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Editorial on the Research Topic
Advances in drought analytical tools for better understanding of current
and future climate change

When considering the effects on the economy, society, and environment, drought ranks
near the top of the hydroclimatic hazards. Many social, economic, and ecological systems are
negatively impacted by droughts, including water quality and supply, crop yield, biodiversity,
aquatic, and riparian habitat quality, urban and industrial water supply, and hydropower
generation. Accelerating urbanization and a warming planet only compound these impacts.
As such, there is a growing need to enhance current knowledge of drought and develop more
precise and timely forecasts of this phenomenon. Recently, more precise drought monitoring
and analysis at various spatial and temporal scales have been made possible by high-
resolution meteorological and satellite data and high-performance computing resources.

This Research Topic focuses on recent developments in understanding drought
processes from local to global scales, and how these advances can improve current plans
and strategies for reducing drought risks. Recent examples observed in different
environments are introduced in this Research Topic, particularly in North America,
Asia, and Africa, demonstrating the need for societal-level resilience initiatives to
enhance drought preparedness and to accommodate the negative impacts of drought on
natural systems and socioeconomic sectors. It is emphasized that strengthening resilience to
drought risks is not an easy task; it calls for the confluence of many different drivers and
processes. Also, different types of drought (e.g., meteorological, agricultural, hydrological,
and socioeconomic), varying metrics, different assumptions, and interactions between
natural and anthropogenic factors add to the complexity of drought resilience. It is
noted that while drought is a global phenomenon, exacerbated by human-caused climate
change due to increases in evapotranspiration and temperature, it is crucial to quantify
drought risks on detailed spatial scales.

In ten articles with contributions from 45 authors, this Research Topic features novel
and cutting-edge methods for describing, attributing, and forecasting drought events in
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the context of both current and future climate conditions, together
with related challenges and opportunities. In their global
assessment of drought variability, Fuentes et al. employed a
variety of drought, vegetation, and runoff indices to quantify
the duration, severity, and intensity of drought across a wide
range of Köppen climate types. They found that drought has a
more immediate effect on water runoff and streamflow than on
plant life. However, the duration and intensity of this response
vary across large regions and over time. Their research reveals that
droughts are getting worse and expanding across southern South
America, Australia, and south-western Africa, having remarkable
negative effects on vegetation and hydrology. The article by Yu
et al. analyzed data from 47 weather stations on the Yunnan-
Guizhou Plateau (YGP), China, to determine the spatio-temporal
distribution and zonal patterns of drought across the region using
the Standardized Precipitation Evapotranspiration Index (SPEI),
the Mann-Kendall test, and principal component analysis (PCA).
Drought characteristics (e.g., duration, severity, intensity, and
frequency) exhibited strong zonal patterns, as indicated by a
positive multivariate linear correlation with longitude, latitude,
and elevation. Jansen et al. examined the effects of climate change
on streamflow and urban water demand in North America and
developed an empirical model to estimate municipal water
shortage risks and quantify supply and demand forecast risks.
Five global climate models were used to simulate
2080–2099 streamflow under two climate scenarios (RCP4.
5 and RCP8.5). The models were validated by comparing their
simulations with municipal water consumption data from
47 North American cities. Finally, they identified water-scarce
areas. In another paper, Huang et al. developed a Standardized
Groundwater Index (SGI) to assess groundwater drought in
Xuchang (China) from 1980 to 2018. In this study, Morlet’s
continuous complex wavelet transform was used to analyze
groundwater drought cycles over multiple timescales and
across different geographic areas. In the paper of Zheng et al.,
the role of climatic variables (e.g., precipitation, air temperature,
and evaporative demand) in drought occurrence in the Luanhe
River Basin (LRB), China, was quantified using deep learning
techniques. The interplay between evaporative demand, solar
radiation, and wind velocity was largely responsible for
drought evolution. Moving to Iran, Band et al. assessed the
severity and duration of the drought and investigated changes
in the drought into the future in Semnan city. They examined the
impact of differentiation operations on improving the static and
modeling accuracy of the Standardized Precipitation Index (SPI)
time series. The findings point to hybrid differentiation as
providing the most reliable indication of stability. Also, Li
et al. used the SPI, trend tests, Run Theory, Moran’s I,
and General G to evaluate meteorological drought in arid and
semiarid regions of Northwest China from 1960 to 2018.
Global Moran’s I (GMI) suggests that drought is more

dispersed in winter and more damaging in summer and
autumn. Afroz et al. conducted a systematic review to
determine the relative importance of compound or concurrent
extremes (CEs) hotspots, events, parameters (frequency and
severity), large-scale drivers, and impacts (e.g., on yield loss
and fire risk). This study summarized three CE analysis
frameworks for drought- and heatwave-associated CEs: CE
parameters (event-event), driver association (event-driver), and
impacts (event-impact). They demonstrate that southern
Africa, Australia, South America, and Southeast Asia are the
most frequently reported hotspots of these CEs in global
studies. Using the global outputs from the Lagrangian
FLEXPART model, Stojanovic et al. conducted a case study
over Ethiopia, pinpointing the primary sources of annual
climatological moisture for 12 river basins. They identified
major oceanic moisture sources (e.g., the Mediterranean Sea,
Red Sea, and Indian Ocean), in addition to major terrestrial
moisture sources (such as the Arabian Peninsula). The
northeastern, southwestern, and western basins get the
majority of their moisture from the African continent, while
the southeastern basins get their water primarily from the
Indian Ocean.

Overall, this Research Topic highlights advanced techniques
used or developed to improve drought quantification under current
and future climate conditions, outlining the main challenges and
opportunities through case studies from different regions
worldwide. Finally, we thank all authors and reviewers for their
contributions to this Research Topic.
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Assessment of Future Risks of
Seasonal Municipal Water Shortages
Across North America
Joseph Janssen1,2*, Valentina Radić 1,2 and Ali Ameli 1,2
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While anthropogenic climate change poses a risk to freshwater resources across the globe
through increases in evapotranspiration and temperature, it is essential to quantify the risks
at local scales in response to projected trends in both freshwater supply and demand. In
this study, we use empirical modeling to estimate the risks of municipal water shortages
across North America by assessing the effects of climate change on streamflow and urban
water demand. In addition, we aim to quantify uncertainties in both supply and demand
predictions. Using streamflow data from both the US and Canada, we first cluster 4,290
streamflow gauges based on hydrograph similarity and geographical location. We develop
a set of multiple linear regression (MLR) models, as a simplified analog to a distributed
hydrological model, with minimum input data requirements. These MLR models are
calibrated to simulate streamflow for the 1993–2012 period using the ERA5 climate
reanalysis data. The models are then used to predict streamflow for the 2080–2099 period
in response to two climate scenarios (RCP4.5 and RCP8.5) from five global climate
models. Another set of MLR models are constructed to project seasonal changes in
municipal water consumption for the clustered domains. Themodels are calibrated against
collected data on urban water use from 47 cities across the study region. For both
streamflow and water use, we quantified uncertainties in our predictions using stochastic
weather generators and Monte Carlo methods. Our study shows the strong predictive
power of the MLR models for simulating both streamflow regimes (Kling-Gupta efficiency
>0.5) and urban water use (correlation coefficient ≈0.7) in most regions. Under the RCP4.5
(RCP8.5) emissions scenario, theWest Coast, the Southwest, and the Deep South (South-
Central US and the Deep South) have the highest risk of municipal water shortages. Across
the whole domain, the risk is the highest in the summer season when demand is high. We
find that the uncertainty in projected changes to the water demand is substantially lower
than the uncertainty in the projected changes to the supply. Regions with the highest risk of
water shortages should begin to investigate mitigation and adaptation strategies.

Keywords: multivariate regression, North America, water supply, water demand, risk of municipal water shortage,
streamflow
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INTRODUCTION

Based on current climate projections, global mean temperature is
likely to increase by at least 2°C, relative to the 1850s, by the end of
the century (Forster et al., 2020). This warming will lead to
unprecedented consequences for life on this planet including
increased wildfire risk (Goss et al., 2020), decreased snowpack
(Ashfaq et al., 2013), and decreased freshwater biodiversity (Reid
et al., 2019). While every location on Earth is expected to
experience increases in near-surface air temperature, ranging
from a 1°C increase over oceans to over 5°C in higher latitude
areas, the projected changes in precipitation are less certain and
less spatially uniform (Hoegh-Guldberg et al., 2018). The
projections of hydrologic drought and floods are consequently
uncertain, while at the same time, highly costly in terms of their
impact on property damage, food shortage, loss of jobs, and loss
of lives (Howitt et al., 2015; Achakulwisut et al., 2018; Tellman
et al., 2020). More accurate predictions of these extreme events
can lead to better mitigation and adaptation procedures, such as
green infrastructure, placing restrictions on water consumption,
moving water in above-ground reservoirs to below-ground
aquifers, or investing in technologies that could improve water
use efficiency (Tanaka et al., 2006; Mei et al., 2018; Yang and Liu,
2020).

As anthropogenic climate change progresses and populations
across North America continue to grow, freshwater resources on
the continent may experience more strain. The United States (US)
and Canada use the most water per capita (>1,000 cubic meters
per person per year) compared to other G8 countries (100–900
cubic meters per person per year) (Ritchie and Roser, 2017).
Despite the use of less than 20% of their available water resources
every year, freshwater resources and potential vulnerability to
water shortages are non-uniformly distributed throughout the
continent (Rosegrant and Cai, 2002). Such shortages will act as a
vulnerability multiplier leading to socioeconomic and physical
health deterioration in groups such as migrants, poor families in
urban areas, and farmers (Sugg et al., 2020). The Canadian
Prairies are known to have been vulnerable to historical
hydrologic droughts, although few assessments of drought risk
across Canada have been made to date (MacDonald et al., 2008;
Bonsal et al., 2011). In the US, the regions most severely hit by
recent droughts include the Central US (Basara et al., 2019),
California (Howitt et al., 2015), as well as the relatively wet areas
in the US South (Chen et al., 2012). Further droughts in these
areas as well as more widespread droughts throughout North
America may come as a result of declining summer precipitation
in the latter half of the 21st century, warming Pacific and North
Atlantic Oceans, and escalating climate variability (Rosegrant and
Cai, 2002; MacDonald et al., 2008; Schwalm et al., 2012).
Droughts, however, are not the only climate pattern of
concern. Snow is crucial in the western United States for
sustaining water demand, thus decreasing snowpack as a result
of increasing temperatures threatens water sustainability, though
uncertainties remain large (Mankin et al., 2015).

Risk of freshwater shortage is measured in a variety of ways
(Rosegrant and Cai, 2002; Foti et al., 2012; Dickson and
Dzombak, 2019). For example, Foti et al. (2012) defined

shortage risk as the difference between water supply and
demand, or more specifically, as a probability for crossing the
critical threshold when water demand exceeds supply. Different
types of process-based or mechanistic models (e.g., Chien and
Knouft, 2013; Mahat et al., 2017) and statistical or purely data-
driven models (e.g., Barbarossa et al., 2017; Mendoza et al., 2017;
Brunner et al., 2020) have been used to project changes in water
supply and water demand globally and in North America.
Mechanistic models are efficient tools for prediction of water
supply and demand in regions where a wide range of data on
climatic, landscape, and socioeconomic and demographic
attributes are available. Despite great progress being made on
developing advanced mechanistic models (Chen et al., 2017), the
application of these models in ungauged watersheds, which cover
more than 90% of lands globally and across North America, is
unpractical due to poor data availability required for building
such models (Blöschl et al., 2013). Statistical models, on the other
hand, have become known as simple and fast tools for providing
general insights on the estimation and forecast of water supply
and demand with minimum data requirements. For example,
simple regression techniques have been used to relate physical
and climate characteristics to hydrological signatures such as flow
duration curves and low flow statistics (Jehn et al., 2020). While
statistical models are limited in their interpretation of causality
among variables and rely on assumptions that cannot be
adequately tested, these simple models are widely used to
provide a general picture of ungauged watersheds’ responses to
climate change (Besaw et al., 2010; Razavi and Coulibaly, 2013;
Saadi et al., 2019), and informing water resources planning and
management. Further, regression models can capture implicit
relationships between runoff and explanatory variables for
which there is no theoretical explanation due to the co-
evolution of climate, geology, and topography (Blöschl et al., 2013).

Most assessments of water supply and demand management
focused on local areas across North America and only study
either supply or demand with regression or physically based
models (Balling and Gober, 2007; Breyer and Chang, 2014;
Shamir et al., 2015; Byun et al., 2019). Foti et al. (2012),
however, provided a comprehensive risk assessment of water
shortages for the contiguous US using regression and physically
based models. They projected annual water supply and
consumption in response to changes in temperature and
precipitation from three Global Climate Models (GCMs).
Areas such as Central California, Utah, Arizona, and Central
US were found to be most vulnerable to water shortages. A more
recent assessment of future changes in streamflow regimes across
the US found that the changes are expected to be most
pronounced for currently melt-dominated regimes in the
Rocky Mountains (Brunner et al., 2020). While five GCMs
were used in the study, very little agreement was found among
the GCM projections, pointing to a relatively large uncertainty
caused by the choice of GCMs. In terms of changes to water
consumption across the US, negligible changes were found when
the projections were based solely on population growth, income
growth, and changes in water-use efficiency, i.e., without
accounting for climate change (Rosegrant and Cai, 2002; Foti
et al., 2012). With climate change remaining a factor, however,
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water consumption was projected to substantially increase,
mainly due to expected increases in agricultural and landscape
irrigation in response to rising potential evapotranspiration (Foti
et al., 2012; Brown et al., 2013).

As the population and suburb-centered development continue
to grow in North America, many municipalities in arid and semi-
arid regions are acquiring water rights from agriculture in
anticipation of an uptick in municipal water demand
(MacDonald, 2010; Sabo et al., 2010; Maas et al., 2017). The
percent of water demand used for domestic purposes is set to
increase, thus the transfer of water resources from agricultural to
municipal use represents an additional stressor for rural
sustainability and food security (Rosegrant and Cai, 2002).
Thus, changes in municipal water use in response to climatic
and non-climatic factors are expected to have implications for
regional water consumption as a whole. In the US, residential
water use accounts for ∼60% of municipal water use (Dieter et al.,
2018), with 22–65% of the residential water use coming from
outdoor water use (DeOreo et al., 2016), which is shown to be
highly sensitive to changes in weather and climate (Gober et al.,
2016). This high sensitivity of outdoor water use to climatic
drivers has triggered the use of regression models to predict the
water consumption based on a combination of weather
predictors, such as air temperature, wind speed, precipitation,
and evapotranspiration (Wong et al., 2010; Adamowski et al.,
2012; Bakker et al., 2014; Chang et al., 2014). The models have
revealed a high spatial heterogeneity in the sensitivity of
municipal water consumption to changes in these predictors
(Opalinski et al., 2020). Maximum daily temperature was
found to be the predictor with the most explanatory power
across the region, with stronger predictive power in dry
regions (Opalinski et al., 2020). In the same study, dry regions
were found to have greater seasonality in municipal water use
perhaps due to increased seasonal climate variability, with the
peak use in summer when there is an increased need for irrigation
of the excising green urban landscapes.

Knowledge on the risks of municipal water shortages is
essential to inform science-based strategies and decision-
making tools for water security (Byun et al., 2019; Dilling
et al., 2019; Özerol et al., 2020). Current research has focused
on forecasting the magnitude and seasonality of water supply
(e.g., Chien and Knouft, 2013; Demaria et al., 2016; Mahat
et al., 2017; Byun et al., 2019; Brunner et al., 2020) as well as
magnitude of water demand (e.g., Ruth et al., 2007; DeOreo
et al., 2016; Maas et al., 2017; Opalinski et al., 2020;
Rasifaghihi et al., 2020). However, the magnitude and
seasonality of water shortages, as a combined effect of
water supply and water demand, are still relatively poorly
characterized and forecasted in most parts of the globe
including North America. Additionally, the forecast of
water shortages, similar to other types of forecasts in
environmental science, is prone to a wide range of
uncertainties, which are generally challenging and difficult
to quantify. Such uncertainties are mainly stemmed from
uncertainties in time-varying climatic attributes (Katz, 2002),
uncertainties associated with more static physical attributes
of watersheds such as geology, land cover, and soil (Nilsson

et al., 2007; Addor et al., 2017), and uncertainties
corresponding to future population growth and water use
(Yang et al., 2016; Hart and Halden, 2019; Keilman, 2020).
Furthermore, the more complex the modelling framework is,
often relying on heavily calibrated mechanistic models of
water supply and demand, the more difficult it is to track and
quantify its sources of uncertainties (e.g., Foti et al., 2012).
On the other hand, simple statistical models with low degrees
of freedom present more readily available tools for
quantifying these uncertainties. Characterizing and
quantifying the risks of future seasonal water shortages,
and their associated uncertainties, with the use of simple
statistical models were the main motivations of this study.

This study has two main goals: 1) to investigate the use of
simple statistical models, based on widely available climatic data,
in simulating present and future (end of the 21st century) water
shortages under a changing climate across North America (US
and Canada); and 2) to assess uncertainties in the projections of
water shortages originating from the uncertainties in climate
scenarios from the ensemble of GCMs. To address goal 1),
multivariate regression models for both supply and demand
are developed and calibrated with daily time series of
streamflow from river stations and daily time series of
municipal water consumption from cities across the region.
The models are forced by state-of-the-art climate reanalysis
data representing the present climate and weather attributes
(e.g., temperature, precipitation, windspeed,
evapotranspiration, and rainfall/snowfall characteristics), while
the future climate is represented by two emission scenarios from
the ensemble of five GCMs. To address goal 2), we use stochastic
weather generators as it is one of the recommended methods for
estimating uncertainties in climate change projections (Katz,
2002) and in hydrological forecasting (e.g., Caron et al., 2008;
Breinl, 2016). By combining the projections of water supply and
demand, we aim to provide a spatial pattern of seasonal
municipal water shortage risks, together with estimated
credibility in these risks across the whole region.

DATA

Streamflow Data
Observations of daily streamflow for Canada are collected from
the National Water Data Archive (Water Survey of Canada,
2019), while observations for the US are collected from the
United States Geological Survey (USGS) surface-water data for
the nation website (US Geological Survey, 2019). Only daily time
series that have no missing data from Jan 1, 1993 to Dec 31, 2012
are considered in the analysis, which left 4,290 gauges in total,
with 584 gauges in Canada and 3,706 in the US.

Climate Data
Present Climate
Surface weather data for the historical record is extracted from the
ERA5 climate reanalysis (0.25 × 0.25, hourly) dataset (Copernicus
Climate Change Service Climate Data Store, 2017), for the period
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1993–2012. Hourly time series of total precipitation, wind speed, air
temperature, dewpoint temperature, and incoming solar radiation
are extracted. Dewpoint temperature and air temperature are used to
estimate relative humidity with the August-Roche-Magnus
approximation (Lawrence, 2005). Cubic inverse distance
weighting interpolation is performed to obtain a single time
series of each weather variable at each streamflow station.
Interpolated precipitation totals that are below 1mm are set to
0 mm following (Islam and Cartwright, 2020) and (Tian et al., 2009).
Evapotranspiration is calculated from the Penman-Monteith
equations, as outlined by (Walter et al., 2000) using maximum
and minimum air temperature, maximum and minimum relative
humidity, wind speed, and incoming solar radiation at the surface.
Hourly time series of total precipitation, wind speed, and air
temperature at the surface are also extracted at the grid square
closest to each city with water consumption data.

Future Climate
Future climate scenarios are obtained from five GCMs from
Coupled Model Intercomparison Project phase five [CMIP5,
Table 1, (Taylor et al., 2012)], henceforward abbreviated as:
GFDL-CM3, HadGEM2-ES, INM-CM4, IPSL-CM5A-MR, and
CSIRO-Mk3.6.0. The data is downloaded from the Lawrence
Livermore National Laboratory’s World Climate Research
Programme database powered by the Earth System Grid
Federation (Taylor et al., 2012; Cinquini et al., 2014). The five
models are selected as they have the required variables in the
desired time period and their current or earlier versions have been
shown to have better performance relative to other CMIP5
models in simulating the past climate over North America
(Radić and Clarke, 2011). The following variables are extracted
as daily time series for each GCM: maximum and minimum air
temperature, maximum and minimum relative humidity, wind
speed, incoming solar radiation at surface, and total precipitation.
For the projection period (2080–2099), we retrieved GCM data
for two selected emission scenarios, referred to as Representative
Concentration Pathways (RCPs; Moss et al., 2010): RCP4.5 and
RCP8.5. The different scenarios indicate different amounts of
radiative forcing by 2100, where RCP4.5 (RCP8.5) indicates
4.5 W/m2 (8.5 W/m2). The RCP4.5 emissions scenario is
considered a medium stabilization emissions scenario and
RCP8.5 is considered a high emissions scenario (Van Vuuren
et al., 2011). To obtain the continuous GCM data for 1993–2012
for bias correcting, we use GCMhistorical runs from 1993 to 2005
and their RCP4.5 and RCP8.5 runs from 2006 to 2012.
Evapotranspiration is calculated using GCM data from the
Penman-Monteith equations as done with the reanalysis data.

For evapotranspiration, the bias between the present-climate
GCM and ERA5 is corrected according to the quantile
mismatches within the simulated cumulative distribution
function (CDF) using the empirical quantile matching
algorithm (Xu, 2015). This method has been shown to
outperform other bias correction algorithms when the
distribution of a climate variable is unknown or not gamma
(Teutschbein and Seibert, 2012; Chen et al., 2013). For
precipitation, the bias is corrected using the gamma quantile
mismatch between ERA5 and each GCM, with a precipitation
threshold of 1 mm, following the method in Xu (2015). Several
studies have shown that the gamma quantile matching is one of
the better methods for precipitation bias correction (Chen et al.,
2013; Lafon et al., 2013).

Water Use and Population Data
To our knowledge, there is no database of daily municipal
water use for cities across North America. To collect daily
and monthly time series, we directly contacted
municipalities. Each time series is at least 3 years in length
from the period 1990–2018. We initially collected the data
from 55 cities. The datasets from the cities that have strict
water consumption laws, large population increases during
summer months, or are not continuous or near continuous
(missing data with valid observations for previous and
subsequent entries) were removed. The gaps in the data
are filled with estimates based on linear interpolation,
resulting in a set of daily time series of continuous
municipal water use for 38 cities and monthly time series
of continuous municipal water use for nine cities for a total of
47 cities (Figure 1B). Though the data has high day-to-day
variability which may cause the gap filling to be inaccurate,
the gap filling causes little change in the results due to its
rareness and the data smoothing applied later. Monthly
datasets are converted to daily datasets by using the
monthly value for each day within the month.

For each city, we also downloaded its population estimates
from the US (United States Census Bureau, 2019) or Canadian
(Statistics Canada, 2019a) Census datasets for 1990–2018. Since
the datasets provide yearly population estimates, we used a
piecewise linear interpolation to derive daily population
estimates. County location data is derived from Hauer (2019)
and Ramey (2014) for US counties, and Statistics Canada (2019)
for Canadian census divisions (Canadian county equivalent). A
total of 3,425 counties or county equivalents were used, with 293
coming from Canada and 3,132 from the US.

TABLE 1 | Characteristics of the five GCMs used in this study for future forecasts.

Model name Modeling center Country of origin Spatial resolution
(Lat × Lon)

GFDL-CM3 Geophysical Fluid Dynamics Laboratory United States 2° × 2.5°

HadGEM2-ES Met Office Hadley Centre United Kingdom 1.25° × 1.875°

INM-CM4 Institute for Numerical Mathematics Russia 1.5° × 2°

IPSL-CM5A-MR Institut Pierre-Simon Laplace France 1.2676° × 2.5°

CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Organization Australia 1.8653° × 1.875°
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METHODS

Our overall methodology can be summarized in the following steps:
first, we partition the study region into clusters based on similarity in
the observed seasonal streamflow and proximity. Second, multiple
linear regression (MLR) models, with climate predictors from the
ERA5 reanalysis dataset, are calibrated at each river station in order
to simulate its seasonal streamflow throughout the 1993–2012
period. Each MLR model is then used to predict the seasonal
streamflow regime for 2080–2099 at each station. To do so, the
models are forced by stochastically generated downscaled climate
scenarios from an ensemble of five GCMs. Third, the same climate
data (ERA5) is used to calibrate a set of MLRmodels to simulate the
seasonality inmunicipal water consumption over the present climate
for each of the 47 cities. The locally optimized regression coefficients
from the 47 cities are then statistically upscaled to represent the
coefficients for each county in the US and Canada. Future changes in
seasonal municipal water consumption are then simulated for each
county based on the stochastically generated GCM projections.
Finally, we aggregate the changes in water supply and demand
and assess the risk of water shortages for each region and each
season. Seasons are separated into winter (December, January, and
February—DJF), spring (March, April, and May—MAM), summer
(June, July, and August - JJA), and Fall (September, October, and
November—SON).

Clustering
While it is common to partition a large region into smaller
domains in order to summarize the results of regional

hydrological modelling, there is no consensus on how to
define these subregions through clustering (Sawicz et al.,
2011). The US Water Resources Council, for example,
clustered regions and subregions based on topography, which
is the method that has been adopted in assessments of water
shortages across the US (e.g., Foti et al., 2012; Mahat et al., 2017).
Another common clustering method in hydrological studies is
based on climate classification (e.g., Opalinski et al., 2020), or on a
combined set of climate and streamflow indices (e.g., Sawicz et al.,
2011).

As the objective of our paper is to predict seasonality of water
shortage and its uncertainty, we chose to partition the study
region into clusters on the basis of similarity in streamflow
seasonality or regime curves [similar to Brunner et al. (2020)].
For each stream gauge, we derive the average observed streamflow
regime over the 20-year current period for each station. The
regime curve consists of 366 days in order to account for the
measurements during leap years. For non-leap years, the average
value from Feb 28 and March 1 is used to fill in for Feb 29. The
regime curve of each station is standardized by subtracting it by
its mean and dividing it by its standard deviation such that the
clustering can focus on regime curve shape similarity rather than
on absolute values. We use hierarchical clustering with Ward’s
algorithm (Ward, 1963), and we determine the optimal number
of clusters by trial-and-error in a manner similar to (Knoben
et al., 2018). The resulting clusters are then visually inspected on
the map in order to further manually partition the clusters whose
gauges lie in multiple distinct geographical areas. For example,
streamflow regimes in the Pacific and South Atlantic regions were

FIGURE 1 |Map of localities with (A) streamflow data (4,290 gauges), and (B)water consumption data (47 cities). In (A) each station dot is colored according to the
cluster it belongs to (see Clustering section). In (B) blue and red indicate daily and monthly data, respectively. Some of the city officials asked to keep their cities
anonymous, so this map is meant to keep the city names anonymous while showing the spatial extent of the data.
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initially clustered together due to their similar streamflow regimes
but were subsequently separated due to their distinct geographical
locations. Stations that belong to a streamflow-regime cluster, but
are located far outside the cluster’s perimeter, are removed as
“outliers”. Similar to Ivancic and Shaw (2017), we hypothesize
that these spatially isolated outliers are present due to significant
human impact on the streamflow. Following the steps above, we
partitioned the study region into 14 clusters or sub-regions
(Figure 1A). The 4,290 original gauges are reduced to 3,852
due to the removal of outliers.

Streamflow Model
The MLR models are developed to predict the inter-annual
variability of streamflow for each gauge using local weather.
The MLR models are applied to the averaged streamflow and
averaged climate variables (ERA5) using a 30-day moving
window. In this way, the model is calibrated across the 20-
year present period in order to simulate an average value for
the same 30-day window (e.g., Jan 1 to Jan 30, Jan 2 to Jan 31, etc
. . . ) in each year and for each station. For each region, we validate
the model using a validation set of the last 3 years. To obtain the
streamflow projections at each station, the model is forced with
stochastically generated downscaled climate variables from the
ensemble of five GCMs. A well-known limiting assumption of
most stationary models is that the model developed over the
present climate is assumed valid under future climate conditions
(e.g., Ekström et al., 2015). This assumption can be considered
acceptable for multiple regressionmodels as long as the variability
in present variables (e.g., temperature, precipitation, streamflow)

is within the range of their variability in the future period. While
the constant variance of the response would be difficult to verify
due to the possible non-stationarity and the uncertainty of
hydrological conditions over such timescales, we may assume
each observation is independent as the observations are separated
by a full year such that longer processes including snowmelt and
groundwater flowwill not affect adjacent years. Below, we provide
details on the data smoothing procedure, calibration and
validation of the model, and the simulations of future
streamflow regimes (Figure 2).

Data Smoothing
For each station, we apply the MLR models using a selection of
weather variables from ERA5 as predictors and streamflow data
as the response. Prior to the model application, we apply
smoothing to both predictor and response data in the
following way: 30-day moving average is applied to the whole
daily time series (1993–2012), where the first window spans from
1 Jan to 30 Jan, and the last window spans from 31 Dec to 29 Jan
of the following year.

Calibration and Validation
The MLR models are applied for each of the 366 windows
separately, so that the regression is calculated across the 20
(19) points, where each point represents the average value
within the current window for the given year. The first model
is applied to the first window (1 Jan) across all the years
(1993–2012), the second model is applied to the second
window (2 Jan) across all the years, etc. In this way, we derive

FIGURE 2 | Workflow of methods for making predictions for each streamflow station and each window. Boxes indicate data matrices of streamflow (Q),
precipitation (P), evapotranspiration (E), or snow days (N). Each row of data represents a single year, and each column indicates a different day.
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366 MLR models in total, each one with its own regression
coefficients. The following variables are used as predictors:
average daily precipitation (P units in mm), average daily
evapotranspiration (ET, units in mm) and total number of
days with snowfall (N), where P and ET are derived as the
mean over the 30-day moving window, while N is calculated
as the sum of days with snowfall >1 mm over the same window.
We assume that when evapotranspiration is ≤0, temperature is
below or equal to 0°C; consequently, a wet day when
evapotranspiration is 0 indicates a snow day. For each
window, the modelled streamflow (Qi,j) (m

3/s) is derived from
the MLR model with optimized regression coefficients (least
squares method) as:

Qi,j � a0,i,j + a1,i,jPi,j + a2,i,jETi,j + a3,i,jNi,j + εi,j (1)

where a0,i,j–a3,i,j are the regression coefficients for station i and
window j.

Considering that the MLR models are built on a small sample
of 20 points (20 years of data), we use the first 17 years
(1993–2009) of data as a training set and 3 years (2010–2012)
of data as a test set to test the predictive skill of our methods. We
calibrate the model over this reduced sample and predict the
streamflow regime curve for the 3 years of left-out data. Similar to
Brunner et al. (2020), we then assess the model performance with
the Kling-Gupta Efficiency (KGE) between the observed and
modelled 3-year streamflow regime curves (Gupta et al., 2009).
As the procedure is repeated for each of the streamflow stations,
we summarize the model predictive skill by the first quantile,
median, and third quantile of the KGEs within each region. Kling
has stated that a threshold of 0.5 (0.75) can be used to differentiate
poor versus intermediate (good) simulation results using the
slightly modified KGE metric, thus we utilize these thresholds
to interpret our results (Kling et al., 2012; Thiemig et al., 2013).
KGE may be sensitive to outliers and non-normally distributed
streamflow (Pool et al., 2018), however, the widespread use of the
KGE metric as well as its clear interpretation makes it a strong
performance metric.

Postprocessing of Global Climate Model Data
To facilitate the assessment of uncertainties stemming from the
GCMs, we input the downscaled precipitation and
evapotranspiration time series into a stochastic weather
generator so that 2,000 time series of each variable are
generated (100 for each of the 20 years). Streamflow for
2080–2099 is then simulated by the MLR models using each
of the 2,000 generated time series. For each window, the final
simulation is calculated through Monte-Carlo simulations by
randomly sampling 1,000 observations from the 100 predicted
values from each year to get a large, bootstrapped sample of
possible 20-year long time series; then, the values are averaged
across the 20 years. In this way, we project 1,000 values of the
average seasonal streamflow regime for 2080–2099 for each
station and window. Final results are then compressed by
representing each day with a mean and standard deviation.

The stochastic weather generator used in this study is
developed similarly to the framework illustrated by Wilks and
Wilby (1999). The output is generated separately for the two RCP

scenarios and for each of the 20 years in 2080–2099. The key steps
are summarized as follows: First, for each 30-day window, we have
a 5-GCM x 30-day block of data for both evapotranspiration and
precipitation. For evapotranspiration, we assume a normal
distribution conditioned on the day being wet or dry and derive
its mean and standard deviation from the data points for each day
type. Second, a transition matrix is calculated from the
precipitation data by calculating the four transition probabilities
(wet-wet, wet-dry, dry-wet, dry-dry). Then, a two-state Markov
chain is created, where p < 1 mm is considered a dry day, and a wet
day is assumed otherwise. One hundred 30-day time series of
precipitation are generated using the Markov chain to determine
wet-dry day occurrences, while the magnitude on wet days is
determined by randomly sampling from the precipitation
observations greater than 1 mm. The simulation of precipitation
magnitude is robust, as no distribution needs to be estimated, so
precipitation can be generated non-parametrically. The robust
generation of evapotranspiration can be done parametrically
because a large set of well-behaved daily data is available for
parameter estimation (Semenov et al., 1998; Ababaei, 2014).
Finally, evapotranspiration (ET) is derived by randomly
generating data from either of the two normal distributions
derived earlier dependent on if the Markov chain generated a
wet or a dry day. This process generates 100 30-day time series of
precipitation and evapotranspiration for each year in 2080–2099
for each 30-day window.

Water Use Model
Daily urban water consumption can be separated into three
components that include: long-term (decadal) base water use,
calendrical (weekly) water use, and seasonal water use (Wong
et al., 2010). The seasonal variability in outdoor water use, which
explains a relatively large fraction of variability in municipal
water use (DeOreo et al., 2016), can be successfully simulated as a
function of weather and climate attributes (Gober et al., 2016;
Opalinski et al., 2020). Thus, our working assumption is that the
seasonal component of municipal water use, represented by daily
time series, needs to be decomposed into its long-term, seasonal,
and short-term signal. After the signal decomposition, the model
is developed for the seasonal signal only.

While the models are calibrated for selected cities, the
objective is to model water use in each county. To do so, the
model coefficients are upscaled from city-specific values to values
representing each county. Finally, the model is forced by
stochastically generated climate scenarios from the five GCMs
for both the present and future periods. Below we provide details
on the signal decomposition, model calibration, coefficient
upscaling, and model projections.

Signal Decomposition
To focus on the seasonal signal in the municipal water use for
each city, we remove the calendrical and long-term signals from
the city’s original time series. Though it may slightly contribute to
the violation of observation independence, it is unlikely to distort
our results, and removing the calendrical signal is necessary, thus
we smooth our time series with a 15-day moving median. This
will remove the effects of persistence, holidays, measurement
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errors, and the day-of-the-week. Long-term variability is mainly
driven by population and water efficiency (Wong et al., 2010). To
remove the population effects, the smoothed water-use time
series are divided by the daily population time series, yielding
a daily time series of water efficiency.

Each city’s water efficiency time series is normalized to be
between 0 and 1. A common feature of these time series is their
long-term decline that best resembles an exponential decay signal
(Supplementary Figure S1). It has been shown that municipal
water use per capita in the US has tended to decrease due to
government actions that forced manufactures to make water-
efficiency improvements for the bathroom and household
appliances (Donnelly and Cooley, 2015). These changes were
mainly established in the 1990s, so they can be expected to have
diminishing returns as time goes on (Donnelly and Cooley, 2015).
Empirically, we chose to represent this long-term decline in water
use with an exponential decay function that is fitted to the
normalized annual water-use time series of each city
(Supplementary Figure S1c). Finally, the fitted function,
interpolated from annual to daily values, is subtracted from
the normalized water efficiency time series (Supplementary
Figure S1). The residual daily time series for each city
represents the characteristic seasonal municipal water use per
capita.

Calibration, Validation, and Upscaling
Each city’s remaining time series of daily water consumption per
capita represents the response variable in an MLR model, while a
set of weather variables from ERA5 data are used as predictors.
Prior to training the MLR model, each response variable is
standardized (subtracted by its mean and divided by its
standard deviation) in order to facilitate the inter-comparison
of regression coefficients across cities. After testing different
combinations of predictors, we settled with the following list:
maximum daily temperature (T, units in °C), daily mean wind
speed (U, units in m/s), a binary variable for rain (R, wet/dry day
for rain) and a binary variable for snow (W, wet/dry day for
snow). Rain and snow days are differentiated using a maximum
temperature threshold of 5°C, which is reasonable considering
thresholds for mean temperatures are often between −5°C and 5°C
(Rajagopal and Harpold, 2016). Standardized per-capita water
consumption (C) is modeled with:

Ck � b0,k + b1,kTk + b2,kUk + b3,kRk + b4,kWk (2)

where b0,k-b4,k are the regression coefficients for city k, and R(W)
is the binary variable for rainfall (snowfall) which equals 1 if
rainfall (snowfall) exceeds 1 mm and 0 otherwise. The model is
calibrated for each city, yielding 47 sets of city-specific regression
coefficients (Figure 3).

FIGURE 3 |Map of regression coefficient values from 47 MLR models for municipal water consumption: (A) coefficient that multiplies maximum temperature (b1),
(B) coefficient that multiplies wind speed (b2), (C) coefficient that multiplies the binary variable for rain (b3), and (D) coefficient that multiplies the binary variable for snow
(b4). The model is calibrated over the available observational record (at least 3 years within 1990–2018) for each city, yielding 47 sets of city-specific regression
coefficients.
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Finally, the model coefficients need to be upscaled from their
city-specific values to values representing each county. A study
with a similar modelling approach to ours found that climatic
regression coefficients are correlated in space, with nearby cities
yielding more similar regression coefficients than the cities
further apart (Opalinski et al., 2020). Thus, we assume that by
spatially interpolating the regression coefficients from 47 cities
unevenly distributed over the map to the grid of counties, we can
obtain a first-order approximation for regression coefficients at
each county. We choose to apply smoothed optimal inverse
distance weighting with weights set as 1/(1 + d)p, where d is
the distance from the county’s geographical centre (latitude,
longitude) to the city’s location, and p is the parameter that
needs to be optimized.

We optimized p by maximizing the correlation between
interpolated and observed Cmod using the following procedure:
one out of 47 cities is left out from the sample of known regression
coefficients, and its regression coefficients are instead derived
from the interpolation method with each possible p. This
procedure is iterated until all 47 cities are removed once from
the original sample. The final value of p is the one that yields the
largest mean correlation between interpolated and observed C
across all the cities. The optimization yielded p � 2.1
(Supplementary Figure S2).

Post-processing of Climate Data
Time series of normalized water consumption per capita (C) for
each county for both the present (1993–2012) and future
(2080–2099) periods are simulated by the MLR model forced
by stochastically generated climate data. Similar to the supply
model, data from the five GCMs and two RCP scenarios are used
as inputs to the stochastic weather generator. Present climate data
is patched from the GCM historical runs from 1993 to 2005 and
their RCP4.5 runs from 2006 to 2012. Because changes in the
water use per county are assessed as a difference between
modelled future and modelled present water use, from the
same ensemble of GCMs, no bias-correcting is applied.

The predictors in the model (Equation 2) are stochastically
generated in the following way: precipitation wet/dry days are
derived from a two-state Markov chain where the transition
probabilities are estimated from a 31-day moving window of
GCM precipitation time series. For temperature, using the same
31-day moving window, we assume a normal distribution and
derive its means and standard deviations conditioned on the
presence of precipitation. For wind speed, a Weibull distribution
is chosen following previous studies (e.g., Seguro and Lambert,
2000; Alizadeh et al., 2019), and we also assume that the wind
speed is conditioned on the day being wet or dry. As a result of
this assumption, two sets of two-parameter Weibull distributions
are estimated using maximum likelihood estimation. The
differentiation between snowfall and rainfall is determined by
a maximum temperature threshold of 5°C as was done in the
calibration phase.

One hundred time series of each weather variable is generated
for each year (100 × 20 sets of 365-day time series). Each of the
2,000 generated sets of weather time series are then used to
predict a 365-day time series of C. To obtain the uncertainty

estimate for C for each day, we randomly select 1,000 outcomes
from each of the 100 time series of each year. Like with the water-
supply model, we take the average C across the 20 years, so a total
of 1,000 20-year average time series of normalized water
consumption per capita for each county are simulated. The
final results are presented as the mean ± a standard deviation
of C for each day in the present period, and the mean ± a standard
deviation of C for each day in the future period for both RCP4.5
and RCP8.5.

Risk Scores
Defining vulnerability or risk of water shortages is difficult to do
so precisely while also being implementable (Foti et al., 2012).
Due to this limitation, each previous assessment of water shortage
risk has developed their own risk assessment score (Hurd et al.,
1999; Foti et al., 2012; Roy et al., 2012; Dickson and Dzombak,
2019). For example, Foti et al. (2012) defined vulnerability as the
probability that demand will be less than supply in a region, while
Dickson and Dzombak (2019) defines an overall risk index from
five components of risk including 1) annual proportion of use of
local water supply, 2) summer proportion of use of local water
supply, 3) projected increase in demand, 4) summer proportion
of use of local water demand, and 5) proportion of groundwater
withdrawal to total withdrawal.

Building on previously proposed risk scores, we introduce a
metric as a proxy for the risk imposed by climate change on water
resources for each subregion in the study domain. The metric,
defined as the risk score (RS), combines the projected changes in
water supply for each station with the projected changes in water
demand for each county, and congregates them by sub-region in
the following way:

RS � D + CD + S + SC, (3)

where D is the probability of a water demand increase from 1993-
2012 to 2080–2099, CD is the normalized demand, S is the
probability of a supply decrease from 1993-2012 to 2080–2099,
and SC is one minus the normalized supply. Each river station is
already assigned a sub-region (Figure 1), while each county is
assigned to the sub-region to which the closest river station
belongs. The probability D is calculated by forming a new
normal random variable, X, for each RCP scenario with the
mean determined by the projected demand in 2080–2099
subtracted by the estimated demand in 1993–2012 and
variance set as the sum of the variances of projected demand
and estimated current demand. S is calculated in the same way as
D, but using the projected streamflow in 2080–2099 and the
streamflow regime curve from 1993–2012 to form a random
variable Y. In summary, for day i, region j, county k and
streamflow station l:

Di,j � meank(P(Xi,j,k ≥ 0)) (4)

Si,j � meanl(P(Yi,j,l ≤ 0)) (5)

D and S become a 365-day x 14-region matrix with values
between 0 and 1. To compute CD and SC, the demand and supply
regime curves for 1993–2012 are scaled to be between 0 and 1 by
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subtracting by their minimums and dividing by the difference of
their maximums and minimums. For each subregion, final CD is
calculated as the mean CD across all stations belonging to the
region, while final SC is calculated as the mean SC across all
counties belonging to the region. Thus, each final CD and SC is a
365-day x 14-region matrix with values between 0 and 1. RS is
thus a 365-day x 14-region matrix with values between 0 and 4,
where 0 implies no risk and 4 implies maximum risk of water
shortages.

RESULTS

Regional Clusters
The clustering of streamflow data across the region yielded 14
clusters or subregions (Figure 4). Below we describe the main
characteristics of the average streamflow regime and some general
climatic attributes for each cluster:

1) The first cluster, which we name “the West Coast”, is
characterized by high winter streamflow and minimum

flows in late August. The cluster includes Vancouver
Island, western half of Washington, Oregon, and
California. The climate in these areas is characterized by
high frequency of precipitation events in winter that are
predominately rainfall rather than snowfall. Thus, relative to
other clusters, the streamflow is mainly driven by rainfall.

2) The “Southwest” cluster is comprised of the desert areas of
California and Arizona. Although very little precipitation is
available in these areas, precipitation may occur
periodically in winter months. These rainfall events are
usually of high intensity, potentially causing infiltration-
excess overland flow. Thus, these catchments are rainfall
dominated and have relatively quick responses to
precipitation input.

3) The “Deep South” cluster includes Louisiana, Mississippi,
Alabama, Georgia, Tennessee, and South Carolina. These
states are known to have warm and humid summers with
some precipitation. Winter and spring have the highest
precipitation. The landscape is covered by forests which
implies overland flow is less likely compared to the
Southwest cluster. With such active storage, the streams’

FIGURE 4 | Clusters with their average normalized streamflow regime curve. The clusters are: 1) West Coast, 2) Southwest, 3) Deep South, 4) Mid-Atlantic, 5)
South-Central US, 6) Florida, 7) Hawaii, 8) Rockies, 9) Alaska, 10) Midwest, 11) Northeast, 12) West, 13) Central US, 14) Eastern Canada. The colors of the regime curve
indicate the regime categories where red, black, and blue indicate rain dominated, rain-on-snow dominated, and snowmelt dominated regimes respectively. Vertical
dashed curves in the graphs are placed at the transition of seasons (winter, spring, summer, fall).
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response to precipitation may be slower despite being a rain-
dominated region with a peak in the late winter months and
low flows in late-summer.

4) The “Mid-Atlantic” cluster includes North Carolina,
Kentucky, Virginia, West Virginia, Ohio, Pennsylvania,
Maryland, Delaware, New Jersey, southern New York,
Connecticut, and Southern Ontario. Mostly covered in
forest, this region is known for its hot summers and very
cold winters, where winter temperatures are often at or below
freezing. Precipitation is often high, with precipitation being
fairly evenly distributed throughout the year. This region
may be hydrologically dominated by rain-on-snow events in
winter, with all snowmelting by early spring. The streamflow
regime curve in this region has a peak in early spring and a
low in mid-summer.

5) The “South-Central US” consists of Northeast Texas,
Southeastern Oklahoma, Arkansas, and northern
Louisiana. These areas are covered by grass, shrubs, with
some forested areas further east. Precipitation is usually
highest in the spring in these areas, with little to no
snowfall, leading to highest streamflow in the spring with
a seasonal drought in mid-summer.

6) The “Florida” cluster is largely covered by wetlands in the
southern half and forest in the north. Since Florida is
subtropical and tropical in some areas, precipitation
occurs throughout the year. Summers are slightly wetter
and more humid than are winters. The regime curve in this
region has little variance, with highs in the late summer and
lows in early summer.

7) The “Hawaii” cluster is in the tropics with precipitation and
warm, humid weather throughout the year. The streamflow
regime curve in this region has extremely low variability,
with no clear high or low.

8) The “Rockies” cluster consists of Northern Wyoming, Idaho,
Montana, Eastern Washington, and parts of British Columbia
and the Yukon. This region is extremely cold in winters, often
with extensive snow cover. The streamflow stations are in
snow-dominated catchments, so the hydrographs are
characterized by low streamflow in winter when no
snowmelt is present, followed by peak streamflow in late
spring to early summer as snowmelt intensifies.

9) The “Alaska” cluster, similarly to the Rockies, is a snow-
dominated region; however, in Alaska, the colder climate and
extensive snow cover, as well as glacierized terrain, allows for
the snowmelt and/or glacier runoff to last throughout the
summer; thus, giving hydrographs with a wide peak
throughout the summer.

10) The “Midwest” cluster contains Illinois, Wisconsin, Iowa,
Minnesota, North and South Dakota, as well as Southern
Alberta and Saskatchewan. This region’s land use mainly
consists of agricultural areas and grasslands. This region is
fairly dry; nevertheless, snow cover persists throughout
much of the winter, with melt occurring in the spring
leading to the peak in streamflow.

11) The “Northeast” cluster consists of New York, Vermont,
New Hampshire, Maine, Southern Quebec, New Brunswick,
Nova Scotia, Prince Edward Island, and Southern

Newfoundland. This region is covered by forest and has
very cold winters; hence, snow builds in the winter and then
snowmelt generates peak streamflow in April.

12) The “West” cluster includes parts of British Columbia,
Alberta, Idaho, Montana, Utah, Nevada, California, and
Arizona. The hydrographs in this region peak in spring as
a result of snowmelt.

13) The “Central US” cluster consists of Southern Minnesota,
Iowa, Nebraska, Missouri, Kansas, and Oklahoma. The
hydrographs in this region peak in spring.

14) The “Eastern Canada” cluster includes northern
Newfoundland, Quebec, Ontario, and Manitoba. The
hydrographs in this region peak in spring. Winters are
cold and snow cover is prevalent, so runoff is driven by
spring snowmelt.

According to these characteristics we can group the 14 subregions
into three general regime categories: rainfall dominated streamflow
regime (West Coast, Southwest, Deep South, South-Central US,
Florida, and Hawaii), rain-on-snow dominated regime (Mid-
Atlantic, Midwest, and Central US), and snow dominated regions
(Rockies, Alaska, Northeast, West, and Eastern Canada).

Simulations of Water Supply
Model Performance
The KGE is estimated for all streamflow stations within each region
for the 3-year test set (Table 2). The West Coast (0.82) and Alaska
(0.89) have high median KGEs. Predictions for the Southwest
(0.61), Deep South (0.73), Mid-Atlantic (0.73), Rockies (0.73),
South-Central US (0.65), Hawaii (0.59), Northeast (0.70), West
(0.71), Midwest (0.59), and Eastern Canada (0.52) are also fairly
reliable. On the other hand, our simulations perform poorly in
Central US (0.46) and Florida (0.37).

Projections of Streamflow
An example of modelled future (2080–2099) versus present
(1993–2012) streamflow regime curves are shown in Figure 5
for a streamflow station in California. The streamflow at this
station is expected to substantially increase in late winter and

TABLE 2 | The first quantile, median, and third quantile of KGE values for predicted
water supply regime curves for each region.

Region number Region name Q1 Median Q3

1 West Coast 0.62 0.82 0.89
2 Southwest 0.11 0.61 0.74
3 Deep South 0.57 0.73 0.80
4 Mid-Atlantic 0.62 0.73 0.81
5 South-Central US 0.55 0.65 0.77
6 Florida 0.09 0.37 0.61
7 Hawaii 0.54 0.59 0.68
8 Rockies 0.60 0.73 0.85
9 Alaska 0.82 0.89 0.93
10 Midwest 0.37 0.59 0.71
11 Northeast 0.55 0.70 0.81
12 West 0.51 0.71 0.83
13 Central US 0.18 0.46 0.60
14 Eastern Canada 0.12 0.52 0.75
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early spring, while the streamflow will remain almost unchanged
throughout the rest of the year. The uncertainty interval for both
RCP scenarios is large, especially for the time window with the
largest projected increase in streamflow. We estimate the water-
supply components of the risk score for this station (Equation 3):
on a seasonal scale, the largest CS is in the fall (median CS � 1.00)
and the smallest is in the winter (CS � 0.26), while the likely
decrease in streamflow is projected for the summer (S � 1.00 for
RCP4.5; S � 1.00 for RCP8.5), and the least likely decrease is
projected for the winter (S � 0.27 for RCP4.5; S � 0.27 for
RCP8.5).

Next, we summarize the results of regional streamflow
projections for each season, with more focus on subregions
where the model has higher predictive capabilities (larger
KGE) relative to other subregions: Results for winter
streamflow (DJF; Figure 6) reveal that the likelihood of a
downward change in streamflow is linked to latitude.
Specifically, for low-latitude regions (Hawaii, Southwest,
Florida, Central US), streamflow is projected to decrease for
one or both RCP scenarios. For these regions, the average S is
0.56 (0.68) for RCP4.5 (RCP8.5) scenario, while the average CS is
0.70. Out of these regions, only Central US and Florida have KGE
<0.5 implying a low confidence in the projections. The probability
of a decrease in Hawaii is certain with the interquartile range
(IQR) of 0 for both RCP4.5 and RCP8.5 scenarios. The IQRs for
Southwest, Florida, and Central US are much larger, ranging from
0.35 for Southwest’s RCP8.5 scenario to 0.95 for Florida’s RCP4.5
scenario. Streamflow is projected to increase in Alaska, the
Rockies, the Midwest, the West Coast, and the Northeast.
According the KGE values, however, we have higher
confidence in the projections for the West Coast (KGE �
0.82), Alaska (KGE � 0.89) and less certain for Rockies (KGE
� 0.73), Midwest (KGE � 0.59), and Northeast (KGE � 0.70).

In simulating the streamflow in spring (MAM), under the
RCP4.5 scenario, Hawaii and the West Coast will experience
decreases in streamflow (their average S is 0.76 and there IQRs are
0 and 0.48), whereas the Deep South, East Coast, Southern
Central US, Central US, Northeast, and the Midwest will
experience increases (their average S is 0.13 and their IQRs are
0.19, 0.11, 0.25, 0.17, 0.38, and 0.10 respectively). Like the RCP4.5
scenario, RCP8.5 will lead to decreases in streamflow in Hawaii,
West Coast, Florida, and the Southwest (their average S is 0.75
and their IQRs are 0, 0.59, 0.12, and 0.38 respectively). These
results are particularly of note for Hawaii, the Southwest, and
Florida as these regions experience low present water supply in
the spring relative to other seasons (their average CS is 0.64).

Projections of summer (JJA) streamflow reveal that water
resources will experience strain across most of North America
(Figure 6). According to the RCP4.5 scenario, theWest Coast, the
Southwest, South Central US, Florida, the Deep South, Central
US, and the Midwest will all likely experience decreased water
supply (their average S is 0.80). Following the RCP8.5 scenario, in
addition to the regions affected by the RCP4.5 scenario, Hawaii,
the East Coast, the Northeast, and Eastern Canada will see
decreases in summer streamflow (their average S is 0.81). The
IQRs of decrease probabilities are small for the West Coast (0 for
RCP4.5, 0 for RCP8.5), Southwest (0.18, 0), Florida (0.08, 0), and
Central US (0.18, 0).

For the projections of autumn (SON) streamflow, regardless of
the RCP scenario followed, eastern regions are most likely going
to be affected by decreases in their streamflow, including the Deep
South, the East Coast, Southern Central US, Florida, Midwest,
Northeast, and Central US (their average S is 0.73 and 0.69 for
RCP4.5 and RCP8.5, respectively). The IQRs of decrease
probabilities are small for the Southern Central US (0.05 for
RCP4.5, 0 for RCP8.5) and the Deep South (0.20, 0.10).

FIGURE 5 |Modelled seasonal streamflow (measured in m3/sec) regime curves for 1993–2012 (black), and 2080–2099 according to RCP4.5 (green) and RCP8.5
(red) scenarios for a station in California (34.35, −119.31). The shading indicates the uncertainty (±one standard deviation).
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Simulations of Water Demand
Model Performance
Supplementary Figure S2 shows the mean correlation (0.69)
between predicted and observed daily water efficiency with
optimal inverse distance weighting calculated using leave-one-
out cross validation. All locations have at least 1,000 observations
of daily water use efficiency, so this correlation is significant
(average p-value < 0.01), and the predictions are representative of
the observations.

Projections of Municipal Water Use
An example of modelled future versus present water
consumption per capita is shown in Supplementary Figure
S3 for a county in Alabama. As illustrated in the figure, there is
a pronounced seasonal cycle in the water consumption, with
the highest consumption during the summer months. The
changes in water demand are projected to occur in all
seasons, with the largest increases in summer, and the
lowest in winter. These results are reflected in the water-use
components of the risk score (Equation 3): the largest CD is in
summer (CD � 0.95) and the smallest CD is winter (CD � 0.08).

The likelihood that this county will experience an increase in
demand is also the largest in summer (D � 0.97 for RCP4.5; D �
1.00 for RCP8.5), and the smallest in winter (D � 0.86 for
RCP4.5; D � 0.98 for RCP8.5).

Projections for each subregion and each season reveal that the
changes in water consumption are relatively uniform across
seasons, with the main difference being between winter and
summer water consumption (Figure 7). For all regions, the
current water demand is the largest in summer and lowest in
winter (their average CD is winter is 0.07, and their average CD in
summer is 0.92). In all regions, RCP4.5 will substantially increase
the annual water demand (average D � 0.93 for RCP4.5), while
more increase is expected for RCP8.5 (average D � 0.99 for
RCP8.5). Most of this increase is expected in the summer season
(average summer D � 0.95 for RCP4.5; D � 1.00 for RCP8.5). The
top three subregions with the highest projected increase in
demand in summer given the RCP4.5 and RCP8.5 scenarios
are Hawaii and Florida, and their average summer D is 0.99 and
1.00, respectively. The top three subregions with the highest
projected increase in demand for RCP4.5 (RCP8.5) in winter
are: Hawaii, Southwest, and West Coast (Hawaii, Southwest, and

FIGURE 6 | Boxplots of water-supply components of the risk score (equation 3) for each subregion in winter (A) and summer (B). The left panel for each region
includes: the probability of an increase in streamflow in winter given the RCP4.5 (RCP8.5) emission scenario, and one minus the present (1993–2012) winter freshwater
supply, normalized to be between 0 and 1 (CS). The right panel for each region shows the same components of the risk score, but for summer. The thick black lines of the
boxplots indicate the median value while the box shows the range between the first and third quantiles. The points outside the range of the whiskers can be
considered as outliers. The clusters are: 1)West Coast, 2) Southwest, 3) Deep South, 4) Mid-Atlantic, 5) South-Central US, 6) Florida, 7) Hawaii, 8) Rockies, 9) Alaska, 10)
Midwest, 11) Northeast, 12) West, 13) Central US, 14) Eastern Canada.
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Eastern Canada), and their average winter D � 0.96 (1.00). During
all seasons and in all regions, increases in municipal water
demand are expected, regardless of the RCP scenario followed,
however the increases are more certain under RCP8.5 compared
to RCP4.5. The interquartile range of all regions and seasons
given the RCP4.5 scenario ranges from 0 to 0.1, whereas the IQRs
given RCP8.5 remain at 0.

Risk Assessment
Risk scores (RS) for each region and RCP scenario are quantified
for each season. Because of consistently higher demand in
summer (Figure 7), total risk is consistently highest in the
summer, so only summer risk scores are shown (Figure 8).
According to the RCP4.5 scenario, the region with the highest
risk of freshwater shortage in the summer (highest median RS) is
the Southwest (region 2), followed by the West Coast (region 1)
and the Deep South (region 3). The West Coast and Southwest
both have low uncertainty (IQRs of 0.30 and 0.10), but the Deep
South has high uncertainty (IQR � 0.55) stemming from high
uncertainty of streamflow projections in this region. According to
the RCP8.5 scenario, the regions with the highest risk are:

Southern Central United States (region 5), the Deep South
(region 3), and Northeast (region 11). The IQRs of these risk
scores are low for Southern Central US (0.40) and the Deep
South (0.37).

DISCUSSION

Summary of Results
GCMs generally agree that the entirety of North America will
experience temperature increases throughout this century, while
precipitation will change over time as a function of latitude, where
southern areas will see decreases in precipitation, and northern
areas will experience increases (Roy et al., 2012; Forster et al.,
2020). This will likely lead to decreases in the fraction of
precipitation falling as snow, increases in evapotranspiration,
and changes in available water. But how this change in climate
will alter the supply and demand of freshwater is poorly
understood. Here we aimed at building a better understanding
of these uncertainties while obtaining a general overview of where
and when the risk of supply deficits is greatest.

FIGURE 7 | Boxplots of water-demand components of the risk score for each subregion in winter and summer. (A) for each region includes: 4.5D (8.5D)—the
probability of an increase in water demand in winter given the RCP4.5 (RCP8.5) emission scenario, and CD—the present (1993–2012) freshwater demand, normalized to
be between 0 and 1. (B) shows the same components (4.5D, 8.5D, and CD) but calculated for summer. The thick black lines of the boxplots indicate the median value
while the box shows the range between the first and third quantiles. The points outside the range of the whiskers can be considered as outliers. Names of
subregions are given in Figure 5.
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We focused our paper on two objectives: First, we aimed to
determine the viability of using simple regression models to
capture the variability in streamflow and water consumption
using globally available climate reanalysis data while assessing
the risk of water shortage in multiple regions across North
America. The viability of simple regression models for the use
of modeling streamflow varied by region, as measured by the
validation phase KGE. Florida and Central US had the lowest
median KGEs. The other regions had highly acceptable KGEs,
especially when the regime curves do not change much from
year to year, as is the case in Alaska. Further, the correlation
between simulated and observed water use was high. This
result means that urban water use in a city can robustly be
estimated from population data and climate data in
conjunction with water use data from surrounding cities.
We found that demand is consistently highest in the
summer, thus making water shortage risks consistently
highest in the summer. In summer, the highest risk scores
are in the Southwest (Southern Central US), West Coast (Deep
South), and Deep South (Northeast) given the RCP4.5
(RCP8.5) scenario.

As a second objective, we sought to quantify the uncertainties
in predicting streamflow and water consumption and therefore
water shortage stemming from GCM climate projections. We
found that almost all of the risk score uncertainty is derived from
the uncertainty of streamflow projections from GCM data, while
there is little-to-no uncertainty in demand projections fromGCM
data. This occurs because the supply is driven by precipitation
while demand is driven by maximum temperature, and GCM
projections of temperature have a narrower spread of projections
from the weather generator compared to precipitation.

Comparison With Previous Works
Similar to previous studies that used regression models for
predicting streamflow (e.g., Barbarossa et al., 2017; Mendoza
et al., 2017), we found the MLR models to be reliable in most of
our 14 subregions. However, in some regions (e.g., Florida and
Central US), the model performance was relatively poor. The
poor performance in these regions is not limited to simple
regression models. Brunner et al. (2020), using physically
based models, also found that Central US was the most
difficult region to reliably simulate water supply.

For the US, our projections of streamflow generally agree with
the previous findings that the annual streamflowwill substantially
decrease in South and Western US (Hurd et al., 1999; Foti et al.,
2012; Chien and Knouft, 2013; Mahat et al., 2017). Throughout
the region, summer streamflow was shown to be more susceptible
to decreases (Maurer and Duffy, 2005; Chien and Knouft, 2013)
than streamflow in other seasons. In particular, under the RCP4.5
scenario, we projected that Florida may experience significant
streamflow decreases in the summer, corroborating previous
findings in (Mahat et al., 2017). Furthermore, under the
RCP8.5 scenario, our results also agree with Mahat et al.
(2017) that the Southwest, Southern Central US, and Florida
will experience substantial drops in streamflow. These projections
are relatively consistent across the climate projections
stochastically generated from the five GCMs.

Our projections of water use agree with those is Foti et al.
(2012), showing that climate-driven water use will increase across
the United States, as well as Canada, and uncertainties around
these projections will decrease as temperatures rise further. Since
maximum temperature is the dominant driver of water
consumption (Opalinski et al., 2020), and all CMIP5 models

FIGURE 8 | Box plot of risk scores (RS) derived for the summer for each of the 14 subregions. Green box plot is for the RCP4.5 emissions scenario, and blue is for
the RCP8.5 emissions scenario. The list of regions is as follows: 1)West Coast, 2) Southwest, 3) Deep South, 4) Mid-Atlantic, 5) South-Central US, 6) Florida, 7) Hawaii, 8)
Rockies, 9) Alaska, 10) Midwest, 11) Northeast, 12) West, 13) Central US, and 14) Eastern Canada. The thick black lines of the boxplots indicate the median value while
the box shows the range between the first and third quantiles. The points outside the range of the whiskers can be considered as outliers.
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agree that temperatures are projected to rise across the entire
United States (Mahat et al., 2017), this is in-line with
expectations. The MLR modeling of municipal water demand
showed that most of our city-specific regression coefficients are
highly spatially dependent as previously found in (Opalinski et al.,
2020). The regression coefficient that shows the contribution of
the number of snowy days to water demand is negatively
correlated with latitude, implying that the impacts of snowy
days on water demand is greater in lower latitude areas. For
example, at low latitudes, the snowfall-day coefficient is between
0.6 and 1.4, while in Canada, the coefficient drops to 0.2. The
regression coefficient that shows the contribution of the
maximum temperature is also spatially varying, with the
highest values in western and southern areas (0.08–0.19), and
the lowestin northern and eastern areas (0.03–0.08). In the West
Coast, southwest US, and Florida regions, the coefficient
multiplying the wind speed is normally positive (0–0.15),
while in other places, the coefficient of wind is normally
negative (−0.15–0), implying that warm winds could raise
water demand, while colder winds could decrease demand.
However, the coefficient in Texas is negative, so this
hypothesis should be tested further. Rain-day coefficients seem
to not be spatially dependent. We compared our spatially
distributed coefficient values with those derived in Opalinski
et al. (2020) and found general agreement for the coefficient
multiplying the maximum temperature. In Opalinski et al. (2020),
however, the link with the latitude is not as clear as in our case
which is likely because we extended the assessment to Canadian
cities while their study only provides the results for the
contiguous US. Regarding precipitation, Opalinski et al. (2020)
found that the increase in precipitation in cold regions was
associated with an increase in water consumption. One
interpretation for this finding is that the increased snowfall is
linked to increased water use, which is also consistent with our
results.

To our knowledge, there have been relatively few up-to-date
assessments of water resource vulnerabilities and shortage risks due
to climate change across the entire US or North America. Dickson
and Dzombak (2019) as well as Foti et al. (2012) used physically
based models to project streamflow, while Roy et al. (2012)
calculated available precipitation (precipitation minus
evaporation) instead of streamflow. Previously, urban water-
demand projections have been made based on changes in
population and electricity production (Roy et al., 2012; Dickson
and Dzombak, 2019), or climate regression techniques combined
with the effects of income, population, and efficiency (Foti et al.,
2012). Our study is the first that focused on both the US and
Canada, and the first to combine the use of regression models for
both supply and demand projections.

Our results generally agree with those in the previous studies for
the regions where the previous projections of risks have been
assessed. For example, the probability of water shortage was
calculated across the U.S. by Foti et al. (2012) and probabilities
were highest in the same areas as our study indicated, namely the
southwesternUnited States and the coast of California, though they
showed a high risk for the central US as well. Roy et al. (2012) found
that the southwest and central US as well as Florida will have the

highest risk index in 2050. The latest assessment of risk showed that
central California, and parts of Nevada have the highest risk of
water shortage (Dickson and Dzombak, 2019). Regardless of the
methods, data, or scenario chosen, all of these studies agree that
California and the US Southwest have the most troubling futures,
relative to other parts of North America, when it comes to the
effects of climate change on water resources.

Limitations
Though we used an expansive collection of streamflow data,
continuous, long-term hydrologic data is often limited to large
rivers and our conclusions may not accurately extrapolate to
smaller basins (Kovach et al., 2019). In a similar fashion, the water
use data is mostly limited tomedium-sized cities and the captured
relationships between water use and weather may not extrapolate
to extremely large cities or small towns. Although some
hydrological extremes are included in the 20-year period of
analysis used in this paper (e.g., the 2000–2004 drought in
western North America), the length of time used may be seen
as too modest as the full extent of climate extremes in all areas
may not be present and therefore learnable in our data (Schwalm
et al., 2012). Rather than developing the best possible prediction
model, we aimed at exploring how well a relatively simple model
(MLR) can explain interannual and seasonal variability in water
consumption and streamflow. Likewise, our water shortage
vulnerability framework is relatively narrow in scope. For a
more complete risk assessment, one would have to consider
biological and ecological sensitivity as well as adaptive capacity
(Kovach et al., 2019). Though we utilized stochastic weather
generators to increase the number of cases in our ensemble of
future scenarios, we only included five GCMs as a baseline, so the
results could be sensitive to our choice in GCMs.

Due to the number of models included for projecting
streamflow, the assumptions of linear behavior and constant
variance over the long period of study could not be verified.
The least success in terms of MLR performance among the
streamflow models is found for Central US and Florida. One of
the key reasons for the poor performance is the fact that runoff
could be controlled by non-linear threshold-like belowground
hydrologic processes (Jones et al., 2019). In some catchments,
precipitation can fall and either quickly flood the surface when
the soil is saturated or recharge the groundwater system. Thus,
water from similar sized precipitation events may be
transferred toward the stream immediately or a few months
to several decades later. The “memory” in the hydrological
system, which acts on multiple time scales, is not possible to be
captured by the linear regression model used in our paper. In
deforested, arid, urbanized, or agricultural areas with little
snowfall and little interactions between precipitation and
belowground attributes, streamflow response to
precipitation is relatively fast. In these regions, as well as in
regions with similar year-to-year regimes, our ensemble of
regression models is deemed acceptable to forecast future
water shortage and its uncertainty.

With regards to our projections of water use, unlike previous
studies, we did not consider water use from sectors such as
agriculture or thermoelectric power which admittedly take up
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a large portion of water (Foti et al., 2012; Roy et al., 2012; Dickson
and Dzombak, 2019). Climate successfully explained a large
portion of the variability in our urban water use data, and
climate change will likely explain much of the future changes
in use, however, non-climatic changes can also be substantial
factors. For instance, age of the population, household size, and
other sociodemographic attributes can explain some water use
behavior (March and Saurí, 2010). While the effects of
population, income, and technological efficiency growth have
been shown to negate overall, individual regions or cities may
experience outsized effects of one or another (Rosegrant and Cai,
2002). City or building specific attributes related to water use such
as building type, tree fraction, building age, impervious surface
percentage, and population density can also change over time and
should be seriously considered (Stoker and Rothfeder, 2014;
Chang et al., 2017). General attitudes towards conservation
and lawn upkeep are yet other examples of features that may
change in tandem with water use (Hong and Chang, 2014).
Further, we assumed that spatially interpolating our estimated
regression coefficients from cities with data to the grid of counties
gives a good enough first-order approximation of the effects of
climate on water use in each county. Though the validation
provides some confidence that interpolating the regression
coefficients yielded optimal results for the purpose of our
study, some subregions had little-to-no data (e.g., Hawaii and
the Deep South), and therefore uncertainty in their results
remains unaccounted for.

CONCLUSION

Here we presented a new method for quantifying future risks
of municipal water shortages across North America in
response to climate change. We applied a set of multiple
regression models to project the changes in streamflow
regimes (water-supply) and urban water use regimes
(water-demand) in response to climate scenarios
stochastically generated from an ensemble of five GCMs,
for the RCP4.5 and RCP8.5 emission scenarios. The
models were calibrated over the present period
(1993–2012) and then used for projections over the
2080–2099 period. The results were analyzed for each of
14 identified clusters or subregions across the original
domain (the US and Canada).

Results show that risk scores are considerably higher in the
summer compared to the rest of the year, since urban water
demand is high regardless of the location chosen. The
resulting risk scores for water shortages by the end of the
21st century under the RCP4.5 emissions scenario, indicate a
high risk for the West Coast, the Deep South, and the
Southwestern US. Under the RCP8.5 scenario, the regions
with the highest risk are Southern Central US, the Deep South,
and Northeast, while the regions with the lowest risk are
Alaska, Rockies, and Hawaii. The high risk scores are due
to high and increasing demand concurrently happening with
low and decreasing supply. Almost all uncertainty in the risk
scores is rooted in the uncertainty of streamflow projections

from GCM data, while there is little-to-no uncertainty in
water-demand projections from GCM data. Overall, the
predictive power of our streamflow model is shown to be
sufficient in most subregions, while for Florida and Central
US, the model yielded low predictive power. Our study reveals
that simple statistical models can produce projections of water
shortages that agree with those derived from more complex
methods used in previous studies. Nevertheless, more work is
needed to identify and implement mitigation strategies to
prevent water resource shortages. In particular, the regions
that we identified as those with high risk scores, should be
examined in more detail so that their water resources can be
analyzed at the community level. Future research should also
aim to employ more complex methods, especially in those
regions shown with our simple method to have high risk and
relatively large uncertainty in predicted water shortages. To
capture the long-term ‘memory’ and non-linear threshold-like
behavior of hydrologic systems, due to snowmelt
characteristics or differing geological water partitioning
systems, more complex and computationally expensive
methods are needed, such as Long-Short-Term Memory
models (e.g., Shen, 2018), as well as diverse climatic and
physical data.
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Groundwater Drought and Cycles in
Xuchang City, China
Jia Huang, Lianhai Cao*, Furong Yu, Xiaobo Liu and Lei Wang

North China University of Water Resources and Electric Power, Zhengzhou, China

The urban groundwater system is complex and affected by the interaction of natural and
human factors. Groundwater scarcity can no longer reflect this complex situation, and the
concept of groundwater drought can better interpret this situation. The groundwater
drought cycle is the time interval in which groundwater droughts occur repeatedly and
twice in a row. The study of the groundwater drought cycle can more comprehensively
grasp the development characteristics of the groundwater drought, which is of great
importance for the development, utilization, and protection of groundwater. This study
used monthly observation data from seven groundwater wells in Xuchang, China, in the
period 1980–2018. We applied the Kolmogorov–Smirnov test to select the best fitting
distribution function and constructed a Standardized Groundwater Index (SGI). We
analyzed groundwater drought at different time scales and used Morlet’s continuous
complex wavelet transform to analyze the groundwater drought cycles. The following
results were obtained: 1) the maximum intensity of groundwater drought in the seven
observation wells ranged from 104.40 to 187.10. Well-3# has the most severe
groundwater drought; 2) the drought years of well-5# were concentrated in
1984–1987 and 2003–2012 and those in the other wells in 1994–1999 and
2014–2018; and 3) the groundwater drought cycles in the seven observation wells
were 97–120months, and the average period is about 110 months. The cycle length
had the following order: well-7# > well-4# > well-5# > well-2# > well-1# > well-3# > well-6.
Therefore, Morlet wavelet transform analysis can be used to study the groundwater
drought cycles and can be more intuitive in understanding the development of regional
groundwater droughts. In addition, through the study of the Xuchang groundwater
drought and its cycle, the groundwater drought in Xuchang city has been revealed,
which can help local relevant departments to provide technical support and a scientific
basis for the development, utilization, and protection of groundwater in the region.

Keywords: Xuchang city, groundwater drought, Standardized Groundwater Index, wavelet analysis, drought period

INTRODUCTION

Drought is an extreme and complex natural disaster that can cause great economic losses and has the
characteristics of long duration, wide impact, and high frequency. It seriously threatens the safety and
stability of human society and is called a “spreading disaster” (Mishra and Singh, 2010; Wilhite,
2000). Climate change has a huge impact on hydrological processes (Intergovernmental Panel on
Climate Change (IPCC), 2013; Wilhite, 2000; Oo et al., 2020), and its impact on groundwater
resources cannot be ignored (Zhou et al., 2010; Kavitha and Chandran, 2015; Dua et al., 2020).
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Groundwater drought, as a concept that links groundwater
resources with drought, is gradually separating from
hydrological drought and agricultural drought and has become
a separate research area in recent years, gaining the attention of
scholars from around the world. It is defined as a phenomenon in
which the groundwater level is lower than the normal or the flow
rate decreases in the spring (Van Loon and Anne, 2015; Marchant
and Bloomfield, 2018). Like other common droughts, it is a
natural disaster caused by the dual impact of social
development and climate change, impeding the development
and stability of society (Taylor et al., 2012; Medellín-Azuara
et al., 2015). Natural factors causing such droughts include
temperature and precipitation. Rising temperatures lead to an
increase in evapotranspiration, and insufficient precipitation
leads to a decrease in surface runoff and soil moisture, thus
affecting groundwater replenishment. In addition, a large amount
of groundwater is used for intensive farmland irrigation, and a
small amount of groundwater is used in households and
production. Overexploitation of groundwater makes it difficult
for groundwater to return to normal levels, leading to
groundwater drought. The pressure, state, and response of the
groundwater drought are shown in Figure 1.

Under the combined influence of natural factors and human
activities, groundwater drought may exhibit complex
characteristics. In addition, due to the lack of direct
observational data on groundwater resources, it is difficult to
quantitatively assess groundwater drought. However, since
groundwater drought has attracted the attention of scholars in
the fields of meteorology, hydrology, and geology, it has become
an important research topic. The Groundwater Resource Index
(GRI), as a reliable tool in a multi-analysis approach for
monitoring and forecasting drought conditions, was developed
by Mendicino et al. (2008). Macdonald et al. (2009) studied the
principles of groundwater drought using hydrogeological maps,
while Li and Rodell (2015) used the Groundwater Drought Index
(GWI) to assess groundwater drought in the central and
northeastern United States. After the launch of the Gravity
Recovery and Climate Experiment (GRACE) satellite, scholars
will be able to use remote sensing methods to assess changes in
groundwater reserves and use the results in response to drought
(Scanlon BR. et al., 2012; Scanlon B. R. et al., 2012). Until 2017,
Thomas et al. (2017) explicitly included and evaluated the
Groundwater Drought Index based on GRACE observations to
understand and identify groundwater drought and applied it in
the Central Valley of California, thus pioneering the direct

application of the GRACE satellite to assess groundwater
drought. Seo and Lee (2019) combined GRACE satellite data
and other remote sensing methods to build an artificial neural
network model to monitor the groundwater drought in South
Korea, thus providing a new idea for the use of satellite methods
to monitor groundwater drought. Wang et al. (2020) used the
GRACE Groundwater Drought Index (GGDI) as an indicator to
assess groundwater drought and comprehensively identified the
temporal evolution, spatial distribution, and trend characteristics
of the drought in the North China Plain from 2003 to 2015.
Afterwards, they used cross-wavelet transform technology to
clarify the difference between GGDI and teleconnection
factors. The relationship between relevant factors has achieved
good results and gained new insights for the application of
GRACE gravity satellites to monitor groundwater drought.
The Standardized Water-Level Index (SWI) was originally
developed by Bhuiyan (2004) to evaluate the hydrological
drought with the help of the groundwater level recharge deficit
and was later applied to the study of groundwater drought. Rahim
et al. (2015) used SWI to estimate the groundwater recharge
deficit in the pre-monsoon and post-monsoon seasons and then
performed a spatial interpolation to determine the degree of
groundwater drought in the study area. Nagarajan et al. (2015)
used SWI as a Ground Observation Index combined with satellite
information to evaluate the drought vulnerability of the
Peddavagu watershed in the sub-basin of the Krishna River
system on the Indian peninsula.

The Standardized Precipitation Index (SPI) is one of the most
widely used evaluation indicators in the field of drought.
Monitoring meteorological droughts can serve as a guide for
planning and implementing groundwater management policies
(CTGCD, 2011; Texas Water Code, 2016). Therefore, it is also
used in the assessment of groundwater drought (Fiorillo and
Guadagno, 2010; Fiorillo and Guadagno, 2012). Bhuiyan et al.
(2006) combined SWI with SPI, Normalized Difference
Vegetation Index (NDVI), Vegetation Condition Index (VCI),
Temperature Condition Index (TCI), and Vegetation Health
Index (VHI) to monitor drought dynamics in the Alawari
region (India). On the basis of SPI, Bloomfield Marchant
(2013) and Bloomfield et al. (2015) used monthly groundwater
level data to construct the Standardized Groundwater-Level
Index (SGI), which is specifically used to evaluate groundwater
drought, and analyzed the correlation between SGI and SPI on
multiple time scales. As a result, the use of SGI to assess
groundwater drought has grown. Pathak et al. (2016)

FIGURE 1 | Schematic diagram of groundwater drought pressure, state, and response.
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performed a cluster analysis of the long-term monthly
groundwater level in the Gataprabha River Basin in India.
This study classified observation wells which performed the
Mann-Kendall test in order to analyze annual and seasonal
groundwater level trends and used SGI to evaluate the area
groundwater drought. Motlagh et al. (2016) used stochastic
models to predict the groundwater level and then used SGI to
predict and warn the local groundwater drought. Liu et al. (2016)
used monthly groundwater level data from 40 observation wells
in Jiangsu Province, China, from 1989 to 2012, and used SGI to
conduct a spatio-temporal analysis of groundwater drought in the
province. However, the calculation method of SGI proposed by
Bloomfield Marchant (2013); Bloomfield et al. (2015) considered
both parametric and non-parametric cases. The monthly series of
groundwater level were fitted with the gamma function, without
considering whether the gamma function could be fitted with the
monthly series data of groundwater level in other regions, which
would have a certain impact on the final groundwater drought
assessment. Based on this, Lorenzo-Lacruz et al. (2017) modified
the SGI according to the Standardized Runoff Index (SSI)
(Vicente-Serrano et al., 2012) and established an index
according to different probability distributions of monthly
series of groundwater level, which can ensure adaptability of
calculated SGI to different climate and water conditions and can
more accurately reflect the conditions of groundwater drought.

Drought monitoring and identification of characteristics are
an important part of dealing with drought risks (Harisuseno,
2020; Kavianpour et al., 2020). Based on a quantitative
assessment of groundwater drought conditions, some scholars
have begun to identify the characteristics of groundwater
drought. Groundwater drought has characteristics similar to
traditional drought, which is a multivariate phenomenon.
There is a certain correlation and dependence between several
characteristic variables (e.g., drought duration, drought intensity,
and drought influence range), so traditional analysis with one
variable (e.g., drought frequency) may not be conducive to
comprehensively study groundwater drought events, leading to
insufficient and inaccurate drought risk assessment (Pathak and
Dodamani, 2021). The Copula function has been widely used in
drought field research (Zhou et al., 2012; Xu et al., 2015; Wu et al.,
2018). It can fit into the distribution functions of multiple
drought-characteristic variables and can effectively describe
the correlation between variables. Although groundwater
drought research started late, studies have shown that the
Copula function can also be used in research and analysis of
groundwater drought. For example, while Saghafian and
Sanginabadi (2020) proposed a framework for statistical
analysis of disturbed hydrological system, they carried out
multivariate groundwater drought analysis based on the
Copula function in an overexploited aquifer and used a
goodness-of-fit test to compare Copula and the empirical
groundwater drought frequency, which proved that the Copula
model had sufficient accuracy in multivariate drought analysis.
Pathak and Dodamani (2021) studied the response of
groundwater drought to meteorological drought and the local
aquifer characteristics using monthly groundwater level data in
the tropical river basin of India and the Copula function to

conduct a bivariate (drought intensity and drought duration)
frequency analysis of groundwater drought.

However, research on the characteristics of groundwater
drought is mainly concentrated in the return period
(frequency analysis), and there is little research on the
groundwater drought cycle. The return period is the frequency
of events in a certain period, which is random and uncertain, and
the drought return period is mainly used to evaluate the severity
of drought events. A cycle is a cyclic law that exists in the
development process of things, which is deterministic, and the
drought cycle is the time interval between two adjacent droughts.
Therefore, conducting research on the groundwater drought cycle
can provide a more comprehensive understanding of
groundwater drought characteristics, understand the law of
regional groundwater development, and strengthen the
groundwater drought early warning mechanism. Continuous
wavelet transform is a common method in wavelet analysis. It
can more effectively identify the non-monotonic trend of
hydrological sequences (Sang et al., 2018) and is widely used
in the field of hydrology. For example, Pathak et al. (2016) used
wavelet transform methods to analyze seasonal temperatures,
precipitation, and runoff trends in the Midwest of the
United States. Djordje et al. (2021) used wavelet transform
spectrum analysis (WTS) and other methods to study the
long-term characteristics of the Danube water level and the
flow and changes in natural cycles. Palizdan (2017) applied a
continuous wavelet transform to analyze the long-term
precipitation trend in the Langat River Basin (Malaysia), while
Li and Zhu (2021) further improved the wavelet transform
method to identify the runoff cycle of the Heihe River (China).

In this paper, we used the continuous wavelet transform
method to identify the period of groundwater drought and to
grasp the principles of groundwater drought in Xuchang city. The
objectives of this study are 1) to determine changes in
groundwater drought in different observation wells in
Xuchang city from 1980 to 2018 and 2) to evaluate the change
cycle of groundwater drought in Xuchang city.

DATA AND METHODS

Study Area
Xuchang city (34°16′–34°58′N, 112°42′–114°14′E) is located in
the central part of Henan Province (China) and covers an area of
4,996 km2. It is located in the transition zone between Funiu
Mountain and the Eastern Henan Plain. Plains dominate with
72.8%, while hills and mountains account for 16.8 and 10.4%,
respectively. The region has a temperate continental monsoon
climate with an average annual temperature from 14.3 to 14.6°C
and an average annual precipitation from 671 to 736 mm.
According to the lithological characteristics of aquifers and the
nature of groundwater storage in Xuchang area, regional
groundwater can be divided into four types: loose rock pore
water, clastic rock fissure water, carbonate rock fissure karst
water, and magmatic rock fissure water. Pore water is
distributed in vast plains and hilly areas, whereas fissure water
and karst water are distributed in the bedrocks of the mountains.
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The shallow loose rock-type pore is the most important water-
bearing rock group in the region and the analyzed groundwater
belongs to this group.

Data
Monthly groundwater level data were obtained from the local
Hydrographic Bureau. We used the monthly data from seven
observation wells with relatively complete datasets from 1980 to
2018. For some missing data, cubic spline function interpolation
was used to supplement the data (Peng-zhu et al., 2015). The
locations of the seven observation wells are shown in Figure 2.

Methods
Standardized Groundwater Index
The SGI is an indicator that measures the degree of groundwater
drought based on changes in groundwater level. It is currently a
more reliable tool for assessing groundwater drought. Bloomfield
et al. (2015) revised the Standardized Precipitation Index (SPI)

and proposed the SGI for groundwater drought analysis. In their
study, the SGI uses gamma distribution in SPI for fitting.
However, the monthly distribution of groundwater may not be
consistent with the gamma distribution (Liu et al., 2016), and
therefore the method proposed by Lorenzo-Lacruz et al., 2017 can
be used to calculate SGI for different fitting distribution functions
in this study. The SGI calculation formula (Lorenzo-Lacruz et al.,
2017) is as follows:

SGI � S(W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3
), (1)

W � ������−2 lnP√
, (2)

where F(x) is the cumulative distribution probability for
determining the fitted distribution function, P is the
groundwater level distribution probability related to function
F(x), x is the monthly groundwater level sample, and S is the
positive and negative coefficient of probability density. If

FIGURE 2 | Location of the study area and the seven observation wells.
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F(x) ≥ 0.5, P � 1-F(x), S � 1; if not, P � F(x), S � −1. C0, C1, C2 and
d1, d2, d3 are the calculation parameters of the gamma distribution
function converted into cumulative frequency in order to simplify
the approximate solution formula. The constants are C0 �
2.515517, C1 � 0.802853, C2 � 0.010328, d1 � 1.432788, d2 �
0.189269, and d3 � 0.001308.

Based on this, the key to calculating the SGI is to find the
most suitable fitting distribution function. Here, we used
gamma distribution, beta distribution, log-normal
distribution (logN), Weibull distribution (Web), normal
distribution, and the generalized extreme value (GEV)
distribution to fit the data of the seven observation wells.
These distribution functions are not only more common
but also have strong adaptability, satisfying the cumulative
frequency calculation of monthly data series on groundwater
levels in different situations (Guttman, 1998).

Prior to calculating the SGI, we normalized the original data
column (x) and introduced the processed data column (x’) in
subsequent calculations. To facilitate subsequent distribution
function fitting, we replaced 0 and 1 in the new data column
with 0.001 and 0.999, respectively. The normalization formula
(Chen et al., 2019) is as follows:

x′ � max(x) − x

max(x) −min(x) . (3)

After obtaining a normalized data column, we began to fit the
distribution function. This step was performed with the help of
the MATLAB 2018b software platform.

After that, the Kolmogorov–Smirnov (KS) test was performed
on the fitting distribution results of the data of each observation
well, and the fitting distribution function with the lowest statistic
D was selected as the best fitting distribution function of the
observation well, introduced into Eq. 1. The KS test equation (Xi-
zhi and Wang, 1996) is as follows:

D � max(maxi

∣∣∣∣∣∣∣COF(xi) − r − 1
n

,
r

n
− CDF(xi)

∣∣∣∣∣∣∣), (4)

where r is the rank of the observation i in ascending order.

Wavelet Analysis
Wavelet analysis, known as the “mathematical microscope,” is
particularly suitable for processing non-stationary signals because
it can detect the characteristics of time-frequency detailed
information and can reveal the main distribution of oscillation
periods hidden in time series, which is useful for the future of the
system. The development trend has been qualitatively estimated
and is widely used in the research fields related to atmosphere,
hydrology, and geography, among others (Aussen et al., 1997;
Smith et al., 1998; Nason and Sapatinas, 2002).

When using wavelet to analyze practical problems, we have to
choose the suitable basis for the wavelet function. Morlet is a
harmonic smoothed by the Gaussian function and a complex
wavelet that is widely used in the field of hydrology (Kulkarni,
2000). Therefore, we chose Morlet’s continuous complex wavelet
transform to analyze the characteristics of groundwater time
series on multiple time scales. For a given wavelet function,

continuous wavelet transform of the hydrological time series
f(t) ∈ L2(R)(Wang et al., 2005) is expressed as follows:

Wf(a, b) � |a|−1
2 ∫

∞

−∞
f(t)ψ(t − b

a
)dt, (5)

where a is the scaling scale (a≠ 0), which reflects the
characteristics of the frequency domain; b is the translation
parameter, which reflects the characteristics of the time

domain; ψ(t−b
a ) is the complex conjugate function of ψ(t); and

�ψ(t) is the basis wavelet function. Here, Wf(a, b) is the wavelet
transform coefficient, which is the inner product of the
continuous wavelet and the signal on the scale a and
displacement b, indicating the degree of similarity between the
signal and the wavelet represented by the point. When the value
of a is small, a higher time domain resolution can be obtained; the
opposite occurs for small value of a.

Because it is difficult to express a continuous sequence with
digital symbols in actual application, a continuous time sequence
is often discretized. This is also the case for hydrological time
series. Total, average, or extreme values of the process state are
often used as time series values, such as precipitation, water level,
and runoff (Wu, 2014).

The discrete form of wavelet transform (Hou andWang, 2011)
is expressed as follows:

Wf(a, b) � |a|−1
2Δt∑N

k�1f(kΔt)ψ(
kΔt − b

a
), (6)

where Wf(a, b) is a function that varies depending on the
parameters a and b. Since the Morlet wavelet is a complex
number, the transformed coefficients are also complex
numbers. We took the real part of the wavelet coefficients,
namely,b as the abscissa and a as the ordinate, in order to
generate a two-dimensional contour map of Wf(a, b), i.e., the
contour plot of the real part of the wavelet coefficients.

When the scale a is the same, the process of changing the wavelet
transform coefficients over time reflects the characteristics of the
change of the hydrological time series on this scale: when the wavelet
transform coefficient is greater than 0, it is in the multi period; when
the wavelet transform coefficient is less than 0, it is in the minor
period. Similarly, when the wavelet transform coefficient is 0, it is in
the transition stage from minor to multi period or from multi to
minor period (Hou and Wang, 2011).

By integrating the square value of the wavelet coefficient in the
time translation domain (b), the wavelet variance Var (Cahill,
2002; Kang et al., 2009) can be obtained:

Var(a) � ∫
∞

−∞

∣∣∣∣Wf(a, b)
∣∣∣∣2db. (7)

The discrete form is expressed as follows:

Var(a) � 1
N

∑N

t�1
∣∣∣∣Wf(a, xt)

∣∣∣∣2, (8)

where Var(a) is the wavelet variance; N is the length of the
groundwater level data column; andWf(a, xt) is the square of the

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 7363055

Huang et al. Groundwater Drought and Cycles

30

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


wavelet coefficients on the scale a and time xt, and it is the square
of the coefficient modulus for complex coefficients.

The distribution diagram of the Var change during the period
a is called the “wavelet variance distribution diagram” and can
intuitively reflect the energy distribution of the signal fluctuation
with the period a, determining the relative intensity of the
different oscillation periods and the main oscillation period.

RESULTS

Selection of the Best Fit Function
As mentioned above, the key to SGI calculation is to select the
fitting function. We used six more common functions to fit
the data series from the seven observation wells and
performed the KS test (Eq. 4) on the fitting results; finally, we

TABLE 1 | Results of the Kolmogorov–Smirnov test for seven wells.

Observation well D

Log-normal Gamma Beta GEV Weibull Normal

1# 0.1261 0.0891 0.0567 0.0396 0.0609 0.0464
2# 0.1354 0.1275 0.0748 0.0721 0.1130 0.0992
3# 0.1258 0.0851 0.1188 0.1321 0.0879 0.1292
4# 0.1495 0.1380 0.0736 0.1046 0.1150 0.1033
5# 0.2697 0.1973 0.1301 0.1215 0.1875 0.1362
6# 0.0954 0.0892 0.0492 0.0696 0.0620 0.0744
7# 0.1878 0.1531 0.0826 0.0583 0.0859 0.1362

FIGURE 3 | SGI time series values.
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chose the function with the lowest test statistic D as the best fit
function for the SGI calculation (Cui et al., 2020).

Table 1 shows that the best fitting distribution function for the
well-1#, well-2#, well-5#, and well-7# is the GEV function, that
for the well-3# is the gamma function, and that for the well-4#
and well-6# is the beta function.

SGI Sequence Characteristics
We used Eq. 1 to calculate 3,276 Standardized Groundwater
Index values of monthly series of groundwater level from 1980 to
2018 for all observation wells. When SGI <0, drought occurs;
when SGI � 0, the well is in a critical state; and when SGI >0, the
conditions are normal. Here, we defined continuous drought
(i.e., drought duration t ≥ 2 months) as a drought event. The
results show (Figure 3) that drought and non-drought occurred
alternately in all observation wells, albeit at different intervals.
Except for well-5#, the alternating drought and non-drought
trends for the remaining six wells were similar, whereas those
for well-5# showed the opposite pattern. In addition, the overall
trend of the average SGI sequence curve was most similar to that
of well-4#.

The number of drought events in the seven observation wells
was from 3 to 11, the total drought duration was from 210 to

242 months, the maximum drought intensity was from 104.40 to
187.10, and the longest duration of drought events was from 67 to
146 months. Well-3# had the least drought events, which was
three times. However, due to the drought duration, drought
intensity, and drought severity characteristics, well-3# faced
the most severe drought. Short-term drought often occurs in
well-1# and well-6#. The drought intensity in well-7# is the
weakest and the duration of the maximum drought event is
the shortest. The total duration of drought is the shortest in well-
4#. Detailed characteristics of the SGI sequence of the seven
observation wells are shown in Table 2.

Interannual Variation of Groundwater
Drought
Because groundwater drought is a cumulative condition, we used
the SGI in December each year to represent the groundwater
drought in that year. Figure 4 shows the interannual variations of
groundwater drought in the seven observation wells of nearly 39a
(1980–2018) in Xuchang city (color represents SGI value).
Groundwater drought in well-1#, well-2#, and well-4#
occurred in 17 years. The strongest droughts occurred in 2014,
2015, and 1999. The coverage period of well-3# groundwater

TABLE 2 | Drought characteristics based on SGI values for seven observation wells.

Observation well No. of drought events Total duration (months) Maximum severity Maximum duration (months)

t = 2 months 2 months < t
≤ 12 months

t > 12 months Total

1# 2 6 3 11 223 104.90 85
2# 1 3 4 8 222 168.69 120
3# 0 0 3 3 242 187.10 146
4# 1 1 3 5 210 164.00 122
5# 1 4 4 9 225 133.25 103
6# 2 5 3 10 229 134.97 105
7# 1 2 4 7 223 104.40 67
Average 2 3 4 9 210 74.17 85

FIGURE 4 | Interannual variation of groundwater drought for all seven wells.
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drought was 20 years, and the strongest drought occurred in
2016. Well-5# groundwater had the longest drought coverage
period of 21 years, and the strongest drought occurred in 1985.
The drought coverage period of well-6# was 19 years, and the
strongest drought occurred in 1993. The well-7# groundwater
drought coverage period was 18 years, and the strongest drought
occurred in 1996.

Interestingly, the drought years of well-5# were basically
spaced apart from those other six. When excluding well-5#,
there were no groundwater droughts in the periods 1984–1987
and 2003–2008. In 1994, 1996–1999, and 2014–2018, droughts
were observed in other six wells, while no groundwater drought
was observed for well-5# during this period.

Characteristics of Groundwater Drought
Cycle
In this paper, the 39a regional groundwater SGI sequence was
used for wavelet transformation. In this step, we used the
MATLAB wavelet toolbox to complete the wavelet

transformation graph. We took the real part of the wavelet
coefficients, the number of months as the abscissa (e.g., the
abscissa 100 in Figure 5 represents the 100th month) and the
time scale as the ordinate, and drew the contour plot of the real
part of the wavelet coefficients (Figure 5). To more intuitively
understand the periodic changes of groundwater drought,
the depth of color in Figure 5 represents the size of the real
part of the wavelet coefficient. The darker the color, the smaller
the SGI value and the stronger the groundwater drought; the
lighter the color, the greater the SGI value and the less severe the
groundwater drought. Wavelet coefficients change characteristics
can be used to characterize SGI time series change characteristics:
when the real part of the wavelet coefficient is greater than 0,
i.e., the SGI is greater than 0, there is no groundwater drought;
when the real part of the wavelet coefficient is less than 0, i.e., the
SGI is less than 0, there is groundwater drought. When the real
part of the wavelet coefficient is 0, that is, SGI is equal to 0, it
represents a turning point in the groundwater transition from
drought to non-arid conditions or from non-arid conditions
to drought.

FIGURE 5 | Contour plot of the real part of the wavelet coefficients.
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The wavelet variance chart can reflect the distribution of the
SGI time series fluctuation amplitude with the scale a and can be
used to identify the intensity of disturbances and periodic changes
at various scales, thereby determining the main period in the
evolution of groundwater drought. We calculated the wavelet
variance of the SGI time series of all observation wells according
to Eq. 8 and drew a wavelet variance graph (Figure 6) with the
time scale a as the abscissa and the wavelet variance as the
ordinate.

According to the results of the wavelet variance calculation,
drawing a real part processing line diagram of the wavelet
coefficients in the first and second main periods (Figure 7)
can help understand the impact of the two main periods on
groundwater drought throughout the study period. Usually, in
the same period, the larger the amplitude of the wavelet
coefficient real part processing line, the greater the influence
in this period, that is, the period is dominated by the variation of
the main period.

According to the results of the wavelet analysis, the
characteristics of the groundwater drought oscillation

period in seven observation wells can be obtained (Table 3).
It can be seen from the table that there are 2–4 types of time
scale laws in all observation wells, and different types of time
scale laws correspond to different main periods. This paper
analyzes only the first and second main periods that can best
represent the characteristics of the groundwater drought
oscillation cycle in each well. The first major period of
groundwater drought in the seven observation wells was
concentrated between 97 and 120 months, i.e., between 8
and 10 years. Apart from the fact that the second main
period of well-3# and well-7# is longer than the first main
period, the second main period of other wells basically
fluctuates up and down half of the first main period. As can
be seen from Figure 6, small cycles are included in the large
cycles. As for the situation of well-3# and well-7#, it is very
likely that the length of data is not enough, which leads to a
larger main period not being found, but according to the size of
the first and second main periods of other observation wells,
we speculate that the actual first main period of the two wells is
twice as long as the existing first main period. However, due to

FIGURE 6 | Wavelet variance map.
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FIGURE 7 | Real part of the wavelet coefficient of groundwater drought time scale in the first two main periods.

TABLE 3 | Period characteristics of groundwater drought oscillation.

Observation well Number of types of
time scale laws

First
main period (months)

Second
main period (months)

1# 3 106 72
2# 4 114 67
3# 2 102 141
4# 2 118 53
5# 3 116 51
6# 3 97 65
7# 4 120 157
Average 1 90 —
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the influence of the data, we can only roughly conclude that the
first major periods of the two wells are 102 and 120 months,
respectively. There is one type of time scale rule of the average
SGI time series and it corresponds to a single main period
(90 months), which is 20 months away from the average first
main period (110 months) of each well.

DISCUSSION

Climate change and human activities are the main factors causing
changes in groundwater levels (Dua et al., 2020; Kavitha and
Chandran, 2015; Zhou et al., 2010), and in this study, the
Groundwater Drought Index SGI is based on groundwater
level data. So, the response of well-5# to changes in the
environment differs from those of the other observation wells,
most likely due to factors. Due the lack of data, we could not
investigate this basic mechanism in more depth. However, it is
now clear that conventional droughts can spread faster to
groundwater droughts in areas that respond faster to factors.

Drought periods in the seven observation wells differed up to
23 months. Since all these observation wells contain shallow loose
rock pore water, there is no difference in the lithology of the
aquifer. Therefore, we believe that this difference may be due to
regional climate change and human activities. In this sense, the
definition of the impact on groundwater drought requires further
analysis.

The second main periods of well-3# and well-7# were both
longer than the first main period, and in Figure 5, the contours on
the second main cycle time scale of these two wells are not closed.
However, the unclosed contour loop had a closed trend. It is
necessary to confirm whether the cycle of groundwater drought
change of the two wells will have a higher periodicity in a certain
period of time in the future.

Morlet wavelet transform analysis showed that the
groundwater drought period in Xuchang city is 110 months,
which is about 9 years. Previous studies have shown that
drought periods are closely related to solar activity, and a
small period of solar activity is 10 years (Li et al., 2015, Li
et al., 2019), which is basically consistent with the results of
this study (the subtle difference may be caused by human
activities). Therefore, Morlet’s continuous complex wavelet
transform can be used to study the groundwater drought
cycles. Our results provide a scientific basis for improved
groundwater management.

CONCLUSION

Drought events occurred in all seven observation wells, of
which the number of occurrences was the lowest in well-3#,
but the drought was the worst. Well-1# has the highest
number of drought events, but is dominated by short-lived
droughts. Well-4# has the shortest total drought duration, and
well-7# has the lowest drought intensity and the shortest
duration of the longest drought event. The maximum

drought intensity in the seven observation wells is between
104.40 and 187.10.

The drought years of all observation wells were 17–21 years,
and the drought years of well-5# were basically spaced apart from
other six. The drought years of well-5# are concentrated in
periods 1984–1987 and 2003–2012, while the drought years of
other observation wells were concentrated in periods 1994–1999
and 2014–2018.

The contour map of the real part of the wavelet coefficients of
each well showed a clear quasi-lateral, positive and negative
interlaced closed center, distributed from low frequency to high
frequency, which indicates an obvious period of oscillation for
groundwater drought in Xuchang city. Wavelet transform analysis
shows that the groundwater drought period of the seven
observation wells was concentrated between 97 and 120 months,
i.e., between 8 and 10 years. The groundwater drought period in
well-7# was the longest with 120 months, and that of well-6# was
the shortest with 97months. Moreover, each observation well had
a second main cycle of different sizes, indicating that the main
periods of groundwater drought oscillations are different in
different time periods. In addition, we infer that the time scale
difference between the first and secondmain period is basically half
of the first main period, and the change law of the small-time scale
is included in the large time scale.

Wavelet analysis of the average SGI time series of the seven
observation wells shows that the groundwater drought period
(90 months) differed considerably from the average period of
each well (approximately 110 months), indicating that the
average SGI time series of the seven wells is not available. The
results of the wavelet analysis can be used to determine the overall
groundwater drought cycle in the region.
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Drought is a natural phenomenon caused by a shortage of water resources and has a great
impact on agriculture, the economy, and the environment. To study the Spatio-temporal
distribution and explore the zonal patterns of drought, this paper took the Yunnan-Guizhou
Plateau (YGP) as the research region, selected the air temperature, relative humidity,
sunshine duration, wind speed, and precipitation data from 47 meteorological stations on
the YGP. First, the standardized precipitation evapotranspiration index (SPEI) was
calculated, and then the Spatio-temporal distribution of YGP drought was analyzed
with the SPEI, Mann–Kendall test, and principal component analysis (PCA). Finally, the
correlations between the average SPEI, drought characteristics extracted from the SPEI,
and longitude/elevation/latitude were analyzed with the linear regression method, and then
the zonal patterns of the YGP drought were obtained. The results revealed that the annual
and seasonal SPEI values mainly decreased. Because the first component of the SPEI (the
largest eigenvalue makes it the most important component) in annual and winter had a
poor relationship with longitude/elevation, its correlation was weak, while the average SPEI
values in other seasons were significantly correlated with longitude/elevation (α � 0.001),
and the absolute value of the correlation coefficient was between 0.6879–0.9453. Except
for PC1 in annual and winter, PC1 and PC2 were significantly correlated with longitude/
elevation (α � 0.001), and the absolute value of the correlation coefficient was between
0.5087–0.9501. The duration, severity, intensity, frequency of drought were significantly
correlated with longitude/elevation (α � 0.001) in most situations. The average SPEI values
and drought characteristics showed a good multivariate linear correlation with longitude,
latitude, and elevation, indicating that drought exhibited strong zonal patterns. This study
will provide new ideas for drought research and technical support for regional industrial
layouts, planting structure adjustments, and drought and disaster reduction.

Keywords: Yunnan-Guizhou Plateau, longitude, elevation, zonal patterns, drought

INTRODUCTION

Recent studies have demonstrated that global climate change has altered precipitation and
temperature in different regions (Almazroui et al., 2016; Vinnarasi and Dhanya, 2016; Sung
et al., 2017; Salman et al., 2017; Sa’adi et al., 2017; Pour et al., 2018; Tao et al., 2018) and
affected the entire hydrological system (Zahabiyoun et al., 2013), thereby increasing the
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frequency and intensity of drought events (Sung and Chung,
2014; Ahmed et al., 2015; Zhang et al., 2017; Mohsenipour et al.,
2018). Furthermore, drought substantially impacts agriculture,
the economy, and the ecological environment (Wilhite, 2005;
Xiao et al., 2016; Fang et al., 2018; Fang et al., 2019; Huang et al.,
2019).

As a result, an increasing number of researchers have studied
droughts around the world. Under RCP8.5, global drought will
continue to increase (Prudhomme et al., 2014; Chanda andMaity,
2017). In particular, a substantial increase is predicted in most
parts of Africa, South America, and Asia (Chanda and Maity,
2017). Moreover, the return period of drought characteristics in
North America and Asia will decrease the most by the middle of
the century, while South America and Australia will experience
the largest decline by the end of the century (Wu et al., 2021). On
a smaller scale, many scholars used the Mann–Kendall test,
principal component analysis (PCA), and other methods to
analyze the spatial-temporal distribution of drought indicators
[the Palmer drought severity index (PDSI), the standardized
precipitation index (SPI), the standardized precipitation
evapotranspiration index (SPEI), etc.] and/or drought
characteristics (duration, severity, intensity, frequency, etc.) of
South Korea (Azam et al., 2018), Syria (Mathbout et al., 2018),
Northeast China (Fu et al., 2018), Southwest China (Wang et al.,
2018), the Loess Plateau (Liu et al., 2016), InnerMongolia (Huang
et al., 2015), Turkey (Danandeh Mehr and Vaheddoost, 2020),
Northeast Algeria (Merabti et al., 2018), Oklahoma (Tian and
Quiring, 2019), Hungary (Alsafadi et al., 2020), Oman (El
Kenawy et al., 2020), and South-central Asia (Adnan et al.,
2016). The research results for the Yunnan-Guizhou Plateau
(YGP) and its adjacent areas showed that the annual (SPEI12)
and seasonal (SPEI3) droughts in Southwest China decreased
from 1968 to 2018; the drought in the southern region was severe,
and the drought frequency increased (Tang et al., 2021). In
addition, the frequency, duration, and severity of drought in
Southwest China have increased significantly in the past 40 years
(Wang M. et al., 2021). According to the revised reconnaissance
drought index (RDI) and Mann–Kendall methods, the RDI of the
YGP declined annually and in summer, autumn, and winter,
indicating that the severity of drought was increasing, but the
opposite pattern was observed in spring. However, these trends
were not significant, and there was no mutation on the YGP from
1960 to 2013 (Cheng Q. et al., 2020). From 1960 to 2017, the
drought in spring and autumn in Guizhou increased, and the
drought in summer and winter decreased (Wang Y. et al., 2021).
From 1961 to 2015, the annual, summer, and autumn SPI of
Yunnan significantly decreased, and there was an obvious
drought trend in the Lancang River and Nanpan River Basins
(Li Y. et al., 2019). The above research results show that many
researchers have analyzed the temporal and spatial distribution of
drought on a global scale or in a small region, but there are few
studies specifically on the YGP. Therefore, the analysis of the
temporal and spatial distribution of drought on the YGP will
further enrich the research results in this area.

Drought is a natural phenomenon caused by a shortage of water
resources. Therefore, drought is closely related to meteorological
elements such as precipitation (precipitation is considered in many

drought indicators). However, meteorological elements such as
precipitation have strong zonal patterns. For example, the
precipitation in Sichuan (Zeng et al., 2016) and Hengduan
Mountain (Yu et al., 2018) is influenced by elevation and
latitude. In addition, there is a similar relationship for potential
evapotranspiration (PET). For example, with the decline in elevation,
the PET in the Xitugou Basin (Cheng W. J. et al., 2020) and Qilian
Mountain (Yang et al., 2019) of China gradually increased. The
above research results showed that the magnitude of meteorological
elements related to drought (precipitation, PET, etc.) are related to
their location. Does drought exhibit similar patterns? On a global
scale, there are humid, semihumid, semiarid, and arid areas all over
the world. On a regional scale, Mohammadi et al. (2020) found that
extreme drought events occurred in the eastern Andes; Nuri Balov
and Altunkaynak (2020) found that the drought characteristics of
the West Black Sea and the Euphrates River basin in Turkey have a
certain correlation with elevation. These studies have fully analyzed
the spatial variation characteristics of drought and preliminarily
explored the relationship between drought and elevation, but the
research on the role of longitude and latitude is insufficient [since
meteorological elements such as precipitation are related to
longitude and latitude (Yu et al., 2018), it is necessary to study
the relationship between drought and longitude and latitude]; in
addition, there are few studies on the zonal patterns of drought.
Therefore, to investigate the zonal patterns of drought, this paper
uses the YGP as the study area based on the temporal and spatial
distribution of drought, focuses on the relationship between drought
and its characteristics and elevation/longitude/latitude, and analyzes
the spatial patterns of drought. This research is different from
previous research, providing a more in-depth study on the
temporal and spatial distribution characteristics of drought.
Specifically, this study incorporates the temporal and spatial
distribution characteristics of drought to clarify its relationship
with elevation/longitude/latitude. This study will provide new
ideas for drought research and technical support for regional
industrial layouts, planting structure adjustments, and drought
and disaster reduction.

STUDY AREA

The YGP is located between 22.52–31.21°N and 100.03–111.33°E
in Southwest China, including the eastern part of Yunnan
Province, the entire Guizhou Province, the northwestern part
of Guangxi, and the provincial borders of Sichuan, Hubei, Hunan,
and Chongqing. The YGP is adjacent to the Qinghai–Tibet
Plateau and Hengduan Mountains. The rich and diverse
natural environment of the YGP results in high biodiversity
(rich species of plants and animals) and high cultural diversity
(a large number of ethnic minorities). The YGP has a subtropical
monsoon climate as a whole, with simultaneous rain and heat and
distinct dry and wet seasons. The southern region has a tropical
monsoon climate due to its low elevation and latitude, which is
strongly affected by the South Asian monsoon. At the same time,
because it is located on the low-latitude plateau, there is no severe
cold in winter and no intense heat in summer. In addition,
affected by topography, the YGP climate also has obvious
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vertical zonal characteristics and local climate characteristics. The
YGP is at the intersection of south–north- and
northeast–southwest-trending mountain ranges in China. The
elevation is between 45 and 6,740 m and is higher in the
northwest and lower in the southeast; that is, the elevation
gradually decreases with increasing longitude. The YGP is the
fourth largest plateau in China.

DATA DESCRIPTION

There are many meteorological stations in the study area, but the
starting years of the data of each meteorological station are
different. Moreover, some meteorological stations lack
measurements for a certain period of time, so it is necessary
to cut off the meteorological data in the study area uniformly to
ensure that the starting and ending years of the data of each
meteorological station are consistent and the data within the
study time range are complete. Therefore, to investigate the zonal
characteristics of drought, the monthly air temperature, relative
humidity, sunshine duration, wind speed, and precipitation of 47
meteorological stations with relatively long observation times and
relatively complete observation records (shown in Figure 1) were

selected for the present study. The data records, sourced from the
China Meteorological Data Network (http://data.cma.cn/),
covered the period from January 1971 to December 2013. In
addition, prior to the release of meteorological data, the China
Meteorological Data Service Center carried out strict quality
control, and the data had good homogeneity.

METHODS

To study the zonal pattern of drought, this study selected the
meteorological data of the YGP and used the SPEI as the drought

FIGURE 1 | Location of the YGP and meteorological stations.

TABLE 1 | Drought classes.

Level Drought category SPEI threshold

0 Non-drought 0 ≤ SPEI
1 Mild drought −0.99 < SPEI < 0
2 Moderate drought −1.42 < SPEI < −1.00
3 Severe drought −1.82 < SPEI < −1.43
4 Extreme drought SPEI ≤ −1.83
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index on time scales of 1, 3, 6, and 12 months. Then, the
quantitative method of Tang et al. (2021) was used to analyze
the temporal and spatial distribution of the SPEI and the
dependence of the characteristics of drought on the variation
in longitude, latitude, and elevation on an annual scale
(represented by the SPEI on a 12-months time scale ending in
December in each year), during spring (from March to May,
represented by the SPEI on a 3-months time scale ending in May
in each year), summer (from June to August, represented by the
SPEI on a 3-months time scale ending in August in each year),
autumn (from September to November, represented by the SPEI
on a 3-months time scale ending in November in each year),
winter (from December to February of the following year,
represented by the SPEI on a 3-months time scale ending in
February in each year), the rainy season (from May to October,
represented by the SPEI on a 6-months time scale ending in
October in each year), and the dry season (from November to
February of the following year, represented by the SPEI on a 6-
months time scale ending in April).

SPEI
To analyze drought events, a drought index should first be
selected. However, due to the different subjects and purposes,
researchers have proposed numerous drought indices. As listed
in the technical report of the World Meteorological
Organization (WMO, 1975; 2016), there are as many as 58
drought indices from different countries (Wang et al., 2019).
Among the many indices, the PDSI (Palmer, 1965), SPI (McKee
et al., 1993), and SPEI (Vicente-Serrano et al., 2010a) are widely
used. Among these, the PDSI and SPI have some defects and
assumptions (Guttman, 1998; Vicente-Serrano et al., 2010a).
The SPEI combines the advantages of the multi-timescale SPI
and the sensitivity of the PDSI. In addition, the index considers
not only the water shortage caused by precipitation reduction
but also the water shortage caused by high evapotranspiration
(Yang et al., 2020). Therefore, the SPEI is an effective drought
index and is widely used in the context of global and regional
climate change (Beguería et al., 2014; Jin et al., 2019; Danandeh
Mehr et al., 2020; Danandeh Mehr and Vaheddoost, 2020).
Therefore, the SPEI is selected as the drought index in the
present study.

The SPEI is obtained by normalizing the cumulative
probability of the difference between precipitation (P) and
PET series. First, the Penman–Monteith (PM) method was
used to calculate the monthly PET of the stations on the YGP;
the difference between the monthly P and PET of each station was
calculated, and the cumulative series of the difference on different
time scales (at 1, 3, 6, and 12 months) were obtained. Different
probability density functions were used to fit the series of different
time scales to obtain a distribution function. Finally, the
distribution functions at different stations on different time
scales were standardized to obtain the SPEI values on different
time scales. Detailed steps for calculating the SPEI (Vicente-
Serrano et al., 2010a; Vicente-Serrano et al., 2010b; Vicente-
Serrano et al., 2011a; Vicente-Serrano et al., 2011b) are shown
as follows:

In this paper, the PM method (Allen et al., 1998),
recommended by the Food and Agriculture Organization of
the United Nations, is used to calculate the PET. Although the
calculation of this method is more complex and requires
considerable data, the calculation result is more accurate.

PET � (0.408Δ(Rn − G) + c
900

T + 273
u2(es − ea))/(Δ

+ c(1 + 0.34u2)) (1)

where PET is the potential evapotranspiration (mm day−1), Rn is
the net radiation at the vegetation surface (MJm−2 day−1), G is the
soil heat flux density (MJ m−2 day−1), Δ is the slope vapor
pressure curve (kPa°C−1), γ is the psychrometric constant
(kPa°C−1), T is the mean daily air temperature at 2 m height
(°C), u2 is the wind speed at 2 m height (m s−1), es is the saturation
vapor pressure (kPa), and ea is the actual vapor pressure (kPa).

The differences Dm,n of the mth year and nth month are

Dm,n � Pm,n − PETm,n (2)

where m and n denote year and month, respectively.
The cumulant Xk

m,n of different time scales (k denotes the
temporal scale; k� 1, 3, 6, 12) can be calculated according to Eq. 2.

{Di � Dm,n

i � (m −m0) × 12 + n
(3)

Xk
i � ∑

i

i−k+1
Di (4)

⎧⎪⎨
⎪⎩

Xk
m,n � Xk

i

m � m0 + int[(i − 1)/12]
n � mod[(i − 1), 12] + 1

(5)

where i is the order number, m0 is the initial year, and int and
mod represent the integer and modulus of (i − 1)/12,
respectively.

Because the Xk
m,n of each station is different, this paper uses

dozens of probability density functions to fit the cumulantXk
m,n of

different time scales. Then, according to the
Kolmogorov–Smirnov test, this paper selects the cumulative
distribution function F (x) and calculates the cumulative
probability P (X ≤ x). Finally, the SPEI is calculated as
standardized values of cumulative probability P:

FIGURE 2 | Diagram of duration and severity of drought.
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SPEI � Φ−1(P) (6)

where Φ is the standard normal distribution.
This paper uses the grading standard of the SPEI proposed by

Danandeh Mehr et al. (2020). In addition, Danandeh Mehr et al.
(2020) found that there is little difference between the SPI and
SPEI corresponding to cumulative probabilities of 0.15–0.85;
moreover, the residual with cumulative probability equal to 0.5
is almost equal to 0. In addition, many researchers have
identified SPEI values less than 0 as indicative of drought
(Banimahd and Khalili, 2013; Tan et al., 2015; Li X. et al.,
2019). Therefore, this paper also takes SPEI equal to 0 as the
critical value for dividing drought and wet conditions. The
grading standard is shown in Table 1.

Mann–Kendall Test
The Mann–Kendall test (Mann, 1945; Kendall, 1975) is a
nonparametric statistical test, also known as a
distribution-free test. Its advantage is that it does not
require samples to follow a specific distribution, nor is it
subject to interference from a small number of outliers.
Therefore, it is widely used in the trend detection of
hydrometeorological factors (Huang et al., 2013; Wang
et al., 2013; Sayemuzzaman and Jha, 2014). The calculation
steps are as follows (Yu et al., 2018).

The Mann–Kendall test statistic S is calculated as

S � ∑
n−1

i�1
∑
n

j�i+1
sgn(xj − xi) (7)

FIGURE 3 | Variation trend of the SPEI and distribution of the multiyear average SPEI on the YGP. The left side represents the variation trend of the SPEI; the right
side represents the multiyear average SPEI. The downward arrow indicates a decrease, and the larger arrow indicates a significant decrease at confidence level α � 0.05.
The upward arrow indicates an increase, and the larger arrow indicates a significant increase at confidence level α � 0.05.
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FIGURE 3b |
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where n is the length of the data and xi and xj are the data values
in time series i and j (j > i), respectively. In addition, sgn(xj −
xi) is the sign function of (xj − xi).

sgn(xj − xi) �
⎧⎪⎪⎨
⎪⎪⎩

+1, if(xj − xi)> 0
0, if(xj − xi) � 0

−1, if(xj − xi)< 0
(8)

The variance is computed as

V(S) � (n(n − 1)(2n + 5) −∑m

k�1tk(tk − 1)(2tk + 5))/18 (9)

where m is the number of tied groups and tk denotes the number
of ties of extent k. A tied group is a set of sample data having the

same value. In cases where the sample size n> 10, the standard
normal test statistic ZS is computed using Eq. 10:

ZS �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

S − 1�����
V(S)√ , if S> 0

0, if S � 0

S + 1�����
V(S)√ , if S< 0

(10)

The time series increases when the statistical variable ZS is
greater than 0 and decreases when ZS is less than 0. There is a
significant trend at the given confidence level α � 0.05 when the
absolute value of ZS is greater than Zα/2.

FIGURE 4 | Correlations between the annual and seasonal averages of the SPEI and longitude and elevation. (A1–A7) represents the correlation between the
average SPEI of annual, spring, summer, autumn, winter, rainy season, dry season and longitude; (B1–B7) represents the correlation between the average SPEI of
annual, spring, summer, autumn, winter, rainy season, dry season and elevation. R represents the correlation coefficient, and the bold fonts indicate that the confidence
level is α � 0.001.
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PCA
PCA is a widely used spatiotemporal analysis method. It can use a
few linearly uncorrelated principal components to explain most of
the total variance in the original data according to the calculation
results of the covariance matrix and corresponding eigenvalues and
eigenvectors (Raziei et al., 2009) without causing extreme loss of

information (Zhao et al., 2012; Polong et al., 2019). Therefore,
according to drought indices such as the SPI or SPEI, a large
number of scholars have used PCA to study the temporal and
spatial variations in drought (Gocic and Trajkovic, 2014; Guo et al.,
2018; Aryal and Zhu, 2021). As a result, PCA is also used to analyze
the temporal and spatial variation characteristics of drought in this

FIGURE 4b |
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paper. The SPEI of the YGP is expressed as si,1, si,2, /si,k, where k
represents the number of stations and i represents the length of time.
Therefore, the linear combination of principal components is
expressed as follows (Polong et al., 2019):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Yi,1 � a1,1Si,1 + a1,2Si,2 +/a1,kSi,k
Yi,2 � a2,1Si,1 + a2,2Si,2 +/a2,kSi,k
«
Yi,k � ak,1Si,1 + ak,2Si,2 +/ak,kSi,k

(11)

where Y is a new orthogonal and linear uncorrelated variable that
explains most of the total variance. The coefficient of linear
combination is called the “load,” which represents the correlation
between the original data and the corresponding principal
component time series. The number of principal components is
determined according to eigenvalues and cumulative variability. For
example, the cumulative variability adopted by Raziei et al. (2009),
Gunda et al. (2016), Gocic and Trajkovic (2014), Portela et al. (2015),
Santos et al. (2010) was 54.96, 67/69, 68–69, 80.1, and 67–77%,
respectively. Since different researchers adopt different standards,
70% is used in the present study as the standard to select the principal
component. To visualize the spatial pattern of drought, the inverse
distance weighting method is used to interpolate the principal
components in ArcMap 10.0.

Characteristics of Drought
Drought can typically be characterized by four characteristics:
duration, severity, intensity, and frequency (Mishra and Singh,
2010; Kimosop, 2019). The calculation methods are as follows:

Zero was used as the criterion to determine whether drought
occurred in this study (as shown in Table 1); i.e., when the SPEI was
less than 0, this value indicated the occurrence of drought. Drought
duration represents the sum of the duration of each drought event
(unit:month), andD inFigure 2 is the duration of each drought event.

Drought severity is the sum of the SPEI of each drought event
(the filled-in area in Figure 2). The smaller the drought severity is,
the more severe the drought.

S � ∑
D

SPEI (12)

where D represents the drought duration and S represents the
drought severity.

Drought intensity is the ratio of drought severity to the
duration of each drought event.

I � S

D
(13)

where I represents the drought intensity.
Drought frequency is the ratio of the number of drought

occurrences to the total number.

F � n

N
(14)

where F represents the drought frequency, n represents the
number of drought occurrences (i.e., the number of SPEIs that
are smaller than 0), and N represents the total number.

Multiple Linear Regression
In this paper, multiple linear regression is used to analyze the
relationship between the average SPEI and drought
characteristics and longitude, latitude, and elevation. This
method is simple and easy to use. The mathematical equation
is as follows (Chatzithomas et al., 2015):

Y � a + b1X1 + b2X2 + b3X3 (15)

where Y is the dependent variable. X1, X2, and X3 are the
independent variables, which are latitude, longitude, and
elevation, respectively. b1, b2, and b3 are the coefficients of the
variables, while a is the intercept. The closer the absolute value of R is
to 1, the better the fitting of the multiple linear regression equation.
From a statistical point of view, the smaller the significance p value is,
the more reliable the correlation between the variables in the sample
and the variables in the population and the better the fitting of the
multiple linear regression equation.

FIGURE 5 | Scree plots of the SPEI at various time scales on the YGP.
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FIGURE 6 | Distribution of the first three principal components of the SPEI annually and in different seasons.
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RESULTS

Based on the SPEI calculation results, this paper first analyzes the
temporal and spatial distribution of the SPEI and then investigates
the zonal patterns of drought on the YGP, i.e., the variation pattern
of drought according to longitude, latitude, and elevation.

Spatiotemporal Variation in the SPEI and its
Relationship With Longitude and Elevation
In this paper, the SPEI was calculated based on the above-
described method for 3-months (representing the drought
index in spring, summer, autumn, and winter), 6-months
(representing the drought index during the rainy and dry
seasons), and 12-months (representing the annual drought
index) time scales. The characteristics of spatiotemporal
variation were then analyzed (as shown in Figure 3).

Figure 3 shows that the annual and seasonal SPEI values
mainly decreased throughout the YGP area, although this
trend was not significant at most stations. In addition, the
spatial distributions of multiyear averages of annual and
seasonal SPEI values were complex. In particular, the
annual average SPEI values in the northwestern and
southern sections of the YGP were relatively large,
whereas those in the remaining areas were relatively small,
and the SPEI values of most stations were smaller than 0,
indicating the occurrence of drought; the average SPEI in
spring was greater in the eastern section of the YGP and
smaller in the western section, and the SPEI values of most
stations were less than 0, indicating the occurrence of
drought in most areas of the study region during spring.
The SPEI values in summer were greater in the western
section of the YGP and smaller in the eastern section of
the YGP. Except for one station, the SPEI values of all other

FIGURE 7 | Time coefficients of the first three principal components.

TABLE 2 | Linear correlation coefficients R between the first three principal components of the YGP and longitude and elevation.
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stations during summer were greater than 0, indicating that
drought did not occur in most of the study area during
summer. The average SPEI in autumn was greater in the
northwestern section of the YGP and smaller in other
sections of the YGP, and the SPEI values of most stations
were greater than 0, indicating that drought did not occur in
most areas of the YGP in autumn. The average SPEI in winter

was relatively small in the central part of the YGP and
relatively large in other parts of the YGP, and the SPEI
values of all stations were less than 0, indicating the
occurrence of drought in winter. The average SPEI during
the rainy season was greater in the western part of the YGP and
smaller in the eastern part of the YGP, and the SPEI values of
all stations were greater than 0, indicating that there was no

FIGURE 8 | The spatial distribution of the first two components of SPEI in annual and each season. The first component of the SPEI was obtained by multiplying
PC1 by the corresponding time coefficient and then taking the average. The second component of the SPEI was calculated by the same method.

FIGURE 9 | Distribution of duration (A), severity (B), and intensity (C) of drought.

Frontiers in Environmental Science | www.frontiersin.org October 2021 | Volume 9 | Article 72228512

Yu et al. Zonal Patterns of Drought

50

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


drought in the entire study area during the rainy season. The
average SPEI during the dry season was relatively high in the
eastern section of the YGP and smaller at most stations in the
western section of the YGP, and the SPEI values of all the
stations were less than 0, indicating the occurrence of drought
on the YGP during the dry season.

In summary, the annual and seasonal SPEI values decreased
to different degrees in most areas, indicating that drought
might be aggravated. In addition, from the perspective of the
multiyear average SPEI, mild drought occurred for the 12-
months time scale in most areas throughout the year, and
primarily mild drought conditions occurred for the 3-months
time scale in part of the YGP during spring and autumn. No
drought occurred in most regions during summer or the rainy
season. However, drought on 3-months and 6-months
timescales occurred throughout the YGP region during
winter and the dry season, and drought conditions were
mild in winter and moderate during the dry season.

Further analysis of Figure 3 reveals that the annual and
seasonal averages of the SPEI vary with the range. Therefore,
this paper analyzed the correlation between the annual and
seasonal averages of the SPEI and the longitude and elevation
(as shown in Figure 4).

Figure 4 shows that, except for the annual average SPEI, the
correlation between the average SPEI of other seasons and
longitude is contrary to that of elevation. In particular, the
average SPEI in spring and during the dry season had a
significant positive correlation with longitude and a
significant negative correlation with elevation. The average
SPEI in summer, autumn, and during the rainy season had a
significant negative correlation with longitude and a
significant positive correlation with elevation. In general,
except for the annual average SPEI and the average SPEI in
winter, the average SPEI in spring, summer, autumn, and
during the drought and rainy seasons was significantly
correlated with elevation and longitude. In addition, the

correlation between the average SPEI and longitude was
higher than that between the average SPEI and elevation
(except during the dry season).

Spatial and Temporal Variability of Droughts
Derived From PCA
According to the PCA method, the annual eigenvalues and
cumulative variability of the SPEI of the YGP and each
timescale were first calculated (as shown in Figure 5). The
results show that except for annual variability, the contribution
rate of the cumulative variability of the first three principal
components in other seasons exceeded 70%. Therefore, the first
three principal components can reflect the spatial changes in YGP
drought. Figures 6, 7 show the principal components and time
coefficients of drought annually and in each season, respectively.

The contribution rate of the cumulative variability of the first
principal component was between 32 and 89%, which was much
greater than that of other principal components. Therefore, it was
considered that the spatial distribution of PC1 was the main
distribution type of YGP drought. Except for PC1 at a few stations
being greater than 0 in spring and autumn, PC1 at other time
scales was less than 0, indicating that the drought and
precipitation changes annually and in each season were
consistent, showing wet and rainy conditions or drought and
little rain throughout the year. In addition, the high value centers
of PC1 were mainly distributed in the east and west of the YGP,
reflecting that these areas were sensitive centers of drought and
precipitation changes, with frequent interannual dry and
wet alternations and large change ranges (the left side of
Figure 6). Except for the time coefficient of PC1 in autumn,
which weakly decreased, the time coefficient of PC1 on other time
scales increased (Figure 7). The spatial distribution and time
coefficient of PC1 showed that the drought of the YGP was
becoming increasingly serious. The contribution rate of the
cumulative variability of the second principal component was

TABLE 3 | Linear correlation coefficient R between the first two components of the SPEI and longitude and elevation.
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between 3 and 22%, which was also a typical spatial distribution
type of YGP drought. Except for the dry season, the positive
values of other time scales were mainly located in the west of
YGP, and the negative values were mainly located in the east of
YGP, indicating that the drought and precipitation changes in the
east and west of YGP were opposite, and the east and west were
the sensitive centers of drought and precipitation changes (the

middle of Figure 6). The time coefficient of PC2 in the spring and
rainy seasons increased, and the time coefficient of PC2 at other
time scales decreased (Figure 7), indicating that the drought and
precipitation changes on the YGP increased. The contribution
rate of the cumulative variability of the third principal component
was between 2 and 9%, accounting for a small proportion. The
spatial distribution of PC3 on the YGP was complex, in which the

FIGURE 10 |Correlations between mean drought duration and elevation and longitude. R represents the correlation coefficient, and the bold fonts indicate that the
confidence level is α � 0.001.

FIGURE 11 |Correlation between average drought severity and elevation and longitude. R represents the correlation coefficient, and the bold fonts indicate that the
confidence level is α � 0.001.

FIGURE 12 |Correlation between the average drought intensity and the elevation and longitude. R represents the correlation coefficient, and the italics indicate that
the confidence level is α � 0.01.
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FIGURE 13 | Correlations between annual and seasonal drought frequency and longitude and elevation. (A1–A7) represents the correlation between drought
frequency of annual, spring, summer, autumn, winter, rainy season, dry season and longitude; (B1–B7) represents the correlation between drought frequency of annual,
spring, summer, autumn, winter, rainy season, dry season and elevation. R represents the correlation coefficient, and the bold fonts indicate that the confidence level is
α � 0.001.
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patterns annually and in autumn and winter were similar, and the
negative values were mainly located in the southeast of the YGP.
The negative value in spring was mainly located in the middle of
the YGP. The negative values in summer and the rainy season
were mainly located in the northeast of the YGP. The negative
values in the dry season were mainly located in the west of the
YGP (the right side of Figure 6). The distribution of PC3 on the
YGP showed that the drought and wet changes were the opposite
in different regions. The time coefficient of PC3 annually and in
the rainy and dry seasons decreased, while that in other seasons
increased (Figure 7).

Figure 6 shows that the spatial distributions of the first two
principal components were different in the eastern and western
YGP. Therefore, this paper also analyzed their relationship with
longitude and elevation (as shown in Table 2). Table 2 shows that
except for the annual and winter seasons, PC1 in other seasons

had a significant correlation with longitude and elevation at the
significance level of α � 0.001. There was a significant correlation
between PC2 and longitude and elevation at the significance level
α � 0.001. For PC3, the correlation was weak. Overall, the spatial
distribution of the first two principal components of the YGP
drought had a good correlation with longitude and elevation. It is
worth noting that these relationships do not reflect the correlation
type (positive or negative correlation) of YGP drought with
longitude and elevation. This is because the principal
component only reflects the spatial distribution pattern of
drought. It is necessary to reflect the relationship between
drought and longitude and elevation, which needs to be
multiplied by the time coefficient (as shown in Figure 8 and
Table 3).

The above analysis showed that the first two principal
components had a good correlation with longitude and

FIGURE 13b |
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elevation. Therefore, the first two components of the SPEI were
inversely calculated according to PC1 and PC2 and the
corresponding time coefficients (as shown in Figure 8).
Figure 8 shows that except for annually and in winter, the
first component of the SPEI in other seasons was related to
longitude and elevation. The second component of the SPEI was
related to longitude and elevation on each time scale (as shown in
Table 3). Because the eigenvalue of PC1 was the largest, the first
component of the SPEI played a major role. Hence, although the
second component of the annual and winter SPEI had a good
relationship with longitude and elevation, the overall relationship
was poor (as shown in Figure 4).

The Relationship Between the
Characteristics of Drought and Longitude/
Elevation
In this paper, the SPEI was first calculated on a 1-month time
scale according to the SPEI method. Then, based on the calculated
SPEI on the 1-month time scale, the calculation method for
drought characteristics was used to calculate the four drought
characteristics—duration, severity, intensity (as shown in
Figure 9), and frequency. Finally, the zonal patterns of the
four characteristics of drought, i.e., the correlations between
drought and longitude and elevation, were analyzed.

According to the statistical analysis of drought duration, the
drought duration series were different at different stations.
Therefore, this study used the average drought duration for
analysis (as shown in Figures 9, 10). Figures 9, 10 show that
the average drought duration at each station is significantly
correlated with longitude and elevation (confidence level α �
0.001), and the correlation between average drought duration and
longitude was higher than that between average drought duration
and elevation. The above analysis shows that with increasing
longitude or decreasing elevation, the average drought duration
decreases.

Drought severity indicates the severity of each drought event.
According to the above method, the severity of each drought
event is calculated (the drought severity is the corresponding

series of drought durations), and then the correlations between
the average drought severity and the longitude and elevation of
each station are analyzed (as shown in Figures 9, 11). Figures 9,
11 show that the average drought severity on the YGP was
significantly correlated with longitude and elevation at a
confidence level of α � 0.001, the average drought severity had
a positive correlation with longitude and a negative correlation
with elevation, and the correlation between average drought
severity and longitude was higher than that between average
drought severity and elevation. The above analysis reveals that
with increasing longitude or decreasing elevation, the average
drought severity increases.

Based on the calculated drought severity and drought
duration, this study first calculated the drought intensity
for each drought event and then analyzed the correlation
between the average drought intensity and the longitude and
elevation (as shown in Figures 9, 12). Figures 9, 12 show that
the mean drought intensity had a significant negative
correlation with longitude at a confidence level of α � 0.01
but had no significant correlation with elevation. In other
words, with increasing longitude, the average drought
intensity decreased.

Drought frequency reflects the drought situation in the YGP
area. In this study, we obtained the annual and seasonal drought
frequencies according to the calculation method of drought
frequency and analyzed the correlation between these
frequencies and longitude and elevation (as shown in
Figure 13). Figure 13 shows that there is a significant
correlation between drought frequency and longitude and
elevation at a confidence level of α � 0.001 (except for the
annual drought frequency and the drought frequency in
winter). Moreover, drought frequency in spring and during
the dry season was negatively correlated with longitude and
positively correlated with elevation; the drought frequency in
summer and autumn and during the rainy season was positively
correlated with longitude and negatively correlated with
elevation; and the correlation between drought frequency and
longitude was higher than that between drought frequency and
elevation. The above analysis shows that as longitude increased or

TABLE 4 | Linear correlation coefficient R between the frequency of each drought grade and the longitude and elevation.
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FIGURE 14 | Correlations between annual and seasonal SPEI sums of drought events and longitude and elevation. (A1–A7) represents the correlation between
drought events of annual, spring, summer, autumn, winter, rainy season, dry season and longitude; (B1–B7) represents the correlation between drought events of
annual, spring, summer, autumn, winter, rainy season, dry season and elevation. R represents the correlation coefficient, and the bold fonts indicate that the confidence
level is α � 0.001.
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elevation decreased, the drought events increased (increased
drought frequency) in summer and autumn and during the
rainy season with more precipitation, and the drought events
decreased (reduced drought frequency) in spring and during the
dry season with less precipitation. In other words, except for the
annual drought frequency and drought frequency in winter, the
drought frequencies varied with changes in longitude and
elevation.

In addition to analyzing the frequency of drought events, this
paper also analyzed the correlation between the frequency of each
drought grade (including mild, moderate, severe, and extreme
drought, as shown in Table 1) and the longitude and elevation (as
shown in Table 4). Table 4 shows that the annual and seasonal
frequencies of most drought grades were significantly correlated
with longitude and elevation (confidence level α � 0.001); i.e., the
frequency of each drought grade varied with changes in longitude
and elevation.

The sum of the SPEI values of the drought events during the
study period also indicates the drought conditions in various
regions. Therefore, this paper also analyzed the correlation
between the annual and seasonal SPEI sum of the drought
events and the longitude and elevation (as shown in
Figure 14). Figure 14 shows that, except for the annual SPEI
sum and the SPEI sum in winter, the correlation between the SPEI
sum and longitude was opposite to that between the SPEI sum
and elevation (confidence level α � 0.001), and the correlation
between the SPEI sum and longitude was higher than that
between the SPEI sum and elevation. In other words, with
changes in longitude and elevation, the annual and seasonal
SPEI sums also changed.

In addition, this study analyzed the correlation between the
SPEI sum of each drought grade and the longitude and elevation
(as shown in Table 5). Table 5 shows that the SPEI sums of most
drought grades exhibited significant correlations with longitude

FIGURE 14b |
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and elevation (confidence level α � 0.001); i.e., with changes in
longitude and elevation, the SPEI sums of different drought
grades changed in different regions.

Zonal Patterns of Drought
The above results mainly assess the relationships between the
average SPEI and drought characteristics and longitude and
elevation. To analyze the zonal patterns of drought, this paper
studies not only the relationship with longitude and elevation but
also the relationship with latitude. However, the relationship
between the average SPEI and drought characteristics and
latitude is poor, so this paper uses multiple linear regression

methods (as shown in Table 6). Table 6 shows that, except for the
average SPEI in winter, drought intensity, drought frequency, and
the sums of the annual and winter SPEI values, the other
indicators have a strong correlation with longitude, latitude,
and elevation. In other words, the YGP’s drought
characteristics exhibited strong zonal patterns.

DISCUSSION

The annual and seasonal SPEI values of the YGP primarily
declined, indicating that drought in the YGP area became

TABLE 5 | Linear correlation coefficient R of the SPEI and the longitude and elevation of different drought classes.

TABLE 6 | Multiple linear regression analysis of average SPEI and drought characteristics with longitude and latitude and elevation.

Coefficients

Multiple R F p-value Intercept Variable latitude Variable longitude Variable elevation

Average SPEI Annual 0.5701 6.90 6.77E−04 2.27E+00 −2.40E−03 −2.03E−02 −8.07E−05
Spring 0.9522 139.40 3.56E−22 −2.24E+01 −2.72E−02 2.17E−01 −1.84E−04
Summer 0.8392 34.12 1.91E−11 1.04E+01 −4.01E−02 −8.18E−02 1.82E−04
Autumn 0.8937 56.88 5.14E−15 8.79E+00 7.71E−02 −1.03E−01 5.90E−05
Winter 0.3997 2.73 5.58E−02 3.43E+00 −2.44E−02 −3.12E−02 −1.00E−04
Rainy season 0.8305 31.86 5.29E−11 7.31E+00 1.03E−02 −6.49E−02 1.23E−04
Dry season 0.7398 17.33 1.59E−07 −5.02E+00 −7.57E−03 4.28E−02 −2.36E−04

Average of the drought duration 0.8128 27.90 3.56E−10 2.51E+01 8.55E−02 −2.29E−01 −3.03E−05
Average of the drought severity 0.7979 25.11 1.52E−09 −1.71E+01 −5.79E−02 1.54E−01 −3.64E−05
Average of the drought intensity 0.5156 5.19 3.78E−03 1.60E+00 −1.10E−02 −1.92E−02 −3.90E−05
Drought frequency Annual 0.3251 1.69 1.83E−01 4.23E−01 3.50E−03 9.16E−05 7.40E−06

Spring 0.9614 174.84 4.16E−24 6.65E+00 1.07E−02 −6.04E−02 5.72E−05
Summer 0.8925 56.10 6.51E−15 −3.37E+00 1.08E−02 3.20E−02 −5.93E−05
Autumn 0.8789 48.68 7.03E−14 −2.43E+00 −2.48E−02 3.37E−02 −2.06E−05
Winter 0.4518 3.68 1.92E−02 8.59E−01 1.80E−02 −5.27E−03 5.04E−05
Rainy season 0.8443 35.59 1.01E−11 −1.68E+00 −2.12E−03 1.97E−02 −4.45E−05
Dry season 0.7886 23.57 3.54E−09 2.51E+00 9.19E−03 −1.93E−02 5.83E−05

Sum of the SPEI in drought event Annual 0.3960 2.67 5.97E−02 −9.40E+00 −1.51E+00 −1.41E+00 −6.18E−03
Spring 0.9527 140.97 2.86E−22 −1.50E+03 −2.36E−02 1.36E+01 −1.19E−02
Summer 0.8762 47.39 1.09E−13 8.46E+02 −3.91E+00 −7.49E+00 9.81E−03
Autumn 0.9176 76.33 2.93E−17 5.14E+02 3.19E+00 −6.06E+00 5.03E−03
Winter 0.2715 1.14 3.43E−01 1.31E+02 −8.64E−01 −1.42E+00 −8.99E−03
Rainy season 0.8710 45.04 2.51E−13 8.62E+02 −2.17E+00 −8.50E+00 1.83E−02
Dry season 0.8643 42.32 6.80E−13 −8.31E+02 6.40E−01 6.73E+00 −2.44E−02

Frontiers in Environmental Science | www.frontiersin.org October 2021 | Volume 9 | Article 72228520

Yu et al. Zonal Patterns of Drought

58

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


increasingly severe. In addition, overall, the spatial
distributions of the annual average SPEI and the average
SPEI in winter were relatively complex. The average SPEI
values in spring and during the dry season were greater in
the eastern part of the YGP and smaller in the western part of
the YGP, whereas those in summer and autumn and during the
rainy season were smaller in the eastern part of the YGP and
greater in the western part of the YGP. Furthermore, the
annual average SPEI and the average SPEI in spring were
less than 0 at most stations, indicating that drought occurred in
most areas of the YGP, whereas the average SPEI values in
summer and autumn were the opposite; the average SPEI
values of all stations were less than 0 in winter and during
the dry season, indicating that drought occurred in the entire
YGP area, whereas no drought occurred during the rainy
season. This outcome occurred because southwestern China
has a subtropical and temperate monsoon climate with an
extremely uneven seasonal distribution of precipitation.
Precipitation during the rainy and dry seasons accounted
for 80–90% and 10–20% of the annual precipitation,
respectively (Zhao, 1997). This outcome indicates that
variation in precipitation is the primary cause of drought on
the YGP (Xu et al., 2015). Xu et al. (2015) found that the SPI and
SPEI values of the YGP significantly decreased. In addition, the
drying trend is also evident in southwestern China (Liu et al.,
2015). The above results are consistent with the results of this
study and help elucidate the causes of drought on the YGP.

Except for the annual average SPEI and the average SPEI in
winter, the average SPEI was significantly correlated with
longitude and elevation at a confidence level of α � 0.001.
Moreover, the average SPEI values were positively correlated
with longitude and negatively correlated with elevation in spring
and during the dry season, whereas the average SPEI values were
negatively correlated with longitude and positively correlated
with elevation in summer and autumn and during the rainy
season. From the perspective of PCA, the first two principal
components were significantly correlated with longitude and
elevation at the confidence level of α � 0.001. In addition, the
first two components of the SPEI also showed a good relationship
with longitude and elevation. Although the second component of
the SPEI had a significant correlation with longitude and
elevation at the confidence level of α � 0.001 on all time
scales, the relationship between the SPEI and longitude and
elevation was poor annually and in spring because the first
component was dominant. From the perspective of drought
characteristics, average drought duration and average drought
severity had a significant correlation with longitude and elevation
(confidence level α � 0.001). Average drought duration was
negatively correlated with longitude and positively correlated
with elevation, average drought severity was positively
correlated with longitude and negatively correlated with
elevation, and drought intensity was negatively correlated
with longitude at a confidence level of α � 0.01 and was
nonsignificantly correlated with elevation. Because drought
severity and drought duration were relatively small in high-
longitude or low-elevation areas and were relatively large in
low-longitude or high-elevation areas, the weak correlation

between the ratio of these two factors and longitude and
elevation was reasonable. Except for the annual drought
frequency and drought frequency in winter, drought
frequency was significantly correlated with longitude and
elevation at a confidence level of α � 0.001. Moreover,
drought frequency was negatively correlated with longitude
and positively correlated with elevation in spring and during
the dry season, whereas drought frequency was positively
correlated with longitude and negatively correlated with
elevation in summer and autumn and during the rainy
season. The annual and seasonal frequencies of most drought
grades were significantly correlated with longitude and elevation at
a confidence level of α � 0.001. Zhang et al. (2013) showed that the
elevation in southwestern China has some impact on the frequency
of extreme drought during the monsoon period; except for the
annual SPEI sum of drought and the SPEI sum in winter, the SPEI
sums of drought were significantly correlated with longitude and
elevation, and the SPEI sums were positively correlated with
longitude and negatively correlated with elevation in spring and
during the dry season, whereas the SPEI sums were negatively
correlated with longitude and positively correlated with elevation
in summer and autumn and during the rainy season. The above
analysis indicates that both the multiyear average SPEI and the
characteristics of drought are strongly correlated with longitude
and elevation, and in most cases, their correlation with longitude
was higher than that with elevation. In addition, from multiple
linear regression analysis, the average SPEI and drought
characteristics have a good relationship with longitude, latitude,
and elevation in most cases, indicating that drought on the YGP
has zonal patterns. The zonal patterns of the YGP drought may be
caused by changes in precipitation in the region. Previous studies
have shown that annual precipitation in southwestern China, the
Qinghai–Tibet Plateau, and the Hengduan Mountains was related
to latitude and elevation (Lu et al., 2007; Tao et al., 2016; Yu et al.,
2018). Therefore, drought and its characteristic values on the YGP
have a good correlation with longitude, latitude, and elevation; that
is, drought shows zonal patterns.

CONCLUSION

Based onmeteorological data, the temporal and spatial distribution
of drought on the YGP and the relationships between drought
characteristics and longitude, latitude, and elevation were
calculated and analyzed by SPEI, the Mann–Kendall test, PCA,
linear regression, and multiple linear regression. The results show
that the SPEI of the YGP is decreasing, and the drought is
becoming increasingly severe. In addition, the spatial changes in
SPEI in each season are different, but SPEI values in seasons are
consistent spatially except annually and in winter; thus, YGP
drought and its characteristics have a good correlation with
elevation and longitude, indicating that YGP drought may be
affected by elevation and longitude. The multiple linear
regression results verify this conclusion, that is, YGP drought in
most seasons is affected by elevation and longitude. In addition, it is
also affected by latitude, showing strong zonal patterns. Taking the
YGP as the research area and the SPEI as the drought index, based
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on the analysis of the temporal and spatial distribution of YGP
drought, this paper focuses on the relationship between drought
and its characteristics and longitude and elevation and reveals the
zonal patterns of YGP drought. The results may have certain
limitations (regionality), but this article shows that drought has
zonal patterns, which may be similar in other parts of the world.
Therefore, the research results of this paper can provide new ideas
for drought analysis in other regions and provide a scientific basis
for industrial layout, planting structure adjustment, and drought
relief.
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Evaluation of Time Series Models in
Simulating Different Monthly Scales of
Drought Index for Improving Their
Forecast Accuracy
Shahab S. Band1, Hojat Karami2*, Yong-Wook Jeong3*, Mohsen Moslemzadeh2,
Saeed Farzin2, Kwok-Wing Chau4, Sayed M. Bateni5 and Amir Mosavi 6,7,8,9*

1Future Technology Research Center, College of Future, National Yunlin University of Science and Technology, Yunlin, Taiwan,
2Department of Civil Engineering, Semnan University, Semnan, Iran, 3Department of Architecture, Sejong University, Seoul, South Korea,
4Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China, 5Department of Civil and
Environmental Engineering andWater ResourcesResearchCenter, University of Hawaii atManoa,Honolulu, HI, UnitedStates, 6Faculty of
Civil Engineering, Technische Universität Dresden, Dresden, Germany, 7John von Neumann Faculty of Informatics, Obuda University,
Budapest, Hungary, 8Institute of Information Society, University of Public Service, Budapest, Hungary, 9Institute of Information
Engineering, Automation and Mathematics, Slovak University of Technology in Bratislava, Bratislava, Slovakia

Drought is regarded as one of the most intangible and creeping natural disasters, which
occurs in almost all climates, and its characteristics vary from region to region. The present
study aims to investigate the effect of differentiation operations on improving the static and
modeling accuracy of the drought index time series and after selecting the best selected
model, evaluate drought severity and duration, as well as predict future drought behavior, in
Semnan city. During this process, the effect of time series onmodeling differentmonthly scales
of drought index was analyzed, as well as the effect of differencing approach on stationarity
improvement and prediction accuracy of the models. First, the stationarity of time series data
related to a one-month drought index is investigated. By using seasonal, non-seasonal, and
hybrid differencing, new time series are created to examine the improvement of the stationarity
of these series through analyzing the ACF diagram and generalized Dickey–Fuller test. Based
on the results, hybrid differencing indicates the best degree of stability. Then, the type and
number of states required to evaluate the models are determined, and finally, the best
predictionmodel is selected by applying assessment criteria. In the following, the same stages
are analyzed for the drought index time series data derived from 6-month rainfall data. The
results reveal that the SARIMA (2,0,2) (1,1,1)6 model with calibration assessment criteria of
MAE = 0.510, RMSE = 0.752, and R = 0.218 is the best model for one-month data from
seasonal differencing series. In addition to identifying and introducing the best time series
model related to the six-month drought index data (SARIMA (3,0,5) (1,1,1)6 seasonal model
with assessment criteria of MAE = 0.430, RMSE = 0.588, and R = 0.812), the results highlight
the increased prediction accuracy of the six-month time seriesmodel by 4 times the correlation
coefficient in the calibration section and 8 times that in the validation section, respectively,
relative to the one-month state. After modeling and comparing the results of the drought index
between the selected model and the reality of the event, the severity and duration of the
drought were also examined, and the results indicated a high agreement. Finally by applying
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the best six-month drought index model, a predicted series of the SPI drought index for the
next 24 months is created.

Keywords: differencing, time series, drought index, forecasting, standard precipitation

INTRODUCTION

Drought, as a natural disaster, causes terrible damage to natural
ecosystems and human life and is considered as a climatic anomaly.
Furthermore, drought is one of the most destructive climatic
phenomena, which can occur in almost all climatic regimes.
Among various definitions of drought, a more recognized and
logical definition is that drought can be caused by a period of
severe scarcity of water resources with respect to normal
conditions corresponding to the place and time or a period of
abnormal dry conditions that last long enough to create an
imbalance in the hydrological condition. Regarding the
involvement of factors such as rainfall, snow, runoff,
evapotranspiration, and other indicators of water resources in the
occurrence of drought, different indicators have been defined to
monitor drought, each of which measures only one or several
parameters involved in the occurrence of drought (Karamouz and
Araghinejad, 2010). These indicators are generally expressed as a
single number together with the raw data for designers and planners
to make decision. Drought indicators show drought information in
the region by summarizing drought information periodically
(Hejazizadeh and Javizadeh, 2010). Some indicators of drought
include the Percent of Normal Precipitation Index (PNPI), China-
Z Standard Index (CZI), Deciles Index (DI), Rainfall Anomaly Index
(RAI), and the Standard Precipitation Index (SPI). In recent years, a
large body of research has been conducted on the relationship
between the forecast of droughts in Iran and other parts of the
world, aiming to obtain sufficient information about this natural
disaster and develop effective and efficient steps to correctly manage
and address this phenomenon (Karimi et al., 2019; Sobhani et al.,
2019; Malik et al., 2020; Mehr et al., 2020; Sadeghian et al., 2020; Xu
et al., 2020). In this regard, modeling and forecasting drought index
time series are of great importance. By using rainfall data, Niknam
et al. (2013) studied 19 climatic indices and previous values of the SPI
and employed a fuzzy neural model to predict autumn drought in
Zahedan city with different time delays. The results indicated that
each input variable had certain ability to predict autumn drought at
different time delays. Bahrami et al. (2019) studied the seasonal
Standardized Precipitation Index (SPI) drought index and time series
models to predict seasonal drought using climate data of 38 Iranian
synoptic stations. Cryer andChan (2008) intend to discover a suitable
ARIMA model using dust storm data from northern China from
March 1954 to April 2002. Poornima and Pushpalatha, (2019) used
long short-term memory in recurrent neural network to predict the
drought indices which handle the real-time nonlinear data well and
good that can help authorities better prepare and mitigate natural
disasters.

Negaresh and Aramesh (2012) predicted drought of Khash city
by applying climatic elements of rainfall, relative humidity,
temperature, and climatic indicators affecting drought in the
region, as well as considering neural and regression network

models for three periods, namely, 1month, 3months, and 1 year.
Overall, 3-month drought prediction with the neural network (after
diffusion) model showed the best performance. The results also
showed that climatic indicators failed to have any effect on
improving the performance of models in monthly forecast of
drought. By analyzing rainfall statistics of Liqvan station and
applying methods such as artificial neural network, adaptive
neuro-fuzzy inference system (ANFIS) modeling without
clustering (C-mean), and clustering-based ANFIS, Komasi et al.
(2013) predicted drought in the Liqvan Chay catchment and
introduced the clustering-based ANFIS model as the best model.
Barua et al. (2012) simulated drought in the Yarra catchment in
Victoria, Australia, by using the nonlinear aggregated drought index
(NADI), statistical models (ARIMA), and artificial neural network
(RMSNN/DMSNN). The results revealed that neural network
models performed better than ARIMA models. By using rainfall
statistics of Ajabshir station (southeast of East Azerbaijan),
Shirmohammadi et al. (2013) utilized ANN and ANFIS models
and applied wavelet transform in developing hybrid models of
wavelet–ANN and wavelet–ANFIS, aiming to evaluate these
models in predicting drought. The results showed that the use of
wavelet transform in input data processing improved the
performance of models and the wavelet–ANFIS model had the
best performance compared to other models. Jalili et al. (2013)
computed SPI time series by addressing monthly rainfall and
temperature statistics in 701 selected stations in Iran. Then, they
predicted drought using three drought indices, namely, the
normalized difference vegetation index (NDVI), vegetation
condition index (VCI), and temperature condition index (TCI)
with neural network models (multilayer perceptron (MLP), radial-
basis function (RBF), and support vector machine (SVM)). The
output of these models was the SPI. Evaluating these models
indicated a better performance of the MLP model with TCI input.
By utilizing rainfall data of 39 synoptic stations located in the
northwest of the country, Montaseri et al. (2016) determined the
time series of drought and wet seasons based on the Standardized
Precipitation Index (SPI) and rainfall anomaly index (RAI). Then,
they examined the trend of changes in drought and wet periods
using a non-parametric Mann–Kendall trend test and eliminating
the significant effect of all autocorrelation coefficients with
different delays. The results showed that both SPI and RAI
drought indices could be used solely to determine the trend of
changes in drought and wet periods, due to the high correlation
between the two drought indices in assessing and determining the
variation trend of drought and wet seasons. Sadeghian et al. (2018)
presented appropriate models to predict drought in Semnan city,
Iran, using time series, ANFIS, and artificial neural networks (MLP
and RBF). The results showed that, among these models, the
ANFIS model showed appropriate performance at each stage of
training and testing. Vaziri et al. (2018) used the 40-year daily
discharge data of the Tajan River in Iran to determine the best
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hydrological drought assessment index. They selected the best
statistical distribution of both drought duration and severity
variables according to goodness of fitting tests and five
functions fitted to the data. The results showed that the
Galambus function was selected as the best copula function.
Malik and Kumar (2020) used heuristic approaches including
the co-active neuro-fuzzy inference system (CANFIS), multiple
linear regression (MLR), andmultilayer perceptron neural network
(MLPNN) for prediction of meteorological drought based on the
Effective Drought Index (EDI) in Uttarakhand State, India. The
results of their study showed that the CANFIS and MLPNN
models outperformed the MLR models at study stations. Malik
et al. (2021a) hybridized the SVR (support vector regression)
model with two different optimization algorithms, namely,
Particle Swarm Optimization (PSO) and Harris Hawks
Optimization (HHO), for prediction of the Effective Drought
Index (EDI) at different locations of India. The results indicate
that the SVR–HHO model outperformed the SVR–PSO model in
predicting the EDI. Malik et al. (2021b) studied the capability of
support vector regression (SVR) integrated with two meta-
heuristic algorithms, i.e., Grey Wolf Optimizer (GWO) and
Spotted Hyena Optimizer (SHO), in predicting the EDI
(Effective Drought Index). For this objective, the two hybrid
SVR–GWO and SVR–SHO models were constructed and the
EDI was computed in the study regions by using monthly
rainfall data. A comparison of results demonstrates that the
hybrid SVR–GWO model outperformed the SVR–SHO model
for all study stations.

In previous research, mainly the comparison of intelligent
methods in forecasting the drought index has been carried out.
However, in this study, the improvement of the time series of the
SPI drought index under the influence of differentiation operations is
studied. Also, in some previous research studies, various indicators
were used for drought index prediction due to the nature of some
intelligent methods, while in this research, drought has been studied
only by using the precipitation parameter in the SPI drought index.
As mentioned, drought prediction with different intelligent
methods has been the interest of many researchers, among
which the use of time series has been very useful due to its
capabilities. Time series forecasting first analyses time series
data using statistics and in the next step, performs modeling to
predict and inform strategic decisions. The main aim of this
research is to improve the forecasting accuracy of SPI monthly
series taking advantage of the differencing property for the
improvement of stationarity and prediction results. For this
purpose, seasonal, non-seasonal, and one-time combined
differencing are conducted on one- and six-month SPI data
related to Semnan city in a 48-year (1973–2020) period. Finally,
by comparing the forecast accuracy of different models, the best
model is selected to forecast drought in the next 24months.

MATERIALS AND METHODS

Data and Study Area
Semnan city, the capital of Semnan Province and Semnan County, is
one of the cities of Iran, which is located in the south of the Alborz

mountain range and the north of the Kavir plain on Tehran-to-
Khorasan road. This city is located at 216 km from Tehran between
Damghan and Garmsar cities at 53° 23′ east longitude and 35° 34′
north latitude, with an average altitude of 1,130 m above sea level.
The climate of this city is hot in summer and cold in winter. The
rainfall of this city is mostly in the cold seasons of the year, and its
average annual rainfall is 140mm. The average annual temperature
is 17.01°C, while the maximum, absolute temperature is 43.5°C and
the absolute minimum is −8.4°C. The synoptic meteorological
station of Semnan city was established in 1965. This station is
located at 53° 23′ east longitude and 35° 34’ north latitude, with an
altitude of 1,130.8 m above sea level. The climatic identities and
statistical yearbooks of the province are used to derive statistical
information of the station. Figure 1 illustrates the location of the
meteorological station in Semnan city. Given the geographical
location and the completeness of the measured information,
data related to precipitation in Semnan city were used, which
are taken from rainfall statistics from 1973 to 2020 and
recorded in the synoptic meteorological station of Semnan
city. Statistical data of annual rainfall are given in Table 1.

Standardized Precipitation Index
To study meteorological drought, various indicators have been
developed. One of the most famous indicators is the
Standardized Precipitation Index (SPI), which was introduced in
1993 by McKee et al. from the Colorado Climate Center, regarding
different effects of rainfall shortage on groundwater, reserves, and
surface water resources, soil moisture, and canal flow. This index is
obtained based on the difference of precipitation (P) from the
average for a specific time scale (�P) and then dividing it by the
standard deviation (Sd) (SPI � P−�P

Sd ). Indeed, precipitation is the only
effective factor in calculating the Standardized Precipitation Index.

In calculating this index, first the appropriate statistical
distribution should be fitted to long-term precipitation data and
then the cumulative distribution function should be converted to
the normal distribution using equal probabilities. Experience has
shown that the precipitation probability distribution often follows
the gamma probability distribution. The density function of the
gamma distribution probability is as follows:

f(x) � 1
βαΓ(α)x

α−1e−
x
β, (1)

where α > 0 is the shape parameter, β > 0 is the scale parameter,
x > 0 is the amount of precipitation, and Γ(α) is the gamma
function as follows:

Γ(α) � ∫
∞

0
yα−1e−ydy. (2)

To fit the distribution parameters, α and β are estimated from
the sample data:

α � 1
4A

[1 +
������
1 + 4A

3

√
], (3)

β � �x
α, (4)

where �x is the mean precipitation and A is given by
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A � ln(�x) − ∑ln(x)
N

. (5)

For a given month and time scale, the cumulative probability
G(x) of an observed amount of precipitation is given by

G(x) � ∫
∞

0
f(x)dx � 1

βαΓ(α) ∫
∞

0
xα−1e−

x
βdx. (6)

Since the gamma function is not defined for x = 0 and the rainfall
data always contain a large number of observations with zero rainfall,
the cumulative probability of rainfall is calculated as follows:

H(x) � q + (1 − q)G(x), (7)
where q is the probability of zero rainfall in the data series, which
is obtained by dividing the number of zero data by the
total number of data. By calculating the cumulative probability
of rainfall and using Equations 8–11, a normal distribution (Z)
with a mean of zero and a standard deviation of one will be
obtained.

Z � SPI � −[t − C0 + C1t + C2t
1 + d1t + d2t2 + d3t3

]0<H(x)≤ 0.5, (8)

Z � SPI � +[t − C0 + C1t + C2t
1 + d1t + d2t2 + d3t3

]0.5<H(x)< 1, (9)

t �
����������

ln(
1

H(x)2)
√

, 0<H(x)≤ 0.5, (10)

t �
��������������

ln(
1

(1 −H(x))2)
√

, 0.5<H(x)≤ 1, (11)

where C0, C1, C2, d1, d2, and d3 have constant coefficients of C0 =
2.5165, C1 = 0.8029, C2 = 0.0103, d 1 = 1.4328, d2 = 0.1893, and d3 =
0.0013, respectively. Thus, the normalized SPI is converted to a
normal Z, which reflects the amount of deviations above or below
the mean. This index can be computed in short-term (1, 3, 6, and
9months) and long-term (12, 24, 48, and 72months) time scales.
Drought index with different time scales has been used in various
articles and research studies (Hosseini-Moghari and Araghinejad,

FIGURE 1 | Location of Semnan synoptic meteorological station.

TABLE 1 | Statistical data of annual rainfall time series (1973–2020).

Skewness Std. dev. (mm) Minimum (mm) Maximum (mm) Mean (mm)

−0.01 42.94 60 222.5 138.77
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2015; Tan et al., 2015; Lee et al., 2017; Spinoni et al., 2017; Brito et al.,
2018; Pramudya andOnishi, 2018; Diani et al., 2019;Mahmoudi et al.,
2019). After having extracted rainfall data in different monthly or
annual scales, a data homogeneity test is carried out and a time series
is formed in thementioned scales. Then, the cumulative probability of
cumulative precipitation values is computed at each time scale using
the gamma distribution. These values are converted to a normal
standard random variable with a zero mean and a variance of one,
which is the SPI value. Table 2 presents different classes of drought in
this index.

To determine the onset, end, and severity of drought from the SPI
drought index according to the classifications presented inTable 2, SPI
less than −1 indicates the beginning of a drought, which continues as
long as this index is less than −1. On the other hand, SPI greater than 1
represents the beginning of a wet year period. The advantages of SPI
include ease of computation, multipurposity to monitor drought
conditions from meteorological and hydrological points of view,
normal distribution, flexibility to different time scales, independence
from soil moisture, and the possibility of use in all months of a year
(Hejazizadeh and Javizadeh, 2010). This index has been used in several
studies (Sobral et al., 2018; Tirivarombo et al., 2018;Marini et al., 2019;
Wang et al., 2019; Zhang et al., 2019; Azimi and Moghaddam, 2020;
Bhunia et al., 2020; Bong and Richard, 2020; Li et al., 2020;Won et al.,
2020). The present study seeks to first compute the monthly drought
index by using the abovementioned method for 576 steps, among
which 460 initial data, which are equivalent to 80%of the data, are used
for calibration and 116 final data are used to validate the time series
model. Figure 2 shows the time series diagram of the SPI drought
index (one month) in Semnan.

Generally, it is possible to use a moving average for determining
the drought index and selecting wet and drought periods such that
the correct selection of the time base allows specifying wet and
drought periods better. Hence, in addition to raw statistics of SPI

data, this study evaluates SPI statistics computed from 6-month
rainfall data to predict the time series of the drought index. Figure 3
provides the 6-month SPI time series discussed in this research. The
six-month time scale for long-term forecasting of the drought is
selected based on the fact that rainfall occurs in Semnan in cold
seasons similar to most parts of the country, thus addressing the
ombrothermic diagram of Semnan synoptic station (Figure 4).

Time Series Stationarity
If themean, variance, and covariance are constant in a time series over
certain periods (Equations 12–15), the time series is static. On the
other hand, the time series will be strictly static if the joint distribution
of x(t1) to x(tn) is similar to the joint distribution of x(t1 + h) to
x(tn + h) for time points of t1 to tk at any time delay h [8]. In other
words, the basic concept of stationarity is that the probabilistic rules
governing the process do not change over time and, therefore, the
process remains in statistical equilibrium (Johnson et al., 1977).

E(|x(t)|2)<∞, t ∈ Z (12)
E(x(t)) � m1, t ∈ Z (13)
Var(x(t)) � m2, t ∈ Z (14)

γs( r, s ) � γs(r + t, s + t), {r, s, t} ∈ Z (15)
where x(t) represents time series, E and Var indicate the
mathematical expectation and variance functions, γs shows the
time series autocovariance function, and m1 and m2 are constant
numbers.

The existence of a trend in data is one of the main causes of
stationarity. Most climatic and hydrological parameters are
seasonal, and the seasonal fluctuations complicate the trend.
For this purpose, the seasonal Mann–Kendall test (Equations
16–20) was used to determine the trend in the data.

S′ � ∑
p

j�1
Sj (16)

where P demonstrates the total number of seasons and Kendall
statistics is related to season j (j � 1, 2, . . . , p) and computed
according to

Sj � ∑
nj

i�1
∑
nj−1

k�i+1
sgn(x(i) − x(k)) (17)

In the absence of sequential correlations in data, the variance is
obtained from Eq. 18. If there is a sequential correlation in the time
series data, the variance can be computed from Eq. 19:

TABLE 2 | Classification of Standardized Precipitation Index assessment.

Drought situation SPI

Extremely severe drought < -2
Severe drought −1.99–1.5
Moderate drought −1.49–-1.0
Weak drought −0.99–1.0
Normal 0
Weak wet year 0–0.99
Moderate wet year 1.0–1.49
Intense wet year 1.5–1.99
Extremely intense wet year 2 >

FIGURE 2 | Time series of one-month SPI drought index in Semnan.
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σ2S’ � ∑
p

j�1
Var(Sj) (18)

σ2S’ � ∑
p

j�1
Var(Sj) +∑

p−1

g�1
∑
p

h�g+1
σgh (19)

where σgh shows the covariance between Kendall statistics in
seasons g and h. With the assumption of data independence, it
can be assumed that cov(Sg, Sh) � 0. Finally, a statistic named Z’
is obtained from the following relationships:

Z’ �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

S′ − 1
σS′

0, S′ � 0

S′ + 1
σS′

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(20)

If the probability value Z computed according to Eq. 20
is less than 5%, it indicates the existence of a trend in the time series.

Since the time series stationarity is a fundamental assumption
in modeling and predicting the stationarity, it is possible to use
the differencing approach to make series static as much as
possible. In this research, an augmented Dickey–Fuller (ADF)
test is used to determine how much the mentioned series become
static after non-seasonal, seasonal, and combined differencing.
This test (Equations 21–24) acts based on the presence or
absence of a single root to specify the stationarity of the time
series by examining the absence of a single root.

Δx(t) � α + β1t + β2t2 + γx(t − 1) ± + ϕ1Δx(t − 1) + ...

+ ϕp−1Δx(t − p + 1) + ε(t) (21)
τ � γ̂

σγ̂
(22)

H0: γ � 0 (23)
H1: γ< 0 (24)

where Δ represents the first-order differential operator and α, β1,
and β2 indicate a constant value and coefficients of the linear and

FIGURE 3 | Semnan 6-month drought index time series.

FIGURE 4 | Ombrothermic curve of Semnan synoptic station (during the statistical period).
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quadratic trends, respectively. Furthermore, φi is the i-order
autocorrelation coefficient, p is the maximum self-correlation,
τ is the augmented Dickey–Fuller test statistic, γ is the estimated
coefficient or root, σγ̂ is the estimated standard error, H0 is the
null hypothesis indicating the existence of a single root, andH0 is
the alternative hypothesis that implies the lack of existence of a
single root.

After computing the parameter τ, if this statistic is less than the
critical value in the Dickey–Fuller distribution, the null
hypothesis is rejected, meaning that there is no single root and
the series is static. Each of the values α, β1, and β2 can be
considered as zero, according to which different states such as
without constant and trend state, only constant, constant and
linear trend, and the quadratic trend will be tested.

Since the augmented Dickey–Fuller test fails to consider the
effect of the periodic component on instationarity of the series, it
is necessary to use other tests for seasonal series. In this way,
drawing a correlogram and examining it intuitively is one of the
methods to retest the stationarity. This diagram shows the values
of autocorrelation function (ACF) for different time steps. If the
time series is static, this diagram will damp to zero exponentially
or oscillating [9]. In this diagram, the value of data
autocorrelation coefficient (ρ) will be plotted for different
steps. The value of autocorrelation coefficient for step h is
obtained from

ρ(h) � ∑n
t�h(x(t) − �x)(x(t − h) − �x)

∑n
t�h(x(t) − �x)2 h � 1, 2, , ..., n/4. (25)

Time Series Models
Given the existence of different time series models based on
Box–Jenkins theories, this research utilizes ARIMA models and
their general form, multiplicative seasonal ARIMA, to predict the
drought index. The multiplicative seasonal ARIMA model is
presented with the following relationships (Salas et al., 1980):

SARIMA(p, d, q)(P,D,Q): Φ(Bω)φ(B)(1 − Bω)D(1 − B)dx(t)
� Θ(Bω)θ(B)ε(t)

(26)
Φ(Bω) � (1 −Φ1B

ω − Φ2B
2ω − ... −ΦPB

Pω) (27)
ϕ(B) � (1 − ϕ1B − ϕ2B

2 − ... − ϕPB
P) (28)

Θ(Bω) � (1 − Θ1B
ω − Θ2B

2ω − ... − ΘQB
Qω) (29)

θ(B) � (1 − θ1B − θ2B2 − ... − θqBq) (30)
where x(t): drought index time series, ε(t): residual series, p:
non-seasonal autocorrelation parameter order, q: non-seasonal
moving average parameter order, P: seasonal autocorrelation
parameter order, Q: seasonal moving average parameter order,
ω: period, φ: non-seasonal autocorrelation parameter, θ: seasonal
moving average parameter, Φ: seasonal autocorrelation
parameter, Θ: seasonal moving average parameter, B:
differential operator, (1 − Bω)D: D-th seasonal differencing by
step ω, and (1 − B)d: d-th non-seasonal differencing operation.

The maximum order of parameters of the mentioned models
in the relations (26) to (30) (p, q, P, Q) can be identified from

the ACF diagram. If the orders required for parameters of each
model are p � {0, 1, ...., l}, q � {0, 1, ...., m}, P � {0, 1, ...., n}, and
Q � {0, 1, ...., o}, then the number of required models (NOM) is
obtained according to the probability rule and based on

NOMSARIMA � (l + 1)(m + 1)(n + 1)(o + 1) (31)

Models Assessment Criteria
To achieve the most accurate model, valid assessment criteria are
fitted on the desired time series. In this study, criteria of
correlation coefficient (R), root mean square error (RMSE),
and mean absolute error (MAE) are used to evaluate and
analyze the model results. These criteria are shown as follows:

R �
∑n

i�1(xoi − �xo)(xpi − �xp)
������������������������
∑n

i�1(xoi − �xo)
2

∑n
i�1(x

p
i − �xp)

2
√ (32)

RMSE �
������������
1
n
∑
n

i�1
(xpi − x0i )

2

√
(33)

MAE � 1
n
∑
n

i�1

∣∣∣∣(x0i − xpi )
∣∣∣∣ (34)

where xo
i represents the observational values, xp

i indicates the
predicted values, �xo shows the mean observational values, and �xp

is the mean predicted values. Based on the results, it can be said
that the closer the RMSE and MAE values are to zero, the better
the performance of the model will be. The value of the correlation
coefficient, which varies between −1 and 1, is close to zero in a
superior case.

After reviewing assessment criteria and selecting the best
model, the suitability of residues from the results is examined
and if approved, the model is selected. Finally, using the
selected model, the drought index parameter can be
predicted in future.

Evaluating the Independence of Residuals
If a time series model is correctly specified, then the residues
obtained from the model fitting should approximately have the
characteristics of independent normal random variables with a
zero mean and a constant variance. In this study, the rest of the
selected fitted model is examined and analyzed to ensure its
accuracy. To this aim, the diagrams of the normal probability of
residuals, residuals versus fitted values, residuals over time,
residual histograms, and residual autocorrelation and partial
autocorrelation functions are plotted and interpreted. If the
selected model is identified correctly, it has signs among the
abovementioned diagrams. If the residuals are along a straight
line in the normal probability diagram, it indicates the normality
of residuals. If the residuals are around the zero horizontal plane
with a trendless rectangular scattering in the residual over time
diagram, have no structure in the residuals versus fits and residual
versus order plots, and have no special trend in ACF and PACF
diagrams and do not exceed its permissible limits, it is possible to
accept the constantness of variance and randomness and
independency of the residuals, respectively.
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TABLE 3 | Results of evaluating time series with the seasonal Mann–Kendall test.

Index type Number of observations Minimum Mean Maximum Standard deviation τ S 9 p value

One-month SPI 576 −2.450 0.161 3.0 0.866 0.017 464 0.547
Six-month SPI 571 −3.310 0.069 2.780 1.0 0.008 207 0.787

FIGURE 5 | Autocorrelation diagrams of different states of one-month drought index time series.

TABLE 4 | Results of the augmented Dickey–Fuller test for drought index time series.

Test type Critical limit d = 0, D = 0 d = 1, D = 0 d = 0, D = 1 d = 1, D = 1

Results of the augmented Dickey–Fuller test for one-month SPI series −0.913 Stationary Stationary Stationary Stationary
−8.967 −12.957 −10.003 −14.780

Results of the augmented Dickey–Fuller test for six-month SPI series −0.893 Stationary Stationary Stationary Stationary
−7.509 −11.604 −9.049 −14.780
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In addition to graph methods, the Portmanteau test is used to
examine the suitability of the model. This test uses residual
autocorrelation to test the null hypothesis (H0), i.e., the lack
of any correlation between model residues, using test statistics Q.
If the value of statistic Q is greater than the corresponding value
of the chi-square probability table (χ2), the hypothesis (H0),
which is sometimes called the model adequacy hypothesis, is
rejected. It should be noted that the probabilistic values
corresponding to this test (p value) are evaluated for the

confidence level of 95% by assuming the independence of
residuals.

RESULTS AND DISCUSSION

This research seeks to study and compute two time series, one
related to SPImonthly drought index data and the other related to
six-month data of the SPI parameter, along with different
differencing time series.

The drought index has different time divisions, and for some
reason, one-month and six-month drought indexes are mostly
used in resources. The one-month SPI is a short-term drought
index and can be a better indicator of monthly percipitation for a
given region compared to other time steps. The 6-month SPI
shows medium-term percipitation trends and can be used to
represent percipitation in different seasons much more
effectively. The resulting information may also be related to
abnormal flows and water reservoir levels. Before modeling the
drought index time series, time series stationarity is examined

FIGURE 6 | Autocorrelation diagrams of different states of six-month drought index time series.

TABLE 5 | Orders of parameter and number of models required for the six-month
drought index.

Series type p q P Q Number of
models

Without differencing 4 4 0 0 25
Non-seasonal differencing 1 1 1 1 16
Seasonal differencing 5 5 1 1 144
Combined differencing 1 1 1 1 16
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using the seasonal Kendall test whose results are shown in
Table 3. According to coefficients obtained for each of the
series, the seasonal Mann–Kendall test reveals that both time

series are static. Furthermore, different types of non-seasonal (d =
1), seasonal (D = 1), and combined (d = 1, D = 1) differencing are
performed on both time series, resulting in forming new time
series. The role of different differencing operations in the time
series stationarity is determined by using the augmented
Dickey–Fuller (ADF) test. Results of the augmented
Dickey–Fuller test for drought index time series are provided
in Table 4. According to the results, it is observed how
differencing operation leads to better stationarity of time
series. Consequently, combined differencing shows the highest
degree of stationarity compared to other cases.

However, the Dickey–Fuller test sometimes presents a poor
performance in determining the stationarity of seasonal series.
Furthermore, no information is available on the exact seasonality

TABLE 6 |Orders of parameter and number of models required for the one-month
drought index.

Series type p q P Q Number of
models

Without differencing 1 1 0 0 4
Non-seasonal differencing 3 3 0 0 16
Seasonal differencing 2 2 1 1 36
Combined differencing 3 3 1 1 64

FIGURE 7 | Analysis diagrams of the residual of the selected model for one- and six-month drought index time series.
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of differenced data for the series studied in this research. Further
validation is performed by drawing autocorrelation diagrams and
the stationarity of different types of series without differencing
and with non-seasonal, seasonal, and combined differencing is
investigated with results as shown in Figures 5, 6. As observed,
none of the series is undamped and oscillating and has no
periodicity, and consequently, all series approach zero after a
few steps and are within the 95% confidence level, confirming the
stationarity of the series.

By using correlogram diagrams (ACF and PACF diagrams), it
is possible to determine the maximum number of parameters
required for time series models, in addition to stationarity. This
number, which is obtained based on steps with large values from
this diagram, along with the number of models required to
achieve the most accurate model is presented in Tables 5, 6.

Another issue that can be deduced from Figures 6, 7 and
Tables 5, 6 is the type of model suitable for modeling and
forecasting. Therefore, by placing different orders of P, Q, p,
and q, time series are modeled by different states and then
predicted and evaluated in the validation period.

Tables 7, 8 report the most accurate models, along with the
results of their assessment criteria, for both the calibration and
validation periods for one- and six-month drought index time
series. Accordingly, the seasonal SARIMA (202) (111)6 model is
introduced as the selected model of one-month drought index,
while the seasonal SARIMA (503) (111)6 model is chosen as the

selected model for the six-month drought index. Furthermore,
the results reveal that the ratio of increasing the accuracy of
forecasting the six-month drought index is highly significant
compared to the one-month drought index. It is also worth
mentioning that the comparison of drought index time series
modeling in the study area with other artificial intelligence
methods, such as the neural network or adaptive neuro-fuzzy
inference system, has already been performed to show the
superiority of the selected time series models in this field
(Sadeghian et al., 2020).

Evaluating Model Adequacy
To ensure the accuracy of the selected model, residuals of
the fitted model are analyzed. For this purpose, the
Portmanteau test is conducted for each selected model,
and then, various diagrams related to residuals are
examined. Table 9 provides the results of the
Portmanteau test.

As observed, the p value for delays is greater than 0.05 even up
to step 24, enabling us to accept the assumption that all
autocorrelations are zero. Additionally, the graphs
obtained from residuals of the models mentioned in
Figures 7, 8 indicate the suitability and adequacy of the
models. Figure 7 shows the analysis diagrams of the
residual of the selected model for one- and six-month
drought index time series (SP1-1 and SPI-6). Figure 8
shows the ACF and PACF diagrams of residual of the
selected model for one- and six-month drought index time
series.

Forecasting
After reviewing the different models and reaching the best
selected model, the six-month model with the SARIMA
format (3,0,5) (1,1,1) and the resulting values of the model
along with the drought index values that occurred in
reality were plotted. As shown in Figure 9, the results of

TABLE 7 | Results of evaluating the best models in differencing states for the six-month drought index.

Model Calibration Validation Series type

R MAE RMSE R MAE RMSE

ARMA (404) 0.79 0.48 0.62 0.30 0.70 0.92 Without differencing
ARIMA (110) (100)6 0.77 0.49 0.66 0.24 1.13 1.36 Non-seasonal differencing
SARIMA (503) (111)6 0.81 0.43 0.59 0.34 0.69 0.91 Seasonal differencing
SARIMA (111) (111)6 0.80 0.44 0.60 0.28 0.75 0.95 Combined differencing

TABLE 8 | Results of evaluating the best models in differencing states for the one-month drought index.

Calibration Validation Series type

Model RMSE MAE R RMSE MAE R

ARMA (101) 0.76 0.52 0.17 0.84 0.61 0.05 Without differencing
ARIMA (111) 0.75 0.52 0.17 0.82 0.59 0.01 Non-seasonal differencing
SARIMA (202) (111)6 0.75 0.51 0.22 0.82 0.59 0.04 Seasonal differencing
SARIMA (112) (111)6 0.76 0.52 0.21 0.82 0.59 0.01 Combined differencing

TABLE 9 | Results of the Portmanteau test for the selected one- and six-month
drought index models.

Model Lag 12 24

SARIMA (202) (111)6 Chi-square 8.3 25.2
SARIMA (202) (111)6 p value 0.219 0.114
SARIMA (503) (111)6 Chi-square 5 22.8
SARIMA (503) (111)6 p value 0.081 0.064
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FIGURE 8 | ACF and PACF diagrams of residual of the selected model for one- and six-month drought index time series.

FIGURE 9 | Diagram of the selected model for forecasting drought index data.
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the model are in good agreement with the real situation
which the numerical indices of Table 7 had previously
emphasized.

By selecting the best proposed model, SARIMA (3,0,5)
(1,1,1)6, for the six-month drought index and addressing Eqs
26–30, the six-month drought index model is obtained
according to

(1 + 0.349B6)(1 − 0.561B − 0.627B2 − 0.305B3 + 0.552B4

+ 0.026B5)(1 − B6)X(t)
� (1 − 0.979B6)(1 + 0.231B − 0.342B2 − 0.607B3)ε(t), (35)

where B represents the differential operator and x(t) and ε(t) are
the drought index and residual series, respectively. In order to
have a vision of the future, the selectedmodel was used to evaluate
the situation for the next 24 months. Applying Eq. 35 to the

actual data of the six-month time series of the SPI drought index
for 24 months creates a predicted series which is marked with a
blue line in Figure 9.

Comparison Between Observed and
Predicted Drought Characteristics
After modeling with the best proposed model and comparing
the results of the drought index between the model and the
observed data, the severity, duration, and intensity of the
drought (SPI < −1) were also examined. Accordingly, the
graphs in Figures 10–12 show the comparison between
severity, duration, and intensity of the SPI during droughts,
respectively. As can be seen in these figures, there is a good
agreement in the direction of the 45-degree axis between the
points, which indicates the superiority of the proposed model.

CONCLUSION

Predicting hydrological variables, especially the drought index,
has long been considered by many researchers, and various
research studies have been conducted on this field, due to the
importance and widespread use of the SPI in topics such as
climate change and meteorology. The present study addresses
the initial stationarity of drought index time series taken from
rainfall statistics of Semnan meteorological station and then
evaluates the effect of different non-seasonal, seasonal, and
combined differencing on the time series stationarity, as well
as the results of their selected models. For innovation in the
research, we analyze the degree of increase in forecast accuracy
and the effect of differencing operators on six-month drought
index time series. The major findings can be summarized as
follows. 1. Although both one- and six-month drought index
time series are static, different differencing operations improve
their static degree so that series with the combined differencing
operator (non-seasonal and seasonal) provide the best

FIGURE 10 | Comparison between observed and predicted drought
severity.

FIGURE 11 | Comparison between observed and predicted drought
duration.

FIGURE 12 | Comparison between observed and predicted drought
intensity.
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stationarity degree based on the results of the augmented
Dickey–Fuller test. 2. Given the results of the ombrothermic
curve and according to the precipitation conditions of the
region, the seasonal period for modeling the drought index is
considered 6 months. The best models from one- and six-
month drought index time series are originated from seasonal
differencing. Accordingly, SARIMA (2,0,2) (1,1,1)6 and
SARIMA (3,0,5) (1,1,1)6 are the selected models for one-
and six-month drought index time series, respectively. 3.
The results indicate that the accuracy of models in
calibration is significantly higher than that of validation for
both selected series models resulting from seasonal
differencing of one- and six-month drought index.
Moreover, the six-month drought index has better modeling
than the one-month drought index for both models. 4. For the
selected time series model of one-month drought index
SARIMA (2,0,2) (1,1,1), the results of RMSE, MAE, and R
assessment criteria equal to 0.752, 0.510, and 0.218 in the
calibration stage and 0.823, 0.589, and 0.039 in the validation
stage, indicating poor performance of the time series in
modeling and predicting the one-month drought index
variable. 5. For the SARIMA (3,0,5) (1,1,1) model, the
results of RMSE, MAE, and R equal to 0.58, 0.430, and
0.812 in the calibration stage and 910, 0.689, and 0.341 in
the validation stage, respectively, highlighting a significant
improvement (about 4 times increase in correlation
coefficient in the calibration stage and 8 times in the

validation stage) compared to the one-month drought
index. Also, the severity, duration, and intensity of the
drought of the selected model and observed data were
compared, and the results indicated a good agreement. The
results of the present study have the potential to be used for
similar regions in future research.
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Spatial and Temporal Global Patterns
of Drought Propagation
Ignacio Fuentes1,2*, José Padarian1 and R. Willem Vervoort1,3

1School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia, 2WaterTechnology Pty, Ltd.,
Melbourne, VIC, Australia, 3ARC ITTC Data Analytics for Resources and the Environment, The University of Sydney, Sydney,
NSW, Australia

Drought is the most expensive natural hazard and one of the deadliest. While drought
propagation through standardised indices has been extensively studied at the regional
scale, global scale drought propagation, and particularly quantifying the space and time
variability, is still a challenging task. Quantifying the space time variability is crucial to
understand how droughts have changed globally in order to cope with their impacts. In
particular, better understanding of the propagation of drought through the climate,
vegetation and hydrological subsystems can improve decision making and
preparedness. This study maps spatial temporal drought propagation through different
subsystems at the global scale over the last decades. The standardised precipitation index
(SPI) based on the gamma distribution, the standardised precipitation evapotranspiration
index (SPEI) based on the log-logistic distribution, the standardised vegetation index (SVI)
based on z-scores, and the standardised runoff index (SRI) based on empirical runoff
probabilities were quantified. Additionally, drought characteristics, including duration,
severity and intensity were estimated. Propagation combined the delay in response in
the subsystems using drought characteristics, and trends in time were analysed. All these
were calculated at 0.05 to 0.25 arc degree pixels. In general, drought propagates rapidly to
the response in runoff and streamflow, and a with longer delay in the vegetation. However,
this response varies spatially across the globe and depending on the observation scale,
and amplifies progressively in duration and severity across large regions from the
meteorological to the agricultural/ecological and hydrologic subsystems, while
attenuating in intensity. Significant differences exist between major Köppen climate
groups in drought characteristics and propagation. Patterns show intensification of
drought severity and propagation affecting vegetation and hydrology in regions of
southern South America, Australia, and South West Africa.

Keywords: drought propagation, meteorological drought, agricultural drought, hydrologic drought, trend analysis

1 INTRODUCTION

Drought corresponds to a sequence of climate events triggered by ocean or atmospheric circulation
conditions which results in rainfall deficits (Zargar et al., 2011; Yuan et al., 2017), leading to a
landscape imbalance between water supply and demand (Ault, 2020). Drought conditions can extend
in time having large environmental and socio-economical consequences (Apurv et al., 2017).
Droughts have been identified as one of the most costly and deadly natural hazards (Ault,
2020), and could be one of the reasons for the collapse of ancient civilizations (Kerr, 1998; Gill
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et al., 2007). In recent decades, large drought episodes have
occurred in different regions and have received different
names, such as the millennium drought that occurred in
Australia between 2001 and 2009 (Van Dijk et al., 2013) or
the megadrought that has affected Chile since 2010 (Garreaud
et al., 2020).

Drought can occur due multiple different atmospheric drivers.
Atmospheric/oceanic circulation cycles strongly impact the
development of dry/wet conditions, leading to interannual/
interdecadal climate variability (Vicente-Serrano et al., 2011).
Some examples of this are the El Niño Southern Oscillation
(ENSO), the Pacific Decadal Oscillation (PDO), or the Indian
Ocean Dipole (IOD), which all cause an oscillation in surface
ocean temperatures (Mantua and Hare, 2002; Xiao et al., 2015).
Other processes, like the Subtropical Ridge (STR) or the North
Atlantic Oscillation (NAO), are mainly driven by atmospheric
conditions that affect the atmospheric pressure at sea level
(Hurrell et al., 2003; Grose et al., 2015). All these cycles
strongly impact weather conditions across different time
scales. However, anthropogenic impacts on the interannual
climate variability as part of “climate change” are still difficult
to quantify. Despite this, He and Li (2019) identified an overall
increase in the interannual variability of rainfall associated with
climate change across all longitudes between latitudes 20°S–50°N,
while Zhu (2013) estimated an overall increase in rainfall
intensities across the United States. In both cases, estimates
were spatially variable. Additionally, climate change has
decreased rainfall in Mediterranean regions, and an increase in
temperatures is expected to increase evaporative demand, reduce
snowfall and increase the ablation of glaciers, the soil water deficit
and runoff, leading to an increase in drought risk and severity
(Cook et al., 2018).

Drought conditions, triggered by oceanic/atmospheric
circulation processes, propagate from the meteorologic
subsystem, which is evident through a deficit in precipitation,
to the hydrologic and agricultural subsystems (Wang et al., 2016),
and therefore, referred to as a multi-scalar phenomenon (McKee,
1995). In terms of hydrology, drought may cause reduced
discharge in streams, lower groundwater levels, and a
reduction in reservoir storage (Maity et al., 2013). However in
the hydrologic subsystem alone, drought may have different
propagation rates. For example, in the surface drainage
network, propagation may be relatively fast compared to the
groundwater system, which depending on variables such as
recharge rate and aquifer transmissivity, can have a substantial
lagged response, which can also vary significantly across sites
(Bloomfield and Marchant, 2013; Lorenzo-Lacruz et al., 2017;
Han et al., 2019). Focusing on the surface drainage system,
propagation rates can further depend on climate and
catchment characteristics (Barker et al., 2016), and may be
additionally modulated by water consumption in different
reaches and water management (Yuan et al., 2017). Reservoirs,
in particular, may play an important role in delaying drought
impacts (Lorenzo-Lacruz et al., 2013). Water deficit conditions
also lead to a propagation of drought in the agricultural/ecological
subsystem, which results in less water in soils and consequently,
vegetation stress conditions due to the water deficit (Son et al.,

2012). These may additionally translate into economic deficits
due to reductions in crop yields, and subsequently into societal
distress and starvation, which may cause political instability
(Sternberg, 2012). However, in each subsystem the
propagation is modulated by different factors that exacerbate/
attenuate their impacts.

One of the difficulties in evaluating drought, is related to the
methods to characterise and quantify drought, given limitations
in the length of historic data and the spatial coverage (Ault, 2020).
Water deficits can be evaluated through water budget anomalies,
and several standardised indices have been developed to
characterize the magnitude of drought (Zargar et al., 2011;
Ault, 2020). For instance, meteorologic drought can be
quantified through the standardised precipitation index (SPI)
(McKee et al., 1993), which has been further modified to include
evapotranspiration (standardised precipitation
evapotranspiration index; SPEI) (Vicente-Serrano et al., 2010;
Guenang and Kamga, 2014). From a hydrologic perspective,
indices may include runoff (standardised runoff index, SRI)
(Shukla and Wood, 2008), the streamflow in channels
(standardised streamflow index, SSI) (Vicente-Serrano et al.,
2012), groundwater levels, or storage volumes in reservoirs
(Bhuiyan et al., 2006; Nalbantis and Tsakiris, 2009). Likewise,
drought has been monitored in agricultural/ecological systems by
studying the impacts on vegetation trough the standardised
vegetation index (SVI) (Peters et al., 2002), which uses the
normalised difference vegetation index (NDVI) as a proxy for
vegetation health, or through the standardised soil moisture index
(SSMI) (Sohrabi et al., 2015).

The main advantage of these indices is that standardisation is
based on simple methodologies which can be used to draw
conclusions on the drought severity from the observed
anomalies and allows comparison across different sites and
scales. This may facilitate the communication of drought
research results between institutions (Zargar et al., 2011).
However, to have a better understanding of drought effects at
different time and space scales, diverse data sources for drought
monitoring involving different variables are needed, as well as a
critical evaluation of how these indices are estimated and how
theymay relate with each other (Wanders et al., 2017; Trnka et al.,
2018). In this regard, Lorenzo-Lacruz et al. (2010) found changes
in the hydrologic response to droughts in regulated systems of the
Tangus catchment, in Spain, due to the external demand after the
implementation of a water transfer system to other basins. Van
Loon et al. (2012) found drought events to become fewer and
longer as these propagate through different subsystems, and also
concluded that the drought propagation processes were
reasonably well reproduced in some European catchments
using an ensemble mean of large-scale hydrological models.
Vicente-Serrano et al. (2013), studying the vegetation response
to drought, found that different biomes vary in the time-scale
response to drought due to vegetation adaptation characteristics.
Barker et al. (2016) studied the variability in the drought
propagation from the meteorological to the hydrological
subsystem using standardised indices across different
catchments in the United Kingdom, while Barella-Ortiz and
Quintana-Seguí (2019) found uncertainties in the
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characterisation and propagation of drought in the hydrologic
and soil moisture subsystems when evaluating regional climate
models using standardised indices including SPI, SRI, SSI, and
SSMI across Spain. Similarly, Peña-Gallardo et al. (2019) studied
the relationships between meteorological and hydrological
droughts in the conterminous United States and found a
response of SSI to SPEI at short time scales, suggesting that
elevation and vegetation play an important role in modulating
this response. The authors also found a higher correlation
between both indices in natural systems compared to
regulated systems.

Given the importance of drought for society, the study of
drought has led to an entire sub-discipline where different fields
of science converge (Stahl et al., 2020). As a result of this, several
unanswered questions for drought research have been identified
(Trnka et al., 2018; Ault, 2020). This reinforces that there is still a
need to better understand drought propagation, particularly in
relation to time lags of propagation across the different
hydroclimatic subsystems, and the factors that determine
drought propagation (Wang et al., 2016; Trnka et al., 2018).
Finally, changes in drought intensity and duration as drought
transitions from one subsystem to another need to be studied.

While drought propagation analysis using standardised
indices has been widely used at both local and regional scales
(Bhuiyan et al., 2006; Barker et al., 2016; Loon et al., 2017; Xu
et al., 2019; Zhou et al., 2019; Chen et al., 2020), few studies have
addressed this at the global scale, and particularly in reference to
the vegetation response to drought (Vicente-Serrano et al., 2013).
Investigating the global scale is important, as the shifts and
similarities in patterns at the global scale can deliver insights
that are not visible at the local and regional scale. This study
therefore aims to: 1) Characterise global drought through
standardised indices using common average drought metrics
(duration-severity-intensity), which evaluates how drought
amplifies or diminishes across different subsystems. These
include the meteorological subsystem through the evaluation
of rainfall-evapotranspiration, the agricultural/ecological
subsystem by assessing the vegetation, and the hydrological
subsystem by studying modelled runoff and observed
discharge. The groundwater subsystem was not included in
this study because of the lack of information from global
datasets that allows to differentiate monitoring wells dug in
shallow alluvial aquifers from deeper aquifers, and the effect
that active pumping from surrounding wells may have on the
piezometric level of monitoring sites. Therefore, we prioritised
surface water in the hydrological subsystem; 2) Quantify the
global propagation of drought, i.e., the delay in response to
drought across the different subsystems (meteorological,
agricultural/ecological, and hydrological), and identify the
spatial variation in this delay; 3) Discuss the implications of
spatio-temporal changes of the drought characteristics across the
last decades (1982–2019) for drought management and future
global drought preparedness. It is clear that the 37 years selected
for this study may constitute a limitation for the characterisation
of drought variability on multidecadal time scales (Ault, 2020).
However, this period might shed some light on average drought
characteristics among subsystems and on drought propagation.

2 MATERIALS AND METHODS

2.1 Datasets Used
Because this study has a global extent, several data sets at that
scale are used for the analysis. Climate variables and vegetation
were based on remote sensing products. Rainfall daily data was
based on the Climate Hazards Group InfraRed Precipitation with
Station Data (CHIRPS version 2.0) (Funk et al., 2015). CHIRPS
daily data was monthly aggregated, with a spatial resolution of
0.05°, covering 1981 to the present. However, this coverage
excludes the Northern Arctic regions. CHIRPS data has been
validated in many regional studies, which in general indicate a
good agreement between estimates and observed data (average r
of 0.94 and 0.85 in Northeast Brazil and Cyprus, respectively)
(Katsanos et al., 2016; Paredes-Trejo et al., 2017). However the
data can have under- and over-predictions in extreme wet and
dry events and the data can have a lower performance in
mountainous regions (Dinku et al., 2018). Given possible
discrepancies beyond those discussed in Funk et al. (2015),
monthly observations from 3,301 weather stations across the
world were obtained from the World Meteorological
Organization (https://climexp.knmi.nl/). These were filtered to
the CHIRPS coverage period and extent, which reduced their
number to 2,978, and compared against CHIRPS predictions
(Figure 1).

At the global scale CHIRPS rainfall estimates are good,
presenting globally on average an R2 of 0.82 (r > 0.9).
Additionally, over 95% of stations presented a correlation
greater than 0.8, confirming the results in Funk et al. (2015).
However, in some locations, such as in the Peruvian and
Atacama deserts in South America, or in the Sahara desert,
few stations show moderate to low correlations (a total of 18
stations have r < 0.4), which should be taken into account in the
drought analysis.

Monthly temperature, wind and surface pressure were based
on the 0.25° European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis v5 (ERA5) dataset, which is
associated with the fifth generation ECMWF atmospheric
reanalysis of the global climate (Hoffmann et al., 2019).
Several of the ERA5 variables have been compared to other
datasets, and have been described as equivalent to using
observational data for large areas in North America (Tarek
et al., 2020). Compared with the Modern-Era Retrospective
analysis for Research and Applications, Version 2 (MERRA-2
reanalysis data), it outperforms that data set in all aspects related
to wind (Olauson, 2018). Monthly incoming shortwave radiation
from the Famine Early Warning Systems Network (FEWS NET)
Land Data Assimilation System (FLDAS) was obtained at a 0.1°

resolution (McNally et al., 2017).
The third generation Global Inventory Modeling and

Mapping Studies (GIMMS) normalized difference vegetation
index (NDVI) from the Advanced Very High Resolution
Radiometer (AVHRR) sensors at five arc minute resolution
was aggregated to monthly data for 1981 to 2014 (Pinzon
and Tucker, 2014). We added the Moderate Resolution
Imaging Spectroradiometer (MODIS) NDVI from Terra
instruments (MOD13A2), which is available from 2001 to
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the present, but at a much higher resolution (1,000 m) (Didan,
2015).

Modelled mean monthly runoff rasters from the ERA5
collection were also included in the analysis to account for
hydrological variables. Runoff corresponds to the fraction of
water that flows through the surface or subsurface, which does
not stay stored in the soils. Additionally, to evaluate hydrologic
droughts using point measurements, level 4 basins from the
HydroSHEDS dataset (Lehner and Grill, 2013) were combined
with reference stations from the Global Runoff Data Centre
(GRDC; https://www.bafg.de/GRDC/). These stations (and
basins) were filtered based on drained areas of at least
10,000 km2, and discharge data was filtered from 1981.
From the combined basins and gauging stations, stations
located furthest downstream within each basin were selected
for further analysis. Additionally, the degree of regulation
attribute of the basins contained in the HydroATLAS
version 1.0 dataset (Lehner et al., 2011) was appended to
the stations to differentiate between regulated and natural
systems.

The raster datasets were all accessed, pre-processed, and
analysed using Google Earth Engine (Gorelick et al., 2017),
while observational data was processed using Python libraries.

2.2 Pre-processing and Drought Indices
As discussed, there are several drought indices. In this study, we
used the Standardised Precipitation Index (SPI), the Standardised
Precipitation Evapotranspiration Index (SPEI), the Standardised
Vegetation Index (SVI), and we also standardised the runoff to
get a Standardised Runoff Index (SRI). These indices can be
calculated for different time scales based on the sum of
observations in a selected time window (Zhang and Li, 2020):

xk
i,j � ∑

k−1

t�0
xi,j−t (1)

where xk
i,j is the record of the variable used in any index evaluated

in the ith year and jthmonth using the k time scale, which in this
study was set to 1, 3, 6, and 12 months. These different time scales
aggregate the data with increasing periods, which in some cases

FIGURE 1 | CHIRPS global validation against meteorological stations. The (A) presents a map with the correlation between meteorological stations and CHIRPS.
The (B) presents a density scatter plot with monthly observations and predictions for all stations, while the (C) shows the histogram of the correlations.
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have been reported to take into account the meteorological
(1 month), agricultural (3–6 months), and hydrological aspects
(12 months) of droughts (Tirivarombo et al., 2018). The
observations for the different drought indices correspond to
rainfall for SPI, rainfall minus evapotranspiration for SPEI,
NDVI for SVI, and runoff/discharge for SRI.

2.2.1 Standardised Precipitation Index
The SPI was standardised assuming a gamma distribution, as this
distribution has been used as the benchmark for studying drought
using positive hydroclimatic variables and is recommended for
use at large scales (Stagge et al., 2015), which was implemented in
Google Earth Engine (Guenang and Kamga, 2014):

g x( ) � 1
βαΓ α( ) − xα−1ex/β for x> 0 (2)

where α and β are the shape and scale parameters.

2.2.2 Standardised Precipitation Evapotranspiration
Index
Since SPEI requires the subtraction of rainfall and
evapotranspiration, this last was calculated in Google Earth
Engine by combining the ERA5 dataset with the FLDAS
forcing radiation using the Food and Agriculture Organization
(FAO) Penman Monteith equation (Pereira et al., 2015):

ETr � 0.408Δ Rn − G( ) + γ 900
T+273u2(es − ea)

Δ + γ 1 + 0.34u2( ) (3)

where ETr is the monthly reference evapotranspiration, Rn is the
net radiation,G is the soil heat flux,Δ is the slope vapour pressure,
T the mean temperature, es the saturation vapour pressure, ea the
actual vapour pressure, γ the psychrometric constant, and u2 the
wind speed at 2 m height.

The subtraction of precipitation and ETr can result in negative
values. As a result, and based on earlier comparisons (Vicente-
Serrano and Beguería, 2016), SPEI was standardised using a log-
logistic distribution with three parameters (Beguería et al., 2010)
in Google Earth Engine. The probability distribution function for
the log-logistic distribution is:

F x( ) � 1 + α

x − γ
( )

β

⎡⎣ ⎤⎦
−1

(4)

where α, β, and γ are the parameters of the function that can be
estimated from a probability weighted moments calculation.
From this, P, i.e., the probability of exceeding a value of D (D
stands for difference between rain and evapotranspiration), is
calculated as 1−F(x). Finally, SPEI is calculated as:

SPEI � W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3
(5)

whereW � 						−2 lnP√
if P ≤ 0.5 andW � 										−2 ln(1 − P)√

if P > 0.5.
Additionally, when P > 0.5 SPEI is multiplied by -1. In this case
C0, C1, C2, d1, d2, and d3 are constants estimated to be 2.515517,
0.802853, 0.010328, 1.432788, 0.189269, and 0.001308,
respectively (Abramowitz and Stegun, 1964).

2.2.3 Standardised Vegetation Index
Given that the GIMMS NDVI from the AVHRR sensors is
discontinued after 2013, MODIS NDVI was used to generate a
monthly continuous series from 1981 to the present. However,
MODIS data had to be re-projected and re-scaled to the GIMMS
projection and resolution. Additionally, since some artifacts arise
from the difference between sensors, which are evident even when
re-projecting and re-scaling MODIS, a correction using ordinary
least squares (OLS) between sensors was used. Thus, GIMMS
NDVI wasmodelled fromMODIS NDVI based on amodification
of the Mao et al. (2012) methodology, which is needed because of
the seasonal NDVI variability. The modification consisted of
using OLS on both datasets for each month using 10 years
(2001–2010) of observations. A validation was carried out on
1,000 randomly distributed points sampled from 14 polygons
drawn in different continents, comparing the predictions against
the monthly GIMMS NDVI observations from 2011 to 2013
(36 months), which results in a total of 36,000 observations.

Validation results of merging AVHRR and MODIS NDVI are in
Figure 2. The validation of themodelledNDVI has an error of around
5%, with a small bias of 0.003, and a determination coefficient of 0.96,
which was considered acceptable for subsequent analysis.

The SVI was then calculated following the original calculation
described in Peters et al. (2002) based on a z-scores estimation,
which is the deviation from mean values in standard deviation
units:

SVI � NDVIi,k −NDVIk
σk

(6)

where NDVIi,k is the NDVI for observation i at the time period k,
NDVIk and σk are the mean and standard deviation of NDVI for
period k.

2.2.4 Standardised Runoff Index
Lastly, SRI was calculated using empirical probabilities that lead
to non-parametric standardised indices based on the Gringorten
plotting position (Farahmand and AghaKouchak, 2015;Wu et al.,
2018):

p xi( ) � i − 0.44
n + 0.12

(7)

being n the length of observations and i the rank of event x in the
collection. Then, the inverse normal function needs to be applied
to standardise the range of values:

SRI � erfinv 2p xi( ) − 1( )
	
2

√
(8)

where erfinv corresponds to the inverse error function. SRI was
estimated for the ERA5 runoff rasters and the GRDC gauging
stations. In this case, SRI was used because it allows to relax the
assumption of representative parametric distribution types
assigned to the data (Farahmand and AghaKouchak, 2015).

2.3 Calculations of Drought Characteristics
Drought indices describe wet and dry conditions based on time
series records of different variables, and can be separated in dry/
wet classes (Table 1) (Jain et al., 2015; Potopová et al., 2015).
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While drought propagation can be defined as the delay in the
drought response in the different subsystems, a characterisation
of drought in each subsystem was calculated in Google Earth
Engine to evaluate the amplification or diminishing of drought
effects during drought conditions through subsystems.

Thus, based on a threshold defined at −1 (Van Loon and Van
Lanen, 2013; Li et al., 2020), a drought period was assumed to be
any period where the drought index goes below −1,

corresponding to moderately to extremely dry conditions
(Potopová et al., 2015). Drought duration has been defined in
different ways (Halwatura et al., 2015; Cavus and Aksoy, 2020).
For simplicity, drought duration was defined as the consecutive
months of drought indices below −1, which are preceded and
followed by values above −1. Severity, considered as the strength
of droughts, refers to the cumulative effects of drought and is
calculated as:

FIGURE 2 | Validation of the combination of the GIMMS AVHRR NDVI and MODIS NDVI using monthly observations of GIMMS NDVI from 2011 to 2013. Polygons
where random samples were taken for validation are presented in the (A), while the (B) shows a density scatter plot of the validation and associated statistics.
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Se � ∑
D

i�1
|SI| (9)

where Se corresponds to the drought severity for the e drought
event, with D the drought duration (in months) and SI the
estimate of the respective standardised drought index. The
intensity of the drought was also estimated as the ratio of the
drought severity and the drought duration.

2.4 Spatial and Temporal Analysis of
Drought Characteristics
To study the lag response between meteorological, agricultural, and
hydrological drought, the lag at the maximum cross correlation
between the meteorological and the agricultural, and between the
meteorological and hydrological drought indices was estimated at each
pixel. Additionally, this analysis was evaluated at the basin scale by
combining the hydrologic drought calculated fromGRDC stations and
mean meteorologic—agricultural/ecological droughts in the filtered
basins. This was done because pixel values refer to surface estimations
at a particular scale, but point observations such as terminal gauges in a
catchment or pixels aggregated within the catchment refer to
hydrologic/vegetational values representative of the catchment scale,
and different study scales may lead to different conclusions (Joao,
2002). In addition, runoff corresponds to a modelled variable, while
GRDC stations correspond to observational data, which might be
useful as a source of comparison to evaluate the drought propagation
using modelled data in the hydrologic subsystem.

However, since the time series are in general serially
correlated, these were first prewhitened to convert at least one
of them into white noise (Shumway and Stoffer, 2017). Therefore,
multiband raster grids were downloaded and converted into
arrays. The prewhitening used the auto-ARIMA function from
the pmdarima library (Smith 2017) along the 0 axis (time) of the
independent array (x-variable in the cross correlation analysis)
and setting minimum and maximum autoregressive (p) and
moving average (q) terms to 0 and 5 respectively, and a
minimum and maximum differencing (d) of 0 and 2. The
auto-ARIMA function fits an ARIMA model to the time series:

Yt � − ΔdYt − Yt( ) + ϕ0 +∑
p

i�1
ϕiΔdYt−i −∑

q

i�1
θiϵt−i + ϵt (10)

where ϕ are the constants associated with the autoregressive
behaviour, θ corresponds to the parameters associated with the

moving average in the model, and ϵ corresponds to the error
terms, being:

ΔY � Yt − Yt−1 (11)
The auto-ARIMA function identifies the (p, d, q) model

parameters of ARIMA optimizing (minimizing) the Akaike
Information Criterion (AIC). The x-variable to use in the
cross correlation corresponds then to the residuals of the
ARIMA model. Stationarity in the series is evaluated based on
the d parameter from the ARIMA model. Subsequently, the
selected ARIMA model is also fitted to the cross correlation
y-variable and the residuals are used for the cross correlation.
This makes the series stationary and removes serial correlation
before the cross correlation analysis. The significance of the cross
correlation was based on:

rk > |1.96	
n

√ | (12)

being r the correlation coefficient at lag k and n the length of the
series.

A further hypothesis is that continued climate change would
introduce a trend in the drought characteristics. Therefore a trend
analysis using Ordinary Least Squares (OLS) was applied to the
drought characteristics, rather than directly to the standardised
indices since drought events are considered independent. The
significance of the trend (p-value) was estimated using Google
Earth Engine.

2.5 Major Köppen Climate Groups and
Drought Propagation
Different climate characteristics might result in variations in
drought, especially if droughts are calculated globally in a
standardised way. Vectorial information of major Köppen
climate groups from Rubel and Kottek (2010) was used to
aggregate drought characteristics from the SPEI, SRI, and SVI
and propagation characteristics (Figure 3). Thus, drought rasters
were sampled using all groups and were compared using analysis
of variance or the non-parametric Kruskal Wallis test to evaluate
if major climate groups indicate drought differences and drought
propagation differences. Additionally, a multiple comparison to
evaluate differences between groups was carried out through the
non-parametric Dunn’s multiple comparison test, setting a step-
down method that uses Bonferroni to adjust the p-values (Glantz,
2002). For all these tests, a p-value < 0.05 was assumed to lead to
strong evidence of differences between major climate groups.

3 RESULTS

3.1 Meteorological Drought
Since drought is associated with atmospheric and oceanic
circulation patterns, and these are dynamic in time and space
around the world, it is possible to observe large spatial differences
in dry/wet conditions on any specific date. This is what can be
observed in the Figure 4A for SPI and SPEI maps in July 2019.

TABLE 1 | Drought indices and wet/dry classes.

Classes Range of values

Extremely dry ≤−2.00
Severely dry −1.99 to −1.50
Moderately dry −1.49–−1.00
Mild dry −0.99 to 0.00
Mild wet 0.00 to 0.99
Moderately wet 1.00 to 1.49
Severely wet 1.50 to 1.99
Extremely wet ≥2.00
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The upper and middle panels correspond to a graphical
representation of a single SPI/SPEI record. The lower panel
indicates the Pearson correlation between both series for
1981–2019 at each pixel, which shows high correlation in
South America and the tropics, and more generally in high
rainfall areas.

Average meteorological drought characteristics estimated
from the 3-month SPEI series are in Figure 4B. While the

lowest drought duration regions are in northern latitudes
(western Europe and Asiatic Russia), low duration can also be
found in southern and eastern Asia. On the other hand, regions
showing the largest drought duration seem to be constrained, in
some cases, to areas with high annual rainfall, including some
countries of Oceania such as Indonesia, Philippines, and Papua
New Guinea, which can reach in average to more than 5 months
of continuous drought (SPEI < −1). However, northeastern

FIGURE 3 | Major Köppen climate groups used for drought propagation study.

FIGURE 4 | SPI—SPEI example maps for July 2019 and correlation between the entire time series of both indices (A) and 3-month SPEI drought
characteristics (B).
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South America also presents a large mean drought duration.
Highlights the Kashmir region, which presents the largest
drought duration, reaching on average over 9 months. No
significant correlation was found between average rainfall
and mean drought duration derived from SPEI (not shown).
Drought severity follows a similar pattern compared to
drought duration since it corresponds to the accumulated
drought severity (in standardised units) during drought
events.

In terms of drought intensity, northern Africa and western
Asia have on average the largest values. In contrast, on average,
lower intensities are found in the Amazon, Micronesia, Polynesia,
and Melanesia regions. However, the lowest drought intensity
also occurs around the Kashmir region, but neighbour areas of
very high intensity are also visible.

3.2 Agricultural/Ecological and Hydrologic
Drought
An example map of SVI for July 2019 is in the Supplementary
materials (Supplementary Figure S1), while average agricultural
drought characteristics are in the Figure 5A calculated using the
entire series of 3-month SVI. Agricultural drought duration and
severity increases in most regions compared to the meteorological
drought using SPEI (Figure 4), except in Melanesia. For instance,
while the mean meteorological drought duration in southern
Africa is 2.1 months, its mean agricultural drought duration

increases up to 2.4 months using SVI. In central Asia the
mean drought duration increases from 2.4 to 3.1 months, in
North America from 2.3 to 3 months, and in Australia and
New Zealand from 2.5 to 3.7 months. Additionally, there is a
general increase in spatial variability of drought duration in
different regions using SVI, except in South America. The
increase in variability is stronger in western Europe and
Polynesia. The intensity of agricultural drought using SVI is in
the lower Figure 5A. Higher intensities can be found in northern
regions which can be associated with large severity of short
duration events, since the intensity refers to the ratio between
severity and duration.

An example map of the SRI index calculated for July 2019 and
its correlation with SPEI are in the Supplementary materials
(Supplementary Figure S2). Higher correlations between both
indices occur in large areas of the United States, eastern sectors of
Australia and Southern Africa when considering the entire time
series. Similar to the other indices, average SRI characteristics are
in the Figure 5B. Low duration and severity of drought occur in
the Saharan and Middle East regions, where dry climates occur,
but this is not extensive for Australian deserts, and low duration
and severity also occur in central Asia and southern Africa. On
the other hand, large values can be found in central Africa, to the
east of the Andes mountain range in South America, in north
western Australia and in western and eastern Europe. Intensities,
in general, indicate an opposite behaviour relative to duration and
severity.

FIGURE 5 | Average 3-month SVI (A) and 3-month SRI (B) drought characteristics.
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3.3 Drought Propagation
Apart from the drought characteristics, which may describe how
the drought affects the different subsystems in terms of duration,
severity and intensity, the propagation was identified as the lag in
the peak of correlation between drought time series in different
subsystems.

Theoretically, drought propagation progresses from the
meteorological subsystem (SPEI) to the hydrologic subsystem
(SRI), passing through the agricultural subsystem (SVI) (Wang
et al., 2016). Figure 6 shows the time series of SPEI (red and blue
colours) and the SVI propagation (grey colour) at different global
locations. Different patterns are visible at each of these locations.
For instance, Australia (New South Wales) (E) shows a pattern
with clear drought events after 2012, characterised by low SPEI,
which amplifies the duration in the SVI series. A similar pattern
can be observed in California, United States (A), and in central
Chile (B), especially after 2008, while an opposite behaviour can
be detected in Greece (C).

The lagged responses from the meteorological (SPEI) to the
other subsystems (Figures 7A,C) indicate how these vary
depending on the location and the subsystem being evaluated.
The vegetation subsystem response (SVI) can be direct with
maximum cross correlation with SPEI at lag 0. This seems to
occur especially in Temperate and Dry climates such as in the
eastern part of Australia, the pampas area (Argentina) in South
America, southern and eastern Africa, and south central
United States. These regions also tend to present larger

maximum cross correlation values between both indices
(Figures 7B,D). However, in most cases the response is
delayed several months. In equatorial forest areas like the
Amazon and central Africa, a large lag can be observed, but
this also occurs in mid latitude regions, such as northern North
America. In contrast to what is generally described in the
literature (Zargar et al., 2011; Wang et al., 2016), the response
in the hydrologic subsystem, through runoff, is mainly direct and
minima and maxima are at the same time as the SPEI, but this
occurs on a pixel basis. However, there are also some patches
where large lags occur between SPEI and SRI, for instance in the
Mountainous western region of United States, or surrounding the
Great lakes in the United States and Canada, to the west of the
Andes mountain range in South America, and spread out in
several regions of Europe, and across eastern and central Asia.

Basin aggregated lagged responses in the agricultural/ecologic
and hydrological subsystems are in Figure 8 and tend to confirm
the results found on a pixel basis. Again, it is evident that the
hydrological response tends to be faster than the vegetation
response, except in some particular basins, such as the Great
Plains in North America, to the east of the Andes in South
America, or downstream of the Tsimlyanskoya reservoir in
Russia and the Guanting reservoir in China. These are most
likely all snow/glacier driven systems. From the 403 basins filtered
in the preprocessing steps, 302 and 233 had significant SVI-SPEI
and SRI-SPEI cross correlation values, respectively. For the
maximum SRI-SPEI cross correlation at lag (month) 0 there

FIGURE 6 | SPEI and SVI time series in different locations. Blue and red colours in plots correspond to wet and dry conditions in the SPEI time series, respectively,
while grey colours correspond to the SVI series.
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were 101 basins, while 121 basins indicate lags between 1 and 3,
and 11 basins indicate lags greater than 3. On the other hand, 49
basins indicate a maximum SVI-SPEI cross correlation at lag 0,
while 48 basins were between 1 and 3 months, 39 basins between
3 months and 1 year, and 166 longer than 1 year.

Differences between regulated and natural basins are in
Figure 9. Natural drainage systems indicate higher and more
significant correlations between SPEI and SRI, which was
confirmed using the Kruskal Wallis test (p-value < 0.05).
Additionally, unregulated basins tend to respond to
meteorological droughts at shorter time scales. No significant
differences in the lagged response were found between natural
and unregulated basins. However, regulated systems have a larger
dispersion in the lagged response, with some basins indicating a
delay of over 19 months after the beginning of meteorological
droughts.

Additionally, by subtracting the average drought
characteristics in each subsystem, the change in duration and
intensity can be evaluated (amplification or attenuation of
drought) in the different subsystems. Figure 10 shows the
difference between SVI and SPEI in terms of duration
(months), severity and intensity (left panel).

Drought duration and severity amplify in large regions of the
mid-latitudes. In contrast, smaller patches of attenuation can be
observed in between those areas, probably associated with
vegetation patches. Small areas in the northern South America,
around the Great Lakes in North America, in the Malay
Archipelago, and in the Kashmir region indicate drought

duration/severity attenuation in the agricultural/ecological
subsystem. Drought intensity, on the other hand, attenuates in
several regions. It also shows an opposite behaviour compared to
duration and severity in dry regions where these strongly amplify,
such as in the Argentinian Patagonia, western Australia, some
regions in northern Africa and middle East. In these regions
agricultural/ecological drought intensity reduces to about half of
the magnitude of meteorological drought intensity.

The difference of drought characteristics between SRI and
SPEI are in the right panel of Figure 10. In general, duration and
severity indicate a larger heterogeneity compared to the difference
between SVI and SPEI. Drought duration/severity attenuation in
the hydrological subsystem can be seen in the Saharan and sub-
Saharan regions, Middle East, central Australia, southern Africa,
and the Patagonia, while amplification can be found to the west of
Los Andes and in large extents of Brazil, in eastern North
America, Europe, central Africa, and eastern Asia, among
others. Similar heterogeneity between drought intensity
amplification/attenuation regions can be observed across
the world.

3.4 Spatial and Temporal Drought Patterns
The trends based on the OLS analysis and associated levels of
significance for the 3-month SPEI drought characteristics are in
Figure 11. Trends in the duration, severity and intensity of
meteorological drought are quite variable across the globe.
Concerning are increases in drought characteristic trends
which can be observed in western Europe (Portugal and

FIGURE 7 | SPEI-SVI (A,B), and SPEI-SRI (A,C) response lag (A,C) corresponding to the maximum cross correlation (B,D) between variables. White pixels
correspond to locations where the maximum cross correlations were non-significant.
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Spain), western regions of North America, Central America,
Australia, southern South America, south west Africa, and
eastern Russia. In all those regions droughts are increasing,
either in duration, severity, or intensity, or in all of these.

Similarly, 3-month trends in SVI drought characteristics
follow slightly different patterns, but again increasing trends
occur in southern South America, the Northern Territory and
Western Australia, south west Africa, and regions in central and

FIGURE 8 | Basin aggregated SPEI-SVI (A,B), and SPEI-SRI (A,C) response lags (A,C) corresponding to the maximum cross correlation (B,D) between
prewhitened average aggregated SPEI/SVI and SRI calculated from gauging stations. Basins with non-significant cross correlations were masked out.

FIGURE 9 |Maximum cross correlation coefficient distributions (A) and significant lagged response categories [months; (B)] between 3-month SPEI and 3-month
SRI for regulated and unregulated basins.
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eastern Asia (Supplementary Figure S3). On the other hand,
strong and significant increasing trends in drought effects for
runoff can be detected in central Africa, central Australia, to the
east of the Andes mountain range in South America and in
central and eastern Europe (Supplementary Figure S4).

Heat maps of the severity of drought based on the 3-month
SPEI for latitude and longitude are in Figure 12. About four
severe global drought events can be observed surrounding the
equator (mean SPEI severity > 8), but extending to the north and
south latitudes in 1983, 1993, 1998, and 2016. Some of these tend
to propagate in time and tend to cover a large extent of the
continental surface (above right panels). In between the
30–40°parallels, a relatively large drought event can be
observed, lasting at least 1 year. In between the −25 to
−50°latitude several drought events of large severity can also
be observed. Additionally, the propagation of a long lasting
drought event can be observed in the 80°meridian, yet it seems
to be spatially constrained.

The heat map for SVI (Figure 13A) indicates quite a different
behaviour. The drought observed in 1983 through SPEI record can
also be detected in the SVI heat map. During the 1994–1995 a large
drought is evident in the vegetation based index, covering a large
extent of continental surface, but with the largest severity close to the
equator. Then, after a long gap (1995–2000), some drought events
are observed through the vegetation index which increase in severity
and propagate longer in time, especially after 2005. Another obvious

drought event occurs around the 25°parallel, which propagates over
3–4 years. The same can be observed surrounding the -25°parallel,
whichwould be consistent with themillenniumdrought described in
Australia (Van Dijk et al., 2013).

The largest severity in SRI occurs above the 50°parallel
(Figure 13B). However, severe hydrological drought events
can also be seen in equatorial and southern latitudes. Again,
the drought events detected surrounding the equator (1983, 1993,
1998, 2016) can be also detected in the SRI severity. But one thing
that stands out is the increase over time in SRI severity and its
propagation period, especially after 2008, in northern latitudes,
and the increase and spread in the continental coverage with time,
which means that droughts are extending in space in the
hydrologic subsystem.

Spatial patterns in the difference of drought impacts between
subsystems are in the Supplementary materials (Supplementary
Figure S5). While in the meteorological subsystem drought
severity tends to follow some sort of interannual variability,
which is especially evident surrounding the equator, with a
limited propagation period, such events extend to northern
and southern parallels in the vegetation subsystem, but also
increasing in severity and with longer propagation from 2005.
The propagation also occurs in the hydrological subsystem, but
not as severe as in vegetation, and tend to increase in continental
coverage in low and high latitudes, while diminishing in extent
surrounding the −25 and 25°parallels.

FIGURE 10 | Duration (A,B), severity (C,D) and intensity (E,F) mean differences between SVI and SPEI (A,C,E) and between SRI and SPEI (B,D,F).
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3.5 Major Köppen Climate Groups and
Drought
The distribution of pixels sampled from the mean SPEI, SVI, and
SRI drought characteristics based on the major Köppen climate
groups are in the Supplementary materials (Supplementary
Figure S6). In general, greater homogeneity can be observed
throughmore compact violins and smaller y-scale range of values.
Even though distributions appear quite homogeneous in some
cases, the Kruskal Wallis test indicated significant differences (p
value < 0.05) in all drought characteristics between Köppen
major groups, for all indices. Likewise, the Dunn’s multiple
comparison test showed strong evidence of drought differences
between all major Köppen climate groups (Supplementary
Tables S1–S9). In fact, the largest drought effects occur in
different climate groups depending on the drought index. For
instance, drought severity effects tend to be the strongest for Polar
climates in the meteorological subsystem (using SPEI), while
these are the strongest in Dry and Continental climates for the
vegetation (SVI) and runoff (SRI), respectively.

Additionally, Figure 14 highlights the difference between SVI
and SPEI (left panel), and between the SRI and SPEI mean
characteristics (right panel). The Polar climate group has the

lowest drought duration difference between SVI and SPEI, while
the largest differences occur in Dry climates, which show larger
variations, but also the lowest intensity differences. Significant
differences using Kruskal Wallis were found between Köppen
climate groups, and in most cases, these differences were
significant comparing between groups (Supplementary Tables
S10–S15).

The largest differences between SRI and SPEI occur in
Continental climates, while the Polar and Dry climate groups
contain the smallest differences. Differences between SRI and
SPEI differ in magnitude relative to SVI—SPEI differences,
especially conditional on climate groups. Thus, for instance,
the median difference in duration between SVI and SPEI is 0.5
for the Tropical, 1.0 for the Dry, 0.7 for the Temperate, 0.5 for the
Continental, and 0.2 months for the Polar climates. However,
these differences change to 0.6, −0.3, 0.9, 1.0, and 0.1 months for
the difference between SRI and SPEI.

4 DISCUSSION

Drought propagation and temporal changes are spatially variable
across the globe and linked to climate groups. Correlations

FIGURE 11 | Annual trends in the meteorological characteristics (A) and the significance of the trends from the OLS analysis (B) obtained using 3-month SPEI.
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FIGURE 12 | Heat maps (A) of mean 3-month SPEI severity by latitude and longitude (B) with the corresponding latitudinal and longitudinal continental coverage
[percentage of latitudinal/longitudinal continental extent affected by drought; (C)]. Examples of three parallel and meridian mean SPEI severity time series and their
corresponding continental extents (%) are in the middle and lower panels.
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FIGURE 13 |Heat maps of mean 3-month SVI severity (A) and 3-month SRI severity (B) by latitude and longitude with the corresponding latitudinal and longitudinal
continental coverage (right panels).

FIGURE 14 | Differences of drought characteristics between SVI and SPEI (A) and between SRI and SPEI (B) for major Köppen climate groups.
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between meteorological indices (SPI and SPEI) depend on the
precipitation abundance or the dominance of precipitation
relative to evapotranspiration. For example, lower correlations
can be observed in mid latitudes associated with areas with arid
and desert climates, characterised by low rainfall and elevated
evapotranspiration. Generally speaking, drought progresses
through the subsystems and, as in Peña-Gallardo et al. (2019),
this varies by location. The propagation lag increases from the
runoff to the vegetation subsystems. Similar to other studies
(Lorenzo-Lacruz et al., 2013; Sattar et al., 2019), runoff or
streamflow, in most cases, have a maximum response to
meteorological droughts at short time lags, e.g., in the same
month on a pixel basis, or during the next few months if
aggregated to a larger scale. Additionally, the severity and
duration of drought tend to amplify across large regions
moving from meteorological to the agricultural and the
hydrological subsystems, but attenuating in intensity on dry
and polar climates. However, the dominant idea that drought
progresses following the meteorological-agricultural-hydrologic
order (Zargar et al., 2011; Wang et al., 2016) does not necessarily
apply to all regions, at least in terms of the time lag of response
among subsystems (start of drought event in subsystems). In
some places, the hydrological response to rainfall through runoff
is almost immediate and may precede the vegetation response to
drought. Differences in this lagged response would depend on
catchment characteristics, land cover, vegetation, climate, and
water management (Lorenzo-Lacruz et al., 2010; Vicente-Serrano
et al., 2013; Barker et al., 2016; Yuan et al., 2017; Ding et al., 2021).
For example, runoff/discharge may proceed faster in areas with
large rainfall and with a large slope gradient, while vegetation in
semiarid and subhumid biomes may take several months to
respond to meteorological droughts (Vicente-Serrano et al.,
2013). Yet the streamflow response to meteorological droughts
may be delayed/affected by geologic/geomorphic features, the
location of the gauging station relative to the basin, water storage,
and water usage (Lorenzo-Lacruz et al., 2013), which may explain
the drop in stations that had significant cross correlation values
between SRI and SPEI, clearly distinguished among regulated
river systems as in Peña-Gallardo et al. (2019).

Vegetation, on the other hand, may have drought adaptation
strategies (Vicente-Serrano et al., 2013), and can strongly rely on
groundwater either by irrigation (Siebert et al., 2010) or due to
root growth exploring the vadose zone and even reaching aquifers
(Miller et al., 2010). In this case, groundwater has been reported
to have a delayed response to meteorological droughts of on
average 20.1 months in the United States (Schreiner-McGraw
and Ajami, 2021), which might translate into a delayed response
of vegetation in areas that rely extensively on groundwater
resources. Additionally, different indices can lead to different
results in the lagged response of subsystems. For instance, if soil
moisture is used as an indicator of agricultural drought as
proposed by (Zargar et al., 2011) instead of vegetation, it
might lead to a faster response than the hydrological
subsystem (runoff and streamflow).

While the characterisation of meteorological drought through
SPEI and SPI is widely accepted (Hayes et al., 2011; Zargar et al.,
2011; Wang et al., 2016; Ault, 2020), agricultural drought indices

based on NDVI are less well accepted (Hayes et al., 2011). In this
case, SVI, as any vegetation standardised drought index, can be
questionable, since land cover changes affect the continuity of the
NDVI series, which may translate into abrupt changes, causing
non-stationary behaviour (Karnieli et al., 2010; De Keersmaecker
et al., 2017). Additionally, NDVI can also be affected by natural
hazards, such as fires and floods (Zargar et al., 2011) and
agricultural practices (harvesting). These changes can obscure
the real drought response and might affect time series analysis as
well as trend detection (Peters et al., 2002). However, while at the
local scale these are considered relevant, at a global scale these
effects may attenuate. Other indices, such as those using soil
moisture, have a shorter data length, which limits their
applicability (Ault, 2020).

The global drought characteristic and propagation analysis
presented here can be also extrapolated to include other
hydrological and economic subsystems (Wang et al., 2016;
Jehanzaib and Kim, 2020). However, a clear identification of
the targets for drought evaluation need to be defined.
Additionally, the spatial representation of the relevant data
needs to be addressed. For instance, gauging stations,
monitoring wells and reservoirs refer to point estimates that,
in some limited cases, can be representative of catchment
conditions. This means boundaries of the spatial units for the
properties being evaluated and the aggregation of meteorological
or agricultural/ecological data to be used needs to be considered.
Additionally, while raster data is commonly available at the global
scale, hydrological streamflow data cannot really be represented
well at the global scale. More general hydrological variables, such
as GRACE records, have disadvantages, including low spatial
resolution and relatively short length of records (Li et al., 2019).
In the present study, we choose to use runoff, which is frequently
available as a modelled variable in a gridded format. However,
using other variables, such as streamflow or groundwater, may
lead to a different propagation behaviour given the lagged
response of these variables (Kuss and Gurdak, 2014; Lorenzo-
Lacruz et al., 2017), which was observed in a slight increase in the
lagged response using catchment discharge.

Additionally, a multi-scale analysis should be considered when
studying drought and the potential effect of water usage (McKee,
1995; Lorenzo-Lacruz et al., 2010), because it requires of a
regional/local component for water withdrawals (Loon et al.,
2019; Rangecroft et al., 2019). As stated by Barker et al. (2016),
different catchment characteristics may be responsible for the
drought propagation, but also different reaches within the same
river might vary in the drought propagation and response given
water withdrawals (Yuan et al., 2017). This means quantifying
drought may require a nested scale analysis given the complexity
of processes.

Mitigation plans for drought require consideration of local/
regional climate characteristics and drought impacts in different
subsystems by policy makers and planners (Wilhite, 2016) given
the clear spatial variation in drought propagation observed here.
Drought monitoring and knowledge of drought propagation
characteristics and trends give governments further tools to
develop national scale drought preparedness plans. This means
resources can be prioritised to cope with drought based on the
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likelihood drought will amplify in the agricultural/hydrological
subsystems and in time at certain locations. Additionally, the
lagged drought response between subsystems can be used as an
early warning by decision makers to trigger drought mitigation
actions and reduce socioeconomic impacts. Similarly, at the
global scale, the study of drought propagation can help to
identify spatially connected regions prone to drought impacts.
Overall this study maps the global temporal changes in drought
and the regional extent, likely partly associated with climate
change. This can help global aid and development
organizations to delineate strategies for drought impact
mitigation and water and food security improvement. For
instance, the definition of drought resistant crops and
promotion in regions/countries where drought strongly
amplifies in the agricultural/ecological subsystem can reduce
drought effects (Wang et al., 2014). Groundwater storage is an
important subsystem to consider for drought mitigation at
regional scales (Wendt et al., 2021). In drought prone regions,
replenishing groundwater and soil water stocks in wet periods
should be further promoted to increase water security in dry
periods (Zhang et al., 2020), as groundwater reduces the large
evaporation losses associated with water storage in dams (Zhao
and Gao, 2019; Fuentes et al., 2020). On the other hand, a clear
global concern is the increasing hydrological drought extent
observed in the last years (Figure 13B) and its severity
increase in northern latitudes. Drought effects in the
hydrological and agricultural/ecological subsystems are clearly
increasing in some regions, which can also be observed in trend
analysis. This increase in the drought effects in these subsystems
may arise as a response to a loss in catchment memory caused by
a reduction in storage capacity due to climate change, which
needs to be addressed.

Different drivers can lead to spatially variable dry/wet
conditions (Schubert et al., 2016) such as those evaluated here.
Here we observed that major climate groups lead to differences in
the drought characteristics and in the propagation of drought.
However, no evaluation of changes in atmospheric/oceanic
circulation patterns was carried out such as in Van Dijk et al.
(2013) at a smaller scale. Additionally, there is no clarity on where
different drivers have preeminence at the global scale, nor the
interaction between these and their hierarchical importance.
Since differences in drought propagation arise, it is necessary
to understand why such differences occur. These are questions
that we will address in future research.

5 CONCLUSION

Drought differs in average characteristics based on different
standardised drought indices. Its effects vary spatially and lead
to a propagation from the meteorological subsystem towards the

agricultural/ecological and hydrologic subsystems. However, the
lag in the response from the meteorologic subsystem to other
subsystems is also spatially variable but in general faster towards
the hydrological subsystem, while this propagation is much
slower reflected in the vegetation subsystem. Drought can both
amplify and attenuate from one subsystem to the other, driven by
differences in major Köppen climate groups. However, drought
duration and severity tend to amplify progressively into the
agricultural/ecologic subsystem, especially under Dry and
Temperate climates, and into the hydrological subsystem,
especially under Continental and Temperate climates, while
attenuating in intensity in Dry and Polar climates. Drought
characteristics have intensified in the last decades in several
regions of the world, including areas in southern South
America, central Australia, south west Africa, and central and
eastern Asia, and these changes are much more evident in the
vegetation and hydrological subsystems, which may be explained
by a decrease in catchment memory as a consequence of climate
change. The results of this study highlight the need for policy and
decision makers to consider the global space and time
relationships to prioritise resources for drought mitigation plans.
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Assessing the Joint Impact of Climatic
Variables on Meteorological Drought
Using Machine Learning
Yuexin Zheng, Xuan Zhang, Jingshan Yu*, Yang Xu, Qianyang Wang, Chong Li and
Xiaolei Yao

College of Water Sciences, Beijing Normal University, Beijing, China

With the intensification of climate change, the coupling effect between climate variables
plays an important role in meteorological drought identification. However, little is known
about the contribution of climate variables to drought development. This study constructed
four scenarios using the random forest model during 1981–2016 in the Luanhe River Basin
(LRB) and quantitatively revealed the contribution of climate variables (precipitation;
temperature; wind speed; solar radiation; relative humidity; and evaporative demand)
to drought indices and drought characteristics, that is, the Standard Precipitation
Evapotranspiration Index (SPEI), Standard Precipitation Index (SPI), and Evaporative
Demand Drought Index (EDDI). The result showed that the R2 of the model is above
0.88, and the performance of the model is good. The coupling between climate variables
can not only amplify drought characteristics but also lead to the SPEI, SPI, and EDDI
showing different drought states when identifying drought. With the decrease in timescale,
the drought intensity of the three drought indices became stronger and the drought
duration shortened, but the drought frequency increased. For short-term drought (1 mon),
four scenarios displayed that the SPEI and SPI can identify more drought events. On the
contrary, compared with the SPEI and SPI, the EDDI can identify long and serious drought
events. This is mainly due to the coupling of evaporative demand, solar radiation, and wind
speed. Evaporation demand also contributed to the SPEI, but the contribution (6–13%)
was much less than the EDDI (45–85%). For SPEI-1, SPEI-3, and SPEI-6, the effect of
temperature cannot be ignored. These results are helpful to understand and describe
drought events for drought risk management under the condition of global warming.

Keywords: meteorological drought, quantification, climate variables, coupling effect, random forest

INTRODUCTION

Drought is one of the most serious natural disasters affecting the development of human society (Deb
et al., 2019). Droughts are generally classified into meteorological droughts, agricultural droughts,
hydrological droughts, and socioeconomic droughts (Wilhite and Glantz, 1985; Esfahanian et al.,
2017). Meteorological drought, in general, precedes other droughts and is defined according to the
degree of the lack of precipitation in an area over some time. One of the most prominent and
widespread concerns is regional drought caused by climate warming and precipitation change, which
has caused serious disasters worldwide (Zhai et al., 2010). For example, in 2014, California
experienced a serious drought event that was mainly caused by an extreme lack of precipitation
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and high temperature and was a record-breaking event in the last
century (Griffin and Anchukaitis, 2014). In 2011, high
temperatures and low soil moisture in Texas aggravated
drought events, and rainfall was extremely scarce (Karl et al.,
2012). It is estimated that drought in California and Texas caused
economic losses of $2.7 billion and $7.7 billion, respectively
(Shukla et al., 2015). Therefore, a better understanding of
drought characteristics and their physical variable is significant
for monitoring and forecasting drought.

The drought indices are the basis of the quantitative analysis of
drought (Richard and Heim, 2002). In different regions, the
different meteorological, hydrological, and underlying surface
conditions lead to the complexity of drought formation (Ojha
et al., 2013; Wang et al., 2013; Kousari et al., 2014). This is due to
different drought indices having different physical meanings. For
example, the Standard Precipitation Index (SPI) is characterized
by multiple timescales, but it only considers the impact of
precipitation deficit on drought (Yerdelen et al., 2021). The
Palmer drought severity index (PDSI) is a representative
drought index based on the principle of water balance (Zhang
et al., 2019). However, the indices mainly reflect the
comprehensive changes in precipitation and temperature and
do not fully reflect the evaporation response under the
background of climate change, which may lead to deviation of
drought assessment results. Vicente-Serrano et al. (2010) further
proposed the Standard Precipitation Evapotranspiration Index
(SPEI) and introduced the potential evapotranspiration term,
based on the advantages and disadvantages of the PDSI and SPI
(Yang et al., 2020). This index not only has the characteristics of
the SPI index with multiple timescales but also considers the
effect of temperature change on drought. In recent decades, it has
been a widespread tradition to monitor and understand drought
using factors driven by precipitation and temperature only (Gocic
and Trajkovic, 2013; Li et al., 2019). Among the available indices,
the SPEI and SPI are two of the most widely used ones (He et al.,
2011).

Many studies have found that most drought indices are driven
by precipitation alone or affected by both precipitation and
evaporation (Farahmand and AghaKouchak, 2015; Wen et al.,
2020). Additionally, many researchers considered that the
alterability of precipitation was even more obvious than that
of other variables (McEvoy et al., 2012; Vicente–Serrano et al.,
2014; Wang et al., 2015). However, under climate variation, this
supposition is challenged because of the increasing demand for
temperature and evaporation (Sheffield and Wood, 2008; Milly
and Dunne, 2016). Meanwhile, the research focus in the field of
drought monitoring is turning to the demand of water imbalance.
The most typical work is the evaporative demand drought index
(EDDI) proposed by Hobbins et al. (2012), which considers the
radiative forcing term and the advection forcing term in the
evaporation process (Blonquist et al., 2010). This index can
provide near real-time information about the occurrence or
persistence of abnormal evaporative demand in an area and
can ignore the influence of underlying surface types in
drought monitoring and assessment (Mo and Lettenmaier,
2015). Therefore, many people are committed to assessing the
occurrence of drought from the perspective of insufficient

precipitation and increased evaporation (Liu et al., 2017;
Rehana and Monish, 2021).

On the whole, most studies only emphasize the impact of
precipitation on drought change or consider the flash drought
caused by evaporation anomalies affected by temperature, wind
speed, and radiation (Wang et al., 2016; Chen et al., 2019; Wang
et al., 2020). The reduction of sunshine hours and wind speed is
the main reason for the evaporation reduction; especially,
evaporation plays an important role in soil water balance
(Abramopoulos et al., 1988). The increase in temperature and
the limited decrease in precipitation may aggravate the drought
occurrence (Sheffield et al., 2012; Sun and Ma, 2015; Song et al.,
2019). It is necessary to consider the coupling effect of multiple
climate variables on drought, such as precipitation; evaporative
demand; wind speed; temperature; solar radiation; and relative
humidity, which may reduce uncertainty to the process of
drought analysis and accurate prediction (Sun et al., 2017).
Nevertheless, so far, due to the different responses of different
drought indices to climate variables, there are still challenges in
quantifying the impact of climate variables on drought. Most
studies used multiple regression, canonical correlation, and
principal component analysis to analyze the driving factors of
climate change (Luedeling et al., 2013; Kaiwei Li et al., 2020).
These methods are mainly analyzed from a qualitative point of
view, but cannot quantitatively evaluate the importance of each
factor. In recent years, with the progress of artificial intelligence,
machine learning technology has been widely used in the
assessment of climate change (Leroux et al., 2017; Masroor
et al., 2021). Random forest (RF) algorithm is an integrated
learning algorithm based on the decision tree proposed. The
learning effect of this integration method is often greater than the
sum of its parts (JiangyuWang et al., 2019). The RF does not need
to consider the multicollinearity problem faced by general
regression analysis (Wang et al., 2018). At the same time, it
can calculate the nonlinear interaction between variables and
reflect the interaction between variables and is not sensitive to
outliers. In the existing algorithms, the RF can evaluate the
importance of each feature in classification.

With these considerations, this study focuses on quantifying
the response of drought change to climate variables. Specifically,
the study aims to 1) analyze the temporal distinctions of the SPI,
SPEI, and EDDI with 1-, 3-, 6-, and 12-month timescales of the
Luanhe River Basin (LRB); 2) reveal the characteristics of the
drought intensity, drought duration, and drought frequency of
the SPI, SPEI, and EDDI at different timescales; and 3) quantify
the contribution of climate variables to drought indices and
drought characteristics at different timescales by setting
different scenarios based on the RF model. The findings from
this study can provide a reference for the development of drought
early warning systems in arid and semiarid areas.

STUDY AREA

This study assessed changes in drought indices in the LRB,
northern part of the North China Plain (Figure 1). The LRB
comprises a large portion of the Haihe River Basin. The
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latitude ranges from 39.04°N to 42.73°N, and the longitude
ranges from 115.56°E to 119.84°E. The Luanhe River, with a
length of 888 km and a drainage area of 44,750 km2, derives
from Bayanguertu Mountain and flows into the Bohai Bay
(Yang et al., 2019; Wu et al., 2020). The basin topography rises
obviously from southeast to northwest. The LRB is in a
semiarid area with a temperate continental monsoon
climate. The annual temperature decreases from 11 to 1°C
from southeast to northwest (Xu et al., 2019). The region has
an average annual precipitation of 560 mm, approximately
80% of which occurs from July to August. The uneven spatial
and temporal distribution leads to the occurrence of drought.
The elevation of the basin reaches 2,159 m, with the terrain
decreasing from northwest to southeast.

The LRB is one of the most important ecological barriers of
Beijing, Tianjin, and Hebei and is also a water source and
water retention area in Tianjin and Tangshan. Saihanba
Forest Plain, a famous afforestation project worldwide, is
located in this region (Wu et al., 2020). In recent decades,
runoff and meteorological conditions have been altered,
resulting in water resource shortages and severe drought
events. Due to the increasing impact of global climate
change, drought in the LRB occurs frequently, especially
after 2000. It not only caused large-scale disasters in the
basin but also caused serious losses. Furthermore, from
1981 to 2016, there was no significant change in

precipitation, while evaporative demand showed a
significant decreasing trend (p < 0.01) and the temperature
increased significantly (p < 0.01). The effect of climate change
caused by evaporative demand and temperature on drought
should not be ignored.

MATERIALS AND METHODS

Data Collection
This study focuses on a comparative analysis of drought
indices in the LRB. The daily observation meteorological
records of nine stations for 1981–2016 were collected from
the National Meteorological Information Center (http://data.
cma.cn/) with strict quality control, including precipitation;
maximum, average, and minimum temperatures; wind speed;
solar radiation; relative humidity; and pan evaporation. The
time coverage of weather data can be as high as 99.6%. The
missing data were interpolated using the arithmetic mean of
adjacent days. The data quality and credibility were cross
validated using nonparametric tests, involving the
Mann–Whitney homogeneity tests and Kendall
autocorrelation test (Heim, 2002; Yao et al., 2018). The
results showed that the stability and randomness of
weather data are fixed in the critical range of the data, and
the statistical significance level was 5%.

FIGURE 1 | Topography of the study domain and spatial distribution of meteorological stations.
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Computation of Drought Indices
This study considered three drought indices including the SPI,
SPEI, and EDDI. The SPI utilized the Gamma distribution to fit
the cumulative monthly precipitation time series to quantify the
meteorological drought (Vicente–Serrano et al., 2010). For the
SPI value, when the timescale is k months, the water surplus/
deficit accumulation of a month is the sum of the water surplus/
deficit of the previous k−1 month and the current month.
Compared with the SPI, the SPEI, the calculation of which
was similar to that of the SPI, considered the influence of
evaporative demand. Among them, evaporative demand is the
ability to control the evaporation process of various surfaces
underlying the atmosphere. This study used the
Penman–Monteith formula to approximately estimate
evaporative demand, which was provided by the Food and
Agricultural Organization (FAO) in 1965 (Frank et al., 2017).
The calculation formula is as follows:

E0 � 0.408Δ(Rn + Ln − G)
Δ + γ(1 + 0.34U)

86400
106

+ γ 900
Tair

Δ + γ(1 + 0.34U)
U(esat − ea)

103
(1)

where E0 is the evaporative demand in mm day−1; Δ is the slope of
saturated vapor pressure for 2 m in Pa K−1; γ represents the
psychrometric constant in Pa K−1; Rn and Ln represent the solar
radiation and short-wave radiation, respectively, in Wm−2; G is
the downward ground heat flux inWm−2;U is the wind speed for
2 m in m s−1; Tair is the average of Tmax and Tmin in °C; and esat
and ea represent the saturated and actual vapor pressures,
respectively, in Pa.

The relationship between evaporative demand and pan
evaporation in the LRB from 1981 to 2016 was analyzed by
using the existing meteorological data, and the correlation
coefficient was 0.906 (see Supplementary Materials;
Supplementary Figure. S1), which illustrated that the
calculation results of evaporative demand can represent the
average E0 of the study area. The SPEI used the cumulative
change between the monthly precipitation and evaporative
demand to replace the variation in precipitation. The
cumulative change meant the surplus and deficit of climatic
water. The inverse standard normal distribution is used to
convert the cumulative probability density functions to the
value of the SPEI and SPI.

The EDDI uses a nonparametric method that is different
from the SPEI and SPI (Hobbins et al., 2016). The EDDI is
obtained by sorting the accumulated value of evaporative
demand every day within a set timescale to construct the
distribution probability of E0 and normalize it. This
probability-based method permits more comparisons of
consistency between the EDDI and the SPEI, SPI, and
other standard indices (Farahmand and AghaKouchak,
2015; Hobbins et al., 2016).

The EDDI is multi-scale in space and time. This index can be
estimated at a point (or pixel) by applying the spatial average
evaporative demand of a region. The aggregation periods might
differ from 1 day to 1 month or more. The cumulative

distribution probability of evaporative demand on a research
timescale is calculated as follows:

P (E0i) �
i − 0.33
n + 0.33

(2)

where P (E0i) is the empirical probability of E0i; i is 1 for
maximum E0, which represents the rank of accumulated E0 in
the study period; and n is the number of observations in the series
being ranked. Based on the reverse normal distribution described
by Vicente–Serrano et al. (2010), the EDDI is calculated as
follows:

EDDI � W − C0 + C1W + C2W

1 + d1W + d2W2 + d3W3
(3)

The constants in the formula are defined as follows: C0 =
2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 =
0.189269, and d3 = 0.001308. When P (E0i) ≤ 0.5,
W � �����������−2ln[P(E0i)]

√
, and when P (E0i) > 0.5, W ���������������−2ln[1 − P(E0i)]

√
, and the sign of the EDDI needs to be

reversed.
We divided the drought indices into five grades, which were

based on the classification system to define drought or wet
intensities (McEvoy et al., 2016; Yao et al., 2018) (Table 1).
The positive or negative SPI and SPEI values represented wet or
dry conditions, respectively. The value of −0.5 was used as the
division standard, while for the EDDI, it was reversed. The
negative EDDI value (less than 0.5) indicated that it was
wetter than normal, and a positive value (more than 0.5)
indicated that it was more arid than normal. Drought intensity
increased with increasing EDDI value.

Definition of Drought Characteristics
We first compared the variation characteristics of the SPI, SPEI,
and EDDI on 1-, 3-, 6-, 12-month scales from 1981 to 2016.
Second, this study used drought duration, drought intensity, and
drought frequency to identify and assess the underlying drought
characteristics of the SPEI, SPI, and EDDI at 1-, 3-, 6-, and 12-
month scales. Generally, the run theory is used to identify and
describe drought events (Yevjevich, 1967). The run is defined as a
part of the time series Xt, in which all values are lower or higher
than the selected threshold X0 (Supplementary Figure S2). The
run theory is used to express the drought duration and drought
intensity (Montaseri and Amirataee, 2017). When the drought
index value is less than −0.5, it is considered that the month is the
beginning of the drought event. However, the drought event is
considered over until the value of the drought index is greater

TABLE 1 | Drought level based on the EDDI, SPEI, and SPI.

Drought level EDDI SPEI SPI

Normal (0–0.5] (-0.5–0] (-0.5–0]
Light drought (0.5–1] (-1, -0.5] (-1, -0.5]
Moderate drought (1.0–1.5] (-1.5, -1] (-1.5, -1]
Severe drought (1.5–2] (-2, -1.5] (-2, -1.5]
Extreme drought ≥2 ≤-2 ≤-2
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than −0.5. Drought duration is defined as the sum of consecutive
months of all drought events. Drought intensity refers to the
average of the indices’ values from the beginning to the end of the
drought. The drought intensity is used to assess the severity of the
drought. The drought frequency is the mean number of drought
events per year.

Quantitative Evaluation Based on the RF
Model
To reveal the response of drought change to climate variables, the
RF model is applied to quantify the contribution of each climate
variable (precipitation; evaporative demand; wind speed;
temperature; solar radiation; and relative humidity) to the
SPEI, SPI, and EDDI. The RF is an integrated model which
can achieve classification or regression goals. On the whole, in the
training set, the RF is not responsive to the noise, which makes it
more beneficial to obtaining a robust model and avoiding
overfitting conditions (Prasad et al., 2019). The RF is widely
used in hydrometeorology to extract relative features (Amiri et al.,
2019). For more information about the RF, see the work of Chen
et al. (2020) and Kursa and Rudnicki (2010).

Construction of RF Model Under Different Scenarios
In this study, we set up 4 scenarios and 12 schemes to
quantitatively evaluate the influence degree between drought
change and climate variables based on the RF model from
1981 to 2016. Considering that the SPI is not affected by
evaporative demand, only the contribution of precipitation;
wind speed; temperature; solar radiation; and relative humidity
to the SPI is explored. The SPEI considered these six variables. At

the same time, the EDDI ignored the impact of precipitation. The
number of samples obtained was randomly assigned according to
the ratio of 7:3 into the training set and the testing set. The
maximum depth of decision trees is 10, and the number of
decision trees is 2000. The specific scenario information is
shown in Table 2.

Verification of the RF Model
The R2 and mean absolute error (MSE) coefficients were used to
evaluate the results of the model (Guo et al., 2021). Among them,
MAE evaluated the deviation between the real value and the
predicted value, that is, the actual size of the prediction error. The

TABLE 2 | Information of the four scenarios for the contribution of drought change.

Scenarios Schemes Variable Impact indicators Drought
indices

Sample
points

Scenario 1 a Precipitation (P); evaporative demand (E0); wind speed (Ws); temperature (T);
relative humidity (Rh); solar radiation (Sr)

E0; Ws; T; Rh; Sr for 1-month
scale

EDDI-1 432

b P; Ws; T; Rh; Sr for 1-month
scale

SPI-1 432

c P; E0; Ws; T; Rh; Sr for 1-
month scale

SPEI-1 432

Scenario 2 d E0; Ws; T; Rh; Sr for 3-month
scale

EDDI-3 430

e P; Ws; T; Rh; Sr for 3-month
scale

SPI-3 430

f P; E0; Ws; T; Rh; Sr for 3-
month scale

SPEI-3 430

Scenario 3 g E0; Ws; T; Rh; Sr for 6-month
scale

EDDI-6 427

h P; Ws; T; Rh; Sr for 6-month
scale

SPI-6 427

i P; E0; Ws; T; Rh; Sr for 6-
month scale

SPEI-6 427

Scenario 4 j E0; Ws; T; Rh; Sr for 12-
month scale

EDDI-12 421

k P;Ws; T; Rh; Sr for 12-month
scale

SPI-12 421

l P; E0; Ws; T; Rh; Sr for 12-
month scale

SPEI-12 421

TABLE 3 | The performance evaluation of the RF model.

Scenarios Schemes Training Validation

R2 MSE R2 MSE

Scenario 1 a 0.98 0.02 0.90 0.04
b 0.97 0.03 0.89 0.03
c 0.97 0.02 0.88 0.03

Scenario 2 d 0.95 0.01 0.94 0.08
e 0.97 0.05 0.91 0.09
f 0.91 0.01 0.90 0.04

Scenario 3 g 0.96 0.03 0.95 0.10
h 0.96 0.06 0.91 0.08
i 0.96 0.01 0.88 0.03

Scenario 4 j 0.97 0.05 0.88 0.05
k 0.98 0.01 0.96 0.04
l 0.98 0.04 0.97 0.07
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FIGURE 2 | Temporal evolution of the SPI, SPEI, and EDDI for 1-month (A), 3-month (B), 6-month (C), and 12-month (D) timescales. It is noted that the shaded
area represents the range of the extreme drought conditions (SPEI, SPI, and EDDI ≤ -2); the black dotted lines represent the dividing line between wet and drought states
(the value is −0.5); the grey shaded areas highlight when the three indices have opposite states; and the red wireframe indicates when the three indices identify different
drought levels.
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smaller the MAE value, the better the model quality and the more
accurate the prediction. Table 3 shows the performances of the
RF model. The results showed that the R2 of the training set is
between 0.91–0.98. In addition, the validation set is above 0.88.
The value of the MAE is below 0.1, indicating that the model can
calculate the contribution of climate variables better.

RESULTS

Temporal Variation in Drought Indices
Figure 2 presents the evolution characteristics of the SPI, SPEI,
and EDDI at the 1-, 3-, 6-, and 12-month timescales over the LRB
from 1981–2016. The three drought indices showed similarities
and differences with the different timescales. For the convenience
of comparison, we took the value of the EDDI as the opposite
number, and less than −0.5 in the figure represented drought. The
shaded area identified extreme drought states of the SPEI, SPI,
and EDDI (Figure 2A). We found that extreme drought events
occurred in 1981, 1983, 1989, 1991, 1994, 1997, 2001, and 2016, as
in Figure 2A, which was similar to the historical drought years in
the LRB (Yixuan Wang et al., 2019). Compared with the 3-, 6-,
and 12-month timescales (Figures 2B–D), the EDDI, SPEI, and
SPI curves fluctuated more abruptly at the 1-month timescale.
Moreover, the SPI curve was similar with the SPEI (Figures
2B,C). However, the EDDI was different from the SPEI and SPI.

At the 12-month timescale, the grey shaded areas indicate
when the SPEI, SPI, and EDDI have opposite states (Figure 2D).
In 1983, 1988, 1990–1991, 1994–1996, 2002, and 2011, the EDDI

showed drought states (values less than −0.5), while the SPEI and
SPI displayed wet states (values more than −0.5). However, the
SPEI and SPI showed drought states, while the EDDI showed wet
states in 1982, 1992, 1999–2000 and 2002, 2006–2007,
2008–2009, and 2014. Under drought conditions, the red
wireframe highlights when the three indices had different
abilities to identify drought. In 1989 and 1997, the SPI and
SPEI performed better than the EDDI. Especially in 1989, the
SPI and SPEI showed moderate drought states, while the EDDI
showed a light drought state. In 1993 and 2001, the EDDI
performed better than the SPEI and SPI. Especially in 1993,
the EDDI showed extreme drought states, while the SPI and SPEI
showed light drought and moderate drought states, respectively.
This meant that the three drought indices were different in
identifying drought severity. However, the SPI, SPEI, and
EDDI showed the same wet/drought states for the other years,
which indicated that the SPI, SPEI, and EDDI were consistent.

Drought Characteristics at Different Time
Scales
Due to the complexity of drought, the drought intensity,
frequency, and duration under different timescales were
studied to have a comprehensive understanding of drought.
Figures 3A–C displayed that the shorter the timescale, the
greater the drought intensity. In particular, the average
drought intensity of the EDDI was greater than that of the
SPEI and SPI at 1-, 3-, 6-, and 12-month scales. This
illustrated that the EDDI can identify more severe drought

FIGURE 3 | Drought intensity (A–C), duration (D–F), and frequency (G–I) of the SPEI, EDDI, and SPI at 1-, 3-, 6-, and 12-month timescales in the LRB between
1981 and 2016 (it is noted that the black horizontal line represents the average value of drought characteristics at different scales; black dots mean outliers; the range of
boxes represents the 75% quantile and the 25% quantile; and the whiskers mean the 75% quantile and 25% quantile of 1.5 times, respectively.)
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than the SPEI and SPI, especially in short-term drought. The
drought intensity of the SPI did not change significantly in 1-, 3-,
6-mon scales. From SPEI-3 to SPEI-12, the average drought
intensity decreased from −0.81 to −0.64.

Figure 3D–F showed that, with the increase in timescale, the
drought duration became longer. Especially for EDDI-12, the
average duration of drought (more than 12 months) was higher
than that for SPEI-12 (7.9 months) and SPI-12 (6.5 months).
Furthermore, the drought duration for EDDI-1 (3.7 months) was
longer than that for SPEI-1 (2.1 months) and SPI-1 (1.7 months).
This indicated that the EDDI was better than the SPEI and SPI in
identifying short-term drought (1 mon) and long-term drought
(12 mon). For seasonal drought (3 mon) and semiannual drought
(6 mon), the SPEI was better than the SPI.

The drought frequency decreased with the increase in
timescale (Figures 3G–I), especially SPEI-3 and SPI-3. The
drought frequency of SPI-1 (1.8 times/year) and SPEI-1
(1.8 times/year) was higher than that of EDDI-1 (1.0 times/
year). For 3 months, there was no significant difference among
the three drought indices. For 6 months, the drought frequency of
SPI-6 was less than that of SPEI-6 and EDDI-6. On the contrary,
for long-term drought, SPI-12 can identify more drought events
than SPEI-12 and EDDI-12.

Correlation Between Drought Indices and
Climate Variables
Although drought variations of the EDDI, SPEI, and SPI were
mainly influenced by precipitation and evaporative demand,
other climate variables cannot be ignored. Figure 4 showed
the Spearman correlation among the three drought indices

and climate variables at 1-, 3-, 6-, 12- month scales. We found
that the SPEI and SPI were positively correlated not only with
precipitation (p < 0.01) but also the relative humidity (p < 0.01),
although the correlation coefficient was low. Surprisingly, the
correlation of SPI-12 and SPEI-12 with precipitation reached 0.98
(p < 0.01) and 0.77 (p < 0.01), respectively. In the meantime, the
SPEI also displayed a significant positive correlation with
evaporative demand (Spearman correlation coefficient is −0.47,
p < 0.01) and a negative correlation with temperature and solar
radiation (Spearman correlation coefficient is −0.23 and 0.29,
p < 0.01).

Generally, under the different timescales, the correlation
between the EDDI and evaporative demand is the highest,
fluctuating from 0.92 to 0.98 (p < 0.01). Moreover, wind
speed, solar radiation, and temperature were also highly
related to EDDI at 1-, 3-, 6-month scales, indicating that these
variables were also main factors affecting the change of the EDDI.
Yet, at the 12-month scale, the correlation between solar radiation
and temperature with drought indices was weakened. The
correlation between wind speed and relative humidity with the
EDDI changed from positive correlation to negative correlation,
and the value of the correlation coefficient also decreased.
Compared with other variables, relative humidity has little
effect on the EDDI under the different timescales.

Contributions of theClimate Variables to the
Drought Index Variation
This study set up four scenarios and twelve schemes under the
different timescales, to quantitatively characterize the impact of
climate variables on drought index changes based on the RF
model. Figure 5 shows that the contribution of evaporative
demand, wind speed, and solar radiation to the EDDI reaches
more than 87%. It was obvious that evaporative demand
contributed the most to the EDDI, up to 45–85%, and the
contribution was higher than that of wind speed and solar
radiation. Nevertheless, it is not worth mentioning the
contribution of relative humidity and temperature to the

FIGURE 4 | Correlation between the 1, 3, 6, and 12 months of the SPI,
SPEI, EDDI, and climate variables such as precipitation (P); temperature (T);
wind speed (Ws); solar radiation (Sr); relative humidity (Rh); and evaporative
demand (E0) (a single asterisk represents the significance level less than
0.05 (p < 0.05); double asterisks mean p < 0.01, respectively).

FIGURE 5 | Contribution of climate variables to drought indices are
based on the RF model at 1-, 3-, 6-, 12-month timescales.
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EDDI. For EDDI-3 and EDDI-6 in scenarios 3 and 4, the coupling
contribution of wind speed and solar radiation was close to that of
evaporative demand, and the solar radiation was greater than
wind speed.

For SPI-12 in scenario 4, the precipitation was the dominant
factor, contributing 92%. However, for short-term drought (SPI-
1) in scenario 1, the contribution of precipitation decreased
significantly. By contrast, the wind speed, solar radiation,
temperature, and relative humidity increased in varying
degrees at a 1-mon scale. The temperature contribution to the
SPI increased from 1% (SPI-12) to 24% (SPI-1), which indicated
that the shorter the timescale, the more intense the impact of
climate variables other than precipitation on the SPI.

For the SPEI, the contribution of precipitation is much higher
than that of evaporative demand. Besides, the contribution of
temperature to the SPEI should not be neglected, especially for
SPEI-1, SPEI-3, and SPEI-6, with a contribution of 20, 18, and
22%. So far , the wind speed and solar radiation contribution to

the SPEI has been weak, which indicated to a certain extent that
the precipitation and temperature have a great impact on
the SPEI.

DISCUSSION

Climate Variables Lead to the Differences
Among the Drought Indices
We found that the EDDI, SPEI, and SPI showed the opposite
states when it came to drought recognition (Figure 2D).
Especially in 2002, a severe drought year, the drought indices
showed two opposite states. The occurrence of this phenomenon
can be explicated by the fact that climate variables cause the
differences among the EDDI, SPEI, and SPI. Most of the results
were consistent with ours (Nam et al., 2015; Noguera et al., 2021).
Tirivarombo et al. (2018) believed that the difference between the
SPEI and SPI was mainly due to the temperature which increased

FIGURE 6 | Temporal variations in the SPEI, SPI, EDDI (A), and driving factors in different situations (situation 1 (S1) and situation 2 (S2)) in 2002. Among them,
(B–D) and (E–G) represent Evaporation demand(E0) and Solar radiation (Sr); Temperature (T) and Precipitation (P); Relative humidity (Rh) andWind speed (Ws) in S1 and
S2 respectively.
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the evapotranspiration rate, which in turn increased the
evaporative demand, while the SPI only considered the single
input variable of precipitation. In addition, their study differed
from ours in that it only thought about the effects of precipitation,
temperature, and evaporative demand, while not introducing
variables such as wind speed, solar radiation, and relative
humidity. In 2002, situation 1 (S1) of Figure 2D showed that
the EDDI identified the dry state, while the SPEI and SPI
identified the wet state in April (Figure 6A). This result is
mainly because precipitation and temperature have a large
upward trend starting in March (Figures 6A,C), with an
increase of 73.6 and 48.4%, respectively. However, relative
humidity and wind speed also have different degrees of
increase. Although relative humidity is positive, the
sensitivity of the EDDI to the relative humidity in this
region is small, which leads to little contribution to the
EDDI in S1. Therefore, the SPEI and SPI identify the wet
state in April. In addition, when evaporative demand (69.6%),
solar radiation (70.5%), and wind speed (53.2%) began to
increase in February, the drought identified by the EDDI
increased from moderate drought to severe drought
(Figure 6A).

In contrast, situation 2 (S2) showed that the SPEI and SPI
identified the dry state, while the EDDI identified the wet state in
August (Figure 6A). The driving factors evaporative demand
(12.5%), solar radiation (8.3%), and wind speed (8.3%) provided
negative contributions to the EDDI (Figures 6E,G). However,
from June to August, compared with evaporative demand and
solar radiation, the contribution of relative humidity and
temperature to the EDDI was small despite fluctuations
(Figures 6F,G). This led the EDDI to identify the wet state in
August. The decrease in precipitation (24.3%) led to the
aggravation of drought identified by the SPEI and SPI in July.
After August, the rapid increase in evaporative demand (34.9%)
led to a decrease in the EDDI, which resulted in the EDDI
showing a drought state. Consequently, the influence of these
variables on the drought index should not be ignored.

The Response of the Drought
Characteristics to Climate Variables
Drought intensity, drought duration, and drought frequency are
affected by different timescales (Satish Kumar et al., 2021). We

found that compared with the SPEI and SPI, the EDDI can
identify drought events with higher drought intensity and longer

duration (Figure 2). However, the SPEI and SPI can identify drought
events more frequently than the EDDI, especially short-term drought
(1 mon). From 1981 to 2016, the alteration of precipitation was not
obvious at any scale, while evaporative demand did not. Generally,
when the change of evaporative demand is greater than that of
precipitation, drought is more sensitive to evaporative demand than
precipitation (Qin et al., 2015), which indicates that evaporative
demand plays a relativity important role in the drought of the
LRB. This further proved that the drought intensity and drought
duration of the EDDI were higher than those of the SPEI and SPI,
which was mainly due to the joint effect of evaporation, wind speed,
and solar radiation. Compared with EDDI-12, the drought intensity
of EDDI-1 increased by 28%, the average drought duration increased
by 8months, and the evaporation, wind speed, and radiation

FIGURE 7 | Differences in the values of different contributing variables ((A) Evaporation demand(E0); (B) Wind speed (Ws); (C) Solar radiation (Sr)) to the EDDI at
different timescales.

FIGURE 8 | Differences in the values of different contributing variables
((A) Precipitation (P); (B) Evaporation demand (E0); (C) Relative humidity (Rh);
(D) Temperature (T)) to the SPEI at different timescales.
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increased by 40, 33, and 27%, respectively (Figure 7). Evaporation
demand also contributed to the SPEI, but the contribution (6–13%)
was much less than the EDDI (45–85%) (Figure 5). In addition, we
found that there was no significant difference in drought intensity
between SPEI-1 and SPEI-3. However, for SPEI-6, the drought
intensity began to weaken (Figure 3), which was caused by the
18.3% increase in precipitation, 15.6% increase in evaporation, 2.5%
increase in temperature, and 3.6% increase in humidity from SPEI-3
to SPEI-6 (Figure 8). This also confirmed that, in addition to
precipitation and evaporation demand, temperature and relative
humidity have a certain impact on the SPEI in identifying drought.

Although the temperature increase can promote the generation of
wind speed and increase the evaporative demand, thus aggravating
the occurrence of drought (Zhao et al., 2019), the temperature
contribution is far less than that of evaporative demand (80%),
which further explains the phenomenon that the drought intensity
of the EDDI is stronger than that of the SPEI and SPI. This finding is
related to seasonality (Van Loon and Van Lanen, 2013; Bisht et al.,
2018). Especially in winter, the precipitation was low, and the change
was not obvious. Other studies also explained roughly similar results;
that is, snow melting in winter increased soil moisture, and
evaporation increased gradually under the condition of lack of
rainfall, which led to the continuous increase in the EDDI
(Narasimhan and Srinivasan, 2005; Sheffield et al., 2012).
Although evaporation demand has a certain contribution to the
EDDI and SPEI, it showed a significant decreasing trend in the study
area, which was the main reason for the alleviation of drought. Other
studies also illustrated roughly similar results (Yao et al., 2018;
Lingcheng Li et al., 2020). In this period, not only did evaporative
demand decrease significantly but also the solar radiation had a
similar trend, and the temperature increased significantly (p < 0.01).
The significant reduction of solar radiation is the main reason for the
reduction of evaporative demand, which is further proved by the
research results of Roderick and Farquhar (2002). It is mainly caused
by the wide-range reduction of solar radiation caused by the increase
in cloud cover and aerosol concentration, which also reduces
evaporative demand to varying degrees.

Moreover, the smallest timescale for both the SPI and SPEI
was 1 month, while for the EDDI, it was 1 week (McEvoy et al.,
2012; Yao et al., 2018). For example, Figure 9 illustrates the
variation characteristics of the EDDI with 1- to 8-week timescales.
We found that the shorter the timescale was, the more the peaks
and valleys the curve had. In particular, the 1-week EDDI curve
was steeper than the longer timescales. Therefore, the EDDI can
identify more serious drought events and is especially suitable for
early warning and rapid drought detection.

Study Limitations
Although this study quantifies the impact of climate variables on
drought, it still ignores some factors, such as human activities and
soil properties. Solar radiation is related to air pollution caused by
rapid urbanization (Qian et al., 2007; Zongxing et al., 2012).
Therefore, land use and cover change will have a certain impact
on drought. The same is true of deforestation, which will cause
soil erosion and reduce soil water content, further increase
evaporation, and lead to more droughts (Sun et al., 2017).
Generally, soil properties are closely related to soil moisture.
Different soil properties directly affect the water holding capacity
of the soil (Park et al., 2004). It is necessary to explore the impact
of soil properties on drought, which plays an important role in
monitoring drought.

CONCLUSION

In this study, we compared the differences of meteorological
drought indices (SPI, SPEI, and EDDI) at different timescales in
the LRB, northern China, and further carried out quantifying the
contribution of climate variables to drought change. To sum up,
this study emphasized the necessity for adequate attention to the
coupling effect between climate variables in drought studies. The
conclusions are as follows.

The temporal fluctuations of the EDDI, SPEI, and SPI were
increasingly acute when the timescale decreased. Besides, the

FIGURE. 9 | Temporal variations in the EDDI with 1–8-week timescales during 1981–2016.
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drought indices showed opposite states in 2002. This is mainly
because of the positive contribution of evaporative demand and
solar radiation to the EDDI, which made it show severe drought
in April. In the meantime, the SPEI and SPI identified the wet
state under the coupling effect of precipitation and temperature,
respectively. The smallest timescale for both the SPI and SPEI was
1 month, while for the EDDI, it was 1 week. The weekly EDDI
illustrated the potential to bring to light early warnings of the
drought that occurred, which was not accomplished by the SPEI
and SPI.

The results of four scenarios and twelve schemes based on the
RF model showed that the R2 of the model was greater than 0.88
and the MSE was small, indicating that the performance of the
model was good. For the EDDI, the contributions are evaporative
demand > Rn > U, respectively. Precipitation and evaporative
demand are not the only variables affecting the SPEI, and the
temperature (22%) contribution to the SPEI is greater than that of
evaporative demand (6%), especially in SPEI-6.

With the decrease in timescale, the drought intensity of the three
drought indices became stronger, the drought duration shortened,
but the drought frequency increased. Especially, the drought intensity
and duration of the EDDI were significantly higher than those of the
SPEI and SPI. This is mainly due to the coupling effect of evaporative
demand, wind speed, and solar radiation on the EDDI. The
contribution of evaporative demand to the SPEI was less than
that of precipitation, but the contribution of temperature cannot
be ignored. This is also the main reason that the SPEI and SPI can
identify more short-term drought events.

The information gained from this study may have useful
implications not only for the LRB but also for other areas with
strong evaporation change in the world. We cannot ignore the joint
response of climate variables other than precipitation and evaporative
demand in drought disasters. The spatial differences of climate
variables may have a certain impact on the evolution of drought.
Therefore, a quantitative model selected through the comparative
optimization of multiple machine learning models can be established
to explore the effects of climate variables on drought at a spatial scale,
which will be conducted in our further studies.
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Spatio-Temporal Differentiation
Characteristic and Evolution Process
of Meteorological Drought in
Northwest China From 1960 to 2018
Hui Li*, Enke Hou and Jiawei Deng

College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China

Against the backdrop of global climate change, the response characteristic of
meteorological drought is of great concern, especially in the arid or semi-arid regions.
By employing the Standardized Precipitation Index (SPI), TPFW-MK test, Run Theory,
Moran’s I, and General G, the spatio-temporal evolution characteristic of drought was
clarified and the spatial autocorrelation of local and global drought characteristic variables
was explored based on the meteorological data from 122 stations in Northwest China
(NWC) during 1960–2018. The results indicated that the drought situation of NWC was
improving regardless of annual or seasonal scale. According to the Z-statistics by the
TPFW-MK test, there existed an obvious wet trend in west NWC and a slight dry trend in
east NWC. The center of gravity migration model revealed that the gravity center of SPI
moved towards higher latitude over the last decades, there was a northwest (1960–1990)
and northeast (1990–2018) variation in the covering shapes of the standard deviational
ellipses of SPI, and the spatial distribution of SPI tended to be concentrated. Meanwhile,
the distribution pattern of drought characteristics suggested that more droughts occurred
in east of NWC, which were less harmful while fewer droughts happened in west NWC,
which brought greater drought damage. The results of global Moran’s I (GMI) indicated that
both annual and seasonal drought variables were characterized with significant spatial
autocorrelation, the spatial distribution of winter drought variables was more disperse than
other seasons, while the damage of summer and autumn drought was bigger than that in
spring and winter. Besides, the results of local Moran’s I (LMI) showed that there was
obvious agglomeration in the overall distribution of drought characteristic variables, which
had a seesaw effect. The spatial distribution of hot spots and cold spots at different
confidence levels indicated that Shaanxi Province experienced the most droughts but with
shortest duration and lowest severity while northwest Xinjiang had the fewest droughts
with longest duration and highest severity. The results of revealing the drought
development process and identifying the location of drought aggregation will provide
references for supporting climate adaptation strategies and preventing drought-
related loss.
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1 INTRODUCTION

Global warming is expected to accelerate the global hydrological
cycle and change the spatio-temporal patterns of precipitation,
which will give rise to weather-related hazards such as droughts
and floods, and aggravate the contradiction between water
resource and the distribution of geographic productivity (Shi
et al., 2015; Chen et al., 2016; Naumann et al., 2018; Hu et al.,
2019). Therefore, water planning and management are far more
complex during drought periods, particularly against the
backdrop of serious concerns about water security,
socioeconomic development, and ecological
sustainability.Drought is a natural and recurring
meteorological disaster that mainly resulted from prolonged
precipitation deficit (Mishra et al., 2015; Deng et al., 2018;
Campozano et al., 2020). As the initial stage of a drought, the
meteorological drought determines the scale of a drought episode
and has presented a great challenge to regional agriculture,
ecological environment, and livelihoods (Mondal and
Mujumdar, 2015; Spinoni et al., 2019). In fact, the global
economic losses caused by meteorological drought was up to
6–8 billion dollars a year, far more than other meteorological
disasters (Udmale et al., 2014; Montaseri and Amirataee, 2017;
Lin and Shelton, 2020). China has an instable monsoon climate
and a complex terrain, which result in maldistribution of water-
heat and frequent droughts. Statistics showed that from 1981 to
2014, about 23 million hectares of crop area per year in China
have been suffering from droughts (MWR, 2015; National Bureau
of Statistics of China, 2015; Wang et al., 2017).

Given the damage that drought causes, attention has been paid
to drought identification or the calculation of basic drought
characteristic. Huang et al. (2015) proposed a Nonparametric
Multivariate Standardized Drought Index (NMSDI) to investigate
the spatial and temporal features of drought structure in the
Yellow River Basin (YRB) of China, and found that the drought
structure in terms of drought duration, onset, and termination
transition periods in the YRB is stable and no significant change
trend was detected. By comparing the SPI and the SPEI,
Tirivarombo et al. (2018) and Oikonomou et al. (2020)
respectively assessed the drought characteristics of Kafue basin
and Europe. Kalisa et al. (2020) analyzed the spatio-temporal
characteristics of drought and its return periods over the East
African region. A detailed description of drought events contains
multiple characteristic variables, such as drought duration,
severity, and frequency, which have important implications for
drought identification and can explain the complexity and
extensive influence of drought events (Yusof et al., 2013; Brito
et al., 2018; Sun et al., 2019; Oikonomou et al., 2020). For
example, Guo et al. (2018) discussed the spatial and temporal
drought characteristic variables such as drought duration and
severity in Central Asia by using Run Theory. Xu et al. (2015)
analyzed the variation of drought frequency in Southwest China
by integrating the effects of drought duration, affected area, and
severity into the 3-D joint probability distribution with a trinary
function. In order to provide references for making adaption
strategies, drought hazards using statistical methods have also
been analyzed in some research. Azimi et al. (2020) studied the

spatial interpolation of drought steady-state probabilities based
on a Markov chain model, and the results showed an average
drought increase of 62% in the steady-state condition in Iran.
Ayantobo et al. (2017) evaluated drought hazards of mainland
China from 1961 to 2013 based on a univariate frequency
analysis, and found that the distribution of drought frequency
in China decreased both fromwest of east and from north to west.
Ogunrinde et al. (2021) explored the variation of drought severity
and its correlation with climate change in the Sahel region of
Nigeria from 1981 to 2015 by Mann–Kendall test, the findings
demonstrated that the drought severity exhibited an increasing
trend, and a slight change of rainfall will not have a significant
effect on drought or the severity of drought increase.

Northwest China (NWC) is widely regarded as one of the
driest areas in the world, which mainly depend on eco-
agricultural economy. Situated in the inland with extremely
fragile ecological environment, drought has been considered as
the one of the major factors limiting the social and economic
development in NWC (Sternberg, 2018; Wei et al., 2021). Against
the backdrop of global warming, the precipitation of NWC has
exhibited an upward trend over the last 20 years, which offered
some relief to drought conditions (Liu et al., 2016a; Yang et al.,
2018; Li et al., 2021).According to Wang and Qin (2017) and
Yang et al. (2018a), the climate of NWC tended to be more humid
and warmer from the 1960s to the 2010s, as well as the drought
severity was relieved. However, due to the complex territory and
nonlinear nature in different climate conditions, water scarcity
and the uneven distribution of water resource are still the major
factors affecting ecosystem and economy (Hu et al., 2021).
Meanwhile, the redistribution of water-heat caused by global
climate change has exerted a great effect on the spatial and
temporal distribution characteristic of drought in NWC (Chen
and Sun, 2015; Mo et al., 2018; Li et al., 2020). Gu et al. (2018)
found that the drought frequency and drought duration are
projected to decrease in NWC while the drought severity will
be heavier in the next 30 years based on the bias-corrected
CESM1 and CSIRO ensembles.

Influenced by the underlying surface conditions, drought
frequency, duration, and intensity will change during the
spread of a drought event (Burke et al., 2010; Naumann et al.,
2015; Liu et al., 2016b). Previous studies were mainly focused on
the spatio-temporal variation of drought events or the
characteristic of drought variables such as drought frequency
and drought duration, which failed to describe the whole process
of drought evolution characteristic and the spatial autocorrelation
of multiple drought events. Besides, every drought event has a
certain duration and a range of influence; drought indexes used in
past research were based on single rain gauges that could not
explore the influence area of a single drought event. Considering
the calculated drought indexes are affected by topography,
elevation, and climate, the variation of drought characteristic
variables in adjacent sites or regions would exhibit similar
characteristics. Therefore, analyzing the correlation of drought
events in different distances is important for identifying the
spatial similarity and heterogeneity of drought.

Accordingly, the primary objectives of this paper are (1) to
explore the spatio-temporal variation characteristic of drought
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in NWC based on the SPI values of 123 rain gauges; (2) to
identify the drought events from hydrometeorological series
and to reveal the spatial evolution features of
drought characteristic variables; (3) to visualize the
development process of drought in NWC; and (4) to
investigate the spatial heterogeneity and similarity of
drought variables.

2 STUDY AREA

NWC is in the hinterland of Eurasia, which accounts for 31.7% of
the total land area of China and geographically includes five
administrative provinces (Xinjiang, Qinghai, Gansu, Shaanxi, and
Ningxia) (Figure 1). Because of its geographic position and the
topographic features with highmountains all around, it is difficult
for the water vapor to transport from the ocean to the study area;
thus, NWC is one of the driest places in the same latitude, which
is characterized by cold winters and hot summers with low
precipitation; the annual average temperature and
precipitation from 1960 to 2018 were 6.3°C and 248.2 mm,
respectively. Besides, the terrain and physical geographical
features of NWC varied greatly (the landscape includes
deserts, basins, plateaus, plains, and mountains), which result

in different climatic characteristics, and the precipitation
gradually decreases from southeast to northwest.

3 DATASET AND METHODOLOGY

3.1 Data Availability
The precipitation data are obtained from China Meteorological
Data Sharing Service System (http://www.cma.gov.cn) for the
1960–2018 periods from 122 meteorological stations. In order to
ensure high-quality series, data series with a cumulative absence
of more than 1 year were excluded, and the homogeneity of the
dataset was checked and corrected by using the standardized
toolkit RHtestsV4. The geographical distribution of the rain
gauges is shown in Figure 1.

3.2 Methodology
3.2.1 SPI
The Standardized Precipitation Index (SPI) and the Standardized
Precipitation Evapotranspiration Index (SPEI) are the most
commonly used indices for drought assessment, which are able
to detect drought events at different time scales (Kalisa et al.,
2020; Bonaccorso et al., 2015). The SPI employs precipitation to
calculate the drought index while the SPEI incorporates both

FIGURE 1 | Location and the meteorological details of the study area.
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temperature and precipitation to identify drought (Fung et al.,
2020). Though the temperature has played an important role on
drought identification especially in arid regions, the climate
conditions with lower variability of temperature than the
variability in precipitation indicated that the precipitation is
the major driver of droughts (Tirivarombo et al., 2018;
Beguería et al., 2014). Besides, the near-zero potential
evapotranspiration in winter of some regions and the
calculation of potential evapotranspiration by empirical
formula may add to the uncertainty of the results.Therefore,
considering this paper is mainly aimed at studying the spatio-
temporal differentiation characteristic and evolution process of
meteorological drought in NWC, the evapotranspiration has
more spatio-temporal effects on soil moisture availability and
water resources planning in the face of agriculture drought, and
for simplicity of calculation, this study employed the SPI to
analyze the variation characteristic of drought in NWC. Based
on the theory, the SPI is determined as follows (Raziei et al., 2014;
Haroon et al., 2016):

SPI � −t + C0 + C1t + C2t2

1 + d1t + d2t2 + d3t3
(0<G(x)≤ 0.5) (1)

or

SPI � t − C0 + C1t + C2t2

1 + d1t + d2t2 + d3t3
(0.5<G(x)≤ 1) (2)

where: t �
����������
ln1/(G(x))2

√
(0 < G(x) ≤ 0.5); t �

��������������
ln1/(1 − G(X))2

√

(0.5 < G(x) ≤ 1); x is the precipitation time series; G(x) is the
Cumulative Gamma function of precipitation:

G(x) � 1
αβΓ(β)

∫
x

0
xβ−1ex/αdx (3)

where α, β are the scale and shape parameter of Gamma function:

β � 1
4[ln(x) − ln(x)/n]

⎡⎢⎢⎣1 +
���������������
4[ln(x) − ln(x)/n]

3

√
⎤⎥⎥⎦ (4)

α � �x

β
(5)

where �x � ∑ x

n , n is the length of data records.

The constants in Eq. 1 and Eq. 2 are given as follows: C0 =
2.515517; d1 = 1.432788; C1 = 0.802853; d2 = 0.189269; C2 =
0.010328, d3 = 0.001308.

The positive values of SPI indicate greater thanmean precipitation
and are related to wet conditions, while the negative values suggest
less than mean precipitation and are related to dry conditions. SPI-1,
SPI-3, SPI-6, and SPI-12 represent monthly, seasonal, semi-annual,
and annual accumulated drought condition, respectively. Therefore,
SPI-3 and SPI-12 were selected to monitor drought in this research.

3.2.2 Run Theory
SPI was mainly adopted to demonstrate the spatial and temporal
variation of drought events, which limited the identification the
multiple attributes of drought events. Therefore, Run Theory was
employed to separate drought characteristic variables (drought
frequency, duration, and severity) from SPI series and reveal the
basic attributes of drought (Amirataee et al., 2020; Wu et al., 2020;
Leng et al., 2020). According to the theory, three truncation levelsX0=
−0.5 (light drought occurswhen SPI<−0.5),X1=−0.3 (drought is also
expected when the SPI values of one period or multiple time periods
are kept between −0.5 and −0.3), and X2 = 0 (drought may happen
when the run length of SPI is negative) were set to identify drought
events; the identification process of drought events is as follows:

1) If the SPI value is less than x1, it would be preliminarily
considered that a drought event occurs (Figure 2 shows four
droughts, I, II, III and IV).

2) If the drought event lasts only 1 month (I, IV) and the
corresponding SPI value is less than x0, it would be
considered that a drought event occurs (I); otherwise, there
is no drought in this month (IV).

3) If the time interval between two adjacent drought events (II
and III) is 1 month and the corresponding SPI value is less
than x2, the two adjacent drought events would be merged as
one drought event, and then the drought duration D = DII +
DIII+1 and the drought severity S = SII + SIII. Otherwise, they
would be considered as two independent drought events.

3.2.3 TFWP-MK
Since the positive correlation of time series may cause the major
source of uncertainty by Mann–Kendall test, trend-free pre-

FIGURE 2 | Drought event identification process by Run Theory.
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whitening (TFWP-MK) was employed to eliminate the effect of
serial correlation (Dinpashoh et al., 2011; Gocic and Trajkovic, 2013;
Ji et al., 2014). The procedure of TFPW-MK can be represented as:

Yi � Xiβi (6)
The slope, an index indicating the direction and quantity of the

trend, was estimated using the Theil–Sen regression estimator by:

β � Median⎡⎢⎣
(Xj −Xi)
(tj − ti)

⎤⎥⎦∀i< j (7)

where Xj and Xi are the data values at time i and j.
Then the lag-1 serial correlation coefficient of the sample data

is obtained by:

r1 �
1/n − 1 ∑

n−1

i�1
[Xi − E(Xi)][Xi+1 − E(Xi)]

1/n∑
n

i�1
[Xi − E(Xi)]2

(8)

E(Xi) � 1
n
∑
n

i�1
Xi (9)

where r1 is the Xt and E (Xt) is the mean of the sample data.
If ri is not significantly different from zero, the time series are

considered to be independent and the Mann–Kendall test can be
used directly. Otherwise, it should be pre-whitened by:

Y′
i � Yi − ri × Yi−1 (10)

Then, βi is added again to the residual dataset of Eq. 10.

Y″
i � Y′

i − βi (11)
where Yi″ is the pre-whitened series (final series).

Finally, the Mann–Kendall test is used to detect the trend of
the pre-whitened time series (Jhajharia et al., 2011; Machiwal
et al., 2017).

3.2.4 Geostatistical Methods
In this research, we use Moran’s I, General G, and Gravity
Migration Model to explore the spatial correlation drought
characteristic variables, and identify the evolution
characteristic of drought in NWC.

3.2.4.1 Center of Gravity Migration Model
The temporal and spatial evolution features of drought were
investigated by the center of gravity migration model:

Xj �
∑
n

i�1
(CijXi)

∑
n

i�1
Cij

(12)

Yj �
∑
n

i�1
(CijYi)

∑
n

i�1
Cij

(13)

where Xj, Yj are the longitude and latitude coordinate of SPI
gravity center of j year, Cij is the SPI value of unit i in year j, Xi and
Yi are the longitude and latitude coordinate of geometrical center
of unit i, and n is the number of research units.

FIGURE 3 | Variation of SPI series from 1960 to 2018 in NWC.
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3.2.4.2 Moran’s I
Moran’s I is used to identify the autocorrelation of spatial
elements or the similarity of neighboring data, which can be
classified as Global Moran’s I index (GMI) and Local Moran’s I
index (LMI) (Sheng et al., 2002; Wang et al., 2016). This research
employed the GMI to determine whether there existed spatial
autocorrelation of drought characteristic variables, and the LMI
was used to identify the property of the cluster or the disperse
variables. The GMI is given as:

GMI � n

S0

∑
n

i�1
∑
n

j�1
wij(xi − �x)(xj − �x)

∑
n

i�1
(xi − �x)2

(14)

S0 � ∑
n

i�1
∑
n

j�1
wij (15)

where n is the number of research units; xi is the drought variable
value of unit i; xj is the drought variable value of unit j; �x is the
average drought variable value of the study area; and wij is the
spatial weight matrix that is defined by the inverse distance
weighted method. The GMI ranges from −1 to 1. If GMI > 0,
the spatial distribution of drought variable is considered
positively autocorrelated, and the drought variable is
characterized with a cluster type. If GMI < 0, the spatial
distribution of drought variable is identified as negatively
autocorrelated, and the drought variable is defined as a

disperse type. If GMI = 0, the drought variable is defined as a
random spatial pattern.

Additionally, the LMI is computed as the following:

LMI � n2

S0
(xi − �x)

∑
n

j�1
(xj − �x)

∑
n

j�1
(xj − �x)

2
(16)

The meaning of the parameters were the same as that in Eq. 14
and Eq. 15.

3.2.4.3 General G
Though the GMI can be used to classify the cluster pattern, it
cannot figure out whether the property of the clustered
variable are hot spots (have high values) or cold spots (have
low values). Thus, the Getis-Ord General G is applied to
identify locations that spatially clustered with either high or
low values (Chen, 2021).

Gi(d) �
[∑

n

j�1
wij(d)wj]

∑
n

j�1
xj(j ≠ i)

(17)

where d is the distance between the unit i and unit j, and wij is the
same spatial weight used for obtaining GMI as Eq. 14 and Eq. 15.
High positive values of Gi(d) indicate that the locations are

FIGURE 4 | Variation of seasonal SPI series from 1960 to 2018 in NWC.
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clustered with hot spots while negative values indicate a spatial
cluster with cold spots.

For the purpose of statistically identifying the hot spots or cold
spots, the Z score of Gi(d) is calculated by:

Z(Gi) � Gi − E(Gi)
SD(Gi) (j ≠ i) (18)

where E(Gi) is the expected value of Gi; SD(Gi) is the standard
deviation of Gi. To decide whether the Z score is statistically
significant, the absolute value would have to be greater than 1.65,

1.96, and 2.57, which were the significant level of 0.1, 0.05, and
0.01, respectively (Huang et al., 2013).

4 RESULTS

4.1 Spatio-Temporal Variation of Drought
As shown in Figure 3, both SPI-3 series and SPI-12 series have
been in a significant fluctuation, droughts and floods alternated
frequently, and both series exhibited slightly increasing trends,

FIGURE 5 | Spatial distribution of average SPI from 1960 to 2018 in NWC.
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suggesting a weakening drought in the NWC. Late 1980s was the
turning point of drought, after which positive values were
dominant and this trend was more prominent in the 2010s.

Figure 4 illustrated the temporal variation characteristics of
seasonal drought based on the SPI-3 in NWC from 1960 to 2018.
All the SPI series presented with upward trends, which indicated

that the drought situation of all seasons in NWC was relieved.
According to the Z-statistic test by TFPW-MK, the SPI series of
winter passed the significant test at level 0.05 while the series of
spring, summer, and autumn did not, suggesting that the SPI
series of winter presented a significant increasing trend while the
SPI series of spring, summer, and autumn slightly increased.

FIGURE 6 | Spatial distribution of annual and seasonal Z-statistics of SPI by TFPW-MK.
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Besides, as can be seen from Figure 4, the SPI values of spring and
summer varied greatly; prolonged droughts of spring and
summer were detected before the 1990s. No significant change
of autumn drought series was observed until the 2010s. Winter
humidification was identified after the late 1980s.

Figure 5 demonstrated the spatial distribution characteristics
of annual and seasonal SPI values in NWC. The annual and
seasonal SPI were the average station-based SPI values from 1960
to 2018. Affected by the geography, topography, vegetation, and
other factors, the spatial distribution of SPI exhibited significant
spatial differences. For annual scale (Figure 5A), except for
southern Xinjiang, most areas of NWC experienced dry
conditions. The minimum SPI values mainly occurred in east
Xinjiang and south Qinghai, suggesting that these areas had more
severe droughts. The distribution of SPI values in spring and
summer showed that the NWC has suffered extensive summer
and spring droughts (Figures 5B,C). Autumn and winter
droughts in NWC were much lighter than that of spring and
summer. Autumn drought mainly appeared at south Qinghai and
northwest Xinjiang (Figure 5D), and winter drought mainly
occurred in local areas of west Xinjiang (Figure 5E).

4.2 Trend Analysis
Figure 6 shows the geographical distribution of annual and
seasonal test Z-statistics of SPI series. According to the results,
both annual and seasonal drought series of NWC exhibited a
typical distribution pattern—positive trends in the west and
negative trends in the east. In fact, Z-statistics by the TFPW-
MK test of annual SPI values revealed that 89 stations (73.0%) had
increasing trends while 33 stations (27.0%) had decreasing trends,
of which 72 stations have passed the positive significant test at
level 0.05 while 19 stations have passed the negative significant
test, indicating an obvious wet tendency in west NWC and a slight
dry tendency in east NWC.

The spring drought series showed positive trends at 68.9% of
the stations, and 33 stations of these passed the significant test at
level 0.05. South Qinghai and northwest Xinjiang experienced

distinct wetting conditions. Significant decreasing trends were
detected in south Shaanxi, suggesting a remarkable aggravation of
spring drought in such area. In summer, 98 stations (80.3%)
showed positive trends, 51 stations of which have passed the
significant test at 0.05 level and these stations mainly occurred in
Xinjiang and Qinghai, which indicated that the summer drought
in Xinjiang and Qinghai were greatly relieved from 1960 to 2018.
The results obtained by elaborating the autumn droughts were
similar to those relative to spring and summer. In this case, 81 out
of 122 stations presented positive trends, 36 stations passed the
significant tests and these stations were presented at Tianshan
Mountain area in western Xinjiang. The significant decreasing
trends of south Gansu indicated that these areas have experienced
an obvious intensifying autumn drought. The results of winter
Z-statistics demonstrated that 81.9% of the stations had
increasing trends and the significant positive trends mostly
occurred in Xinjiang and south Qinghai and east Gansu.

In addition, the droughts in eastern regions, such as Shaanxi,
Ningxia, and west Gansu, were aggravating while the droughts in
west NWC, such as Xinjiang and Qinghai, were alleviating or
tended to be wet. Besides, in winter and summer, more than 50%
of the stations passed the significant test, suggesting that the
winter and summer drought experienced greater change
compared with spring and autumn droughts.

4.3 Migration Characteristic of Drought
Based on the model of Gravity Migration, the spatial evolution of
annual SPI values in NWC was revealed. The results showed that
the distribution center of SPI in 1960 was (103.54°E, 36.38°N),
while the center in 2018 was (82.32°E, 41.64°N), suggesting a great
climate change in NWC. According to the gravity migration
paths (Figure 7), the gravity center of SPI moved from southeast
to northwest and then turned from southwest Xinjiang to
northeast Xinjiang, which indicated that the drought in NWC
was alleviating from southeast to northwest during 1960–2018.
Moreover, the average migration distances (57.32 km.year−1) of
SPI centers in NWC from 1960 to 1990 were much greater than

FIGURE 7 | Migration of gravity center of SPI.

FIGURE 8 | Standard deviation ellipse of SPI.
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that from 1990 to 2018 (16.08 km.year−1), suggesting that the
wetting area in west NWC was much larger than the drying area
in east NWC. The reason why the SPI centers moved towards
high latitudes in NWC may be related to the strengthened
moisture current from south for the past few years especially
in Xinjiang.

As Figure 8 showed, the standard deviation ellipse of SPI
values in 1960 almost covered the middle and east regions of
NWC, suggesting that the droughts had large spatial differences
in 1960. After then, the coverage of ellipse exhibited a decreased
trend, indicating that the spatial distribution of SPI values has
turned from disperse to concentrated. That is, the spatial
distribution of drought in NWC tended to be concentrated
during 1960–2018. Meanwhile, from 1960 to 1980, the ellipses
flattened and moved towards northwest, further illustrating that
the variation of SPI values had exhibited a direction of
northwest–southeast. Besides, the difference between the
ellipsoidal shape of 1980 and the ellipse of 1990 was much
greater compared with other adjacent decades, which was
consistent with the previous reports that the climate in NWC
has turned from dry to wet since 1986.

4.4 Spatial Evolution Characteristic of
Drought Variables
Based on Run Theory, the drought characteristic variables
(drought frequency, drought duration, and drought severity)
were separated from SPI series and are shown in Figure 9 and
Figure 10. As can be seen from Figure 9, the annual drought
frequency in most areas of NWC was between 65 and 75 times
from 1960 to 2018. The highest drought frequency (85 times)
occurred in Ankang of Shaanxi Province; the minimum value (51
times) happened in Wusu of Xinjiang, with a difference of 34
times. Annual drought duration in most areas of NWC from 1960
to 2018 lay in the range of 3.1–4.7 months; Shaanxi experienced
the shortest drought duration (3.3 months in average) while west
Xinjiang had the longest duration (4.2 months in average). The
spatial distribution of annual drought severity was similar to
drought duration, and the highest drought severity (4.5)
happened in Kelamayi of Xinjiang, suggesting that it went
through the worst drought in NWC. The lowest drought

severity (3.1) appeared at Huinong of Ningxia. Overall, on an
annual scale, drought frequency decreased from southeast to
northwest, while drought duration and severity increased from
southeast to northwest, suggesting that more droughts occurred
in east of NWC, which were less harmful, while less drought
presented at west NWC, which brought greater drought damage.

Except for autumn, the distribution patterns of seasonal
drought characteristics were similar to that of annual drought
characteristics (Figure 10). The drought frequency of spring,
summer, and winter showed a downward trend from east to west
while drought duration and severity exhibited an upward trend
from east to west, and the drought characteristics of autumn
presented with opposite trends. In spring and winter, most areas
experienced more frequent droughts with shorter duration and
lower severity. Serious spring and winter droughts appeared at
northwest Xinjiang. Meanwhile, Shaanxi, Ningxia, and Gansu
endured the most frequent winter droughts. In summer, the
distribution boundary of drought variables between east and
west was more clear than others’; more summer droughts
occurred in east NWC with shorter duration and lighter
severity, while fewer summer droughts with longer duration
and higher severity were found in west NWC. Autumn
drought with longer duration and higher severity mainly
happened in Ningxia, south Shaanxi, and west Xinjiang. The
average drought frequency of spring, summer, autumn, and
winter was 22.5, 20.8, 21.1, and 22.8 times, respectively.
Seasonal drought duration varied from 2.1 to 4.6 months; 35
stations in spring and winter experienced longer drought
duration above 3 months, 54 stations’ drought duration in
summer were longer than 3 months, and 64 stations in
autumn went through more than 3 months of drought
duration. Seasonal drought severity of the study area ranged
from 1.7 to 6.3; the average values of spring, summer, autumn,
and winter were 2.9, 3.1, 3.0, and 2.7, respectively.

The statistics of seasonal drought frequency, duration, and
severity of 122 meteorological stations were shown as violin box
plots. As can be seen from Figure 11, winter drought variables of
different stations had the greatest differences, while autumn
drought variables had the smallest differences. Though the
average drought frequency of summer and autumn was
smaller, the drought duration and severity of summer and

FIGURE 9 | Spatial distribution of annual drought characteristic variables.
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autumn were greater than that of spring and winter,
demonstrating that the damage of a drought event in
autumn and summer was bigger than in spring and winter; a
summer and autumn drought would be more severe and
widespread.

In conclusion, the spatial distribution of seasonal drought
characteristic variables in NWC had much difference. Winter
droughts were the most frequent. Summer drought situation in
west of NWC was more severe than other seasons, while
autumn drought situation in east of NWC was more severe

than other seasons, suggesting that the contradiction between
supply and demand of water resources was more prominent in
these areas. Drought duration and drought severity had the
same varying tendency, which indicated that a longer drought
duration tend to cause a severe drought event. Meanwhile, the
contrasting distribution patterns between drought frequency,
drought duration, and drought severity demonstrated that the
drought duration and drought severity tended to be weakened
with the increasing number of drought. That is, the drought
situation of NWC exhibited as low frequency with long

FIGURE 10 | Spatial distribution of seasonal drought characteristic variables.
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duration and strong severity, or high frequency with short
duration and light severity. Besides, the drought variables
presented a characteristic of spatial concentration,

suggesting a potential interdependence. Therefore, it is of
great significance to identify the spatial correlation of
drought factors.

4.5 Spatial Autocorrelation of Drought
Variables
4.5.1 Analysis of Global Spatial Autocorrelation
As shown in Figure 12, all the GMI values of drought variables
were above zero and passed the confidence test at level 95%,
suggesting that the spatial distributions of annual or seasonal
drought variables in NWCwere significantly autocorrelated. That
is, the drought variables were characterized with regional
similarity. The higher GMI values of annual drought variables
indicated a better spatial autocorrelation than that of seasonal
drought variables. Except for the winter GMI, the GMI of
seasonal drought frequency in spring, summer, and autumn
was greater than that of drought duration and severity, which
demonstrated that the spring, summer, and autumn drought
frequency had stronger spatial autocorrelation than their drought

FIGURE 11 | Statistics of seasonal drought variables of 122 meteorological stations.

FIGURE 12 | GMI of seasonal drought characteristic variables in NWC.
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FIGURE 13 | Scatter plots of LMI for the drought characteristic variables.
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duration and severity while the spatial autocorrelation of drought
frequency in winter was weaker than its duration and severity.
The greater GMI (0.21–0.43) of drought frequency demonstrated
a higher spatial correlation of drought frequency in NWC; a local
drought may increase the risk of drought occurrence in adjacent
regions. Furthermore, the similar variation trend and the small
difference between drought duration and drought severity further
verified their good long-range correlations.

4.5.2 Analysis of Local Spatial Autocorrelation
According to the scatter plots of LMI for annual and seasonal
drought variables (Figure 13), the points in the first and third
quadrant were much more than that in the second and fourth
quadrant, suggesting that drought variables of most areas in
NWC showed an aggregation state of High–High value or
Low–Low value; the areas with High–Low value or Low–High
value were relatively small.

The spatially clustered locations with features of either high or
low values (hot or cold spots) were identified by GeneralG.As can
be seen from Figures 14, 15, the hot and cold spots of drought
characteristic variables in NWC were obviously spatial
distribution features. On an annual scale, Shaanxi, Ningxia,
and southeast Gansu presented with hot spots of drought
frequency and cold spots of drought duration and severity,
while northwest Xinjiang (Tacheng, Yili, Aletai, Akesu,
Changji, and Tulufan) was characterized with cold spots of
drought frequency and hot spots of drought duration and
severity, which indicated that the drought frequency of
Shaanxi, Ningxia, and southeast Gansu was more than the
average values of adjacent areas while the duration and
severity of such areas were shorter and milder than their
nearby regions, and that the drought frequency of northwest
Xinjiang was less than its neighboring area while the duration and
severity were longer and more intense than the adjacent areas.
Meanwhile, the distribution of hot spots and cold spots at 99%
confidence level suggested that Shaanxi experienced the most
droughts with shortest duration and lowest severity, while

northwest Xinjiang had the fewest droughts with longest
duration and highest severity.

The hot spots of drought frequency in spring mainly
occurred in southeast Gansu, indicating that the frequency
of spring drought in such areas was more than its nearby
regions. As for spring drought duration, the cold spots were
scattered in local areas of south Gansu and east Qinghai, and
only the hot spot at 95% confidence level was discovered in
Akesu of Xinjiang. The hot spots of spring drought severity
appeared at Jiuquan and Zhangye, suggesting a higher drought
severity in such regions.

In summer, south-central Shaanxi and southeast Gansu
presented with cold spots of drought duration and severity at
99% confidence level, suggesting a much lighter summer drought
in these areas. The hot spots of drought duration and severity in
west Xinjiang indicated a regional heavier summer drought.

In autumn, the hot spots of drought frequency happened in
Hexi Corridor and north Qinghai, which also exhibited with cold
spots of drought duration and severity, demonstrating that these
areas were characterized withmore autumn droughts, which were
in a lighter situation. Likewise, Shaanxi appeared with cold spots
of drought frequency and hot spots with drought duration and
severity, which means that these areas suffered a more severe
autumn drought but with less frequency.

The spatial distributions of hot and cold spots of the three
drought variables in winter were similar to that in summer, but
the area presented with significant correlation expanded. Most
areas of east NWC (including Shaanxi, Ningxia, and central-
south Gansu) exhibited hot spots of drought frequency and cold
spots of drought duration and severity while northwest Xinjiang
(Changji, Tacheng, Kelamayi) showed cold spots of drought
frequency and hot spots of drought duration and severity,
indicating a light winter drought in east NWC and a more
severe winter drought in northwest Xinjiang. Besides, the hot
spots of drought duration and severity in Tacheng and Changji
were at a confidence level of 99%, suggesting a muchmore serious
winter drought in such areas.

FIGURE 14 | Spatial autocorrelation pattern of annual drought variables.

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 85795314

Li et al. Variation of Meteorological Drought

126

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


On the whole, G values of the three drought variables in east
NWCwere opposite to the west. Shaanxi and Xinjiang were at the
highest confidence level regardless of cold or hot spots, suggesting
that the climate conditions in this area were complicated; more
drought monitoring should be conducted in such areas in order to
investigate causes and improve drought resistance.

5 CONCLUSION AND DISCUSSION

As drought in NWC is partially a large-scale phenomenon and
exhibited regional characteristics, it is necessary to provide a
comprehensive assessment of drought in terms of drought
indexes, the distribution of drought characteristic variables

FIGURE 15 | Spatial autocorrelation pattern of cold hot spots of seasonal drought variables.
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(frequency, duration, and severity), the spatio-temporal evolution
features of drought, and the spatial similarity of drought
characteristic variables. This research analyzed the spatio-
temporal variation of SPI in NWC during 1960–2018;
characteristic variables of drought (including drought
frequency, drought duration, and drought severity) were
identified and their distribution patterns were studied based
on Run Theory; the evolution process of drought was
discussed and spatial autocorrelation of drought characteristic
variables was revealed by TFPW-MK, GMI, LMI, and General G.

From 1960 to 2018, the drought in NWC was alleviating,
which was in accordance with the previous reports that the
climate in NWC has turned from warm dry to warm wet
(Yuan et al., 2017; Huang et al., 2019; Cao et al., 2020).
Affected by the complicated topography and various climate
conditions, the variation of drought had obvious regional
differences; west NWC with an arid or semi-arid climate was
presented with significant wet tendency, while east NWC with a
semi-humid climate experienced an increasing trend in dryness.
The migration path of the gravity center of SPI showed that SPI
moved towards higher latitude in NWC. On an annual scale, the
average drought frequency in NWC from 1960 to 2018 was 71
times, while the average drought duration and severity were
3.8 months and 4.0, respectively. The spatial distribution of
drought frequency decreased from southeast to northwest,
while drought duration and severity increased from southeast
to northwest, illustrating that east NWC experienced more
frequent droughts that were less harmful while west NWC
experienced fewer droughts that brought greater drought
damage. Regardless of time scale, drought duration was
positively correlated to drought severity; a longer drought
duration tends to cause a severer drought event. Summer and
autumn were characterized with longer duration and higher
severity while spring and winter were characterized with
shorter duration and lower severity. According to GMI, all the
seasonal drought variables presented with significant positive
spatial correlation. The results of LMI showed that there was a
significant difference in the local spatial autocorrelation of
seasonal drought variables. The hotspots of annual drought
frequency mainly concentrated in Shaanxi while the hotspots
of annual drought duration and severity mainly occurred in
northwest Xinjiang, suggesting that there was significant
positive correlation between Shaanxi and its surrounding
areas, and between northwest Xinjiang and its adjacent areas.
That is, there existed regional similarity of drought characteristics
in Shaanxi and surrounding areas (more droughts, shorter
duration, and lower severity), while northwest Xinjiang and
adjacent areas exhibited the same drought characteristic with
fewer but more severe droughts.

Compared with previous studies, this study considered the
spatial heterogeneity and similarity of drought, the
combination of the drought index map, drought

characteristic variable map, Z-statistics of SPI by TFPW-
MK, the barycenter model, and standard deviation ellipse,
and the spatial autocorrelation analysis can be expected to
explore the spatio-temporal evolution characteristics of
meteorological drought in NWC. However, though the
drought of NWC has been relieved, the average
precipitation (less than 300 mm year−1) increased only by
10%, which was not enough to change the basic state of
climate in NWC; the drought issue is still a major factor
limiting the economic development of NWC. Meanwhile,
the cause mechanism of drought evolution characteristics in
NWC was simply mentioned due to space constraints; root
cause analysis and how long can the wetting tendency last in
NWC will be the next research topics.

This study employed SPI for drought identification without
considering the effects of potential evapotranspiration, which
may have an impact on the results. Further study on the
application conditions of SPEI and SPI for drought assessment
in NWC should be conducted.
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Precipitation Moisture Sources of
Ethiopian River Basins and Their Role
During Drought Conditions
Milica Stojanovic1,2*, Getachew Mehabie Mulualem3, Rogert Sorí 1, Marta Vázquez1,
Raquel Nieto1 and Luis Gimeno1

1Centro de Investigación Mariña, Environmental Physics Laboratory (EPhysLab), Universidade de Vigo, Ourense, Spain,
2Department Meteorology and Geophysics, Faculty of Physics, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria, 3College of
Science, Bahir Dar University, Bahir Dar, Ethiopia

In this study, we identified and investigated the annual climatological moisture sources for
the Ethiopian river basins during 1980–2018. First, according to cluster analysis, the 12
river basins of this country were grouped into four regions: northeast (NE), southeast (SE),
southwest (SW), and west (W), which were characterised by similar annual precipitation
features. Global outputs from the Lagrangian FLEXPART model were used to investigate
the air mass humidity gain before reaching each region. This revealed five main oceanic
moisture sources located in the Mediterranean Sea, Red Sea, Indian Ocean, Persian Gulf,
and the Arabian Sea, in addition to three main terrestrial moisture sources located in the
African continent, Arabian Peninsula, and the regions themselves. Once the main
climatological sources of moisture for each region were identified, a forward-in-time
analysis of air masses over each source was performed to calculate the moisture
contribution to precipitation (E – P) < 0 over the defined regions. The most important
source at the annual scale for the NE, SW, and W regions is the African continent, while for
the SE, it is the Indian Ocean. Indeed, terrestrial moisture sources are the major
contributors (>50%) to the precipitation over the NE, SW, and W, whereas oceanic
sources are the major contributors to the SE. Another analysis identified the years affected
by drought conditions in the regions. The role of the sources was evaluated for those years
affected by severe and extreme drought, revealing the heterogeneous and also direct
influences on the regions. Finally, according to the normalised difference vegetation index,
the impacts of annual severe and extreme droughts were more prominent in areas of the
NE and SE, but also in the SW during 1984.

Keywords: drought, SPEI, moisture sources, Ethiopia, Lagrangian approach

1 INTRODUCTION

Drought is one of the most devastating natural phenomena related to a significant decrease in water
availability owing to precipitation reduction over an extended period (Bayissa et al., 2015; Van Loon,
et al., 2016; Stojanovic et al., 2020; Yirga, 2021). It is a relatively complex event, mainly because of the
difficulty in defining its beginning, severity, and end (Wilhite, 1993; Belayneh et al., 2014). In
addition, its effects can slowly accumulate over a substantial period, affecting a wide range of
geographic areas and different sectors, such as agriculture, water management, and the environment
(WMO, 2012; Trenberth et al., 2014; Ebi and Bowen, 2016; Van Loon, et al., 2016; Ionita et al., 2017).
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Therefore, droughts can generally be classified as meteorological,
agricultural, hydrological, and socioeconomic, according to their
associated impacts (Wilhite and Glantz, 1985; Keyantash and
Dracup, 2002; Dai, 2010). Meteorological drought implies below-
average amounts of precipitation and represents the initial stage
of all drought types. A lack of soil moisture is referred to as
agricultural drought, as it reduces the quantity of water available
for crops and affects the agricultural demands of a region.
Hydrological drought occurs when sustained dry conditions
cause a deficit in soil moisture content, low-level river flows,
and a reduction in surface water and groundwater reserves.
Finally, socioeconomic drought occurs when a deficit in water
supply exceeds the demand for economic goods and social
activities.

In Africa, drought is one of the most dangerous natural risks,
which, in combination with high water consumption and low
water quality, worsens existing water scarcity concerns (Mishra
and Singh, 2010; El Kenawy et al., 2016). Among African
countries, Ethiopia is frequently portrayed as a drought-
stricken region because of anthropogenic activities and climate
change (e.g., increased temperature, decreased precipitation, and
reduced crop yield) (Belayneh et al., 2014; Bayissa et al., 2015; El
Kenawy et al., 2016; Gezie, 2019; Temam et al., 2019; Alemu et al.,
2021; Yirga, 2021). A trend analysis performed by Cheung et al.
(2008) for annual and seasonal precipitation between 1960 and
2002 showed a remarkable decline in precipitation from June to
September for most river basins situated in the southwest and
central parts of Ethiopia (Baro-Akobo, Omo-Ghibe, Rift Valley,
and Upper Blue Nile). Negash et al. (2013) also reported a
significant decreasing trend in the northern, northwestern, and
western parts of Ethiopia for the period 1951–2000. Mekonen and
Berlie (2020) reported a decreasing trend in precipitation at a
level of 6.5 mm/decade in the northeastern areas of Ethiopia from
1900 to 2016. In contrast, Gebrechorkos et al. (2019) recently
showed that the climate of Ethiopia has changed over the last
4 decades, with temperatures increasing trends. In line with these
findings, some researchers have illustrated that the frequency of
drought in Ethiopia has increased over the past few decades
(Edossa et al., 2010; Gebrehiwot et al., 2011; Asfaw et al., 2018).

Ethiopia is a highly populated country with 85% of the
economy primarily depending on agriculture. Drought
represents a major threat that mostly affects the agricultural
and water sectors, particularly in regions where access to water
supplies is limited (Funk et al., 2005; Mersha and van Laerhoven,
2018; Matewos, 2019; Hirko et al., 2021). The 1984/1985 drought
that affected Ethiopia, caused crop failure and, consequently, the
displacement of millions of people. Also, the drought that
occurred in 2002/2003 led to the biggest food crisis that
affected more than 13 million people and caused severe
impacts on the economy (Gebrehiwot et al., 2011; Bayissa
et al., 2015). According to Funk et al. (2005), the 1984 events
stand as the worst years on the record, while 2002 received very
low precipitation for the longest period of the year. The year 2009
has also been documented as a severely dry year, with more than
six million people being affected (Sheffield et al., 2012; Viste et al.,
2013; Mekonen and Berlie 2020). More recently, a severe drought
in 2015 affected the northeast of Ethiopia, resulting in more than

10 million people being affected and seeking humanitarian aid
(Mekonen and Berlie 2020). These dry years have been the worst
in the history of Ethiopia, with millions of people becoming
displaced, andmany being forced into further destitution (Bayissa
et al., 2015).

The large spatial variability of precipitation over Ethiopia can
cause spatial variations in drought severity (World Bank, 2006;
Viste et al., 2013). Jjemba et al. (2017) and Philip et al. (2017)
showed that a severely dry year in 2015 in the northern part of
Ethiopia occurred due to the failure of the March–May (Belg)
precipitation season, and the June–September (Kiremt)
precipitation season was considerably delayed and below the
long-term average. Rainfall in Ethiopia is the result of multi-
weather systems that include the Subtropical Jet, Intertropical
Convergence Zone (ITCZ), Red Sea Convergence Zone, Tropical
Easterly Jet, Southwest Indian and South Atlantic Ocean
anticyclones, and Somali Jet (NMA, 1996; Riddle and Cook,
2008; Aerts et al., 2016; Philip et al., 2017; Dubache et al.,
2019; Alhamshry et al., 2020; Munday et al., 2021). The
intensity, position, and direction of these weather systems lead
to variability in the amount and distribution of rainfall in
Ethiopia (Berhanu et al., 2014). Precipitation shortfall and its
spatial variations are associated with changes in atmospheric
moisture transport (Bisselink and Dolman, 2008; Gimeno et al.,
2010; Viste and Sorteberg, 2011; Stojanovic et al., 2018; Drumond
et al., 2019). Hence, the identification of moisture sources for
precipitation is crucial for understanding rainfall variability,
timing, and development of dry conditions in Ethiopia Indeed,
it is nowadays considered a challenge for the atmospheric
sciences (Gimeno et al., 2020). The moisture sources for
precipitation over a certain region can be identified through
different methods, such as analytical and box models, physical
water vapour tracers (isotopes), and numerical water vapour
tracers. A complete explanation and comparison of the
methodologies used to study moisture transport have been
reported by Gimeno et al. (2020).

The main objectives of this study were: 1) to identify the main
climatological moisture sources for the four regions of grouped
river basins of Ethiopia during the period 1980–2018 through a
Lagrangian methodology; 2) to identify the occurrence of drought
conditions in the target regions; and 3) to analyse the relationship
between severely and/or extremely dry years and the anomalies of
the moisture contribution to precipitation computed from their
climatological oceanic and terrestrial sources of moisture.

1.1 Study Area
Ethiopia is a landlocked country located within the tropics
(33°–48°E longitude and 3°–15°N latitude) of northeast Africa
(Figure 1). It is bordered by Eritrea and Djibouti to the north and
northeast, Somalia to the east, South Sudan and Sudan to the west
and northwest, and Kenya to the south (Viste et al., 2013). With
an area of approximately 1.11 million km2, it is the second most
populous country in Africa (Awulachew et al., 2005; Worqlul
et al., 2017; Liou and Mulualem, 2019). Ethiopia is a country of
geographical diversity with topography varying from
approximately 4,500 m above sea level in the north and central
parts to approximately 100 m below sea level over the lowlands in
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the northeastern parts of the country (Figure 1) (Zeleke et al.,
2013; Worqlul et al., 2017; Liou and Mulualem, 2019; Asefa et al.,
2020). Approximately 35% of the central and northern parts of
the country constitute the highlands, with elevations of 1,500 m
or above (Seleshi and Zanke, 2004; Worqlul et al., 2017; Liou and
Mulualem, 2019).

Ethiopia’s proximity to the equator and the complexity of its
topography play an essential role in regulating the annual cycle of
precipitation and temperature (Asefa et al., 2020). Precipitation
normally increases from north to south and from east to west,
with a mean annual precipitation of 600 mm per year in the
northeastern parts and 2,000 mm per year in the southwest parts
of the country (Aerts et al., 2016; Asefa et al., 2020). The amount
of precipitation over the mountainous regions is higher than that
in the lowlands. The highland regions receive more than
1,200 mm per year, with a small temperature variation, while
the lowland regions gain less than 500 mm per year with greater
temperature variations (Aerts et al., 2016; Worqlul et al., 2017;
Liou and Mulualem, 2019). Because of these complex
topographical and geographical features, the climate of
Ethiopia reveals strong spatial variations, and different parts of
the country do not receive equal amounts of precipitation (Seleshi
and Camberlin, 2005; Zeleke et al., 2013). The northeastern,
eastern, and southeastern parts of Ethiopia receive less
precipitation than the west of the country, and because of this,
the three river basins located in these parts (Ogaden, Aysha, and
Dinakle) are mostly dry. Likewise, most of the high-flow river
basins, which occupy 80%–90% flow, are found in the west and
southwestern parts of Ethiopia (Ayalew, 2018). Generally,
Ethiopia has three climatic seasons: the main rainy season
from June to September (Kiremt), a short rainy season from
March to May (Belg), and a dry season from October to January
(Bega) (Seleshi and Zanke, 2004; Diro et al., 2011; Fekadu, 2015;
Dika, 2018; Alemayehu et al., 2020; Bayable et al., 2021). Kiremt is
the major rainy season for most parts of the country
(southwestern, northern, eastern, western, northwestern, and
central parts), which represents up to 90% of the total

precipitation in a year. By contrast, in the south and
southeastern parts of Ethiopia, the Belg season is the main
rainy season (Seleshi and Zanke, 2004; Misganaw, 2014;
Fekadu, 2015).

Considering population density, there are two region types
where water availability is limited: semi-arid regions in the east
and north, and wet, densely populated regions in the southern
highlands and the Rift Valley (Funk et al., 2012; Berhanu et al.,
2014). Ethiopia is considered the water tower of the Horn of
Africa owing to its substantial number of water resources
(Awulachew et al., 2007; Berhanu et al., 2014). The country
has 12 major river catchments, eight of which are river basins
(Upper Blue Nile [Abbay], Tekeze, Awash, Danakil, Genale
Dawa, Wabi Shebelle, Omo-Gibe, and Baro-Akobo), one is a
lake basin (Rift Valley), and the remaining three are considered
dry river basins (Merebe, Aysha, and Ogaden) owing to
insignificant flow from the drainage system (Berhanu et al.,
2014). These river basins provide an estimated annual runoff
of approximately 125 billion m3, with the Upper Blue Nile
(Abbay) accounting for approximately 45% of that volume
(Asmamaw, 2015).

2 DATASETS AND METHODS

2.1 Datasets
Global outputs of atmospheric moisture changes for nearly 2
million parcels from the Lagrangian FLEXible PARTicle
(FLEXPART) dispersion model (Stohl and James, 2004, 2005),
with a resolution of 0.25° × 0.25° in latitude and longitude for a
period of 39 years (1980–2018), were used in this study. Since the
available model output data is for this period, analyses
throughout the study were limited to this period. FLEXPART
was forced using the ERA-Interim global reanalysis dataset from
the European Centre for Medium-Range Weather Forecasts (Dee
et al., 2011) with a spatial resolution of 1° × 1° on 61 vertical levels
from the surface to 0.1 hPa.

FIGURE 1 |Geographical location of the 12 river basins of Ethiopia (A,B), and their elevation (in metres) (A). Elevation data were downloaded from hydrological data
and maps based on the SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS) project (available online at https://hydrosheds.org/).

Frontiers in Earth Science | www.frontiersin.org June 2022 | Volume 10 | Article 9294973

Stojanovic et al. Ethiopian River Basins Moisture Sources

133

https://hydrosheds.cr.usgs.gov/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


The monthly integrated water vapour transport (IVT) is
calculated as the composite of northward and eastward water
vapour horizontal fluxes, both obtained from ERA-Interim
reanalysis (Dee et al., 2011) at a horizontal resolution of 0.25°.
From this source was also downloaded the vertically integrated
moisture flux divergence (VIMF). These datasets are available at
no cost from https://apps.ecmwf.int. The IVT represents the
horizontal moisture transport in the atmosphere, while the
VIMF is the horizontal divergence of moisture spreading
outward from a point, per square metre, indicating whether
atmospheric motions act to decrease due to divergence or
increase because of the convergence of the vertical integral of
moisture.

Monthly precipitation (PRE) and atmospheric evaporative
demand (AED) values with a spatial resolution of 0.5° were
obtained from the Climatic Research Unit (CRU) Time-Series
version 4.05 (Harris et al., 2020). This dataset was used for this
study since it was built from observational data, which ensures a
reliable representation of climatic conditions in the study regions.
In addition, this dataset has been previously assessed and used for
hydrometeorological studies for Ethiopia, showing a good
performance (e.g., Mulugeta et al., 2019; Reda et al., 2021;
Degefu et al., 2022). Also, the modified version of the
Penman-Monteith reference evapotranspiration equation was
used in this dataset as a metric for AED, which has been
recommended by the Food and Agriculture Organization
(FAO), and is the most physical and reliable method among
several methods that can be used to model AED (Allen et al.,
1998).

The normalised difference vegetation index (NDVI) at a
resolution of 0.05° derived from the NOAA Climate Data
Record of the Advanced Very High-Resolution Radiometer
was used for this study. This long-term record of remotely
sensed vegetation observations permits a description of the
health of vegetation in diverse regions around the world.
Among various vegetation indices, NDVI is more sensitive to
various vegetation covers (Leprieur et al., 2000; Roberts et al.,
2011), especially in arid regions such as Ethiopia. Therefore, it is
commonly used to identify and investigate the effects of drought
on vegetation cover (Hassan et al., 2018).

2.2 Ward’s Method
For hydroclimatological studies, categorising different river
basins into homogeneous precipitation aggregates warrants
further analysis because it can deliver very similar results.
Therefore, we used Ward’s hierarchical clustering method
(Wilks, 2011; Bednorz et al., 2019) to determine the similarity
in precipitation regimes between Ethiopia’s 12 major drainage
systems. Ward’s method has been commonly used among several
hierarchical clustering methods, and it has been widely applied by
different researchers to define consistent precipitation zones
(Munoz-Díaz and Rodrigo 2004; Ferreira and Hitchcock 2009;
Murtagh and Legendre, 2014; Zhang et al., 2016; Sharghi et al.,
2018; Stojanovic et al., 2021a; Beyene et al., 2021). Ward’s method
was employed with Euclidean distance used as similarity
measurement. The hierarchical clustering technique classifies
data into a hierarchical structure based on the Euclidean

distance between two groups (Murtagh and Legendre 2014;
Tian et al., 2014). The Euclidean distance (D) is the length of
the line segment between i number of two points (x, y) in the
euclidean space, as indicated in Eq. 1.

D(x, y) �
�����������
∑

i
(xi − yi)2

√
(1)

It differs from other methods because it is designed to generate
which pairs of groups (e.g., A and B) will merge at each step by
minimising the sum of squared distances between the points and
the centroids of their groups (Unal et al., 2003; Zhang et al., 2016;
Beyene et al., 2021), according to Eq. 2.

Δ(A, B)�∑
i∈A∪B

����� �xi− �mA∪B
����2− ∑

i∈A

����� �xi− �mA

����2− ∑
i∈B
‖ �xi− �mB‖2

� nAnB
nA+nB ‖ �mA− �mB‖2 (2)

where Δ represents the merging cost of combining the clusters
A and B; �mj the centre of the cluster j, and nj is the number of
points in it (Distances between Clustering, 2009). The two
most similar data would be clustered into one bough in the
first step, and then in the next step, it will be used as a new unit.
In each step, the two units are combined. Once a unit is
assigned to a bough, it cannot be separated, and the
algorithm continues until the last two units are joined. The
outcome is a tree diagram showing the final number of clusters
(Zhang et al., 2016).

An advantage of using cluster analysis is that can be generally
easily implemented and further interpret the results. In the
process, it is also not necessary to specify the number of
clusters for the algorithm and a final dendrogram allows to
select the optimum number of clusters for analysis. One
advantage of Ward’s method compared with other hierarchical
clustering methods is that it usually does not leave single-member
clusters after a reasonable number of stages, and it tends to
produce clusters with approximately the same number of entities
(Dezfuli, 2011; Bu et al., 2020). However, one limitation ofWard’s
method is that is computationally intensive and struggles to
handle large datasets with more than a thousand observations
because of that it is not recommended to be used with large
datasets since it will take a lot of time to calculate (Tsiptsis and
Chorianopoulos, 2009). In addition, the analysis and decisions on
dendrograms may result difficult, leading to possible bad
decisions, for which is necessary to analyse if the result makes
sense or not.

2.3 Standardised Precipitation
Evapotranspiration Index
Many drought indices have been developed and used by
researchers worldwide to detect, analyse, and understand the
characteristics of droughts on global, regional, and local scales
(Saravi et al., 2009; Dai 2010; Hadish, 2010; Gebrehiwot et al.,
2011; Herring et al., 2014; El Kenawy et al., 2016; Mohammed
et al., 2018; Drumond et al., 2019). In general, precipitation is
used to compute the indices. The standardised precipitation index
(SPI) (McKee et al., 1993), for instance, is one of the most
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frequently used drought indices worldwide, as recommended by
the World Meteorological Organization (Svoboda et al., 2012;
WMO, 2012). However, several studies (Labedzki, 2007; Livada
and Assimakopoulos, 2007; Naresh Kumar et al., 2009; Vicente-
Serrano et al., 2010; Zarch et al., 2015) have indicated that SPI
relying only on precipitation as input data for assessing drought is
a major loophole. Although precipitation is the primary cause in
controlling the occurrences of drought, the impact of other
variables such as temperature in the context of global warming
cannot be overlooked (Vicente-Serrano et al., 2012). For this
reason, the SPEI (Vicente-Serrano et al., 2010) was utilised, which
includes the role of temperature through AED in the assessment
of drought. Besides, the SPEI has been widely used,
demonstrating its usefulness for the most realistic
representation of dry conditions that affect a given region
(Hernandez and Uddameri, 2014; Wang et al., 2015;
Ghebrezgabher et al., 2016; Delbiso et al., 2017; Stojanovic
et al., 2018; Drumond et al., 2019; Tefera et al., 2019; Sorí
et al., 2020; Stojanovic et al., 2021b).

The calculation of the SPEI is based on the original procedure
used to calculate the SPI but includes the influence of the AED to
estimate the severity of drought while maintaining the multiscale
characteristics of the SPI (Beguería et al., 2014). The SPEI is
computed using the monthly climatic water balance (precipitation
minus AED) calculated at various timescales (i.e., accumulation
periods) (Vicente-Serrano et al., 2010; Lweendo et al., 2017; Abara
et al., 2020). These accumulation periods can be related to different
drought types, such as 1-month SPEI for meteorological drought,
1–6months SPEI for agricultural drought, and 6–24months SPEI
for hydrological drought (WMO, 2012). Detailed information for
calculating SPEIs can be found in Beguería et al. (2014). In this study
we calculated the 12-month SPEI (SPEI12) andwas particularly used
the SPEI12 of December, which provides the diagnoses of wet or dry
conditions for December and the previous 11 months, permitting us
to identify those years affected by severely and/or extremely dry
conditions in the four aggrupations of major river basins of Ethiopia.
The 1-month SPEI (SPEI1) SPEI1 was also used to understand the
behaviour of dry conditions during years affected by severe and
extreme drought conditions. Finally, the identification of the severely
and/or extremely dry conditions during 1980–2018 follows the
criteria of McKee et al. (1993) (Table 1).

2.4 Lagrangian Methodology
The Lagrangian dispersion model, FLEXPART, allows the
investigation of atmospheric moisture changes combined with
the motion of air masses. Therefore, global outputs from this

model were used to initially identify the annual climatological
moisture sources of the four river basin groups that cover
Ethiopia (Figure 2). This model considers an atmosphere
divided into nearly two million particles or parcels of equal
mass (m) that can be tracked backward or forward using
three-dimensional wind field. For each tracked parcel, the
changes of specific humidity (q) every 6 h (dt) are calculated
along the trajectory, which can be adopted as the budget of
evaporation (e) minus the precipitation (p) in the parcel,
according to Eq. 3:

(e − p) � m(
dq

dt
) (3)

By integrating the (e − p) values for all parcels (K) residing in
the atmospheric column over the unit area (A), it is possible to
estimate the total budget of atmospheric humidity (E − P), where
E represents evaporation and P represents precipitation, as
indicated in Eq. 4:

(E − P) � ∑k
k�1(e − p)

A
(4)

The computation of (E − P) in a backward experiment from
the target regions allows us to identify regions where air masses
gained ((E − P) > 0)) rather than lost atmospheric moisture before
arriving at the target region. Areas with positive values were then
considered as sources of moisture, whereas those where air
masses lost moisture ((E − P) < 0)) are considered moisture
sinks. If parcels are tracked forward in time for a delimited region,
it is possible to estimate areas where air masses will lose moisture,
which can be assumed to contribute to precipitation. For both the
backward and forward experiments, the optimum integration
times (in days) proposed by Nieto and Gimeno (2019) provide
the optimal days, in which the Lagrangian precipitation is a better
fit for precipitation in grids with a resolution of 0.25° latitude and
longitude. The average integration times for the grouped river
basins resulted from the cluster analysis were calculated.

Finally, to determine the most important sources of moisture
for each region, the 95th percentile (p95) for (E − P) > 0 was
obtained in the backward climatological experiment performed
from the final study regions. This approach has been widely used
to achieve similar objectives previously. The use of FLEXPART
for the identification of sources of moisture has been widespread.
This is because, compared to other methods such as Eulerian
models and using isotopes, the Lagrangian approach provides a
more robust assessment (Gimeno et al., 2020).

3 RESULTS

3.1 Spatial Regionalisation of Precipitation
Due to its geographic position near the equator and topography, the
distribution of themean annual precipitation in Ethiopia is subject to
large spatial variations (Seleshi and Camberlin, 2005; Zeleke et al.,
2013; Fazzini et al., 2015; Suryabhagavan, 2017). The regionalisation
of precipitation by Ward’s method provided four major drainage
systems groups (Figure 2A); the graphical representation of the 12

TABLE 1 | Drought classification based on standardised precipitation
evapotranspiration index (SPEI) values according to the classification
proposed by McKee et al. (1993).

SPEI Category

0; −0.99 Mild dry
−1.00; −1.49 Moderately dry
−1.50; −1.99 Severely dry
≤−2.0 Extremely dry
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river basins that constitute each region is shown in Figure 2B. We
based our decision on the analysis of the cluster analysis through the
output of the tree diagram (dendrogram), which makes possible to
hierarchically depict the groups of clusters and their combinations,
indicating the level of similarity/dissimilarity in the vertical scale and
the sample elements in clustering order on the horizontal axis. In the
Dendrogram appears at first two well defined groups (dissimilar)
that later are divided into other pairs of groups that indeed are also
quite far. Thus, we decided to select these main four aggrupations
from the Dendrogram obtained throughWard’s algorithm. For this,
a subjective criterion based on the interest of our research was also
taken into account. The selection of two groups seemed small to us,
considering that the association distances between the four groups
are appreciable, which allows us to focus the study on more study
regions without compromising the distance of dissimilarity.
According to Wilks (2011), the best number of clusters could be
sometimes not obvious, and establishing the number of groups
necessitates a subjective choice that depends on the objectives of the
analysis. The results show that Mereb, Tekeze, Danakil Awash, and
Aysha represent river basins with similar precipitation regimes and
are classified here as the northeast (NE) region. Genale Dawa, Wabi
Shebelle, and Ogaden belong to the southeast (SE) region. The
southwest (SW) region includes the Omo-Gibe and Rift Valley
catchments, and the Upper Blue Nile and Baro Akobo River basins
belong to the western (W) region. These results differ from previous
classifications: the National Meteorology Agency of Ethiopia
categorised homogeneous rainfall regions into three clusters, Diro
et al. (2011) into six clusters, and Gissila et al. (2004) into four
clusters. Our selection of four regions is in agreement with the
geographical characteristics of the country. The configuration of the
SE region appears to be determined by river basins delimited by a rift
valley that extends from the southwest of the country until the
northeast coast, occupying the Hararge and Arsi Bale highlands and
the southeastern lowlands. Similarly, the SW occupies the southwest
highlands; the W is formed by river basins that occupy the Gojjam

andWollo highlands and the Western lowlands; and finally, the NE
covers the northeast rift valley and the northern Simen mountains
region.

3.1.2 Precipitation Regimes
The annual climatological cycle of precipitation for 1980–2018
for each of the four regions under study is shown in Figure 3.
Visual analysis revealed great differences among the annual
cycles, confirming the great spatial variability of the
precipitation documented for Ethiopia. However, the annual
precipitation cycle over the NE and W regions seemed very
similar, with a predominantly unimodal behaviour, with the
maximum precipitation occurring in August (145 and
251 mm/month, respectively) and July (133 and 247 mm/
month, respectively). Precipitation decreased over the NE and
W regions in the rest of the months until reaching minimum

FIGURE 2 | (A) Graphical illustration of Ward’s method: tree diagram showing the assigned clusters, and (B) schematic representation of the clusters, named as:
northeast (NE), southeast (SE), southwest (SW), and west (W).

FIGURE 3 | Climatological annual cycles of precipitation (mm/month)
from the Climatic Research Unit (CRU) (TS4.05) datasets, over the NE (grey),
SE (orange), SW (green), and W (cyan) river basin groups. Period of study:
1980–2018.
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values in December (5 and 25 mm/month, respectively) and
January (8 and 12 mm/month, respectively). The SE and SW
regions were characterised by a bimodal precipitation pattern that
was more pronounced over the SE region, while the maximum
precipitation in every region occurred in different months. The
rainiest months over the SE were April (115 mm/month) and
May (102 mm/month), while those over the SW were May
(149 mm/month) and August (142 mm/month). Similar to the
NE andW regions, the lowest mean monthly precipitation values
occurred in the Northern Hemisphere winter months, which is in
agreement with previous studies (Seleshi and Zanke, 2004; Abebe,
2010).

3.2 Identification of Moisture Sources for
Each Region
The annual climatological pattern of (E – P) > 0 obtained in a
backward experiment for each of the four regions identified

through the cluster analysis of each catchment’s precipitation
during 1980–2018 is shown in Figure 4. For this analysis was
considered the mean water vapour optimal annual integration
times (in days) listed in Table 2.

The areas shaded by reddish colours represent regions where
air masses gained humidity rather than losing humidity before
reaching each region. The p95 used as a threshold for delimiting
the most important moisture sources reveals a very similar
pattern of (E − P) > 0 for the four regions, which extend over
northeast Africa and west of the Indian Ocean (IO). However,
some differences among the (E − P) > 0 patterns can be explained
by the geographical location of the regions. For example, the
moisture sources for the NE and W regions were more extended
and intense over continental areas than over oceanic areas,
covering a large part of northeast Africa (AfC), including the
whole NE group, and part of the Arabian Peninsula (AP). With
respect to oceanic sources, the NE receives moisture from the
Mediterranean Sea (MS), Red Sea (RS), western IO, Persian Gulf
(PG) and Arabian Sea (AS). For the SE and SW catchment
regions, the spatial extension of the (E − P) > 0 patterns
covered less extension of northeast Africa but were more
extended over the IO. In addition, for both SE and SW, the
p95 line does not include the MS source. Finally, the most intense
values of moisture uptake were usually observed in and around
the study regions, although for the SE region, the intensity of the
pattern was also high over the western IO and AS regions. The
mechanisms associated with moisture transport from the sources
to the precipitation over Ethiopia are crucial to the contribution
of each source. During the boreal spring, the Somali Jet begins to

FIGURE 4 | Annual patterns of (E – P) > 0 obtained in a backward experiment for the (A) NE, (B) SE, (C) SW, and (D)W river basin groups. The extensions of the
sources were delimited using percentile 95 (represented by a pink line). Period: 1980–2018.

TABLE 2 |Mean water vapour optimal annual integration time for each of the four
river basin groups of Ethiopia; the northeast (NE), southeast (SE), southwest
(SW), and west (W). Period 1980–2018.

Regions Optimal integration time
(days)

NE 5
SE 6
SW 9
W 8
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form as a low-level cross-equatorial one, bringing moist air from
the southern IO to the southern escarpment of the Ethiopian
highlands (Riddle and Cook, 2008; Riddle and Wilks, 2013).

During the boreal summer, low-level flows from the Congo Basin
to the southwest and the RS to the northeast converge over
Ethiopian highlands, fuelling the Ethiopian summer rainy season
(Jury, 2011; Viste and Sorteberg, 2011; Jury and Chiao, 2014). An
analysis of the annual mean value of the IVT and its direction for
the study period (Figure 5) reveals the predominant IVT entering
Ethiopia predominantly by the southeast, arriving from the IO,
where the magnitude of the IVT is very high (>200 kg m−1 s−1).
The IVT also enters Ethiopia from the northeast, but to a lesser
extent. These results based on an eulerian approach confirm the
importance of the IO and the AR as sources of moisture for
precipitation over Ethiopia, as revealed by the location and
extension of sources in Figure 4.

3.2.1 Moisture Contribution for Precipitation From the
Sources for Each River Basin Group
Once the sources of moisture were identified for each group of river
basins, a forward analysis was performed from each of the sources to
calculate themoisture contribution to precipitation ((E −P)< 0)) over
each of the respective regions. The results are expressed as percentages
and shown in Figure 6. For the basins grouped in the NE and W
regions, the sources of moisture that most contribute to precipitation
are the AfC (46%, 48%), while the secondmost important sources are
the regions themselves (16% and 19%, respectively) (Figures 6A,D).

FIGURE 5 | Average pattern and direction of the IVT (kg m−1 s−1).
Period: 1980–2018. The borders of Ethiopia are delimited in red.

FIGURE 6 | Percentages of moisture contribution (E − P < 0) from different sources to the four Ethiopian river basin regions: (A) northeast (NE), (B) southeast (SE),
(C) southwest (SW), and (D)western (W), obtained via the forward analysis for the period 1980–2018. Blue and brown bars represent the total moisture contribution from
oceanic and terrestrial sources, respectively. Key for the sources: IO, Indian Ocean (red), RS, Red Sea (cyan), MS, Mediterranean Sea (pink), PG, Persian Gulf (orange),
AS, Arabian Sea (grey), AfC, African continent (green), AP, Arabian Peninsula (dark blue), and R, within the region’s river basins (yellow).
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As Ethiopia is located in the north of Africa and close to the equator,
the annual rainfall is dominated by the migration of the ITCZ (Segele
et al., 2009; Fazzini et al., 2015; Seregina et al., 2019), which supports
the results explained earlier. Figure 4 shows that the NE also receives
air masses that gain humidity from oceanic sources, such as the IO,
PG, and RS, and their contributions to the total moisture loss are 4%,
1%, and 10%, respectively (Figure 6). Nevertheless, according to Viste
and Sorteberg, 2011, the Ethiopian highlands receive a small
contribution of moisture transported from the Gulf of Guinea. In
addition,Mohamed et al. (2005) described the predominant influence
of moisture flux of Atlantic origin over the northern Ethiopian
Plateau. However, we did not identify any moisture sources from
the Atlantic Ocean causing precipitation over the NE andWbasins of
Ethiopia. For the SW region, the AfC remains the most important
moisture source, supplying 39% of the total moisture contribution to
precipitation, followed by the IO (28%). However, because the SE
region is closer to the IO, it receives a major contribution from this
oceanic source, followed by the AfC (18%), AS (14%), SE itself (12%),
and AP (8%). Thus, SE region is the only region that receives more
than 50% of the moisture supply, which contributes to rainfall from
oceanic sources. This is in agreement with the findings of Viste and
Sorteberg, 2011, who reported that most of the moisture entering
Ethiopia is via the African continent.

Figure 7 presents the correlation analysis between the series of
precipitation over each region of study, and the corresponding
series of |(E − P) < 0| computed through the forward experiment
from the respective moisture sources. For NE, the correlations
were positive, except for that obtained with the moisture
contribution from AS, which was negative. Similarly, the
moisture contribution to precipitation from AS and
precipitation over the other regions had an inverse
relationship, which may depend on the influence of the
position and intensity of the Somali low-level jet during the
boreal summer months. In the remaining regions, the
correlations were predominantly positive, particularly for the
W region, which confirms a direct relationship.

3.3 Assessment of Drought Conditions
3.3.1 Anomaly of Vertically Integrated Moisture Flux
The SPEI12 values for December were used to investigate the
annual evolution of dry and wet conditions in each region during

the study period (Figure 8). At this time scale, the SPEI permits
the assessment of the occurrence of long-term drought, which can
be associated with a combination of accumulated impacts on
agriculture, streamflows, and reservoir levels. The negative
(positive) SPEI12 values for December revealed a
predominance of annual dry (wet) conditions for each year
from 1980 to 2018, respectively. The dashed green line marks
the threshold (−1.5), below which the SPEI indicates the
occurrence of severe and extremely dry conditions. In 1984,
the NE region was affected by extreme drought conditions,
while in 2009 and 2015, it was affected by severe conditions.
Philip et al. (2018) also described 2015 as a very dry year in
northern and central Ethiopia. Extreme drought conditions
affected the SE and SW regions in 1984, when in the W
region, the SPEI12 almost reached the threshold of −1.5. This
indicated that it was a dry year in all river basins throughout the
country. This drought was associated with devasting famine and
mortality that affected the entire Ethiopian economy and
population in 1984, requiring support from global institutions
and developed countries (Vestal, 1985; Dercon and Porter, 2014).
The SE region was also affected by severe drought conditions in
1980 and 1999, the SW region in 1999 and 2002, and the W
region in 1995 and 2009. Finally, the worst year in the W region
was 2009, with severe drought conditions; this was also the most
affected region that year. A report from the United Union in 2009
(UN, 2009) associated the successive failure of precipitation in
this year and a substantial food shortfall and high prices globally
with over six million drought victims. The temporal evolution of
annual dry/wet conditions in the four study regions reveals that in
some years (e.g., 1984, 2009), there was a simultaneous
occurrence of drought that affected the four regions, although
with different severity in each of them. However, this does not
ensure that the phenomenon of drought occurs simultaneously in
all the study regions that make up the country. In some years such
as 1987, three regions were affected by dry conditions while the
SE experimented wet conditions; in 1985 the W and SE regions
were affected by wet conditions but negative SPEI12 indicate dry
conditions in the NE and SW, or the year 2000, when the W
region experienced extremely wet conditions but the other
regions dry conditions.

Annual (in percentages) and monthly (in mm/day) anomalies
of the moisture contribution for those years in which severe and
extreme drought affected the study regions were calculated, as
shown in Figures 9A,B respectively. The number of months with
negative anomalies of |(E – P) < 0| are summarised on the bars
representing the annual anomalies from the sources (Figure 9A).
In addition, the SPEI1 is also over plotted to the monthly
anomalies of |(E – P) < 0| (Figure 9B); the visual analysis of
both series allows characterising the behaviour of the SPEI1 and
the contribution of the sources for each month of the years
affected by severe and/or extreme drought conditions. Besides, it
allows inferring the possible influence of peaks of the moisture
contribution during a particular month on the value of the annual
anomaly also plotted in the panel a of this figure. For the NE
region, we analysed the anomalies over 3 years: 1984, 2009, and
2015. The annual anomaly values show that only the contribution
from the PG experiences a decrease (30%); however, the

FIGURE 7 | Pearson correlation values obtained between the series of
precipitation over the NE, SE, SW, and W regions from the Climatic Research
Unit and the |(E − P) < 0| computed over these regions on air masses tracked
forward in time from all the sources (MS, RS; IO; PG; AS; AfC, AP,
and R).
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FIGURE 8 | Annual standardised precipitation evapotranspiration index (December-SPEI12) for the NE (A), SE (B), SW (C), andW (D) groups. Period: 1980–2018.
The green dashed line indicates years where SPEI12 values were lower than −1.50 (severely dry conditions).

FIGURE 9 | Left panel: Anomalies on the moisture contribution to precipitation |(E − P) < 0| (expressed in percentage) from every source during years affected by severe or
extreme drought conditions in the study regions; NE (A), SE (B), SW (C), and W (D); and the number of months with a negative anomaly on the moisture contribution from each
source (expressed in numbers). Right panels: SPEI1 and monthly anomalies of |(E − P) < 0| during each year in the study regions; NE (E), SE (F), SW (G), and W (H).

Frontiers in Earth Science | www.frontiersin.org June 2022 | Volume 10 | Article 92949710

Stojanovic et al. Ethiopian River Basins Moisture Sources

140

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


climatological contribution from this source represents only 1%
of the total contribution from the main moisture sources in the
NE region. An analysis of the monthly anomalies in the
contribution of each source showed that in most months, the
negative anomalies coincided with negative values of SPEI1;
however, in July 1984 there were high positive values in the
contributions but negative values in SPEI1 (Figure 9B). Although
most sources contributed more than the annual average in this
year, the effect of the contribution in specific months masked
what happened during the rest of the year. For example, for

8–9 months of 1984, the anomalies in the contribution from the
MS and RS were negative, although, these are not the most
important sources. In 2015, there was a reduction in the
moisture contribution to precipitation from all sources in the
NE region, except for a negligible percentage from the PG. In
1984, there was also a decrease in the moisture contribution from
most of the sources to the precipitation over the NE region,
including two of the most important sources, the AfC and AP,
which prevailed in almost all months of the year. To support the
understanding of the role of moisture contribution anomalies in

FIGURE 10 | Anomalies of vertically integrated moisture flux (VIMF, unit: mm/day) for severe annual drought in each of the four [NE (A), SE (B), SW (C), and W (D)]
regions of study (shown in Figure 2).
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the occurrence of severe and extreme drought conditions, VIMF
anomalies were calculated (Figure 10). In 1984, 2015, and 2009,
positive anomalies (red shades) of the VIMF prevailed over the
NE region, which favoured the inhibition of convective
movements and therefore precipitation. However, this analysis
on an annual scale can frame the behaviour of a particular month
in 1984, when the sources increased their contributions.

The years of extreme (1984) and severe (1980) droughts in the
SE region witnessed a decrease in the moisture contribution from
the sources to precipitation, except for the AP source. The
monthly analysis of SPEI (SPEI1) for 1984 showed a possible
temporal lag. Likewise, in both years, the number of months
affected by negative anomalies of contributions was predominant.
In another year affected by severe drought conditions (1999), the
behaviour of the sources in terms of decreasing contribution was
not as homogeneous. However, the deficit of moisture supplies
from the RS and AS during 9 and 8 months of 1999, respectively.
Here stand out that from the AS, taking into account that the
average annual supply from this source represents a 14% of the
total moisture lose over the SE region. The visual analysis results
in Figure 10 reveal the predominance of positive VIMF
anomalies over the SE region, particularly in 1984, thereby
confirming the importance of dynamic conditions in the final
hydroclimatic conditions of the region. Although the number of
years with severe and extreme drought conditions in this region is
low, the results confirm a more direct relationship between the
accumulated moisture contribution deficit and the impact of
droughts in the W region. In summary, although the analysis
done in Figure 9 reveals the role of sources in the annual

occurrence of droughts, the monthly anomalies of the
contribution from the sources reveal that a more detailed
analysis at the seasonal scale is necessary to better characterize
their role in the occurrence of droughts.

For the SW region, the anomaly analysis indicated that in the
driest year (1984), there were 8 months with reduced moisture
contribution to precipitation from the RS source, while there were
7 months with the same conditions from the AP, PG, and AfC
sources. The annual reductions from the RS and AP represented
almost 20% and 14% of the historical average, respectively.
However, these sources are not the largest contributors.
However The AfC source only experienced an annual
reduction of 3% but is the most important from a
climatological point of view for this region. The temporal
evolution of SPEI1 during this year shows an inconsistency in
July and August when the anomalies of |(E − P) < 0| values were
positive, but the SPEI1 was negative. In 2002, only two sources,
the IO and PG, experienced a decrease in their contribution to the
annual average, with negative SPEI1 values in 8 months of the
year. It is worth highlighting the importance of the IO source,
which is the second most important source for this region. The
SW region was also affected by severe drought conditions in 1999,
when the contribution from all sources, except the PG, decreased
substantially. The temporal evolution of SPEI1 during this year
reveals a good correlation between the evolution of the index and
anomalies of moisture contributions from the different sources.
The VIMF anomalies over the SW region during these years were
mostly positive, mainly in 1984, which was the driest year. Finally,
in the 2 years (2009 and 1995) affected by severe drought
conditions in the W region, there was a negative anomaly in
the contribution of moisture to precipitation from all moisture
sources of this region, as well as unfavourable conditions for
precipitation according to positive anomalies of the VIMF. The
evolution of SPEI1 during these years was consistent with the
monthly |(E – P) < 0| anomalies.

3.3.2 Drought Impacts on Vegetation
The vegetation dynamics in each region were investigated during
severe and extreme annual droughts. To this end, the NDVI
anomalies were calculated (Figure 11). For the NE region under
the extreme drought of 1984, the NDVI anomalies were
predominantly negative. This confirms the marked reduction
in vegetation cover in a region characterised by the prevalence of
dry evergreen Afromontane forest and Combretum-Terminalia
woodland and wooded grassland (Friis et al., 2010). In 2015 and
2009, lower vegetation activity was observed in a large part of the
NE region, particularly in the north, and south, respectively.
Vegetation stress was also observed in a major part of the SE
region due to extreme drought conditions in 1984, particularly in
the southwest of this region. The results are also consistent for
1999, when severe drought affected the SE region and negative
anomalies of the NDVI prevailed, although they were less intense
than those found for 1984. NDVI anomalies were not calculated
for 1980 because the relevant data were unavailable.

For the SW region, negative NDVI anomalies were obtained
for 1984, a year of extreme drought, which extended over the
entire region. This is supported by the study conducted by

FIGURE 11 | Anomalies in the normalised difference vegetation index
(NDVI) for the NE (A), SE (B), SW (C), and W (D) regions under study during
severe and extreme drought years.
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Dagnachew et al. (2020) for the Omo-Gibe basin (located in the
SW region), which described vegetation degradation in 1984. The
years 2002 and 1999, which were the second and third most
severe dry years for the SW region, respectively, showed less
pronounced negative NDVI anomalies that are mostly located to
the east in 2002 and south in 1999. Finally, in the W region, a
common contrast was observed in vegetation growing conditions
between the northeast and southwest in 2009 and 1995, both
years affected by severe drought. However, it was contradictory to
find a prevalence of positive NDVI anomalies in the year 1995. A
possible explanation for this could be the occurrence of two
previous years (1993 and 1994) characterised by severe wet
conditions (Figure 8). To confirm this, future studies should
identify the optimal temporal lag in which dry and humid
conditions affect the vegetation conditions in these regions.

4 CONCLUSION

This study revealed the most important sources of moisture for
precipitation in Ethiopian river catchments. For this purpose, a
cluster analysis was implemented to reduce the 12 river basins that
make up the country into a smaller group of major drainage systems
with similar pluviometry characteristics. This resulted in four study
regions named N, SE, SW, and W, according to their geographical
position in the country. The analysis was based on a Lagrangian
approach using global outputs from the FLEXPART model for
39 years (1980–2018) for ensuring accrued climatological results.
This model permitted to track backward in time air masses and
computed the moisture gain over time, which allows the
identification of the most important oceanic and terrestrial
moisture sources. These were the western IO, AS, PG, MS, and
RS as well as terrestrial sources from the adjacent AfC, AP, and R.
However, the MS was not selected as one of the most important
sources for the SE and SW regions. The size of the sources differs,
even when they originated from the same geographical region. The
moisture contribution from these sources to precipitation (E − P)< 0
over the target regions was calculated by forecasting air masses
occurring over the sources and considering the optimum integration
times of the Lagrangian precipitation proposed in previous studies.
This analysis revealed the crucial role of moisture recycling and
moisture export within the African continent according to the major
moisture contribution supply from theAfC, R, andAP sources to the
precipitation over the NW, W, and SW regions. In contrast, the IO
and AS are responsible for supplying 46% and 14% of the moisture
loss over the SE region, respectively; thus, the oceanic origin of
precipitation is significant in this region. Correlation analysis
confirmed the direct relationship between the |(E − P) < 0| series
and precipitation over each region.

Drought assessment using the SPEI on a 12-month scale
identified the years affected by severe and extreme drought
conditions in each of the study regions. The years in order of
severity for the NE regions were 1984, 2015, and 2009; for the
SE, 1984, 1980, and 1989; for the SW, 1984, 2002, 1999; and
for the W, 2009, and 1995. During these years, a significant
reduction in the moisture contributions from the sources
occurred in combination with positive anomalies of the
VMIF, which confirmed the inhibition of convection and
precipitation processes. In 1984 for the NE region, analysis
at the annual scale did not provide wholly consistent results;
however, a monthly analysis partially supported an
explanation. Finally, annual severe and extreme drought
conditions reduced the vegetation activity, particularly in
the NE, SE, and SW regions. Our ongoing research is
focused on a more detailed seasonal analysis, which will
provide more comprehensive information regarding the
variability of precipitation sources. Further, its impact on
Ethiopian seasonal rainfall and the associated influence of
drought on hydrological cycles and vegetation.
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Drought- and heatwave-
associated compound extremes:
A review of hotspots, variables,
parameters, drivers, impacts, and
analysis frameworks

Mahnaz Afroz1, Gang Chen1 and Aavudai Anandhi2*
1Department of Civil and Environmental Engineering, FAMU FSU College of Engineering, Tallahassee,
FL, United States, 2Biological System Engineering Program, Florida A&M University, Tallahassee, FL,
United States

Droughts and heatwaves are rising concerns with regard to the frequent

formation of the compound or concurrent extremes (CEs), which can cause

greater havoc than an individual event of a higher magnitude. Recently, they

have been frequently detected to form CEs together or with other events

(e.g., floods, aridity, and humidity events) concurrently or with spatiotemporal

lags. Therefore, this systematic review assesses these CEs by reviewing the

following aspects: CE hotspots, events, and variable combinations that form

CEs; frequently analyzed CE parameters (e.g., frequency and severity); large-

scale modes of climate variability (CV) as drivers alongside the approaches to

relate them to CEs; and CE impacts (e.g., yield loss and fire risk) alongside the

impact integration approaches from 166 screened publications. Additionally,

three varied analysis frameworks of CEs are summarized to highlight the

different analysis components of drought- and heatwave-associated CEs,

which is the novelty of this study. The analysis frameworks vary with regard

to the three major assessment objectives: only CE parameters (event–event),

driver association (event–driver), and impacts (event–impact). According to this

review, the most frequently reported hotspots of these CEs in global studies are

southern Africa, Australia, South America, and Southeast Asia. In regional

studies, several vital hotspots (e.g., Iberian Peninsula, Balkans, and

Mediterranean Basin) have been reported, some of which have not been

mentioned in global studies because they usually report hotspots as broader

regions. In addition, different event combinations (e.g., drought and heatwave;

and heatwave and stagnation) are analyzed by varying the combination of

variables, namely, temperature, precipitation, and their derived indices. Thus,

this study presents three major analysis frameworks and components of

drought- and heatwave-associated CE analysis for prospective researchers.
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1 Introduction

Concurrent or compound extremes (CEs), which can be

defined as the simultaneous or sequential occurrence of more

than two extremes at a single or multiple locations, may cause

greater havoc than a single extreme of a higher magnitude (Kopp

et al., 2017; Hao et al., 2018c). Although the primary idea of the

joint probability of multiple extremes emerged decades ago, the

explicit research on CEs has surged in the last few years

(2018–2021). Especially on the verge of potential climate

change, along with the plausible changes in meteorological

variables such as temperature, precipitation,

evapotranspiration, and wind speed, this research area has

drawn more attention (Naveendrakumar et al., 2019).

Examples of CEs may include drought and heatwave, drought

and flood, temperature and precipitation extremes, and floods

from storm surges and river discharges. Among these various

combinations of CEs, one of the most explored is compound

drought and heatwave. In addition, other combinations of CEs

include either drought (dry event) or heatwave (hot event), for

example, subsequent wet and dry events, concurrent day and

nighttime heatwaves, and compound heatwave and stagnation.

Drought- and heatwave-associated CEs are among the most

studied events and have significantly increasing temporal and

spatial trends across various parts of the world. For instance, the

global land and cropland areas affected by dry and hot CEs have

reportedly increased 1.7–1.8 times in the last 50 years of the 20th

and 21st centuries across different seasons, mostly in summer

(Wu et al., 2021d). Such claims of increasing trends have also

frequently been reported in many regional- and national-scale

studies (Russo et al., 2019; Xu and Luo, 2019; Kong et al., 2020;

Geirinhas et al., 2021). In China, hot and dry CEs have increased

2.3 times between 1957 and 2018, with 90% of the dry events

being associated with hot events in 2010 (Ye et al., 2019b; Kong

et al., 2020; Feng et al., 2021c). Similarly, Mishra et al. (2021)

predicted a fivefold increase in the frequency of hot and dry CEs

in India by the end of the 21st century compared with the

1951–2016 baseline. In the past 150 years, an increasing

frequency of dry and hot months has been reported in

Southeast Australia (Kirono et al., 2017). Additionally, the

association of droughts with other events, such as pluvial

floods, was reported in 5.9%–7.6% of global land areas

between 1950 and 2016, with pluvial floods following

approximately 11% of droughts during boreal spring–summer

or fall–winter (He and Sheffield, 2020). For event combinations

of heatwave and ozone (O3), Ban et al. (2022) predicted an

increase of 34.6 in annual mean CE days under high-emission

scenarios (shared socioeconomic pathways (SSP): 3–7.0) in

2071–2090 compared with the historical baseline of

1995–2004 in a global analysis (Ban et al., 2022). Mukherjee

and Mishra (2018) reported an increase of 2–12 times in the

concurrent day and nighttime heatwaves using various

representative concentration pathways (RCPs), namely, RCP

2.6–8.5 (Mukherjee and Mishra, 2018). Based on an analysis

of the 2020 heatwave (concurrent day and nighttime

temperatures) in central South America, the high magnitude

and duration of this recent heatwave have been reported in many

parts of South American countries, such as southeastern Brazil,

northern Argentina, southeastern Paraguay, eastern Bolivia, and

Pantanal wetland (Marengo et al., 2022). In addition, in a global

analysis of the 1955–2014 period, the increasing frequency of

compound day and nighttime warm-dry and warm-humid

events caused by greenhouse gases have been reported to be

elevated by 1.5–5 and 2–9 times, respectively (Chiang et al.,

2022a).

Drought- and heatwave-associated CEs have not only been

expanding in spatiotemporal extents across various parts of the

world but have also severely affected impact variables and aspects

such as crop yields, fire risk, vegetation productivity, air quality,

and human health. A noticeable impact on global maize yield has

been reported in compound drought and heatwave scenarios

(31% decrease), whereas heatwaves (4% decrease) or drought (7%

decrease) alone has a significantly lower impact (Feng et al.,

2019). Feng and Hao (2020) associated the yield loss across the

United States and France in 61% of cases with compound dry and

hot conditions in a global study across top maize-growing

countries (Feng and Hao, 2020). In another global study, He

et al. (2022) reported that in each wheat-growing season, more

than 92% of the global wheat-growing regions have faced at least

one dry and hot CE during 1981–2020, along with increases of

28.2% and 33.2% in the CE frequency and duration, respectively.

Furthermore, among the wheat-producing regions, Europe,

eastern China, western United States, and northern Argentina

have been identified as hotspots (He et al., 2022). The increasing

frequency of hot and dry CEs in the top maize-producing regions

has also been reported in a multi-index global analysis for the

periods 1949–1980 and 1981–2012 (Feng et al., 2021a).

Additionally, fire weather and burned areas have been

associated with drought, heatwave, or both in global

(Richardson et al., 2022) and several regional studies (e.g.,

Greece and Brazil) (Gouveia et al., 2016; Libonati et al., 2022),

where fire risk may increase with increasing drought- and

heatwave-associated CEs. In the case of vegetation

productivity, an absence of extremes increased tree coverage

by 10% compared with the control scenario in a global analysis

(Tschumi et al., 2022b). A 26-fold increase in population

exposure to the compound heatwave and ozone scenarios in

the 1980s (under high emission scenario) compared with the

1995–2014 baseline has also been reported in another global

study (Ban et al., 2022). Urbanization and population (e.g.,

exposure and mortality) have been reported to be significantly

associated with CEs in China, indicating the need for potentially

similar associations and research in other parts of the world

(Wang et al., 2021; Zong et al., 2022).

The analysis frameworks of drought- and heatwave-

associated CEs usually vary with the different objectives of
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determining some of the direct spatial/temporal parameters (e.g.,

frequency, spatial extent, and probability) considering only

event–event combinations, association with large-scale modes

of climate variabilities (CVs) as drivers considering event–driver

combinations, or the impact of such CEs on various aspects

considering event–impact combinations. For example, while

some studies reported the probability of joint occurrence of

several event variables or indices, others reported the

likelihood of large-scale CV or atmospheric circulation (AC),

such as the El Niño–Southern Oscillation (ENSO), or agricultural

impact indicators, such as the Standardized Crop Yield Index

(SCI), given the occurrences of CEs. In these cases, the

frameworks mainly varied due to variable types (event, driver,

or impact variables), target parameters to be calculated, and

associated methods (Hao et al., 2018b; Feng and Hao, 2020; Wu

et al., 2021d).

A previous review on CE has addressed four categories of

CEs: 1) preconditioned, in which the impact of hazard is

worsened by a weather- or climate-driven precondition; 2)

multivariate, in which the impact is aggravated by multiple

hazards; 3) temporally compounding, in which the impact is

aggravated by successive hazards; and 4) spatially compounding,

in which the impact is worsened by hazards in multiple

connected locations (Zscheischler et al., 2020). These

categories mostly have common analysis frameworks and

methods with slight variations in which temporally or

spatially compounding data are used as inputs, other than in

the case of concurrent multivariate events (Hao et al., 2018b; De

Luca et al., 2020b; Sutanto et al., 2020). Furthermore, Zhang W.

et al. 2021a discussed the drivers, mechanisms, and methods

associated with these categories.

The quantitative methods to assess CEs parameters vary from

a simple percentile-based peaks-over-threshold (POT) or an

empirical approach to complex copula-based joint probability

(JP) analysis, conditional probability (CP) analysis, pair copula

construction (PCC), or developing a standardized compound

event indicator (SCEI) (Hao et al., 2018a; 2020b;

Cheraghalizadeh et al., 2018; Ribeiro et al., 2020b; Slater et al.,

2020; Mishra et al., 2021). Some basic parameters used to convey

the outcome of CE analysis are frequency, spatial extent,

probability, duration, correlation, and severity. Occasionally,

these same parameters are analyzed by separating the data

using land cover (e.g., croplands and forests) and seasons

(e.g., growing season) or by including an impact variable such

as crop yield to assess the impacts in terms of several

spatiotemporal extents or variables of interest, respectively (Lu

et al., 2018; Manning et al., 2018; Wang et al., 2018; Feng et al.,

2021c).

To date, various review articles have covered different

aspects of CEs, such as definition, involved statistical

procedures, upcoming CEs, dependence structure, and

suggested framework (Leonard et al., 2014; Kopp et al.,

2017; Hao et al., 2018c; Hao and Singh, 2020). For

instance, Hao et al. (2018c) discussed the processes

associated with the statistical characterization and modeling

of extremes in the hydroclimatic domain by discussing

approaches such as multivariate distribution, empirical

approach, Markov Chain Model, and quantile regression

approach. Approaches for detecting and predicting

hydroclimatic extremes (non-stationary cases) and the

associated drivers and matrices were also discussed by

Slater et al. (2020). In addition, some review articles

focused on the potential CEs in the warming world, the

associated drivers influencing the extremes, the potential

risk associated with the extremes, and their frequency

(Goodess, 2013; Kopp et al., 2017; AghaKouchak et al.,

2020). While AghaKouchak et al. (2020) focused on most

potential extremes (e.g., heatwaves, wildfires, extreme

precipitation, and flooding), their interactions as compound

events, associated drivers, and risk, Kopp et al. (2017) directly

discussed various potential CEs such as simultaneous heat and

drought, wildfires associated with hot and dry conditions, and

flooding associated with high precipitation, as well as their

associated risks and impacts of several shared large-scale

modes of CVs along with atmospheric forcing factors such

as ENSO and tipping elements such as Atlantic Meridional

Overturning Circulation. In another review, CEs were mainly

classified into four categories: preconditioned, multivariate,

temporally compounding, and spatially compounding

(Zscheischler et al., 2020). Most review articles have

focused on associated analytical approaches, classification,

driver assessment, and risk assessment, among others. In

contrast, Raymond et al. (2020) primarily focused on a

multidisciplinary (climatic, societal, and economic)

argument for the concept of related extreme events, their

impacts, and potential anthropogenic impacts on CEs

(Raymond et al., 2020).

Despite covering many aspects of CEs, previous review

articles have not discussed the analysis frameworks that vary

with regard to analysis objectives. In addition, the already

discovered hotspots, which are the most impacted or CE-

frequent regions in the corresponding study area as claimed

in many previous publications, have not been summarized in

previous reviews (Ridder et al., 2020; Chiang et al., 2022b; He

et al., 2022). Thus, this study aims to provide an overview of three

major analysis frameworks, along with several aspects of CEs

related to drought- and/or heatwave-associated events. This

review focuses on the following aspects: 1) the already

reported hotspots in previous publications; 2) the event

combinations and associated variables to form CEs; and 3)

three analysis frameworks that vary according to the

objectives of assessing basic CE parameters (event–event),

association with large-scale modes of CVs as drivers

(event–driver), and impact on several aspects (event–impact)

to showcase an overall breakdown of CE analysis focused on

drought- and heatwave-associated CEs.
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2 Methodology

2.1 Article selection process

This systematic review includes 166 articles out of initially

identified 701 records from the following sources: 1) “Web of

Science” (WoS) on 2 September 2022 (642 records) and 2)

“experts” and “Google Scholar” (59 records) for various

timelines since September 2020. Herein, the term “experts”

refers to colleagues, faculties, and reviewers in the field with

whom the topic was discussed or consulted during the initial

topic selection stage. Systematic literature identification,

screening, eligibility, and exclusion/inclusion process are

detailed in the PRISMA diagram (Figure 1).

The identification phase involves searching the WoS using

search keywords. This phase results in 642 records for the

following eight search keywords: “compound extremes”

(73 records), “compound extreme” (75 records), “concurrent

extremes” (22 records), “concurrent extreme” (31 records),

“compound events” (200 records), “compound event”

(81 records), “concurrent events” (124 records), and

“concurrent event” (36 records). Herein, the advanced search

option “topic” (including the title, abstract, and keywords in the

published literature) has been used for the last 10 years

(1 January 2013 to 2 September 2022). Additionally,

59 records are identified from “Google Scholar” by searching

the database and from discussions with “experts” at various

timelines.

In the eligibility and screening phase of the systematic review,

the WoS search records are directly exported to Excel files for

processing with a Python script in the subsequent evaluation

phase. The script is used to automate the subsequent evaluations,

reducing eligible records to 540 articles. The filtering records’

criteria for the excel files are “Language = English,” “Publication

Type = J,” and “Document Type = Article.” In this process, non-

English language records (2), conference proceedings (47), books

(3), review articles (26), early access (13), and other records (9)—

all non-journal records and review articles—are screened. After

FIGURE 1
PRISMA diagram for article inclusion/exclusion in this systematic review.
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excluding duplicates within WoS, the number of records

decreases to 438. Subsequently, the titles, abstracts, and

keywords of these 438 articles from WoS are screened with a

Python code to check for the presence of two sets of keywords of

interest: set 1 comprises CE-defining words (“compound,”

“concurrent,” “concurrently,” “combined,” “copula,”

“dependence,” “dependences,” “multivariate,” “multi-variate,”

“multi,” and “joint”) and set 2 comprises drought- and

heatwave-identifying words (“hot,” “heat,” “heatwave,”

“heatwaves,” “heat waves,” “heat wave,” “warm,” “dry,”

“dryness,” “drought,” “droughts,” and “aridity”). These

keywords are obtained from the 59 articles collected from

“experts” and “Google Scholar” searches at different times

from September 2020. Evidently, the aforementioned words

are more likely to be present in the title, abstract, or keywords

of an article if relevant to our topic of interest. During this

process, the number of articles decreases to 224.

Subsequently, the full texts of 224 articles are reviewed to check

relevancy and further eligibility criteria, with 10 articles unavailable

to download with the available resources and 66 articles either

irrelevant to the topic of interest or not containing adequate

information on the targeted fields of this review. Eligible and

relevant articles must have information about drought- and

heatwave-associated CEs, mainly relevant to the domain of

agriculture, hydrology, and topics of the review (hotspots,

variables, parameters, drivers, impacts, and analysis framework).

Furthermore, the details of the percentage of excluded

articles from WoS, where 148 articles are included after

applying eligibility and inclusion criteria on 214 available full

texts, are as follows:

- The article is written in a foreign language other than

English (0.31%).

- The document type is not an article but a book, a report, or

other (9.2%).

- The document is a review paper, not an original

article (4.05%).

- The article is an early access version (2.02%).

- The article is simply a duplicated version of another article

from the search (15.88%).

- The title, abstract, and keywords showcase no significant

relevance to the topic of interest as per screening with CE-

defining words and drought-heatwave relevant words

(33.33%).

- The full-text article is unobtainable using the available

access and resources, and only the title and abstract are

accessible (1.56%).

- The overall article is not related to a topic of interest or does

not contain significant data on the topics of review

(10.30%).

Among the 59 records from “Google Scholar” and “experts,”

6 records are excluded based on the evaluation criteria

incorporated after the screening and eligibility phase and

35 records are deemed as duplicates based on WoS. This

results in 18 new articles.

The inclusion phase contains articles after the identification,

screening and eligibility, and evaluation phases. A total of 166

(148 + 18) full-text articles are included in the final stage of the

review by following the standard literature inclusion process for

systematic reviews (Anandhi et al., 2018; Peng et al., 2020).

2.2 Data collection and processing

Based on the 166 collected articles, a data collection table

is prepared, comprising 14 fields related to CEs, namely,

“studied region,” “study year,” “study timeline,” “hotspots,”

“studied event combinations of CE,” “variable combinations,”

“scale of the data,” “CE detection methods,” “analyzed CE

parameters or CE characteristics,” “thresholds,” “assessed

impacts” (if any analyzed), “impact integration approach”

(if applicable), “CVs as drivers” (if analyzed), and

“methods to connect CVs and CEs” (if applicable).

Subsequently, the collected data fields are organized into

several sections, tables, and figures to represent the results

associated with the objectives of this systematic review. The

hotspot map (Section 3.1) is drawn in a GIS environment

using the symbology option, namely, the “graduated symbol.”

Separate point shapefiles for each CE combination with

hotspots reported in global studies are digitized using GIS.

The number of studies that report a region as a hotspot is

manually counted in the attribute table. After digitizing all

reported hotspots and their counts in the attribute tables, the

final dot density map is plotted by assigning different colors to

different event combinations and by assigning different sizes

of dots based on the number of studies that report a certain

region as a hotspot. Data are obtained only from global studies

(44) that report hotspots. The hotspots reported in the

regional studies are plotted as stacked bar plots. Regional

hotspots are not plotted on the map as different regions

involve varying numbers of studies, and unlike global

studies, the extents of the study areas are not similar.

Consequently, regions with a higher number of studies

reporting hotspots have higher dot densities, irrespective of

whether a hotspot is more impacted by CEs compared to other

regions of the world. The regional hotspots, distribution of

publications by year, types of extreme studied for various

study regions, and other figures and tables are prepared in the

word processor.

Thus, the overall reviewed contents on drought- and

heatwave-associated CEs are organized in the following

workflow: 1) the hotspots of CEs found in reviewed

publications; 2) the event combinations to form drought-

and heatwave-associated CEs; 3) variables, associated data

types, and thresholds to define different CEs; 4) CE analysis
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framework with frequently analyzed parameters, the

association of large-scale modes of CVs as drivers, and the

assessment of impacts with regard to several aspects; 5)

interrelation of CEs with ecosystems; 6) assumption and

limitations; and 7) research gaps and potential future work.

The major objectives, associated data fields used to produce

the results, associated sections, and related graphics (tables

and figures) are represented as a workflow diagram of the

review strategies in Figure 2.

3 Results and discussions

3.1 CE hotspots in reviewed publications

Most studies on CEs are conducted on global or national

scales, with China, the United States, and India being the most

studied countries. In global studies, South Africa, South America,

Australia, southeastern Asia, South Asia, and the United States

are evidently regarded as significantly impacted zones with

FIGURE 2
Workflow to represent the outcome of the review from the collected data.

Frontiers in Earth Science frontiersin.org06

Afroz et al. 10.3389/feart.2022.914437

153

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.914437


regard to various CE combinations, especially compound

drought and heatwave (Feng et al., 2019; Zhan et al., 2020;

Wu et al., 2021d). In addition, hotspots for eight other

drought- and heatwave-associated CEs (i.e., drought and fire

risk, precipitation and temperature, wet and dry, warm and wet,

warm and humid, heatwave and ozone, heatwave following

cyclones, and drought and aridity) are included as reported in

the global studies. Among these event combinations, drought and

fire risk hotspots are situated in the western United States,

various parts of South America, Australia, and Southeast Asia

(Ridder et al., 2020; Richardson et al., 2022). A single hotspot for

heat followed by a tropical cyclone has been reported in Australia

(Matthews et al., 2019). For warm and humid events, hotspots are

prevalent in various parts of the United States, South America,

Southeast Asia, and Australia (Li et al., 2020; Raymond et al.,

2021; Chiang et al., 2022a). These hotspots for the

aforementioned CE combinations are represented in Figure 3,

where the dot densities indicate the number of publications that

have reported the places as CE hotspots in 44 global studies. The

associated data are listed in Supplementary Table S1 in the

supplementary document.

In regional studies, various event combinations are assessed in

different regions. Furthermore, the regions with higher numbers of

studies (e.g., China and the United States) report the hotspots

within such regions more frequently, even if the hotspots are not

that frequently mentioned across the global studies. However,

some important hotspots (e.g., Iberian Peninsula, Balkans,

Mediterranean Basin, Pantanal, and Amazon) have significantly

increasing trends concerning CEs in regional studies, whereas

most global studies do not explicitly mention some of them and

FIGURE 3
Graduated symbol plot to represent the hotspots detected in the 44 global publications. The number below each CE event combination
indicates the number of studies that mentioned the location as a hotspot. The graduated point symbols are intended to represent the approximate
locations of the broad regions found as hotspots in the global map, not the exact locations. The size of the graduated dot symbol is proportional to
the count of global publications claiming a region as a hotspot.
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FIGURE 4
(A-H) Hotspots found in the regional studies. The vertical axis represents the number of regional studies where the region was seen as hotspot
of CEs. The study numbers are not proportional to the severity of the hotspots compared to the other areas but indicate how frequently they were
studied. The horizontal axis represents the regions found as hotspots in regional studies. IP: Iberian Peninsula, BP: Balkan Peninsula, MB:
Mediterranean Basin, CR: Czech Republic, LP: Loess Plateau, UNB: Upper Nile Basin.
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rather report the hotspots as broader regions (Bezak and Mikoš,

2020; Vogel et al., 2021; Bento et al., 2022; Marengo et al., 2022).

Figure 4 showcases the stacked bar plots that represent the regional

hotspots across different event combinations. In these plots, the

number of studies that report a regional hotspot is biased by the

frequency of studies in the region.

FIGURE 5
(A) Distribution of papers listing event combinations of drought and heatwave-associated extremes by study regions. (B) Distribution of papers
listing publication years by the study regions (EP: Europe; AF: South Africa/Southern Africa/Africa; SA: South America; AS: Australia; MB:
Mediterranean Basin; others: Germany, France, Canada, Mongolia, Nigeria, Russia, Upper Nile Basin, etc.).
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3.2 Event combinations of drought- and
heatwave-associated CEs with region and
publication year distributions

In the reviewed studies, various combinations of several types

of drought- and heatwave-associated CEs are found. The

corresponding region-based distribution is presented in

Figure 5A, representing the study gaps and the combinations

of CEs explored in each region. In addition, for the event

combinations mentioned in Figure 5A, a few other

combinations of CEs are observed that have been rarely

studied (one case). These include hot, dry, and windy events;

drought and wind; and concurrent fire drivers (Ridder et al.,

2020; Tavakol et al., 2020). Among the several temperature-,

precipitation-, or drought-related extremes, compound drought

and heatwave is the most studied joint extreme. Other types or

combinations of CEs have been studied in different reviewed

publications using several variables, indices, and thresholds to

define them. In addition to hot and dry conditions, any of the

other three combinations of temperature and precipitation

extremes (cool and dry; hot and wet; and cool and wet) have

been studied together in some studies (22 studies) (Wu et al.,

2019c; Zhan et al., 2020; Camara et al., 2022).

Evidently, most studies on CEs, including drought- and

heatwave-associated CEs, have been conducted since 2018

(Figure 5B). Many studies have been conducted on a global

scale to focus on the frequency of CEs in different parts of the

world and on various global issues (Feng et al., 2019; Mukherjee

et al., 2020). In addition, more studies have been conducted in

China and the United States.

3.3 Variables with associated datatypes
and thresholds to define different CEs

Various publications have qualitatively and quantitatively

explained compound drought- and heatwave-related extremes

and their impacts with several variables and indices (Hao et al.,

2018a; 2020c; Cheraghalizadeh et al., 2018; Brunner et al., 2021).

However, the most common variables for assessing these CEs are

temperature (maximum, minimum, and average) and

precipitation, whereas the most widely used indices are the

Standardized Precipitation Index (SPI) and Standardized

Temperature Index (STI) derived from the corresponding

variables (Zscheischler and Seneviratne, 2017; Mukherjee and

Mishra, 2018; Hao et al., 2019a; Brunner et al., 2021). Stream flow

and soil moisture are the most commonly used variables for

predicting hydrological and agricultural droughts, respectively

(Cheraghalizadeh et al., 2018; Zhou et al., 2019a; Mishra et al.,

2021). Based on the study objective, various previous drought-

and heatwave-associated CE articles have discussed the following

variables: other climate variables, such as relative humidity (RH),

vapor pressure, wind speed, and evapotranspiration; large-scale

modes of ACs or CVs, such as ENSO and Pacific Decadal

Oscillation (PDO); impacted variables and aspects, such as

crop yields, land use, vegetation vulnerability, and fire risk

(Manning et al., 2018; Zhou et al., 2019b; Coffel et al., 2019;

Hao et al., 2020c; Feng et al., 2021c; Vogel et al., 2021). In several

cases, the following different indices have been used: single-

variable dependent indices, such as SPI, STI, and SCI; multi-

variable dependent indices, such as Standardized Precipitation

Evapotranspiration Index (SPEI) and Palmer Drought Severity

Index (PDSI); and copula-based compound event indicators,

such as SCEI (Hao et al., 2018a; Cheraghalizadeh et al., 2018;

De Luca et al., 2020b). The standardized indices and their defined

ranges can illuminate the severity level of extreme events (e.g.,

drought) irrespective of the weather conditions in a region,

enabling the severity in different regions to be compared.

However, direct percentiles applied over variables are

generally suitable for temporal comparison in a region, as the

variables are compared with different percentiles of variables in

the same region (Mishra et al., 2021). The variables or indices

used to define drought, heatwave, and other associated CEs

studied in the reviewed publications are summarized in Tables

1, 2, respectively. Herein, the impacted variables (i.e., SCI) or CVs

(i.e., ENSO) are not included because the objective is to represent

the participating variables/indices (meteorological, hydrological,

and agricultural) as components of each combination of CEs.

The variables/indices/aspects associated with the impacts and

driving forces are explained in Section 3.4.

In a few instances, drought and heatwaves are explained with

other inter-related variables such as RH and vapor pressure density

(VPD) as well as temperature and precipitation. Chiang et al.

(2018) proposed that drought, temperature, RH, and VPD are

interdependent (Chiang et al., 2018). In the case of CEs with

opposing phenomena, such as drought and pluvial flood in the

same location, the lagged occurrences can be considered as the CE,

and theymay be indicated with the same dry/wet condition indices

(PDSI and SPI) or variables (SM) (He and Sheffield, 2020).

In most cases, the articles use monthly data followed by daily

data. Many articles use mixed cases, such as daily, monthly, or

annual data, for different variables (Supplementary Table S2). A

typical mixed case is the use of daily temperature data and either

monthly precipitation total or SPI (Mazdiyasni and

AghaKouchak, 2015; Wu et al., 2019c). Usually, in these cases,

the days crossing a temperature threshold and falling within the

same month, which crosses the precipitation threshold, are

considered CE days. The most commonly used impacted

variable (yield) data are always collected on an annual scale.

In these cases, the growing season means or totals of other event

variables (such as temperature and precipitation) are used as

annual data points along with the annual yield data (Coffel et al.,

2019; Feng and Hao, 2020). The variables are either handled as

direct data or converted into indices.

In most articles, thresholds are defined beyond which

variables/indices are considered extreme. A threshold is
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associated with the conditions linked to the framework for each

variable. The threshold justification is attributed to

“measurable” and “extreme,” where a higher threshold may

result in very few events being detected, and a lower threshold

may result in too many events (Wu et al., 2019b). Therefore,

different articles incorporate various levels of thresholds based

on their objectives (Hao et al., 2018b; Wu et al., 2019b;

Mukherjee et al., 2020). In an article, direct data of the

variable, their derived standardized indices, or both can be

used, which have been tagged as D type, I type, or D-I type,

respectively, in this review article (Table 3). For direct data-

based thresholds, percentile-based statistics are most

commonly used, for example, the 90th percentile of June,

July, and August daily temperatures for all baseline years

(Wu et al., 2019a) or the 10th percentile of growing season

precipitation of wet days during baseline years (Lu et al., 2018).

For index-based fixed thresholds, standardized values of

different severity levels are most commonly used; for

example, Brunner et al. (2021) used SPI values of −1, −1.5,

and −2 to define moderate, severe, and extreme conditions,

respectively (Brunner et al., 2021). The collected information

on data types and example thresholds for different event

combinations is presented in Table 3, respectively.

3.4 CE analysis frameworks

The frameworks of analysis mainly vary based on the

objectives of analyzing only CE events (e.g., drought and

heatwave), the association of CE events with large-scale

modes of CV drivers (e.g., the association of drought and

heatwave with ENSO), or assessing the CE-induced impacts

on various aspects (e.g., impacts of drought and heatwave on

yield, varying CE parameters across different land covers).

The components associated with each CE framework vary

based on different variables (associated with events, drivers,

or impacts); parameters (e.g., frequencies, spatial extents,

probabilities, and correlations) to be analyzed as outcomes;

and methods (e.g., POT, JP, and CP) used to calculate the

parameters. Based on the analysis conducted in the reviewed

articles, the major analysis frameworks have been

summarized into three segments in this systematic review

based on various analysis objectives: 1) event–event that

involves quantification of CE parameters using the

contributing event variables/indices; 2) event–driver that

involves quantifying the association of CEs with large-scale

modes of CVs as drivers using variables/indices that are

representative of events and drivers; and 3) event–impact

TABLE 1 Variable (or index) combinations to be used to define drought (dry) and heatwave (hot) events.

CEs Variable or index
combinations

Variable 1/
index 1

Variable 2/
index 2

Subset of references

Event combinations Drought Heatwave

Drought and
heatwave

P-T/Tmax P T/Tmax AghaKouchak et al. (2014), Hao et al. (2018b), Lu et al. (2018), Coffel
et al. (2019), Ma et al. (2020a), Ribeiro et al. (2020a), Wu et al. (2021d)

SPI-T SPI T Mazdiyasni and AghaKouchak (2015), Sharma and Mujumdar
(2017), Wu et al. (2019b), Hao et al. (2020b), Feng et al. (2021c)

SPEI-T SPEI T Ribeiro et al. (2020b)

SM-PET-P P, SM PET Manning et al. (2018)

SPI-STI SPI STI Feng et al. (2019), Hao et al. (2019a, 2019b), Feng and Hao (2020),
Wu et al. (2020), Zhan et al. (2020), Brunner et al. (2021), Wu and
Jiang (2022)

(SPI, SM)-T SPI, SM T Mishra et al. (2021)

(P, SM)-T P, SM T Cheng et al. (2019)

(SPI, SPEI)-T SPI, SPEI T Vogel et al. (2021)

PDSI-T PDSI T Ye et al. (2019a), Cheng et al. (2019), Mukherjee et al. (2020),
Mukherjee and Mishra (2021)

SPEI-EDD SPEI EDD Wang et al. (2018)

MCI-T MCI T Yu and Zhai (2020b)

EDI-T EDI T Bezak and Mikoš (2020)

P: precipitation, T: temperature, Tmax: maximum temperature, SM: soil moisture, SSI: Standardized Soil Moisture Index, SPI: Standardized Precipitation Index, STI: Standardized

Temperature Index, EDI: Effective Drought Index, EDD: Extreme Degree Days, SPEI: Standardized Precipitation Evapotranspiration Index, PDSI: Palmar Drought Severity Index, MCI:

Meteorological Drought Composite Index.
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TABLE 2 Variable (or index) combinations to be used to define other drought and heatwave associated CE combinations.

CEs Variable or Index
Combinations

Variable 1/
Index 1

Variable 2/
Index 2

Variable 3/
Index 3

Subset of References

Event Combinations drought
(meteorological)

drought
(hydrological)

drought
(agricultural)

meteorological & hydrological
drought

MDI-MHDI SPI, SPEI, RDI SDI Cheraghalizadeh et al. (2018)

meteorological, hydrological &
agricultural drought

SPI-SMI-SSI SPI SSI SMI Vorobevskii et al. (2022)

Event Combinations drought heatwave fire

heatwave, drought & fire SM-T-FWI SM T FWI Sutanto et al. (2020)

drought & fire weather Q-FFID Q FFDI Ridder et al. (2020a)

heatwave & fire T-FFID T FFDI Ridder et al. (2020a)

Event Combinations heatwave (day) heatwave (night)

day & nighttime heatwaves Tmax-Tmin Tmax Tmin Mukherjee and Mishra (2018),
Wu et al. (2021b)

Event Combinations heatwave stagnation O3

Heatwave & O3 T- O3 conc. T O3 conc. Ban et al. (2022), Zong et al.
(2022)

Heatwave & stagnation T-(WS, P) T P, WS Gao et al. (2020)

Event Combinations drought aridity

drought & atmospheric aridity SM-VPD SM VPD Zhou et al. (2019b), Ambika and
Mishra (2021)

Event Combinations warm humid

warm & humid THI (T, RH) THI THI Garry et al. (2021)

WBGT WBGT WBGT Li et al. (2020)

Event Combinations dry/wet hot/cool

precipitation & temperature P-T P T Wu et al. (2019c), Zhan et al.
(2020), Camara et al. (2022)

hot & wet/flood P-T P T Ben-Ari et al. (2018)

WAP-T WAP T Chen et al. (2021), Liao et al.
(2021b)

dry & wet CWD-CWE CWD/CWE Esteban et al. (2021)

PDSI-PDSI PDSI De Luca et al.
(2020b)

SPI-SM SPI, SM He and Sheffield
(2020)

cold & dry Tmin-SPEI SPEI Tmin Zhang et al. (2021b)

Event Combinations heat cyclone

Heat following major tropical
cyclone

HI-central pressure HI central pressure Matthews et al. (2019)

VPD: Vapor Pressure Density, RH: Relative Humidity, MDI: Meteorological Drought Indicator, MDHI: Meteorological-Hydrological Drought Indicator, SMI: Standardized Soil Moisture

Index, FWI: FireWeather Index,WS:Wind Speed, RDI: Reconnaissance Drought Index, SDI: Standardized Drought Index, SSI: Standardized Streamflow Index, Q: Discharge, FFDI: Forest

Fire Danger Index, CWD: Cumulative Water Deficit, CWE: Cumulative Water Excess, WBGT: Wet Bulb Globe Temperature, WAP: Weighted Average of Precipitation Index, THI:

Temperature Humidity Index, HI: Heat Index.
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that involves quantification of the impacts on various aspects

using variables/indices that are representative of events and

impacts. The summarized components of the three major

analysis frameworks associated with CE analysis are

presented in Figure 6.

In the reviewed publications, several parameters are quantified

to convey the outcomes of the analyzed CEs. Herein, the most

frequently assessed parameters associated with each type of analysis

framework are presented. In the event–event framework, the

analysis of basic CE parameters mainly includes basic outcome-

indicating parameters such as frequency, spatial extent, probability,

return periods (RPs), compound indicator-based magnitude/

severity, and correlations. In the event–driver framework, the

quantification of the association with large-scale modes of CVs

is mainly assessed using parameters such as correlations and

probabilities. Finally, in the event–impact framework, the

impacts on other impacted variables or aspects are quantified

using the following three major approaches: 1) spatial subsetting

of data followed by quantification of basic CE parameters with

event–event framework components, 2) temporal subsetting of data

followed by quantification of basic CE parameters with event–event

framework components, and 3) integrating the impact variables/

indices (i.e., crop yield, burned area, and mortality) directly into the

equations/models with other event-indicating variables/indices

(Wang et al., 2018; Feng et al., 2019; Gao et al., 2020; Feng

et al., 2021c; Das et al., 2022; Ribeiro et al., 2022). Therefore, the

parameters to be calculated for the aforementioned three

approaches that assess the impacts are named region/land cover

specific parameters, time/season specific parameters, and variable

specific parameters, respectively, in this article.

The reviewed publications include one or more of these CE

frameworks to represent the various outcomes of CE analysis

(Hao et al., 2019b; Feng and Hao, 2020; Feng et al., 2021c). The

associated methods and quantitative approaches regarding each

type of analysis are described in the following three sections

(3.4.1–3.4.3).

FIGURE 6
Summarized CE analysis components associated with three major analysis frameworks (event–event, event-driver, and event–impact) (here,
en, dn, and in refer to events, drivers (CVs), and impacts indicating variables/indices, respectively; (*) indicates seasonal or land use data in other forms.
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TABLE 3 Some example threshold types: (D: data-based, D-I: data- and index-based, I: index-based).

References CE event combinations Variables Indices Threshold type (I/D) Value Stat.

Lu et al. (2018) Drought and heatwave P, T D T≥ 90th prctl (mean T of 21 days centered

over the calendar day across all baseline

years)
P ≤ 10th prctl (all growing season wet days

during baseline years)

Vorobevskii et al. (2022) Meteorological, hydrological, and agricultural drought SPI, SSI, SMI I SPI, SSI, SMI≤ − 1,−1.5,−2

Sutanto et al. (2020) Drought, heatwave, and fire weather Tmin, Tmax, SM FWI D-I SM ≤ 80thprctl (monthly SM) of 30 days

centered moving mean SM

Tmax ,T min ≥ 90thprctl (Tmax ,T minof 9moving

days centered around the day) for
≥ 3 consecutive days of JJA

FWI ≥ 90thprctl (FWI of 9moving days

centered around the day) for
≥ 3 consecutive days of JJA for a grid

Mukherjee and Mishra (2018) Day and nighttime heatwaves Tmin, Tmax D Tmax ≥ 95thprctl (daily T max for 3 − day moving

mean of AMJ for baseline)
Tmin ≥ 95thprctl (daily T min for 3 − day moving

mean of AMJ for baseline)

Ban et al. (2022) Heatwave and ozone (O3) Tmax O3 D O3 ≥ 100 mg/m3 Tmax , ≥ 98th prctl (daily T max for baseline) for
≥ 2 consecutive days

Zhou et al. (2019b) Drought and atmospheric aridity SM, VPD D SM ≤ 10th(daily SM of warm season)
VPD ≥ 90th(daily VPD of warm season)

(1–10th and 90–99th are also used)

Garry et al. (2021) Warm and humid THI I THI ≥ 70, 68, 72, 75, and 77

Wu et al. (2019c) Precipitation and temperature P, T D P≤ (or≥ )
25th(or 75th ) prctl (P over all years)

T≥ (or≤ )
755th(or 25th ) prctl (T over all years)

Chen et al. (2021) Hot and wet/flood T-WAP D-I T≥ 90thprctl (daily Tmax , or T min

of baseline day) for ≥ 3 consecutive days

WAP ≥ 95thprctl (WAP for summer of baseline)

De Luca et al. (2020b) Dry and wet PDSI I PDSI ≤ − 3, PDSI≥ 3

Matthews et al. (2019) Heat following major tropical cyclone Central pressure HI D-I Central pressure ≥ 945 hPa,

HI≥ 40.6℃

prctl, Percentile; JJA, June-July-August; AMJ, April-May-June.
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3.4.1 Frequently analyzed parameters of
drought- and heatwave-associated CEs

The most analyzed parameter in previous studies is the

frequency of CEs (Table 4). CEs are detected in these cases using

the binary mapping technique expressed in Eq. 1, which is

commonly called the “empirical approach” or “peaks-over-

thresholds” (POT) (Lu et al., 2018; Wu et al., 2019c; Feng et al.,

2021c). Subsequently, a comparison of frequencies between different

time segments is conducted in some studies to detect the frequency

changes between time periods. Occasionally, empirical RPs are also

analyzed, which are the inverse of the frequency or empirical

probability (Ridder et al., 2020; 2022a; 2022b). A typical example

of frequency quantification is represented by the simplified Eq. 2 (Lu

et al., 2018). In Eqs 1, 2, Z and CEHD represent a binary response of

0 or 1 (based on whether a variable crosses its threshold) and

compound extreme hot and dry days (determined from the

summation of Z), respectively. Additionally, x (precipitation

threshold) and y (temperature threshold) refer to the 10th

percentile of all growing season wet days during baseline years

and the 90th percentile of mean temperature centered over

21 calendar days across all baseline years, respectively.

Z � 1 True( ), P< x, T>y( )
0 False( ) (1)

Frequency � CEHDdays

total growing season days
(2)

In addition to the detection of CE frequencies, the spatial

extent (Mazdiyasni and AghaKouchak, 2015) and trend (Feng

et al., 2021c) of CEs have been detected in some articles using the

aforementioned binary detection approach (Eq. 1) followed by

Eqs 3, 4 he following equations:

spatial counts � pixels with CEs

total pixels
(3)

spatial trend � %CEHDs

decade − station
(4)

Another frequently analyzed parameter is the joint or

conditional probability for two or more variables, such as

temperature, precipitation, yield, and soil moisture (Feng et al.,

2019; Ribeiro et al., 2020b). In addition, RPs are frequently

analyzed along with or instead of probability (Miao et al., 2016;

Zhou and Liu, 2018). Probability is commonly assessed using the

copula-based method or meta-Gaussian model (Gaussian copula).

The typical expressions of the joint and conditional probabilities

can be expressed using Eqs 5, 6, respectively. In Eqs 5, 6, SPI, STI,

and SCI thresholds were represented by x (e.g., −1.6, −1, and −0.8),

y (e.g., 1.6, 1, and 0.8), and z (e.g., 0), respectively:

JP � P SPI≤ x, STI>y( ) (5)
CP � P SCI< z

∣∣∣∣SPI< x, STI>y( ) (6)

Occasionally, a copula-based compound index, such as SCEI,

can be used to indicate the severity or magnitude of CEs (Wu

et al., 2020). Eq. 7 is a generalized expression of SCEI, where φ
and F stand for standard normal distribution and marginal

cumulative distribution, respectively. Additionally, the

different severity levels mentioned by Wu et al. (2020) are

summarized in Table 5:

SCEI � φ−1 F JP( )[ ] (7)

Another important parameter proposed in CE publications is

duration, which is basically the event span (Sedlmeier et al., 2018;

Manning et al., 2019; Qiao et al., 2022). In some cases, the relation

of CEs with another event (also lagged) can be indicated by

analyzing the correlation. For instance, Hao et al. (2019a)

determined the correlation between CE and standardized

ENSO (Hao et al., 2019a). The details are presented in Section

3.4.2. The general equation of Spearman’s correlation coefficient

(rR) is listed in Table 4, where n is the number of data points in

the variables to be correlated and di is the difference in the rank of

the ith element.

3.4.2 Large-scale modes of CVs as drivers of CEs
Different large-scale modes of CVs are evidently present

during CEs or induced CEs as precursors or drivers in

significant parts of the global land area (Hao et al., 2019a;

2019b; De Luca et al., 2020b). For instance, ENSO and PDO

reportedly impact 18.1% and 12% of the global land area,

respectively, whereas Atlantic Multi-decadal Oscillation

(AMO) inversely affects 18.9% of the global land area. The

effects of ENSO and PDO are reportedly significant in

northern South America, the central United States, the

western United States, the Middle East, eastern Russia, and

eastern Australia. However, AMO substantially impacts

Mexico, Brazil, central Africa, the Arabian Peninsula, China,

and eastern Russia in different seasons (Table 6) (De Luca et al.,

2020a). In most cases, the dependence between lagged or

concurrent CVs is indicated using correlations. However,

several other methods have also been associated with

representing the relationships between CEs and CVs, as per

previous studies (Table 7).

The dependence between different large-scale modes of

CVs (i.e., ENSO and PDO) and CEs is most commonly

assessed using correlation coefficients (e.g., Spearman’s

correlation test) (Wu et al., 2019c; Mukherjee et al., 2020;

Shi et al., 2020). In some instances, the impact of a major CV

must be discarded to assess the relationship between another

CV and CE. For such instances, a partial correlation can be

used (De Luca et al., 2020b). The relationship between two

random variables can be represented by this method after

discarding the effects of other variables; for example, De Luca

et al. (2020) estimated the relationship between PDO and

PDSI, given the ENSO-indicating index called Niño 3.4 (De

Luca et al., 2020b). The partial correlation between CV to be

correlated (xi) and CE variable to be correlated (xj) after
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discarding the effect of another CV (xk) can be assessed by Eq.

8, where rij, rjk, rik refer to correlations between xi and xj, xj
and xk, and xi and xk, respectively (De Luca et al., 2020):

rij|k �
rij − rikrjk�����

1 − r2ik

√ ������
1 − r2jk

√ (8)

Evidently, ENSO has the most widespread impact on global

land areas in terms of percent land area impacted; furthermore,

ENSO interacts with other CV modes, such as PDO and Arctic

Oscillation (AO) (Wu et al., 2019c; De Luca et al., 2020b). These

complex interactions may induce uncertainties in correlation

results. Therefore, the correlations are highly variable over

seasons, regions, and event combinations of CEs (Wu et al.,

2019c).

Large-scale modes of CVs can be used as predictors for

determining the severity of upcoming CEs (Hao et al., 2019a;

2019b). According to Hao et al. (2019a), the upcoming severity of

a CE after 1 month of period t (Wt+1 = SCEIt+1) can be

determined using Eq. 9, given that the predictors Wt and Xt

are the standardized CE indicator (SCEIt) and standardized CV

(SNINOt), respectively:

P Wt+1|Wt,Xt( ) (9)

Eq. 9 must have a normal distribution with mean µ and

variance σ2. The validity of the prediction can be assessed using

Pearson’s correlation coefficient between the observed and

simulated CE indicators.

A logistic regression model (LRM) can also be used to

predict CE occurrence (Hao et al., 2018b; 2019b). The

regression model and 1-month leading probability can be

expressed using Eqs 10, 11, respectively. In these two

equations, x, π, α, and β stand for Niño 3.4 index,

probability of CE given ENSO, regression constant, and

regression coefficient, respectively. P (Zt+1 = 1|x) represents

1-month leading probability of CE events:

ln
π

1 − π
[ ] � α + βx (10)

P Zt+1 � 1|x( ) � 1

1 + e − α+βxt( )[ ] (11)

The validity of the prediction can be determined using

the Brier Skill Score in the case of LRM. The results

showcase that lower SCEI values (more severe compound

dry and hot events) are associated with higher SNINO (El

Niño) values from December to February. In contrast, lower

values of SNINO (La Niña) are associated with higher SCEI

values in southern America (Hao et al., 2019b). Another

expression of the relationship between compound events

and ENSO is the odd ratio (� exp(β)); a higher value (>1)
of the odd ratio implies higher odds of CE occurrences with a

higher Niño 3.4.

3.4.3 Assessment of CE impacts on several
aspects

The impacts of various CEs have been assessed in several

aspects, such as crop yield (Feng and Hao, 2020), crop growth

season (Lu et al., 2018), phenological growth phases (Wang et al.,

2018), land cover/land use (Feng et al., 2021c), urbanization (Wu

et al., 2021b), fire risk (Richardson et al., 2022), and air quality

(Gao et al., 2020). In order to assess the impacts on several aspects,

the impacted parameters (region-, time-, or variable-specific) are

integrated into the CE assessment framework using various

approaches, such as temporal subsetting of time series for the

growing season or growth stages, spatial subsetting of spatial data

to include land cover/land use/region/station of interest, and

directly integrating into the equations/model/method of

assessment. The examples of these approaches are summarized

in this section based on the major approaches to integrate impact

variables or aspects. In the direct data integration approach, crop

yield data or yield variables are directly included in the conditional

probability or paired copula method in a few studies (Feng et al.,

2019; Ribeiro et al., 2020a; Feng and Hao, 2020). In addition, the

vegetation index is used as a direct variable in the vine copula

model, and the burned area directly correlates with extremes.

However, land cover and land use are integrated by spatial

subsetting of the data by Feng et al. (2021c), with the stations

or weather grids relating to different land covers, such as

croplands, forests, and pastures (Feng et al., 2021c). Several

other studies have followed a similar spatial subsetting

approach with land use or land cover data to compare CEs for

different land uses or land covers (Toreti et al., 2019; Wu et al.,

2021d). In another case of spatial subsetting combined with direct

variable integration, the population exposure to compound

heatwave and ozone is spatially grouped across the spatial

distribution of age and income (Ban et al., 2022). Examples of

temporal subsettings can be found in Lu et al. (2018) and Wang

et al. (2018), where CEs are compared by isolating them into the

growing season and phenological stages, respectively (Lu et al.,

2018; Wang et al., 2018). Additionally, assessed impacts are

temporally sub-divided across CE magnitudes in the case of

population mortality in Europe (Hertig et al., 2020) and

vegetation vulnerability in southwest China (Liu et al., 2022),

along with direct variable integration for both cases. In fact,

both subsettings and variable integration approaches have been

used in most cases to process spatiotemporal data used in the

studies (Gao et al., 2021; Gazol and Camarero, 2022; Kroll et al.,

2022). Examples of the major aspects/impact integration

approaches are summarized in Table 8.

3.5 Interrelation between ecosystems
and CEs

Ecosystems and vegetation productivity are closely inter-

related with hydroclimatic extremes because they can affect
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each other. While CEs such as drought and heatwave can affect

vegetation productivity in dry and hot regions, reduced

vegetation productivity can affect evaporative cooling and soil

moisture dynamics to alter surface fluxes and near-surface

weather to induce CEs (Li et al., 2021; Kroll et al., 2022).

Kroll et al. (2022) reported an association between vegetation

productivity and hydroclimatic extremes in 50% of the global

study area, with impacts varying across regions. Similarly, Li

J. et al. (2022) reported varying impacts of CEs in different

regions. For instance, CEs of temperature and precipitation

(especially warm and dry or cold and dry events) can

significantly reduce vegetation productivity in mid-latitude

regions between 23.5˚N and 50˚N, whereas they may increase

productivity in regions with latitude greater than 50˚N (Li J. et al.,

2022). Additionally, the abundance of dried vegetation caused by

sequential wet and dry seasons can create fire weather, followed

by fire hazards (Richardson et al., 2022). Moreover, reduced

vegetation caused by CE can potentially affect terrestrial carbon

dynamics and carbon sequestration, whichmay reduce crop yield

and plant biomass and increase global warming potential (Afroz

et al., 2021; Tschumi et al., 2022a; Kroll et al., 2022). Reduced

vegetation in one season may also amplify drought in the next

season, which can cause lower vegetation productivity with

continued effects on the following seasons and productivity

(Li J. et al., 2022b). As vegetation potentially induces CEs,

which may impact many other aspects (e.g., yield, air quality,

livestock mortality, fire risk, and human health), the direct and

indirect relationships among ecosystems, vegetation, and CEs are

quite evident.

3.6 Assumptions and limitations of the
current study

As this study is conducted by searching WoS with eight search

keywords related to CEs, some studies might have been missed in

which these keywords are not explicitly mentioned in the titles,

abstracts, and keywords of the publications. However, the previously

collected publications from “experts” and “Google Scholar” at

different timelines did contain these keywords, with most being

present in the title, abstract, or keywords of a relevant article of

interest. Therefore, the used keywords are assumed to have resulted

in a significant number of studies to conduct a systematic review and

miss only a negligible number of relevant articles.

This study limits the scope to only the most frequently used

approaches and divides the analysis types and frameworks

accordingly. Other possible infrequent approaches have not been

discussed in this study. Additionally, the hotspot map drawn in this

study represents a study area as a more frequently claimed hotspot

with dot densities based on the number of global studies claiming

that region to be a hotspot. Local studies are excluded from the

hotspot map because the study areas do not have similar extents as

global studies. In addition, some regions have more relevant articles

than others (e.g., United States andChina), whichwould yield higher

dot densities in themap, even if the region is not a global hotspot for

a particular event combination of CE. Therefore, the regional

hotspots are represented as stacked bar plots in this study, and

the number of studies is biased by the varying numbers of studies in

different regions. However, the hotspot map aims to represent the

already reported hotspots from reviewed global publications and

how frequently they were found more impacted. The bar plots

drawn on regional hotspots aim to represent regional hotspots,

which are not the focus of global studies as they report on broader

regions. Thus, the study number frequency associated with regional

hotspots should not be interpreted as an indicator of the severity of

regional hotspots compared with other areas but rather as an

TABLE 4 Some key analyzed parameters of drought and heatwaves
associated CEs assessed in reviewed publications (n = number of instances
the parameter is evaluated in the reviewed articles, varn = nth variable, tn =
threshold of nth variable).

Analyzed parameter Example equation

Frequency/% change (n = 102) F � no. of CE days
no. of days in a year/season

Spatial extent/trend (n = 44) Spatial extent � pixels with CEs
total pixels

Probability or RPs (n = 48) JP � P(var1≤ t1 , var2≥ t2)

CP � P(var1≤ t1 |var2≤ t2 , var3≥ t3)

RPs � 1
Probability

Magnitude/severity indicators (n = 45) SCEI � φ−1 F(JP){ }

Correlation (n = 25)
rR � 1 − 6∑i

d2i
n(n2−1)

TABLE 5 Categories of compound severities (characterized by SCEI) of compound dry and hot conditions based on a previous publication.

Category Compound dry and hot condition Percentile chance SCEI

1 Abnormal 20 to ≤ 30 −0.5 to −0.7

2 Moderate 10 to ≤ 20 −0.8 to −1.2

3 Severe 5 to ≤ 10 −1.3 to −1.5

4 Extreme 2 to ≤ 5 −1.6 to −1.9

5 Exceptional ≤ 2 −2.0 or less
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indicator of the frequency with which they are studied. In addition,

the term “hotspot” is used to indicate the most impacted or frequent

CE zone in this study based on the reviewed articles, which might

have other uses in other climate studies (De Luca et al., 2020a; Ridder

et al., 2020; Chiang et al., 2022b; He et al., 2022).

Additionally, in this review, only the large-scale CVs are called

“drivers.” In contrast, other studies might have claimed that other

events or impact variables/aspects are drivers of each other, as CEs,

associated events, and impacts can influence each other (Slater et al.,

2020; Zhang W. et al., 2021a). However, this study focuses on

different analysis frameworks. As the large-scale modes of CVs are

mainly assessed as driving forces with different framework

components compared with other event–event or event–impact

frameworks, they are mentioned as “drivers” in this study.

3.7 Research gaps and potential future
works

Recent global and regional studies on CEs have analyzed

several characteristics, driver associations, and impacts on several

aspects (Hao et al., 2018b; Chiang et al., 2018; Wu et al., 2019b;

2019a). The assessment of frequency, spatial extent, correlations

with variables and large-scale climate drivers, severity,

probabilities of occurrence, RPs, and durations are among the

most analyzed parameters either on a global scale or from a

regional perspective in highly studied countries such as the

United States, China, India, and Europe. However, global and

regional research gaps exist on which future work should be

planned.

Although Chinese studies have differentiated the impact

on land-cover conditions and growth periods or growing

seasons of major crops, the effect has not yet been directly

assessed on yield data (Lu et al., 2018; Wang et al., 2018; Chen

et al., 2021; Feng and Hao, 2021). The USA-based studies of

CEs, as well as compound drought-related extremes, have

already covered various aspects, including areas such as the

likelihood of compound hot and drought extremes based on

copula-based bivariate analysis (Hao et al., 2020b), RP

analysis for California drought (AghaKouchak et al., 2014),

analysis of statistically significant changes in the distribution

of data (Mazdiyasni and AghaKouchak, 2015), the impact of

compound drought and hot events on maize yield (Feng and

Hao, 2020), analyzing shifts in temperature under various

TABLE 6 Regions detected with major CE-CV association in different seasons.

Drivers Season/
Months

Regions found with CE-CV association References

ENSO N/A Northern South America, central United States, western United States, middle east, eastern
Russia, eastern Australia

De Luca et al. (2020b)

MAM Central America, western Africa Mukherjee et al. (2020)

JJA Central Europe, Asia Mukherjee et al. (2020)

JJA, JAS, ASO South America, southern Africa, southeastern Asia, Australia Hao et al. (2018b)

SON Southern Australia Mukherjee et al. (2020),

DJF Amazon, southern Africa, and northern Australia, northern South America, northern North
America, southeast Asia, Australia

Hao et al. (2019a; 2019b), Mukherjee
et al. (2020)

Summer India Mishra et al. (2020)

Warm Season Southern North America, northern South America, northern and southern Africa, southern
and southeastern Asia, and Australia

Feng and Hao (2021)

OND Western and central Africa, the Maritime Continent and northeastern South America,
western north America

Richardson et al. (2022)

PDO N/A Northern South America, central United States, western United States, middle east, eastern
Russia, eastern Australia

De Luca et al. (2020b)

JJA Western North America, central North America, Sahara,
Mediterranean, eastern Asia, and Tibet, Northern Hemisphere

Mukherjee et al. (2020)

AMO N/A Mexico, Brazil, central Africa, the Arabian Peninsula, China, and eastern Russia. Wu et al. (2019c), De Luca et al.
(2020b)

NAO JJA Northern Europe, eastern North America Mukherjee et al. (2020)

EMI N/A Eastern China Ma et al. (2020b)

MAM:March-April-May, JJA: June-July-August, JAS: July-August-September, ASO: August-September-October, SON: September-October-November, DJF: December-January-February,

OND: October-November-December, PDO: Pacific Decadal Oscillation, AMO: Atlantic Multi-decadal Oscillation, NAO: North Atlantic Oscillation, EMI: El Niño Modoki Index (EMI).
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dryness conditions (Chiang et al., 2018), the occurrence of

windy events with dry and hot conditions in the Great Plains

of the United States (Tavakol et al., 2020), and the impact of

ozone due to heatwave and stagnation (Zhang et al., 2018,

2020). However, the impacts on other major field crops (e.g.,

cotton, peanut, and soybean) and vegetation vulnerability are

yet to be addressed.

For Europe, impacts such as forest mortality resulting from

drought and heatwave (Gazol and Camarero, 2022),

compound ozone and heatwave (Hertig et al., 2020; Jahn

and Hertig, 2022), and various temperature and

precipitation combinations have been assessed (Sedlmeier

et al., 2016, 2018). However, other event combinations and

impacts on crops, urbanization, and other aspects also need to

be addressed in this region. For Australia, very few event

combinations, such as drought and heatwave, strong winds,

and heavy precipitation, are covered (Ridder et al., 2022a;

Reddy et al., 2022); however, many other aspects (e.g., drought

and fire risk, heatwave and ozone, warm and humid events,

and drought and aridity), for which several parts of Australia

have been deemed as global hotspots, have not yet been

addressed from a regional perspective. The same is true for

other hotspot regions, such as South Africa and South

America (Tencer et al., 2016; Weber et al., 2020). In

comparison to the United States and China, studies on

other parts of the world have covered fewer aspects;

however, they have included some local aspects that have

not yet been covered in other regions, for example, the impact

TABLE 7 Methods to assess relations of large-scale modes of CVs as drivers.

References Drivers CEs Relative variables Study area Study
timeline

Methods to
connect CVs
and CEs

De Luca et al.
(2020b)

ENSO,
PDO, AMO

Concurrent wet and
dry extremes

Monthly PDSI and CVs Global 1950–2014 Spearman’s rank
correlation test, partial
correlation

Wu et al. (2019c) ENSO, AO,
NAO, AMO,
PDO, EA/WR

Wet/warm,
dry/warm, wet/cold,
dry/cold

Spatial extent of CE and CVs
seasonal average

China 1961–2014 Pearson correlation
coefficients

Ma et al. (2020b) EMI Concurrent dry and
hot events

EMI and observed drought-
related variables (V850, PW,
VV500, P)

China (east) 1960–2019 Regression

Mukherjee et al.
(2020)

ENSO,
PDO, NAO

Compound drought
and heatwave

Average seasonal CVs and
(seasonal average T or P)

Global 1982–2016 Spearman’s rank
correlation test,
Poisson GLM

Mishra et al.
(2020)

ENSO Hot and dry summer Niño 3.4 anomaly and (T
anomaly, SPEI)

India 1951–2018 Comparison of time series,
correlation

Hao et al. (2019b) ENSO,
PDO, NAO

Compound dry and
hot events

SCEI and lagged 1, 3-months
Niño 3.4, post SCEI | prior
SCEI, SNINO

Global 1980–2018 Correlation, conditional
distribution model, LRM

Hao et al. (2018b) ENSO Compound dry and
hot events

Niño 3.4 and (P, or T), CE|
Niño 3.4: 0–2 months

Global 1951–2016 Correlation, LRM, odd
ratio, CP empirical

Hao et al. (2019a) ENSO Compound dry and
hot events

SCEI and Niño 3.4, post-SCEI
| prior-SCEI, SNINO: 1 and
3 months

Southern Africa 1951–2016 Kendall’s rank
correlation, CP

Feng and Hao
(2021)

ENSO Compound dry and
hot events

ONI and spatial extent of CEs,
P-T correlation separation by
ENSO, and neutral years

Global 1950–2018 Correlation, empirical
probability, temporal
subsetting across ENSO
years

Richardson et al.
(2022)

ENSO, DMI,
SAM,
PNA, GAR

Fire weather and
meteorological
drought

Niño 3.4, DMI, SAM, PNA,
GAR, and BA

Global (western
United States, eastern
Australia)

1970–2020 Plotted comparison

Shi et al. (2020) ENSO, AO Dry and wet events (ENSO, AO) and CE
dynamics

China (YRB) 1952–2000 Correlation

Wu et al. (2021c) NAO, PDO,
ENSO

Compound dry and
hot events

CVs and (P, T, SCEI) China 1921–2016 Correlation, LR,
composite analysis

AO: Arctic Oscillation, EA/WR: East Atlantic/Western Russia pattern, GLM: Poisson Generalized LinearModel, V850: meridional wind at 850 hPa, PW: precipitable water, VV500: vertical

velocity at 500 hPa, ONI: Oceanic Niño Index, YRB: Yellow River Basin, DMI: DipoleMode Index, PNA: Pacific North American Index; SAM, Southern AnnularMode Index; GAR, Gulf of

Alaska Ridge Index.
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TABLE 8 Examples of CE impacts assessed on several variables/aspects in reviewed publications and major impact integration approaches (there may be
additional approaches and variables/aspects in the references listed under each integration approach; only some examples of each approach are listed here).

Major impact
integration approaches

Study region Variable/aspect integrated Major methods References

Spatial Subsetting Global Crop (maize) producing regions POT Feng et al. (2021a)

China LULC, land-surface conditions POT Feng et al. (2021c)

China Urban lands (from LULC) POT, GFDL land model Liao et al. (2021a)

China Urban lands (from LULC) POT Wu et al. (2021b)

South China Urban lands (from LULC, population
density)

POT Wu et al. (2021a)

Temporal Subsetting China Crop (maize and wheat) growing season POT Lu et al. (2018)

China Crop (maize) growing season (across
phenological phases)

POT Wang et al. (2018)

Direct Variable Integration Global (maize
producing countries)

Crop (maize) yield meta-gaussian model Feng et al. (2019a), Feng and
Hao (2020), Feng et al. (2021b)

Spain Crop (wheat and barley) yield Copula-based PCC Ribeiro et al. (2020a)

India Crop yield Correlation Mishra et al. (2020)

USA Crop yield Regression Haqiqi et al. (2021)

China (Xinjiang) Vegetation biomass/indices Copula-based CP, correlation Li et al. (2021)

IP Fire risk variable (burned area) POT, correlation Bento et al. (2022)

Spatial and Temporal
Subsettings

Global Crop (maize and wheat) producing
seasons, and regions

POT, statistical
decomposition

Lesk and Anderson (2021)

Global Crop (wheat) producing seasons, and
regions

IRMS Toreti et al. (2019)

Global LULC (land, cropland) POT, LMF Wu et al. (2021d)

Subsettings and Variable
Integration

Global Crop yield (wheat), growing season, and
region

POT, OLS regression He et al. (2022)

Global Vegetation biomass/indices POT, correlation Kroll et al. (2022)

Global Vegetation biomass/indices Copula, partial correlation Li et al. (2022b)

Global Vegetation biomass/ indices Meta-gaussian model Wu and Jiang (2022)

Global Vegetation biomass/indices DGVM, POT Tschumi et al. (2022b)

Global Vegetation biomass/indices (carbon
uptake)

Copula-based JP Zhou et al. (2019b)

Global Population (exposure across age, income) POT Ban et al. (2022)

Global Fire risk variable (FFDI, burned area) POT, plotting Richardson et al. (2022)

USA Air quality variable (ozone) POT, WRF/Chem model,
Regression, Correlation

Zhang et al. (2018)

USA Air quality variable (ozone, PM 2.5),
population (exposure, mortality,
morbidity)

POT, WRF-chem, BenMAP-
CE 1.3, pooled method

Zhang et al. (2020)

Europe SM Copula-based PCC Manning et al. (2018)

Europe vegetation biomass/ indices (tree
mortality across CE magnitudes)

Copula Gazol and Camarero (2022)

Europe Population (mortality, population) POT Hertig et al. (2020)

(Continued on following page)
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of reforestation on warm and dry, and warm and wet CEs in

western Africa (Camara et al., 2022).

Other than drought and heatwave, the number of global

studies has been limited for other event combinations

(Figure 3). As the results are subjective to the studies

identified in this literature review, a higher number of global

studies can provide more hotspots produced from different

data sources, timelines, and event/variable combinations,

which are likely to provide more varied results. Even though

global studies have covered various impacts and aspects such as

population exposure to ozone and heatwave (Ban et al., 2022),

maize yield vulnerability (Feng et al., 2019; 2021a), wheat

growing season (He et al., 2022; Wu and Jiang, 2022),

vegetation vulnerability (Kroll et al., 2022), population

exposure to heat and humidity (Li et al., 2020), fire risk

caused by drought and heatwaves (Ridder et al., 2020;

Richardson et al., 2022), and various large-scale CVs

related to CEs (Mukherjee et al., 2020; Mukherjee and

Mishra, 2021), other potential aspects such as the effect of

urbanization on CEs, concurrent day and nighttime heat

extremes, and the impact of CEs on mortality/health are

yet to be addressed on a global scale. These unexplored

CEs and aspects on a global scale have been assessed in

regional studies, showing significantly increasing trends and

effects/impacts, respectively. Therefore, future research may

include studies on other event combinations besides drought

and heatwave as well as on potential aspects that include

further knowledge in the CE analysis field. More studies on

these unexplored topics can help find more global hotspots,

trends, events, and impacts across various regions, timelines,

and different data sources.

Although an analysis framework has been suggested and

proposed in a previous review along with definitions of CEs,

three major analysis frameworks applied across related

articles that focus on drought- and heatwave-associated

CEs have been categorized and summarized in this

systematic review (Leonard et al., 2014). The same applies

to the included hotspots reported in recent studies. Previous

reviews have covered several other topics, such as statistical

approaches, upcoming CEs, categorization of CEs, and mutual

dependence patterns (Supplementary Table S3). However, the

components of analytical frameworks and hotspots for

drought- and heatwave-associated CEs are unexplored areas

that have been comprehensively covered in this review.

However, considering scope, this review limitedly

summarizes the most frequently used methods and

parameters. Thus, future work can potentially focus on

infrequent methods, parameters and upcoming machine-

learning-based approaches (Feng et al., 2021d; Sweet and

Zscheischler, 2022).

TABLE 8 (Continued) Examples of CE impacts assessed on several variables/aspects in reviewed publications and major impact integration approaches (there
may be additional approaches and variables/aspects in the references listed under each integration approach; only some examples of each approach are
listed here).

Major impact
integration approaches

Study region Variable/aspect integrated Major methods References

Europe and MB Vegetation biomass/indices (land
degradation)

POT Mulder et al. (2019)

India Population (exposure across CE
combinations and SSPs)

POT, exposure Statistics Das et al. (2022)

China Urban lands (from LULC) POT, correlation, and
regression

Yang et al. (2022)

Eastern China Urban lands (from population),
population (exposure)

POT Yu and Zhai (2020a)

Southwest China Vegetation biomass/indices Copula-based RP Liu et al. (2022)

UK Livestock mortality+ potato blight POT, risk density Garry et al. (2021)

West Africa LULC (reforestation) RegCM4-model (vegetation
on-off)

Camara et al. (2022)

Southern Africa Vegetation biomass/indices Correlation, plotting Hao et al. (2020a)

Mongolia Livestock mortality POT, spatial clustering Haraguchi et al. (2022)

Northeast China Crop (maize) yield POT, APSIM model Li et al. (2022a)

Brazil (Pantanal,
Xingu)

Fire risk variable (burned area) Poisson regression, contours Ribeiro et al. (2022)

LULC: Land Use and Land Cover, PCC: Pair Copula Construction, LMF: LikelihoodMultiplication Factor, MVR:Multivariate Regression, RegCM4: Regional, WRF/Chemmodel: Weather

Research and Forecasting model coupled with Chemistry, FFID: Forest Fire Danger Index, IRMS: Intensity-Reweighted Moment Stationarity, DGVM: Dynamic Global Vegetation Model,

IP: Iberian Peninsula, UNB: Upper Nile Basin, OLS: Ordinary Linear Regression.
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4 Conclusion

This novel review presents an overall breakdown of the

quantitative assessment of drought- and heatwave-associated

CEs by mainly focusing on their hotspots, variables, analysis

frameworks, assessed parameters, association with large-scale

CVs as drivers, and impacts of CEs on several aspects. While

hotspot mapping reveals themost frequently reported regions with

CEs as per the reviewed global studies, event and variable

combinations represent the variables/indices most commonly

used to define combinations of events to form CEs. The most

reported hotspots worldwide are found in Southern Africa, several

parts of South America, Southeast Asia, South Asia, and Australia

for various CE combinations studied in several global studies. As

per the review, the most analyzed parameters of the considered

CEs are frequency, spatial extent, compound indicator-based

severity/magnitude of CEs, probability, RPs, duration, and

correlation. While the frequency and spatial extent are usually

assessed with the binary counting approach in the POT method,

probabilities are determined using copula-based joint probability,

conditional probability, and empirical probability approaches (Ye

et al., 2019a; Wu et al., 2019b; Hao et al., 2019c). The most assessed

large-scale mode of CV is found to be ENSO, whereas the impacts

are found to be yield loss of several globally important crops,

vegetation vulnerability, fire risk, air quality, urbanization effect,

and CE frequencies under different land-use conditions (Hao et al.,

2018b; Feng and Hao, 2020; Gao et al., 2020; Feng et al., 2021c; Kroll

et al., 2022; Richardson et al., 2022). Therefore, this study breaks

down the components of CE analysis frameworks into variables/

indices, frequently calculated parameters, drivers, impacts, and

associated methods. This study can aid future researchers in

understanding the framework components of drought- and

heatwave-associated CEs with reduced time and effort.
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