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Background: Hepatocellular carcinoma (HCC) is the most common primary
liver malignancy with high morbidity and mortality worldwide. Tumor immune
microenvironment (TIME) plays a pivotal role in the outcome and treatment of HCC.
However, the effect of immune cell signatures (ICSs) representing the characteristics of
TIME on the prognosis and therapeutic benefit of HCC patients remains to be further
studied.

Materials and methods: In total, the gene expression profiles of 1,447 HCC patients
from several databases, i.e., The Cancer Genome Atlas (TCGA), International Cancer
Genome Consortium, and Gene Expression Omnibus, were obtained and applied.
Based on a comprehensive collection of marker genes, 182 ICSs were evaluated
by single sample gene set enrichment analysis. Then, by performing univariate and
multivariate Cox analysis and random forest modeling, four significant signatures were
selected to fit an immune cell signature score (ICSscore).

Results: In this study, an ICSscore-based prognostic model was constructed to stratify
HCC patients into high-risk and low-risk groups in the TCGA-LIHC cohort, which was
successfully validated in two independent cohorts. Moreover, the ICSscore values were
found to positively correlate with the current American Joint Committee on Cancer
staging system, indicating that ICSscore could act as a comparable biomarker for HCC
risk stratification. In addition, when setting the four ICSs and ICSscores as features,
the classifiers can significantly distinguish treatment-responding and non-responding
samples in HCC. Also, in melanoma and breast cancer, the unified ICSscore could verify
samples with therapeutic benefits.

Conclusion: Overall, we simplified the tedious ICS to develop the ICSscore, which can
be applied successfully for prognostic stratification and therapeutic evaluation in HCC.
This study provides an insight into the therapeutic predictive efficacy of prognostic ICS,
and a novel ICSscore was constructed to allow future expanded application.

Keywords: hepatocellular carcinoma, tumor immune microenvironment, immune cell signature, ICSscore,
prognostic stratification, therapeutic evaluation

Frontiers in Genetics | www.frontiersin.org 1 September 2021 | Volume 12 | Article 7412264

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.741226
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.741226
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.741226&domain=pdf&date_stamp=2021-09-27
https://www.frontiersin.org/articles/10.3389/fgene.2021.741226/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-741226 September 21, 2021 Time: 14:41 # 2

Xu et al. ICSscore-Based Evaluation for Prognosis and Therapeutic Efficacy

INTRODUCTION

Hepatocellular carcinoma (HCC) accounts for 75 to 85% of
primary liver cancer, and is the sixth most common and fourth
fatal malignancy globally, with 1- and 3-year survival rates of
20 and 5%, respectively, and a median survival of 8 months
(Olsen et al., 2010; Bray et al., 2018). About two-thirds of patients
with HCC are frequently diagnosed at advanced stages, being
characterized by an aggressive clinical course (Llovet et al., 2016).
Although multiple clinical strategies can be applied for HCC
treatment, including surgical resection, liver transplantation,
radiofrequency ablation, and chemotherapy, the efficacy is
limited by high recurrence rate (Bruix and Sherman, 2011;
Kuhlmann and Blum, 2013; Heimbach et al., 2018). Currently, the
tumor–node–metastasis (TNM) system is still the gold standard
for risk stratification of HCC patients (Liu et al., 2016). However,
the recurrence and survival for HCC patients vary widely within
each stage grouping (Park et al., 2020).

Emerging evidences showed that the tumor immune
microenvironment (TIME) plays a key role in the tumor
progression, recurrence, and metastasis (Nishida and Kudo, 2017;
Kurebayashi et al., 2018). The differences in the composition and
abundance of tumor-infiltrating lymphocytes (TILs), such as T
cells, macrophages, dendritic cells, and associated fibroblasts,
have been reported to influence the prognosis of HCC patients
in different ways (Tang et al., 2019). For example, CD45RO+
memory T lymphocyte infiltration leads to a favorable clinical
outcome in solid tumors, such as colorectal, gastric, and
esophageal cancer, implicating that it is a valuable biomarker for
prognostic prediction for human solid malignances (Gabrielson
et al., 2016; Hu and Wang, 2017). Further understanding of
TIME would provide more advanced prognostic and therapeutic
biomarkers for HCC patients (Fu et al., 2019; Zhang et al., 2019).
However, only a small number of TILs can be assessed, and the
accuracy of applying TILs in predicting prognosis and treatment
responding was still limited (Garnelo et al., 2017).

In this study, based on a comprehensive collection of
marker genes attached to immune cell signatures (ICSs) from
literatures, several HCC transcriptomic datasets were applied
to quantify the ICS by single sample gene set enrichment
analysis (ssGSEA). Subsequently, after performing univariate and
multivariate Cox analysis and random forest modeling, four
significant ICSs associated with prognosis were identified to
construct an immune cell signature score (ICSscore). In several
independent cohorts, the ICSscore was successfully validated to
be associated with risk stratification of HCC patients, including
tumor vs. normal samples, early- vs. advanced-staging samples,
and treatment-responding vs. non-responding samples. Also, the
unified ICSscore was validated successfully in other solid tumors,
e.g., melanoma and breast cancer.

MATERIALS AND METHODS

Dataset Acquisition and Preprocessing
In this study, several gene expression datasets and the available
clinical information of HCC were collected from several

databases, including The Cancer Genome Atlas (TCGA),
Gene Expression Omnibus, and International Cancer Genome
Consortium (ICGC). Therein, in the microarray datasets
(GSE14520, GSE96792, GSE109211, and GSE104580), we
extracted the probe expression (log2 intensity) and probe
annotation, respectively. When a gene was mapped by multiple
probes, the expression of the gene was represented by the
median of the multiple probes. In the RNA-seq datasets
(TCGA-LIHC and ICGC LIRI-JP), we took the read counts to
log2-transformation for normalization (Lian et al., 2018). In
order to make the gene expression profiling comparable between
different platforms, we then normalized with the scale method
by using the limma package in R (Wang et al., 2021). Patients
with follow-up time 0 or without follow-up were excluded from
datasets. The available clinical characteristics of these samples
are summarized in Supplementary Table S1.

The HCC datasets (GSE96792 and GSE109211) that received
sorafenib treatment were obtained to assess the risk score in
treatment-responding or non-responding patients. The HCC
dataset (GSE104580) was used to predict therapeutic efficacy of
transcatheter arterial chemoembolization (TACE). In addition,
the breast cancer and malignant melanoma datasets (GSE20181
and GSE91061) were also downloaded to evaluate risk score and
therapeutic effect (Riaz et al., 2017).

Immune Cell Signatures and Normalized
Enrichment Score
In this study, a comprehensive collection of marker genes marked
to 184 ICSs was referred from a literature (Wang S. et al.,
2020), in which these ICSs and the corresponding marker genes
were collected from diverse resources, including previous studies
and database. To be specific, 25 signatures were collected from
Bindea et al. (2013), 68 signatures were collected from the
study of Wolf et al. (2014), 17 signatures were downloaded
from the ImmPort database (Bhattacharya et al., 2014), 24 cell
signatures were collected from the study of Miao et al. (2020),
and 22, 10, and 10 signatures were collected from CIBERSORT
(Newman et al., 2015), MCPcounter (Becht et al., 2016; R
package, version 1.2.0) and imsig (Nirmal et al., 2018; Rpackage,
version 1.1.3), respectively.

To quantify the 184 ICSs in each sample by a normalized
enrichment analysis, the ssGSEA was implemented based on
the gene expression matrix by using R package GSVA (version
1.36.3; Hänzelmann et al., 2013). Based on the expression of
those given genes marked to each ICS, the ssGSEA produces an
enrichment fraction, which represents the absolute enrichment
degree in each sample. More detailed marked gene sets are listed
in Supplementary Table S2. In this study, due to the lack of some
marker genes in the transcriptomic profiles, only 182 ICSs were
evaluated for subsequent analysis.

Construction of Immune Cell Signature
Score
Since some ICSs with low variance may harm the convergence
of hazard ratio (HR), and HR can be adjusted by magnifying
the variance of some ICSs, we tried to increase the variance
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by scaling up ICS 10-fold or 100-fold for subsequent analysis.
Based on the quantitative enrichment matrix of the ICS
above, we first performed the univariable Cox proportional
hazards regression analysis. 26 ICSs were selected with a
significance of less than 0.01. Subsequently, a random forest
algorithm (R package randomForestSRC, version 2.10.1) was
used to narrow down feature selection (Breiman, 2001), in
which we set the number of the nsplit as 100 in the variable
hunting function (Ishwaran, 2015). The variable importance
(VIMP) was used to measure the variation of the random
forest model’s prediction error rate. We selected the ICS with
the VIMP of higher than 0.01. Here, only four ICSs were
retained for subsequent analysis, i.e., CSR_Activated_15701700,
CHANG_CORE_SERUM_RESPONSE_UP,
Type_1_T_helper_cell, and TREM1_data.

On the basis of the four selected ICSs, multivariable Cox
proportional hazards regression analysis was performed, and an
ICSscore was constructed based on the quantitative enrichment
matrix of the ICS and the corresponding regression coefficients
as follows:

ICSscore =
4∑

i=1

βi ∗ ICSi

Where ICSi denotes the ith ICS and βi represents
the coefficient of ICSi obtained from multivariate Cox
regression analysis.

In this study, the ICSscore of each sample was calculated by the
above formula. In each dataset, those patients were divided into
high-risk or low-risk groups based on the median ICSscores in
their respective datasets, in order to avoid the batch effect among
the different datasets, especially RNA sequencing and microarray.

Comparison of Immune Cell Signature
Score-Based Prognostic Model
Three published prognostic models (Wang Y. et al., 2020; Zhang
et al., 2020; Liu P. et al., 2021) regarding HCC were taken to
compare our model constructed in this study. The risk scores
were calculated for each model, respectively. The differences
in continuous score p-values and concordance index (C-index)
from the univariate Cox analysis were compared, respectively.

Identification of Differentially Expressed
Genes
According to the list of marker genes attached to the 184 ICS, we
selected those genes attached to the four selected ICS. Here, a total
of 435 unique genes were extracted. Subsequently, by using the
R package limma (version 3.44.3), those genes with differential
abundance were identified, which met the thresholds of absolute
value of log2 fold change greater than 1 and the p-value less than
0.05 (Ritchie et al., 2015).

Machine Learning Classifier Algorithm
XGBoost is an optimization algorithm of gradient boosting
decision tree, which is to gather many classification and
regression tree models together to form a strong classifier (Jiang
et al., 2021). To construct the classifier that could predict

responders and non-responders in sorafenib treatment and
TACE treatment, we applied the XGBoost algorithm (Python
3.8.3, package XGBoost version 1.3.0).

Statistical Analysis
In this study, all statistical analyses were implemented in
R software (version 4.0.3). The Kaplan–Meier survival curve
was visualized by using gsurvplot function implemented in
the R package survminer (version 0.4.8) and log-rank test
was used to compare the overall survival (OS), progression-
free interval (PFI), disease-free interval (DFI), and disease-
specific survival (DSS) between the different groups. Univariate
Cox regression analysis was used to determine the significant
features associated with OS, PFI, DFI, and DSS by calculating
HR, 95% confidence interval (CI), and p-value between the
different groups. Multivariate Cox regression analysis was used to
assess the confounding risk score by several significant features.
Receiver operating characteristic (ROC) analysis was used to
evaluate the accuracy of prognostic model by using the R package
survivalROC (version 1.0.3). The boxplot was visualized by using
the R package ggpubr (version 0.4.0) and the nomogram and
calibration plots were visualized by using the R package rms
(version 6.0-1). Subgroup analysis was performed by the coxph
function implemented in the R package survival (version 3.2-
7) and the forest plot was generated by using the R package
forestplot (version 1.10.1).

RESULTS

An Immune Cell Signature Score Was
Constructed to Significantly Stratify
Hepatocellular Carcinoma Patients
Here, 347 HCC samples with OS information in the TCGA-
LIHC cohort were used as training dataset for prognostic
model construction. First, based on the gene expression profiles
and a list of genes marked to ICSs, only 182 ICS were
able to be quantitatively evaluated. Subsequently, the evaluated
ICSs were used to perform univariate Cox regression analysis,
and 26 ICSs were selected with a p-value of less than 0.01
(Supplementary Table S3). To further narrow down features, we
carried out dimension reduction analysis by using random forest
algorithm, and four ICSs were identified with the VIMP of larger
than 0.01, including CHANG_CORE_SERUM_RESPONSE_UP,
CSR_Activated_15701700, TREM1_data, and Type_1_T_helper_
cell (Supplementary Figure S1A). Eventually, the four selected
ICSs were applied to construct a multivariate Cox prognostic
model, in which an ICSscore was formulated based on the
quantitative ICSs and their corresponding coefficients. The
associations between the four ICSs and OS are illustrated in
Supplementary Figure S1B, and the C-index of the prognostic
model reached 0.70.

In order to examine whether ICSscore was an independent
prognostic factor in each subgroup, ICSscore was applied to
separately perform univariate Cox analysis in different subgroups
of the TCGA-LIGC cohort, such as age, gender, American Joint
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FIGURE 1 | Prognostic stratification of ICSscore in the TCGA-LIHC cohort. Patients were assigned to high-level and low-level groups by setting the median
ICSscore as the cutoff. (A) The overall survival probability of high-level and low-level groups was evaluated (log-rank test, p = 3E-06). (B) The survival AUCs of 1-, 3-,
and 5-year overall survival rate, respectively, were 0.778, 0.727, and 0.784. (C) The progression-free interval probability of high-level and low-level groups was
evaluated (log-rank test, p = 6E-05). (D) The survival AUCs of 1-, 3-, and 5-year progression-free interval rate, respectively, were 0.715, 0.698, and 0.684. (E) The
disease-free interval probability of high-level and low-level groups was evaluated (log-rank test, p = 0.000216). (F) The survival AUCs of 1-, 3-, and 5-year
disease-free interval rate, respectively, were 0.738, 0.672, and 0.679. (G) The disease-specific survival probability of high-level and low-level groups was evaluated
(log-rank test, p = 0.00102). (H) The survival AUCs of 1-, 3-, and 5-year disease-specific survival rate, respectively, were 0.827, 0.774, and 0.826.

Committee on Cancer (AJCC) stage, and vascular tumor cell
type. As illustrated in Supplementary Figure S2, except for the
AJCC stage IV, ICSscore could stratify HCC patients in the other
subgroups significantly. However, in HCC patients of AJCC stage
IV, the insignificance of ICSscore to stratify HCC patients may be
due to the small sample size.

According to the median ICSscore in the TCGA-LIHC cohort,
the patients can be divided into high-risk and low-risk groups.
As shown in Figure 1A, the patients in the high-risk group
showed significantly poorer OS than those in the low-risk group,
indicating that high-level ICSscore is associated with worse
outcomes. Furthermore, to assess the sensitivity and specificity
of the ICSscore-based prognostic model, we performed ROC
analysis. The area under curve (AUC) achieved 0.778, 0.727, and
0.764, respectively, at the 1-, 3-, and 5-year OS rate (Figure 1B),
suggesting that the ICSscore-based prognostic model has a good
prediction performance.

Moreover, the differences in PFI, DFI, and DSS between the
high-risk and low-risk groups in the TCGA-LIHC cohort were
also compared, respectively. Consistently, the patients in the
high-risk group all showed obviously poorer PFI (Figure 1C),
DFI (Figure 1E), and DSS (Figure 1G). Meanwhile, through
performing the ROC analysis on PFI, DFI, and DSS, the

comparable AUCs are shown in Figures 1D,F,H. These implied
that the ICSscore constructed by the four significant ICS can
significantly stratify HCC patients.

To provide a clinically applicable risk assessment model for
predicting the prognosis of HCC patients, a nomogram that
integrated ICSscore and AJCC staging was constructed in the
TCGA-LIHC cohort (Supplementary Figure S3A). According
to the nomogram illustrated in this study, a combination of
ICSscore and AJCC stage of a HCC patient can be calculated to
predict the 1-, 3-, and 5-year OS for an individual. In addition,
as illustrated in Supplementary Figures S3B–D, the calibration
curves at the 1-, 3- and 5-year OS for an individual all fit well
to the ideal curves. Noteworthy, we found that the ICSscore
contributed to the most risk points when compared with the
AJCC staging, suggesting that ICSscore would make a greater
predictive contribution.

The Validation of the Immune Cell
Signature Score-Based Prognostic
Model
In order to validate the robustness of the ICSscore-based
prognostic model trained in the TCGA-LIHC cohort, two
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FIGURE 2 | Prognostic stratification of ICSscore in the ICGC LIRI-JP and GSE14520 HCC cohort. Patients were assigned to high-level and low-level groups by
setting the respective median ICSscore as the cutoff. (A) The overall survival probability of high-level and low-level groups was evaluated in the ICGC LIRI-JP cohort
(log-rank test, p = 6E-06). (B) The survival AUCs of 1-, 3-, and 5-year overall survival rate, respectively, were 0.638, 0.754, and 0.658. (C) The overall survival
probability of high-level and low-level groups was evaluated in the GSE14520 HCC cohort (log-rank test, p = 4.9E-05). (D) The survival AUCs of 1-, 3-, and 5-year
overall survival rate, respectively, were 0.607, 0.669, and 0.64.

independent datasets (i.e., ICGC LIRI-JP and GSE14520 HCC)
were applied, respectively. Similarly, in the two validation
cohorts, according to their individual median ICSscore, we
divided patients into two groups, i.e., high-ICSscore and low-
ICSscore groups. Consistent with the findings above, the high-
level ICSscore group showed significantly poorer prognostic
outcomes (Figures 2A,C). Meanwhile, the ROCs were also
analyzed in the two validation cohorts. The AUC of the
prognostic model was 0.638, 0.754, and 0.658, respectively,
at 1-, 3-, and 5-year survival rates in the IGCG LIRI-JP
cohort (Figure 2B), and the AUC was 0.607, 0.669, and
0.640, respectively, at 1-, 3-, and 5-year survival rates in the
GSE14520 HCC cohort (Figure 2D). These results demonstrated
that the ICSscore can be used to stratify HCC patients and
predict prognosis.

In addition, in light of the ICSscore in different subgroups of
the ICGC LIRI-JP cohort, we separately carried out univariate
Cox analysis, such as age, gender, TNM stage, virus, and vein
invasion. Except for those subgroups with small sample sizes,

ICSscore did stratify significantly HCC patients (Supplementary
Figure S4), suggesting that ICSscore was a robust biomarker to
stratify patients in the different subgroups.

Furthermore, in the ICGC LIRI-JP cohort, a nomogram that
integrated ICSscore and TNM staging was constructed as well
(Supplementary Figure S5A). Compared with TNM staging,
we also observed that the ICSscore contributed to the most
risk points, demonstrating that the ICSscore can make a greater
predictive contribution. Meanwhile, the calibration curves at the
1-, 3- and 5-year OS were all found to be close to the ideal curves
(Supplementary Figures S5B–D).

The Comparison of Risk Stratification
and Predictive Ability of Immune Cell
Signature Score as a Feature
To compare the risk stratification and predictive ability of
ICSscore, we calculated the continuous prognostic risk scores
and concordance index (C-index) by performing univariate Cox
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analysis. Compared with age, gender, AJCC stage, and invasion
(Tables 1, 2), the C-index of the ICSscore was higher and the
p-value of the ICSscore was lower, indicating ICSscore to be
a good predictor.

In addition, three published prognostic models (Wang Y.
et al., 2020; Zhang et al., 2020; Liu P. et al., 2021) regarding HCC
were used to compare our ICSscore-based prognostic model
constructed in this study. The continuous prognostic risk scores
were calculated for each model by performing univariate Cox
analysis, respectively, in TCGA-LIHC and ICGC-JP cohorts. As
shown in Tables 1, 2, these differences in p-values and C-index
were compared, suggesting that our ICSscore-based prognostic
model has a preferrable predictive ability.

Differential Marker Genes in the Four
Immune Cell Signatures Formulating
Immune Cell Signature Score
To explore the underlying reason of ICSscore in risk assessment
and prognostic prediction, 435 marker genes attached to the
four significant ICS formulating ICSscore were investigated.
In the TCGA-LIHC cohort, the gene expression matrix from
347 tumor samples and 49 normal samples was used for
subsequent differential analysis. First, between the tumor and
normal samples, a total of 97 differentially expressed genes
(DEGs) were identified, including 36 up-regulated genes and
61 down-regulated genes (Figure 3A). Similarly, between the
high-risk and low-risk samples as distinguished above, we
obtained 21 DEGs, including 11 up-regulated genes and 10
down-regulated genes (Figure 3B), which were speculated to
make more contribution to differential ICSscore evaluation.

TABLE 1 | Comparison of the p-value and C-index derived from the univariate
Cox model in the TCGA-LIHC cohort.

Signatures p-value C-index

ICSscore 1.82E-13 0.700

Baohui_Zhang_2020 8.89E-10 0.694

Yu_Wang_2020 3.08E-13 0.690

Peng_Liu_2021 9.56E-09 0.640

Age 0.1881 0.508

Gender 0.2614 0.507

AJCC_STAGE 1.52E-05 0.609

Vascular_tumor_cell_type 0.123 0.533

TABLE 2 | Comparison of the p-value and C-index derived from the univariate
Cox model in the ICGC-JP cohort.

Signatures p-value C-index

ICSscore 9.44E-05 0.711

Baohui_Zhang_2020 7.75E-5 0.707

Yu_Wang_2020 0.0001582 0.680

Peng_Liu_2021 0.00285 0.671

Age 0.3973 0.536

Gender 0.07557 0.566

TNM_STAGE 0.0001536 0.704

VEIN_INVASION 0.004346 0.615

Thus, we performed GO enrichment and several significant
biological processes were obtained (Supplementary Figure S6),
such as activated T-cell proliferation, positive regulation of
wound healing, and regulation of activated T-cell proliferation.
In addition, of these 21 genes, 15 were found to be the same
as those between tumor and normal samples (Figure 3C).
Notably, sequentially comparing the normal samples, the
low-risk samples, and the high-risk samples, we found that
the abundance of genes FLNC, HAVCR1, PLK4, WDHD1,
CENPW, MYBL2, and SKA1 increased, while genes IGF2, SELP,
GREM2, HSD11B1, CFHR3, GPLD1, F12, and PLG decreased.
Furthermore, univariate analysis of these genes showed that the
upregulated genes were detrimental to HCC prognosis, while the
down-regulated genes were beneficial (Figure 3C). Indeed, most
of these genes have been reported as prognostic biomarkers or
suggested as novel therapeutic targets for HCC. For example, the
overexpression of genes CENPW, MYBL2, and SKA1 is associated
with poor prognosis in HCC, while the loss of gene HSD11B1
indicates poor prognosis in HCC (Frau et al., 2011; Chen et al.,
2018; Zhou et al., 2020). Moreover, we focused on the correlations
between the ICSscore value and expression levels of 15 genes. As
illustrated in Figure 3D, the up-regulated genes were positively
correlated with the ICSscore, while the down-regulated genes
were negatively correlated. Moreover, in the ICGC-JP cohort,
as shown in Figure 3E, the abundance alteration of the above
15 genes and their association with prognosis were observed
to be consistent.

Evaluation and Prediction of Disease
Malignancy and Molecular Target
Therapy Benefit in Hepatocellular
Carcinoma by Immune Cell Signature
Score
In order to verify whether the ICSscore evaluation was consistent
with other risk stratification methods, several HCC cohorts were
compared. First, as illustrated in Figure 4A, in the three HCC
cohorts, tumor samples all exhibited strikingly higher ICSscore
values when compared with the paired normal samples. In the
GSE25097 HCC cohort, we also found that the tumor samples
showed the highest ICSscore values, while the normal samples
showed relatively low ICSscore values, although there was no
significant difference between the normal samples and cirrhotic
samples (Figure 4B). These results indicate a significant increase
in ICSscore when hepatocytes develop into tumors.

Recently, the eighth edition staging system of the AJCC was
released for HCC stratification (Park et al., 2020). In the TCGA-
LIHC cohort, after excluding three stage IV samples, the stage
III samples showed the highest ICSscore, followed by stage II
samples, and the stage I samples exhibited the lowest ICSscore,
indicating that the ICSscore was positively correlated with the
current risk stratification system (Figure 4C). As expected, we
found that most advanced-staging patients (stage III and stage
IV) were assigned into the high-risk group, while more early-
staging patients (stage I and II) were designated into the low-risk
group (Figure 4D), implying that the ICSscore could act as
a comparable marker for HCC risk stratification. At the same
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FIGURE 3 | Analysis of differential gene expression in the TCGA-LIHC and ICGC-JP cohort. (A) Volcano plot presents the differentially expressed genes (DEGs)
between the tumor and normal samples. (B) Volcano plot presents the DEGs between the high-risk and low-risk samples. (C) Left: heatmap shows the scaled
abundance of 15 DEGs among normal, low-risk, and high-risk samples. Right: forest plot denotes the association between the DEGs and overall survival. The HR,
95% CI, and p-value were determined by univariate Cox regression analysis in the TCGA-LIHC cohort. (D) Correlations between expression levels of 15 genes and
the ICSscore values. (E) Left: heatmap shows the scaled abundance of 15 DEGs among normal, low-risk, and high-risk samples. Right: forest plot denotes the
association between the DEGs and overall survival. The HR, 95% CI, and p-value were determined by univariate Cox regression analysis in the ICGC-JP cohort.
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FIGURE 4 | Evaluation and prediction of disease malignancy and molecular target therapy benefit in HCC by ICSscore. (A) Pairwise comparison of the ICSscore
between normal and tumor samples in three cohorts, i.e., TCGA-LIHC (t-test p = 1.5E-13), ICGC LIRI-JP (t-test p < 2.2E-13), and GSE14520 HCC (t-test
p < 2.2E-13). (B) Boxplot illustrates the differences of the ICSscore values among normal, cirrhotic, and tumor samples in the GSE25097 HCC cohort. (C) Boxplot
illustrates the differences of the ICSscore values among different AJCC staging of the TCGA-LIHC cohort. (D) Sankey plot shows the mapping between high or low
ICSscore and AJCC staging of the TCGA-LIHC cohort. (E) Boxplot shows the ICSscore values of Hep3B cell line treated with sorafenib or DMSO in the GSE96792
cohort. (F) Boxplot illustrates the ICSscore values of responded or non-responded HCC patients treated with sorafenib or placebo in the GSE109211 cohort.
(G) ROC curve of the XGBoost algorithm for predicting the responding and non-responding patients in the GSE109211 cohort. (H) Boxplot illustrates the ICSscore
values of responding or non-responding HCC patients treated with chemotherapy in the GSE104580 cohort. (I) ROC curve of the XGBoost algorithm for predicting
the responding and non-responding patients in the GSE104580 cohort.
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time, we also observed that some early-staging patients were
assigned to the high-risk group, while late-staging patients were
assigned to the low-risk group, suggesting that ICSscore may
be used as a supplement to compromise AJCC-staging risk
stratification errors. Indeed, studies have reported significant
differences in recurrence and survival for HCC patients within
each AJCC stage grouping.

Furthermore, we explored whether ICSscore could be used
as a marker to evaluate therapeutic efficacy. Sorafenib is the
only Food and Drug Administration-approved first-line targeted
agent for the treatment of advanced HCC, but its impact
on patient survival is limited depending on the pathogenetic
conditions (Bruix et al., 2017). Here, the gene expression profiles
(GSE96792) from the Hep3B cell line treated with sorafenib
or DMSO was obtained to evaluate the ICSscore, respectively.
As a result, we did observe lower ICSscore in those Hep3B
treated with sorafenib compared with those Hep3B treated with
DMSO (Figure 4E), suggesting that the ICSscore may be used
to reflect therapeutic efficacy. Subsequently, we further tested
the ICSscore in a clinical trial on sorafenib (GSE1090211), and
those patients who responded to sorafenib showed much lower
ICSscore than those who had no response to sorafenib (Figure
metricconverterProductID4F4F). Interestingly, in those patients
treated with placebo, we also observed that responding patients
exhibited much lower ICSscore than non-responding patients
(Figure metricconverterProductID4F4F). These results implied
that the ICSscore could be used to predict the therapeutic
benefit. Therefore, when setting the four ICSs and ICSscores as
features, two classification models were separately constructed
to predict responding and non-responding samples, in which
70% of the data in the GSE109211 cohort was taken as
the training set, and 30% as the validation set. The AUCs
for predicting treatment responding were achieved at 0.917
and 0.900, respectively, (Figure 4G). Similarly, those HCC
patients who received chemotherapy in GSE104580 cohorts
were examined as well. Consistently, compared with those HCC
patients who had no response to chemotherapy, much lower
ICSscores were observed in those patients who responded to
chemotherapy (Figure 4H). Also, when setting the four ICSs and
ICSscores as features to build classification models, the AUCs
for predicting treatment-responding patients were achieved at
0.758 and 0.733, respectively, (Figure 4I). These findings implied
that the ICSscore may be used as an indicator for prediction of
treatment responding in HCC.

Evaluation and Prediction of
Chemotherapy and Immunotherapy
Benefit in Other Tumors by Immune Cell
Signature Score
As most patients with a high-level ICSscore displayed poorer
prognosis and low therapeutic benefit than those with a low-
level ICSscore in HCC, we explored whether the ICSscore could
predict therapeutic benefit in other tumors. For this investigation,
a cohort of breast cancer patients with chemotherapy information
(GSE20181) were first applied to calculate the unified ICSscore
value for each patient on the basis of transcriptomic profiles and

marker genes. When comparing the pairwise ICSscore before
and after treatment with adjuvant chemotherapy, we found
that the patients’ ICSscore significantly decreased after 14-day
adjuvant chemotherapy (Figure 5A), and it decreased further
after 90-day adjuvant chemotherapy (Figure 5B). That is to
say, further adjuvant chemotherapy led to a gradual decrease of
ICSscore, suggesting a gradual therapeutic benefit. This suggests
that the ICSscore could be used to monitor therapeutic efficacy
in breast cancer.

More recently, the strategy for immune checkpoints, PD-1 and
PD-L1, has become an immune therapy with amazing survival
benefit (Liu C. et al., 2021). Unfortunately, the effectiveness
of immune checkpoint therapy is limited because only a
small number of patients respond to the therapy. Here, a
cohort of melanoma patients who received anti-PD1 and anti-
CTLA4 therapy (GSE91016) were also applied to evaluate the
ICSscore application. By setting the mean ICSscore value as
the cutoff, these patients were classified into high-ICSscore
and low-ICSscore groups. Similarly, the high-ICSscore group
exhibited significantly poorer OS (Figure 5C). In addition, by
pairwise comparing the ICSscore between patients before and
after immunotherapy, we observed that the patients’ ICSscore
was significantly decreased after receiving immunotherapy
(Figure 5D). The result implied that lower ICSscore values
can be used to distinguish those patients who benefit from
immunotherapy. Indeed, as shown in Figure 5E, the patients
with CR/PR presented lower ICSscore than those with PD/SD.
Subsequently, setting the four ICSs and ICSscores as features,
we constructed two classification models to predict whether the
patients received therapeutic benefit. The AUCs in the training set
were all achieved at 0.926 (Figure 5F). Thus, the ICSscore value
may be used as a predictive biomarker for immunotherapeutic
benefit in melanoma.

DISCUSSION

A large number of studies have demonstrated that the TILs
are associated with tumor progression and patient prognosis
(Zheng et al., 2017; Ding et al., 2018; Lu et al., 2019). In the
present study, on the basis of a comprehensive collection of
marker genes, 182 ICSs associated with TIME were evaluated
and applied. Here, an ICSscore formulated by the four-best
prognosis-related ICS was constructed, which was validated
successfully to predict prognosis and therapeutic benefit in
HCC. Indeed, the four ICSs have significant associations to the
tumor immune system, and a dozen marker genes attached to
the four signatures have been reported to predict prognosis.
For example, CHANG_CORE_SERUM_RESPONSE_UP was
reported to correlate with wound healing, with elevated
expression of angiogenic genes, a high proliferation rate, and
a Th2 cell bias to the adaptive immune infiltrate. TREM1_data
was marked by the only gene TREM1, which triggers phagocyte
secretion of pro-inflammatory chemokines and cytokines.
However, the specific biological roles of these ICSs remain to be
further explored. In particular, the fitted ICSscore was found to
be positively correlated with the risk level of HCC patients, but
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FIGURE 5 | Evaluation and prediction of chemotherapy and immunotherapy benefit in other tumors by ICSscore. (A,B) Pairwise comparison of the ICSscore in
patients before and after chemotherapy in the GSE20181 BRCA cohort. (C) Kaplan–Meier curves of overall survival according to low- and high-ICSscore groups in
the GSE91061 SKCM cohort. (D) Pairwise comparison of the ICSscore in patients before and after immunotherapy in the GSE91061 SKCM cohort. (E) Boxplot
illustrates the ICSscore of patients with immunotherapy response in the GSE91061 SKCM cohort. (F) ROC curve of the XGBoost algorithm for predicting the
therapeutic effects in the GSE91061 SKCM cohort.

negatively correlated with the therapeutic efficacy. That is to say,
the fitted ICSscore not only can be used to predict prognosis, but
also can be used as an effective biomarker to evaluate therapeutic
benefit and monitor treatment efficacy.

Sorafenib has been considered the standard of care for patients
with advanced unresectable HCC since 2007 (Abdelgalil et al.,
2019). It is an important step to detect patients who would
potentially benefit from sorafenib treatment. Here, we proved
that the ICSscores were significantly reduced in sorafenib-
responding HCC patients, indicating that the ICSscore may be
a biomarker for predicting the response to sorafenib in HCC
patients. Moreover, chemotherapy is one of the most important
treatment modalities for advanced HCC. Significantly decreased
ICSscores were observed in chemotherapy-responding HCC
patients, indicating that the ICSscore can also be used as a marker

for predicting the response to chemotherapy in HCC patients.
Even so, due to the limitations of therapeutic datasets with
regard to HCC, more real-world datasets are needed to further
verify our findings and improve the ICSscore, especially those
datasets using different treatments, such as immunotherapy.
Similarly, gradually decreased ICSscore values were observed in
breast cancer patients receiving chemotherapy for 14 days and
90 days, and significantly declined ICSscore values were found
in melanoma patients with partial or complete remission after
immunotherapy. These results imply that the ICSscore evaluation
may be applied in pan cancer therapy supervision.

In recent years, immunotherapy exhibited promising
therapeutic effects for advanced HCC, although only a few
patients benefited from immunotherapy (Johnston and Khakoo,
2019; Riley et al., 2019; Zongyi and Xiaowu, 2020). Further
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research is needed to select effective biomarkers for patients
who might benefit from immunotherapy. To our pleasure, the
ICSscore evaluation may be used as a biomarker to distinguish
patients who would respond to immunotherapy.

There were also some limitations in this study. Firstly, given
that the large number of HCC patients used in this study came
from different platforms, there may be significant batch effects
in our cohort. Secondly, a series of ICSs were marked here,
but only a few were used to construct the ICSscore. Thirdly,
due to the limitation of datasets with treatment information,
it is necessary to further testify and optimize ICSscore as
a marker for immunotherapy in HCC, and even a broad
spectrum of pan cancer.

CONCLUSION

Overall, we simplified the tedious ICSs to develop ICSscore,
which can be applied successfully in prognostic stratification
and therapeutic evaluation in HCC. Also, in melanoma and
breast cancer, the unified ICSscore was validated to distinguish
the samples with therapeutic benefits. This study provides a
novel insight into the prognosis and therapeutic efficacy of ICS.
ICSscore may be a potential marker for therapeutic efficacy in
HCC, and even a broad spectrum of pan cancer.
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Intra-Tumoral Expression of SLC7A11
Is Associated with Immune
Microenvironment, Drug Resistance,
and Prognosis in Cancers: A
Pan-Cancer Analysis
Jiajun He*, Hongjian Ding, Huaqing Li, Zhiyu Pan and Qian Chen*

Department of General Surgery, Minhang Hospital, Fudan University, Shanghai, China

While many anti-cancer modalities have shown potent efficacy in clinical practices, cancer
prevention, timely detection, and effective treatment are still challenging. As a newly
recognized iron-dependent cell death mechanism characterized by excessive generation
of lipid peroxidation, ferroptosis is regarded as a potent weapon in clearing cancer cells.
The cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11) is the core
target for ferroptosis regulation, the overexpression of which dictates downregulated
sensitivity to ferroptosis in cancer cells. Hence, we elaborated the pan-cancer level
bioinformatic study and systematically elucidated the role of intra-tumoral expression of
SLC7A11 in the survival of cancer patients and potential immunotherapeutic response.
Specifically, 25/27 (92.6%) cancers were featured with upregulated SLC7A11 expression,
where SLC7A11 overexpression is a risk factor for worse overall survival in 8 cancers. We
also validated SLC7A11 expression in multiple pancreatic cancer cell lines in vitro and
found that it was upregulated in most pancreatic cancer cell lines (p < 0.05). Single-cell
sequencing method revealed the SLC7A11 was majorly expressed in cancer cells and
mononuclear cells. To further explore the function of SLC7A11 in cancer progression, we
analyzed the influence on cell proliferation after the knockdown or knockout of SLC7A11
by either CRISPR or RNAi methods. Besides, the association between SLC7A11 and drug
resistance was characterized using bioinformatic approaches as well. We also analyzed
the association between the expression of SLC7A11 in multi-omics level and the intra-
tumoral infiltration of immune cells based on cell annotation algorithms. Moreover, the
relationship between SLC7A11 and the expression of MHC, immune stimulators, immune
inhibitors as well as the response to immunotherapy was investigated. In addition, the
SLC7A11 expression in colon adenocarcinoma, uterine corpus endometrial carcinoma,
and stomach adenocarcinoma (STAD) is also positively associated with microsatellite
instability and that in head and neck squamous cell carcinoma, STAD, and prostate
adenocarcinoma is positively associated with neoantigen level, which further revealed the
potential relationship between SLC7A11 and immunotherapeutic response.
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INTRODUCTION

Cancer is the leading cause of human deaths in the world, which
produces serious economic burdens both in developed and
developing countries (Wu et al., 2019). Although many anti-
cancer modalities, such as neoadjuvant chemotherapy and
immunotherapy, have shown potent efficacy in clinical
practice, cancer prevention, early detection, and effective
treatment are still challenging in most cases (O’Donnell et al.,
2019; Yang, 2015; Burotto et al., 2019). Hence, finding a more
effective strategy to treat cancers is necessary and urgent.

Ferroptosis, a newly recognized iron-dependent cell death
mechanism, is characterized by excessive generation of lipid
peroxidation (Tang et al., 2020). Recently, an increasing
number of studies reported that ferroptosis is involved in
many pathophysiological conditions, including cardiovascular
diseases, neurodegenerative diseases, and cancers (Jeong et al.,
2017; Liang and Zhang, 2019; Mou et al., 2019). Many studies
have reported that ferroptosis-induced cell death is an effective
approach in killing cancer cells through reactive oxygen species
(ROS) accumulation in cells, although its clinical benefits still
need clinical trials for verification (Friedmann Angeli et al., 2019;
Hassannia et al., 2019). An in vivo study showed that inducing
tumor-selective ferroptosis via deletion of a system xC-subunit
(SLC7A11) was dramatically contributing to the inhibition of the
growth of pancreatic ductal adenocarcinoma, which is one of the
most lethal solid organ malignancies (Bai et al., 2018). In
addition, Wang et al. demonstrated that PD-1-based
immunotherapy combined with ferroptosis induction has a
synergistic effect compared with single treatment. Given the
low response rate of immunotherapy, ferroptosis induction
may be a potent adjuvant modality in anti-cancer
immunotherapy (Wang et al., 2019).

As a nutrient transporter frequently overexpressed in human
malignancies, SLC7A11 is the cystine/glutamate antiporter solute
carrier family 7 member 11 (SLC7A11; also known as xCT)
(Sehm et al., 2016; Liu et al., 2019). SLC7A11 could promote
cystine uptake and glutathione biosynthesis, leading to protection
from oxidative stress and ferroptotic cell death (Sehm et al., 2016;
Liu et al., 2019). Depleting SLC7A11 dramatically decreased
glutathione concentrations and triggered ferroptosis. A study
using genetically engineered mice with SLC7A11 knockout
revealed tumor-selective ferroptosis and inhibited the growth
of pancreatic cancer (Badgley et al., 2020). In view of its
important role in ferroptosis execution, the major reagents
that induce ferroptosis are targeted at SLC7A11 like erastin
(Bai et al., 2018; Shibata et al., 2019). Several studies have also
revealed that SLC7A11 plays vital roles in glutamine metabolism
and regulates the glucose and glutamine dependency of cancer
cells (Shin et al., 2017). Interestingly, the components in tumor
microenvironment could also promote or restrain tumor
ferroptotic cell death by influencing the SLC7A11 expression
level (Wang et al., 2019; Li et al., 2020; Zhang et al., 2020). CD8+

T cells induced ferroptosis in tumor cells through IFN-y-
dependent SLC7A11 downregulation (Wang et al., 2019). On
the contrary, cancer-associated fibroblasts suppress ferroptosis
and promote acquired chemoresistance in gastric cancer through

secreting miR-522 (Zhang et al., 2020). Hence, it is significant to
investigate the role of SLC7A11 in cancer development. Here, we
conducted a bioinformatic study to systematically explore
whether the intra-tumoral expression of SLC7A11 is associated
with cancer patients’ prognosis and response to immunotherapy.

MATERIALS AND METHODS

The Source of Transcriptome and Clinical
Data
The transcriptome data of 33 cancers, including adrenocortical
carcinoma (ACC), bladder urothelial carcinoma (BLCA), breast
invasive carcinoma (BRCA), cholangiocarcinoma (CHOL), colon
adenocarcinoma (COAD), cervical squamous cell carcinoma and
endocervical adenocarcinoma (CSEA), lymphoid neoplasm
diffuse large B-cell lymphoma (DLBC), esophageal carcinoma
(ESCA), glioblastoma multiforme (GBM), head-and-neck
squamous cell carcinoma (HNSC), kidney chromophore
(KICH), kidney renal clear cell carcinoma (KIRC), kidney
renal papillary cell carcinoma (KIRP), acute myeloid leukemia
(LAML), brain lower grade glioma (LGG), liver hepatocellular
carcinoma (LIHC), lung squamous cell carcinoma (LUSC), lung
adenocarcinoma (LUAD), mesothelioma (MESO), ovarian
serous cystadenocarcinoma (OV), pheochromocytoma and
paraganglioma (PCPG), pancreatic adenocarcinoma (PAAD),
prostate adenocarcinoma (PRAD), rectum adenocarcinoma
(READ), sarcoma (SARC), skin cutaneous melanoma (SKCM),
testicular germ cell tumor (TGCT), thyroid carcinoma (THCA),
stomach adenocarcinoma (STAD), thymoma (THYM), uterine
corpus endometrial carcinoma (UCEC), uterine carcinosarcoma
(UCS), and uveal melanoma (UVM), were downloaded from The
Cancer Genome Atlas (TCGA). We merged the transcriptome
data of normal pancreas in The Genotype Tissue Expression
(GTEx), which is a comprehensive public resource to study
tissue-specific gene expression, with TCGA cohort given that
the latter lacks normal samples for control. Besides, the
expression of SLC7A11 is also evaluated in distinct cancer cell
lines through Cancer Cell Line Encyclopedia (CCLE) (https://
portals.broadinstitute.org/ccle/data). Fragments per kilobase
million (FPKM) was selected as the data format for following
calculation. The patients’ clinical information, including overall
survival (OS), disease-specific survival (DSS), disease-free interval
(DFI), and progression-free interval (PFI), was also downloaded
from TCGA and merged with transcriptome data.

Bioinformatic and Statistical Analysis
A univariate Cox regression analysis was applied to identify the
association between SLC7A11 expression and OS, DSS, DFI, and
PFI across 33 cancers. Hazard ratio (HR) was used to evaluate the
magnitude of association with R package “survival” (version 3.1-
8). Kaplan-Meier survival curve was depicted to visualize those
associations with statistical significance.

Optimum cutoff value was determined dependent of the
largest Youden index. R Package “Estimate” (version 1.013)
was used to estimate the proportion of immune and stromal
cells in malignant tumor tissues from transcriptome data.
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Specifically, we introduced “immune score” to assess the
proportion of immune cells and “stromal score” to assess the
proportion of stromal cells. Estimate score is equal to the sum of
immune and stromal scores. Pearson correlation coefficient (r)
was used to evaluate the strength of association between SLC7A11
expression and immune/stromal/estimate scores.

The expression level of 47 immune checkpoint genes was
extracted from transcriptome data of each cancer. The co-
expression association was also calculated using Pearson
correlation coefficient and visualized as a heatmap. The
infiltration of six common immune cells, CD8+ T cells, CD4+

T cells, B cells, macrophages, neutrophils, and dendritic cells, was
evaluated using Tumor Immune Estimation Resource (TIMER)
database. Tumor mutation burden (TMB) is defined as the total
number of somatic gene coding errors, base substitutions, and
gene insertions or deletions detected per million bases. We
calculated the TMB of each cancer sample based on the
exome sequencing data from TCGA (VarScan2). MSI
(microsatellite instability) referred to the molecular fingerprint
of a deficient mismatch repair system. We referred to previous
studies for summarized MSI data across distinct cancers (Hause
et al., 2016; Yang et al., 2019). Neoantigens are encoded by
mutated genes of tumor cells, which are mainly new abnormal
proteins produced by gene point mutation, deletion mutation,
and gene fusion that are different from proteins expressed by
normal cells. Neoantigen level was obtained from a previously
published study (Rooney et al., 2015). The correlation between
TMB/MSI/neoantigen and SLC7A11 expression was calculated
using Pearson correlation coefficient and visualized as radar plots.
Similarly, the association between SLC7A11 expression and the
expression level of DNA repair-related regulators 17 and
methyltransferases were also evaluated by Pearson correlation
coefficient.

Gene set enrichment analysis (GSEA) was performed to
identify which pathways are varied along with the differential
expression of SLC7A11. The top five enriched pathways were
showcased according to the ranking of normalized enrichment
score. The results in this study were seen statistically significant
when p value is less than 0.05.

To analyze the association between SLC7A11 expression and
drug resistance in pan-cancer landscape, we first used
RNAactDrug database (http://bio-bigdata.hrbmu.edu.cn/
RNAactDrug). A total of 562 FDA-approved drugs were
analyzed using three common methods, including CellMiner,
GDSC, and CCLE.

To present the single-cell transcriptomic expression of
SLC7A11, we applied TISCH method to analyze the
expression pattern of SLC7A11 in different types of cells in
tumor microenvironment (http://tisch.comp-genomics.org/).

We also analyzed the correlation between the methylation,
mRNA abundance, and copy number of SLC7A11 and immune
infiltration, MHC, and immune stimulators and inhibitors in
multiple cancers (http://cis.hku.hk/TISIDB/). To further study
the relationship between SLC7A11 expression and T-cell
dysfunction and immunotherapeutic response, we turn to
TIDE algorithm and performed relevant analysis (http://tide.
dfci.harvard.edu/).

In Vitro Validation
The human pancreatic cancer cell line HPDE, BxPC-3, AsPC-1,
Capan-1, Panc-1, SW1990, and Mia-Paca2 were obtained from
the American Type Culture Collection. Capan-1 cells were
cultured in Iscove’s modified Dulbecco’s medium with 10%
fetal bovine serum. Panc-1, SW1990, and Mia-Paca2 were
cultured in Dulbecco’s modified eagle medium (DMEM).
BxPC-3 and AsPC-1 were cultured in Gibco Roswell Park
Memorial Institute (RPMI) 1640 Medium. Then, RNA was
extracted from cell lines using SteadyPure Universal RNA
Extraction Kit (AG21017, China). Quantitative real-time PCR
was performed using SYBR green (Qiagen, USA).

To analyze the influence on cell proliferation following by
SLC7A11 knockout, we applied DepMap tool (https://depmap.
org/) to assess the CERES value for SLC7A11 in cell lines in pan-
cancer level. Notably, a smaller CERES value reflected the
stronger ability to promote cell proliferation in vitro.

Small Interfering RNA-Mediated
Knockdown and CCK-8 Assay
The cells (2 × 105) were seeded in a six-well culture plate. After
resting overnight, Lipofectamine 3000 reagent (Invitrogen,
Thermo Fisher Scientific, Carlsbad, CA, USA) and the
indicated concentration of siRNA were added in serum-free
DMEM. The complex was added to antibiotic-free medium.
After 48 h, the cells were collected for further experiments.
Cell relative viability was determined daily using CCK-8
(Beyotime: C0037) based on the manufacturer’s instructions.

RESULTS

The Differential Expression of SLC7A11 in
Distinct Cancer Cell Lines, Normal and
Tumor Samples Within Bulk or Single-Cell
Transcriptomic Landscape
The expression level of SLC7A11 is highly inconsistent across 31
normal tissues (Kruskal-Wallis test p < 0.05) (Figure 1A).
Notably, SLC7A11 is highly expressed in bone marrow but
rarely expressed in adipose tissue, adrenal gland, cervix uteri,
kidney, liver, muscle, nerve, and uterus. This phenomenon
suggested that not all organs are sensitive to ferroptosis due to
the differential expression of SLC7A11. Because SLC7A11 has a
low expression in normal tissues, ferroptosis is thought to occur
in normal cells and could be a physiologic activity. Then, we
further compared the expression level among cancer cell lines
(Figure 1B). Interestingly, the landscape of SLC7A11 expression
across cancers changed dramatically. Specifically, SLC7A11 has
the highest expression level in pleural but rarely expressed in
breast, hematopoietic/lymphoid, and soft tissues. Hence,
SLC7A11 may experience a transcriptome remodeling during
the carcinogenesis. To support our assumption, we further
compared the differential expression of SLC7A11 between
human normal and tumor tissues using TCGA data
(Figure 1C). The results showed that SLC7A11 is

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7708573

He et al. Characterize SLC7A11 in Pan-Cancers

19

http://bio-bigdata.hrbmu.edu.cn/RNAactDrug
http://bio-bigdata.hrbmu.edu.cn/RNAactDrug
http://tisch.comp-genomics.org/
http://cis.hku.hk/TISIDB/
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://depmap.org/
https://depmap.org/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 1 | The differential expression of SLC7A11 in distinct cancers. (A) The expression level of SLC7A11 in 33 normal organs. (B) The expression level of SLC7A11
in 21 cancer cell lines. (C) Investigation of the differential expression of SLC7A11 between cancers and normal tissues using TCGA data. (D) Investigation of the differential
expression of SLC7A11 between cancers and normal tissues using the data from TCGA combined with GTEx. (E–J) Single-cell analysis and TIDE algorithms revealing the
expression distribution and immunosuppressive characteristic of SLC7A11 in cell clusters. (K) Immunotherapy prolonged the survival expectancy only in patients with
lower SLC7A11 expression. (L) SLC7A11 is associated with increased CTL cytotoxicity based on TIDE algorithm; CTL top referred to samples with higher CTL infiltration,

(Continued )
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overexpressed in 80% (16/20) cancers, which indicated that many
cancers may shrink ferroptosis by upregulating SLC7A11
expression. Due to the insufficiency of normal samples in
some tumor categories in TCGA, we further incorporated the
transcriptome data from GTEx and re-evaluated the differential
expression of SLC7A11 in 27 cancers (Figure 1D). The results
noted that 92.6% cancers were featured with upregulated
SLC7A11 expression, which further supported our hypothesis.
We also validated the differential expression of SLC7A11 in
distinct cell lines. Compared with normal pancreatic ductal
cells, the expression of SLC7A11 was upregulated in most
pancreatic cancer cell lines (p < 0.05; Supplementary Figure S1).

Single-cell transcriptomic analysis revealed the expression
pattern of SLC7A11 in different cell types (Figures 1E–J;
Supplementary Figure S2). First, SLC7A11 is rarely
expressed in hematologic malignancies (AEL, AML, and
ALL). In solid tumors, SLC7A11 was observed to express
highly in the malignant cells of glioma, while for SKCM,
SLC7A11 was highly expressed in immune cells and
moderately expressed in malignant and stromal cells. For
STAD and UCEC, SLC7A11 was more preferred to express
in stromal cells. In addition, immunotherapy may only
function in patients with lower SLC7A11 expression
(Figure 1K). We also presented the comprehensive
landscape for the relationship between SLC7A11 and
T-dysfunction or immunotherapeutic response in the core
cohorts in TIDE database (Figures 1L,M).

The Correlation Between Intra-Tumoral
SLC7A11 Expression and Patients’ Overall
Survival, Disease-Specific Survival,
Disease-Free Interval, and
Progression-Free Interval
Given the obviously differential expression of SLC7A11
observed between tumor and normal samples, we further
investigate whether SLC7A11 expression influences
patients’ prognosis. OS, DSS, DFI, and PFI were selected as
the indicators to reflect patients’ prognosis. Overexpression of
SLC7A11 was identified as a risk factor for worse OS in eight
cancers (ACC, BLCA, HNSC, KICH, KIRC, LGG, LIHC, and
SKCM) (HR > 1, p < 0.05). On the contrary, SLC7A11 served
as a protective factor for prolonged OS in OV and READ (HR
< 1, p < 0.05) (Figure 2A and Figure 2E). In addition,
SLC7A11 overexpression was an adverse factor for the DSS
of patients with eight cancers (ACC, BLCA, KICH, KIRC,
KIRP, LGG, PRAD, and SKCM) (HR > 1, p < 0.05); however, it
was a favorable factor for better DSS in READ (HR < 1, p <
0.05) (Figure 2B and Figure 2F). SLC7A11 is negatively
associated with longer DFI in ACC, LGG, and KIRP (HR >
1, p < 0.05) and better PFI in ACC, BLCA, HNSC, KICH,
KIRC, KIRP, and LGG (HR > 1, p < 0.05) (Figures 2C,G,

respectively). Overall, excessive expression of intra-tumoral
SLC7A11 may be an unfavorable factor for patients’ prognosis
in several cancers. It is biologically plausible that tumor cells
upregulate SLC7A11 expression to shirk ferroptosis execution
and further undermine patients’ survival.

SLC7A11 Barely Influenced Tumor Cell
Proliferation In Vitro
Given that SLC7A11 was associated with the prognoses in
multiple cancers, we studied whether SLC7A11 affected the
proliferation of cancer cells. We analyzed the CRISPR- and
RNAi-based data in DEPMAP, and the results derived from
989 to 709 cell lines, respectively, showed SLC7A11 knockout
or knockdown barely compromised the proliferation ability of all
kinds of tumor cells (Figure 3A), which suggested SLC7A11 is
associated with the worse prognosis of cancer patients through
other mechanisms, tumor microenvironment, for example. To
further confirm this finding, we knocked down the expression of
SLC7A11 in vitro in Panc-1 cell and found SLC7A11 knockdown
did not affect the proliferation of pancreatic cancer (Figures
3C,D). We also identified the differentially expressed molecules
after SLC7A11 knockdown or knockout, which could be
structurally interacted molecules for SLC7A11 (Supplementary
Table S1).

We further analyzed the association between SLC7A11
expression and drug sensitivity during cancer treatment
using RNAactDrug database. Among 562 FDA-approved
drugs, we found the expression of SLC7A11 in mRNA level
was significantly positively correlated with six drugs (R > 0.4
and fdr<0.01), including selendale, gelcohol, n6-
benzyladenosine-5′-phosphate, 6-benzylthioinosine, (E)-3-
(3-((1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)met, kinetin
riboside, adenosine, 8-chloro-, cyclic 3′,5′-(hydrogen
phosphate), and (E)-1-(benzo[d] (Yang, 2015; Wu et al.,
2019)dioxol-5-yl) (Supplementary Table S2). Besides, we
investigated the relationship between SLC7A11 and drug
resistance in TISIDB, the results of which showed small
molecule riluzole, thimerosal, cystine, acetylcysteine,
sulfasalazine, and glutamic acid (Figure 3B). Notably,
SLC7A11 was a key regulator for the transportation of
cystine and glutamic acid, which supported the results yield
by analyzing TISIDB tool.

The Correlation Between SLC7A11
Expression and Immune Cell Infiltration,
Immune Score, Stromal Score, and
Estimate Score
Recently, a well-conducted study reported that CD8+ T cells
could induce ferroptosis in tumor cells via downregulating the
SLC7A11 expression (Wang et al., 2019). The combined

FIGURE 1 | while CTL bottommeans lower CTL infiltration. The cut-off value to distinguish high and low CTL infiltration is just dependent on the Cox-PHmodel embedded in
TIDE algorithm. (M) Comprehensive presentation of the influence on T-dysfunction and immunotherapeutic response associated with SLC7A11 by TIDE algorithm.
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FIGURE 2 | Correlation of the expression of SLC7A11 with the prognosis of distinct cancers. (A) The association between SLC7A11 level and overall survival of
cancers. (B) The association between SLC7A11 level and disease-specific survival of cancers. (C) The association between SLC7A11 level and disease-free interval of
cancers. (D) The association between SLC7A11 level and progression-free interval of cancers. (E–G) The survival curve revealed that SLC7A11 is significantly
associated with the prognosis of several cancers.
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FIGURE 3 |Multi-omics data showed SLC7A11 expression was broadly associated with immune biomarkers but with tumor specificity. (A)MHC. (B)Chemokines.
(C) Chemokine receptor. (D) GSEA to investigate which signal pathways were altered along with differential expression of SLC7A11 in cancers whose prognosis was
associated with SLC7A11.
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induction of ferroptosis with immune checkpoint inhibitors
has a synergistic effect in anti-tumor therapy. Hence, we
speculated SLC7A11 is associated with the immune
microenvironment of cancers. The association between
SLC7A11 expression level and immune cell infiltration,
immune score, stromal score, and estimate score was
evaluated using Pearson correlation coefficient (Figure 4A).
The results showed that SLC7A11 expression is negatively
associated with CD8+ T-cell infiltration in seven cancers
(DLBC, ESCA, HNSC, LUAD, LUSC, TGCT, and THCA),
suggesting the combination of ferroptosis induction and
immunotherapy may be suitable in these cancers’ treatment
(Supplementary Figure S3). In addition, the association
between immune score and SLC7A11 expression is
dependent on cancer type. For PAAD, CESC, ESCA, HNSC,
LUAD, LUSC, TGCT, and THCA, SLC7A11 expression is
negatively associated with immune score. On the contrary,
for KIRC, KIRP, LGG, PCGC, THYM, and UVM, SLC7A11
expression is positively associated with the immune score. The
relationship between SLC7A11 expression and stromal/
estimate score showed a similar trend. We depicted the top
three cancers where the correlation coefficient between
SLC7A11 expression and immune/stromal/estimate scores is
largest as Supplementary Figure S4. Normally, tumor purity
is negatively associated with immune/stromal score.

Therefore, in such cancers that SLC7A11 is negatively
associated with immune/stromal score, SLC7A11 may be
expressed more in tumor cells instead of immune/stromal
cells. Interestingly, there are major overlaps for cancers that
SLC71A11 expression level is negatively associated with
immune/stromal score while positively correlated with
CD8+ T-cell infiltration (CESC, ESCA, HNSC, LUAD,
LUSC, TGCT, and THCA). In these cancers, SLC7A11 is
assumed to express majorly in tumor cells and may be
regulated by immune cells in stroma like CD8+ T cells.

The Association Between SLC7A11
Expression and Potential Response to
Immunotherapy Across Distinct Cancers
To optimize the response rate of immunotherapy, in recent
years, many clinical trials tried to add chemotherapeutics in
regular immunotherapy and observed a synergistic effect.
Several studies have reported that chemotherapeutic drugs
have the capacity to induce ferroptosis in vivo and ex vivo.
Hence, it is significant to investigate whether there are
correlations between SLC7A11 expression and patients’
potential response to immunotherapy in the pan-cancer level.
At present, the expression level of immune checkpoint markers,
MSI, TMB, and neoantigen were four major indicators for

FIGURE 4 | (A) SLC7A11 expression barely affects tumor cell proliferation in vitro. (B) SLC7A11 expression is associated with the sensitivity to multiple drugs. (C)
Knockdown of SLC7A11. (D, E) CCK-8 and EDU analysis shows there are no obvious changes in cell proliferation after SLC7A11 knockdown in panc-1 cell.
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FIGURE 5 | (A) The correlation between SLC7A11 expression and immune and stromal score in distinct cancers. (B–D) Exploring the potential of SLC7A11 in anti-
cancer immunity by evaluating its association with immune checkpoint, tumor mutation burden, and microsatellite instability across distinct cancers.
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predicting patients’ response to immunotherapy. Here, we
analyzed the correlation between SLC7A11 expression and
the level of these immunotherapeutic markers (Figure 4B).
Two widely studied immune checkpoints, PDCD1 (PD-1)
and CD274 (PD-L1), were positively correlated with

SLC7A11 expression in LUAD and LGG, suggesting
simultaneously targeting SLC7A11 and PD1/L1 could be
beneficial in LUAD and LGG. In addition, NRP1, CD276,
and VSIR showed obvious positive correlation with SLC7A11
expression in most cancers, although the drugs targeted at these

FIGURE 6 | The expression of SLC7A11 is altered in different molecular and immune subtypes of cancers. (A, B) SLC7A11 expression in distinct molecular
subtypes for cancers. (C, D) SLC7A11 expression in distinct immune subtypes for cancers.
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checkpoints have not been applied in clinic. The TMB of STAD,
PRAD, PAAD, HNSC, COAD, BRCA, and UCEC is positively
correlated with SLC7A11 expression (Figure 4C). Among these
cancer types, the SLC7A11 expression in COAD, UCEC, and
STAD is also positively associated with MSI (Figure 4D).
Besides, the expression of SLC7A11 in STAD and PRAD was
positively associated with neoantigen level (Supplementary
Figure S5).

In addition, we further studied the association between multi-
omics level of SLC7A11 and immune variables (Figures 5A–C
and Supplementary Figure S6). Overall, mRNA and copy
numbers of SCL7A11 were correlated with most molecules
involved with MHC, chemokines, and chemokine receptors;
however, there was an opposite trend for the correlation
between SLC7A11 methylation level and these markers, which
is attributed to high methylation enrichment that caused the
difficulty in transcription. Furthermore, we analyzed the
correlation between SLC7A11 multi-omics expression and
immune cell infiltration. The results showed that the
relationship between SLC7A11 and each cell subtype was
tumor specific. For example, SLC7A11 was negatively
associated with activated T cells in most cancer types;
however, its mRNA level was positively correlated to
infiltrated activated T cells in KIRP and UVM. Accordingly,
the methylation of SLC7A11 was negatively associated with
activated T cells in KIRP and UVM (Supplementary Figure
S6). Besides, the correlation between SLC7A11 and immune
stimulators and inhibitors was complicated and tumor specific.

SLC7A11 Expression Altered in Distinct
Molecular and Immune Subtypes
In recent years, the development of high-throughput sequencing
promoted the molecular and immune subtypes for cancers.
Molecular subtypes normally referred to the cancer subtypes
based on clustering of differentially expressed genes. Immune
subtypes were determined by the differences of immune cell
infiltration in tumor microenvironment. Hence, we studied
whether SLC7A11 expression was altered in different subtypes.
Notably, for immune subtypes, SLC7A11 expression was
significantly different in BRCA. SLC7A11 harbors the highest
expression in cluster 4 (lymphocyte depleted cluster), which
indicated a negative correlation for SLC7A11 expression and
lymphocyte infiltration. However, for cluster 3, which was
referred to inflammatory subtype, SLC7A11 harbored the
lowest expression level. For molecular subtypes, SLC7A11 had
the most prominent differential expression in LUSC. Specifically,
classic LUSC subtype had the highest expression of SLC7A11,
while secretary and basal LUSC were featured with lower
SLC7A11 level (Figure 6).

GSEA Identified the Signal Pathways that
Altered Alongwith Differential Expression of
SLC7A11
To further explore the function of SLC7A11 in cancer biology, we
performed a GSEA to investigate which signal pathways were

altered along with differential expression of SLC7A11 in cancers
whose prognosis was associated with SLC7A11 (Figure 5D). We
visualized the top five gene sets enriched in SLC7A11-high or
SLC7A11-low tumor samples. The results provided some
valuable information. First, gene sets associated with
T cellmediated immunity, T-cell receptor complex, and T-cell
differentiation were enriched in HNSC samples with relatively
low expression of SLC7A11, while one gene set associated with
cell growth and development was enriched in HNSC samples
with higher expression of SLC7A11. Second, the GSEA results in
LIHC showed gene sets associated with amino acid transport and
transmembrane were enriched in samples with higher SLC7A11,
which may be contributed to the molecular function of SLC7A11
self. In addition, gene sets associated with G1-S phase transition
and mitotic cell cycle were also enriched in LIHC samples with
higher SLC7A11 expression. Third, gene sets that negatively
regulate NF-kappaB transcription factor, vascular
development, and angiogenesis were enriched in KICH
samples with lower expression of SLC7A11. In conclusion,
compared with SLC7A11-low tumor samples, cancers with
higher SLC7A11 expression demonstrated decreased anti-
cancer immunity, enhanced metabolic activity, and promoted
cell division.

DISCUSSION

An increased number of studies have revealed an anti-cancer role of
ferroptosis in recent years (Lu et al., 2017; Liang and Zhang, 2019). It
is significant to investigate the implication of ferroptosis-related
signature in real-world patients’ tumor samples. As a core gene of
ferroptosis, SLC7A11 overexpression naturally downregulates the
sensitivity for ferroptosis execution (Jeong et al., 2017; Liu et al.,
2019). SLC7A11 is the major target for manipulating ferroptosis in
vivo and in vitro at present (Sehm et al., 2016; Xie et al., 2016;
Dahlmanns et al., 2017). Hence, it is imperative to explore the
expression and clinical relevance of SLC7A11 in cancer samples.
This study systematically established the unfavorable role of
SLC7A11 for longer survival, decreased new events, and potential
response to immunotherapy in several cancers.

Thanks to the advancement of RNA-sequencing methodology,
oncologists could develop a more detailed classification for
cancers based on the variation in cancer transcriptome (Jeong
et al., 2017; Uhlen et al., 2017). Evolutionally, tumor cell acquired
unlimited proliferative capacity through the remodeling in a
series of signal pathways (Nygren, 2001; Boumahdi and de
Sauvage, 2020). The plasticity of transcriptome conferred
tumor cells with accumulated resistance for many
chemotherapeutics, which dramatically restrained the efficacy
of anti-cancer treatment and compromised patients’ survival
(Meacham and Morrison, 2013). Mechanistically, most
chemotherapeutic drugs worked out via inducing apoptosis in
tumor cells (Pérez-Herrero and Fernández-Medarde, 2015).
These drugs normally showed promising efficacy at the
beginning, while gradually losing their ability after several
rounds of administrations, which attributed to the adaptive
resistance to apoptosis execution developed in tumor cells
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(Goldar et al., 2015). Hence, scientists are constantly seeking a
potent strategy to kill chemotherapy-resistant tumor cells. In
recent years, as a novel concept, ferroptosis is defined as an iron-
dependent accumulation of lipid peroxidation products to death
(Hirschhorn and Stockwell, 2019). Many studies observed that
chemotherapy-resistant tumor models are still sensitive to
ferroptosis induction, which may become an effective weapon
for the treatment of these malignancies (Liang and Zhang, 2019).
Besides, ferroptosis self is also an important mechanism by which
chemotherapeutic drugs kill cancer cells (Sun et al., 2016). For
example, Sun et al. have demonstrated that the sensitivity to
sorafenib in LIHC could be compromised by ferroptosis
inhibition (Sun et al., 2016).

Unlike other non-apoptotic cell death, there are no pore-forming
proteins specifically functioned in ferroptosis execution (Liang and
Zhang, 2019). In this context, identification of biomarkers that reflect
ferroptosis sensitivity is of great importance. As one of the most
classic biomarkers of ferroptosis, SLC7A11 controls the influx of
cysteine and following glutathione biosynthesis, whose
overexpression is associated with ferroptostic insensitivity (Jeong
et al., 2017; Koppula et al., 2018). However, few studies
systematically discussed the prognostic role of SLC7A11 in
cancers. In addition, one well-conducted study first proved CD8+

T cells could induce the ferroptosis in cancer cells via downregulating
the SLC7A11 transcription and concomitant use of immune
checkpoint inhibitors could synergistically enhance the anti-cancer
capacity (Wang et al., 2019). This inspired the imagination that
whether intra-tumoral expression of SLC7A11 influences the
immune microenvironment and potential response to
immunotherapy. Hence, we elaborated a bioinformatic study in
pan-cancer level to systematically explore whether the intra-
tumoral expression of SLC7A11 is associated with patients’
survival and its potential value in immunotherapy. Our results
revealed SLC7A11 is implicated in the overall survival of several
cancers, including ACC, BLCA, HNSC, KICH, KIRC, LGG, LIHC,
and SKCM. Except for these cancers, SLC7A11 is associated with the
DSS for PARDandKIRP. In this context, future clinical trials that aim
to treat cancers by inducing ferroptosis should first consider these
cancers. Our study also focused on the relationship between SLC7A11
expression and TMB, MSI, and neoantigen. Notably, STAD is the
only cancer type where the SLC7A11 expression is associated with
these three markers for response to immunotherapy simultaneously,
which highlighted the value for combined treatment of ferroptosis
induction with immunotherapy in STAD.

The present study has some strengths to declare. First,
ferroptosis induction is a promising anti-cancer strategy in the
near future, and our study providedmany valuable and integrated
suggestions for the selection of appropriate cancer types. Second,
most previous studies investigated the anti-cancer function of

ferroptosis in cell/animal level. Although these studies provided
more detailed mechanism about the molecular pathways, our
study may be more reliable because the tumor samples we
selected come from human beings. Third, our study analyzed
the association between SLC7A11 expression and potential
response to immunotherapy in pan-cancer level, which also
brought much valuable information. Certainly, this study has
several limitations. On one hand, as an in silico research, although
our study has a large sample number, appropriate external
validation may still be warranted. On the other hand, while
this study systematically analyzed the role of SLC7A11 in
cancers’ prognosis and immune signatures, the underlying
mechanism still needs further investigation by future
laboratory research.

In conclusion, this pan-cancer level bioinformatic study
systematically elucidated the role of intra-tumoral expression
of SLC7A11 in the prognoses, drug resistance, and potential
immunotherapeutic response of patients with cancer. Future
studies are encouraged to develop clinically approved
SLC7A11-targeted drugs and organize safe and effective
clinical trials.
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Identification and Validation of
Immune-Related Prognostic Genes in
the Tumor Microenvironment of Colon
Adenocarcinoma
Shenghua Pan, Tingting Tang, Yanke Wu, Liang Zhang, Zekai Song and Sisi Yu*
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The tumor microenvironment (TME) has been shown to be involved in angiogenesis, tumor
metastasis, and immune response, thereby affecting the treatment and prognosis of
patients. This study aims to identify genes that are dysregulated in the TME of patients with
colon adenocarcinoma (COAD) and to evaluate their prognostic value based on RNA
omics data. We obtained 512 COAD samples from the Cancer Genome Atlas (TCGA)
database and 579 COAD patients from the independent dataset (GSE39582) in the Gene
Expression Omnibus (GEO) database. The immune/stromal/ESTIMATE score of each
patient based on their gene expression was calculated using the ESTIMATE algorithm.
Kaplan–Meier survival analysis, Cox regression analysis, gene functional enrichment
analysis, and protein–protein interaction (PPI) network analysis were performed. We
found that immune and stromal scores were significantly correlated with COAD
patients’ overall survival (log rank p < 0.05). By comparing the high immune/stromal
score group with the low score group, we identified 688 intersection differentially
expressed genes (DEGs) from the TCGA dataset (663 upregulated and 25
downregulated). The functional enrichment analysis of intersection DEGs showed that
they were mainly enriched in the immune process, cell migration, cell motility, Toll-like
receptor signaling pathway, and PI3K-Akt signaling pathway. The hub genes were
revealed by PPI network analysis. Through Kaplan–Meier and Cox analysis, four TME-
related genes that were significantly related to the prognosis of COAD patients were
verified in GSE39582. In addition, we uncovered the relationship between the four
prognostic genes and immune cells in COAD. In conclusion, based on the RNA
expression profiles of 1091 COAD patients, we screened four genes that can predict
prognosis from the TME, which may serve as candidate prognostic biomarkers for COAD.
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INTRODUCTION

Colorectal cancer (CRC) is a common malignant gastrointestinal
tumor worldwide (Siegel et al., 2017; Siegel et al., 2020). Colon
adenocarcinoma (COAD) is the most common histological type
of CRC (Barresi et al., 2015). According to GLOBOCAN 2018,
CRC is the malignant tumor with the third highest incidence and
the second highest mortality. It is estimated that there were more
than 1.8 million new cases and 881,000 deaths caused by CRC in
2018 (Bray et al., 2018). In addition, the incidence of CRC among
young adults is increasing (Benson et al., 2017), which brings a
huge health burden to human beings worldwide. The prognosis of
CRC varies in different countries around the world. The 5-year
relative survival rate of CRC in high-income countries is close to
65%, while in low-income countries, it is less than 50% (Brenner
et al., 2014). Despite the continuous development of treatment
methods such as operation, chemotherapy agents, and
radiotherapy, the prognosis of CRC has not been significantly
improved. Recently, immunotherapy has become a promising
therapeutic method for CRC patients. Unfortunately, current
clinical trials show that only a few people can benefit from
immunotherapy; thus, finding biomarkers that can indicate
treatment response and prognosis has become an urgent
problem (Piawah and Venook, 2019).

The tumor microenvironment (TME) has been proven to be
involved in angiogenesis, tumor metastasis, and immune
response, thereby affecting the treatment and prognosis of
patients (Qi and Wu, 2019). The TME is composed of
immune cells (T cells, macrophages, etc.), stromal cells
(endothelial cells, etc.), and extracellular components
(cytokines, hormones, etc.). Immune and stromal cells are
reported to be the key carriers for the tumor
microenvironment to perform multiple biological functions.
For CRC, researchers have confirmed the prognostic role of
tumor-infiltrating immune cells in the TME (Galon et al.,
2006). Immune and stromal classification of CRC has been
found to be associated with molecular subtypes and precision
immunotherapy (Becht et al., 2016; Micke et al., 2021). Therefore,
understanding the immune status of the TME is greatly
significant for improving the treatment and prognosis of COAD.

Based on the gene expression value in the TME, Yoshihara
et al. (2013) constructed a new algorithm and called it
“ESTIMATE” to evaluate the proportion of stromal and
immune cells in tumor tissues. Through this method,
researchers have discovered diagnostic or prognostic markers
of glioblastoma, cervical squamous cell carcinoma, bladder
cancer, gastric cancer, etc. (Jia et al., 2018; Luo et al., 2019;
Pan et al., 2019; Wang et al., 2019), as well as tumor immune-
related therapeutic targets. However, the prognostic value of the
TME of COAD has not yet been elucidated. In this study, we used
the COAD gene expression profile data from TCGA to calculate
the immune/stromal scores of COAD patients using ESTIMATE
and explored the correlation of these scores with the clinical
characters and overall survival of COAD patients. Subsequently,
we investigated the potential prognostic genes in the TME
of COAD.

MATERIALS AND METHODS

Patients and Gene Expression Data
We collected the RNA expression data of 512 COAD patients
from the TCGA database (https://cancergenome.nih.gov/).
Clinical and pathological characteristics, including gender, age,
and pathological tumor staging of all 512 COAD patients, are
listed in Table 1. The log2 transformed FPKM values were used
for gene expression analysis. Due to the lack of survival
information of 25 patients, we used the expression and
survival data of 487 patients for further analysis. In order to
verify the prognostic value of genes in COAD and the relationship
between genes and immune cell behavior, we obtained another
group of 587 COAD patients with RNA expression profiles and
clinical characters (GSE39582) from the Gene Expression
Omnibus (GEO) database.

Calculating Immune/Stromal Scores and
Survival Analysis
Based on the ESTIMATE algorithm in the R program (3.5.3), we
obtained the immune/stromal/ESTIMATE score of each sample
(Yoshihara et al., 2013). Subsequently, the degree of infiltration of
immune cells was quantified by Single Sample Gene Set
Enrichment Analysis (ssGSEA) (Hänzelmann et al., 2013; Xiao
et al., 2020). In order to determine the optimal cut-off value of the

TABLE 1 | Summary of patient demographics and clinical characteristics.

Characteristic TCGA GSE39582

Age (years) 69 (31–90) 69 (22–97)
Gender
Female 244 260
Male 266 319
Unknown 2

Vital status
Living 379 385
Dead 108 194
Unknown 25

M stage
M0 370 496
M1 72 61
Unknown 70 22

N stage
N0 305 311
N1 114 136
N2 91 100
Unknown 2 32

T stage
T1 11 12
T2 85 48
T3 349 376
T4 64 119
Unknown 3 24

Tumor stage
Stage I 82 37
Stage II 205 269
Stage III 139 209
Stage IV 72 60
Unknown 24 4
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immune/stromal score to classify participants into high-/low-
score groups, R packages including “maxstat” and “survival” were
used (Hothorn and Zeileis, 2008). Kaplan–Meier (KM) analysis
was performed to explore the prognostic performance of the
immune/stromal/ESTIMATE score, and the log rank p value was
computed and showed on the survival curves. To understand the
correlation of the tumor stage with the immune/stromal score,
one-way ANOVA was used to test differences. The differentially
expressed genes (DEGs) with a |fold change| > 1.5 and a p value
<0.05 were found by SAM test, which was a statistical technique
based on a t-test in R software (Tusher et al., 2001). KM and COX
regression analysis were used to further evaluate the relationship
between the DEGs and over survival of COAD in the TCGA and
GSE39582 datasets.

Functional Prediction and PPI Network
Analysis
ClueGo of the Cytosccape plug-in (Bindea et al., 2009) was performed
to predict the biological function of DEGs, which could cluster genes
using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes
and Genomes (KEGG). The protein–protein interaction (PPI)
network was constructed through the STRING database (von
Mering et al., 2005), and these selected genes required a
confidence score ≥ 0.4 and a maximum number of interactors �
0. The visualization analysis of PPI was completed using Cytoscape
software (Shannon et al., 2003). The Network Analyzer plug-in of
Cytoscape was used to analyze the degree distribution of genes.

RESULTS

Prognostic Correlation Analysis of Immune/
Stromal Scores in COAD
As shown in Table 1, the median age of the 512 COAD patients
in TCGA was 69, males outnumbered females, and patients
without lymph node metastasis and distant metastasis (stage I
and II) accounted for the majority. A total of 487 patients with
complete survival information and gene expression data were

studied. From the gene expression profiles, we identified 17,590
expressed genes in the 487 COAD samples. We acquired the
immune, stromal, and ESTIMATE scores of each COAD patient
using ESTIMATE (Supplementary Table S1). The immune scores
of the 487 COAD patients ranged from −1,262.3 to 2,598.7, the
stromal scores ranged from −2,543.4 to 1,622.9, and the ESTIMATE
scores ranged from −3,579.2 to 3,689.2. To investigate the potential
correlation between the prognosis of COAD and the immune/
stromal/ESTIMATE score, we divided patients into low-score or
high-score groups by the cut-off value selected by maximally
selected rank statistics in the R maxstat package. Kaplan–Meier
analysis revealed that the high immune score group with a score
higher than −202.9 was significantly correlated with a better
prognosis than the low immune score group (median survival
8.33 vs. 5.49 years, log rank p � 0.03, Figure 1A). Based on
−382.6/49.5 as the selected cut-off value, the high-score groups
of the stromal/ESTIMATE scores had a shorter survival (stromal:
median survival 5.23 vs. 7.73 years; ESTIMATE: median survival
5.85 vs. 7.73 years, log rank p < 0.05, Figures 1B,C).

Subsequently, we investigated the association of immune/
stromal/ESTIMATE scores with the COAD tumor stage and
pathologic T, N, and M stages by one-way ANOVA test. As
shown in Figure 2 and Supplementary Figure S1, the immune
scores were significantly associated with the tumor stage and
pathologic M stage (p < 0.05, Figure 2A, Supplementary Figure
S1G). But the stromal scores or ESTIMATE scores were not
correlated with that of COAD (p > 0.05, Figures 2B,C,
Supplementary Figure S1). Then we ran Tukey’s HSD test to
compare the scores between different tumor stages (Figures
2D–F) and found out that the group means of immune scores
owned a significantly different value between tumor stages IV and
II (p < 0.05, Figure 2D).

Differentially Expressed Gene Analysis in
the TME of COAD
After obtaining the immune scores, we performed differentially
expressed gene analysis based on the high- (n � 354) and low-

FIGURE 1 | Association of immune scores (A), stromal scores (B), and ESTIMATE scores (C) with COAD overall survival. The COAD cases were divided into two
groups based on their immune scores or stromal scores or ESTIMATE scores. Kaplan–Meier survival curve of OS between high and low immune/stromal/ESTIMATE
score groups.
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score (n � 133) groups. A total of 953 DEGs were identified, of
which 892 DEGs were upregulated genes and 61 DEGs were
downregulated genes (Figure 3A). Meanwhile, there were 1,090

upregulated and 160 downregulated DEGs according to the
comparison between high stromal score (n � 132) and low
stromal score (n � 355) groups (Figure 3B). Venn diagrams

FIGURE 2 | Association of tumor stage with immune (A), stromal (B), and ESTIMATE (C) scores. Tukey’s HSD test to compare the differences between different
tumor stages with immune (D), stromal (E), and ESTIMATE (F) scores.

FIGURE 3 | Identification of DEGs based on immune/stromal scores. Heatmap of DEGs from the low vs. high immune (A)/stromal (B) score groups (|fold change|
>1.5, p < 0.05). Venn diagrams showed the number of overlapped up- or downregulated DEGs in immune score (C) and stromal score (D) groups.
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indicated 663 overlapping upregulated genes and 25
overlapping downregulated genes in both immune and
stromal groups (Figures 3C,D). Further analysis focused on
the common DEGs.

Through the ClueGO annotation in Cytoscape software, we
conducted GO and KEGG analysis to predict the function of
the 688 intersection DEGs and found that these genes were
mainly clustered in 922 GO terms and 44 KEGG pathways
(Supplementary Table S2). From the aspects of biological

processes (BPs), we found that these intersection DEGs were
mainly enriched in cell migration, cell motility, and regulation
of the immune system process. From the aspects of the cellular
component (CC), these DEGs were primarily clustered in the
extracellular space and the extracellular matrix. At the level of
molecular function (MF), they were mainly associated with
glycosaminoglycan binding, growth factor binding, and
heparin binding (Figure 4A). The KEGG pathway analysis
result suggested that these DEGs were mainly enriched in the

FIGURE 4 | Functional analysis of intersection DEGs by GO (A) and KEGG (B).
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toll-like receptor signaling pathway, cell adhesion molecules
(CAMs), and the PI3K-Akt signaling pathway (Figure 4B).

PPI Network Construction of DEGs
The PPI network of these 688 DEGs was constructed based on
the STRING database, and a total of 664 nodes and 10,015
interactions were detected (Supplementary Figure S2). We
further analyzed the node degree in PPI and found that they
obeyed the power-law distribution, indicating that the network
was scale-free, similar to most biological networks
(Figure 5A). In addition, we calculated the average path
length of the PPI network, which showed that the
characteristic path length of the network was much longer
than that of the random network (1,000 times that of the
random network, p � 0.002, Figure 5B). The most highly
connected intersection DEGs were identified. Among these,
IL6, FN1, PTPRC, ITGAM, CXCL8, ITGB2, CD86, MMP9,
TLR2, and TYROBP were the top ten with 205, 190, 189, 177,
149, 147, 146, 142, 138, and 136 nodes, respectively
(Figure 5C). So we grabbed the subnetwork of the 10 genes
and found that most of them were interactive and are highly
expressed in the high immune score group (Figure 5D).

Prognostic Value of DEGs in COAD
The association of intersection DEGs with OS of COAD was
evaluated by Kaplan–Meier and Cox regression analysis in the
487 COAD cases. Among 668 intersection DEGs, a total of 38

genes were associated with the OS (p < 0.05, Supplementary
Table S3). Among the 38 prognostic DEGs, patients with high
expression of CPA3, MMP12, MMP1, CXCL8, and TSPAN11
were associated with longer OS than those with low expression,
while the upregulated expression of other genes were associated
with unfavorable outcomes.

To further validate above results, an independent dataset
including 579 patients from the GEO database (accession
number GSE39582) were used to verify the prognostic
genes of COAD. As a result, we found that four genes out
of a total of 38 identified genes from the TCGA were
significantly associated with COAD survival. These four
prognostic genes were VIM, SIGLEC1, ARL4C, and CPA3.
From Figure 6, we observed that high expression of VIM,
SIGLEC1, and ARL4C and low expression of CPA3 were
associated with poor prognosis.

Relationships Between the Four Prognostic
Genes and Immune Cell Behavior in COAD
Next, to uncover the potential role of genes in tumor
immunology, ssGSEA analysis unearthed the ratio of immune
cells, and then we analyzed the correlation between the
expression of these genes and immune cells by Pearson test
and presented it with heatmaps based on TCGA (Figure 7A)
and GSE39582 (Figure 7B) datasets. Interestingly, we observed
that CPA3 was highly correlated only with mast cells (Figures

FIGURE 5 | Topological features of DEGs in the PPI network. (A) View of the PPI network. (A) Degree distributions of the PPI network. (B) All degrees followed a
power-law distribution and average path length distributions of the real network and 1,000 times random networks. (C) Key DEGs in the PPI network with top 10 degree
distributions. (D) Subnetwork of the top 10 genes.
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7C,D), while VIM, SIGLEC1, and ARL4C were highly correlated
with macrophage, natural killer cell, regulatory T cell, T follicular
helper cell, and Type 1 T helper cell in TCGA (Supplementary
Figure S3) and GSE39582 (Supplementary Figure S4),
simultaneously (Pearson coefficient>0.6, p < 0.001). These
results suggested that the four prognostic genes may
participate in cancer progression by regulating the level of
immune cells in COAD (Pearson coefficient>0.6, p < 0.001).

DISCUSSION

COAD is a heterogeneous malignant tumor with widely variable
prognosis (Barresi et al., 2015). Therefore, new prognostic
biomarkers and theraputic methods are needed. Recently,
immunotherapy has brought great hope to COAD patients,
but its limited effectiveness and drug resistance are still major
challenges. The TME has been reported to be implicated in the
development of various tumors (Balkwill et al., 2012; Hui and
Chen, 2015) and affect the treatment and prognosis of patients,
but research on the TME of COAD is rare. In this study, we
identified the correlation of the immune/stromal scores with the
survival of COAD. Moreover, we screened out a total of 688
DEGs from high vs. low immune/stromal score groups and found
four genes with prognostic value in the TME, which have the
potential ability to serve as molecular biomarkers of COAD.

After analyzing the profiles of 487 COAD patients through the
ESTIMATE algorithm, we found that a high immune score was
correlated with a high overall survival rate of COAD, which was
identical to the results reported in other tumors such as
hepatocellular carcinoma (Pan et al., 2020), prostate cancer
(Sun et al., 2020), and endometrial cancer (Chen et al., 2020).

This correlation result indicates that immune cell infiltration is
beneficial to the prognosis of COAD. Similarly, Michael J et al.
found that high tumor-associated macrophage infiltration in
CRC was associated with better prognosis (Cavnar et al.,
2017). Franck et al. discovered that cytotoxic (CD8) and
memory (CD45RO) T cells could predict better clinical
outcomes of CRC patients (Pagès et al., 2009). Other
researchers have confirmed that immune cells are prognostic
factors for CRC (Galon et al., 2006). On the other hand, our study
also discovered that the high stromal/ESTIMATE scores were
correlated with poor prognosis, indicating that the stromal cells in
the TME are indicators of unfavorable clinical outcome for CRC.
Consistent with our findings, the high expression of cancer-
associated fibroblasts (CAFs, one group of stromal cells) was
found to be associated with the poor prognosis of untreated CRC
(Isella et al., 2015). Moreover, some researchers have found that
stromal cells in the TME of colon cancer have a key role in
inhibiting tumor immune response and enhancing tumor
malignant progression (O’Malley et al., 2018).

When analyzing the correlation between clinical parameters
and immune/stromal scores, we found significant differences in
the immune scores of COAD patients with different tumor stages.
Then, we obtained 688 DEGs through analyzing DEGs that
appear in both groups with high and low immune/stromal
scores. Function analysis found that these intersection DEGs
were enriched in the immune system process, cell migration, cell
motility, growth factor binding and extracellular matrix, Toll-like
receptor signaling pathway, NF-kappa B signaling pathway, and
PI3K-Akt signaling pathway, which were closely related to tumor
metastasis. Moreover, we identified that the most highly
connected intersection DEGs in the TME of COAD were IL6.
IL6 (Interleukin-6), one of the major cytokines in the TME, has

FIGURE 6 | Kaplan–Meier analysis results of VIM (A,E), SIGLEC1 (B,F), ARL4C (C,G), and CPA3 (D,H) in TCGA and GSE39582 datasets.
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been reported to promote tumor progression including apoptosis,
proliferation, invasiveness, and metastasis via regulating multiple
key cell signaling pathways (Kumari et al., 2016). All the above
findings indicated that the TME of COAD had an important role
in tumor progress and outcome.

Subsequently, Kaplan–Meier and COX analysis found that
38 TME-related DEGs were significantly correlated with the OS
of COAD patients from TCGA database and validated four genes
(VIM, SIGLEC1, ARL4C, and CPA3) in the GEO dataset. VIM
(vimentin) gene encodes type III intermediate filament protein and
is expressed in most cell types, particularly tumor cells. VIM has an
important function of regulating cell migration (Battaglia et al.,
2018). It has been reported that the abnormally high expression of
vimentin in various epithelial cancers including prostate cancer,
gastrointestinal tumors, and breast cancer is closely related to tumor
growth, invasion, and poor prognosis (Satelli and Li, 2011). In CRC
cells, researchers found that siRNA knockdown of VIM expression
could reduce cell migration and invasiveness (McInroy and Määttä,
2007). Consistent with the results of the above studies, our study
found that high expression of VIM indicated poor prognosis for
patients with COAD. SIGLEC1, also known as CD169, encodes a
type I transmembrane protein expressed on macrophages. Studies

have shown that CD169+ macrophages are a favorable prognostic
indicator for bladder cancer (Asano et al., 2018) and hepatocellular
carcinoma (Zhang et al., 2016). These results in other tumors are
contrary to this article, so it is necessary to further clarify the
prognostic significance and specific mechanisms of SIGLEC1.
ARL4C (ADP-ribosylation factor-like protein 4C) is a target gene
for both Wnt/β-catenin and epidermal growth factor/Ras signaling,
and its expression is reported to promote cellular migration and
proliferation, thereby indicating its involvement in tumorigenesis. It
has been found that ARL4C is overexpressed in colorectal cancers
and plays a pivotal role in the progression of CRC (Fujii et al., 2015;
Chen et al., 2016). CPA3 (carboxypeptidase A3) is a member of the
metallocarboxypeptidase family and can be expressed in many
cell types, especially basophils and mast cells. There are few
studies on the expression of CPA3 in tumors and its prognostic
significance. Our study found that CPA3 was a protective factor
of COAD, and high expression of CPA3 was associated with
better survival rates.

In conclusion, this study provides an attempt at understanding
the role of immune/stromal cells and genes in the TME of COAD
and confirms that the composition of TME affects the clinical
outcomes of COAD patients. Moreover, four TME-related genes

FIGURE 7 | Relationships between the four prognostic genes and immune cells based on TCGA (A) and GSE39582 (B) dataset analysis. CPA3 was highly
correlated with Mast cells in TCGA (C) and GSE39582 (D) datasets.
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have been identified, which could be used as new prognostic
biomarkers and targets for immunotherapy.
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Background:Gastric cancer (GC) was usually associated with poor prognosis and invalid
therapeutical response to immunotherapy due to biological heterogeneity. It is urgent to
screen reliable indices especially immunotherapy-associated parameters that can predict
the therapeutic responses to immunotherapy of GC patients.

Methods: Gene expression profile of 854 GC patients were collected from The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets (GSE84433) with
their corresponding clinical and somatic mutation data. Based on immune cell infiltration
(ICI) levels, molecular clustering classification was performed to identify subtypes and ICI
scores in GC patients. After functional enrichment analysis of subtypes, we further
explored the correlation between ICI scores and Tumor Mutation Burden (TMB) and
the significance in clinical immunotherapy response.

Results: Three subtypes were identified based on ICI scores with distinct immunological
and prognostic characteristics. The ICI-cluster C, associated with better outcomes, was
characterized by significantly higher stromal and immune scores, T lymphocytes infiltration
and up-regulation of PD-L1. ICI scores were identified through using principal component
analysis (PCA) and the low ICI scores were consistent with the increased TMB and the
immune-activating signaling pathways. Contrarily, the high-ICI score cluster was involved
in the immunosuppressive pathways, such as TGF-beta, MAPK and WNT signaling
pathways, which might be responsible for poor prognosis of GC. External
immunotherapy and chemotherapy cohorts validated the patients with lower ICI scores
exhibited significant therapeutic responses and clinical benefits.

Conclusion: This study elucidated that ICI score could sever as an effective prognostic
and predictive indicator for immunotherapy in GC. These findings indicated that the
systematic assessment of tumor ICI landscapes and identification of ICI scores have
crucial clinical implications and facilitate tailoring optimal immunotherapeutic strategies.

Keywords: gastric cancer, immune cell infiltration landscape, tumor microenvironment, immunotherapy, immune
response
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INTRODUCTION

As one of the most common tumors with a high morbidity and
mortality, gastric cancer (GC) leads to a poor prognosis and
increases critical social burden with 5.7% incidence and 8.2%
mortality rates (Bray et al., 2018). More than 50% of diagnosed
GC patients were at advanced stages and the prognosis of GC was
relatively poor with only less than 30% overall 5-year survival
rate (Yang et al., 2020a; Wang et al., 2021). Despite
remarkable progress have been made for the treatment of
GC, including radiotherapy, chemotherapy and surgery
according to different locations and clinical stages, there is
still lack of effective strategies for the advanced GC treatment
(Ai and Wang, 2020). Recently, the rapid rise of
immunotherapy has brought a new therapeutic landscape
for the patients who didn’t benefit from conventional
chemotherapy, radiation or surgery (Chivu-Economescu
et al., 2018). However, in clinical practice, the majority of
GC patients were usually still lack of effective therapeutical
response to immunotherapy (Li et al., 2020). Therefore, it is
crucial to screen reliable index especially immunotherapy-
related biological parameters that can predict the therapeutic
responses to immunotherapy of GC patients.

Tumor microenvironment (TME) is the inner environment of
malignant tumor progression and reveals the biological process of
host anti-tumor immune response and destruction of normal
tissue. Therefore, the TME was considered as an essential element
for exploring the relationship between immune response and
tumors with immune cell infiltration (ICI) (Anderson et al.,
2006). The TME of tumor tissue was usually complex and
associated with tumor initiation, development and prognosis,
of which massive immune cells were infiltrated and played great
significance to the prognosis of patients (Chen et al., 2020). For
instance, tumor-infiltrating lymphocytes (TLS) such as CD4+

T cell and CD8+ T cell could remarkably improve the curative
effects and survival rates (Vassilakopoulou et al., 2016). In
addition, tumor-associated macrophages (TAMs), accounting
for the majority of leukocytes, had been reported to be
involved in the progress of lung and kidney tumors through
secreting immunosuppressive cytokines (Vilaseca et al., 2017; Tie
et al., 2020). Besides various immune cells, the hypernomic
infiltration of stromal components in tumor tissues could
decrease the TLS trafficking into tumors (Senbabaoglu et al.,
2016). All these researches indicated that intercellular
relationships were more significant than the single cell
population in TME and the comprehensive landscape of
immune cells infiltrating of TME in GC patients still remained
unclear.

The identification of potential subtypes of GC by high-
throughput technologies may contribute to elucidating the
molecular mechanism, improving therapeutic response, and
providing insight into any possible evaluating indicators for
immunotherapy. In this study, based on the gene expression
profile of GC. we applied two major computational algorithms,
CIBERSORT and ESTIMATE, to acquire immune clustering
subtypes, establish the immune cells infiltration (ICI) scores
and further assess the comprehensive landscape about the

infiltration of immune cells in GC. Besides, the biological
characteristics of ICI subgroups was elucidated and the
significance of ICI scores in the prediction of immunotherapy
and common chemotherapeutics response was further estimated
to validate the ICI landscape for GC.

Conclusively, we are convinced that this study would help in
the identification of potential subtypes of GC for interpreting the
discriminatory curative responses to immunotherapy and
facilitating understanding of the underlying mechanisms of the
disease.

MATERIALS AND METHODS

Data Preparation and Preprocessing
The flow chart of our study was showed in Supplementary
Figure S1. Transcriptome profiling data of 854 GC samples
with their corresponding clinical and mutation data were
downloaded from two publicly available datasets, of which the
RNA-seq transcriptome data of 407 GC patients with fragments
per-kilobase million (FPKM) value were derived from The
Cancer Genome Atlas (TCGA) datasets (https://portal.gdc.
cancer.gov/) and other microarray data of 447 GC patients
(GSE84433) were derived from the Gene Expression Omnibus
(GEO) datasets (https://www.ncbi.nlm.nih.gov/geo/). To
standardize the expression levels between different sequencing
technologies, the FPKM value of TCGA-STAD datasets was
transformed into the transcripts per-kilobase million (TPMs)
form, which was consistent with the microarray datasets (Wagner
et al., 2012). In addition, the “ComBat” algorithm of “sva”
package was further applied to remove the non-biological
technical biases due to batch effects between different datasets
(Leek et al., 2012).

Consensus Cluster Analysis for Immune
Cells Infiltration in Gastric Cancer
To evaluate the immune cell infiltration (ICI) characteristics of
GC tissues, we used the “CIBERSORT” package (Chen et al.,
2018) to quantitatively analyze the infiltration levels of different
immune cells with the LM22 signatures by 1,000 random
permutations. Immune cell infiltration levels and stromal
contents in different samples were evaluated by using the
“ESTIMATE” algorithm (Yoshihara et al., 2013). Then, we
performed hierarchical clustering analysis according to the
immune infiltration of each sample and the
“ConsensuClusterPlus” R package (Wilkerson and Hayes,
2010) was applied to conducted unsupervised clustering based
on Euclidean distance and Ward’s linkage methods with 1,000
repeated times to ensure the stability of classification. We
performed multiple comparisons among different immune-
subtypes including tumor microenvironment (TME) and ICI
features to explore the immune characteristics. Moreover, R
packages “survival” (Therneau and Lumley, 2015) and
“survminer” (Kassambara et al., 2017) were used to perform
Kaplan-Meier survival analysis and create survival curves
between immune subtypes.
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Identification of ICI Gene-Types and
Functional Enrichment Analysis
ICI-associated genes were identified among ICI subtypes using
the “limma” package (Smyth, 2005) through setting significance
cutoff as adjusted p < 0.05 and absolute fold-change >1 and those
genes were also divided into different clusters using hierarchical
clustering. In order to clarify the biological function and
characteristics of gene-clusters, Gene Ontology (GO) enrichment
analysis was performed by using “ClusterProfiler” package (Yu et al.,
2012) and similar comparisons between gene-types were conducted
including TME, ICI and survival analysis. In addition, we also
compared the difference of TNM stages between ICI clusters
through the chi-square test using the “ggstatsplot” R package.

Definition and Immune Characteristics of
ICI Scores
Based on the unsupervised clustering of expression value of ICI-
associated genes, those GC samples were redistributed into
different gene-clusters and the expression values correlated
with clusters were identified as the ICI gene signatures A and
B respectively. Moreover, we applied the Boruta algorithm (Kursa
and Rudnicki, 2010) to reduce the dimension of above ICI gene
signatures and adopted principal component 1 as the signature
score by performing the principal component analysis (PCA)
(Zhang et al., 2020). Finally, the method similar to Gene
expression grade index was applied to define the ICI score as the
following formula: ICI score � ∑PC1A − ∑PC1B. Subsequently,
the threshold of ICI scores was identified through the
“surv_cutpoint” function of “survival” package and patients were
separated into High- and Low-ICI groups. The software of GESA
v4.0 was used for gene set enrichment analysis (GSEA) of ICI scores
in gastric cancer. To estimate the discriminative capacity of ICI
scores in predicting the prognosis of GCs, the “timeROC” package
was applied to draw time-dependent receiver operating
characteristic (ROC) curves (Blanche and Blanche, 2019).

Calculation and Analysis of Tumor Mutation
Burden
To explore the relationship between TMB and ICI score, we also
downloaded themutationdata ofGCpatients fromTCGAdatasets and
calculated TMB scores by using the “maftool” R package (Mayakonda
et al., 2018). In addition, the correlation analysis between TMB and ICI
scores was performed based on Spearman correlation coefficients and
combined survival analysis was further employed to clarify the
prognostic value. Furthermore, comprehensive mutation analysis
was conducted by “maftools” package and mutational signatures of
the top 20 genes were further chosen subsequent comparison between
ICI-score subgroups using chi-square test.

Exploration of the Significance of ICI Scores
in Clinical Immunotherapy Response
Another independent dataset, IMvigor210, included 298 urothelial
cancer patients receiving anti-PD-L1 immunotherapy with complete

clinical information and was downloaded from the freely available
“IMvigor210CoreBiologies” package (http://research-pub.gene.com/
IMvigor210CoreBiologies). Moreover, to evaluate the therapeutic
value of ICI scores in the clinic for GC treatment, we calculated the
half maximal inhibitory concentration (IC50) of common
chemotherapeutic drugs based on Genomics of Drug Sensitivity
in Cancer (GDSC) databases (Yang et al., 2013). From the GDSC
database, Antitumor drugs such as 5-Fluorouracil, Bleomycin,
Cisplatin, Docetaxel and Mitomycin-C have been recommended
for the GC treatment by current clinical guidelines. Difference of
IC50 of these chemotherapeutic drugs between ICI-score subgroups
was compared usingWilcoxon test and the results were exhibited in
box diagrams using the “ggpubr” package (Whitehead et al., 2019).

RESULTS

The Landscape of Immuno-Cell Infiltration
in the TME of Gastric Cancer
First, the “CIBERSORT” and “ESTIMATE” algorithm were used
to calculate the activity or enrichment levels of immune cells in
GC tumor tissues (Supplementary Table S1,2). Unsupervised
clustering was applied to classify the GC patients into distinct
subtypes by the “ConsesusClusterPlus” package based on 854
tumor samples with matched immune cell infiltration (ICI)
profiles from the databases (GSE84433 and TCGA-GC). Three
independent ICI subtypes had been identified with significant
survival differences (log rank test, p � 0.012) and ICI analysis
revealed complicated relation among immune cells in the TME of
GC tissues (Figure 1A,D). In order to further examine the
relationship of intrinsic biological differences and distinct
clinical phenotypes, we compared the composition of immune
cells in TME according to the three ICI subtypes. Among the
three subtypes, the ICI cluster C exhibited the longer median
survival time (Figure 1E) and higher infiltration of T
lymphocytes including CD8+ T cells, activated memory CD4+

T cells, follicular helper T (Tfh) cells, M1 macrophages and
resting dendritic cells (DCs) (Figure 1B,C). With a median
survival of 4 years, the ICI cluster A had the worst prognosis
and it was characterized by high infiltration of naive B cells,
resting memory CD4+ T cells, activated DCs and resting Mast
cells. The ICI cluster B was marked by high infiltration of M0 and
M1 macrophages with about 4.8 years’ median survival time.
Moreover, we also analyzed the expression of significant immune
checkpoint, PD-L1, in each ICI cluster to estimate the response to
immunotherapy. Consistent with the results of survival analysis,
the expression of PD-L1 was higher in ICI cluster C than that in
ICI cluster A and B (Figure 1F). In addition, the comparison of
TNM stages showed that Cluster A displayed more proportion of
severe stages than that of Cluster B and C (Figure 1G).

Identification of ICI Gene-Types and its
Functional Enrichment
To further elucidate the underlying biological characteristics
of different immunophenotypes, the differential transcriptome
variations analysis was performed among subtypes using the
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FIGURE 1 | Identification of immune molecular subtypes and characteristics of immuno-cell infiltration landscape in the gastric cancer. (A) Consensus clustering
matrix for k � 3 in GC patients. (B) Heatmap of immune cells infiltration and clinicopathologic features of the three subtypes. (C) The box plots showing the difference of
immune cells infiltration among three ICI clusters. (D) The correlation among the immune cell infiltration in GC patients. (E). Kaplan-Meier curves of overall survival (OS) for
the GC patients in three subtypes. (F) The expression of PD-L1 between different ICI cluster groups. (G) Difference of TMN stages among different ICI cluster
groups.
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“limma” package. Subsequently, we reperformed the
unsupervised hierarchical clustering based on the expression of
251 differentially expressed genes (DEGs) and classified the GC
cohorts into two genomic clusters named gene clusters A and B

(Figure 2A, Supplementary Table S4). Moreover, those DEGs
were positively/negatively associated with ICI signatures and also
classified into two clusters: ICI signature gene A and B
(Figure 2B) and survival analysis exhibited gene clusters A

FIGURE 2 | Identification of ICI gene-types and its functional enrichment. (A)Consensus clusteringmatrix for k � 2 in GC patients based on the expression of DEGs.
(B) Unsupervised clustering of DEGs to classify GC patients into novel two gene clusters (A,B). (C) Kaplan-Meier curves for the two gene clusters of patients. (D) Gene
Ontology enrichment analysis of the two ICI-related signature genes. (E) The difference of immune cells infiltrating in TME between two gene clusters. (F) The expression
of PD-L1 between different gene cluster groups. (G) Difference of TMN stages between different gene cluster groups.
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FIGURE 3 | Construction and identification of characteristics for ICI Score. (A) Alluvial diagram showing the ICI gene cluster distribution from different ICI gene
clusters, ICI score groups and final survival outcomes. (B) The expression of immune-checkpoint-associated signatures (CD274/PD-L1, PDCD1, LAG3, CTLA4 and
HAVCR2) and immune-activity-related genes (CD8A, CXCL9, CXCL10, GZMA, GZMB, PRF1, IFNG, TNF and TBX2) in different ICI score groups. (C) Kaplan-Meier
curves of overall survival (OS) for the GC patients in high and low ICI score groups. (D) Difference of TMN stages between different ICI score groups. (E) The results
of GSEA showing that Calcium signaling pathway, MAPK signaling pathway, TGF beta signaling pathway, WNT signaling pathway and NOD like receptor signaling
pathway were significantly enriched in high-ICI score group while RNA degradation, Spliceosome, Oxidative phosphorylation, Vascular smooth muscle contraction and
Natural killer cell mediated cytotoxicity were enriched in the low-ICI score group. (F) ROC analysis showed the 1-year, 3-year, and 5-year AUC values of the ICI scores in
predicting the prognosis of GCs were 0.580, 0.620, and 0.663, respectively.
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had a longer median survival time than cluster B (log rank test,
p � 0.038, Figure 2C). Functional enrichment analysis revealed
the ICI signature gene A was significantly enriched in the process
of humoral immune response, such as antimicrobial humoral
response, defense response to virus and response to interferon-
gamma, while the ICI signature gene B was associated with the
regulation of digestion, including negative regulation of insulin
secretion, peptide hormone secretion and protein secretion
(Figure 2D, Supplementary Table S5). In addition, in order
to explore the prognostic implications of the ICI gene clusters, we
also performed the Kaplan-Meier survival analysis and the gene
cluster B had a better prognosis than cluster A (Figure 2C).
Interestingly, TME analysis indicated gene cluster B had higher
infiltration of immune cells and were associated with significantly
high immune scores, suggesting its pro-tumor or anti-tumor
activity (Figure 2E). Additionally, the two genomic clusters
also showed significant differences in the expression of PD-L1
and the gene cluster B exhibited higher PD-L1 levels (Figure 2F).
Consistent with the results of survival analysis, cluster A exhibited
more severe TNM features than that of cluster B, suggesting the
latter cluster might have a better prognosis and efficacious
curative responses (Figure 2G). All these results indicated the
consistency between the ICI analysis and prognostic profile in
different gene clusters suggesting the scientificity and rationality
of our classification method.

Construction and Identification of
Characteristics for ICI Score
To acquire quantitative index of ICI landscape in GC, we defined
ICI scores using principal component analysis and successfully
divided the patients into High- and Low-ICI score subgroups
(Supplementary Table S7). Figure 3A showed the distribution
procedure of different subgroups and the gene cluster A was
almost divided into High-ICI score cohorts while massive cluster
B was contributed into Low-ICI score subgroups. Furthermore,
we also evaluated the immune activity and immune tolerance
condition of each cohort before determining the prognostic value
of ICI scores. To accomplish the evaluation, immune-checkpoint-
associated signatures were chosen to assess the response of
immunotherapy including CD274/PD-L1, PDCD1, LAG3,
CTLA4 and HAVCR2 while immune-activity-related genes
were selected to estimate the condition of immune activation
including CD8A, CXCL9, CXCL10, GZMA, GZMB, PRF1, IFNG,
TNF and TBX2. We observed that most signatures of immune-
checkpoint and immune-activity-relevant genes were
significantly upregulated in the Low-ICI score groups except
PDCD1, CD8A, HAVCR2, TBX2 and TNF (Figure 3B) and
Low-ICI group also had a better prognosis than High-ICI score
cohorts (Figure 3C). Clinical analysis of TNM stages also
demonstrated that Low-ICI scores subgroups exhibited more
frequent phenotypes with high-levels of clinical stages
(Figure 3D). Moreover, GSEA analysis also revealed that
Calcium signaling pathway, MAPK signaling pathway, TGF
beta signaling pathway, WNT signaling pathway and NOD
like receptor signaling pathway were significantly enriched in
high-ICI score group while RNA degradation, Spliceosome,

Oxidative phosphorylation, Vascular smooth muscle
contraction and Natural killer cell mediated cytotoxicity were
enriched in the low-ICI score group (Figure 3E, Supplementary
Table S6). Moreover, time-dependent ROC analysis showed the
1-year, 3-year, and 5-year AUC values of the ICI scores in
predicting the prognosis of GCs were 0.580, 0.620 and 0.663,
respectively (Figure 3F).

The Relationship Between ICI Scores and
Tumor Burden Mutation
Increasing evidence indicated that tumor burden mutation
(TMB) could affect the infiltration of CD8+ T cells, which was
considered as significant elements in alleviating the prognosis of
tumors (Rizvi et al., 2015; Cristescu et al., 2018). These studies
implied that TMB might determine the individual’s response to
target immunotherapy. To investigate the intrinsic relationship
between TMB and ICI scores, we compared the levels of TMB
scores between ICI score subgroups and performed Spearman
correlation analysis. The results revealed high-ICI score group
had a lower TMB scores than that of low-ICI score cohorts
(Wilcox test, p < 0.05) and the ICI scores were negatively
correlated with TMB scores (Spearman coefficient: R � −0.52,
p < 2.2e-16) (Figure 4A,B). Longer median survival time was also
identified in high-TMB groups than low-TMB subgroups by
survival analysis, consistent with the prognosis of low-ICI
score groups (Figure 4C). Moreover, the stratified survival
analysis further revealed patients with high TMB and low ICI
scores had the best prognosis status, suggesting the synergistic
effect of TMB and ICI scores in prognostic stratification of GC.
Besides, low-ICI score cohorts still exhibited a better prognosis
than that of high-ICI groups even in GC patients with same TMB
stages and in patients with same ICI-score condition, high-TMB
patients also had a longer median survival time than low-TMB
cohorts (Figure 4D). These results implied the negative
correlation between ICI scores and TMB values and their
potential complementary value in the application of prognosis
for GC patients.

Furthermore, we estimated the distribution of somatic variants
between the low and high ICI subgroups based on the TCGA
datasets. The results revealed various mutation patterns were
identified in both high- and low-ICI subgroups including
Missense Mutation, Nonsense Mutation, Frame Shift Del and
In Frame Del, and more frequent mutations were observed in
low-ICI groups (96.34%) than that of high-ICI groups (78.95%).
The top20 genes with most mutation frequency were exhibited in
Figure 4E,F, of which TTN, PIK3CA, KMT2D and OBSCN were
significantly different between the low and high ICI score groups
(chi-square test; p < 0.05) and the top20 genes with significantly
difference were displayed in Table1. These results might propose
novel ideas for exploring the potential mechanism of tumor ICI
composition and gene mutation in immune checkpoint therapy.

The significance of ICI scores in the prediction of
immunotherapy and common chemotherapeutics response.

To further explore the role of ICI scores in predicting the
therapeutic benefit in GC, the patients who accepted anti-PD-L1
immunotherapy from the IMvigor210 cohort were calculated ICI
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FIGURE 4 | The Relationship between ICI Scores and Tumor Burden Mutation. (A) The difference of TMB value between the high and low ICI score subgroups. (B)
The scatter diagram showing the negative correlation between TMB value and ICI scores. (C) Kaplan-Meier curves of the high and low TMB subgroups in GC patients.
(D) Stratified survival analysis for GC patients combining TMB groups and ICI score subtypes. (E,F) The oncoPrint showing the mutant situation of individual patients in
high ICI scores groups (red) and low ICI scores groups (blue) respectively.
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scores and assigned into high- or low-ICI scores groups
(Supplementary Table S8). Notably, the effective response
rate of anti-PD-L1 therapy was significantly higher in the low-
ICI score group than in high-ICI subgroups and the low-ICI
patients outlived the high-ICI score patients (Figure 5A,B).
Moreover, the rate of complete remission (CR) after
immunotherapy was also increased in low ICI scores than
high ICI cohorts (Figure 5C).

Besides checkpoint blockers therapy, we also attempted to
investigate the potential associations between ICI scores and the
curative efficacy of common chemotherapeutics in treating
gastric cancers. IC50 was calculated and five common anti-GC
chemotherapeutic drugs were obtained from the GDSC databases
including 5-Fluorouracil, Bleomycin, Cisplatin, Docetaxel and
Mitomycin-C (Supplementary Table S9). Interestingly, except
Mitomycin-C, other four drugs all exhibited lower IC50 value in
low-ICI score groups indicating the low-ICI patients might obtain
better curative efficacy from common chemotherapy (Figures
5D–H). Collectively, these outcomes indicated that ICI scores
could be associated with the response to immunotherapy and
common chemotherapy.

DISCUSSION

As a malignant tumor with high mortality, the prognosis of GC
remains poor without effective therapeutical tools. Despite the
development of combination chemotherapy, consisting of
platinum and 5-fluorouracil, only a mild survival advantage
was obtained in GC patients (Galdy et al., 2016). Recently,
cancer target immunotherapies have acquired considerable
attention as an effective and accurate therapeutic option for
GC including immune checkpoint inhibitors, tumor vaccines

and chimeric antigen rector (CAR)-T cells (Yang et al., 2019).
However, even if the GC patients were at the same clinical stage,
their prognosis and therapeutical response to the same treatment
might be still different in clinical practice. Gullo’s study has also
reported this phenomenon and attributed to genomic and
biological heterogeneity (Gullo et al., 2018). Therefore,
identification of a novel subtype and reliable index to evaluate
and predict the therapeutical response to immunotherapy for GS
is urgently needed.

In this study, we first proposed an immune molecular subtype
based on clustering immune infiltration scores with distinct
clinical and immunological signatures in the meta-cohort of
854 GC patients. Interestingly, the characteristics of the three
molecular subtypes manifested significant homogeneity. TME
analysis revealed higher stromal and immune scores were found
in ICI cluster C than other two clusters, indicating anti-tumor
immune response was significantly activated in ICI cluster C of
GC (Zeng et al., 2019). Moreover, higher infiltration scores of
T cells, especially activated CD4+ memory T cells, CD8+ T cells
and follicular helper T cells, which have been regarded as the
major immune cells for anti-tumor efficacy (Biase et al.,
20192019), were demonstrated in the ICI cluster C and this
subtype also presented longer median survival time than other
two clusters through Kaplan-Meier survival analysis
(Figure 1C,E). Immune checkpoint genes, especially PD-L1,
have been demonstrated playing significant role in immune
suppression in multiple tumors and the target inhibitors have
also been widely applied to immunotherapy for cancers (Kim
et al., 2020a). It was worth mentioning that the expression levels
of PD-L1 was significantly increased in ICI cluster C subgroups
suggesting a higher level of immune exhaustion and potential
better therapeutical response in GC patients.

To further explore the potential biological functional features
of the ICI subtypes in GC, we fetched the differential expression
genes among three subtypes and identified novel ICI gene types.
Interestingly, the ICI gene cluster B exhibited a better prognosis
for GC than gene cluster A and was positively associated with the
expression of ICI signature A, which were significantly enriched
in the process of humoral immune response. Conversely, the ICI
gene cluster A was positively associated with the ICI signature B
and major enriched in the negative regulation of digestion.
Increasing evidence had indicated that the H. pylori bacteria
could actively dampen the T-helper 1 (Th1) response and inhibit
CD4/CD8 positive T cell activation and IFN-γ production,
leading to considerable tissue damage during the progression
of GC (Wen et al., 2004; Ito et al., 2008). Therefore, the process of
humoral immune response would ameliorate the disease
condition and improve the survival for GS patients,
interpreting the better prognosis of ICI gene cluster B in our
study (Kurtenkov et al., 2007). In addition, we also observed ICI
gene cluster B had the higher stromal scores, immune scores,
expression levels of PD-L1, milder TNM stages and other
immune-response-related cells infiltration, consistent with the
results of survival analysis and GO functional enrichment
analysis. These outcomes suggested the ICI gene cluster B was
associated with the immune-activation condition with better
therapeutic reaction and prognosis for GC (Panda et al., 2018).

TABLE 1 | Top20 Somatic Variants between High- and Low-ICI Score group.

Gene symbol High ICI score (%) Low ICI score (%) p Value

TTN 58 (33.92%) 111 (58.12%) 6.75E-06
PLEC 7 (4.09%) 39 (20.42%) 6.86E-06
CNTLN 3 (1.75%) 29 (15.18%) 1.65E-05
PIK3CA 11 (6.43%) 43 (22.51%) 3.48E-05
ANKRD11 4 (2.34%) 29 (15.18%) 5.00E-05
HDAC4 0 (0%) 19 (9.95%) 6.31E-05
KMT2D 13 (7.6%) 45 (23.56%) 6.64E-05
ANK3 8 (4.68%) 36 (18.85%) 7.56E-05
ASPM 4 (2.34%) 28 (14.66%) 8.25E-05
HERC2 6 (3.51%) 32 (16.75%) 8.40E-05
JARID2 1 (0.58%) 21 (10.99%) 8.91E-05
NPAP1 1 (0.58%) 21 (10.99%) 8.91E-05
SIPA1L1 2 (1.17%) 23 (12.04%) 1.11E-04
SLITRK5 4 (2.34%) 27 (14.14%) 1.35E-04
FBN1 4 (2.34%) 27 (14.14%) 1.35E-04
SSPO 4 (2.34%) 27 (14.14%) 1.35E-04
HIVEP1 1 (0.58%) 20 (10.47%) 1.49E-04
OBSCN 13 (7.6%) 43 (22.51%) 1.63E-04
KMT2A 4 (2.34%) 26 (13.61%) 2.21E-04
ATP10 A 4 (2.34%) 26 (13.61%) 2.21E-04

p value was obtained based on the chi-square test between the high and low ICI, score
subgroups.
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Considering the individual biological heterogeneity to
immune checkpoint inhibitors, it was urgently required to
understand the ICI landscape of individual tumors.

In previous studies, tumor subtype-specific biomarkers had
been successfully established to improve individual outcome
prediction in breast and colorectal cancers, respectively
(Callari et al., 2016; Bramsen et al., 2017). In our study,
through the Boruta algorithm, we successfully established the
ICI score to quantify the ICI pattern and found most low-ICI
score groups were corresponding to the former ICI gene cluster B
with a longer lifetime. Moreover, the expression levels of most
immune-checkpoint-associated and immune-activity-related
genes were both significantly increased in the low-ICI score
groups, implying the activation of anti-tumor process in
gastric cancers. ROC analysis further demonstrated that ICI
scores had a good prediction capacity in all 1-year, 3-year and

5-year overall survival for GC patients, indicating the potential
predicted value of ICI scores. In addition, GSEA revealed that the
genes of high-ICI score cluster were involved in the
immunosuppressive pathways, such as TGF-beta, MAPK and
WNT signaling pathways, which had been reported associated
with the progression of GC (Chen et al., 2014; Jia et al., 2017; Yang
et al., 2020b). Contrarily, several immune-activated andmetabolic-
related pathways were found enriched in low-ICI score cohorts
including Natural killer cell mediated cytotoxicity and Oxidative
phosphorylation. Su et al. (2020) also identified three oxidative
phosphorylation genes associated with the clinical prognostic
significance in GC and multiple therapeutic technologies had
been found to activate NK cells directly or indirectly to improve
their killing activity for GC including cytokines, antibodies,
immunomodulatory drugs, immune checkpoint blockades and
gene therapy (Mimura et al., 2014).

FIGURE 5 | The role of ICI scores in the prediction of immunotherapy and common chemotherapeutics response. (A) ICI scores between groups with different
clinical immunotherapy response status. (B) Survival analysis for patients in high and low ICI score groups from the IMvigor210 cohort. (C) The distribution of the
complete remission (CR)/partial response (PR) rate and stable disease (SD)/progressive disease (PD) to anti-PD-L1 immunotherapy between high and low ICI score
groups based on the IMvigor210 cohort. (D–H) The difference of IC50 value from five common chemotherapy drugs between high and low ICI score groups,
including 5-Fluorouracil, Bleomycin, Cisplatin, Docetaxel and Mitomycin-C.
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TMB has been recognized as a new biomarker for immune
checkpoint treatment in various tumor types and reported to
applied in predicting the survival status after immunotherapy in
advanced gastric cancer patients (Kim et al., 2020b). Therefore,
TMB value was considered as a sensitive index to
immunotherapy. In the current study, we also detected that
the TMB was significantly increased in patients with low ICI
scores. The significantly negative correlation between the TMB
value and ICI scores was identified with the correlation coefficient
of −0.52. The stratified analysis revealed that the prognosis value
of ICI scores was consistent with TMB values and the patients
with high-TMB and low-ICI scores exhibited optimal survival
condition. Notably, ICI scores could still exhibit significant
discriminating capacity in estimating the survival period of
GC patients in same TMB conditions using stratified analysis,
indicating that ICI scores might provide insights not available
from TMB. Recently, the correlation between gene mutations and
response or tolerance to immunotherapy had been identified in
published reports (George et al., 2017). In our study, more
frequent mutations were observed in low-ICI groups and
massive mutable genes with significant variant frequency
differences were identified, suggesting somatic mutation might
participate in the process of immune-subtypes in GC.

Furthermore, to validate the significance of ICI scores in the
prediction of immunotherapy, the patients receiving
immunotherapy were evaluated based on the IMvigor210
datasets and we found the ICI score was significantly
decreased in patients responded to corresponding
immunotherapy, suggesting target immunotherapy might be
beneficial tool for the patients with low ICI scores. In
addition, the low-ICI score groups also demonstrated longer
median survival time and higher rate of complete remission
(CR) after immunotherapy in clinical trials. Besides
immunotherapy, common chemotherapeutic drugs also be
demonstrated lower IC50 value in low-ICI score cohorts
including 5-Fluorouracil, Bleomycin, Cisplatin and Docetaxel
from GDSC database, implying the low-ICI score patients
might be more efficacious against these chemotherapeutic
drugs. Overall, these findings from external datasets validated
the potential benefits in low-ICI scores and indicated ICI scores
might play a vital role in predicting the curative responses to
common chemotherapy and immune checkpoint therapy.

However, there are still several limitations in our study. For
one thing, the high-throughput sequencing datasets for initial
analysis were relatively insufficient because it was simply
obtained from the public databases. The corresponding results
and conclusion remain to be investigated through more external

congeneric researches. For another, there are still several concerns
need other researches, even clinical practices, to repeatedly
confirm and improve, such as the concrete role of ICI scores
in predicting the response to immunotherapy, the optimal
threshold for the classification ICI scores and so on.

CONCLUSION

In conclusion, we comprehensively explored the ICI
landscape of GC, providing a clear visual angle of the
characteristics in immune molecular subtypes based on
clustering immune infiltration scores with distinct clinical
and immunological signatures. The distinction in ICI
landscapes was found to be associated with the complexity
and heterogeneity of tumor treatment. Moreover, we
successfully identified and validated the significance of ICI
scores in predicting the therapeutic responses to
immunotherapy based on clinical trial data from external
datasets. The systematic assessment of tumor ICI
landscapes and identification of ICI scores have crucial
clinical implications and facilitate tailoring optimal
immunotherapeutic strategies.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

CL and JP contributed to data analysis and drafting of the
manuscript. YJ and YY contributed to data acquisition. ZJ
contributed to figures presentation and revision of the
manuscript. XC contributed to the design of the study. All
authors contributed to the article and approved the submitted
version.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.793628/
full#supplementary-material

REFERENCES

Ai, L., and Wang, H. (2020). Effects of Propofol and Sevoflurane on Tumor Killing
Activity of Peripheral Blood Natural Killer Cells in Patients with Gastric
Cancer. J. Int. Med. Res. 48, 300060520904861. doi:10.1177/0300060520904861

Anderson, A. R. A., Weaver, A. M., Cummings, P. T., and Quaranta, V. (2006).
Tumor Morphology and Phenotypic Evolution Driven by Selective Pressure
from the Microenvironment. Cell 127, 905–915. doi:10.1016/j.cell.2006.09.042

Biase, S. D., Ma, X., Wang, X., Yu, J., Wang, Y.-C., Smith, D. J., et al. (20192019).
Creatine Uptake Regulates CD8 T Cell Antitumor Immunity. jem 216,
2869–2882. doi:10.1084/jem.20182044

Blanche, P., and Blanche, M. P. (2019). Package ‘timeROC’.
Bramsen, J. B., Rasmussen, M. H., Ongen, H., Mattesen, T. B., Ørntoft, M.-

B. W., Árnadóttir, S. S., et al. (2017). Molecular-Subtype-
Specific Biomarkers Improve Prediction of Prognosis in
Colorectal Cancer. Cell Rep. 19, 1268–1280. doi:10.1016/
j.celrep.2017.04.045

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 79362811

Li et al. ICI Characteristics to Assistant Immunotherapy

50

https://www.frontiersin.org/articles/10.3389/fgene.2021.793628/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.793628/full#supplementary-material
https://doi.org/10.1177/0300060520904861
https://doi.org/10.1016/j.cell.2006.09.042
https://doi.org/10.1084/jem.20182044
https://doi.org/10.1016/j.celrep.2017.04.045
https://doi.org/10.1016/j.celrep.2017.04.045
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A.
(2018). Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer
J. Clinicians 68, 394–424. doi:10.3322/caac.21492

Callari, M., Cappelletti, V., D’Aiuto, F., Musella, V., Lembo, A., Petel, F., et al.
(2016). Subtype-Specific Metagene-Based Prediction of Outcome after
Neoadjuvant and Adjuvant Treatment in Breast Cancer. Clin. Cancer Res.
22, 337–345. doi:10.1158/1078-0432.ccr-15-0757

Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A.M., and Alizadeh, A. A. (2018).
Profiling Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol.
Biol. 1711, 243–259. doi:10.1007/978-1-4939-7493-1_12

Chen, F., Zhuang, M., Peng, J., Wang, X., Huang, T., Li, S., et al. (2014). Baicalein
Inhibits Migration and Invasion of Gastric Cancer Cells through Suppression of
the TGF-β Signaling Pathway. Mol. Med. Rep. 10, 1999–2003. doi:10.3892/
mmr.2014.2452

Chen, W., Dai, X., Chen, Y., Tian, F., Zhang, Y., Zhang, Q., et al. (2020).
Significance of STAT3 in Immune Infiltration and Drug Response in
Cancer. Biomolecules 10, 834. doi:10.3390/biom10060834

Chivu-Economescu, M., Matei, L., Necula, L. G., Dragu, D. L., Bleotu, C., and
Diaconu, C. C. (2018). New Therapeutic Options Opened by the Molecular
Classification of Gastric Cancer. Wjg 24, 1942–1961. doi:10.3748/
wjg.v24.i18.1942

Cristescu, R., Mogg, R., Ayers, M., Albright, A., Murphy, E., Yearley, J., et al. (2018).
Pan-tumor Genomic Biomarkers for PD-1 Checkpoint Blockade-Based
Immunotherapy. Science 362, eaar3593. doi:10.1126/science.aar3593

Galdy, S., Cella, C. A., Spada, F., Murgioni, S., Frezza, A. M., Ravenda, S. P., et al.
(2016). Systemic Therapy beyond First-Line in Advanced Gastric Cancer: An
Overview of the Main Randomized Clinical Trials. Crit. Rev. Oncology/
Hematology 99, 1–12. doi:10.1016/j.critrevonc.2015.09.004

George, S., Miao, D., Demetri, G. D., Adeegbe, D., Rodig, S. J., Shukla, S., et al.
(2017). Loss of PTEN Is Associated with Resistance to Anti-PD-1 Checkpoint
Blockade Therapy in Metastatic Uterine Leiomyosarcoma. Immunity 46,
197–204. doi:10.1016/j.immuni.2017.02.001

Gullo, I., Carneiro, F., Oliveira, C., and Almeida, G. M. (2018). Heterogeneity in
Gastric Cancer: From Pure Morphology to Molecular Classifications.
Pathobiology 85, 50–63. doi:10.1159/000473881

Ito, T., Kobayashi, D., Uchida, K., Takemura, T., Nagaoka, S., Kobayashi, I.,
et al. (2008). Helicobacter pylori Invades the Gastric Mucosa and
Translocates to the Gastric Lymph Nodes. Lab. Invest. 88, 664–681.
doi:10.1038/labinvest.2008.33

Jia, S., Lu, J., Lu, J., Qu, T., Feng, Y., Wang, X., et al. (2017). MAGI1 Inhibits
Migration and Invasion via Blocking MAPK/ERK Signaling Pathway in Gastric
Cancer. Chin. J. Cancer Res. 29, 25–35. doi:10.21147/j.issn.1000-
9604.2017.01.04

Kassambara, A., Kosinski, M., Biecek, P., and Fabian, S. (2017). Package
‘survminer’[J]. Drawing Survival Curves using ‘ggplot2’ (R package
version 03 1).

Kim, H. C., Choi, C. M. J. T., and Diseases, R. (2020). Current Status of
Immunotherapy for Lung Cancer and Future Perspectives. Tuberc. Respir.
Dis. (Seoul) 83, 14–19. doi:10.4046/trd.2019.0039

Kim, J., Kim, B., Kang, S. Y., Heo, Y. J., Park, S. H., Kim, S. T., et al. (2020). Tumor
Mutational Burden Determined by Panel Sequencing Predicts Survival after
Immunotherapy in Patients with Advanced Gastric Cancer. Front. Oncol. 10,
314. doi:10.3389/fonc.2020.00314

Kursa, M. B., and Rudnicki, W. R. (2010). Feature Selection with the Boruta
Package. J. Stat. Softw. 36, 1–13. doi:10.18637/jss.v036.i11

Kurtenkov, O., Klaamas, K., Mensdorff-Pouilly, S., Miljukhina, L., Shljapnikova, L.,
and Chužmarov, V. (2007). Humoral Immune Response to MUC1 and to the
Thomsen-Friedenreich (TF) Glycotope in Patients with Gastric Cancer:
Relation to Survival. Acta Oncologica 46, 316–323. doi:10.1080/
02841860601055441

Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., and Storey, J. D. (2012). The
Sva Package for Removing Batch Effects and Other Unwanted Variation in
High-Throughput Experiments. Bioinformatics 28, 882–883. doi:10.1093/
bioinformatics/bts034

Li, Y., Liu, Y., Yao, J., Li, R., and Fan, X. (2020). Downregulation of miR-484 Is
Associated with Poor Prognosis and Tumor Progression of Gastric Cancer.
Diagn. Pathol. 15, 25. doi:10.1186/s13000-020-00946-8

Mayakonda, A., Lin, D.-C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018).
Maftools: Efficient and Comprehensive Analysis of Somatic Variants in Cancer.
Genome Res. 28, 1747–1756. doi:10.1101/gr.239244.118

Mimura, K., Kamiya, T., Shiraishi, K., Kua, L.-F., Shabbir, A., So, J., et al.
(2014). Therapeutic Potential of Highly Cytotoxic Natural Killer
Cells for Gastric Cancer. Int. J. Cancer 135, 1390–1398. doi:10.1002/
ijc.28780

Panda, A., Mehnert, J. M., Hirshfield, K. M., Riedlinger, G., Damare, S., Saunders,
T., et al. (2018). Immune Activation and Benefit from Avelumab in EBV-
Positive Gastric Cancer. J. Natl. Cancer Inst. 110, 316–320. doi:10.1093/jnci/
djx213

Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J.,
et al. (2015). Cancer Immunology. Mutational Landscape Determines
Sensitivity to PD-1 Blockade in Non-small Cell Lung Cancer. Science 348,
124–128. doi:10.1126/science.aaa1348

Senbabaoglu, Y., Gejman, R. S., Winer, A. G., Liu, M., Van Allen, E. M., de Velasco,
G., et al. (2016). Tumor Immune Microenvironment Characterization in clear
Cell Renal Cell Carcinoma Identifies Prognostic and Immunotherapeutically
Relevant Messenger RNA Signatures. Genome Biol. 17, 231. doi:10.1186/
s13059-016-1092-z

Smyth, G. K. (2005). Limma: Linear Models for Microarray Data. Bioinformatics
and Computational Biology Solutions Using R and Bioconductor. Berlin:
Springer, 397–420.

Su, F., Zhou, F. f., Zhang, T., Wang, D. w., Zhao, D., Hou, X. m., et al. (2020).
Quantitative Proteomics Identified 3 Oxidative Phosphorylation Genes with
Clinical Prognostic Significance in Gastric Cancer. J. Cell Mol Med 24,
10842–10854. doi:10.1111/jcmm.15712

Therneau, T. M., and Lumley, T. (2015). Package ‘survival’[J]. R Top Doc. 128 (10),
28–33.

Tie, Y., Zheng, H., He, Z., Yang, J., Shao, B., Liu, L., et al. (2020). Targeting Folate
Receptor β Positive Tumor-Associated Macrophages in Lung Cancer with a
Folate-Modified Liposomal Complex. Sig Transduct Target. Ther. 5, 6.
doi:10.1038/s41392-020-0115-0

Vassilakopoulou, M., Avgeris, M., Velcheti, V., Kotoula, V., Rampias, T.,
Chatzopoulos, K., et al. (2016). Evaluation of PD-L1 Expression and
Associated Tumor-Infiltrating Lymphocytes in Laryngeal Squamous Cell
Carcinoma. Clin. Cancer Res. 22, 704–713. doi:10.1158/1078-0432.ccr-15-
1543

Vilaseca, A., Campillo, N., Torres, M., Musquera, M., Gozal, D., Montserrat, J. M.,
et al. (2017). Intermittent Hypoxia Increases Kidney Tumor Vascularization in
a Murine Model of Sleep Apnea. PLoS One 12, e0179444. doi:10.1371/
journal.pone.0179444

Wagner, G. P., Kin, K., and Lynch, V. J. (2012). Measurement of mRNA
Abundance Using RNA-Seq Data: RPKM Measure Is Inconsistent Among
Samples. Theor. Biosci. 131, 281–285. doi:10.1007/s12064-012-0162-3

Wang, D. P., Zhao, R., Qi, Y. H., Shen, J., Hou, J. Y., Wang, M. Y., et al. (2021).
High Expression of Interleukin-2 Receptor Subunit Gamma Reveals Poor
Prognosis in Human Gastric Cancer. J. Oncol. 2021, 6670834. doi:10.1155/
2021/6670834

Wen, S., Felley, C. P., Bouzourene, H., Reimers, M., Michetti, P., and Pan-
Hammarström, Q. (2004). Inflammatory Gene Profiles in Gastric Mucosa
duringHelicobacter pyloriInfection in Humans. J. Immunol. 172, 2595–2606.
doi:10.4049/jimmunol.172.4.2595

Whitehead, M. J., McCanney, G. A., Willison, H. J., and Barnett, S. C. (2019).
MyelinJ: an ImageJ Macro for High Throughput Analysis of Myelinating
Cultures. Bioinformatics 35, 4528–4530. doi:10.1093/bioinformatics/btz403

Wilkerson, M. D., and Hayes, D. N. (2010). ConsensusClusterPlus: a Class
Discovery Tool with Confidence Assessments and Item Tracking.
Bioinformatics 26, 1572–1573. doi:10.1093/bioinformatics/btq170

Yang, B., Bai, Q., Chen, H., Su, K., and Gao, C. (2020). LINC00665 Induces Gastric
Cancer Progression through ActivatingWnt Signaling Pathway. J. Cell Biochem
121, 2268–2276. doi:10.1002/jcb.29449

Yang, L., Wang, Y., and Wang, H. (2019). Use of Immunotherapy in the
Treatment of Gastric Cancer. Oncol. Lett. 18, 5681–5690. doi:10.3892/
ol.2019.10935

Yang, L., Wang, M., and He, P. (2020). LncRNA NEAT1 Promotes the Progression
of Gastric Cancer through Modifying the miR-1224-5p/RSF1 Signaling Axis.
Cmar 12, 11845–11855. doi:10.2147/cmar.s267666

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 79362812

Li et al. ICI Characteristics to Assistant Immunotherapy

51

https://doi.org/10.3322/caac.21492
https://doi.org/10.1158/1078-0432.ccr-15-0757
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.3892/mmr.2014.2452
https://doi.org/10.3892/mmr.2014.2452
https://doi.org/10.3390/biom10060834
https://doi.org/10.3748/wjg.v24.i18.1942
https://doi.org/10.3748/wjg.v24.i18.1942
https://doi.org/10.1126/science.aar3593
https://doi.org/10.1016/j.critrevonc.2015.09.004
https://doi.org/10.1016/j.immuni.2017.02.001
https://doi.org/10.1159/000473881
https://doi.org/10.1038/labinvest.2008.33
https://doi.org/10.21147/j.issn.1000-9604.2017.01.04
https://doi.org/10.21147/j.issn.1000-9604.2017.01.04
https://doi.org/10.4046/trd.2019.0039
https://doi.org/10.3389/fonc.2020.00314
https://doi.org/10.18637/jss.v036.i11
https://doi.org/10.1080/02841860601055441
https://doi.org/10.1080/02841860601055441
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1186/s13000-020-00946-8
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1002/ijc.28780
https://doi.org/10.1002/ijc.28780
https://doi.org/10.1093/jnci/djx213
https://doi.org/10.1093/jnci/djx213
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1186/s13059-016-1092-z
https://doi.org/10.1186/s13059-016-1092-z
https://doi.org/10.1111/jcmm.15712
https://doi.org/10.1038/s41392-020-0115-0
https://doi.org/10.1158/1078-0432.ccr-15-1543
https://doi.org/10.1158/1078-0432.ccr-15-1543
https://doi.org/10.1371/journal.pone.0179444
https://doi.org/10.1371/journal.pone.0179444
https://doi.org/10.1007/s12064-012-0162-3
https://doi.org/10.1155/2021/6670834
https://doi.org/10.1155/2021/6670834
https://doi.org/10.4049/jimmunol.172.4.2595
https://doi.org/10.1093/bioinformatics/btz403
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1002/jcb.29449
https://doi.org/10.3892/ol.2019.10935
https://doi.org/10.3892/ol.2019.10935
https://doi.org/10.2147/cmar.s267666
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S., et al.
(2013). Genomics of Drug Sensitivity in Cancer (GDSC): a Resource for
Therapeutic Biomarker Discovery in Cancer Cells. Nucleic Acids Res. 41,
D955–D961. doi:10.1093/nar/gks1111

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-Garcia,
W., et al. (2013). Inferring Tumour Purity and Stromal and ImmuneCell Admixture
from Expression Data. Nat. Commun. 4, 2612. doi:10.1038/ncomms3612

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R Package
for Comparing Biological Themes Among Gene Clusters. OMICS: A J. Integr.
Biol. 16, 284–287. doi:10.1089/omi.2011.0118

Zeng, D., Li, M., Zhou, R., Zhang, J., Sun, H., Shi, M., et al. (2019). Tumor
Microenvironment Characterization in Gastric Cancer Identifies Prognostic
and Immunotherapeutically Relevant Gene Signatures. Cancer Immunol. Res. 7,
737–750. doi:10.1158/2326-6066.cir-18-0436

Zhang, X., Shi, M., Chen, T., and Zhang, B. (2020). Characterization of the Immune Cell
Infiltration Landscape in Head and Neck Squamous Cell Carcinoma to Aid
Immunotherapy.Mol. Ther. - Nucleic Acids 22, 298–309. doi:10.1016/j.omtn.2020.08.030

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Li, Pan, Jiang, Yu, Jin and Chen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 79362813

Li et al. ICI Characteristics to Assistant Immunotherapy

52

https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1158/2326-6066.cir-18-0436
https://doi.org/10.1016/j.omtn.2020.08.030
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Prognostic Biomarker DDOST and Its
Correlation With Immune Infiltrates in
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Background: Dolichyl-diphosphooligosaccharide–protein glycosyltransferase non-
catalytic subunit (DDOST) is an important enzyme in the process of high-mannose
oligosaccharide transferring in cells. Increasing DDOST expression is associated with
impairing liver function and the increase of hepatic fibrosis degrees, hence
exacerbating the liver injury. However, the relation between DDOST and
hepatocellular carcinoma (HCC) has not been revealed yet.

Method: In this study, we evaluated the prognostic value of DDOST in HCC based on data
from The Cancer Genome Atlas (TCGA) database. The relationship between DDOST
expression and clinical-pathologic features was evaluated by logistic regression, the
Wilcoxon signed-rank test, and Kruskal–Wallis test. Prognosis-related factors of HCC
including DDOST were evaluated by univariate and multivariate Cox regression and the
Kaplan–Meier method. DDOST-related key pathways were identified by gene set
enrichment analysis (GSEA). The correlations between DDOST and cancer immune
infiltrates were investigated by the single-sample gene set enrichment analysis
(ssGSEA) of TCGA data.

Results: High DDOST expression was associated with poorer overall survival and
disease-specific survival of HCC patients. GSEA suggested that DDOST is closely
correlated with cell cycle and immune response via the PPAR signaling pathway.
ssGSEA indicated that DDOST expression was positively correlated with the infiltrating
levels of Th2 cells and negatively correlated with the infiltration levels of cytotoxic cells.

Conclusion: All those findings indicated that DDOST was correlated with prognosis and
immune infiltration in HCC.
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Edited by:
Luis Zapata,

Institute of Cancer Research (ICR),
United Kingdom

Reviewed by:
Yi Shi,

Shanghai Jiao Tong University, China
Eleonora Lusito,

San Raffaele Telethon Institute for
Gene Therapy (SR-Tiget), Italy

*Correspondence:
Rongsheng Tong
tongrs@126.com

Jianmei Guan
781067606@qq.com

Specialty section:
This article was submitted to

Cancer Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

Received: 21 November 2021
Accepted: 23 December 2021
Published: 31 January 2022

Citation:
Zhu C, Xiao H, Jiang X, Tong R and
Guan J (2022) Prognostic Biomarker

DDOST and Its Correlation With
Immune Infiltrates in

Hepatocellular Carcinoma.
Front. Genet. 12:819520.

doi: 10.3389/fgene.2021.819520

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8195201

ORIGINAL RESEARCH
published: 31 January 2022

doi: 10.3389/fgene.2021.819520

53

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.819520&domain=pdf&date_stamp=2022-01-31
https://www.frontiersin.org/articles/10.3389/fgene.2021.819520/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.819520/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.819520/full
http://creativecommons.org/licenses/by/4.0/
mailto:tongrs@126.com
mailto:781067606@qq.com
https://doi.org/10.3389/fgene.2021.819520
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.819520


INTRODUCTION

As the principal histologic type of liver cancer, hepatocellular
carcinoma (HCC) ranks third among the leading cause of cancer-
related mortalities (Forner et al., 2018). It has been reported that
the highest incidence rates of HCC cases occur in Asia and Africa
(Petrick et al., 2020), where the exposure to chronic hepatitis B is
the main risk factor (Howell et al., 2021). Therapeutic options for
the treatment of HCC have substantially evolved over the past
10 years. Nowadays, patients diagnosed with HCC at any stage of
the disease can benefit from effective treatment, which greatly
improves their survival rate. However, there are still several areas
that need urgent improvement. The molecular mechanisms
underlying tumorigenesis and the progression of HCC remain
poorly understood (Zhao et al., 2019). At present, serum alpha-
fetoprotein (AFP), ultrasonography, and CT scanning are still
important means for the early diagnosis of HCC; however, the
misdiagnosis rate is high (Kelley et al., 2020; Singal et al., 2020).
Despite intensive research, the 5-year survival rate of HCC is still
as low as <12% due to the lack of early detection strategy and

effective therapy (Hlady et al., 2019). As a result, the investigation
of effective prognostic biomarkers is a pivotal area among several
considerations within the research of HCC.

DDOST encodes dolichyl-diphosphooligosaccharide–protein
glycosyltransferase non-catalytic subunit that forms
oligosaccharyltransferase (OST) complex, which catalyzes high-
mannose oligosaccharides transferring to asparagine residues on
nascent polypeptides in the lumen of the rough endoplasmic
reticulum (ER) (Yamagata et al., 1997). A short cytosolic tail of
DDOST has a functional ER-retention di-lysine motif, serving as a
mechanism for retaining OST in the ER (Fu and Kreibich, 2000).
DDOST also played a role in the processing of advanced glycation
end products (AGEs), which are formed from non-enzymatic
reactions between lipids or protein and sugars and are
associated with aging and many diseases including the
congenital disorders of glycosylation (Jones et al., 2012; Zhuang
et al., 2017). AGEs and their receptor had been proven to be
upregulated in liver fibrosis, and the silencing receptor of AGEs
reduced collagen deposition and the tumor growth of HCC
(Hollenbach, 2017). A previous study also revealed that the

TABLE 1 | Demographic and clinicopathological parameters of high and low DDOST expression group patients with hepatocellular carcinoma in TCGA-LIHC.

Characteristic Low expression of DDOST High
expression of DDOST

p

N 187 187

T stage, n (%) 0.074
T1 104 (28%) 79 (21.3%)
T2 40 (10.8%) 55 (14.8%)
T3 37 (10%) 43 (11.6%)
T4 5 (1.3%) 8 (2.2%)

N stage, n (%) 0.622
N0 128 (49.6%) 126 (48.8%)
N1 1 (0.4%) 3 (1.2%)

M stage, n (%) 1.000
M0 133 (48.9%) 135 (49.6%)
M1 2 (0.7%) 2 (0.7%)

Pathologic stage, n (%) 0.129
Stage I 99 (28.3%) 74 (21.1%)
Stage II 40 (11.4%) 47 (13.4%)
Stage III 37 (10.6%) 48 (13.7%)
Stage IV 3 (0.9%) 2 (0.6%)

Gender, n (%) 0.269
Female 55 (14.7%) 66 (17.6%)
Male 132 (35.3%) 121 (32.4%)

OS event, n (%) 0.013
Alive 134 (35.8%) 110 (29.4%)
Dead 53 (14.2%) 77 (20.6%)

Vascular invasion, n (%) 0.072
No 118 (37.1%) 90 (28.3%)
Yes 50 (15.7%) 60 (18.9%)

Histologic grade, n (%) 0.077
G1 33 (8.9%) 22 (6%)
G2 96 (26%) 82 (22.2%)
G3 52 (14.1%) 72 (19.5%)
G4 5 (1.4%) 7 (1.9%)

Age, median (IQR) 62 (53, 69) 60.5 (51, 68) 0.306
AFP(ng/ml), median (IQR) 7.5 (3, 113.5) 27.5 (7, 738.75) <0.001
BMI, median (IQR) 25.03 (22.42, 29.65) 24.16 (20.96, 28.03) 0.031
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increased expression of DDOST was significantly associated with
poorer clinical outcomes in cutaneous squamous cell carcinoma
(Shapanis et al., 2021). Based on the those research, DDOST may
play an important role in HCC. However, the prognostic potential
of DDOST for HCC has not been reported.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
We utilized The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/) for liver hepatocellular carcinoma (LIHC)
to obtain the RNA-Seq data of 374 HCC patients accompanied
with 50 normal tissues on gene expression, immune system
infiltrates, and related patients’ clinical information (Blum et al.,
2018). Then, we transferred RNAseq data in FPKM format to TPM
format, retained clinical data and RNAseq data, and further
analyzed all data in accordance with the publication guidelines
provided by TCGA (https://www.cancer.gov/about-nci/
organization/ccg/research/structural-genomics/tcga/using-tcga).

Differentially Expressed Gene Analysis
The expression data (HTseq-Counts) were divided into high and
low expression groups according to the median DDOST
expression level and was then further analyzed by unpaired
Student’s t-test within the DESeq2 R package (3.6.3) (Love
et al., 2014). Adjusted p <0.05 and |log2-fold change (FC)|
>1.5 were considered as thresholds for the DEGs.

Enrichment Analysis
Gene ontology (GO) functional enrichment analysis and gene set
enrichment analysis (GSEA) were all performed by ClusterProfiler
package in R (3.6.3) (Yu et al., 2012). The DEGs between the high
and low expression levels of DDOST were selected to be analyzed.
GO analysis includes cellular component (CC), molecular function
(MF), and biological process (BP). GSEA is a computational
method to determine whether an a priori defined set of genes
has statistical significance and concordant differences in two
biological states. Additionally, the normalized enrichment score
(NES) and adjusted p-value were utilized to sort the enriched
pathways in each phenotype (Subramanian et al., 2005). C2.
Cp.v7.2. symbols.gmt [Curated] was selected as the reference
gene set of the KEGG pathway, C5. All.v7.2. symbols.gmt [Gene
ontology] was selected as the reference gene set of GO term. Gene
sets with a false discovery rate (FDR) <0.25 and adjusted p <0.05
were considered significantly enriched.

Immune Infiltration Analysis
ssGSEA was realized by the GSVA package (Hänzelmann et al.,
2013) in R to investigate the correlation between DDOST and the
signature genes of 24 types of immune cells and then
systematically analyzed the immune infiltrates of DDOST in
the published literature (Bindea et al., 2013). The infiltration
of immunocytes between the DDOST high and low expression
group was analyzed by Spearman correlation and the Wilcoxon
rank-sum test.

Protein–Protein Interaction Network
The protein–protein interaction (PPI) network of co-regulated
DEGs and the functional interaction between proteins were
analyzed by the Search Tool for the Retrieval of Interacting
Genes database (http://string-db.org) (Szklarczyk et al., 2019)
and visualized by Cytoscape software (version 3.7.2). The
combined score threshold of interaction in our study was 0.7.
The database has a comprehensive score for each pair of protein
relationships distributed between 0 and 1; the higher the total
score, the more reliable the PPI relationship.

Validation Analysis
The different DDOST expressions between HCC and non-tumor
tissue was also analyzed in three RNAseq datasets (GSE87630,
GSE101685, and GSE60502), which were downloaded from the
GEO database (http://www.ncbi.nlm.nih.gov/geo).

The Kaplan–Meier (K-M) plotter is capable to assess the effect
of 54 k genes on survival in 21 cancer types (http://kmplot.com/
analysis/index.php?p=service&cancer=liver_rnaseq). The
sources for the databases include GEO, EGA, and TCGA. The
primary purpose of the tool is a meta-analysis-based discovery
and validation of survival biomarkers (Menyhárt et al., 2018).
DDOST was inputted in the K-M plotter to analyze the
relationship between the expression of DDOST and the
survival days of HCC patients, which were visualized in K-M
survival plots. The log rank p-value <0.05 was considered
statistically significant.

Statistical Analysis
The statistical data acquired fromTCGAwere processed by R 3.6.3.
The expression levels of DDOST between HCC and the normal
group were compared by Wilcoxon rank-sum test and Wilcoxon
signed-rank test. The correlation between DDOST expression and
the grade of clinicopathological factors was analyzed by Welch
one-way ANOVA, followed by the Bonferroni correction or t-test.
The effect of the clinicopathological factors on DDOST expression
was analyzed by univariate logistic regression, the Fisher exact test,
and normal and adjusted Pearson κ2 tests. Moreover, we combined
univariate Cox regression analysis and multivariate Cox regression
analysis to evaluate the prognostic value of DDOST expression and
other clinicopathological factors on overall survival (OS). All
variables in the univariate analysis were put into the
multivariate analysis. The K-M curve was drawn to evaluate the
prognostic value of DDOST. The hazard risk (HR) of the individual
for OS and disease-specific survival (DSS) were estimated by
univariate Cox proportional hazard regressions. The HR of
individual factors was estimated by measuring the HR with a
95% confidence interval (CI).

The receiver operating characteristic (ROC) analysis of DDOST
was realized by the pROC package (Robin et al., 2011). The
calculated area under the curve (AUC) value ranges, which
were from 0.5 to 1.0, indicated the discrimination ability of
50%–100%. The time-dependent analysis of the ROC curve was
constructed to evaluate DDOST for predicting the HCC outcome
at 1, 3, and 5 years. All statistical tests were considered significant
when two-tailed p ≤0.05.
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RESULT

Clinical Characteristics
The clinical data of 374 HCC patients included the patients’ age,
gender, T stage, N stage, M stage, pathologic stage, gender, age,
histologic grade, vascular invasion, OS event, BMI, and AFP
(ng/ml) (Table 1). A total of 253 males and 121 females were
analyzed in the present study. The Fisher’s exact test result
showed that DDOST was significantly correlated with OS event
(p = 0.013); the chi-square test result revealed that DDOST had a
trend of correlation with T stage (p = 0.074), histological grade
(p = 0.077), and vascular invasion (p = 0.072). The Wilcoxon

rank-sum test showed that DDOST was significantly correlated
with AFP (ng/ml) (p < 0.001) and BMI (p = 0.031). DDOST
expression was not significantly correlated with other
clinicopathologic features.

Differential Expression Analysis of DDOST
in HCC
With |logFC| <1.5 and adjusted p < 0.05 set as the cut-off criteria,
a total of 951 DEGs were identified (857 upregulated and 94
downregulated) by analyzing the HTSeq-Counts data of DDOST-
related genes from TCGA. DEGs expressions were visualized in a

FIGURE 1 | The results of differentially expressed gene (DEG) analysis. (A) The volcano plot of differentially expressed RNAs. (B,C) The different expressions of
DDOST between HCC and the normal group. (D) The heat map of the 25 genes correlated to DDOST.
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volcano plot (Figure 1A). The unpaired and paired differential
expression analyses between normal and HCC groups indicated
that DDOST was expressed significantly higher in tumors

compared to normal tissue (Figures 1B,C). The correlation
between DDOST and 25 genes was demonstrated in a heat
map (Figure 1D).

FIGURE 2 | Enrichment analysis of DDOST in HCC. (A) Biological process enrichment related to DDOST-related genes. (B) A network of DDOST and its 20
potential co-interaction proteins. (C–F) The results of enrichment analysis from GSEA.
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Functional Enrichment Analysis of DEGs
GO analysis indicated that DEG-related DDOST had significant
regulation on epidermis development, skin development,
epidermal cell differentiation, keratinocyte differentiation,
channel activity, substrate-specific channel activity, inorganic
anion transmembrane transporter activity, serine-type
endopeptidase inhibitor activity, the anchored component of
membrane, and cornified envelope (Figure 2A). The network
of DDOST and its potential co-expression genes in DDOST-
related DEGs are shown in Figure 2B.

To further identify the biological function of DDOST, the
GSEA of differences between low and high DDOST expression
data sets were performed to identify the GO term and KEGG
pathway associated with DDOST. A total of 476 pathways showed
significant differences (FDR <0.05, adjusted p < 0.05) in the
enrichment of GO terms and KEGG pathways in samples with a
high expression of DDOST. The most significantly enriched GO
term and KEGG pathway based on their NES are shown in
Table 2. The GSEA analysis in GO term revealed that
immunoglobulin complex, immunoglobulin complex
circulating, immunoglobulin complex receptor binding,
humoral immune response mediated by circulating
immunoglobulin, and antigen-binding were positively
correlated with high levels of DDOST (Figure 2C);
monooxygenase activity, steroid hydroxylase activity,
protein–lipid complex, high-density lipoprotein particle, and
oxidoreductase activity on paired donors were negatively
correlated with high levels of DDOST (Figure 2D). The GSEA
analysis in the KEGG pathway revealed that cell cycle, axon
guidance, neuroactive ligand–receptor interaction, DNA
replication, and Leishmania infection were positively
correlated with high levels of DDOST (Figure 2E); Fatty acid
metabolism, drug metabolism cytochrome P450, complement
and coagulation cascades, retinol metabolism, and the PPAR

signaling pathway were negatively correlated with high levels of
DDOST (Figure 2F). These results indicate that the pathways
regulating immunoglobulin complex, cell cycle control, and DNA
replication were strongly associated with DDOST expression.

Relationship Between DDOST Expression
and Immune Infiltration
Spearman correlation was employed to study the correlation
between the DDOST expression level in TPM format and the
immune cell infiltration level quantified as the ssGSEA score. The
Th2 cells’ infiltration level displays a significantly positive
correlation with DDOST expression (Spearman R = 0.390, p <
0.001) (Figure 3A) and was significantly higher in the DDOST
high-expression group (p < 0.001) (Figure 3B). On the other
hand, the cytotoxic cells’ infiltration level showed a significantly
negative correlation with DDOST expression (Spearman R =
-0.232, p < 0.001) (Figure 3C) and was significantly lower in the
DDOST high-expression group (p < 0.001) (Figure 3D). T helper
cells, NK CD56bright cells, TFH, aDC, and macrophages have
also shown a positive relation with DDOST. pDC, DC, CD8
T cells, Th17 cells, Tgd, neutrophils, and NK cells have shown a
negative correlation with DDOST (Figure 3E). These results
indicated the vital role of DDOST in the immune infiltration
in HCC. Different degrees of correlation between the ratios of 24
types of different tumor-infiltrating immune cells’
subpopulations were assessed and visualized by a heat map
(Figure 3F).

Associations Between DDOST Expression
and Clinicopathologic Variables
Welch one-way ANOVA followed by the Bonferroni correction
proved that the expression of DDOST was significantly correlated

TABLE 2 | Signaling pathways most significantly associated with DDOST expression.

Description NES P-value p.adjust

Positive GO term GO_IMMUNOGLOBULIN_COMPLEX 3.258 0.001 0.020
GO_IMMUNOGLOBULIN_COMPLEX_CIRCULATING 2.969 0.001 0.020
GO_IMMUNOGLOBULIN_RECEPTOR_BINDING 2.933 0.001 0.020
GO_HUMORAL_IMMUNE_RESPONSE_MEDIATED_BY_CIRCULATING_IMMUNOGLOBULIN 2.889 0.001 0.020
GO_ANTIGEN_BINDING 2.886 0.001 0.020

Negative GO term GO_MONOOXYGENASE_ACTIVITY −3.133 0.006 0.037
GO_STEROID_HYDROXYLASE_ACTIVITY −3.069 0.003 0.027
GO_PROTEIN_LIPID_COMPLEX −3.013 0.003 0.027
GO_HIGH_DENSITY_LIPOPROTEIN_PARTICLE −3.002 0.003 0.027
GO_OXIDOREDUCTASE_ACTIVITY_ACTING_ON_PAIRED_DONORS −2.988 0.003 0.027

Positive KEGG term KEGG_CELL_CYCLE 2.273 0.001 0.025
KEGG_AXON_GUIDANCE 2.173 0.001 0.025
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 2.147 0.001 0.025
KEGG_DNA_REPLICATION 2.084 0.003 0.026
KEGG_LEISHMANIA_INFECTION 2.080 0.001 0.025

Negative KEGG term KEGG_FATTY_ACID_METABOLISM −2.817 0.004 0.027
KEGG_DRUG_METABOLISM_CYTOCHROME_P450 −2.614 0.005 0.029
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES −2.571 0.005 0.029
KEGG_RETINOL_METABOLISM −2.544 0.005 0.029
KEGG_PPAR_SIGNALING_PATHWAY −2.441 0.005 0.029

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8195206

Zhu et al. The DDOST in Hepatocellular Carcinoma

58

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


with the pathologic stage and T stage (Figures 4A,B). The t-test
revealed that the expression of DDOST was significantly
correlated with the histologic grade, vascular invasion, and OS
event (Figures 4C–E). Logistic regression analysis showed that
DDOST was significantly correlated with the T stage (p = 0.011)
and histologic grade (p < 0.013) and had a trend of correlation
with vascular invasion (p = 0.056) (Table 3).

In the Cox regression model, univariate Cox regression
indicates that the T stage (p < 0.001), M stage (p = 0.017),
pathologic stage (p < 0.001), and DDOST (p < 0.001) were
correlated with the bad prognosis of HCC (Table 4). All
variables in univariate Cox regression were included in
multivariate Cox regression. Multivariate Cox regression
showed that T stage (p = 0.017) and DDOST (p = 0.038) were
independent prognostic factors for OS (Figure 5A).

The distribution of DDOST expression, survival status of HCC
patients, and expression profiles of DDOST are shown in

Figure 5B. The blue dots represent the surviving HCC
patients, and the orange dots represent the dead HCC
patients. The upper line represents the median of risk score.
The left side of the upper line represents the low-risk score group
with a low expression of DDOST, and the right side of the dotted
line represents the high-risk score group with a high expression of
DDOST. With the increase of risk score in HCC patients, the
number of orange dots increased gradually, and the number of
dead HCC patients increased. It shows that the patients in the
high-risk group have poorer survival and a higher risk of death.

The ROC analysis of DDOST supported the diagnostic
accuracy of the score (AUC = 0.93, 95% CI: 0.903–0.956)
(Figure 5C). The time-dependent accuracy of DDOST in
predicting OS in 1, 2, and 3 years was also assessed through a
time-dependent ROC analysis (Figure 5D).

The K-M survival curve drawn by survminer package in R was
used to evaluate the prognostic value of DDOST in OS of HCC.

FIGURE 3 | The results of analysis between DDOST expression and immune infiltration. (A) The positive correlation between DDOST expression and Th2 cells. (B)
Th2 cells’ infiltration level in different DDOST expression groups. (C) The negative correlation between DDOST expression and cytotoxic cells. (D) Cytotoxic cells’
infiltration level in different DDOST expression groups. (E)Correlation between DDOST expression level and the relative abundances of 24 immune cells. (F)Heat map of
24 immune infiltration cells in HCC.
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HCC patients were divided into high and low expression groups
based on the DDOST expression median value. The high
expression group has a strong correlation with worse OS (HR
= 1.96 (1.38–2.79), p < 0.001) and DSS (HR = 1.97 (1.25–3.09),
p = 0.003) (Figures 6A,B).

The high expression of DDOST was also associated with worse
OS in the T1 subgroup of T stage (HR = 2.06 (1.13–3.77), p =
0.019), stage I subgroup of pathologic stage (HR = 1.97
(1.05–3.68), p = 0.035), G1 and G2 subgroup of histologic
grade [HR = 1.81 (1.14–2.86), p = 0.011], tumor- free

subgroup of tumor status (HR = 2.14 (1.15–3.98), p = 0.017),
and no vascular invasion subgroup of vascular invasion (HR =
1.97 (1.16–3.32), p = 0.012) (Figures 6C–F).

Data Validation
In all three GEO datasets, DDOST mRNA expression exhibited a
significant increase in HCC when compared to the normal group
(p-value < 0.01, Supplement Figures 1A–C). K-M survival plots
also showed the group with high DDOST expression having poor
OS rates (log rank p-value = 0.010, Supplement Figure 1D).

FIGURE 4 | Association between the DDOST expression and different clinicopathologic characteristics. (A) Association between the DDOST expression and the
pathologic stage of HCC, (B) T stage, (C) OS event, (D) vascular invasion, and (E) histologic grade.

TABLE 3 | DDOST expression correlated with clinicopathological characteristics analyzed by logistic regression.

Characteristics Total (N) Odds ratio (OR) p-Value

T stage (T2 and T3 and T4 vs. T1) 371 1.702 (1.130–2.572) 0.011
N stage (N1 vs. N0) 258 3.048 (0.384–62.060) 0.337
M stage (M1 vs. M0) 272 0.985 (0.117–8.308) 0.988
Pathologic stage (Stage III and Stage IV vs. Stage I and Stage II) 350 1.436 (0.888–2.333) 0.141
Histologic grade (G3 and G4 vs. G1 and G2) 369 1.719 (1.123–2.644) 0.013
Vascular invasion (Yes vs. No) 318 1.573 (0.990–2.511) 0.056
AFP (ng/ml) (>400 vs. ≤400) 280 1.598 (0.916–2.808) 0.100
Albumin (g/dl) (≥3.5 vs. <3.5) 300 0.751 (0.437–1.287) 0.297
Tumor status (with tumor vs. tumor-free) 355 1.301 (0.854–1.985) 0.221
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DISCUSSION

As far as we know, the majority of the membrane and secretory
proteins synthesized in the ER are modified with N-glycans in
eukaryotes. The N-glycosylation reaction catalyzed by OST had
been implicated in cell-to-cell communication, signal transduction,
trafficking, folding, and the degradation of proteins (Ohtsubo and
Marth, 2006; Harada et al., 2015; Mikolajczyk et al., 2020) and was
involved in the mechanism of tumor immune escape in the tumor
microenvironment (Hsu et al., 2018). Thus, OST can be a potential
therapeutic target for cancer treatment (Harada et al., 2019). RPN2,
TUSC, as well as DDOST are the subunits of OST. The expression of
RPN2 is positively correlated with the progression of breast cancers
(Ono et al., 2015), non-small cell lung (Fujita et al., 2015), gastric
(Fujimoto et al., 2018), esophageal (Li et al., 2019), and colorectal
cancers (Bi and Jiang, 2018), whereas TUSC3 was reported as a
candidate tumor suppressor (Vašíčková et al., 2018). DDOST, which
also acted as advanced glycation end product-receptor 1 (Li et al.,
1996), had been reported in regulating AGE, which increased
oxidative stress and inflammation and may be involved in liver
injury and subsequent carcinogenesis (Moy et al., 2013). In this
research, we analyzed the sequencing data on liver cancer patients
from TCGA to study the potential function and evaluate the
prognostic value of DDOST.

DDOST is highly expressed in HCC patients and correlated
with several advanced clinical features (pathological stage, T stage
histologic grade, vascular invasion, OS event), which suggested
that DDOST is a potential prognostic and diagnostic marker
deserving further clinical validation. The function of DDOST in
HCC was further investigated in GSEA using TCGA data.

The PPI network indicated that DDOST can interact with
SSR3, SSR4, SEC61A1, SEC61A2, SEC61B, CANX, MOGS,
ALG10, and MLEC other than the subunit protein of OST. All
those proteins were closely associated with the N-linked
oligosaccharide processing pathway, which had long been
considered directly associated with the metastatic potential of
malignant tumor cells (Dennis, 1991). GSEA showed that
positively enriched GO terms including immunoglobulin
complex, immunoglobulin complex circulating,
immunoglobulin complex receptor binding, humoral immune
response mediated by circulating immunoglobulin, and antigen-
binding were pivotal in immune complex formation. It is
indicated that DDOST might participate in the immune
response in the tumorigenesis of HCCs. On the other hand,
the KEGG pathway analysis indicated that cancer-related
pathways including cell cycle and DNA replication were
positively enriched when DDOST was highly expressed.
Furthermore, GSEA analysis revealed the vital role of DDOST
in the metabolism of protein and fatty acids, and in the
downregulation of the PPAR signaling pathway, which plays a
vital role in protecting the liver from oxidation, inflammation,
fibrosis, and tumors (Wu et al., 2020). Based on the results, we can
presume that as a crucial molecular in regulating protein and lipid
metabolism, the high DDOST expression may induce an immune
response and regulate cell cycles in HCC by suppressing the
PPAR pathway.

ssGSEA combined with Spearman correlation was adopted to
investigate the relationship between DDOST expression and
immune infiltration levels in HCC. Our results demonstrate
that DDOST expression has a significantly positive correlation

TABLE 4 | Univariate and multivariate analyses of clinical pathological parameters in HCC patients.

Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard
ratio (95% CI)

p-Value Hazard
ratio (95% CI)

p-Value

Age 373
≤60 177 Reference
>60 196 1.205 (0.850–1.708) 0.295 1.323 (0.811–2.159) 0.262
Gender 373
Female 121 Reference
Male 252 0.793 (0.557–1.130) 0.200 0.993 (0.597–1.652) 0.979
Histologic grade 368
G1 55 Reference
G2 178 1.162 (0.686–1.968) 0.577 0.810 (0.390–1.685) 0.573
G3 and G4 135 1.222 (0.710–2.103) 0.469 1.003 (0.489–2.058) 0.993
T stage 370
T1 and T2 277 Reference
T3 and T4 93 2.598 (1.826–3.697) <0.001 2.183 (1.150–4.141) 0.017
M stage 272
M0 268 Reference
M1 4 4.077 (1.281–12.973) 0.017 2.152 (0.615–7.535) 0.231
N stage 258
N0 254 Reference
N1 4 2.029 (0.497–8.281) 0.324 1.561 (0.357–6.826) 0.554
DDOST 373 1.585 (1.241–2.026) <0.001 1.491 (1.022–2.176) 0.038
Pathologic stage 349
Stage I 173 Reference
Stage II and Stage III and Stage IV 176 2.090 (1.429–3.055) <0.001 1.490 (0.750–2.960) 0.255

Bold values were statistically significant
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with Th2 cells and a strong-to-moderate correlation with T helper
cells, NK CD56 bright cells, Tfh, aDC, macrophages, and Th1
cells. Our results indicate that a shift of Th1/Th2 balance toward
Th2, which plays a vital role in HCC metastasis (Budhu and
Wang, 2006), may be caused by the DDOST high expression. Th2
cell is one type of T helper cell that can induce the polarization of
M1 macrophages into immunosuppressive M2 macrophages
(DeNardo et al., 2009), and lead to the inhibition of the host
immune system, hence contributing to tumorigenesis. IL-4
produced by Th2 cells can result in the activation of several
cancer-related pathways (Zhao et al., 2015; Dey et al., 2020). Tfh
cells can differentiate into Th1 and Th2 cells and regulate
humoral immune response (Rezende et al., 2018). Based on
previous research, we can conclude that overexpression of
DDOST may induce immune infiltration in HCC genesis and
progression.

There is an inverse correlation between cytotoxic cells, pDC, DC,
CD8 T cells, Th17 cells, Tgd, neutrophils, NK cells, and DDOST.
Cytotoxic cells including NK cells play a vital role in anti-tumor
immunity. NK cells are important in innate immune surveillance
against cancer (Lanier, 2005). CD8+ T cells exhibit a cytotoxic ability
against tumor cells through differentiating cytotoxic T cells (Iwahori,
2020). DCs including pDC were essential contributors to immune

defenses against cancer. IFN-I produced by pDC shows good anti-
tumor activity (Saulep-Easton et al., 2014). Th17 cells were closely
related to neutrophils (Amicarella et al., 2017), and they are critical in
tumor immunity and predict a poor prognosis in HCC (Wang et al.,
2020). The downregulation of those types of immune cells may
facilitate the progression of HCC. All findings according to ssGSEA
exhibited the important role of DDOST in regulating immune
infiltration in HCC.

As a traditional serological marker, AFP has been adopted in
the diagnosis of HCC for decades (Wong et al., 2014). However,
AFP was not significant in all HCC cases. It is reported that only
60%–70% of total HCC patients have elevated AFP levels, and
nonspecific increases are also observed in non-HCC diseases such
as chronic hepatitis or liver cirrhosis (Akeyama et al., 1972; Di
Bisceglie and Hoofnagle, 1989). More importantly, AFP levels are
usually normal in early HCC (Chen et al., 1984). On the contrary,
DDOST is highly expressed in early-stage HCC. Furthermore,
compared with the DDOST low-level expression group, HCC
patients with DDOST highly expressed the result in poor OS and
DSS. The CoxHRmodel also suggested that DDOSTwas strongly
associated with the OS in HCC. The relation between DDOST
and those prognostic indicators suggested that DDOST was a
powerful prognostic biomarker in HCC.

FIGURE 5 | The prognostic value of DDOST in LIHC. (A) Multivariate Cox regression visualized in the forest plot (B) DDOST expression distribution and survival
status. 0: dead, 1: alive. (C) Diagnostic ROC curve of DDOST. (D) Time-dependent ROC curve of DDOST.
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Overall, the important role of DDOST in HCC was revealed
through our study. Our work demonstrated that increased
expression of DDOST is associated with poor OS in HCC
patients. GSEA showed that pathways including DNA
replication, cell cycle, immune response in cancer, the PPAR
signaling pathway, and lipid acid metabolism were associated
with DDOST expression. Moreover, the connection between
DDOST and tumor-infiltrating immune cells was identified.
The work presented here provides a detailed analysis of the
role of DDOST in HCC development, which will aid in the
understanding of the mechanisms underlying HCC. Combined
with a previous study, our research indicates that DDOST can
affect protein and lipid metabolism by joining in nascent
polypeptide processing in ER and regulating the AGE level;

then, it may lead to PPAR pathway suppression and play an
important role in cell cycle regulation and immune infiltration
in HCC.

Although the vital role of DDOST in the regulation of the cell
cycle and immune response in the tumorigenesis of HCC had
been proven, in vitro and in vivo experiments are still needed to
verify the correlation between DDOST expression and HCC
development and then to illustrate the biological mechanism
of DDOST in HCC progression. Clinical researches are required
to evaluate the relationship between DDOST expression and
clinical features including the HCC stage, and prognosis value,
which might facilitate the identification of new markers for
assessing the tumor progression, promoting drug development,
and improving treatment strategy.

FIGURE 6 | The prognostic value of DDOST in the different subgroups. (A,B) The prognostic value of DDOST in OS and DSS of HCC. (C–G) High expression of
DDOST was associated with worse OS in different subgroups.
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Predicting Mutational Status of Driver
and Suppressor Genes Directly from
Histopathology With Deep Learning: A
Systematic Study Across 23 Solid
Tumor Types
Chiara Maria Lavinia Loeffler1,2*, Nadine T. Gaisa3,2, Hannah Sophie Muti 1,2,
Marko van Treeck1,2, Amelie Echle1,2, Narmin Ghaffari Laleh1,2, Christian Trautwein1,2,
Lara R. Heij 3,4,5,2, Heike I. Grabsch6,7, Nadina Ortiz Bruechle3,2† and
Jakob Nikolas Kather1,7,8,2†
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In the last four years, advances in Deep Learning technology have enabled the inference of
selected mutational alterations directly from routine histopathology slides. In particular,
recent studies have shown that genetic changes in clinically relevant driver genes are
reflected in the histological phenotype of solid tumors and can be inferred by analysing
routine Haematoxylin and Eosin (H&E) stained tissue sections with Deep Learning.
However, these studies mostly focused on selected individual genes in selected tumor
types. In addition, genetic changes in solid tumors primarily act by changing signaling
pathways that regulate cell behaviour. In this study, we hypothesized that Deep Learning
networks can be trained to directly predict alterations of genes and pathways across a
spectrum of solid tumors. We manually outlined tumor tissue in H&E-stained tissue
sections from 7,829 patients with 23 different tumor types from The Cancer Genome
Atlas. We then trained convolutional neural networks in an end-to-end way to detect
alterations in the most clinically relevant pathways or genes, directly from histology images.
Using this automatic approach, we found that alterations in 12 out of 14 clinically relevant
pathways and numerous single gene alterations appear to be detectable in tissue sections,
many of which have not been reported before. Interestingly, we show that the prediction
performance for single gene alterations is better than that for pathway alterations.
Collectively, these data demonstrate the predictability of genetic alterations directly
from routine cancer histology images and show that individual genes leave a stronger
morphological signature than genetic pathways.

Keywords: deep learning, artificail intelligence (AI), cancer pathway, cancer pathway genes, genetic, TCGA

Edited by:
Luis Zapata,

Institute of Cancer Research (ICR),
United Kingdom

Reviewed by:
Martin Schaefer,

European Institute of Oncology (IEO),
Italy

Francisco Martinez-Jimenez,
University Medical Center Utrecht,

Netherlands

*Correspondence:
Chiara Maria Lavinia Loeffler

chiara.loeffler@rwth-aachen.de

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 31 October 2021
Accepted: 30 December 2021
Published: 16 February 2022

Citation:
Loeffler CML, Gaisa NT, Muti HS,

van Treeck M, Echle A,
Ghaffari Laleh N, Trautwein C, Heij LR,

Grabsch HI, Ortiz Bruechle N and
Kather JN (2022) Predicting Mutational
Status of Driver and Suppressor Genes

Directly from Histopathology With
Deep Learning: A Systematic Study

Across 23 Solid Tumor Types.
Front. Genet. 12:806386.

doi: 10.3389/fgene.2021.806386

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 8063861

ORIGINAL RESEARCH
published: 16 February 2022

doi: 10.3389/fgene.2021.806386

66

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.806386&domain=pdf&date_stamp=2022-02-16
https://www.frontiersin.org/articles/10.3389/fgene.2021.806386/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.806386/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.806386/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.806386/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.806386/full
http://creativecommons.org/licenses/by/4.0/
mailto:chiara.loeffler@rwth-aachen.de
https://doi.org/10.3389/fgene.2021.806386
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.806386


INTRODUCTION

Genetic changes can influence the cell and tissue morphology of
solid tumors (Figure 1A). This morphology can be observed in
routine histopathology images which are available for almost
every patient with any solid tumor. Routinely, histopathologists
reviewH&E stained tissue sections to establish a diagnosis, stage a
disease etc. Due to recent advances in computer vision, automatic
image analysis can extract subtle features from digital tissue
sections which seem to be elusive to the human eye (Echle
et al., 2020b). In particular, Deep Learning (DL), an artificial
intelligence method, has been used to analyze histology images
(Kather and Calderaro, 2020) and multiple studies demonstrated
that Deep Learning can link morphological changes in cancer
histology images to specific genetic alterations. Early studies in

the field predicted clinically relevant genetic mutations in lung
cancer (Coudray et al., 2018), colorectal cancer (Kather et al.,
2019), breast cancer (Naik et al., 2020) and other tumor types
from histological whole slide images. More recently, multiple
studies suggested that many genetic alterations are predictable
from routine histology alone across different tumor types (Fu
et al., 2020; Kather et al., 2020; Schmauch et al., 2020; Loeffler
et al., 2021; Muti et al., 2021). Previous studies focused on
predicting single gene alterations. However, it is well known
that certain gene products act together in functional pathways
and mutations (MUT) of different genes of the same pathway
may have a similar effect such as pathway activation (Ben-Hamo
et al., 2020). To understand the effect of genetic alterations on
tumor biology, potential genetic alterations need to be considered
in the context of their functional significance in the affected

FIGURE 1 | (A) Biological hypothesis of this study. TME: tumor microenvironment. (B)Workflow for selection of data and Deep Learning methods. (1) Tumors from
TCGAwere analyzed. (2)Genes were selected based on theMSKCC cohort and OnkoKB platforms. (3) Alterations were grouped based on different sources. (4)Genes
were grouped into pathways (see Supplementary Table S1). (5) Processing of images and training of the network for genes alone and grouped into pathways. (images
from https://smart.servier.com, and Twitter Twemoji under a CC-BY license). TME: tumor microenvironment, TCGA: The Cancer Genome Atlas, MSKCC,
OnkoKB, WT: wild type, MUT: mutation present.
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pathway. For example, it has been shown that both, PTEN loss
and PIK3CA mutation can lead to the activation of the PI3K or
MAPK pathway in cancer of the breast, colorectum, stomach or
lung (Dhillon et al., 2007; Jiang et al., 2020). This phenomenon,
can be of therapeutic relevance, as targeted therapies may not
only affect one specific gene, but also affect other downstream
genes. Instead of focusing on a single gene, in some cases it might
even be sufficient to identify pathway activation or inhibition to
predict treatment response or failure (Schumacher et al., 2019;
Ben-Hamo et al., 2020).

We hypothesized that alteration of a particular signaling
pathway leads to histomorphological changes which can be
predicted from routinely stained pathology slides using Deep
Learning technology.

The aim of the current study was to systematically compare
the predictability of an “overall altered signaling pathway” to a
“single altered gene” of the same pathway. To this end, we
analyzed the 69 most frequently mutated genes in 23 cancer
types, representing 12 oncogenic pathways, and trained end-to-
end Deep Learning networks to predict single gene mutations or
signaling pathway alterations. Furthermore, we aimed to extend
the evaluation of Deep Learning-based detection of genetic
alterations from FFPE slides to a broad range of tumor types,
beyond the findings of previous studies which were limited in
their selection of genetic alterations (Kather et al., 2020).

MATERIALS AND METHODS

Ethics Statement
All experiments were conducted in accordance with the
Declaration of Helsinki and the International Ethical
Guidelines for Biomedical Research Involving Human
Subjects. Anonymized scanned whole slide images were
retrieved from The Cancer Genome Atlas (TCGA) project
through the Genomics Data Commons (GDC) Portal (https://
portal.gdc.cancer.gov/).

Patient Cohorts
Digitized hematoxylin/Eosin (H and E) stained slides and
molecular data from all solid tumor types with more than 100
cases in the GDC database were included in the analysis: bladder
urothelial carcinoma [BLCA, n = 332 patients, (Robertson et al.,
2017)], breast cancer [BRCA, n = 977, (Cancer Genome Atlas
Network, 2012b)], cervical cancer [CESC, n = 253, (Cancer
Genome Atlas Research Network et al., 2017a)], colorectal
cancer [COAD and READ, merged as CRC, n = 499, (Cancer
Genome Atlas Network, 2012a)], esophageal cancer [ESCA, n =
153, (Cancer Genome Atlas Research Network et al., 2017b)],
glioblastoma [GBM, n = 200, (Brennan et al., 2013)], head and
neck squamous cell carcinoma [HNSC, n = 429, (Cancer Genome
Atlas Network, 2015a)], clear cell renal cell carcinoma [KIRC, n =
376, (Cancer Genome Atlas Research Network, 2013)], papillary
renal cell carcinoma [KIRP, n = 240, (Cancer Genome Atlas
Research Network et al., 2016)], low grade glioma [LGG, n = 480,
(Cancer Genome Atlas Research Network et al., 2015)],
hepatocellular carcinoma [LIHC, n = 352, (Cancer Genome

Atlas Research Network, 2017b)], lung adenocarcinoma
[LUAD, n = 457, (Cancer Genome Atlas Research Network,
2014b)], lung squamous cell carcinoma [LUSC, n = 410,
(Cancer Genome Atlas Research Network, 2012)], ovarian
cancer [OV, n = 97 after exclusion of non-analyzable samples;
nine patients were excluded during analysis, (Cancer Genome
Atlas Research Network, 2011)], pancreatic cancer [PAAD, n =
166, (Cancer Genome Atlas Research Network, 2017c)],
pheochromocytoma and paraganglioma [PCPG, n = 169,
(Fishbein et al., 2017)], prostate adenocarcinoma [PRAD, n =
397, (Cancer Genome Atlas Research Network, 2015)], sarcoma
[SARC, n = 247, (Cancer Genome Atlas Research Network,
2017a)], melanoma primary tumors [SKCM, n = 72, (Cancer
Genome Atlas Network, 2015b)] and melanoma metastases
[SKCM-M, n = 136], gastric cancer [STAD, n = 318, (Cancer
Genome Atlas Research Network, 2014a)], thymoma [THYM,
n = 120, (Radovich et al., 2018)], papillary thyroid cancer [THCA,
n = 479, (Cancer Genome Atlas Research Network, 2014c)],
endometrial carcinoma [UCEC, n = 470, (Cancer Genome
Atlas Research Network et al., 2013)]. In total, 23 solid tumor
types with more than 100 patients per tumor type were included.
Ten of them were adenocarcinomas (UCEC, CRC, STAD, BRCA,
LIHC, THCA, PRAD, LUAD, PAAD, OV), four were mainly
squamous cell carcinomas (HNSC, LUSC, CESC, ESCA) and nine
were other tumor types, so neither adeno carcinoma or squamous
cell carcinoma (LGG, KIRP, GBM, KIRC, BLCA, SARC, PCPG,
SKCM, THYM). Although the total patient number was higher
than 100, Germ Cell Tumor (TGCT) was not analyzed because
this dataset included a wide variety of tumor differentiation
patterns, with less than 100 cases per tumor type. Slides from
7,829 patients from the TCGA archive were all from formalin-
fixed paraffin-embedded (FFPE) samples.

Image Preprocessing
Regions with tumor were manually annotated with QuPath v0.1.2
(Bankhead et al., 2017) by trained observers in every whole slide
image (WSI). The non-pathologist observers were initially trained
by experienced histopathologists and consulted the
histopathologist to resolve difficult cases. Cases were excluded
if the image was of poor quality or did not contain any tumor.
Subsequently, the tumor regions within whole slide images were
tessellated into tiles of 256 × 256 μm2 at 0.5 μm per pixel. All data
was pre-processed according to the “Aachen Protocol for Deep
Learning Histology” (Muti et al., 2020).

Experimental Design and Preprocessing of
Mutation Data
Mutation data of all cases was obtained from www.cbioportal.org,
accessed on 05/17/19. We included all genes with a mutation
prevalence above 5% in cancer populations. In order to select a
set of clinically relevant genes, the target genes were selected based on
the prevalence of mutations in the MSK-IMPACT Clinical
Sequencing Cohort (MSKCC) and OnkoKB (https://www.oncokb.
org/, accessed on 06/12/19). In total, 69 genes were analyzed
(Figure 1B): 18 oncogenes, 44 tumor suppressor genes and seven
other genes (Supplementary Figure S1). We then ran four different
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experiments as described as follows. Experiment #1, “single gene
predictability experiment”: For each mutation in each gene, we
manually checked whether it is a likely predicted oncogenic
mutation based on OnkoKB, Cancer Hotspots, 3D Hotspot or
My Cancer Genome (accessed via cbioportal). Based on this, each
patient was assigned a status for each gene: mutated (mutated,
mutation clinically relevant), wild type (not mutated, mutation not
clinically relevant) or inconclusive (no data). For each genetic
alteration (mutation of a given gene), we subsequently trained a
Deep Learning system to distinguish mutated from wild type cases,
counting inconclusive cases as wild type (WT) in order to only
include mutated genes in the analysis. Experiment #2, “pathway
predictability experiment”: For the analysis of alterations in
pathways, the 69 genes were manually assigned to signaling
pathways based on a reference publication (Sanchez-Vega et al.,
2018). Genes that were not included in the reference publication
were manually assigned to pathways based on an additional review
of OncoKB (https://www.oncokb.org/), cbioportal (www.cbioportal.
org), Gene cards (https://www.genecards.org/, accessed on 06/12/19)
and MyCancerGenome (https://www.mycancergenome.org/,
accessed on 06/12/19) databases, literature and expert opinion
(Supplementary Table S1). In total, 59 genes could be assigned
to 12 pathways (Supplementary Figure S1):MAPK, p53, PI3K, Cell
cycle, TGFbeta, Hippo, Notch, FOXA1/ESR1, SWI/SNF complex, Jak-
STAT,Wnt, HistoneMethylation. The remaining 10 genes could not
be assigned to a particular pathway and grouped as “unknown”
pathway. Whenever at least one gene assigned to a particular
pathway was found to be mutated, the whole pathway was
classified as mutated (“pathway-altered”) in the tumor; whenever
none of the genes were mutated, the pathway was labelled as wild
type (“not pathway altered”). For each pathway in each tumor type,
we then trained the Deep Learning network to distinguish tumors
with altered from those with non-altered pathways (Figure 1B).
Experiment #3, “pathway predictability experiment with
exclusion of dominant genes”: In addition, we investigated if the
predictability of alterations in the pathway was only driven by
alterations in a small set of “dominant” genes. To do this, the
prediction experiments of pathway-alterations were repeated for
three tumor types (UCEC, STAD andCRC) for three pathways (p53,
MAPK, PI3K), excluding the following genes: TP53 in p53 pathway,
BRAF andKRAS inMAPK pathway, and PIK3CA and PTEN for the
PI3K pathway. The aim of this experiment was to investigate if the
predictability of alterations in pathways is driven by alterations in
one or two genes or by alterations in a larger set of genes.
Experiment #4, “allele frequency experiment”: Lastly, we
performed a correlation analysis between the Deep Learning
patient scores and allele frequency for the genes KRAS and TP53
genes across all tumor types.

Deep Learning and Statistics
The general aim of our study was to predict the status of binary
targets (single gene mutations or pathway alterations present
versus absent) directly from H&E-stained histology image data
by Deep Learning. We trained a modified shufflenet for every
target as described before (Kather et al., 2020). For each target,
the cohort was randomly split into three parts in a stratified
way, preserving the proportions of each target level (mutated

or wild type). Then, the Deep Learning network was trained in
a 3-fold cross-validation approach on the level of patients,
ensuring that no image tiles from the same patient were ever
part of the training and test set at the same time. Image tiles
were only generated from manually annotated tumor regions.
Once trained on all tiles in the training set, the network was
used to predict the target in each test set tile. Tile-level
predictions were subsequently aggregated on the level of
patients by simple majority vote and classifier performance
was evaluated with a receiver operating curve with 10x
bootstrapped 95% pointwise confidence intervals. The
primary statistical endpoint was the patient-wise area under
the receiver operating curve (AUROC) for each target in each
patient cohort. The patient-level prediction scores between
patients in the wild type and mutated group for each target
were compared by a two-tailed unpaired t-test to assess the
significance of the separation of groups based on the Deep
Learning system. Additionally, for all targets, confusion
matrices, F-Score and Matthew correlation coefficient
(MCC) with a patient level prediction threshold of 0.5 were
calculated and are available in (Supplementary Figure S2 and
Supplementary Table S2). Only genes or pathways with at
least four patients in each group were analyzed. All source
codes are publicly available at https://github.com/jnkather/
DeepHistology. A re-implementation of these Matlab codes
in Python is available in the histology image analysis package
HIA at https://github.com/KatherLab/HIA. All raw
histopathology images are available at the TCGA data
portal https://portal.gdc.cancer.gov/. All genetic data are
available at http://www.cbioportal.org.

RESULTS

Prediction of Clinically Relevant Mutations
Directly From Histology
First, we performed a comprehensive screen for the predictability
of single gene mutations in the tumor types with more than 100
cases in the GDC database (n = 23 tumor types, experiment #1).
We systematically tested whether the mutation status of the
preselected 69 genes with potential clinical relevance with a
mutation prevalence above 5% according to the MSKCC and
OnkoKB database is directly predictable from histology slides (a
list of all genes and prevalence of their mutations in the analyzed
data sets is shown in Supplementary Figure S3A and
Supplementary Table S3). We found that mutations in 44 out
of 69 genes were detectable in one or more tumor types. Most
consistently, mutations in TP53 were predictable in 11 out of 23
cohorts (Figure 2A) with an average AUROC of 0.6812, ranging
from 0.597 in hepatocellular carcinoma (LIHC) (0.5320130.677,
p = 0.035) to 0.787 (0.758–0.823, p < 0.001) in low grade glioma
(LGG). In addition, in four of the 23 tumor types, alterations in
PTEN, SETD2 and KRAS were identified. PTEN prediction
reached AUROCs of up to 0.773 (0.73–0.799, p < 0.001) in
UCEC and 0.773 (0.684–0.826, p = 0.008) in BLCA. SETD2
prediction yielded AUROCs of 0.895 (0.827–0.951, p = 0.035)
in PRAD. KRAS mutations were predictable with an AUROC of
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0.918 (0.844–0.979, p < 0.001) in KIRP. The tumor type with
consistently highest AUROCs was UCEC, in which AUROCs of
0.764 (0.694–0.8, p < 0.001), 0.773 (0.73–0.799, p < 0.001), 0.626
(0.527–0.75, p = 0.017) and 0.653 (0.595–0.721, p < 0.001) were
reached for TP53, PTEN, SETD2 and KRAS, respectively. The
neural network predicted alterations of twenty genes very well
with AUROCs higher than 0.75. Exemplarily seven of these were
selected based on expert opinion by a molecular geneticist (NOB),
because they were either most clinically relevant, or associated
with morphological patterns or prognosis (Table 1). Clinically
relevant mutated genes that were chosen were as follows: FGFR3

in BLCAwith an AUROC of 0.78 (0.72–0.822, p < 0.001), IDH1 in
LGG with 0.764 (0.735–0.805, p < 0.001) and BRAF in HNSC
with 0.79 (0.739–0.977, p = 0.001). Gene mutations associated
with morphological patterns were: BRAF in THCA 0.86
(0.816–0.886, p < 0.001) and E-Cadherin (CDH1) in BRCA
with 0.81 (0.758–0.849, p < 0.001). Prognostically significant
mutated genes were: SETD2 in PRAD with an AUROC of
0.895 (0.827–0.951, p = 0.005), PBRM1 in KIRP with the
lowest AUROC 0.752 (0.571–0.939, p = 0.006) of these all and
lastly NOTCH2 with the highest AUROC’s in CRC 0.934
(0.893–0.978, p < 0.001) and STAD 0.919 (0.846–0.982, p <

FIGURE 2 | Heatmap comparing the area under the receiver operating curve (AUROC) between the different tumor types. On the y-axis all tumor types are listed
and sorted by tumor with most significant results from top to bottom. Number of patients indicated in brackets behind. Pathways are ordered on the x-axis from most
(left) to least (right) significant results. AUROC values for (A) the twelve pathway analysis and (B) for the 69 gene analysis. Coloured values stand for significant detected
(p > 0.05) pathways and grey for not significantly (p > 0.05). TCGA tumor type abbreviations are used (https://gdc.cancer.gov/resources-tcga-users/tcga-code-
tables/tcga-study-abbreviations).
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0.001). All in all, mutations in 25 genes could not be predicted by
the neural network in the gene analysis (Figure 2A). Since
AUROC is susceptible to different group sizes, we also

analyzed the F-Score and MCC (Supplementary Table S2 and
Supplementary Figure S2), which showed consistent findings
with AUROCs. Among the ten highest F-Scores, TP53 was found
four times. F-scores ranged from 0.846 for IDH1 in LGG to 0.875
for TP53 in ESCA and highest MCC correlation of 0.612 for
BRAF in THCA. In a further analysis, we examined how the F-
score, MCC and AUROC changed with different numbers of
patients (half n = 235, third n = 157 and quarter n = 117) for the
genes KRAS, PTEN and TP53 in the tumor type UCEC (n = 470)
(Supplementary Figures S4A–C). For all values, a decreasing
trend was seen with a decreasing number of patients. This effect
was strongest for TP53.

Prediction of Pathway Alterations Directly
From Histology
Next, we tested whether Deep Learning can predict alterations at
the level of the selected twelve signaling pathways more easily
than the level of individual genes (experiment #2). In this

TABLE 1 | Top genes result overview. Single gene analysis results with area under
the receiver operating curve (AUROC), confidence interval and p-Value.
Selected genes were very well predicted by the neural network with AUROCs at
least above 0.75. (1–3) FGFR3, PBRM1, IDH1 are clinically relevant, (4–6) CDH1,
BRAF is associated with different morphological features and (7–9) SETD2,
NOTCH2 have prognostic value.

ID Tumor type Gene AUROC p-Value

1 BLCA FGFR3 0.78 [0.72–0.822] <0.001
2 LGG IDH1 0.764 [0.735–0.805] <0.001
3 HNSC BRAF 0.79 [0.739–0.977] =0.001
4 THCA BRAF 0.86 [0.816–0.886] <0.001
5 BRCA CDH1 0.81 [0.758–0.849] <0.001
6 PRAD SETD2 0.895 [0.827–0.951] =0.005
7 KIRP PBRM1 0.752 [0.571–0.939] =0.006
8 CRC NOTCH2 0.934 [0.893–0.978] <0.001
9 STAD NOTCH2 0.919 [0.846–0.982] <0.001

FIGURE 3 | Comparison of the performance of the single gene area under the receiver operating curve (AUROC) vs. pathway AUROC. The top three pathways (A)
MAPK, (B) PI3K, (C) TP53 AUROC results for the three top tumor cohorts (STAD, CRC, UCEC) are illustrated. AUROC values are compared between single gene vs.
whole pathway. Coloured values stand for significantly detected pathways and grey for not significantly detected (p > 0.05).
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experiment, a pathway in a given tumor was defined to be altered
if at least one of the genes in this pathway were mutated
(Supplementary Figure S3B). We found that alterations in
the pathways p53, MAPK, PI3K and Wnt were mostly
identified by the neural network. The highest number of
altered pathways were predictable in gastric cancer (STAD,
n = 318), endometrial cancer (UCEC, n = 470) and colorectal
cancer (CRC, n = 499) (Figure 2B). In many cases, the detection
AUROC values for altered genes were similar to those for altered
pathways, e.g., for TP53 detection 0.66 (0.627–0.718, p < 0.001)
and the for p53 pathway detection 0.682 (0.668–0.698, p < 0.001)
in CRC or for TP53 detection 0.764 (0.694–0.8, p < 0.001) and for
p53 pathway detection 0.71 (0.677–0.738, p < 0.001) in UCEC. In
summary, the AUROCs for altered pathways were in general
lower than for individual altered genes (Figures 2, 3) and training
on pathway alterations instead of single gene alterations did not
consistently yield a higher performance in the 23 cohorts that we
analyzed. Based on these data we hypothesized that predictability
of alterations in pathways could be primarily driven by the
presence of mutations in one or two genes. To address this,
we repeated the analysis for predictability of pathway alterations,
but excluded the best predictive genes (experiment #3). In this
analysis, alterations in the three pathways p53, MAPK and PI3K
could not be significantly predicted, except in theMAPK pathway
in the STAD cohort with an AUROC 0.633 (0.609–0.699, p =
0.013). The predictability of single gene or pathway alterations
showed a positive correlation with the absolute number of
mutated cases in a given cohort. In BLCA, the status of the
genes PTEN (MUT = 12, WT = 398), ERBB2 (MUT = 39, WT =
371) and FGFR3 (MUT = 64, WT = 346) were all detected with
high AUROCs of 0.773 (0.684–0.826, p = 0.008), 0.747
(0.64–0.837, p < 0.001) and 0.78 (0.72–0.822, p < 0.001),
respectively. In the BRCA cohort, the status of the genes
CDH1 (MUT = 106, WT = 871), TP53 (MUT = 311, WT =
666),MAP3K1 (MUT = 66,WT = 911), ERBB2 (MUT = 17,WT=
960) and PIK3CA (MUT = 312, WT = 661) were significantly (p <
0.05) detected with AUROCs above 0.611. The following tumor
types had the highest number of predictable genes, and also
highest patient numbers: 470 (UCEC), 499 (CRC) and 318
(STAD), while the lowest predictability was seen in tumor
types with 97 (OV), 233 (SKCM primary and metastasis) and
120 (THYM) patients in this cohort. However, this relationship
was not absolute as for example in KIRP (240 patients), more
single gene alterations and pathway alterations were predictable
than in LUSC (410 patients). Therefore, we conclude that patient
number in a given cohort does not explain the predictability of
mutations alone. While alterations of almost all pathways were
detectable in one of the tested tumor types, alterations in the
pathways TGF beta and Hippo were not significantly predictable
from histology in any tumor type. However, alterations in the
gene SMAD4 could be predicted with an AUROC of 0.601
(0.524–0.669, p = 0.045) and likewise mutations of the NF2
gene reached an AUROC of 0.701 (0.522–0.834, p = 0.029).
Furthermore, we hypothesized that the predictability of the
histological phenotype of a given alteration would correlate
with the allele frequency of mutated genes. To test this, we
assessed the correlation between patient-level Deep Learning

scores and the allele frequency for the genes TP53 and KRAS
in all cohorts. However, this analysis failed to demonstrate
a significant correlation (Supplementary Table S4,
experiment #4).

Predictability of Alterations in Different
Tumor Types
Having trained Deep Learning systems to detect single gene and
pathway alterations in solid tumors, we investigated how tumor
types differ in terms of predictability of these alterations. Out of
all 23 different tumor types, only in six tumors (n = 1 LUSC, n = 1
CESC, n = 1 SKCM, n = 1 ESCA, n = 1 OV and n = 1 THYM) no
mutations were detected. Most altered genes were detected in the
cohorts UCEC (15), CRC (15) and STAD (13), all
adenocarcinomas. In general, alteration of genes and pathways
were identified in nine out of ten adenocarcinoma cohorts, (90%).
Three out of the four cohorts of squamous cell carcinomas did not
show any significant results. Similar results were seen for the
pathway analysis: Most pathway alterations were identified in
STAD (9), UCEC (9) and CRC (6). All results are available in
Supplementary Tables S5, 6.

DISCUSSION

For more than a century, histopathological tissue slides stained
with H&E have been the gold standard to diagnose solid tumors.
In 2018, a seminal study showed that these images are not only a
valuable resource for tumor diagnosis, but that genetic alterations
in clinically relevant driver genes an be detected by Deep Learning
in lung cancer (Coudray et al., 2018). In 2018 to 2021, a number
of studies extended these findings to other tumor types and a wide
range of genetic alterations (Couture et al., 2018; Sha et al., 2019;
Sun et al., 2019; Zhang et al., 2019; Echle et al., 2020a). In
particular in 2020, multiple studies have applied supervised
Deep Learning for pan-cancer detection of genetic alterations
from snap-frozen samples (Fu et al., 2020; Kather et al., 2020;
Schmauch et al., 2020) of the TCGA database. While in this
previous study, only a subset of all available tumor types was
analyzed, we have now extended the assessment of Deep
Learning-based detection of pan-cancer genetic alterations to a
wider range of tumor types (from 14 to 23) and observed high
detection rates for some clinically interesting genes. Additionally,
we have evaluated our Deep Learning approach on pathway level
in comparison to focussing on single gene alterations, which has
not been tested in previous studies to our knowledge.

We found that alterations in single genes were often better
predictable from histology than pathway alterations, suggesting
that the phenotypic footprint of a pathway is mostly driven by
one or two of the genes and that it might be the gene alteration
that creates a recognizable pattern, not the pathway alterations
itself (Figures 3A–C). TheMAPK pathway, for example, consists
of twelve genes, of whom only three were significantly identified
in two cohorts (Figure 3A). This can also be seen in the PI3K
pathway, where mutations in only two out of eight altered genes
were significantly detected in gastric, colorectal and endometrial
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cancer (Figure 3B). Single gene alteration AUROC’s were similar
to those found for altered pathways, e.g., p53, MAPK and PI3K
(Figure 3C). This suggests that a commonly mutated gene might
determine the outcome of the pathway analysis in some cases.
This hypothesis was verified by our pathway analysis excluding
highly predictive genes, as pathway alterations could not be
significantly predicted. Interestingly, no gene in the STAD
cohort was predicted significantly in the MAPK pathway,

however the AUROC for the altered pathway as a whole was
0.61 (0.55–0.66, p = 0.006) (Figure 3A). Another explanation
could also be the higher patient numbers in these tumor cohorts,
since this also influences the predictability of alterations in genes
and pathways (Figure 3). This was confirmed by a further
exemplary analysis in which the AUROC, F-score and MCC
decreased with a smaller number of patients in the cohort UCEC
(Supplementary Figure S4). Direct prediction of mutated single

FIGURE 4 | Prediction performance for single gene alterations, representative genes in nine tumor types. Receiver operating curve for: (A) FGFR3 alterations in
bladder cancer (BLCA), (B) IDH1 alterations in low grade glioma (LGG), (C) BRAF alterations in head and neck squamous cell carcinoma (HNSC), (D) BRAF alterations in
thyroid carcinoma (THCA), (E) CDH1 alterations in invasive breast carcinoma (BRCA), (F) SETD2 alterations in prostate adenocarcinoma (PRAD), (G) PBRM1 alterations
in renal cell carcinoma (KIRP), (H) NOTCH2 alterations in colorectal adenocarcinoma (CRC), (I) NOTCH2 alterations in stomach adenocarcinoma (STAD), MUT:
mutated, WT: wild type
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genes from histology images is potentially useful, especially if the
alterations have a clinical implication. In general, the neural
network could predict several genes—some of which are
clinically relevant, associated with morphological pattern or
prognostically relevant—very well with AUROCs higher than
0.75. For example, in our study, FGFR3 mutations could be
predicted with an AUROC of 0.78 in bladder cancer
(Figure 4A). Since the FDA approved the first targeted-
therapy with the FGFR inhibitor erdafitinib in advanced
muscle invasive bladder cancer (U.S. Food and Drug

Administration, 2022), detection of FGFR3 could identify
patients who might benefit from this therapy (Loriot et al.,
2019). IDH1 is an important prognostic marker for brain
tumors (Young et al., 2020). In the LGG cohort, 77% (395/
512) were IDH1 mutated, which is associated with a better
outcome. IDH1 could be detected significantly in LGG with an
AUROC of 0.764 (Figure 4B). However, in GBM, where only 6%
of tumors were mutated, IDH1 was not significantly detectable.
Effectiveness of IDH specific enzyme inhibitors in brain tumors
are currently tested in clinical trials (Karpel-Massler et al., 2019).

FIGURE 5 | Deep learning predicted heatmaps. Visualization of manually annotated histological slides hematoxylin & eosin (H&E) with corresponding prediction
maps for altered genes. Blue areas are wild type (WT) predicted regions and red areas are identified as mutated (MUT) parts by the neural network. (A) H&E slide of a
BRAF WT patient (ID: TCGA-CQ-5333) from the head and neck squamous cell carcinoma (HNSC) cohort. The homogenous blue heatmap is consistent with the wild
type status of the patient. (B)H&E slide of aBRAFmutated patient (ID: TCGA-EL-A3H7) from the thyroid carcinoma (THCA) cohort. The heatmap is more than 50%
red, whichmeans the patient was correctly classified as MUT. Intermingled blue areas in tumor regions reflect stroma and artifacts that disturb these areas. (C)H&E slide
of a CDH1mutated patient (ID: TCGA-PE-A5DD) of the breast invasive carcinoma (BRCA) cohort. The prediction heatmap shows that stroma tissue is mostly predicted
as WT (blue areas condensed connective tissue) and diffuse invasive-lobular cancer is mostly red.
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The V600E mutation of the BRAF kinase gene, which is part of
the MAPK pathway, plays an important role in tumorigenesis
across many types of solid tumors and is in fact a highest level
evidence gene of OnkoKB. Although the MAPK pathway is
altered in many tumor types, BRAF mutations are not very
common in HNSC (Weber et al., 2003), including the TCGA-
HNSC cohort, where only five out of 515 patients showed a BRAF
alteration. Still, BRAF alterations were recognized with a
performance of 0.79 in our analysis (Figure 4C and
Figure 5A). This makes Deep Learning based identification of
subgroups that might benefit from targeted therapy in HNSC
conceivable, as specific BRAF and MEK inhibitors are already an
integral part of guideline-directed therapy in other entities.
However, interestingly most of the detected mutations in
HNSC were indeed non-V600 class II or class III mutations
(Yaeger and Corcoran, 2019). In contrast, more than 40% of the
thyroid cancers show a BRAF V600 mutation which is associated
with the papillary tumor type and found rarely in follicular
thyroid cancer type (Nikiforov, 2011) (Figure 5B). In fact,
BRAF mutational status could be predicted significantly with
an AUROC of 0.86 (Figure 4D). Another example is E-cadherin,
a tumor suppressor gene which is mostly involved in cell
adhesion, which is associated with the lobular subtype of
breast cancer (Cancer Genome Atlas Network, 2012b)
(Figure 5C). In our analysis it was detectable with an AUROC
of 0.8 (Figure 4E). Another example is the PBRM1 gene, which
belongs to the SWI/SNF chromatin remodelling complex. PBRM1
is often altered in renal papillary carcinoma, however, recent
studies have shown that a PBRM1 mutation correlates with
decreased survival (Ricketts et al., 2018). In our analysis,
PBRM1 was identified with an AUROC of 0.752 (Figure 4F).
As PBRM1 alterations are not very common in papillary renal cell
carcinoma, its significance in terms of a potential biomarker
remains to be elucidated (Ho et al., 2015; Liu et al., 2020). In
KIRP, loss of PBRM1 has been described to be associated with
checkpoint inhibitor resistance (Ho et al., 2015; Liu et al., 2020).
Highly predictive image tiles of the five genes mentioned above
are collected in Supplementary Figure S5. Other significantly
detected prognostic alterations in genes were found in SETD2 in
PRADwith an AUROC of 0.895 (Yuan et al., 2020) andNOTCH2
in CRC and STAD (Chu et al., 2011) with an high AUROC of
0.934, 0.919 (Figures 4G–I). However, these two genes did not
show any relevant pathological features in the top tiles analysis.
Analysis of phenotypic footprint of an alteration did not correlate
with the allele frequency of mutated genes (Supplementary
Table S4).

Based on our overall results, genetic alterations in
adenocarcinomas were better predictable than alterations in
other tumor types, such as squamous cell carcinomas
(Figure 2). This is consistent with previous studies (Schmauch
et al., 2020) and leads us to hypothesize that in tumor types with
glandular architecture genetic changes might more frequently
result in morphological changes and therefore better detectable.
Some tumors, predominantly UCEC, CRC and STAD, had more
numerous significant findings than others. Interestingly, these are
not the tumors with high mutational burden (Kandoth et al.,
2013).

In summary, H&E stained tumor images contain subtle
morphogenetic information which is detectable by Deep
Learning. Our findings correlate with similar results of
other Deep Learning analyses and mutational landscape
across cancers (Kandoth et al., 2013; Fu et al., 2020; Kather
et al., 2020).

Limitations
Our study has a number of limitations. first and foremost the
use of TCGA as our only resource for histopathological whole
slide images, which means that validation on additional
cohorts is necessary to confirm the results. In addition, a
potential confounder in our study is the unequal dataset
size for different tumor types in TCGA. It is possible and
likely that our study underestimated the number of predictable
genes in some tumor types. Especially for small cohorts in this
study, future studies should re-analyze the same set of genes in
larger cohorts, once such cohorts become available. Finally,
while this archive is undoubtedly the most comprehensive
multicentric resource available to computational pathology
researchers, it has been shown to carry a risk of bias due to
the patient selection process in TCGA (Howard et al., 2020).
However, a full genetic characterization of thousands of tumor
samples like in TCGA is an almost impossible task for
academic research groups, which is why TCGA remains
very useful and unique to develop and test new
computational pathology approaches. Yet, even the genomic
characterization in TCGA carries some ambiguity, e.g., due to
the presence of non-tumor tissue in sequenced samples as well
as different methods for mutation calling. We focussed on
single nucleotide variants and small deletions/insertions, and
did not take into account fusion genes, copy number changes
or expression data. We also relied on a conservative variant
classification and therefore might have created a bias regarding
the inclusion of “false negative” samples. In future studies, it
could be interesting not only to include clinical variant
classification data but instead also narrow down the number
of included unclassified variants by using prediction
algorithms as e.g., BoostDM (https://www.intogen.org/
boostdm/search). The most promising candidates for
clinical translation should be evaluated in other multicentric
image collections obtained via academic consortia. Another
limitation of our study is that the tissue slides which we used
for our prediction do not necessarily contain the same region
that the DNA for genetic characterization has been extracted
from. Therefore, it is conceivable that intratumor
heterogeneity could dilute our results, potentially leading to
a lower performance. Further studies are needed to
systematically quantify the impact of intratumor genetic
heterogeneity on the inference of genetic alterations from
pathology images.
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Supplementary Figure S1 | Overview of the genes and pathways arrangement.
Following 59 genes were grouped into twelve different cancer pathways. Legend
shows characteristics of the genes (orange, oncogenes; blue, tumor suppressor
genes; green, both). Information was taken from OnkoKB (https://oncokb.org/).

Supplementary Figure S2 | Diagram of F-Score and Matthews Correlation
Coefficient vs. AUROC. (A) Shown are the F-Score values vs. area under the
receiver operating curve (AUROC) for each investigated target of all 23 tumours. (B)
Shown are the Matthews Correlation Coefficient (MCC) values vs. AUROC for each
investigated target of all 23 tumours.

Supplementary Figure S3 | Prevalence of mutations in genes and pathways in all
tumor types. (A) Mutation prevalence in the analyzed data set. (B) Prevalence of
pathway alterations in the analyzed data set.

Supplementary Figure S4 | Diagram AUROC, F-Score and Matthew Correlation
Coefficient (MCC) for different patient numbers. (A) Changes in area under the
receiver operating curve, F-Score and MCC with half, third and fourth patient
numbers in tumor type UCEC for target KRAS. (B) Changes in area under the
receiver operating curve, F-Score and MCC with half, third and fourth patient
numbers in tumor type UCEC for target PTEN. (C) Changes in area under the
receiver operating curve, F-Score and MCC with half, third and fourth patient
numbers in tumor type UCEC for target TP53.

Supplementary Figure S5 | Highly predictive image tiles selected by deep
learning. Comparison of the highly ranked mutated (MUT) and wild type (WT)
tiles. This visualization helps to identify morphological changes due to
alterations of the tumor. (A) FGFR3 in BLCA: MUT top tiles exhibit more
papillary structured parts, whereas WT tiles are more diffuse infiltrative tumor
parts. (B) PBRM1 in KIRP: MUT tiles are more solid with rosette-like
arrangements, whereas WT tiles have a papillary architecture. (C) IDH1 in
LGG: MUT tiles show more glial and fibril appearance. In contrast, WT tiles
have a higher nuclear density. (D) CDH1 in BRCA: MUT tiles show the diffusely
infiltrating, indian file pattern of lobular-invasive breast cancer, while WT tiles
have the trabecular, nodular or tubular architecture of no-special type
carcinomas. (E) BRAF in HNSC: MUT tiles are high grade cancers without
any squamoid/cornified elements, whereas in the WT tiles squamous cells and
cornification can be found. (F) BRAF in THCA: MUT of BRAF is associated with
papillary tumor types and WT tiles show a more organ specific follicular/
colloidal histology.

Supplementary Table S1 | Raw results (Microsoft Excel file) of all genes and
grouping based on different data sources.

Supplementary Table S2 |Confusion matrices, F-Score andMatthews Correlation
Coefficient (MCC) for each target, based on a patient-level cutoff of 0.5.

Supplementary Table S3 | Mutation prevalences for pathway and gene analysis.

Supplementary Table S4 | Correlation analysis of allele frequency with mutation
score for TP53 and KRAS.

Supplementary Table S5 | Excel File for all AUROC combined Pathway and
Genes.

Supplementary Table S6 | Prediction results for all tumor types with all statistics.
AUROC_avg, average area under the receiver operating curve (AUROC);
AUROC_low, lower bound of AUROC confidence interval (CI); AUROC_high,
upper bound of AUROC CI; AUCPR_avg, average area under the precision
recall curve (AUCPR); AUCPR_low, lower bound of AUCPR CI; AUCPR_high,
upper bound of AUCPR CI.; meanCat, mean prediction values for patients in this
category; meanOth, mean prediction values for other patients; pVal, p-value for
comparison of prediction scores between patients in target category vs. not in target
category (according to the ground truth). nPatsTotal, total number of patients (sum
of patients in category and not in category).

REFERENCES

Bankhead, P., Loughrey, M. B., Fernández, J. A., Dombrowski, Y., McArt, D. G.,
Dunne, P. D., et al. (2017). QuPath: Open Source Software for Digital Pathology
Image Analysis. Sci. Rep. 7, 16878. doi:10.1038/s41598-017-17204-5

Ben-Hamo, R., Jacob Berger, A., Gavert, N., Miller, M., Pines, G., Oren, R., et al. (2020).
Predicting and Affecting Response to Cancer Therapy Based on Pathway-Level
Biomarkers. Nat. Commun. 11, 3296. doi:10.1038/s41467-020-17090-y

Cancer Genome Atlas Research NetworkBrat, D. J., Brat, D. J., Verhaak, R. G.,
Aldape, K. D., Yung, W. K., Salama, S. R., et al. (2015). Comprehensive,
Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas.N. Engl. J. Med.
372, 2481–2498. doi:10.1056/NEJMoa1402121

Brennan, C. W., Verhaak, R. G., McKenna, A., Campos, B., Noushmehr, H.,
Salama, S. R., et al. (2013). The Somatic Genomic Landscape of Glioblastoma.
Cell 155, 462–477. doi:10.1016/j.cell.2013.09.034

Cancer Genome Atlas Network (2015a). Comprehensive Genomic
Characterization of Head and Neck Squamous Cell Carcinomas. Nature
517, 576–582. doi:10.1038/nature14129

Cancer Genome Atlas Network (2012a). Comprehensive Molecular
Characterization of Human colon and Rectal Cancer. Nature 487, 330–337.
doi:10.1038/nature11252

Cancer Genome Atlas Network (2012b). Comprehensive Molecular Portraits of
Human Breast Tumours. Nature 490, 61–70. doi:10.1038/nature11412

Cancer Genome Atlas Network (2015b). Genomic Classification of Cutaneous
Melanoma. Cell 161, 1681–1696. doi:10.1016/j.cell.2015.05.044

Cancer Genome Atlas Research Network (2017a). Comprehensive and Integrated
Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 171, 950–e28.
doi:10.1016/j.cell.2017.10.014

Cancer Genome Atlas Research Network (2017b). Comprehensive and Integrative
Genomic Characterization of Hepatocellular Carcinoma. Cell 169, 1327–e23.
doi:10.1016/j.cell.2017.05.046

Cancer Genome Atlas Research Network (2012). Comprehensive Genomic
Characterization of Squamous Cell Lung Cancers. Nature 489, 519–525.
doi:10.1038/nature11404

Cancer Genome Atlas Research Network (2013). Comprehensive Molecular
Characterization of clear Cell Renal Cell Carcinoma. Nature 499, 43–49.
doi:10.1038/nature12222

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 80638611

Loeffler et al. Deep-Learning-Based Prediction of Mutations

76

https://www.frontiersin.org/articles/10.3389/fgene.2021.806386/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.806386/full#supplementary-material
https://oncokb.org/
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.1038/s41467-020-17090-y
https://doi.org/10.1056/NEJMoa1402121
https://doi.org/10.1016/j.cell.2013.09.034
https://doi.org/10.1038/nature14129
https://doi.org/10.1038/nature11252
https://doi.org/10.1038/nature11412
https://doi.org/10.1016/j.cell.2015.05.044
https://doi.org/10.1016/j.cell.2017.10.014
https://doi.org/10.1016/j.cell.2017.05.046
https://doi.org/10.1038/nature11404
https://doi.org/10.1038/nature12222
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Cancer Genome Atlas Research Network (2014a). Comprehensive Molecular
Characterization of Gastric Adenocarcinoma. Nature 513, 202–209. doi:10.
1038/nature13480

Cancer Genome Atlas Research Network (2014b). Comprehensive Molecular
Profiling of Lung Adenocarcinoma. Nature 511, 543–550. doi:10.1038/
nature13385

Cancer Genome Atlas Research Network (2011). Integrated Genomic Analyses of
Ovarian Carcinoma. Nature 474, 609–615. doi:10.1038/nature10166

Cancer Genome Atlas Research Network (2017c). Integrated Genomic
Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 32,
185–e13. doi:10.1016/j.ccell.2017.07.007

Cancer Genome Atlas Research Network (2014c). Integrated Genomic
Characterization of Papillary Thyroid Carcinoma. Cell 159, 676–690. doi:10.
1016/j.cell.2014.09.050

Cancer Genome Atlas Research Network (2015). The Molecular Taxonomy of
Primary Prostate Cancer. Cell 163, 1011–1025. doi:10.1016/j.cell.2015.10.025

Chu, D., Zhang, Z., Zhou, Y., Wang, W., Li, Y., Zhang, H., et al. (2011). Notch1 and
Notch2 Have Opposite Prognostic Effects on Patients with Colorectal Cancer.
Ann. Oncol. 22, 2440–2447. doi:10.1093/annonc/mdq776

Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, D.,
et al. (2018). Classification and Mutation Prediction from Non-small Cell Lung
Cancer Histopathology Images Using Deep Learning.Nat. Med. 24, 1559–1567.
doi:10.1038/s41591-018-0177-5

Couture, H. D., Williams, L. A., Geradts, J., Nyante, S. J., Butler, E. N., Marron, J. S.,
et al. (2018). Image Analysis with Deep Learning to Predict Breast Cancer
Grade, ER Status, Histologic Subtype, and Intrinsic Subtype. npj Breast Cancer
4, 30. doi:10.1038/s41523-018-0079-1

Dhillon, A. S., Hagan, S., Rath, O., and Kolch, W. (2007). MAP Kinase Signalling
Pathways in Cancer. Oncogene 26, 3279–3290. doi:10.1038/sj.onc.1210421

Echle, A., Grabsch, H. I., Quirke, P., van den Brandt, P. A., West, N. P., Hutchins,
G. G. A., et al. (2020a). Clinical-Grade Detection of Microsatellite Instability in
Colorectal Tumors by Deep Learning. Gastroenterology 159, 1406–1416. doi:10.
1053/j.gastro.2020.06.021

Echle, A., Rindtorff, N. T., Brinker, T. J., Luedde, T., Pearson, A. T., and Kather,
J. N. (2020b). Deep Learning in Cancer Pathology: a New Generation of Clinical
Biomarkers. Br. J. Cancer 124, 686–696. doi:10.1038/s41416-020-01122-x

Cancer Genome Atlas Research Network; Albert Einstein College of Medicine;
Analytical Biological Services; Barretos Cancer Hospital; Baylor College of
Medicine; Beckman Research Institute of City of Hope, et al. (2017a). Integrated
Genomic and Molecular Characterization of Cervical Cancer. Nature 543,
378–384. doi:10.1038/nature21386

Cancer Genome Atlas Research Network; Analysis Working Group: Asan University;
BC Cancer Agency; Brigham and Women’s Hospital; Broad Institute; Brown
University, et al. (2017b). Integrated Genomic Characterization of Oesophageal
Carcinoma. Nature 541, 169–175. doi:10.1038/nature20805

Fishbein, L., Leshchiner, I., Walter, V., Danilova, L., Robertson, A. G., Johnson, A.
R., et al. (2017). Comprehensive Molecular Characterization of
Pheochromocytoma and Paraganglioma. Cancer Cell 31, 181–193. doi:10.
1016/j.ccell.2017.01.001

Fu, Y., Jung, A. W., Torne, R. V., Gonzalez, S., Vöhringer, H., Shmatko, A., et al.
(2020). Pan-cancer Computational Histopathology Reveals Mutations, Tumor
Composition and Prognosis. Nat. Cancer 1, 800–810. doi:10.1038/s43018-020-
0085-8

Ho, T. H., Kapur, P., Joseph, R. W., Serie, D. J., Eckel-Passow, J. E., Parasramka, M.,
et al. (2015). Loss of PBRM1 and BAP1 Expression Is Less Common in Non-
clear Cell Renal Cell Carcinoma Than in clear Cell Renal Cell Carcinoma. Urol.
Oncol. 33, 23–e14. doi:10.1016/j.urolonc.2014.10.014

Howard, F. M., Dolezal, J., Kochanny, S., Schulte, J., Chen, H., Heij, L., et al. (2020).
The Impact of Digital Histopathology Batch Effect on Deep Learning Model
Accuracy and Bias. Nat Commun 12 4423. doi:10.1038/s41467-021-24698-1

Jiang, N., Dai, Q., Su, X., Fu, J., Feng, X., and Peng, J. (2020). Role of PI3K/AKT
Pathway in Cancer: the Framework of Malignant Behavior. Mol. Biol. Rep. 47,
4587–4629. doi:10.1007/s11033-020-05435-1

Cancer Genome Atlas Research NetworkKandoth, C., Kandoth, C., Schultz, N.,
Cherniack, A. D., Akbani, R., Liu, Y., et al. (2013). Integrated Genomic
Characterization of Endometrial Carcinoma. Nature 497, 67–73. doi:10.
1038/nature12113

Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., et al. (2013).
Mutational Landscape and Significance across 12 Major Cancer Types. Nature
502, 333–339. doi:10.1038/nature12634

Karpel-Massler, G., Nguyen, T. T. T., Shang, E., and Siegelin, M. D. (2019). Novel
IDH1-Targeted Glioma Therapies. CNS Drugs 33, 1155–1166. doi:10.1007/
s40263-019-00684-6

Kather, J. N., and Calderaro, J. (2020). Development of AI-Based Pathology
Biomarkers in Gastrointestinal and Liver Cancer. Nat. Rev. Gastroenterol.
Hepatol. 17, 591–592. doi:10.1038/s41575-020-0343-3

Kather, J. N., Heij, L. R., Grabsch, H. I., Loeffler, C., Echle, A., Muti, H. S., et al.
(2020). Pan-cancer Image-Based Detection of Clinically Actionable Genetic
Alterations. Nat. Cancer 1, 789–799. doi:10.1038/s43018-020-0087-6

Kather, J. N., Pearson, A. T., Halama, N., Jäger, D., Krause, J., Loosen, S. H., et al.
(2019). Deep Learning Can Predict Microsatellite Instability Directly from
Histology in Gastrointestinal Cancer. Nat. Med. 25, 1054–1056. doi:10.1038/
s41591-019-0462-y

Cancer Genome Atlas Research NetworkLinehan, W. M., Linehan, W. M.,
Spellman, P. T., Ricketts, C. J., Creighton, C. J., Fei, S. S., et al. (2016).
Comprehensive Molecular Characterization of Papillary Renal-Cell
Carcinoma. N. Engl. J. Med. 374, 135–145. doi:10.1056/NEJMoa1505917

Liu, X.-D., Kong, W., Peterson, C. B., McGrail, D. J., Hoang, A., Zhang, X., et al.
(2020). PBRM1 Loss Defines a Nonimmunogenic Tumor Phenotype
Associated with Checkpoint Inhibitor Resistance in Renal Carcinoma. Nat.
Commun. 11, 2135. doi:10.1038/s41467-020-15959-6

Loeffler, C. M. L., Ortiz Bruechle, N., Jung, M., Seillier, L., Rose, M., Laleh, N. G.,
et al. (2021). Artificial Intelligence-Based Detection of FGFR3Mutational Status
Directly from Routine Histology in Bladder Cancer: A Possible Preselection for
Molecular Testing? Eur. Urol. Focus S2405-4569, 00113. doi:10.1016/j.euf.2021.
04.007

Loriot, Y., Necchi, A., Park, S. H., Garcia-Donas, J., Huddart, R., Burgess, E., et al.
(2019). Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. N.
Engl. J. Med. 381, 338–348. doi:10.1056/nejmoa1817323

Muti, H. S., Heij, L. R., Keller, G., Kohlruss, M., Langer, R., Dislich, B., et al. (2021).
Development and Validation of Deep Learning Classifiers to Detect Epstein-
Barr Virus and Microsatellite Instability Status in Gastric Cancer: a
Retrospective Multicentre Cohort Study. The Lancet Digital Health 3, e654.
doi:10.1016/s2589-7500(21)00133-3

Muti, H. S., Loeffler, C., Echle, A., Heij, L. R., Buelow, R. D., Krause, J., et al. (2020).
The Aachen Protocol for Deep Learning Histopathology: A Hands-On Guide for
Data Preprocessing. Zenodo: Aachen. doi:10.5281/zenodo.3694994

Naik, N., Madani, A., Esteva, A., Keskar, N. S., Press, M. F., Ruderman, D., et al.
(2020). Deep Learning-Enabled Breast Cancer Hormonal Receptor Status
Determination from Base-Level H&E Stains. Nat. Commun. 11, 5727.
doi:10.1038/s41467-020-19334-3

Nikiforov, Y. E. (2011). Molecular Analysis of Thyroid Tumors. Mod. Pathol. 24
(Suppl. 2), S34–S43. doi:10.1038/modpathol.2010.167

Radovich, M., Pickering, C. R., Felau, I., Ha, G., Zhang, H., Jo, H., et al. (2018). The
Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 33,
244–e10. doi:10.1016/j.ccell.2018.01.003

Ricketts, C. J., De Cubas, A. A., Fan, H., Smith, C. C., Lang, M., Reznik, E., et al.
(2018). The Cancer Genome Atlas Comprehensive Molecular Characterization
of Renal Cell Carcinoma. Cell Rep 23, 3698–4326. doi:10.1016/j.celrep.2018.
06.032

Robertson, A. G., Kim, J., Al-Ahmadie, H., Bellmunt, J., Guo, G., Cherniack, A. D.,
et al. (2017). Comprehensive Molecular Characterization of Muscle-Invasive
Bladder Cancer. Cell 171, 540–e25. doi:10.1016/j.cell.2017.09.007

Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K. C., et al.
(2018). Oncogenic Signaling Pathways in the Cancer Genome Atlas. Cell 173,
321–e10. doi:10.1016/j.cell.2018.03.035

Schmauch, B., Romagnoni, A., Pronier, E., Saillard, C., Maillé, P., Calderaro, J., et al.
(2020). A Deep Learning Model to Predict RNA-Seq Expression of Tumours
from Whole Slide Images. Nat. Commun. 11, 3877. doi:10.1038/s41467-020-
17678-4

Schumacher, D., Andrieux, G., Boehnke, K., Keil, M., Silvestri, A., Silvestrov, M.,
et al. (2019). Heterogeneous Pathway Activation and Drug Response Modelled
in Colorectal-Tumor-Derived 3D Cultures. Plos Genet. 15, e1008076. doi:10.
1371/journal.pgen.1008076

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 80638612

Loeffler et al. Deep-Learning-Based Prediction of Mutations

77

https://doi.org/10.1038/nature13480
https://doi.org/10.1038/nature13480
https://doi.org/10.1038/nature13385
https://doi.org/10.1038/nature13385
https://doi.org/10.1038/nature10166
https://doi.org/10.1016/j.ccell.2017.07.007
https://doi.org/10.1016/j.cell.2014.09.050
https://doi.org/10.1016/j.cell.2014.09.050
https://doi.org/10.1016/j.cell.2015.10.025
https://doi.org/10.1093/annonc/mdq776
https://doi.org/10.1038/s41591-018-0177-5
https://doi.org/10.1038/s41523-018-0079-1
https://doi.org/10.1038/sj.onc.1210421
https://doi.org/10.1053/j.gastro.2020.06.021
https://doi.org/10.1053/j.gastro.2020.06.021
https://doi.org/10.1038/s41416-020-01122-x
https://doi.org/10.1038/nature21386
https://doi.org/10.1038/nature20805
https://doi.org/10.1016/j.ccell.2017.01.001
https://doi.org/10.1016/j.ccell.2017.01.001
https://doi.org/10.1038/s43018-020-0085-8
https://doi.org/10.1038/s43018-020-0085-8
https://doi.org/10.1016/j.urolonc.2014.10.014
https://doi.org/10.1038/s41467-021-24698-1
https://doi.org/10.1007/s11033-020-05435-1
https://doi.org/10.1038/nature12113
https://doi.org/10.1038/nature12113
https://doi.org/10.1038/nature12634
https://doi.org/10.1007/s40263-019-00684-6
https://doi.org/10.1007/s40263-019-00684-6
https://doi.org/10.1038/s41575-020-0343-3
https://doi.org/10.1038/s43018-020-0087-6
https://doi.org/10.1038/s41591-019-0462-y
https://doi.org/10.1038/s41591-019-0462-y
https://doi.org/10.1056/NEJMoa1505917
https://doi.org/10.1038/s41467-020-15959-6
https://doi.org/10.1016/j.euf.2021.04.007
https://doi.org/10.1016/j.euf.2021.04.007
https://doi.org/10.1056/nejmoa1817323
https://doi.org/10.1016/s2589-7500(21)00133-3
https://doi.org/10.5281/zenodo.3694994
https://doi.org/10.1038/s41467-020-19334-3
https://doi.org/10.1038/modpathol.2010.167
https://doi.org/10.1016/j.ccell.2018.01.003
https://doi.org/10.1016/j.celrep.2018.06.032
https://doi.org/10.1016/j.celrep.2018.06.032
https://doi.org/10.1016/j.cell.2017.09.007
https://doi.org/10.1016/j.cell.2018.03.035
https://doi.org/10.1038/s41467-020-17678-4
https://doi.org/10.1038/s41467-020-17678-4
https://doi.org/10.1371/journal.pgen.1008076
https://doi.org/10.1371/journal.pgen.1008076
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Sha, L., Osinski, B. L., Ho, I. Y., Tan, T. L., Willis, C., Weiss, H., et al. (2019). Multi-
Field-of-View Deep Learning Model Predicts Nonsmall Cell Lung Cancer
Programmed Death-Ligand 1 Status from Whole-Slide Hematoxylin and
Eosin Images. J. Pathol. Inform. 10, 24. doi:10.4103/jpi.jpi_24_19

Sun, M., Zhou, W., Qi, X., Zhang, G., Girnita, L., Seregard, S., et al. (2019).
Prediction of BAP1 Expression in Uveal Melanoma Using Densely-
Connected Deep Classification Networks. Cancers 11, 1579. doi:10.3390/
cancers11101579

U.S. Food and Drug Administration (2022). FDA-approved Drugs. Drugs@FDA:
FDA-Approved Drugs. Available at: : https://www.accessdata.fda.gov/scripts/
cder/daf/(Accessed August 31, 2021).

Weber, A., Langhanki, L., Sommerer, F., Markwarth, A., Wittekind, C., and Tannapfel,
A. (2003). Mutations of the BRAF Gene in Squamous Cell Carcinoma of the Head
and Neck. Oncogene 22, 4757–4759. doi:10.1038/sj.onc.1206705

Yaeger, R., and Corcoran, R. B. (2019). Targeting Alterations in the RAF-MEK
Pathway. Cancer Discov. 9, 329–341. doi:10.1158/2159-8290.cd-18-1321

Young, J. S., Gogos, A. J., Morshed, R. A., Hervey-Jumper, S. L., and Berger, M. S.
(2020). Molecular Characteristics of Diffuse Lower Grade Gliomas: what
Neurosurgeons Need to Know. Acta Neurochir 162, 1929–1939. doi:10.1007/
s00701-020-04426-2

Yuan, H., Han, Y., Wang, X., Li, N., Liu, Q., Yin, Y., et al. (2020). SETD2 Restricts
Prostate Cancer Metastasis by Integrating EZH2 and AMPK Signaling
Pathways. Cancer Cell 38, 350–365. doi:10.1016/j.ccell.2020.05.022

Zhang, H., Zhang, F., Ren, F., Wang, Z., Rao, X., Li, L., et al. (2019). “Predicting
Tumor Mutational Burden from Liver Cancer Pathological Images Using

Convolutional Neural Network,” in 2019 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18-21 Nov.
2019. doi:10.1109/bibm47256.2019.8983139

Conflict of Interest: JK declares consulting services for Owkin, France and
Panakeia, UK.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Loeffler, Gaisa, Muti, van Treeck, Echle, Ghaffari Laleh,
Trautwein, Heij, Grabsch, Ortiz Bruechle and Kather. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that
the original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 80638613

Loeffler et al. Deep-Learning-Based Prediction of Mutations

78

https://doi.org/10.4103/jpi.jpi_24_19
https://doi.org/10.3390/cancers11101579
https://doi.org/10.3390/cancers11101579
https://www.accessdata.fda.gov/scripts/cder/daf/
https://www.accessdata.fda.gov/scripts/cder/daf/
https://doi.org/10.1038/sj.onc.1206705
https://doi.org/10.1158/2159-8290.cd-18-1321
https://doi.org/10.1007/s00701-020-04426-2
https://doi.org/10.1007/s00701-020-04426-2
https://doi.org/10.1016/j.ccell.2020.05.022
https://doi.org/10.1109/bibm47256.2019.8983139
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Exploring Immune-Related Prognostic
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Background: Colon cancer is a common malignant tumor with poor prognosis. The aim
of this study is to explore the immune-related prognostic signatures and the tumor immune
microenvironment of colon cancer.

Methods: The mRNA expression data of TCGA-COAD from the UCSC Xena platform and
the list of immune-related genes (IRGs) from the ImmPort database were used to identify
immune-related differentially expressed genes (DEGs). Then, we constructed an immune-
related risk score prognostic model and validated its predictive performance in the test
dataset, the whole dataset, and two independent GEO datasets. In addition, we explored
the differences in tumor-infiltrating immune cell types, tumor mutation burden (TMB),
microsatellite status, and expression levels of immune checkpoints and their ligands
between the high-risk and low-risk score groups. Moreover, the potential value of the
identified immune-related signature with respect to immunotherapy was investigated
based on an immunotherapeutic cohort (Imvigor210) treated with an anti-PD-L1 agent.

Results: Seven immune-related DEGs were identified as prognostic signatures. The areas
under the curves (AUCs) of the constructed risk score model for overall survival (OS) were
calculated (training dataset: 0.780 at 3 years, 0.801 at 4 years, and 0.766 at 5 years; test
dataset: 0.642 at 3 years, 0.647 at 4 years, and 0.629 at 5 years; and the whole dataset:
0.642 at 3 years, 0.647 at 4 years, and 0.629 at 5 years). In the high-risk score group of the
whole dataset, patients had worse OS, higher TMN stages, advanced pathological stages,
and a higher TP53mutation rate (p < 0.05). In addition, a high level of resting NK cells or M0
macrophages, and high TMB were significantly related to poor OS (p < 0.05). Also, we
observed that high-risk score patients had a high expression level of PD-L1, PD-1, and
CTLA-4 (p < 0.05). The patients with high-risk scores demonstrated worse prognosis than
those with low-risk scores in multiple datasets (GSE39582: p = 0.0023; GSE17536: p =
0.0008; immunotherapeutic cohort without platinum treatment: p = 0.0014;
immunotherapeutic cohort with platinum treatment: p = 0.0027).

Conclusion:We developed a robust immune-related prognostic signature that performed
great in multiple cohorts and explored the characteristics of the tumor immune
microenvironment of colon cancer patients, which may give suggestions for the
prognosis and immunotherapy in the future.

Keywords: colon cancer, tumor immune microenvironment, prognostic model, immunotherapy, TCGA-COAD, GEO
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INTRODUCTION

Colon cancer is known as one of the most malignant tumors with
a high mortality rate worldwide (Siegel et al., 2018). Despite the
recent progress in diagnosis and therapy, the overall prognosis for
colon cancer patients remains poor because effective biomarkers
for prognosis prediction are lacking (Keum and Giovannucci,
2019). Therefore, it is urgent and essential to explore valuable
prognostic signatures and therapeutic targets for colon cancer.

Immunotherapy takes advantage of the body’s own immune
system to attack cancer, which has become a powerful and
promising clinical strategy for treating various tumors (Riley et al.,
2019), including colon cancer(Chalabi et al., 2020; Lichtenstern et al.,
2020; Ghonim et al., 2021). Immune checkpoint inhibitors (ICIs), a
typical type of immunotherapy, function through inhibiting negative
regulatory receptors, such as programmed cell death 1 (PD-1) and
cytotoxic T lymphocyte antigen 4 (CTLA4), and thereby activates
antitumor immunity (Tolba, 2020). However, only a fraction of
patients were benefited from immunotherapy due to the
heterogeneity and complexity of the tumor immune
microenvironment (Dienstmann et al., 2017; Wang et al., 2019).
Although it has been proved that IRGs were associated with the
development of colon cancer (Cereda et al., 2016; Yu et al., 2019),
these insights have not been applied to clinical practice. Recently,
using bioinformatics andmachine learningmethods, various types of
immune-related biomarkers have been found to be associated with
the prognosis of colon cancer, such as long non-coding RNAs (Yilin
Lin et al., 2020), cell infiltration (Zhou et al., 2019), and IRGs (Chen
et al., 2020). However, the molecular characteristics describing the
tumor immune microenvironment need to be further investigated
due to their potential of prognosis and immunotherapy of colon
cancer.

In this study, we constructed and validated a robust immune-
related prognostic model based on TCGA-COAD cohorts and
two independent GEO datasets. Additionally, we explored the
relationship between the constructed prognostic model and colon
cancer patients’ clinical and pathological features. In addition, we
analyzed the characteristics of the tumor immune
microenvironment, including tumor-infiltrating cell
composition, TMB, TP53 mutation rates, and the mRNA
expression levels of PD-1/PD-L1/CLTA4. Furthermore, the
immune-related signature was also significantly associated with
OS in patients with anti-PD-L1 treatment, and colon cancer
patients with low-risk scores may be more sensitive to ICI
therapy. These findings may provide new insights toward
novel therapeutic targets for colon cancer.

MATERIALS AND METHODS

Data Acquiring
TCGA Cohorts and the List of Immune-Related Genes
The mRNA sequencing data, mutation profiling data, and clinical
information were downloaded from the UCSC Xena platform
(https://xenabrowser.net/datapages/). Subsequently, the samples
(n = 471) were divided into normal (n = 39) and tumor groups
(n = 432), and the detailed information is shown in

Supplementary Table S1. The list of immune-related genes
was acquired from the ImmPort database (https://immport.
niaid.nih.gov/), with a total of 1509 genes.

GEO Cohort for External Validation
Two independent datasets (GSE39582 and GSE17536) were
downloaded from the GEO database (https://www.ncbi.nlm.
nih.gov/geo/). The GSE39582 included 556 colon cancer
samples, and GSE17536 included 177 colon cancer samples,
with clinical and survival information. The detailed
information is shown in Supplementary Tables S2, S3,
respectively.

Immunotherapeutic Cohort
An immunotherapeutic cohort (IMvigor210) was obtained from
a published study (Mariathasan et al., 2018), which investigated
the clinical activity of the PD-L1 blockade with atezolizumab
(anti-PD-L1 McAb) in urothelial cancer. The detailed clinical
information and gene expression profile of the cohort were
available according to the guideline on http://research-pub.
gene.com/IMvigor210CoreBiologies using the
IMvigor210CoreBiologies R package. We divided the samples
into platinum-treated (N = 105) and non-platinum-treated
datasets (N = 237) according to whether they received
platinum-based chemotherapy or not, and the detailed
information is shown in Supplementary Table S4.

Screening Immune-Related DEGs
DEGs between normal and tumor groups were screened using the
limma R package (Ritchie et al., 2015), with the cutoff criteria set
as | log2 fold change (FC)| >0.585 and adjusted p-value < 0.05.
The immune-related DEGs were obtained by overlapping the
IRGs and DEGs. In order to investigate biological pathways
correlated with immune response, we performed gene ontoloy
(GO) functional annotations and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis on immune-related
DEGs using the clusterProfiler R package (Yu et al., 2012).

Construction and Validation of the
Immune-Related Prognostic Model for
Colon Cancer
The whole dataset (n = 432) with all tumor samples was randomly
divided into training dataset (n = 216) and test dataset (n = 216)
with a 1:1 ratio. As shown in the Supplementary Table S5, there
was no significant difference among the whole dataset, the
training dataset, and test dataset for most clinical-pathological
factors. The training dataset was used to identify the prognostic
signature and constructed a prognostic risk model. First, we
identified the candidate prognostic signature using the
univariable Cox proportional hazards regression model and
Survival R package. To avoid over-fitting, all genes with
p-value < 0.05 were involved in the subsequent least absolute
shrinkage and selection operator (LASSO) analysis using the
glmnet R package. The association between the mRNA
expression level of the filtered candidate prognostic genes and
patients’ OS was further investigated using Kaplan–Meier
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analysis. Then, the multivariate Cox regression analysis was
conducted to determine each independent prognostic
indicator. Accordingly, the coefficient of the immune-related
indicator was obtained from the multivariate Cox results. A
formula for the immune-related risk score model was
established to predict patient survival:

risk score � ΣCox coefficient of gene χi × scale expression value of gene χi.

To evaluate the predictive efficiency of the constructed
immune-related risk score model, we plotted a receiver
operating characteristic (ROC) curve to quantify the area
under the curve (AUC) using the survivalROC R package.
Also, we selected the turning point of the ROC curve with the
most significant difference between true positive and false
positive as the optimal cutoff risk score. Patients above the
cutoff value belong to the high-risk group, while patients
below it belong to the low-risk group. In addition,
Kaplan–Meier curves were plotted to distinguish the two
groups using the survminer R package.

Moreover, the test dataset and the whole dataset were used to
validate the prognostic capability of the immune-related
signature. Similarly, the two datasets were divided into high-
and low-risk groups based on the constructed risk score model.
Next, the ROC and Kaplan–Meier curves were plotted to validate
the predictive accuracy of the risk score model. Then, the
nomogram was constructed using the whole dataset based on
the risk score model and clinical factors, including the age,
gender, microsatellite status, and tumor stage. The constructed
nomogram was further assessed by calibration. Additionally, the
associations between the immune-related constructed risk score
model and the clinical and pathological characteristics, including
advanced pathological stages and TNM stages, were explored by
using the Wilcoxon test. Additionally, the constructed model was
further validated using GEO datasets with accession numbers
GSE39582 and GSE17536.

Estimation and Comparison of
Tumor-Infiltrating Immune Cell Type
Fractions
The whole dataset was divided into high- and low-risk groups
according to the constructed risk model, and the CIBERSORT
algorithm was conducted to access the proportions of 22 types of
tumor-infiltrating immune cells using the normalized gene
expression matrixes and running with 1000 permutations
(Newman et al., 2015). Subsequently, the comparison of
immune landscape between the high- and low-risk groups was
evaluated using the unpaired t-test. The significant differential
immune cell types (p-value < 0.001) were further assessed for
their relationship with OS using Kaplan–Meier curves.

Characteristics of Immunotherapy-Related
Predictors for Colon Cancer Patients
We first calculated the TMB value and visualized the mutation
profiles of the high- and low-risk groups of the whole dataset

using the maftools R package (Mayakonda et al., 2018). The
unpaired t-test statistically analyzed the differences of the TMB
between the high- and low-risk groups. In addition, the OS
between the high- and low-risk groups was calculated using
the Kaplan–Meier method. Moreover, the Wilcoxon test was
used to compare the mRNA levels of immune checkpoints and
their ligands between the high- and low-risk groups.

Exploring the Associations Between the
Microsatellite Status and the Constructed
Prognostic Model
The whole dataset, after removing the samples without
microsatellite status information, was used for further analysis
based on the constructed prognostic model. Subsequently, the
samples were divided into MSI-H and MSS/MSI-L groups
according to the microsatellite status information extracted
from the phenotypic data, and the Wilcoxon test was
performed to analyze the difference of the level of risk score
between the MSI-H and MSS/MSI-L groups. Moreover, the OS
between the MSI-H group and MSI-L/MSS group was calculated
using the Kaplan–Meier method.

The Role of the Immune-Related Prognostic
Signature in Immunotherapy
In order to investigate the potential value of the identified
immune-related signature with respect to immunotherapy, we
obtained the gene expression profiles and corresponding clinical
features from an immunotherapeutic cohort (Imvigor210)
treated with anti-PD-L1 agent, which was divided into
platinum-treated and non-platinum-treated datasets. We first
validated the constructed immune-related prognostic model
using the platinum-treated and non-treated datasets,
respectively. Then, the complete response (CR) or partial
response (PR) patients were categorized as responders and
compared with non-responders, who displayed stable (SD) or
progressive disease (PD), and the risk score of each patient was
calculated based on the constructed risk score model.
Subsequently, we statistically analyzed the distribution of the
risk score between the responders and non-responders.
Moreover, we further compared the tumor mutation load and
neoantigen burden between high-and low-risk groups using the
Wilcoxon test.

RESULTS

Identification of Immune-Related DEGs
A flow chart of the whole analysis pipeline is shown in Figure 1. A
total of 571 DEGs (275 upregulated and 296 downregulated) were
screened by comparing between tumor and normal groups
(Figure 2A). After the intersection with 1509 IRGs,
102 immune-related DEGs were obtained (Figure 2B), of
which 83 genes were downregulated, and 19 genes were
upregulated. Detailed information is shown in Supplementary
Table S6. Subsequently, functional and pathway enrichment
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analyses were performed using the clusterProfiler R package.
KEGG analysis results indicated that the immune-related
DEGs were significantly enriched in terms associated with the
cytokine–cytokine receptor interaction, neuroactive
ligand–receptor interaction, and IL-17 signaling pathway
(Figure 2C), while GO related to humoral immune response
was mediated by circulating immunoglobulin, humoral immune
response, and immunoglobulin-mediated immune response
(Figure 2D).

Construction of the Immune-Related Risk
Score Model and the Evaluation of its
Prognostic Ability
To explore the prognostic value of the immune-related DEGs,
we performed the univariate Cox regression analysis. A total of
10 genes were significantly related to OS status, and 7 genes with
the maximum prognostic value were further identified using
LASSO regression analysis (Supplementary Figures S1A,B).
The mRNA expression level of the seven genes was significantly
associated with patients’ OS (GUCA2A: p = 0.013; CHGB: p =
0.05; SSTR2: p = 0.017;VIP: p = 0.0074;OXTR: p = 0.001; IL1A: p
= 0.0035; and GRP: p = 0.016), and the higher expression level of
IL1A and GUCA2A was associated with a better patients’ OS,
while the other five genes were opposite (Supplementary Figure
S1C–I). Then, we conducted the multivariate Cox regression
analysis and established an immune-related risk score model
based on the training dataset, and the hazard ratio of each gene
is shown in Figure 2E. The colon cancer patients were divided
into high- and low-risk groups according to the risk score
calculated using the formula described in Materials and
Methods. The scatter diagram in Figure 2F revealed that the
OS tended to become worse with the increase of risk score, and
the proportion of death in the high-risk group (the proportion
of red dot and blue dot on the right side) was higher than that in

the low-risk group. The heatmap in Figure 2F showed that the
expression of IL1A and GUCA2A was low in the low-risk group
and high in the high-risk group, while the trend of the other five
genes was opposite. The Kaplan–Meier analysis results showed
that high-risk score patients had worse OS than low score
patients (p < 0.0001, Figure 2G). The prognostic accuracy of
the risk score model was investigated as a continuous variable
(Figure 2H). The AUC of the prognostic model for OS was
0.780 at 3 years, 0.801 at 4 years, and 0.766 at 5 years, indicating
its excellent prediction performance.

Validation and Assessment of the
Immune-Related Prognostic Signatures
To determine if the constructed risk core model is consistent in
different populations, we performed an identical formula using
the test dataset and the whole dataset. Consistent with the
findings in the training dataset, patients categorized into the
high-risk score group had worse OS than the patients in the low-
risk score group (p < 0.05, Supplementary Figures S2A,C). The
areas under the curves (AUCs) of the prognostic model were
0.642 for 3-year OS, 0.647 for 4-year OS, and 0.629 for 5-year OS
using the test dataset, and 0.626 for 3-year OS, 0.663 for 4-year
OS, and 0.661 for 5-year OS using the whole dataset
(Supplementary Figures S2B,D). The Wilcoxon test showed
that the higher risk score was associated with a higher T stage
(p = 0.00009), N stages (p = 0.0018), metastasis (p = 0.0064), and
advanced pathological stage (p = 0.0034) based on the whole
dataset (Figures 3A–D).

To further validate the robustness of the prognostic signatures
and improve the accuracy of the performance of the risk score
model, we constructed a nomogram that integrated the immune-
related risk score and clinical information, including the age, sex,
microsatellite status, and tumor stage to quantitatively predict the
prognosis of colon cancer patients in the whole dataset. In the

FIGURE 1 | The whole flow chart of data analysis.
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nomogram, the score for each variable can be found on the point
scale, so that it is easy to estimate the probability of survival at 3, 4,
and 5 years by calculating the total score (Supplementary Figure
S2E). The forest plot showed that patient’s characters, including
the age (>60), tumor stage (III and IV), and risk score were
significantly associated with the OS (p-value < 0.05, Figure 3E).
The calibration curves revealed that the predictive curves were
close to the ideal curve (Figures 3F–H), indicating good
performance. Furthermore, the predictive accuracy of this
nomogram (C-index: 0.74) was higher than that of the risk
score model (C-index: 0.72).

Exploring the Tumor Immune
Microenvironment in Colon Cancer Patients
Based on the CIBERSORT algorithm, we estimated the
proportions of 22 types of immune cells in each colon cancer
patient. Then, we compared the proportions of immune cells
between the low-risk group and high-risk group, and the
significant differences were found in resting NK cells, M0
macrophages, M2 macrophages, CD4 memory-activated
T cells, plasma cells, resting mast cells, and neutrophils.
Among them, the resting NK cells and M0 macrophages were

FIGURE 2 | Analysis of immune-related DEGs and construction of the immune-related prognostic model. (A) The volcano plot on all DEGs between the
tumor and normal samples. The green dots represent downregulated genes, while the red dots represent upregulated genes. (B) The Venn diagram of the
intersection between the DEGs and IRGs. (C) The KEGG pathway enrichment analysis of immune-related DEGs. (D) GO analysis of immune-related DEGs.
(E) The forest plot showed the results of multivariate Cox analysis. (F) The distribution of the high- and low-risk score groups and their relationship with
OS, and the expression pattern of seven prognostic signatures in high- and low-risk score groups. (G) The Kaplan–Meier curve revealed that OS in the low-
risk score group was significantly higher than that in the high-risk score group. (H) Time-dependent ROC curve analysis of the immune-related risk
score model.
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FIGURE 3 | Exploring the relationship between the risk score of the colon cancer patients and clinical and pathological characteristics, including (A) T
stages, (B)M stages, (C) N stages, and (D) advanced pathological stages, based on the whole dataset. Construction and validation of a nomogram. (E) Forest
plots showed the associations between patients’ characteristics and OS. (F–H) The calibration plot of the nomogram to predict the probability of OS at 3, 4, and
5 years.
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FIGURE 4 | Analysing the immune cell types and mutation profiles in high- and low-risk groups based on the whole dataset. (A) Comparing the difference of the
proportions of immune cells between the low-risk group and high-risk group using the Wilcoxon test. The values of P were labeled above each boxplot with asterisks
(*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (B, C) The Kaplan–Meier analysis of the relationship between the level of resting NK cells and M0 macrophages with
patients’OS. (D) The mutation profiles of colon cancer patients in high- and low-risk groups. (E) Comparison of the mutation rate between the high-risk group and
low-risk group.
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FIGURE 5 | Exploring the tumor immune microenvironment in colon cancer patients. (A) The association between the TP53 status and patients’ OS. (B) The
difference of TMB between the high-risk group and the low-risk group. (C) The association between TMB and patients’OS. (D) The difference in the level of the risk score
between the MSI-H and MSI-L/MSS groups. (E) The association between the microsatellite status and patients’ OS. (F–H) Comparison of the expression levels of the
immune checkpoints and their ligands between the high-risk score group and low-risk score group. (F) The expression of PD-L1, (G) the expression of PD-1, and
(H) the expression of CTLA-4.
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the most significant, with p < 0.001 (Figure 4A). The
Kaplan–Meier curve revealed that a high level of resting NK
cells or M0 macrophages was significantly related to poor OS (p <
0.05, Figures 4B,C).

The mutation profiles of each colon cancer patient were plotted
using the whole dataset. As shown in Figure 4D, the top 20
significantly mutated genes were APC, TP53, TTN, KRAS, SYNE1,
MUC16, PIK3CA, FAT4, RYR2, OBSCN, ZFHX4, DNAH5, PCLO,
CSMD3, ABCA13, DNAH11, LRP1B, FAT3, USH2A, and CSMD1.
Among them, the mutation rate of TP53 was significantly different
between the high-risk score group and low-risk group (p = 0.037,
Figure 4E). However, the TP53 status was not significantly related to
patients’ OS (Figure 5A). Besides, we calculated the TMB of each
sample and found that there was no significant difference between the
high-risk group and the low-risk group (p = 0.85, Figure 5B).
However, we observed that high TMB was significantly related to
poor patients’ OS (Figure 5C). Additionally, the Wilcoxon test
statistically analyzed the difference in the level of risk scores
between the MSI-H and MSI-L/MSS groups, and the result
showed the difference was not significant (p = 0.06, Figure 5D).
As shown in Figure 5E, the microsatellite status cannot be used as an
independent prognostic factor (p = 0.83).

Moreover, the Wilcoxon test was used to compare the
expression levels of the immune checkpoints and their ligands
between the high-risk score group and low-risk score group. The
high-risk score group had a high expression level of PD-L1 (p =
0.001), PD-1(p = 0.00022), and CTLA-4 (p = 0.00021,
Figures 5F–H).

Validation of the Prognostic Signature
Using GEO Datasets
In order to investigate the applicability in multiple cohorts based on
different platforms, we further verified the constructed risk score
model using two independent external GEO datasets. We found that
patients with high-risk scores demonstrated worse prognosis than
those with low-risk scores (GSE39582: p = 0.0023, Supplementary
Figure S3; GSE17536: p = 0.0008, Supplementary Figure S4). The
AUCs of the prognostic model were 0.577 for 3-year OS, 0.569 for 4-
year OS, and 0.568 for 5-year OS using the GSE39582 dataset
(Supplementary Figure S3A), and 0.578 for 3-year OS, 0.699 for
4-year OS, and 0.657 for 5-year OS using GSE17536 (Supplementary
Figure S4A). The Wilcoxon test showed that a higher risk score was
associated with a higher T stage (p = 0.0041), metastasis (p = 0.04), N
stages (p = 0.037), and advanced pathological stages (p = 0.033) using
GSE39582 (Supplementary Figures S3C–F). It was also found that a
higher risk score was associated with a higher advanced pathological
stage (p= 0.029) in GSE17536 (Supplementary Figure S4C), without
obtaining the TMN stage data.

The Prognostic Signature in the Role of ICI
Treatment
In the immunotherapeutic cohort, patients with a low-risk score
exhibited a significantly prolonged survival rate (non-platinum-
treated dataset: p = 0.0014, Supplementary Figure S5A;
platinum-treated dataset: p = 0.033, Supplementary Figure

S6A). Patients without platinum treatment indicated marked
clinical benefits from immunotherapy in the low-risk score
group compared to those with a high-risk score (p = 0.0027,
Supplementary Figure S5B), but not significantly in patients
with platinum treatment (p = 0.44, Supplementary Figure S6B).
Further analysis revealed that a higher tumor mutation load in
patients with platinum treatment was significantly associated
with a low-risk score (p = 0.039, Supplementary Figure S6C),
but not in patients without platinum treatment (p = 0.21,
Supplementary Figure S5C). Interestingly, higher neoantigen
burden in patients without platinum treatment was significantly
associated with a low-risk score (p = 0.025, Supplementary
Figure S5D), but not in patients with platinum treatment (p =
0.5, Supplementary Figure S6D).

DISCUSSION

The immune cells within the tumor microenvironment (TME)
function play a key role in tumorigenesis (Lei et al., 2020).
Growing evidence has revealed the therapeutic potential of ICIs in
colon cancer (Kimura et al., 2020; Wang et al., 2020). However, the
limited knowledge on the characteristics of the TME, to some extent,
hindered the development of the application of immunotherapy. In
recent years, many efforts have been made to identify immune-
related biomarkers for the diagnosis and prognosis of colon cancer
(Zhou et al., 2019; Laghi et al., 2020; Li et al., 2020). However, more
reliable biomarkers still need to be explored to maximize the
application of immunotherapy.

In this study, we developed a prognostic risk score model
based on seven IRGs, named GUCA2A, CHGB, SSTR2, VIP,
OXTR, IL1A, and GRP, which has been verified in multiple
cohorts across different platforms. Among them, GUCA2A,
VIP, and OXTR have been demonstrated to be significantly
associated with the prognosis of colon cancer (Zhang et al.,
2019; Houxi Xu et al., 2020; Kang Lin et al., 2020; Zhang
et al., 2020). A previous study reported that guanylyl cyclase C
(GUCY2C) could act as a tumor suppressor and play an
important role in orchestrating intestinal homeostatic
mechanisms, which could be used as a therapeutic target for
colon cancer patients (such as the FDA-approved oral GUCY2C
ligand linaclotide, Linzess™) (Pattison et al., 2016). GUCA2A
may be considered as a potential marker for the prognosis and
therapeutic target in colon cancer by binding and activating
GUCY2C. As a precursor of regulatory peptide, the
relationship between CHGB and tumor is not clear. However,
CHGB was suggested to be an immune-related signature for low-
grade glioma (Liu et al., 2021) and head and neck squamous cell
carcinoma (Zhang et al., 2021). Previous studies also
experimentally demonstrated that an abnormal expression of
CHGB was associated with aggressive VHL-associated
pancreatic neuroendocrine tumors (validated by
immunohistochemistry) (Weisbrod et al., 2013), pancreatic
cancer (validated by qPCR) (Jia-Sheng Xu et al., 2020), and
small cell lung cancer (validated by immunoblotting and
qPCR) (Moss et al., 2009). SSTR2, as a G protein-coupled cell
surface receptor, can be activated by extracellular ligands, which
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leads to the inhibition of cell proliferation (Lechner et al., 2021).
Precious studies demonstrated that SSTR2 might serve as a
molecular target in the diagnosis and treatment of thyroid
cancer (Thakur et al., 2021), small intestinal neuroendocrine
tumor (Elf et al., 2021), and neuroendocrine tumors (Si et al.,
2021). VIP can provide protection from apoptosis in
tumorigenesis (Sastry et al., 2017). OXTR and its ligand oxytocin
(OXT) are present in the gastrointestinal system and involved in
tumorigenesis (Ma et al., 2019). IL1A was involved in various
immune responses, inflammatory processes, and hematopoiesis,
which might be associated with colon tumorigenesis (Yoshikawa
et al., 2017). To our knowledge, the relationship between GRP and
tumorigenesis has not been reported.

Furthermore, we systematically explored the characteristics of
the tumor immune microenvironment. The results revealed that
the tumor-infiltrating resting NK cells or M0 Macrophages, TP53
mutation rates, and TMB could be independent prognostic
signatures for colon cancer. Additionally, we observed that the
expression levels of checkpoint genes (PD-L1, PD-1, and CTLA-4)
were higher in high-risk score patients, which may suggest that
our immune-related risk score model was capable of providing
support for immunotherapy. More importantly, the immune-
related signature was also significantly associated with OS in
patients with anti-PD-L1 treatment. We speculated that patients
with a low-risk score might be more sensitive to ICI therapy based
on the result of Supplementary Figures S5, S6.

In addition, we compared the performance of our constructed
immune-related prognostic model with the published prognostic
model of colon cancer based on the cohorts TCGA-COAD,
GSE39582, and GSE17536, which is summarized in
Supplementary Table S7. Our constructed prognostic model
was relatively and effectively validated in more internal and
external cohorts, including an immunotherapeutic cohort.

CONCLUSION

In summary, a robust immune-related prognostic model was
constructed, and the characteristics of the tumor immune

microenvironment were explored, which may be helpful for
the prognosis and immunotherapy of colon cancer patients.
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Triple-negative breast cancer (TNBC) is associated with poor prognosis and invalid
therapeutical response to immunotherapy due to biological heterogeneity. There is an
urgent need to screen for reliable indices, especially immunotherapy-associated
biomarkers that can predict patient outcomes. Pyroptosis, as an inflammation-induced
type of programmed cell death, is shown to create a tumor-suppressive environment and
improve the chemotherapeutic response in multiple tumors. However, the specific
therapeutic effect of pyroptosis in TNBC remains unclear. In this study, we present a
consensus clustering by pyroptosis-related signatures of 119 patients with TNBC into two
subtypes (clusterA and clusterB) with distinct immunological and prognostic
characteristics. First, clusterB, associated with better outcomes, was characterized by
a significantly higher pyroptosis-related signature expression, tumor microenvironment
prognostic score, and upregulation of immunotherapy checkpoints. A total of 262
differentially expressed genes between the subtypes were further identified and the Ps-
score was built using LASSO and COX regression analyses. The external GEO data set
demonstrated that cohorts with low Ps-scores consistently had higher expression of
pyroptosis-related signatures, immunocyte infiltration levels, and better prognosis. In
addition, external immunotherapy and chemotherapy cohorts validated that patients
with lower Ps-scores exhibited significant therapeutic response and clinical benefit.
Combined with other clinical characteristics, we successfully constructed a nomogram
to effectively predict the survival rate of patients with TNBC. Finally, using the scRNA-seq
data sets, we validated the landscape of cellular subtypes of TNBC and successfully
constructed an miRNA-Ps-score gene interaction network. These findings indicated that
the systematic assessment of tumor pyroptosis and identification of Ps-scores has
potential clinical implications and facilitates tailoring optimal immunotherapeutic
strategies for TNBC.
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INTRODUCTION

As the most common tumor with highmorbidity andmortality in
women, breast cancer (BC) has a poor prognosis and exacerbates
a critical social burden worldwide (Global Burden of Disease
Cancer Collaboration et al., 2017). Triple-negative breast cancer
(TNBC), accounting for 10%–17% among all BCs, is a special
subtype characterized by negative human epidermal growth
factor receptor 2 (HER2), progesterone receptor (PR), and
estrogen receptor (ER) (Lin et al., 2012). Due to the absence
of the corresponding receptors, patients with TNBC fail to benefit
from endocrine targeted therapy and HER2-targeted agents;
hence, chemotherapy and surgery remain the most common
treatment for patients with TNBC (Bergin and Loi, 2019).
Recently, the rapid rise of immunotherapy with the
combination of cisplatin or other platinum drugs, including
anti-programmed cell death (PD)-1 and PD-ligand 1 (PD-L1)
agents, has brought a new therapeutic landscape for patients with
TNBC who did not benefit from conventional chemotherapy,
radiation, or surgery (Nolan et al., 2017). However, in clinical
practice, some patients with TNBC are still lacking an effective
therapeutical response to immunotherapy due to genetic and
biological heterogeneity (Vikas et al., 2018). Therefore, it is
crucial to identify novel subtypes and screen reliable
biomarkers (especially immunotherapy-related biomarkers)
that can predict outcomes of patients with TNBC.

In the clinical setting, the TNM stage system is acknowledged
as the most frequently used tool to predict the prognosis of
patients with TNBC, which majorly depends on the inherent
anatomical abnormity, including tumor size, lymph node
situation, and distant metastatic status (Park et al., 2019).
However, the occurrence of biological and tumor genetic
heterogeneity makes it challenging for the TNM system to
predict disease progression and prognosis (Park et al., 2019).
Pyroptosis is a form of pro-inflammatory programmed cell death
(PCD) that cleaves the gasdermin D (GSDMD) protein by
classical or nonclassical pathways and triggers the production
and release of cytokines (including inactive cytokines like IL-18
and IL-1β) to induce a strong inflammatory response (Yang et al.,
2016). Pyroptosis is reported to create a tumor-suppressive
environment by releasing inflammatory factors; therefore,
inducing pyroptosis in tumors via chemotherapeutic drugs
could produce antitumor effects (Shi et al., 2015). In vitro,
Nathalia et al. demonstrate that omega-3 fatty acids can
induce pyroptosis in TNBC cells via inducing the active
CASP1 increase, further leading to the cleavage of GSDMD,
formation of membrane pores, and the release of IL-1β (Pizato
et al., 2018). However, the exact contribution of pyroptosis on the
therapeutical response of immunotherapies and its role in the
prognosis of TNBC remains unclear.

The classification of patients with TNBC based on
transcriptome profiles via next-generation sequencing is
considered a novel method to quickly indicate biological
characteristics and help screen for the most appropriate
treatment strategies (He et al., 2018). Besides conventional
expression profiles, various biological signatures are also
applied to identify novel molecular subtypes for the prognosis

of TNBC, such as autophagy-related signatures (Kim et al., 2012),
N6-methyladenosine (Wu et al., 2021), immune cell infiltration
(Harano et al., 2018), etc. In this study, we aimed to build a novel
scoring model (called Ps-scores) based on pyroptosis-related
signatures to identify clustering subtypes of TNBC and
correlate the characteristics of each subtype with prognosis,
immunotherapy, and immune cell infiltration in patients with
TNBC. Combining the Ps-scores and other classical clinical
features, the predicted model was established to improve
prognostic risk stratification and facilitate the decision making
of treatments for patients with TNBC. Moreover, using single-cell
RNA sequencing (scRNA-seq) technology, we successfully
validated the potential cellular subtypes of TNBC and
expounded the predominant expression characteristics of Ps-
score-related genes in each cluster. Finally, the targeted
miRNAs were predicted by combining multiple databases with
differentially expressed miRNAs (DEmiRNAs), whereas the
miRNA-Ps-score signature interaction network was further
constructed to visualize the potential regulatory relationship.
These results imply the potential links among the pyroptosis-
related scores, immune microenvironment, prognosis, and
response to immunotherapy for patients with TNBC. Our
findings provide new insight into the prognostic signatures of
TNBC and will help develop promising strategies for TNBC
immunotherapy.

MATERIALS AND METHODS

TNBC Data set Preparation and
Preprocessing
Transcriptome profiling data (FPKM value) of 1217 BC samples
with their corresponding clinical data were downloaded from The
Cancer Genome Atlas (TCGA) data sets (https://portal.gdc.
cancer.gov/). Through screening the “negative HER2, PR, and
ER” status based on clinical data, we finally identified 119 patients
with TNBC and comprehensive clinical information. Other
microarray data sets of 819 patients with TNBC and
prognostic information were also downloaded from the Gene
Expression Omnibus (GEO) data sets (https://www.ncbi.nlm.nih.
gov/geo/), including 120 ER-negative BC in GSE16446,
198 HER2-negative BC in GSE25065, 310 HER2-negative BC
in GSE25055, 107 TNBC in GSE58812, and 84 TNBC in
GSE157284. In addition, corresponding miRNA sequencing
data sets and mutation files were also obtained from the
TCGA-BRCA to investigate the miRNA regulatory
mechanism, and transcriptome profiling of 179 normal breast
tissues was obtained from the Genotype-Tissue Expression
(GTEx) database as normal controls (Carithers and Moore,
2015). The “ComBat” algorithm of the “sva” package was
further applied to remove the nonbiological technical biases
due to batch effects between different data sets (Leek et al.,
2012). To remove the false positives caused by batch effects,
we selected several stable internal reference genes (HPRT1, PPIA,
RPS13, TBP, GAPDH, and HMBS) to perform the PCA analysis,
which are reported as valid reference genes for human BC cell
lines by Liu et al. (2015). Moreover, the IMvigor210 data sets
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(Hoffman-Censits et al., 2016), including 316 metastatic
urothelial carcinomas (mUCs) with immunotherapy, were
applied to investigate the therapeutic reaction, and the scRNA-
seq data of 1534 cells from six patients with TNBC (GSE 118389)
were used to validate molecular subtypes for TNBC. Detailed
information on these data sets is listed in Supplementary
Table S1.

Identification of Pyroptosis-Related
Signatures
According to previous studies, the caspase family, especially
caspase1/4/5/8 (CASP1/4/5/8) was reported to specifically
cleave GSDMD to further activate pyroptosis (Shi et al., 2015;
Orning et al., 2018). In addition, Zhang et al. (2020), also found
that CASP3 and granzyme B (GZMB) could convert cell
apoptosis into pyroptosis through cleaving gasdermin E
(GSDME). Granzyme A (GZMA) was also considered to be
essential in inducing cell pyroptosis by cleaving gasdermin B
(GSDMB) (Zhou et al., 2020). Moreover, inflammasome-
associated families, such as absent in melanoma 2 (AIM2) and
nucleotide-binding domain and leucine-rich repeat receptor
(NLR), are demonstrated to induce the pyroptosis process
through activating CASP1 and the release of IL1β and IL18
(Man and Kanneganti, 2015; Karki and Kanneganti, 2019).
Therefore, based on the published research, a total of
33 pyroptosis-related signatures were chosen, and 24 genes
were retained for subsequent analysis after filtering out the
signatures with low expression (sum FPKM value of all
samples less than one).

Consensus Cluster Analysis for
Pyroptosis-Related Signatures in TNBC
Based on the expression of pyroptosis-related signatures, we
performed hierarchical clustering analysis and applied the
“ConsensusClusterPlus” R package (Wilkerson and Hayes,
2010) to conduct unsupervised clustering based on Euclidean
distance and Ward’s linkage methods 1000 repeated times to
ensure the classification stability. During the process, the clusters
from 2 to 9 were performed, respectively, and the optimal
clustering model was determined based on the consensus
cumulative distribution function (CDF) plot. Moreover, we
performed multiple comparisons among different pyroptosis-
subtypes, including for the tumor microenvironment (TME),
prognosis, and vital clinical-pathological phenotypes to explore
their characteristics. The R packages “survival” (Therneau and
Lumley, 2015) and “survminer” (Kassambara et al., 2017) were
used to perform Kaplan–Meier survival analysis and draw
survival curves between pyroptosis subtypes.

Identification of Differentially Expressed
Genes (DEGs) and Functional Enrichment
Analysis
To identify the DEGs between pyroptosis subtypes, the empirical
Bayesian algorithm was applied through the “Limma” R package

(Smyth, 2005), and the significance cutoff was set as adjusted
p < .05 and absolute fold-change >1. To clarify the biological
function and characteristics of pyroptosis clusters, Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis was performed by using the “ClusterProfiler” R
package (Yu et al., 2012), and the results were visualized using
the “ClueGO” plugin in Cytoscape v3.7.1 (Bindea et al., 2009).

TME Cell Infiltration and Gene Set Variation
Analysis
To evaluate the immune cell infiltration (ICI) characteristics
of TNBC tissues, we used the “CIBERSORT” R package (Chen
et al., 2018) to quantitatively analyze the infiltration levels of
different immune cells with the LM22 signatures by 1000
random permutations. The tumor purity scores, ICI levels,
and stromal contents in different samples were evaluated via
the “ESTIMATE” algorithm (Yoshihara et al., 2013).
Moreover, through the “c2. cp.kegg.v6.2. symbols” data sets
downloaded from the MSigDB database, we performed GSVA
using the “GSVA” R package and drew a heatmap to exhibit
the different immunogenic pathways (Hanzelmann et al.,
2013).

Definition of Immune Characteristics
Between High and Low Ps-Score Groups
To further identify a novel index representing the characteristics of
the pyroptosis subtypes, we conducted univariate Cox proportional
hazards regression analysis for overall survival (OS) to preliminarily
screen significant genes through using the “coxph” function in the
“survival” R package. Subsequently, to remove the multicollinearity
among these candidate genes, LASSO regression was applied to
screen independent prognosis-related genes with the optimal
penalty parameter and a minimum 10-fold cross-validation
(Ranstam and Cook, 2018). After further adjustment, the
multivariate Cox regression (stepwise model) was conducted to
identify hub genes, and the coefficients obtained from the
regression algorithm were used to acquire the Ps-score based on
the following formula: Ps score � val(Gene1) × β1 + val(Gene2)
× β2 + . . . + val(Gene n) × βn. The val (Gene) represents the
expression FPKM value of each gene and β the corresponding
regression coefficient. Moreover, according to the above formula,
the Ps-scores of patients with TNBC were separately calculated, and
the patients were divided into high and low subgroups according to
the median value as the cutoff value (Sullivan et al., 2004). We also
made similar comparisons between high and low Ps-score groups,
including the TME, ICI, clinical phenotypes, pyroptosis-related
signatures, and correlation of GSVA pathways based on the other
four GEO data sets described earlier.

Construction and Evaluation of the
Pyroptosis-Related Prediction Model
The multivariate Cox regression (stepwise model) was applied
to construct the prognostic model for TNBC-combined Ps-
scores and other clinical features, including age, clustering
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subtypes, clinical stages, and TNM stages. Variables with
p-values < .05 were included in the Cox regression model,
and the nomogram was further constructed to predict the
probability of 1-, 3-, and 5-year survival in patients with
TNBC using the “survival” R package. To evaluate and
validate the prediction capability of the nomogram, we
calculated the concordance index and plotted the calibration
curves for 3- and 5-year survival through a bootstrapping
method with 1000 resamples. To further investigate the
expression of the Ps-score-related genes at the protein level,
the Human Protein Atlas (HPA) (Ponten et al., 2008) was used
to display the results of the immunohistochemistry (IHC)
technique. The detailed information of patients is included in
Supplementary Table S17.

Exploration of the Significance of Ps-Scores
in Response to Clinical Immunotherapy
Based on the IMvigor210 data sets with atezolizumab treatment,
we performed a comprehensive comparison between different Ps-
score subgroups, including response to immunotherapy, immune
phenotype, and clinical remission rate. Moreover, to evaluate the
potential therapeutic value of Ps-scores in chemotherapy for
TNBC, we calculated the half-maximal inhibitory
concentration (IC50) of common chemotherapeutic drugs
based on the Genomics of Drug Sensitivity in Cancer (GDSC)
databases (Yang et al., 2013). Antitumor drugs such as 5-
fluorouracil, cisplatin, docetaxel, doxorubicin, and paclitaxel
are recommended for BC treatment by current clinical
guidelines. Differences in IC50 of these chemotherapeutic
drugs between Ps-score subgroups were compared by
Wilcoxon test with the results exhibited in box diagrams using
the “ggpubr” R package (Whitehead et al., 2019).

Validation of Molecular Subtypes Based on
scRNA-Seq Analysis
To validate molecular clusters and further seek biomarkers of
each cluster, the Seurat pipeline was selected for subsequent
analysis. Using the Seurat package v3.0 (Butler et al., 2018), we
transformed the data matrix into a “Seurat object” through the
“CreateSeuratObject” R function and performed the necessary
quality control. The violin diagram exhibited the number of
sequencing reads per sample and the expression of
mitochondrial genes (Supplementary Figure S2A). Further,
to remove the influence from mitochondrial and extreme
genes, we kept the number of sequenced genes at
200–10,000, directly including the majority genes, and
removed the cells with average gene expression <10 and
mitochondrial genes >5%. Then, we conducted data
standardization through the “NormalizeData” function with
the method of “LogNormalize” and used the top 1500
variable counts to perform PCA using the “RunPCA”
function (Supplementary Figures S2B,C). Subsequently,
t-distributed statistical neighbor embedding (tSNE) was
applied to visualize the density clustering, and the “SingleR”
package was applied for cell-subtype annotation based on the

marker genes (Aran et al., 2019). Moreover, the pseudotime
trajectory analysis was further performed using the “Monocle”
package v2.0 to expound the potential inner relationship among
these cell clusters (Trapnell et al., 2014).

Prediction of Potential miRNA Targets for
Prognosis-Associated Signatures
The miRNAs targeting Ps-score-related genes were predicted
based on the following databases: TargetScan (http://www.
targetscan.org/), starBase (http://starbase.sysu.edu.cn/starbase2/
index.php), miRTar (https://mirtarbase.cuhk.edu.cn/), and
miRDB (http://www.mirdb.org/). The expression of TNBC
miRNA was downloaded from the TCGA-BRCA data sets,
and the DEmiRNAs were further identified by the “Limma” R
package. Subsequently, we identified the intersection of predicted
miRNA by four databases and DEmiRNAs as regulated miRNAs
for each hub gene and further visualized the miRNA–mRNA
interaction network using Cytoscape v3.7.1.

RESULTS

Overview of Genetic and Biological
Characteristics of Pyroptosis-Related
Signatures in TNBC
After a series of rigorous screening and quality control steps, a
total of 24 pyroptosis-related signatures remained for subsequent
analysis in our study (Supplementary Table S2). Combined with
the normal tissues in GTEx data sets, we first compared the
expression of pyroptosis-related signatures between patients with
TNBC and normal controls. We found that most pyroptosis-
related genes were significantly upregulated in TNBC groups,
including CASP1/3/5/8, GSDMA/C, NLRC4/P3/P7, IL18, IL1β,
and TNF (Figure 1A). PCA indicated that the expression of these
pyroptosis-related signatures could be used to divide the TNBC
samples and controls into two distinct clusters (Figure 1B). In
addition, the PCA of internal reference genes revealed that
nonsignature genes failed to discriminate TNBC and control
cohorts, indicating that the separation created a true
distinction based on the pyroptosis-related DEGs in patients
with TNBC (Supplementary Figure S1A). Moreover, the
KEGG functional enrichment analysis revealed that these
pyroptosis-related genes were predominantly focused on
infectious diseases, immune response, and cellular signal
conditioning mechanisms, including the NLR signaling
pathway, p53 signaling pathway, TNF signaling pathway, and
apoptosis (Figure 1C, Supplementary Table S3). In terms of
genetics, 148 of the 203 samples (72.91%) manifested pyroptosis-
related signatures in mutations and the NLR families, especially
NLRP3 and NLRP7, exhibiting the highest frequency of
mutations (Figure 1D, Supplementary Table S4). Moreover,
the top 10 pyroptosis-related genes with the most frequent
mutations were located on the 24 human chromosomes
(Figure 1E).
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FIGURE 1 | Characteristics of pyroptosis-related signatures in patients with TNBC. (A) The expression of pyroptosis-related signatures between normal tissues
and TNBC tissues from GTEx and TCGA data sets; Wilcox test, *p < .05, **p < .01, ***p < .001; ns, not statistically significant. (B) PCA showing pyroptosis-related
signatures sorted TNBC and control tissues into two clusters. (C) The KEGG functional analysis of pyroptosis-related signatures. (D) The landscape of mutation profiles
in patients with breast cancer from TCGA-BRCA cohort. (E) The location of the top 10 pyroptosis-related signatures with the most frequent mutations on the 24
human chromosomes.
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FIGURE 2 | Identificationofpyroptosis-relatedsubtypes inTNBC. (A)Consensusclusteringmatrix fork=2 inpatientswithTNBC. (B)Kaplan–Meier curvesofOS forpatientswith
(Continued )
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Identification of a TNBC Cluster Pattern
Based on Pyroptosis-Related Signatures
Based on the expression of pyroptosis-related signatures, we used an
unsupervised clustering method to identify the subtypes of patients
with TNBC and identified k = 2 as the optimum clustering model
from k = 2 to k = 9 clustering with the least area under the consensus
CDF curve for 69 patients in clusterA and 50 patients in clusterB
(Figure 2A, Supplementary Table S4; Supplementary Figure S1B).
To further clarify the intrapatient heterogeneity of patients with
TNBC, we performed a comparison in the clinical differences
between subtypes and found that patients in clusterB were
negatively associated with severe clinical stages, including the
pathological and TMN stages. Furthermore, the survival analysis
showed that patients in clusterB had a longer median survival time
than those in clusterA with more patients in clusterB also receiving
radioactive treatments, indicating that patients with TNBC in
clusterB might have a better prognosis (Figure 2B). There was
no significant difference in other clinical indexes including age, sex,
M stage, and the ratio of pharmaceutical and surgical therapies
(Supplementary Figure S1C). Notably, the expression of
pyroptosis-related gene signatures was significantly increased in
patients in clusterB compared with that of the clusterA cohort
(Figure 2C). In terms of the immune infiltration scores, adaptive
immune response-related lymphocytes (including memory B cells,
activated memory CD4+ T cells, plasma cells, CD8+ T cells, and
gamma delta T cells) were significantly increased in patients in
clusterB compared with the clusterA cohort. However, innate
immunity and immunoregulation-related cells were significantly
infiltrated in clusterA cohorts, including neutrophils, activated
natural killer cells, resting memory CD4+ T cells, and regulatory
T cells (Tregs) (Figure 2D, Supplementary Table S5). Higher
stromal scores and immune scores with lower tumor purity were
also detected in patients in clusterB compared with the clusterA
groups (Figures 3A,B).

Identification of DEGs Based on
Pyroptosis-Related Clusters
Considering the biological characteristics of immune subtypes in
TNBC, we conducted a DEG analysis between the two subtypes.
Through comparing clusterA with clusterB groups, a total of 262
DEGs (including 13 clusterA- and 249 clusterB-related genes) in
TNBC were identified (Figure 3C, Supplementary Table S6). To
further interpret biological processes and pathways of pyroptosis-
related subtypes, these DEGs were chosen to perform KEGG
functional analysis. The results showed that clusterA-related
genes were not enriched in any significant pathways while the
clusterB-related signatures were predominantly enriched in
immune activation-associated pathways, including natural
killer cell–mediated cytotoxicity, the toll-like receptor signaling
pathway, chemokine signaling pathway, cytokine–cytokine

receptor interaction, NF-kappa B signaling pathway, TNF
signaling pathway, Th17 cell differentiation, and Th1 and Th2
cell differentiation (Figure 3D, Supplementary Table S7).

Development of Ps-Score and
Characteristic of Ps-score-related
Subgroups
After successively including the 262 DEGs in univariate Cox
regression, LASSO regression, and multivariate Cox regression
analysis as candidate prognosis-associated genes, we identified six
hub genes (including CFB, IFITM1, EPSTI1,MARCO, CXCL13, and
CCL5) from the Ps-score signatures based on their β coefficients
(Figures 3E,F, Supplementary Table S8). In addition, the expression
of these hub genes was higher in clusterB subgroups. Based on the
IHCdata from theHPAdatabase, the expression of these hub genes at
the protein level was further validated in BC, especially CFB, ESPIT1,
and IFITM1 (Figure 3G,Figure 6C). Based on the expression of these
genes and their corresponding β coefficients, the Ps-score was defined
by the following formula: Ps score � −0.365 × CFB −
0.45 × IFITM1 − 0.298 × EPSTI1 − 0.461 × MARCO − 0.26 ×
CXCL13 + 0.439 × CCL5 (Supplementary Table S9, the gene
name represents the corresponding gene expression FPKM
values). Subsequently, those patients with TNBC were divided
into a high and low Ps-score subgroups withmedian value (–5.28)
as the cutoff; the high Ps-score cohorts exhibited a worse
prognosis than that of low Ps-score patients in the TCGA data
sets (Figure 4A). To prove the universal value of the Ps-score in
TNBC, we also performed survival analysis of this score in four
extrinsic GEO cohorts and obtained the same results (Figure 4B).

To investigate the biological characteristics of the Ps-scores, we
compared the expression of pyroptosis-related genes and ICI between
different Ps-score groups and further explored the correlation
between significant clinical phenotypes and the Ps-scores. The
results reveal that clusterB possessed a lower level of Ps-scores
associated with pharmaceutical and surgical therapy as well as
lower pathological stages in patients with TNBC (Figure 4C&E).
Interestingly, the expression of pyroptosis-related signatures was
significantly increased in the low Ps-score groups, including the
CASP, GSDM, and NOD families, as well as inflammatory factors,
suggesting the potential role of pyroptosis activation in the low-score
of TNBC cohorts with better prognosis (Figure 4D). Moreover, ROC
analysis showed 1-, 3-, and 5-year AUC values of the Ps-scores for
predicting the prognosis of patients with TNBC of 0.867, 0.867, and
0.906, respectively, in the TCGA sets (Figure 5A). Furthermore,
immune infiltration analysis revealed that substantial immune cells
were significantly inhibited in the high Ps-score groups, including
that of CD8+ T cells, follicular helper T cells, activated CD4+memory
T cells, and plasma cells (Figure 5D). The correlation analysis also
indicates that the Ps-scores were significantly positively associated
with the levels of tumor purity (R = 0.57, p < .001) but negatively

FIGURE 2 | TNBC divided into two subtypes. ClusterB was negatively associated with severe clinical stages, including pathological and TMN stages. (C)Heatmap showing the
expression of pyroptosis-related signatures upregulated in ClusterB subtypes. (D) Boxplots show the difference in immune cell infiltration between ClusterA and ClusterB. Wilcox test,
*p < .05, **p < .01, ***p < .001.
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FIGURE 3 | Identification of DEGs based on pyroptosis-related clusters. (A–B) Box plot showing higher stromal and immune scores with lower tumor purity
detected in patients of clusterB than the clusterA group. (C) Volcano plots displaying the up- and downregulated DEGs between two subgroups in TNBC cohorts. (D)
Bubble diagram showing the results of KEGG enrichment analysis of the subtypes. (E) LASSO coefficient profiles of 12 prognostic related genes and 10-times cross-
validation for tuning parameter selection in the LASSO model. (F) Forest map displaying the HR and p-value of six hub genes after multivariate Cox regression
analysis. (G) Heatmap showing the distinct expression of six hub genes between pyroptosis-related clusters.
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associated with stromal and immune scores (R = –0.48, p < .001 and
R = –0.50, p < .001, respectively) (Figure 5E).

Based on the Ps-scores and some primary clinical
characteristics, multivariate Cox regression analysis was
conducted to construct a nomogram that could accurately
predict the probability of the 1-, 3-, and 5-year survival for
patients with TNBC. The Ps-scores, age, pyroptosis-related
cluster, and clinical stages were considered as related
predictors for the prognosis of patients with TNBC and
incorporated into the nomogram with significant regression
coefficients and p-values (Figure 5B, Supplementary Table
S10). From the nomogram, we could observe that the Ps-score
contributed the most to the total score with a 0.716 concordance
index (Figure 5B, Supplementary Table S11). Calibration curves
exhibited that the nomogram had a good prediction capacity in
both 3- and 5-year OS for patients with TNBC (Figure 5C).

Significance of Ps-Scores in the Prediction
of Response to Immunotherapy and
Common Chemotherapeutics
The alluvial diagram visualized the status changes in the different
characteristics of patients (Figure 6A).We found that patients with a
lowPs-score in clusterB subtypes had a higher ratio of survival status.
When using the TCGA and other external GEO data sets, the results
of GSVA demonstrated the coincident negative correlation between
Ps-scores and immunoregulation-related pathways, such as the toll-
like receptor signaling pathway, antigen processing and presentation,
rig I-like receptor signaling pathway, T cell receptor signaling
pathway, NOD-like receptor signaling pathway, and JAK-STAT
signaling pathway (Figure 6B, Supplementary Table S12).

To further explore the role of Ps-scores in predicting the
therapeutic benefit in TNBC, we first calculated the Ps-scores of
patients who accepted anti-PD-L1 immunotherapy from the
GSE157284 and IMvigor210 cohorts before assigning them
into high or low Ps-score groups. From the GSE157284 data
set, patients with an effective response rate to anti-PD-L1 therapy
showed lower Ps-scores, whereas the relative expression of
immune-checkpoint genes was significantly increased in the
high Ps-scores groups (Figures 6D,E, Supplementary Table
S13). Congruously, we also found that the low Ps-score group
had higher expression of immune-checkpoint genes in the
IMvigor210 cohort and effective anti-PD-L1 responders also
exhibited lower Ps-scores (Figures 6F,G). In metastatic
urothelial cancers of the IMvigor210 data sets, distinct
immunological subtypes might result in opposite therapeutic
responses. Therefore, we also compared the Ps-score levels
among these subtypes and found that the lowest Ps-score was
in the inflamed subtypes (Figure 6H). Moreover, the rate of
complete remission (CR) after immunotherapy was also increased
in the low Ps-score cohort compared with the high Ps-score cohort,
with the low Ps-score group validated to have a better prognosis for
metastatic urothelial cancers (Figures 6I,J). All these results
suggested that the Ps-score might serve as a significant indicator
in immunotherapy decision making for cancers.

Besides checkpoint blocker therapy, we also investigated the
potential associations between the Ps-scores and the curative

efficacy of common chemotherapeutics in treating BCs. The IC50

value was calculated for five common anti-BC chemotherapeutic
drugs obtained from the GDSC databases, including 5-
fluorouracil, cisplatin, docetaxel, doxorubicin, and paclitaxel
(Supplementary Table S14). Notably, all the drugs exhibited
lower IC50 values in the low Ps-score groups, indicating patients
with low Ps-scores might obtain a better curative efficacy from
common chemotherapy (Figure 6K). Collectively, these
outcomes indicate that Ps-scores could be associated with the
response to immunotherapy and common chemotherapy.

Validation of Cellular Subtypes in TNBC
Through scRNA-Seq Analysis
To validate the potential subtypes of patients with TNBC, the
GSE118389 data set along with 1534 cells from six TNBC tissues
were used to identify concrete cellular subtypes and
corresponding marker genes. A total of 12 distinct cellular
clusters were identified through tSNE analysis (Figure 7A)
with the marker-genes of each cluster listed in Supplementary
Table S15. Moreover, the results of cell-type annotation using the
“SingleR” package indicated these cell clusters fell into six cellular
subtypes, including epithelial cells, erythrocytes, CD8+ T cells,
fibroblasts, endothelial cells, and monocytes, of which the
epithelial cells were the most common cell type with six
subtypes (Figure 7B). Notably, of the six Ps-score-related
genes, five genes were identified as marker genes, and their
expression in each cellular subtype is shown in a bubble
diagram (Figure 7C). The expression of CCL5 and IFITM1
were generally increased in nearly all cellular subtypes and
significantly higher than the expression of other signatures.
Although the expression of remanent genes was relatively
lower in these cells, significant cellular specificity was found in
these Ps-score-related genes. For example, MARCO was
particularly expressed in the epithelial cell subtype 4 and
monocytes while CFB was particularly expressed in the
fibroblast subtype 2 as well as epithelial cell subtypes 3 and 4.
Interestingly, EPSTI1 was significantly expressed in immune-
related cellular subtypes including monocytes and CD4+

T cells, consistent with the results of IHC. In addition, the
pseudotime trajectory analysis also revealed the arrangement
of different cellular subtypes that formed a certain rule based
on its spatial relationships (Supplementary Figure S2E).
Concretely, the trajectory analysis of epithelial cells revealed
that a small quantity of epithelial cell subtype 3 was
distributed at the start of the trajectory while mixed cells from
epithelial cell subtypes 5 and 6 were distributed at the end of the
trajectory. Moreover, epithelial cell subtype 2 was uniformly
located behind epithelial cell subtypes 1, whereas epithelial cell
subtype 4 nearly existed throughout the trajectory (Figure 7D).

Prediction and Validation of miRNAs
Interacted With Hub Ps-Score Genes
To further explore the potential regulatory role of miRNAs
targeted to these Ps-score-related genes in TNBC, we found
223 probable miRNAs and successfully constructed the

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 7886709

Li et al. Pyroptosis-Related Subtypes in TNBC

98

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


miRNA-hub gene interaction network based on the prediction of
the TargetScan, starBase, miRTar, and miRDB databases
(Figure 7E, Supplementary Table S16). In addition, to
validate the regulatory role of miRNAs in TNBC, we also
identified 37 DEmiRNAs between pyroptosis-related clusters,

before screening the top 20 miRNAs serving as vital regulatory
factors (Figures 7F,G). Finally, we successfully simplified the
interaction network with 20 miRNAs and four targeted genes to
verify that ESPIT1 and CXCL13 are the most active targets
regulated by massive DEmiRNAs (Figure 7H).

FIGURE 4 |Characteristics of Ps-scores and correlation to pyroptosis in TNBC. (A–B) Kaplan–Meier curves of overall survival (OS) for the patients with TNBC in the
high- and low-Ps-score groups in the TCGA (A) or GEO data sets (B). (C, E) The box plots show that ClusterB possessed a lower level of Ps-scores associated with
pharmaceutical and surgical therapies, and lower pathological stages. (D) Box diagram displaying the expression of pyroptosis-related signatures significantly increased
in the low Ps-score groups. (F) Heatmap used to visualize pathways analyzed by GSVA showing the active biological pathways in distinct pyroptosis-related
clusters.
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FIGURE 5 | Establishment and evaluation of the Ps-score-related prognostic model for patients with TNBC. (A) Time-dependent receiver operating curves of 1-, 3-, and 5-
year survival for patients with TNBC using Ps-scores. (B) Combined nomogram for predicting the probability of 1-, 3-, and 5-year survival for patients with TNBC. (C) Calibration
curve of the established nomogramwith 3- and 5-year survival, respectively. (D) Immune infiltration analysis revealed that substantial immune cellswere significantly inhibited in high
Ps-score groups. (E) Correlation analysis shows the Ps-scores significantly positively associated with the levels of tumor purity (R = 0.57) and negatively associated with
stromal and immune scores (R = –0.48 and R = –0.50, respectively).
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FIGURE 6 | The significance of Ps-scores in the prediction of response to immunotherapy and common chemotherapeutics for TNBC. (A) Alluvial diagram
visualizing the status changes from different characteristics of patients. (B) Correlation analysis of Ps-scores and GSVA pathways in TCGA and GEO data sets. The size
of nodes represents the correlation coefficient, and the red or green represents positive or negative correlation, respectively. (C) The immunohistochemical results of Ps-
score-related genes from the HPA database. (D) The box plots displayed patients with better responses to PD-L1 treatment exhibited higher Ps-scores using
GSE157284. (E) The relative expression of immune-checkpoint genes was significantly increased in the high Ps-scores groups of GSE157284 data sets. (F) The relative
expression of immune-checkpoint genes was significantly increased in the high Ps-scores groups of IMvigor210 cohorts. (G) The box plots indicated patients with better

(Continued )
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DISCUSSION

As a malignant tumor with high mortality, TNBC is known for its
poor prognosis, which stems from ineffective therapeutic
response to immunotherapy due to tumor biological
heterogeneity. Recently, the IMpassion130 trial demonstrated
that the combination of atezolizumab, a PD-L1 inhibitor, and
nab-paclitaxel could prolong the OS in PD-L1- patients with
positive advanced TNBC, heralding the emergence of
immunotherapy as an effective treatment strategy for TNBC
(Schmid et al., 2018). In addition, The U.S. Food and Drug
Administration (FDA) also approved SP142, a PD-L1 IHC
assay, as an auxiliary test to identify eligibility for
atezolizumab therapy in patients with advanced TNBC.
However, the results of IHC staining are still short of high
interlaboratory reproducibility with subjective judgment. For
example, the IHC levels of PD-L1 were investigated in a total
of 443 patients with BC by (Wang et al., 2017) but only ~16% of
these tumors exhibited positive PD-L1 levels. Although the PD-
L1 test plays a potentially significant role in the management of
multiple advanced carcinomas, objective standardization for this
test has not been achieved; hence, its current use in the clinical
practice poses a twofold risk to patients: false positive could result
in potentially toxic therapies resulting in unforeseen
complications, such as miscarriages, or PD-L1 false negatives
would benefit from therapy but are excluded from receiving
treatment (Reisenbichler et al., 2020). Therefore, identification
of novel immunotherapy-related subtyping and reliable objective
prognostic indicators for immunotherapy in TNBC is urgently
needed.

In contrast to apoptosis, pyroptosis usually occurs in abnormal
cells infected by microbes as a positive programmed cell death
process, thus inducing the release of pro-inflammatory cytokines
and activating an inflammatory response (Bedoui et al., 2020).
Prompted by microbes, pyroptosis can also be converted from
apoptosis and play various roles in multiple tumors. Pyroptosis
has shown antitumor effects through inhibiting the tumor growth
in liver and gastric cancers while showing both suppression or
promotion effects in BC (Zaki et al., 2010; Chen et al., 2012; Shao
et al., 2021). Shi et al. (2015) demonstrated that the activation of
the NLRP3 (NOD-, LRR-, and pyrin domain-containing 3)
inflammasome was integral for the activation of pyroptosis by
recruiting CASP1, further leading to cleavage of GSDMD. In the
present study, we explored all the signatures and pathways
directly related to pyroptosis in TNBC and detected that the
NLRP3/CASP1/GSDMD pathway-related pyroptosis was
activated in patients with TNBC, implying that pyroptosis
might participate in the mechanism of TNBC, which was
associated with the prognosis of TNBC.

The classification of patients based on pathognomonic gene
expression profiles is considered a proven method and applied to

various studies of TNBC, including autophagy-related signatures
(Kim et al., 2012), N6-methyladenosine (Wu et al., 2021), and
immune cell infiltration (Harano et al., 2018). In this study, we
first proposed a pyroptosis-related molecular subtype based on
clustering pyroptosis-related signatures with distinct clinical and
immunological characteristics. Interestingly, the characteristics of
the two molecular subtypes manifested in significant
homogeneity. We detected that patients in ClusterB presented
a longer median survival time than those in ClusterA, whereas
patients in ClusterB also negatively associated with serious
clinical stages, including pathological and TMN stages,
suggesting these pyroptosis-related signatures were also
significantly associated with different survival risks in patients
with TNBC. Our results also reached some consensus: (1) nearly
all the pyroptosis-related signatures exhibited higher expression
in patients in ClusterB; (2) ClusterB was a specific subtype with a
better prognosis and slighter clinical pathological phenotypes; (3)
ClusterB was identified as an immune-activated phenotype with
higher TME immune scores and infiltration levels of adaptive
immune response-related immune cells.

To further explore the potential biological functional features
of the pyroptosis-related subtypes in TNBC, we investigated the
DEGs between the two subtypes and performed KEGG function
enrichment analysis. Consistent with the immunological
signatures of subtypes, functional enrichment analysis revealed
that immune-activation associated pathways, including natural
killer cell-mediated cytotoxicity, the toll-like receptor signaling
pathway, chemokine signaling pathway, cytokine-cytokine
receptor interaction, NF-kappa B signaling pathway, TNF
signaling pathway, and Th17 cell differentiation as well as Th1
and Th2 cell differentiation were significantly enriched in the
ClusterB cohorts. Of these pathways, the activation of multiple
immune pathways is reported to suppress metastatic spread in
TNBC (Zanker et al., 2020) and could be the potential mechanism
for a better prognosis of patients in Cluster B.

Furthermore, to increase the clinical application value and
create better clinical practicability, we successfully constructed a
novel pyroptosis-related scoring tool (Ps-score) to determine the
prognostic risk of TNBC based on six hub genes from two
clusters. High-expression of these risk signatures at the protein
levels was confirmed by IHC from the HPA database, and the Ps-
scores effectively stratified patients with TNBC from the TCGA
and GEO data set, respectively, into high- and low-risk groups.
Survival analysis revealed that the low-score groups had longer
OS than patients with high Ps-scores, and ROC curves exhibited a
great predictive capacity of Ps-scores for the 1-, 3-, and 5-year
survival of TNBC. In addition, the Ps-scores were significantly
decreased in the ClusterB cohorts, indicating that the Ps-score
could reflect the heterogeneity of patients with TNBC. Moreover,
the Ps-score also represented patients with different clinical
outcomes and was associated with the response to

FIGURE 6 | responses to PD-L1 treatment exhibited higher Ps-scores using IMvigor210 cohorts. (H–I) Ps-score in different ACRG subtypes and the rate of CR after
immunotherapy in IMvigor210 cohorts. (J) Kaplan-Meier curves of OS for the patients with TNBC in high and low Ps-score groups of IMvigor210 data sets. (K)
Comparison of IC50 value of 5-fluorouracil, cisplatin, docetaxel, doxorubicin, and paclitaxel in high and low Ps-score groups using GDSC databases.
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FIGURE 7 | Validation of cellular subtypes in TNBC through scRNA-seq analysis. (A) Visualization of tSNE colored according to cell types for TNBC single-cell
transcriptomes. (B) Heatmap revealing the scaled expression of top 10 marker-genes for each cluster defined in (A). (C) Dot plots showing the expression of indicated
Ps-score-related genes for each cell cluster. (D)Monocle pseudospace trajectory analysis revealing the cellular lineage progression of Epithelial cells subtypes in patients
with TNBC colored according to different Epithelial cell clusters. (E) The miRNA-hub genes interaction network based on the prediction of four databases. The
round node represented the miRNA and the rhomb represented the Ps-score-related genes. (F) Volcano plots displayed the upregulated and downregulated
DEmiRNAs between two subgroups in patients with TNBC. (G) Venn diagram of the predicted miRNA and DEmiRNAs.
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immunotherapy. The patients with high Ps-scores exhibited
worse clinical prognosis and lower expression of immune
checkpoints. TME ICI analysis also demonstrated that the Ps-
score was significantly negatively correlated with the infiltration
levels and tumor purity, suggesting its value in immunotherapy.
Finally, a correlation analysis of the Ps-score and pathways based
on GSVA results demonstrate a coincident negative relation in
both TCGA and other GEO data sets, implying the activation of
the various immune-related processes might occur more
frequently in low Ps-score cohorts. Notably, besides immune-
related pathways activated in low-score patients, massive
activation of signal regulatory pathways was observed in high
Ps-score groups, including TGF-β1, Wnt, Notch, and the MAPK
signaling pathway, which is reportedly involved in the
mechanism of TNBC and as target pathways for drug
treatments (Giltnane and Balko, 2014; Kim et al., 2016; Pohl
et al., 2017; Giuli et al., 2019).

Furthermore, using the IMvigor210 data sets, we also
speculated that the Ps-score might be applicable to estimate
the clinical response to immunotherapy in other tumors as well.
Besides immunotherapy, common chemotherapeutic drugs also
demonstrated lower IC50 values in the low Ps-score cohorts,
including 5-fluorouracil, cisplatin, docetaxel, doxorubicin, and
paclitaxel from the GDSC database, implying that these
chemotherapeutic drugs would be more effective in patients with
TNBCwith low Ps-scores. Overall, these findings from external data
sets validated the potential benefits of using the Ps-score system and
indicated its role in predicting curative responses to common
chemotherapies and immune checkpoint therapies.

Finally, the scRNA-seq analysis demonstrated the authentic
existence of cellular subtypes with their marker genes in patients
with TNBC and clearly showed the distribution of Ps-score-
related genes in each subtype. Admittingly, TNBC originated
from epithelial cells, and the results of the scRNA-seq also
demonstrated multiple subtypes of epithelial cells, reflecting
different clusters of tumor cells. Interferon inducible
transmembrane 1 (IFITM1) is reported to promote the
progression of TNBC through regulating integrin, NFκB, and
IL6 gene expression and might serve as a novel therapeutic target
for patients with IFITM1+ TNBC (Provance et al., 2021). Of the
Ps-score-related genes, our analysis also detected that IFITM1
exhibited relatively high expression in epithelial cell subtypes 3–5,
consistent with the above patients with IFITM1+ TNBC. In
previous studies, the epithelial-stromal interaction 1 (EPSTI1)
is also shown to modulate the extrinsic apoptotic pathway in
TNBC cell lines, which highlighted its potential as a therapeutic
target for patients with TNBC (Capdevila-Busquets et al., 2015).
Interestingly, EPSTI1 is overexpressed in monocytes and CD8+

T cells, suggesting EPSTI1 might participate in the process of
extrinsic apoptosis with the activation of the immune response.
Moreover, the pseudotime trajectory analysis displayed the
distribution of tumor epithelial subtypes and demonstrated the
existence of inner heterogeneity and potential cellular
differentiation in patients with TNBC. For the common
subtypes of BCs, microRNA profiles from different breast cells
were applied to distinguish and reflect different subtypes,
including luminal A, luminal B, and basal and malignant

myoepithelioma, indicating that the expression of genes in
cells could directly reflect the different subtypes in BCs
(Bockmeyer et al., 2011). Despite the differences in cellular
and individual subtypes, pyroptosis-related signature genes
distinguished both subtypes of TNBC based on their
differential expression. Combined with the differential
expression of miRNAs between pyroptosis-related clusters, we
ultimately constructed a miRNA–mRNA interaction network,
including 20 miRNAs and four hub genes and found that EPSTI1
and CXCL13 were the central nodes with the most miRNA
regulation.

Our study has the limitation that the high-throughput
sequencing data sets for initial analysis were relatively
insufficient as it was simply obtained from public databases.
The corresponding results and conclusions remain to be
further investigated through more external congeneric research
and should be validated via functional experiments in vivo and
in vitro. Furthermore, several conclusions of this study require
further research to confirm its reproducibility, improve the
clinical application of pyroptosis-related clusters, and elaborate
on the role of Ps-scores in predicting the response to
immunotherapy for TNBC.

CONCLUSION

Our study is the first to propose molecular subtypes based on
clustering pyroptosis-related signature expression with distinct
clinical and immunological signatures in patients with TNBC.
Moreover, we identified and validated a Ps-score system as an
effective tool to predict the OS and immunotherapy efficacy in
patients with TNBC. Finally, we preliminarily explored the
cellular subtypes using scRNA-seq data sets to demonstrate
the heterogeneity of TNBC and successfully construct an
interaction network to expound the regulatory miRNA
targeted Ps-score-related signatures. The various
transcriptomic analyses facilitated the screening of significant
genetic signatures of TNBC to provide a new clinical application
of Ps-scores in predicting prognosis and chemo-
immunotherapeutic response for patients with TNBC.
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GLOSSARY

AIM2 absent in melanoma 2

BC breast cancer

CASP1/3/4/5/8 caspase1/3/4/5/8

CDF cumulative distribution function

CR complete remission

DEGs differentially expressed genes

DEmiRNAs differentially expressed miRNAs

EPSTI1 epithelial-stromal interaction 1

ER estrogen receptor

FDA Food and Drug Administration

GDSC Genomics of Drug Sensitivity in Cancer

GEO Gene Expression Omnibus

GSDMB gasdermin B

GSDMD gasdermin D

GSDME gasdermin E

GSVA gene set variation analysis

GTEx Genotype-Tissue Expression

GZMA granzyme A

GZMB granzyme B

HER2 human epidermal growth factor receptor 2

HPA Human Protein Atlas

IC50 half-maximal inhibitory concentration

ICI immune cell infiltration

IFITM1 interferon inducible transmembrane 1

IHC immunohistochemistry

KEGG Kyoto Encyclopedia of Genes and Genomes

mUC metastatic urothelial carcinoma

NLR nucleotide-binding domain and leucine-rich repeat receptor

OS overall survival

PCA principal component analysis

PCD programmed cell death

PD programmed cell death

PD-L1 PD-ligand 1

PR progesterone receptor

scRNA-seq single-cell RNA sequencing

TCGA The Cancer Genome Atlas

TME tumor microenvironment

TNBC triple-negative breast cancer

Tregs regulatory T cells

tSNE t-distributed statistical neighbor embedding.
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Jun Wang1

1Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London,
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The assessment of the cellular heterogeneity and abundance in bulk tissue samples is
essential for characterising cellular and organismal states. Computational approaches to
estimate cellular abundance from bulk RNA-Seq datasets have variable performances,
often requiring benchmarking matrices to select the best performingmethods for individual
studies. However, such benchmarking investigations are difficult to perform and assess in
typical applications because of the absence of gold standard/ground-truth cellular
measurements. Here we describe Decosus, an R package that integrates seven
methods and signatures for deconvoluting cell types from gene expression profiles
(GEP). Benchmark analysis on a range of datasets with ground-truth measurements
revealed that our integrated estimates consistently exhibited stable performances across
datasets than individual methods and signatures. We further applied Decosus to
characterise the immune compartment of skin samples in different settings, confirming
the well-established Th1 and Th2 polarisation in psoriasis and atopic dermatitis,
respectively. Secondly, we revealed immune system-related UV-induced changes in
sun-exposed skin. Furthermore, a significant motivation in the design of Decosus is
flexibility and the ability for the user to include new gene signatures, algorithms, and
integration methods at run time.

Keywords: cell deconvolution, R package, method integration, gene expression, immuno-biology

INTRODUCTION

Gene expression quantification is indispensable for the interrogation of cellular and organismal
states. However, bulk tissue samples of interest in clinical research have considerable cellular
heterogeneity that standard methods (Microarray and RNA-Seq) cannot decipher. Although
single-cell technologies have been developed to uncover the cellular heterogeneity within cell
populations, they have a range of limitations (e.g., time, tissue types, dropouts, technical noise,
and cost), making large-scale or clinical applications impossible. Since bulk analysis methods
report average expression levels, it is often challenging to disentangle changes in cell-type
composition from fundamental differences in states. To address this, several computational tools
(so-called deconvolution methods) have been developed to estimate cell-type composition
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within bulk expression data. These utilise various models,
including least squares regression (Abbas et al., 2009),
constrained least squares regression (Li et al., 2016; Racle
et al., 2017; Finotello and Trajanoski, 2018), quadratic
programming (Gong et al., 2011; Gong and Szustakowski,
2013; Zhong et al., 2013), support vector regression
(Newman et al., 2015), the geometric mean of marker gene
expression (Becht et al., 2016) and single-sample gene set
enrichment analysis (ssGSEA) (Aran et al., 2017),
extensively reviewed in (Sturm et al., 2019).

Unfortunately, individual tools have limitations that affect
their effective utilisation. Critically, due to the differences in
the underlying statistical assumptions and marker gene
signatures, the approaches often produce different results in
a data type-dependent manner (Jiménez-Sánchez et al., 2019;
Sturm et al., 2019). Thus, there is a need for a consensus
approach that can combine and integrate these methods into a
single robust output.

Recent benchmarking studies (Jiménez-Sánchez et al., 2019;
Sturm et al., 2019) have provided robust frameworks to
systematically integrate the outputs of these methods into a
single unified deconvolution solution, thereby reducing the
limitations of individual methods. While these approaches are
helpful, significant challenges remain. Jiménez-Sánchez et al.,
restricted their implementation to a set of common cancers
(Jiménez-Sánchez et al., 2019), while Sturm et al., focused on
method performance on key immune cell types (Sturm et al.,
2019). Thus, neither tool can be applied universally, especially for
poorly studied cancers, and non-cancer conditions or
deconvolution of non-immune cells. We developed a
deconvolution integration tool (Decosus, available as an R
package) without tissue type restrictions, allowing for universal
application of the integration framework. A further advantage of
Decosus is the ability to generate both relative (allowing sample-
to-sample comparison only) and absolute (also allowing within-
sample comparison of one cell type to another) estimations where
possible. We demonstrate the utility of Decosus through
reference datasets and use cases, including cancer and non-
cancer datasets. Decosus generates a validated and robust
decomposition of cell composition in various tissue types
while allowing for flexible integration of new methods and
signatures as they become available (github.com/caanene1/
Decosus).

MATERIALS AND METHODS

Deconvolution Method
We used common cell deconvolution methods and signatures to
estimate cell composition from bulk RNA-Seq datasets
individually. The methods include EPIC (Racle et al., 2017),
MCPcounter (Becht et al., 2016), quanTISeq (Finotello et al.,
2019), and xCell (Aran et al., 2017). The estimates for the four
methods were generated using the corresponding R
implementations: MCPcounter (v1.2.0), EPIC (v1.1.5), xCell
(v1.1.0), and quanTISeq (github.com/icbi-lab/quanTIseq). In
addition to these, we used the following gene signatures:

Danaher, Davoli, Rooney (Bindea et al., 2013; Danaher et al.,
2017; Davoli et al., 2017), and averaged the gene expressions to
provide measures of cellular abundance for each signature.
Additionally, we provide optional gene signatures from the
CellMarker database (Zhang et al., 2019) and use this in the
analyses featured here.

Decosus Framework
Decosus is an R package that flexibly integrates the estimates of
cell compositions from deconvolution methods and cell
signatures. We identified cell types for which estimates exist in
at least two of the seven default methods and signatures
(Supplementary S1 CSV). This mapping was similar to that
of a previously published method, ConsensusTME, where cells
were exhaustively mapped to a controlled vocabulary of cell types
(Jiménez-Sánchez et al., 2019). However, in Decosus, the user can
expand the consensus through the optional arguments for new
signatures and mappings (https://github.com/caanene1/
Decosus), ensuring that Decosus can produce results relevant
to the most up-to-date cell signatures and allowing the addition of
rarer cell types. For instance, licensing restrictions did not allow
us to include CIBERSORT into the package, but a user can still
integrate CIBERSORT if you obtain the output or source code
from the author’s website.

After generating the estimates for the individual methods,
we average the values for the source cells to create a single
estimate for the cell types in the controlled vocabulary
(Supplementary S1 CSV). The assumption behind this
approach is that it limits any one method from
dominating the estimates, thereby ensuring the consensus
is closer to the best measure or is the best performing measure
(see results section). We also included optional arguments in
the function call to specify whether the data is to be scaled or
not and the aggregation mode (i.e., mean (default) or
geometric mean). Furthermore, two outputs are provided;
1) relative, the default using all methods, and 2) absolute,
which is derived by limiting the methods used to those that
can be considered absolute cell compositions (EPIC and
quanTISeq, reviewed previously by Sturm et al., 2019).
This option offers a less comprehensive selection of
consensus cells than the relative output but may be helpful
in analyses requiring cell-cell comparison, which is not
permitted when using all seven algorithms due to the
methods involved (see Table 1 and Sturm et al., 2019).
The Decosus R package can be obtained through GitHub
(https://github.com/caanene1/Decosus).

TABLE 1 | Default deconvolution method and signatures included in Decosus.

Signature/Method Type Comparison

Xcell Algorithm Across Samples
MCP-counter Algorithm Across Samples
quanTISeq Algorithm Across Samples & Between Cells
EPIC Algorithm Across Samples & Between Cells
Danaher Signature Across Samples
Davoli Signature Across Samples
Rooney Signature Across Samples
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Datasets for Benchmarking
To benchmark the Decosus framework, we obtained pre-
processed bulk RNA-seq and FACS data from Sturm et al.
(2019) through their Github repository (https://github.com/
icbi-lab/immune_deconvolution_benchmark/releases/
download/v1.0.0-rcl/data.tar.gz). This data includes eight
healthy PBMC samples (Hoek data) (Finotello et al., 2019),
four metastatic melanoma samples (Racle data) (Racle et al.,
2017) and three ovarian cancer ascites samples (Schelker data,
x2 replicates) (Schelker et al., 2017). We obtained 20 PBMC
samples analysed by microarray (gene-level values) and flow-
cytometry from the CIBERSORT web portal (Cibersort data)
(Newman et al., 2015). Additionally, we obtained the two
(SDY311, n = 76; SDY420 ref, and n = 105) pre-processed
bulk RNA-seq and FACS data from the Immport study (Alpert
et al., 2019) through the xCell Github repository (https://
github.com/dviraran/xCell/tree/master/vignettes).

To evaluate the performance of Decosus in real-world clinical
contexts, we interrogated two additional RNA-Seq datasets. The first
dataset contained skin samples of atopic dermatitis (n = 54) and
psoriasis (n = 55) (GSE121212) (Tsoi et al., 2019). The second
dataset was normal skin samples (sun-exposed and non-sun
exposed) samples from the GTEX project (n = 1879) (Lonsdale
et al., 2013).

All RNA-Seq gene expression values are expressed as
transcript per million (TPM).

Datasets for Simulation Studies
To evaluate how well Decosus estimates known cell compositions
compared to individual methods, we simulated cell mixtures from
single-cell RNA-Seq datasets. Specifically, we extracted the RNA
expression values for select samples from the Panglaodb data
portal (Franzén et al., 2019), including SRA701877, SRS3279685,
SRA713577, SRS3363004, SRA716608, SRS3391633, SRA779509,
SRS3805246, SRA878024, and SRS4660846.

Next, we generated expression profiles as below:

1 Given a dataset of annotated n single cell types, assign random
fractions to each cell type (the fractions sum to 100 and integers)
(data 1).

2 Generate an expression matrix of single cells with 100 columns
by randomly selecting the corresponding fraction of the
available samples for the selected cell types to be included
in the matrix. Here, we used a random selection to introduce
noise like the variation in real datasets (data 2). We allow
sampling with replacement if the cell type-specific fraction is
bigger than the available single cells.

3 Finally, generate a simulated expression profile by adding the
expression values across the rows of data 2 and use data 1 as the
ground truth.

We repeat the process 500 times (per data source) with
different fractions, samples, and cell types.

RESULTS

Overview of the Decosus Integration
Framework

Our framework integrates seven deconvolution algorithms
and cell signatures into consensus estimates of cell
composition (Table 1). We do this by selecting and
averaging the shared cell types across the tools
(Supplementary S1 CSV). It requires a gene expression
dataset and a set of optional parameters under a single R
function (set to reasonable defaults, see github. com/
caanene1/Decosus). The R implementation of the
framework allows for flexible inclusion of new algorithms
or signatures at run time (see https://github.com/caanene1/
Decosus). When available, the final output has two tables
representing relative and absolute consensus estimates (see
Materials and Methods).

FIGURE 1 | Decosus produces stable estimates of cell proportions. (A)
Box plot of the Pearson’s R of correlation between decomposed and
simulated cell fractions (n = 500 per single-cell RNA-Seq data used in the
simulations studies). The higher the R, the more similar the decomposed
and simulated cell fractions are. (B) Bar plot of inter-method variability in
Pearson’s R of correlation between decomposed and simulated cell fractions
measured by IQR. The lower the IQR, the more stable the estimates from the
method across datasets and cell types. Within the plots, colours represent the
method of estimating cell fractions from bulk RNA-Seq datasets. The number
of cell types covered for each method in the simulation is indicated (Cell
Types). MCP = MCPcounter.
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Analysis of Simulated Cell Proportions
Demonstrate the Stability of Decosus
Cell proportion deconvolution methods produce different
results in a data type-dependent manner. Decosus
combines and integrates these methods into a single stable
consensus value to reduce the data-dependent differences in

performance. To assess how well the framework achieves this
aim, we first evaluated its ability to decompose known cell
proportions using simulated gene expression profiles (see
Methods). We simulated large sets of bulk-expression
profiles (n = 2,500) with specific cell proportions from
multiple single-cell RNA-Seq datasets (source, n = 5). We

FIGURE 2 | Decosus identifies known cell fractions. Bar plots of the Pearson’s R of the correlation between computer-generated cell fractions and flow cytometry
fractions. The higher the R, the more similar is the computational estimates and the gold standard. Within the plots colours represent the method of estimating cell
fractions from bulk RNA-Seq datasets. MCP = MCPcounter.
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used multiple sources to reflect data-specific differences in
real applications. Interrogating the correlation coefficient
between the estimates and the expected cell proportions
across a range of cell types revealed surprisingly stable
estimates of cell proportions (Figure 1). Decosus had the
4th lowest interquartile range (IQR = 0.31) compared to xCell
(IQR = 0.39), MCPcounter (IQR = 0.47), quanTISeq (IQR =
0.50), and Danaher (IQR = 0.64) (Figure 1A). Although
Rooney (IQR = 0.09), Davoli (IQR = 0.22), and EPIC (IQR
= 0.29) were lower than Decosus, this is potentially due to the
small number of cell types they covered in the simulation
(Davoli = 3, EPIC = 3, and Rooney = 2), compared to the other
methods (Decosus = 6, xCell = 6, MCPcounter = 5, quanTISeq
= 4, and Danaher = 4). Indeed, normalising for the number of
cell types revealed Decosus has the second-lowest IQR
(Supplementary Figure S1). The stability of Decosus
estimates is due to the robustness of averaging multiple
signatures and methods (see Methods). As expected, there
is no difference between median R values across the methods
(Kruskal–Wallis, p = 0.6, Figure 1B), suggesting that Decosus
increases the stability of the estimates without
reducing the average performance expected from
individual tools.

Benchmark on Known Cell Proportions
Demonstrate the Utility of Decosus
We applied the Decosus framework to six benchmark
datasets (see Methods) and compared the estimated
proportions with their corresponding flow cytometry
fractions used as ground-truth. We also interrogated the
distribution of the performance statistic across the
individual methods and datasets. To ensure we can
perform meaningful comparative analysis, we restricted
our analysis to six cell types (natural killer cells, dendritic
cells, monocytes, CD4+ T-cells, CD8+ T-cells and B-cells)
present in two or more ground truth datasets. Our consensus
estimates obtained a high correlation with the flow cytometry
fractions (Median R = 0.64) across all datasets and the
evaluated cell types (Figure 2). This observation was
consistent with the contributing methods/signatures being
highly concordant with the corresponding gold standards
(Figure 2). However, we observed unpredictable
performance differences across the same cell type for the
individual methods (Figure 2). For natural killer (NK) cells,
Danaher (r = −0.04038) and EPIC (r = 0.53) had the worst
performances in the Cibersort dataset, Rooney (r = −0.0557),
xCell (r = 0.129) and Davoli (r = −0.125) in Schelker, and
EPIC (r = −0.08), Danaher (r = 0.0316), quanTISeq (r =
0.243), and xCell (r = 0.253) in SDY420, while all the methods
performed well in Hoek or poorly in SDY311 (Figure 2). We
observed similar behaviour for monocytes, where xCell
performed worse in Hoek (r = 0.244) and xCell (r = 0.215)
in SDY311. Interestingly, for dendritic cells, Davoli
performed worse in both Hoek (r = 0.092) and Schelker (r
= 0.25), but QuanTISeq additionally performed poorly in
Hoek datasets (r = 0.55). Although T and B cells have multiple

subtypes making benchmark analysis difficult, we generally
made similar observations for CD4+ T cells, CD8+ T cells and
B cells (Figure 2), where the different combinations of
methods performed worse in different datasets. These
observations suggest that no single method can guarantee
top performance across user cases, even for the same cell type.
However, our consensus estimates consistently performed
well across the datasets, regardless of cell types and user cases
(Figure 2). For instance, it had high performance in all
datasets with DC (Hoek, r = 0.82; Schelker, r = 0.69) and
most datasets with NK cells (Cibersort, r = 0.668; Hoek, r =
0.973; SDY420, r = 0.315). Furthermore, Decosus was able to
derive the cellular estimates for all six cell types benchmarked
here, whilst other methods/frameworks were restricted to a
subset of cell types where marker gene signatures were
included internally (Figure 2).

Decosus Identified the Immunological
Differences Between Atopic Dermatitis and
Psoriasis
To further demonstrate the utility of Decosus and evaluate its
performance in other physiological and health settings, we
focused on diseases and cell types that were not well covered
and annotated by existing methods. Here, we simulated a
condition with known condition-dependent differences in
cell proportions. Specifically, atopic dermatitis (AD) and
psoriasis (PSO) are common skin conditions associated with
barrier dysfunction. Both are characterised by T-cell driven
inflammation; however, in AD, CD4+ T helper cells (Th) are
polarised towards a Th2 phenotype, while Th1 polarization is
characteristic of PSO (Brunner et al., 2017; Albanesi, 2019).
Thus, immune cell composition estimated from bulk RNA
expression profiles from PSO and AD skin samples should
enrich for Th1 and Th2 cell signatures, respectively. Note that
many existing methods do not have these two cell types, thus
could not handle such cases. To this end, we collected 54 AD
and 55 PSO samples from a publicly available dataset
(GSE121212) (Tsoi et al., 2019) and applied our framework
to interrogate the enriched immune profiles. We observed a
significantly higher Th1 cell signature in PSO samples than AD
samples and the reverse for Th2 (Figure 3), aligning with what
is widely recognised in the literature (Brunner et al., 2017;
Albanesi, 2019). The results also showed expansions in other
cell types known to infiltrate each lesion, such as basophils in
AD (Mashiko et al., 2017), macrophages and neutrophils in
PSO (Lowes et al., 2014) (Figure 3). These results indicate that
our framework can provide robust estimates of cell
proportions in non-cancer bulk tissue samples, like
precursor lesions.

Decosus Enables the Identification of UV
Mediated Immune Reprogramming in the
Skin
Finally, we utilised transcriptomic data from the GTEX project
of non-sun exposed and sun-exposed skin to evaluate the
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impact of ultraviolet radiation (UV) on skin immune profiles.
We assessed the difference between the immune cell estimates
of the sample groups and visualised the fold change for
significant (T-test, p < 0.05) cell types. We found that UV
exposure significantly enriched several immune cell types in
the skin, including monocytes, dendritic cells, and
macrophages (Figure 4). Interestingly, CD4+ and CD8+

T cells were depleted in sun-exposed skin (Figure 4). These
observations are consistent with previous studies showing that
UV exposure inhibits the expansion of these T cell subtypes

while increasing innate immune cells (Rana et al., 2008; Gläser
et al., 2009). Reprogramming of T cell composition is
consistent with the idea that impaired immune function
through UV damage plays a role in skin cancers (Freeman
et al., 2014; Slater and Googe, 2016). Indeed, active research
programmes in our group are using Decosus to help
characterise the immunological factors
underlying the progression of actinic keratoses (sun-
damaged skin, pre-malignant lesions) to squamous cell
carcinomas.

FIGURE 3 | Decosus identifies the Th1 and Th2 differences between atopic dermatitis and psoriasis. (Top) Heatmap of Decosus estimated cell fractions across
atopic dermatitis (AD, n = 54) and psoriasis (PSO, n = 55) samples fromGSE121212.Within the plot, Th1 and Th2 cells are indicated in red, while other cells of interest are
highlighted with blue. (Bottom) Box plots of the Decosus estimates of Th1 cells (left) and Th2 (right) fractions across skin samples of AD and PSO. Multiple test adjusted T.
test p values are indicated. Within the heatmap, NL = non-lesional and L = lesional.
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DISCUSSION

Estimating the cellular compositions in bulk RNA-Seq samples has
been addressed by various algorithms and gene signatures. These
approaches have different assumptions and strengths, frequently
resulting in varied performances across the different dataset (Sturm
et al., 2019). Thus, it is challenging to objectively select the best
method in real applications which lack ground truth cell fractions.
The Decosus framework addressed this gap by providing consensus
estimates that exhibit consistent performance across different
benchmark datasets and has further invaluable features not found
in existing consensusmethods. Themain utilities of Decosus are that
it 1) leverages the strengths of the individual methods and signatures
whileminimising their weakness, and 2) provides a broader coverage
of cell types.

Further,our framework is inherently expandable, whereby the
user can add new methods, signatures, and cell mappings to the
default set. We demonstrated this function by including gene sets
from the CellMarker database to enable the consensus estimation
of Th1 and Th2 cell fractions in AD and PSO samples (Figure 2).
This flexible approach is critical for robustly estimating cell
abundance and fractions across biological states and represents
an important advance in the domain compared to previous
methods that exclusively focus on common cancers or cell
types. Though the expansion of the signatures and mappings

may inadvertently incorporate spurious estimates to the
consensus, the multiple sources per cell type can better
capture the diversity in cellular gene expression profiles across
different biological states. Unlike the ConsensusTME that
generated new consensus gene signatures (Jiménez-Sánchez
et al., 2019), we solved this problem by first calculating the
cell estimations individually for each method (see Methods)
before taking the average value for the same cell in each
method. Here, a future update may include additional ways to
generate consensus estimates such as geometric mean, trimmed
and weighted averages, particularly as validation datasets become
available. Further advantages to our tool are the ability to apply
Decosus to any tissue type or disease compared to previous efforts
to create consensus cell composition estimates, which focused on
tumour tissues (Jiménez-Sánchez et al., 2019; Sturm et al., 2019).
We also incorporated the option to use absolute estimates, which
is crucial for applications requiring cell-cell comparisons.

Benchmarking on the PBMC and cancer datasets showed that
although each method ranked highly in at least one dataset, we
saw highly varied correlations across datasets. This performance
issue is expected but impossible to identify in actual use cases
because of the differences in the statistical assumptions and gene
signatures associated with each method. Our consensus estimates
reduce this unpredictable behaviour by averaging out the poorly
performing methods. Indeed, we adequately identified the
expected Th1 cells enriched in PSO and the Th2 cells in AD.
It is worth noting that many existing methods, such as Cibersort,
EPIC, and ConsensusTME, could not resolve such a case due to
their limited coverage of diseases/conditions or cell types (see
Supplementary S2 CSV), further highlighting the versatility of
our method.

An important limitation of the Decosus framework is that it
represents the aggregate performance of the contributing methods.
Thus, if they have universally poor performance for a given case,
then Decosus will have a corresponding poor performance. For
instance, all the approaches, including Decosus, performed poorly in
decomposing NK cells and Monocytes from the SDY311 dataset
(Figure 2). However, Decosus is stable for most cases compared to
the individual methods.

To allow for easy incorporation of Decosus into new and
existing workflows, we implemented an object-oriented system in
R, allowing the user to add, retrieve and evaluate individual
methods (https://github.com/caanene1/Decosus). The full
output of Decosus provides consensus estimates when
available and offers unified interphase for the procedures.
Although, Decosus is implemented and valid for human data,
the framework can easily be expanded with new methods and
signatures, including for other species at run time, as
demonstrated in the analysis of Th1 and Th2 cells in skin
samples. Moreover, one of the future directions of Decosus is
to create a flexible function within ourmethod that allows users to
input associated weights of individual methods and additive
equations, to facilitate users to infer the most accurate
estimates of cellular compositions in their biological settings.
However, this will require very large validation datasets to
derive weights accurately for the biological setting of interest.

FIGURE 4 | Identification of UV-mediated reprogramming of skin
immune cell profile. Bar plot depicting the mean difference between the
Decosus immune cell estimates for non-sun exposed skin (NS) and sun-
exposed skin (SE) (n = 1879). The plot shows only immune cells
significantly different between the two groups at p-value < 0.05.
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NFE2L3 as a Novel Biomarker
Associated With IL-2/STAT5/NLRP3
Signaling Pathway in Malignant
Pleural Mesothelioma and Other
Cancers
Zhen Wang†, Han Yang†, Bin Luo, Pengfei Duan and Peng Lin*

Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer
Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China

Background: Malignant pleural mesothelioma (MPM) is a malignant tumor originating
from pleural mesothelial cells and has a high mortality rate worldwide. With the advent of
immunotherapy inMPM treatment, there is an urgent need to elucidate the immune-related
mechanisms in this caner.

Methods: Single-sample gene set enrichment analysis (ssGSEA) was used to score the
immunocytes infiltration of data from different database sources. Identification of
immunocyte-related genes was performed with weighted gene co-expression network
analysis (WGCNA), differentially expressed genes (DEGs) analysis, and correlation
analysis. Pan-caner analysis was performed using “DiffExp” and “Correlation” modules
in TIMER.

Results: T-helper 2 (Th2) cell was found to be a poor prognostic factor for patients with
MPM. Then a transcription factor, NFE2L3, was identified as a biomarker that showed a
strong positive correlation with Th2 cell infiltration, and was highly expressed in MPM
tissues and was related to the poor prognosis of these patients. At the same time, multiple
NFE2L3 methylation sites were negatively correlated with Th2 cell infiltration, and patients
with a high degree of methylation enjoy a better prognosis. Pan-caner analysis indicated
that NFE2L3might promote the differentiation of Th2 cells through the IL-2/STAT5/NLRP3
signaling pathway in MPM and many other cancers.

Conclusion: We believe that NFE2L3 can serve as a potential biomarker related to the
diagnosis and prognosis of patients with MPM, and speculate that NFE2L3 could promote
Th2 cell differentiation via IL-2/STAT5/NLRP3 signaling pathway in MPM and many other
cancers.
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INTRODUCTION

Malignant pleural mesothelioma (MPM) originates from pleural
mesothelial cells and is a relatively rare type of cancer, which
accounts for 0.3% of all cancer cases (Fernandez-Cuesta et al.,
2021). Due to its aggressiveness and difficulty in early diagnosis,
MPM is difficult to be cured. Because of the limited role of surgery
in the treatment of MPM, the chemotherapy regimen of
pemetrexed combined with platinum has occupied a dominant
position in the treatment of MPM for a long time (de Gooijer
et al., 2018). However, survival benefit from chemotherapy is
limited, and the 5-years survival rate of patients with MPM is still
less than 10% (Kindler et al., 2018).

In recent years, immune checkpoint inhibitors (ICIs) have
been proven to improve the prognosis of various solid tumors,
and their anti-tumor effects in MPM have gradually become clear
(Lievense et al., 2017). A phase III clinical trial (Checkmate 743)
has proved for the first time that compared with chemotherapy,
the first-line treatment of nivolumab combined with ipilimumab
can provide significant improvements in overall survival (OS) for
patients with advanced MPM (Baas et al., 2021). However,
considering the complexity of the tumor immune
microenvironment, we still need to explore more immune-
related mechanisms and targets to increase our understanding
of MPM and treatment methods for this disease.

As an essential part of the human immune system, CD4+

T cells play a pivotal role in adaptive immune responses. Under
the activation of external cytokines, naive CD4+ T cells can
differentiate into multiple T helper cells, including Th1, Th2,
Th17 (Zhu et al., 2010). Among them, Th2 cells have been
confirmed to have immunosuppressive effects in many tumors
(Kusuda et al., 2005; Nevala et al., 2009; De Monte et al., 2011). In
normal tissues, T helper lymphocyte subsets are in equilibrium.
However, tumor cells can secrete a variety of cytokines, putting
the body in a state where Th2 cells dominate, leading to immune
escape and tumor progression. Therefore, in this study, we
focused on the effect of Th2 cells in patients with malignant
pleural mesothelioma and explored a novel regulatory network of
Th2 cell differentiation using a series of bioinformatics analysis
methods.

MATERIALS AND METHODS

Analysis Overview
In this study, utilizing transcriptomes downloaded from TCGA
and GEO, we firstly identified that Th2 cell was associated with
prognosis of patients with MPM, and NFE2L3, a transcription
factor (TF), was associated with infiltration of this immunocyte.
Then, using DNAmethylation data from TCGA, we analyzed the
correlation of NFE2L3’s methylation site with the infiltration of
Th2 cell and the prognosis of patients with MPM. Meanwhile,
using tissue sections from patients with MPM, we verified the
expression of NFE2L3 in normal pleural tissues and tumor
tissues. Finally, with the help of TIMER database, we analyzed
the correlation between NFE2L3 and Th2 cell regulatory
pathway-related genes in mesothelioma (MESO) and many

other cancers. The detailed research process is shown in the
flow chart (Figure 1).

Date Source
All data used in this study are from public databases, including
Gene Expression Omnibus (GEO) and The Cancer Genome Atlas
(TCGA) (Barrett et al., 2013; Cancer Genome Atlas Research
et al., 2013). The clinical data, transcriptome data in FPKM
format and DNA methylation data of malignant pleural
mesothelioma (MPM) in TCGA were downloaded from the
National Cancer Institute’s (NCI’s) Genomic Data Commons
(GDC) (https://portal.gdc.cancer.gov/) (Zhang et al., 2021).
Search with “mesothelioma” as a keyword, we found and
downloaded gene expression profiles of GSE51024 and
GSE163720 from GEO database (http://www.ncbi.nlm.nih.gov/
geo/). GSE51024 is composed of 55 MPM tissues and 41 normal
paired lung parenchyma tissues. And GSE163720 contains 131
tumor samples from patients with MPM.

Single-Sample Gene Set Enrichment
Analysis
Immunocyte-related gene sets were got from The Cancer
Immunome database (TCIA) (Charoentong et al., 2017).
Through the expression value of 782 immune-related genes, we
scored infiltration levels of 28 types of immunocytes. Immunocytes
infiltration levels of samples were quantified by the ssGSEA
algorithm in R package GSVA (Hanzelmann et al., 2013).
Through Kaplan-Meier survival analysis, we found out the target
immunocyte associated with the prognosis of patients with MPM.

Weighted Gene Co-Expression Network
Analysis
The transcriptome data of samples from TCGA were further
analyzed utilizing WGCNA to find a gene set highly correlated
with infiltration level of the target immunocyte. As an algorithm
for transcriptome analysis, WGCNA can identify genes with
highly correlated expression patterns, and calculate the
correlation between the gene set and clinicopathological traits
of samples (Langfelder and Horvath, 2008).

R package “WGCNA” was used to complete the calculation
process in this step. First, the 5,000 genes with the highest average
expression were selected for the subsequent analysis. Then, the
optimal soft-thresholding power for network construction was
calculated, and module eigengenes (MEs) containing a series of
co-expressed genes were constructed using a dynamic tree-cutting
algorithm. Finally, the co-expressed gene set with the strongest
correlation with Th2 cell infiltration can be found by analyzing
the correlation between MEs and clinicopathological traits.

Functional Enrichment Analysis
Metascape, a meta-analysis website, was used for functional
enrichment analysis of the co-expressed gene set (Zhou et al.,
2019). By using the “Express Analysis”module in Metascape, the
enriched biological processes and pathways of the selected co-
expressed gene set were obtained.
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Differentially Expressed Genes and
Correlation Analysis
GSE51024 is composed of 96 samples, including 55 MPM tissues and
41 normal paired lung parenchyma tissues. UsingGSE51024 for DEGs
analysis, we can screen out genes that are significantly up-regulated or
down-regulated in MPM tissues compared to normal lung
parenchyma tissues. DEGs were analyzed using “limma” package in
R, with an adjusted p value < 0.05 and |logFC| >1 (Ritchie et al., 2015).
Mann-Whitney test was performed to calculate expression differences
between tumor and normal tissues (Perme and Manevski, 2019).

The intersection of DEGs and selectedMEs was used to further
analyze the correlation with infiltration level of the target
immunocyte. Transcriptome data and methylation data from
TCGA was used for correlation analysis, and GSE163720 from
GEO was used for verification. Spearman’s correlation test was
performed to screen the gene with the highest correlation with
infiltration level of the target immunocyte (Bishara and Hittner,
2012). And the correlation coefficient greater than 0.3 is
considered vital (Funder and Ozer, 2019). Then, Kaplan-Meier
survival analysis was used to explore the relationship between

FIGURE 1 | The detailed workflow of this study. MPM, malignant pleural mesothelioma; TCGA, The Cancer Genome Atlas; ssGSEA, single-sample gene set
enrichment analysis; Th2 cells, type 2 T helper cells; WGCNA, weighted gene co-expression network analysis; GEO, Gene Expression Omnibus; DEGs, differentially
expressed genes.
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transcriptome data and methylation data of the screened gene
and prognosis of patients with MPM.

Immunohistochemistry Staining
MPM and normal pleural tissues were obtained from patients
who undergone surgery in Sun Yat-Sen University Cancer
Center. All specimens were diagnosed as MPM by pathologist
in Sun Yat-Sen University Cancer Center.

Immunohistochemistry (IHC) staining was used to examine
NFE2L3 expression in MPM tissues and paired normal pleural
tissues. All paraffin-embedded specimens were cut into 5-μm
sections and placed on glass slides, then baked at 60°C for 1 h.
Firstly, dewaxing all specimens with xylene and rehydrating with
ethanol, then immerse the specimens in sodium citrate-EDTA
buffer, and using microwave heating for antigen retrieval.
Secondly, using 3% hydrogen peroxide to inactivate endogenous
peroxidase, and then blocking non-specific binding with 10% goat
serum. Thirdly, incubating the slides with anti-NFE2L3 rabbit
polyclonal antibody (1:200; NBP2-30870; Novus Biologicals)
overnight at 4°C, after washing with PBS for 4 times, then adding
secondary antibody polymer horseradish peroxidase to sections.

Finally, the slices wer stained with DAB (3ʹ-diaminobenzidine)
and hematoxylin sequentially, dehydrated with gradient ethanol
and mounted with neutral resin.

Pan-Cancer Analysis
TIMER (Tumor IMmune Estimation Resource) is a website that can
provide a comprehensive analysis of transcriptome data fromTCGA
(Li et al., 2020). First, we study the differential expression of the
screened gene between tumor and normal tissues across all TCGA
samples using “DiffExp” module in TIMER. Then, using
“Correlation” module, we performed correlation analysis of two
related genes not only inMESO but also in many other cancer types.
In this step, correlation analysis was adjusted by tumor purity.

RESULTS

Patients With High Th2 Cell Infiltration
Suffer a Poor Prognosis
The heat map of the infiltration level of 28 immunocytes is shown
in Figure 2A. Through Kaplan-Meier survival analysis, it can be

FIGURE 2 | (A) Immunocyte infiltration levels of 85 samples from TCGA. (B)Kaplan–Meier curve of patients from TCGAwhen using themedian of Th2 cell infiltration
levels as the cut-off value (C) Sankey plot depicting the relationship across the tumor stage, new tumor event and survival status of patients stratified by median value of
Th2 cell infiltration levels.
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seen that patients with high Th2 cell infiltration suffer a
significantly poor prognosis (Figure 2B, p = 0.00014). A
Sankey plot presents the correlation between stage, recurrence
and survival status of patients stratified by Th2 cell infiltration
level (Figure 2C).

Identification of Co-Expressed Genes
Associated With Th2 Cell
WGCNA can identify co-expressed genes that are highly
correlated with Th2 cell infiltration. With the help of a
dynamic tree-cutting algorithm, the 5,000 genes with the

highest average expression were divided into 18 module
eigengenes (MEs). Then Pearson’s correlation coefficient was
used to calculate the correlation between the MEs and
clinicopathological traits. Figures 3A,B shows that the red
module exhibits the highest correlation coefficient with Th2
cells (Cor = 0.42, P = 5e-05). The correlation across each gene
in the red module and Th2 cells is plotted in Figure 3C (Cor =
0.53, p = 3.1e-20).

Functional enrichment analysis revealed that genes contained
in the red module are mainly involved in various functions of the
immune system (Figure 3D), including regulation of cell
activation, neutrophil degranulation, antigen processing and

FIGURE 3 |Weighted gene co-expression network analysis (WGCNA) of MPM samples from TCGA. (A) Correlations between module eigengenes (MEs) and Th2
cell infiltration levels. (B) Gene significance (GS) for Th2 cell infiltration levels across all modules. (C) Gene significance (GS) of the genes contained in the red module
versus module membership (Th2 cell infiltration levels). (D) Functional enrichment analysis of genes contained in the red module (Functional enrichment terms colored by
p-values).
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presentation of peptide antigen via MHC class II, cytokine
signaling in immune system, lysosome, positive regulation of
immune response, leukocyte differentiation, leukocyte
chemotaxis, microglia pathogen phagocytosis pathway and
negative regulation of immune system process.

Identification of Th2 Cell Infiltration-Related
Genes
Differentially expressed genes (DEGs) analysis was performed to
identify up-regulated and down-regulated genes between MPM
tissues and normal lung parenchyma tissues. Through DEGs

FIGURE 4 | (A) Volcano plot of differentially expressed genes (DEGs) between tumor tissues and paired normal tissues of samples from GSE51024 (adjusted p
value < 0.05 and |logFC| >1). (B) Venn plot of the intersection of DEGs from GSE51024 and genes contained in red module from WGCNA (C) Correlation between
NFE2L3 expression and Th2 cell infiltration levels of samples from TCGA. (D) Correlation between NFE2L3 expression and Th2 cell infiltration levels of samples from
GSE163720 (E) Correlations between DNA methylation levels of NFE2L3 related sites and Th2 cell infiltration levels of samples from TCGA.
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FIGURE 5 | (A) Pan-cancer analysis of NFE2L3 expression of all samples in TCGA. (B) Box plot of NFE2L3 expression in tumor tissues and paired normal tissues of
samples from GSE51024 (C) Kaplan–Meier curve of patients from TCGA when using the median of NFE2L3 expression as the cut-off value. (D) Immunohistochemical
staining of NFE2L3 in normal pleural epithelial tissue (black arrow) and malignant pleural mesothelioma tumor tissue (E) Kaplan–Meier curves depicting the relationships
between DNA methylation levels of NFE2L3 related sites and prognosis of patients with MPM.
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analysis of the transcriptome data of GSE51024, 1,211
differentially expressed genes were screened, including 364
genes up-regulated in MPM tissues and 847 down-regulated
genes. The expression profile of DEGs is shown in a volcano
map (Figure 4A, adjusted p value <0.05 and |logFC| >1).

The red module obtained by WGCNA of data from TCGA
contains 260 genes, of which 10 genes are differentially expressed
in MPM tissues (Figure 4B). Through correlation analysis with
Th2 cell infiltration level of samples from TCGA, NFE2L3 was
identified that its expression level has the highest correlation with
Th2 cell infiltration level (Figure 4C, Cor = 0.47). Then we
utilized the transcriptome data of GSE163720 to validate and
confirmed the strong correlation between NFE2L3 and Th2 cells
(Figure 4D, Cor = 0.30).

By comparing MPM tissues and normal lung parenchyma
tissues of GSE51024, NFE2L3 is highly expressed in MPM tissues
(Figure 5B, p = 5.04e-11). And using tissue sections for
immunohistochemical staining, we can observe that NFE2L3 is
mainly expressed in tumor cell nuclei, but not in normal pleural
tissues (Figure 5D). It is also confirmed by analyzing the
transcriptome data of TCGA that patients with higher
NFE2L3 expression suffer a worse prognosis (Figure 5C, p <
0.0001).

In TCGA, DNA methylation levels of MPM tissues were
determined with the Illumina Infinium Methylation 450 K
array. After matching sample names, 9 of the 19 methylation
sites of NFE2L3 were found to be correlated with the infiltration
of Th2 cells, and all of them were negatively correlated
(Figure 4E). Table 1 details the basic information of NFE2L3
methylation sites and their correlations with Th2 cell infiltration
level. Kaplan-Meier survival analysis also identified that the

methylation levels of cg08822075, cg10536999, cg12510708,
and cg19310148, were associated with the prognosis of
patients, and patients with higher methylation levels had
better prognosis (Figure 5D).

NFE2L3 Could Promote Th2 Cell
Differentiation via IL-2/STAT5/NLRP3
Signaling Pathway
Through pan-cancer analysis of samples in TCGA, it can be seen
that compared with normal tissues, NFE2L3 is highly expressed
in almost all kinds of tumor tissues (Figure 5A).

According to previous research, NLRP3 is a
transcriptional regulator of Th2 cell differentiation, and
signal transducer IL-2R and STAT5 triggers its expression
(Bruchard et al., 2015). Therefore, we further studied the
correlation between NFE2L3 and the expression of related
genes involved in this pathway.

As shown in Table 2, in MESO, NFE2L3 has a strong
correlation with IL-2RA (Cor = 0.295), IL-2RB (Cor = 0.303)
and IL-2RG (Cor = 0.228), which constitute the high-affinity IL2
receptor (IL-2R) (Wang et al., 2005). STAT5A and STAT5B are
part of JAK/STAT signaling pathway, they can mediate
transcriptional signals by forming homodimers or
heterodimers (Maurer et al., 2019). In MESO, NFE2L3 and
STAT5B show a strong correlation (Table 2, Cor = 0.35), but
the correlation between NFE2L3 and STAT5A is not statistically
significant. And there is also a strong correlation between
NFE2L3 and NLRP3 (Table 2, Cor = 0.254). The potential
interactions across NFE2L3, IL-2R, STAT5, NLRP3, Th2 cell
and tumor cells are shown in Figure 6.

TABLE 1 | The basic information of DNA methylation sites of NFE2L3 and the correlations between their methylation levels and Th2 cell infiltration. Chrom, chromosome;
ChromStart, starting position in the chromosome; ChromEnd, end position in the chromosome.

Gene Chrom ChromStart ChromEnd Correlation Between
NFE2L3 Methylation

Probes and
Th2 Cells

p-Value

Cor

cg03781084 NFE2L3 chr7 26,152,106 26,152,107 −0.110 3.15E-01
cg03886242 NFE2L3 chr7 26,152,412 26,152,413 −0.019 8.63E-01
cg04995722 NFE2L3 chr7 26,152,414 26,152,415 0.009 9.36E-01
cg07876897 NFE2L3 chr7 26,152,076 26,152,077 −0.103 3.45E-01
cg07945582 NFE2L3 chr7 26,166,959 26,166,960 −0.351 9.19E-04*
cg07986525 NFE2L3 chr7 26,152,579 26,152,580 −0.166 1.26E-01
cg08822075 NFE2L3 chr7 26,153,987 26,153,988 −0.374 3.86E-04*
cg10536999 NFE2L3 chr7 26,153,489 26,153,490 −0.480 2.96E-06*
cg12510708 NFE2L3 chr7 26,154,185 26,154,186 −0.397 1.55E-04*
cg13118545 NFE2L3 chr7 26,151,979 26,151,980 −0.110 3.15E-01
cg13855897 NFE2L3 chr7 26,186,769 26,186,770 −0.002 9.82E-01
cg14534464 NFE2L3 chr7 26,152,013 26,152,014 −0.251 1.97E-02*
cg14644871 NFE2L3 chr7 26,153,136 26,153,137 −0.363 5.96E-04*
cg14684457 NFE2L3 chr7 26,153,346 26,153,347 −0.346 1.11E-03*
cg16882373 NFE2L3 chr7 26,151,838 26,151,839 −0.123 2.58E-01
cg18844118 NFE2L3 chr7 26,151,869 26,151,870 −0.043 6.95E-01
cg19310,148 NFE2L3 chr7 26,156,654 26,156,655 −0.282 8.54E-03*
cg21699330 NFE2L3 chr7 26,153,412 26,153,413 −0.314 3.29E-03*
cg24424745 NFE2L3 chr7 26,160,252 26,160,253 −0.051 6.39E-01
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In addition to MESO, NFE2L3 also shows powerful
correlations with IL-2RA, IL-2RB and IL-2RG in many other
tumors, including BRCA-Her2, DLBC, ESCA, HNSC-HPVpos,
KIRC, KIRP, LGG, LIHC, LUSC, PRAD, SARC, SKCM and
THCA (Table 2). And among the above cancers, NFE2L3
shows a strong correlation with STAT5A or STAT5B as well
(Table 2). Among the cancers analyzed, the correlations between
NFE2L3 and NLRP3 are also statistically significant, among
which the correlation is relatively low in LUSC (Table 2, Cor
= 0.158), and the correlation is highest in DLBC (Table 2, Cor =
0.638).

DISCUSSION

As a very aggressive malignant tumor, malignant pleural
mesothelioma (MPM) is believed to be closely related to
asbestos exposure, BRCA1-associated protein 1 (BAP1)
mutation and ionizing radiation to chest (Carbone et al.,
2019). And a variety of somatic mutations including BAP1,
TP53, NF2 and LATS1/2, are closely related to the occurrence
and development of MPM (Bueno et al., 2016; Hmeljak et al.,
2018; Yang et al., 2020a; Yang et al., 2020b). Due to the low
incidence of MPM and the difficulty in diagnosis, there is still no

unified and effective model for its treatment. Surgery used to be
the only treatment for MPM, but the indications, extent of
surgical resection and survival benefits of surgery are still
controversial (Schipper et al., 2008; Cao et al., 2014).
Beginning in 2004, the US Food and Drug Administration
(FDA) approved the combination of cisplatin and pemetrexed
as the first-line regimen for treatment of mesothelioma
(Vogelzang et al., 2003). Although it has dramatically
improved the survival of patients, the median survival period
of patients who received combined chemotherapy after surgery
still hovered between 17 and 25 months (Tsao et al., 2018).

Of note, with the advent of the age of immunotherapy, a
variety of immune checkpoint inhibitors (ICIs) have brought a
new dawn to the treatment of MPM. The DREAM study
(Durvalumab with First-Line Chemotherapy in Mesothelioma)
investigated the combination of PD-L1 inhibitor durvalumab and
first-line chemotherapy (cisplatin and pemetrexed), and has
brought survival benefits to patients (Nowak et al., 2020).
Then a subsequent international, randomized, phase 3 study
(CheckMate743) investigated Nivolumab in combination with
Ipilimumab versus Pemetrexed with Cisplatin or Carboplatin as
first line treatment in unresectable MPM, and identified that dual
immune checkpoint inhibitors could bring long-term survival for
these patients regardless of histological type (Baas et al., 2021).

TABLE 2 | Correlation analyses between NFE2L3 and IL- 2R/STAT5/NLRP3 related genes in TIMER, which were adjusted by tumor purity. MESO, mesothelioma; BRCA
(Her2), Her2 positive breast invasive carcinoma; DLBC, diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; HNSC-HPVpos, HPV positive head and neck
cancer; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LGG, low grade glioma; LIHC, liver hepatocellular carcinoma; LUSC, lung
squamous cell carcinoma; PRAD, prostate adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; THCA, thyroid carcinoma; Cor, R value of Spearman’s
correlation.

NFE2L3

IL2RA IL2RB IL2RG STAT5A STAT5B NLRP3

MESO Cor 0.295 0.303 0.228 0.085 0.35 0.254
p-value 6.13E-03* 4.75E-03* 3.58E-03* 4.40E-01 1.03E-03* 1.89E-02*

BRCA (Her2) Cor 0.443 0.491 0.459 0.49 0.315 0.417
p-value 5.04E-04* 8.94E-05* 2.86E-04* 9.51E-05* 1.59E-02* 1.12E-03*

DLBC Cor 0.418 0.719 0.311 0.098 0.587 0.638
p-value 6.60E-03* 1.22E-07* 4.80E-02* 5.42E-01 5.57E-05* 7.29E-06*

ESCA Cor 0.249 0.228 0.435 0.377 0.289 0.251
p-value 7.63E-04* 2.10E-03* 1.06E-09* 1.89E-07* 8.41E-05* 6.64E-04*

HNSC (HPVpos) Cor 0.456 0.612 0.671 0.566 0.227 0.275
p-value 7.24E-06* 1.83E-10* 6.12E-13* 7.39E-09* 3.24E-02* 9.11E-03*

KIRC Cor 0.317 0.423 0.355 0.359 -0.006 0.357
p-value 3.15E-12* 1.74E-21* 4.05E-15* 1.73E-15* 9.03E-01 2.89E-15*

KIRP Cor 0.33 0.344 0.304 0.396 0.434 0.391
p-value 5.65E-08* 1.34E-08* 6.16E-07* 4.12E-11* 3.03E-13 7.41E-11*

LGG Cor 0.169 0.294 0.324 0.427 0.241 0.28
p-value 2.10E-04* 5.54E-11* 3.77E-13* 1.48E-22* 9.89E-08 4.40E-10*

LIHC Cor 0.496 0.532 0.573 0.45 0.324 0.551
p-value 7.62E-23* 1.49E-26* 1.61E-31* 1.32E-18* 7.51E-10* 9.91E-29*

LUSC Cor 0.229 0.27 0.322 0.328 0.168 0.158
p-value 4.38E-07* 2.02E-09* 5.81E-13* 1.99E-13* 2.31E-04* 5.36E-04*

PRAD Cor 0.297 0.349 0.344 0.166 0.278 0.301
p-value 6.04E-10* 2.30E-13* 5.43E-13* 7.02E-04* 7.89E-09* 3.90E-10*

SARC Cor 0.249 0.395 0.401 0.207 0.062 0.432
p-value 8.42E-25* 1.55E-10* 8.06E-11* 1.12E-03* 3.31E-01 1.64E-12*

SKCM Cor 0.43 0.225 0.187 0.003 0.304 0.421
p-value 5.84E-22* 1.16E-06* 5.56E-05* 9.55E-01 3.23E-11* 4.78E-21*

THCA Cor 0.632 0.543 0.54 0.312 0.03 0.398
p-value 9.24E-56* 8.45E-39* 2.83E-38* 1.86E-12* 5.12E-01 5.66E-20*
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Therefore, a better understanding of the tumor immune
microenvironment and the construction of a more precise
immune regulatory network will bring more individualized
immunotherapy and survival benefits to patients. However, the
tumor immune microenvironment is shaped by tumor cells and
immunocytes together, and is in dynamic change (Schreiber et al.,
2021). It is well known that CD4+ T cell populations are abundant
in this environment, including pro-tumor CD4+ regulatory
T cells (Tregs) and anti-tumor Th1 cells, but the role of Th2
cells is not clear so far (Facciabene et al., 2012; Tay et al., 2021).

In our study, the patients with high Th2 cell infiltration levels
suffer a poor prognosis, which is consistent with some previous
studies that Th2 cells are associated with tumor progression and
poor prognosis in many cancers such as pancreatic cancer, breast
cancer and melanoma (Nevala et al., 2009; De Monte et al., 2011;
Zhang et al., 2015). The promotion effect of Th2 cells on tumors is
probably due to the cytokines secreted by them, including IL-4,
IL-5, IL-10 and IL-13 (Lee, 2014; Mollazadeh et al., 2019). IL-4
and IL-13 are highly similar in structure and function (Shi et al.,
2021). After binding to their receptors, they can promote the
proliferation, adhesion and metastasis of tumor cells, and may
become potential targets for tumor treatment (Suzuki et al., 2015;
Ghilardi et al., 2020). IL-5 can create a tumor-promoting immune
microenvironment locally by recruiting eosinophils, thereby
promoting the metastasis of tumor cells (Zaynagetdinov et al.,
2015; Reichman et al., 2016). IL-10 can create an
immunosuppressive tumor microenvironment through
multiple pathways including NF-κB, and promote the
transformation of cancer stemness (Yang et al., 2019; Saraiva
et al., 2020).

Through further analysis, both the mRNA expression level
and DNA methylation level of NFE2L3 was found to be highly
correlated with the infiltration level of Th2 cells. NFE2L3 is a
family member of the Cap’n’collar (CNC) transcription
factors, and this family also include NFE2L1, NFE2L2, NF-
E2, Bach1 and Bach2 (Ren et al., 2020). Among them, the

family member that is widely investigated is NFE2L2, which
has been confirmed as a driver gene of malignant tumor
(DeNicola et al., 2011). As a homolog of NFE2L2, NFE2L3
has been proven to be related to multiple phenotypes of
malignant tumors as well, including proliferation and
epithelial-mesenchymal transition (EMT) (Bury et al., 2019;
Ren et al., 2020). In our study, NFE2L3 was detected to be
highly expressed in MPM tumor tissues, and the higher
expression level is associated with poor prognosis. And the
hypermethylation of multiple sites of NFE2L3 was also
associated with better prognosis of patients with MPM. In
multiple previous studies, somatic mutations of NFE2L2, the
homolog of NFE2L3, was detected in plasma cell-free DNA
(cfDNA) in hepatocellular carcinoma (HCC) and lung
squamous cell carcinoma (LUSC), and was regarded as a
non-invasive biomarker for tumor risk prediction and
overall survival (Jeong et al., 2017; Jiao et al., 2021).
Therefore, through next-generation sequencing (NGS) of
tumor tissues and detection of cfDNA in peripheral blood,
NFE2L3 may serve as a potential marker for the diagnosis and
prognosis prediction of patients with MPM.

Then, we explored the underlying mechanism between
NFE2L3 expression and Th2 cell differentiation. Th2 cell
differentiation can be activated and modulated by a variety of
regulators, including IL-4/STAT6 signaling pathway, IL-2/
STAT5 signaling pathway and transcriptional regulator
NLRP3, of which NLRP3 expression is triggered via IL-2/
STAT5 signaling pathway (Lee, 2014; Bruchard et al., 2015;
Jones et al., 2020). NLRP3 inflammasome is a kind of
cytoplasmic protein complex, which has been proven that it
can recruit myeloid-derived suppressor cells (MDSCs) and
tumor-associated macrophages (TAMs) to promote tumor
progression and metastasis (Moossavi et al., 2018; Hamarsheh
and Zeiser, 2020). In the process of Th2 cells differentiation,
NLRP3 was found to be localized in the nucleus and act as a
transcription factor for Th2 cells (Bruchard et al., 2015).

FIGURE 6 | The potential interactions across NFE2L3, IL-2R, STAT5, NLRP3, Th2 cell and tumor cells in the tumor microenvironment (TME).
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In our study, the expression of NFE2L3 shows strong positive
correlations with the expression of IL-2 receptor-related genes,
STAT5 related genes and NLRP3. These correlations can be
observed in multiple cancers, which are even more significant.
Taken together, we speculated that NFE2L3, a novel biomarker in
malignant pleural mesothelioma, can promote Th2 cell
differentiation via IL-2/STAT5/NLRP3 signaling pathway in
mesothelioma and many other cancers.

We acknowledge that there are several limitations in this
study. In this article, our analysis is based only on
transcriptome and DNA methylation data from TCGA and
GEO without biological validation. Therefore, complete
biological experiments are urgently needed to verify our
conclusions in the future.

CONCLUSION

In our study, with the help of transcriptome data from multiple
databases and a variety of bioinformatics analysis methods, we
found that Th2 cell is a poor prognostic factor for patients with
MPM. Through further screening, we found that NFE2L3 was
highly expressed in tumor tissues of patients with MPM and
both its mRNA expression level and DNAmethylation level was
highly correlated with the infiltration level of Th2 cells.
Moreover, the correlation analysis in multiple cancers
indicated that NFE2L3 was strongly correlated with the
expression level of IL-2RA, IL-2RB, IL-2RG, STAT5A,
STAT5B and NLRP3, which constitute the IL-2/STAT5/
NLRP3 signaling pathway. Therefore, we hypothesize that
NFE2L3, a novel biomarker in malignant pleural
mesothelioma, may promote the differentiation of Th2 cells
through the IL-2/STAT5/NLRP3 signaling pathway in multiple
cancers.
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The Chemokines Initiating and
Maintaining Immune Hot Phenotype
Are Prognostic in ICB of HNSCC
Yuhong Huang1†, Han Liu1,2†, Xuena Liu3†, Nan Li1,2, Han Bai 1, Chenyang Guo1, Tian Xu1,
Lei Zhu1,2, Chao Liu1,2* and Jing Xiao1,2*

1Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China, 2Dalian Key Laboratory of Basic
Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, China, 3Department of Nuclear Medicine,
The 2nd Hospital Affiliated to Dalian Medical University, Dalian, China

Background: The immune checkpoint blockade (ICB) with anti-programmed cell death
protein 1(PD-1) on HNSCC is not as effective as on other tumors. In this study, we try to
find out the key factors in the heterogeneous tumor-associated monocyte/macrophage
(TAMM) that could regulate immune responses and predict the validity of ICB on HNSCC.

Experimental Design: To explore the correlation of the TAMMheterogeneitywith the immune
properties and prognosis of HNSCC, we established the differentiation trajectory of TAMM by
analyzing the single-cell RNA-seq data of HNSCC, by which the HNSCC patients were divided
into different sub-populations. Then, we exploited the topology of the network to screen out the
genes critical for immune hot phenotype ofHNSCC, aswell as their roles in TAMMdifferentiation,
tumor immune cycle, and progression. Finally, these key genes were used to construct a neural
net model via deep-learning framework to predict the validity of treatment with anti-PD-1/PDL-1

Results: According to the differentiation trajectory, the genes involved in TAMM
differentiation were categorized into early and later groups. Then, the early group genes
divided the HNSCC patients into sub-populations with more detailed immune properties.
Through network topology, CXCL9, 10, 11, and CLL5 related to TAMM differentiation in the
TMEwere identified as the key genes initiating andmaintaining the immune hot phenotype in
HNSCC by remarkably strengthening immune responses and infiltration. Genome wide,
CASP8 mutations were found to be key to triggering immune responses in the immune hot
phenotype. On the other hand, in the immune cold phenotype, the evident changes in CNV
resulted in immune evasion by disrupting immune balance. Finally, based on the framework
of CXCL9-11, CLL5, CD8+, CD4+ T cells, and Macrophage M1, the neural network model
could predict the validity of PD-1/PDL-1 therapy with 75% of AUC in the test cohort.

Conclusion: We concluded that the CXCL9, 10,11, and CCL5 mediated TAMM
differentiation and constructed immune hot phenotype of HNSCC. Since they positively
regulated immune cells and immune cycle in HNSCC, the CXCL9-11 and CCL5 could be
used to predict the effects of anti-PD-1/PDL-1 therapy on HNSCC.

Keywords: squamous cell carcinoma of head and neck (HNSCC), tumor-associated monocyte/macrophage
(TAMM), immune checkpoint blockade (ICB), tumor micro-environment (TME), CXCL, CCL5, PD-1/PD-L1
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INTRODUCTION

Application of immune checkpoint blockage (ICB) has
significantly improved the prognosis of multiple tumors, but
exerted limited effects on head and neck squamous cell
carcinoma (HNSCC) because less than 30% of the patients got
a better prognosis (Curran et al., 2010; Topalian et al., 2012;
Seiwert et al., 2016; Clarke et al., 2021; García Campelo et al.,
2021). To find out the HNSCC sub-populations susceptible to
ICB therapy, various criteria have been proposed for HNSCC
classification, by which HNSCC was classified into the enhanced
and decreased immune subtypes with the immune-related genes
(Cao et al., 2018), into the CD8+ high and CD8+ low subtypes
with the density of infiltrating CD8+ T cells (Saloura et al., 2019),
into the basal, mesenchymal, atypical, and classical subtypes with
the integrated genomic characteristics (Walter et al., 2013), and
even into the m6Ahigh and m6Alow subtypes with the N6-
methyladenosine (m6A) methylation levels on mRNAs (Yi
et al., 2020). Although these criteria explicated the clinical and
immune characteristics of HNSCC from different perspectives,
how these HNSCC subtypes formed and the roles of the genes
involved in it remained elusive.

When inflammation took place, the tumor-associated
monocyte/macrophages in circulating blood were motivated
into the inflammatory focus to maintain homeostasis,
eliminate pathogens, and balance immune responses (Shi &
Pamer, 2011). There were three types of tumor associated
monocyte/macrophages, namely, the classical (CD14+; CD16−),
the non-classical (CD16+), and the intermediate tumor associated
monocyte/macrophages (CD14+; CD16+) (Ziegler-Heitbrock
et al., 2010). During tumorigenesis, the tumor-associated
monocyte/macrophages in circulation (mainly the classical
type) were chemoattracted into tumor focus, and differentiated
gradually into dendritic cells (DC) and Tumor Associated
Macrophages (TAM) (Movahedi et al., 2010; Franklin et al.,
2014; Guilliams et al., 2014; Li B et al., 2020). More than 50%
of the immune cells in tumor micro-environment (TME) were
TAM that affected the migration, invasion, angiogenesis, and
drug-resistance of tumors (Watters et al., 2005; Kimura et al.,
2007; Zheng et al., 2018). The M1-like phenotype of TAM
exhibited the inhibitory effects on tumors, such as the
promoted inflammatory response and chemoattraction of
immune cells (Goswami et al., 2017). Reversely, M2-like
phenotype of TAM suppressed inflammatory response, and
enhanced immune evasion, angiogenesis, and metastasis,
which resulted in a poor prognosis (Hu et al., 2016; Seminerio
et al., 2018). However, recent studies reported that M1-like
phenotype of TAM was also related to the poor prognosis in
HNSCC and medulloblastoma by suppressing inflammatory
response and promoting metastasis (Lee et al., 2018; Xiao
et al., 2018). Previously, TAM was thought mainly to be
macrophage M2, while the increasing evidence indicated that
TAM also exhibited the phenotype ofmacrophageM1, suggesting
that TAM contained the third population of macrophages other
than macrophage M1 and M2. The third macrophage population
was supposed to co-express the M1 and M2 characteristics and
transform into M1 or M2 in certain instances (Estko et al., 2015;

L. ; Gao et al., 2016; Kloepper et al., 2016). All the above findings
indicated that the role of TAM in tumor progression could be
complicated and not simply attributed to macrophage M1 and
M2. Since the TAM was differentiated from the tumor-associated
monocyte/macrophages gradually, the differentiating and
differentiated TAM were termed as tumor-associated
monocyte/macrophages/Macrophages (TAMM) in recent
studies (Cassetta et al., 2019; Singhal et al., 2019). More and
more studies implicated the TAMM as the potential target of ICB
therapy. The relevance between TAMM responses and ICB
therapy has been established by bioinformatic methods. In
triple negative breast cancer, machine learning identified the
TAMM-expressed genes which were highly associated with the
prognosis and ICB therapy, and constructed a model predicting
the response to ICB therapy with the 100% validation queue AUC
(Bao et al., 2021). Moreover, WGCNA was used to find that the
marker genes expressed in TAMM of glioblastoma, which were
highly correlated with prognosis and ICB therapy, and were more
active in the patients susceptible to ICB therapy (Zhang et al.,
2021). Despite this, there are relatively few studies on HNSCC
concerning the role of TAMM in immune response and ICB
therapy. Since TAMM differentiation endowed TAMM with
heterogeneity dynamically, instead of statically, we proposed a
criterion that combined the genes involved in TAMM
differentiation with the immune cells to depict the immune
phenotype and prognosis of HNSCC in more detail.

MATERIALS AND METHODS

Data Collection
The single cell RNA-seq (scRNA-seq) data of GSE139324 (10X
genomics), including the tumor infiltrating immune cells from 16
HPV negative patients and the immune cells from the peripheral
blood of a healthy donor, and GSE103322 (Smart-seq2),
containing 5,902 single cells from 18 HNSCC patients, were
obtained from Gene Expression Omnibus (GEO). Multiomics
data and clinical data of 502 HNSCC patients obtained from The
Cancer Genome Atlas (TCGA) database (Supplementary Table
S1), including mRNA expression (level 3, Illumina RNA-Seq),
miRNA expression (level 3, Illumina miRNA-Seq), somatic copy
number variation (CNV level 3, Affymetrix SNP 6.0), and somatic
mutation (level 4, MAF files), were obtained from UCSC Xena
browser. The array data and clinical data of five HNSCC cohorts,
GSE65858 (n = 270), GSE40774 (n = 134), GSE39366 (n = 138),
GSE117973 (n = 77), and GSE41613 (N = 97), were obtained from
Gene Expression Omnibus (GEO) database (Supplementary
Table S1). The bulk transcriptome data and clinical data of six
cohorts accepted the PDL-1/PD-L1 antibody immunotherapy,
namely GSE93157 (n = 65, Non-Small Cell Lung Carcinoma,
HNSCC and Melanoma), GSE154538 (n = 8, gastrointestinal
cancer), GSE141119 (n = 12, melanoma), GSE91061 (n = 109,
melanoma and non-small cell lung cancer), GSE78220 (n = 28,
melanomas), GSE176307 (n = 88, Metastatic Urothelial Cancer),
and the IMvigor210 (n = 348, bladder cancer), were obtained
from Gene Expression Omnibus (GEO) and the IMvigor210
database (Supplementary Table S2). GSE93157 was array
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data, while GSE154538, GSE141119, GSE91061, GSE78220,
GSE176307, and the IMvigor210 were bulk transcriptome
data. The mRNA-seq data from the HNSCC cell line that
accepted the treatment of anti-tumor drugs were obtained
from Genomics of Drug Sensitivity in Cancer (GDSC).

Data Processing
In the scRNA-seq from GSE139324, with the exclusion of the
genes detected in fewer than three cells, the cells containing
mRNA more than 4,500 or less than 200, and the cells
expressing mitochondria genes more than 10% transcripts,
there were 19,718 genes from 39,711 qualified cells of total
39,994 cells (283 cells were screened out). Through SCT in
seurant package SCT, the data from the 18 patients in
GSE139324 cohort were integrated to screen out the non-
biological inferences, such as batch effect. Similarly, in the
scRNA-seq of GSE103322 (Smart2-seq without screen), there
were 21,519 genes and 5,844 qualified cells from 18 patients
integrated by SCT. The HNSCC RNA-seq counts
[log2(rawcounts+1)] obtained from USCS through exp
[log2(rawcounts+1)-1] were restored to raw counts, and
then the log2(fpkm-uq+1) from USCS was used to compare
them with the data from other databases. There were 501
HNSCC samples (one normal sample was excluded) for the
subsequent analyses. The GSE65858, GSE40774, GSE39366,
GSE117973, and GSE41613 were normalized prior to following
analyses. There were 501 samples in GSE93157, GSE154538,
GSE141119, GSE91061, GSE78220, GSE176307, and the
IMvigor210 for the following analyses except defective and
reiterated data. The data from the RNA-seq of GDSC2 cell line
were normalized with TPM for subsequent processing.

Analyses on Squamous Cell Carcinoma of
Head and Neck scRNA-Seq Data
For the GSE139324 cohort: 1) the data integrated with “SCT” Seurat
package was applied for PCA analysis to find out the first 50
principal component analysis (PCA); 2) Umap (Uniform
Manifold Approximation and Projection for Dimension
Reduction) dimension reduction was performed on the 50 PCAs.
In this unsupervised clustering, the function of FindNeighbors in
Seurat package was used to construct a KNN graph based on the
Euclidean distance in PCA space (top 50 PCAs, k = 20), and then, the
function of FindClusters (Louvain algorithm)was used to cluster the
cells with the resolution of 0.1. The K-NN clustering classified the
consequences undergoing the dimension reduction into four
clusters, which were annotated by SingleR as NK cells (n =
14,925), T cells (n = 14,073), B cells (n = 2,789), and tumor-
associated monocyte/macrophages cells (n = 7,924). 3) Tumor-
associated monocyte/macrophages cells were classified by K-NN
into seven further clusters. Cluster 0, 1, 2, and 4 were annotated by
SingleR as tumor-associated monocyte/macrophages (n = 6,875),
while the cluster3 (n = 312), 5 (n = 478), and 6 (n = 259) as T and
B cells. 4) The T cells were applied for Multimodal reference
mapping (Hao et al., 2021) and divided into eight clusters,
namely, the CD4 CTL, CD4 Navie cells, CD4 TCM, CD4 TEM,
CD8 Navie cells, CD8 TCM, CD8 TEM, and proliferating T cells

(Supplementary Table S3). 5) The tumor-associated monocyte/
macrophages were applied for GSVA analysis for function
enrichment. 6) The tumor-associated monocyte/macrophages
were applied for pseudotime analysis through Monocle2 package
andDestiny package, which adopted differentmanners to reduce the
dimensions of the high-dimensional data. The single cell was
separated and projected into low-dimensional space to form a
differentiation trajectory with knots. Each knot represented a
similar status of differentiation. (1) Through the data of single
cell lineage, Monocle 2 adopted the embedding converse
diagraph to learn the explicit principal graph (Packer et al.,
2019). 2) Destiny adopted the diffuse maps (differentiating cells
follow noisy diffusion-like dynamics) to mimic the division from
multipotent cells (Coifman et al., 2005). 7) The “InferCNV” R
package 1.10.1 (Patel et al., 2014) and CellPhoneDB (Python
edition) (Efremova et al., 2020) were performed on all clusters
for CNV analysis (normal blood cells as control) and cell

communication analysis. CNVk(i) � ∑
i+50

j�i−50
Ek(Oj)/101, where

CNV(i) was the estimated relative copy number, and Ek(Oj) was
mRNA level, of the ith gene in the cell k at the whole genomic scope.
8) The differentially expressed genes (DEG) between tumor-
associated monocyte/macrophages C1 and C0 were summarized
with the “Findmarker” Seurant package. Setting |log2fold Change|
>1.3 and FDR<0.05 as the cutoff criteria, the Log2Fold Change >1.3
was regarded as the characteristics of the genes for the early
differentiation of TAMM, while Log2FoldChange<-1.3 as the
characteristics of the genes for the late differentiation of TAMM
(Supplementary Table S4). For GSE103322 cohort: 1) PCA analysis
was performed on the data integrated by “SCT” Seurat package.
According to the specific markers, the cells were divided into the
malignant epithelial cells (KRT14, KRT6A, EPCAM, n = 1939),
Cancer associated fibroblasts (FAP, PDRN, n = 1,697), T cells (CD2,
CD3D, n = 1,633), B cells (SLAMF7, CD79A n = 354), endothelial
cells (PECAM1, VWF n = 75), and mono-macrophage cells (CD14,
CD163, CD68, n = 146). 2) T cells were further classified with
Multimodal referencemapping into eight clusters of CD4CTL, CD4
Navie cells, CD4 TCM, CD4 TEM, CD8 Navie cells, CD8
TCM, CD8 TEM, and proliferating T cells (Supplementary
Table S5).

CIBERSORT and ESTIMATE for Immune
Cell and Stromal Scores
For the one TCGA HNSCC and five GEO HNSCC cohorts,
“CIBERSORT” and “ESTIMATE” R package were applied to
calculate the contents of the 22 kinds of immune cells (1,000
permutations) and immune and stromal score.

The Unsupervised Clustering on TCGA
Squamous Cell Carcinoma of Head and
Neck and GSE65858 Cohorts
According to the scores of the genes in the early TAMM
differentiation and the 22 kinds of immune cells, the
unsupervised clustering (through “ConsensuClusterPlus” R
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package) was applied to the samples with Euclidean distance and
Ward (unsquared distances) linkage to get the sub-populations with
different immune phenotype and prognosis.

Associations of TCGA Squamous Cell
Carcinoma of Head and Neck Subtype With
DNA Methylation, CNVs and Mutations
The data of methylation probes were normalized with
“wateRmelon” R package, and the difference in methylation
probes were analyzed with “limma” R package. The evidently
altered regions in genome were screened with GISTIC2.0. The
numeric focal CNV values larger than 0.2 meant gain, while less
than 0.2 meant loss. Through Somatic mutation data, the TMB
(the number of non-synonymous mutations in every million
bases of somatic cells) of each patient in the TCGA HNSCC
subtype were calculated.

Search for the DEGs in the Subtype of TCGA
HNSCS and GSE65858 Cohorts
The DEGs were obtained by comparing the A3 to A1 subtype,
and the A3 to B subtype in TCGA HNSCC and GSE65858
cohorts with “limma” in R package. The TCGA HNSCC
cohorts were produced by RNA-seq, while the GSE65858
resulted from micro-array. One criterion failed to satisfy the
cohorts from a different sequencing approach. If the threshold
of GSE65858 was identical to that for TCGA HNSC, the DEGs
would be rare. For the TCGA HNSCC cohort, |Log2Fold
Change|>1 and FDR<0.05 were set up as standard.
According to the DEGs in GSE65858 array, a threshold of |
Log2Fold Change|>0.2 and FDR<0.05 was selected to keep the
numbers of DEGs in the two cohorts from varying too much.
FDR was the p value calibrated using the Benjamini–Hochberg
method.

Confirmation of the Key Genes
In the two HNSCC cohorts, the comparison between A3 and B
subtypes gave rise to 181 overlapped candidate genes.
Centiscape was applied to the analysis on the protein
crosstalk network and was constructed with PPI database.
Each knot in the PPI network constructed with 181 DEGs
was evaluated with the centiscape of cytoscape for the topo-
characteristics, namely, Degree, Eigenvector Centrality, and
Betweennesss.

Degree was the most direct and classical index evaluating the
regulatory and importance of knot, which was defined as the
nodes directly connected to a given node.

Eccentricity Cecc(v) represent the reciprocal inverse of the
longest path between the knot v and all other knots. The
eccentricity of a node in a biological network can be
interpreted as easiness of a protein to be functionally
influenced by all other proteins in the same network.

Cecc(v) � 1
max{dist(v, w) : w ∈ V }, in which v and w were the nodes

in network (V)

S.-P. Betweenness Cspb(v) represents the ratio of the path
number connecting the knot s and t through v to the total number
of path. A high S.-P. Betweenness score meant that the node, for
certain paths, was crucial to maintain node connections.

Cspb(v) � ∑s≠v∈V ∑t≠v∈V
σst(v)
σst

, in which s, t and v were nodes in

network (V)

Our purpose was to find out the knot with the higher values on
the topo-characteristics, because the higher the value the more
significant it was. Since the relative significance of Degree was
higher than Eigenvector Centrality, and the Eigenvector
Centrality equaled Betweenness, we selected the first 40 knots
with the higher Degree. Then, we selected the first 20 DEGs with
the higher Eigenvector centrality and Betweenness, respectively.
The thresholds of 40 and 20 were set empirically, and had no
effect on the outcomes, because the key knots with the higher
values of the topo-characteristics would vary with the threshold.
According to the descending order of Degree, the first 40
candidate genes were selected. According to the descending
sequence of Eigenvector Centrality and Betweenness, the first
20 genes were selected from the 40 candidates (Supplementary
Table S6). Finally, 12 genes included in both above populations
were set up as the hub genes. KEGG database was applied for
pathway correlation, CluoGO for visulization, and all the
manipulations were based on Cytoscape. From the DEGs by
comparing the A3 to A1 subtype of the two HNSCC cohorts, 41
genes were selected for the protein crosstalk network constructed
with PPI database.

Pathway Enrichment Analysis
The DEGs from the comparison between the A3 and B subtype in
both the TCGAHNSCC and GEO65858 cohorts were applied for
GSEA enrichment. Then, the Enrichment map was visualized and
annotated. Sample Gene Set Enrichment analysis (ssGSEA) was
performed on the TCGA HNSCC, GSE65858, GSE39366,
GSE117973, GSE40774, and GSE41613 cohorts with “GSVA”
R package to grade the 29 immune signatures (He et al., 2018).

Fold − Change � 1
n1

∑
i∈immune hot

immune related scorei

− 1
n2

∑
i∈immune cold

immune related scorei

Where n1 and n2 were the number of immune hot and immune
cold samples, respectively. Immune related score was the sum of
22 immune cells scores obtained by Cibersort and 29 immune
signature scores obtained by GSVA.

The GSVA Scores of the Four Chemokines
and the Confirmation of the Immune Hot
and Immune Cold Subtype
According to the mRNA levels of the four chemokines, CXCL9,
CXCL10, CXCL11, and CCL5, TCGA HNSCC, GSE65858,
GSE39366, GSE117973, GSE40774, and GSE41613 cohorts
were applied for ssGSEA with GSVA in R package and
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divided by the median grade into the high- and low-graded
subtype, namely, the immune hot and immune cold subtype.

Survival Analysis
The survival curve was generated by “Survminer” R package. The
statistical differences among the immune subtype of TCGA
HNSCC and GSE65858 cohorts were obtained by log rank test.

Construction of Neural Network
By “neurnet” R package, a neural network containing an input
layer, two hiding layers (there were 20 neurons in the first layer,
and five neurons in the second layer. Both layers were in
dropout), and an output layer.

Activation Function:
1

1+e−x; Loss Function:
1
N ∑i −(yiplog(pi) + (1 − yi)plog(1 − pi))

Statistical Analysis
All the statistical analyses were performed with R software version
4.0.4. The t test and Wilcoxon test were applied for the comparison
between two subtypes, while ANOVA was used for comparison
among more than two subtype. Fisher exact test was applied for the
classified variations between and among subtypes. Pearson or
Spearman coefficients were applied for the relevance between two
variations. All statistical tests were two-sided and when p <0.05, the
difference was regarded as significant.

RESULTS

The Heterogeneity of Tumor-Associated
Monocyte/Macrophage in Squamous Cell
Carcinoma of Head and Neck
A schematic diagram of the study design and principal findings is
shown in Supplementary Figure S1. To classify the TAMM in
HNSCC according to their differentiation status, 19,718 genes were
selected from 39,711 leukocytes of HNSCC patients (Supplementary
Figures S2A, S2B) qualified for dimensionality reduction with PCA
and UMAP (Uniform Manifold Approximation and Projection for
Dimension Reduction). The cluster classification analysis with K-NN
gave rise to four clusters, which were annotated as NK cells (n =
14,925), T cells (n = 14,073), B cells (n = 2,789), and tumor-associated
monocyte/macrophages cells (TAMM; n = 7,924) by SingleR. The
7924 TAMMwere further classified with K-NN into seven clusters, in
which the cluster 0, 1, 2, and 4 were annotated by SingleR as tumor-
associated monocyte/macrophages cells (n = 6,875; Figure 1A), while
the cluster 3 (n = 312), 5 (n = 478), and 6 (n = 259) as T cells and
B cells (data not shown). In the TAMM clusters, TAMMC0,
TAMMC1, and TAMMC2 were regarded as TAMM because of
the higher CD68 expression, while the TAMMC4 with the lower
CD68 expression was considered as dendritic cells (Figure 1B).
Furthermore, the mature TAM-related genes, such as CD206,
CD81 (marker of macrophage M2), TSPO, HLA-DRA, IRF
(marker of macrophage M1), and METTL14 (C1q+), were mainly
expressed in TAMMC0 and TAMMC2 (the expression in TAMMC0
was higher than that in TAMMC2), but almost silenced in TAMMC1

(Figure 1C), indicating TAMMC0 as themature TAM, TAMMC1 as
the early tumor-associated monocytes (TAM-M0), and TAMMC2 as
the transforming TAM-M0 from monocytes to macrophages.
Differential gene expression analysis between TAMMC1 and
TAMMC0 classified 54 genes highly activated in TAMMC1,
including S100A12, S100A8, VCAN, PTGS2, and CD55, into the
early group of TAMMdifferentiation, and the other 51 genes robustly
expressed in TAMMC0, such as C1QB, C1QC, MMP12, and SPP1,
into the late group. Such a difference was also proven by pseudotime
clustering heat map (Figure 1D, Supplementary Figure S1C). By
analyzing the scRNA-seq data withGSVA andCIBERSORT, the gene
function in TAMMC1 was enriched in cellular toxicity and immune
inflammation, aswell as the stemness andmetabolism. In contrast, the
gene function in TAMMC0 was less enriched in stemness and
metabolism, but more highly enriched in cellular toxicity and
immune inflammation, as well as the pathways of hypoxia and
angiogenesis. The enriched gene function of TAMMC2 was
medially located between TAMMC0 and TAMMC1 (Figure 1D;
Supplementary Figure S3). Therefore, TAMMC1 was highly scored
as early tumor-associated monocyte/macrophages and TAMMC0 as
mature macrophages.

Differentiation Trajectory and Copy Number
Variation Verified the Heterogeneity of
Tumor-Associated Monocyte/Macrophage
According to the above differential gene expression, the
differentiation trajectory of TAMM was established, in which
TAMMC1 was located in the early stage, TAMMC0 in the late
stage, and TAMMC2 diffusely distributed in the early and late
stages (Figure 2A). Along with the time progression, TAMMC1
was decreased with the increase of TAMMC0, while TAMMC2
was increased and then decreased in the diffusion maps (Figures
2B,C). In the cell communication network, the centrally located
TAMMC2 exhibited a strong connection with both TAMMC0
and TAMMC1 (Figure 2D), which coincided with the finding
that TAMMC2 was located medially between TAMMC0 and
TAMMC1 in the differentiation trajectory. Similarly, CNV assay
revealed that the copy number and deficiency in TAMMC1
genome were relatively lower compared to those in TAMMC0
and TAMMC2 (Figure 2E). Therefore, in the heterogeneous
TAMM subpopulations of HNSCC, both the gene expression
profile and genomic properties indicated that TAMMC0
represented the mature TAM, TAMMC1 stood for the early
differentiating monocytes, and TAMMC2 was the monocytes
transforming into macrophages.

A Criterion Classifying Squamous Cell
Carcinoma of Head and Neck With Different
Immune Phenotypes and Prognosis by
Combining Tumor-Associated Monocyte/
Macrophage Differentiation and Immune
cells
As mentioned above, to explore the heterogeneity of TAMM in
HNSCC patients, we identified 54 genes as the signature of early
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TAMM differentiation, and another 51 genes as the signature of
late TAMM differentiation. To disclose the correlation of
TAMM differentiation with the immune phenotypes of
HNSCC, we combined the differentiation signatures with 22
immune cells to form a two-step classifier. First, the scores of 22
immune cells estimated by CIBERSORT were applied for the
unsupervised clustering. Both the TCGA HNSCC and the
GSE65858 cohorts were classified into A and B subtypes
(TCGA HNSCC A = 265, B = 138; GSE56858 A = 175, B =
95) (Supplementary Figures S4A, S4D). The PD-1L and IFNG
expression was higher in the A subtype than those in B subtype
in both cohorts (p < 0.001, GSE65858: PD-1L p < 0.1). Second,
unsupervised clustering was performed in the A subtype with
the 54 genes as the early TAMM differentiation signatures and
the 51 genes as the late TAMM differentiation signatures. The
unsupervised clustering with the early TAMM differentiation
signatures could divide A subtype into three subtypes (TCGA
HNSCC A1 = 40, A2 = 96, A3 = 127; GSE65858 A1 = 32, A2 =
74, A3 = 69) with different clinical outcomes and immune
signatures (Supplementary Figures S4B, S4C, S4E, S4F).
Interestingly, the three subtypes from A subtype also showed
the distinct immune infiltration and immune excluded
signatures. Both the immune and stromal scores of the A1
and A3 subtypes were significantly increased compared to
those in A2 and B subtypes (Supplementary Figure S5A).
Moreover, the A1 subtype exhibited the stronger immune
infiltration and immune excluded signatures, the A2 subtypes

in both cohorts displayed the weaker immune infiltration and
immune excluded signatures, while both the A3 subtypes
possessed the stronger immune infiltration signatures and the
weaker immune excluded signatures. In contrast to A subtype,
the B subtype were weaker in immune infiltration signatures and
stronger in immune excluded signatures (Figures 3A,B,F,G).
The PCA with the 54 early TAMM differentiation signatures
also supported this notion (Figures 3C,H). On the other hand,
the unsupervised clustering with the late TAMM differentiation
signatures failed to distinguish the immune phenotypes of
HNSCC (data not shown). Thus, the A3 subtypes were
defined as the high immune infiltration type, and the B
subtype as the high immune evasion type. The following
survival assay revealed the different prognoses among the
subtypes, especially between A3 and B subtype (p < 0.05;
Figures 3D,I). According to TMN staging, the A3 subtypes
of both cohorts exhibited a lower ratio of IV stage patients
compared to other subtypes (Figures 3E,J). To further verify the
correlation between TAMM differentiation and immune
phenotypes, we performed GSEA analysis on the
differentially expressed genes between the A3 subtype and B
subtype. The genes highly expressed in the A3 subtype were
enriched in immune-associated pathways, such as activation of
immune cells, adherence, proliferation, immune response, and
regulation, while the genes highly expressed in the B subtype
were enriched in cellular development and ECM-related
pathways, for instance, mesenchymal development, pattern

FIGURE 1 | Cellular heterogeneity of tumor-associated monocyte/macrophages/macrophages at the single cell level. (A) Umap plots of all clusters annotated by
SingleR. (B) CD68 expressions levels of TAMM sub-clusters (C0, C1, C2, C4). (C) CD14, CD16, ITGAX, CD201, CD81, TSPO, HLA-DRA, IRF5, SPP1, and METT14
expressions levels of TAMM sub-clusters (C0, C1, C2). (D) GSVA revealed the enrichment scores of TAMM sub-clusters in the pathways of tumor invasion, immunity,
stemness, and metabolism.
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formation, and cytodifferentiation (Figures 3K,L). These results
suggested that the early differentiation signatures of TAMM
were associated with the HNSCC immune phenotypes and
prognosis.

Multiomic Characteristics Associated With
the Immune Phenotypes of the Different
Squamous Cell Carcinoma of Head and
Neck Subtypes
Finally, CNV, SNP, and methylation levels were examined to
further explore the immune phenotype in the subtype of
TCGA HNSCC cohort. It was found that the mutation
frequency of tumor mutation loading and tumor driver

genes (TP53, TTN, etc.) in the A2 subtype was noticeably
higher than that in other subtypes (Supplementary Figures
S5B, S5C). CNV analysis found that the focal copy numbers
in 3p, 11q, and 2p were significantly distinguishable between
the A3 subtype and B subtype (Supplementary Figures
S5D–E). The methylation assay revealed that there were 96
genes highly expressed in B subtype overlapped with the
methylation probe highly expressed in A3 subtype, while
only 13 genes highly expressed in A3 subtype were
detected by the methylation probes highly expressed in B
subtype (Supplementary Figures S5F–G). These findings
implicated that CNV, SNP, and methylation levels also
contributed to the different immune phenotypes in the
HNSCC subtypes.

FIGURE 2 | Differentiation trajectory and CNV changes of TAMM. (A)Monocle2 reveals the differentiation trajectory of TAMM. (B) Three-dimensional diffusion map
embedding of macrophages reveals the different differentiation states of TAMM sub-clusters. (C) Density diffusion maps model revealed the content of sub-clusters of
TAMM at pseudo-time. (D) Cell-Cell interaction network of different TAMM sub-clusters, node represent TAMM sub-cluster, and the number of lines represent ligand
interactions between two sub-clusters. (E) Heatmap of the inferred CNV in which genes were sorted by genomic location.
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Construction of Gene Regulatory Network
Based on Differential Genes Between
Squamous Cell Carcinoma of Head and
Neck Subtype
To explore the mechanisms regulating the formation of different
subtypes, we compared the differential expressed genes (DEGs)
between A3 and B subtypes, and between A3 and A1 subtypes.
There were 451 highly DEGs in the A3 subtype compared to the B
subtype in the TCGA HNSCC cohort (Figure 4A), and 567 highly
DEGs in the A3 subtype compared to the B subtype in GSE65858
cohort (Figure 4B). There were 181 overlapped genes in the two
groups of the highly DEGs (Figure 4C), which represented the high

immune infiltration associated genes in HNSCC. On the other hand,
we obtained 659 lowlyDEGs in the A3 subtype from the comparison
to the A1 subtype of TCGA HNSCC cohort (Figure 4D), and 596
lowly DEGs in the A3 subtype from the comparison to the A1
subtype of GSE65858 cohort (Figure 4E). In the two groups of lowly
DEGs, 41 genes were overlapped (Figure 4F). Thus, the high
immune infiltration-associated genes overlapped evidently
between different cohorts, while the immune evasion-related
genes showed diversity between different cohorts even in the
instance of high immune infiltration. By exploiting STRING
database, the 181 highly and 41 lowly DEGs were constructed
into a protein crosstalk net (Figure 4G). Moreover, in the 41
immune evasion-related genes, those correlated with the genes

FIGURE 3 | A two-stepmolecular classification combining the early differentiation features of TAMMand 22 immune cell scores. (A,F)Heatmaps of immune-related
components, stromal score, and tumor purity score of the HNSCC subtypes in TCGA HNSCC (A) and GSE65858 cohorts (F). (B,G) IFNG, PD-L1 expression level of
subtype of TCGAHNSCC (B) and GSE65858 (G). (C,H) PCA of the mRNA expression of 54 early differentiation feature genes from the HNSCC patients in the TCGA (C)
and GSE65858 cohorts (H). (D,I) Kaplan-Meier curves for overall survival (OS) of all HNSCC patients in TCGA (D) and GSE65858 (I) within A3 and B subtypes.
(E,J) The pie chart showed the proportion of TMN stages with four different immunophenotypes in TCGA (E) andGSE65858 cohorts (J). (K,L)GSEA network of DEGs in
A3 vs B subtypes using Enrichment map in TCGA (K) and GSE65858 cohorts (L).
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encoding extracellular matrix (POSTN, COL6A3, COL1A2, etc.)
resided in the core of the network.

Tumor-Associated Monocyte/
Macrophage-Associated
Chemokines-CXCL9, CXCL10, and
CXCL11-and Inflammatory Chemokine-
CCLL5 Were Key Nodes in Gene Regulatory
Network
To screen out the key nodes in the gene regulatory network of the
high immune infiltration we assumed three criteria: at the center of

the regulatory network, belong to the same pathway, and highly
correlated expression. In the network constituted by the 181 highly
DEGs, we screened out 40 highly regulated genes with the Degree
more than 30. Although the correlation matrix also verified the high
association among the 40 highly regulated genes (Supplementary
Figure S6A), the Degree and correlation are insufficient for the
identity of the key genes. Thus, the 40 candidate genes were arranged
in the order of Betweenness which represented the center value of the
node (Figure 5A) and Eigenvector according to the importance of
integrating adjacent nodes (Figure 5B), respectively. Then, by
comparing the first 20 genes arranged with Betweenness to the
first 20 genes arranged with Eigenvector, 12 overlapped genes were

FIGURE 4 | Differential genes between subtypes and protein regulatory network. (A,B,C) Volcano plot and Venn diagram show DEGs of A3 vs B in TCGA HNSCC
and GSE65858 cohorts. (D,E,G) Volcano plot and Venn diagram showed the DEGs of A3 vs A1 in TCGA HNSCC and GSE65858 cohorts. (F) PPI protein regulatory
network of 181 overlapping DEGs up in A3 (A3 vs (B) and the 40 overlapping DEGs down in A3 (A3 vs A1).
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chosen as the hub genes (Figure 5C). Finally, the function of these 12
hub geneswere applied for KEGGpathway correlationwithCluoGO
(Figure 5D) through which four chemokines (CCL5, CXCL9,
CXCL10, and CXCL11) were screened out. Although not
included in the 12 hub genes, CXCL11 shared the same family
with CXCL9 and CXCL10, and was highly correlated with their
expression levels. So CXCL11 was also identified as one of the driver
genes. These four chemokines were regarded as the key node in gene
regulatory network of the high immune infiltration, because of these
characteristics: 1) the core genes with the higher Degree,
Betweenness, and Eigenvector in the network; 2) robust relevance
at the transcription level (Supplementary Figures S6B–D), and the
remarkably higher difference in CXCL9, CXCL10, and CXCL11 (A3
vs B) than the other eight genes (Supplementary Figure S6E); and 3)
belong to the same pathway and share the higher topological signs.
Moreover, during TAMM differentiation, CXCL9, CXCL10, and
CXCL11 were increased with the time progression in Pseudotime
analysis (Figure 5E). Taken together, the four chemokines with the
strongest functional co-regulation and co-expression could be
regarded as the pivotal genes screening the high immune evasion
of HNSCC.

The Transcription of the four
Chemokines-CXCL9, CXCL10, CXCL11,
and CCLL5-Was Influenced by Epigenetic
and Health Factors
To further explore the endogenous (epigenetic) and exogenous
(health manner) factors impacting the expression of the four
chemokines-CXCL9, CXCL10, CXCL11, and CCL5--the
chromatin accessibility and the methylation status at the
transcription initiation regions of CXCL9, CXCL10, CXCL11, and
CCL5 were analyzed in the whole genome with TCGA HNSCC
ATAC and methylation database. The enriched reads were evidently
concentrated at the transcription initiation regions of CXCL9,
CXCL10, CXCL11, and CCL5 in the A3 subtype, compared to
the A1 and A2 subtypes (Figure 5F), implicating a more active
transcription of CXCL9, CXCL10, CXCL11, and CCL5 in the A3
subtype. In contrast, the methylation levels of CXCL9, CXCL10,
CXCL11, and CCL5 showed insignificant difference among the
subtype, implying that the four chemokines were epigenetically
regulated by the manners rather than DNA methylation.
However, the methylation of CXCL9, CXCL10, CXCL11, and
CCL5 in the control patients were higher (Figure 5G), suggesting
de-methylation of the four chemokines was crucial for HNSCC
genesis. We also found that the transcription and methylation levels
of CXCL9, CXCL10, CXCL11, and CCL5 were correlated with age,
smoking, alcohol consumption, and HPV infection. The higher
mRNA levels of the four chemokines were detected in the
HNSCC population with older age and lower consumption of
tobacco and alcohol (Supplementary Figure S7A, S7C, S7E;
t test, p < 0.05). The HPV positive HNSCC group exhibited a
higher CXCL10 mRNA level and an increased methylation of
CXCL9 and CXCL11 compared with the HPV negative HNSCC
group (Supplementary Figures S7B, S7D; t test, p < 0.05). Thus, it
was concluded that, although not associated with the immune
phenotypes of HNSCC, the transcription of the four chemokines

regulated by DNA methylation and health factors were critical for
HNSCC genesis.

The Four Chemokines-CXCL9, CXCL10,
CXCL11, and CCL5-Positively Regulated
Immune Responses and Were Associated
With the Low CNV and CASP8 Mutations in
the Squamous Cell Carcinoma of Head and
Neck Genome
According to the mRNA levels of the four chemokines, six
HNSCC cohorts (one TCGA cohort and five GEO cohorts)
were graded with GSVA, and then divided into the high- and
low-graded groups with the median grade to evaluate the
correlation of the four chemokines with immune response.
There was a remarkable difference between the high- and low-
graded groups in the immune signature and genome. The
TCGA and most high-graded cohorts showed a higher
enrichment of immune cells (Macrophages M1, CD4 T cells
memory activated, and CD8 T cell) in the infiltration grading
of the 22 kinds of the immune cells, got higher scores in the
enrichment of antigen present during tumor immune circle,
immune cell infiltration, and the recognizing and killing of
tumor cells by effector T cells in the 29 immune signatures
assay (Figure 6A), and was given the lower scores in the TIDE
assay. All of the results suggested a better response to immune
therapy and was verified by the cohorts of immune therapy, in
which the GSVA grades of the four chemokines in the CR
group were higher than those in PR, SD, and PD groups
(Figure 6B). Based on these findings, we classified HNSCC
into the immune hot and immune cold phenotype according to
the GSVA grades of the four chemokines. Then, we estimated
the distribution of the mutations from the first 30 HNSCC
driver genes with the highest frequency of mutation (TP53,
TTN, CSMD3, SYNE1, etc.,) in the hot and cold immune
groups, and found that except for CASP8, all other driver genes
had an elevated frequency of mutation in the low-graded group
(Figure 6C; Supplementary Table S7), implying that the
mutations of CASP8 endowed HNSCC with a stronger
immunity. Moreover, CNV analysis revealed that in the
immune cold group, an active CNV was detected in several
hot spot regions (gain: 3p, 8q, 17q, 18p. loss: 2q, 7q, 13q)
(Figure 6D). In combination with Kech classification, we
found that the most immune hot was BA type, while the
most immune cold was CL type (Figure 6E). All the above
results suggested that the four chemokines could not only act
as the markers identifying the HNSCC with high
concentration of immune cells (CD8 T cell, Macrophage
M1, etc.), but also reflect the HNSCC characteristics
comprehensively. It was also suggested that the immune hot
subtype of HNSCC could enhance the immune responses
through CASP8 mutations, and the immune cold subtype
also circumvented immune responses through gene
mutations. Further exploration on the crosstalk among the
four chemokines, TME, and immune cells in the immune circle
by analyzing the relevance in TCGA cohort disclosed that
CXCL9, CXCL10, CXCL11, and CCL5 showed a strongly
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positive association with immune cells (Macrophages M1,
CD4 T cells memory activate and CD8 T cells), and the
three stages of tumor immune circle (Figure 6F). Since the
similar association was also detected in other HNSCC cohorts,
the four chemokines were proven to enhance the anti-tumor
immune capability. Moreover, we also found that macrophages
M1 was strongly positively associated with the activation of
dormant CD8 and CD4 T cells (Figure 6G).

The Relationship Between the Four
Chemokines and the Sub-Populations in the
Squamous Cell Carcinoma of Head and
Neck Tumor Micro-Environment at Single
Cell Level
The cohorts of GSE10332 and GSE139324 (the GSE10332 cohort
contained all kinds of cells in TME, while the GSE139324 cohort

FIGURE 5 | The topological feature of the network composed of 181 genes. (A) Dotplot of -log2(Degree+1) and log2(Betweenness+1) in selected 181 nodes. (B)
Dotplot of log2(Degree+1) and log2(Eigenvector+1) in selected 181 nodes. (C) Venn diagram of top 20 genes in A or (B) (D) KEGG pathway association network of 12
hub genes. (E) Trend of mRNA expression levels of the four chemokines (CXCL9,10,11, and CCL5) following the differentiation trajectory of TAMM. (F) Aggregation of
ATAC-seq peaks of the four chemokines of nine patients in the transcription initiation region. (G) Methylation levels of the four chemokines in different HNSCC
subtypes.
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only contained infiltrative leukocytes) were applied for the
relationship assay at the single cell level to disclose the effects
of CXCL9, CXCL10, CXCL11, and CCL5 on the HNSCC sub-
populations in TME. Cell communication assay with
CellPhoneDB found that TAM, DC, tumor-associated
fibroblasts (CAF), and malignant epithelium cells

communicated with themselves and other cells intensively
(Figures 6H,J). Interestingly, CXCL9, CXCL10, and CXCL11
were expressed robustly in TAM, malignant epithelium cells,
and CAFs, but weakly in CD4 and CD8 T cells. However,
CXCR3, the common receptor for CXCL9, CXCL10, and
CXCL11, was expressed in CD4 and CD8 T cells

FIGURE 6 | The roles of the four chemokines (CXCL9,10,11, and CCL5) in HNSCC TME and their association with tumor genomic changes. (A) Dotplot
summarized the scores of 22 immune cells estimated by GIBESORTRT and GSVA scoring on the fold change and p.adjust of 29 immune signature between the
immune hot and cold group classified by the median GSVA of the four chemokines (only p < 0.05 was given). (B) Vilionplot summarized the GSVA scores of CXCL9,
CXCL10, CXCL11, and CCL5 of four outcomes (CR, PR, PD, SD) in the cohort receiving anti-PD-1/PD-L1 immunotherapy. (C) The OncoPrint was constructed
between high and low scores of the top 30 genes with the highest mutation frequency. (D) CNV plot showed the frequency of copy-number gains (red) and deletions
(blue) among immune hot and cold groups of the TCGA-HNSC cohort. (E) The stacking histogram showed the distribution of Keck classification in the immune hot
and cold groups of TCGA HNSCC and gse65858 cohorts. (F) Correlation between the four chemokines and GIBESORTRT score of 22 immune cells in HNSCC-
TCGA and 29 immune signature GSVA score. The cell charts in the upper-right triangular exhibited the correlation among the 22 immune cell scores, and the cell
charts in the -lower triangular showed the correlation among the 17 immune signature scores (Red stood for positive and green for negative, the darkness and
lightness of the colors for the high and low of the coefficients, and the size of the cell for p value). The lines between two cell charts represent the correlation of the
mRNA of the four chemokines with the bilateral immune scores (Red stood for positive and green for negative, and the thickness of the lines for the high and low of the
coefficients). (G) Dotplot summarized the correlation coefficients between the scores of 21 immune cells estimated by GIBESORTRT and the scores of Macrophage
M1 estimated by GIBESORTRT (only p < 0.05 was given). (H,J) Heatmap of average expression level of ligand–receptor interactions in all clusters in GSE103322 and
GSE139324. (I,K) Histogram of expression levels of CCL5, CXCL9, CXCL10, CXCL11, CXCR3, and CCR5 in each cell in GSE103322 and GSE139324 cohorts. (L)
Dotplot summarized the correlation coefficients between the expression level of CXCL9, CXCL10, CXCL11, and CCL5, and the GSVA of 10 immune signatures in
each cells classified as TAMM.
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(Figure 6I), indicating that CD4 and CD8 T cells were chemo-
attracted to immune focus by the CXCL9, CXCL10, and
CXCL11 emanated from TAM, malignant epithelium cells,
and CAF. Moreover, CCL5 and its receptor, CCR5, were
mainly expressed in CD4, CD8 T cells, and NK cells
(especially CD8 T cells; Figure 5K), suggesting that CCL5
influenced T cells through autocrine or paracrine. Worthy of
note, the mRNA peaks of CXCL9, CXCL10, CXCL11, and
CCL5 in TAM were distributed in multiple sub-populations
(Figure 6K), suggesting that although the four chemokines
were highly correlated at the bulk RNA-seq level, such
correlation could be inconsistent at the single cell level due
to the heterogeneity of TAMM. Finally, the relevance assay on
TAM clusters at the single cell level disclosed that the mRNA
levels of the four chemokines were positively correlated to the
pathways involved in immune infiltration and immune
inflammation response (Figure 6L). Therefore, the
expression of the four chemokines were associated with the
immune sub-populations in TAMM.

The Immune Hot Subtype of Squamous Cell
Carcinoma of Head and Neck
Characterized by the High Expression of the
Four Chemokines was Sensitive to
Anti-Cancer Drug Targeting ERK1-MARK
and RAS Pathway
The GSEA assay on the DEGs between the high- and low-graded
groups of the six HNSCC cohorts revealed that the pathways
enriched in the high-graded groups were mainly involved in
chemoattraction and immune response of immune cells, as well
as cell proliferation and differentiation, which were consistent in
different cohorts. In contrast, the pathways enriched in the low-
graded groups were relatively sparse in different cohorts, though
mainly concentrated in tumorigenesis and progression, such as
stemness, metastasis, metabolism, and hypoxia (Figure 7A). The
relevance assay on the IC50 of the HNSCC cell lines treated with
anti-tumor drugs in GDSC database disclosed that the GSVA
scores of CXCL9, CXCL10, CXCL11, and CCL5 were negatively
correlated to ERK1-MARK (Figures 7B–H) and RAS pathway
(Figures 7I,J) targeted by anti-HNSCC drugs, implicating that
the susceptibility of the immune hot subtype of HNSCC to the
drug originated from the influence on ERK1-MARK and RAS
pathway.

ANeural Network PredictingModelWith the
Four Chemokines and Three Immune Cells
Through the above studies, we found out a strongly positive
correlation between four chemokines (CXCL9, CXCL10,
CXCL11, and CCL5) and three kinds of immune cells
(Macrophage M1, CD8, and CD4 T cells) in the immune
phenotypes of HNSCC. Since the above seven factors were
located in the core of the immune response in HNSCC, we
designed a 4-layer neural network to predict the response
(response: CR, PR. not response: SD, PD) to the treatment with

auti-PD-1/PD-L1 (Figure 8A), in which GSE154538, GSE141119,
GSE91061, GSE78220, GSE176307, and the IMvigor210 acted as the
training set (n = 501), and GSE93157 as the test set (n = 65). The
AUC of the training set and the test set in the prediction model
reached 95% and 74.6%, respectively (Figure 8B). The confusion
matrix of the training and test sets was displayed in Figures 8C,D.

DISCUSSION

Despite the great progress made by ICB inmultiple tumors, only a
minority of HNSCC patients have benefited from ICB therapy. It
is of major importance to characterize the HNSCC sub-
population susceptible to ICB therapy, and the key genes
maintaining the sub-population (Curran et al., 2010).
Although a variety of criteria were proposed previously, few of
them concern the association of TAMM with the immune
responses in HNSCC. Since TAMM in TME contributed
greatly to tumorigenesis and progression (Estko et al., 2015;
Gao et al., 2016), a lot of researchers focused on the potentials
of TAMM in immune therapy (Coifman et al., 2005). However,
most previous studies and strategies ignored the heterogeneity of
TAMM, but treated the TAMMas a static entity, whichmeant the
immune therapy was challenged by TAMM heterogeneity. In the
present study, we applied bioinformatical methods from multiple
dimensions to explore the heterogeneity of the TAMM during
differentiation, as well as its correlation with the immune
responses in HNSCC. Although CIBEOSORT was not
reported to be applied in the matrix of single-cell RNA-Seq,
we think that, according to the resolve of non-negative matrix in
the algorithm theory of CIBEOSORT, the bulk RNA-seq could be
resolved into the matrix of single-cell RNA-Seq timing the matrix
of cell type clusters. In our study, the single-cell RNA-Seq matrix,
namely, the Leukocyte signature matrix (LM22), was set as the
decision variable, and the single sample in the bulk RNA-seq as
response variable for SVM linear deconvolution. The outcome
weighted vector was regarded as the cell type abundance of each
sample. Therefore, it is sound to transform the bulk RNA-seq
matrix into Single-cell RNA-Seq matrix by treating each cell as a
sample in the bulk RNA-seq. By treating the Single-cell RNA-Seq
data with the above algorithm theory, we found that combining
the genes characterizing early TAMM differentiation with the
immune cells in HNSCC could provide a criterion classifying the
immune subtypes of HNSCC more precisely. Furthermore, the
four chemokines-CXCL9, CXCL10, CXCL11, and CCL5-were
identified not only as the driver genes initiating and maintaining
the immune hot subtype of HNSCC, but also the nodes
connecting TAM (macrophage M1), CD4, and CD8 T cells
together.

The heterogeneity of TAMM in HNSCC was found to result
from not only the different subpopulations, but also the different
stages during differentiation. Molecularly, the gene expression
and genomic constitution of TAMM underwent remarkable
alterations during the differentiation from tumor-associated
monocyte to tumor-associated macrophages, which was also
supported by the in vitro assay (Singhal et al., 2019).
Previously, a criterion exploiting 22 kinds of immune cells was
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once proposed to classify HNSCC into the high and low immune
enrichment subtype (Feng et al., 2020; Zhang et al., 2020),
however, it was too broad to characterize the immune subtype
and prognosis. To establish a practical and accurate criterion, we
divided the gene expression profile during TAMM differentiation
into the early and later groups, and found out the DEGs between
the early and later groups. By using multiple bioinformatical
methods, the DEGs in the early TAMM differentiation were
found, indicating a better prognosis in the subtype with high
immune infiltration and low immune evasion (Sanmamed and
Chen., 2018). Thus, the DEGs in early TAMM differentiation
could reflect more details in the immune infiltration, evasion
(which could estimate the immune phenotype more
comprehensively) (Turan et al., 2021), and prognosis of HNSCC.

Previous studies reported a correlation of the better prognosis
with the elevated tumor mutation burden (TMB) (Chan et al., 2015;
Spencer et al., 2016; Büttner et al., 2019). However, in our study, the
A2 subtype which had the highest TMB in the TCGA HNSCC
cohort displayed the lower immune infiltration and evasion,
implicating the insusceptibility to ICB therapy. Since similar
characteristics were also detected in another HNSCC clinical
cohort (Kim et al., 2020), it was still unclear whether the HNSCC
subtype with a higher TMB was susceptible to PD-1/PD-L1 therapy.

The DEGs between A3 and B subtype (high immune
infiltration vs high immune evasion) were applied to construct
the protein crosstalk network from which the genes highly
correlated in expression at the nodes of regulatory network
and sharing the same pathway were identified as the driver

FIGURE 7 | Enriched tumorigenesis pathways in immune hot and cold phenotypes determined by the four chemokines (CXCL9,10,11, and CCL5) and immune hot
sensitive drugs. (A)Dotplot summarized the GSEANES scores of signal pathways related to tumor immunity and tumorigenesis between immune hot and cold groups in
the six HNSCC cohorts (only p.adjust<0.05 were given). (B–J) Scatter diagram summarized the correlation coefficients between GSVA score of CXCL9, CXCL10,
CXCL11, and CCL5, and the log2(IC50) in seven drugs targeting ERK-MAPK pathway (B–I) and two drugs targeting RAS pathway (I, J).
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genes initiating and maintaining the immune subtype. The DEGs
between the high immune infiltration and high immune evasion
(A3 subtype vs B subtype) showed a high similarity in different
cohorts. In contrast, the DEGs between high immune infiltration
subtype (A1 vs A3 subtype) were different from one another in
different cohorts. Therefore, we concentrated on the DEGs
between the high immune infiltration and high immune
evasion (A3 subtype vs B subtype) to explore the key genes
regulating the immune hot phenotype. Since both the A3 and A1
subtypes stood for the high immune infiltration subtypes in the
two cohorts, the difference between A3 and A1 subtypes
represented the discrepancy between the high immune
infiltration subtypes. From Figure 5G, it can be seen that such
discrepancy could be partially attributed to the various extents of
the immune evasion. However, because the number of the
intersected DEGs in the A3 and A1 subtypes was too low to
contribute to the difference, the factors resulting in the difference
were implicated varying dramatically in different cohorts. Since
the A3 and B subtypes in the two cohorts exhibited the converse
immune signatures, their comparison was supposed to get the
core genes associating immune infiltration with the HNSCC. The
numerous overlapped DEGs from the two cohorts reflecting the
similarity in the high immune infiltration between the two
cohorts allowed the following exploration of the pivotal genes
in the HNSCC with immune infiltration phenotype. Taking all
above findings into account, we concluded that the TAMM
differentiation related chemokines-CXCL9, CXCL10, and
CXCL11, and inflammatory chemokine CCL5-were the driver

genes initiating and maintaining the high immune infiltration
phenotype of HNSCC. A series of previous reports supported that
the four chemokines could work as the potential targets of
immune therapy. During tumorigenesis and progression, the
CXCL9-11/CXCR3 axis regulated the differentiation and
chemoattraction of T cells (Tokunaga et al., 2018), and the
CCL5/CCR5 axis influenced growth and metastasis (Aldinucci
et al., 2020). Previous reports showed that CXCL9, CXCL10, and
CCL5 could mark T cell–inflamed phenotype of pancreatic
cancer (Romero et al., 2020). CXCL9 and CCL5 activated
immune responses and enhanced ICB therapy in mouse model
of ovary cancer (Dangaj et al., 2019), and the melanoma in
CXCR3 knock-out mice exhibited decreased immune
infiltration and poor prognosis (Korniejewska et al., 2011).
However, we have to acknowledge that there was subjective
opinion in the criteria of the pivotal genes. Actually, besides
the four chemokines, the other eight candidate hub genes were
also verified to act as the pivotal genes establishing and
maintaining the high immune infiltration to some extent.
However, we think that CXCL9, CXCL10, CXCL11, and CCL5
were the optimal combination, because they satisfied the three
criteria: 1). they shared multiple pathways, implicating that they
could collectively reflect the activity of immune pathway, instead
of independently. Other genes were located in different pathways,
which raised the uncertainty for their function, though they
possessed the higher network topology; and 2). CXCL9,
CXCL10, CXCL11, and CCL5 were highly correlated in
expression. We tested the correlated expression of the 181

FIGURE 8 | The four chemokines and three immune cells were used to construct a neural network model to predict the response to anti-PD-1/PD-L1
immunotherapy. (A) Schematic diagram of the neural network. (B) ROC plot of train cohort and test cohort. (C,D) The confusion matrix in test cohort and train cohort.
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overlapped DEGs in TCGA cohorts and confirmed a higher
correlation among CXCL9, CXCL10, and CXCL11 than
among other DEGs. Although CXCL11 was excluded from the
12 candidate genes with the highest topological signatures, it had
the higher correlated expression, belonged to the same family and
shared multiple pathways with the other three chemokines.
Therefore, we selected CXCL9, CXCL10, CXCL11, and CCL5
as the pivotal genes in the high immune infiltration of HNSCC for
the following study.

Because the roles of the four chemokines in HNSCC have
been little studied, to explore their pivotal effects in the
immune responses to HNSCC, we divided the immune
circle into infiltration and evasion stages. The immune
infiltration included: 1) the release and convey of tumor cell
antigen, 2) chemoattraction and infiltration of immune cells
into TME by the cytokines and inflammation, and 3)
recognition and elimination of HNSCC cells by CTL. With
the exhaustion of CTL and the expression of immune
suppression factors (TGF-beta, PD-L1, etc.) by HNSCC, the
immune evasion commenced. The bulk RNA-seq data revealed
that CXCL9, CXCL10, CXCL11, and CCL5 were positively
correlated to all three steps of immune infiltration, but
negatively to immune evasion. The scRNA-seq data further
disclosed that the four chemokines and their receptors were
highly expressed in DCs, enhancing the antigen presentation
in TME; the high CCL5 expression in CD8 T cells, NK cells,
and certain TAM promoted inflammation; the tumor cells
highly expressing CXCL9, CXCL10, and CXCL11 attracted the
CD8 T cells, NK cells, and TAM, which eliminated tumor cells
by perforating cell membrane, digesting through serine
proteases and apoptosis via ligand binding (Lee et al.,
2018). All of these results supported the role of the four
chemokines in initiating and maintaining the immune hot
phenotype of HNSCC.

According to the GSVA scores of the four chemokines, the
HNSCC cohorts were divided into the subtypes of immune hot
and immune cold. The immune cold subtype was characterized
by the evident alteration on CNV, which was correlated to tumor
invasion and decreased immune responses (Davoli et al., 2017).
This finding also implied that the decreased immune responses in
immune cold subtype resulted from the imbalanced immune gene
expression caused by CNV alteration, as opposed to the
dysfunction of single immune gene. The other sign of immune
cold subtype was the higher mutation frequency, including the
tumor driver genes of TP53, TTN, etc. Reversely, the frequency of
CASP8 in immune hot subtype was noticeably higher than that in
immune cold subtype. Since several studies demonstrated that the
CASP8 mutations characterized the local activation of immune
cells and inflammation (Rooney et al., 2015; Tummers and
Green., 2017), it suggested that CASP8 mutation was capable
of activating immune responses in the immune hot subtype.

Worthy of note, the inflammation resulting from the four
chemokines could also increase the tumor invasion. As shown
in previous studies, the VEGF-PIK3/AKT pathway activated
by CCL5 promoted tumor metastasis by stimulating
angiogenesis and ECM remodeling (Karnoub et al., 2007;
Wang et al., 2012), and the robust expression of CXCL10

also enhanced gastric cancer invasion and metastasis by
binding the receptor CXCR3A (Yang et al., 2016). Thus,
further exploration was still required to elucidate the
relationship between the four chemokines and HNSCC
prognosis. Additionally, the four chemokines were strongly
associated with the check points on HNSCC surface,
implicating that HNSCC cells could circumvent immune
attacks by conveying the signal of “Don’t eat me” to CTL
through the check point molecules (PD-L1, PD-1, etc.). Thus,
the four chemokines might also indirectly enhance the tumor
invasion and metastasis even when directly attacked by tumor
cells. Since CCL5 was reported to rapidly induce cyclin D1,
c-Myc, Ha-Ras through MARK-ERK, and Jak/STAT signaling,
as well as glucose in-take and ATP production to stimulate
tumor growth (Ding et al., 2016; D. ; Gao & Fish, 2018;
Murooka, Rahbar, & Fish, 2009), the HNSCC cell lines with
the high expression of the four chemokines were sensitive to
the anti-tumor drug targeting MARK-ERK and RAS pathways.

The four chemokines were associated positively with
Macrophages M1, activated CD4, and CD8 T cells, but
negatively with Macrophages M0 (in TCGA HNSCC cohort)
and tumor-associated monocyte/macrophages (GEO cohort),
suggesting the lower expression of the four chemokines in the
early tumor-associated monocyte/macrophages or macrophages
M0, and the gradually elevated expression in differentiating
TAMM. Moreover, the higher expression of the four
chemokines were intensively detected in macrophage M1,
instead of M2, also implicating their association with the
polarization of macrophages, which was supported by the
recent studies that found that the lack of CCL5 promoted the
polarization in macrophages M2 (M. Li M et al., 2020), and
CXCL9 and CXCL10 induced the polarization in macrophages
M1 (Kohler et al., 2019). The scRNA-seq revealed that the mRNA
peaks of the four chemokines in TAM were distributed in
different subpopulations of TAMM, suggesting that the strong
and exclusive co-regulation of the four chemokines disclosed by
the bulk RNA-seq were inconsistent with the single cell level,
which required further investigation.

In the immunotherapy cohort receiving anti-PD-L1/PD-1,
the mRNA levels of the four chemokines were elevated
significantly in CR group, verifying their positive roles in
immune responses. It also encouraged us to establish a
criterion predicting the patients’ responses to ICB therapy.
In the premise of the substantial immune capacity of resisting
tumors, ICB therapy facilitated T cells to eliminate tumor cells
by blocking immune evasion, namely, the validity of ICB
therapy depended on the patients’ immunity. Considering
the crucial roles of the four chemokines (CXCL9, CXCL10,
CXCL11, and CCL5) and the three pivotal immune cells
(Macrophages M1, CD 4, and CD8 T cells) in tumor
immunity, we established a criterion predicting the validity
of ICB therapy through neural network, in which the AUC in
training and test sets achieved 100% and 74%, respectively.

We have to acknowledge the shortcomings in this study. First,
although they have been verified in other tumors, work is still
required to verify the roles of the four chemokines in HNSCC
found by the bioinformatical analyses. Second, the exploration on
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the mechanisms resulting in the immune evasion in the high
immune infiltration subtype was insufficient. Third, the
predicting and verifying cohorts were not HNSCC cohorts,
which might weaken the prediction accuracy in HNSCC
cohorts because of the variations among tumors. Fourth,
despite the impressive promotion in tumor immunity, the
roles of the four chemokines-CXCL9, CXCL10, CXCL11, and
CCL5-in tumorigenesis and progression were still in debates.

CONCLUSION

In summary, we indeed established the core roles of the four
chemokines-CXCL9, CXCL10, CXCL11, and CLL5-in HNSCC
immunity by combining TAMM differentiation and HNSCC
TME. From the perspective of the four chemokines associating
TAMM with HNSCC immunity, we found the limitation of
treating TAM as a static entity and the potential values of the
four chemokines in tumor immunity. Considering the few studies
on HNSCC immunity, our present study provided bio-
informatics support for future explorations.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

JX and CL designed the study. CL and HL wrote the
manuscript. JX and XL revised and polished the
manuscript. YH, HL, and XL performed the statistical
analysis of the data, and generated the figures and tables.
NL, HB, CG, TX, and LZ provided advice for the analysis and
the figures. All authors reviewed and approved the final
manuscript.

FUNDING

This study is supported by the National Natural Science
Foundation of China (81771055).

ACKNOWLEDGMENTS

The authors appreciate TCGA database, GEO database, GDSC
database, and IMvigor210 database for providing the original
study data.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.820065/
full#supplementary-material

REFERENCES

Aldinucci, D., Borghese, C., and Casagrande, N. (2020). The CCL5/CCR5 Axis in
Cancer Progression. Cancers 12 (7), 1765. doi:10.3390/cancers12071765

Bao, X., Shi, R., Zhao, T., Wang, Y., Anastasov, N., Rosemann, M., et al. (2021).
Integrated Analysis of Single-Cell RNA-Seq and Bulk RNA-Seq Unravels
Tumour Heterogeneity Plus M2-like Tumour-Associated Macrophage
Infiltration and Aggressiveness in TNBC. Cancer Immunol. Immunother. 70
(1), 189–202. doi:10.1007/s00262-020-02669-7

Büttner, R., Longshore, J. W., López-Ríos, F., Merkelbach-Bruse, S., Normanno, N.,
Rouleau, E., et al. (2019). Implementing TMBMeasurement in Clinical Practice:
Considerations on Assay Requirements. ESMO Open 4 (1), e000442. doi:10.
1136/esmoopen-2018-000442

Cao, B., Wang, Q., Zhang, H., Zhu, G., and Lang, J. (2018). Two Immune-
Enhanced Molecular Subtypes Differ in Inflammation, Checkpoint
Signaling and Outcome of Advanced Head and Neck Squamous Cell
Carcinoma. Oncoimmunology 7 (2), e1392427. doi:10.1080/2162402x.
2017.1392427

Cassetta, L., Fragkogianni, S., Sims, A. H., Swierczak, A., Forrester, L. M., Zhang,
H., et al. (2019). Human Tumor-Associated Macrophage and Monocyte
Transcriptional Landscapes Reveal Cancer-specific Reprogramming,
Biomarkers, and Therapeutic Targets. Cancer Cell 35 (4), 588–602. e510.
doi:10.1016/j.ccell.2019.02.009

Chan, T. A., Wolchok, J. D., and Snyder, A. (2015). Genetic Basis for Clinical
Response to CTLA-4 Blockade in Melanoma. N. Engl. J. Med. 373 (20), 1984.
doi:10.1056/NEJMc1508163

Clarke, E., Eriksen, J. G., and Barrett, S. (2021). The Effects of PD-1/pd-L1
Checkpoint Inhibitors on Recurrent/metastatic Head and Neck Squamous
Cell Carcinoma: a Critical Review of the Literature and Meta-Analysis. Acta
Oncologica 60 (11), 1534–1542. doi:10.1080/0284186x.2021.1964699

Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F., et al.
(2005). Geometric Diffusions as a Tool for Harmonic Analysis and Structure
Definition of Data: Diffusion Maps. Proc. Natl. Acad. Sci. U.S.A. 102 (21),
7426–7431. doi:10.1073/pnas.0500334102

Curran, M. A., Montalvo, W., Yagita, H., and Allison, J. P. (2010). PD-1 and CTLA-
4 Combination Blockade Expands Infiltrating T Cells and Reduces Regulatory T
and Myeloid Cells within B16 Melanoma Tumors. Proc. Natl. Acad. Sci. U.S.A.
107 (9), 4275–4280. doi:10.1073/pnas.0915174107

Dangaj, D., Bruand, M., Grimm, A. J., Ronet, C., Barras, D., Duttagupta, P. A., et al.
(2019). Cooperation between Constitutive and Inducible Chemokines Enables
T Cell Engraftment and Immune Attack in Solid Tumors. Cancer Cell 35 (6),
885–900. doi:10.1016/j.ccell.2019.05.004

Davoli, T., Uno, H., Wooten, E. C., and Elledge, S. J. (2017). Tumor Aneuploidy
Correlates with Markers of Immune Evasion and with Reduced Response to
Immunotherapy. Science 355 (6322), 8399. doi:10.1126/science.aaf8399

Ding, H., Zhao, L., Dai, S., Li, L., Wang, F., and Shan, B. (2016). CCL5 Secreted by
Tumor Associated Macrophages May Be a New Target in Treatment of Gastric
Cancer. Biomed. Pharmacother. 77, 142–149. doi:10.1016/j.biopha.2015.12.004

Efremova, M., Vento-Tormo, M., Teichmann, S. A., and Vento-Tormo, R. (2020).
CellPhoneDB: Inferring Cell-Cell Communication from Combined Expression
of Multi-Subunit Ligand-Receptor Complexes. Nat. Protoc. 15 (4), 1484–1506.
doi:10.1038/s41596-020-0292-x

Estko, M., Baumgartner, S., Urech, K., Kunz, M., Regueiro, U., Heusser, P., et al.
(2015). Tumour Cell Derived Effects on Monocyte/macrophage Polarization
and Function andModulatory Potential of Viscum Album Lipophilic Extract In
Vitro. BMC Complement. Altern. Med. 15, 130. doi:10.1186/s12906-015-0650-3

Feng, B., Shen, Y., Pastor Hostench, X., Bieg, M., Plath, M., Ishaque, N., et al.
(2020). Integrative Analysis of Multi-Omics Data Identified EGFR and PTGS2
as Key Nodes in a Gene Regulatory Network Related to Immune Phenotypes in
Head and Neck Cancer. Clin. Cancer Res. 26 (14), 3616–3628. doi:10.1158/
1078-0432.Ccr-19-3997

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 82006517

Huang et al. Immune Hot Genes in HNSCC

146

https://www.frontiersin.org/articles/10.3389/fgene.2022.820065/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.820065/full#supplementary-material
https://doi.org/10.3390/cancers12071765
https://doi.org/10.1007/s00262-020-02669-7
https://doi.org/10.1136/esmoopen-2018-000442
https://doi.org/10.1136/esmoopen-2018-000442
https://doi.org/10.1080/2162402x.2017.1392427
https://doi.org/10.1080/2162402x.2017.1392427
https://doi.org/10.1016/j.ccell.2019.02.009
https://doi.org/10.1056/NEJMc1508163
https://doi.org/10.1080/0284186x.2021.1964699
https://doi.org/10.1073/pnas.0500334102
https://doi.org/10.1073/pnas.0915174107
https://doi.org/10.1016/j.ccell.2019.05.004
https://doi.org/10.1126/science.aaf8399
https://doi.org/10.1016/j.biopha.2015.12.004
https://doi.org/10.1038/s41596-020-0292-x
https://doi.org/10.1186/s12906-015-0650-3
https://doi.org/10.1158/1078-0432.Ccr-19-3997
https://doi.org/10.1158/1078-0432.Ccr-19-3997
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Franklin, R. A., Liao,W., Sarkar, A., Kim, M. V., Bivona, M. R., Liu, K., et al. (2014).
The Cellular and Molecular Origin of Tumor-Associated Macrophages. Science
344 (6186), 921–925. doi:10.1126/science.1252510

Gao, D., and Fish, E. N. (2018). Chemokines in Breast Cancer: Regulating
Metabolism. Cytokine 109, 57–64. doi:10.1016/j.cyto.2018.02.010

Gao, L., Wang, F.-q., Li, H.-m., Yang, J.-g., Ren, J.-G., He, K.-f., et al. (2016). CCL2/
EGF Positive Feedback Loop between Cancer Cells and Macrophages Promotes
Cell Migration and Invasion in Head and Neck Squamous Cell Carcinoma.
Oncotarget 7 (52), 87037–87051. doi:10.18632/oncotarget.13523

García Campelo, M. R., Arriola, E., Campos Balea, B., López-Brea, M., Fuentes-
Pradera, J., de Castro Carpeno, J., et al. (2021). PD-L1 Inhibitors as
Monotherapy for the First-Line Treatment of Non-small-cell Lung Cancer
in PD-L1 Positive Patients: A Safety Data Network Meta-Analysis. Jcm 10 (19),
4583. doi:10.3390/jcm10194583

Goswami, K. K., Ghosh, T., Ghosh, S., Sarkar, M., Bose, A., and Baral, R. (2017).
Tumor Promoting Role of Anti-tumor Macrophages in Tumor
Microenvironment. Cell Immunol. 316, 1–10. doi:10.1016/j.cellimm.2017.
04.005

Guilliams, M., Ginhoux, F., Jakubzick, C., Naik, S. H., Onai, N., Schraml, B. U., et al.
(2014). Dendritic Cells, Monocytes and Macrophages: a Unified Nomenclature
Based on Ontogeny. Nat. Rev. Immunol. 14 (8), 571–578. doi:10.1038/nri3712

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W. M., Zheng, S., Butler, A., et al.
(2021). Integrated Analysis of Multimodal Single-Cell Data. Cell 184 (13),
3573–3587. e3529. doi:10.1016/j.cell.2021.04.048

He, Y., Jiang, Z., Chen, C., and Wang, X. (2018). Classification of Triple-Negative
Breast Cancers Based on Immunogenomic Profiling. J. Exp. Clin. Cancer Res. 37
(1), 327. doi:10.1186/s13046-018-1002-1

Hu, Y., He, M.-Y., Zhu, L.-F., Yang, C.-C., Zhou, M.-L., Wang, Q., et al. (2016).
Tumor-associated Macrophages Correlate with the Clinicopathological
Features and Poor Outcomes via Inducing Epithelial to Mesenchymal
Transition in Oral Squamous Cell Carcinoma. J. Exp. Clin. Cancer Res. 35,
12. doi:10.1186/s13046-015-0281-z

Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M.W., Bell, G. W., et al.
(2007). Mesenchymal Stem Cells within Tumour Stroma Promote Breast
Cancer Metastasis. Nature 449 (7162), 557–563. doi:10.1038/nature06188

Kim, M. H., Kim, J.-H., Lee, J. M., Choi, J. W., Jung, D., Cho, H., et al. (2020).
Molecular Subtypes of Oropharyngeal Cancer Show Distinct Immune
Microenvironment Related with Immune Checkpoint Blockade Response.
Br. J. Cancer 122 (11), 1649–1660. doi:10.1038/s41416-020-0796-8

Kimura, Y. N., Watari, K., Fotovati, A., Hosoi, F., Yasumoto, K., Izumi, H., et al.
(2007). Inflammatory Stimuli from Macrophages and Cancer Cells
Synergistically Promote Tumor Growth and Angiogenesis. Cancer Sci. 98
(12), 2009–2018. doi:10.1111/j.1349-7006.2007.00633.x

Kloepper, J., Riedemann, L., Amoozgar, Z., Seano, G., Susek, K., Yu, V., et al.
(2016). Ang-2/VEGF Bispecific Antibody Reprograms Macrophages and
Resident Microglia to Anti-tumor Phenotype and Prolongs Glioblastoma
Survival. Proc. Natl. Acad. Sci. U.S.A. 113 (16), 4476–4481. doi:10.1073/
pnas.1525360113

Kohler, J. B., Cervilha, D. A. d. B., Riani Moreira, A., Santana, F. R., Farias, T. M.,
Alonso Vale, M. I. C., et al. (2019). Microenvironmental Stimuli Induce
Different Macrophage Polarizations in Experimental Models of Emphysema.
Biol. Open 8 (4), 808. doi:10.1242/bio.040808

Korniejewska, A., McKnight, A. J., Johnson, Z., Watson, M. L., and Ward, S. G.
(2011). Expression and Agonist Responsiveness of CXCR3 Variants in Human T
Lymphocytes. Immunology 132 (4), 503–515. doi:10.1111/j.1365-2567.2010.03384.x

Lee, C., Lee, J., Choi, S. A., Kim, S.-K., Wang, K.-C., Park, S.-H., et al. (2018). M1
Macrophage Recruitment Correlates with Worse Outcome in SHH
Medulloblastomas. BMC Cancer 18 (1), 535. doi:10.1186/s12885-018-4457-8

Li, B., Ren, M., Zhou, X., Han, Q., and Cheng, L. (2020). Targeting Tumor-
Associated Macrophages in Head and Neck Squamous Cell Carcinoma. Oral
Oncol. 106, 104723. doi:10.1016/j.oraloncology.2020.104723

Li, M., Sun, X., Zhao, J., Xia, L., Li, J., Xu, M., et al. (2020). CCL5 Deficiency
Promotes Liver Repair by Improving Inflammation Resolution and Liver
Regeneration through M2 Macrophage Polarization. Cell Mol Immunol 17
(7), 753–764. doi:10.1038/s41423-019-0279-0

Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stangé, G., Van den Bossche, J.,
et al. (2010). Different Tumor Microenvironments Contain Functionally

Distinct Subsets of Macrophages Derived from Ly6C(high) Monocytes.
Cancer Res. 70 (14), 5728–5739. doi:10.1158/0008-5472.Can-09-4672

Murooka, T. T., Rahbar, R., and Fish, E. N. (2009). CCL5 Promotes Proliferation of
MCF-7 Cells through mTOR-dependent mRNA Translation. Biochem.
Biophysical Res. Commun. 387 (2), 381–386. doi:10.1016/j.bbrc.2009.07.035

Packer, J. S., Zhu, Q., Huynh, C., Sivaramakrishnan, P., Preston, E., Dueck, H., et al.
(2019). A Lineage-Resolved Molecular Atlas of C Elegans Embryogenesis at
Single-Cell Resolution. Science 365 (6459). doi:10.1126/science.aax1971

Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto, H.,
et al. (2014). Single-cell RNA-Seq Highlights Intratumoral Heterogeneity in
Primary Glioblastoma. Science 344 (6190), 1396–1401. doi:10.1126/science.
1254257

Romero, J. M., Grünwald, B., Jang, G.-H., Bavi, P. P., Jhaveri, A., Masoomian, M.,
et al. (2020). A Four-Chemokine Signature Is Associated with a T-Cell-
Inflamed Phenotype in Primary and Metastatic Pancreatic Cancer. Clin.
Cancer Res. 26 (8), 1997–2010. doi:10.1158/1078-0432.Ccr-19-2803

Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G., and Hacohen, N. (2015). Molecular
and Genetic Properties of Tumors Associated with Local Immune Cytolytic
Activity. Cell 160 (1-2), 48–61. doi:10.1016/j.cell.2014.12.033

Saloura, V., Izumchenko, E., Zuo, Z., Bao, R., Korzinkin, M., Ozerov, I., et al.
(2019). Immune Profiles in Primary Squamous Cell Carcinoma of the Head and
Neck. Oral Oncol. 96, 77–88. doi:10.1016/j.oraloncology.2019.06.032

Sanmamed, M. F., and Chen, L. (2018). A Paradigm Shift in Cancer
Immunotherapy: From Enhancement to Normalization. Cell 175 (2),
313–326. doi:10.1016/j.cell.2018.09.035

Seiwert, T. Y., Burtness, B., Mehra, R., Weiss, J., Berger, R., Eder, J. P., et al. (2016).
Safety and Clinical Activity of Pembrolizumab for Treatment of Recurrent or
Metastatic Squamous Cell Carcinoma of the Head and Neck (KEYNOTE-012):
an Open-Label, Multicentre, Phase 1b Trial. Lancet Oncol. 17 (7), 956–965.
doi:10.1016/s1470-2045(16)30066-3

Seminerio, I., Kindt, N., Descamps, G., Bellier, J., Lechien, J. R., Mat, Q., et al.
(2018). High Infiltration of CD68+ Macrophages Is Associated with Poor
Prognoses of Head and Neck Squamous Cell Carcinoma Patients and Is
Influenced by Human Papillomavirus. Oncotarget 9 (13), 11046–11059.
doi:10.18632/oncotarget.24306

Shi, C., and Pamer, E. G. (2011). Monocyte Recruitment during Infection and
Inflammation. Nat. Rev. Immunol. 11 (11), 762–774. doi:10.1038/nri3070

Singhal, S., Stadanlick, J., Annunziata, M. J., Rao, A. S., Bhojnagarwala, P. S.,
O’Brien, S., et al. (2019). Human Tumor-Associated Monocytes/macrophages
and Their Regulation of T Cell Responses in Early-Stage Lung Cancer. Sci.
Transl. Med. 11 (479), 1500. doi:10.1126/scitranslmed.aat1500

Spencer, K. R., Wang, J., Silk, A. W., Ganesan, S., Kaufman, H. L., and Mehnert, J. M.
(2016). Biomarkers for Immunotherapy: Current Developments and Challenges.
Am. Soc. Clin. Oncol. Educ. Book 35, e493–e503. doi:10.1200/edbk_160766

Tokunaga, R., Zhang, W., Naseem, M., Puccini, A., Berger, M. D., Soni, S., et al. (2018).
CXCL9, CXCL10, CXCL11/CXCR3 axis for Immune Activation - A Target for
Novel Cancer Therapy. Cancer Treat. Rev. 63, 40–47. doi:10.1016/j.ctrv.2017.11.007

Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C.,
McDermott, D. F., et al. (2012). Safety, Activity, and Immune Correlates of
Anti-PD-1 Antibody in Cancer. N. Engl. J. Med. 366 (26), 2443–2454. doi:10.
1056/NEJMoa1200690

Tummers, B., and Green, D. R. (2017). Caspase-8: Regulating Life and Death.
Immunol. Rev. 277 (1), 76–89. doi:10.1111/imr.12541

Turan, T., Kongpachith, S., Halliwill, K., Roelands, J., Hendrickx, W., Marincola, F.
M., et al. (2021). A Balance Score between Immune Stimulatory and
Suppressive Microenvironments Identifies Mediators of Tumour Immunity
and Predicts Pan-Cancer Survival. Br. J. Cancer 124 (4), 760–769. doi:10.1038/
s41416-020-01145-4

Walter, V., Yin, X., Wilkerson, M. D., Cabanski, C. R., Zhao, N., Du, Y., et al.
(2013). Molecular Subtypes in Head and Neck Cancer Exhibit Distinct Patterns
of Chromosomal Gain and Loss of Canonical Cancer Genes. PLoS One 8 (2),
e56823. doi:10.1371/journal.pone.0056823

Wang, S.-W., Wu, H.-H., Liu, S.-C., Wang, P.-C., Ou, W.-C., Chou, W.-Y., et al.
(2012). CCL5 and CCR5 Interaction Promotes Cell Motility in Human
Osteosarcoma. PLoS One 7 (4), e35101. doi:10.1371/journal.pone.0035101

Watters, J. J., Schartner, J. M., and Badie, B. (2005). Microglia Function in Brain
Tumors. J. Neurosci. Res. 81 (3), 447–455. doi:10.1002/jnr.20485

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 82006518

Huang et al. Immune Hot Genes in HNSCC

147

https://doi.org/10.1126/science.1252510
https://doi.org/10.1016/j.cyto.2018.02.010
https://doi.org/10.18632/oncotarget.13523
https://doi.org/10.3390/jcm10194583
https://doi.org/10.1016/j.cellimm.2017.04.005
https://doi.org/10.1016/j.cellimm.2017.04.005
https://doi.org/10.1038/nri3712
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1186/s13046-018-1002-1
https://doi.org/10.1186/s13046-015-0281-z
https://doi.org/10.1038/nature06188
https://doi.org/10.1038/s41416-020-0796-8
https://doi.org/10.1111/j.1349-7006.2007.00633.x
https://doi.org/10.1073/pnas.1525360113
https://doi.org/10.1073/pnas.1525360113
https://doi.org/10.1242/bio.040808
https://doi.org/10.1111/j.1365-2567.2010.03384.x
https://doi.org/10.1186/s12885-018-4457-8
https://doi.org/10.1016/j.oraloncology.2020.104723
https://doi.org/10.1038/s41423-019-0279-0
https://doi.org/10.1158/0008-5472.Can-09-4672
https://doi.org/10.1016/j.bbrc.2009.07.035
https://doi.org/10.1126/science.aax1971
https://doi.org/10.1126/science.1254257
https://doi.org/10.1126/science.1254257
https://doi.org/10.1158/1078-0432.Ccr-19-2803
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1016/j.oraloncology.2019.06.032
https://doi.org/10.1016/j.cell.2018.09.035
https://doi.org/10.1016/s1470-2045(16)30066-3
https://doi.org/10.18632/oncotarget.24306
https://doi.org/10.1038/nri3070
https://doi.org/10.1126/scitranslmed.aat1500
https://doi.org/10.1200/edbk_160766
https://doi.org/10.1016/j.ctrv.2017.11.007
https://doi.org/10.1056/NEJMoa1200690
https://doi.org/10.1056/NEJMoa1200690
https://doi.org/10.1111/imr.12541
https://doi.org/10.1038/s41416-020-01145-4
https://doi.org/10.1038/s41416-020-01145-4
https://doi.org/10.1371/journal.pone.0056823
https://doi.org/10.1371/journal.pone.0035101
https://doi.org/10.1002/jnr.20485
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Xiao, M., Zhang, J., Chen, W., and Chen, W. (2018). M1-like Tumor-Associated
Macrophages Activated by Exosome-Transferred THBS1 Promote Malignant
Migration in Oral Squamous Cell Carcinoma. J. Exp. Clin. Cancer Res. 37 (1),
143. doi:10.1186/s13046-018-0815-2

Yang, C., Zheng, W., and Du, W. (2016). CXCR3A Contributes to the Invasion and
Metastasis of Gastric Cancer Cells. Oncol. Rep. 36 (3), 1686–1692. doi:10.3892/or.
2016.4953

Yi, L., Wu, G., Guo, L., Zou, X., and Huang, P. (2020). Comprehensive Analysis of
the PD-L1 and Immune Infiltrates of m6A RNA Methylation Regulators in
Head and Neck Squamous Cell Carcinoma. Mol. Ther. - Nucleic Acids 21,
299–314. doi:10.1016/j.omtn.2020.06.001

Zhang, H., Luo, Y.-B.,Wu,W., Zhang, L.,Wang, Z., Dai, Z., et al. (2021). TheMolecular
Feature of Macrophages in Tumor ImmuneMicroenvironment of Glioma Patients.
Comput. Struct. Biotechnol. J. 19, 4603–4618. doi:10.1016/j.csbj.2021.08.019

Zhang, X., Shi, M., Chen, T., and Zhang, B. (2020). Characterization of the Immune Cell
Infiltration Landscape in Head and Neck Squamous Cell Carcinoma to Aid
Immunotherapy. Mol. Ther. - Nucleic Acids 22, 298–309. doi:10.1016/j.omtn.
2020.08.030

Zheng, Y., Bao, J., Zhao, Q., Zhou, T., and Sun, X. (2018). A Spatio-Temporal
Model of Macrophage-Mediated Drug Resistance in Glioma Immunotherapy.
Mol. Cancer Ther. 17 (4), 814–824. doi:10.1158/1535-7163.Mct-17-0634

Ziegler-Heitbrock, L., Ancuta, P., Crowe, S., Dalod, M., Grau, V., Hart, D. N., et al.
(2010). Nomenclature of Monocytes and Dendritic Cells in Blood. Blood 116
(16), e74–e80. doi:10.1182/blood-2010-02-258558

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Huang, Liu, Liu, Li, Bai, Guo, Xu, Zhu, Liu and Xiao. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 82006519

Huang et al. Immune Hot Genes in HNSCC

148

https://doi.org/10.1186/s13046-018-0815-2
https://doi.org/10.3892/or.2016.4953
https://doi.org/10.3892/or.2016.4953
https://doi.org/10.1016/j.omtn.2020.06.001
https://doi.org/10.1016/j.csbj.2021.08.019
https://doi.org/10.1016/j.omtn.2020.08.030
https://doi.org/10.1016/j.omtn.2020.08.030
https://doi.org/10.1158/1535-7163.Mct-17-0634
https://doi.org/10.1182/blood-2010-02-258558
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover

	Frontiers eBook Copyright Statement
	Computational approaches applied to cancer genetics, immunogenomics, and immuno-oncology

	Table of Contents
	Computational Approaches Applied to Cancer Genetics, Immunogenomics, and Immuno-oncology

	Construction and Validation of an Immune Cell Signature Score to Evaluate Prognosis and Therapeutic Efficacy in Hepatocellular Carcinoma
	Introduction
	Materials and Methods
	Dataset Acquisition and Preprocessing
	Immune Cell Signatures and Normalized Enrichment Score
	Construction of Immune Cell Signature Score
	Comparison of Immune Cell Signature Score-Based Prognostic Model
	Identification of Differentially Expressed Genes
	Machine Learning Classifier Algorithm
	Statistical Analysis

	Results
	An Immune Cell Signature Score Was Constructed to Significantly Stratify Hepatocellular Carcinoma Patients
	The Validation of the Immune Cell Signature Score-Based Prognostic Model
	The Comparison of Risk Stratification and Predictive Ability of Immune Cell Signature Score as a Feature
	Differential Marker Genes in the Four Immune Cell Signatures Formulating Immune Cell Signature Score
	Evaluation and Prediction of Disease Malignancy and Molecular Target Therapy Benefit in Hepatocellular Carcinoma by Immune Cell Signature Score
	Evaluation and Prediction of Chemotherapy and Immunotherapy Benefit in Other Tumors by Immune Cell Signature Score

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Intra-Tumoral Expression of SLC7A11 Is Associated with Immune Microenvironment, Drug Resistance, and Prognosis in Cancers:  ...
	Introduction
	Materials and Methods
	The Source of Transcriptome and Clinical Data
	Bioinformatic and Statistical Analysis
	In Vitro Validation
	Small Interfering RNA-Mediated Knockdown and CCK-8 Assay

	Results
	The Differential Expression of SLC7A11 in Distinct Cancer Cell Lines, Normal and Tumor Samples Within Bulk or Single-Cell T ...
	The Correlation Between Intra-Tumoral SLC7A11 Expression and Patients’ Overall Survival, Disease-Specific Survival, Disease ...
	SLC7A11 Barely Influenced Tumor Cell Proliferation In Vitro
	The Correlation Between SLC7A11 Expression and Immune Cell Infiltration, Immune Score, Stromal Score, and Estimate Score
	The Association Between SLC7A11 Expression and Potential Response to Immunotherapy Across Distinct Cancers
	SLC7A11 Expression Altered in Distinct Molecular and Immune Subtypes
	GSEA Identified the Signal Pathways that Altered Along with Differential Expression of SLC7A11

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Identification and Validation of Immune-Related Prognostic Genes in the Tumor Microenvironment of Colon Adenocarcinoma
	Introduction
	Materials and Methods
	Patients and Gene Expression Data
	Calculating Immune/Stromal Scores and Survival Analysis
	Functional Prediction and PPI Network Analysis

	Results
	Prognostic Correlation Analysis of Immune/Stromal Scores in COAD
	Differentially Expressed Gene Analysis in the TME of COAD
	PPI Network Construction of DEGs
	Prognostic Value of DEGs in COAD
	Relationships Between the Four Prognostic Genes and Immune Cell Behavior in COAD

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Characteristics of the Immune Cell Infiltration Landscape in Gastric Cancer to Assistant Immunotherapy
	Introduction
	Materials and Methods
	Data Preparation and Preprocessing
	Consensus Cluster Analysis for Immune Cells Infiltration in Gastric Cancer
	Identification of ICI Gene-Types and Functional Enrichment Analysis
	Definition and Immune Characteristics of ICI Scores
	Calculation and Analysis of Tumor Mutation Burden
	Exploration of the Significance of ICI Scores in Clinical Immunotherapy Response

	Results
	The Landscape of Immuno-Cell Infiltration in the TME of Gastric Cancer
	Identification of ICI Gene-Types and its Functional Enrichment
	Construction and Identification of Characteristics for ICI Score
	The Relationship Between ICI Scores and Tumor Burden Mutation

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

	Prognostic Biomarker DDOST and Its Correlation With Immune Infiltrates in Hepatocellular Carcinoma
	Introduction
	Materials and Methods
	Data Acquisition and Preprocessing
	Differentially Expressed Gene Analysis
	Enrichment Analysis
	Immune Infiltration Analysis
	Protein–Protein Interaction Network
	Validation Analysis
	Statistical Analysis

	Result
	Clinical Characteristics
	Differential Expression Analysis of DDOST in HCC
	Functional Enrichment Analysis of DEGs
	Relationship Between DDOST Expression and Immune Infiltration
	Associations Between DDOST Expression and Clinicopathologic Variables
	Data Validation

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Predicting Mutational Status of Driver and Suppressor Genes Directly from Histopathology With Deep Learning: A Systematic S ...
	Introduction
	Materials and Methods
	Ethics Statement
	Patient Cohorts
	Image Preprocessing
	Experimental Design and Preprocessing of Mutation Data
	Deep Learning and Statistics

	Results
	Prediction of Clinically Relevant Mutations Directly From Histology
	Prediction of Pathway Alterations Directly From Histology
	Predictability of Alterations in Different Tumor Types

	Discussion
	Limitations

	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Exploring Immune-Related Prognostic Signatures in the Tumor Microenvironment of Colon Cancer
	Introduction
	Materials and Methods
	Data Acquiring
	TCGA Cohorts and the List of Immune-Related Genes
	GEO Cohort for External Validation
	Immunotherapeutic Cohort

	Screening Immune-Related DEGs
	Construction and Validation of the Immune-Related Prognostic Model for Colon Cancer
	Estimation and Comparison of Tumor-Infiltrating Immune Cell Type Fractions
	Characteristics of Immunotherapy-Related Predictors for Colon Cancer Patients
	Exploring the Associations Between the Microsatellite Status and the Constructed Prognostic Model
	The Role of the Immune-Related Prognostic Signature in Immunotherapy

	Results
	Identification of Immune-Related DEGs
	Construction of the Immune-Related Risk Score Model and the Evaluation of its Prognostic Ability
	Validation and Assessment of the Immune-Related Prognostic Signatures
	Exploring the Tumor Immune Microenvironment in Colon Cancer Patients
	Validation of the Prognostic Signature Using GEO Datasets
	The Prognostic Signature in the Role of ICI Treatment

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Characterization of Pyroptosis-Related Subtypes via RNA-Seq and ScRNA-Seq to Predict Chemo-Immunotherapy Response in Triple ...
	Introduction
	Materials and Methods
	TNBC Data set Preparation and Preprocessing
	Identification of Pyroptosis-Related Signatures
	Consensus Cluster Analysis for Pyroptosis-Related Signatures in TNBC
	Identification of Differentially Expressed Genes (DEGs) and Functional Enrichment Analysis
	TME Cell Infiltration and Gene Set Variation Analysis
	Definition of Immune Characteristics Between High and Low Ps-Score Groups
	Construction and Evaluation of the Pyroptosis-Related Prediction Model
	Exploration of the Significance of Ps-Scores in Response to Clinical Immunotherapy
	Validation of Molecular Subtypes Based on scRNA-Seq Analysis
	Prediction of Potential miRNA Targets for Prognosis-Associated Signatures

	Results
	Overview of Genetic and Biological Characteristics of Pyroptosis-Related Signatures in TNBC
	Identification of a TNBC Cluster Pattern Based on Pyroptosis-Related Signatures
	Identification of DEGs Based on Pyroptosis-Related Clusters
	Development of Ps-Score and Characteristic of Ps-score-related Subgroups
	Significance of Ps-Scores in the Prediction of Response to Immunotherapy and Common Chemotherapeutics
	Validation of Cellular Subtypes in TNBC Through scRNA-Seq Analysis
	Prediction and Validation of miRNAs Interacted With Hub Ps-Score Genes

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References
	Glossary

	Decosus: An R Framework for Universal Integration of Cell Proportion Estimation Methods
	Introduction
	Materials and Methods
	Deconvolution Method
	Decosus Framework
	Datasets for Benchmarking
	Datasets for Simulation Studies

	Results
	Overview of the Decosus Integration Framework
	Analysis of Simulated Cell Proportions Demonstrate the Stability of Decosus
	Benchmark on Known Cell Proportions Demonstrate the Utility of Decosus
	Decosus Identified the Immunological Differences Between Atopic Dermatitis and Psoriasis
	Decosus Enables the Identification of UV Mediated Immune Reprogramming in the Skin

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	NFE2L3 as a Novel Biomarker Associated With IL-2/STAT5/NLRP3 Signaling Pathway in Malignant Pleural Mesothelioma and Other  ...
	Introduction
	Materials and Methods
	Analysis Overview
	Date Source
	Single-Sample Gene Set Enrichment Analysis
	Weighted Gene Co-Expression Network Analysis
	Functional Enrichment Analysis
	Differentially Expressed Genes and Correlation Analysis
	Immunohistochemistry Staining
	Pan-Cancer Analysis

	Results
	Patients With High Th2 Cell Infiltration Suffer a Poor Prognosis
	Identification of Co-Expressed Genes Associated With Th2 Cell
	Identification of Th2 Cell Infiltration-Related Genes
	NFE2L3 Could Promote Th2 Cell Differentiation via IL-2/STAT5/NLRP3 Signaling Pathway

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	The Chemokines Initiating and Maintaining Immune Hot Phenotype Are Prognostic in ICB of HNSCC
	Introduction
	Materials and Methods
	Data Collection
	Data Processing
	Analyses on Squamous Cell Carcinoma of Head and Neck scRNA-Seq Data
	CIBERSORT and ESTIMATE for Immune Cell and Stromal Scores
	The Unsupervised Clustering on TCGA Squamous Cell Carcinoma of Head and Neck and GSE65858 Cohorts
	Associations of TCGA Squamous Cell Carcinoma of Head and Neck Subtype With DNA Methylation, CNVs and Mutations
	Search for the DEGs in the Subtype of TCGA HNSCS and GSE65858 Cohorts
	Confirmation of the Key Genes
	Pathway Enrichment Analysis
	The GSVA Scores of the Four Chemokines and the Confirmation of the Immune Hot and Immune Cold Subtype
	Survival Analysis
	Construction of Neural Network
	Activation Function: 
	Statistical Analysis


	Results
	The Heterogeneity of Tumor-Associated Monocyte/Macrophage in Squamous Cell Carcinoma of Head and Neck
	Differentiation Trajectory and Copy Number Variation Verified the Heterogeneity of Tumor-Associated Monocyte/Macrophage
	A Criterion Classifying Squamous Cell Carcinoma of Head and Neck With Different Immune Phenotypes and Prognosis by Combinin ...
	Multiomic Characteristics Associated With the Immune Phenotypes of the Different Squamous Cell Carcinoma of Head and Neck S ...
	Construction of Gene Regulatory Network Based on Differential Genes Between Squamous Cell Carcinoma of Head and Neck Subtype
	Tumor-Associated Monocyte/Macrophage-Associated Chemokines-CXCL9, CXCL10, and CXCL11-and Inflammatory Chemokine- CCLL5 Were ...
	The Transcription of the four Chemokines-CXCL9, CXCL10, CXCL11, and CCLL5-Was Influenced by Epigenetic and Health Factors
	The Four Chemokines-CXCL9, CXCL10, CXCL11, and CCL5-Positively Regulated Immune Responses and Were Associated With the Low  ...
	The Relationship Between the Four Chemokines and the Sub-Populations in the Squamous Cell Carcinoma of Head and Neck Tumor  ...
	The Immune Hot Subtype of Squamous Cell Carcinoma of Head and Neck Characterized by the High Expression of the Four Chemoki ...
	A Neural Network Predicting Model With the Four Chemokines and Three Immune Cells

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Back Cover




