, other cancers were excluded for the downstream analysis and we only benchmarked results for breast, ovarian, and pancreatic cancer samples.
We proceeded to compare the fraction of HRD classified cases that are explained by the different types of biallelic inactivation in BRCA1/2 based on HRDetected and CHORD. The most abundant biallelic inactivation patterns in the dataset included gBRCA1/2 (n = 52 + 54) and sBRCA1/2 mutations (n = 12 + 11) (Supplementary Table S1). The BRCA1 promoter methylation status was available only for breast and ovarian (n = 23) and it accounted for a significant number of the total biallelic events (23 out of 175, 12.8% (95% CI [8.7–19.3])). Nearly all of the cases with known biallelic inactivation (157 out of 163, 96.4% (95% CI [91.8–98.5])) were in tumors that are above the default threshold of either of the classifiers.
The largest proportion of unexplained HRD cases was observed in ovarian cancer (14.7%, 95% CI [5.5–31.8]) using CHORD and in pancreatic samples (28.2%, 95% CI [59.7–81.6]) using HRDetect (Table 1; Figure 2). Larger fractions of unexplained cases were obtained using HRDetect compared to CHORD with the default threshold value (one-sided z-test for partially overlapping samples, p-value < 10–13) (Figure 2), ranging from around 10 to 28% depending on the cancer type. When looking at each classifier closely, we see that the highest difference is between breast and pancreatic cancers and HRD unexplained cases for HRDetect (one-sided Fisher’s exact test, p-value = 0.0375). Multiple biallelic inactivation events can occur in HR genes in the same patients; for instance, one ovarian sample contained sBRCA1 and promoter hypermethylation of RAD51C, while a pancreatic sample had a somatic deep deletion of both RAD51B and RAD51C (Supplementary Table S1).
TABLE 1 | Summary of tumor samples classified to possess HRD by CHORD and HRDetect within an individual cancer type.
[image: Table 1][image: Figure 2]FIGURE 2 | Proportion of samples with and without biallelic alteration in HR-genes classified as HR-deficient with default threshold of (A) HRDetect of 0.7 and (B) CHORD classifiers of 0.5. Only one alteration in the gene is shown per sample based on the hierarchical order of genes as follows: BRCA1, BRCA2, RAD51C, PALB2, and XRCC2.
Performance of CHORD and HRDetect Classifiers
As previously reported, both classifiers, CHORD and HRDetect, achieved exceptional performance in identifying biallelic events in breast and ovarian cancer types as shown by the high area under the ROC curve (AUC) above 0.96 and 0.9, respectively (Figure 3). In addition, we calculated the area under the precision-recall curve (AUPRC) that was high and well above 90% across all cancer types. No statistically significant difference was detected between CHORD and HRDetect AUC values (p > 0.05, DeLong’s test).
[image: Figure 3]FIGURE 3 | Receiver operating characteristics (ROCs) with the respective area under the curve (AUC) and precision-recall curves (PR) with the area under the precision-recall curve (AUCPR) showing the performance of CHORD and HRDetect classifier with and without methylation data for breast (A) and ovarian cancers (B). Pancreas (C) cancer data do not have methylation data.
Impact of Exclusion of Promoter Methylation on the Performance
To assess the importance of promoter methylation in the evaluation of HRD classifiers' performance, we removed the methylation data of BRCA1/RAD51C promoters in breast and ovarian the only cancer types for which methylation data were available. We observed a significant drop in classifiers’ performance for breast and ovarian samples (Figure 3). In ovarian cancer, the drop in AUC values was significantly affected, falling from 0.987 to 0.873 for CHORD (p-value = 0.044, DeLong’s test) and from 0.987 to 0.828 for HRDetect (p-value = 0.011, DeLong’s test). In contrast, the breast cancer AUC values were still above 0.96 for both classifiers (p-value = 0.057 for CHORD and 0.055 for HRDetect, DeLong’s test) and AUPRC values were slightly above 0.7 compared to 0.949 when methylation status was included.
Revisiting Threshold Values for Homologous Recombination Repair Deficiency Classification of Different Cancer Types
The current threshold of HRDetect( 0.7) was determined based on the breast dataset, while CHORD 0.5 was arbitrarily chosen. Considering different machine-learning algorithms underlying CHORD and HRDetect for classifying HRD in samples and different training data, we sought to determine an optimal threshold value for the individual cancer types in our cohort. For each cancer type and classifier, we performed 10-fold nested cross-validation to calculate the optimal threshold value (given in detail in the Methods section). The accuracy of both classifiers with default threshold values was similar across cancers, while the most considerable increase was detected in ovarian cancer (accuracy CHORD 0.91 and HRDetect 0.83) (Table 2). Cancer-type-specific (optimal) threshold values differ from the classifiers’ default ones, but the overall accuracy improves slightly or remains the same. The only exception is the optimal value of HRDetect in ovarian cancer where the accuracy improved by 12%. The number of samples with evidence of bi-allelic alterations in HR-related genes and classification as HR deficient by the classifiers were more abundant in optimal values of the CHORD classifier in breast and pancreatic cancers compared to the default threshold in the same cancer type. The proportion of classified HRD cases in the dataset without known biallelic evidence decreased for both CHORD, 10.9–8.9%, and HRDetect, 21.1–12.3%. Monoallelic mutations were found in pancreatic cancer (Supplementary Figure S3). Using default threshold values, the majority of monoallelic mutation in HR-related genes occurs in homologous recombination proficient (HRP) samples, where HRDetect has more HRD unexplained cases and two monoallelic mutations in HR-related genes. The monoallelic alterations were detected in HRD-labeled samples only with HRDetect with default and an optimal threshold value.
TABLE 2 | Summary table of confusion matrix results with accuracy for default and optimal (cancer-type-specific) threshold values of CHORD and HRDetect classifiers for classifying samples as homologous recombination deficient (HRD) or homologous recombination proficient (HRP).
[image: Table 2]DISCUSSION
Our study shows an integrated overview of detecting homologous recombination deficiency in cancers using CHORD and HRDetect classifiers. Here, we have mainly focused on three cancers most commonly associated with HRD: breast, ovarian, and pancreatic cancers. We observed that biallelic inactivation of genes explains a large fraction of samples possessing HRD when using a universal default threshold, as was demonstrated in previous studies (Davies et al., 2017; Nguyen et al., 2020; Golan et al., 2021). However, around 10–28% of patients without known underlying causes were detected by these classifiers despite their high performance based on the default threshold. In this study, we found that by applying a cancer-type-specific threshold the number of unexplained cases reduced to around 8.9–12.3% without decreasing the sensitivity of 96%. We estimate that in this dataset up to ∼10% of HRD cases are caused by types of alterations that still have not been associated with HRD and therefore gene-centric testing for mutations in HR genes will likely fail to identify them. Similar results apply to the analysis of other cancer types in which the HRD cancers are rarer in comparison to the four well-known HRD cancers. The low number of HRD mutations in prostate samples and other cohorts did not allow the determination of a reliable cancer-type-specific threshold. The small fraction of unexplained cases is consistent with our previous proposal (Foulkes and Polak, 2019; Matis et al., 2021) that if alterations in novel genes lead to HRD, taken together, they will all account for only a very small proportion of all HRD cases.
The different cut-offs that we observed may be due to subtle differences across cancer in the mutational landscape even for tumors with different same gene defects, especially in mutational signatures (Degasperi et al., 2020). Furthermore, as it was highlighted by Nguyen et al. (2020), additional threshold optimization and validations are also required when applying classifiers to WGS data generated by other variant calling pipelines. Our cohort contained data generated by various pipelines for CHORD and HRDetect in each cancer type, which may affect the overall comparison of results between these classifiers. In addition to the threshold value, it is important to investigate other features affecting the mutation landscape of tumors, such as deficiency in mismatch repair (MMR), which may have a negative impact on the overall performance of classifiers in specific tumors. It was noted by Golan et al. (2021) that one pancreatic sample with biallelic inactivation in BRCA2 and PMS2 (responsible for MMR) was misclassified by HRDetect and CHORD classifier and had both scores near zero.
In addition to cancer-type-specific thresholds that reduce the number of unexplained cases, we demonstrated the importance of including the promoter methylation status of BRCA1 and RAD51C in order to evaluate the fraction of HRD cases that are explained by known causes. In breast and ovarian cancers, for which methylation analysis is most often conducted, promoter methylation of BRCA1 accounts for at least 20% of explained biallelic inactivation cases of HRD, labeled by either of the classifiers, and lack of methylation data significantly affects the performance of classifiers. The proportion of unexplained cases in other cancer types may have been reduced if methylation analysis data existed, especially in pancreatic cancer where some detected monoallelic PVs could have other events such as promoter methylation that would explain their HRD. These observations highlight the advantage of using these classifiers alongside conventional testing for patient selection and stratification in clinics, as was already suggested by several studies (Zhao et al., 2017; Staaf et al., 2019; Chopra et al., 2020). The relationship between the presence of HRD and response to therapies such as PARP inhibitors is not precise and there is currently no “ground truth” for measuring HRD. Resistance to PARP inhibitors can co-exist with HRD (Dias et al., 2021), so the presence of HRD is not by itself a direct predictor of response to PARP inhibitors and other drugs such as platinum that cause double-strand DNA breaks. Combinations of different approaches such as WGS-based, FDA-approved assays, and newer functional assays such as the RAD51 foci assay (Pellegrino et al., 2022) will ultimately lead to a better selection of HRD patients for appropriate therapies. Hence, our review re-analysis emphasizes the power of both CHORD and HRDetect in the stratification of patients possessing HRD phenotype across various cancers, as well as the importance of identification and further validation of new unrevealed oncogenic mutations.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
PP and RK conceptualized and supervised the study. PŠ collected and analyzed the data. PŠ, PP, and RK wrote the manuscript. WF, NH, and KS participated in manuscript revision. All authors contributed to the article and approved the submitted version.
FUNDING
PŠ and RK were funded by grants from the Croatian National Science Foundation Project PREDI-COO (A statistical modeling approach to predict the cell-of-origin and investigate mechanisms of cancer development) (Project number: IP-2019-04-9308). WF and NH are supported by grants from the Canadian Institutes of Health Research (FDN-148390) and the Canadian Cancer Society (#706389).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2022.852159/full#supplementary-material
REFERENCES
 Chopra, N., Tovey, H., Pearson, A., Cutts, R., Toms, C., Proszek, P., et al. (2020). Homologous Recombination DNA Repair Deficiency and PARP Inhibition Activity in Primary Triple Negative Breast Cancer. Nat. Commun. 11, 1–12. doi:10.1038/s41467-020-16142-7
 Davies, H., Glodzik, D., Morganella, S., Yates, L. R., Staaf, J., Zou, X., et al. (2017). HRDetect is a Predictor of BRCA1 and BRCA2 Deficiency Based on Mutational Signatures. Nat. Med. 23, 517–525. doi:10.1038/nm.4292
 Degasperi, A., Amarante, T. D., Czarnecki, J., Shooter, S., Zou, X., Glodzik, D., et al. (2020). A Practical Framework and Online Tool for Mutational Signature Analyses Show Intertissue Variation and Driver Dependencies. Nat. Cancer 1, 249–263. doi:10.1038/s43018-020-0027-5
 Derrick, B. (2018). Partiallyoverlapping: Partially Overlapping Samples Tests. R package version 2.0. 2018. Available at: https://cran.r-project.org/. 
 Dias, M. P., Moser, S. C., Ganesan, S., and Jonkers, J. (2021). Understanding and Overcoming Resistance to PARP Inhibitors in Cancer Therapy. Nat. Rev. Clin. Oncol. 18, 773–791. doi:10.1038/s41571-021-00532-x
 Dougherty, B. A., Lai, Z., Hodgson, D. R., Orr, M. C. M., Hawryluk, M., Sun, J., et al. (2017). Biological and Clinical Evidence for Somatic Mutations in BRCA1 and BRCA2 as Predictive Markers for Olaparib Response in High-Grade Serous Ovarian Cancers in the Maintenance Setting. Oncotarget 8, 43653–43661. doi:10.18632/oncotarget.17613
 Foulkes, W. D., and Polak, P. (2019). Journey's End: The Quest for BRCA-Like Hereditary Breast Cancer Genes Is Nearly over. Ann. Oncol. 30, 1023–1025. doi:10.1093/annonc/mdz152
 Golan, T., O’Kane, G. M., Denroche, R. E., Raitses-Gurevich, M., Grant, R. C., Holter, S., et al. (2021). Genomic Features and Classification of Homologous Recombination Deficient Pancreatic Ductal Adenocarcinoma. Gastroenterology 160, 2119–2132. e9. doi:10.1053/j.gastro.2021.01.220
 Grau, J., Grosse, I., and Keilwagen, J. (2015). PRROC: Computing and Visualizing Precision-Recall and Receiver Operating Characteristic Curves in R. Bioinformatics 31, 2595–2597. doi:10.1093/bioinformatics/btv153
 Hennessy, B. T. J., Timms, K. M., Carey, M. S., Gutin, A., Meyer, L. A., Flake, D. D., et al. (2010). Somatic Mutations in BRCA1 and BRCA2 Could Expand the Number of Patients that Benefit from Poly (ADP Ribose) Polymerase Inhibitors in Ovarian Cancer. J. Clin. Oncol. 28, 3570–3576. doi:10.1200/JCO.2009.27.2997
 Hoppe, M. M., Sundar, R., Tan, D. S. P., and Jeyasekharan, A. D. (2018). Biomarkers for Homologous Recombination Deficiency in Cancer. J. Natl. Cancer Inst. 110, 704–713. doi:10.1093/jnci/djy085
 Kassambara, A. (2021). Rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.0. 2021. Available at: https://cran.r-project.org/package=rstatix. 
 Kondrashova, O., Nguyen, M., Shield-Artin, K., Tinker, A. V., Teng, N. N. H., Harrell, M. I., et al. (2017). Secondary Somatic Mutations Restoring RAD51C and RAD51D Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma. Cancer Discov. 7, 984–998. doi:10.1158/2159-8290.CD-17-0419
 Kondrashova, O., Topp, M., Topp, M., Nesic, K., Lieschke, E., Ho, G.-Y., et al. (2018). Methylation of All BRCA1 Copies Predicts Response to the PARP Inhibitor Rucaparib in Ovarian Carcinoma. Nat. Commun. 9, 3970. doi:10.1038/s41467-018-05564-z
 Lord, C. J., and Ashworth, A. (2016). BRCAness Revisited. Nat. Rev. Cancer 16, 110–120. doi:10.1038/nrc.2015.21
 Matis, T. S., Zayed, N., Labraki, B., de Ladurantaye, M., Matis, T. A., Camacho Valenzuela, J., et al. (2021). Current Gene Panels Account for Nearly All Homologous Recombination Repair-Associated Multiple-Case Breast Cancer Families. npj Breast Cancer 7, 109. doi:10.1038/s41523-021-00315-8
 Mersch, J., Jackson, M. A., Park, M., Nebgen, D., Peterson, S. K., Singletary, C., et al. (2015). Cancers Associated with BRCA1 and BRCA2 Mutations Other Than Breast and Ovarian. Cancer 121, 269–275. doi:10.1002/cncr.29041
 Nguyen, L., Martens, W. M. J., Van Hoeck, A., and Cuppen, E. (2020). Pan-Cancer Landscape of Homologous Recombination Deficiency. Nat. Commun. 11, 1–12. doi:10.1038/s41467-020-19406-4
 Pellegrino, B., Herencia-Ropero, A., Llop-Guevara, A., Pedretti, F., Moles-Fernández, A., Viaplana, C., et al. (2022). Preclinical In Vivo Validation of the RAD51 Test for Identification of Homologous Recombination-Deficient Tumors and Patient Stratification. Cancer Res. 82 (8), 1646–1657. doi:10.1158/0008-5472.CAN-21-2409
 Polak, P., Kim, J., Braunstein, L. Z., Karlic, R., Haradhavala, N. J., Tiao, G., et al. (2017). A Mutational Signature Reveals Alterations Underlying Deficient Homologous Recombination Repair in Breast Cancer. Nat. Genet. 49, 1476–1486. doi:10.1038/ng.3934.A
 Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., et al. (2011). pROC: An Open-Source Package for R and S+ to Analyze and Compare ROC Curves. BMC Bioinforma. 12, 77. doi:10.1186/1471-2105-12-77
 Ruscito, I., Dimitrova, D., Vasconcelos, I., Gellhaus, K., Schwachula, T., Bellati, F., et al. (2014). BRCA1 Gene Promoter Methylation Status in High-Grade Serous Ovarian Cancer Patients - A Study of the Tumour Bank Ovarian Cancer (TOC) and Ovarian Cancer Diagnosis Consortium (OVCAD). Eur. J. Cancer 50, 2090–2098. doi:10.1016/j.ejca.2014.05.001
 Spearman, C. (1987). The Proof and Measurement of Association between Two Things. By C. Spearman, 1904. Am. J. Psychol. 100, 441–471. doi:10.2307/1422689
 Staaf, J., Glodzik, D., Bosch, A., Vallon-christersson, J., Reuterswärd, C., and Häkkinen, J. (2019). Whole-Genome Sequencing of Triple-Negative Breast Cancers in a Population-Based Clinical Study. Nat. Med. 25, 1526–1533. doi:10.1038/s41591-019-0582-4
 Thomas, P. S., and Brown, P. H. (2015). Breast-Cancer Risk in Families with Mutations in PALB2. Breast Dis. 26, 206–208. doi:10.1016/j.breastdis.2015.07.017
 Tischkowitz, M., Xia, B., Sabbaghian, N., Reis-Filho, J. S., Hamel, N., Li, G., et al. (2007). Analysis of PALB2/FANCN -Associated Breast Cancer Families. Proc. Natl. Acad. Sci. U.S.A. 104, 6788–6793. doi:10.1073/pnas.0701724104
 Willis, N. A., Frock, R. L., Menghi, F., Duffey, E. E., Panday, A., Camacho, V., et al. (2017). Mechanism of Tandem Duplication Formation in BRCA1-Mutant Cells. Nature 551, 590–595. doi:10.1038/nature24477
 Zhao, E. Y., Shen, Y., Pleasance, E., Kasaian, K., Leelakumari, S., Jones, M., et al. (2017). Homologous Recombination Deficiency and Platinum-Based Therapy Outcomes in Advanced Breast Cancer. Clin. Cancer Res. 23, 7521–7530. doi:10.1158/1078-0432.CCR-17-1941
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Štancl, Hamel, Sigel, Foulkes, Karlić and Polak. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 30 June 2022
doi: 10.3389/fgene.2022.865313


[image: image2]
RNA-SSNV: A Reliable Somatic Single Nucleotide Variant Identification Framework for Bulk RNA-Seq Data
Qihan Long1,2,3, Yangyang Yuan1,2,3 and Miaoxin Li1,2,3,4,5*
1Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
2Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
3Center for Disease Genome Research, Sun Yat-Sen University, Guangzhou, China
4Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
5Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China
Edited by:
Joel Correa Da Rosa, Icahn School of Medicine at Mount Sinai, United States
Reviewed by:
Rodrigo Gularte Mérida, Memorial Sloan Kettering Cancer Center, United States
Yiyang Wu, Vanderbilt University Medical Center, United States
* Correspondence: Miaoxin Li, limiaoxin@mail.sysu.edu.cn
Specialty section: This article was submitted to Cancer Genetics and Oncogenomics, a section of the journal Frontiers in Genetics
Received: 29 January 2022
Accepted: 17 May 2022
Published: 30 June 2022
Citation: Long Q, Yuan Y and Li M (2022) RNA-SSNV: A Reliable Somatic Single Nucleotide Variant Identification Framework for Bulk RNA-Seq Data. Front. Genet. 13:865313. doi: 10.3389/fgene.2022.865313

The usage of expressed somatic mutations may have a unique advantage in identifying active cancer driver mutations. However, accurately calling mutations from RNA-seq data is difficult due to confounding factors such as RNA-editing, reverse transcription, and gap alignment. In the present study, we proposed a framework (named RNA-SSNV, https://github.com/pmglab/RNA-SSNV) to call somatic single nucleotide variants (SSNV) from tumor bulk RNA-seq data. Based on a comprehensive multi-filtering strategy and a machine-learning classification model trained with comprehensively curated features, RNA-SSNV achieved the best precision–recall rate (0.880–0.884) in a testing dataset and robustly retained 0.94 AUC for the precision–recall curve in three validation adult-based TCGA (The Cancer Genome Atlas) datasets. We further showed that the somatic mutations called by RNA-SSNV tended to have a higher functional impact and therapeutic power in known driver genes. Furthermore, VAF (variant allele fraction) analysis revealed that subclonal harboring expressed mutations had evolutional selection advantage and RNA had higher detection power to rescue DNA-omitted mutations. In sum, RNA-SSNV will be a useful approach to accurately call expressed somatic mutations for a more insightful analysis of cancer drive genes and carcinogenic mechanisms.
Keywords: cancer, somatic mutation, RNA, RNA-Seq, machine learning, RNA-SSNV
INTRODUCTION
Cancer is the leading cause of death and an important barrier to increasing life expectancy (Sung et al., 2021). According to GLOBOCAN 2020 estimates of cancer incidence and mortality, 19.3 million new cancer cases and 10.0 million cancer deaths occurred in 2020 (Sung et al., 2021). Somatic mutations are usually induced by environmental factors, and it is well known that their accumulation with aging and evolution in human cells will lead to malignant transformation and eventually cancer (Watson et al., 2013). Thus, comprehensive somatic mutation identification in cancer such as the Catalogue Of Somatic Mutations In Cancer (Tate et al., 2019) (COSMIC database) can help characterize its genomic complexities (Watson et al., 2013) and discover oncogenic mutations and driver genes which significantly influence cancer development (Bailey et al., 2018). Furthermore, person-level somatic mutations also have their own oncogenic and therapeutic implications in multiple cancers (lung cancer (Skoulidis and Heymach,2019), bladder cancer (Cazier et al., 2014; Wen et al., 2021), and glioblastoma (Lin et al., 2021; McDonald et al., 2015)), targeting the corresponding mutant proteins or pathways. Currently, most somatic mutation identification studies were based on DNA-level, actionable practices in somatic mutation detection within whole-genome or whole-exome sequencing data have been developed to facilitate precision oncology (Xiao et al., 2021).
Mutations within exons are supposed to be transcribed into RNA, and be reflected in the translated protein. However, many DNA mutations within exons were not found in RNA because they were located in the non-transcribed allele or had no or low expression (O Brien et al., 2015). Yizhak et al. (2019) reported that 65% of DNA somatic mutations within 243 TCGA tumor samples were not detected in RNA. Rashid et al.(2014) found that only 27% of mutated alleles got expressed in multiple myeloma. The significant lack of DNA mutations in RNA indicated that not all DNA mutations have certain effects finally. RNA can be a reliable source to distinguish mutations that have been expressed to affect cellular functions. Although RNA-seq is mainly used for gene expression and fusion discoveries in clinical oncology (Wang et al., 2020), previous studies showed that calling genomic variants in expressed exons using RNA-seq data was feasible and cost-effective (Chepelev et al., 2009; Cirulli et al., 2010; Gonorazky et al., 2019; Piskol et al., 2013; Quinn et al., 2013). The advantages included making the most abundant RNA-seq data resources and discovering rare somatic mutations with the low-level DNA allele fraction at higher sequencing depths in sufficiently expressed genes (Chepelev et al., 2009; Cirulli et al., 2010; Gonorazky et al., 2019; Piskol et al., 2013; Quinn et al., 2013; Liu et al., 2014). However, calling somatic mutations within RNA-seq data was challenging compared with calling variants in WES data. The main challenge was the high false-positive rate, deriving from errors during reverse transcription, misalignment near splicing junctions (exon ends), RNA editing, and modification during post-transcriptional processing (Cirulli et al., 2010; Xu, 2018). Multiple RNA somatic mutation calling tools and pipelines have been developed to remove these false-positive calls, which can be divided into two categories: statistical filtering strategy-based (García-Nieto et al., 2019; Neums et al., 2018; Yizhak et al., 2019) and machine learning–based approaches (Muyas et al., 2020; Sheng et al., 2016). For instance, GLMVC (Sheng et al., 2016) calls RNA somatic mutations based on a bias-reduced generalized linear model trained by the characteristics of RNA-seq data. VaDiR (Neums et al., 2018) integrates results from three variant callers and produced higher precision results through consensus combination but sacrificed sensitivity. RNA-MuTect (Yizhak et al., 2019) comprehensively filtered mutations within artifact sites and achieved optimal performance. RF-RNAMut (Muyas et al., 2020) utilized a machine learning model to distinguish somatic variants from germline variants identified in RNA-seq data. Although existed tools have their advantages and highlights, they had their limitations: (1) unsatisfying precision–recall performance with the maximum reported precision–recall to be 0.87–0.72 (Yizhak et al., 2019), (2) required restricted resources such as DNA and RNA panel of normal (PoN) calls from ∼6500 GTEx samples to achieve a desired result (Yizhak et al., 2019), and (3) model not specifically trained to recognize excessive artifacts in RNA but to identify germline mutations as negative (Muyas et al., 2020).
Here, we introduce a framework named RNA-SSNV (https://github.com/pmglab/RNA-SSNV). It is a unified framework containing a universal pipeline to call RNA somatic single nucleotide variants from the combination of tumor RNA-seq and normal WES data, a multi-filtering strategy to remove doubtful calls with little loss of sensitivity and a supervised machine learning model to identify somatic mutations and artifacts. Our framework achieved the best overall performance for precision and recall, requiring only public reference resources. To validate the generalization performance of our framework, we utilized RNA-SSNV within TCGA lung squamous cell carcinoma (LUSC), bladder urothelial carcinoma (BLCA), and glioblastoma multiforme (GBM) independent datasets. RNA-SSNV achieved similar performance in the area under curve (AUC) for the precision–recall curve with 0.94 for all three datasets. Given its high precision–recall performance, RNA-SSNV will help exploit expressed somatic variants, further extend the range of RNA-seq applications and make full use of abundant RNA-seq data resources.
MATERIALS AND METHODS
Framework Overview
Our RNA somatic single nucleotide variant identification framework (RNA-SSNV) consists of three major components, including a RNA somatic mutation calling step, a multi-step filtering process and a machine-learning based prediction (Figure 1). The underlying hypothesis of RNA-SSNV is that RNA-specific mutations have unique biological and technique features; thus, a comprehensive filtration process and a machine learning model based on these features can substantially improve the accuracy of RNA somatic mutation calling.
[image: Figure 1]FIGURE 1 | Schematic overview of the framework for RNA somatic mutation identification. RNA calling: RNA-seq and WES data were aligned and co-cleaned accordingly. Mutect2 was used to conduct RNA somatic calling with paired tumor RNA-seq and normal WES data. Features were extracted from outputs of FilterMutectCalls and Funcotator. Multi-filtering: multi-filtering strategy was conducted in Mutect2 called mutations by removing multiallelic, RNA-editing, immunoglobin, and HLA sites. Model prediction: using the trained model, mutations with extracted features were predicted as positive or negative, only positives were regarded as reliable mutations. Result analysis: pairwise analysis can be conducted when DNA evidence was available. RNA-SSNV will output a generic entry table containing all features and predicting information to facilitate downstream analysis.
Datasets
Our datasets were retrieved from GDC, which had harmonized pipelines (https://docs.gdc.cancer.gov/Data/Introduction/) to generate RNA-seq and DNA-seq data. All RNA-seq datasets were aligned to GRCh38 build using a two-pass method with STAR, which required preprocessing before mutation calling. All DNA-seq datasets were aligned to the GRCh38 reference using bwa (Li and Durbin, 2009) and co-cleaned using the GATK toolkit (McKenna et al., 2010), which can directly be utilized in mutation calling.
We chose the TCGA lung adenocarcinoma (LUAD) cohort as the training dataset that contained the largest patient scale (511) compared with other available cancer cohorts. Our training dataset comprised paired tumor RNA-seq and tumor/normal WES data derived from 511 LUAD patients, which simultaneously generated DNA and RNA somatic mutations. Our independent validation datasets comprised paired tumor RNA-seq and normal WES data derived from 498 LUSC, 441 BLCA, and 198 GBM patients, for which we called RNA somatic mutations to get validating records.
Mutation Calling
Theoretically, calling somatic mutations within RNA-seq data can be easily conducted using callers designed for DNA. Haplotype-based callers (GATK Mutect2 (Benjamin et al., 2019; Cibulskis et al., 2013), TNscope) had been proven to outperform position-based variant callers due to their inherent technical advantage in complex variants and high mutation loading regions (Pei et al., 2020; Xu, 2018). In addition, we queried the TCGA helpdesk and learned that our RNA-seq data (TCGA LUAD, LUSC, GBM, and BLCA projects) were sequenced by the UNC center using poly-T mRNA enriching strategy, which indicated that only transcribed exon regions (GENCODE v22 annotated exon regions) within mature mRNA can be sequenced (Kukurba and Montgomery, 2015) and our paired normal targeted capture exome sequencing (WES) data had a canonical target region (Agilent SureSelect TargetInterval). Thus, we chose to utilize Mutect2 to perform somatic variant calling and only retain mutations within targeted coding regions (overlap of exons and WES targets).
Normally, our STAR-2-pass aligned RNA-seq data required a co-cleaning process to conduct mutation calling. Following GATK recommended procedures (RNAseq Best Practice), our aligned RNA-seq bam was passed to the MarkDuplicates tool to identify duplicate reads and help remove PCR-related artifacts. Next, SplitNCigarReads hard-clipped and reformat some alignments which span introns causing large-scale mistaken indels. Finally, it shall undergo base quality recalibration conducted by BaseRecalibrator and ApplyBQSR to detect and correct patterns of systematic errors in the base quality scores.
After obtaining analysis-ready bam files, we utilized Mutect2 to call RNA somatic mutations from paired tumor RNA-seq and normal WES data, DNA somatic mutations from tumor and normal WES data. For the TCGA LUAD training set, we called RNA and DNA somatic mutations to help construct the training dataset. For TCGA LUSC, GBM, and BLCA validation sets, calling RNA somatic mutations were sufficient to validate our framework’s performance. For DNA somatic mutations omitted in RNA which required verification, we applied the force-calling mode in Mutect2 to retrieve their RNA mutational status. Finally, we utilized FilterMutectCalls to generate quality information as training features and assess the performance for Mutect2’s default filtering, Funcotator to annotate variants and facilitate downstream analysis.
Multi-Filtering Strategy
Before model training or predicting, RNA somatic mutations shall be comprehensively filtered to remove known possible artifacts (García-Nieto et al., 2019; Yizhak et al., 2019). Our multi-filtering strategy included removing multi-allelic mutations, RNA-editing sites, IgG, and HLA regions. For multi-allelic mutations, we removed mutations containing three or more allele types to avoid misaligning artifacts. For RNA editing events, we combined A-to-I RNA editing information from the REDIportal (Mansi et al., 2021) database and further editing information from the DARNED (Kiran et al., 2013) database. We removed all mutations which located in the union set of RNA editing events to prevent these false-positive calls. For IgG regions, we removed mutations falling into IgG genes to avoid noisy alignments (Ye et al., 2013). For HLA regions, we removed the HLA mutations in chromosome 6 which contained a high density of germline variants (Buhler and Sanchez-Mazas, 2011).
Construct a Training Dataset
For all TCGA projects involved in our study, the GDC Data Portal (https://portal.gdc.cancer.gov/) already provided open-access DNA somatic mutations detected by four different callers MuSE, MuTect2, SomaticSniper, and VarScan (Ellrott et al., 2018) with stringent thresholds. Using the GDC MAF Concatenation Tool (https://github.com/wwysoc2/gdc-maf-tool), we combined the curated mutations from four callers, and constructed a union set of all available DNA somatic mutations for each cancer type (LUAD, LUSC, BLCA, and GBM) to maximize the sensitivity. In addition, given that GDC somatic variant calling pipeline had strict criteria leading to the loss of some true positive somatic mutations, we called our own DNA somatic mutations using raw sequencing data and retrieved GDC-omitted DNA somatic mutations.
Normally, variations in DNA will be passed and presented in RNA through transcription. Reciprocally, any RNA somatic mutations presented in DNA should be true positive since they have got evidence from DNA. Moreover, other RNA somatic mutations lacking support from DNA will be regarded as true negative. To construct a reliable training dataset for model training, we split our RNA somatic mutations into three categories (Figure 2) based on evidence from the GDC database and GDC-omitted DNA somatic mutations. Finally, based on the information from FilterMutectCalls output and annotation information of Funcotator, we systematically extracted features for each training record with three categories: variant, genotype, and annotation levels (Supplementary Table S1).
[image: Figure 2]FIGURE 2 | Venn diagram of training dataset categories. True positive: RNA somatic mutations overlapping with GDC mutations. Ambiguity: RNA somatic mutations overlapping with GDC omitted somatic mutations. True negative: RNA somatic mutations without DNA support.
Performance Metrics
Due to the extreme distribution bias for true positive and true negative classes (TP : TN = 1:8), our main purpose was to identify true positive RNA somatic mutations correctly. We chose precision, recall, F1 scores, and areas under the precision–recall curve (PR-AUC) as major performance metrics in our study because they are insensitive to class imbalance. Other metrics derived from the confusion matrix (Table 1) were also introduced for evaluation.
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TABLE 1 | Confusion matrix demonstration.
[image: Table 1]Model Training and Validation
Records within the training dataset were split into training and testing subsets (9:1). We utilized the training subset for model parameter tuning, feature selection, and model training. For the testing subset, we utilized them for testing the model’s generalization performance.
To handle the imbalanced distribution for TP and TN classes, we chose a weighted random forest classifier (RandomForestClassifier, scikit-learn 0.24.2) to reduce the bias by assigning inversely proportioned weights to different classes (Zhu and Pierskalla, 2016). First, we utilized recursive feature elimination with 10-fold cross-validation (RFECV, scikit-learn 0.24.2) to select optimal features. Second, we utilized a 10-fold cross-validated grid-search over a parameter grid (GridSearchCV, scikit-learn 0.24.2) to fine-tune optimal parameters (max_depth, min_samples_split, min_samples_leaf, max_features, etc.). Finally, we constructed a machine learning model for RNA somatic mutation identification with optimal features and parameters, and applied it in testing subset to assess its generalization performance.
Following the procedures mentioned earlier, we conducted somatic single nucleotide variants calling in LUSC, BLCA, and GBM cohorts, utilized a multi-filtering strategy and built validation datasets based on extracted features. We applied our discriminant model in these validation datasets and retrieved assessing metrics to further demonstrate the generalization performance.
Also, we validated the necessity of introducing a new training dataset from another cancer type. We added the GBM dataset into the initial training dataset and constructed a new random-forest classifier. After retrieving and assessing metrics for the new random-forest classifier within LUSC and BLCA independent validation datasets, we compared them with our initial model’s performance.
Model Interpretation and Visualization
We utilized impurity-based feature importance for tree-based machine learning models to help interpret features’ contributions within our model. The higher its contribution, the more important the feature. Impurity-based feature importance (Gini importance) is computed as the total reduction of the criterion brought by that feature and retrieved through our model’s attribute feature_importances_. Because traditional feature importance mainly focused on overall model interpretation, we also introduced the SHAP (SHapley Additive exPlanations, https://github.com/slundberg/shap) (Lundberg and Lee, 2017) python package to help visualize prediction (Lundberg et al., 2018) and provide local explanations (Lundberg et al., 2020). We provided feature contributions calculated by SHAP for predicted probability and conducted a single prediction’s visualization by invoking the force_plot function. We also investigated the feature contributions of the training dataset. We calculated and visualized the sum of SHAP value magnitudes by summary_plot function in SHAP to show the distribution of each feature’s impacts on the model output (lift or lower prediction probability).
Whole Framework Implementation
We built our whole framework using Snakemake (Köster and Rahmann, 2012) and class-oriented python scripts. Snakemake (https://github.com/snakemake/snakemake) was applied to manage standard bioinformatic workflows involved in this study (co-cleaning, calling, and annotation) and conduct task auto-management without complicating shell scripts. Function-oriented python scripts contained feature extraction, model training and testing, and model utilizing function. Both Snakemake-based workflows and python scripts were available within our project repository (https://github.com/pmglab/RNA-SSNV), which helped create reproducible analysis.
Analyze RNA Mutations With DNA Evidence
We integrated predicted RNA somatic mutations with known DNA mutations to analyze the relevance between RNA and DNA. We examined their intersectionality and split them into three parts (RNA–DNA overlap, DNA-only, and RNA-only) and two sub-categories (positive and negative class, Figure 3). Each part and sub-category had its biological implication and interpretation requiring further investigation. The RNA–DNA overlap part stood for RNA mutations with DNA evidence support. DNA-only part stood for DNA mutations not detected in RNA, and we utilized the Mutect2 force-call mode to inspect their coverage status in RNA. RNA-only part stood for RNA mutations not detected in DNA, and most of them were artifacts due to lack of DNA evidence or low sequence qualities.
[image: Figure 3]FIGURE 3 | Graphical introduction for the DNA-only, DNA–RNA overlap, and RNA-only parts. Graphical introduction for detailed combination of RNA and DNA somatic mutations. DNA-only: DNA somatic mutations not detected (expressed) in RNA. RNA–DNA overlap: somatic mutations detected in both RNA and DNA. RNA-only: RNA somatic mutations without any DNA evidence.
Cancer driver genes were under positive selection during tumorigenesis (Martinez-Jimenez et al., 2020). Here, we focused on cancer-specific driver genes (https://www.intogen.org/) to explore their enrichment patterns (number distribution, functional impact, and therapeutic power) between expressed (RNA–DNA overlap part) and un-expressed (DNA-only part) somatic mutation panels. For pathogenicity prediction, Combined Annotation–Dependent Depletion (CADD) (Rentzsch et al., 2019), Eigen Principal Components (Eigen-PC) (Ionita-Laza et al., 2016), Polymorphism Phenotyping version 2 (PolyPhen-2) (Adzhubei et al., 2010), Protein Variation Effect Analyzer (PROVEAN) (Choi et al., 2012), UMD-Predictor (Ioannidis et al., 2016), Rare Exome Variant Ensemble Learner (REVEL) (Frederic et al., 2009), and Sorting Intolerant From Tolerant (SIFT) (Ng, 2003) were top-performing prediction tools on somatic variants (Suybeng et al., 2020). Thus, we used the dbNSFP v4.1a (Liu et al., 2020) database to annotate missense mutations with the aforementioned prediction scores. The chi-squared test was used to calculate the significance (p-value) of enriched distribution and odds ratio (OR). A two-sided independent t-test was used to determine the significance (p-value) of the difference between the means of two prediction groups.
We also conducted an analysis of transcriptome-wide allele-specific expression (ASE) to identify ASE events in somatic mutations and their impacts on gene expression which affected carcinogenesis. We chose cases containing both tumor and paired-normal RNA-seq data from LUSC and BLCA cohorts (LUSC: 49 cases, BLCA: 19 cases), and curated their gene expression profiles from the UCSC Xena database (https://xena.ucsc.edu/). Then, we chose only heterozygous SNVs in both tumor RNA-seq and WES data (RNA–DNA overlap part), and implemented chi-squared tests on the RNA and DNA allelic depths with a significance cutoff of p-value 0.01 to identify somatic SNV ASEs (Heap et al., 2010; Liu et al., 2016). Finally, we compared the TPM value of tumor and paired-normal samples of cases harboring the somatic SNV ASEs to examine the alteration of total gene expression, and defined the TPM fold change (FC) of 2 and 1/2 as the thresholds of upregulated and downregulated genes (Liu et al., 2018).
RESULTS
General Performance of the Framework
After the initial RNA somatic mutation calling and multi-filtering step, we collected 467,654 mutations in the LUAD training dataset and 721,234, 323,323, and 126,449 mutations in LUSC, BLCA, and GBM independent validation datasets, respectively. To evaluate the effectiveness of multi-filtering strategy, we validated the loss of GDC mutations in the LUAD training dataset (Figure 4A) and LUSC, BLCA, and GBM independent validation datasets (Supplementary Figure S1). We found that the loss was negligible (0.1%), whereas the reduction of possible artifact calls was rather significant (70%); such preprocessing guaranteed a relatively pure mutation set for training and predicting. Furthermore, our framework’s built-in machine learning model was trained and fine-tuned by 10-fold cross-validation. In total, 37 features from three categories were kept for model training after feature selection conducted in the initial 40 features (Figure 4B). Finally, our framework achieved 88.0% precision and 88.4% recall rate within the testing dataset (Figure 4C), and other assessing metrics (Table 2) were also satisfying. For example, the false-positive rate was 0.014, the false-negative rate was 0.013, and the true-negative rate was 0.987. Moreover, most RNA somatic mutations were at the upper or lower ends of the bay plan plot according to the predicted probability distribution of the testing dataset (Figure 4D), which suggested a clear classification result.
[image: Figure 4]FIGURE 4 | Multi-filtering strategy and machine-learning model performance in testing and validation datasets. (A) Loss of GDC mutations (true positive) and non-GDC mutations after the removal of multiallelic, RNA-editing, immunoglobulin, and HLA sites. (B) Change in cross-validated F1 score with the number of features decreasing using the Recursive Feature Elimination with Cross-Validation (RFECV) method. Initial number of features was 40 and each iteration removed one least important feature. (C) P–R (blue) curve for the testing dataset. RNA-SSNV achieved 0.880 precision and 0.884 recall rate (red point) in the testing dataset under the default 0.5 threshold. RNA-Mutect (green point) and RF-RNAmut (orange point) had reported precision–recall with 0.87–0.72 and 0.85–0.71, respectively. (D) Probability distribution of the predicted scores for the testing dataset. Most somatic mutation records were at the upper or lower ends of the plot, conforming a clear classification boundary. (E) P–R curves for independent validation datasets. P–R curves for LUSC (blue), BLCA (orange), and GBM (green) had identical 0.94 AUC. The peaks meant slightly different P–R performances for our model using the default 0.5 threshold in three datasets: LUSC (0.872–0.894), BLCA (0.876–0.870), and GBM (0.902–0.825). P–Rs for RNA-Mutect and RF-RNAmut were also used for comparison. (F) Precision and recall distribution for each case across three types of cancer (LUSC, BLCA, and GBM). Box plots showed median, 25th and 75th quantiles, outliers were presented as dots. (G) Relative importance distribution for each feature. Gini impurity-based feature importance values were normalized to sum to one.
TABLE 2 | Confusion matrix for the holdout testing dataset.
[image: Table 2]To inspect the generalization performance of our framework, we applied our RNA somatic mutation discriminant model to three independent validation datasets. As a result, RNA-SSNV successfully discriminated GDC high confidence somatic variants from WES-targeted coding RNA mutations with significantly higher precision, recall, and PR-AUC (LUSC P–R: 0.872–0.894, BLCA P–R: 0.876–0.870, and GBM P–R: 0.902–0.825, Figure 4E), compared with other RNA somatic detection tools such as RNA-Mutect (Yizhak et al., 2019) (precision: 0.87, recall: 0.72) and RF-RNAmut (Muyas et al., 2020) (precision: 0.85, recall: 0.71). Specially, RNA somatic mutations within cancer-specific driver genes had better performance (LUSC P–R: 0.924–0.921, BLCA P–R: 0.929–0.896, and GBM P–R: 0.921–0.883) and they had higher coverages than total RNA somatic mutations (median sequencing coverages—LUSC overall: 42, driver: 60, two-sided independent t-test p-value: 1.06e-7; BLCA overall: 41, driver: 44, p-value: 7.35e-7; GBM overall: 46, driver: 76, p-value: 1.12 e-8). Thus, critical mutations within cancer driver genes can be reliably identified in RNA-seq data, which also guarantees our framework’s clinical value.
For case-level performance, as expected, LUSC and BLCA retained a median precision of 0.885 and 0.876 across cases, but GBM only reached 0.739 median precision (Figure 4F), contradicting its general precision of 0.902. Such contradiction was caused by four high-mutation-rate (harbored more than 100 DNA mutations) cases having high precision (>0.950). In contrast, most GBM cases had extremely low somatic mutation rates with less than 30 DNA mutations transcribed in RNA. Thus, some less identifiable RNA editing events and novel mutations rescued by RNA can easily twist GBM’s case-level precision but are hard to affect GBM’s general precision. In addition, LUSC, BLCA, and GBM reached a median recall of 0.905, 0.880, and 0.857, concordant with their general recall. Also, RNA somatic mutation counts were highly correlated with DNA (Pearson correlation coefficient: LUSC: 0.905, BLCA: 0.937, and GBM: 0.607, Supplementary Figure S2) after excluding outlier cases with extreme mutation counts, suggesting the high accuracy of our framework.
We investigated the contributions of 37 features using an importance plot based on Gini impurity (Figure 4G) which showed that STRANDQ was the most important feature for discriminating RNA somatic mutations, followed by AF_tumor, TLOD, ROQ, and ECNT with nontrivial feature importance scores. In addition, features containing other sequencing qualities and population allele frequencies also played a role in prediction because they represented mutations’ reliability and germline evidence. We found that the prevalent RNA editing allelic changes “A>G” came at the bottom of the importance list, which indicated that our multi-filtering strategy adequately removed these editing sites and reduced their influence. Furthermore, we, in detail, illustrated the effects of 37 features on the prediction model by SHAP (Muyas et al., 2020) and ascertained whether their variations lowered or lifted the predicted probability (Supplementary Figure S3). After feature selection, we excluded “A>C,” “A>T,” and “MMQ_alt” features. Among all allelic change features, “A>G,” “C>A,” “C>G,” and “G>A” were retained. Out of which, “A>G” and “G>A” represented A-to-I (Wang et al., 2021) and C-to-U (Lerner et al., 2019) RNA editing events, and their existence had negative impacts on the model output. On the contrary, “C>A” and “C>G” represented RNA-editing exclusive allelic changes that exhibited positive impacts. Interestingly, we also found that high tumor allele depth for reference base and alternative base had opposite impacts, which indicated that RNA somatic mutations with high reference allele depth or low alternative allele depth in the tumor sample tended to be artifacts.
Applications
Evaluation With Known DNA Evidence
We compared RNA-level somatic mutations with DNA-level to investigate the biological mechanisms for their intersection and uniqueness. As a result, we made a tabular overview (Table 3) and Venn diagrams (Supplementary Figure S4) to illustrate detailed distribution for the combination of RNA and DNA-level somatic mutations. Here, our framework successfully identified authentic mutations from the RNA-only part (which got ignored/not covered in WES data) to increase information gain and improve diagnostic yield. For all three parts, the RNA-only part had the largest mutation counts. The vast majority were labeled as negative (97.7–99.2%), indicating that our framework had successfully identified most artifacts in RNA because all these negative calls shall be filtered in the final output. Interestingly, when comparing mutation counts of the DNA-only part with the RNA–DNA overlap part, we found that less than 1/3 DNA somatic mutations got expressed in RNA. Such phenomenon was concordant with another study, mainly due to insufficient sequence coverage in low-expression or un-expression genes (Yizhak et al., 2019). Further analysis was listed in the following section for elaborate explanations.
TABLE 3 | Overview of RNA somatic mutations combined with DNA.
[image: Table 3]Variably RNA-Expressed Mutations Harbored a Special Enrichment Pattern
In detail, we explored the RNA expression ratios (number of expressed DNA somatic mutations/number of all DNA somatic mutations) for each case of three cancer types (Figure 5A), median expression ratios for LUSC, BLCA, and GBM were 0.312, 0.349, and 0.256, respectively. Highly variable expression ratios (0.000–0.632) in three types of cancer suggested that different DNA somatic mutations had various expression statuses in RNA. Notably, although the brain has a high number of expressed genes than other human tissues (Naumova et al., 2013), expression ratios of GBM were still significantly lower than those of LUSC or BLCA. These results indicated that DNA somatic mutations might be variably expressed or not expressed at all, and RNA somatic mutations were important to evaluate possible expression status.
[image: Figure 5]FIGURE 5 | Evaluation of RNA somatic mutations and integrative analysis with DNA evidence. (A) Distribution of RNA expression ratios for known DNA somatic mutations across three types of cancer. Box plots’ heights ranged from 0.000 to 0.632. The comparisons utilized two-sided independent t-test with p-value < 1e-5. (B) Distributions of seven pathogenicity prediction scores for missense mutations within cancer driver genes across three cancer types (LUSC, BLCA, and GBM). DNA-only and RNA–DNA overlap parts in each cancer type were used for comparison (all comparisons passed two-sided independent t-test with p-value < 1e-5). (C) Variant allele fraction (VAF) distributions of DNA-only and RNA–DNA overlap parts within three cancer types. Left box: VAF distribution for DNA somatic mutations in DNA-only part. Middle box: VAF distribution for DNA somatic mutations in the RNA–DNA-overlap part. Right box: VAF distribution for RNA somatic mutations in the RNA–DNA-overlap part. The comparisons utilized two-sided independent t-test with p-value < 1e-5. (D) TPM fold change (FC) distributions for BLCA and LUSC. The comparisons utilized the Wilcoxon rank-sum test with p-value < 1e-5.
To investigate whether the RNA-expressed somatic mutations tended to have larger functional impacts than those that only existed in DNA, probably resulting from the positive selection of cancer subclonal, we compared the impact scores of mutations within cancer-specific driver genes (Martinez-Jimenez et al., 2020) between RNA–DNA overlap and DNA-only parts. Interestingly, the cancer driver genes’ mutations were enriched in the RNA–DNA overlap part (LUSC: OR = 2.01, p = 1.14 e-68, BLCA: OR = 2.57, p = 9.89 e-119, GBM: OR = 2.70, p = 1.73 e-16. Supplementary Table S2), even though the DNA-only part had excessive mutation counts than the RNA–DNA overlap part (DNA-only/RNA–DNA overlap: ∼2/1). Moreover, we compared the predicted pathogenicity scores for missense mutations located within cancer driver genes between RNA–DNA overlap and DNA-only parts, and found that all RNA–DNA overlap parts had significantly higher pathogenicity scores across three cancer types and seven prediction tools (p-value < 1 e-5, Figure 5B). The significantly higher prediction scores implied that predicted damaging mutations tended to be selectively expressed in driving tumorigenesis, and our RNA-level somatic mutation identification framework effectively enriched the functional mutations.
Furthermore, we want to explore whether actionable mutations tend to get expressed in RNA and exhibit clinical effects. Thus, we assessed the therapeutic power for mutations in cancer driver genes between RNA–DNA overlap and DNA-only variants using the OncoKB database (Chakravarty et al., 2017) (https://www.oncokb.org/, Supplementary Table S3). Therapeutic sites within the RNA–DNA overlap part were far more than DNA-only across three cancer types (LUSC: OR = 13.34, p = 8.35e-19, BLCA: OR = 3.27, p = 4.26e-16, GBM: OR = 4.26, p = 3.66e-4, Table 4), indicating that the RNA-level somatic mutations calling can enrich clinical therapeutic variants. Notably, we observed that some therapeutic mutations from the OncoKB database also occurred in the DNA-only part. For example, except for 52 RNA–DNA overlap somatic mutations in BLCA, PIK3CA also had 12 DNA-only somatic mutations with “Level_3B″ OncoKB annotation (Chakravarty et al., 2017). We found that even if the 12 TCGA BLCA cases containing 12 DNA-only somatic mutations had sufficient expression level for the PIK3CA gene (TPM: 23.7–51.7, curated from UCSC Xena(Goldman et al., 2020) dataset), the 12 mutations’ alternative allele still got un-expressed (median alt allele-depth: 0) leading to unlikely benefit from certain targeted therapies. Therefore, although PIK3CA is a valuable therapeutic target for inhibitors of PI3K/AKT/mTOR pathways in advanced bladder cancer (Ross et al., 2016; Willis et al., 2020), the detailed expression status of the mutations should be carefully evaluated when the targeted therapy is considered. Such phenomenon was opposed to the assumption that mutations located within sufficiently expressed genes had undoubtful effects making them potential therapeutic targets, and RNA-level mutations were required to validate these targets’ transcription status.
TABLE 4 | Overview of therapeutic mutation distribution in three types of cancer.
[image: Table 4]Given that RNAs were enriched with mutations of higher functional impact and therapeutic value, we assessed the performance of RNA-level somatic mutations for discovering cancer driver genes by other statistical methods. Here, WITER (Jiang et al., 2019) was adopted to test the enrichment of somatic mutations due to positive selection in tumorigenesis (Jiang et al., 2019; Martinez-Jimenez et al., 2020). We compared the significant genes based on RNA-level somatic mutations to those based on the DNA-level somatic mutations in three cancer datasets. Among all significant genes (FDR < 0.1), the RNA somatic mutations led to a higher proportion of known cancer driver genes from the Intogen database (Martinez-Jimenez et al., 2020) in two of the three datasets than DNA (LUSC: 6/7 vs. 6/9 and GBM: 5/5 vs. 5/18, see details in Supplementary Tables S4, S5) with identical cancer-driver genes, another cancer type (BLCA: 12/18 vs. 15/19) also had a similar proportion. This result suggested that the RNA-level may lead to fewer false-positive estimations for driver genes than DNA-level.
In addition to known cancer driver genes, other significant genes based on the RNA-level somatic mutations, though un-registered in the Intogen database, were also functionally important to cancer development. CTNNB1, for example, had a significant q-value of 0.081 in BLCA. CTNNB1’s mutations have been found to cause aberrant WNT/CTNNB1 signaling and are associated with the susceptibility and prognosis of breast, endometrial, and gastric cancers (Kurnit et al., 2017; van Schie and van Amerongen, 2020; Wang et al., 2012). CHEK2 (q = 0.087 in LUSC, q = 0.052 in BLCA) played an important role in the repair of DNA damage, and its heterozygous mutations had been found to be causing genetic susceptibility to lung cancer (Wang et al., 2014) and bladder cancer (Złowocka et al., 2008). Although our detected CHEK2 somatic mutations were not inherited or passed on, their heterozygosity was similar and induced cancer risk. In a word, RNA can also prioritize potential cancer driver genes.
RNA Increased Mutation Detection Power.
VAF (variant allele fraction) was the fraction of sequencing reads harboring the mutation when performing NGS (Friedlaender et al., 2021), measuring the subclonal prevalence of specific mutations (Benard et al., 2021). We compared the DNA VAF distribution for DNA-only and RNA–DNA overlap parts within three cancer types to examine the subclonal selection advantage for expressed mutations. Higher DNA VAF was observed in expressed DNA somatic mutations (Figure 5C left comparison, p < 1 e-5), indicating the trend of cancer evolution for subclonal harboring RNA somatic mutations. Interestingly, RNA VAF was significantly higher than DNA VAF within expressed mutations of RNA–DNA overlap part (Figure 5C right comparison, p < 1 e-5), suggesting an expression tendency for the mutant allele. The common cancer WES study has a mutation limit of detection (LoD) at 5% VAF, and reporting these subclonal mutations incurs the risk of sequencing error–induced false positives (Yan et al., 2021). For these low-VAF (<0.05) DNA somatic mutations, their RNA VAFs were much higher, with median values of 0.374 in LUSC, 0.342 in BLCA, and 0.241 in GBM. Therefore, RNA somatic mutations exhibited subclonal selection superiority and increased the power for low-VAF mutation detection.
Here, we, in detail, demonstrated the recovery of DNA-omitted mutations for our framework. For the RNA-only part, we found that our framework helped rescue ∼10% of mutations (Table 3) which were missed based on DNA sequencing data. Most of the rescued mutations had low alternative allele depth (median: 0–1) or alternative allele fraction (median: 0–0.03) in WES data but opposite situations (median alt allele depth: 8–10, median alt allele fraction: 0.31–0.67) in RNA-seq data. There were also 102, 120, and 8 mutations located within cancer driver genes out of 6,997, 6,233, and 969 positive mutations from LUSC, BLCA, and GBM, respectively (Supplementary Table S6). Furthermore, we discovered biologically important cancer variants within these overlooked “driver” mutations using the DoCM database (Ainscough et al., 2016) (http://docm.info). We found that 17 out of 102, 14 out of 120, and 2 out of 8 DNA-overlooked “driver” mutations in LUSC, BLCA, and GBM had literature support from one or more publications (Supplementary Table S7). For example, TCGA-FD-A5BS had TP53 p.R282W mutation rescued by RNA with its reference-alternative allele depth in DNA: 19-1, RNA: 17-14. The R282W mutant had been found to cause the gain of novel oncogenic functions (GOF) in p53 proteins and associate with poorer cancer outcomes with a more prominent GOF effect (Zhang et al., 2016).
Low tumor purity can bias somatic mutation detection with the positive correlation between mutation numbers and tumor purities (Cheng et al., 2020). For example, TCGA-90-6837 in LUSC with its CPE (Aran et al., 2015) (consensus measurement of purity estimations) lower than average (0.56 vs. 0.68) had no official DNA mutation (WES failed to detect), we investigated its RNA somatic mutations identified by our framework to confirm its mutational status. We found that out of its 192 RNA somatic mutations, six mutations fell within cancer driver genes, and their existence had been ignored by WES (Table 5). Among these mutations, KMT2D is a lung tumor suppressor gene (Alam et al., 2020), and its mutation was one of the most significant prognostic factors in LUSC(Ardeshir-Larijani et al., 2018). We found that KMT2D p.E869∗ mutation could cause its truncation leading to tumor progression. In addition, TP53 p.A276G mutation had been found to locate within the DNA binding domain of the TP53 protein and presumably have deleterious impacts on protein functions (Chang et al., 2021) with pathogenic ClinVar database (Landrum et al., 2020) interpretation (Accession: VCV000185319.3). These findings confirmed that RNA-seq data could provide valuable supplementary information useful for clinical decisions and improve diagnostic yield in extreme cases when DNA failed to detect actionable mutations.
TABLE 5 | RNA somatic mutation within cancer-driver genes in TCGA-90-6837.
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We calculated the TPM fold change (FC) to measure gene differential expression status. After excluding infinite FC values, we found that the median gene FC for RNA-expressed mutations was significantly higher than unexpressed mutations (Figure 5D). Thus, genes harboring RNA-expressed somatic mutations tended to have higher expression level in tumor samples than in paired normal samples.
We detected somatic SNV-level ASEs, and found that 24.8% of 3876 and 23.2% of 1700 somatic mutations exhibited ASE events in LUSC and BLCA RNA–DNA overlap parts. As expected, most (∼90%) ASE somatic mutations had over-expressed mutant alleles. The results showed that certain expressed somatic mutations had higher expression superiority in the mutant allele than the wild allele, which further enhanced the mutation detection power in RNA. Furthermore, we curated gene lists for 10 signaling pathways in cancer (Sanchez-Vega et al., 2018) and explored the functional alteration on signaling pathways for ASE somatic mutations. Ideally, if the ASE somatic mutation is functional, the direction of ASE event for the mutant allele should be the same as the direction of gene expression alteration for tumor vs. paired-normal samples (Liu et al., 2018). Thus, we mapped ASE somatic mutations to genes involving cancer signaling pathways with identical expression change direction. Finally, we identified several pathways (cell cycle, HIPPO, RTK RAS, TGF-Beta, and WNT) containing heavily altered genes with ASE events (Supplementary Table S8). Interestingly, seemly “benign” synonymous mutations also contained ASE events and altered gene expression level. For example, NF1 is a tumor suppressor that negatively regulates RAS signaling (Redig et al., 2016). NF1 p.L43L mutation in TCGA-39-5040 had an over-expressing mutant allele (DNA VAF: 0.32, RNA VAF: 0.63) and showed an upregulated gene expression (tumor/paired-normal fold change: 2.53), which activated NF1 function to under-regulate the RAS signaling pathway and suppressed carcinogenesis.
DISCUSSION
Although common somatic mutation detection practices come with WES, important and actionable mutations are often conserved in RNA-seq. Therefore, we developed RNA-SSNV, an integrative framework to identify RNA somatic single nucleotide variants called within tumor RNA-seq and paired-normal WES data. To maximize performance, we combined multi-filtering strategies and a machine-learning model. For the multi-filtering strategy, we found that it removed massive artifacts (∼70%) while omitting few true positive calls (∼0.1%). Before constructing the classification model, we also evaluated the performance of the GATK-recommended filtering tool (FilterMutectCalls) for the LUAD training dataset and LUSC, BLCA, and GBM validating datasets using precision–recall metrics. The result showed that FilterMutectCalls achieved a satisfying recall but a low precision rate (LUAD P–R: 0.380–0.865, LUSC P–R: 0.399–0.871, BLCA P–R: 0.442–0.886, and GBM P–R: 0.540–0.881), which may lead to large false-positive calls. Because FilterMutectCalls was originally designed based on DNA somatic mutation filtering strategy, which may not be fully compatible with RNA, we adopted a machine learning model with comprehensive features to conduct classification. For model training, we adopted various techniques to ensure its reliability. To construct a high-quality training dataset, we used GDC DNA mutations as the golden standard and self-called DNA mutations as important supplementary information to separate pure true positive and true negative sets from multi-filtered RNA mutations. In a comparison of using two data sources (RNA mutations and golden-standard DNA mutations) to construct the training dataset, the introduction of self-called DNA mutations significantly improved our machine model’s performance (increased precision–recall from 0.843-0.875 to current 0.883–0.885 by 4%). We also conducted feature selection and fine-tuning to improve the model’s performance. Eventually, our trained model achieved superior performance of 88.0% precision and 88.4% recall rate in the testing dataset compared with other state-of-art RNA somatic mutation detection tools such as RNA-Mutect (Yizhak et al., 2019) (precision: 0.87, recall: 0.72) and RF-RNAmut (Muyas et al., 2020) (precision: 0.85, recall: 0.71).
When utilized in independent validation datasets (TCGA LUSC, BLCA, and GBM), RNA-SSNV achieved similar performance as in the testing dataset, which had 0.871–0.895, 0.876–0.871, and 0.902–0.830 precision–recall rate, respectively. Not only can our framework reliably detect RNA somatic mutations, but it also can conduct pairwise analysis with provided DNA mutations. Although our framework achieved satisfying performance within somatic RNA single-nucleotide variants’ identification, limited scenarios in which only RNA somatic mutations can be retrieved such as the GTEx project (Lonsdale et al., 2013) (contained RNA-seq data from ∼6700 samples across 29 normal tissues). Common RNA-seq practices involving research always included DNA-seq data which generated somatic DNA mutations simultaneously; thus, the investigation for the relationship between DNA-level and RNA-level somatic mutations was essential. Multiple studies have found that combining DNA-level and RNA-level somatic mutation can achieve maximum performance for mutational investigation (Krug et al., 2018; Newman et al., 2021; Wilkerson et al., 2014; Zhang et al., 2020). Thus, we split DNA and RNA somatic mutations into three parts: DNA–RNA overlap part, DNA-only part, and RNA-only part; and each part had positive and negative sub-parts representing our model’s classifications. The DNA–RNA overlap part represented orthogonal validated DNA and RNA mutations; its positive sub-part contained reliable cancer somatic mutations with clinical usage, but its negative sub-part contained false-negative calls misclassified by our model. When using SHAP to analyze these false-negative calls (Supplementary Figure S5), we found that G>A mutant status had significant impacts, which implicated that APOBEC-mediated C-to-U RNA editing events (Lerner et al., 2019) contributed to misclassification and current RNA editing resources were insufficient to filter C>U editing sites. DNA-only part represented DNA mutations omitted in RNA somatic mutation calling, and we found that some DNA mutations’ reference allele got selectively expressed while their alternative allele got silenced. To explore how many DNA-only somatic mutations got selectively expressed, we calculated the selective expression ratios (number of mutations with reference allelic depth>10/number of DNA somatic mutations not identified in RNA) for DNA-only parts across three cancer types (Supplementary Figure S6). The median mutation selective expression ratios for LUSC, BLCA, and GBM were 0.134, 0.120, and 0.154, respectively, confirming that DNA somatic mutations within GBM had higher selective expression tendency than LUSC (p = 0.003) and BLCA (p = 5.63 e-6), possibly due to innate upregulation of DNA repair mechanisms (Ferri et al., 2020). We retrieved their information in RNA using Mutect2’s force-calling mode and utilized our model to classify them. Most of them were predicted negative as expected, but a small portion (1.9%) was predicted as positive, suggesting that our selected caller (Mutect2) might have a little neglection. We also observed that mutations’ reference allele–specific expression within driver genes leads to doubtful translation effects. In addition, most mutations located within collagen-related genes (COL11A1, COL6A3, COL5A2, etc.) were found silenced while these genes got sufficiently expressed in RNA (Supplementary Table S9). Interestingly, the proteome database (Human Cancer Proteome Variation Database) also contains nearly no evidence for mutant collagen proteins across three cancer types which were abnormal because massive DNA somatic mutations had been found in these genes. The RNA-only part represented RNA mutations without DNA evidence support. Its negative sub-part was artifacts, but its positive sub-part included RNA-rescued mutations missing in DNA that contained mutations within cancer driver genes (1.4%) to provide more therapeutic targets and help with clinical decisions. A major shortcoming of WES is uneven coverage of sequence reads over the exome targets contributing to many low-coverage regions (Wang et al., 2017; Xiao et al., 2021), and substantial inter-individual variation in coverage of medically implicated genes caused false-negative mutation calls due to low coverage (Barbitoff et al., 2020; Kong et al., 2018). Although using replicate exome-sequencing can improve WES coverage by 4.3–12.7% (Cherukuri et al., 2015), improve variant calling accuracy (Zhang et al., 2014), and enhance clinical interpretation, information redundancy and excess costs limited its usage. Compared with replicate exome-sequencing, RNA-seq has improved somatic single nucleotide variants, and clinically actionable mutations are often conserved in RNA.
We also examined the potential of improving our model’s performance by introducing additional training data from different cancer types. After adding GBM cancer–type data into the training dataset, we only observed a slight improvement within the testing dataset (recall rate increased 1.3%) and the AUC for P–R curves for TCGA LUSC, BLCA–independent validation datasets remained stable at 0.94 (Supplementary Figure S7). The unchanged performance suggested that our model trained with LUAD datasets probably has already contained key features of RNA somatic mutation in cancer cells and is applicable for other cancers. Although the general performance for our model was identical across three validation datasets, performances under default threshold (0.5) slightly differed and a dynamic shift of threshold according to different aims (prefer higher precision or recall) was required. In addition, due to insufficient C-to-U RNA editing database resources, the current model sacrificed high recall to ensure removing editing events for the G>A mutation type. The high distribution of G>A mutations (52.3%) in false-negative sets of TCGA LUSC–independent validation dataset reflected this imperfection. Therefore, we recommended that users manually review predicted-negative G>A mutations within known driver genes to improve diagnosis. To facilitate user to inspect predictions, we provided codes to visualize the contribution of important features using SHAP library and a canonical table to exhibit all useful information for user-specified records. A major limitation of our framework was that it was designed to identify RNA somatic mutations only from tumor RNA-seq and paired-normal WES data. Future works will include extending RNA somatic mutation identification scope into other sequencing data types (single-cell RNA-seq or whole-genome DNA-seq).
For cancer research involving both WES and RNA-seq data, the conventional analysis strategy uses WES data to call somatic mutations and then validates whether somatic mutations exist in RNA-seq data. However, the conventional strategy may still omit some somatic mutations in RNA-seq data. Our study significantly improved the capability to call RNA somatic mutations and further revealed the association between somatic mutations derived from RNA and DNA, providing valuable supplementary information for conventional cancer somatic mutation analysis.
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Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Exosomes have great potential as liquid biopsy specimens due to their presence and stability in body fluids. However, the function and diagnostic values of exosomal genes in CRC are poorly understood. In the present study, exosomal data of CRC and healthy samples from the exoRBase 2.0 and Gene Expression Omnibus (GEO) databases were used, and 38 common exosomal genes were identified. Through the least absolute shrinkage and selection operator (Lasso) analysis, support vector machine recursive feature elimination (SVM-RFE) analysis, and logistic regression analysis, a diagnostic model of the training set was constructed based on 6 exosomal genes. The diagnostic model was internally validated in the test and exoRBase 2.0 database and externally validated in the GEO database. In addition, the co-expression analysis was used to cluster co-expression modules, and the enrichment analysis was performed on module genes. Then a protein–protein interaction and competing endogenous RNA network were constructed and 10 hub genes were identified using module genes. In conclusion, the results provided a comprehensive understanding of the functions of exosomal genes in CRC as well as a diagnostic model related to exosomal genes.
Keywords: exosome, diagnostic model, functions, colorectal cancer, bioinformatics analysis
INTRODUCTION
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract and presents the second-highest mortality rate (9.2%) among all cancers (Arnold et al., 2017; Bray et al., 2018). Tumor metastases and invasion are associated with poor prognosis and lead to a low five-year survival rate in CRC patients (Siegel et al., 2018). CRC is typically detected by colonoscopy, measuring carcinoembryonic antigen (CEA) levels, multitarget stool DNA testing, and the septin 9 gene methylation blood test (Ahluwalia et al., 2021). Although colonoscopy is a highly sensitive method, it is invasive and uncomfortable for patients and its accuracy depends on the skill level and experience of the endoscopist (Schreuders et al., 2015). CEA levels have been widely used as tumor markers for the detection of CRC. However, it is still limited in terms of sensitivity and specificity. Therefore, there is an urgent need to identify more effective and less invasive surrogate CRC-specific diagnostic markers for the rapid, noninvasive, and high sensitivity screening of patients.
The use of exosomes as a new noninvasive approach for diagnosing diseases has attracted growing attention (Mousavi et al., 2019). Exosomes are extracellular vesicles containing messenger RNAs (mRNA), microRNAs (miRNA), long noncoding RNAs (lncRNA), circular RNAs (circRNA), DNA, lipids, and proteins with sizes between 40 and 150 nm and density between 1.13 and 1.19 g/ml (Yáñez-Mó et al., 2015; Shi et al., 2021). Notably, exosomal biomarkers and molecule information remain relatively stable in most body fluids because they are protected from degradation and external impact (Xiao et al., 2019). Therefore, exosomes have great potential as liquid biopsy specimens for various diseases (Wang et al., 2017; Liu et al., 2019). In particular, cancer cells secrete significantly more exosomes than normal cells (Mousavi et al., 2019; Nabariya et al., 2020). Cancer-derived exosomes likely serve as new circulating biomarkers for the early detection of cancer as they carry cargo reflective of genetic or signaling alterations in the cancer cells of origin (Li et al., 2015; Melo et al., 2015). Therefore, exosomes may be an ideal candidate to act as a biomarker for CRC.
In the present study, we identified several differentially expressed exosomal genes from public databases to understand the underlying molecular changes and biological mechanisms. For the diagnosis of CRC patients, we established a 6–exosomal gene diagnosis model using the least absolute shrinkage and selection operator (LASSO), support vector machine recursive feature elimination (SVM-RFE), and logistic regression analyses. This model was verified using a receiver operating characteristic (ROC) curve in internal and external sets. In addition, the co-expression analysis was used to cluster co-expression modules, and the enrichment analysis was performed on module genes. We also established protein–protein interaction (PPI) networks to investigate hub genes and constructed competing endogenous RNA (ceRNA) networks related to serum exosomal genes in CRC. The purpose of the present study was to obtain further insight into the underlying functions of exosomal genes and to identify any potential diagnostic exosomal genes using the bioinformatics analysis in CRC.
MATERIALS AND METHODS
Data Source and Identification of Differentially Expressed Exosomal Genes
The flowchart of this study is presented in Supplementary Figure S1. We extracted serum exosomal data relative to mRNA, lncRNA, and circRNA from 35 CRC patients and 118 healthy persons from the exoRBase 2.0 database (Li S. et al., 2018) (http://www.exorbase.org/). We also downloaded serum exosomal data from the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/). The GSE100063 and GSE100206 datasets contain exosomal data (mRNA) from 12 CRC patients and 32 normal persons. All CRC and healthy exosomal data were available and included in the study. After data normalization and log base 2 transformations, differentially expressed genes between CRC patients and healthy individuals were identified using the limma R package (Ritchie et al., 2015). Differentially expressed genes were defined as those whose expression differences were associated with an adjusted p <0.05. This study was approved by the Ethics Committee of the First Affiliated Hospital of Sun Yat-sen University [Approval number (2021)687].
Identification of the Diagnosis-Related Exosomal Gene Signature Associated With Colorectal Cancer
Genes that were differentially expressed (adjusted p <0.05) in the exoRBase 2.0, GSE100063, and GSE100206 datasets were selected. First, 70% of the samples in exoRBase 2.0 were randomly selected as a training set. The LASSO regression analysis was used to obtain diagnostic exosomal genes from the training set. The SVM-RFE analysis was used simultaneously to screen exosomal genes in the training set for CRC diagnosis. Then, we combined the LASSO and SVM-RFE analyses to obtain the common exosomal genes. Next, we selected common exosomal genes that were regulated (up- or downregulated) in the same direction to build a diagnosis-related exosomal gene signature by the multivariate logistic regression analysis. Finally, the ROC curve analysis and the area under the curve (AUC) were used to estimate the diagnostic value of the diagnosis-related exosomal gene signature using the pROC package in R (Robin et al., 2011).
Validation of the Diagnosis-Related Exosomal Gene Signature
As a validation set, 30% of the samples in exoRBase 2.0, GSE100063, and GSE100206 datasets were selected. To validate whether candidate exosomal genes had an important diagnostic value in patients with CRC, we also measured the ROC curve and the AUC value in the validation datasets. p <0.05 is considered statistically significant.
Cell Culture, Human Plasma Samples, and Isolation of Exosomes
HCoEpiC, HCT116, and SW480 cell lines (purchased from ATCC) were cultured in a DMEM medium (Cellmax) containing 10% fetal calf serum, and 100 U/ml each of penicillin and streptomycin at 37°C with 5% CO2. HCoEpiC, HCT116, and SW480 cells were cultured with a full medium at 80% confluency and replaced with a fresh medium without fetal bovine serum. After a 48-h culture, the cell medium was harvested. In addition, thirty-two CRC patient serums and seventeen healthy human serums were collected in the First Affiliated Hospital of Sun Yat-sen University in December 2021. The samples were stored at −80 before exosome extraction. The exosomes were collected from the cell culture supernatant by differential centrifugations. In addition, exosome morphology was identified by transmission electron microscopy (TEM), the nanoparticle tracking analysis (NTA), and the expression of exosome surface markers CD9, TSG101, and HSP70 were evaluated by the Western blotting analysis.
Validation of Exosomal Gene Expression Levels
Total RNA from exosomes was extracted using the TRIzol reagent (Invitrogen, NYC, United States) and reverse transcribed with the PrimeScript RT kit (Takara, China). Real-time PCR was carried out using the SYBR PreMix Ex Taq II kit (Takara, China). GAPDH was used as the normalized control of mRNA. The relative expression levels of mRNA in exosomes were calculated by the 2−ΔΔCT method. The primer sequences used in this study are listed in Supplementary Table S1.
The Co-Expression Analysis
The weighted gene co-expression network analysis (WGCNA) was used to identify the co-expression network of differentially expressed exosomal genes in exoRBase 2.0 using the WGCNA package in R (Langfelder and Horvath, 2008). A weighted adjacency was constructed by calculating using the Pearson correlations of all gene pairs. Soft power β = 7 was selected to construct a standard scale-free network. The similarity matrix, which was constructed using the Pearson’s correlation coefficients of all gene pairs, was transformed into a topological overlap matrix (TOM) as well as the corresponding dissimilarity (1-TOM). Then, a hierarchical clustering dendrogram of the 1-TOM matrix was used to classify similar gene expressions into different gene co-expression modules. Afterward, a module-clinical trait association was calculated to identify functional modules in a co-expression network. The brown and gray modules were selected for further analysis.
The Gene Ontology Term and Kyoto Encyclopedia of Genes and Genomes Functional Enrichment Analyses
To further clarify the potential biological functions of the exosomal genes in the modules, we performed the Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses using the clusterProfiler package in R (Yu et al., 2012). The GO terms and KEGG pathways with p <0.05 were considered significantly enriched.
Protein–Protein Interaction Network Construction and Hub Gene Identification
In this study, the exosomal genes in the brown and gray modules were analyzed. The PPI network was constructed by the online STRING database (https://string-db.org), and interaction with a combined score >0.7 was considered statistically significant. Cytoscape, an open-source bioinformatics software platform, was used to visualize molecular interaction networks. Hub genes were identified using the Degree algorithm of the cytoHubba plugin in Cytoscape.
Exosomal ceRNA Network Construction
The TargetScan database (www.targetscan.org) and miRanda (http://cbio.mskcc.org/microrna_data/miRanda-aug2010.tar.gz) statistical models that predict the effects of miRNAs binding to canonical sites of mRNA were used to accomplish miRNA prediction. miRNA/circRNA and miRNA/lncRNA interactions were predicted using ENCORI (http://starbase.sysu.edu.cn/) and miRcode (http://www.mircode.org/), respectively. The ceRNA regulatory network was constructed according to the ceRNA regulatory mechanism and the differentially expressed lncRNAs, circRNAs, and mRNAs in exosomes, and the network were visualized by Cytoscape.
RESULTS
Identification of Differential Expression of Exosomal Genes
The RNA sequencing exosomal data for CRC and healthy samples were downloaded from the exoRBase 2.0 and GEO databases. A total of 2839 differentially expressed exosomal genes were obtained from the exoRBase 2.0 dataset (Figure 1A) and 475 differentially expressed exosomal genes in the GSE100063 and GSE100206 datasets (Figure 1B). A total of 38 differentially expressed exosomal genes were common in the two databases (Figure 1C).
[image: Figure 1]FIGURE 1 | Differentially expressed exosomal genes and identification of diagnostic exosomal genes in CRC. (A) Differentially expressed exosomal genes between CRC patients and controls in the exoRBase 2.0 database. (B) Exosomal genes differentially expressed between CRC patients and controls in the GSE100063 and GSE100206 datasets. (C) The intersection of differentially expressed exosomal genes in the exoRBase 2.0, the GSE100063, and the GSE100206 dataset. (D) The LASSO method identified 13 diagnostic exosomal genes. (E) The SVM-RFE method identified 19 diagnostic exosomal genes. (F) The intersection of diagnostic exosomal genes in the two analyses. CRC, colorectal cancer; LASSO, least absolute shrinkage and selection operator; SVM-RFE, support vector machine recursive feature elimination.
Development and Verification of the Diagnostic Model
We randomly split all the samples in the exoRBase 2.0 dataset into a training set (70%) and a validation set (30%). We combined the LASSO and SVM-RFE methods to obtain 9 common exosomal genes (Figures 1D–F). Next, in the training and validation set, we selected common exosomal genes that were in the same regulated direction to build a diagnosis-related exosomal gene signature using the multivariate logistic regression analysis (Figures 2A,B). Therefore, we obtained 6 exosomal genes including H3F3A, MYL6, FBXO7, TUBA1C, MEF2C, and BANK1. Furthermore, these 6 exosomal genes were identified based on the model according to the following formula: index = H3F3A × (3.67971578945741) + MYL6 × (2.01995321634272) + FBXO7 × (−0.86536340517915) + TUBA1C × (0.184108184598825) + MEF2C × (−3.86524121779742) + BANK1 × (−5.35388054514927). The AUC for the gene signature was 0.981 in the training set (Figure 2C) and 0.923 in the internal test set (Figure 2D). Importantly, we also used external datasets to validate the gene signature: it showed good diagnostic ability, with an AUC of 0.995 (Figure 2E).
[image: Figure 2]FIGURE 2 | Potential exosomal genes for the diagnosis of CRC. The relative expression level of diagnostic exosomal genes (A) between CRC serum and healthy samples in the training set and (B) in the external validation dataset. ROC curves of the exosomal gene signature in the (C) training set and (D) in the internal validation set of the exoRBase 2.0 database. (E) ROC curves of the exosomal gene signature in the external validation set of the GSE100063 and GSE100206 database. CRC, colorectal cancer; ROC, receiver operating characteristic.
Validation of Exosomal Gene Expression Levels
To further validate the expression levels of these model exosomal genes, we extracted exosomes from HCoEpiC, HCT116, SW480 cells, and human plasmas. The purification of the exosomes was validated by TEM, NTA, and Western blotting analysis. TEM detected double-layer spherical vesicles ranging from 30 to 160 nm in size, which confirmed the presence of exosomes (Supplementary Figure S2A). NTA characterized the size and concentration of exosomes (Supplementary Figure S2B). Western blotting analysis estimated the quantity and purity of exosomes by detecting exosomal marker proteins (CD9, TSG101, and HSP70) (Supplementary Figure S2C). Next, we validated the expression of signature exosomal genes in the exosomes obtained by RT-qPCR. The results showed that H3F3A, MYL6, and TUBA1C were significantly upregulated in CRC cells, and MEF2C and FBXO7 were significantly downregulated in CRC cells. However, no significant differences were observed in BANK1 expression between HCT116 and SW480 cells and HCoEpic cells (Supplementary Figure S2D). Furthermore, we validated the expression levels of the model exosomal genes in the serums from the CRC patients and healthy humans. The results showed that the mRNA levels of three genes (H3F3A, TUBA1C, and MYL6) were significantly elevated in the CRC exosomes, whereas BANK1, MEF2C, and FBXO7 were downregulated in the CRC exosomes when compared with those in the healthy human exosomes (Figure 3). These results were consistent with the results of the exoRBase 2.0 and GEO databases.
[image: Figure 3]FIGURE 3 | Validation of exosomal gene expression levels in CRC patient serums and controls. ∗∗∗∗p < 0.0001; ∗∗p < 0.01; ∗p < 0.05; CRC, colorectal cancer.
The Weighted Gene Co-Expression Network Analysis and Key Module Identification
To identify exosomal genes associated with CRC, we analyzed differentially expressed exosomal genes between CRC and healthy samples in the exoRBase 2.0 database using WGCNA. The included samples were clustered with the hierarchical average linkage clustering method (Figure 4A). The optimal soft power threshold for WGCNA was set to 7 to preserve the scale-free topology and effective connectivity (Figure 4B). Four co-expression modules of differentially expressed exosomal genes were established (Figure 4C). The brown and gray modules were found to have a positive correlation with CRC.
[image: Figure 4]FIGURE 4 | Identifying the functions of CRC-associated exosomal genes. (A) Clustering dendrogram. (B) Determination of soft-thresholding power in the weighted gene co-expression network analysis. (C) Module–trait associations evaluated by correlations between CRC and clinical traits. (D) The GO enrichment analysis of the exosomal genes in the brown and gray modules. (E) The KEGG pathway of the exosomal genes in the brown and gray modules. (F) The PPI network of genes in the brown and gray modules and hub genes screening. CRC, colorectal cancer; PPI, protein–protein interaction
Enrichment of Module Genes
To explore the potential function of exosomal genes in the brown and gray modules, the enrichment analysis of GO and KEGG was performed. The GO analysis of these differentially expressed exosomal genes revealed that “small molecule catabolic process,” “contractile fiber,” and “structural constituent of muscle” were the most frequent biological terms for biological process, cellular components, and molecular functions, respectively (Figure 4D). The KEGG analysis revealed that these exosomal genes were mainly enriched in the “apelin signaling pathway,” “ubiquitin mediated proteolysis,” “spinocerebellar ataxia,” and “tight junction” (Figure 4E).
Protein–Protein Interaction Network Construction and Hub Genes Screening
The PPI network of the exosomal genes in the brown and gray modules was constructed through the STRING database and visualized with Cytoscape. The PPI network and hub genes identified from the network were obtained through the degree algorithm of the CytoHubba plugin. According to degree scores, the top-scoring genes, including HIST1H3E, HIST1H3J, HIST1H3A, HIST1H2BC, SEH1L, H3F3A, HIST1H2BJ, HIST1H2BF, HIST1H2BB, and RHEB, were considered the hub genes (Figure 4F).
Construction of the Exosomal ceRNA Network
After the differentially expressed exosomal genes were identified in the brown and gray co-expression modules, these exosomal genes were used to construct ceRNA networks. Exosomal lncRNA and circRNA that were differentially expressed (adjusted p <0.05) in exoRBase 2.0 were selected. Based on mRNA, lncRNA, circRNA, and the predicted corresponding miRNA, we constructed a ceRNA network. The ceRNA network consisted of 5 circRNA nodes, 2 lncRNA nodes, 40 miRNA nodes, and 72 mRNA nodes (Figure 5).
[image: Figure 5]FIGURE 5 | A competing endogenous RNA network associated with exosomal genes.
DISCUSSION
CRC is a highly malignant cancer with a poor prognosis. CRC patients are at substantial risk of recurrence and metastasis. Therefore, early diagnosis is very important to improve the clinical prognosis of CRC patients. Liquid biopsy, a recent and hot topic in cancer detection, has been considered for the early diagnosis of cancer (Chang et al., 2019). The functional states of cancer cells could be assessed by testing the exosome they secreted, which provides the basis for exosome-mediated noninvasive cancer liquid biopsy (Yang et al., 2020). Currently, various studies show that the increased or decreased expression of exosomes plays an important role in different kinds of cancer, including CRC (Hon et al., 2017; Galamb et al., 2019; Xiao et al., 2020). Thus, exosomes are crucial potential candidates for the early detection of CRC.
To date, exosomal gene–based diagnostic models have not been described for CRC, although considerable efforts have been made to develop prognostic signatures based on differentially expressed genes (Chen et al., 2019; Dai et al., 2020; Wang et al., 2020). The present study analyzed differences in exosomal gene expression between CRC patients and healthy humans. Importantly, we identified diagnostic exosomal genes based on a comprehensive analysis that could serve as valuable biomarkers in the clinical setting.
Potential exosomal gene modules related to CRC were identified with the WGCNA analysis. The brown and gray modules were found to have a positive correlation with CRC. To better understand the potential function of exosomal genes among the brown and gray modules, the GO and KEGG enrichment analysis and the PPI network were conducted. The results of the functional and pathway enrichment analyses showed that the exosomal genes in the modules were mainly enriched in the structural components of the muscle and apelin signaling pathway. The PPI network of exosomal genes in the brown and gray modules was constructed and 10 hub genes were selected using the CytoHubba plugin in Cytoscape. Among these genes, H3F3A, as a diagnostic biomarker in the present study, was also identified as a hub gene, and maybe as a promoter of CRC progression and metastasis. The ceRNA network played a critical role in the initiation and progression of CRC (Ke et al., 2019; Ma et al., 2020). In the present study, we further constructed ceRNA networks based on those key exosomal genes. This approach provided a novel view of the RNA–RNA crosstalk in the exosome and indicated the potential diagnostic and therapeutic functions of exosomal ceRNA networks in CRC.
Our exosomal gene–based model highlighted 6 exosomal genes, that is, H3F3A, MYL6, FBXO7, TUBA1C, MEF2C, and BANK1. These genes and their biological functions have been studied in some tumors. H3F3A is one of two genes encoding histone H3.3, a noncanonical histone variant, and has been established as a major driver gene of malignant gliomas (Schwartzentruber et al., 2012; Sturm et al., 2012; Wu et al., 2012). MYL6, a gene that encodes hexameric ATPase cellular motor protein, is upregulated in circulating tumor cells of many cancers (Yadavalli et al., 2017). FBXO7 may have a proto-oncogenic role in epithelial tumors (Laman et al., 2005). TUBA1C, as a type of tubulin, is associated with tumor cell death and cell proliferation, and TUBA1C overexpression is predicted to have a poor prognosis (Li C.-W. et al., 2018; Li et al., 2020). MEF2C was traditionally considered a development-associated factor and can inhibit tumor growth in vitro and in vivo (Bai et al., 2015). BANK1, which encodes a protein adaptor that is predominantly expressed in B cells, is a putative tumor suppressor gene in B-cell lymphomagenesis (Yan et al., 2014). Our results showed that diagnostic exosomal genes may participate in the development of human CRC; however, the underlying molecular mechanism of these genes in the prognosis of CRC requires further investigation. Our experimental results showed that the differential expression levels of diagnostic exosomal genes in cell lines were approximately in agreement with the serum exosomal data in these public databases.
To the best of our knowledge, this is the first reported exosomal gene–based model for CRC. However, the potential limitations of this study should also be considered when interpreting the findings. First, we could not explore the association between these exosomal genes and the prognosis of CRC patients due to the lack of therapeutic and prognostic information. Second, because the data we analyzed were obtained from public databases, further experimental studies are necessary to validate our findings.
To conclude, we investigated the potential functions and diagnostic values of exosomal genes in CRC through a comprehensive bioinformatics analysis. A diagnostic exosomal gene model was constructed. This model can assess the value of exosomal genes to diagnose CRC using a noninvasive method and might be useful for the development of individualized treatment for CRC patients, but the feasibility of its use in the population needs to be further validated.
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CHORD HRDetect
HRD HRP HRD HRP

Bi-allelic Evidence ~ Yes ~ No  Yes  No  Threshold  Accuracy ~ Yes No  Yes  No  Threshold  Accuracy

Breast

default 60 7 9 286 050 096 % 1 2 282 070 096

optimal 75 9 3 284 010 097 77 11 1 282 068 097

Ovary

default 20 5 1 31 050 091 T 0 25 070 083

optimal 20 1 1 35 084 097 29 2 1 34 099 095

Pancreas

default 41 5 14 a3 050 095 51 20 4 316 070 094

optimal 49 5 6 331 013 097 50 9 5 327 098 096

IRD and HRP categories are determined by CHORD and HRDetect based on default or optimal (cancer-type-specific) thresholds.
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HRDetect
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Count
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51

Evidence of Biallelic Inactivation

Proportion (95% Cl)

90.8 (81.4-95.9)
85.3(68.2-94.5)
89.1(75.6-95.9)

87.4(78.1-93.2)
73.2 (66.8-85.2)
71.8 (69.7-81.6)

No Evidence of Bi-allelic Inactivation

Count Proportion (95% C)
7 9.2 (4.1-186)
5 147 (65-31.8)
5 109 (4.1-24.4)
19 12.6 (6.8-21.9)
1 26.8 (148-43.2)

20 28.2 (18.4-40.3)
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Characteristics

Age (years)
Age category (years)
20-60
61-80
> =80
Not available
Sex
Male
Female
Not available
Tumor Stage
To
Ta
Ta-T1
T
Cis/is
WHO 1973 Grade
G1
G2
G3
GO/Gx/Not avaiable
WHO 2004-2016 Grade
Low
High
Not available
CIS in the disease course
cis-
cis+
Not available
Tumor size
<=8cm
>3em
Not available
EORTC risk score
[
1
Not available
Recurrence
FALSE
TRUE
Not available
Progression beyond the T2 stage
FALSE
TRUE
Not available
PFS (months)
Cancer-specific suvival
FALSE
TRUE
Not available
DFS (months)
Vital status
FALSE
TRUE
Not available
0S (months)

Value
69 (862; 20-96; 61-76.5)

198 (14%)
542 (40%)
122 (9%)
508 (37%)
797 (58%)
219 (16%)
354 (26%)

91 (6%)
696 (51%)
24 (2%)
547 (40%)
12 (1%)
58 (4%)
199 (15%)
285 (21%)
828 (60%)

427 31%)
289 (21%)
654 (48%)

472 (34%)
103 (8%)
795 (68%)

311 (23%)
83 (6%)
976 (71%)
286 (21%)
174 (13%)
910 (66%)
127 (9%)
57 (4%)
1186 (87%)
711 (52%)
66 (5%)
593 (43%)
33 (460; 0-74.9; 24-42.8)
271 (20%)
6 (~0%)
1093 (80%)
37.9 (173; 0.2-104.4; 21.2-60.2)
144 (11%)
42 (3%)
1184 (86%)
55.3 (104; 2.1-137; 26.4-80.3)
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Category

BP
BP
BP
BP
BP
BP
BP
BP
BP
BP
cC
cc
cc
cc
cC
cc
cc
cc
cc
cc
MF
MF
MF
MF
MF

MF
MF
MF
MF
MF
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG
KEGG

GeneSet

GO:0071577
GO:0006882
GO:0055114
GO:0006702
GO:0071578
GO:0006694
GO:0006829
GO0:0010043
GO:0061088
GO:0006703
GO:0016021
GO:0005789
GO:0031090
GO0:0016023
GO:0005783
GO:0005794
GO0:0005887
GO:0048471
GO0:0006886
GO0:0043231
GO0:0006385
GO0:0046873
GO:0008324
G0:0004303
GO0:0016712

GO0:0019825
G0:0020037
GO:0047035
GO:0005506
GO:0016705
hsa00140
hsa04913
hsa01100
hsa04978
hsa00830
hsa00980
hsa05204
hsa01212
hsa00061
hsa04925

Term description

Zinc Il ion transmembrane transport
Cellular zinc ion homeostasis
Orxidation-reduction process

Androgen biosynthetic process

Zinc Il ion transmembrane import

Steroid biosynthetic process

Zinc Il ion transport

Response 10 zinc ion

Regulation of sequestering of zin ion
Estrogen biosynthetic process

Integral component of membrane
Endoplasmic reticulum membrane
Organelle membrane

Cytoplasmic, membrane-bounded vesicle
Endoplasmic reticulum

Golgi apparatus

Integral component of plasma membrane
Perinuclear region of cytoplasm

Plasma membrane

Intracellular membrane-bounded organelle
Zinc ion transmembrane transporter activity
Metal ion transmembrane transporter activity
Cation transmembrane transporter activity
Estradiol 17-beta-dehydrogenase activity

Oxidoreductase activiy, acting on paired donors, with incorporation or reduction of molecular oxygen,
reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen

Oxygen binding
Heme binding

Testosterone dehydrogenase (NAD+) activity
Iron ion binding

Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen

Steroid hormone biosynthesis

Ovarian steroidogenesis

Metabolic pathways

Mineral absorption

Retinol metabolism

Metabolism of xenobiotics by cytochrome P450
Chemical carcinogenesis

Fatty acid metabolism

Fatty acid biosynthesis

Aldosterone synthesis and secretion

%

2143
1571
3571
1143
10.00
12.86
857
1143
857
857
68.57
2571
10.00
857
1571
1429
1867
1143
35.71
10.00
30.00
15.71
857
714
714

857
1143
571
1143
857
30.00
1143
2857
714
571
571
571
429
2.86
429

p-value

2.30E-31
1.13E-20
284E-18
4.23E-15
245E-14
4.60E-13
5.20E-11
9.89E-11
1.17E-10
4.25E-10
7.68E-12
1.49E-08
9.36E-07
1.76E-04
0.001061
0.005088
0.006431
0.008955
0.014211
0.01889
9.28E-48
5.26E-24
3.84E-10
4.67E-08
2.99E-07

1.14E-06
1.156-06
2.07E-06
2.41E-06
3.02E-06
5.49E-34
4.26E-09
1.85E-06
7.39E-05
0.004406
0.006615
0.008206
0.025834
0.065993
0.066689

FDR

8.15E-29
1.99E-18
3.35E-16
3.74E-13
1.74E-12
2.72E-11
2.63E-09
4.38E-09
4.50E-09
1.50E-08
7.14E-10
6.93E-07
2.90E-05
0.004101
0.019736
0.078862
0.085435
0.104104
0.146847
0.175682
1.13E-45
3.21E-22
1.66E-08
1.43E-06
7.30E-06

2.01E-05
2.01E-05
3.16E-05
3.27E-05
3.65E-05
1.926-32
7.45E-08
2.16E-05
6.47E-04
0.030844
0.038587
0.041031
0.113026
0.233413
0.233413

FDR, false discovery rate; GO, gane anitalogy: BP. bioogical processes; CC. celiular component: MF, molecular funclion: KEGG, Kyolo Encyclopedia of Genee and Genomes.
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Gene

SLC39A13
SLC39A4
SLC39A8
SLC39A8
SLC39A4
SLC39A8
SLC39A13
SLC39A10
SLC39A13
SLC39A7
SLC39A13
SLC39A1
SLC39A13
SLC39A14
SLC39A8
SLC39A13
SLC39A10
SLC39A13
SLC39A1
SLC39A6
SLC39A14
SLC39A13
SLC39A13
SLC39A13
SLC39A4
SLC39A10
SLC39A1
SLC39A10
SLC39A8
SLC39A1
SLC39AT
SLC39A12
SLC39A13
SLC39A13
SLC39A10
SLC39A12
SLC39A6
SLC39A10
SLC39A10
SLC39A10
SLC39A12
SLC39A7
SLC39A13
SLC39A5
SLC39A13
SLC39A13
SLC39A10
SLC39A1
SLC39A13
SLC39A5
SLC39A13
SLC39A8
SLC39A1
SLC39A14
SLC39A10
SLC39A5
SLC39A7
SLC39A8
SLC39A10
SLC39A13
SLC39A14
SLC39A13
SLC39A14
SLC39A12
SLC39A7
SLC39A12
SLC39A3
SLC39A14
SLC39A2
SLC39A14
SLC39A1
SLC39A7
SLC39A14
SLC39A7
SLC39A12
SLC39A8

cor, correlation coefficient: NSC#, Cancer Chemotherapy National Service Center number: PubChem SID, PubChem Substance IDs.

Drug

By-product of CUDC-305
Okadaic acid
Nelarzbine
Fluphenazine
8-chloro-adenosine
Chelerythrine
Vinorelbine
Gefitinib
Eribulin mesilate
Oxaliplatin
Paclitaxel
Irofulven
Oxaliplatin
AFP4B4
Fenretinide
Actinomycin D
Afatinib
Nilotinb
Imexon
Raloxifene
Panobinostat
Homoharringtonine
LDK-378
Vinblastine
Allopurinol
Erlotinb
Oxaliplatin
Lapatinb
Imexon
Ifosfamide
Palbociclib
PD-98059
Dolastatin 10
Tamoxifen
Vandetanib
Vemurafenib
Fuivestrant
Elesclomol
orutinib
Bosutinib
Selumetinio
Dexrazoxane
Imatinib
Tegafur
AFP4B4
Tanespimycin
Pacitaxel
Eribulin mesilate
Crigotinib
Fluorouraci
Palbociclib
Hydroxyurea
Palbociclib
Cyclophospharmide
Tyrothricin
BML-277
Entinostat
Cyclophospharmide
Vinorelbine
Carfizomib
Palbociclio
Simvastatin
Lificguat
Hypothemycin
Carfizomib
Dabrafenio
Clactibine
Fuivestrant
Isotretinoin
Zoledronate
Paclitaxel
Epirubicin
Entinostat
Teniposide
Dasatinib
Pipobroman

cor

-0.488
-0.478
0.476
0.463
0.459
0.456
-0.453
0.447
-0.431
-0.430
-0.427
0.425
-0.417
-0.417
0.416
-0.414
0.413
-0.411
-0.411
0.411
-0.409
-0.407
-0.4056
-0.403
0.403
0.397
-0.394
0.393
0.391
-0.390
-0.389
0.381
-0.380
-0.378
0.377
0.375
0.374
-0.372
0.370
0.370
0.366
-0.366
-0.366
0.366
-0.365
-0.364
-0.361
-0.358
-0.358
0.357
-0.357
0.365
-0.354
-0.354
-0.354
0.353
-0.351
0.361
-0.348
-0.347
-0.345
0.345
-0.344
0.343
-0.342
0.340
0.339
-0.339
0.338
0.336
-0.333
-0.333
-0.332
-0.331
-0.331
0.331

p-value

7.51E-05
0.000113
0.000122
0.000194
0.000226
0.000254
0.000274
0.000338
0.000579
0.000602
0.000661
0.000704
0.00091
0.000911
0.000953
0.001015
0.00103
0.001111
0.001115
0.00112
0.001172
0.001261
0.00134
0.001413
0.001424
0.001684
0.001825
0.00192
0.001991
0.002069
0.002157
0.002652
0.002743
0.002902
0.002996
0.003169
0.003201
0.003428
0.003626
0.003646
0.003978
0.004008
0.004011
0.004025
0.004084
0.004255
0.004571
0.004949
0.005009
0.005048
0.005157
0.00534
0.005531
0.005662
0.005664
0.005734
0.00593
0.006
0.006518
0.006546
0.006897
0.006942
0.007171
0.007328
0.007394
0.007788
0.008008
0.008077
0.008346
0.008774
0.009309
0.009424
0.009669
0.009681
0.009702
0.009745

NSC#

761390
677083
755085
92339
364268
36405
760087
759856
707389
266046
758645
683863
266046
710464
760419
755841
750691
747599
714597
747974
761190
758253
777193
757384
1,390
718781
266046
745750
714597
109724
758247
679828
376128
180973
760766
761431
719276
174939
761910
765694
741078
169780
743414
148968
710464
330507
758645
707389
756645
757036
758247
32065
758247
26271
757363
741899
706995
26271
760087
758252
758247
758706
728165
354462
758252
764134
105014
719276
122758
721517
758645
759195
706995
758667
759877
25154

PubChem SID

516878
144074932
398387
464177
544923
144076280
144076186
520374
569872
144075668
520035
560872
530822
144076412
144074852
131407778
91148446
532526
91148450

144075282
68199
534851
560872

91147938
532526
301170

518213
469333
447264
131408693
131408691
534986
445356

91146061
442425
91146949
430704
530822
574817
144075668
520374
131408690
144075048

90752

87150
144075261
91146360

529250

87150
144076280

144075729
48427734
576295

406818
534986
416403
536160
144075668
144075933
520250
144075690
144076207
86412
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IncRNA symbol
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GSEC
LINC00941
NKILA
HSPC324
MYO16-AS1

Cox (B)

0.100829689
-0.20010788
0.213042416
0.184433915
0.080054987
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0.094137118

HR
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Variables LUAD
patients (N = 499)

Gender

Female 270 (54%)
Male 229 (46%)
Age

<65 years 240 (48%)
>65 years 259 (52%)
Pathologic T Stage

T1 170 (34%)
T2 263 (53%)
3 45 (9%)
T4 18 (4%)
Unknown 3 (0%)
Pathologic M Stage

MO 331 (66%)
M1 24 (5%)
Unknown 144 (29%)
Pathologic N Stage

NO 322 (65%)
N1 95 (19%)
N2 69 (14%)
N3 2 (0%)
Unknown 11 2%)
Pathologic Stage

Stage | 266 (53%)
Stage Il 120 (24%)
Stage Ill 80 (16%)
Stage IV 25 (5%)
Unknown 8 (2%)

Note: T. tumor size: M, distant metastasis: N, lymph node.
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1.28-2.41
1.29-2.60
19721
112239
1.32-2.31
1.18-2.54
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0.58-1.16
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p-value

0.000
0.001
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Male
Female
Age
Age <60 years male
Age >60 years male
Age <60 years female
Age >60 years female
Stage
|
2
3
4
Missing
Lauren type
Intestinal
Diffuse
Mixed
Sunvival time (years)

%In TCGA cohort, six samples (2%) have no age information.

TCGA® (n = 371)

238 (64%)
133 (36%)
68 (36-90)
78 (21%)
156 (42%)
31 (8%)
100 (27%)

50 (14%)
111 (30%)
149 (40%)
38 (10%)
23 (6%)

NA
NA
NA

1.21(0-5)

GSE62254 (n = 300)

199 (67%)
101 (33%)
64 (24-86)
72 (24%)
127 (42%)
45 (15%)
56 (19%)

30 (10%)

97 (32%)

96 (32%)

77 (26%)
[

150 (50%)
142 (47%)
8 (3%)
482 (008-8.81)

GSE15459 (n = 192)

125 (65%)
67 (35%)
67 (23-92)
31 (16%)
94 (49%)
28 (15%)
39 (20%)

31 (16%)

29 (15%)

72 (38%)

60 (31%)
[

75 (38%)
99 (52)
18 (10%)
1.68 (0-13.15)

GSE84437 (n = 433)

296 (68%)
137 (32%)
62 (27-86)
130 (30%)
166 (38%)
64 (15%)
73 (17%)

21 (5%)
138 (32%)
274 (63%)
0
0

NA
NA
NA

575 (0-13.42)

Tianjin (n = 90)

59 (32%)
34 (68%)
58 (33-87)
28 (31%)
31 (35%)
21 (23%)
10 (11%)

0

24 (27%)

22 (24%)

44 (49%)
0

NA
NA
NA

2,62 (0-13.81)
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