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COMPUTATIONAL METHODS FOR 
UNDERSTANDING COMPLEXITY: 
THE USE OF FORMAL METHODS IN 
BIOLOGY

Topic Editor:
David A. Rosenblueth, Universidad Nacional Autónoma de México, Mexico

The complexity of living organisms surpasses 
our unaided habilities of analysis. Hence, 
computational and mathematical methods are 
necessary for increasing our understanding of 
biological systems.

At the same time, there has been a phenomenal 
recent progress allowing the application of 
novel formal methods to new domains. This 
progress has spurred a conspicuous optimism 
in computational biology, promoting, in turn, 
a rapid increase in collaboration between 
specialists of biology with specialists of 
computer science.

Through sheer complexity, however, many 
important biological problems are at present 
intractable, and it is not clear whether we will 
ever be able to solve such problems. We are in 
the process of learning what kind of model and 
what kind of analysis and synthesis techniques 
to use for a particular problem. Some 
existing formalisms have been readily used in 
biological problems, others have been adapted 
to biological needs, and still others have been 
especially developed for biological systems.

This Research Topic has examples of cases (1) employing existing methods, (2) adapting 
methods to biology, and (3) developing new methods. We can also see discrete and Boolean 

Leaf of Arabidopsis thaliana with enhanced 
trichomes.
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models, and the use of both simulators and model checkers. Synthesis is exemplified by manual and 
by machine-learning methods. We hope that the articles collected in this Research Topic will stimulate 
new research.
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The Editorial on the Research Topic

Computational Methods for Understanding Complexity: The Use of Formal Methods in Biology

The functional properties of living organisms have a complexity exceeding the human capacity for 
analysis. A basic conviction in computational biology is that it should be possible to develop compu-
tational tools allowing us to considerably increase our understanding of such functional properties.

Understanding a fragment of reality is closely related to having a model of such a fragment. 
Hence, model construction is a high priority on the agenda of computational biology. Once available, 
a model can then be analyzed with different techniques. These two processes, however, are often 
intertwined, as analysis can guide the construction of a model.

Among the models for biochemical and gene networks (de Jong, 2002; Fages and Soliman, 2008), 
ordinary differential equations are of prime importance. Stochastic models based on Gillespie’s 
method (identified with continuous-time Markov chains) represent perhaps a most concrete model. 
Discrete models (e.g., Petri nets) are prominent, as abstractions from stochastic techniques, where 
both the concentrations and time have been discretized. Finally, Boolean formalisms are abstractions 
of discrete models. Boolean models were initially studied with propositional logic (i.e., Boolean 
logic). Later, however, close connections with more expressive logics have been established, such 
as those underlying Logic Programing (Kowalski, 2014) and Model Checking (Clarke et al., 1999).

Analysis techniques vary in the direction of treatment of time. Simulators normally deal with time 
in a forward manner by reproducing in the model a single behavior among all possible behaviors 
from an initial state. Model checkers, by contrast, often proceed backwards by analyzing, in reverse, 
all possible behaviors ending in a given set of final states.

Model-construction techniques, in turn, range from those completely performed by a human being 
to those entirely mechanized.

Understanding a living system through a model could be a goal per se. The model of a system, 
nevertheless, can also be used for predicting or even controlling its behavior. Moreover, a model can 
be instrumental in the synthesis of a system itself.

The aim of the present research topic is to explore the application of formal methods for under-
standing biological systems. This research topic comprises nine articles. Five of them belong to the 
category Original Research, two are Reviews, one a Technology Report, and the last one an Opinion 
Article.

“Model Checking to Assess T-Helper Cell Plasticity,” by Abou-Jaoudé et  al., is based on the 
discrete, asynchronous formalism developed by Thomas and D’Ari (1990). This work uses GINsim 
along with Model Checking for Action-Restricted Computation-Tree Logic (ARCTL). ARCTL is 
a generalization of ordinary Computation-Tree Logic (CTL) incorporating actions. This article 
extends a previously published work so as to cover several novel Th subtypes, and highlights the 
plasticity of Th cells depending on their microenvironment. The model has 101 variables (most of 
which, but not all, are Boolean) and 221 regulatory interactions.
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“Approximating Attractors of Boolean Networks by Iterative 
CTL Model Checking,” by Klarner and Heike, is a contribution 
to the study of asynchronous Boolean networks. This article 
advocates a method for approximating asynchronous attrac-
tors by “minimal trap spaces” using Answer Set Programing  
(Eiter et al., 2009), a declarative problem-solving paradigm stem-
ming from Logic Programing. Minimal trap spaces can be com-
puted efficiently even for networks with hundreds of variables. 
To decide whether each minimal trap space contains exactly 
one attractor, and whether there are attractors outside them, the 
authors use CTL Model Checking.

“Systems Perturbation Analysis of a Large Scale Signal Trans-
duction Model Reveals Potentially Influential Candidates for 
Cancer Therapeutics,” by Puniya et al., studies perturbations on 
a signal-transduction Boolean model having 132 variables and 
557 interactions. Through simulations using the platform Cell 
Collective, this work suggests potential therapeutic targets.

“Learning Delayed Influences of Biological Systems,” by 
Ribeiro et  al., is based on an extension of ordinary Boolean 
models with delays and employs Inductive Logic Programing to 
infer such models. Experimental data are a set of traces of obser-
vations, used in a bottom-up method that generates hypotheses. 
This process is illustrated in the yeast cell cycle system.

“Designing experiments to discriminate families of logic 
models,” by Videla et al., studies a method of synthesis of Boolean 
models employing Answer Set Programing. Through both prior 
knowledge and multiple-perturbation experiments thousands 
of logic models are retrieved. This is due to the incomplete and 
redundant nature of biological data. This work designs optimal 
experiments finding more specific logic models. The space of 
possible experiments is iteratively explored imposing constraints 
to minimize the number of input–output model behaviors at each 
step. The proposed method is applied to signaling pathways in 
human liver cells and phosphoproteomic data.

“Towards Synthesizing Executable Models in Biology,” by 
Fisher et al., discusses how Executable Biology can be aided by 
automatic synthesis of models. They exemplify this approach with 
several discrete models including a model of the C. elegans vulval 
precursor cells (VPC) system. The technique relies on the transla-
tion of the requirements from the model to logical constraints, 
which are supplied to a solver.

“A Survey about Methods Dedicated to Epistasis Detection,” 
by Niel et  al., classifies epistasis-detection methods into 
those performing exhaustive search and those effecting 

non-exhaustive search. On the one hand, the exhaustive-search 
methods may or may not use filtering to reduce the size of the 
search space. On the other hand, the non-exhaustive-search 
methods use combinatorial optimization or machine-learning 
techniques.

“Systems Biology of Cancer: A Challenging Expedition for 
Clinical and Quantitative Biologists,” by Korsunsky et al., relates 
models with computer tools for computational biology. The 
models covered include Bayesian networks, Boolean networks, 
ordinary differential equations, and cellular automata. The com-
puter tools encompass Model Checking and Sensitivity Analysis. 
Pancreatic cancer is used as an illustration.

“Normal vs. Malignant Hematopoiesis: The Complexity of Acute 
Leukemia through Systems Biology,” by Enciso et al., first observes 
that the relapse of acute leukemia could be explained as a selection 
eliminating highly proliferative cells due to chemotherapy, thus 
favoring slow-cycling cells. Hence, these authors advocate mod-
eling both several hematopoietic populations and the interactions 
with non-hematopoietic neighboring cells.

We are in the course of learning what kind of model and 
what kind of analysis and model-building techniques to use for 
each particular problem. This research topic is a contribution to 
such exploration. There are articles employing well-established 
methods, adapting techniques to biology, and developing new 
approaches. We can also find discrete and Boolean models, and 
the use of both simulators and model checkers. At the same time, 
synthesis is exemplified both by manual and machine-learning 
methods. We believe that the articles in this research topic will 
stimulate new research.
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Computational modeling constitutes a crucial step toward the functional understanding of
complex cellular networks. In particular, logical modeling has proven suitable for the dynam-
ical analysis of large signaling and transcriptional regulatory networks. In this context,
signaling input components are generally meant to convey external stimuli, or environ-
mental cues. In response to such external signals, cells acquire specific gene expression
patterns modeled in terms of attractors (e.g., stable states).The capacity for cells to alter or
reprogram their differentiated states upon changes in environmental conditions is referred
to as cell plasticity. In this article, we present a multivalued logical framework along with
computational methods recently developed to efficiently analyze large models. We mainly
focus on a symbolic model checking approach to investigate switches between attrac-
tors subsequent to changes of input conditions. As a case study, we consider the cellular
network regulating the differentiation of T-helper (Th) cells, which orchestrate many phys-
iological and pathological immune responses. To account for novel cellular subtypes, we
present an extended version of a published model of Th cell differentiation. We then use
symbolic model checking to analyze reachability properties between Th subtypes upon
changes of environmental cues. This allows for the construction of a synthetic view of Th
cell plasticity in terms of a graph connecting subtypes with arcs labeled by input condi-
tions. Finally, we explore novel strategies enabling specificTh cell polarizing or reprograming
events.

Keywords: logical modeling, signaling networks, T-helper lymphocyte, cell differentiation, cell plasticity, model
checking

1. INTRODUCTION
Cellular signaling pathways and regulatory circuits are progres-
sively deciphered, with a recent acceleration allowed by the devel-
opment of powerful high-throughput experimental approaches.
Computational modeling constitutes a crucial step toward the
functional understanding of the resulting intertwined networks.
Different formalisms have been commonly used to model complex
biological networks, with different levels of abstraction (de Jong,
2002; Karlebach and Shamir, 2008; Albert et al., 2013; Samaga
and Klamt, 2013). Among these formalisms, the discrete, logical
approach is particularly useful to model biological systems for
which detailed kinetic data are lacking, which is often the case
(Bornholdt, 2008; Wang et al., 2012; Naldi et al., 2014). More-
over, logical modeling allows the consideration and the dynamical
analysis of comprehensive signaling/regulatory networks. Here, we
rely on the multivalued formalism initially introduced by Thomas
and D’Ari (1990).

Following Thomas, we model networks in terms of a log-
ical regulatory graph (LRG), where nodes represent regulatory

components, while edges denote regulatory interactions (activa-
tions or inhibitions). Each component is associated with a discrete
variable denoting its (current) functional level of activity. In addi-
tion, a logical rule (or logical function) describes the evolution of
this level, depending on the values of the regulators of the compo-
nent. The regulatory graph together with the logical rules enable
the computation of the dynamical behavior of the model, which
is usually represented in terms of a State Transition Graph (STG),
where each node represents a state of the system (i.e., a vector list-
ing the values of all the variables), while arcs represent enabled
state transitions. The terminal strongly connected components
(SCC) of an STG denote the attractors of the underlying network,
i.e., capture its asymptotic behavior in terms of stable states or
(potentially complex) dynamical cycles. Consequently, the identi-
fication of these attractors and the evaluation of their reachability
from given initial condition(s) are paramount to understand net-
work behaviors. However, as the number of states may increase
exponentially with the number of components, advanced compu-
tational methods are needed to analyze the dynamics of discrete
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Abou-Jaoudé et al. Model checking revealing T-cell plasticity

models. In this respect, several strategies have been developed to
efficiently assess dynamical properties of comprehensive logical
models.

Here, we focus on the analysis of networks encompassing input
components that embody external signals, instructing intertwined
signaling pathways with feedback regulations. Each (fixed) combi-
nation of input values (i.e., environmental cues) defines a specific
region of the state space where the dynamics and its associated
attractors are confined. In the case of models of networks con-
trolling cell differentiation, attractors correspond to differentiated
patterns of gene expression (or protein activity). We call these
attractors differentiated states, which are generally stable states
[see e.g., Naldi et al. (2010)], but can also be complex attractors
denoting homeostasis or oscillatory behavior [see e.g., Bonzanni
et al. (2013)]. It is of particular interest to assess how input
value changes affect differentiated states, sometimes resulting in
functional reprograming. The capacity of cells to change their
asymptotic behaviors depending on environmental cues is referred
to as cell plasticity [see e.g., O’Shea and Paul (2010)]. In this man-
uscript, we present a methodology to assess cell plasticity, relying
on the logical formalism assets and recent computational methods,
including model checking techniques.

Model checking is a computer science technique for the veri-
fication of large discrete dynamical systems (Clarke et al., 1999).
It has been recently applied to the analysis of biological networks
(Chabrier and Fages, 2003; Batt et al., 2005; Schwarick and Heiner,
2009; Arellano et al., 2011; Brim et al., 2013). Properties are for-
malized in terms of temporal logic statements, and the verification
process explores (restricted) regions of the state space, in order
to check the truthfulness of the properties. Here, we consider
a further improvement that consists in defining input values as
labels of the transitions in STGs, thereby reducing the number
of states. This allows to efficiently assess input conditions when
verifying, for example, reachability properties between differen-
tiated states. For this, we use a specific symbolic model checker
called NuSMV-ARCTL, along with a temporal logical semantics
enabling the specification of properties with restrictions on the
input valuations (Lomuscio et al., 2007).

We consider the case of T-helper (Th) cell differentiation to
demonstrate the assets of the logical framework and the power
of model checking to elucidate how cells respond to environ-
mental stimuli. More precisely, we model the cellular network
controlling the differentiation of Th cells, which regulate many
physiological and pathological immune responses. Upon activa-
tion by antigen presenting cells (APCs), naive Th cells polarize
into distinct Th subtypes expressing different sets of cytokines, tai-
loring appropriate immune responses to the invading pathogen.
Recent experimental data highlight the ability of Th subtypes to
alter and even reprogram their phenotypes, according to envi-
ronmental cues (Nakayamada et al., 2012). These observations
challenge the classical linear view of Th differentiation into distinct
lineages, raising fundamental questions regarding the mechanisms
underlying Th differentiation and plasticity.

In order to get insights into the dynamical behavior of Th cell
differentiation, several models describing the regulatory network
controlling Th commitment have been proposed, relying on quan-
titative modeling approaches (van den Ham and de Boer, 2008,

2012; Mendoza and Pardo, 2010) or using discrete qualitative
frameworks (Mendoza, 2006; Naldi et al., 2010; Martinez-Sosa
and Mendoza, 2013). Here, the logical model of Th cell dif-
ferentiation of Naldi et al. (2010) is extended to cover several
novel Th subtypes. Focusing on Th polarization and reprogram-
ing events, we show how biologically relevant properties can be
formalized and tested using model checking. More precisely, we
compute all reprograming events between Th subtypes under spe-
cific documented polarizing cytokine environments, providing a
global and synthetic representation of Th plasticity in response to
these environmental cues. This analysis leads to the prediction of
Th-subtypes conversions, which will need to be assessed exper-
imentally. Finally, we delineate several strategies for Th subtype
reprograming, as well as for naive Th cell polarization toward a
novel hybrid Th subtype (predicted by our model).

This manuscript is organized as follows. Section 2 briefly
reviews the basics of the logical modeling framework, including
model definition and an overview of computational methods to
analyze dynamical properties. We also introduce the use of model
checking to enhance the analysis of logical models, in particular
when these include input components. This methodology is then
applied to a logical model for Th differentiation in Section 3, which
includes a presentation of the resulting biological insights. Section
4 concludes the manuscript with a discussion and some prospects.

2. MATERIALS AND METHODS
In this section, we introduce the logical framework, present-
ing the rationale underlying the model definition. We further
describe model modifications accounting for genetic perturba-
tions (e.g., gene knock-out or knock-in) along with a model
reduction method. Next, we briefly present computational strate-
gies to efficiently analyze properties of logical models. Finally, we
focus on the assets of model checking to enhance the dynamical
analysis of large signaling/regulatory logical networks. Figure 1
illustrates the workflow for logical model definition and analysis,
on which we rely to address the question of Th cell plasticity. Most
methods presented in this section are implemented in GINsim
(Chaouiya et al., 2012)1.

2.1. LOGICAL MODEL CONSTRUCTION
This subsection shortly introduces the definition of multivalued
logical models [for more details and formal definitions, see e.g.,
(Thomas and D’Ari, 1990; Chaouiya et al., 2003)].

2.1.1. Logical formalism
A logical model of a regulatory and/or signaling network is defined
as an LRG, where:

• {s1, . . ., sn} is the set of nodes, which embody the components
of the network; these may correspond to proteins, genes, or phe-
nomenological signals (e.g., the node APC in Figure 2 denotes
an Antigen Presenting Cell, present or not).

• Each component si is associated with a discrete (positive integer)
variable, which takes its values in Si= {0, . . . , maxi}; for simplic-
ity, we denote both the component and its associated variable by

1http://ginsim.org
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FIGURE 1 |Typical workflow to tackle a central biological question using
logical model construction and analysis. A model is defined, relying on
literature and experimental data (box Model Definition). The model is then
analyzed (boxes Static analysis and Dynamical analysis). The identification of
the attractors is performed either by static methods (see Sections 2.2.1 and
2.2.2) or by inspecting the dynamics (see Sections 2.2.3 and 2.3). Dynamics are

represented at different levels of abstraction, from the comprehensive state
transition graphs to the reprograming graphs. Resulting properties are
confronted with biological observations, leading to predictions and/or to model
revision. Ellipsoid boxes relate to the different model versions and behavior
representations. Green boxes denote methods that are available in GINsim,
whereas gray boxes denote analyses performed with other software tools.

si, embodying the component level of activity or concentration.
In general, the maximum level of si, denoted maxi, is set to 1
(i.e., Boolean variable), but it can take higher values to convey
qualitatively distinct functional levels.

• Each interaction (si, sj, θ) is defined by its source si, its tar-
get sj and a threshold θ ; the interaction is said to be effective
when si≥ θ ; note that θ ≤maxi (the threshold cannot exceed
the maximal level of the source).

• The state space of the LRG is given by S=5i=1, . . . ,nSi; hence a
state of the model is a vector s= (si)i=1, . . . ,n.

• The model behavior is specified in terms of logical rules (or log-
ical functions): the evolution of si is defined by Ki: S→ Si with
Ki(s) specifying the target value of si when the system is in state s.

The software GINsim provides a graphical interface for the
LRG definition, including the components (nodes) and their
ranges (maximum values), the interactions (signed arcs) and their

thresholds, along with the logical rules [using Boolean expressions
or logical parameters (Thomas and D’Ari, 1990)].

The behavior of an LRG is classically represented in terms of a
STG, which encompasses the initial model state(s) together with
their direct and indirect successors. A transition between two states
corresponds to the update of specific components. These updates
are dictated by the logical rules. When several components are
called to change their values at a given state, these updates are per-
formed according to an updating scheme. The most used updating
schemes are the fully synchronous updating (all changes are per-
formed simultaneously, leading to a unique successor), and the
fully asynchronous updating (all changes are performed indepen-
dently, leading to as many successors as the number of updated
components). Further details on STG and updating schemes are
provided in Section 2.2.3.

In such dynamical models, the asymptotic behavior of the sys-
tem is captured by the attractors. These correspond to the terminal
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FIGURE 2 | Regulatory graph ofTh differentiation logical model.
The model encompasses 101 components (among which 21 input
nodes) and 221 interactions. The components denoting the inputs
are in blue, those denoting the secreted cytokines in olive. Green

edges correspond to activations, whereas red blunt ones denote
inhibitions. Ellipses denote Boolean components, whereas
rectangles denote ternary ones. Gray-out components are those
selected for reduction.
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SCC of the STG. An SCC is defined as a maximal set of mutually
reachable states. An SCC is denoted terminal when no transition
leaves this state set (i.e., once the system enters this set, it is trapped
there forever). An attractor is defined by either a single state, which
corresponds to a stable state denoting a stable pattern of expres-
sion often interpreted as a cell differentiation state, or by a larger
set of states involved in a dynamical terminal cycle, denoting an
oscillatory (or homeostatic) behavior. It is therefore important to
identify these attractors along with reachability properties (e.g., to
determine the attractors reachable from a specific initial state).

2.1.2. Logical modeling of network perturbations
In the logical framework, it is straightforward to define perturba-
tions such as gene knock-out, gene knock-in, or more subtle per-
turbations (e.g., rendering a component insensitive to the presence
of one of its regulators). Modeling such perturbations amounts to
specific modifications of the corresponding logical rules. Mod-
ifications affecting several components can be easily combined.
Given a logical model, one can thus define various perturbations
to account for experimental observations or to generate predic-
tions regarding the dynamical role of regulatory components or
interactions.

2.1.3. Reduction of logical models
It is often useful to simplify large models by abstracting compo-
nents, hence diminishing the size of the model state space. In this
respect, GINsim implements a reduction method automating the
reduction of any component, except those that are self-regulated
(Naldi et al., 2011). The computation of a reduced model is per-
formed iteratively: to remove a component, the logical rules of
its targets are modified to account for the (indirect) effects of
the regulators of this component. This is efficiently done in time
polynomial in the number of targets (components regulated by
the removed one) and regulators of the removed components. In
the case of a Boolean model, removing n components leads to a
reduction of the state space by a factor 2n.

Obviously, such a reduction may change the dynamics. In fact,
it conserves the nature (and number) of the stable states and of the
terminal elementary cycles [also called simple cycles, with neither
repeated states nor repeated transitions (Berge, 2001)]. However,
oscillatory components may be split or isolated, and reachabil-
ity properties only partly conserved. Depending on the type of
components that are removed upon reduction, specific dynam-
ical properties are preserved. In Saadatpour et al. (2013), the
authors showed that all the attractors of an asynchronous Boolean
model are conserved upon reduction of input and pseudo-input
components (i.e., components with no regulators or regulated by
only input and pseudo-input components). Additionally, Naldi
et al. (2012) proved that the reduction of output and pseudo-
output components not only preserves the attractors, but also their
reachability properties [output components regulate no other
components, and pseudo-output components are those regulat-
ing only (pseudo-) output components]. In all cases, a trajectory
in a reduced model has its counterpart in the original model [see
Naldi et al. (2011) for details]. Hereafter, we take advantage of this
reduction method to ease the analysis of our Th cell differentiation
model (see Section 3).

2.2. MODEL ANALYSIS
Means to investigate the dynamical properties of a model can be
subdivided into: (1) static analyses, which infer properties without
requiring the construction of the STG; and (2) dynamical analy-
ses, which explore proper representations of the dynamics (see
Figure 1).

2.2.1. Static analysis – interactions and circuit functionality
The delineation of logical rules for components targeted by sev-
eral regulators can be relatively tricky. These rules are encoded in
GINsim as Multivalued Decision Diagrams, which represent mul-
tivalued functions as directed acyclical graphs allowing efficient
manipulations (Kam et al., 1998; Naldi et al., 2007).

To help the modeler, GINsim provides a method to check the
coherence of the interactions (including their signs) encoded in a
regulatory graph with the logical rules associated with its compo-
nents. Basically, for each interaction (si, sj, θ), GINsim compares
the target level of sj given by its logical function, when (si, sj, θ) is
effective (si≥ θ) and when it is not (si<θ), for all combinations
of the remaining regulators of sj (if any). If both target levels are
always equal, we say that this interaction is not functional. Relying
on this comparison, it is also possible to derive the sign of the
interaction (activation or inhibition).

Regulatory circuits (i.e., elementary cycles in the LRG, also
called feedback loops) drive non-trivial behaviors such as multi-
stability (in the case of positive circuits, involving an even number
of negative regulations) or sustained oscillations (negative cir-
cuits, involving an odd number of negative regulations) (Thieffry,
2007). Based on the aforementioned method to assess interaction
functionality, GINsim enables the delineation of the functionality
context (if any) of each regulatory circuit (Naldi et al., 2007; Remy
and Ruet, 2008). This functionality context is defined as the lev-
els of external regulators that allow each circuit interaction to be
functional and thereby affect its target in the circuit. It can be inter-
preted as the region of the state space where the circuit generates
the corresponding dynamical property. This definition enables the
identification of the regulatory circuits playing the most important
regulatory roles within a complex LRG [see Comet et al. (2013)
for further discussion on circuit functionality].

2.2.2. Static analysis – identification of dynamical attractors
Attractors (stable states or terminal cycles) constitute crucial
dynamical properties of the model and have thus been the focus of
many computational studies. In particular, a SAT-based algorithm
was proposed in Dubrova and Teslenko (2011) to compute all the
attractors of synchronous Boolean models. However, the prob-
lem is harder for the asynchronous updating scheme (see Section
2.2.3). Recently, Zañudo and Albert (2013) introduced a novel
method to compute most asynchronous attractors.

Several methods have been proposed to specifically com-
pute the stable states, for example, using constraint programing
(Devloo et al., 2003) or polynomial algebra (Veliz-Cuba et al.,
2010). To identify all the stable states, GINsim implements an effi-
cient algorithm based on the manipulation of multivalued decision
diagrams [see Naldi et al. (2007) for details]. We will rely on this
algorithm to compute the stable states of the Th cell differentiation
model (see Section 3).
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2.2.3. Dynamical analysis – state transition graphs,
representation, and analysis

As mentioned above, the discrete dynamics of an LRG can be rep-
resented in terms of an STG, where the nodes denote states and
the arcs represent transitions between states. A first approach to
investigate dynamical properties consists in analyzing the STG in
terms of attractors (terminal SCC), or regarding the existence of
paths from an initial state toward specific attractors. The graph
of SCC of the STG often provides a convenient, compressed
view of the dynamics, in which attractors and reachability prop-
erties are easier to visualize. However, this representation may
still encompass numerous single state components, hindering the
interpretation of the dynamics. To further compress an STG and
emphasize its topology, we recently proposed a novel represen-
tation, named hierarchical transition graph [see Bérenguier et al.
(2013) for details].

Still, these representations do not address the identification of
the attractors in large STGs. In this respect, Garg et al. (2008)
proposed an efficient algorithm to identify all the attractors (syn-
chronous and asynchronous schemes) of Boolean models. Their
method relies on a binary decision diagram representation of the
STG and can cope with very large models (Xie and Beerel, 1998).
An implementation of this algorithm is available along with the
software genYsis2.

To further account for kinetic aspects, several strategies have
been proposed. One strategy defines priority classes according to
biologically founded time scale separations, e.g., fast versus slow
processes (Fauré et al., 2006). Alternatively, time delays and con-
straints on them can be defined and handled with existing methods
to analyze timed automata (Siebert and Bockmayr, 2006). Another
approach consists in applying continuous time Markov processes
on logical state spaces. Based on the delineation of a logical model
along with a limited number of kinetic parameters, the software
MaBoSS uses Monte-Carlo simulations to compute an estimate of
the temporal evolution of probability distributions and of the sta-
tionary distributions of the logical states (Stoll et al., 2012). Finally,
several authors proposed to consider differential models derived
from logical models (Mendoza and Xenarios, 2006; Abou-Jaoudé
et al., 2009; Wittmann et al., 2009).

2.3. MODEL CHECKING FOR REACHABILITY ANALYSIS
2.3.1. Model checking
The combinatorial explosion of the state spaces of discrete dynam-
ical systems has been addressed during the last 30 years through the
development of model checking, a computer science technique to
verify properties in very large state spaces. The dynamics of discrete
systems are directly mapped into a (graph-based) Kripke structure
(Clarke et al., 1999). Model checkers receive a Kripke structure,
either explicitly (representation equivalent to the STG), or implic-
itly in terms of a transition function specifying the successors
of any given state. The latter case corresponds to symbolic model
checking, which is handled by most model checkers nowadays. To
perform a verification, a model checker takes as an input a set of
properties denoting real-world observations, specified as tempo-
ral logic formulas, and verifies whether each of these properties

2http://www.vital-it.ch/software/genYsis/

is satisfied by the Kripke structure induced by the model under
study.

Temporal logic formulas specify an order of sequences of tran-
sitions between states, without explicit time quantification. Several
temporal logics have been defined with different expressive pow-
ers, using different types of operators. In the case of asynchronous
updating, one might be interested in the study of each alterna-
tive path separately. This suggests the use of a temporal logic
that provides path quantifiers where, at each step, a choice can
be made between multiple paths, i.e., a branching-time tempo-
ral logic. Within the family of branching-time temporal logics,
Computation Tree Logic (CTL) is the most used one. Basic CTL
operators are obtained by combining path quantifiers, Exists and
All, with temporal operators, neXt, Future, Globally, and Until
(Clarke et al., 1999).

Different model checkers are available, differing in character-
istics such as the underlying structure to represent the model
dynamics or the supported temporal logics. A few examples are:
CADP (Garavel et al., 2007), which uses labeled transition sys-
tems, supporting temporal logics with high expressive power like
Computation Tree Regular Logic (CTRL) (Mateescu et al., 2011) or
µ-calculus (Kozen, 1983); Antelope (Arellano et al., 2011), which
uses STGs, supporting Hybrid CTL, an extension of CTL with a
special operator capable of selecting partly characterized states;
and NuSMV (Cimatti et al., 2002), a symbolic model checker,
which uses multilevel decision diagrams, supporting the verifica-
tion of properties through CTL or Linear Temporal Logic (LTL)
(Clarke et al., 1999). As an open source project providing a generic
description language for the specification of discrete dynamical
systems, NuSMV is particularly prone to be extended by other
research groups with additional features (see next subsection).

2.3.2. Model checking applied to the analysis of logical models of
signaling networks

Systems biology is a recent, successful application field for model
checking techniques, covering a variety of modeling formalisms
and/or type of properties to be verified [for details see Brim et al.
(2013)]. Here, we use GINsim, our modeling tool, which automat-
ically exports logical models under the asynchronous scheme into
NuSMV specifications. Biological observations are then expressed
as sets of temporal logic formulas.

Computational models of signaling/regulatory networks aim
at unraveling how external stimuli are processed to determine cell
responses. In these networks, input nodes convey environmental
cues, which are often assumed to be constant. Each combination
of constant values of the inputs defines an STG, which is discon-
nected from the STGs defined by different combinations of input
values. In other words, each fixed environmental condition defines
a specific region of the state space in which the system is trapped.
Rather than having input variables being part of the state defini-
tions, we label each transition with the input values enabling this
transition. This yields a state space defined solely by non-input
variables and therefore a unique STG (Monteiro and Chaouiya,
2012). The extent of this reduction depends on the number of
input components and on their value ranges.

In order to take advantage of this reduction, we need to be able
to verify properties referring to both states and transition labels.
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NuSMV can only verify properties on state characterizations. We
thus use NuSMV-ARCTL, which verifies properties combining
both state and transition characterizations (Lomuscio et al., 2007).
For the verification of such properties, NuSMV-ARCTL considers
a CTL extension called Action-Restricted CTL (ARCTL). Table 1
describes the syntax and semantics of the main ARCTL opera-
tors. With ARCTL, reachability properties are specified not only
by characterizing the set of initial and target states, but also by
constraining the values of some input components (transition
labels), while the remaining input components are allowed to
freely vary.

Here, we take advantage of the expressiveness of ARCTL to
study the influence of specific environmental conditions on the
reprograming of chosen cell types (see Section 3). As presented
hereafter, the Th cell differentiation model specified in GINsim is
exported into a NuSMV specification, while properties of biologi-
cal interest are specified as ARCTL temporal formulas. This allows
us to define a novel, abstracted view of the dynamical behaviors
called reprograming graph, which reveals switches between attrac-
tors upon changes in the input component values: the nodes of
this graph represent the model attractors; and the arcs, labeled by
specific combinations of input values, denote paths between those
attractors.

3. APPLICATION: T-HELPER CELL DIFFERENTIATION
T-helper (CD4+) lymphocytes play a key role in the regulation of
the immune response. Upon activation by APC, naive CD4 T cells
(Th0) differentiate into specific Th subtypes producing different
cytokines, which affect the activity of immune effector cell types
(e.g., B lymphocytes, effector CD8 T cells, macrophages, etc.).

Three main types of signals are involved in this Th cell differ-
entiation process (Figure S1 in Supplementary Material): (i) the
presentation of antigenic peptide in conjunction with the major
histocompatibility complex class II molecules (MHC-II) stimu-
late specific T cell receptors (TCR); (ii) co-stimulatory molecules
further contribute to T cell activation and clonal proliferation;
(iii) cytokines secreted by APCs and other cells bind their spe-
cific receptor(s) on the surface of Th0 cells, thereby affecting Th
differentiation.

The cytokine environment instructs Th0 to enter a specific
differentiation program in order to match the type of pathogen
primarily stimulating the APCs. Over the last decade, a variety
of Th subtypes have been discovered (Nakayamada et al., 2012),
well beyond the initial identification of Th1 and Th2 dichotomy
(Mosmann et al., 1986; Mosmann and Coffman, 1989).

Currently, several Th subtypes (Th1, Th2, Th17, Treg, Tfh,
Th9, and Th22) have been well established. These canonical sub-
types are characterized by their ability to express specific sets of
cytokines under the control of a master regulator transcription
factor (Figure S1 in Supplementary Material). However, various
hybrid Th subtypes expressing several master regulators have been
recently identified (Ghoreschi et al., 2010; Duhen et al., 2012; Peine
et al., 2013). Evidences for substantial plasticity in Th differen-
tiation have also been reported, including reprograming events
between Th subtypes under specific cytokine environments (Yang
et al., 2008; Lee et al., 2009; Hegazy et al., 2010). These findings
challenge the classical linear view of Th differentiation and raise

Table 1 | Syntax and semantics of the main ARCTL temporal operators

[for a complete description see Lomuscio et al. (2007)].

Syntax Semantics

EAF (α) (φ) There is at least one path leading to a state that satisfies φ

and the input restriction α must be satisfied along that path

AAF (α) (φ) All the paths lead to a state that satisfies φ and the input

restriction α must be satisfied along all the paths

EAG (α) (φ) There is at least one path along which all the states satisfy

φ and the input restriction α is satisfied along that path

AAG (α) (φ) All the states of all the paths satisfy φ and the input

restriction α is satisfied along all the paths

EA (α)[φ ∪ ψ ] There is at least one path along which all the states satisfy

φ, leading to a state that satisfies ψ and the input

restriction α is satisfied along the path

AA (α)[φ ∪ ψ ] All the states of all the paths satisfy φ, leading to a state

that satisfies ψ and the input restriction α is satisfied along

all the paths

α denotes a restriction, defined only by the input variables, which must be sat-

isfied (true) along the path; φ and ψ denote the restrictions, defined only by

non-input variables, which must be satisfied at the target state or along the path.

the question of which mechanisms underlie the observed diversity
and plasticity of Th phenotypes.

Unraveling the complexity of Th differentiation and plastic-
ity requires the development of an integrative and systematic
approach articulating experimental analysis with computational
modeling. We are currently setting a multi-parametric in vitro
experimental approach to decipher how the microenvironment
globally controls Th cell differentiation. In parallel, we are develop-
ing a comprehensive logical model of Th differentiation covering
all parameters assessed in our experimental setup. Extending the
modeling study reported in Naldi et al. (2010), the model presented
here includes additional transcription factors and cytokine path-
ways and hence accounts for the differentiation of several novel Th
subtypes. On the basis of this model, we illustrate how the com-
putational methods described in Section 2, in particular model
checking, can be used to assess biologically relevant dynamical
properties. The model file as well as the steps to reproduce all the
results described below are available from the model repository of
the GINsim web site.

3.1. MODEL DESCRIPTION
Our Th differentiation model encompasses different layers (see
Figure 2), namely:

• the cytokine inputs along with the APCs;
• the cytokine receptors and their subchains, along with the TCR

and the co-stimulatory receptor CD28;
• the intracellular signaling factors, including “Stat” family pro-

teins (Stat1, Stat3, Stat4, Stat5, and Stat6), the TCR and co-
stimulatory signaling components (NFAT, IκB, and NFκB),
the master regulators (Tbet, Gata3, Rorγ t, Foxp3, and Bcl6),
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along with additional transcription factors involved in Th
differentiation (cMaf, PU.1, Smad3, IRF1, and Runx3);

• the main cytokines secreted by Th cells;
• a component modeling the proliferation of the cell.

By and large, the model encompasses 21 signaling pathways
(comprising external cytokines, receptor chains, etc.), 17 tran-
scription factors, 17 cytokines expressed by Th cells, and 1 node
accounting for cell proliferation, amounting to 101 components
in total. In comparison with the model reported in Naldi et al.
(2010), this model integrates factors characterizing novel Th sub-
types (Tfh, Th9, and Th22) as well as additional signaling pathways
and secreted cytokines involved in the differentiation and the def-
inition of Th cellular types. A complete list of the components of
the model along with supporting evidence is provided in Table S1
in Supplementary Material. The logical rules associated with the
components are listed in the Table S2 in Supplementary Material.

As in Naldi et al. (2010), a gene expression pattern is associated
with each canonical Th subtype, based on experimental evidence
(Table 2). Each pattern represents a restriction of Th cell states
to a subset defined by the activation or the inactivation of critical
markers characterizing the corresponding canonical Th subtype.
In the following sections, we present the results obtained by the
application of the aforementioned computational methods to our
Th differentiation model.

3.2. STATIC ANALYSIS
We first checked the consistency of the rules inferred from experi-
mental data (Table S2 in Supplementary Material) with the inter-
actions composing the regulatory graph of Figure 2. An analysis of
interaction functionality led to the identification of a single non-
functional interaction (IL10R→ Stat3). Although the role of this
interaction is not yet clear, we kept it in the regulatory graph as it
is documented (see Table S1 in Supplementary Material).

Next, to ease the model analysis, we derived a reduced version
of this model using the reduction method described in Naldi et al.
(2011), keeping internal components characterizing the canoni-
cal Th patterns (cf. Figure 2, where the gray nodes denote the
components selected for reduction).

Using the method described in Naldi et al. (2007), we computed
all the stable states for all the input combinations and grouped
them according to phenotypic markers (see also Subsection 2.2.2
above). Since the reduction preserves the stable states, each sta-
ble state of the reduced model strictly corresponds to one stable
state of the original model (and vice versa). This analysis led to
the identification of 82 context-dependent stable states, includ-
ing sets of stable states matching the activity patterns associated
with each canonical Th subtype (see Table S3 in Supplementary
Material). This analysis further predicts the existence of stable
states representing hybrid cellular types, i.e., expressing several
master regulators, including four hybrids expressing two master
regulators, which have been recently reported in the literature,
and another one (Tbet+Gata3+Foxp3+) expressing three mas-
ter regulators, which has not yet been experimentally observed.
Each of the stable states found is associated with a subset of input
combinations. One can actually recover the input configurations
associated with each stable state, getting a first insight into the role

Table 2 | Logical expression patterns for the canonicalTh subtypes.

Transcription factors Secreted cytokines

T
B

E
T

G
A

TA
3

R
O

R
G

T

FO
X

P
3

B
C

L6

P
U

.1

S
TA

T
3

IF
N

G

IL
4

IL
1 7

IL
21

IL
22

IL
5

IL
13

IL
9

T
G

FB

Th0

Th1

Th2

Th17

Treg

Tfh

Th9

Th22

Red and green cells denote the activation and inactivation of the components

(column entries), with respect to the canonical Th subtype (row entries). Gray

cells represent components that can be either activated or inactivated for the cor-

responding canonicalTh subtype.The components not mentioned are considered

to be either activated or inactivated, except in the case ofTh0, where they are all

inactivated.

of environmental cues in controlling the asymptotic behaviors of
the system (see Section 3.3.2 for an illustration of this analysis).

3.3. REACHABILITY ANALYSIS
As mentioned above, static analysis of the logical model allows for
the identification of stable Th cellular types along with their asso-
ciated input configurations. Our next aim is to determine how
environmental cues control the differentiation and plasticity of
these Th cell types. This question amounts to check whether a cel-
lular type is reachable from a given initial state for specific input
conditions,under the asynchronous update. This kind of questions
can be efficiently addressed using model checking, by verifying
temporal properties under constant or varying input conditions.

We first carried out a systematic analysis of reachability proper-
ties between the canonical Th subtypes as defined in Table 2, under
specific constant polarizing cytokine environments. We consider
nine prototypic environmental conditions (listed in Table 3) for
this reachability analysis, including seven documented polariz-
ing cytokine environments known to commit Th cells into the
canonical subtypes.

We used the NuSMV-ARCTL model checker and instantiated
the following generic property with values from Tables 2 and 3:

INIT c1; EAF (e) (c2 ∧ AAG (e) (c2)) (1)

This property asserts the existence of a path from a canoni-
cal Th pattern c1, instantiated with values from Table 2, toward a
(stable) canonical Th pattern c2, also instantiated with values from
Table 2, under an input condition e, instantiated with values from
Table 3.

Checking this property for all the combinations of canonical Th
patterns and input conditions, one can represent the verified prop-
erties through a reprograming graph, which here abstracts paths
between Th patterns and recapitulates the polarizing and repro-
graming events predicted by our model (Figure 3). This graph
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Table 3 | Prototypic environmental conditions.

Environmental conditions

A
P

C

IL
12

_e

IL
4_

e

IL
6_

e

T
G

FB
_e

IL
1B

_e

IL
23

_e

IL
21

_e

IL
2_

e

No stimulation

APC only

proTh1

proTh2

proTh17

proTreg

proTfh

proTh9

proTh22

Each row corresponds to a prototypic environment defined as a combination of

APC and cytokine inputs (columns). These environments encompass seven doc-

umented polarizing environments (denoted “proThX”) known to polarize naiveTh

cells into the canonical subtypes (defined in Table 2). Red/green cells represent

present/absent inputs. Non-mentioned inputs are considered as absent.

provides a global and synthetic representation of Th plasticity
depending on environmental cues. Focusing on polarizing events
from naive Th0 cells to the other Th subtypes, our model is consis-
tent with experimental data, showing that each canonical subtype
can be reached from the naive state Th0 (blue arcs starting from
Th0 in Figure 3) in the presence of specific polarizing cytokine
combinations (denoted by the labels associated with the blue arcs
in Figure 3). The remaining Th subtype conversions present in the
reprograming graph would need to be assessed experimentally.

An extensive discussion of all these Th type conversions is
beyond the scope of this article. However, one interesting outcome
is the inherent dissymmetry of this graph, with some Th sub-
types apparently very stable under the environments considered
(e.g., Th1 node, with seven incoming arcs but only one outgoing
one), while others need very specific conditions for their main-
tenance (e.g., Th9 node, with six outgoing arcs and only one
incoming one).

Hereafter, we focus on specific biological questions regarding
Th differentiation and plasticity and show how model checkers
can be applied to address these questions. Two biological questions
will be considered: (i) the delineation of reprograming strategies
to convert Th1 into Th2, and vice versa; (ii) the identification of
relevant environmental conditions enabling the polarization to the
Tbet+Gata3+Foxp3+ hybrid Th subtype identified in the course
of the stable state analysis.

3.3.1. Reprograming between Th1 and Th2
Since the discovery of Th1 and Th2 subtypes, Th1 and Th2 com-
mitments have been for a long time considered as mutually exclu-
sive (Murphy and Reiner, 2002). However, recent experimental
observations challenged this Th1/Th2 dichotomy (Hegazy et al.,
2010; Antebi et al., 2013; Peine et al., 2013), raising the ques-
tion of which environmental conditions can instruct Th1 or Th2
interconversions.

We first address this question by investigating Th1–Th2 repro-
graming strategies for the prototypic input conditions (listed in
Table 3). From the reprograming graph (Figure 3), two strategies
emerge: (1) although there is no direct path from Th1 cells toward
Th2 cells, one could consider a two-step approach to reprogram
Th1 cells into Th2 cells by applying a proTh17 condition, followed
by a proTh2 condition; (2) as there is a direct path from Th2 to
Th1 labeled with proTfh conditions, the application of a proTfh
environment would potentially reprogram Th2 cells into Th1 cells.

We then ask whether other (constant or varying) input condi-
tion strategies could be identified for the reprograming between
Th1 and Th2, beyond the prototypic environmental conditions.
This question can be addressed using the following ARCTL
formulas:

INIT Th1; EAF (¬e) (Th2)

INIT Th2; EAF (¬e) (Th1)
(2)

where e denotes the set of all the prototypic inputs (and conse-
quently ¬e denotes the set of all the input combinations except
the prototypic ones). NuSMV-ARCTL evaluates both formulas as
true, implying that it must exist at least one non-prototypic (con-
stant or varying) input condition allowing for the reprograming
of Th1 into Th2, and vice versa.

To further illustrate the power of model checking to analyze
cell plasticity, we focus on Th2 reprograming into Th1. Our initial
analysis predicts that the prototypic proTh1 cytokine environment
does not enable this reprograming (see Figure 3). However, look-
ing more closely at the regulatory graph, we see that the TGFβ
signaling pathway inhibits Gata3, the master regulator of Th2 cells
(Figure 2). This suggests an alternative two-step strategy to repro-
gram Th2 into Th1, by applying first TGFβ in the cell environment
to inhibit Gata3, and thereby block its inhibitory effects on Th1
differentiation, followed by the application of a proTh1 environ-
ment to induce Th1 polarization. We can assess this strategy using
the following ARCTL formula:

INIT Th2;

EAF (e)
(
true ∧ EAF

(
proTh1

) (
Th1 ∧ AAG

(
proTh1

)
(Th1)

))
(3)

where e is an input condition restricting only TGFβ to ON (all
other inputs can freely vary). This property is evaluated as true.
We can thus conclude that this alternative strategy could also be
used to reprogram Th2 into Th1 cells.

Beyond this analysis, one can further investigate network per-
turbations (e.g., gene knock-in or knock-out) enabling Th1–Th2
reprograming. This type of questions can be assessed using model
checking of perturbed models. Here,we focus again on reprogram-
ing Th2 cells into Th1 cells under the prototypic proTh1 input
condition. Over-expression of a Gata3 (Th2 signature) inhibitor
(e.g., PU.1 or Bcl6) would be a relevant option. However, Bcl6
should be discarded because it also inhibits Tbet (Th1 signature)
(cf. the logical rule of Tbet in Table S2 in Supplementary Material).
Using the generic property (1), the analysis of a perturbed model
with ectopically expressed PU.1 suggests that this perturbation can
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FIGURE 3 | Reprograming graph, considering all canonicalTh
subtypes, generated with the model checker NuSMV-ARCTL. Nodes
represent sets of states characterizing the canonical Th subtypes defined
inTable 2. There is an arc labeled with e, going from node c1 to node c2,
whenever the following ARCTL temporal logic formula is verified: INIT c1;
EAF (e) (c2 ∧AAG (e)(c2)). It should be noted that the existence of a single
reprograming path from a Th subtype to another one does not necessarily

imply the stability of the target Th subtype, since NuSMV-ARCTL
considers that a property is true if and only if it is verified by the whole set
of states in the initial conditions. Hence, if at least one state associated
with a given subtype points to a state not associated with this subtype (for
given input conditions), then the stability of the Th subtype is not
represented (see for example, Th9 subtype, which is not considered stable
under proTh9 input condition).

indeed induce the reprograming of Th2 into Th1 in the presence
of the prototypic proTh1 input condition.

Finally, we can study the role of critical regulatory interactions
underlying such reprograming events through model checking
analyses of perturbed models. Turning back to the reprograming
strategies 1 and 2 presented above, we now focus on the inhibitory
interactions acting upon Tbet and Gata3, the master regulators of
Th1 and Th2 cell types, respectively. For example, in Figure 2, we
see that Rorγ t inhibits Tbet, which could be relevant for repro-
graming strategy 1, while Bcl6 inhibits Gata3, which might be
relevant for reprograming strategy 2. Analyses of perturbed mod-
els, using the ARCTL generic property (1), where either one or
the other interaction is suppressed, suggest that the inhibition of
Tbet by Rorγ t is indeed necessary for reprograming strategy 1,
whereas the inhibition of Gata3 by Bcl6 is indeed necessary for
reprograming strategy 2.

3.3.2. Reachability of the triple hybrid subtype
Tbet+Gata3+Foxp3+

The steady state analysis of our model in Section 3.2 predicts the
existence of a stable hybrid Th subtype co-expressing Tbet (char-
acteristic of the Th1 signature), Gata3 (Th2 signature), and Foxp3
(Treg signature), which has not been yet experimentally reported.

Using model checking, we can evaluate environmental condi-
tions that might enable the polarization of naive Th0 cells into
this hybrid subtype. First, the input combinations for which this
hybrid subtype is stable can be extracted directly from the steady
state analysis (not shown). In these combinations, some cytokines
appear to be either always ON, namely IL15, or always OFF,
TGFβ. Moreover, TGFβ signaling, via Smad3, is clearly needed
to activate Foxp3 (see logical rule of Foxp3 in Table S2 in Supple-
mentary Material), suggesting that a transient TGFβ environment
is necessary to polarize naive Th0 cells into the hybrid subtype
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Tbet+Gata3+Foxp3+. This last hypothesis can be verified using
the ARCTL formula:

INIT Th0; AAG (e)
(
¬

(
Tbet+Gata3+Foxp3+

))
(4)

where e denotes an input condition restricting only TGFβ to
OFF (all other inputs can freely vary). This formula states that
the hybrid pattern cannot be reached from whatever path leaving
the canonical Th0 pattern under the input restriction e. As the
property is evaluated as true, we conclude that a strategy without
(transient) TGFβ in the environment cannot polarize Th0 into the
hybrid subtype, confirming our hypothesis.

Therefore, a two-step approach to polarize naive Th0 cells
into the hybrid subtype Tbet+Gata3+Foxp3+ could be consid-
ered, applying TGFβ transiently, before applying an environment
containing IL15. This strategy can be evaluated using the ARCTL
formula:

INIT Th0; EAF (e1)
(
true ∧ EAF (e2)

(
Tbet+Gata3+Foxp3+

∧ AAG (e2)
(
Tbet+Gata3+Foxp3+

)))
(5)

where e1 denotes the first input combination (in which TGFβ and
APC are ON), and e2 denotes the second input combination (in
which IL15 and APC are ON and TGFβ is OFF). Two additional
input cytokines were also considered in these combinations: IFNγ
for Tbet activation and IL25 for Gata3 activation. We consider 18
strategies (input configurations), six of them are able to polarize
Th0 into the hybrid subtype (see Table S4 in Supplementary Mate-
rial). Interestingly, these six strategies have all IFNγ switched OFF
in the first input combination and turned ON in the second input
combination.

4. CONCLUSION AND PROSPECTS
Considering logical models of large cellular regulatory networks,
we have focused on model checking to explore induced dynam-
ical properties. Over the last decades, computer scientists have
made spectacular advances in the development of powerful model
checkers, regarding both performances and expressivity power.
Several model checkers are freely available and can be used to check
specific properties of dynamical models of biological systems. As
illustrated above, asynchronous dynamics of logical models inte-
grating signaling pathways with transcriptional networks can be
readily translated into explicit or implicit Kripke structures, and
thereby become amenable to standard or action-restricted model
checking.

We have applied this approach to the analysis of a logical
model for a comprehensive signaling/regulatory network control-
ling Th cell differentiation, which encompasses 101 components
(most but not all Boolean) and 221 regulatory interactions. As
the state space induced by this network is gigantic (encompassing
over 2100 states), scalable formal methods enabling the explo-
ration of interesting dynamical properties are paramount. In this
respect, we have combined three complementary approaches: (i)
a formal reduction method conserving the main dynamical prop-
erties, including the stable states (described in Section 2.1.3); (ii)
an algorithm enabling the identification of all the stable states
in large logical models (described in Section 2.2.2); (iii) the

use of model checking to verify the reachability of specific sta-
ble patterns (reprograming of specific Th cell subtypes) from
given initial conditions, in the presence or absence of network
perturbations.

We have illustrated the power of the model checking approach
by addressing key biological questions related to Th differentia-
tion and plasticity in response to environmental cues. To this end,
we have formulated two main types of queries: (i) is it possible
to reprogram a specific Th subtype into another one, using spe-
cific fixed (or any free) cytokine combinations, in a single (or a
multiple) step(s)? (ii) does such reprograming depend on specific
regulatory components or interactions (using perturbed models)?
We have shown that such biological questions can be efficiently
assessed using action-restricted model checking. Using the model
checker NuSMV-ARCTL, we could confirm that our model is con-
sistent with the polarization of naive Th cells into the canonical Th
subtypes under specific cytokine input environments, and delin-
eated several strategies allowing the reprograming between specific
Th subtypes (Th1 and Th2) as well as the polarization of naive Th
cells toward a novel Th hybrid subtype predicted by our analysis
(Tbet+Gata3+Foxp3+).

Although our logical model for Th cell differentiation should be
further refined using a comprehensive experimental data set (work
in progress), it could be already used as a framework to design
informative experiments regarding the identification of Th hybrid
subtypes, or yet to characterize Th cell plasticity. Some of the
resulting predictions (e.g., the existence of Tbet+Gata3+Foxp3+

Th hybrid) currently serve as a basis to design experiments
in vitro.

More generally, we wish to stress that formal modeling can be
used at various stages of the deciphering of complex regulatory
networks, provided that the formal framework and methods used,
as well as the modeling scope, are adapted to the data available. In
this respect, qualitative (Boolean or multivalued) logical model-
ing is well suited to model large biological regulatory networks, for
which reliable quantitative data are often lacking (Saez-Rodriguez
et al., 2007; Grieco et al., 2013).

Beyond the proof of concept, the development of user-friendly
tools is required for a wider use of model checking in systems
biology. In this respect, we are currently working on improving
the interaction between GINsim and NuSMV-ARCTL in two dis-
tinct ways, which will be made available in a forthcoming release
of GINsim: (1) implementing recurrent temporal logic patterns
into our software GINsim to ease the definition of temporal logic
formulas; (2) automating the interaction with the model checker
and the parsing of the results, as well as the generation of the
reprograming graph.
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Approximating attractors of Boolean
networks by iterative CTL model
checking
Hannes Klarner* and Heike Siebert

Fachbereich Mathematik und Informatik, Freie Universität Berlin, Berlin, Germany

This paper introduces the notion of approximating asynchronous attractors of Boolean
networks by minimal trap spaces. We define three criteria for determining the quality of an
approximation: “faithfulness” which requires that the oscillating variables of all attractors
in a trap space correspond to their dimensions, “univocality” which requires that there
is a unique attractor in each trap space, and “completeness” which requires that there
are no attractors outside of a given set of trap spaces. Each is a reachability property for
which we give equivalent model checking queries. Whereas faithfulness and univocality
can be decided by model checking the corresponding subnetworks, the naive query for
completeness must be evaluated on the full state space. Our main result is an alternative
approach which is based on the iterative refinement of an initially poor approximation.
The algorithm detects so-called autonomous sets in the interaction graph, variables that
contain all their regulators, and considers their intersection and extension in order to
perform model checking on the smallest possible state spaces. A benchmark, in which
we apply the algorithm to 18 published Boolean networks, is given. In each case, the
minimal trap spaces are faithful, univocal, and complete, which suggests that they are in
general good approximations for the asymptotics of Boolean networks.

Keywords: Boolean networks, asynchronous dynamics, attractors, CTL model checking, ASP, signaling, gene
regulation

1. Introduction

Boolean and multi-valued networks are frequently used to model the dynamics of biological
processes that involve gene regulation and signal transduction. The dynamics of such models is
captured by the state transition graph, a directed graph that relates states to potential successor
states. Different transition relations have been suggested, among them the synchronous update of
Kauffman (1993) and the asynchronous update of Thomas (1991). An important type of prediction
that can be obtained from suchmodels concerns the long-termbehavior of the represented processes.
Formally, the long-term behaviors correspond to the minimal trap sets of the state transition graph
which are also called its attractors.

Recently, we have suggested to compute the minimal trap spaces of a network to obtain an
approximation for its cyclic attractors (Klarner et al., 2014) and proposed an efficient, Answer Set
Programing (ASP)-based method for their computation. This paper presents an iterative algorithm
that combinesComputation Tree Logic (CTL)model checking with the computation of minimal trap
spaces to determine the quality of the approximation.
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The paper is organized as follows. Section 2 recapitulates the
background including directed graphs, the dynamics of Boolean
networks, trap spaces, and model checking. It is only meant
to introduce the notation required for the subsequent sections.
Section 3 briefly discusses the attractor detection problem. In
Section 4, we describe three conditions under which there is a
one-to-one correspondence between the minimal trap spaces and
the attractors of a network, and how CTL queries may be used to
decide whether they hold. The computationally most challenging
one is treated in Section 5. In Section 6, we present a full analysis
of a MAPK signaling network as well as the results for 18 Boolean
models that are currently in the  repository. Section 7 is an
outlook and conclusion. There is a Supplementary Material that
contains proofs for the formal statements in the main text.

2. Background

2.1. Directed Graphs
Since several aspects of Boolean networks involve directed graphs
(digraphs) we introduce the general terminology. Let (V, A) be a
digraph with vertices V and arcs A⊆V×V.

An infinite path in (V, A) is an infinite sequence of vertices
π= (v0, v1, . . .) such that (vi, vi+1)∈A for all i∈N0. Finite paths
are defined analogously for finite sequences. In particular,π= (v0)
is an admissible finite path. We denote the set of all infinite paths
that start in v∈V by InfPaths(v) and finite paths by FinPaths(v).
The ith vertex of π is denoted by π[i] := vi. For finite paths we
denote by FinPaths(u, v) all finite paths that start with u and end
with v. The number of vertices in a finite path π= (v0, v1, . . . , vk)
is denoted by len(π) := k+ 1.

A vertex v∈V is reachable from u∈V iff FinPaths(u, v) ̸=∅.
We denote by Above(v) the vertices that can reach v. A subset
U ⊆V is strongly connected if every u∈U is reachable from
every other v∈U. A strongly connected component (SCC) is an
inclusion-wise maximal subset U⊆V that is strongly connected.
We denote the set of SCCs of a digraph by SCCs (V, A). Note that
since π= (v0) is an admissible finite path, every vertex is trivially
reachable from itself. Hence, each node belongs to some SCC and
SCCs (V, A) is a partition of V.

2.2. Boolean Networks
We consider variables from the Boolean domain B= {0,1}, where
1 and 0 represent the truth values true and false. A Boolean
expression f over the variables V= {v1, . . . ,vn} is defined by a
formula over the grammar

f ::= 0 | 1 | v | f̄ | f1 · f2 | f1 + f2

where v∈V signifies a variable, f̄ the negation, f 1 · f 2 the con-
junction and f 1 + f 2 the (inclusive) disjunction of the expressions
f, f 1, and f 2. Given an assignment x : V→B, an expression f
can be evaluated to a value f (x)∈B by substituting the values
x(v) for the variables v∈V. If f (x)= f (y) for all assignments
x, y : V→B, we say f is constant and write f= c, with c∈B being
the constant value. A Boolean network (V, F) consists of n vari-
ables V = {v1, . . . ,vn} and n corresponding Boolean expressions
F= { f 1, . . . , fn} over V. In this context, an assignment x : V→B

is also called a state of the network and the state space S= SV
consists of all possible 2n states. We specify states by a sequence of
n values that correspond to the variables in the order given in V,
i.e., x= 110 should be read as x(v1)= 1, x(v2)= 1, and x(v3)= 0.
The expressions F can be thought of as a function F : S→ S
governing the network behavior. The image F(x) of a state x under
F is defined to be the state y that satisfies y(vi)= fi(x).

The interaction graph of a network (V, F) captures the depen-
dencies between the variables and their expressions. It is a digraph
(V, →) where →⊆ V×V and (u, v)∈→ iff there are x, y∈ S such
that x(w)= y(w) for all w∈V \ {u} and fv(x) ̸= fv(y). As for state
transitions we write u→ v iff (u,v)∈→.

The state transition graph (STG) of a Boolean network (V,
F) is the digraph (S, →) where the transitions →⊆ S× S are
obtained from F via a given update rule. We usually write x→ y iff
(x, y)∈→. We mention two update rules here, the synchronous
rule and its transition relation �⊆ S× S, and the asynchronous
rule and its transition relation ↩→⊆ S× S. The former is defined
by x� y iff F(x)= y. To define ↩→ we need the Hamming dis-
tance ∆ : S× S→ {1, . . . , n} between states which is given by
∆(x, y) := |{v∈V | x(v) ̸= y(v)}|. We define x ↩→ y iff either x= y
and F(x)= x or ∆(x,y)= 1 and ∆ (y, F(x))<∆ (x, F(x)). In the
context of the STG, the expressions f ∈ F are also called update
functions.

A non-empty set T⊆ S is a trap set of (S, →) iff for every x∈T
and y∈ Swith x→ y it holds that y∈T. An inclusion-wiseminimal
trap set is also called an attractor of (S,→). Every trap set contains
at least one minimal trap set and therefore at least one attractor.
A variable v∈V is steady in an attractor A⊆ S iff x(v)= y(v) for
all x, y∈A and oscillating otherwise. We distinguish two types
of attractors depending on their size. If A⊆ S is an attractor and
|A|= 1, then A is called a steady state and if |A|> 1, we call it
a cyclic attractor. The cyclic attractors of (S, �) are, in general,
different from the cyclic attractors of (S, ↩→). The steady states,
however, are identical in both transition graphs because x∈ S is
steady iff x→ x which is characterized, for both update rules, by
the equation F(x)= x. Hence, we may omit the update rule and
denote the set of steady states by SF.

A subspace of S is characterized by its fixed and free vari-
ables. It may be specified by an assignment p : D→B where
D⊆V is the subset of fixed variables, p(u) the value of u∈D
and the remaining variables, V \D, are said to be free. Subspaces
are sometimes referred to as “symbolic states” (Siebert, 2011) or
“partial states” (Irons, 2006). We specify subspaces like states but
allow in addition the symbol * to indicate that a variable is free,
i.e., p= **10 means D= {v3, v4} and p(v3)= 1, p(v4)= 0. The set
S*= S⋆V denotes all possible 3n subspaces. States are therefore a
special kind of subspace and S⊂ S* holds. We denote the fixed
variables D of a specific p∈ S* by Dp. A subspace p references the
states S[p] := {x∈ S | ∀v∈Dp : x(v)= p(v)}. We denote the unique
subspace that does not fix any variables by ϵ∈ S*, i.e., Dϵ =∅.
Two subspaces p, q∈ S* are said to be consistent iff p(v)= q(v)
for all v∈Dp ∩Dq. We define the intersection z := q ⊓ p of
two consistent p, q∈ S* to be the unique z∈ S* that satisfies
S[z]= S[p]∩ S[q].

A trap space is a subspace that is also a trap set. Trap spaces
are therefore trap sets with a particularly simple geometry. They
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generalize the notion of steadiness from states to subspaces. In
Klarner et al. (2014), we proved that trap spaces are independent
of the update strategy. It is therefore meaningful to denote the
trap spaces of (S, ↩→) by S⋆F independent of →. If a network (V,
F) satisfies S⋆F = {ϵ}, then we say it is trap-space-free. We also
showed that the dynamics inside a trap space p is fully specified
by the reduced network (Vp, Fp) with

Vp := {v ∈ V | v ̸∈ Dp}, Fp := {fi[p] | fi ∈ F : vi ̸∈ Dp}

where f [p] denotes the Boolean expression that is obtained by
substituting the values p(v) for v∈Dp into f ∈ F, as introduced in
Section 2.1 of Klarner et al. (2014).

Since every trap set contains at least one attractor, inclusion-
wise minimal trap spaces can be used to predict the location
of a particular attractor. Hence, we define a partial order on S*
based on whether the referenced subspaces are nested: p≤ q iff
S[p]⊆ S[q]. The minimal trap spaces are defined by min(S⋆F ) :=

{p ∈ S⋆F |∄ q ∈ S⋆F : q < p}.

2.3. CTL Model Checking
Model checking is a formal method from computer science to
determine whether a transition system satisfies a temporal speci-
fication. See Carrillo et al. (2012) for a review of its application to
computational biology.

A transition system is a 5-tuple TS= (S, →, AP, L, I) where
(S, →) is a state transition graph, AP a set of atomic propositions,
L : S→ 2AP a labeling function and I⊆ S a set of initial states.
We use the atomic propositions AP := {v= c, δv = d | v∈V, c∈B,
d∈ {−1, 0, 1}} and define the labeling function L by

v = c ∈ L(x) :⇔ x(v) = c
δv = d ∈ L(x) :⇔ fv(x)− x(v) = d

for all c∈B, d∈ {−1, 0, 1} and x∈ S. The label δv = d therefore
indicates whether a variable v is decreasing, steady or increasing in
a state. In addition to “=” we need the inequality operator “̸=”, e.g.,
v ̸= c∈ L(x) iff x(v) ̸= c, and the special atom true which satisfies
true∈ L(x) for all x∈ S.

Next, we define a fragment of the temporal specification lan-
guageCTL that is sufficient for the subsequent sections. A formula
φ of this fragment is defined by

φ ::= a
∣∣∣∣φ1 ∧ φ2

∣∣∣∣φ1 ∨ φ2

∣∣∣∣EF(φ) ∣∣∣∣AG(φ)

where α∈AP, EF is the “exists finally” operator and AG the
“always globally” operator. The semantics of the operators and the
satisfaction relation |= for transitions systems and CTL formulas
is defined in Table 1. Since the atomic propositions and labeling
function are fixed for the remainder of this article, we will specify
transition systems by 3-tuples TS= (S, →, I). In practice, we use
the model checking tool  (Cimatti et al., 2000) to decide
whether a given transition system satisfies a CTL query.

3. The Attractor Detection Problem

The naive approach to find all attractors of a given network, i.e.,
a full exploration of its STG, is limited by the state explosion

TABLE 1 | The satisfaction relation |=|=|= for CTL formulasφφφ, states x∈∈∈S, and
transition systems TS=== (S,→→→ , AP, L, I ).

x |= a :⇔ a∈ L(x)
x |=φ1∧φ2 :⇔ x |=φ1 and x |=φ2

x |=φ1∨φ2 :⇔ x |=φ1 or x |=φ2

x |=EF(φ) :⇔ ∃π∈ InfPaths(x) : ∃i∈N0 : π[i ] |=φ

x |=AG(φ) :⇔ ∀π∈ InfPaths(x) : ∀i∈N0 : π[i ] |=φ

TS |=φ :⇔ ∀x∈ I: x |=φ

problem. Several groups have developed tools and algorithms
that address this problem. They may be grouped into those for
deterministic updates (Irons, 2006; Dubrova and Teslenko, 2011;
Akutsu et al., 2012; Veliz-Cuba et al., 2014) and non-deterministic
updates (Garg et al., 2008; Skodawessely and Klemm, 2011; Bern-
tenis and Ebeling, 2013). The average running times are usually
given in terms of randomly generated networks and a connectivity
parameter k that describes the distribution of in-degrees in the
interaction graph. It seems that finding deterministic attractors
is easier than non-deterministic attractors. Intuitively, computing
the terminal SCCs of digraphs with all out-degrees equal to one
is easier than for digraphs with higher out-degrees. The average
running times for synchronous STGs with hundreds of variables
is, for example, on the order of secondswith the tool  (Dubrova
and Teslenko, 2011), which is based on a variant of bounded linear
time logic (LTL) model checking and uses a satisfiability (SAT)
solver to detect attractors.

Algorithms for non-deterministic STGs, on the other hand,
are likely to run for hours or days for networks with less than
even 100 variables (see Section 2). Garg et al. (2008) and the tool
 is based on the symbolic manipulation of reachable states
using binary decision diagrams (BDDs), while Skodawessely and
Klemm (2011) and Berntenis and Ebeling (2013) rely on a guided
exploration and enumeration of the state space.

3.1. Attractor Detection Pre-Process
If v∈V is a constant with fv = c and A an attractor, then x (v)= c
for every x∈A. Hence, before we start an attractor detection
algorithm, we may safely remove all constants. The result is a
reduced network whose attractors are in a one-to-one relationship
with the attractors of the original network. During the removal
of constants, update functions that depend on them may in turn
become constant. The pre-process is therefore improved by an
iterative substitution until there are no more constants.

The percolation operator •⃗ : S⋆F → S⋆F is defined on the set
of trap spaces by the following recursion. Let p be the initial trap
space, for example, defined by the constants C⊆V of a network
(Dp :=C and p(v) := fv). The initial percolation is p⃗0 := p and for
each k∈N0 we define p⃗k+1 by

Dp⃗k+1
:= {v ∈ V | fv [⃗pk] is constant}

p⃗k+1(v) := fv [⃗pk], for all v ∈ Dp⃗k+1
.

Note that f [p] denotes the Boolean expression obtained by
substituting the values p(v) into f, as introduced in Section 2.1 of
Klarner et al. (2014). Because p⃗0 = p it follows that p⃗k+1 ≤ p⃗k
and p⃗k ∈ S⋆F , for all k∈N0. Since V is finite, there is some K ∈N0
such that p⃗K = p⃗K+1 and p⃗ := p⃗K is well-defined. Percolations
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are cheap to compute and have the following implication for the
location of attractors (see Siebert (2011)):

Proposition 1. If p is a trap space and A⊆ S[p] an attractor of
(S, ↩→), then A ⊆ S[⃗p ].

In the following sections, wewill assume that the initial network
is constant-free.

3.2. Attractor Detection by Random Walks
Given a trap space p, for example, the whole space p= ϵ, we can
find an attractor A⊆ S[p] by a sufficiently long random walk
(x0, x1, . . . , xk) where x0 ∈ S[p]. In practice, we use k= 10|V| and
found that so far, without exception, random paths of this length
have reached an attractor. To decide whether xk does really belong
to an attractor we use the CTL query of 2. It uses the CTL formula
φp defined by φp :=

∧
v∈Dp

(v = p(v)) if p ̸= ϵ, and φp = ture
otherwise.

Proposition 2 (Attractor State). Let p be a trap space and
x∈ S[p]. The state x belongs to an attractor A⊆ S[p] of (S, ↩→) iff

TS = (SVp , ↩→, {y}) |= AG(EF(φy))

where y ∈ SVp is the projection of x∈ SV onto Vp, i.e., y(v) := x(v)
for all v∈Vp.

Starting from x∈A, we can then enumerate A by listing all
states reachable from x. Note that model checking is performed
on the reduced system (SVp , ↩→) rather than the full system (S, ↩→)
and that there is no equivalent LTL query to decide whether
x belongs to an attractor (G(F(φy)) does not work). Also, the
observation that finding a single attractor is easy using a random
walk does not contradict the fact that finding all attractors is hard.

4. Approximating Attractors by Subspaces

The result of attractor detection algorithms are usually sets of
states thatmake up each attractor. The notion of an approximation
of an attractor is instead based on information regarding steady
and oscillating variables. An approximation of the attractors of a
STG is a set P⊆ S* such that each S[p] contains an attractor. The
trivial approximation for any network is P := {ϵ}. Approximations
differ in what can be learned from them about the number of
attractors and their locations. The best approximation for a single
attractor is the smallest subspace it is contained in. The smallest
subspace that containsA⊆ S is p∈ S* defined byDp := {v∈V | ∀x,
y∈A : x(v)= y(v)} and p(v) := x(v) for x∈A arbitrary. We denote
it by Sub(A). Note that in general, A ̸= Sub(A) and that there may
be two attractors A, B∈ S with A ̸=B such that Sub(A)= Sub(B).
The quality of an approximation is defined in terms of the follow-
ing criteria.

Definition 1. A subspace p is faithful in (S, ↩→) iff Sub(A)= p
for every attractor A⊆ S[p] of (S, ↩→). An approximation P is
faithful iff each p∈ P is faithful.

Definition 2. A subspace p is univocal in (S, ↩→) iff there is a
unique attractorA of (S, ↩→) such thatA⊆ S[p]. An approximation
P is univocal iff each p∈ P is univocal.

Definition 3. An approximation P is complete in (S, ↩→) iff for
every attractor A⊆ S of (S, ↩→) there is p∈ P such that A⊆ S[p].

Note that the three properties are independent of each other.
If P is faithful, univocal, and complete, then we call it a perfect

A B C

FIGURE 1 | The asynchronous STGs of three different Boolean
networks. The minimal trap spaces are indicated by boxes. (A) Two
attractors in the same box. (B) An attractor outside of the boxes. (C) An
attractor that does not oscillate in all dimensions of the box. Equations for the
networks are given in the Supplementary Material.

approximation. If P is perfect, then all attractors can be found by
the random walk method above.

In Klarner et al. (2014), we observed that min(S⋆F ) is a good
candidate for a perfect approximation. We showed that steady
states are minimal trap spaces (SF ⊆ min(S⋆F )) and that every
p ∈ min(S⋆F ) \ SF contains only cyclic attractors. Given that
min(S⋆F ) can be computed efficiently using ASP, we would like
to have an efficient method for determining its quality as an
approximation. Figure 1 demonstrates thatmin(S⋆F ) is, in general,
neither univocal, complete nor faithful.

4.1. Univocality
Proposition 3 (Univocality). Let p be a trap space and x∈A such
that A⊆ S[p] is an attractor of (S, ↩→). p is univocal in (S, ↩→) iff

TS = (SVp , ↩→, SVp) |= EF(φy)

where y ∈ SVp is the projection of x∈ Sv onto Vp.
The intuition behind this proposition is that if A is the only

attractor inside the trap space p then x must be reachable from
all states SVp .

4.2. Faithfulness
Proposition 4 (Faithfulness). A trap space p is faithful in (S, ↩→)
iff

TS = (SVp , ↩→, SVp) |=
∧
v∈Vp

EF(δv ̸= 0).

This proposition is true because a variable v oscillates in an
attractor A iff there is a state x∈A such that x |= (δv ̸= 0).

4.3. Completeness
Proposition 5 (Completeness). A set of trap spaces p is complete
in (S, ↩→) iff

TS = (S, ↩→, S) |=
∨
p∈P

EF(φp).

Although we may restrict the initial states to S \∪p∈ P S[p], the
completeness query is still essentially dealing with the whole tran-
sition system and is therefore much less efficient than the queries
of Proposition 2–4 (which are decided on reduced systems). In
Klarner (2015b), we benchmarked  and found that Boolean
networks with n≈ 39–55 variables may be considered infeasible
for queries of this type. The next section develops a refinement-
based approach to decide completeness that can deal with much
larger networks.
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5. Deciding Completeness by Iterative
Refinement

The central idea for the refinement-based approach is to exploit
hierarchies in the interaction graph and to use model checking on
subnetworks that are in the upper layers of the hierarchy rather
than the whole network. Given a complete set of trap spaces p,
we keep replacing each p∈ P by smaller trap spaces until either
P = min(S⋆F ) and we declare victory, or we find some p∈ P that
satisfies the failure criterion belowwhich implies thatmin(S⋆F ) can
not be complete.

Proposition 6 (Refinement). Let P ⊆ S⋆F be complete in (S, ↩→)
and p∈ P some trap space. IfQ ⊆ S⋆Fp is complete in (SVp , ↩→) then
P′ := (P \ {p}) ∪ {p ⊓ q | q ∈ Q} is complete in (S, ↩→).

Note that the intersection p⊓ q is necessary to position the trap
space q of (SVp , ↩→) correctly in the full transition system (SV, ↩→)

and that (p⊓q) ≤ p. An example of a refinement is the percolation
operator. By Proposition 1, if P is complete, then P⃗ := {⃗p | p ∈ P}
is also complete. The failure criterion is based on the observation
that if min(S⋆F ) is complete in (SVp , ↩→), then min(S⋆Fp) must be
complete in (SVp , ↩→) for every p ∈ S⋆F .

Proposition 7 (Failure Criterion). If there is a trap space p such
that min(S⋆Fp) is not complete in (SVp , ↩→), then min(S⋆F ) is not
complete in (S, ↩→).

Example 1. Consider the network defined by V= {v1, v2, v3}
and F with f1 = v1 v2 + v1v2 + v2v3, f2 = v1 v2v3 + v1v2v3
and f 3 = v2 + v3. The minimal trap spaces are {111,*00}. The trap
space p := **1 satisfies the failure criterion because min(S⋆Fp) =

{11} is not complete in (SVp , ↩→) as there is, for example, no path
from 01 to 11 in (SVp , ↩→). It follows thatmin(S⋆F ) is not complete.

5.1. Autonomous Sets
To find the initial P ⊆ S⋆F and then Q ⊆ min(S⋆Fp) for a
given p∈ P we use Proposition 8 below. It is based on so-called
autonomous sets, a generalization of inputs. The variables U ⊆V
are autonomous iff Above(U)=U in the interaction graph. An
autonomous U induces a restricted network (U, F|U) where
F|U := { f u ∈ F | u∈U}. Note that ifU is autonomous, then (U, F|U)
is a well-defined network.

Proposition 8. Let U be autonomous and Q := min(S⋆F|U) the
minimal trap spaces of the restriction (U, F|U).

(a) IfQ is complete in (SU, ↩→), thenQ is also complete in (S, ↩→).
(b) IfQ is not complete in (SU, ↩→), thenmin(S⋆F ) is not complete

in (S, ↩→).

Note that the inputs I⊆V of a network are autonomous and
that P defined by P := {p ∈ S⋆F |Dp = I} (the |P|= 2|I| input
combinations) is complete in (I, F|I). Proposition 8(a) implies that
P is also complete in (V, F). P⃗ is a refinement of P and if any p⃗ ∈ P⃗
satisfies the failure criterion then min(S⋆F ) is not complete.

Example 2. Consider the network with V= {v1, . . . , v4} and
F with f 1 = v1, f2 = v2, f3 = v1v4, f 4 = v2v3. The minimal trap
spaces are {0000, 0100, 1000, 11**}. To decide whether they are
complete we observe that the network has two inputs {v1, v2} and
four input combinations whoseminimal trap spaces are P= {00**,
01**, 10**; 11**}. Since P⃗ = min(S⋆F ) = {0000, 0100, 1000, 11⋆⋆},
we deduce that min(S⋆F ) is complete.

5.2. Minimal Autonomous Sets
A refinement-based algorithm requires choosing an autonomous
set U and deciding whether Q is complete in (SU, ↩→) using the
query of Proposition 5. The best performance in terms of model
checking is expected if the minimal sets are as small as possible.
Minimal autonomous sets (set-inclusion-wise) are located in the
top layer of the interaction graph (V, →) and can be found using
any SCC algorithm.

Proposition 9. Let U⊆V. The following statements are equiva-
lent:

(a) U is a minimal autonomous set of (V, →).
(b) U is autonomous and U∈ SCCs(V, →).

Once it is confirmed that the minimal trap spaces of each
restriction are complete, we may consider their intersection.

Proposition 10. If P,Q ⊆ S⋆F are complete in (S, ↩→) then
P ⊓ Q := {p ⊓ q | p ∈ P, q ∈ Q : p and q are consistent} is also
complete in (S, ↩→).

Note that if P and Q are complete, then for each p∈ P, there
is necessarily a q∈Q such that p and q are consistent. Similarly,
for each attractor A⊆ S[p], there is some consistent q∈Q such
that A⊆ p⊓ q. Hence P⊓Q is non-empty and complete. Also,
unless there is p∈ P with p∈Q we get |P⊓Q|= |P| · |Q|. Finally,
inputs areminimal autonomous sets and if a network has no other
minimal autonomous sets, then the intersection is equal to the
input combinations. Taking the intersection therefore generalizes
the approach of inputs and input combinations.

Example 3. Consider the network with V= {v1, . . . ,v6}
and F with f 1 = v2, f 2 = v1, f 3 = v4, f 4 = v3, f5 = v2v6
and f 6 = v3v5. The minimal trap spaces are min(S⋆F ) =

{000000, 001100, 110010, 1111⋆⋆}. The network has two
minimal autonomous sets U1 = {v1, v2} and U2 = {v3, v4}. The
corresponding restrictions are (U1, F|U1) and (U2, F|U2) with
the minimal trap spaces Q1 := min(S⋆F|U1

) = {11, 00} and
Q2 := min(S⋆F|U2

) = {11, 00}. Model checking (or inspection of
the STGs) confirms that they are complete in their respective
restricted systems. The intersection P := Q1 ⊓ Q2 and the
percolation P⃗ are P = {0000⋆⋆, 0011⋆⋆, 1100⋆⋆, 1111⋆⋆} and
P⃗ = {000000, 001100, 110000, 1111⋆⋆}. As before in Example 2,
P⃗ = min(S⋆F ) and we deduce that min(S⋆F ) must be complete in
(S, ↩→).

5.3. Extending Minimal Autonomous Sets
Although minimal autonomous sets are favorable for efficient
model checking, there is no guarantee that the respective restricted
systems do actually contain non-trivial trap spaces. A refinement
based on the trivial trap space ϵ, i.e., Q= {ϵ}, is useless because
it means replacing p with p⊓ ϵ= p, that is, with itself. A possible
solution is to increase the size of checked autonomous sets until
we find non-trivial trap spaces. The question is: by how many
variables should we extend an autonomous set U? On the one
hand, we want to be generous because new variables increase the
chances for finding new trap spaces. On the other hand, we want
to add as few variables as possible because the failure criterion
requires CTL model checking.

What is the best extension for a givenU whose restricted system
is trap-space-free? Adding only outputs or cascades to U is not
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enough as the emergence of trap spaces requires “self-freezing”,
positive feedback circuits, see Section 4.7 in Klarner (2015b).
Intuitively, we want to extend down to the next SCC.

For a clean definition, we introduce the following notions. The
set of cascade components consists of all single element SCCs in
the interaction graph, whose nodes do not have self-loops. The
remaining components are the non-cascade components.

Casc(V,→) := {U ∈ SCCs(V,→) | ∃v ∈ V : U= {v}, v ̸→ v}
NonCasc(V,→) := SCCs(V,→) \ Casc(V,→)

The condensation graph (Z,◃) of the interaction graph is then
the digraph with vertices Z :=NonCasc(V, →) such that an arc
U◃W indicates whether there is a cascade from U to W. More
precisely, U◃W iff U ̸=W and there is u∈U, w∈W such that

∃π ∈ FinPaths(u,w) : ∀1 ≤ i ≤ len(π)−2 : {π[i]} ∈ Casc(V,→).

Note that (Z, ◃) is acyclic and so we can partition its vertex set
into classes, which we call layers, depending on the longest path
that reaches them.

Lay(W) := max{len(π) |π ∈ FinPaths(U,W),U ∈ Z}

Note that Lay(W)≥ 1 because π= (W) is an admissible path
from W to W and len(W)= 1 and that all minimal autonomous
sets can then be found in the first layer of the condensation graph,
i.e., U⊆V is minimal and autonomous iff U ∈Z and Lay(U)= 1.

To illustrate how the condensation graph is used for extending
autonomous sets, consider the network given in Figure 2. First,
we compute its minimal autonomous sets, i.e., the top layer of (Z,
◃). In this example, there is a unique W ∈Z with Lay(W)= 1.
The restriction (W, F|W) consists of an isolated negative feedback
circuit and is trap-space-free. To determine the smallest extension
that contains new feedback circuits, we first compute the graph
(Z′,◃), which is obtained from the condensation graph (Z,◃) by
removing all U ∈Z that satisfy U ∩W ̸=∅. For each Y ∈Z′ that
satisfies Lay(Y)= 1, we get an extended autonomous set W′ by
considering the variables above Y in the interaction graph (V,→).
In the example, there is again a unique Y and the restriction to

W′ :=Above(Y) contains a non-trivial trap space p. The failure
criterion is not satisfied by p and so we have found an initial
complete set, namely P := {p}. Note that in general, there will be
several minimal autonomous sets and several possible extensions.
We are now ready to design an efficient algorithm for deciding
completeness.

5.4. The Algorithm
The first step of the algorithm in Figure 3 is to compute the min-
imal trap spaces of a given network using the ASP-based method
proposed in Klarner et al. (2014). If the network is trap-space-
free, then min(S⋆F ) = {ϵ} is, by definition, complete and we stop
and return true. Otherwise the variable CurrentSet is initialized.
It consists of tuples (p, W), where p is a trap space and W⊆V
are the variables of the network (Vp, Fp) that have previously
been subjected tomodel checking. The tuples correspond to those
trap spaces of a complete set that need further refinement (i.e.,
are not minimal). Initially CurrentSet := {(ϵ, ∅)} because {ϵ} is
trivially complete andwe have not startedmodel checkingW=∅.
The lines 5–24 execute the iterative refinement of CurrentSet until
we either find a p that satisfies the failure criterion in line 17 or
CurrentSet=∅ in which case every p is equal to some minimal
trap space (only non-minimal trap spaces are put back onto
CurrentSet, see lines 23, 24).

The next steps are to select an arbitrary (p, W) for refinement
(line 6), compute the reduced network (Vp, Fp), its condensa-
tion graph (Z, ◃) and the graph (Z′, ◃) described in the pre-
vious section. The top layer elements U of (Z′, ◃) are minimal
autonomous sets if Z=Z′ or extended autonomous sets if Z ̸=Z′.
In the latter case, the restricted networks that correspond to
minimal autonomous sets of (Vp, Fp) must have previously been
found to be trap-space-free. For each U, the variables above U
are autonomous (in (Vp, Fp)). If the minimal trap spaces of the
restricted networks are complete in (SU′ , ↩→) then, by Proposi-
tion 8(a), they are also complete in (SVp , ↩→). Otherwise it follows,
by Proposition 8(b), thatmin(S⋆Fp) is not complete in (SVp , ↩→) and
hence that p satisfies the failure criterion and we stop and return
false in line 18.

The variableRefinement stores all complete sets that were found
in the upper layers of (Vp,Fp), whileW′ keeps track of the variables

A B C D E

FIGURE 2 | (A) The interaction graph of an example network where each
fi is the disjunction of its inputs (e.g., f6 = v5 + v4) except for v1 which is
inhibited by v2 ( f1 := v2). (B) The condensation graph (Z, ◃) with the
unique top layer node {v1 v2}. (C) The corresponding minimal
autonomous set W. The restriction (W, F|W) is trap-space-free.

(D) To extend W, we compute the graph (Z′, ◃), which is obtained from
(Z, ◃) by removing the node that intersects W. The new top layer node is
Y := {v5, v6}. (E) The extended autonomous set W′ is obtained by
considering Above(Y ) in the interaction graph. It has a minimal trap space
p that is defined by fixing v5 and v6 to 1.
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FIGURE 3 | The iterative, refinement-based algorithm for deciding the
question of completeness. See main text for a detailed description.

that were subjected to model checking. Line 21 is an application
of Proposition 10, i.e., the intersection of all complete sets is taken
(generalization of input combinations). For each trap space q in
the intersection, we check whether the percolation q⃗ needs further
refinement (not a minimal trap space of (V, F)) and if so add it
back onto CurrentSet.

Note that (Vp, Fp) must have non-trivial trap spaces for each
(p, W)∈CompleteSets (see lines 23, 24). Hence, although it may
happen that (p, W) is replaced by (p, W′) (if Q= {ϵ} in line 15)
eventually it will be replaced by smaller trap spaces. The algorithm
is implemented and available as part of our  toolbox for
Boolean networks (Klarner, 2015a).

5.5. Counterexamples for Attractor Detection
If min(S⋆F ) is not a perfect approximation, we would like to know
why. Model checking tools like  are capable of producing
a counterexample in case a formula does not hold. Intuitively, a
counterexample is a finite path froman initial state that proves that
the query is false. If min(S⋆F ) is not complete, then the algorithm
of the previous section can be used to return some p ∈ S⋆F that
satisfies the failure criterion together with a counterexample to the
respective completeness query for (Vp, Fp) and min(S∗Fp ). Every
attractor that is reachable from its last state, say x, must then be
outside of min(S∗Fp ). We then use the random walk approach to
find state a z that belongs to an attractor A⊆ SVp outside of min

(S∗Fp). If the modified completeness query

TS = (SVp , ↩→, SVp) |= φz ∨
∨

q∈min(S⋆Fp )

EF(φq)

holds then A is the only outside attractor, otherwise we use the
next counterexample to find the next outside attractor until they
are all found. Note that p is an extension of aminimal autonomous
set. A similar approach is possible for trap spaces that are not
faithful or not univocal.We end upwith a set of states that captures
the attractors outside of P, the number of attractors inside S[p] for
each p∈ P and whether they are faithful or not.

6. Results

All computations in this section were done on a 32-bit Linux
laptop with 4× 2.60GHz and 8GB memory.

6.1. MAPK Case Study
In this case study, we consider the network published in Grieco
et al. (2013), which models the influence of the MAPK pathway
on cancer cell fate decisions and consists of 53 variables. Using
Klarner (2015a), we compute min(S⋆F ) in under one second. It
consists of 12 steady states and six trap spaces that contain only
cyclic attractors. The single query approach to deciding complete-
ness runs 35min, while the refinement-based algorithm confirms
completeness in only 28 s. For the six trap spaces in min(S⋆F ) \ SF
we confirmed univocality in 261 s (44 s on average per trap space)
and faithfulness in 74 s (12 s on average per trap space) using the
CTL queries of Section 4. Hence, min(S⋆F ) is a perfect approxima-
tion of the attractors of (S, ↩→) and for each attractor we can find
an internal state by the random walk approach of Section 4. We
stopped  after seven hours without a result.

Figure 4 is an illustration of the steps performed during the
iterative refinement for the MAPK network. The information is
represented as a decision tree. The root represents the initial
and trivially complete set P := {ϵ}. Boxes are split into a left side,
representing the size |U| of a minimal autonomous set (or an
extension), and a right hand side that is split vertically into cells
that contain the numbers |Dq| of fixed variables for each minimal
trap space q of (U, F|U). Boxes are colored according to whether
(U, F|U) is trap-space-free (white) or not in which case model
checking is required to find out whether the minimal trap spaces
of (U, F|U) are complete (failure criterion). Boxes with more than
one minimal trap space are outlined in red to emphasize that
a decision process between competing trap spaces exists. The
intersection of several autonomous sets is indicated by ⊗ but
occurs for this network only for the inputs. Arcs are labeled by
the number of variables that are fixed during percolations, i.e.,∣∣Dq \Dq⃗

∣∣ (see line 22 in Figure 3). If a restricted network is trap-
space-free, the extension is indicated by a dashed arc. Along each
branch of the decision tree, the number of fixed and oscillating
variables must add up to 53. The bottom branch, for example,
starts with four fixed variables, percolates seven more, extends
an autonomous set whose restriction consists of four variables
and is trap-space-free, finds a single trap space with three fixed
variables and finishes as the remaining trap space is minimal (and
4+ 7+ 3+ 0+ 39= 53).
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FIGURE 4 | An illustration of the how the iterative refinement algorithm confirms that min(S⋆
F ) of the MAPK network is complete. Altogether 12

restricted systems are model checked instead of the single full system. A more detailed description is given in the main text.

TABLE 2 | The minimal trap spaces of all Boolean models in the GINSIM repository are perfect approximations of the attractors of (S, ↩→↩→↩→).

Network file (.zginml) |V | Steady Cyclic Faithful Univocal Complete

buddingYeastOrlando2008 9 1 – 0.08s 0.03s 0.23s
fissionYeastDavidich2008 10 12 – 0.01s 0.02s 0.08s
boolean_cell_cycle 10 1 1 0.03s 0.19s 0.12s
Toll_Pathway_12Jun2013 11 4 – 0.01s 0.01s 0.09s
drosophilaCellCycleVariants 14 1 – 0.01s 0.05s 0.11s
MAPK_red3_19062013 16 12 6 0.15s 1.11s 0.93s
MAPK_red1_19062013 17 12 6 0.18s 1.25s 0.87s
VEGF_Pathway_12Jun2013_0 18 256 – 0.04s 0.05s 0.28s
MAPK_red2_19062013 18 12 6 0.14s 1.26s 0.67s
buddingYeastIrons2009 18 – 1 0.16s 0.48s 0.02s
ErbB2_model 20 1 – 0.08s 0.00s 0.02s
FGF_Pathway_12Jun2013 23 512 – 0.09s 0.09s 0.51s
Hh---Pathway_11Jun2013_0 24 8192 – 1.29s 1.43s 6.34s
Spz---Processing_12Jun2013 24 64 – 0.04s 0.03s 0.22s
Wg_Pathway_11Jun2013 26 16384 – 2.38s 2.38s 17.16s
TCRsig40 40 7 1 1.07s 3.34s 0.12s
MAPK_large_19june2013 53 12 6 40.15s 565.84s 20.72s
T_LGL 60 86 70 1.07s 6.57s 5669.57s

The number of variables, steady states, and cyclic attractors are recorded in the first three columns. The remaining three columns record the time needed to confirm faithfulness,
univocality, and completeness.

Note that the algorithm encounters roughly four types of refine-
ments. The first type (branches 1–8) leads directly to a steady
state. The second type (branches 9–12) discovers a single minimal
autonomous set consisting of 37 variables, whose restriction has a
singleminimal trap spaces in which between nine and 41 variables
oscillate. The third type (branches 13–14) discovers a single mini-
mal autonomous set that has twominimal trap spaces that commit
the network to different steady states. The fourth type (branches
15–16) discovers a single minimal autonomous set consisting

of four variables that is trap-space-free. An extension leads an
autonomous set of 34 variables with a single minimal trap space.

6.2. GINsim Repository Benchmark
To test whether the MAPK network is unusual in that its minimal
trap spaces are perfect approximations, we ran the same analysis
for every Booleanmodel currently in the model repository
(see Naldi et al. (2009)). In every case, the minimal trap spaces
are perfect approximations of the attractors of (S, ↩→). The time
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needed to confirm faithfulness, univocality and completeness is
given in Table 2. We confirmed the number of steady states and
cyclic attractors with  and . The execution of -
 is, like the computation ofminimal trap spaces, instantaneous.
The running times of  are comparable to that of our
algorithm for networks with |V|< 40 and on the order of 24–72 h
for the three networks with |V|≥ 40. The networks and attractors
are available for benchmarking at Klarner (2015a).

7. Conclusion and Outlook

In this paper, we developed the notion of an approximation of
attractors of a Boolean network. Minimal trap spaces are approxi-
mations that can be computed for networks with hundreds of vari-
ables using ASP solvers. Since available attractor detection tools
for asynchronous systems are only feasible for about 50 variables,
approximations via minimal trap spaces might yield attractor
information otherwise inaccessible. We defined three criteria to
assess the quality of an approximation and showed that they can
be decided using model checking. The main contribution in this
paper is an algorithm that improves the efficiency of deciding
completeness by dividing the problem into smaller subproblems
according to autonomous sets in the interaction graph.

We ran the algorithm on the 18 Boolean networks that are cur-
rently in the  repository and found that each time, themin-
imal trap spaces are a perfect approximation of the asynchronous
attractors, i.e., that we can find all asynchronous attractors using
random walks and min(S⋆

F ).

Section 5.3 explains that autonomous sets must be extended if
the corresponding restricted systems are trap-space-free. Strate-
gies by which extensions are constructed must compromise
between adding variables to increase the likelihood of discovering
non-trivial trap spaces and the efficiency of model checking the
respective transition systems. The strategy in Section 5.3 can be
considered optimal in the sense that it adds as few variables at a
time as necessary for the emergence of new trap spaces.

There are several directions in which the algorithm may be
improved further, for example, by removing so-called “mediator
variables” (see, e.g., Saadatpour et al. (2013)) from the interaction
graph of the subnetworks. The relationship to other reduction
methods, e.g., Naldi et al. (2011) or Veliz-Cuba (2011), may also
yield improvements by reducing the size of the transition systems
passed to the model checking software further.

The decision tree in Figure 4 might be an interesting tool for
questions regarding network control, an idea that was recently
developed in Zañudo and Albert (2015). It also suggests that the
dynamics of Boolean networks is governed by two very different
regimes: the percolation regime in which the long-term activities
are pre-determined, and the decision-making regime in which the
long-term activities are determined by which of the competing
trap spaces is reached first.

Supplementary Material

The Supplementary Material for this article can be found online
at http://journal.frontiersin.org/article/10.3389/fbioe.2015.00130
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Dysregulation in signal transduction pathways can lead to a variety of complex disorders, 
including cancer. Computational approaches such as network analysis are important tools 
to understand system dynamics as well as to identify critical components that could be 
further explored as therapeutic targets. Here, we performed perturbation analysis of a 
large-scale signal transduction model in extracellular environments that stimulate cell death, 
growth, motility, and quiescence. Each of the model’s components was perturbed under 
both loss-of-function and gain-of-function mutations. Using 1,300 simulations under both 
types of perturbations across various extracellular conditions, we identified the most and 
least influential components based on the magnitude of their influence on the rest of the 
system. Based on the premise that the most influential components might serve as better 
drug targets, we characterized them for biological functions, housekeeping genes, essential 
genes, and druggable proteins. The most influential components under all environmental 
conditions were enriched with several biological processes. The inositol pathway was found 
as most influential under inactivating perturbations, whereas the kinase and small lung 
cancer pathways were identified as the most influential under activating perturbations. The 
most influential components were enriched with essential genes and druggable proteins. 
Moreover, known cancer drug targets were also classified in influential components based 
on the affected components in the network. Additionally, the systemic perturbation analysis 
of the model revealed a network motif of most influential components which affect each 
other. Furthermore, our analysis predicted novel combinations of cancer drug targets with 
various effects on other most influential components. We found that the combinatorial per-
turbation consisting of PI3K inactivation and overactivation of IP3R1 can lead to increased 
activity levels of apoptosis-related components and tumor-suppressor genes, suggesting 
that this combinatorial perturbation may lead to a better target for decreasing cell prolifera-
tion and inducing apoptosis. Finally, our approach shows a potential to identify and prioritize 
therapeutic targets through systemic perturbation analysis of large-scale computational 
models of signal transduction. Although some components of the presented computational 
results have been validated against independent gene expression data sets, more labora-
tory experiments are warranted to more comprehensively validate the presented results.

Keywords: computational modeling, in  silico perturbation analysis, signal transduction, cancer, therapeutic 
targets
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inTrODUcTiOn

Recent advances in systems biology and computational biology 
have introduced methods for the visualization, comprehension, 
and interpretation of big data in biomedical research. These fields 
provide an array of methodologies including computer simula-
tions that can be used to generate new hypotheses and identify 
which hypotheses might be more productive to undertake experi-
mentally, and eliminate hypotheses with little chance of success 
(Kitano, 2002a,b; Ghosh et al., 2011). These methods can be effec-
tive in navigating complex network problems associated with dis-
eases. Many diseases and pathologies can be characterized by the 
dysregulation or dysfunction of multiple molecular components 
that are connected within these highly intertwined biological and 
biochemical networks (Loscalzo and Barabasi, 2011). Biological 
networks, including biochemical signal transduction networks, 
consist of a large number of highly interconnected pathways that 
give rise to complex, non-linear dynamics governing various cel-
lular functions (Helikar et al., 2008; Helikar and Rogers, 2009). 
Disruptions of these networks, such as mutations or disease states 
can have drastic effects upon the whole system. These effects are 
difficult to predict from static network diagrams.

However, understanding the hierarchy of these changes 
remains a paramount problem. Often the specific causal interac-
tions of the disease state are hidden within the massive cell-wide 
alterations, making attempts to reverse a disease state more chal-
lenging. In addition, the specific causal interactions are difficult 
to predict making the development of a potential therapeutic 
target results in unforeseen side effects (Singh and Singh, 2012). 
The unwanted effects of these drugs are often drastic as seen with 
many cancer medications (Kayl and Meyers, 2006; Lotfi-Jam 
et al., 2008; Singh and Singh, 2012). These challenges are further 
exacerbated by drug resistance that can render therapies ineffec-
tive. Therefore, it is necessary to gain a systems level understand-
ing of the components associated with the disease states.

In recent years, targeted therapy has been used for multiple 
diseases, e.g., cancer (Vanneman and Dranoff, 2012), and often 
involve the activation or inactivation of a specific component in 
a biological network by a small molecule or drug, for instance. 
Perturbation analyses allow one to interrogate the structure 
and dynamic footprint of the underlying biological system. 
Perturbation biology has been proposed as an approach to 
reduce the collateral damage caused by non-specific drugs. 
Computational network perturbations and new methods to 
evaluate the robustness of a given network can help identify more 
effective network components to target in order to obtain desired 
outcomes with minimal disruption to the rest of the network 
(Molinelli et al., 2013).

In order to fully leverage the potential of computational 
network perturbation analyses large dynamical models are 
necessary. A wide spectrum of modeling approaches exists rang-
ing from detailed (but less scalable) differential equation-based 
systems to large (but not dynamic) static networks. In the mid-
dle are approaches such as logical modeling that are relatively 
scalable while capable of capturing the dynamic nature of 
biological systems (Le Novère, 2015). Logical networks, namely 
Boolean networks, have been used to describe and simulate a 

wide spectrum of biological systems ranging in size as well as 
contextual application (Naldi et  al., 2010; Helikar et  al., 2012; 
Madrahimov et al., 2013; Rocha et al., 2013; Conroy et al., 2014). 
Thus, applying perturbation analysis to large-scale logical models 
may provide new insights into the system, which could be used to 
identify novel therapeutic targets.

Herein, we present results from a system-wide perturbation 
analysis of a large-scale Boolean model of a signal transduction 
network widely present in many types of cells. Specifically, the 
model previously described in Helikar et al. (2008) represents 
signaling events within the integrated epidermal growth fac-
tor (EGF), G protein-coupled receptor, and integrin signaling 
network. The model consists of 137 components (mostly pro-
teins) and 557 biochemical interactions. The simulation-based, 
system-wide perturbation analyses enabled us to identify the 
most and least influential components (ones with the most and 
least impact on the rest of the network). To explore the role 
and effects of these perturbations in the context of the complex 
extracellular environment, the simulations and analyses were 
conducted under four biologically relevant environmental 
conditions known to stimulate cell growth, cell death, motil-
ity, and quiescence (in addition to a set of randomly gener-
ated environmental stimuli). In order to investigate potential 
therapeutic targets, we performed functional annotation and 
analysis of the most influential signal transduction compo-
nents under both inactivating (e.g., knockout) and activating 
(e.g., overexpression) perturbations. The most influential 
components were found to be enriched with many biological 
processes and druggable targets. Also, the most influential 
components under activating perturbations were enriched 
with more essential genes than the least influential components. 
We used the most influential components and their upstream 
regulators to identify novel interactions. We also identified a 
network of the most influential components consisting of drug 
targets considered in multiple cancer types. The highest ranked 
among the most influential components were already explored 
as drug targets against cancer, including EGFR, PI3K, Raf, Ras, 
and Erk. Because some of these targets have been reported 
to be associated with drug resistance (Holohan et  al., 2013; 
Rodon et al., 2013; Wagle et al., 2014), we analyzed additional 
components of the signal transduction network that could 
potentially complement drug-resistant targets. As a result of 
the systemic analysis, we identified one novel combinatorial 
target, PI3K–IP3R1, with consistent occurrence in all simulated 
environmental conditions. This combination could be used to 
suppress cell proliferation while increasing the rate of apoptosis. 
We simulated the effect of combinatorial perturbation and the 
results were correlated with the literature, further supporting 
our predictions.

MaTerials anD MeThODs

computational Model
The computational model analyzed in this work is a Boolean 
model of signal transduction in a generic cell type. In Boolean 
models, each component can assume an active (1) or inactive 
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(0) state at any time t. The activity state of the model’s internal 
components is determined by the regulatory mechanisms 
of other directly interacting components. These regulatory 
mechanisms are described with Boolean functions (in the 
form of truth tables or Boolean expressions). To represent 
the milieu of stimuli in the extracellular environment, the 
model contains external components that represent various 
ligands. The activity level of these components is specified 
as a probability to simulate different levels of concentrations. 
This methodology was previously detailed and exemplified in 
Helikar et  al. (2008, 2012), Helikar and Rogers (2009), and 
Todd and Helikar (2012).

The signal transduction model, previously detailed in Helikar 
et  al. (2008), was constructed manually from around 500 
published papers. The model consists of several main signaling 
pathways, including the receptor tyrosine kinase (EGF receptor), 
G protein-coupled receptors (G-alpha i, G-alpha q, G-alpha s, 
and G-alpha 12/13), and the integrin signaling pathways. Each 
of the 130 components in the model corresponds to a signaling 
molecule (mainly protein). The model also contains nine external 
components that represent the extracellular environment (mostly 
composed of receptor ligands). These external components 
include the EGF, extracellular matrix (ECM), calcium pump, 
interleukin 1, and tumor necrosis factor (TNF), ligands for four 
types of G protein-coupled receptors (αi, αq, αs, and 12/13), and a 
general stress signal. The final model consists of 137 components 
(130 internal and 7 external) connected with 557 interactions. 
The model is fully annotated and freely available via the Cell 
Collective software (Helikar et  al., 2012, 2013) at www.thecell-
collective.org (under Published Models). Cell Collective, an 
interactive modeling environment, can be used to download the 
model (and other logical models published by the community) 
in several file formats (SBML qual, text file of logical functions, 
truth tables, etc.), as well as simulate directly on the platform. For 
convenience, the model SBML file is provided as File S1 (Data 
Sheet 1) in Supplementary Material.

Model simulations
The Cell Collective platform was used to perform all computa-
tional simulations of the model. Although the model is built by 
using discrete mathematics the output activity levels (AL) can 
be continuous (ranging from 0 to 100) as previously described 
in Helikar et  al. (2008) and Helikar and Rogers (2009). Each 
simulation is synchronous and consists of 800 steps, where the 
activity level of the measured output component is calculated 
as the fraction of ones (active states) over the last 300 iterations 
that describe the network’s steady behavior (Helikar et al., 2008; 
Helikar and Rogers, 2009).

Let xj(ti) denotes a node’s activity on the ith iteration and jth 
simulation where i = 1, 2, …, T and j = 1, 2, …, N, total is the 
simulation out of N total simulations. We obtain AL as below.
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The model was simulated and analyzed under four biologically 
relevant environmental conditions that stimulate cell growth, cell 

death, quiescence, motility (and randomly generated behaviors), 
as established and detailed in Helikar et al. (2008). The environ-
mental conditions that stimulate each of these cellular responses 
were obtained based on Helikar et al. (2008) where the model’s 
responses were characterized based on 10,000 combinations of 
randomly generated environmental signals. For example, cell 
growth behavior is characterized by higher AL of Erk (marker 
for proliferation) and Akt (marker for anti-apoptosis). Cell 
motility behavior was characterized by higher AL of Cdc42 and 
Rac. Quiescence response is considered when the activity level 
of Akt is medium to low, and proliferation (Erk) and motility 
(Cdc42 and Rac) are low or inactive (Helikar et al., 2008). Each 
environmental condition is defined by different combinations of 
AL of external components (ligands). The activity level ranges 
of the environmental conditions were further determined by an 
optimization method whereby 2,000 simulations were run with 
all external stimuli ranging from 0 to 100 (except for IL1_TNF 
and Stress that were limited to low AL). Subsequently, environ-
mental activity level combinations that stimulated cell growth, 
cell death, motility, and quiescence most effectively were selected 
as the corresponding environmental conditions (Table 1). This 
is directly analogous to optimization experiments in laboratory 
studies (e.g., determining the optimal medium and plating condi-
tions of a cell before performing a growth factor titration).

A wild type (WT) experiment (used as a reference) was 
conducted under each environmental condition without any per-
turbations. Subsequently, systematic perturbation experiments 
were conducted under each condition, whereby each component 
of the model was constitutively activated (activity stuck at 1; 
gain-of-function/overexpression) or inactivated (activity stuck 
at 0; loss-of-function/knockout). Each experiment consisted 
of randomly selecting 100 combinations of AL of the external 
stimuli from each condition activity range. (The only exception 
was the random environmental condition, which was simulated 
2,000 times.) Each of the 100 combinations were simulated 30 
times (i.e., 30 replicates) to ensure consistency of the dynamics 
in response to a specific combination of stimuli. These replicates 
were subjected to a Fligner Killeen test of homogeneity of 
variances, which confirmed that the measured AL of the network 
components, were homologous for identical combinations of AL 
of the environmental stimuli.

Model analysis
The Kolmogorov–Smirnov (KS) test (Wang et al., 2003) was used 
to compare the WT dynamics (under each environmental condi-
tion) with the dynamics of each perturbation experiment. If the 
KS test resulted in a p-value <0.05, then it has a difference value 
(DV) equal to the test statistic; otherwise, the DV for a compo-
nent is 0. Because we are looking at how a node’s perturbation 
affects the rest of the network, its DV when it is the perturbed 
node is set to 0.

Most and least influential components
The most influential components are defined as components that 
induce the largest changes in the network under a given perturba-
tion. The ranking of the perturbations is derived by calculating 
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TaBle 1 | activity level ranges of environmental stimuli for cell death, growth, motility, quiescence, and random environments.

external Death growth Motility Quiescence random

Extracellular matrix (ECM) 10–72 26–82 81–99 7–30 0–100
Epidermal growth factor (EGF) 3–15 72–97 29–83 43–56 0–100
Calcium pump (ExtPump) 35–87 24–83 41–92 17–82 0–100
GPCR q ligand (alpha_qL) 13–58 18–78 17–74 4–84 0–100
GPCR i ligand (alpha_iL) 1–4 15–77 30–82 31–83 0–100
GPCR s ligand (alpha_sL) 30–87 24–80 20–77 19–46 0–100
GPCR 12/13 ligand (alpha_1213L) 14–65 18–78 12–77 18–67 0–100
IL1_TNF 4–13 8–15 4–13 2 2
Stress 2–5 2–5 2–5 2–3 2
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an influence score (IS) for the ith node, which is found by sum-
ming the DV for all M nodes in the network. The top 10% are 
considered most influential, and the bottom components with IS 
value 0 were considered the least influential. The cutoffs were set 
to 10% because only a few components had a high influence on 
the network.
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j

M

i

=

=
=

∑
1

1 130, ,…  

Most affected components to a specific 
Perturbation
For each perturbation induced, the components that are most 
sensitive to that perturbation are ranked in decreasing order to 
be able to characterize downstream effects of the perturbation 
on the network.

annotation and Biological relevance of 
signal Transduction components
All model components were first annotated using the appropri-
ate NCBI gene IDs (Pruitt et al., 2007) for associated genes and 
UniProt IDs (Consortium, 2011) for protein products of the 
genes. All components were then further characterized using 
online resources such as DrugBank (Wishart et al., 2006).

The biological process enrichment analysis of the most influ-
ential components was done using DAVID (Huang et al., 2008), 
with high stringency. Gene Ontology (Ashburner et  al., 2000), 
SP_PIR keywords, and KEGG pathways (Kanehisa, 2002) were 
obtained using FDR < 5%.

Essentiality data were obtained from the Online GEne 
Essentiality (OGEE) database and mapped on the most and least 
influential components (Chen et al., 2012). DrugBank data were 
used to obtain druggability information for each component 
in the network. Data on cancer-associated genes were obtained 
from The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013) 
and mapped on the most influential components to identify 
cancer-associated most influential components. The enrichment 
of essential genes and druggable proteins was computed based 
on the number of genes mapped on most or least influential 
components out of the total number of most and least influential 
components.

network Motif analysis
Network motif analysis in the directed signal transduction 
network was performed using FANMOD tool (Wernicke and 
Rasche, 2006). The default parameters were used that include 
100,000 samples to determine the sub-graphs. The significance 
of network was computed by comparison with 1,000 random 
networks. Network motifs that have occurrence more than five 
times and p-value <0.05 were considered as significant. Network 
motif analysis was previously integrated with logical modeling 
of signal transduction of epithelial–mesenchymal transition 
(Steinway et al., 2014).

gene expression analysis
To investigate the functional activity of the components of signal 
transduction model, we queried publicly available gene expression 
data in four different databases (Consortium, 2011); Bgee (gives 
activity level of genes across different species as well as different 
developmental stages) (Bastian et  al., 2008), CleanEx database 
(Providing heterogenous data from different) (Praz et al., 2004), 
Expression Atlas database (gene expression data under different 
biological conditions) (Petryszak et al., 2014), and GeneVisible 
database (Gene expression in different tissues) (Zimmermann 
et  al., 2004). Out of 109 signal transduction components i.e., 
proteins, 107 (~98%) showed expression across different species, 
developmental stages, organs, and tissues – suggesting the bio-
logical activity of signal transduction network. Gene expression 
status of signal transduction components is shown in the Table S1 
in Supplementary Material.

The gene expression dataset GSE53309 was obtained from 
the GEO database (Barrett et  al., 2005; Rosich et  al., 2014). 
We selected samples that were treated with pan-PI3K inhibi-
tor and of normal control. The log 2 RMA signal intensities of 
samples were transformed into Z-scores (Cheadle et al., 2003). 
To compare the Z-scores of treated samples with normal con-
trol, we used Z-ratio approach. Genes with Z-ratio ≥1.50 were 
considered upregulated and with ≤−1.50 were considered as 
downregulated. The Z-ratio cut-off (1.5) is previously found as 
robust (Cheadle et al., 2003). The genes of signal transduction 
components whose AL were affected as a result of PI3K inactiva-
tion were examined for Z-ratios in both the biological replicates. 
We used DAVID to perform biological process enrichment 
analysis of upregulated and downregulated genes. The high 
stringency and FDR  <  5% were used to select significantly 
enriched biological processes.
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FigUre 1 | Overview of the method used to assess influential 
components in the model.

FigUre 2 | comparison of the most influential components across simulated environmental conditions. (a) Inactivating perturbations, (B) activating 
perturbations.
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resUlTs

system-Wide Perturbation analysis 
reveals core components of the signal 
Transduction network
A critical objective of biomedical research is the identification and 
prioritization of novel therapeutic targets. In this context, we per-
formed systematic perturbation analysis in a generic signal transduc-
tion model. The workflow used in this work is illustrated in Figure 1.

The activating/inactivating perturbation experiments for each 
component in the model were carried out across four environmental 
conditions (as described in the Section “Materials and Methods”). 
Additional randomly generated extracellular conditions were used to 
check the robustness of the model and results. Perturbation analysis 
enabled us to identify and rank components of the signaling net-
work that are most and least influential (Table S2 in Supplementary 
Material). The heatmaps for all the environmental conditions 
[Figures S1–S10 (Image 1) in Supplementary Material] indicate that a 
few components had high influence on rest of the system. Therefore, 
we considered the top 10% of the components from each condition as 
the most influential. By contrast, the components that had no influ-
ence on the system were considered as the least influential (KS = 0).

Also, the most influential components correspond to network 
components that, when perturbed, affect the largest part of the 
network in terms of the number of affected components and the 
magnitude of the effect. The most influential components were 
found for both inactivating (Figure 2A) and activating (Figure 2B) 
perturbations under the different environmental conditions. It is 
interesting to note that many of the most influential components 
overlap across all environmental conditions. However, the most 
influential components do not overlap between two types of per-
turbations (inactivating or activating). We investigated whether the 
most influential components that spanned different environmental 
conditions could function as housekeeping genes. Also, the most 
influential components that are specifically found under one envi-
ronmental condition should have association with that condition.

Housekeeping Genes Are Enriched in the Most 
Influential Components Common in Different 
Environments
Housekeeping genes are defined as genes expressed at constant level 
in many cells and under many conditions (Eisenberg and Levanon, 
2013). Therefore, components that were identified as most influential 
under all of the simulated environmental conditions can be hypothe-
sized to have housekeeping function. To investigate this, we compared 
these most influential components with known housekeeping genes 
as provided in Eisenberg and Levanon (2013). Under inactivating 
perturbations, out of the seven components common among the 
different environmental conditions, PI4K, PI5K, ARF, and PI3K were 
associated with housekeeping genes (Eisenberg and Levanon, 2013). 
Under activating perturbations, Trafs, Erk, Mek, and SHP2 (out of 
nine common components), were associated with housekeeping 
genes. Housekeeping genes associated with the common components 
are displayed in Table 2. This observation suggests that the most influ-
ential components that are common among different environmental 
conditions are likely to function as housekeeping genes.

Unique Components Associated with Each 
Environmental Condition Are Found to Be Condition 
Specific
Under both types of perturbations, certain environmental con-
ditions had several uniquely associated components (Figure 2; 
Table 3). Under inactivating perturbations, components uniquely 

http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org


TaBle 3 | condition-specific components and literature support.

Perturbations environmental condition associated components literature

Inactivating Death CaM, RGS, Palpha_iR CaM- and CaM-dependent signaling systems control vertebrate cell 
proliferation, programed cell death, and autophagy (Berchtold and 
Villalobo, 2014). RGS is involved in cell death (Fisher, 2009)

Activating Death Gbg_i (GNB), Alpha_iR Gbg_i has been hypothesized to be involved in mTOR-mediated anti-
apoptotic pathways. Furthermore, it has been functionally annotated with 
apoptosis, cell death (Wazir et al., 2013)

Growth PP2A Highly regulated family of Ser/Thr phosphatase implicated in cell growth 
and signaling (Janssens and Goris, 2001)

Motility KRAS, Sos Knockdown of KRAS in pancreatic cancer cell lines leads to decreased 
motility and proliferation. The Grb2–Sos1 complex may promote cell 
motility, and tumerogenesis (Qu et al., 2014)

TaBle 2 | housekeeping genes in the most influential components overlapped among different environmental conditions.

Perturbation components genes housekeeping genesa

Inactivating PI4K PI4KA, PI4KB, PIK4CB PI4KA, PI4KB
PI5K PIP5K1A, PIP5K1B, PIP5K1C PIP5K1A
ARF ARFGAP1, ARFGAP2, ARFGAP3 ARFGAP2, ARFGAP3
PP2A PPP2CA PPP2CA
PI3K PIK3CA, PIK3CB, PIK3CD, PIK3CG PIK3C3, PIK3CB

Activating EGFR EGFR No
IL1_TNFR IL1B, TNFRSF1A No
TRAFS TRAF1, TRAF2, TRAF3, TRAF4, TRAF5, TRAF6, TRAF7 TRAF6, TRAF7
ERK MAPK1 to MAPK15 MAPK1, MAPK6, MAPK8, MAPK9
MEK MAP2K1 to MAP2K7 MAP2K1, MAP2K2, MAP2K5
PKC PRKCA, PRKCB, PRKCD, PRKCE, PRKCG, PRKCH, PRKCI, PRKCQ, PRKCZ No
GAB1 GAB1 No
SHP2 PTPN11 PTPN11

aList of housekeeping genes were obtained from Eisenberg and Levanon (2013).
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associated with the cell death stimulating condition are calmodu-
lin (CaM), RGS, and Palpha_iR. Out of these, CaM and RGS have 
been previously associated with cell death and apoptosis (Fisher, 
2009; Berchtold and Villalobo, 2014). In fact, CaM plays a central 
role in the regulation of several cellular functions, including 
programed cell death (Berchtold and Villalobo, 2014). It is also 
known that RGS protein can regulate cell death, cell cycle, and cell 
division (Fisher, 2009). Under activating perturbations, the most 
influential components associated with the cell death-inducing 
condition include Gbg_i and Alpha_iR. On the other hand, PP2A 
was found to be most influential under the growth stimulating 
condition, Ras and Sos under motility stimulating condition, 
and PAK under quiescence stimulating condition. These results 
are also further supported by published studies that reported 
Gbg_i (GNB) to be involved in mTOR-mediated anti-apoptotic 
pathways; Gbg_i was also functionally annotated with apoptosis 
and cell death (Wazir et al., 2013). PP2A was reported as a highly 
regulated Ser/Thr phosphatase involved in cell growth and signal-
ing (Janssens and Goris, 2001). In pancreatic cancer cell lines, the 
knockdown of KRAS has been found to lead to the decrease in cell 
motility and proliferation (Rachagani et al., 2011; Birkeland et al., 
2012). Furthermore, the Grb2–Sos1 complex has been found to 
most likely promote cell motility, and tumerogenesis (Qu et al., 
2014). These observations suggest that the proteins, which were 
uniquely associated with simulated environmental conditions, 
are most likely to have the association with that condition. Finally, 

the literature evidence obtained for housekeeping, or condition 
associated genes, further supports our simulation results.

Key Biological Processes are enriched in 
the Most influential components
Next, we assessed the enrichment of biological processes or 
pathways in the most influential components. The most influen-
tial components across all four conditions under both types of 
perturbation showed significant enrichment with key biological 
processes. The counts and fold differences of enriched biological 
terms in all the conditions are shown in Figures 3 and 4. In the 
case of inactivating perturbations, inositol phosphate metabolism 
was enriched under all environmental conditions (Figure 3). In 
the case of activating perturbations, the significantly enriched 
biological processes include phosphate metabolic processes, 
kinase activity, apoptosis, and, interestingly, the non-small lung 
cancer pathway (Figure 4). These results illustrate that the group 
of proteins with similar biological functions appear as the influ-
ential components under each type of perturbation.

The Most influential components under 
activating Perturbations are enriched with 
essential genes
Mutations in an essential gene can be lethal. Based on the hypoth-
esis that the influential components might serve as essential for 
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FigUre 3 | enriched biological processes in the most influential components under environmental conditions, and inactivating perturbations.  
(a) Death (B) growth (c) motility and (D) quiescence.
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the survival of the cell, we performed essentiality analysis. We 
mapped essential genes on the most influential components 
and on the least influential components. The essential genes 
mapped on the most influential components were compared 
with essential genes mapped on the least influential components. 
Under activating perturbations, more essential genes were found 
within the most influential components than the least influential 
components (Figure 5A). Under the cell death stimulating con-
dition, a total of 69% of the most influential components were 
essential; this is in contrast to the least influential components 
that contained 31% essential genes. Under other environmental 
conditions stimulating growth, motility, and quiescence, the dif-
ference of essential genes between the most influential and the 
least influential components are 23, 15, and 32%, respectively.

On the other hand, under inactivating perturbations, we found 
either an equal or larger number of essential genes in the least 
influential components (Figure 5B). The most significant differ-
ences were observed under the cell death stimulating conditions: 
the least influential components have 66% of essential genes in 
contrast to the 46% essential genes in the most influential. Also, 
under the growth stimulating conditions, 68 and 53% of essential 
genes were contained within the least and the most influential 
components, respectively. Under the motility and quiescence 
stimulating conditions, there were 3 and 9% more essential genes 

within the least influential components than the most influential 
components, respectively. We found that under inactivating 
perturbations, the number of essential genes among the least 
influential components was slightly larger than the activating per-
turbation (Figures 5C,D). On the other hand, under activating 
perturbations, the more essential genes mapped within the most 
influential components than the least influential components.

Thus, the most influential components are essential under 
activating perturbations, suggesting an environmental condition-
specific essentiality.

The Most influential components are 
enriched with Druggable Proteins
To further investigate the importance of the most influential 
components, we evaluated the distribution of known druggable 
targets. We obtained druggability data from the DrugBank 
database (Wishart et  al., 2006) and mapped them on the most 
and least influential components. A total of 51 components in the 
whole network were enriched with druggable proteins. We com-
pared druggable proteins within the most influential components 
with druggable proteins within the least influential components. 
We found that under both types of perturbations and across all 
environmental conditions more druggable proteins were found 
among the most influential than the least influential components 
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FigUre 4 | enriched biological processes in the most influential components under environmental conditions, and activating perturbations.  
(a) Death (B) growth (c) motility and (D) quiescence.
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(Figure 6). Druggable proteins are experimentally characterized 
or predicted to bind to antagonist or agonist drugs with high 
affinity. Therefore, enrichment of druggable proteins within the 
most influential components has the potential to suggest impor-
tant candidates for therapeutic target discovery.

The Most influential components as Drug 
Targets
Ranked Most Influential Components Based on 
Downstream Components
We identified the most affected components of the most influen-
tial components under both types of perturbations. We combined 
all environmental conditions to construct networks of the most 
influential components with their downstream targets. We subse-
quently mapped druggable proteins and cancer-associated genes 
on these networks. Under inactivating perturbations, we obtained 
a network consisting of the most influential components: PI3K, 
EGFR, PP2A, GRK, and CaM (Figure  7A). Under activating 
perturbations, we obtained a network composed of influential 
components: EGFR, IL1_TNFR, ERK, SHP2, RKIP, Ras, Gbg_i, 
Fak, Integrins, and PP2A (Figure 7B).

The total number of downstream targets for each of the most 
influential druggable component under both inactivating and 
activating perturbations is listed in Table 4. We analyzed if these 

downstream components also affects their upstream component. 
In the case of PI3K-out of 42 downstream components, two 
(PIP3_345 and RGS) are part of a feedback system. Other feedback 
components in downstream targets include alpha_iR for GRK in 
inactivating perturbations, Gab1 for SHP2, and Palpha_iR for RKIP 
under activating perturbations. We observed that EGFR, a validated 
cancer drug target (Mendelsohn, 2001), affects the largest number 
of components under activating and inactivating perturbations.

The Most Influential Components Mainly Affect Other 
Most Influential Components
Here, we identified all components that directly affect the activity 
of each most influential component (KS = 1). Interestingly, most 
of these direct upstream components were also ranked as the most 
influential in at least one environmental condition (Figure  8). 
Under inactivating perturbations, 22 components were directly 
upstream of the most influential components. Of these, 19 were 
the most influential under at least one environmental condition. 
On the other hand, under activating perturbations, out of 45 
upstream components, 19 were also ranked as most influential. 
Additionally, under inactivating perturbations, 9 (CaM, EGFR, 
Gbg_i, GRK, IP3R1, PP2A, PI3K, Ras, and Src) out of total 22 
upstream components are druggable. Out of these 22 compo-
nents, 6 components (CaM, EGFR, Gbg_i, GRK, IP3R1, and 
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FigUre 5 | Distribution of essential genes in the most influential components. X-axis = environmental conditions, Y-axis = ratio of essential genes in total 
selected most or least influential components in (a) most influential vs. least influential components under activating perturbations, (B) most influential vs. least 
influential components under inactivating perturbations, (c) essential genes in most influential under inactivating vs. activating perturbations, (D) essential genes in 
least influential components under inactivating vs. activating perturbations.
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PP2A) were upstream to the most influential druggable compo-
nents. Under activating perturbations, 21 (CaM, Cdc42, EGFR, 
Erk, Fak, Gbg_i, Grb2, GRK, IL1_TNFR, Integrins, IP3R1, PDK1, 
PI3K, PKA, PP2A, Rac, Raf, Ras, RKIP, SHP2, and Src) out of 
45 upstream to the most influential components are associated 
with druggable proteins. Out of these 21, 10 components were 
also the most influential. Under both types of perturbations, a 
total of 18 (alpha_iR, ARF, B_Arrestin, Ca, CaM, EGFR, Gbg_i, 
GRK, IP3R1, Palpha_iR, PI5K, PIP2_45, PIP3_345, PP2A, RGS, 
PI3K, Ras, and Src) upstream components were common. Nine 
of these components (CaM, EGFR, Gbg_i, GRK, IP3R1, PP2A, 
PI3K, Ras, and Src) were druggable or these were used as the drug 
targets. The important drug targets, such as EGFR, PI3K, Ras, 
and Raf, are also appeared as influential upstream components. 
Together, these results suggest that under inactivating perturba-
tions the activity of the most influential components are likely to 
be modulated by the other most influential components.

The Most Influential Components as Drug Targets 
and Drug Resistance
The top most influential components, such as EGFR, PI3K, 
ERK, and Ras, have been previously explored as drug targets 

in multiple cancer types. However, it is also evident from 
literature that several most influential components have been 
associated with drug resistance. For example, in non-small 
cell lung cancer, mutation within the kinase domain of EGFR 
and epithelial–mesenchymal transition are responsible for the 
development of resistance to gefitinib (Holohan et al., 2013). In 
colorectal, and head and neck cancers, KRAS mutation, EGFR-
S492R mutation, and increased ErBb signaling are responsible 
for resistance against Cetuximab (Dienstmann et  al., 2012; 
Holohan et al., 2013). Furthermore, PI3K showed drug resist-
ance in breast cancer against rapamycin through the expression 
of RSK3 and RSK4 (Rodon et al., 2013). Mutations in ERK1 or 
ERK2 have shown resistance against ERK inhibitors or RAF/
MEK inhibitors (Wagle et al., 2014). Tumors with mutation in 
BRAF V600E can adapt to the RAF inhibitors (Lito et al., 2013; 
Perna et  al., 2015). As such, the identification and prediction 
of drug targets alone are not sufficient to identify completely 
useful drug targets. Investigation of the interactions and feed-
back of these most influential components could be useful to 
modulate the activity of the most influential component. Thus, 
we explored the regulatory interactions to investigate the effect 
of combinatorial perturbations on cell’s behavior.
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FigUre 6 | Distribution of druggable proteins within the most influential vs. least influential components. (a) Inactivating perturbations, (B) activating 
perturbations. X-axis = environmental conditions, Y-axis = ratio of druggable proteins in total most or least influential components.

February 2016 | Volume 4 | Article 1038

Puniya et al. Systems Analysis of Signal Transduction

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

regulatory interactions between the Most 
influential components and Their 
Upstream components
To develop a better strategy that can account for drug resistance 
of the most important drug targets, we sought to investigate novel 
regulatory interactions. We analyzed the previously described 
interactions between the most influential components and their 
direct upstream components. We found that some interactions 
consistently occur in more than one environmental condition. For 
example, the inactivation of IP3R1 increases the activity of PI3K 
under all four environmental conditions. However, the maximal 
effect was observed under the death environmental condition. 
Additionally, the inactivation of IP3R1 leads to inactive RGS under 
three environmental conditions stimulating cell growth, motility, 

and quiescence. These finding also correlate with published studies 
that found that RGS positively regulates apoptosis (Fisher, 2009). 
Other examples of consistently occurred interactions include: the 
activation of Grb2 leads to increased AL of Ras under all four 
environmental conditions, and increased Sos activity under two 
environmental conditions stimulating death and quiescence. The 
activation of Rac increases the activation of PAK under environ-
mental conditions stimulating cell death and growth. Overall, we 
found three types of interactions: inactivation of one component 
leads to the increase of activity of another component (PI3K–IP3R1, 
IP3R1–PI3K, and RGS–IP3R1), inactivation of a component leads 
to decreased activity of another component (IP3R1–RGS), and 
activation of a component leads to increased activity of another 
component (Grb2–Ras, Grb2–Sos, and Rac–PAK).
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FigUre 7 | Visualization of the most affected components (KsT value = 1) as a result of perturbing the most influential druggable components. (a) 
Inactivating perturbations, (B) activating perturbations. Orange colored eclipeses = most influential druggable components; squares = affected components; orange 
colored squares = affected druggable components; components with blue borders = experimentally found to be associated with cancer.

February 2016 | Volume 4 | Article 1039

Puniya et al. Systems Analysis of Signal Transduction

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org


FigUre 8 | Visualization of the upstream components affecting the most influential components. (a) Inactivating perturbations, (B) activating 
perturbations. Gray colored nodes = the most influential components, and white colored nodes = not most influential components. The directions of arrows are 
from the source (upstream component) to the target (most influential components).

TaBle 4 | number of downstream targets of the most influential druggable components.

number of affected 
components

number of affected 
druggable components

number of cancer-associated 
components

Feedback components Perturbation

EGFR 70 25 8 Inactivating
EGFR 24 13 3 Activating
IL1_TNFR 54 14 5 Activating
Erk 54 21 8 Activating
SHP2 53 17 1 (Gab1) Activating
RKIP 43 12 4 1 (Palpha_iR) Activating
PI3K 42 17 7 2 (PIP3_345, RGS) Inactivating
PP2A 36 14 6 Inactivating
PP2A 5 3 2 Activating
Ras 30 13 5 Activating
GRK 22 5 2 1 (alpha_iR) Inactivating
Gbg_i 15 5 1 Activating
Fak 14 6 4 Activating
Integrins 11 3 3 Activating
CaM 8 5 2 Inactivating
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The fold differences of all these interactions are displayed in 
the Table  5. Under the cell death condition, the inactivation of 
IP3R1 results in PI3K activity increase by 2.38-fold. Similarly, 
PI3K inactivation leads to a 5.42-fold increase in IP3R1 activity. 
In the case of other interactions, the inactivation of IP3R1 leads 
to inactive RGS under the cell growth, motility, and quiescence 
stimulating conditions. Under the motility and quiescence stimu-
lating conditions, the inactivation of Gbg_i leads to inactive CaM. 
The activation of Grb2 increases the activity of Ras 7.40-fold 

under the cell death stimulating conditions, and 2.13-fold under 
the quiescence stimulating conditions. Grb2 activation also 
affects Sos 7.8-fold under the cell death stimulating conditions 
and 2.18-fold under the quiescence stimulating conditions. An 
activating perturbation of Rac increases the activity of PAK more 
than 18-fold under the cell death stimulating conditions, and 
5.59-fold under the growth stimulating conditions.

To investigate if these interactions are part of any network 
motifs in the signal transduction network, we performed a 
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TaBle 5 | Fold differences of the affected most influential component when the upstream component was perturbed.

Perturbed component affected component Fold differences (perturbed/WT)

Death growth Motility Quiescence

IP3R1 (inactivation) PI3K 2.38-Folda 1.03-Fold 1.04-Fold 1.14-Fold
PI3K (inactivation) IP3R1 5.42-Folda 1.18-Fold 1.15-Fold 1.24-Fold
IP3R1 (inactivation) RGS NSA Complete inactivation Complete inactivation Complete inactivation
RGS (inactivation) IP3R1 NSA 1.21-Fold 1.18-Fold 1.24-Fold
Gbg_i (inactivation) CaM NSA NSA Complete inactivation Complete inactivation
CaM (inactivation) Gbg_i NSA NSA 1.30-Fold 1.43-Fold
Grb2 (activation) Ras 7.40-Folda 1.32-Fold 1.39-Fold 2.13-Fold
Ras (activation) Grb2 0.99-Fold 0.97-Fold 0.99-Fold 1.01-Fold
Grb2 (activation) Sos 7.87-Folda 1.39-Fold 1.53-Fold 2.18-Fold
Sos (activation) Grb2 1-Fold 0.97-Fold 0.99-Fold 1.01-Fold
Rac (activation) PAK 18.41-Folda 5.69-Fold NSA NSA
PAK (activation) Rac 1.18-Fold 1.24-Fold NSA NSA

NSA, not significantly affected (KST value <1).
aTwofold or above change.
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network motif analysis. We found that all interactions dis-
cussed above were part of network motifs (p-value <0.05). 
IP3R1–PI3K is found in 3 significantly occurred 4-node 
network motifs and in 15 significantly occurred 5-node 
network motifs. The other interactions are also found in 
significantly occurred 4 and 5-node network motifs (Table S3 
in Supplementary Material).

These results suggest different types of regulatory effects of 
activating and inactivating perturbations of direct upstream 
components of the most influential components.

Cotargeting IP3R1 with PI3K
As discussed earlier, although PI3K was identified as one of 
the most influential components, it has been also associated 
with drug resistance. Based on the interactions of upstream 
regulators of the most influential components discussed above, 
we further investigated the interactions involving PI3K and 
IP3R1 with the objective of identifying a secondary drug target 
that could be potentially used to address the issue of PI3K-
associated drug resistance. In contrast to PI3K/Akt signaling, 
IP3R1 positively regulates apoptosis. We hypothesized that 
the rate of apoptosis will increase when IP3R1 is overactivated 
(activating perturbation) and PI3K is inactivated (inactiva-
tion perturbation). Despite the strong dynamical relationship 
between IP3R1 and PI3K, these two components are only con-
nected indirectly through a sub-network. In this sub-network, 
Gbg_i is upstream of and directly activates both components. 
IP3R1 regulates PI3K through a Ca  →  EGFR route, whereas 
PI3K regulates IP3R1 via a PTEN  →  PIP2_45  →  IP3 route 
(Figure 9).

The inactivating perturbation of PI3K resulted in the inactiva-
tion of 29 components across all four environmental conditions. 
To correlate PI3K inhibition results with laboratory experiments, 
we analyzed a gene expression dataset obtained from cells treated 
with PI3K inhibitors (Rosich et  al., 2014). In two biological 
replicates, we found that the genes of components with affected 
AL had shown differential gene expression (at least in one experi-
ment). As a result of the simulated constitutive inhibition of PI3K 

in the model, the activity level of a total of 15 components (20 
genes) increased more than twofold. Nine (60%) of these compo-
nents were also significantly upregulated in the gene expression 
dataset (Table S4 in Supplementary Material). Out of these 20 
genes, 9 genes (45%) were upregulated in biological replicate 1, 
whereas 12 (60%) genes were upregulated in biological replicate 
2. Cumulatively, 18 genes (90%) were upregulated in both bio-
logical replicates. Two of these signal transduction components, 
Rap1 and PTPPEST, showed significant upregulation in both the 
biological replicates in gene expression data. Furthermore, the 
activity of a total of 26 components (41 genes) decreased more 
than twofold in our model. Genes of eight components (30%) 
were significantly downregulated in the obtained gene expres-
sion data (Table S4 in Supplementary Material). Out of these 
41 genes, three genes (7%) were significantly downregulated 
in biological replicate 1, whereas eight genes (19.5%) were sig-
nificantly downregulated in biological replicate 2. Cumulatively, 
12 genes (29%) were upregulated in both biological replicates. 
Furthermore, we compared enriched biological processes within 
the components affected in the model with enriched biological 
processes in differentially expressed genes. We found that the 
“regulation of phosphorylation” biological process was enriched 
for the upregulated genes in both the model and the gene expres-
sion data. For downregulated components, “positive regulation 
of programed cell death” was consistent for both the model 
and the gene expression data (biological replicate 1). Together, 
these results suggest that our simulation results are moderately 
correlated with the results of available gene expression data. In 
previous integrative studies of gene expression and biochemical 
models, at best moderate correlations were observed between 
gene expression and metabolic fluxes (Blazier and Papin, 2012). 
Post-transcriptional modifications and enzyme kinetics are pos-
sible reasons behind poor correlation between gene expression 
and protein abundance (Washburn et al., 2003; Blazier and Papin, 
2012). As such, more laboratory experiments will be needed to 
further validate our results.

Under PI3K inactivation, the average activity of IP3R1 
increased from 71.9% in WT to 85.18%. This perturbation also 
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TaBle 6 | activity of affected components under single (Pi3K or iP3r1) and double perturbations (Pi3K and iP3r1) under the cell growth environmental 
condition.

affected 
components

Pi3K inactivation (single 
perturbation)a (fold)

iP3r1 activation (single 
perturbation)a (fold)

Double perturbationa  
(fold)

Functional annotationb

Rap1 3.25 1.07 3.90 Tumor-suppressor gene
Ca 1.17 1.41 1.43 Calcium ion, apoptosis
CaM 1.17 1.41 1.43 Cell death
CaMKK 1.17 1.41 1.43 Calcium ion binding, apoptosis
Myosin 0.30 1.004 0.36 Regulatory light chain of myosin
CaMK 1.33 2.09 2.19 May function in dendritic spine and synapse 

formation and neuronal plasticity
PLA2 0.32 1.24 0.63 Tumor-suppressor gene, apoptosis
AA 0.32 1.24 0.63 Apoptosis

aCompared to the activity of components in wild type.
bFunctional annotations for proteins were obtained from UniProt database and literature.

FigUre 9 | The regulatory circuit connecting iP3r1 and Pi3K and downstream components. Edges with arrow = activation. Edges with oval 
end = inhibition.
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led to downregulation of positive regulators of apoptosis phos-
pholipase A2 (PLA2) and arachidonic acid (AA). AA released by 
PLA2 triggers Ca2+-dependent apoptosis through mitochondrial 
pathways (Penzo et al., 2004). The elevation in Ca2+ is thought 
to be involved in apoptosis (Pinton et  al., 2008). It was shown 
that blocking calcium channels can directly lead to tumor pro-
motion (Mason, 1999). Thus, inactivation of PI3K can block cell 
proliferation; simultaneously, it can lower the rate of apoptosis. 
Interestingly, the positive regulation of the programed cell death 
biological process was enriched in downregulated genes within 
the analyzed gene expression data.

Under the cell growth stimulating condition, the activating per-
turbation of IP3R1 increased the activity of apoptosis-associated 

components: Ca, CaM, CaMK, CaMKK, and RGS in the range of 
+1.41- to +2.09-fold when compared to WT.

To simulate the cell death effect under the growth stimulating 
condition, we carried out a double perturbation of IP3R1 and 
PI3K, whereby IP3R1 was constitutively activated and PI3K was 
completely inactivated. Under this combinatorial perturbation, 
we found 27 proteins including proto-oncogenes such as Akt 
(which suppresses apoptosis) and Raf to be downregulated. 
Here, we found eight proteins with more than 19% increased 
activity than in the case of a single inactivating perturbation of 
PI3K. These proteins include Rap1 (+1.19-fold), Ca (+1.21-fold), 
CaM (+1.21-fold), CaMKK (+1.21-fold), Myosin (+1.22-fold), 
CaMK (+1.65-fold), PLA2 (+1.98-fold), and AA (+1.98-fold) 
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(Table  6; full list of all affected components is given in Table 
S5 in Supplementary Material). These components were down-
regulated when only PI3K was inactivated. Under the combi-
natorial perturbation (PI3K inactivated and IP3R1 activated), 
the increased activity of these components was achieved by 
constitutive expression of IP3R1 via the following routes: 
IP3R1 → Ca → CaM → CaMK → Rap1 and IP3R1 → Ca → Ca
M → CaMK → PLA2 → AA (Figure 9). It is noteworthy that these 
components have been found to positively regulate apoptosis or 
cell death. Therefore, under the aforementioned combinatorial 
perturbation, components involved in cell proliferation were 
downregulated through the inactivation of PI3K, and the activity 
of tumor-suppressor genes (PLA2) with arachidonic acid (AA) 
and other components, including Ca, CaM, and CaMK, was 
increased as a result of the IP3R1 overactivation.

Together, these results suggest a regulatory interaction 
between PI3K and IP3R1, and that cotargeting both of these 
components may serve as therapeutic strategy rather than target-
ing PI3K alone. Using this combination of targets, we simulated 
cell death behavior in cell proliferation inducing environmental 
condition. Thus, we predict that this novel target combination 
might increase the rate of apoptosis while blocking cell prolifera-
tion in tumor cells. However, additional experimental validation 
is needed to validate this computational result.

DiscUssiOn

We have presented a systemic perturbation analysis of a signal 
transduction network model to identify and characterize func-
tionally important components. We used these components to 
explore novel therapeutic strategies against cancer. Specifically, 
we used a logical modeling approach to analyze the dynamics 
of a large-scale signal transduction model. Logical modeling 
approaches have been used, for example, to understand the 
dynamics of signal transduction and gene regulation networks 
to identify drug synergies in gastric cancers, and to identify 
potential drug combinations (Flobak et al., 2015). In biochemical 
networks, combined effect of topology and dynamical features 
has been shown to have the most significant impact on the 
dynamics of the network (Kochi et  al., 2014). Computational 
approaches have become indispensable tools to understand 
biological pathways and disease phenotypes. Examples include 
computational methods such as molecular modeling, text min-
ing, and network modeling to identify drug targets in a vast array 
of diseases from pathogens to complex disorders (Flórez et al., 
2010; Yao et al., 2010; Folger et al., 2011; Madrahimov et al., 2013; 
Puniya et al., 2013).

In the present work, the identified most influential compo-
nents were characterized for biological functions. The relevance 
of identified influential components was established with path-
way analysis, mapping of housekeeping genes, essential proteins, 
and association with druggable proteins. Interestingly, we found 
enrichment of housekeeping genes in the most influential com-
ponents that were independent of the extracellular environments. 
A notable agreement is obtained from literature surveys for the 
most influential components, which were unique to specific 

environmental conditions. Because essential components are 
important from a disease perspective, the identified most influen-
tial components may serve as potential candidates and essential 
proteins under specific conditions. Under activating perturba-
tions, we found that essential genes were enriched more within 
the most influential components than within the least influential 
components. The high association of dysregulated signal trans-
duction proteins with different subtypes of cancers suggests 
that these components may be important candidates for drug 
targets. Notably, the most influential components are enriched 
with several already known drug targets. However, many of these 
drug targets (EGFR, ERK, Ras, PI3K, etc.) have been associated 
with drug resistance (West et al., 2002; Kobayashi et al., 2005; 
Linardou et al., 2008; Wheeler et  al., 2010; Dienstmann et al., 
2012). The mechanism of drug resistance includes mutation in 
the targeted protein or expression of other genes (altered expres-
sion) to bypass the effect caused by perturbation, deregulation in 
apoptosis, etc. (Gottesman, 2002; Holohan et al., 2013). Thus, to 
identify novel regulatory interactions, we explored components 
that are upstream to the most influential components associated 
with drug resistance. Interestingly, several upstream compo-
nents (more than 90% in the case of inactivating perturbations) 
to the most influential components were also identified as most 
influential. Thus, the most influential components form a tightly 
connected sub-network of proteins interacting with each other. 
In yeast, it has previously shown that the essential proteins are 
hubs in the network and have more interconnections than non-
essential proteins, and form a module or sub-network (Song and 
Singh, 2013).

The interaction between IP3R1 and PI3K was observed under 
all environmental conditions. This interaction was also observed 
as part of network motifs in the modeled signal transduction 
network. IP3R1 activation, when combined with PI3K inactiva-
tion, increases the activities of PLA2 and AA, which are decreased 
with a single PI3K knockdown. It was already shown that AA 
released by PLA2 helps to initiate apoptosis (Penzo et al., 2004). 
In a Dictyostelium discoideum chemotaxis experiment, it was also 
shown that cells with PI3K deficiency were more sensitive to PLA2 
inhibition (Chen et al., 2007), which supports our predicted inter-
action between PI3K and PLA2. To this end, we hypothesized that 
the PI3K inactivation could be combined with the overactivation 
of IP3R1 to increase the activity of proteins involved in apoptosis. 
IP3R1 inactivation can lead to the downregulation of RGS, and 
reversibly, the overexpression of IP3R1 can lead to increased 
activity of RGS. Similar to IP3R1, RGS subtype RGS3T has been 
found to be involved in inducing cell death (Fisher, 2009), and 
it has also been found that RGS can suppress the PI3K activity 
downstream of the receptor (Liang et  al., 2009). Therefore, the 
constitutive activation of IP3R1 might also negatively regulate the 
activity of PI3K. Systemic analysis of the most influential compo-
nents and their upstream components has led us to identify novel 
combinations of drug targets. In various studies, combinatorial 
therapies have shown a decrease in drug resistance in pathogens. 
In combinatorial therapy, a protein associated with drug resist-
ance can be targeted in combination with different protein of 
either the same or different pathway (Fischbach, 2011). Clinical 
trials have also suggested that the efficiency of cytotoxic drugs 
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increases when given in combinations (Al-Lazikani et al., 2012). If 
co-occurrence of two genetic events results in cell death, it can be 
termed as synthetic lethality (Nijman, 2011). The combinatorial 
perturbation of PI3K and IP3R1 could be considered as syntheti-
cally lethal. However, in this perturbation, the activation of IP3R1 
is synergistic with the inactivation of PI3K. Upregulation of IP3R1 
could be achieved using a targeted drug therapy, such as stress 
hormone dexamethasone, a synthetic glucocorticoid show to 
significantly upregulate the expression of IP3R1 in differentiating 
myoblasts (Chai et al., 2010).

As a validation of model’s result, we used previously published 
gene expression data. Our model’s results moderately correlate 
with this data. This agreement was based on only one dataset 
of PI3K inhibition with two biological replicates. Further addi-
tion of experimental data for other perturbations, including the 
combinatorial perturbation is required to validate the trends of 
perturbation analysis in model.

In conclusion, by combining IP3R1 (activation) and PI3K 
(inactivation), we were able to stimulate cell death under the cell 
growth stimulating condition. Based on this, one can hypothesize 
that it might be possible that the decrease in cell proliferation with 
increased apoptosis as a result of this combinatorial intervention 
could subsequently increase the rate of clearance of tumor cells, 
and serve as a novel strategy for important targets associated with 
drug resistance. However, more laboratory validations will be 
required to test this hypothesis.
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Boolean networks are widely used model to represent gene interactions and global dynam-
ical behavior of gene regulatory networks. To understand the memory effect involved in
some interactions between biological components, it is necessary to include delayed influ-
ences in the model. In this paper, we present a logical method to learn such models from
sequences of gene expression data. This method analyzes each sequence one by one to
iteratively construct a Boolean network that captures the dynamics of these observations.
To illustrate the merits of this approach, we apply it to learning real data from bioinformatic
literature. Using data from the yeast cell cycle, we give experimental results and show
the scalability of the method. We show empirically that using this method we can handle
millions of observations and successfully capture delayed influences of Boolean networks.

Keywords: Boolean network, gene regulatory networks, delayed influences, time delay, logic programming,
machine learning, state transitions

1. INTRODUCTION
1.1. IMMEDIATE VERSUS DELAYED INFLUENCES
Thanks to the development of recent high-throughput measure-
ment technologies such as DNA microarrays, biologists succeed
in obtaining a large amount of gene expression profiles. It then
becomes crucial to be able to connect the data and build a predic-
tive model of the gene network. The analysis of biological networks
often requires agreeing on an appropriate mathematical or com-
putational model to represent the biological system. Because of
the complexity of the system, models usually assume that the
modification of one node results in an immediate activation (or
inhibition) of its targeted nodes. But this hypothesis is generally
unfair: some influences may take some time to operate, thus modi-
fying the behavior of the model. These delayed influences can play
a major role in various biological systems of crucial importance,
like the mammalian circadian clock [as illustrated by Comet et al.
(2012)] or the DNA damage repair [as shown by Abou-Jaoudé
et al. (2009)]. We especially need to capture the memory of the
system, i.e., keep track of the previous steps.

1.2. MODELING DELAYED INFLUENCES INTO BOOLEAN NETWORKS
Delayed influences have been integrated in each of the most well-
known formalisms to model gene regulatory networks. Thanks
to their structure, which allows to model both sequentiality and
parallelism, Petri nets were able to model complex regulation
mechanisms (Chaouiya, 2007). Recent works even considered not
only discrete but continuous delays (Siebert and Bockmayr, 2006;
Comet et al., 2010) in some hybrid automata paradigms. How-
ever, such approaches, because of their complexity, fail to deal with
large systems and biological data about quantitative time delays are
generally scarce. That is why we chose to focus, in this paper, on
Boolean networks, which have proven to be a simple, yet powerful,
framework to model and analyze the dynamics of gene regulatory

networks. The classical dynamics of Boolean networks is based on
the central assumption that a homogeneous transmission delay is
involved among all components of the network. This means the
modification of one node results in an immediate activation (or
inhibition) of its targeted nodes [as studied, e.g., by Akutsu et al.
(2003)] for the sake of simplicity. This is quite unrealistic in the
sense that, in a real biochemical system, the evolution happens at
various time scales.

The urge to incorporate delays into the model is perfectly illus-
trated by the feedforward loop scheme. The feedforward loop is
a network pattern that appears in many cycling processes, e.g.,
Escherichia coli and Yeast Saccharomyces cerevisiae [as considered
by Koh et al. (2009)]. Biologists like Mangan and Alon (2003)
assume these loops play a major role in the acceleration of the
response time of transcriptional networks. It consists of the fol-
lowing elements (see Figure 1): 3 genes, let us say a, b, and c, with
a regulating b, b regulating c, and a direct regulation from a to c.
Depending on the nature of the regulations (activations or inhibi-
tions; Figure 1 arbitrarily considers an inhibition from a to c) and
their delays, the concurrence between the direct regulation from a
onto c and the indirect one through b can lead to a drastic differ-
ent behavior. To analyze feedforward loops, the information about
the respective delays of the regulations at stake are crucial. A small
change in the delays understanding may lead to a complete differ-
ent behavior. The thin analysis of the dynamical behavior of such
pattern requires to enrich classical discrete models with delays.

To address this issue, different approaches have been designed.
The most well-known one is due to Silvescu and Honavar
(2001). To understand precisely the dynamics of some biological
processes (like cell development) while considering the mem-
ory of the system, the authors take their inspiration from the
works about Markov models. They introduced an extension of
Boolean Networks from a Markov(1) to Markov(k) model, where
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Ribeiro et al. Learning delayed influences of biological systems

a

b c

FIGURE 1 | Example of a feedforward loop.

k is the number of time steps during which a gene can influence
another gene. This extension is called temporal Boolean networks,
abridged as TBN (n, m, k), with n the number of genes and the
expression of each gene at time t+ 1 being controlled by a Boolean
function of the expression levels of at most m genes at times in {t,
t− 1, . . ., t− (k+ 1)}. They even extend the formalism to multi-
valued discrete networks, calling it temporal discrete networks,
TDN (n, m, k, D), where each gene can be expressed at levels 0, 1,
. . ., D− 1. Their main results, however, focus on TBN (n, m, k):
they design a decision tree learning algorithm that infers a tem-
poral Boolean network from time series data. They also give some
bounds on the size of the necessary data to infer temporal Boolean
networks. They illustrate their results through artificially gener-
ated networks, claiming that the main limit of their method is the
lack of real data on large datasets.

Other authors addressed the idea of modeling delayed and indi-
rect influences. We can cite the work of Chueh and Lu (2012), who
extended the Boolean network formalism with delays. To model
that the induction of a Boolean function may not activate imme-
diately the targeted gene, they replace the classical deterministic
relation between the Boolean function and the targeted gene by
two relationships: (i) the prerequisite function: it represents the
fact that the on-status of the target gene at time t+ 1 requires that
the Boolean function at time t is on. (ii) The similarity function:
the Boolean function and the target gene are said to be similar if
the status of the Boolean function and the status of the target gene
are in the same expression. In other words, this means that the clas-
sical Boolean operators are encoded in the prerequisite function,
while the similarity function allows to model precedence (under
the form of delays) between concurrent updates.

Another approach to model indirect influences is given in
the 6th chapter of the dissertation by Ghanbarnejad (2011). The
author recalls that the time passing between production of a reg-
ulating molecule and its binding to a target site depends both on
the molecule and its target site. That is why he decides to study the
dynamics in such a way that:

xi (t ) = fi (x1 (t − τi1) , x2 (t − τi2) , . . . , xN (t − τiN ))

with xi the value of gene i, t the current time step, τij the delay
for the interaction between a source node j and a target node i.
For the purpose of his research, the author draws the delay τij as
a random integer from a flat distribution on {1, 2τ̄ − 1} for each
pair of nodes i and j, the average delay τ̄ being a tunable parameter.
That is introduced as Boolean networks with distributed delays.

The semantics here is synchronous, thus very similar to what we
aim at.

As these works derive of the seminal formalism proposed by
Silvescu and Honavar (2001), we will consider TBN (n, m, k) in
this paper and discuss a new learning algorithm.

1.3. LEARNING BOOLEAN NETWORKS WITH DELAYED INFLUENCES
Various approaches have been recently designed to tackle the
reverse engineering of gene regulatory networks from expression
data. This has led to the emergence of the so-called executable
biology, whose goal is to provide formal methods to automati-
cally synthesize models from experiments (Koksal et al., 2013).
Most of them are only static. But there has been a growing inter-
est for inference algorithms that incorporate temporal aspects.
Koh et al. (2009) recently studied the relevance of these various
algorithms. Liu et al. (2004) proposed to infer time-delayed gene
regulatory networks through Bayesian networks. Lopes and Bon-
tempi (2013) showed that the inference algorithms that include
temporal features perform better than static ones. The main issue
is then to be able to infer the appropriate temporal delays between
the influences at stake. As this is a hard problem, Zhang (2008)
claimed that the key issue when analyzing time series data consists
in segmenting time series data in different successive phases. Their
contribution then focuses on solving this segmentation problem
and shows the merits of their approaches on various case studies.

All these approaches consider gene expression data as input
and infer the associated regulations. One common problem of
discrete approaches taking expression data as input lies in the
determination of a relevant threshold to define the inactive and
active states of gene expression. To position this hypothesis in
the context of existing approaches to process raw biological data,
let us cite the works of some authors, like Soinov et al. (2003),
who proposed an alternative methodology that considers not a
concentration level, but the way the concentration is changed in
the presence/absence of one regulator. The other major modeling
problem depends on the quality of the expression data. In other
words, noisy data may lead to errors in the inference process. For
example, when a gene is expressed at a low level, a low signal-
to-noise ratio would result in an inaccurate measurement of the
behavior of the gene.

The pre-processing of the data is really critical to the relevance
of the inferred relations between components. In this paper, we
assume our input data has already been pre-processed and resulted
in a reliable set of state-transitions information.

Aside from these intrinsic modeling issues, the existing learning
approaches share some computational limitations:

• Because of the complexity of the problem, the size of the inferred
model is limited: the inferred gene regulatory network has to be
composed of less than 15 components and the memory effect
cannot take into account more than k= 15 steps.
• Many approaches fail when the network involves cyclic

interactions.

1.4. OUR CONTRIBUTION
In this paper, we focus on the logical approach to learn gene reg-
ulatory networks with delays from an existing knowledge that is
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Ribeiro et al. Learning delayed influences of biological systems

expressed through a set of state transitions. As mentioned in the
previous subsection, we assume there has been a pre-processing of
the time series data.

In previous works, we exhibited the links between logic pro-
grams and Boolean networks on the one hand (Inoue, 2011; Inoue
and Sakama, 2012), designed an algorithm that is able to learn
Markov(1) state transition systems on the other hand (Inoue et al.,
2014). While existing works did not allow to capture the delayed
influences between components, this paper designs an algorithm
that takes multiple sequences of state transitions as input and
builds a logic program that capture the delayed dynamics of a
Markov(k) system.

This can be seen as an extension of previous results in the
following sense: in Inoue (2011) and Inoue and Sakama (2012),
Markov(1) state transition systems are represented with logic
programs, in which the state of the world is represented by a Her-
brand interpretation and the dynamics that rule the environment
changes are represented by a logic program P. The rules in P spec-
ify the next state of the world as a Herbrand interpretation through
the immediate consequence operator (also called the TP operator)
[as introduced by Van Emden and Kowalski (1976) and Apt et al.
(1988)]. With such a background, Inoue et al. (2014) have recently
proposed a framework to learn logic programs from traces of inter-
pretation transitions (LFIT). We extended this body of research:
while the previous algorithm dealt only with 1-step transitions
(i.e., we assume the state of the system at time t depends only
of its state at time t− 1), we propose here an approach that is
able to consider k-step transitions (sequence of at most k state
transitions). This means that we are now able to capture delayed
influences in the inductive logic programing methodology.

1.5. OUTLINE OF THE PAPER
The paper is organized as follows: Section 2 reviews the logical
background of this work, and summarizes the main ideas behind
the existing LF1T algorithm in order to make its extension to
Markov(k) models (i.e., with delayed influences) in Section 3 be
more understandable. In Section 4, we apply our methodology to
some case studies and highlight its scalability. Finally, we discuss
these results and further works in Section 5.

2. BACKGROUND
2.1. BOOLEAN NETWORK
A Boolean network is a simple discrete representation widely used
in bioinformatics (Kauffman, 1969; Lähdesmäki et al., 2003; Klamt

et al., 2006). A Boolean network (Kauffman, 1969) is a pair (N,
F) with N = {n1, . . ., nk}, a finite set of nodes (or variables),
and F = {f1, . . ., fk}, a corresponding set of Boolean functions
fi : Bn

→ B, with B= {0, 1}. nt(t ) represents the value of ni at
time step t, and equals either 1 (expressed) or 0 (not expressed).
A vector (or state) s(t ) = (n1(t ), ..., nk(t ) is the expression of the
nodes of N at time step t. There are 2k possible distinct states for
each time step. The state of a node ni at the next time step t+ 1 is
determined by ni(t+1) = fi(ni1(t ), . . . , nip (t )) with ni1 , . . . , nip
the nodes directly influencing ni, called regulation nodes of ni. A
Boolean network can be represented by its interaction graph (see
Figure 2 left), but its precise regulation relations can only be repre-
sented by the Boolean function (see Example 1). For each Boolean
network, there is the state transition diagram (see Figure 2 right),
which represents the transitions between ni(t ) and ni(t+ 1). In
the case of a gene regulatory network, nodes represent genes and
Boolean functions represent their relations.

Example 1: Figure 2 shows the interaction graph and the state
transitions diagram of a Boolean network B1 composed of the
three following variables: {a, b, c}. The Boolean functions of B1

are fa, fb, and fc, which are, respectively, the following Boolean
functions of a, b, and c :

fa = ¬a ∧ (b ∨ c) , fb = a ∧ c , fc = ¬a

Let us consider that the Boolean network B1, whose graph is
depicted in Figure 2, is a gene regulatory network so that a, b, and
c are genes. According to the interaction graph of B1: a is not only
an activator of b and an inhibitor of c but also its own inhibitor.
The gene b is an activator of a, and the gene c is activator of both
a and b. According to the Boolean functions of B1 in Example 1,
to activate a, either b or c has to be present but if a is present, it
will prevent its own expression at the next step (fa). The activation
of b requires both a and c to be expressed at the same time step;
if one of them is not expressed at time step t then b will not be
expressed at t+ 1 (fb). The presence of a is enough to prevent the
expression of c, so that if a is expressed at time step t then c will
not be expressed at t+ 1 (fc).

It is straightforward to generate the state transition dia-
gram from the Boolean functions. Learning from interpretation
transition (LFIT) tackles the inverse problem: infer the Boolean
function from state transitions. In a Boolean network, the value
of nodes can be updated synchronously or asynchronously. In a
synchronous Boolean network, all nodes are updated at the same

a

b c

abc

ab

ac bc

a

b

cε

FIGURE 2 | A Boolean network B1 (left) and its state transition diagram (right).
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Ribeiro et al. Learning delayed influences of biological systems

time. The successive sequence of states during an execution, called
trajectory of a Boolean network, is deterministic in a synchronous
Boolean network. In an asynchronous Boolean network, a node may
not be updated at a time, so that its state transitions can be non-
deterministic. In this paper, we deal only with synchronous ones.

2.2. LOGIC PROGRAMING
In this subsection, we recall some preliminaries of logic program-
ing. We consider a propositional language L that is built from a
finite set of propositional constants p, q, r, . . . and the logical con-
nectives ¬, ∧ and←. A propositional constant p is also called an
atom and ¬p is negation of p. p and ¬p are called literals.

In this paper, we consider a logic program (simply called a
program) as a set of rules of the form

p← p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn (1)

where p and pi’s are atoms (n≥m≥ 1). For any rule R of the
form (1), the atom p is called the head of R and is denoted
as h(R), and the conjunction to the right of ← is called the
body of R. We represent the set of literals in the body of R of
the form (1) as b(R) = {p1, . . . , pm ,¬pm+1, . . . ,¬pn}, and the
atoms appearing in the body of R positively and negatively as
b+(R)= {p1, . . ., pm} and b-(R)= {pm+1, . . ., pn}, respectively. A
rule R of the form (1) is interpreted as follows: h(R) is true if
all elements of b+(R) are true and none of the elements of b−(R)
is true. When b+(R)= b−(R)=∅, the rule is called a fact rule.
The rule (1) is a Horn clause iff m= n.

Definition 1 (Herbrand base): the Herbrand Base of a program
P, denoted by B, is the set of all atoms in the language of P.

Definition 2 (Interpretation): let B be the Herbrand Base
of a logic program P. An interpretation is a subset of B. If an
interpretation is the empty set, it is denoted by ε.

Definition 3 (Model): an interpretation I is a model of a pro-
gram P if b+(R)⊆I and b−(R) ∩ I = ∅ imply h(R)∈ I for every
rule R in P.

For a logic program P and an interpretation I, the immedi-
ate consequence operator (or TP operator) (Apt et al., 1988) is the
mapping TP : 2B → 2B:

TP (I ) =
{

h (R) |R ∈ P , b+ (R) ⊆ I , b− (R) ∩ I = ∅
}

. (2)

In the rest of this paper, we represent the state transitions of a logic
program P as a set of pairs of interpretations (I, TP(I )).

Definition 4 (Consistency): let R be a rule and (I, J ) be a
state transition. R is consistent with (I, J ) iff b+(R)⊆ I and
b−(R)∩ I=∅ imply h(R)∈J. Let E be a set of state transitions,
R is consistent with E if R is consistent with all state transitions
of E. A logic program P is consistent with E if all rules of P are
consistent with E.

Definition 5 (Subsumption): let R1 and R2 be two rules. If
h(R1)= h(R2) and b(R1)⊆ b(R2) then R1 subsumes R2. Let P be
a logic program and R be a rule. If there exists a rule R′∈P that
subsumes R then P subsumes R.

We say that a rule R1 is more general than another rule R2 if R1

subsumes R2.
Example 2: let R1 and R2 be the two following

rules: R1= (a←b), R2= (a←a∧b), R1 subsumes R2 because

(b(R1)= {b})⊂ (b(R2)= {a, b}). When R1 appears in a logic pro-
gram P, R2 is useless for P, because whenever R2 can be applied,
R1 can be applied.

2.3. LEARNING FROM INTERPRETATION TRANSITIONS
LF1T (Inoue et al., 2014) is an any time algorithm that takes a
set of one-step state transitions E as input. These one-step state
transitions can be considered as positive examples. From these
transitions, the algorithm learns a logic program P that repre-
sents the dynamics of E. To perform this learning process, we can
iteratively consider one-step transitions. When the state transition
diagram in Figure 2 is given as input to LF1T, it can learn the
Boolean network B1.

In LF1T, the set of all atoms B is assumed to be finite. In the
input E, a state transition is represented by a pair of interpretations
(subset of B). The output of LF1T is a logic program that realizes
all state transitions of E.

Learning from 1-step transitions (LF1T)
Input: E⊆2B × 2B: (positive) examples/observations.
Output: A logic program P such that J=TP(I ) holds for any (I,
J )∈E.

To build a logic program with LF1T, we use a bottom-up
method that generates hypotheses by specialization from the most
general rules that are fact rules, until the logic program is con-
sistent with all input state transitions. Learning by specialization
ensures to output the most general valid hypothesis (Ribeiro and
Inoue, 2014). Here, the notion of prime implicant is used to define
minimality of logic programs. We consider that the logic program
learned by LF1T is minimal if the body of each rule constitutes a
prime implicant to infer the head.

Definition 6 (Prime implicant condition): let R be a rule and E
be a set of state transitions such that R is consistent with E. b(R)
is a prime implicant condition of h(R) for E if there is no rule R′

such that b(R′)⊂ b(R) and R′ is consistent with E. Let P be a logic
program such that P∪{R}≡P : all models of P∪{R} are models of
P and vice versa. b(R) is a prime implicant condition of h(R) for
P if there is no rule R′ such that P∪{R′}≡P and b(R′)⊂b(R).

For the sake of simplicity, according to Definition 3, we will
call R a minimal rule of E (resp. P) if b(R) is a prime implicant
condition of h(R) for E (resp. P). For any atom p, the most general
minimal rule is the rule with an empty body (p←) that states that
the variable is always true in the next state, i.e., a fact.

Example 3: Let R1, R2, and R3 be three rules and E be the
set of state transitions of Figure 2 as follows: R1= a←a∧b∧c,
R2= a←a∧b, R3= a←b. The only rule more general than R3 is
R′= a, but R′ is not consistent with (a, ε)∈ E so that R3 is a min-
imal rule for E. Since R3 subsumes both R1 and R2, they are not
minimal rules of E. Let P be the logic program {a← b, b← a ∧ c,
c←¬a}. R3 is a minimal rule of P because P realizes E and R3 is
minimal for E.

In Inductive Logic Programing, refinement operators usually
add a set of literals to the body of a rule to make it more spe-
cific (Muggleton and De Raedt, 1994). It is a way to revise the
current knowledge to make it consistent with new information.
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Ribeiro et al. Learning delayed influences of biological systems

Similarly, in this algorithm, when a rule is not consistent with the
observations, we refine it by adding literals into its body.

Definition 7 (Minimal specialization): let R1 and R2 be two
rules such that h(R1)= h(R2) and R1 subsumes R2. The minimal
specialization ms(R1, R2) of R1 over R2 is

ms(R1, R2) = {h(R1)← b(R1) ∧ ¬li |li ∈ b(R2) \ b(R1)}

Minimal specialization can be used on a rule R to avoid the
subsumption of another rule with a minimal reduction of the gen-
erality of R. By extension, minimal specialization can be used on
the rules of a logic program P to avoid the subsumption of a rule
with a minimal reduction of the generality of P. Let P be a logic
program, R be a rule and S be the set of all rules of P that subsume
R. The minimal specialization ms(P, R) of P by R is as follows:

ms(P , R) = (P \ S) ∪ (
⋃

RP∈S

ms(RP , R))

LF1T starts with an initial logic program P = {p ←| p ∈ B}.
Then LF1T iteratively analyzes each transition (I, J )∈ E. For
each variable A that does not appear in J, LF1T infers an anti-
rule RI

A :

RI
A = A←

∧
Bi∈I

Bi ∧
∧

Cj∈(B\I )
¬Cj

A rule of P that subsumes such an anti-rule is not consistent
with the transitions of E and must be revised. The idea is to use
minimal specialization to make P consistent with the new tran-
sitions (I, J ) by avoiding the subsumption of all anti-rules RI

A
inferred from (I, J ). After minimal specialization, P becomes con-
sistent with the new transition while remaining consistent with
all previously analyzed transitions. When all transitions of E have
been analyzed, LF1T outputs the rules of the system that realize E.

3. LEARNING MARKOV(K ) SYSTEMS
In order to learn Markov(k) when k > 1, we need to extend the
LF1T. To achieve this goal, we introduce the LFkT algorithm.
While only its essence was presented in Ribeiro et al. (2014), we
formalize, in this section, the corresponding ideas and, in the next
section, illustrate its merits on biological case studies taken from
the literature.

3.1. FORMALIZATION
Definition 8 (Timed Herbrand base): let P be a logic program.
Let B be the Herbrand base of P and k be a natural number. The
timed Herbrand base of P (with period k) denoted by Bk , is as
follows:

Bk =

k⋃
i=1

{vt−i |v ∈ B}

where t is a constant term, which represents the current time step.
According to Definition 1, given a propositional atom v, vj is a

new propositional atom for each j= t− i (0≤ i≤ k). A Markov(k)
system can then be interpreted as a logic program as follows.

Definition 9 (Markov(k) system): let P be a logic program, B
be the Herbrand base of P and Bk be the timed Herbrand base
of P with period k. A Markov(k) system S with respect to P is a
logic program where for all rules R ∈ S, h(R)∈B and all atoms
appearing in b(R) belong to Bk .

In a Markov(k) system S, the atoms that appear in the body
of the rules represent the value of the atoms that appear in the
head, but at previous time steps. In a context of modeling gene
regulatory networks, these latter atoms represent the concentra-
tion of the interacting genes. This concentration is abstracted as a
Boolean value modeling the fact that it is lower or greater than a
threshold.

Example 4: Let R1 and R2 be two rules, R1 = a← bt−1∧bt−2,
R2 = b ← at−2 ∧ ¬bt−2. The logic program S= {R1, R2} is a
Markov(2) system, i.e., the state of the system depends on the two
previous states. The value of a is true at time step t only if b was
true at t− 1 and t− 2. The value of b is true at time step t only if a
was true at t− 2 and b was false at t− 2. The atoms that appear in
the head of the rules of S is {a, b}. B1 represents these atoms from
time step t− 1: B1= {at−1, bt−1} and B2 represents these atoms
from time step t− 2: B2= {at−1, bt−1, at−2, bt−2}.

In the following definitions, we refer toN as the set of all natural
numbers.

Definition 10 (Trace of execution): let B be the atoms that
appear in the head of the rules of a Markov(k) system S. A trace
of execution T is a finite sequence of states of S: T= (S0, . . ., Sn),
n≥ 1, ∀i∈N, i≤ n, Si ∈ 2B. For all j ∈N, we define:

prev
(
i, j , T

)
=


∅ if i = 0 or j = 0,(
Si−j−1, . . . , Si−1

)
if j + 1 ≤ i

(S0, . . . , Si−1) otherwise.

We also define prev(i, T )= prev(i, n, T ) and next (i′, T ) = Si′+1,
i′ ∈ N, i′ < n.

We denote by |T | the size of the trace that is the number of
elements of the sequence. A sub-trace of size m of a trace of execu-
tion T is a sub-sequence of consecutive states of T of size m, where
m ∈N, 1 < m≤ |T |. In the following, we will also denote T= (S0,
. . ., Sn) as T= S0→. . .→Sn.

Definition 11 (Consistent traces): let T= (S0, . . ., Sn) and
T ′ = (S′0, . . . , S′m) be two traces of execution. T and T ′ are k-
consistent, with k ∈N, iff ∀i, j ∈N, i < n, j < m, Si= Sj and next (i,
T )6=next (j, T ′) imply prev(i, k, T )6=prev(j, k, T ′). T and T ′ are
said consistent iff they are max(n, m) consistent.

As shown in Figure 3, a Markov(k) system may seem non-
deterministic when it is represented by a state transition diagram
(right part of the figure). That is because such state transition
diagram only represents 1-step transitions. In this example, the
transition from the state b is not Markov(1): the next state can be
either a, b or ∈. But it can be Markov(2), because all traces of size
2 of Figure 3 are consistent.

Definition 12 (k-step interpretation transitions): let P be a logic
program, B be the Herbrand base of P and Bk be the timed Her-
brand base of P with period k. Let S be a Markov(k ′) system w.r.t P,
k ′≥ k. A k-step interpretation transition is a pair of interpretations
(I, J ) where J ⊆Bk and J ⊆B.
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a b b

ab b a

b b a

ε b ε

b ε ε

ab ε ε

a ε b

ε ε ε

a b ab ε

FIGURE 3 | Eight traces of executions of the system of Example 4 (left) and the corresponding state transitions diagram (right).

Example 5: The trace ab→b→a can be interpreted in the
following three ways:

• (at−2bt−2bt−1, a): the 2-step interpretation transition that
corresponds to the full trace ab→b→a.
• (at−1bt−1, b): the 1-step interpretation transition correspond-

ing to the sub-trace ab→b.
• (bt−1, a): the 1-step interpretation transition that corresponds

to the sub-trace b→a.

Definition 13 (Extended consistency): let R be a rule and (I, J )
be a k-step interpretation transition. R is consistent with (I, J ) iff
b+(R)⊆I and b−(R)∩I=∅ imply h(R)∈J. Let T be a sequence of
state transitions, R is consistent with T if it is consistent with every
k-step interpretation transitions of T. Let O be a set of sequences
of state transitions, R is consistent with O if R is consistent with
all T ′∈O.

3.2. ALGORITHM
Here, we briefly summarize the essence of LFkT. Because of the
lack of space, the details of the algorithm, its pseudo-code, and
the proofs of correctness are given as Supplementary Material. We
refer to the pseudo-code of the appendix as follows: (algo.N l.x-y)
for Algorithm N, line x to y. LFkT is an algorithm that can learn
the dynamics of a Markov(k) system from its traces of executions.
LFkT takes a set of traces of executions O as input, where each
trace is a sequence of state transitions. If all traces are consistent,
the algorithm outputs a logic program P that realizes all transi-
tions of O. The learned influences can be at most k-step relations,
where k is the size of the longest trace of O. The main idea is to
extract n-step interpretation transitions, 1≤ n≤ k, from the traces
of executions of the system. Transforming the traces into pairs of
interpretations allows us to use minimal specialization (Ribeiro
and Inoue, 2014) to iteratively learn the dynamics of the system.

LFkT:
• Input: A set of traces of execution E of a Markov(k) system S.
• Step 1: Initialize k logic programs with facts rules.
• Step 2: Convert the input traces of executions into interpretation

transitions.
• Step 3: Revise iteratively the logic programs by all interpretation

transitions using minimal specialization.

• Step 4: Merge all logic programs into one.
• Output: The rules of S, which generated E.

The idea of the algorithm is to start with the most general rules
(algo.1 l.6-10) and use specialization to make them consistent with
the input observations (algo.2). The algorithm analyzes each inter-
pretation transition one by one and revises the learned rules when
they are not consistent (algo.1 l.13-23). In the following, we will
call an n-step rule any rule from the logic program learned from
n-step transitions.

After analyzing all interpretation transitions, the programs
that have been learned are merged into a unique logic program
(algo.1 l.24-29). This operation ensures that the rules outputted
are consistent with all observations. It can be checked by com-
paring each rule with other logic programs. If an n-step rule R
is more general than an n′-step rules R′, n′< n, then R is not
consistent with the observations from which R′ has been learned.
To avoid this case, we can remove n-step rules that have no vari-
able of the form vt − n. Indeed, if such rules are consistent with
the observations, then they should also have been learned from
(n− 1)-step rules. Finally, LFkT outputs a logic program that
realizes all consistent traces of execution of O.

4. EVALUATION AND BIOLOGICAL CASE STUDY
In the previous subsections, we have illustrated step by step how
the LFkT algorithm is able to learn Markov(k) systems. To illus-
trate the merits of our work, we now apply this approach to the
analysis of the yeast cell cycle dataset from Spellman et al. (1998)
and Cho et al. (1998), which have been previously analyzed in
Li et al. (2006). In this paper, Li et al. tackle the inference of
gene regulatory networks from temporal gene expression data.
The originality of their work lies in the fact they consider delayed
correlations between genes. The methodology can capture gene
regulations that are delayed of k time units. The limits of the
approach is that the authors only consider pairwise overlaps of
expression levels shifted in time relative to each other. Another
limit of the approach is that it is not able to make a distinction
between a causal gene–gene regulation and the scenarios where
two genes, A and B, are being co-regulated by a third gene C: do
we have A that regulates B that regulates C, or is it a co-operation
between A and B that regulates C?

Here, starting from a set of different traces coming from the
yeast cell cycle system, we have performed various experiments

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology                                   January 2015 | Volume 2 | Article 81 | 52

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ribeiro et al. Learning delayed influences of biological systems

FIGURE 4 | LFkT run time varying the input size (number of traces).

where we have tuned the number of traces that have been con-
sidered on the one hand, the value of k (i.e., the number of
time steps representing the memory of the system) on the other
hand.

Figure 4 shows the evolution of run time of learning with LFkT
on the five Boolean networks of the yeast cell cycle proposed by
Li et al. (2006). These fives programs are, respectively, Markov(1)
to Markov(5). In these experiments, for each Boolean network,
the number of variables is 16 and the length of traces in input
is five states. The five Boolean networks have been implemented
as a logic program using Answer Set Programing (Brewka et al.,
2011). The source code of these programs is given as Supplemen-
tary Material. Traces of executions of these programs have been
computed using the answer set solver clasp (Gebser et al., 2012).
All experiments are run with a C++ implementation of LFkT on
a processor Intel Xeon (X5650, 2.67GHz) with 12 GB of RAM.
The main purpose of these experiments is to assess the efficiency
of our approach, i.e., how many traces LFkT can handle for a
given k. Complete output of LFkT for these experiments is accessi-
ble as textfile at http://tony.research.free.fr/paper/Frontier/output.
zip.

In the first table of Figure 4, the evolution of run time from 10
to 1,000,000 traces (which is arbitrary chosen as upper bound of
the scalability of the experiments) shows that, in practice, learn-
ing with LFkT is linear in the number of traces when the number
of variables is fixed. Results show that the algorithm can han-
dle more than one million of traces in less than 10 h. Since each
trace is a sequence of five state transitions, when learning the
Markov(5) system, each trace can be decomposed into 15 inter-
pretation transitions (one 5-step, two 4-step, three 3-step, four
2-step, and five 1-step). Learning the Markov(5) program from
one million traces of executions of size five requires the pro-
cessing of 15 million of interpretation transitions. Learning the
Markov(4) to Markov(1) programs requires to process, respec-
tively, 14 million, 12 million, 9 million, and 5 million of inter-
pretation transitions. Intuitively one could expect that learning
the Markov(2) system to take significantly more time than learn-
ing the Markov(1) system. But each program is different, i.e., the
Markov(2) program is not an extension of the Markov(1) pro-
gram with 2-step rules. That is why run time is not always larger

for a larger k: learning time also depends on the rules that are
learned. In this experiment, the best run time is obtained with
the Markov(3) program. We cannot say that the rules of this pro-
gram are simpler than the others, but they are simpler to learn
for the algorithm. In the second table, we observe that the num-
ber of rules learned for the Markov(3) program is significantly
smaller than for the others. It means that the algorithm needs to
compare less rules for each traces analysis, which can explain the
speed up.

In this benchmark, in order to be faithful to the biological
experiments presented by Li et al. (2006), we considered k= 5
as a maximum. But our algorithm succeeds in processing larger
memory effects. On some random dummy examples (accessible
at the above mentioned URL), we were able to learn Markov(7)
systems with the following performances: we can learn 10 traces
in 2.8 s, 100 traces in 27 s, 1,000 traces in 249 s, 10,000 traces
in 3,621 s, 100,000 traces in 39,973 s, and 1,000,000 traces in
441,270 s. Even if the computation time increases, it should be
kept in mind that our method is designed to allow successive
refinements of a model about its memory effect. These results
show that such an approach is tractable even with a large number
of input traces.

5. CONCLUSION AND FUTURE WORK
5.1. SUMMARY OF THE CONTRIBUTION
To understand the memory effect involved in some interactions
between biological components, it is necessary to include delayed
influences in the model. In this paper, we proposed a logical
method to learn such models from state transition systems. We
designed an approach to learn Boolean networks with delayed
influences. We have given a step by step explanation of this
methodology, and illustrated its merits on a biological benchmark
coming from a real-life case study.

5.2. FURTHER WORKS
Further works aim at adapting the approach developed in the
paper to the kind of data produced by biologists. This requires
connecting through various biological databases in order to
extract real time series data, and subsequently explore and use
them to learn gene regulatory networks. On account of the
noise inherent to biological data, the ability to either perform
an efficient discretization of the data or to include the notion
of noise inside the modeling framework is fundamental. We
will thus have to discuss the discretization procedure and the
robustness of our modeling against noisy data and compare
it to existing approaches, like the Bayesian ones (Barker et al.,
2011).

Regarding the model, we consider extending the methodol-
ogy to asynchronous semantics. Garg et al. (2008) addressed
the differences and complementarity of synchronous and asyn-
chronous semantics to model regulatory networks and identify
attractors. The authors focus on attractors, which are central
to gene regulation. Previous studies about attractors with syn-
chronous semantics [by Melkman et al. (2010) and Akutsu et al.
(2011)] and asynchronous semantics [by Bernot et al. (2004) and
Fauré et al. (2006)] showed that different updating rules result in
different attractors. The benefits of the synchronous model are
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to be computationally tractable, while classical state space explo-
ration algorithms fail on asynchronous ones. Yet, the synchronous
modeling relies on one quite heavy assumption: all genes can make
a transition simultaneously and need an equivalent amount of
time to change their expression level. Even if this is not realistic
from a biological point of view, it is usually sufficient as the exact
kinetics and order of transformations are generally unknown. The
asynchronous semantics, however, helps to capture more realis-
tic behaviors. That is why we plan to extend our approach to
asynchronous semantics.

Finally, we will also address multi-valued networks that may be
useful to capture behaviors that cannot be summarized through a
pure Boolean framework.

AUTHOR CONTRIBUTIONS
Tony Ribeiro: formalization of the problem; design, implemen-
tation, description, and pseudo-code of the algorithm; design,
implementation, run, and discussion of experiments. Morgan
Magnin: state of the art, introduction, biological background, case
study, and conclusion. Katsumi Inoue: supervision of the work;
formalization of the logic programing and learning from interpre-
tation transition approach background. Chiaki Sakama: formal-
ization of the logic programing and learning from interpretation
transition approach background.

ACKNOWLEDGMENTS
This work is supported in part by the 2014-2015 JSPS Challenging
Exploratory Research, “Learning Cellular Automata Represented
as Logic Programs.” Morgan Magnin has further been supported
by JSPS Fellowship grant.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00081/
abstract

REFERENCES
Abou-Jaoudé, W., Ouattara, D. A., and Kaufman, M. (2009). From structure to

dynamics: frequency tuning in the p53-mdm2 network: I. logical approach.
J. Theor. Biol. 258, 561–577. doi:10.1016/j.jtbi.2009.02.005

Akutsu, T., Kuhara, S., Maruyama, O., and Miyano, S. (2003). Identification of
genetic networks by strategic gene disruptions and gene overexpressions under
a Boolean model. Theor. Comp. Sci. 298, 235–251. doi:10.1016/S0304-3975(02)
00425-5

Akutsu, T., Melkman, A. A., Tamura, T., and Yamamoto, M. (2011). Determining
a singleton attractor of a Boolean network with nested canalyzing functions.
J. Comput. Biol. 18, 1275–1290. doi:10.1089/cmb.2010.0281

Apt, K. R., Blair, H. A., and Walker, A. (1988). “Foundations of deductive databases
and logic programming,” in Towards a Theory of Declarative Knowledge. ed. J.
Minker (San Francisco, CA: Morgan Kaufmann Publishers Inc.), 89–148.

Barker, N. A., Myers, C. J., and Kuwahara, H. (2011). Learning genetic regulatory
network connectivity from time series data. IEEE/ACM Trans. Comput. Biol.
Bioinform. 8, 152–165. doi:10.1109/TCBB.2009.48

Bernot, G., Comet, J.-P., Richard, A., and Guespin, J. (2004). Application of
formal methods to biological regulatory networks: extending Thomas’ asyn-
chronous logical approach with temporal logic. J. Theor. Biol. 229, 339–347.
doi:10.1016/j.jtbi.2004.04.003

Brewka, G., Eiter, T., and Truszczynski, M. (2011). Answer set programming at a
glance. Commun. ACM 54, 92–103. doi:10.1145/2043174.2043195

Chaouiya, C. (2007). Petri net modelling of biological networks. Brief. Bioinform. 8,
210–219. doi:10.1093/bib/bbm029

Cho, R. J., Campbell, M. J., Winzeler, E. A., Steinmetz, L., Conway, A., Wodicka, L.,
et al. (1998). A genome-wide transcriptional analysis of the mitotic cell cycle.
Mol. Cell 2, 65–73. doi:10.1016/S1097-2765(00)80114-8

Chueh, T.-H., and Lu, H. H.-S. (2012). Inference of biological pathway from
gene expression profiles by time delay Boolean networks. PLoS ONE 7:e42095.
doi:10.1371/journal.pone.0042095

Comet, J.-P., Bernot, G., Das, A., Diener, F., Massot, C., and Cessieux, A. (2012).
Simplified models for the mammalian circadian clock. Procedia Comput. Sci. 11,
127–138. doi:10.1016/j.procs.2012.09.014

Comet, J.-P., Fromentin, J., Bernot, G., and Roux, O. (2010). “A formal model for
gene regulatory networks with time delays,” in Computational Systems-Biology
and Bioinformatics. eds C. Jonathan, O. Yew-Soon, and C. Sung-Bae (Springer),
1–13.

Fauré, A., Naldi, A., Chaouiya, C., and Thieffry, D. (2006). Dynamical analysis of a
generic Boolean model for the control of the mammalian cell cycle. Bioinformat-
ics 22, e124–e131. doi:10.1093/bioinformatics/btl210

Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., and De Micheli, G. (2008). Synchro-
nous versus asynchronous modeling of gene regulatory networks. Bioinformatics
24, 1917–1925. doi:10.1093/bioinformatics/btn336

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. (2012). “Answer set solving
in practice,” in Synthesis Lectures on Artificial Intelligence and Machine Learning,
Vol. 6. eds R. Kaminski, B. Kaufmann (Morgan and Claypool Publishers), 1–238.

Ghanbarnejad, F. (2011). Perturbations in Boolean Networks.
Inoue, K. (2011). “Logic programming for Boolean networks,” in Proceedings of the

Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI’11
(Barcelona: AAAI Press), 924–930.

Inoue, K., Ribeiro, T., and Sakama, C. (2014). Learning from interpretation transi-
tion. Mach. Learn. 94, 51–79. doi:10.1007/s10994-013-5353-8

Inoue, K., and Sakama, C. (2012). “Oscillating behavior of logic programs,” in Cor-
rect Reasoning. eds E. Esra, L. Joohyung, L. Yuliya, and P. David (Springer),
345–362.

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed
genetic nets. J. Theor. Biol. 22, 437–467. doi:10.1016/0022-5193(69)90015-0

Klamt, S., Saez-Rodriguez, J., Lindquist, J. A., Simeoni, L., and Gilles, E. D. (2006).
A methodology for the structural and functional analysis of signaling and regu-
latory networks. BMC Bioinformatics 7:56. doi:10.1186/1471-2105-7-56

Koh, C., Wu, F.-X., Selvaraj, G., and Kusalik, A. J. (2009). Using a state-space
model and location analysis to infer time-delayed regulatory networks. EURASIP
J. Bioinform. Syst. Biol. 2009, 14. doi:10.1155/2009/484601

Koksal, A. S., Pu, Y., Srivastava, S., Bodik, R., Fisher, J., and Piterman, N. (2013). Syn-
thesis of biological models from mutation experiments. ACM SIGPLAN Notices
48, 469–482.

Lähdesmäki, H., Shmulevich, I., and Yli-Harja, O. (2003). On learning gene regu-
latory networks under the Boolean network model. Mach. Learn. 52, 147–167.
doi:10.1023/A:1023905711304

Li, X., Rao, S., Jiang, W., Li, C., Xiao, Y., Guo, Z., et al. (2006). Discovery of time-
delayed gene regulatory networks based on temporal gene expression profiling.
BMC Bioinformatics 7:13. doi:10.1186/1471-2105-7-13

Liu, T.-F., Sung, W.-K., and Mittal, A. (2004). “Learning multi-time delay gene net-
work using Bayesian network framework,” in 16th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2004) (Boca Raton: IEEE), 640–645.

Lopes, M., and Bontempi, G. (2013). Experimental assessment of static and dynamic
algorithms for gene regulation inference from time series expression data. Front.
Genet. 4:303. doi:10.3389/fgene.2013.00303

Mangan, S., and Alon, U. (2003). Structure and function of the feed-forward loop
network motif. Proc. Natl. Acad. Sci. U.S.A. 100, 11980–11985. doi:10.1073/pnas.
2133841100

Melkman, A. A., Tamura, T., and Akutsu, T. (2010). Determining a singleton attrac-
tor of an and/or Boolean network in o (n1. 587) time. Inf. Process. Lett. 110,
565–569. doi:10.1016/j.ipl.2010.05.001

Muggleton, S., and De Raedt, L. (1994). Inductive logic programming: Theory and
methods. J. Log. Program. 19, 629–679. doi:10.1016/0743-1066(94)90035-3

Ribeiro, T., and Inoue, K. (2014). “Learning prime implicant conditions from inter-
pretation transition,” in The 24th International Conference on Inductive Logic
Programming. Available at: http://tony.research.free.fr/paper/ILP2014long

Ribeiro,T.,Magnin,M.,and Inoue,K. (2014).“Learning delayed influence of dynam-
ical systems from interpretation transition,” in The 24th International Conference
on Inductive Logic Programming. Available at: http://tony.research.free.fr/paper/
ILP2014short

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology                                   January 2015 | Volume 2 | Article 81 | 54

http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00081/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00081/abstract
http://dx.doi.org/10.1016/j.jtbi.2009.02.005
http://dx.doi.org/10.1016/S0304-3975(02)00425-5
http://dx.doi.org/10.1016/S0304-3975(02)00425-5
http://dx.doi.org/10.1089/cmb.2010.0281
http://dx.doi.org/10.1109/TCBB.2009.48
http://dx.doi.org/10.1016/j.jtbi.2004.04.003
http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1093/bib/bbm029
http://dx.doi.org/10.1016/S1097-2765(00)80114-8
http://dx.doi.org/10.1371/journal.pone.0042095
http://dx.doi.org/10.1016/j.procs.2012.09.014
http://dx.doi.org/10.1093/bioinformatics/btl210
http://dx.doi.org/10.1093/bioinformatics/btn336
http://dx.doi.org/10.1007/s10994-013-5353-8
http://dx.doi.org/10.1016/0022-5193(69)90015-0
http://dx.doi.org/10.1186/1471-2105-7-56
http://dx.doi.org/10.1155/2009/484601
http://dx.doi.org/10.1023/A:1023905711304
http://dx.doi.org/10.1186/1471-2105-7-13
http://dx.doi.org/10.3389/fgene.2013.00303
http://dx.doi.org/10.1073/pnas.2133841100
http://dx.doi.org/10.1073/pnas.2133841100
http://dx.doi.org/10.1016/j.ipl.2010.05.001
http://dx.doi.org/10.1016/0743-1066(94)90035-3
http://tony.research.free.fr/paper/ILP2014long
http://tony.research.free.fr/paper/ILP2014short
http://tony.research.free.fr/paper/ILP2014short
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ribeiro et al. Learning delayed influences of biological systems

Siebert, H., and Bockmayr, A. (2006). “Incorporating time delays into the logi-
cal analysis of gene regulatory networks,” in Computational Methods in Systems
Biology. ed. P. Corrado (Springer), 169–183.

Silvescu, A., and Honavar, V. (2001). Temporal Boolean network models of genetic
networks and their inference from gene expression time series. Complex Syst. 13,
61–78. doi:10.1186/1752-0509-5-61

Soinov, L. A., Krestyaninova, M. A., and Brazma, A. (2003). Towards reconstruction
of gene networks from expression data by supervised learning. Genome Biol. 4,
6. doi:10.1186/gb-2003-4-10-341

Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B.,
et al. (1998). Comprehensive identification of cell cycle-regulated genes of the
yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9,
3273–3297. doi:10.1091/mbc.9.12.3273

Van Emden, M. H., and Kowalski, R. A. (1976). The semantics of predicate
logic as a programming language. J. Altern. Complement. Med. 23, 733–742.
doi:10.1145/321978.321991

Zhang, Z.-Y. (2008). Time Series Segmentation for Gene Regulatory Process with Time-
Window-Extension Technique. 198–203.

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 30 July 2014; accepted: 13 December 2014; published online: 16 January 2015.
Citation: Ribeiro T, Magnin M, Inoue K and Sakama C (2015) Learning
delayed influences of biological systems. Front. Bioeng. Biotechnol. 2:81. doi:
10.3389/fbioe.2014.00081
This article was submitted to Bioinformatics and Computational Biology, a section of
the journal Frontiers in Bioengineering and Biotechnology.
Copyright © 2015 Ribeiro, Magnin, Inoue and Sakama. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, pro-
vided the original author(s) or licensor are credited and that the original publi-
cation in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these
terms.

www.frontiersin.org                                                                                                                                                     January 2015 | Volume 2 | Article 81 | 55

http://dx.doi.org/10.1186/1752-0509-5-61
http://dx.doi.org/10.1186/gb-2003-4-10-341
http://dx.doi.org/10.1091/mbc.9.12.3273
http://dx.doi.org/10.1145/321978.321991
http://dx.doi.org/10.3389/fbioe.2014.00081
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive
http://creativecommons.org/licenses/by/4.0/


ORIGINAL RESEARCH
published: 04 September 2015
doi: 10.3389/fbioe.2015.00131

Edited by:
David A. Rosenblueth,

Universidad Nacional Autónoma de
México, Mexico

Reviewed by:
Jérôme Feret,
INRIA, France

Hannes Klarner,
Freie Universität Berlin, Germany

*Correspondence:
Carito Guziolowski,

IRCCyN UMR CNRS 6597,
École Centrale de Nantes,

1 rue de la Noë,
Nantes 44321, France

carito.guziolowski@irccyn.ec-nantes.fr

Specialty section:
This article was submitted to

Bioinformatics and Computational
Biology, a section of the journal
Frontiers in Bioengineering and

Biotechnology

Received: 05 July 2015
Accepted: 17 August 2015

Published: 04 September 2015

Citation:
Videla S, Konokotina I,

Alexopoulos LG, Saez-Rodriguez J,
Schaub T, Siegel A and

Guziolowski C (2015) Designing
experiments to discriminate

families of logic models.
Front. Bioeng. Biotechnol. 3:131.
doi: 10.3389/fbioe.2015.00131

Designing experiments to
discriminate families of logic models
Santiago Videla1,2,3,4, Irina Konokotina5, Leonidas G. Alexopoulos6, Julio Saez-Rodriguez7,
Torsten Schaub3, Anne Siegel1,2 and Carito Guziolowski5*

1 UMR 6074 IRISA, CNRS, Campus de Beaulieu, Rennes, France, 2 Dyliss project, INRIA, Campus de Beaulieu, Rennes, France,
3 Institut für Informatik, Universität Potsdam, Potsdam, Germany, 4 LBSI, Fundación Instituto Leloir, CONICET, Buenos Aires,
Argentina, 5 IRCCyN UMR CNRS 6597, École Centrale de Nantes, Nantes, France, 6 Department of Mechanical Engineering,
National Technical University of Athens, Athens, Greece, 7 European Molecular Biology Laboratory, European Bioinformatics
Institute, Hinxton, UK

Logic models of signaling pathways are a promising way of building effective in silico
functional models of a cell, in particular of signaling pathways. The automated learning
of Boolean logic models describing signaling pathways can be achieved by training to
phosphoproteomics data, which is particularly useful if it is measured upon different
combinations of perturbations in a high-throughput fashion. However, in practice, the
number and type of allowed perturbations are not exhaustive. Moreover, experimental
data are unavoidably subjected to noise. As a result, the learning process results in a family
of feasible logical networks rather than in a single model. This family is composed of logic
models implementing different internal wirings for the system and therefore the predictions
of experiments from this family may present a significant level of variability, and hence
uncertainty. In this paper, we introduce a method based on Answer Set Programming to
propose an optimal experimental design that aims to narrow down the variability (in terms
of input–output behaviors) within families of logical models learned from experimental
data. We study how the fitness with respect to the data can be improved after an optimal
selection of signaling perturbations and how we learn optimal logic models with minimal
number of experiments. The methods are applied on signaling pathways in human liver
cells and phosphoproteomics experimental data. Using 25% of the experiments, we
obtained logical models with fitness scores (mean square error) 15% close to the ones
obtained using all experiments, illustrating the impact that our approach can have on the
design of experiments for efficient model calibration.

Keywords: experimental design, Boolean logic models, phosphoproteomic, answer set programming, signaling
networks

1. Introduction

The recent development of high-throughput experimental technologies allows us to observe differ-
ent cellular parts undermultiple situations. This information is of great value to generate and validate
computational models of the molecular processes happening within cells.

Thanks to their simplicity, qualitative approaches allow us tomodel larger-scale biological systems
than quantitativemethods. Among these approaches, logicmodels are able to capture interesting and
relevant behaviors in the cell (Morris et al., 2010; Mbodj et al., 2013). We have previously proposed
to generate logic models by training a prior knowledge network to phosphoproteomics data.
Importantly, due to factors, such as the sparsity and the uncertainty of experimental measurements,
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there are often multiple models that cannot be distinguished with
the data at hand, that is, the model is non-identifiable, requiring
to consider a set (a family) of logic models (Saez-Rodriguez et al.,
2009; Guziolowski et al., 2013). In this paper, we propose to
specialize the (possibly many) logic behaviors of this family by
using an efficient strategy for experiment design, that is, an opti-
mal selection of signaling perturbations to discriminate models
at hand.

The experimental design problem consists of finding the most
informative experiments in order to identify more accurate mod-
els (Kreutz and Timmer, 2009). On the one hand, in the context
of quantitative models, this problem has been approached via
methods for both parameter estimation andmodel discrimination
(Kremling et al., 2004; Vatcheva et al., 2005; Mélykúti et al., 2010;
Busetto et al., 2013; Stegmaier et al., 2013; Meyer et al., 2014).
On the other hand, for qualitative models, fewer methods have
been proposed (Ideker et al., 2000; Yeang et al., 2005; Barrett and
Palsson, 2006; Szczurek et al., 2008; Sparkes et al., 2010; Atias
et al., 2014). An optimal experimental design can be applied to
either: (i) experimental setup selection, that is the optimal choice
of species to perturb and measure, or (ii) perturbations selection,
where one perturbation indicates which species will be perturbed
in one experiment.

In this work, we focus on experimental design for selecting
an optimal signaling perturbation set by considering the exper-
imental setup fixed and a set of initial measurements from low
combinatorial (i.e., single stimulus or inhibitor species) perturba-
tions. We use training algorithms to identify a family of Boolean
models explaining the data according to a prior knowledge net-
work. This family needs to be discriminated by measuring the
effect of additional perturbations. For this, we propose a new
method that finds optimal set of signaling perturbations satisfy-
ing the following criteria: (i) it contains a minimal number of
perturbations to discriminate all pairs of models in a family of
Boolean networks, (ii) such perturbations maximize the pairwise
differences of models’ predictions, and (iii) they are subject to
technologically inspired constraints, such as the minimization of
experimental perturbations cost.

Compared to previous contributions in the context of logical
models, our work presents certain differences and similarities.
In general, in previous methods, the optimality criterion for a
selection of perturbations is given by means of the so-called
Shannon entropy (Shannon, 1948). In this context, the Shannon
entropy provides a measure of the expected information gained
in performing a specific experiment. Intuitively, the higher the
Shannon entropy, the higher the ability of an experimental per-
turbation to distinguish between rival models (Ideker et al., 2000;
Szczurek et al., 2008; Atias et al., 2014). In contrast, in our work,
the main optimality criterion consists of maximizing the sum of
pairwise differences over Boolean models’ output. The intuition
behind this criterion is to increase the chances to discriminate
a pair of models despite the experimental noise. Nonetheless,
it is worth noting that some pairs of models could be better
discriminated than others. Thus, in principle, if one aims at having
amore uniform pairwise discrimination, an entropy-based design
criterion would be more appropriate. However, approaches based
on the Shannon entropy must resign to exhaustiveness due to

computational scalability. Maximizing the sum of pairwise dif-
ferences was already proposed by Mélykúti et al. (2010) for the
discrimination of ODEs models and, recently, the same idea has
been used in the context of Boolean logic models (Atias et al.,
2014). However, in contrast to our approach, the method intro-
duced by Atias et al. (2014) aims at finding only one perturbation
maximizing the number of differences in the output of the pair
of models, which differs the most from each other. Therefore, in
general, it does not guarantee that other pairs of models will be
discriminated as well. More generally, except for Szczurek et al.
(2008), previous approaches proposed assays composed of one
perturbation. Therefore, only after the proposed perturbation has
been carried out in the laboratory and models have been (par-
tially) discriminated, another perturbation can be designed. In
contrast, but similarly to Szczurek et al. (2008), we find the small-
est number of perturbations to optimally discriminate all pairs
of models at once. This approach is tailored to high-throughput
technologies that are designed to measure the effects of tens of
perturbations in a single run.

We provide a precise characterization of the combinatorial
problem related to the optimal selection of signaling perturba-
tions, together with an Answer Set Programming (Gebser et al.,
2012) based solution to this problem included within the open
source python package caspo, which is freely available for down-
load1. We applied our method to two case studies using in silico
and real phosphoproteomics datasets to measure the impact of
our approach in a real setting. We show that optimal logic models
with few input–output behaviors can be learned by combining
a set of low combinatorial perturbations with a minimal set of
greater combinatorial perturbations. In the artificially generated
data, we obtained that phosphoproteomicsmeasurements from 64
low combinatorial perturbations can be enriched with 10 combi-
natorial perturbations (from the 1630 possible) to identify a family
of logic models with a fitness quality (mean square error) equal to
one of the golden standard logic model used to generate the data.
In the real dataset, we obtained that phosphoproteomics measure-
ments from 12 low combinatorial perturbations can be enriched
with 31 combinatorial perturbations (from the 120 available) to
identify a family of logic models with a fitness quality at a 15%
distance from the fitness of logical models explaining optimally
all 120 responses to the perturbations considered.

2. Materials and Methods

2.1. Background
In this paper, we are interested in the discrimination of mod-
els based on synchronous Boolean networks (Kauffman, 1969).
Importantly, we restrict ourselves to BNs describing models of
immediate-early response as introduced in Saez-Rodriguez et al.
(2009). Since we focus on fast (early) events, it is assumed that
oscillation or multi-stability caused by feedback-loops (Remy
et al., 2008) cannot happen until a second phase of signal prop-
agation occurring at a slower time scale. Therefore, BNs with
feedback-loops are not considered (Macnamara et al., 2012).

1http://bioasp.github.io/caspo/
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Several related methods within this framework were published
in the last few years in order to learn BNs from a prior knowledge
network (PKN) and a phosphoproteomics dataset (Mitsos et al.,
2009; Saez-Rodriguez et al., 2009; Guziolowski et al., 2013; Sharan
and Karp, 2013; Videla et al., 2014). A PKN is a signed and
directed graph describing causal relations among a set V of nodes
representing biological species. An experimental setup is defined
by three subsets of V, namely, possible stimuli (VS), possible
inhibitors (VI), and measured species (VM). A signaling pertur-
bation is a combination of present/absent stimuli and inhibitors.
Then, a phosphoproteomics dataset provides phosphorylation
activities (in this context, immediate-early responses) of a set of
measured species or readouts under several signaling perturba-
tions. Note that any signaling perturbation is described by an
n-dimensional Boolean vector, i.e., p∈Bn, where n= |VS|+ |VI|
and B= {0,1}. More precisely, if the jth position in p is assigned to
1 (resp. 0), the corresponding stimulus or inhibitor is said to be
present (resp. absent) in the experimental perturbation p.

In general, aforecited methods for learning BNs explore the
space of models compatible with the topology given by the PKN
aiming at the minimization of two criteria, namely, the difference
between data and model predictions, and the model size. On the
one hand, the difference between data and model predictions
is measured by means of the Mean Squared Error (MSE). On
the other hand, the size of a BN is defined as the sum of its
formulas’ length. Further, due to the inherent noise in experimen-
tal data, we are interested not only on optimal but also nearly
optimal BNs. That is, BNs having MSE and size within given
tolerances with respect to the corresponding minimal values. In
this context, it has been shown that the exhaustive enumeration
of nearly optimal BNs explaining phosphoproteomics dataset with
respect to a PKN leads to a large number of them (Guziolowski
et al., 2013). Nonetheless, it often happens that for all measured
species, several BNs describe exactly the same response to every
possible signaling perturbation. In such a case, we say that those
BNs describe the same input–output behavior. For example, in
Guziolowski et al. (2013), several thousands of nearly optimal BNs
described only 91 distinct responses. Concretely, the input–output
behavior of a BN is described by a “truth table” whose entries
are all possible signaling perturbations, and whose outputs are
the corresponding Boolean vector responses. Therefore, we can
see input–output behaviors merely as functions of the form β:
Bn →Bm where n= |VS|+ |VI| and m= |VM|. Notice that, for a
given set of BNs, we can identify a canonical set of input–output
behaviors B containing exactly one representative BN for each
behavior.

2.2. Discriminating Input–Output Behaviors
In this section, we introduce our method to discriminate
input–output behaviors in a pairwise fashion. We assume that we
are given a set B of input–output behaviors. For instance, this set
may result from the learning of BNs from given PKN and phos-
phoproteomics dataset. Inwhat follows,we denote byD a selection
of signaling perturbations. In theory, all combinatorial perturba-
tions of stimuli and inhibitors could be considered. Nonetheless,
in order to consider the limitation of current technology, in gen-
eral, we restrict ourselves to perturbations having at most s stimuli

and i inhibitors, with 0≤ s≤ |VS| and 0≤ i≤ |VI|. Then,we denote
with P the set of such possible signaling perturbations. Notably,
the total number of perturbations is given by:

s∑
j=0

(
|VS|
j

)
×

i∑
j=0

(
|VI|
j

)
where

(n
m
)
denotes the binomial coefficient, i.e., n!

m!(n−m)!
. Alter-

natively, P could be defined by the user providing any fixed list
of feasible perturbations. Next, our method has three main steps:
(1) find the minimum number k of signaling perturbations in P
to discriminate every pair of input–output behaviors in B, (2) find
all sets of exactly k signaling perturbations in P maximizing the
sum of pairwise differences of input–output behaviors in B, and
(3)minimize the complexity of the experiments byminimizing the
number of present stimuli and inhibitors in the set of selected per-
turbations. Inwhat follows, we givemore details andmathematical
definitions for each of these steps. In addition, we introduce a
parameter kmax describing themaximumnumber of perturbations
that can be performed simultaneously.

2.2.1. Step 1: Required Signaling Perturbations to
Discriminate all Behaviors Pairwise
Usually, several perturbations must be performed in order to
discriminate among every pair of behaviors. However, in order to
minimize experimental costs, one would like to perform as few
perturbations as possible. Therefore, our first criterion consists of
finding the minimum number of perturbations, which allow us to
discriminate among every pair of input–output behaviors. To be
more precise, we aim at finding the smallest k∈ (0, kmax) such that
there exists a set D having k perturbations p∈P satisfying:(

∀β, β′ ∈ B :: (∃p ∈ D :: β(p) ̸= β′(p))
)
. (1)

Let us denote with D(k,s,i) the set of all D⊆P with |D|= k and
satisfying (1). It is worth noting that we restrict our search to at
most s stimuli, i inhibitors, and kmax perturbations. Therefore,
there may be cases where does not exists D discriminating all
input–output behaviors pairwise. For such cases, we relax the
constraint of full pairwise discrimination and define D(k,s,i) as
before but setting k= kmax and without requiring the satisfaction
of (1). That is, some but not all pairs of input–output behaviors are
discriminated.

2.2.2. Step 2: Maximizing Differences Over
Measured Species
Once we have identified that k signaling perturbations are
required to discriminate between all input–output behaviors in
B (or alternatively, k= kmax), the next question is how to select
among all possible sets D∈D(k,s,i). Then, we define the differ-
ences (Θdiff) generated by a set D∈D(k,s,i) over the family of
input–output behaviors B as:

Θdiff (B,D) =
∑

β,β′∈B

∑
p∈D

H(β(p), β′(p)) (2)

where H denotes the Hamming distance over Boolean vectors,
i.e., the number of positions at which the corresponding vectors
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values are different. Our second criterion consists of finding all
sets of k perturbations D∈D(k,s,i) such that the function Θdiff is
maximized,

D∗
(k,s,i) = argmax

D∈D(k,s,i)

Θdiff (B,D) . (3)

2.2.3. Step 3: Minimizing the Complexity of
Experiments
The complexity of any signaling perturbation is essentially related
to the number of present stimuli and inhibitors in it. Thus, in this
step, we aim at finding the simplest sets of perturbations among all
D∗ ∈ D∗

(k,s,i). Toward this end, we define two functions counting
the number of stimuli (ΘVS ) and inhibitors (ΘVI ) being present in
a given set of signaling perturbations. More precisely, let us recall
that every perturbation p is a Boolean vector such that, if the jth
position in p is assigned to 1 (resp. 0), the corresponding stimulus
or inhibitor is said to be present (resp. absent) in p. Thus, for the
set U =VS orU =VI of either stimuli or inhibitors, we can define
ΘU as,

∀D∗ ∈ D∗
(k,s,i), ΘU

(
D∗) =

∑
p∈D∗

∑
uj∈U

pj (4)

where pj denotes the jth position in p corresponding to either a
stimulus if U =VS, or an inhibitor if U =VI. Finally, we consider
two additional optimization criteria in lexicographic order (Mar-
ler and Arora, 2004) aiming at the identification of the simplest
D∗ ∈ D∗

(k,s,i), and we define the family of optimal sets of signaling
perturbations Dopt ∈Dopt as follows:

Dopt = argmin
D∗∈D∗

(k,s,i)

(
ΘVS

(
D∗) ,ΘVI

(
D∗)) . (5)

Notice that we minimize firstΘVS and then, with lower priority
ΘVI , but this is an arbitrary choice, which can be revisited.

2.3. Experimental Design Powered by
Answer Set Programming
The method described in Section 2 is implemented in the publicly
available python package caspo. Our software strongly relies on
a form of logic programming known as Answer Set Program-
ming (ASP) (Gebser et al., 2012). ASP provides a declarative
framework for modeling knowledge-intense combinatorial (opti-
mization) problems. Moreover, state-of-the-art ASP solvers offer
powerful implementations. In our context, the ASP logic program
is satisfiable for positive integers k, s, i if there exists a selection
of k signaling perturbations in P satisfying (1). Then, the solving
consists of considering, starting from k= 1, increasing values for
k until the ASP logic program is satisfiable. Once the solver finds
the smallest k or reaches kmax, it proceeds to solve the multi-
objective optimization problem in lexicographic order: first, by
maximizing the pairwise differences over the Boolean models’
outputs as defined in (3), and then by minimizing the complexity
of experimental perturbations, as defined in (5). It is worth noting
that, thanks to the declarativeness and elaboration tolerance of
ASP, it is straightforward to consider additional constraints for
specific use cases.

2.4. The Loop for Learning and Discriminating
Input–Output Behaviors
In what follows we assume the existence of a method for learning
nearly optimal BNs and their corresponding set of input–output
behaviors. Further, such a method must be parametrized speci-
fying allowed tolerances with respect to optimal fitness and size.
Also, we assume an implementation of the method described in
Section 2. In our case, we rely on the python package caspo, which
implements both methods providing an unified framework. In
order to evaluate our method in a systematic way, we have imple-
mented the workflow shown in Figure 12. For a more detailed
description, we refer the reader to pseudo-code algorithms (Algo-
rithm S1 and S2) provided in Supplementary Material.

We start by learning strictly optimal input–output behaviors
from a given PKN and initial dataset. Then, the workflow follows
a “cautious” strategy in the sense that it will try to discriminate
among input–output behaviors as soon as we find more than one.
Every time we discriminate among a set of input–output behav-
iors, an optimal set of signaling perturbations is proposed. Then,
both the set of perturbations and the corresponding measure-
ments obtained after performing the experiments are added to the
dataset used for learning and the workflow starts over. Notably, in
our simulations, measurements are extracted automatically from
either artificial or real datasets available beforehand. Meanwhile,
in real case studies, measurements would be provided by concrete
wet experiments.

Importantly, there are caseswhen the learningmethod returns a
single optimal input–output behavior. In such cases, the workflow
explores nearly optimal behaviors by considering a range of toler-
ances, first over the optimal model size and then over the optimal
MSE. Extending the discrimination procedure to nearly optimal
behaviors allows ensuring that the complete workflow is robust
to noise in data. Nonetheless, after considering certain ranges of
tolerances on both size and fitness to data, there could be only one
input–output behavior. In such a case, we interpret the behavior
at hand to be robust enough and the workflow terminates. Other-
wise, theworkflowhas two additional stop conditions: (1)when all
proposed signaling perturbations for discrimination are already
present in the dataset used for learning; (2) when the number of
experiments in the dataset reaches a given maximum number of
allowed experiments.

3. Results

3.1. Experimental Design on Artificial and
Real Case Studies
Weevaluate our approach using theworkflowdescribed in Section
4 for real-world signaling pathways in human liver cells, and
both artificial and real phosphoproteomics datasets. At every loop
iteration, we compute two metrics over the learned input–output
behaviors: (1) the learning MSE, which is computed with respect
to the dataset used for learning, and (2) the testing MSE, which
is computed with respect to the complete space of signaling per-
turbations under consideration (either artificial or real datasets
available beforehand).

2An implementation is publicly available at http://github.com/svidela/sbloopy
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FIGURE 1 | The loop for learning and discriminating input–output
behaviors. The loop starts by learning optimal input–output behaviors from a
given PKN and initial dataset. Then, we try to discriminate among learned
input–output behaviors as soon as we find more than one. Every time we
discriminate among a set of behaviors, an optimal set of signaling perturbations

is proposed. Next, both the set of perturbations and the corresponding
measurements are added to the dataset used for learning and the loop starts
over. When the learning method returns a single optimal input–output behavior,
the workflow explores nearly optimal behaviors by considering a range of
tolerances, first over the optimum model size and then over the optimum MSE.

3.1.1. Artificial Case Studies
The PKN was introduced in Saez-Rodriguez et al. (2009) and here
we use a variation that we used also in Guziolowski et al. (2013).
Further, to motivate our study, we considered the experimental
setup (choice of stimuli, inhibitors, and measured species) from a
publicly available phosphoproteomics dataset (Alexopoulos et al.,
2010). It contains 7 stimuli, 7 inhibitors, and 15 readouts. Using
the PKN, we have generated 100 random BNs as our gold stan-
dards. We require that every gold standard has size between 28
and 32, and between 2 and 4 AND gates. Next, for each gold
standard, an artificial Boolean dataset is generated by performing
the simulation of every possible signaling perturbation over the
network. That is, each artificial dataset consists of 214 signaling
perturbations with their corresponding output measurements.
Moreover, toward more realistic phosphoproteomics datasets, we
add random noise to Boolean outputs using the distribution
Beta(α= 1, β= 5). In this context, the loop starts with a dataset of
size 64 having all perturbations (and the corresponding artificial
measurements) including all combinations of 0 or 1 stimulus
with 0 or 1 inhibitor. For the following iterations, optimal sets
of signaling perturbations are chosen among all combinations

of 0–3 stimuli with 0–2 inhibitors. The maximum number of
perturbations to discriminate a given set of behaviors was set
to 5, and the maximum number of experiments allowed in the
dataset used for learning was set to 80. Additionally, for each gold
standard dataset, starting from the same 64 initial datasets, we
performed 50 random selections of 10 and 16 experiments. These
experiments were added to the initial datasets and we learned BNs
from randomly selected experiments. Finally, we computed the
testing MSE of this family of BNs with respect to the total 214

experiments.

3.1.2. Real Case Study
To validate this approach on a real phosphoproteomic dataset,
we used a larger PKN than in the in silico dataset. The reason
being that 2 phosphoproteomics datasets were available for this
PKN: a low combinatorial one referred to as screening, where
only 1 stimulus was perturbed per experiment, and the follow-
up, which had greater combinatorial perturbations. The PKN and
datasets were introduced in Melas et al. (2012). The PKN was
constructed from several sources of information; it was pruned
using the screening dataset to keep only the signaling pathways
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that show a significant response on specific cells. The follow-up
dataset had 120 combinatorial signaling perturbations and was
used to learn optimal BNs fitting the data. The experimental
setup for this dataset consisted of 12 stimuli, 3 inhibitors, and 16
readouts. In this context, the loop starts with a dataset having the
12 responsive experiments from the screening dataset. Then, in
the following iterations, optimal sets of perturbations are chosen
among the available experiments in the follow-up dataset. It is
worth noting that at each iteration, there may be several optimal
sets of perturbations to discriminate behaviors at hand. Thus, we
executed the loop 30 times and at each iteration, one among all
optimal sets of signaling perturbations was randomly chosen. The
maximum number of perturbations to discriminate a given set of
behaviors was set to 5, and the maximum number of experiments
allowed in the dataset used for learning was set to 50. Additionally,
starting from the same 12 initial datasets, we performed 30 ran-
dom selections of 20 and 38 experiments. These experiments were
added to the initial datasets and we learned BNs from randomly
selected experiments. Finally, we computed the testingMSE of this
family of BNs with respect to the total 120 experiments.

In Figure 2, we show the evolution of the learning MSE for
100 artificial datasets and the 30 real data executions. In Figure 3,
we show the evolution of the testing MSE for the same artificial
and real datasets. For the artificial dataset, we observe that the
learning MSE remains constant independent from the number of
experiments used; while for the real dataset, it slightly increases
with the number of experiments. For the real case, we observe a
significative difference in the learning MSE of the logic models
learned from a low combinatorial set of experiments (screen-
ing data) compared to the MSE of those learned from a more
combinatorial follow-up dataset (Figure 2B). For both datasets,
we observe that the testing MSE converges to the optimal MSE
obtained when using the full available datasets. For the artificial
case, the testingMSE converges exactly to the optimalMSE (0.047)
after 10 experiments; a random selection of experiments is far
from reaching this MSE value. For the real case, it converges to an
MSE (0.149) at a 15% distance from optimal MSE after 31 exper-
iments; a random selection of experiments shows comparable
results. In contrast to a random selection, the proposed method
guarantees selecting perturbations that can propose networks

FIGURE 2 | Learning MSE for in silico (A) and real (B) phosphoproteomic
datasets. The X-axis shows the number of experiments (optimal signaling
perturbations and measurements associated) used for learning at each iteration.

The Y-axis shows the learning MSE obtained at each iteration, it represents the
quality of the learned models with respect to the experiments used in the
learning step.

FIGURE 3 | Testing MSE for in silico (A) and real (B) phosphoproteomic
datasets. The red line represents the optimal MSE learned using the full
available experimental datasets (214 experiments for in silico and 120 for real
datasets). The X-axis shows the number of experiments (optimal signaling
perturbations and measurements associated) used for learning at each iteration.

The Y-axis shows the testing MSE obtained at each iteration, it represents the
quality of the learned models with respect to the full experimental dataset at
each iteration. Red boxplots are the results obtained when the set of signaling
perturbations was composed of randomly selected experiments of size 74 or 80
for the in silico case, and 32 or 49 for the real case.
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with few input–output behaviors: in the real and in silico exe-
cutions, learned logic models had two to eight behaviors after
optimal experimental design. One run of the workflow for the
artificial case studies proposes 5–16 (on average 11.5) signaling
perturbations, while one run of the workflow for real case studies
proposes 7–37 (on average 18.9) optimal signaling perturbations.
This shows a space of input–output behaviors more difficult to
discriminate, therefore requiring more signaling perturbations in
the real case study. In 80% of the artificial benchmarks, the loop
terminated because all optimal experimental designs were already
proposed, in 13%, because the number of 80 allowed experiments
was reached, and in 7%, when the search space considered by
exploring all size and fitness tolerance range yielded only one
input–output behavior. For the real case, in 42% of cases, the loop
terminated because all optimal experimental designs were already
proposed, in 16%, because behaviors were indistinguishable with
the available 120 perturbations, in 6% because the number of
50 allowed experiments was exceeded, and in 36%, because the
timeout of 48 h was reached.

3.2. Proposing Experiments to Discriminate
Input–Output Behaviors
Using the real-case PKN and the complete follow-up dataset
(120 experiments), we explored the space of nearly optimal
BNs by setting 0.2% of tolerance with respect to the minimum
MSE. By doing this, we found 35208 BNs describing 32 logi-
cal input–output behaviors. Notably, in regards of the available
experimental observations and their intrinsic uncertainty, such
behaviors explained the data equally well. Next, we identified
6558 optimal sets of signaling perturbations, having 0–3 stimuli
combined with 0–2 inhibitors, in order to discriminate among the
32 input–output behaviors. Each optimal set consists of 9 signaling
perturbations yielding 3378 pairwise differences. In Figure 4A,
we show one example of optimal signaling perturbations. Next,
we looked at which specific measured species generated differ-
ences (Figure 4B). On the one hand, for one measured species,
viz., CREB, we generated pairwise differences with eight of the
nine proposed signaling perturbations. On the other hand, for all
other measured species, we generated pairwise differences with
at most two out of the nine signaling perturbations. Moreover,
for three measured species, viz., ERK, MAP2K1, and rps6Ka1,
we generated pairwise differences with only one experimental
perturbation (#7).

4. Discussion

The main result of this paper is that the experimental design
loop combining learning and discriminating steps shows a fast
convergence of the testing MSE (computed with respect to the
complete space of signaling perturbations under consideration)
to an approximation of its optimal value: in the real case study,
based on a very small initial screening dataset (12 perturbations),
30 well-chosen perturbations are enough to learn input–output
behaviors whose fitness with respect to the total follow-up pertur-
bations is 15% greater than the optimal MSE. This confirms that
follow-up phosphoproteomics assays can be highly redundant and
should be designed carefully.

4.1. Testing MSE Non-Monotonic Evolution
In artificial case studies, the learningMSE (computed with respect
to the dataset used for learning) remains somehow constant when
new perturbations are added to the dataset. This suggests that
the 64 perturbations from the initial dataset may be enough to
constrain the training method in a part of the search space, which
is close to an optimal Boolean network. Then, introducing sub-
optimality searches in the loop allows us to explore efficiently the
search space of Boolean networks around such an optimum. On
the contrary, the learning MSE for the real case study appears to
be very heterogeneous at each iteration of the proposed workflow.
The best models optimizing the fitness to the 12 screening data
(single stimulus) are at a very small distance (0.07), suggesting that
the Boolean networks explaining properly the data should be easy
to identify. However, as soon as the observations from additional
perturbations (each consisting of a combination of different stim-
ulus and inhibitor species) is added to the dataset, the learning
fitness increases to (0.11–0.15) showing a significant variability.
This suggests that the best models optimizing each dataset are
placed in different parts of the search space and that the training
dataset is not robust to small variations. Altogether, values for
testing MSE evidence that the discriminative method should be
always applied iteratively: after some iterations, it may appear that,
although a family of optimal BNs has been totally discriminated,
applying a step of discrimination for a closer model to the optimal
BNs finally allows to identify BNs with a better fitting. Concretely,
our analysis strongly suggests that not only the 120 follow-up
perturbations are redundant, but also that additional experiments
to the 120 at hand are needed to improve the robustness of the
BNs identification process. Finally, the validation of the method
when using random selection is difficult to evaluate for the real
case, since our search space of optimal signaling perturbation was
constrained to the 120 available experiments. While in this case
the performance was not better than random, we have shown in
artificial cases howourmethod is significantly better than random
in larger space of experiments.

4.2. Introduction of Sub-Optimality
Criteria in the Learning Step
The above mentioned behavior of the learning MSE confirms that
the space of optimal logic models returned by training procedures
is very sensitive to the dataset under consideration. That is, it may
constantly change when observations of new perturbations are
being considered (see the toy example provided in Supplementary
Material). Relaxing the tolerance of optimality in our learning
procedure allows us in many cases (75% of artificial case studies
and 40% of real case studies) to learn new perturbations that will
decrease the testing MSE at each iteration (see Figure 5). On the
contrary, in other cases, it heavily altered the space of learned logi-
cal models yielding a largerMSE. In these cases, however, theMSE
of learned logical networks was always improved in a later step.
Whereas the cycle of learning and experimental design for artifi-
cial case studies follows homogeneous trajectories in all 100 cases
(the number of iterations was on average 6.45 with σ= 2.3, the
number of experiments selectedwas on average 11.5withσ= 3.2),
the cycle for real case studies shows more variability in the 30
considered cases (the number of iterations was on average 10.4
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FIGURE 4 | Optimal experimental design to discriminate
between 32 input–output behaviors. (A) Description of each
experimental perturbation. Black squares indicate the presence of the

corresponding stimulus (green header) or inhibitor (red header).
(B) Number of pairwise differences by measured species with each
experimental perturbation.

FIGURE 5 | Trajectories of the testing MSE for three significative cases
for in silico (A) and real (B) phosphoproteomic datasets: the case where
a maximum testing MSE was found, where an average testing MSE was
found, and when the minimal testing MSE was found. The X-axis shows

the number of experiments (optimal signaling perturbations and measurements
associated) used for learning at each iteration. The Y-axis shows the testing
MSE obtained at each iteration; it represents the quality of the learned models
with respect to the full experimental dataset at each iteration.

with σ= 4.5, the number of experiments selected was on average
18.9 with σ= 8.1). In Figure 5, we show the trajectories of this
cycle for three significative cases in both datasets: the case where
amaximum testingMSEwas found, where an average testingMSE
was found, and when the minimal testing MSE was found.

4.3. Technological Constraints
The technological criteria used in this work focused on mini-
mizing the number of perturbed species; however, many other
criteria could be taken into account. For example, we could assign
weights to stimuli and inhibitors in order to describe the cost
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of each perturbation and minimize the required budget. Also, if
certain stimuli and/or inhibitors are not compatible with each
other, we could consider additional constraints in order to avoid
such combinations. Finally, a constraint can be added to reduce
the variability on the selection of inhibitors, since inhibitions
require additional control experiments. Adding such criteria may
be useful given the fact that we often found many optimal
sets of signaling perturbations that would allow to discrimi-
nate a family of Boolean networks equally well. In addition,
when full pairwise discrimination of input–output behaviors is
not possible, we could define an objective function in order
to maximize the number of discriminated pairs using a fixed

number of perturbations. Interestingly, an important feature of
the computational method adopted, that is, Answer Set Pro-
gramming, is to easily allow for modifications of the constraints
over the search space. Thus, the framework that we propose
in the tool caspo is intentionally rather generic and should be
adapted to the characteristics of the signaling system, which is
studied.

Supplementary Material

The Supplementary Material for this article can be found online
at http://journal.frontiersin.org/article/10.3389/fbioe.2015.00131
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Over the last decade, executable models of biological behaviors have repeatedly pro-
vided new scientific discoveries, uncovered novel insights, and directed new experimental
avenues. These models are computer programs whose execution mechanistically simu-
lates aspects of the cell’s behaviors. If the observed behavior of the program agrees with
the observed biological behavior, then the program explains the phenomena.This approach
has proven beneficial for gaining new biological insights and directing new experimental
avenues. One advantage of this approach is that techniques for analysis of computer pro-
grams can be applied to the analysis of executable models. For example, one can confirm
that a model agrees with experiments for all possible executions of the model (correspond-
ing to all environmental conditions), even if there are a huge number of executions. Various
formal methods have been adapted for this context, for example, model checking or sym-
bolic analysis of state spaces. To avoid manual construction of executable models, one
can apply synthesis, a method to produce programs automatically from high-level speci-
fications. In the context of biological modeling, synthesis would correspond to extracting
executable models from experimental data. We survey recent results about the usage of
the techniques underlying synthesis of computer programs for the inference of biological
models from experimental data. We describe synthesis of biological models from curated
mutation experiment data, inferring network connectivity models from phosphoproteomic
data, and synthesis of Boolean networks from gene expression data.While much work has
been done on automated analysis of similar datasets using machine learning and artificial
intelligence, using synthesis techniques provides new opportunities such as efficient com-
putation of disambiguating experiments, as well as the ability to produce different kinds of
models automatically from biological data.

Keywords: executable biology, synthesis, verification, Boolean networks, signaling pathways

EXECUTABLE BIOLOGY
Investigating phenomena through the scientific method is an iter-
ative process of hypothesis-driven experimentation. We observe
the world around us, experiment with it, and, based on the exper-
imental data, come up with hypotheses trying to explain how the
systems that we study actually work (Figure 1A). These hypotheses
lead to new predictions that then need to be tested in the real world.
In biology, working hypotheses are referred to as mechanistic
models aiming to provide a mechanistic explanation for observed
phenomena. Executable Biology is an emerging field focused on
the construction of such mechanistic models as executable com-
puter programs. The basic construct of these computer programs
(or computational models) is a state-machine, which relates dif-
ferent states to one another by defining how given certain events
(e.g., a molecular signal), one state is transformed into another
(Fisher and Henzinger, 2007). The components composing such a
state-machine represent biological entities, such as cells, proteins,
or genes that react to events involving neighboring components
by state transformations. These state-machines can then be com-
posed together to form complex computational models represent-
ing biological behaviors. As opposed to quantitative mathematical

models such as stochastic and dynamic models, computational
models are qualitative, as they explain the cause of observed phe-
nomena. A major advantage of qualitative models is that different
models can be used to describe the same biological phenomena at
different levels of detail (abstraction), and that the different levels
can be formally related to one another. For example, models can
represent the molecular level, or, at a higher level of abstraction,
they may represent the cellular level.

Computational models can be used to test different mechanistic
hypotheses. Since the computational model represents a hypo-
thetical mechanism that results in the experimental data, when
we execute the model we can formally check whether a possible
outcome of the mechanism is consistent with the data. Due to the
non-deterministic nature of biological models, it is impossible to
exhaustively test that all possible executions of a model conform
to the data. Model-checking, on the other hand, is a technique that
systematically analyzes all possible outcomes of a computational
model without executing them one by one (Clarke et al., 1999).
Hence, if model-checking verifies that all possible outcomes of our
computational model agree with the experimental data, and that
all the experimental observations can be reproduced by the model,
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FIGURE 1 | (A) The scientific method calls for the elaboration of a predictive
model of the system under study. The model should reproduce the existing
experimental results and should be predictive regarding future experiments.
By performing these experiments we validate the model, or refine it to a
better model that captures more facts about the system. (B) The same

process for executable biology calls for the elaboration of a model in the form
of a computer program. The model is compared with specifications obtained
from experimental observations. Failure to reproduce the experimental
results leads to a refinement of the model. Predictions are used to guide
further experimentation.

then we have a guarantee that the model is realistic and represents
a mechanism that fits and explains the data. In case some of the
experimental data cannot be reproduced by the model then we
know that the hypothesis is wrong. We then need to refine the
model until it produces the additional outcomes. Furthermore, if
some of outcomes of the computational model disagree with the
experimental data then the mechanistic hypothesis represented by
the model may be wrong and we would need to revise the model
so it will only produce outcomes that are supported by the data.
In this case, the refinement of the model will offer new predictions
suggesting additional experiments in order to validate the mecha-
nistic hypothesis represented by the model. Executable biology is
therefore an interplay between collecting data in experiments and
constructing executable models that capture a mechanistic under-
standing of how a particular system works. By executing these
models under different conditions that correspond to the exper-
imental data and comparing the outcomes to the experimental
observations, we can identify inconsistencies between hypothetical
mechanisms and the actual experimental observations. Similar to
the scientific method, this iterative process leads to new hypothe-
ses, which serve to refine the mechanistic model and then need to
be validated experimentally (Figure 1B).

Instead of constructing executable mechanistic models manu-
ally, one can extract such models automatically from experimental
data using a technique called synthesis. Program synthesis is a
method used to extract computer programs from their high-level
specification. In biology, this concept is extremely appealing, as
we would like to avoid the laborious manual process of model
construction, which is prone to conscious and unconscious biases
and errors, and replace it with an automatic process to synthe-
size the model directly from the data. Obviously, such a process
could yield many different models explaining the same data set,

in which case another interesting point would be to identify a way
to differentiate between the different models. This could be in the
form of an experiment that could either verify or falsify a particu-
lar hypothetical model. Hence, automatically synthesizing models
of biological programs from experimental data has tremendous
advantages over manually constructed biological programs. Usage
of synthesis could lead to significant advantages in terms of time
and labor to produce models, in terms of our confidence in the
inferred features of models, and in terms of the next steps to take
to decide between multiple possible models.

MODELING METHODOLOGY
We now present the methodology of executable modeling, describ-
ing its steps as a workflow that a biologist might follow when
developing and analyzing an executable model. We accompany
the explanation with the details of a running example. We exem-
plify the process through a developmental model of a fragment of
the C. elegans vulval precursor cells (VPC) system. We will model
the lateral signaling mechanism that six adjacent VPC use to col-
lectively determine their fate. The description here follows closely
the elaboration of the synthesis process described in (Koksal et al.,
2013).

CHOOSE A SUITABLE ABSTRACTION LEVEL
Based on the biological question, we choose the level of abstrac-
tion, including the biological entities and their possible values
(states). The abstraction, coupled with assumptions given by the
biologist, defines a space of possible models, and the role of
synthesis will be to find models in this candidate space.

For example, we want to develop a model that explains how
VPCs coordinate to determine their fate. Specifically, we are inter-
ested in (i) identifying which pairwise protein interactions are
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involved in the coordination; (ii) how the cells gain resilience
against “time conflicts,” which arise when two cells happen to
signal each other simultaneously; and (iii) how a cell avoids “self-
signaling,” which arises when a cell C1 signals its neighbors to take
fate 2° – how does C1 ensure that it does not listen to its own sig-
nal and incorrectly enter fate 2°? These three modeling questions
already dictate which entities and mechanisms must be preserved
by the modeling abstraction and which might be abstracted away:
the model must have an object per protein to uncover the effect
of protein interactions. Similarly, there will be an object per cell,

to enable modeling of inter-cell communication. Each such cell
model will be composed of multiple proteins that will interact
with proteins inside the cell as well as proteins (receptors) on
neighboring cells. Finally, to model the effects of different times
when signaling happens, our models will, in some fashion, need
to model the progress of time.

Figure 2A (top right) shows the model of our cell comprises
seven proteins and a decision circuit that models how the fates
are determined. The figure also shows how six (identical) cells
are connected into a system with the anchor cell (AC) and two

FIGURE 2 | (A) Partial model submitted to the synthesizer and the
resulting state machine produced by the synthesizer. On the right, we
see the structure of a cell with the components that comprise it. We
see the configuration of the six cells and the communication allowed
between them. Finally, we include some of the experimental data used
to specify which models are correct. On the left, we see the resulting

state transition diagrams produced for let23 (top) and lst (bottom).
(B) In the case that the synthesis engine can produce multiple possible
models that explain the data, we can ask for experiments that
distinguish between the different models. Such experiments are
expressed in terms of the experimental setting created for the
synthesis effort.

www.frontiersin.org                                                                                                                                                 December 2014 | Volume 2 | Article 75 | 67

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fisher et al. Synthesizing executable models

external proteins communicating the interaction between cells
(inter-cellular signaling). To define the model as an executable
program, we discretize both time and protein levels. The model
will execute in a fixed number of steps (10–15 steps in our set-
ting). Protein concentrations will use a small number of levels
(2–5). Discretization levels are set by the biologist. Protein behav-
ior is modeled with a protein response function, which is specific
to each protein. The model updates the protein level in each step.
The protein response function reads the current level of the pro-
tein as well as the levels of incoming proteins, and computes the
next state of the protein. The protein response function thus forms
a state machine, with one state for each discretized concentration
level, and transitions are predicates that test levels of incoming
proteins. Figure 2A (left) shows two protein response functions.

To summarize the model semantics, each protein has a state
(concentration) to model how the protein concentration evolves
over time, which allows for control of when one protein triggers
another. Cells are networks of proteins in which all proteins take
their step simultaneously (synchronously); there is no need to
execute proteins of a cell in arbitrary order, because we are only
interested in time-sensitivity between cells. The six cells take steps
one after another, controlled by the scheduler that models the dif-
ferent rates of progress of the cells. The role of the scheduler will
be explained in the next subsection.

COLLECT DATA AND EXPRESS PRIOR INFORMATION AS A PARTIAL
MODEL
There are two common methods for narrowing the space of pos-
sible models. First, one can state biological “certainties,” such as
which proteins are believed to participate in the system under
study. Second, one can add the observed biological behaviors that
the model needs to reproduce.

Existing biological knowledge will be used to construct an ini-
tial model, called a partial model, which defines the space of
candidate models. We can think of the partial model as a para-
metric model whose parameters are determined during model
synthesis. The partial model may include known biological entities
(e.g., proteins), their possible states and interactions. For example,
in the model in Figure 2A, the previous biological knowledge
included the interactions between the entities and the encapsula-
tion of entities to cells, based on previous data on the behaviors
of the entities, the cells, and the VPC system in general. In addi-
tion, the structure of the protein response functions was decided
based on beliefs regarding the sensing capabilities of the proteins
and the assumption that all involved entities are represented in
the model. One might also fix the type of interaction between the
entities (inducing or inhibiting) and possibly restrict the number
of arguments to protein response functions based on the number
of active sites of the protein. These prior-belief restrictions define
the “structure” of the candidate space and narrow down the search
process.

The experimental data are used to test correctness of mod-
els in the candidate model space. The experimental data have to
be mapped to the model level: the environmental conditions are
viewed as the inputs to the model while the experimental obser-
vations are viewed as model outputs or intermediate states. In
the VPC example, each experiment is a mutation-phenotype pair,

where the mutation is the input to the computational model, while
the phenotype is the output from executing the model. In more
detail, the mutations either knock out a gene or constitutively turn
it on. For each mutation, the experimental data records the fate
taken by each of the six cells. There are three possible fates, and
in each experiment, all cells are identically mutated. Figure 2A
(bottom right) shows a portion of the table that maps mutations
to fates. Our model will execute by first reading the particular
mutation, which changes the behavior of the model. The model is
then executed for a predetermined number of time steps, cover-
ing the period during which the cells coordinate. When the model
terminates, it outputs the six fates.

Another possible example of model output is the time series
of a certain combination of entity values. In all cases, the experi-
ments are translated to the same constraint language that is used
to express the structural restriction on the models.

Because a model can have multiple executions, we distinguish
between allowable behavior and required behavior, using both
types of behaviors to decide whether a particular model is correct.
In Figure 2A, note that for the second mutation in the mutations-
to-fates table, the experiments have observed multiple fates. Pre-
sumably, this stochasticity in the cell is due to the loss of “synchro-
nization” between cells caused by the mutation. A correct model
will need to be able to reproduce each of the observed fates – they
represent the allowable behavior. The required behavior is that
each of these alternative fates must be reproducible. That is, there
must be an execution of the model that produces one observed
fate and another execution that produces the other fate. To endow
our model with the ability to reproduce this stochastic behavior,
we make the model non-deterministic. We view non-determinism
as an abstraction of stochasticity, in that our model will not tell us
the probability with which each fate can be reached, only whether
it can be reached. The benefit of using non-determinism is that
it is not necessary to use randomness to make the model behave
stochastically. To make the model non-deterministic, it will suf-
fice to control how the six cells interleave their steps; we call this
interleaving a schedule. The model includes a scheduler that can
non-deterministically select one of the possible schedules.

VERIFICATION OF MODELS
The model we have described so far is not specific to synthesis. In
fact, one can develop the model entirely manually. It will be desir-
able to verify this model, which would mean to ensure that for
each mutation, the model produces the indicated fates no matter
which schedule is selected by the scheduler, and that all alter-
native fates are produced by some schedule. This verification is
performed without explicitly enumerating all schedules, as there
are too many. Instead, the model is translated into logical con-
straints which are supplied to a solver, which in turn is asked to
find a schedule that fails to produce the indicated fates. If the solver
proves that no such schedule exists, the model has been verified.

SYNTHESIZE AND ENUMERATE ALTERNATIVE MODELS
It is usually tedious to manually develop a complete model that
verifies against the experiments. To employ synthesis, we ask the
synthesizer to complete the partial model into a verifiable model.
At the technical level, the synthesis works as a search process. The
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partial model defines a space of candidate models. Each candidate
corresponds to one possible completion of the partial model. Most
of the candidate models are typically incorrect (i.e., they disagree
with the experimental data), and the synthesizer needs to find a
candidate that is correct. As in verification, the search is formulated
as solving of a set of constraints. The translation to constraints is
performed by a tool (a special compiler) that accepts any partial
model and produces logical constraints.

Usually, this will be formed as a type of constraint satisfac-
tion problem, and it is the role of a given solver to search for a
solution for it. The translation back and forth between the con-
straint language and the models and their potential behavior is
the main programing task in this endeavor. If the solver man-
ages to find a possible solution then this is a potential model.
If the synthesizer fails to find possible models, the prior knowl-
edge and assumptions have to be reconsidered in order to enlarge
the search space, for example, by adding additional protein inter-
actions. Having synthesis algorithms produce useful information
for such enlargement is an ongoing research topic.

In the VPC case study, the laborious aspect of model devel-
opment is to write protein response functions that collectively
behave as the real cell. Therefore, these response functions will be
produced by the synthesizer. These functions will describe how
proteins respond to suppression and activation, informally, how
long it takes for proteins to become activated. If no such function
can be found, we assume that the model is missing an interaction,
and the prior knowledge needs to be revised, as done by Fisher
et al. (2007). Figure 2A (top right) shows the partial model sup-
plied to the synthesizer; the response functions for three proteins
need to be synthesized. Given the table with experimental data and
the number of steps to be taken, the synthesizer completes the par-
tial model with protein response functions. Two of the synthesized
response functions are shown on the left. This model is correct in
that it can be verified as described above.

ANALYSIS OF THE SPACE OF FEASIBLE MODELS
The synthesizer has discovered that multiple models match the
data. It is therefore natural to ask whether these models represent
alternative match the data. It is therefore natural to ask whether
these models represent alternative explanations of how the cells
behave. Given how we posed the problem, these models are equiv-
alent, because we have fixed the interaction network and solved for
transfer functions. Hence, our models will differ only in their pro-
tein responses, which we typically do not consider to be different
explanations. To arrive at an alternative explanation, we pose to the
synthesizer a different partial model (with a different set of inter-
actions) and ask whether response functions exist for that model.
An alternative technique is to give the synthesizer a partial model
with a superset of interactions and then read out the synthesized
response functions: if a function ignores an incoming protein, then
we can remove that incoming edge, arriving at another model.
In Figure 2B, we show alternative models synthesized from our
partial model.

COMPUTE ADDITIONAL EXPERIMENTS TO CONDUCT
If alternative models exist, it is because we do not possess sufficient
experiments to narrow down the candidate space to a single model.

To rule out some alternative models, we can ask the synthesizer to
compute additional experiments for which the measurable result
differs between the alternative models. In theVPC case study, this is
done by searching the space of mutations (for which experiments
have not yet been performed), looking for a mutation such that at
least two alternative models differ in their fate outcomes. Perform-
ing this experiment and adding its result to those that guide the
synthesis process is guaranteed to rule out some of the models. If
no such experiment exists, then, from the point of view of the exist-
ing experimental system, it is impossible to distinguish between the
alternative models, and additional experimental methods need to
be considered in order to facilitate ruling out some of these models.

Minimizing the number of experiments
Assume that you want to rerun the experiments, for example, to
increase your confidence in the measurements. Do you need to
perform all the experiments or is it sufficient to redo a small subset
of experiments? Indeed, prior knowledge may make some exper-
iments unnecessary. Alternatively, one or more experiments may
collectively make some other experiments superfluous, because no
new knowledge useful to model inference is present in the latter
set of experiments. This problem is again posed as a search over a
sufficient set of experiments that will infer the same set of plau-
sible models as the full set of experiments. In our case study, we
were able to reduce the number of experiments from 48 to 4.

DEVELOPING MODELS WITH SYNTHESIS
We now aim to generalize some considerations discussed above
and present questions that need to be answered in order to apply
synthesis effectively in biological domains. We follow the structure
of the previous section and revisit the issues that were highlighted
there.

CHOOSE A SUITABLE ABSTRACTION LEVEL
The first question that needs answering is whether the biological
question that we have in mind can be helped by synthesis. At the
current level, successful applications of synthesis are restricted to
constructing discrete models at a relatively low level of detail1.
For example, models of continuous evolution of protein networks
that match time series expression levels are more suited for other
methods. The synthesis techniques we talk about here are based
on constraint solving. Such techniques are more appropriate when
the values of entities can be represented by discrete values and
their changes over time are abstracted to talk about “what hap-
pens next,” ignoring the detail of “when exactly” it happens. This
dictates a relatively high level of abstraction and questions that
relate to, for example, possible interactions, causality, and nature
of interaction. The kind of models that can be produced are, for
example, Boolean networks (Kauffman, 1969), state transition dia-
grams (Efroni et al., 2007), and Petri-nets (Bonzanni et al., 2013).
Such programs will generally manipulate variables ranging over
discrete domains and changing by transition rules that set a next

1We consider work for parameter estimation of networks of differential equations
as belonging to a different class of applications. Indeed, the technique it relies on
is completely different to those used here. For a survey of available techniques for
parameter estimation we refer the reader to Jianyong et al. (2012).
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value based on the current value of an entity and those affecting
it. The stress on current and next is intentional. It marks a clear
difference between the mathematical models that talk about the
transformation of values over time and the computational models
that we have in mind here.

SYNTHESIZE AND ENUMERATE ALTERNATIVE MODELS
One can look for differences or commonalities between all correct
models leading to further biological experimentation. For exam-
ple, one can look on the options synthesized for a certain part of the
system. If the set of options is very restricted, this means that the
existing knowledge and experiments lead to a good understanding
of the structure of this part of the system. If the number of options
is very large and potentially contradictory then additional infor-
mation about this part is missing. In particular, summarizations of
the entire space of correct models can give us information on what
is impossible (if no model uses such a feature) and what must be
true (if all models have such a feature). One of the questions that
will need resolution in order to make synthesis more applicable
in the biological domain is how to better classify the set of poten-
tial models and what kinds of questions can be asked about them,
which could also be useful for manual elaboration of models.

COMPUTE ADDITIONAL EXPERIMENTS TO CONDUCT
Similar techniques to those applied to produce the model result-
ing from synthesis can be used to search the space of experiments.
In particular, adding information about the cost of experiments
and their feasibility could narrow down the space of possible
experiments and suggest that the “easiest” experiments to perform
that would still give information valuable in ruling out potential
models.

OVER FITTING TO EXPERIMENTS
One of the issues in parameter estimation techniques is that of
over fitting models to noisy and unreliable data, leading to models
that are too restrictive. We stress that the approach to tackle over
fitting within the context of synthesis must be different. Here, the
technique itself is structured so as to determine a space of possible
models. It does not make sense to synthesize with only some of
the information in hand and then test the resulting models with
additional data. Indeed, the step that could lead to over fitting is in
the definition of the space of possible models and not in the parti-
tion of the space between “correct” and “incorrect” models. First,
since the technique can declare that a certain space does not con-
tain “correct” models, the risk of over fitting is somewhat reduced.
Over fitting may result in models that are not realistic but can
still explain all the observed phenomena. The predictions of such
models should lead to the identification of the errors in the defini-
tion of the search space. Second, the technique is geared toward the
production of multiple models and not the “best fitting model.”
The resilience to over fitting should be part of the definition of the
space of possible models and the type of correspondence between
the models and the experimental results. Removal of some of the
experimental results and testing them at a later stage, essentially
will lead to either of the two answers that we would have reached
in the first place: a narrower space of “correct” solutions or the
non-existence of a “correct” solution.

ADDITIONAL EXAMPLES
We explore a few more examples of the usage of synthesis
techniques as described above.

SYNTHESIZING BOOLEAN NETWORKS FROM GENE EXPRESSION
EXPERIMENTS
Another example of synthesis is the following application to the
extraction of a Boolean network from experimental data (Guzi-
olowski et al., 2013). The existing biological knowledge consists
of the connections between the different biological entities along
with their directions. That is, the authors assume that they know
which proteins interact and, for every interaction, whether the
interaction is positive or negative. This information is summa-
rized in the form of a directed and annotated graph (G=V, E),
where V is a set of nodes, and E ⊆V ×V is the set of edges. The
annotation of edges with+ and− signs is given separately.

The assumption on the structure of the model is that it is a
Boolean network. That is, every biological entity corresponds to a
variable that is either on or off (0 or 1), and there are rules that
govern the changes in values of these entities according to the val-
ues of the entities that have an edge to them. In particular, the
function that sets the value of an entity is a Boolean function that
includes all the entities that affect the entity we are interested in
and where the sign of every interaction is respected. So, an entity
that affects positively cannot have an inverse effect with every other
possible combination of the other inputs and vice versa. It is well
known that such networks stabilize according to these rules. Thus,
there are certain states (assignments of values to all the variables)
in which updates produce no change.

The experimental framework assumes some inputs I ⊆V,
which are biological entities that can be affected by experiments,
and some outputs O⊆V, which are biological entities that can
be measured. Thus, the set of experiments that can be done on
this network are to set the values of the inputs (by mutation or
other intervention) and to measure the values of the outputs (e.g.,
phosphorylation values). Outputs are discretized to a number of
levels that correspond to noise level in the measurements. In this
particular case, the output is discretized to 100 levels. It is assumed
that the output values that are associated with a certain input cor-
respond to the stability point of the network when the inputs are
set to the experimental value.

The utility of the network is measured by the sum of the square
distance of the measured outputs from the output of the net-
work. For a specific experiment e and specific output o ∈O, we
write θe,o as the value of this output in this experiment. Simi-
larly, given a candidate Boolean network, the stability value of a
certain output under the same experiment is denoted ρe,o. The dis-
tance of a specific experiment is de= 1/m

∑
o(ρe,o− θe,o)2, where

m= |O|. That is, the average of the square of the distance from
the network prediction and the actual experimental results over
all outputs. The overall distance of the network is the average
of the distances overall experiments, that is d = 1/n

∑
ede, where

n is the number of available experiments. The network utility
is to minimize the distance of the network from experiments
and at the same time minimize the size of the network (as mea-
sured by the size of the functions that govern changes in variable
values).
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The authors of this research then pose this question as a search
question. Find the network that best matches the experimental
data with the minimal size. The initial search yields 16 models
that result from allowing two possible functions for four entities
(24
= 16 – not very surprising as searching for a minimum often

does). But relaxing the requirements to within a distance of 10%
from the possible minimum to take noise into account produces
about 10,000 possible networks.

The main strength of this analysis technique is that it is now
possible to analyze all these 10,000 networks simultaneously and
derive conclusions from their commonalities. For example, for
some entities the same functions occurred in all the models. Func-
tions that do not appear in even a single model are overruled. And
some entities had a very small number of possible functions. In
addition, the analysis can extract whether it is possible to perform
experiments within the given experimental framework that will
distinguish between models. That is, design an experiment over the
given inputs so that the two different networks will have different
values for the given outputs, and would thus be measurable by a
given experiment. Every two models that cannot be distinguished
by the experiments are considered equivalent from the point of
view of the experimental setting and they found that there are 91
such classes of models. They proceed to propose experiments that
will overrule some of these model classes.

The work of Sharan and Karp (2013) uses different underlying
techniques for searching; however, their definition of the problem
is quite similar to the setting above. As in the previous work, they
search for Boolean networks. Their assumptions regarding the
knowledge about possible interactions is weaker, in that they do
not assume that they know the directions of interaction and also
accept if interactions do not have an inhibition/activation anno-
tation. As a result, they allow more general functions for the next
state function of individual entities in the Boolean network. They
use the same measurement for the distance between the experi-
mental results and the network behavior. Finally, the underlying
solving techniques are through integer linear programing (ILP)
and not constraint (or Boolean) solving as we mostly do here.

A similar application of synthesis to extract Boolean networks
is in (Dunn et al., 2014). The authors again search for a Boolean
network that matches a given experimental setting. Here, the
assumptions are somewhat different, leading to some different
choices. The relevant biological data correspond to possible con-
nections between the entities but this time without directionality
and without the label of activation/inhibition. Accordingly, it is the
role of the synthesis engine to find the exact connections as well
as the way that entities affect each other. The update functions for
the entities are restricted to a small set of possible functions. The
last choice significantly narrows the search space. The treatment
of the experimental data is also different. Here, the authors do
not assume the existence of inputs but rather search for an execu-
tion of the network from a given initial state corresponding to the
experimental setting to a final state corresponding to the measure-
ments. This time the experimental data are made Boolean by the
authors and the matching between an experimental measurement
and the state of the Boolean network has to be exact. As before,
the authors summarize all possible models in the space that match
the experimental data. They draw conclusions regarding common

features of all these models and experimentally verify some of their
predictions.

FUTURE PROSPECTS AND OPEN PROBLEMS
In all the cases discussed previously, executions of models were
considered bounded and of a certain length. It would be interest-
ing to lift this restriction and relieve the modeler from the need to
make this decision. Techniques that support such synthesis efforts
are in general more complicated, and it would be very interest-
ing to see them adapted for the biological context (Vardi, 2008;
Kupferman, 2012).

The level of abstraction we discussed above is very convenient
for synthesis. We assume that genes have discrete levels of expres-
sion. It would be very interesting to devise techniques that produce
models at various levels of abstraction, for example, accompany
the transfer functions supplied above by molecular interaction
models that could give rise to the same behavior.

In the detailed case study presented in an earlier section,
the model reproduced stochastic behavior with non-determinism
based on Boolean logic: a particular fate could either happen or
not happen. Logical modeling was sufficient in that case study,
because both the inputs to the model (mutations) and the out-
puts (fates) were discrete values. In modeling situations where the
data are quantitative and noisy, the modeling may need to prevent
discretization and may require stochastic reasoning with prob-
abilistic distributions, requiring that we change our underlying
reasoning engine from a logical one to a probabilistic one [see e.g.,
Fränzle et al. (2008)]. Genomic high-throughput data falls into
this category. Much more work is needed to make this modeling
transition.

When one considers synthesis, the most important part of the
synthesizer is the compiler that translates a partial model into
constraints. The construction of the compiler can be laborious,
especially if the model has advanced semantics, as it did in our
detailed case study in an earlier section. To simplify the process
of creating the compiler, it may be possible to rely on the recently
developed symbolic virtual machine (Torlak and Bodik, 2014),
which allows one to define the modeling language in a simple way,
by writing a so-called interpreter. The symbolic virtual machine
produces the compiler automatically from the interpreter. As we
have suggested, making such a tool easier for domain experts to use
is required and far from accomplished. The efforts described above
rely on extensive collaborations between biologists and computer
scientists. Gaining more experience in synthesis at a level that
will allow the creation of custom level tools that can be used for
general synthesis projects, rather than being custom made for a
certain synthesis effort is a very ambitious goal. Making such tools
usable by domain experts (biologists) is a further challenge. This
also implies that at this stage, potential users of the technique can-
not rely on existing tools and must invest in the development of
synthesis engines for their own needs.

Further case studies should also consider the size boundary
applied in the case studies described earlier. The current limit
of such techniques is applications to systems with a few tens of
proteins (working on standard desktop computers). Scaling the
techniques applied above to hundreds of proteins is a major chal-
lenge that will require improvements to the underlying solvers as
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well as finding more efficient ways to encode the specific synthesis
questions arising from biology in better ways.

CONCLUDING REMARKS
In recent years, we have seen an increase in the usage of executable
biology for modeling various biological systems and phenomena.
Advantages, such as the ability to automatically check whether
a model adheres to requirements arising from biological data
and to answer further queries about the model, make this set of
techniques more applicable. In computer science, the research on
verification of models has led to work on automatic synthesis of
models from their high-level descriptions. Here, we give a short
survey of this technique and how it can be used for biological mod-
eling. We summarize some of the main instances where synthesis
has been applied to the production biological models and how
this extra power gives further insights into the model in question.
Finally, we also discuss some of the future developments needed
in order to make this technique more applicable for biological
research.
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During the past decade, findings of genome-wide association studies (GWAS) improved

our knowledge and understanding of disease genetics. To date, thousands of SNPs have

been associatedwith diseases and other complex traits. Statistical analysis typically looks

for association between a phenotype and a SNP taken individually via single-locus tests.

However, geneticists admit this is an oversimplified approach to tackle the complexity

of underlying biological mechanisms. Interaction between SNPs, namely epistasis, must

be considered. Unfortunately, epistasis detection gives rise to analytic challenges since

analyzing every SNP combination is at present impractical at a genome-wide scale. In

this review, we will present the main strategies recently proposed to detect epistatic

interactions, along with their operating principle. Some of these methods are exhaustive,

such as multifactor dimensionality reduction, likelihood ratio-based tests or receiver

operating characteristic curve analysis; some are non-exhaustive, such as machine

learning techniques (random forests, Bayesian networks) or combinatorial optimization

approaches (ant colony optimization, computational evolution system).

Keywords: epistasis detection, genome-wide association study, complex disease, biological data mining, feature

selection

Introduction

Genome-wide association studies (GWAS) have generated huge datasets in the past 8 years in order
to find association between genetic polymorphisms and phenotypes. Individual risk prediction
based on those discoveries was promising. Nevertheless, genetic architecture of complex diseases,
such as type II diabetes, is still largely misunderstood (Vassy et al., 2014). Indeed, gene-environment
and gene-gene interactions must be considered to better understand etiology of such phenotypes.
In other words, various joint effects of genetic variations, namely epistasis, are likely to partly
determine the disease state (Mackay and Moore, 2014). While common genome-wide association
analysis checks for potential SNP-disease associations in a one-SNP-at-a-time fashion, looking for
all potential epistatic interactions in such datasets will quickly result in combinatorial overload.
This is why classical GWAS often left behind the daunting task of epistasis detection.

Several strategies came up to overcome the epistasis intricacy. After a first section dealing with
epistasis generalities, we will present in this review the main categories of methods dedicated
to epistasis detection. These methods are classified as follows. First, some exhaustive approaches
for searching significant genetic marker combinations will be introduced. As some of these, like
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Multi-Dimensional Reduction (MDR), are not manageable at a
genome-wide scale, we will next turn our attention to filtering
strategies which aim at reducing the size of the dataset, thereby
decreasing the size of the search space. A final section will deal
with machine learning and data mining techniques. This review
does not intend to provide an exhaustive list of all software
programs designed to find epistatic interactions, but rather to
give an overview of the main categories of strategies put forward
in the last 5 years.

Background—Epistasis

During the past decade GWAS have played a central role in
the discovery of genotype-phenotype associations. In GWAS
analyses, geneticists rely on DNA polymorphism markers to
detect these associations. One of the most popular classes of
genetic markers, Single Nucleotide Polymorphism (SNP), allows
comparison of allelic frequencies between a sample of cases
ascertained for a disease and a sample of controls. In the
standard approach, SNPs are tested one by one for statistical
association with the disease (Hirschhorn, 2009). Genetic variants
are considered to have independent effects on the phenotype. As
a result, only additive effects are considered under this approach.
This kind of analysis has been widely used for years, but results
are often not as appealing as expected. Indeed, with the “one
locus at a time” strategy, only a little part of the genetic variance
explains the phenotype, the remaining part being referred to
“missing heritability” (Maher, 2008; Manolio et al., 2009).

It has been commonly admitted that missing heritability
is partly due to genetic variants showing effects when they
interact with one or more other variants (Eichler et al., 2010).
Epistasis refers to the combinatorial effect of one or more
genetic variants (Figure 1). These effects might interactively
contribute besides existing marginal effects or they can also
exist in absence of any marginal effect. In the last case,
traditional statistical parametric methods will likely miss those
interactions owing to the inflexibility of parametric models
(Culverhouse et al., 2002; McKinney et al., 2006). For instance,
in complex diseases like asthma (Howard et al., 2002), diabetes
(Cho et al., 2004) or hypertension, additive genetic variation
involves many SNPs, among which a vast majority have
very small effect sizes (odds ratio less than 1.2, see Box 1)
(Ritchie, 2015). As complex traits are poorly explained by
additive models, one expects gene-environment or gene-gene
interactions to substantially contribute to the genetics of these
diseases.

Thus, epistasis detection has become an important field of
research in human genetics: more complex models are studied
nowadays, where combinations of genetic variants are examined
for association with a trait. From a biological point of view, it
seems unlikely that some phenotypes are only driven by genetic
variants acting independently. For instance, large and complex
networks of gene-gene and protein-protein interactions are well
known in systems biology for their high connectivity, density
and resistance to variation (Boone et al., 2007). Moreover, it
has been observed that consequences of induced mutations are
greatly variable in different genetic backgrounds (Mackay, 2014).

Once aware of all this, it seems inconsistent to see gene-gene
interactions as rare events.

Biological Epistasis and Statistical Epistasis

First, it is essential to distinguish biological epistasis (also called
functional epistasis) from statistical epistasis (Cordell, 2002). The
term biological epistasis was coined by Bateson (1909). In its
original definition, it only involved allele effect at one locus
concealed by the effect of another allele at a second locus. This can
be seen as a broadening of the dominance concept at an inter-loci
level. A more recent definition also allows genetic variant effects
to be enhanced by effects of other genetic variants (Siemiatycki
and Thomas, 1981). Generally, speaking, an epistatic effect exists
when the effect of an allele at a genetic variant depends either on
the presence or absence of another genetic variant.

On the other hand, statistical epistasis refers to the departure
from additive effects of genetic variants at different loci with
regard to their global contribution to the phenotype (Wang et al.,
2010a). This definition was proposed by Fisher (1918). One relies
on this definition when one wants to detect epistatic interactions
with computational methods. Ultimately, the goal consists in
interpreting interactions found to be statistically relevant in order
to get closer to their biological definition and to apprehend the
underlying functional mechanisms. This last step is undoubtedly
the more difficult one (Moore and Williams, 2005) and is often
disregarded.

A recent concrete example of epistasis has been described by
Gertz et al. (2010), where three SNPs were shown to be involved
in an epistatic interaction in yeast Saccharomyces cerevisiae
(Figure 2). In the following, italic characters refer to the gene
while normal characters refer to the corresponding protein. One
SNP is located in the promoter region of RME1 which encodes a
transcription factor repressing the transcription of IME1, a gene
coding for a transcription factor which promotes sporulation.
State of this SNP influences the production rate of RME1. The
second SNP is located in the promoter region of IME1. Its state
affects the binding specificity of RME1-IME1. The third SNP lies
in the coding region of IME1 and its state conditions the binding
specificity of IME1-kinase, which is the active form of IME1.
Gertz and coworkers showed that the allele combination of these
SNPs have a non-additive effect on the RME1-IME1 binding
and on the sporulation efficiency. Consequently, sporulation
efficiency is partly ruled by epistasis. Many other cases of epistasis
have been evidenced recently (Smith et al., 2014; Ellis et al., 2015;
Huang et al., 2015; Liu et al., 2015; Matsubara et al., 2015).

Origin of Epistasis: an Evolutionary Point of View

Canalization is a theory proposed by Waddington (1942). It
is based on a generally admitted assumption: natural selection
maintains the majority of a population into a healthy condition.
Thus, in response to genetic and environmental variations,
phenotypic modifications are buffered. This is especially true for
vital physiological levels, such as blood glucose or blood pressure.
To this end, evolution has favored complex robust systems
resistant to variations (Moore andWilliams, 2009). A compelling
argument in favor of this hypothesis is the redundancy rate in
biological networks. This feature is well known in systems biology
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FIGURE 1 | Toy example of epistasis. (A) Neither SNP 1 nor SNP 2 presents a marginal effect. (B) In gray cells, allele combinations between SNP 1 and SNP 2

induce statistically significant epistatic effect on the phenotype distribution.

BOX 1 | Logistic regression and odds ratios.

A logistic regression model is a statistical model that depicts the relationship between a linear combination of variables (e.g., SNPs in a GWAS) and a binary trait, the

disease phenotype (i.e., affected/unaffected status). The probability p of being affected is expressed in the log scale as:

log

(

p

1−p

)

= α + β1x1 + β2x2 + β3x1x2

where x1 and x2 each correspond to the at-risk genetic variants, x1x2 accounts for the interaction between them, and βi are parameters being estimated from the data.

Odds ratios are highly related to logistic regression models. Indeed, exp (βx) is an estimate of the odds ratio between the outcome and predictor variable x when values

of other predictor variables are fixed. This is interesting because interpretation of odds ratios is intuitive. An odds is a measure related to probabilities. If an event has

some non-null probability to occur in a particular experiment, odds for this event can be viewed has the ratio of the number of events to the number of non-events if

the experiment were repeated multiple times. Thus, high odds correspond to high probability for this event, and vice versa. Given a probability p of occurrence for this

event, an odds is defined as follows: Odds =
proportion of success
proportion of failure

=
p

1 − p .

An odds ratio (OR) is then simply the ratio of two odds. It evaluates association between disease occurrence and predictor variables. As such, this measure is closely

related to statistical independence: if two variables (in the example below, SNP genotype and disease status) are statistically independent, their OR reduces to 1. Note

that an OR not equal to 1 does not necessarily imply a statistically significant association.

Table 1 | Example of 2 × 3 frequency table to compute an allelic odds ratio.

SNP genotype

AA Aa aa

Disease status Affected a b c

Unaffected d e f

Based on Table 1 above, the odds ratio might be calculated using OR =
(2 ∗ a + b)/(2 ∗ d + e)
(2 ∗ c + b)/(2 ∗ f + e) , assuming allele A is the at-risk allele. This OR is also called the allelic

odds ratio (Sasieni, 1997).

where protein-protein interaction and gene-gene interaction
networks exhibit redundant pathways making them resistant to
variations (e.g., to deletion of a network node). A disease state
would then be due to accumulation of mutations in the genetic
network such that its robustness is outstripped. Therefore,
all these network interactions are likely to involve epistatic
effects. Canalization theory thus explains why so many variants

only provide small contributions to the phenotype (Moore,
2003).

Challenges in Epistasis Detection

Challenges in epistasis detection are threefold. The first one
is statistical. Statistical methods traditionally used in univariate
SNP-phenotype associations are not adequate to find epistasis.

Frontiers in Genetics | www.frontiersin.org                                                                  75                                                             September 2015 | Volume 6 | Article   285

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Niel et al. Methods dedicated to epistasis detection

FIGURE 2 | Real example of epistasis: S. cerevisiae sporulation is regulated by epistatic effects among three SNPs. State of SNP 1 modulates the

production rate of RME1. State of SNP 2 influences the binding specificity of RME1. State of SNP 3 conditions the binding specificity of IME1-kinase.

Finding epistatic interactions is a typical case of the large
p, small n problem (Johnstone and Titterington, 2009). In
practice, the aim is to balance the false-positive rate—produced
by the astronomic number of tests performed—and the false-
negative rate—a consequence of applying too much stringent
significance thresholds. Moreover, SNPs involved in epistatic
interactions may have very low minor allele frequencies (MAFs)
whereas the number of variants to be tested might be huge.
As a result, data is often sparse, leading to the so-called
curse of dimensionality. The second challenge is computational.
Though the overall complexity is linear with the number of
individuals in the studied population, it becomes exponential
when the interaction order increases. In 2-way interactions, this
complexity corresponds to quadratic complexity. The number of
combinations to be tested within a dataset containing 1 million
SNPs is tremendous: 5 × 1011 pairwise interactions, 1.7 × 1017

3-way interactions, 4.2 × 1022 4-way interactions, 8.3 × 1027 5-
way interactions, and so on (Ritchie, 2015). Hence, an exhaustive
search of epistatic interactions of order 3 or more would lead
to a computational burden too prohibitive. Finally, the third
challenge is the interpretation of the analytical results. To
interpret statistical results biologically is not straightforward, for
statistical interaction does not automatically entails interaction at
the biological or mechanistic level (Cordell, 2002).

Exhaustive Search for Epistasis

In this section, we will discuss strategies of detection that
exhaustively test all combinations of variants. Exhaustive search
has been proposed to circumvent the local optimality problem, a
drawback of heuristic techniques. Most exhaustive methods are
designed to detect only pairwise interactions and those directed
at higher order detection are simply not scalable. Despite their
shortcomings, traditional parametric regression methods serve

as a foundation in the field, as emphasized in the following
subsection. Then, we will present a strategy derived from such
regression methods and designed to be faster than traditional
methods. Finally, we will discuss two model-free approaches.

Parametric Regression Methods

Traditionally, themost common framework for exploring GWAS
data is parametric regression models. A parametric algorithm
has a fixed number of parameters that has to be estimated from
the data, and relies on strong assumptions about the probability
distribution generating the data. This class of algorithms makes
accurate predictions when those assumptions are sufficiently
close to reality, but performs badly when proved incorrect.
Logistic regression (see Box 1) has been widely used as a
parametric method for exhaustive search of interactions in
association analysis. For example, software PLINK (Purcell et al.,
2007) has implemented logistic regression models to detect
epistasis. But, in high dimensional data, parameter estimation
is a costly and non-accurate procedure that introduces large
standard errors because sample sizes are too small compared to
genome-wide data size. As a consequence, many false positives
are generated when dealing with such data. To overcome
this problem, p-values are usually corrected with Bonferroni
multiple-test correction (see Box 2). This correction being overly
conservative, only interactions with very strong effects will be
detected and many other interactions will be missed. Hence,
the logistic regression strategy has been widely portrayed as
unsuitable for handling genome-wide datasets (Cordell, 2009;
Moore and Williams, 2009; Steen, 2012). Highly related to
standard regression methods, penalized regression techniques,
such as the LASSO (least absolute shrinkage and selection
operator) or SCAD (smoothly clipped absolute deviation) gained
some popularity to detect SNP-SNP interactions. However, those
techniques are restricted to two-way interactions and are still
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BOX 2 | Bonferroni correction.

Problem - Hypothesis-based statistical tests (e.g., t-test) are subject to false positive inflation when multiple tests are performed. For example, at a traditional 5%

threshold set for statistical significance, there is a 5% chance to falsely reject the null hypothesis. Hence, if this test is performed 100 times when the null hypothesis is

in fact true, and 5 tests are found to be statistically significant, then all 5 represent false positive associations. In this case, it is said that the risk is high and uncontrolled.

This issue is known as the problem of multiple tests.

Answer - Bonferroni correction is applied to properly adjust the type I error rate. It consists in dividing the significance threshold by the total number of tests performed.

For instance, if a study involves testing for 100 000 hypotheses at a desired global 5%significance level, the corrected significance level for each test is set at
0.05

100 000 = 5× 10−7.

Shortcoming - This method tends to reject non-null hypotheses due to its conservativeness. This conservative feature is also a shortcoming. It becomes inaccurate

because it only favors strongly significant associations. As a result, many true positive associations will be missed (i.e., creating false negatives), thereby leading to a

loss in statistical power.

prone to inflated false positive rate. Moreover, they are too
computationally intensive to exhaustively search through all the
pairwise interaction search space. In that case, feature selection
techniques are required (further discussed in Section Two-
stage Approach: Filters to Obtain Reduced Search Space). The
interested reader is referred to Gou et al. (2014) for a recent
detailed application of penalized regression-based approach for
epistasis detection.

Bitwise Representation of Data and Likelihood

Ratio-based Testing

We will introduce the Boolean operation-based testing and
screening (BOOST) software program to exemplify this section.
Designed to be fast, BOOST runs an exhaustive analysis of
all potential pairwise SNP-SNP interactions (Wan et al., 2010).
The main feature of BOOST is to build contingency tables
and use them to calculate log-likelihood ratios for evaluating
interaction effects. For two SNPs, a contingency table is a
3 × 3 matrix displaying the frequency distribution of all
nine possible genotypes (Figure 1B). However, computing all
potential contingency tables at a genome-wide scale is a time-
consuming process. In fact, there are as many contingency tables
as there are pairwise interactions to test (see Section Challenges
in Epistasis Detection). In order to boost the procedure in terms
of time and space efficiency, GWAS data is first transformed in
a binary way. In usual data representation, each row symbolizes
a SNP and each column symbolizes a subject (Figure 3A). In
binary representation, each SNP is depicted by three rows, each
of them describing the genotype status (i.e., 0, 1, or 2), and
two columns depict cases and controls subjects respectively
(Figure 3B). Each table cell contains a bit string where each bit
represents one subject and its genotype: 1 if it corresponds to the
genotype status encoded by the current row, 0 otherwise. Even
if the binary matrix seems three times larger than the usual one,
its space usage is smaller because one bit is an eighth of a byte,
and bytes are the usual units (i.e., non binary) used for storing
information. That representation also sticks closer to machine-
language, which means that building a contingency table from it
only involves fast bitwise (i.e., Boolean) operations.

Once contingency tables are constructed, the program is
ready to test for pairwise interactions. The way to detect
epistasis complies with Fisher’s epistasis definition (see Section
Biological Epistasis and Statistical Epistasis) since authors look
for a difference between the independent effect model (i.e.,
marginal effects) and the model which includes both marginal

and interaction effects. In other words, for each SNP pair, BOOST
tests for a departure from the linear additive model. Under the
assumption of equivalence between a logistic regression model
and its corresponding log-linear model (Agresti, 2002), this
departure is expressed in terms of log-likelihoods. However, the
traditional log-likelihood of marginal effect model is constructed
via computationally costly iterations that are not tractable
at a genome-wide scale. Hence, authors use a non-iterative
approximation of the log-likelihood ratio called Kirkwood
superposition approximation (KSA) (Matsuda, 2000). On the
basis of contingency tables, all pairwise interactions are tested
with this indulgent KSA. As it is an approximation, too many
false positives are deemed significant with respect to a threshold
specified by the user. Therefore, after this first quick screening
phase, interaction effects of the selected SNP pairs are again
evaluated in a second phase. The number of SNP pairs is
supposed to be reduced enough during the first phase in such
a way that evaluation of interaction effects via a classical log-
likelihood ratio on the remaining pairs is now affordable. Finally,
significance of evaluated effects is assessed with a χ2 test. One
could say that the use of the χ2 statistic discredits the method
with the following argument: testing interaction effects of a SNP
that shows high marginal effect with a χ2 statistics may lead to
evidence of a statistically significant epistatic effect while that
perceived signal could solely be due to noise induced by high
marginal effect. For instance, the latter issue has been reported in
2013 by Goudey and coworkers in their result section (Goudey
et al., 2013). As a consequence, this phenomenon could favor
the selection of many false positive interactions that have little
to no epistatic effect. However, even if BOOST uses the χ2

statistics to ultimately assess significance of epistatic interactions,
tested SNP pairs already show significant association with a log-
likelihood difference between the model which does not consider
interactions (reduced model) and the model that does consider
them (full model).

This approach is faster than its contemporary Bayesian
method BEAM (see Section Bayesian Networks) and shows
comparative power of detection. A year later, an even faster
version that relies on graphic processing units (GPU) instead
of central processing units (CPU) was developed. However, an
important shortcoming arises because BOOST heavily relies on
contingency table construction: low minor allele frequencies
(MAF) generate sparse contingency tables, which hampers
the detection power of BOOST. Indeed, in each cell of the
contingency table, aminimal number of individuals is required so
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FIGURE 3 | Representations of GWAS data. (A) Classical representation: cell (i, j) corresponds to status of SNP i for individual j. (B) Binary representation: cell (i, j)

corresponds to the true (1) or false (0) assertion that a SNP i has a specific value (0, 1, or 2) for individual j. For ease of comprehension, the link between these two

representions is highlighted in gray.

that the χ2 test is statistically valid. But when contingency tables
are sparse, this requirement is not met, thus leading to failure
of epistatic interactions detection. Despite the fact that nearly
all true positives are detected (i.e., the detection power is high),
BOOST is sensitive to type I errors (Yoshida and Koike, 2011).
Finally, a notable shortcoming is that the method only analyzes
pairwise interactions and no higher order interactions.

ROC Curve Analysis

Goudey et al. introduced the genome-wide interaction search
(GWIS) model-free approach in 2013 with the purpose of
pairwise epistasis detection (Goudey et al., 2013). While BOOST
compares a difference in segregation between two regression
models, GWIS tests the difference in segregation power between a
SNP pair and the corresponding SNPs taken individually. GWIS
is not based on regression analysis, but exploits receiver operating
characteristic (ROC) curves to test the discrimination power
of SNP pairs. A ROC curve plots the true positive rate (i.e.,
sensitivity) against the false positive rate (i.e., 1 – specificity)
of a classification model. In the context of GWAS, a ROC
curve represents the performance of some model designed in
classifying individuals according to their affected or unaffected
status. For each pair of SNPs, GWIS considers three classification
models and builds the respective ROC curves: two for each
SNP taken individually, and one for the SNP pair. When the
ROC curve corresponding to a SNP pair lies over the other two
curves corresponding to individual SNPs, the SNP pair is said to
have better prediction power than SNPs taken individually. The
next question is to assess if the departure in prediction power
between these classification models is significant. To answer this
question, Goudey et al. proposed a model-free hypothesis test
called difference in sensitivity and specificity (DSS). The goal is
to quantify the gain in sensitivity and specificity of a ROC curve
over another one (Goudey et al., 2013). It seems important to

the authors to perform exhaustive search rather than heuristics,
in order to avoid being trapped in local optima, then missing
significant pairs. GWIS is also designed to be fast (e.g., faster than
BOOST) and to scale up to datasets containing millions of SNPs.

The BOOST and GWIS strategies are designed to run
exhaustive genome-wide fast scans of epistatic interactions.
However, they are restricted to the detection of interacting SNP
pairs, which is a substantial limitation. All epistatic models
assuming interaction with order greater than two will be missed
by these two methods. In the next section, we present a technique
that overcomes this problem and exhaustively looks for higher
order epistasis.

A Full Combinatorial Approach

Multifactor Dimensionality Reduction (MDR) is now a reference
in the epistasis detection field. No parameters are estimated (i.e.,
nonparametric) and no assumptions are made on the genetic
model (i.e., model-free) under this supervised classification
approach. This strategy could detect interactions even when
independent main effects are inexistent (Ritchie et al., 2001,
2003; Hahn et al., 2003). It is not constrained to identification
of pairwise interactions but also searches for higher order
interactions (Moore et al., 2006).

First, MDR partitions the dataset for cross-validation. By
default, nine tenths of the dataset (training set) is used to
build the model and the remaining tenth (testing set) is
used to evaluate this model. The model is built following the
steps presented in Figure 4. For an interaction order specified
by the user, the corresponding number of SNPs is drawn
(Figure 4A). Genotype combination counts are then distributed
into a contingency table (Figure 4B). For instance, in a two-SNP
biallelic interaction model, the nine possible two-locus genotype
combinations are allotted into their respective table cells. For
a three-SNP interaction model, twenty-seven table cells would
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FIGURE 4 | Steps of multifactor dimensionality reduction (MDR) algorithm: example of 2-way interaction model. Description of one iteration of the

cross-validation process. In (A), a SNP combination is drawn among all potential SNP combinations. In (B), numbers in red denote counts for cases whereas

numbers in black denote counts for controls. In (C), each cell displays the ratio of cases over controls. In (D), the prediction error is estimated over the 10 iterations.

be needed. Then, the count of cases and controls is reported
for each genotype combination and each cell is evaluated with

the following ratio: number of cases sharing this genotype combination
number of controls sharing this genotype combination

(Figure 4C). This way, each genotype combination is classified
either as high-risk if the above ratio lies beyond a specified
threshold (e.g., 1.0), or as low-risk if it lies below that threshold
(De et al., 2014). The classification model is then formed by
merging cells marked high-risk in one group and all cells marked
low-risk in another group. This explains why that method refers
to “Dimensionality Reduction”: starting with a problem where
dimensionality equals the chosen interaction order, only one
dimension remains in the end with high-risk and low-risk values.
These steps are repeated for every possible combination of SNPs
at a given interaction order, and each combination results in one
prediction model. A 10-fold cross-validation process allows to
assess the quality of such models. In other words, for each of
the 10 iterations of the cross-validation, the models are trained to
discriminate between low-risk and high-risk groups through the
learning step (on nine tenths of the data). The proportion of ill-
classified affected and unaffected individuals is evaluated on the
testing set (one tenth of the data). Finally, the prediction error
of each model is estimated over the 10 iterations (Figure 4D).
The top best models over the 10-fold cross-validation are
retained.

As themain feature ofMDR is to reduce the data dimension, it
can easily be combined with other classification methods (Moore

and Andrews, 2015). This flexibility is also a good point to
emphasize because since 2006, many extensions of MDR have
been proposed so that it is applicable to quantitative traits (Gui
et al., 2013). Besides, other variants of the MDR algorithm
have been proposed that rely on parallel implementations
to boost MDR computing time performance (Bush et al.,
2006), to handle missing data (Namkung et al., 2009), or to
implement permutation tests (Greene et al., 2009a). However,
MDR remains a brute-force search algorithm that induces a
prohibitive computational burden when the number of SNPs to
analyze exceeds several hundreds. This lack of scalability is its
most critical shortcoming in a genome-wide analysis context.

Most exhaustive strategies cannot afford screens of higher
order interaction space search since they are not designed to
scale up (Taylor and Ehrenreich, 2015). Even the aforementioned
GWIS method is restricted to pairwise interaction detection.
Exhaustive methods allowing exploration of higher order
interactions, like MDR, cannot handle a genome-wide analysis
and are constrained to several hundreds of SNPs. To overcome
this shortcoming, a common technique is to preprocess
data, reducing the entire SNP set to a smaller subgroup
that has a tractable size for exhaustive higher order genetic
interaction analysis. However, the type of filter is also important.
Choosing a marginal-effect dependent filter would be indeed
counterproductive with a method like MDR which is most
effective in detecting interactions showing pure epistatic
effects.
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Two-stage Approach: Filters to Obtain

Reduced Search Space

To address the computational burden issue, the overarching goal
of some methods is to restrict the analysis to a small subset
of candidate markers so that the exhaustive investigation of
the remaining combinations is computationally tractable, even
for higher order interactions. One approach is to conduct a
single SNP-SNP analysis to keep only SNPs with significant
marginal effects. SNP combinations are then tested among
the remaining marker subset. For example, this strategy has
been used in combination with stepwise logistic regression to
pre-select a small fraction of SNPs (e.g., pre-determined 10%)
based on single-SNP associations significance, before testing
for interactions between the selected markers (Marchini et al.,
2005). But such filtering leads to an obvious bias where epistatic
interactions exclusively induced by combinatorial effects (i.e.,
with nomarginal effect) are not picked up. Nevertheless, there are
other ways to reduce the number of SNP combinations down to
an informative subgroup. There also exists data mining and data
integration techniques dedicated to filter and score downsized
genetic variant sets, where null marginal effect is not a rejection
condition. We will illustrate each technique in the next two
subsections.

Filtering Based on Data Mining Techniques

We will illustrate this category with the ReliefF method.
ReliefF approach consists in learning informative features from
the dataset without any a priori knowledge (Robnik-Šikonja
and Kononenko, 2003). The algorithm computes a proximity
measure between individuals on the basis of genome-wide
genetic similarity. The goal is to evaluate the quality of
genetic variants according to how well their values distinguish
individuals near to each other.

The algorithm is quite simple (Figure 5). For each individual
(noted I), the procedure determines the nearest individuals (i.e.,
neighbors) sharing the same phenotype (set noted S for same),
and also the nearest individuals that show up the opposite
phenotype (set noted O for opposite). If I and S show different
values for a marker, then this variant discriminates individuals
having the same phenotype, thus decreasing its importance. On
the contrary, if I and O show different values for a marker, this
variant discriminates individuals having different phenotypes,
thereby its importance is increased. These steps are then repeated
over a predefined number of individuals. Moore and coworkers
showed in 2007 that ReliefF algorithm is scalable (Moore and
White, 2007).

The popularity of ReliefF gave rise to several variations
(Kononenko, 1994) that we will quickly present below. RReliefF
(Regressional ReliefF) was designed to study quantitative traits
like eQTL epistasis (Huang et al., 2013). When applied to a
genome-wide dataset, noisy genetic markers may be attributed
too much weight, hence inflating their importance estimates.
To alleviate this problem, TuRF (Tuned ReliefF) proposed to
eliminate from the SNPs set considered for epistasis detection,
SNPs with no or very low importance. These SNPs rarely
discriminate individuals from their neighbors having a different

phenotype (Moore and White, 2007). Importance of remaining
SNPs is then re-estimated, without considering these noisy
SNPs. Results are encouraging since TuRF power of detection
is identical to or better than ReliefF. ECRF (Evaporate Cooling
ReliefF) also attempts to solve the noisy variable problem
(McKinney et al, 2007). It significantly outperforms ReliefF for
detecting epistasis. Its algorithm combines information theory
and ReliefF. In ReliefF and its above extensions, the user-defined
number of nearest individuals to consider (i.e., S andO) is usually
fixed at 10. Using such a predefined number may be considered
as a selection bias since the information coded in the data is
not fully exploited. To tackle this issue, SURF (Spatially Uniform
ReliefF) proposes to take into account all neighbors within a
given distance rather than a fixed number of neighbors (Greene
et al., 2009b). SURF generally takes into consideration much
more neighbors than ReliefF, labeling 25–50% of all individuals
as neighbors. So when applied to a GWAS dataset, SURF has
higher power of detection than ReliefF, albeit this may become
a cumbersome procedure. A latest variation, SURF∗ (Greene
et al., 2010), also considers information of farthest individuals to
build importance scores. In terms of detection power of epistatic
interactions, the performance of TuRF and ReliefF has been
compared in Moore and White (2007). ECRF has also been
compared to ReliefF in McKinney et al (2007). Finally, SURF
has been compared to both ReliefF and TuRF in Greene et al.
(2009b). However, ECRF and SURF have not been compared to
each other, as well as ECRF and TuRF. ECRF and TuRF show
improved performance over ReliefF, whereas SURF and SURF*
show improved performance over both ReliefF and TuRF.

Filtering Based on Data-integration Techniques

Another research area advocates the use of knowledge from
external databases, in order to select SNP groups that are relevant
to the phenotype of interest (Grady et al., 2011). Even if this
approach is hindered by a lack of epistasis understanding in
complex organisms, it avoids the black box effect of data mining
techniques that may hamper the interpretation of underlying
biological mechanisms.

One way to do that is to query information in online
public protein-protein interaction databases like IntAct (Kerrien
et al., 2012), BioGRID (Chatr-Aryamontri et al., 2015), STRING
(Franceschini et al., 2013) or ChEMBL (Willighagen et al.,
2013). It is then possible to narrow all SNPs down to a
reduced list of markers located in genes that encode for proteins
involved in relevant interactions. When markers are mapped
to an interacting gene pair, tests are exhaustively conducted on
interactions between each SNP of the first gene against each
SNP of the second gene. Unfortunately, one would probably
fail at discovering new biological models by selecting SNPs in
such a direct way. A more promising strategy is to come up
with a score for each SNP (Ritchie, 2015), based on assessed
relative importance of the proteins encoded by the genomic
region encompassing the SNP. Novel findings are within reach
by running a prioritization scheme rather than a strict removal
(Pattin and Moore, 2008).

Resorting to pathways is also interesting. For instance, this
approach has already been applied with information drawn
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FIGURE 5 | ReliefF algorithm.

from pathways involved in lipid synthesis (Ma et al., 2015), by
including evidence from public databases like KEGG Pathway
(Kanehisa et al., 2012), Reactome (Croft et al., 2014) or BioCarta
(Nishimura, 2001). For a pathway of interest, one first looks
at the involved genes, and then maps SNPs to these genes.
The technique is similar to the above protein interaction-guided
analysis. But there is a bias as certain pathways are more deeply
studied than others: genes (and SNPs therein) involved in a
very well-known pathway may be given more weight than those
involved in a less studied one. Instead of relying on guidance
restricted to pathways or to protein-protein interactions, the
comprehensive knowledge approach (Pendergrass et al., 2013a)
is more global as it exploits pathways, protein interactions, gene
expression, gene ontology, etc. As appealing as this approach
might be, it is not currently possible to accurately evaluate
results found by this strategy because implementing pathway
simulations is not a trivial task. This would require a tool
designed to simulate pathways and protein-protein interaction
networks, and then simulate GWAS data where several SNPs
are involved in these networks. Such a tool does not exist
yet. Therefore, for this kind of filter based on comprehensive
knowledge, we cannot properly and objectively assess its scientific
relevance.

One software program worth mentioning is Biofilter. It
gathers information from 13 databases (Pendergrass et al.,
2013a), which contain experimental evidence of interaction,
pathway or ontological similarity relationships. On the basis
of biological plausibility, Biofilter models interactions that
will be tested irrespective of the marginal effects. So it
creates polygenic models, thanks to gene-disease and gene-gene
connection knowledge (Pendergrass et al., 2013b). The statistical
and computational challenges are also addressed since not all
combinations of interactions are examined. Statistical relevance
is based on the statement that the more two genes are involved
in a relationship, the more likely they are to share an important
biological link (Bush et al., 2009).

Although data-integration techniques yield meaningful and
biologically relevant results, exploiting external information
sources like pathways or protein-protein interaction networks
is controversial. Online databases are incomplete and so is our
understanding of biological pathways. Thus, making use of them
to build filters would in most cases results in a flawed analysis.
Moore and Hill recently recommended (Moore and Hill, 2015)
to combine both the biased approach (from a biologist point of
view) based on expert knowledge, and computational approaches
solely driven by GWAS data (neither immune to bias from a
statistician point of view). Similarly to computational exhaustive
methods, this combined approach is taking advantage of artificial
intelligence methods, which we discuss in the next section.

Non-exhaustive Searches Enhanced by

Artificial Intelligence

Machine learning and combinatorial optimization represent
alternatives to parametric statistical methods for detecting
combinations of variants that are associated with a phenotype.
Machine learning methods build non-parametric models to
compile information further used for epistatic detection.
Combinatorial optimization techniques consider a search space
of solutions (i.e., combinations of potentially interacting SNPs)
and browse through this space to find the more relevant
combinations. Heuristics are commonly used in these algorithms,
especially when dealing with genome-wide datasets in search of
higher order genetic interactions. Identification of classification
variables and interactions between them which allows outcome
prediction is a well-known hurdle addressed by the machine
learning and data mining fields of artificial intelligence (Cordell,
2009). In such non-parametric models, precautions must be
taken to avoid overfitting (see Box 3). It has to be noted that if the
model complexity of the underlying genetic mechanisms is too
high compared to the sample size, using non-parametric methods
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BOX 3 | Overfitting.

The aim of machine learning is to explain a system by learning a model with a training dataset. But dataset’s particularities result in an overly tuned model adjusted for

very specific features (Leinweber, 2007). In other words, overfitting happens when the training stage gives too much importance to the noise within data. Overfitting is

detected when a simpler and more accurate model exists. However, identifying what to ignore in the overfitting model is a non-trivial task. Overfitting typically arises

when model complexity is too high compared to the size of the training data. In practice, cross-validation possibly combined with pruning is used to avoid overfitting.

may not be affordable. In this case, parametric methods are the
only practical alternative, assuming that the model assumptions
are not severely violated.

A majority of these heuristics test for associations of
variants allowing interactions, rather than testing for interactions
themselves. The distinction lies in the following: besides
SNPs involved in epistatic interactions, a model representing
associations allowing for interactions also includes SNPs which
have marginal effects. Therefore, although it is not a straight
proof of epistasis, it is nonetheless an examination of polygenic
models. Thus, if such procedures heavily rely on marginal effects
for association findings, they will detect multiple SNPs with
independent effect. But if they do not rely on marginal effects,
they will also consider epistatic interactions.

With regard to machine learning techniques, we will
first take a look at random forests and their variants,
then move on to Bayesian network-based strategies. As for
combinatorial optimization strategies, ant colony optimization
and computational evolution system approaches will be
presented.

Random Forests and their Variants

A tree-based algorithm generates a tree where each tree-node
represents a predictor variable and a path designates a sequence
of predictor variables from the root to the leaves of the tree.When
the tree is constructed from GWAS data, each node represents a
SNP. A basic tree-growing algorithm is deterministic in that each
step looks for the predictor variable that optimally segregates
the population. So a grown tree is a classifier which represents
a SNP set allowing prediction of the phenotype of interest. This
approach can handle SNPs that are associated in a non-linear
way, dealing with interactions encoded in a hierarchical fashion
between layers of the tree. A notable shortcoming of tree-based
methods is that they are quite dependent of marginal effects.
At the beginning of the tree learning step, the algorithm looks
for a single SNP that well discriminates cases from controls. In
practice, this is equivalent to looking for SNPs with highmarginal
effects.

Random forests were designed to avoid bias generated by
growing a single tree. The random forest strategy creates
multiple—generally thousands—classification or regression trees
(e.g., CART) in order to apply an ensemble procedure. An
ensemble procedure aggregates the predictions of all trees to
produce a powerful and robust prediction tool (Breiman, 2001).
The SNP set output is defined as the most important variable
set of the random forest (to be further explained in this section).
Although growing a random forest is a relatively computationally
intensive procedure, it has been evaluated as a good strategy
for detecting the most predictive SNPs in large-scale association
studies (Bureau et al., 2005) and was applied to GWAS several

times in the last 5 years with epiForest (Jiang et al., 2009), random
Jungle (Schwarz et al., 2010) and SNPInterforest (Yoshida and
Koike, 2011).

A classification tree is grown using the following steps (Jiang
et al., 2009). First, a bootstrap sampling is performed from
the GWAS dataset comprised of N individuals andM SNPs. It
consists in randomly selecting, with replacement, N individuals
from the N original individuals. Individuals not drawn are
called out-of-the-bag (OOB) individuals. So a new dataset and
an OOB set are created for each grown tree. Then a random
feature selection is applied to construct each node of the tree.
To do so, instead of considering all variables from the initial
GWAS dataset, a random subset of variables is picked out
without replacement. A recursive data splitting procedure is next
executed, such that a parent node results in two child nodes given
a rule that leads to a better discrimination of the current set of
individuals (from the parent node) with regards to the disease
status. This discrimination score is measured as a goodness of
split or a decrease in impurity1i. The tree is then grown up to its
largest extent. These previous steps are repeated until a forest is
built (Figure 6).

For each node, a so-called variable importance is assessed to
evaluate its contribution to the trait either individually or via
multi-way interactions with other predictor markers. In other
words, variable importance represents weight approximating the
causal effect of a predictor variable. There are several ways to
measure variable importance (Schwarz et al., 2010). One is the
Gini importance, a second one is the permutation importance,
and a third one is the conditional variable importance, based on
permutation importance. The conditional variable importance
seems to be more suitable when applied to genetic data while
the other two are biased in presence of linkage disequilibrium
(correlation between SNPs) (Strobl et al., 2008). Compared to
the original random forest construction, algorithms readjusted
for epistasis detection include multiple SNPs at each tree-node
during tree building (Botta et al., 2014). It is intended to detect
SNP combinations even when marginal effects are very weak or
inexistent (Yoshida and Koike, 2011). The readjusted method
is less sensitive to SNPs presenting little marginal effects than
an exhaustive approach like MDR. However, even if random
forests reveal associations potentially pointing at interactions,
they cannot make a distinction between a scenario of interacting
SNPs and a scenario of several independent SNPs additively
contributing to the phenotype. As a result, random forests are
lacking clear interpretation.

More recently, another tree assembling software program was
developed: GWGGI (Wei and Lu, 2014). It differs from the
previous methods in two points. First, it uses a tree-growing
algorithm which is more computationally efficient (Lu et al.,
2012): the standard variable selection procedure is replaced with
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FIGURE 6 | Random forest algorithm. (A) Algorithm of a random forest procedure. (B) An example of the three steps needed to grow one tree.

a forward algorithm. The principle of a forward algorithm is
to take into account previously selected variables. The novel
variable identified is the one, when added to the previous set of
variables, allowing for the most accurate prediction. Secondly,
the GWGGI algorithm relies on likelihood ratios and the Mann-
Whitney statistics to assess the predictors’ importance in order
to facilitate the statistical significance assessment of selected
association models. Since each tree can be considered as a multi-
locus genotype model, each individual is confronted to each

grown tree and a likelihood ratio is generated: LRti =
P(Gt

i |D)

P(Gt
i |D)

where Gt
i is the genotype of individual imapped t, andD (resp.D)

is the control status (resp. case status). Then for each individual,
all likelihood ratios are assembled into a unique one by averaging
the total number of trees. Finally, aU-statistic is constructed with
comparisons between assembled likelihood ratios of cases vs.
controls in order to evaluate the joint association of the selected
SNPs with the phenotype (Wei et al., 2013). The U-statistic is

calculated in the following way: U =

∑N_cases
i = 1

∑N_controls
j = 1 ψ(LRi, LRj)

N_cases∗N_controls .
The ψ function is a kernel function defined as:

ψ
(

LRi, LRj
)

=







1 if LRi > LRj
0.5 if LRi = LRj
0 if LRi < LRj

The null hypothesis states that there is no association between the
selected SNPs and the phenotype.

Bayesian Networks

Bayesian networks provide a compact representation of
dependencies between variables. A Bayesian network consists

of two components: a graphical one and a probabilistic one.
In the former—directed acyclic graph (DAG)—variables are
represented by nodes and dependencies between them are
represented by directed edges. The probabilistic component of
a Bayesian network associates a probability distribution with
each node of the DAG, thus accounting for uncertainty. A
Bayesian network encodes the Markov property: each variable
is independent of its non-descendants, given its parents in the
DAG. The governing theorem of a Bayesian network is the
following. Let X, Y, and Z be variables of the Bayesian network.
If P (X|Y,Z) = P(X|Y), then X is conditionally independent
of Z, given Y (noted X ⊥ Z|Y). When applied to genetic data,
variables are typically SNPs and phenotypic values. Bayesian
networks offer an appealing and intuitive way to capture
relationships existing between genetic markers and disease
status. The structure learning of a Bayesian network amounts to
a model selection problem. Because this learning is an NP-hard
problem (Chickering et al., 2004), specific techniques have to be
used to reduce the computational burden.

A famous Bayesian network-based software program called
BEAM (Bayesian Epistasis Association Mapping) (Zhang and
Liu, 2007) is often used as a Bayesian-based reference for
performance comparisons. BEAM relies on a Markov Chain
Monte Carlo (MCMC) algorithm to test iteratively each marker,
conditional on the current status of other markers. For each
marker, the algorithm outputs its posterior probability of
association with disease. Markers are then distributed into three
groups: group 0 for markers unlinked with the phenotype, group
1 for SNPs that contribute independently to the phenotype
(additive model) and group 2 for SNPs that influence the disease
risk given particular allele combinations (epistasis model). After
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that partitioning phase, a B-statistic is used to further filter
detected SNP groups. When the BEAM method was originally
published, the B-statistic was a new alternative to the usual
χ2 test of association between a phenotype and a set of SNPs.
A detailed explanation of its computation would require a
much deeper presentation of BEAM, which is not the aim
of this section. The interested reader is referred to Zhang
and Liu (2007) for a comprehensive explanation of how to
build a B-statistic. Although the B-statistic enables to get rid
of expensive permutation tests, MCMC iterations make this
method inadequate when handling datasets containing more
than 500,000 genetic markers, which is now commonplace in
GWAS studies.

More recently, Han et al. (2012) also worked with Bayesian
networks to capture SNP-disease associations with EpiBN. As
these authors consider that SNPs are causal with respect to
the phenotype, the Bayesian network built here is composed
of two layers: one layer with the phenotype as a unique node,
connected to parent nodes of the phenotype in the second
layer which represents the SNPs associated with the phenotype.
Edges between nodes representing SNPs can exist, thus allowing
detection of interactions between genetic variants in the model.
Instead of a MCMC-based algorithm, they use a Branch-and-
Bound iterative procedure to learn the structure of the Bayesian
network. At each iteration, the algorithm adds, deletes or reverses
an edge. Then a score function is called to find the best network
structure evolution since the previous iteration. The network is
iteratively constructed and at each iteration, the current network
structure goodness is assessed with a score function. The goal
is to maximize this score. The score function is made of two
terms that indicate how well the current structure fits the data—
on the basis of a maximum likelihood ratio—and how complex
the Bayesian network is. In Han et al. (2012), it has been shown
through multiple simulations that the EpiBN software program
seems to outperform BEAM in interactions detection power.

A different but not less appealing Bayesian strategy is the
Markov blanket-based method. It allows discovery of SNPs in the
local pathway of the phenotype, also referred to as “local causal
SNPs” (Alekseyenko et al., 2011). In the context of GWAS, this
strategy is used to avoid the time-consuming training processes
like tree-growing of random forests or structure learning of a
full Bayesian network. The principle is to find a minimal set of
variables that completely shield the disease status from all other
variables, thus resulting in a local Bayesian network fraction that
borders the phenotype node in the graph: this set is defined as
the Markov blanket. In other words, each SNP will be statistically
independent of the case-control status when conditioned on the
SNPs forming the Markov Blanket. A Markov blanket-based
strategy can be applied for causal findings because the Markov
Blanket contains direct causal variables (i.e., parent nodes), direct
effect variables (i.e., child nodes), and direct causal variables of
direct effect variables (i.e., spouses) (Figure 7A).

With the goal of finding a minimal SNP set, this strategy is
expected to minimize the number of false positives. Besides its
classification accuracy, this strategy has been put forward for
its compactness (Aliferis et al., 2010a). Moreover, the Markov
blanket-based strategy has proved to properly address the

combinatorial hurdle raised by epistasis analysis at the GWAS
scale (Aliferis et al., 2010b). The Markov blanket construction
algorithm will generally go through two stages (Figure 7B). The
first one, called “forward phase,” adds new relevant variables
to the candidate Markov blanket (noted canMB). In practice,
this stage consists in finding the SNP X which is the most
associated with the phenotype, given canMB (e.g., tested with
a G2 test, which is a subclass of likelihood-ratio tests and
is similar to a χ2 test, McDonald, 2014), and including X
in canMB if X is dependent of the phenotype, given canMB
(e.g., if the G2 statistics is lower than some user-specified
threshold): ¬(X Phenotype | canMB) ⇒ add X in canMB.
This operation is repeated until canMB no longer changes from
one iteration to the other. The second phase, called “backward
phase,” aims at removing false positives that were included in
the previous step. To achieve it, each SNP of the candidate
Markov blanket is checked. A SNP Y is detected as a false positive
if it is independent of the phenotype given a SNP subset of
canMB. Three implementations of this approach were recently
developed: DASSO-MB (Han et al., 2010), TIE∗ (Alekseyenko
et al., 2011; Statnikov et al., 2013) and IMBED (Yanlan and
Jiawei, 2012), and all proved to be more sample-efficient than
BEAM, i.e., less samples are needed to reach the same power
of detection as BEAM. In DASSO-MB (Han et al., 2010, Han
and coworkers postulate that, in epistatic interaction studies,
only causal SNPs are sought, and consequently only parent
nodes of the phenotype have to be detected. Hence, DASSO-
MB represents a more specific application of the Markov Blanket
approach. Considering a set of 19 SNPs already known to be
associated with rheumatoid arthritis, an application of TIE*
(Target Information Equivalency) showed that aMarkov blanket-
based approach could make the whole SNP set independent of
the phenotype when conditioned on three other SNPs identified
in the Markov blanket (Alekseyenko et al., 2011). In other words,
the reported SNP set does not provide any predictive information
about the disease status beyond that brought by the three SNPs
identified with the Markov blanket.

The bias of this approach is that the first SNP added to the
candidate Markov blanket is picked on the basis of a univariate
test. So the detection of marker combinations when marginal
effects are slight or nonexistent is still a major obstacle (Han and
Chen, 2011). Markov blanket-based strategies also heavily rely on
the faithfulness assumption, defined with respect to the sample, as
follows: every conditional independence in the Bayesian network
also exists in the probability distribution of the variables. In
practice, this hypothesis is rarely met in GWAS.

Ant Colony Optimization

Ants communicate with each other through pheromone levels to
find the optimal path leading to food. If an ant finds a shorter
path, it will produce and increase the pheromone concentration
along this path. Other ants will more likely follow that path
showing increased pheromone concentrations, thereby creating
a positive feedback to find the best path to food. In 2010,
AntEpiSeeker algorithm (Wang et al., 2010b) was derived from
the generic ant colony optimization (Dorigo and Gambardella,
1997) (ACO) algorithm. AntEpiSeeker performs the search of
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FIGURE 7 | (A) Markov blanket of a phenotype, in gray area. It is made of the parents (SNP 2, SNP 3, and SNP k), of the children (Effect 1 and Effect 2) and of the

spouses (Common cause of Effect 1 with respect to the Phenotype). (B) Two stages of Markov blanket learning. For ease of reading, the Markov blanket is reduced to

parents from (A).

multiple groups of SNPs associated with the disease in parallel.
The algorithm is an iterative procedure where artificial ants
cooperate at each iteration to update knowledge about the
propensity of SNPs to be related to the disease (Figure 8). From
a computational point of view, ants represent SNP sets that
have potential epistatic effects, and a pheromone concentration
is a weight evaluated by epistatic interaction significance of the
selected set of SNPs. Communication between ants is mimicked
by a probability distribution function (PDF) shared by all ants.
The PDF is a function describing the probability of selecting
a specific SNP at a specific iteration. This probability depends
on the pheromone concentration for this SNP at this iteration,
and on another factor which allows to weight SNPs according
to expert knowledge drawn from additional biological data. At

each iteration, multiple SNPs are picked up, depending on the
PDF, to build each ant. Then a χ2 test is used as a score function
to measure the association between an ant and the phenotype.
Results are used to update the PDF for the next iteration.
Once highly suspected sets of SNPs are assembled, AntEpiSeeker
conducts a second analysis stage: an exhaustive search of epistasis
within each built ant is performed, as well as within the set of
SNPs that have the highest pheromone levels. The ant colony
strategy was also exploited more recently in MACOED (Jing and
Shen, 2015).

The positive feedback effect represents an interesting feature
of the algorithm. Unfortunately, many parameters require fine
tuning, like the number of iterations, the order of interactions,
the number of SNPs in each ant, or the evaporation rate of
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FIGURE 8 | Ant colony optimization procedure. For each ant, multiple SNPs are drawn. The probability distribution function (PDF) gives the probability of each SNP

to be drawn. Once an ant is filled with a SNP set, joint association of this SNP set with the phenotype is evaluated with a χ2 test. For each ant, the PDF is updated

according to p-values resulting from χ2 tests, such that SNPs efficiently classifying individuals will have a higher probability of being drawn in the next iteration.

pheromones which is an ingredient of the update function of
the PDF. Those parameters must be estimated a priori, which is
considered as a limitation of this algorithm.

Computational Evolution System

The algorithm behind the Computational Evolution System
(CES) is an original strategy based on natural selection and
Darwinian evolution. The goal is to grow a computer program
from several basic building blocks, similar to a DNA strand
emerging from a composition of the four basic nucleotides.
This program tries to reproduce the natural evolution process
underlying complex real biological systems. The first question is
what the building blocks are, whenever one wants to build such
a computer program. The answer is non-trivial and is decisive in
epistasis analysis when trying to avoid dependence to marginal
effects. In a recent application of CES (Moore and Hill, 2015),
the building blocks were defined as basic functions involving
SNPs. A basic function is an operator (add, delete, and copy)
aggregating SNPs in combinations, and the resulting composition
of building blocks is called a solution. In other words, a solution
can be perceived as a set composed of various elements, where
each element is a function dealing with genetic polymorphisms.
A solution is thus a classifier designed to predict the case-control
status of an individual given its genotype.

A CES is governed by a pyramidal architecture where each
level is probabilistically controlled by its upper layer. The lowest
level is a two-dimensional grid of solutions where each solution
is a list of building blocks. The second level is a grid of solution
operators influencing the lower layer. Each cell consists of a
combination of add, delete, and copy operators having a given
probability of being executed. Attributes can be added, deleted
or copied either randomly or using expert knowledge. A third
level of computation is used to introduce changes in execution
probabilities of the latter operators. A last level controls the
variation rate of the third layer. Uncertainty is injected in this

architecture in order to mimic a realistic natural evolution
system. As a result, there is high flexibility in model creation
based on CES.

The stage during which all solutions are modified is called a
generation. From one generation to the next, accuracy of each
solution is modified as follows: an operator is drawn according
to the execution probability distribution; this operator is then
applied to each solution. It has to be noted that the initialization
of the CES grid of solutions is either random or guided with
expert knowledge. This last option has been highly recommended
(Greene et al., 2009a; Payne et al., 2010). The accuracy of each
solution is assessed in the following way. Each solution is applied
to case and control individuals to obtain two distinct score
distributions: one for cases and one for controls. A threshold is
determined as the arithmetic mean between the medians of the
two distributions. Then individuals are predicted to be cases or
controls given this threshold. The solution accuracy is computed
afterwards as an error ratio between predicted and actual status.
Once one knows how to compare solutions, one can select the
optimal solution which maximizes the prediction accuracy. The
solution is selected among all generations (e.g., 1000 generations)
in the following way. Each solution occupies a lattice position in
the two-dimensional grid and competes with its neighborhood
composed of eight adjacent solutions. Within this neighborhood,
the solution with the highest accuracy is selected to replace the
central position of that neighborhood.

This approach is interesting in that it allows modeling
of complex interactions with few hypotheses. It also has
the capability to use expert knowledge, and is well suited
for parallelization. However, the computational complexity of
the CES strategy precludes a direct analysis of GWAS data
with hundreds of thousands SNPs. Such datasets will require
a preprocessing step with filtering methods introduced in
Section Two-stage Approach: Filters to Obtain Reduced Search
Space.
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TABLE 2 | Summary table of strategies reviewed to detect epistasis along with representative software programs and datasets applications.

Strategy Software program Exhaustivity Pairwise-

restricted

Dataset # SNIPs # Individuals Runtime References

Sequential Parallel

Bitwise operations and

Likelihood ratio tests

BOOST Yes Yes WTCCC–multiple diseases 459,019 5000 NA 23 h (4 CPUs) Wan et al., 2010

ROC curve analysis GWIS Yes Yes WTCCC–multiple diseases 459,019 5000 60 h 10.9 h (4 CPUs) Goudey et al., 2013

Combinatorial MDR Yes No Simulated 50 500 36min NA Moore et al., 2006

Random forest Random jungle No No Crohn’s Disease 275,153 1003 12.7 h 0.53 h (40 CPUs) Strobl et al., 2008

Snplnterforest No No WTCCC - RA 10,000 3500 98 h NA Yoshida and Koike, 2011

GWGGI–TAMW No No WTCCC - CAD 459,019 4864 10 h NA Wei and Lu, 2014

GWGGI–LRMW No No WTCCC - CAD 459,019 4864 3.5 h NA Wei and Lu, 2014

Bayesian BEAM No No AMD 47,727 3500 8 days NA Zhang and Liu, 2007

epiBN No No AMD 96,933 146 NA NA Han et al., 2012

Markov blanket Dasso-MB No No AMD 91 495 14G NA NA Han et al., 2010

FEPI-MB No No Simulated 500 4000 0.5 s NA Han et al., 2011

IMBED No No AMD 96,933 146 NA NA Yanlan and Jiawei, 2012

TIE* No No NARAC 490,073 2 044 NA NA Statnikov et al., 2013

Ant colony optimization AntEpiSeeker No No WTCCC – RA 332,831 3503 NA 5 days (2 CPUs) Wang et al., 2010b

Computational

evolution system

CES No No Prostate cancer 219 2286 NA NA Moore and Hill, 2015

Runtimes were not always available (NA) and are indicated for simulated datasets when no real data application is available. The notation “WTCCC—multiple diseases” stands for “WTCCC—Bipolar Disorder (BD), Coronary Artery

Disease (CAD), Crohn’s Disease (CD), Hypertension (HT), Rheumatoid Arthritis (RA), Type 1 Diabetes (T1D), and Type 2 Diabetes (T2D).
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Discussion

While an exhaustive epistasis analysis has become a quite
straightforward task for SNP pairs, higher order interactions
search in an exhaustive way is not conceivable at the
moment. In this paper, we reviewed main current strategies
for epistasis detection: exhaustive ones based on brute-force
approach, filtering ones aiming at reducing genome-wide SNP
set size, and different machine learning and combinatorial
optimization procedures to find SNP associations yielding the
best classification power. Table 2 summarizes categories of
methods described in this paper and gives representative software
programs illustrating each category. In particular, this table
highlights characteristics of the largest GWAS dataset analyzed
using each software program. Runtimes are indicated, when
available, for sequential and parallel versions of each program,
for information about scalability.

Despite efforts for developing novel methods dedicated to
epistasis detection, genetic variance of complex traits is weakly
explained by detected epistatic interactions. This may be due to
low detection power of pure and strict epistatic interactions for
many of these methods. Much remains to be done to improve
power of detection using model-free searches. For instance, the
TURF method (see Section Filtering Based on Data Mining
Techniques) which excludes SNPs with low predictive power,
prior to performing epistasis detection, could be extended to
other strategies like random forests, thereby improving detection
of epistasis.

Precision of association measure estimates between epistatic
interactions and phenotypes can be enhanced by increasing

the number of samples
number of SNPs

ratio. First, increasing the sample size is a

way to improve power of epistasis detection. Federating data
from laboratories in the context of meta-analysis is a widespread
approach, though subject to biases due to heterogeneity of
laboratory practices. Second, reducing the number of SNPs
to analyze might improve the statistical power under a given
hypothesis. For instance, such a reduction of the search space size
is possible thanks to systematic methods, like using significant
pairwise interactions as a prior basis for the search of higher order
interactions. Regarding data integration approaches, biological
expert knowledge based-filters are often proposed to guide
epistasis analysis. Being a biased approach, it is recommended to
run at the same time a procedure without any a priori knowledge
(Ritchie, 2015). Although development of epistasis detection
methods is growing, many methods are hampered in presence
of genetic heterogeneity or incomplete penetrance. Random
forest-based techniques have been described to efficiently deal
with genetic heterogeneity because data is split in different
subsets in early stages of the algorithm (Koo et al., 2013). Besides,
some of the existing software programs, like BEAM, will soon
become unsuitable to GWAS datasets which will keep growing in
size so that several millions of SNPs will be the rule rather than
the exception. On the other hand, such a huge number of SNP
might increase power of existing strategies tailored to handle
massive datasets.

An interesting fact rarely discussed in literature describing
the strategies reviewed in this survey is the confusing boundary
between epistasis and linkage disequilibrium. Because linkage

disequilibrium is by definition a phenomenon involving
dependence between genetic variants, its frontier with epistatic
interactions may be blurred since the aforementioned software
programs are designed to detect SNPs that jointly affect
the phenotype. This issue is particularly acute for case-only
approaches. For standard case/control studies, if estimation of
linkage disequilibriumwithin controls provides the same result as
within cases, then the observed linkage disequilibrium does not
originate from epistatic interactions.

Development of simulation models dealing with epistasis
is also an active research area (Moore et al., 2015). Even
if some authors already use various simulation models to
estimate efficiency of their algorithms (Beam et al., 2014), these
simulation tools lack the complexity of genetic mechanisms
observed in real data. For instance, simulation models used in
most software programs introduced in the previous sections
only generate pairwise epistatic interactions. As a consequence,
strategies dealing with higher order interaction detection are
not confronted to simulation scenarios involving those types of
interactions. Hopefully, such a gap will certainly be filled in the
future.

With regard to evaluating association strength several authors
rely on p-values to sort the best candidate SNPs. However, p-
values alone do not allow any straightforward statement about
the association strength. A p-value only estimates the probability
of having observed the value of the test statistic under the null
hypothesis (i.e., there is no association between the tested SNP
and the phenotype) (du Prel et al., 2009). Odds ratio combined
with confidence intervals are also widely usedmeasures in GWAS
reports.

The need for scalable and powerful strategy to detect SNP-
SNP interactions is clearly unmet today. This is especially true for
detection of higher order interactions. Massive testing of SNPs
combinations should no longer be a tedious task, but rather a
routine operation in a GWAS analysis workflow.

Conclusion

Currently, no strategy to detect epistasis stands out: all
must strike balance between time efficiency and detection
power. However, different techniques are available to reduce
running times. Some authors improved time efficiency through
parallelization of their strategies, e.g., random forests, ant colony
optimization and approaches based on computational evolution.
Other authors implemented versions of their software programs
which use graphic processing units (GPU) instead of traditional
central processing units (CPU).
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A systems-biology approach to complex disease (such as cancer) is now complementing
traditional experience-based approaches, which have typically been invasive and expen-
sive.The rapid progress in biomedical knowledge is enabling the targeting of disease with
therapies that are precise, proactive, preventive, and personalized. In this paper, we sum-
marize and classify models of systems biology and model checking tools, which have been
used to great success in computational biology and related fields. We demonstrate how
these models and tools have been used to study some of the twelve biochemical path-
ways implicated in but not unique to pancreatic cancer, and conclude that the resulting
mechanistic models will need to be further enhanced by various abstraction techniques to
interpret phenomenological models of cancer progression.
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1. INTRODUCTION
The defeat of cancer was envisioned, somewhat optimistically, after
just a few years of research starting with extensive genomic and
transcriptomic data collection. Such portrayal of the future might
have been inspired by on-going research that has focused on char-
acterizing cancer as a disease of the genome and has galvanized
massive data-collection projects, such as the ICGC (International
Cancer Genome Consortium) (Zhang et al., 2011) and TCGA
(The Cancer Genome Atlas): an atlas “to systematically explore
the entire spectrum of genomic changes involved in more than 20
types of human cancer” (TCGA, 2013). Such projects have pro-
vided an impetus for developing genomics and bioinformatics
tools to study genomic aberrations, driver mutations, loss of het-
erozygosity, copy number fluctuations, epigenomic modifications,
and identifications of classes of oncogenes and tumor-suppressor
genes. However, the recent focus has begun to shift to a much more
amorphous and dynamic model of cancer, as it has become appar-
ent that a better characterization of the disease must also include
the evolution of cancer phenotypes in a heterogeneous population
of cells, whose individual types and states need to be understood
from single-cell measurements of DNA and RNA, at the very least.
The picture of natural somatic evolution of cancer, emerging from
recent studies, is quite complex: cancer is driven by numerous
pathways, by interactions among multiple heterogeneous subpop-
ulations, the immune system and the microenvironment, and also,
by intricate “signaling games” played among cancer stem and
progenitor cells, further tempered by metabolic constraints. To
treat cancer as a “disease of the phenome,” cancer systems biology

research will need to analyze and model complexities of both
cell-autonomous and cell-population-level processes.

Consequently, models of cancer evolution may need to deal
with state-space trajectories of thousands of rapidly evolving cell-
types in a heterogeneous tumor population. The experimental
setup to harvest and feed the data to such an algorithm is challeng-
ing: it is not yet possible to routinely sample multiple single tumor-
cells (either in situ or circulating) from a single human patient at
multiple stages of their natural progression (unperturbed by any
therapy). Our approach may circumvent this problem by using
computational systems biology to simulate this progression on
phenomenological and mechanistic models.

Primary challenges for cancer systems biologists, as corrobo-
rated (Reya et al., 2001; Jordan et al., 2006; Shackleton et al., 2009;
Marjanovic et al., 2013) by prominent research biologists, are as
follows: (1) The nature and origin of heterogeneity in cancer are
not well understood. (2) Cancer stem cells, their interactions with
the stroma (normal cells) and the roles they play in the population,
especially in choreographing cancer progression are computation-
ally complex and require sophisticated algorithms and modeling
techniques. (3) Disentangling how and which cell-autonomous
processes manifest at the population level require new analysis
tools. Succinctly generating hypotheses and efficiently correlating
them to experimental data require highly sophisticated algorithms,
which will very likely involve multiple levels of abstraction,compo-
sition of qualitative and quantitative models, and symbolic model
checking tools that rely on notions of simulation and bisimula-
tion (exact or approximate). These new challenges in modeling
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and analysis will spur on new research in theoretical computer
science. The possible approaches to these challenges are discussed
further with illustrative examples.

The paper intends to motivate a disparate group of researchers
from multiple disciplines to attack a problem that has not only
remained undefeated despite a decades-long all-consuming war
against cancer but also has recently revealed new complexities,
against which our arsenal has no effective weapons. We wish to
inspire game theorists, control engineers, and computer scien-
tists to modify their traditional tools to tame and contain cancer
as in many other chronic diseases. We wish to encourage sys-
tem biologists, bioinformaticists, and oncologists to familiarize
themselves with the newer and more powerful tools that rely on
abstraction and meta-analysis to overcome the challenges posed
by heterogeneity and temporality.

In what follows we focus on the new algorithmic strategies
developed to address heterogeneity and temporality as well as
other future challenges and obstacles: we start with a summary
of classes of models (stochastic, differential, finite-state models,
hierarchical, rule-based, and multi-scale) and computational tools
(based on execution, simulation, bisimulation, abstraction, com-
position, and model checking) that are being actively developed
by computer scientists. We discuss how these models and tools can
be applied to cancer using examples of some of the biochemical
pathways implicated in pancreatic cancer (e.g., TGF-β signaling).
We also identify critical gaps in the currently available toolkits and
future research directions.

The most common form of pancreatic cancer, pancreatic duc-
tal adenocarcinoma (PDAC), is still one of the least understood
and most difficult to diagnose and treat of cancers. A central ques-
tion to ameliorating these difficulties is to identify the genetics
drivers behind the origins and progression of PADC. Although
PADC is known (Delpu et al., 2011) to arise from 3 different
types of precursor lesions, pancreatic intraepithelial neoplasia
(PanIN), intraductal papillary mucinous neoplasms (IPMN), and
mucinous cystic neoplasms (MCN), the genetic events that char-
acterize the lesions and the transition from lesion to tumor are
unknown. It is well accepted that while particular genomic events
drive tumorigenesis, it is the change in cellular function caused by
that event that is selected for through somatic evolution. Intra-
cellular signaling pathways are common targets of these events.
Because of their well understood relations to cellular function,
pathways are more consistent and regular markers of tumori-
genesis. To better understand which pathways are affected in
PDAC, Jones et al. (2008) examined several candidate pathways
and found 12 primary ones most common in PDAC tumor sam-
ples. In particular, they implicated the pathways associated with
apoptosis, DNA damage control, regulation of the G1/S transition
in the cell cycle, hedgehog signaling, homophilic cell adhesion,
integrin signaling, c-Jun N-terminal kinase signaling, KRAS sig-
naling, regulation of invasion, small GTPase-dependent kinase
signaling, TGF-β signaling, and Wnt/Notch signaling. A better
understanding of these pathways, how they interact, and how they
are affected in PDAC will lead to better clinical diagnosis and
intervention.

The rest of the paper is organized as follows. Section 2 sum-
marizes models and tools currently used to represent and analyze

dynamical systems in systems biology. Section 3 discusses the need
for novel tools to deal with the influx of new personalized data. In
Sections 2 and 3, we also turn to several systems biological exam-
ples, all related to cancer, which we have explored in the context of
a National Science Foundation Expedition-in-Computing project.
Our team focused and developed systems for model checking,
robustness analysis, multi-scale analysis, etc., which have played a
strong role in improving our understanding of the pancreatic can-
cer phenotypes. Our starting point was with the twelve pathways
identified by Jones et al. (2008), described above. We describe a
few examples using these pathways to motivate the use of the new
modeling and analytical tools described above and the additional
use of techniques and tools for abstracting, combining, and other-
wise manipulating models. We discuss the biological significance
of each example, followed by a brief explanation of the results
obtained from the application of the chosen tool. Lastly, Section
4 concludes with a discussion on how the new class of tools we
propose will affect biological modeling and clinical practice in
cancer.

2. MODELS AND TOOLS FOR CELL-AUTONOMOUS
DYNAMIC PROCESSES

Despite their apparent variety, all computational models of
dynamic systems are just abstract, succinct, and formal repre-
sentations of reality; their form almost always consists of two
components: state, which describes the most relevant parts of
the configuration of the system at some time, and flow, which
describes how the configuration will change in the near future.
Usually, we will prefer models with succinct state-space descrip-
tion, but only to the extent that this need for succinctness does not
introduce unacceptable distortion in the dynamic behavior of the
model. Within a framework comprising such models, researchers
have developed powerful tools to compare, translate, and com-
bine formal models of disparate types. Two important weapons
in a systems biologist’s arsenal are the processes of abstraction
and composition: abstraction facilitates translations among rep-
resentations, as needed, while composition enables construction of
complex, multi-scale, and systems-level models built from simpler
component structures.

Analytical tools comprise the other half of the toolkit. They
allow for the examination of model properties beyond basic simu-
lation. However, tool applicability is inherently limited by the fact
that a specific tool might have been developed originally for use
in one specific class of models. Table 1A provides a sense of the
compatibility of some key analytical tools for a broad variety of
model classes. To construct this table, we relied on an extensive lit-
erature survey of each model class and tool (White, 1977; Dytham,
1995; Bengtsson et al., 1996; Henzinger et al., 1997; Cozman, 1997;
Ghosh and Tomlin, 2001; Alur et al., 2001; Bandini et al., 2001;
Barton and Lee, 2002; Sutner, 2002, 2009; Wang et al., 2002; Anto-
niotti et al., 2003a,b; Shmulevich et al., 2003; Ghosh et al., 2003;
Friedman and Koller, 2003; Lincoln and Tiwari, 2004; Janes et al.,
2004; Friedman, 2004; Li and Chan, 2004; Kwiatkowska et al., 2004;
Ihekwaba et al., 2004; Hagiya et al., 2004; Das et al., 2004; Pe’er,
2005; Fauré et al., 2006; Reeves et al., 2006; Langmead et al., 2006;
Kim et al., 2006; Chaouiya, 2007; Saez-Rodriguez et al., 2007; Frän-
zle and Herde, 2007; Narasimhan and Biswas, 2007; Wilkinson,
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2007; Sandmann, 2007; Mukherjee and Speed, 2008; Clarke et al.,
2008; Sandmann and Wolf, 2008; Ryu et al., 2008; Donaldson and
Gilbert, 2008; Figueirêdo et al., 2008; Yuceer et al., 2008; Qian
and Dougherty, 2009; Tatyana et al., 2009; Wartlick et al., 2009;
Sobie, 2009; Langmead, 2009; Didier et al., 2009; Müssel et al.,
2010; Sarkar and Sobie, 2010; Campagna and Piazza, 2010; Bor-
tolussi and Policriti, 2010; Garmaroudi et al., 2010; Yang and Lin,
2010; Donzé et al., 2010; Gunawardena, 2010; Vikram et al., 2010;
Kobayashi and Hiraishi, 2010, 2011; Gong et al., 2010, 2011a,b,c;
Dimitrova et al., 2011; Grosu et al., 2011; Alfieri et al., 2011; Fischer
and Kaiser, 2011; Aldinucci et al., 2011; Brim et al., 2011; Sarkar
et al., 2012; Horvath, 2012; Iyengar et al., 2012). In this table, each
row represents a class of models. From top to bottom, the models
range over Bayesian networks, Boolean networks, ordinary dif-
ferential equations (ODEs), stochastic models, Petri nets, hybrid
automata, cellular automata, and partial differential equations
(PDEs), each with differing notions of states (discrete, continu-
ous, hybrid, etc.) and flows (transition, evolution, dynamics, etc.).
In addition, we chose these models to represent a broad range of
model features, including deterministic, non-deterministic, spa-
tial, non-spatial, continuous, discrete, temporal, and logical. Each
column, on the other hand, represents a tool. From left to right
(in order of increasing complexity), they encompass: parameter
estimation, sensitivity analysis, reachability analysis, and model
checking of properties describable in propositional temporal logic.

Each entry represents the availability of the tool for the model
class. Red implies that the tool is unavailable or inapplicable.Yellow
denotes limited applicability. Green denotes wide-spread applica-
bility across models in that class. For obvious reasons, the simpler
tools generally have a wider range of applicability than do the com-
plex ones. The most complex tools have proven difficult to adapt
to novel circumstances, thus motivating the use of abstraction to
broaden their range of applicability. Traditionally, model abstrac-
tion has been used to create models that are structurally simpler,
but that have the advantage of facilitating rapid analysis by effi-
cient algorithms and provide easily comprehensible explanations
of properties and counter-examples. Table 1B provides examples
of implementations of these tools.

2.1. EXAMPLES
Abstraction provides simplification. For examples, models and
analyses that can be constructed and performed, we briefly sum-
marize the findings of two studies on some of the 12 pathways
implicated in pancreatic cancer. More details are included in
Sections 2.1.1 and 2.1.2, and for more information on the tools
used, see Section 2.2.

The first study (Gong et al., 2011c) uses a Boolean circuit as an
abstraction of several interacting pathways, including MDM2, P53,
NFκB, and HMGB1, and performs symbolic model checking on
the resulting abstract circuit. Among many findings, it confirmed,
as expected, that P53 can induce the transcription of MDM2, while
MDM2 is a negative regulator of P53, and that NFκB’s activation is
not a necessary checkpoint that the cancer cell must go through to
achieve both proliferation and immortality. Other local analyses
related to such abstraction involve: reachability analysis, local and
global robustness analysis, parameter identification, and analysis
of their sensitivity, etc.

Table 1 |Tools tables. (A) A table of references for the use of each

analytical tool in each model type, where available. The colors denote

availability, as specified in the legend. (B) A (non-exhaustive) table of

available implementations of analytical tools described in the previous

sections.
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Bayesian networks

Boolean networks

Ordinary differential

Equations

Stochastic models

Petri nets

Hybrid automata

Cellular automata

Partial differential

Equations

(B)

Analytical tool Resource

Parameter estimation Simbiology

JSim, Polynome, and PyMorph

PARES

Sensitivity analysis MATLAB – systems biology toolbox

Simbiology

Robustness analysis MATLAB – systems biology toolbox

R sensitivity package

BIOCHAM

Reachability analysis MATLAB – robust control toolbox

PROD, TReX, and RAMAS

Model checking SMV, HyTECH, and HySAT

UPPAAL, PRISM, and NuSMV

Available.

Unavailable.

Partially available.

The second study investigates a published model of extrinsically
induced apoptosis (Albeck et al., 2008) using parameter sensitiv-
ity analysis based on a popular statistical tool called partial least
squares regression. The analysis reveals 6 enzymatic reactions that
contribute substantially to the time it takes the cell to commit
to apoptosis from the initial ligand binding event. Interestingly,
all 6 reactions occur prior to the permeabilization of the mem-
brane, confirming the accepted theory that permeabilization is the
non-reversible step that commits the cell to apoptosis.

2.1.1. Model checking Boolean model of pancreatic cancer
pathways

While there is a plethora of chemical reagents in a cell, which, in
principle, can react with one another, most of these reactions do
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Korsunsky et al. Systems biology of cancer

not happen under normal physiological conditions (temperature,
pH, etc.). Instead, they are tightly regulated by reaction-specific
enzymes and the genes that code for them. Thus, gene regula-
tory networks are characterized by sharp transitions, in which
some subset of reactions is turned on, while the others turned off.
Thomas et al. have used Boolean models to describe and analyze
this behavior of gene regulatory networks (Thomas, 1991, 1998;
Bornholdt, 2008), and have shown that it can be well approx-
imated by asynchronous Boolean networks, in which genes are
represented as nodes and the regulation by wiring.

A recent study used model checking of a Boolean model of
the HMGB1 pathway to verify several experimentally observed
behaviors of cancer cells and to suggest further hypotheses for

experimental study (Gong et al., 2011c). Figure 1 shows a circuit
diagram representation of this Boolean network. One analytical
result was that over-expression of HMGB1 would increase pro-
liferation and decrease apoptosis. This has been experimentally
observed, as reported in Kang et al. (2009). Another analytical
result is that once the protein Cyclin E is activated by the HMGB1
pathway, and DNA synthesis has commenced, the cell will continue
to proliferate, and thus be relatively independent of external con-
trols. This has been identified by Weinberg and Hanahan (2000)
as one of the hallmarks of cancer. Another analytical result, which
NFκB oscillates after release of HMGB1, had been observed by
Hoffmann et al. (2002). Some additional analytical results suggest
that P53 can induce the transcription of MDM2, while MDM2

FIGURE 1 | Schematic view of signal transduction in the pancreatic
cancer model. Blue nodes represent tumor-suppressor proteins, red nodes
represent oncoproteins/lipids. Arrow represents protein activation,
circle-headed arrow represents deactivation.The acronyms in each rectangular

node stand for signal transduction proteins. The rounded rectangular nodes
on the top of the figure stand for ligands that activate the pathways. Finally,
the rounded nodes at the bottom stand for a cell behavior activated by the
connected effector proteins. Figure adapted from Gong et al. (2011c).
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Korsunsky et al. Systems biology of cancer

is a negative regulator of P53, and that NFκB’s activation is not
a necessary checkpoint that the cancer cell should go through on
the path to proliferation and immortality.

These results show that model checking can be a powerful tool
for the understanding of biological behaviors, just as it has been
a powerful tool for understanding complex electronic circuits.
Over the past three decades, as the complexity of the engineered
circuits have approached that of the natural biological systems,
the engineering community had to develop design automation
tools built upon powerful algorithms for circuit validation and

model checking, first introduced by Clarke and Mishra (1984).
Model checking has now become standard protocol for validating
electronic circuits.

2.1.2. Sensitivity analysis of TRAIL-induced apoptosis ODE model
A partial least squares regression (PLSR) on a well established
model for TRAIL-induced apoptosis (Albeck et al., 2008) estab-
lished the key reactions responsible for the time it takes for the
effector protein cPARP to attain its half saturation. Figure 2A
represents the reaction network. Each reaction is depicted in the

FIGURE 2 | Figures accompanying the sensitivity analysis.
(A) Schematic of the extrinsic apoptosis reaction model. Each color
represents a functional pathway. Adapted from Albeck et al. (2008).

(B) Cleavage of PARP to cPARP in response to TRAIL induction.
Adapted from Albeck et al. (2008). (C) Predicted vs. True Td. Quality of
linear regression measured by R2 value.
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Korsunsky et al. Systems biology of cancer

compartment (membrane, cytoplasm, or mitochondria) in which
it takes place.

Programed cell death, or apoptosis, is crucial in the devel-
opment and maintenance of a multi-cellular organism, but also
provides a critical ingredient to the character of cancer progres-
sion, its dominant phenotypes and heterogeneity. Once certain
apoptotic proteins are triggered in a cell, whether from intrinsic or
environmental signals, a normal cell commits to a program that
results in its eventual cell death. Changes in the cell’s ability to
respond to apoptotic signals and the timing behind its response
can cause major disturbances in cellular population homeostasis.
It is important to understand how robust this response is to genetic
mutations.

For this purpose, we analyzed extrinsic apoptosis signal trans-
duction pathway models using tools designed for sensitivity analy-
sis, to identify the key proteins that may be rate-limiting. Rate-
limiting proteins are postulated to have the greatest effect on
the apoptotic response, and thus suggest important mutations
responsible for diseases in which this response is diminished.

In the ODE model, cleavage of the effector protein PARP into
cPARP is the indicator of apoptosis. Td, the time from ligand-
receptor binding to the point at which half of all PARP is cleaved,
represents the response time of the cell to the apoptosis-inducing
signal. Figure 2B shows the typical dynamics of PARP cleavage as
well as how to estimate Td.

Our sensitivity analysis of Td to all the kinetic rate parameters
is based on a linear regression that illustrates the promise of this
approach, as indicated by the regression results in Figure 2C.

The reactions with the most impact on Td are described
in Table 2. We found that the most important reactions are
those that precede the permeabilization of the mitochondrial
membrane. These results suggest that the flood of mitochondr-
ial proteins into the cytoplasm is difficult to control, and that
the most effective drugs would target reactions upstream in the
cascade.

2.2. REVIEW OF FIRST GENERATION TOOLS
This section includes a brief description of types of models
that have been used to simulate dynamic systems in biology as
well as the types of tools that have been used to analyze these
models.

2.2.1. Model descriptions
2.2.1.1. Rule-based model. Rule-based models provide a con-
cise way to specify highly complex, parameterized interaction
networks between agents (e.g., molecules). The user needs only to
encode the possible behaviors of complex molecules and the mod-
eling software automatically generates an ODE (Ordinary Differ-
ential Equations) or CTMC (Continuous Time Markov Chains)
model to simulate directly. Agent interactions can be aggregated
into macroscopic behaviors, capturing temporal changes to sta-
tistical properties only, and abstracting away the details of the
rules.

2.2.1.2. Dynamic Bayesian network. These models represent
the joint distribution of all variables in the system over time (a
global time). The network (represented graphically) arises from

Table 2 | Reactions discovered to affectT d the most in sensitivity

analysis.

Reaction Description

L + R
k1


k−1

L : R
κ1
→R∗ Ligand-receptor binding and unbinding

and receptor activation

R∗ + C8
k3
→R∗ : C8 Caspase-8 binding to active receptor

C8∗ + Bar
k4
→C8∗ : Bar Caspase-8 binding to Bar

C8∗ + Bid
k10
→C8∗ : Bid Caspase-8 binding to Bid

Bid + Bcl2
k11


k−11

Bid : Bcl2 Bid binding and unbinding to Bcl2

tBid + Bax
k12
→ tBid : Bax Activated Bid binding to Bax

a factorization of this joint distribution into conditional distri-
butions through the application of Bayes’ rule. An edge in the
network graph represents a conditional dependence between two
variables. Conditional dependences may change over time, so that
this is a time-varying graph.

2.2.1.3. Boolean network. This model is characterized by the
fact that each variable can only take one of two values, usu-
ally on/off or high/low. Boolean networks are commonly used
to model gene regulatory networks, in which genes are considered
on or off at any given time.

2.2.1.4. Ordinary differential equations (ODEs). Each variable
in this model is characterized by an ordinary differential equation
that describes how its rate of production and decay are governed
by the concentrations of the ensemble of molecules. Such a system
of equations is particularly useful for modeling a large biochem-
ical reaction system, in which the average concentrations of each
molecule type can be described through mass action dynamics.

2.2.1.5. Continuous time Markov chain (CTMC). This class
of stochastic models considers objects as stochastic Markov
processes, in which state changes are probabilistic rather than
deterministic. Markov processes have no memory, that is, the prob-
ability of any given state change depends only on the current state,
and not on the history of the states.

These models are useful for capturing the dynamics of small
reactive systems, in which small stochastic fluctuations have large
effects.

2.2.1.6. Petri network. Historically, Petri Nets (PNs) were
developed to model chemical reactions, but have been used exten-
sively to reason about resource sharing in concurrent systems (in
computer science). Thus,as they are capable of describing variables
and consumption/production transformations among variables in
terms of a simple bipartite graph, they have been used in describ-
ing biological processes involving small number of molecules. This
basic formulation has been further extended to include various fea-
tures that arise in systems biology, such as continuous and hybrid
dynamics, stochastic fluctuations, and a notion of real time.
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Korsunsky et al. Systems biology of cancer

2.2.1.7. Hybrid automata. In a hybrid automata model, system
dynamics are continuous in the short term but in the longer term
may switch between discrete modes. Hybrid automata can also
simplify a system of complex non-linear equations into several
simpler interacting components.

2.2.1.8. Cellular automata. Cellular automata (CA) are spa-
tially and temporally discrete models, whose dynamics are con-
trolled by a set of rules, based on the state of the site and those in
its neighborhood. Cellular automata are especially useful in mod-
eling spatial processes such as morphological evolution of tumor
growth or cell migration.

2.2.1.9. Partial differential equations. PDEs are a widely stud-
ied topic in mathematics and generally describe the continuous
dynamics of some variables with respect to 2 or more other vari-
ables. In systems biology, PDEs are most commonly used to model
system dynamics over time and space. They are thus useful for the
same kinds of systems as cellular automata.

2.2.2. Tool descriptions
2.2.2.1. Parameter estimation. The dynamical behavior of
a model is dependent on all parameter choices, incorporating
numerical parameters to topological ones (e.g., the structure of
a network).

Experimental measurements are frequently unavailable for
important parameters of a model, and expensive to obtain. Para-
meter estimation tools are available for all types of models to
approximate parameters correctly in model construction. Two
general approaches to this tool have emerged. One is based on
matching model behavior to numerical data, and the other is based
on matching it to higher level descriptions in temporal logic. Para-
meter estimation often results in a range of possible parameter
values that allow the model to reproduce the desired specifications.
The width of these ranges depends on sensitivity and robustness.

2.2.2.2. Sensitivity analysis. Parameter sensitivity is the degree
to which small changes in a parameter’s value affect the overall
model behavior. Sensitivity analysis assigns a numerical sensitiv-
ity score to each parameter. In a molecular interaction network,
these scores yield insight into the relative importance of some mol-
ecules in function of the circuit. For instance, a high sensitivity of
cell growth to a particular protein may suggest the protein’s roll as
an oncoprotein.

2.2.2.3. Robustness analysis. In contrast to the sensitivity
analysis, robustness probes the system with large perturbations
in the parameter values. Instead of identifying the role of key
parameters in the model behavior, robustness tests the conditions
under which the model reliably produces the same output. This
insight is crucial in drug discovery, in that it identifies the tar-
gets needed to alter the model’s output to produce a significantly
different behavior.

2.2.2.4. Reachability analysis. The combinatorial state space of
a model can be enormous and each of these states can have differ-
ent biological significance. Reachability analysis aims to quantify

the states that are reachable via an execution of the model, given
an initial set of conditions. This analysis stems from graph theory,
in which the states of a system are modeled as discrete nodes and
the dynamics as edge transitions between the nodes. Therefore, for
continuous models, a pre-processing discretization step is neces-
sary to transform it into a discrete model. Biologically, this tool
is very powerful at predicting the ability of a cell model to reach
unfavorable phenotypes. However, a major challenge is to define
states that are biologically meaningful.

2.2.2.5. Model checking. Model checking concisely character-
izes all possible behaviors of the model with properties in a high-
level, expressive language called temporal logic. Such properties
include cycles, temporal precedence, and steady state. Like reach-
ability analysis, model checking performs an exhaustive search on
the state space of a model, and therefore, relies on a discretization
of the state space. Traditional model checking is geared toward
efficiently searching large, finite graphs with deterministic transi-
tions. However, biological systems introduce stochastic complex
networks, which we model using infinite graphs and probabilis-
tic transitions. To deal with these new challenges, model checking
has been recently expanded to include time-bounds to analyze
infinite graphs and probabilities and statistical sampling to ana-
lyze graphs with probabilistic transitions. The statistical sampling
used in model checking employs Monte Carlo sampling, which
is a family of algorithms to efficiently sample from a probability
distribution that is usually difficult to sample directly.

2.2.2.6. Causal analysis. Large quantitative models offer a rich
representation of the dynamics of a system. However, within all
the details of the model, it may be difficult to derive a qualita-
tive understanding of a particular event. For instance, a model of
intracellular signaling in cancer may include multiple intersect-
ing pathways and thousands of reagents, but it may not be clear,
which reagents and reactions are responsible for the activation
of NFκB.

Structural causal analysis has emerged in several fields as a way
to answer such qualitative questions in systems whose dynamics
consist of discrete events (Nielsen et al., 1981; Danos et al., 2007,
2012; Paulevé et al., 2013). In this analysis, the user identifies a
particular outcome of interest and the analysis infers the sequence
of events leading up to that outcome or a set of events without
which the outcome would not occur. Given these sequences or
sets of events, the user can focus on those parts of the model that
include the relevant events. For instance, we may be interested in
which pathway activations led to the transcription of a particu-
lar gene. Causal analysis can identify, which pathways directly led
to the transcription in the model, even if the user has no initial
hypothesis.

The interpretations of causality discussed here are specific to the
systems in which they are implemented. Other notions of causality
plays a vital role in systems biology and related fields of machine
learning (Pearl, 2000; Kleinberg and Hripcsak, 2011) and statistical
inference (Loes et al., 2013), with its roots deep in the philosoph-
ical foundations of science (Hume, 1902; Cartwright, 2004). For
the sake of limiting the scope, we refrain from delving deeper into
the various notions and applications of causality.
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Korsunsky et al. Systems biology of cancer

2.2.2.7. Model reduction. Model reduction (MR) simplifies a
model in such a way that the model is more tractable to rep-
resent and execute and less prone to overfitting from too many
parameters, while the relevant dynamics of the model remain
unperturbed. For demonstration, we consider two examples. The
first (Feret et al., 2009; Danos et al., 2010) considers a rule-based
model of intracellular signaling that would produce an intractably
large system of ODEs with the typical semantics. Instead, the
authors compute a set of coarse grained variables, called frag-
ments, from the original set of all possible reagents, according to
the interactions between the rules. Unlike that of the original set of
molecular species, the system of ODEs for these fragments is com-
pact and tractable. In a particular implementation of their method,
the authors compute the fragments for a large model of EGFR sig-
naling that consists of 71 rules and 18,051,984,143,555,729,567
molecular species. The model reduction results in only 175,988
fragments, making it possible to construct a feasible system of
ODEs to compute the dynamics of these rules. Moreover, the
reduction is proven correct (Danos et al., 2010), in that it does
not change the quantitative dynamics of the original model.

The second work (Radulescu et al., 2012) focuses on the use
of tropical geometry (TG) for model reduction of networks of
biochemical reactions, as represented by a system of differential
equations. TG has been used in modeling Algebraic Differential
Equations that often appear in the study of normal and aber-
rant biochemical pathways. TG can informally be described as a
piece-wise linear or skeletonized version of algebraic geometry,
which has been widely applied in enumerative algebraic geometry
in the past and more recently, in computational systems biology
for model reduction. Thus, TG’s most prominent applications are
in obtaining “good” time scale separation in a biochemical reac-
tion network. Its applications are ideal when in the dynamics of
certain species, there is a dominant reaction whose effect overshad-
ows that of the rest – not uncommon in an enzymatic reaction.
In such a situation, TG can approximate the dynamics of a par-
ticular species by only its dominant reaction, until that dominant
reaction changes. Tropicalization exploits this idea by simplifying
the polynomials that define the rates in the ODE system. Namely,
it turns the polynomial into a sum through a log transform and
then chooses the largest term by transforming the sum into a max
operator. This step reduces the polynomial to a piece-wise smooth
function, with fewer parameters but almost identical behavior.

3. MODELS AND TOOLS FOR HETEROGENEOUS
POPULATION DYNAMICS

3.1. ABSTRACTION OF ODE MODEL TO TIMED AUTOMATON
To reiterate, model abstraction is a process that simplifies a model
in such a way that preserves almost all properties that need to
be examined. Such simplifications at multiple scales may play a
critical role in modeling a heterogeneous population of cells in a
tumor.

We illustrate this approach with an example, highly relevant
to cancer: we abstract an ODE model of a bistable switch that
controls the G1/S transition in the cell cycle. The key molecules
and their interaction leads to a high-level description of the ODE
model as portrayed in Figure 3A. The two positive feedback loops
governing their interactions lead to two stable states and hysteresis

in the transitions between the states. The latter property blocks the
circuit from transitioning to the G1 phase once it is in the S phase.
The value of the growth signals ranges from 0 (no growth signal)
to 2 (full saturation).

Our goals in constructing this abstract model are to identify the
steady states of the model, as these are likely to be biologically sig-
nificant, and to characterize the types of transitions among them.
In this example, the resulting abstract model shown in Figure 3B is
a two-state model that captures the two steady states of the detailed,
mechanistic model. The transition paths are described by a distri-
bution over the time taken by a transition between a pair of states
and by the concentration that modulates a certain transition. For
instance, in the presence of a high concentration of input signal,
the transition from G1 to S phase is marked by a timing distribu-
tion centered on a smaller time (see Figure 3C). Notice that both
the bistability and hysteresis, the two most important properties
of the mechanistic model, are preserved in the abstract model. On
the other hand, the exact concentrations of all the molecules in the
system are abstracted away. The construction of this simple model
was achieved through iterative sampling and simulation, but more
complex models may require more advanced techniques, such as
those studied in transition state theory and transition path theory
(Vanden-Eijnden, 2006).

We performed the abstraction by statistically sampling traces
of the concrete ODE model. Each trace began at a stable state per-
turbed by changing the growth signal and ended when the reagent
concentrations reached steady state again. From this procedure,
the result of each trace was a starting concrete state, an ending
concrete state, and the transition time to get from one to the other.
The abstract states were identified by performing k-means cluster-
ing on all the starting and ending states of the trace samples, with
increasing numbers of clusters. We chose the result that produced
the smallest variance of reagent concentrations within clusters,
while minimizing the number of clusters. To compute the transi-
tion times between some abstract states A and B, for instance, we
first labeled the beginning and ending state of each trace sample
with the closest abstract states, respectively. Then we considered
all traces that started in abstract state A and ended in abstract
state B, at a particular growth signal value, and used the transition
times of these samples to compute statistics1 on the transition time
between abstract states A and B, at the same growth signal value.

The gain we have achieved by abstracting a simple ODE model
into a simpler discrete state model may not be clear in the context
of analyzing just a single cell. However, assured that the abstrac-
tion is correct, we can use the approximate dynamics to model
each cell in a population of a very large number of cells. Note that
such an analysis for large mechanistic models would be intractable
for realistic cell populations. Instead of modeling the detailed
biochemical interactions within a cell, we view each cell as a strate-
gic agent, interacting stochastically with other cells and its own
microenvironment. This game theoretic perspective may illumi-
nate emergent behaviors of the population that were impossible
to observe in the single-cell simulations.

1Namely, mean and variance were used to approximate the distribution of transition
time.
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Korsunsky et al. Systems biology of cancer

FIGURE 3 | Abstraction example. (A) A concrete ODE model. Left:
circuit diagram. Pointed arrows denote activation while flat head arrows
denote inhibition. Right: demonstration of hysteresis in E2F
concentration and the lack of it in cyclin D concentration. (B) Its reduced
abstraction model. Each state is actually characterized by statistics on all
species in the original model. Here, the mean and SD of E2F is used for
brevity. Each edge is marked by the growth signal values (mean and SD)

that cause that transition. (C) Two representative edge distributions. The
left panel shows the distribution of transition time from the low E2F
state to the high one when the growth signal value is 1.5. The right panel
shows the same transition for a growth signal value of 2.0. In both, the
green circle represents the mean. Notice that the distributions look
similar but the mean transition time decreases substantially for the
higher input.

This simple example raises many questions about the nature
of models, their relationships to one another, and the possi-
bility of constructing composite models out of modular ones.
While we observed that the abstract model above captures two
key dynamical properties of the original model, are there guar-
antees about other dynamical information that we may have
lost? For instance, was there a rare but important third state
that could produce large population-level effects? It is imper-
ative to formally describe the similarity and distance between
these two models, which ostensibly represent the same biologi-
cal system. Finally, how exactly would we construct a composite
model from these abstract models to capture their biochemical and
mechanical interactions, which are not specified in the single-cell
models?

3.1.1. Formal definition of the abstract model
In this section, we provide a formal definition of the model. This
section is meant for readers with a computational background who
are interested in the formal details of the model. Reader can safely
omit this section and refer instead to the informal description
given earlier in the paper.

The formal definition of the timed discrete state abstract model
follows.

Model M =< S, E , I >

Abstract States S = (s1, s2, . . . sn)

Concrete State s = (p1, p2, . . . pk), pi ∈ Rnspecies

Edges E = S × S × I → ∆(R)

Input Values I = (in1, in2, . . . inninput ), ini ∈ R

The model is a 3-tuple of a set of abstract states, a set of input
values, and a set of edges. Each abstract state is currently charac-
terized by a set of clustered concrete model states, although in the
future, abstract states would be more succinctly described using
some distribution over the ODE network state. An edge is a map
from one abstract state (i.e., start state), another abstract state (i.e.,
end state), and an input (e.g., extracellular signal) to a probability
function over the time. Simply, it estimates the time it takes to get
from state 1 to state 2 given some input. The set of inputs is the
set of all possible inputs to the network, as described in the edge
definition.
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3.2. COMPOSITION OF LIVER MODEL WITH AGENT BASED
POPULATION MODEL

This section illustrates how composition of models allows explo-
ration of the interaction between two or more disparate systems.
The goal of the study described here was to determine the optimal
dosing schedule for treatment with Taxol, which is a chemo-
therapeutic drug against many forms of cancer. The main result
was an optimal schedule, which would avoid liver damage while
eliminating cancer cells.

The problem was to model both liver toxicity in the presence of
Taxol and also a population of cells in homeostasis (e.g., a tumor
in a specific “cancer hallmark” state). Since the systems are not
independent and are modeled with entirely different techniques,
their simultaneous simulation is non-trivial. The liver model was
constructed from the literature (Holmes et al., 1991; Rahman et al.,
1994; Tamura et al., 1995; Manzano et al., 1996; Guengerich and
Johnson, 1997) as a system of ODEs (depicted in Figure 4A) and
the population as an agent based system, in which the cells signal
one another to commit apoptosis or divide, determined by the
population size.

The composition consisted of a KMC-like (kinetic Monte
Carlo) simulation algorithm, in which the population model took

discrete steps and the liver model was simulated continuously
between the steps. Both models shared a common variable, track-
ing the concentration of Taxol in the organism. At the end of each
model’s simulation “step,” the model continuously updated the
global concentration of Taxol.

Deregulated growth in the population model was simulated by
allowing one cell to either adopt a strategy of constitutive prolif-
eration or evasion of apoptosis, which was then passed on to its
offspring. The time it took for the mutant cell to produce 200 off-
spring is summarized in Figure 4B. Taxol is modeled as a diffusing
agent that kills a cell when it tries to proliferate, thus targeting both
mutant and wild type cells.

In the liver model, Taxol is metabolized and causes the build up
of lactate, the main source of Taxol based liver toxicity. A sample
trace of this metabolism is depicted in Figure 4C. The four pos-
sible effects of different dosing schedules for Taxol are depicted
in Figure 4D. We discovered that it was possible to produce the
optimal (3rd) effect in this model.

3.3. NEXT GENERATION OF DYNAMIC MODELS
To receive the best treatment and diagnosis, most cancer patients
are willing to undergo invasive procedures to sample tumor

FIGURE 4 | Figures accompanying the composition model. (A) Wiring diagram of liver model. (B) Time to tumor for different phenotypic aberrations.
(C) Sample trace of ODE liver model simulation. (D) Four possible steady-state outcomes of composite model simulation, with differentTaxol delivery schedules.
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and metastatic tissue. It will soon be possible to augment the
data from these traditional means with non-invasively collected
high-coverage DNA and RNA sequencing data, coupled to single-
molecule and single-cell analysis with increasingly finer temporal
granularity, using next-generation sequencing (NGS) technolo-
gies (Wigler, 2012). With such tools, we can study the diversity of
individual cells in populations of cells.

Temporal models of dynamic biological processes, multi-scale
and multi-level abstractions, and the analytical tools based on sta-
tistics and temporal logic could provide much sharper tools to
address the challenges that these data pose.

A powerful approach is to build statistical analysis tools upon
simple phenomenological models – in which the data themselves
are viewed dynamically in terms of “snapshots in the temporal
chain of events,” each event coordinated collectively by differ-
ent cell-types in different cell-states (Ramakrishnan et al., 2010).
With these logical analyses, inferred temporal logic invariants
reveal various causal linkages between events that were earlier
indistinguishable from mere correlations – recorded by the data
and redescribed by the phenomenological models (Kleinberg and
Mishra, 2009). The next steps in system biology’s progress in the
biomedical arena would be improving our current understand-
ing of mechanisms described by pathways, metabolic processes,
signaling, etc., and in seeking to intervene in the components of
these mechanisms to modify the system’s behavior (Olde Loohuis
et al., 2014).

Success of such a program hinges on how we address the
following questions (many of them partially solved):

(1) When can two models be considered “the same?”
(2) When can one model be considered an abstraction of another?
(3) When can one model be considered to approximate another

model?
(4) How can several models be combined to provide larger mod-

els, either containing multiple subsystems or at multiple
scales?

3.4. MULTI-SCALE MODELS
Computer science research has addressed several of these ques-
tions. Model equivalence provides tools such as simulation and
bisimulation for defining and algorithmically testing whether two
models represent the same trajectories of events. Model approx-
imation extends these tools by allowing essentially equivalent
models to be slightly different due to stochasticity or granular-
ity. Model composition provides tools for combining disparate
models both accurately and efficiently, by considering the mod-
els’ relevant interactions and independencies, respectively. This
is tightly related to hierarchy and decomposition, which provide
structures to efficiently represent, store, and execute composite
models. Finally, evolution, while not inherently a computer science
concept, is essential to understanding and modeling population
effects.

Section 3.2 provides as example of a multi-scale, compos-
ite model of a tumor cell population, liver metabolism, and the
simultaneous effects of Taxol treatment on both. Conceptually,
this example helps illustrate the notion of combining two dis-
parate types of models to study the emergent properties of the

larger system. Practically, this model can serve as the basis to study
the effects of various chemo-therapeutic dosage regimens, such as
metronomic therapy, on the tumor and other organ systems.

3.5. REVIEW OF NEXT-GENERATION TOOLS
We take the time here to illustrate hypothetical sequences of
abstractions and to describe the types of tools that will be neces-
sary in analyzing large scale dynamical models in modern systems
biology.

3.5.1. Illustration of model abstractions
Systems biology aims to describe large systems instead of isolated
parts. It would be impractical to attempt to attain this goal with
one model type, because different types of models lend them-
selves to modeling different types of systems, at different scales.
To illustrate how the proposed approach permits a variety of
modeling techniques to be applied to a single problem, we use
a sequence of abstractions in which we can view the same system
in many different ways. We start with a rule-based specification of
a reactive biochemical system, which can be executed in a variety
of ways.

For instance, the specification can be transformed into an
executable model that is either deterministic or probabilistic, as
illustrated by the left (deterministic) and right (stochastic) sides
of Figure 5.

First, in order to model the system using the sequence of deter-
ministic models on the left-hand side of Figure 5, we start by
assuming mass action kinetics. This permits tracking the average
behavior of the chemical species using an ordinary differential
equations model (see Section 2.1.2 for an example). This con-
version is standard and well documented for rule-based models
(Blinov et al., 2004; Danos et al., 2010). If the ODE dynamics
exhibit sharp transitions among several regimes, each of which can
be described by simpler ODE models, we abstract the ODE model
into a hybrid automaton (HA). The HA contains discrete modes,
each of whose dynamics is modeled by a simpler ODE model. This
transformation has been defined and used in Alfieri et al. (2011),
Grosu et al. (2011), and Noel et al. (2011). Alternatively, the ODE
dynamics may be very steep. That is, molecular concentrations
are either high or low but do not dwell in the intermediate states
for long. In this case, the ODE model can be transformed into a
Boolean network, in which there are activating edges from x1 to x2

if dx2
dt is positively related to the concentration of x1 and inhibitory

edges if it is negatively related.
Next, consider the probabilistic side of the figure. Again start-

ing with a rule-based model, it is appropriate to use a probabilistic
model if the concentrations of species are low and stochastic effects
could have significant effects on the overall dynamics. In this case,
we transform the rule-based model into a stochastic model that
simulates sampling from the chemical master equation (Danos
et al., 2007; Smith et al., 2012) through a set of reactions and
reaction rates.

Under the assumptions of a well-mixed and homogeneous sys-
tem, this model can be simulated as a CTMC using the kinetic
Monte Carlo (KMC) algorithm. To improve efficiency, at some
cost to accuracy, we can transform this stochastic model into a
dynamic Bayesian network (DBN). Through careful sampling, we
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FIGURE 5 | Sequences of abstractions from rule-based specifications to deterministic (right) and stochastic (left) models.

can then find the distribution of reagent concentrations varying
over time that is formalized by the DBN. If we further find that
variable values tend to vacillate between a range of high and low
values, we can model the DBN as a probabilistic Boolean network
(PBN). Lähdesmäki et al. (2006) have explored the relationship
between these two models and showed how they can represent
similar systems.

3.5.2. Tools description
3.5.2.1. Model equivalence. When can we consider two mod-
els to be the same, so that we can justify substituting one kind of
models by another? In what sense are they to be considered equiv-
alent? What does this mean if models are stochastic – do they
produce just the same aggregate results, such as averages, or must
distributions be the same?

A very powerful concept for deterministic models is that of
bisimulation (Desharnais et al., 2004; Danos et al., 2006), which
was first developed in the context of reasoning about complex
computational systems, such as an operating system. A bisimula-
tion defines an equivalence between two models in terms of the
simulation events (see Figure 6). Two models are thus equivalent
if they can exhibit identical sequences of events for all possible
simulations.

These ideas are usable even when the two models are of dis-
parate types. To make this precise, define a trajectory as a set of
states/observations produced by the simulation of a model. Two

FIGURE 6 | Approximate bisimulation equivalence. α1 and α2 are
trajectories of simulations in M1 and M2, respectively. d(α1, α2) is the
distance metric between the trajectories.

models (M1 and M2) are bisimilar (M1 ∼ M2), if for every
simulation in M1, there is a simulation in M2 that produces an
equivalent trajectory, and vice versa. For this situation, a notion
of bisimulation is required that can be used to ask if a model of
apoptosis in one organism may be bisimilar to an analogous model
in another organisms, even though the states in the two distinct
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organisms are described in terms of behavior of two different sets
of genes, related by gene-orthology.

3.5.2.2. Model approximations. Bisimulation equivalence is
often too strong a constraint, and often approximate bisimula-
tion equivalence (ABE) is sufficient for applications (Girard and
Pappas, 2005). In ABE, we assume that the simulation trajectories
for both models M1 and M2 lie in a single metric space (X, d).
The models M1 and M2 are said to be approximately bisimula-
tion equivalent up to precision δ if the corresponding simulation
outputs are individually separated by distance at most δ. In this
case, we write M1∼δM2.

3.5.2.3. Model compositions. Given a pair of models of inter-
acting systems, we may wish to create a model that captures the
essence of the combined system. Although, intuitively this is a
rather simple concept, a good formal definition is difficult, as
state-reachability and temporal dynamics interact in a complex
way. One approach that has been used works by first defining a
composition operation using a suitable heuristic and then show-
ing that the resulting model is a “good” approximation of the real
system. In a typical definition, the state of the composite model is
described by a combination of the variables in its children’s states.
If these variables do not overlap, the simulation of the composite
model is trivial: the sub-models run in parallel, and the com-
posite is their Cartesian product. When they share variables (e.g.,
crosstalk in a signaling network), parallel simulation may fail, as
the flow of one may depend on variables in the other. A naïve
approach would simulate both for ε time, implicitly assuming that
the variables change only infinitesimally, update the flows of both,
and repeat – which, however, is infeasible for continuous flows, as
ε would have to approach 0 for accurate results; discrete flows are
less problematic.

Consider three types of dependencies between a variable and a
flow in different models.

I. A close interaction: a small change in the variable causes a
significant change in the flow.

II. A remote interaction: a large change in the variable is required
to cause a significant change in the flow.

III. No (empty) interaction: no amount of change in the variable
will affect the flow.

Clearly, no interactions would result in the trivial composi-
tion. The presence of one close interaction creates the “ε dilemma”
discussed above. Thus, any partition that introduces such“ε dilem-
mas” is to be minimized. On the other hand, if all interactions
between models were remote, we could define a guard condi-
tion for each interaction that is triggered when a variable changes
sufficiently to require an update in its corresponding flow. The
guard conditions constitute a set of discrete, timed events that are
typically simulated using kinetic Monte Carlo.

3.5.2.4. Hierarchy and decomposition. We envision a large
systems biology model as a hierarchical combination of smaller
models. Thus, one can formulate the hierarchy as a tree structure
(see Figure 7). The leaves (blue) represent atomic models that are

FIGURE 7 | Hierarchical composition. Tree structure that describes the
hierarchical relationships between atomic models, the meta-model, and
partial-composition models.

well-defined outside of the compositional framework. The root
(green) represents the full meta-model, and the other internal
nodes (red) are partial-compositions of other models. Each node
in this tree represents a complete executable model, defined by a
state and a flow (see Section 2.2).

Clearly, to ensure that we can efficiently and accurately simulate
such a large systems biology model, it is often required that it has
a modular structure (Figure 7), in which intra-modular dynamics
can be of types I, II, or III, but inter-modular dynamics can only
be of type II and III. This requirement is not as stringent as it
may seem at first; multi-cellular biological systems are naturally
organized in this way. Intracellular dynamics are separated from
one another by cell membranes but connected via slower acting,
intercellular signals. Solid organs have their own internal dynam-
ics and share “variables” via hormones and neuro-transmitters.
Even gene and protein interactions in regulatory and metabolic
systems can be decomposed into pathways that interact with each
other through weak cross-talks (see Figure 1 for an example of
crosstalk interaction between pathways).

To this end, we propose not only a formal structure in which to
specify and simulate multi-scale models in systems biology but also
a philosophy of modularity that follows the structures established
by nature.

3.5.2.5. Evolution. While “proximate” explanations in biology
can be presented using mechanistic models of the kind we have
described earlier, “ultimate” explanations are impossible except
in the light of evolution, where the dynamics is to be under-
stood in terms of multiple strategic agents. One powerful use of
abstraction – built from approximations and compositions – is
in allowing a translation from mechanistic models, in which the
internal state is described in great details, to strategic models, in
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which the input and output behavior is characterized in terms
of some less detailed internal states (phenomenological states).
This shift allows us to connect mechanistic models to a bur-
geoning class of systems biology models that are based on game
theory.

4. DISCUSSION
From a pragmatic perspective, the study of cancer should aim to
exploit patient data at all levels in drug discovery and therapy
design. Analysis of data in the quantity currently available, with
granularity at the level of a specific cell, requires more refined
techniques than have been previously available. However, recent
developments in modeling suggest that systems biology is primed
to take the lead in this investigation, which necessitates the incor-
poration of large amounts of data into integrated models of
multiple simultaneous processes operating at different scales.

Specifically, therapy design requires accurate, tractable pro-
gression models that track the evolution of pathway activity and
genomic alterations that characterize various stages of the disease
over time. To this end, we need rigorous notions of abstraction
that allow us to retain detailed pathway information in simpler
models. Therapy design must also take into account the toxicity
of chemotherapy and budget constraints (e.g., the ones imposed
by the monetary cost incurred by the healthcare system). Our
approach requires integration among highly disparate models,
and to this end, we need a rigorous way to simulate models
simultaneously at different scales.

Finally, modern analytical tools will play a crucial role in the
construction and application of these abstractions, hierarchical
composite models. For instance, we need model checking to sys-
tematically characterize cancer phenotypes in terms of temporal
properties. Also, sensitivity analysis is indispensable for identifying
the key targets of signaling networks for drug discovery.

In summary, we need ways to simulate and analyze mod-
els efficiently. We also need to formalize model abstraction and
to characterize its properties. These problems have been studied
extensively in computational research, such as rate-distortion the-
ory and bisimulation equivalence, and could now meaningfully be
adapted to meet the needs of biological systems. Most importantly,
we need a means to personalize complex heterogeneous models to
patients, in order to devise the most effective therapies for each
patient.
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The Early Stages of Malignant Hematopoiesis: A Multi-cellular,

Multi-compartment and Multi-factorial Challenging Study Model

Development of normal hematopoietic cells is an ordered multi-step process, tightly regulated by a
complex network of intrinsic factors and microenvironmental cues that control cell fate decisions
within the bone marrow (BM) (Pelayo et al., 2012; Purizaca et al., 2012; Boulais and Frenette, 2015).
During malignant hematological disorders, including acute leukemias (AL), the uncontrolled
differentiation of precursors of the lymphoid or myeloid series sustains tumor growth at the
expense of normal blood cell production. Moreover, selection and dominance among leukemic
clones occur while competing for niche resources and creating abnormal BM microenvironments
that co-participate in the pathobiology of the disease (Colmone et al., 2008; Ayala et al., 2009;
Purizaca et al., 2012; Kim et al., 2015; Vilchis-Ordoñez et al., 2015). Thus, due to the complexity and
health impact of AL (Gupta et al., 2014), new strategies to better predict cell population dynamics
according to genetics, microenvironmental and clinical heterogeneous contexts may contribute to
understand its pathobiology and to guide strategies for decreasing overall mortality.

Mathematical modeling has emerged as a powerful tool in biomedical and health research
because it enables the simulation of complex biological systems and the efficient generation of
testable hypotheses. In recent years, leukemic cell dynamics has been addressed from the novel view
of systems biology, resulting in helpful stochastic and deterministic models and providing clearer
understanding of the disease by simplification ofmalignant clonal evolution processes (Vesely et al.,
2011; Amir et al., 2013; Paguirigan et al., 2015). However, models fitted to experimental data must
strike a balance between simplicity and reality, so that they can bring insights into clinical scenarios.

Here we discuss the importance and challenges of incorporating the BM microenvironment
into AL modeling, as a key element that will control the interplay between cell populations and
the selective pressure leading to leukemic or normal hematopoiesis progression. By developing
integrative tools that better mimic and predict the behavior of heterogeneous and polyclonal cells
in the context of abnormal microenvironments within leukemic bone marrow, we may learn about
crucial mechanisms co-participating in the etiology and progression of the disease.

Normal vs. Leukemic Clones: Systems Biology in the Study of

Acute Leukemia Complexity

Continuous dynamic modeling with differential equations (DEs) has been the most popular
systems biology tool for the study of normal and leukemic hematopoiesis. This type of modeling is
useful for the time evolving non-linear competition between normal and leukemic cell populations,
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considering multiple compartments to simulate different
maturation stages or multiclonal behavior (Catlin et al., 2005;
Stiehl and Marciniak-Czochra, 2012; MacLean et al., 2013; Stiehl
et al., 2014).

Of special interest, theoretical data suggests the existence
of an initial “steady state” before the disease development,
when co-existence of normal hematopoiesis with a limited
number of pre-leukemic cells controls leukemia installation
(Rubinow and Lebowitz, 1976; Stiehl and Marciniak-Czochra,
2012; Swaminathan et al., 2015). A sudden change in the
homeostatic parameters may induce leukemic cell expansion
leading to a progressive decrease of normal hematopoiesis,
while perturbation of initial homeostatic state endows malignant
cells with self-renewal and proliferation. Accordingly, the model
by Rubinow and Lebowitz’s on competition advantage of
leukemia cells proposed a higher value of their equilibrium
number that refers to the maximum population size that
can be supported within the niche. If the stop-expansion
signal for malignant progenitors is not delivered before
the equilibrium number is reached, a signal activating the
slow-down of normal cells promotes the expansion of the
leukemic population. High equilibrium numbers in leukemic
compartments could be biologically interpreted as independence
from the microenvironment, unbalanced proliferation/apoptosis
rates, and further accumulation of blasts.

Using a stochastic model to simulate stem cell decisions,
Abkowitz and colleagues have analyzed the behavior of
individual components (HSC) acting collectively within a
dynamical complex context (clonal diversity plus heterogeneous
surrounding microenvironment). By tracking HSC replication,
the expansion of the hematopoietic system was apparent from
birth to adolescence, when steady-state levels are reached.
Stochastic modeling of replication kinetics has shown to be useful
to predict cell rebounding upon hematopoietic transplantation or
under emerging conditions (Catlin et al., 2005, 2011). In contrast,
agent-based deterministic modeling of HSC organization in
health and hierarchical-related diseases, like chronic myeloid
leukemia, are powerful for simulating additional heterogeneity
scenarios to be considered, i.e., aging, HSC-niche interaction and
therapy outcomes (Glauche et al., 2011). Unlike CML, AL cells
show apparent dependence on their own “leukemic niche” (Veiga
et al., 2006; Colmone et al., 2008; Basak et al., 2010; Jacamo et al.,
2014). Recent models suggest additional feedback mechanisms
assuming both, the leukemic and normal cell interdependence on
the same growth factors (Stiehl et al., 2014).

In addition to the normal vs. leukemic competition, increasing
evidence of genetic diversity supports the multiclonal evolution
of AL (Choi et al., 2007; van Delft et al., 2011; Amir
et al., 2013). Strikingly, rather than as a consequence of
new acquired mutations, relapse could be explained as a
deterministic clonal selection where high proliferative cells are
eliminated by chemotherapy, while distinct slow-cycling or
self-renewing cells stay protected and may re-emerge when
the competing clones (leukemic high-proliferating cells) and
their negative feedback (normal hematopoietic cells) have been
eliminated. Similar to deterministic models of chemotherapy-
dependent clonal selection, the stochastic modeling by Kimmel

and Corey drives to the conclusion on the co-existence of
distinct clones and the extremely broad heterogeneity of
cancer cells. However, the stochastic acquisition of mutations
may provide theoretical evidence of the parallel evolving
clones with unique proliferative potentials, and represent a
suitable model for chronic chemotherapy-induced transition to
secondary malignancy (Kimmel and Corey, 2013). Despite the
fact that linear mutation structures can simplify the population
dynamics, it is necessary to consider proliferation heterogeneity.
Interestingly, the acquisition of de novo mutations is more
probable during long treatment schemes (Lindsley et al., 2015).

Technological advances in RT-PCR, RNA-seq and mass
cytometry methods for single cell analysis are providing
highly specific clusterization of cell populations that allow
the identification of experimentally unseen cell transition
stages from the earliest steps of differentiation (Marco et al.,
2014; Moignard et al., 2015). With new experimental models
and molecular research progress, parameters and assumptions
considered for the development of mathematical models, evolve
to a more complex understanding of leukemogenesis. The
view of two or more hematopoietic populations competing
within compartments, plus the resulting regulation among
compartments from the isolated feedback loops is too simplistic.
Therefore, it is becoming of substantial importance to take
into account additional intercellular interactions, including those
with non-hematopoietic neighboring cells within the BM niches.

Modeling the Interplay Between Leukemia

Cells and the Tumor Microenvironment

Tumor-microenvironment interplay is essential for the
protection and progression of malignant cells, where a number
of interactions mediated by integrins, cytokines and chemokines,
extracellular matrix (ECM) proteins, and other molecules
produced and expressed by niche cellular elements, may dictate
the final fate decision (Raaijmakers, 2011). The recent multi-
compartment model by Gerdes for T-cell lymphoma/leukemia,
suggests that premalignant cells can get established in any
available permissive niche, compensating their low affinity for
specific interactions with an increased efficiency for resource
utilization when compared to normal clones (Gerdes et al.,
2013).

Closer to this multi-component interaction outlook has been
the development of generic-cancer cell-automata models. This
type of discrete modeling makes the evaluation of homogeneous
or heterogeneous cell populations in a grid where every cell
has a defined state and neighborhood possible. Strikingly,
cell-automata modeling concede single-cell resolution and had
become a very promising tool for the study of tissue development
and tumors, including microenvironmental factors like ECM
density and oxygen diffusion that control tumor size (Chen et al.,
2014; Scott et al., 2014).

In spite of the power of these approaches, it is clear that
the feedback existing between the BM microenvironmental
components and the malignant cell decisions operates at a
molecular level regulating intracellular pathways. How could we
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mimic the complexity at cellular population and molecular levels
at the same time? How could we address themulti-cellular system
within systems complexity?

Simulation of One-cell Molecular Network

Models with Multi-cellular Methods

Knowledge about the hematopoietic system has been benefited
from the development of regulatory networks for early HSC
differentiation, T lymphocyte development, plasticity and

signaling, among others (Albert and Wang, 2009; Naldi et al.,
2010; Martínez-Sosa and Mendoza, 2013; Tian and Smith-Miles,
2014). Considering that every computational simulation with
a specific initial state of an intracellular network represents a
single cell dynamic profile, to simulate a multi-cellular process
we must simultaneously simulate as many networks as cells
within the system (Wu et al., 2009). Accordingly, Mendoza
proposed a virtual culture of Th cells that simulate differentiation
of naive CD4+ T cells to Th1, Th2, Th17, and Treg subsets.
In this model, each cell phenotype is defined by molecular
patterns of activation, while the input for each virtual cell at

FIGURE 1 | Systems within a system. Leukemic initiation and progression is a tightly regulated competitive process, where at least three systems must work

together: the normal hematopoietic differentiation, the leukemic cell production, and the hematopoietic microenvironment where malignant and normal cells

competition takes place. As blast population increases, the normal cell abundance decreases. Cell population changes have been modeled through differential

equations in multi-compartment continuous modeling, strategy that allows the representation of hematopoietic hierarchy with the assignation of different kinetic

parameters values for cells within each compartment. The model mimics in vivo fundamental properties like quiescence in the stem-cells compartment and increasing

proliferation in developing cells. Additional to regulatory feedback between normal and malignant hematopoietic populations, an abnormal microenvironment may play

a crucial cooperating role in the inverse leukemic/normal relationship by disrupting the HSC-niche communication. The genetic diversity within the various

leukemia-initiating cells and tumor cells highlights the multiclonal complexity of the disease, and suggests the existence of minor malignant clones—undetected at

diagnosis—that become apparent upon chemotherapy and drive individuals to relapse. HSC, hematopoietic stem cell; HPC, hematopoietic progenitor cell; PC,

precursor cell; MC, mature cell; LIC, leukemia initiating cell.

Frontiers in Genetics | www.frontiersin.org                                                                111                                                            September 2015  | Volume 6 | Article  290

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Enciso et al. Systems biology of leukemia hematopoiesis

any time-step proceeds from the intercellular communication
(Mendoza, 2013). More importantly, the dynamics of a given
regulatory network respond to the concentration of regulatory
cytokines produced by the cell itself and to neighbor signal
intensities. Thus, applying tools like virtual cultures to malignant
hematopoiesis may help to understand blast accumulation or
the intercommunication between leukemia-initiating cells and
an abnormal BM microenvironment (Figure 1). The recent
demonstration of pro-inflammatory cytokines produced by ALL
cells suggests that this condition may promote their own survival
and account for the exhaustion of normal progenitor cells
(Vilchis-Ordoñez et al., 2015). The pathological consequences
of a pro-inflammatory microenvironment can be resumed in
three potential principles: (a) leukemic cells showing aberrant
expression of cytokines that perturb normal hematopoiesis, (b)
mutated stromal cells favoring a permissive microenvironment
for leukemia initiation, progression, andmaintenance (Shalapour
et al., 2010), or (c) normal hematopoietic cells responding to
biological stress due to blast overcrowding by activating
pro-inflammatory pathways. These three scenarios might
act independently or sinergistically by means of positive
feedback.

To solve this, hybrid models are also mathematical tools
with great potential to model microenvironment-dependent
systems, allowing the scaling to tridimensional modeling and
the consideration of discrete decisions on cell processes like
migration and proliferation (Anderson, 2005; Scott et al.,
2014). Although these dedicated models have considered
microenvironmental factors for solid tumor progression, they
still miss the direct feedback existing between extracellular
factors and the intra-cellular signaling pathways that regulate
cell fate decisions. Of note, an intracellular view would allow
modeling of constitutive or null activation of specific pathway
mediators and analyzing the putative consequent effects on
disease dynamics. Virtual cultures make this possible, but the
very high computational requirements when modeling excessive
number of cells may represent by now a weakness of the strategy.

For any of the discussedmodeling approaches, the importance
of a rigorous experimental validation of mathematical modeling
for complex processes is high and has been limited by

the experimental systems that are conventionally used to
study human leukemogenesis. The combination of single-cell
sequencing, 3-D organoid-like cultures and xenotransplantation
would provide new information for malignant vs. normal
cell discrimination and cell population dynamics within more
natural microenvironmental structures. Furthermore, a proper
validation of current and future investigations from the view
of systems biology will benefit from longitudinal, prospective
clinical studies.

To this extent, the use of “edge-technology” in silico strategies
for multi-cellular (leukemic, hematopoietic, and stromal
components), multi-compartment (differentiation stages), and
agent-based (individual cells network) modeling of leukemia
pathobiology is a promising tool for the study of feedback
pathways in the searching of auxiliary strategies for leukemia
treatment, normal hematopoiesis rebounding, and relapse delay.
The construction of novel “systems within a system” integrative
theoretical models (Figure 1) that better mimic and predict the
behavior of the disease may transform our vision of malignant
hematopoiesis and provide helpful platforms for new testable
hypotheses.
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