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Editorial: Women in signal
processing

Hagit Messer*

School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel

KEYWORDS
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engineering

Editorial on the Research Topic

women in signal processing

One of the turn-points in my life was in the mid-90th, during the yearly major

conference of the Signal Processing community, the IEEE international conference on

acoustic, speech and signal processing (ICASSP). Women were always minorities in these

meetings, and if one of them joined a chat in a social gathering, she were naturally

considered as the wife of one of the men around. Being young and naïve then, I never saw

it as an issue. However, at that specific meeting on 1995 I decided to join, for the first time,

a social event, entitled “lunch for women in signal processing.” I found there a small but

very diverse group of about 50 women from all around the world, and when each

introduced herself, I had a very strong emotional reaction of a sisterhood. For the first

time I felt at home in my professional community, and at that very specific moment I

became active in the advancement of women in science and engineering, and in particular

in my field, i.e., signal processing.

An essential question rises is about the quantity and the visibility of women in signal

processing today. Such data is hard to trace, but fortunately, the IEEE keeps and publishes

statistical records1. These records show that while the overall share of women in the IEEE

(including students) is still around 10%, in the signal processing society it is a bit but not

much better, about 2,300 out of 19,000 (~12%). However, Figure 1 shows a promising

trend over the last decade: while the total number of women (non-students) in the IEEE

signal processing society has increased by 45%, the number of women in higher-level

grades (senior member and fellow) has doubled. Moreover, women take leadership

positions in the IEEE signal processing society2 with the current president Athina P.

Petropulu and 11 out of its 23 board members being women3.
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With that in the background, I was happy to accept the role of

an editor of the topic “Women in signal processing” for the

journal Frontiers in Signal Processing. The first challenging

task was to identify potential contributors, trying to open a

gate for women outside the natural circle of collaborators and

colleagues. Luckily, with the help of my co-editors Monica

Bugallo, Maria Sabrina Greco and Fauzia Ahmad, we have

identified 82 potential female contributors whom were directly

approached, and managed to deliver this unique Research Topic

of Frontiers in Signal Processing.

The 10 papers published under the topic of “Women in signal

processing” came from senior or junior female researchers from

North America, Europe and Asia. They cover a variety of topics

in signal and image processing, involving learning techniques,

integrating sensing and communication, satellite

communication, security and more, presenting original

research and methods:

• Eva Lagunas et al. from the University of Luxemburg

contribute to GEO satellite communication and propose

an efficient time–space illumination pattern design, where

they determine the set of clusters that shall be illuminated

simultaneously at each hopping event along with the

dwelling time.

• Sara Baldoni et al. from Italy deal with security

and propose a flexible context-based security

framework by exploring two types of context:

distributed and local.

• Sina Shahsavari et al. from University of California, San

Diego present an error analysis for Angle of Arrival (AoA)

estimation in mmWave channel, a Research Topic relevant

to 5G technologies and beyond.

• Tiziana Cattai et al. from Rome, Italy present an original

Visually Driven Point cloud Denoising Algorithm

(VIPDA) contributing for better digital representation of

3D surfaces;

• Kavya Gupta et al. from France present a stability analysis

of fully connected neural networks allowing one to capture

the influence of each input or group of inputs on the neural

network stability.

• Alotaibi and Suppappola from Italy propose two methods

for dealing with a primary source tracking a moving object

under time-varying and unknown noise conditions;

• Shobha Sundar Ram et al. from Indraprastha Institute of

Information Technology Delhi, India present contribution

to the optimization of JRC—joint radar communication

system;

• Josiane Zerubia et al. from France propose a track-by-

detection approach to detect and track small moving

targets by using a convolutional neural network and a

Bayesian tracker;

• Melissa Gray et al. from Drexel University, United States

study methods for metagenomic taxonomic classification,

contributing to accurately identifying which microbes are

present in a biological sample;

• Athina Petropulu et al. from Rutgers and Yale universties,

United States, present methods for dealing with the

problem of joint beamforming and discrete motion

control for mobile relaying networks in dynamic

channel environments;

FIGURE 1
IEEE Signal Processing Society women members in all non-student grades over the decade of 2012–2021. Based on data published in the
annual IEEE statistical reports.
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These articles attract increasing attention from the relevant

community all around the world, as indicated by Women in

signal processing Frontiers Research Topic (frontiersin.org), and

hopefully contribute to the visibility of women in signal

processing.

Finally, I deeply thank my co-editors Monica Bugallo, Maria

Sabrina Greco and Fauzia Ahmad and the frontiers staff for

making it happens.
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Precoded Cluster Hopping for
Multibeam GEO Satellite
Communication Systems
Eva Lagunas*, Mirza Golam Kibria, Hayder Al-Hraishawi, Nicola Maturo and
Symeon Chatzinotas

Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg, Luxembourg

Beam hopping (BH) and precoding are two trending technologies for high-throughput
satellite (HTS) systems. While BH enables the flexible adaptation of the offered capacity to
the heterogeneous demand, precoding aims at boosting the spectral efficiency. In this
study, we consider an HTS system that employs BH in conjunction with precoding in an
attempt to bring the benefits of both in one. In particular, we propose the concept of cluster
hopping (CH), where a set of adjacent beams are simultaneously illuminated with the same
frequency resource. On this line, we propose an efficient time–space illumination pattern
design, where we determine the set of clusters that shall be illuminated simultaneously at
each hopping event along with the dwelling time. The CH time–space illumination pattern
design formulation is shown to be theoretically intractable due to the combinatorial nature
of the problem and the impact of the actual illumination design on the resulting interference.
For this, we make some design decisions on the beam–cluster design that open the door
to a less complex still well-performing solution. Supporting results based on numerical
simulations are provided which validate the effectiveness of the proposed CH concept and
a time–space illumination pattern design with respect to benchmark schemes.

Keywords: satellite communications, multibeam satellite, beam hopping, precoding, demand-matching

1 INTRODUCTION

The first generation of broadband multibeam satellites was launched in the 2000s, with the main
objective to deliver internet services to people who had no access to faster forms of internet
connectivity (ViaSat Inc., 2018). Driven by the success of the first generation of broadband satellites,
new advanced satellite systems were set up during the 2010s with spot beams. Viasat-1 is a clear
example of such next generation of satellites, which is able to serve 72 spot beams and reach a total
capacity of 140 Gbps. Clearly, these accomplishments established the birth of the so-called
generation of high-throughput satellite (HTS) systems (Cola et al., 2015). While wireline and
wireless terrestrial broadband service lack the ability to leap across continents, oceans, and difficult-
to-access areas, the inherent large coverage footprint of satellite communication networks make
them the most suitable solution to expand networks over the world. Therefore, satellites can
complement the terrestrial networks and offer important socioeconomic benefits, while increasing
the satellite competitiveness.

From frequency/bandwidth to power allocation and coverage, the forthcoming generation of
commercial satellite communication payloads offer enhanced flexibility to dynamically satisfy the
customers’ demands (Kisseleff et al., 2020; NetWorld 2020, 2019). Such reconfigurable satellite
systems are clamored by operators and manufacturers to be one of the most groundbreaking
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evolutions of satellite communications with an impact on
lowering mission costs and enabling satellite systems to
become more agile and responsive to market needs (SES,
2020; AIRBUS, 2021). These future satellite architectures are
expected to offer terabit per second in-orbit capacity when
and where needed. Such throughput enhancements can only
be achieved by pushing forward the multibeam architecture
with a reduced beam size, taking advantage of frequency reuse
and reconfiguring the satellite capacity according to the
heterogeneous traffic demands.

In response to the combination of ever-growing data demand
with the inherent satellite spectrum scarcity (Kodheli et al., 2020),
an intelligent allocation of satellite resources considering the new
degrees of flexibility shall be conceived, particularly considering
both the actual users’ position as well as their traffic demand. This
study focuses on two of the most promising disruptive techniques
to tackle these specific challenges: linear precoding and time-
flexible beam hopping.

1.1 Linear Precoded for Satellite Systems
While conventional satellite systems are designed to operate using
an interference avoidance approach through a proper reuse of the
available spectrum among beams, more recent paradigms have
been proposed and studied which go in the opposite direction
through the management and the exploitation of the interference
among beams. The objective is clearly to maximize the use of the
user link available spectrum (in terms of spectral efficiency),
which represents a limited resource of the system. In this context,
Vazquez et al. (2016) summarize multiuser multiple input single
output (MU–MISO) digital signal processing techniques, such as
linear precoding, that can be applied in the user link of a
multibeam satellite system operating in full frequency reuse.
While the concept of MU–MISO in satellite networks have
been mostly theoretical, an actual live-based demonstration
supported by the European Space Agency (ESA) has been
carried out in ESA project LiveSatPreDem (2020), validating
the feasibility of such technique considering the recently
amended DVB-S2X specifications to support it. It is worth to
remark that precoding is embedded at the gateway, thus keeping
the complexity of the payload and user terminal (UT)
infrastructure low.

In general, one of the main challenges faced by HTS systems
(particularly for precoded systems) is the feeder link congestion,
that is, the congestion on the bidirectional communication link
between the gateway and the satellite. The increase in the capacity
of the user link requires a corresponding increase in the capacity
of the feeder link, which is currently limited by few GHz of
available bandwidth (Kyrgiazos et al., 2014). In principle, the
exploitation of higher frequency bands (e.g., Q/V) by this wireless
link could address this issue. However, often this approach is not
feasible in practice due to weather impairments at high
frequencies (Zhang et al., 2017). A common alternative is the
deployment of multiple gateways, where each gateway conveys
the signals to be transmitted to a cluster of spot beams. This
concept of beam-clustering would be relevant to this study and
will be addressed in the next section.

1.2 Time-Flexible Beam Hopping
Beam hopping (BH) was originally proposed to deal with large
multibeam coverage areas, by focusing the satellite resources to
certain subset of beams, which is active for some portion of time,
dwelling just long enough to satisfy the requested demands
(Freedman et al., 2015). In doing so, BH is able to increase
useable capacity and reduce unmet traffic demands, particularly
in the presence of heterogeneous traffic demand.

The conventional BH illumination pattern is illustrated in
Figure 1A, where the active spot beams are designed to have a
border area formed by inactive beams such that a degree of
isolation exists between each active beam. Note that the set of
illuminated beams changes in each time slot based on a
time–space transmission pattern that is periodically repeated.
The time axis is divided in windows of duration TH, which repeat
following a regular pattern. Each BH window is segmented in Ns

time slots and in each time slot a different set of beams is
illuminated. By modulating the period and duration that each
of the beams is illuminated, different offered capacity values can
be achieved in different beams.

The BH procedure on the one hand allows higher frequency
reuse schemes by placing inactive beams as barriers for the co-
channel interference, and on the other hand allows the use of a
reduced number of onboard power amplifiers, with a consequent
reduction of payload mass. BH benefits have been well
demonstrated, for example, ESA project BEAMHOP (2016),
and the satellite standard DVB-S2X has recently included
guidelines to enable beam hopping operation.

On the downside, we noticed that in certain scenarios where
more than one adjacent beam is requesting high demand, the
performance of BH is affected by the limitation of not being able
to simultaneously activate neighboring beams with the same
spectrum resource. The latter motivates the contribution of
this study.

In summary, BH provides the means to flexibly adapt the
offered capacity to the time and geographic variations of the
traffic demands, while precoding exploits the multiplexing feature
enabled by the use of multiple antenna feeds at the transmitter
side to boost the spectral efficiency. These two effective strategies
can create unique opportunities if they are properly combined.

1.3 Contribution: Precoded Cluster Hopping
The contributions of this study are summarized as follows:

1) Cluster hopping concept: we propose the novel cluster
hopping (CH) concept as a natural combination of BH
with precoding. In CH, multiple set of adjacent beams are
illuminated at the same time with the same frequency
resource. We define a cluster as the set of adjacent active
beams that are served by a single gateway so that the whole
coverage area can be served through multiple clusters/
gateways. An example of the proposed CH is shown in
Figures 1B,C, which requires the use of precoding to deal
with the resulting interference as no separation line of inactive
beams is considered within a beam cluster. CH was first
introduced by the authors in Kibria et al. (2019). Herein,
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we expand Kibria et al. (2019) with more technical details,
expanding the numerical results.

2) Illumination pattern design: the illumination pattern design
for conventional BH systems has been studied in Alegre-
Godoy et al. (2012), Angeletti et al. (2012), Anzalchi et al.
(2010), Cocco et al. (2018), and Lei et al. (2020). While Alegre-
Godoy et al. (2012), and Anzalchi et al. (2010) focused on
heuristic iterative suboptimal algorithms, Angeletti et al.
(2012) and Cocco et al. (2018) considered genetic and
simulated annealing algorithms, respectively, targeting
global optimal solutions at the expenses of increased
computational complexity. Finally, Lei et al. (2020)
proposed to integrate deep learning into the optimization
procedure in order to accelerate the optimization procedure.
Herein, we propose an illumination pattern design for CH
(and therefore considering precoding the corresponding
clusters) under a fair beam demand satisfaction objective.
In particular, we formulate the illumination pattern design as
a max-min of the offered vs. demanded capacity subject to a
set of practical constraints. The presence of binary assignment
variable as well as nonlinearity caused by the interference as a
function of such binary assignment variable makes the

problem non-convex and difficult to solve. To tackle
this, we propose to limit the clustering to specific forms
that allow us to 1) simplify the relationship between a
specific beam illumination instance and the resulting
interference and 2) reduce the search space of the
feasible solutions and, therefore, obtain a low-complex
solution. Although optimality cannot be guaranteed, this
solution is shown to reach satisfactory results with
affordable complexity.

3) Numerical evaluation: finally, we present supporting
results based on numerical simulations using a
software tool (SnT University of Luxembourg, 2020).
We evaluate the beam demand satisfaction under
different beam-clustering designs and different
number of simultaneously activated beams, for
different demand instances. We also compare the
proposed CH with respect to the conventional BH
technique and with respect to Ginesi et al. (2017). The
latter represents a preliminary study carried out by ESA,
where precoding was first combined with BH and a
pragmatic, iterative, and heuristic approach was
proposed for the illumination pattern design.

FIGURE 1 | Beam hopping illumination pattern: (A) conventional beam hopping; (B) proposed cluster hopping with four-beam clusters; and (C) proposed cluster
hopping with seven-beam clusters.
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The rest of this article is organized as follows. Section 2
introduces the system model and relevant nomenclatures.
Section 3 presents the proposed cluster hopping concept
considered in this study and addresses the illumination pattern
design. Supporting simulation results are presented in Section 4,
and finally, concluding remarks as well as future research
directions are provided in Section 6.

2 SYSTEM MODEL

Let us consider a high-throughput multi-beam satellite system
with a total of Nb beams, from which only a subset of Q beams,
Q < Nb, can be simultaneously activated at a particular time
instance. We define the illumination ratio as Q/Nb, for example, a
1/4 illumination ratio means that 25% of the total number of
beams is illuminated. We assume that the beams that are
illuminated employ full-frequency reuse, meaning that all of
them operate over the same spectrum Bw. For the sake of
clarity, the feeder links (connection between gateways and
satellite) is considered ideal, that is, noiseless and without
channel impairments.

In this study, we use the following terminologies:

• Cluster: a group of adjacent beams simultaneously
illuminated with the same spectrum Bw. To cope with
the resulting interference, clusters are precoded.

• Snapshot: a particular arrangement of illuminated and non-
illuminated clusters. For illustration purposes, Figures 1B,C
show three and three snapshots, respectively. There can be
as many as 2NC possible snapshots, Nc being the number of
considered clusters. Of course, not all snapshots are valid in
the sense that only a given number of nonadjacent clusters
can be illuminated simultaneously because of payload
limitations, that is, the illumination ratio.

• Time slot: a time slot or time instance defines the time
granularity of the hopping operation, that is, the minimum
illumination period for a selected snapshot. The hopping
window, TH, is equally divided into Ns time slots. Therefore,
TH � Ns × Ts, where Ts denotes the duration of the time slot.

• Hopping window: as anticipated, the hopping window
consists of Ns time slots and has a total duration of TH.
It also represents the maximal time period allowed to
provide service to all the users in the coverage area.

Let us focus on a particular snapshot and on a particular
cluster within that snapshot. The signal vector received by the Nc

active beams within the ith cluster is denoted as yi ∈ CNc×1 and
further expressed as:

yi � Hix + ni, (1)

where x ∈ CQ×1 denotes the transmitted symbols with E[xxH] �
IQ andHi ∈ CNc×Q refers to the channel matrix of cluster i, which
includes the components of all active beams and is assumed to be
perfectly known at the transmitter, and ni ∈ CNc×1 denotes the

additive Gaussian zero-mean unit-variance noise, that is,
E[ninH

i ] � INc.
For the sake of clarity, we drop the cluster subindex i

throughout the following, which applies to any cluster. The
entry at the k th row and q th column of the downlink
channel matrix H in (1) between the multibeam satellite and
the Nc beams of the cluster is modeled as:

[H]k,q �
�������
GRxGk,q

√
4π dk

λ

�������
κTRxBw

√ , (2)

where

• GRx is the receiver antenna gain (assumed to be the same for
all UT for simplicity),

• Gk,q is the gain from the q th beam seen at the k th beam,
• dk is the distance between the satellite and k th beam,
• λ denotes the wavelength,
• κ denotes the Boltzmann constant,
• TRx is the clear sky noise temperature of the receiver.

Consequently, the received signal of the kth beam can be
written as:

yk � hT
k xk︸��︷︷��︸

desired

+ ∑
j∈C
j≠k

hT
k xi

︸���︷︷���︸
intra−cluster interf .

+ ∑
u∉C

hT
k xu︸���︷︷���︸

inter−cluster interf .

+nk, (3)

where hTk denotes the kth row of matrixH, and we distinguish two
types of interference: (i) intra-cluster interference, with C
denoting the set of beams belonging to the same cluster as
beam k and (ii) inter-cluster interference, which considers all
the transmission signals not intended to cluster C.

3 CLUSTER HOPPING DESIGN

Both interference components in (3) can be mitigated by
considering precoding over all Q active beams. Although this
is the best approach in terms of achievable capacity, its
implementation is limited by the feeder link congestion. For
such number of active beams, multiple and coordinated gateway
stations are required, which is considered unlikely in practice due
to the synchronization accuracy needed for coordinated
precoding (Arapoglou et al., 2016).

Therefore, our first design decision is to mitigate the intra-
cluster interference only by precoding clusters independently.
Regarding the inter-cluster interference, its effect will be
minimized by considering avoiding adjacent clusters to be
simultaneously activated. These two assumptions, shall allow
us to 1) upload the signals using multiple noncooperative
gateways, 2) pursue a design under the assumption of
negligible inter-cluster interference, and 3) reduce the number
of possible snapshots and, thus, the search space of the cluster
hopping design.
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Taking into account the aforementioned assumptions, the
offered capacity to beam k belonging to cluster C can be
expressed as:

ck � BwfDVB

Pbeam hH
k wk

∣∣∣∣ ∣∣∣∣2
∑j∈C
j≠k

Pbeam hH
k wj

∣∣∣∣ ∣∣∣∣2 + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ [bits/sec], (4)

where fDVB denotes the signal-to-interference and noise ratio
(SINR) vs. the spectral efficiency (SE) mapping function
according to the adaptive coding and modulation (ACM)
scheme considered by the digital video broadcasting (DVB)
standard (DVB-S2X, 2014). The transmit power per beam is
assumed to be fixed and equally distributed across beams and it is
denoted as Pbeam. It is out of the scope of this study to optimize
the transmit power.

As a consequence, the cluster capacity can be obtain by adding
all the capacity of the beams belonging to that cluster:
Ci � ∑k∈Cick, where we have again reintroduced the cluster
subindex i.

3.1 Objective
The objective is to obtain the optimal illumination pattern, that is,
set of snapshots and their dwelling time, such that the demands of
the beams/clusters are fairly satisfied. In other words, the optimal
illumination pattern would be such that achieves ci ≈ di, i � 1, . . . ,
Nb,Ci ≈ Di, and i � 1, . . . , Nc, where di and Di denote the demand
of ith beam and ith cluster, respectively. Note that this study
focuses on the demand-matching at the beam level. The task to
distribute the beam capacity to the different end-users of that
beam is known as user scheduling (Guidotti and Vanelli-Coralli,
2020; Honnaiah et al., 2021).

3.2 Proposed Illumination Design
Let us define our design variable with a set of binary vectors xt of
dimensionNc × 1, with components xt [i] being equal to one when
cluster i is active at the time slot t.

Since the optimization of the illumination design is performed
at the hopping window level, we scale down the cluster demand at
the hopping-window level as D̂i � THDi [bits/hopping window],
and the offered cluster capacity at time slot level as Ĉi � TsCi

[bits/time-slot]. With these definitions, we can state that the
actual offered capacity at the hopping window level can be
computed as R̂i � ∑Ns

t�1xt[i]Ĉi [bits/hopping window], where
the cluster offered capacity Ĉi can be easily precomputed and
stored.

As discussed, without making any assumption on the snapshot
design, the number of possible binary arrangements in xt is 2Nc ,
which might become untractable for realistic multibeam patterns.
However, not all are valid snapshots for our problem as we have a
couple of constraints, namely, maximum number of active beams
per time slot (i.e., ∑Nc

i�1xt[i] � Q′), Q′ denoting the number of
active clusters, and activation of adjacent clusters shall be
avoided. The latter constraint can be expressed as:

xTt Axt � 0, (5)

where matrix A ∈ 0, 1{ }Nc×Nc represents the binary adjacency
matrix of the clusters. It is a square symmetric matrix, that is,
Ai,j � Aj,i and Ai,j � 1 when cluster i is adjacent to cluster j.

With all these in mind, the proposed cluster illumination
pattern design is formulated in the following equation:

max min
xt ,t�1,...,Ns{ }

R̂1

D̂1

, . . . ,
R̂Nc

D̂Nc

( )
s.t. ∑Nc

i�1
xt[i] � Q′,

xTt Axt � 0, t � 1, . . . , Ns

xt[i] binary, t � 1, . . . , Ns i � 1, . . . , Nc

.

(6)

We can simplify the max−min optimization problem in (6) by
turning it into a maximization problem with the help of an
additional slack variable c along with a new
constraint R̂1

D̂1
≥ cbR̂1 ≥ D̂1c:

max
xt ,t�1,...,Ns{ }

c

s.t. ∑Nc

i�1
xt[i] � Q′,

xTt Axt � 0, m � 1, . . . , Ns

xt[i] binary, t � 1, . . . , Ns i � 1, . . . , Nc

R̂i ≥ D̂ic, i � 1, . . . , Nc

.

(7)

One can observe that problem (7) is a linear programming (LP)
problem involving a binary assignment variable. Although the
inherent combinatorial problem remains, with the proposed
constraints and a careful beam-clustering design, one can
reduce significantly the search space. The beam-clustering
aspects are discussed in the following section, while some
numbers about the search space of problem (7) are provided
in Section 4.

For solving (7), in this study, we rely on the optimization
software Gurobi (GUROBI, 2021), which is convenient to solve
mixed integer linear programming (MILP) problems such as the
one in (7).

3.3 Clustering Definition
The offered capacity per cluster, that is, R̂i, strongly depends on
the cluster shape and size. Deriving optimal clustering
optimization would require an exhaustive search over all
possible combinations of clustering options, including an
irregular cluster size and overlapping clusters, rendering a
huge search space. Moreover, the cluster definition also
impacts on the complexity of the system as the number of
possible snapshots is a function of the number of clusters. For
example, a cluster with a small size will yield to a bigger search
space for the problem in (7), while clusters with a big size will
reduce the search space but provide less flexibility in the CH
operation. To keep the complexity of (7) within tractable limits,
we opt to have compact-shaped, nonoverlapping, and equal size
cluster due to the following reasons:
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• In the case of overlapping clusters, there will be a very large
number of possible clusters making a huge search space for
the proposed problem.

• Compact-shaped clusters are preferred vs. linear- or quasi-
linear–shaped clusters in order to exploit the precoding
benefits.

• The size of the clusters, as discussed before, brings a
complexity-performance trade-off. Different cluster sizes
will be evaluated in Section 4.

4 SIMULATION RESULTS

The simulation setup for evaluating the performance of the
proposed precoded CH in an HTS system is as follows. The
67-beam GEO satellite beam pattern shown in Figure 2 is

considered. The pattern has been generously provided by ESA
in the context of the project FlexPreDem (ESA Project
FlexPreDem, 2020). The transmit power per beam Pbeam is a
function of the illumination ratio as it is calculated as
Pbeam � Ptotal/Q. In other words, the total power Ptotal is
equally distributed across the active beams. The rest of the
simulation parameters are provided in Table 1.

First of all, we provide some numbers in terms of the
complexity scalability with the clustering definition. As shown
in Table 2, assuming a cluster size equal to six beams for all
clusters will result in a total of 21,211 clusters if no further
assumptions are made. On the other hand, assuming a cluster size
equal to four beams for all clusters will result in a total of 1,675
clusters. However, if we make the assumptions proposed in
Section 3.3, these numbers can be reduced to 17 and 11,
respectively, resulting in a more manageable number. As a
consequence, we evaluate the performance of the CH concept
under these later clustering options, both shown in Figure 3. The
actual complexity of problem (7) is dictated by the number of
snapshots resulting from the combination of the clustering
definition and the illumination ratio. In other words, the
binary combinations within xt are constrained by the number
of clusters that can be simultaneously activated (Q′) and the
adjacent cluster avoidance. Considering these constraint, the
number of snapshots Np for different illumination ratios is
given in Table 2. As expected, higher illumination ratios allow
activating higher number of clusters per snapshot, therefore,
resulting in higher number of possible snapshots. Still, the
numbers shown in Table 2 are tractable allowing to final a
solution to problem (7) in a matter of seconds with
conventional personal computers.

The proposed precoded CH scheme is evaluated in terms of
unmet capacity and unused capacity. Both are figures of merits

FIGURE 2 | Considered beam pattern with Nb � 67 beams.

TABLE 1 | Simulation parameters.

Satellite longitude 13°E (GEO)
Satellite height 35,786 km
Number of beams, Nb 67
Beam radiation pattern Provided by ESA
Max. beam radiation pattern gain 52 dBi
Downlink carrier frequency 19.5 GHz
Satellite total power, Ptotal 6,000 W
User link bandwidth 500 MHz
Roll-off factor 20%
Effective user link bandwidth, Bw 417 MHz
Roll-off factor 20%
Illumination ratio, (Q/Nb) 1/4, 1/6, and 1/8
Duration of a time slot, Ts 1.3 m
Hopping window, TH 256 Ts
User terminal antenna gain, GRx 39.55 dBi
Noise power, (κTRxBw) −118.42 dBW
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widely used for resource allocation in satellite communications.
The first corresponds to the amount of demanded capacity
that cannot be satisfied with the actual offered capacity and is
defined as Cunmet � ∑Nb

i�1(di − ci)+, where (x)+ � max (0, x). The

second corresponds to the amount of offered capacity which
exceeds the demanded capacity, and it is given by
Cunused � ∑Nb

i�1(ci − di)+. Ideally, both unmet and unused
capacity should be zero.

TABLE 2 | Clustering impact on the combinatorial problem complexity.

Size of cluster Number of clusters
(compact, non-compact, overlapping,

nonoverlapping)

Number of clusters
(compact, overlapping, nonoverlapping)

Number of clusters
(compact, nonoverlapping)

4 Beams 21,211 483 17
6 Beams 1,675 132 11

Assuming compact and nonoverlapping clusters

Size of Cluster Number of snapshots (Illum. Ratio 1/4) Number of snapshots (Illum. Ratio 1/6) Number of snapshots (Illum. Ratio 1/8)

4 Beams 304 263 101
6 Beams 36 35 11

FIGURE 3 | Considered beam-clustering options: (A) 11 clusters of six beams/cluster; (B) 17 clusters with four beams/cluster.

FIGURE 4 | Demand instance 1: (A) considered beam demand distribution; (B) offered per-beam capacity vs. per-beam demand.
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Next, we present the performance evaluation of the proposed
precoded CH system, which is compared with a conventional BH
scheme and the study in Ginesi et al. (2017). The results presented
herein have been obtained with theMATLAB-based software tool
(SnT University of Luxembourg, 2020). For the conventional BH
scheme, we use to solve the same problem as in (7) but assuming
single beam clusters and, as a consequence, without precoding.
All our results include the inter-cluster interference.

Figure 4A shows a particular demand distribution composed
of three types of beams represented with different colors
depending on their demand: high demand, medium demand,
and low demand. Figure 4B shows the per-beam demand vs. the
offered per-beam capacity for the three techniques under
evaluation. The clustering option of four beams/clusters has
been considered for the CH solution in this case. We can
observe that Ginesi et al. (2017) satisfies well the low-demand
beams while it struggles in meeting the demand of high-demand
beams. Similarly, the conventional BH also shows difficulties in
matching the demand of high-demand beams, while it shows
some mismatch as well for the rest of the beams. Finally, the
proposed CH is shown to properly follow the demand of any type
of beam. Table 3 summarizes the system’s unmet and unused

capacity results, that is, Cunmet and Cunused, for the demand in
Figure 4. Table 3 also shows the total offered capacity and the
satisfaction percentage, which represents the amount of beams
that are satisfied. Note that the benchmark (Ginesi et al., 2017)
does not apply a specific illumination ratio as the number of
active beams per time slot change over time. The first observation
is that the proposed CH technique with an illumination ratio of 1/6
is providing the best unmet unused capacity trade-off, with both
close to zero. Furthermore, CH is showing better demand
satisfaction percentage too. The best results are achieved with
an illumination ratio of 1/6 because this provides an overall
system offered capacity of 25.46 Gbps, which closely matches
the overall requested demand of 26.46 Gbps. From the results in
Table 3, we conclude that CH combined with a proper
illumination ratio outperforms the benchmark schemes.

To complement the previous results, we now evaluate the
fairness of the proposed solution in Figure 5, where the ratio of
the per-beam demand vs. the achieved per-beam offered capacity
is shown, as well as the resulting Jain’s fairness index proposed in
Jain et al. (1984). In this study, we use the Jain’s fairness metric as
a measure of how the offered capacity matches the demand at a
beam level. For this, we define ζ i as the ratio between the offered

TABLE 3 | Unmet and unused system capacity results for demand in Figure 4. Total demand is 26.46 Gbps.

Technique Illum. Ratio Offered capacity
(Gbps)

Unmet capacity
(Gbps)

Unused capacity
(Gbps)

Satisfaction% (%)

Ginesi et al. (2017) Not applicable 17.75 9.03 0.32 85.40

Conventional BH 1/4 27.17 8.99 9.71 79.89
1/6 21.98 8.26 3.78 79.99
1/8 16.64 9.83 0 64.61

Proposed CH 1/4 30.95 2.58 7.07 93.66
1/6 25.46 1.50 0.50 94.00
1/8 18.89 7.57 0 72.79

FIGURE 5 | Fairness results: per-beam offered capacity divided by per-beam demand and Jain’s Fairness Index for demand instance shown in Figure 4.

Frontiers in Signal Processing | www.frontiersin.org October 2021 | Volume 1 | Article 7216828

Lagunas et al. Satellite-Precoded Cluster Hopping

14

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


capacity Ci and the demanded/ideal capacity Di, that is, ζ i � Ci
Di
,

i � 1, . . . ,Nb. In this context, the Jain’s fairness index is defined as:

JFI �
∑Nb

i�1ζ i( )2
Nb∑Nb

i�1ζ
2
i

∈
1
Nb

, 1[ ]. (8)

From Figure 5, it can be observed that the proposed CH
outperforms the benchmark schemes in terms of fair per-beam
demand satisfaction, as the values of ζ i are closer to the idea value
of 1 for all beams. The fairness of the proposed approach is
confirmed by the Jain’s index shown in the legend of Figure 5,
where the proposed CH reaches a Jain’s index of 0.99 (superior to
that of the benchmarks).

Let us test now another demand instance with bigger demand
areas, like the one shown in Figure 6A. For such big areas of
demand, we expect the clustering of six beams/cluster to be a
better fit. Table 4 shows the results achieved with the proposed
CH for different clustering options and different illumination
ratios. The best match is given by the six beam/cluster option with
1/6 illumination ratio, where the unmet and unused capacity are
equal to 0.86 Gbps and 1.59 Gbps, respectively, with a satisfaction
percentage of 97%. The results shown inTable 4 provide evidence
on the fact that not only it is important to select an accurate
illumination ratio but also a clustering definition adapted to the
expected demands. Finally, to confirm the superiority of the six

beam/cluster for such type of demand distributions, Figure 6B
provides the per-beam details of demand vs. offered capacity. It
can be observe that the four beam/clustering option not only has
problems in satisfying high-demands but also presents some
mismatches for the low-demand beams.

5 PRACTICAL CONSIDERATIONS

5.1 Channel State Information Acquisition
Besides the synchronization aspects natural from beam-hopped
transmission (Freedman et al., 2015), the main challenge of the
proposed cluster hopping concept is the need of channel state
information (CSI) at the gateway side. The most challenging
problem in beam-hopped and precoded satellite systems is how
often a ground terminal can measure its CSI vector (meaning the
channel coefficient w.r.t. the satellite antennas). While the CSI
estimation procedure can be based on already existing methods,
the cluster hopping scheme requires some ad hoc adaptations due
to time-variant nature of the cluster hopping procedure. In fact,
since the set of illuminated beams changes over time, each user
terminal is able to estimate a subset of coefficients of the complete
CSI vector, which depends on the particular cluster than is being
illuminated at that particular time instant. The latter can
potentially lead to situations in which the gateway does not

FIGURE 6 | Demand instance 2: (A) considered beam demand distribution; (B) offered per-beam capacity vs. per-beam demand.

TABLE 4 | Unmet and unused system capacity results for demand in Figure 6. Total demand is 26.85 Gbps.

Technique Illum. Ratio Offered capacity
(Gbps)

Unmet capacity
(Gbps)

Unused capacity
(Gbps)

Satisfaction (%)

Proposed CH 1/4 36.82 0.10 10.07 99.69
Six beams/cluster 1/6 27.58 0.86 1.59 97.08

1/8 15.05 11.80 0 58.03

Proposed CH 1/4 30.25 2.27 5.67 94.06
Four beams/cluster 1/6 25.90 5.38 4.44 82.58

1/8 18.73 11.07 2.95 65.50
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have all the needed coefficients to compute the precoding matrix.
When the channel is relatively stable, the use of previous CSI
estimates may solve the problem, otherwise joint processing of
previous and new CSI coefficients would be required as well as
prediction methods.

Furthermore, the general problem in beam-hopped satellite
systems is how often a ground terminal can measure its CSI
vector (meaning the channel coefficient w.r.t. the satellite
antennas). Clearly, a ground terminal can only perform
measurements when it is being illuminated, and the number
of measured CSI components depends on the particular cluster
than it is being illuminated at that particular time instant. We
should distinguished two cases:

• Illumination pattern composed of nonoverlapping clusters:
this is the case assumed in this study. In this case, each
ground terminal only needs the knowledge of the CSI
components related to the satellite antennas that are active
in the cluster that it belongs to. Therefore, we propose to rely
on the CSI gathered in the previous time instant that this
particular cluster was illuminated (which of course will imply
some additional delay depending on the illumination period).

• Illumination pattern composed of overlapping clusters:
this would be the case when dealing with high traffic
demand areas that need to be illuminateds most of the
time. For the sake of clarity, let us assume an example
composed of three beams and two non-orthogonal
clusters, the first cluster composed of beam 1 and
beam 2, and the second cluster composed of beam 2
and beam 3. Let us focus on the terminals belonging to the
beam 2 coverage area. Note that beam 2 is always
active but once together with beam 1 and once
together with beam 3. Therefore, this configuration
implies that high-demand beams that are more often
illuminated (i.e., beam 2) will have more accurate CSI
that low-demand beams (i.e., beam 1 and beam 3), which
are less often activated.

Generally speaking, we do not foresee the outdated CSI to have
a strong impact. This is because a single DVB-S2(X) super-frame
is enough to obtain a good channel estimation and, therefore, the
outdated CSI will only be needed for the initial (single) super-
frame.

5.2 Future Payload Antenna Systems
The results presented in this study have been obtained assuming
a Direct Radiating Array (DRA)–based footprint pattern,
which have been generated with internal software by ESA in
20 GHz, with 750 elements spaced five lambda, able to provide
67 beams within the desired coverage area. The trends in the
satellite communications industry are evolving towards more
advanced antenna architectures, for example, (defocused)
phased array fed reflector (PAFR), whose phase response
may differ from conventional single-feed-per-beam
architecture or the DRA considered in this study. The PAFR
may offer some benefits such as lower cost, high beam
resolution, and smaller array size.

6 CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

In this study, we have proposed the combination of precoding
and time-flexible payloads with BH capabilities. Focusing on the
convergence of both techniques, we have proposed the so-called
cluster hopping (CH) concept, which seamlessly combines these
two paradigms and utilizes the strong points of each one.
Supporting results based on numerical simulations are provided
which validate the effectiveness of the proposed system in
comparison with conventional BH and other works available in
the literature. Particularly, CH shows great promise when dealing
with high demands that cover large portionals of the Earth, thus
spanning multiple satellite beams. The results of this study have
highlighted the importance of an appropriate clustering design
together with an appropriate illumination ratio, both based on
the expected demand distribution. The latter opens opportunities
for future research in this subject, namely the optimal clustering
definition based on demand distribution input and the appropiate
portion of beams that needs to be activated at a time. Furthermore,
this study has considered the transmit power out of the scope for the
sake of clarity but the transmit power represents another degree of
freedom that can be considered within the optimization problem.
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Analysis of a 2D Representation for
CPS Anomaly Detection in a
Context-Based Security Framework
Sara Baldoni1, Marco Carli 1 and Federica Battisti 2*
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Engineering, University of Padova, Padova, Italy

In this contribution, a flexible context-based security framework is proposed by exploring
two types of context: distributed and local. While the former consists in processing
information from a set of spatially distributed sources, the second accounts for the local
environment surrounding the monitored system. The joint processing of these two types of
information allows the identification of the anomaly cause, differentiating between natural
and attack-related events, and the suggestion of the best mitigation strategy. In this work,
the proposed framework is applied the Cyber Physical Systems scenario. More in detail,
we focus on the distributed context analysis investigating the definition of a 2D
representation of network traffic data. The suitability of four representation variables
has been evaluated, and the variable selection has been performed.

Keywords: security, context, anomaly detection, cyber-physical systems, network traffic, 2D representation

1 INTRODUCTION

During the last years, we witnessed a rapid spread of connected devices. This phenomenon involved
several market segments frommass market to critical infrastructures (e.g., healthcare, transportation,
energy and industrial systems) thus leading to a huge expansion of the attack surface. In addition, due
to the use of connected devices in safety-critical applications, attacks may potentially result in the
denial of pivotal services to the society or in life losses. To address this issue, the monitoring of
connected systems and the identification of anomalous behaviors becomes of paramount
importance.

The anomaly detection methods available in the literature can be mainly classified into two
categories: signature-based and profile-based. The techniques belonging to the first class detect
known anomalies by exploiting the a-priori knowledge of their features. The approaches residing in
the second category, on the other hand, exploit the history of the nominal system behavior to define
its normal profile. Then, an anomaly is defined as a system behavior that is significantly different
from the modeled one. This may be due both to malicious actions and to genuine but unusual
activities (Fernandes et al., 2015). Both categories show advantages and disadvantages. Profile-based
techniques do not require a model for the anomalous behaviors thus allowing the detection of new
and unforeseen anomalies. Signature-based approaches, on the contrary, are able to detect only
previously known anomalous behaviors. However, since only well-known anomalies are identified,
the false alarm rate can be reduced.

Anomaly detection systems can be also differentiated based on the approach adopted for setting
the threshold. More in detail, two classes can be identified: the first foresees themanual setting of alert
thresholds that are monitored by experts, whereas the second relies on an automatic approach that
can also be based on artificial intelligence. The latter systems have proven to be more effective,
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adaptive with respect to traffic variations (without the need to
manually re-calibrate the thresholds) and require a reduced
human intervention. In this work, the selection of the
approach has been made considering that anomalies show the
following features (Pang et al., 2021):

• unknowness: anomalies are linked to many unknowns (e.g.,
behavior, data structure, distribution);

• heterogeneity: anomalies are irregular and have different
properties;

• rarity: anomalies are rare, so that it is difficult to gather a
large amount of labeled anomalous samples.

For these reasons, in this work we propose a profile-based
context-aware security framework which relies on deep learning
approaches to detect anomalies. The core idea of the presented
research is to satisfy the security requirements through the
exploitation of a set of sources and the joint processing of the
information flow. The proposed approach involves both local and
non-local data. Local data account for information that is
dependent on the environment in which they are collected
whereas non-local data are monitored on a larger area
typically through the deployment of sensors. In the following,
non-local data will be indicated as distributed context, since the
information sources are assumed to be spatially distributed,
whereas local data will be referred to as the local context,
since they allow to gather information about what happens in
the proximity of the monitored system. The idea of context-aware
security has been introduced in (Wang et al., 2010) where the
context has been defined as the set of environmental states and
settings that either determine an application’s behavior or in which
an application event occurs. Although this concept has been
previously addressed in the literature, a general framework
which jointly handles both distributed and local contexts is
missing. Therefore, the combined processing of local and non-
local data paves the way for the definition of a new approach for
context-based security.

In this work, we apply the proposed framework to the Cyber
Physical System (CPS) scenario. A CPS can be defined as the
integration of computing, communication, and control
capabilities for monitoring and managing physical objects. The
connectivity allowed by the use of the Internet, on one hand has
extended the ability of sharing information and on the other one
has made these systems prone to vulnerabilities that did not exist
before. The interaction between the Internet and CPSs requires
greater efforts to ensure the security of connected systems. In fact,
the security of CPSs concerns several aspects such as data
collection, information transmission, and processing and
control subsystems. The exploitation of both local and
distributed contexts for estimating the anomaly origin in CPSs
allows to evaluate the anomaly impact on the system, with respect
to the available reaction and mitigation strategies, also
considering the associated costs. In this work, we focus on the
distributed-context analysis by adopting a 2D representation of
network traffic to design the anomaly detection system. The use
of a 2D representation allows to characterize the multi-input
information collected from the sensors in a compact form.

The reminder of the paper is organized as follows. In Section 2
the literature concerning context-based security and network
anomaly detection systems based on multi-dimensional
representations of data is reviewed. Then, Section 3 describes
the proposed framework and its application to the CPS scenario.
Moreover, Section 4 describes the dataset selected for the
performed study, and the 2D traffic representation issue. At
last, some preliminary results concerning the 2D data
representation are provided in Section 5, and in Section 6 the
conclusions are drawn.

2 RELATED WORKS

In this section, the related works concerning both context-based
security approaches and anomaly detection methods exploiting a
multi-dimensional representation of data are detailed.

2.1 Context-Based Security Approaches
In previous works, context-related information has been
adopted for improving the safety and security of CPSs,
(Ivanov et al., 2018). More specifically, context data has been
exploited both for inferring information about the system
state and for preventing wrong detections due to the
presence of non reliable data. In (Sylla et al., 2019), for
instance, a context-aware security architecture for Internet of
Things (IoT) is proposed. More in detail, the authors suggest
to select the security and privacy mechanisms based on the
user contextual information (e.g., mobility). In (Dsouza et al.,
2019), a context-aware biometric security framework fusing
real-time data with contextual information such as the client
setting area, lighting, and time is presented. Context is
considered also in the security infrastructure for the IoT
systems proposed in (Roukounaki et al., 2019). The
environmental impact has been exploited in (Sharaf Dabbagh
and Saad, 2019), where device fingerprinting for IoT
authentication is analyzed. In this case the approach relies
on the assumption that an attacker will not be able to
imitate the environmental changes experienced by the
legitimate device thus failing in reproducing an environment-
based fingerprint. Moreover, an attribute-based encryption
method which automatically learns the attributes thanks to a
context-aware module is proposed in (Ghosh et al., 2021).
Similarly, in (Alagar et al., 2018), a context-sensitive role-
based access control technique for healthcare IoT is
presented. Furthermore, in (Park et al., 2020), the concept of
context-aware intrusion detection systems is realized by
including networking conditions (e.g., source and destination
address/port, access frequency, data traffic), and systematic
operation conditions (e.g., idle CPUs or memory load) in
the analyzed data. At last, in (Ehsani-Besheli and Zarandi,
2018), the context is exploited for detecting anomalies in
embedded systems communications. The key innovation
of our framework is the joint exploitation of local and
distributed contexts. As previously mentioned, in fact, a
framework which jointly processes local and non-local data is
currently missing.
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2.2 Security Approaches Based on
Multi-Dimensional Representation of Traffic
Data
In the literature, few solutions for network anomaly detection
have been proposed using a 2D or 3D representation of data. A
first example of image-based network traffic visualization is
provided in (Kim et al., 2004). The authors exploit source and
destination IP addresses and destination port number to
represent traffic in 3D. They represent each flow as a point in
the 3D space defined by the three attributes. In presence of
attacks, regular patterns arise whereas legitimate traffic is
widely and irregularly dispersed. To detect the attacks, an
attack signature table is defined so that by comparing the
packet signatures with the pre-defined ones it is possible to
identify the presence and the type of attack. In (Kim and
Reddy, 2005a) classical image processing techniques have been
exploited to analyze traffic patterns. To define the images packet
counts in the address domain are used. The same representation
is employed in (Kim and Reddy, 2005b) where the authors
compute the DCT of the image and select a set of coefficients
for computing the standard deviation. This value is used as
anomaly detection metric by defining a lower and upper
threshold for the standard deviation under nominal
conditions. Moreover, the authors propose using motion
prediction techniques to predict following attack targets.
Furthermore, Nataraj et al. proposed a 2D representation of
malware binaries in (Nataraj et al., 2011), and presented a
malware classification technique based on image processing
methods. More recently, deep learning techniques have been
exploited. In (Wang et al., 2017), malware traffic classification
is performed based on an image representation of network traffic
and a Convolutional Neural Network (CNN). The authors
grouped network data based on flows and sessions and found
out that different types of traffic result in different images,
whereas images within the same class are consistent. Taheri
et al. used the same representation for detecting botnet in the
IoT environment (Taheri et al., 2018). In addition, an ensemble
method employing pre-trained networks and fine-tuning for
malware classification has been presented in (Vasan et al.,
2020). Finally, an hybrid model based on both unsupervised
and supervised methods for malware detection and classification
has been proposed in (Venkatraman et al., 2019). Another
approach for representing general time series data as images
has been proposed in (Zhang et al., 2019), where a multi-scale
signature matrix is employed to characterize the system using
different time steps. These matrices are then given as input to a
convolutional encoder and an attention-based convolutional
Long Short Term Memory (LSTM) to capture the temporal
patterns. The same data representation has been used in (Luo
et al., 2021), and applied to CPSs. In this case, a single scale has
been used and the different time series represent measurements
provided by a set of sensors. Concerning the processing, a CNN-
based autoencoder has been used. Finally, a deep learning model
has been employed for network intrusion detection in
(Mohammadpour et al., 2018). More specifically, a one-

dimensional feature vector has been re-arranged in a 2D
structure and then provided as input to a CNN.

3 PROPOSED FRAMEWORK

The proposed framework aims at providing an effective tool for
detecting anomalies and for suggesting the best mitigation
actions. The idea underlying this framework is the exploitation
of both local and distributed contexts as shown in Figure 1.

More specifically, the set of sources provides the input for the
distributed context building block. The input type may vary
depending on the specific application (e.g., sensor
measurements, signals, network parameters). In this stage,
three processing options are available: the detection of
anomalies through the information provided by single
information sources and the late fusion of the outcomes, the
joint processing of the information coming from sources of the
same type, or the joint analysis of data gathered from different
types of sources. As previously mentioned, anomaly detection will
be performed through a profile-based deep learning approach.
This choice guarantees a detection system able to work
independently from the specific type of attack and that
consequently can be applied in a wide number of cases. The
selected learning approach is based on autoencoders, which are
unsupervised architectures that have already been applied for
anomaly detection in different application scenarios.

The motivation behind this choice is that the autoencoder is
enforced to learn important regularities of the data to minimize
reconstruction errors. If the algorithm is trained on non-attacked
data, a non-desired modification in the system behavior will
result in large reconstruction errors.

The information coming from the local context is then
integrated in order to differentiate between natural and attack-
related anomalies. A natural event, in fact, may be associated to an
anomalous local context, and should concern more than one
source deployed in the same area. Once the root cause has been
identified, and the mitigation costs have been taken into account,
the best mitigation strategy can be selected.

FIGURE 1 | Proposed framework.
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The proposed framework is extremely flexible since it can be
adapted to different application scenarios with a minimal
modification of its building blocks. Depending on the specific
application, the inputs of the proposed framework may change
and, according to this variation, also the practical definition of the
context evolves. Moreover, the number of parameters that can be
detected for performing the anomaly detection can be increased
to achieve a desired level of detection accuracy, (Wang et al.,
2010).

3.1 CPS Security Case Study
CPSs can be described through a three-layer architecture:
perception, transmission, and application. The first layer
collects data in real-time, the second allows data exchange,
and the last layer realizes data processing and control
functionalities. CPSs directly interact with the surrounding
environment and are usually deployed in groups on a pre-
defined area. Therefore, the distributed nature of CPSs,
together with their inter-dependency with the deployment
environment makes them the perfect application scenario for
the proposed security approach. The flowchart of the proposed
framework applied to the CPS scenario is presented in Figure 2.

According to the CPS definition, the distributed context could
work both analyzing the measurements, and processing the
network traffic data. Since, as pointed out in (Luo et al., 2021),
the majority of the research literature has focused on detecting
anomalies from sensor and actuator data, in this work we aim at
analyzing the anomaly detection issue from the network traffic
data point of view. Concerning the local data, in this case, they
may concern the operating conditions of the CPS (e.g., weather
forecast or presence of natural emergencies like fires and
earthquakes), and the cost of the different mitigation actions.

We aim at defining the multi-source intra-type anomaly
detection subsystem of the distributed context building block.
To this end, we investigate the use of a 2D representation of traffic
data. Thanks to this representation, the information gathered by a
set of distributed nodes (i.e., the distributed context), is analyzed
by providing to the anomaly detection system a single input. In
addition, the 2D data structure is suitable to be processed by
deep-learning based algorithms. The complete realization of this

subsystem aims at defining an anomaly detection technique that
will advance the state-of-the-art by working towards three
specific objectives:

1. selection of the most effective two-dimensional representation
of network traffic information;

2. definition of a deep learning model for the detection of
anomalies based on the two-dimensional representation of
traffic data;

3. design and implementation of a context-sensitive network
anomaly detection system by exploiting the information
gathered from a set of distributed nodes.

Among these three goals, in this contribution we focus on the
first. To do so, the first issues to be solved is the research of
available datasets to be used in the training phase. In fact, even if
network security is a well-studied topic, the availability of
verification datasets does not follow the rapid evolution trend
of attack strategies and communication system development.
Furthermore, the use of deep learning-based analytic methods
requires a large amount of data to effectively train networks.
Therefore, the choice of the dataset containing the traffic data to
be analyzed, is an important step towards the realization of the
proposed anomaly detection system. To this aim, two key aspects
have to be considered: the sampling interval and the total
duration of the data recording. The sampling interval must be
short and fixed for all recorded data. If the sampling interval was
long, in fact, assuming that the recorded data is analyzed
exploiting time windows, in order to collect a sufficient
amount of samples in each of them, a single time window
would correspond to a long time period, thus impacting on
the system promptness. On the contrary, the use of smaller
time windows would result in the processing of a reduced
number of samples, thus impairing the system effectiveness.
As for the total data recording period, it should be long
enough for both normal and anomalous traffic in order to
perform an effective training and testing. Moreover, one of the
first problems to deal with is the pre-processing of the network
data and the definition of its structure so that the subsequent
analysis module, based on deep learning, is more effective. More

FIGURE 2 | Proposed framework applied to the CPS case study.
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specifically, the following characteristics need to be selected: 1)
the traffic parameters (e.g., bytes, packets) to be used in the two-
dimensional representation of the network status; 2) the protocol
level at which data will be analyzed (e.g., IP layer, transport layer);
3) the data normalization model to guarantee that the resulting
images have the same dynamic range; 4) the best domain
representation of the 2D data (e.g., transform domain, time
domain); 5) the type of information that needs to be
represented for each traffic parameter (e.g., the traffic volume,
the correlation between traffic patterns of different nodes).

4 NETWORK TRAFFIC ANALYSIS

In this section, the definition of the most effective 2D data
representation is carried out. To do so, the dataset selection is
performed and four 2D representation variables are identified.
The suitability of these variables for anomaly detection will be
assessed in Section 5.

4.1 Dataset
Due to the aforementioned requirements, the UGR′16 dataset has
been selected (Maciá-Fernández et al., 2018). This dataset is
composed of two parts: a calibration subset and a test subset.
The former includes real background traffic and can be used for
training, whereas the second is a combination of real background
and controlled attack traffic and can be used for testing. The
recording period for the calibration subset lasted 100 days, with
two gaps of few hours documented in (Maciá-Fernández et al.,
2018). As for the for the test subset, data have been recorded for
approximately a month. The considered network infrastructure is
shown in Figure 3. Data capture is performed through the
netflow probes configured on the outgoing network interfaces
of the border routers. The probes performed the collection of
incoming and outgoing traffic.

The captured data are organized in flows and for each flow the
following features are provided: timestamp of the end of a flow,

duration of the flow, source and destination IP addresses, source
and destination port, protocol, flags, forwarding status, type of
service, packets and bytes exchanged in the flow.

Concerning the attacks, the following classes have been
simulated:

• Denial of Service (DoS):
• DoS11: one-to-one DoS where attacker A1 attacks the
victim V21;

• DoS53: the five attackers (A1 − A5) attack three victims.
More specifically, attackers A1 and A2 attack the victim
V21, attackers A3 and A4 attack the victim V31, and
attacker A5 attacks the victim V41;

• DoS53a: follows the same structure as DoS53 but the
attacks are sequentially executed.

• Port Scanning:
• Scan11: one-to-one scan attack where attacker A1 scans
the victim V41;

• Scan44: four-to-four scan attack where the attackers A1,
A2, A3 and A4 scan the victims V21, V11, V31 and V41,
respectively.

• Botnet: an attack involving all the twenty victimmachines is
simulated.

The attacks have been simulated according to two different
scheduling: a planned scheduling, in which there is no overlap
between the attacks, and a random scheduling in which overlap is
possible. Moreover, since the calibration set is composed of real
traffic, although attack data have not been injected, real anomalies
may be present. For this reason, in (Maciá-Fernández et al., 2018),
a further classification has been performed to differentiate
between normal and anomalous background traffic in the
calibration set.

In this work, only DoS and scan attacks have been considered,
and only the planned scheduling has been taken into account. The
former choice is related to how the botnet traffic has been
generated. More specifically, as highlighted in (Maciá-

FIGURE 3 | UGR′16 network infrastructure.
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Fernández et al., 2018), the produced traffic may not be realistic
since it does not consider the effect of botnet traffic over the
normal one. The authors underline that the produced traffic can
be considered as sufficiently realistic for scenarios in which the
influence of the botnet attack on background traffic is negligible
but, in order to define the optimal 2D data representation, this
attack has been currently excluded. In this work we chose to
consider only the planned scheduling since the random
scheduling may result in multiple simultaneous attacks. By
considering the planned scheduling only we are sure that an
individual attack is present for each time window, and we are able
not only to analyze its effects on the 2D representation, but also
the difference between the attacks. The study of multiple
contemporary attacks will be the subject of future contributions.

4.2 2D Traffic Representation
The goal of this step is to obtain a 2D representation in which the
attack presence is highlighted. Therefore, a traffic parameter has
to be selected and a pre-processing has to be performed to
produce a 2D structure in which the value of the element
corresponding to the attack is significantly different from all
the others. In addition, the variables associated to rows and
columns have to be selected. In this work, exchanged bytes
have been considered as traffic parameters and source and
destination IPs have been used for indexing rows and
columns. Moreover, when dealing with a 2D representation,
an important aspect to define is the data structure dimension.
More specifically, how data are organized in the 2D structure
depends on the asset to be protected, on the threat source, and on
the following processing flow. In order to define a distributed-
context subsystem which can be applied in several application
scenarios, the asset to be protected has been defined as a sub-
network consisting of a fixed number of IP addresses. This
consideration leads to the definition of the number of
elements for one of the dimensions (i.e., the rows) of the 2D
structure. The definition of the variable indexing the other
dimension has been chosen based on how the data structure is
processed. More specifically, deep learning techniques usually
employ data with fixed dimensions. Therefore, in order to use the
source IPs as variable which indexes the columns, an IP selection
procedure was needed. However, in a realistic scenario, no
assumptions can be made about the attack source, and using a
number of columns equal to the number of all the possible source
IPs is not feasible in practice. As a consequence, we decided to
split the available source IPs in subsets of fixed dimensions.
Moreover, the number of source IPs in each set has been
selected to be equal to the number of monitored destination
IPs to obtain a squared data structure. It is useful to highlight that
this design choice allows not only to detect an anomaly, but also
to identify the network IP subset from which it comes from.

In order to represent the bytes exchanged between two IP
addresses, additional design choices are needed: the duration of
the observation time window and how to process the bytes to
define the value of a single element of the 2D structure. The time
window specifies the time interval Δt (in seconds) in which data
are aggregated for computing the representation variables.
Starting from the timestamp associated to the first captured

sample, it is possible to define consecutive non-overlapping
time windows of length Δt for obtaining a 2D representation
associated to each time interval. The length of the observation
time window impacts on the effectiveness of the anomaly
detection method. More specifically, if it is too short it may
impair the attack visibility, whereas if it is too long it reduces the
detection promptness. A possible way to overcome this issue is to
employ multiple windows in parallel. As for the processing,
several options are available. The easiest solution is the
computation of the number of bytes exchanged between a
node pair. This variable will be referred to as Σ in the
following. However, the choice of focusing on the traffic
volume may lead to the detection of high-rate and high-
volume attacks only, while loosing useful information.
Therefore, in order to define the representation variable for
highlighting the presence of an attack, the targeted attacks
have been analyzed in detail, and the features of both scan
and DoS attacks are discussed in the following.

4.2.1 Scan Analysis
A port scan attack usually results in a high number of flows of
similar length exchanged between the attacker and the victim.
These attack features lead to the following considerations:

1. If a victim is scanned, more than one flow will be exchanged
with the attacker. As a consequence, a single flow in the
time window should not be related to a scanning attack.
To delete the contribution of single flows we computed
the sum of bytes exchanged in the time window, and
subtracted the mean. More specifically, the mean has been
computed as

μ � 1
N

∑n
i�1

bi (1)

where N indicates the number of samples in the time window,
i.e., the number of flows for the considered dataset, and bi
is the number of bytes exchanged within each flow. In
this way, single flows will result in a 0 value, whereas
long runs of flows will be only slightly affected by the
subtraction. The resulting variable will be referred to as Σμ in
the following.

2. If a victim is scanned, the flows are often equal in length thus
resulting in a low standard deviation. In order to highlight this
feature it is possible to divide Σμ by the standard deviation of
the flow bytes. More specifically, the standard deviation has
been computed as

σ �
��������������
1

N − 1
∑n
i�1

|bi − μ|
√

(2)

whereN indicates the number of samples in the time window and
bi is the number of bytes exchanged within each flow. To avoid a
denominator equal to 0, we divided Σμ by the standard deviation
summed to a small quantity (i.e., 10−4). This variable will be
referred to as Σμ,σ in the following.
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3. The variable Σμ,σ has been defined based on the attack features.
However, also normal traffic consisting of a small number of
flows may have a small standard deviation. To account for this
issue, another attack feature has been employed: the high
number of flows. More specifically, the variable Σμ,σ has been
multiplied by a function of the number of flows and, to
compensate for standard deviations tending to zero, the
exponential function has been considered. The resulting
variable will be indicated as Σe

μ,σ .

4.2.2 DoS Analysis
In order to assess if the proposed variables Σ, Σμ, Σμ,σ and Σe

μ,σ are
suitable for highlighting anomalous network behaviors associated
with the DoS attack, we performed an analysis to identify the
relevant features for detecting this type of attack. To achieve this
goal, we rely on the studies performed in (Tang et al., 2020) and
(Aamir et al., 2021). More in detail, in (Tang et al., 2020), the
authors propose a low-rate DoS detection method which exploits
a set of features selected based on the correlation score between
features and data labels. Among the analyzed features, the ones
providing the highest correlation score are: the total number of
packets, the UDP ratio (proportion of the UDP traffic relative to

the total network traffic), the average of the traffic sequence, the
variance of the traffic sequence, the covariance of the traffic
sequence, the UDP maximum, the UDP and TCP range, the
variation coefficients, and the mean absolute differences.
Additional details can be found in (Tang et al., 2020). A
similar study has been performed in (Aamir et al., 2021),
where several machine learning approaches for detecting DoS
and port scanning are analyzed. More in detail, the authors
performed feature selection by analyzing the correlation
coefficient scores with respect to the dependent (target
variable) and, according to the study performed in (Taylor,
1990), a correlation coefficient smaller or equal to 0.35
indicates that the associated feature does not provide useful
information. Based on this assumption, the most significant
features among the ones analyzed in (Aamir et al., 2021) are:
the maximum packet length, the minimum packet length, the
mean packet length, the packet length standard deviation and
variance, and the average segment size. From these results, it is
possible to infer that the features considered for defining the
representation variables in Section 4.2.1, namely the volume of
traffic, the traffic mean, and its standard deviation, are relevant
also for highlighting the DoS attack presence. Moreover, since we

FIGURE 4 | Example images for a DoS attack (attacker A5 attacks victim V41).
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are analyzing traffic at IP level, no information concerning the
transport level layer has been included in this work although it
could be exploited for future contributions. It is useful to
underline that the main difference with respect to the methods
presented in (Tang et al., 2020; Aamir et al., 2021) is that in our
work the features are combined to provide a single value for the
elements of the 2D data structure.

5 REPRESENTATION VARIABLE
ASSESSMENT

In order to study if the considered variables, namely Σ, Σμ, Σμ,σ
and Σe

μ,σ , allow to define a 2D representation which highlights the
presence of the attacks, a time window of 1 s has been selected,
and a monitored network of 256 IPs has been considered. More
specifically, for each attack, tests have been performed
considering as monitored networks the one in which the
victims are placed. Moreover, the available source IPs have

been split in subsets of 256 IPs to obtain squared matrices.
Examples of the images both for DoS and scan attacks are
provided in Figures 4, 5. More specifically, the attack point is
surrounded by a red box, whereas the largest among the
background pixels is surrounded by a white box. Moreover,
the corresponding pixel values are written near the boxes.

Figures 4, 5 show that the use of the variable Σ fails to
effectively highlight the attack for two main reasons. The
former is that several non-zero values are present in the
generated image, and the latter is that background and attack-
related pixels show a similar order of magnitude thus making it
difficult to detect the presence of the attack. The former issue can
be mitigated with the use of the variable Σμ which allows the
reduction of the number of non-zero values by eliminating the
single-flow samples as described in Section 4.2.1. However in this
case, due to the subtraction of the mean, the value of the pixel
corresponding to the attack becomes smaller so that the
separation gap between pixels corresponding to the attack and
the ones associated to background traffic is further reduced. This

FIGURE 5 | Example images for a scan attack (attacker A1 attacks victim V21).
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phenomenon is avoided using the variable Σμ,σ since in this case,
dividing by the standard deviation, the value of the pixels
corresponding to the attack becomes larger. However, as
shown in the figures, also background pixels undergo a huge
increase so that the separation between attack and background
pixel values may be insufficient for detecting the attack. This
behavior is due to the fact that, given the limited extension of the
time window, a reduced number of flows may be present for
background traffic. The corresponding standard deviation, as a
consequence, will be small, thus causing the growth of Σμ,σ. This
effect can be mitigated by using the variable Σe

μ,σ which, due to the
multiplication for a function of the number of flows, produces

large values when the number of flows increases, as occurs in
presence of attacks. Figures 4, 5 show that this variable allows to
significantly increase the attack pixel values, while enlarging the
gap between attack and background pixels. Although with respect
to Σe

μ,σ some background pixel values increase, their entity is
several orders of magnitude smaller than the attacked pixel
values. In addition, Figures 4, 5 show that the variable Σe

μ,σ
results in a clear separation between DoS and scan attacks since
the pixel values associated to the two types of attacks are
significantly different. This could allow not only to perform
attack detection, but also attack classification. The reason for
this phenomenon can be found in the variable definition
procedure.

In order to provide quantitative results concerning the
suitability of the different variables for highlighting the
attack presence, a single day of recording has been taken as
example and the number of times for which the attack value is
larger than the corresponding largest background sample has
been computed. The results, expressed as percentages, are
reported in Tables 1, 2 for the DoS and for the scan attack,
respectively. From these results, it is clear that the variable Σ is
not reliable for highlighting the presence of an attack with
respect to background traffic. As for the others, usually Σμ,σ

performs better than Σμ. In some cases, however, Σμ,σ

performs worse than Σ and Σμ. This is due to the fact that,
as already mentioned, while Σμ,σ increases the attack pixel
value, it also enlarges background traffic pixels without
causing an enlargement of the gap between them. At last,
the tables show that Σe

μ,σ usually achieves the best
performances. The results shown in Tables 1, 2 allow to
evaluate only the percentage of times for which the attack
value is larger than the maximum of the non-attacked
samples. In order to be highlighted, however, the attack
value should be significantly different (in this case larger)
than the background samples. To evaluate the capability of the
variables to achieve this goal, for the selected day, the
difference between the attack value and the maximum

TABLE 1 | Percentage of samples for which the attack value is larger than the
maximum of the non attacked samples (DoS).

Attack Variable

Σ Σμ Σμ,σ Σe
μ,σ

Dos 11: A1 − V21 71% 98.5% 98.5% 98.5%
Dos 53: A1 − V21 30.8% 72.6% 96.6% 100%
Dos 53: A2 − V21 30.8% 72.6% 96.6% 100%
Dos 53: A3 − V31 100% 100% 100% 100%
Dos 53: A4 − V31 100% 100% 100% 100%
Dos 53: A5 − V41 89.7% 96.6% 97.9% 100%

TABLE 2 | Percentage of samples for which the attack value is larger than the
maximum of the non attacked samples (scan).

Attack Variable

Σ Σμ Σμ,σ Σe
μ,σ

Scan 11: A1 − V41 65.2% 78.8% 65.2% 93.9%
Scan 44: A1 − V21 57.1% 76.2% 88.1% 95.2%
Scan 44: A2 − V11 93.8% 93.8% 25% 93.8%
Scan 44: A3 − V31 84.4% 90.6% 90.6% 100%
Scan 44: A4 − V41 67.7% 76.4% 73.5% 97.1%

FIGURE 6 | Powers of ten of the minimum differences between the attack sample and the largest background pixel for DoS and scan attacks.
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background sample has been computed. Figures 6–8 show
the power of ten of the minimum, the median and the
maximum of the computed differences for DoS and scan
attacks. These figures clearly show that Σe

μ,σ allows to create
a significant difference between attacked and background
pixels, while the other variables fail to do so. Therefore,
Σe
μ,σ is eligible as representation variable for the 2D data

structure definition.

6 CONCLUSION

In this contribution, a context-based security framework has
been presented. It exploits information gathered both from
local and distributed contexts for detecting the presence of
an anomaly and estimating its cause. Through the joint
processing of the two types of contexts it is possible to
evaluate the impact of the detected anomaly on the system,

thus allowing the selection of the most effective mitigation
strategies, also considering the associated costs.

In this work we applied the proposed framework to the CPS
scenario focusing on the distributed context analysis. To this
aim, a 2D representation of network traffic for anomaly
detection has been investigated and a representation
variable has been selected. Preliminary results demonstrate
its suitability to highlight the presence of attacks. The full
implementation of the distributed-context building block and
its integration in the overall framework will be the subject of
future contributions.
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Beamspace ESPRIT for mmWave
Channel Sensing: Performance
Analysis and Beamformer Design
Sina Shahsavari, Pulak Sarangi and Piya Pal*

University of California, San Diego, La Jolla, CA, United States

In this paper, we consider the beamspace ESPRIT algorithm for Millimeter-Wave
(mmWave) channel sensing. We provide a non-asymptotic analysis of the beamspace
ESPRIT algorithm. We derive a deterministic upper bound for the matching distance error
between the true angle of arrival (AoA) of the channel paths and the estimated AoA
considering a bounded noise model. Additionally, we leverage the insight obtained from
our theoretical analysis to propose a novel max-min criterion for beamformer design which
can enhance the performance of mmWave channel estimation algorithms, including
beamspace ESPRIT. We consider a family of multi-resolution beamformers which can
be implemented using phase shifters and introduce a design scheme for the optimal
beamformers from this family with respect to the proposed max-min criteria. We can
guarantee a minimum beamforming gain uniformly over a region of possible multipath
directions, which can lead to more robust channel estimation. We provide several
numerical experiments to verify our theoretical claims and demonstrate the superior
performance of the proposed beamformers compared to existing beamformer design
criteria.

Keywords: millimeter wave, beamspace ESPRIT, massive MIMO, channel estimation, beamformer design

1 INTRODUCTION

Millimeter wave (mmWave) communication has emerged as a key technology for the next
generation of wireless communication systems due to an abundance of spectrum availability in
the mmWave bands, and the higher data rates enabled by larger bandwidths (Bai and Heath, 2014).1

However, at mmWave frequencies, the wireless channel is spatially sparse and suffers from severe
path loss. To ensure reliable communication, it becomes essential to perform beamforming in order
to combat this path loss. Due to the large number of antennas in a mmWave system, it is impractical
to implement a fully digital beamforming scheme with a dedicated radio frequency (RF) chain for
every antenna, which would incur high power consumption and cost. In order to overcome this
challenge, mmWave systems typically utilize either analog (Junyi Wang et al., 2009; Hur et al., 2013)
or hybrid beamforming approaches with a reduced number of RF chains (Alkhateeb et al., 2014a;
Han et al., 2015). Therefore, the problem of mmWave channel estimation becomes challenging, since
a high-dimensional channel matrix (whose size is given by the large number of antennas) needs to be
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estimated from only low-dimensional measurements acquired at
the output of a reduced number of RF chains, especially with
limited pilot overhead.

MmWave channel sensing has emerged as an active area of
research, with many algorithms having been developed for both
flat-fading (Alkhateeb et al., 2014b; Bogale et al., 2015; Lee et al.,
2016; Méndez-Rial et al., 2016) and frequency-selective channels
(Alkhateeb and Heath, 2016; Gao et al., 2016; González-Coma
et al., 2018; Rodríguez-Fernández et al., 2018). Under the flat-
fading model, compressed sensing based techniques that leverage
the sparse nature of the channel, have been proposed (Park and
Heath, 2018). Recently, adaptive schemes have also been
developed for estimating the channel paths by employing
hierarchical multi-resolution beamforming codebooks
(Alkhateeb et al., 2014b). However, such techniques assume
the multipath angles to be on a grid, which can potentially
introduce bias (grid-offset). The mmWave channel model
shares many similarities with the measurement models arising
in array signal processing, which enables the application of super-
resolution AOA estimation techniques such as multiple signal
classification (MUSIC) and estimating signal parameters via
rotational invariance techniques (ESPRIT) for mmWave
channel estimation (Schmidt, 1986; Roy and Kailath, 1989).
Suitable variants of these algorithms have been developed in
the beamspace which leverage the structure of beamformers to
enable super-resolution estimation of the AOAs (Guanghan Xu
et al., 1994; Zoltowski et al., 1996; Li et al., 2020; Sarangi et al.,
2020). Finally, both sparsity-based techniques (Gao et al., 2016;
Park and Heath, 2018; Rodríguez-Fernández et al., 2018) and
subspace based angular estimation algorithms (Guo et al., 2017;
Liao et al., 2017; Zhang and Haardt, 2017; Park et al., 2019; Zhang
et al., 2021) have been extended for frequency-selective channels.

In this work, we focus on the ESPRIT algorithm for channel
estimation (Liao et al., 2017; Zhang and Haardt, 2017; Wen et al.,
2018; Rakhimov et al., 2019; Ma et al., 2020; Zhang et al., 2021). In
recent times, several works (Zhang and Haardt, 2017; Rakhimov
et al., 2019; Zhang et al., 2021) have considered DFT-based
beamspace ESPRIT, inspired by earlier works in array
processing (Guanghan Xu et al., 1994; Haardt and Nossek,
1995; Mathews et al., 1996; Zoltowski et al., 1996). However,
the large number of antennas in mmWave systems lead to very
narrow DFT beams (Ma et al., 2020). To get a wide spatial
coverage, a large number of RF chains are required, which
may not be practical. A different beamspace ESPRIT is
proposed in (Liao et al., 2017) where beamformers are
designed to ensure that the low-dimensional beamspace
measurements share the same shift-invariance structure as the
high dimensional channel. However, in order to realize this,
approximately half of the antennas need to be turned off. This
strategy may suffer from a reduction in total transmitted power,
and inability to perform high-resolution channel estimation (Ma
et al., 2020). Recently in (Ma et al., 2020), Li et al. proposed a
beamspace ESPRIT scheme which is applicable for any choice of
beamformer, that satisfies some mild rank constraints. Unlike the
aforementioned variants of ESPRIT, only one antenna needs to be
turned off at a time, which results in a negligible drop in
transmitted power and signal coverage.

Despite their wide use inmmWave channel sensing, a rigorous
non-asymptotic analysis for beamspace ESPRIT is currently not
available. Existing performance analysis are either asymptotic in
the number of snapshots (Guanghan Xu et al., 1994; Mathews
et al., 1996), or based on perturbation analysis where certain
higher-order terms are ignored (Roemer et al., 2014; Steinwandt
et al., 2017). Recently, in (Li et al., 2020) the authors provided a
rigorous theoretical analysis of the single-snapshot antenna space
ESPRIT algorithm. In this work, we will extend their analysis to
multi-snapshot beamspace ESPRIT. Beyond mathematical
interest, a key motivation for such analysis is to develop
insights on how the choice of beamformer controls the error
bound. The choice of the analog/hybrid beamformer indeed
determines the quality of channel estimation. Therefore, an
important consideration for beamspace algorithms involves
developing suitable analog/hybrid beamforming schemes that
ensure reliable channel estimation. It should be noted that
typically beamformer design is performed after the channel
state information is available. However, while performing
channel estimation using beamspace algorithms, the channel
information is not available apriori and the beamformer must
be designed to ensure robust performance uniformly across a
variety of channel configurations.

DFT beamformers are a common choice for analog
beamforming since they automatically satisfy the constant
modulus constraint, and are easy to implement using purely
RF (Analog) components (Méndez-Rial et al., 2016). However,
the spatial coverage obtained using DFT beamformers is limited,
especially with few RF chains (Li et al., 2020). Several alternate
beamformer designs have been proposed that aim to
approximately ensure constant gain across a sector of interest.
Approximating ideal filters using only phase shifters or hybrid
architectures results in optimization problems with non-convex
constraints. A variety of heuristics/iterative techniques have been
proposed to solve these problems, using Orthogonal matching
pursuit (OMP) (Venugopal et al., 2017), alternating minimization
(Yu et al., 2016), fast search-based techniques (Chen and Qi,
2018). An outstanding limitation of these techniques is that they
cannot provide guarantees on the worst-case beamforming gain
over the sector of interest that is finally achieved by the design. In
particular, the gain at several points in the region of interest can
significantly drop below the desired level. This can degrade the
performance of channel estimation algorithms for several
channel realizations. In this paper, we will develop
beamformer designs based on alternative criteria to overcome
this drawback.

2 OUR CONTRIBUTIONS

Our contributions are twofold (i) non-asymptotic analysis of the
beamspace ESPRIT algorithm, and (ii) design of beamformers
that can enhance the performance of mmWave channel
estimation algorithms (including beamspace ESPRIT). We first
provide a non-asymptotic analysis of beamspace ESPRIT
algorithm in (Ma et al., 2020), tailored to the flat-fading
channel model. Inspired by the analysis of Single Snapshot
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element-space ESPRIT in (Li et al., 2020), we obtain error bounds
on the matching distance error between the true angle of arrival
(AoA) of the channel paths and the estimated AoA. Our error
analysis is non-asymptotic in the number of snapshots, does not
require any statistical assumption on the noise distributions, and
the error bounds are applicable for any beamformer satisfying
suitable rank constraints. Furthermore, the analysis reveals that
the error bounds are controlled by the smallest singular value of a
suitable matrix which is shaped by the beamformer and the AoAs.
We leverage this insight from our theoretical analysis to propose a
novel max-min criterion for beamforming, with the goal of
boosting the performance of beamspace ESPRIT. We consider
a family of multi-resolution beamformers, that exploits the
geometric coupling between the antenna array manifold and
the beamformer. Our design can guarantee a minimum
beamforming gain uniformly over a region of possible
multipath directions and can be implemented with phase
shifters (analog-only implementation).

3 MEASUREMENT MODEL

We consider a single user mmWave uplink system consisting of a
single-antenna Mobile Station (MS), and a Base Station (BS)
equipped with M > 1 antennas. We assume that the BS antennas
are arranged in the form of a large Uniform Linear Array (ULA)
with an inter-antenna spacing of λ/2, where λ denotes the carrier
wavelength. It is well-known that mmWave channels exhibit
sparse scattering, where each scatterer is often assumed to
contribute to a single channel path (Raghavan and Sayeed,
2010; Ayach et al., 2014; Alkhateeb et al., 2014b). Based on
this geometric model (Alkhateeb et al., 2014a; Alkhateeb et al.,
2014b; Park and Heath, 2018), we consider a channel with S
scattering paths, with θs ∈ [0, π] denoting the angle of arrival
(AoA) of the sth path between the BS and the MS. Assuming that
the AoAs remain unchanged during the training period, the
uplink channel at the tth snapshot is given by (Park and
Heath, 2018)

ht �∑S
s�1

xs,ta fs( ), t � 1, 2, . . . , T (1)

Here T denotes the number of time snapshots in the training
period, and xs,t represents the (time-varying) gain of the sth path.
The array response vector (or steering vector) associated with the
sth channel path is given by

a fs( )[ ]m � e−jπmfs , m � 0, . . . ,M − 1

where fs≔ sin (θs) denotes the spatial frequency determined by
the AoA θs. Notice that, Eq. 1 corresponds to a flat-fading channel
model, which is of interest in this paper.2 We further consider a

low-mobility scenario where the AoA’s do not change over the
training period T (although the path gains can change).

Let F ≔ {fi}Si�1 be the set of all spatial frequencies. The
received signal at the physical array is given by

rt � A F( )xtst + nt t � 1, . . . , T (2)

Here st represents the (known) transmitted pilot signal,3

xt � [x1,t, x2,t, . . . , xS,t]T, A(F ) � [a(f1), . . . , a(fS)] ∈ CM×S is
the antenna array manifold, and nt ∈ CM represents the channel
noise at time t. Since st is known, without loss of generality, we
assume that st � 1 for the entire training duration
(Haghighatshoar and Caire, 2016; Park and Heath, 2018).

In mmWave systems, the number of deployed antennas is very
large, and a dedicated RF chain for every antenna significantly
increases the hardware complexity and power consumption.
Therefore, in order to reduce the number of RF chains, the
signals received at the antennas are linearly combined in the
analog domain using a network of analog beamformers, where
the number of beamformers is given by the number of RF chains.
Due to a limited number of RF chains, the measurement at the
output of the RF chains is a low-dimensional projection of the
signal received at the antennas. In this work, we assume that the BS
is equipped with N < M RF chains. Let W ∈ RM×N be an analog
beamforming matrix, that performs a linear combination of the
received signal rt to obtain a compressed signal yt. It is typically
realized using analog circuitry, such as switches or phase shifters.
The measurements at the output of the RF chains is given by

yt � WHrt � WHA F( )xt +WHnt, t � 1, . . . , T (3)

Denoting Y � [y1, y2, . . . , yT] ∈ CN×T, we have

Y � WHA F( )X +WHN (4)

where X � [x1, . . . , xT], N � [n1, . . . , nT]. Given Y ∈ CN×T, our
objective is to estimate the mmWave channel Eq. 1, which is
equivalent to estimating fi and xi, i � 1, . . . , S.

4 REVIEW OF BEAMSPACE ESPRIT FOR
MMWAVE CHANNEL ESTIMATION

In recent times, there has been a renewed interest in utilizing
classical subspace-based techniques from array signal processing
for mmWave channel estimation, due to similarities between the
two measurement models at mmWave frequencies (Guo et al.,
2017; Liao et al., 2017; Zhang andHaardt, 2017;Ma et al., 2020). An
obvious advantage of these subspace-based algorithms is that they
enable “gridless super-resolution” estimation of the AoAs that
grid-based sparse techniques fail to achieve. Specifically, variants of
subspace algorithms in the beamspace have been proposed that can
produce high-resolution estimates of channel parameters evenwith
a limited number of RF chains. In (Ma et al., 2020), Li et al.
proposed a beamspace ESPRIT scheme which is applicable for any

2The results can also be extended to channels that exhibit frequency selectivity by
considering orthogonal frequency-division multiplexing (OFDM), where the
channel vector at each subcarrier can be described by Eq. 1.

3For multi-user system, we can reduce the problem to single-user using orthogonal
pilots.
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choice of beamformer, that satisfies some mild rank constraints.
This approach requires only one antenna to be turned off at a time,
and has several advantages such as a negligible drop in transmitted
power and spatial coverage.

In this paper, we will analyze this variant of the beamspace
ESPRIT algorithm. For ease of exposition, we will consider a flat-
fading single carrier system, although extensions are possible.
Our analysis will not require any specific assumptions on the
distribution of noise, other than assuming it to be bounded.
Unlike the prior asymptotic analysis in (Guanghan Xu et al., 1994;
Mathews et al., 1996), we will not assume a large number of
snapshots, or ignore higher-order perturbation terms (Roemer
et al., 2014; Steinwandt et al., 2017). We first review the algorithm
from (Ma et al., 2020) in the noiseless setting adapted to the flat-
fading scenario.

The key idea behind the ESPRIT algorithm is exploiting
the so-called shit invariance property, which refers to arrays
with two identical subarrays that are separated by a common
displacement. Let A1(F ), and A2(F ) denote two subarrays
of A(F ) comprising of the first and last M − 1 antenna
elements. The array A(F ) exhibits shit invariance property
since

A2 � A1Φ F( ) (5)

where Φ(F ) � diag(e−jπf1 , . . . , e−jπfS). One way to realize such
subarrays and the corresponding shift invariance is by
successively turning off the first and the last antennas. In (Ma
et al., 2020), a two-stage approach was utilized to obtain this
invariance structure. In the first stage, theMth antenna is turned
off, which corresponds to a beamforming matrix
~W1 ≔ [WH, 0N]H ∈ CM×N. In the second stage, the first
antenna is turned off, yielding a beamforming matrix
~W2 ≔ [0N,WH]H ∈ CM×N. Here W ∈ C(M−1)×N is an analog
beamforming matrix which satisfies the following rank condition:

rank ~W
H

1 A F( )( )) � rank ~W
H

2 A F( )( ) � S for all F (6)

A necessary condition for Eq. 6 is N ≥ S. Let
~Y1 � ~W

H
1 AM(F )X, and ~Y2 � ~W

H
2 AM(F )X be the beamspace

measurements acquired using this scheme. We define an
augmented observation ~Y as

~Y ≔
~Y1
~Y2
[ ] � ~W

H

1

~W
H

2

⎡⎣ ⎤⎦AM F( )X (7)

Define

B ≔ WHA1

WHA1Φ
[ ] (8)

where Φ(F ) � diag(e−jπf1 , . . . , e−jπfS ), and A1(F ) ∈ C(M−1)×S,
A2(F ) ∈ C(M−1)×S comprise of the first and last M − 1 rows of
AM(F ), respectively. For the rest of paper, we suppress the
dependence on F and simply use A1, A2, Φ. Thus, Eq. 7 can
be represented as

~Y � BX � WHA1

WHA1Φ
[ ]X (9)

Note that under the assumption Eq. 6, we have rank(B) �
S. We further assume that X has full row rank which together
with rank(B) � S implies that rank(~Y) � S. Let UyΣyVH

y � ~Y
be a reduced singular value decomposition (SVD) of ~Y ∈ C2N,
where Uy ∈ C2N×S,Σy ∈ CS×S,Vy ∈ CT×S. Since rank(B) � S, its
columns form a basis for R(~Y)4 (which coincides
with R(Uy)). Thus, there exists an invertible matrix
P ∈ CS×S which provides a mapping between these two
bases for R(~Y),

Uy � BP (10)

LetU1, andU2 be two submatrices ofUy, comprising of its first
and last N rows, respectively. Then,

Uy � U1

U2
[ ] � WHA1P

WHA1ΦP
[ ] (11)

U2 � U1P
−1ΦP (12)

Notice that Ψ ≔ U†
1U2 � P−1ΦP.5 Since Ψ is diagonalized by

P, we can determine the AoAs (contained in Φ) from the S
eigenvalues {λi}Si�1 of Ψ as follows:

fi � −arg λi( )
π

, i � 1, . . . , S (13)

where arg(λ) ∈ [−π, π) denotes the phase of the complex
number λ.

The noiseless beamspace ESPRIT described above can
be directly extended to a noisy setting. Consider the
following noisy version of the measurement model
introduced in Eq. 7:

Ŷ � Ŷ1

Ŷ2
[ ] � ~W1

~W2
[ ] AM F( )X +N( ) (14)

where N ∈ CM×T denotes the additive noise. The noisy version
of the beamspace ESPRIT algorithm follows on similar lines as
its noiseless version, and is summarized in Algorithm 1.

4R(~Y) denotes the range space of ~Y.
5U†

1 denotes the Moore-Penrose Pseudo-inverse of the rectangular matrix U1.
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5 PERFORMANCE ANALYSIS OF
BEAMSPACE ESPRIT

We will analyze the performance of the noisy beamspace ESPRIT
algorithm. Our analysis extends the recent results from (Li et al.,
2020) (for single-snapshot ESPRIT), to beamspace and multi-
snapshot scenarios. Our error bounds will explicitly capture the
role of the beamforming matrixW, and provide insights into how
the error is shaped by the interaction between the AOA (F ) and
beamforming matrix (W). We will use this characterization to
develop new criteria for robust beamformer design in Section 2.

We first define some key quantities and metrics. The wrap
around distance between two spatial frequencies fi, fj ∈ [0, 1] over
the unit interval is defined as:

|fi − fj|Tu
≔ min

n∈ 0,1{ }
|fi − fj − n|

Our error metric will be the “matching distance” between the
estimated F̂ and ground truth F , defined as:

md F , F̂( ) ≔min
ψ

max
i

|f̂ψ i( ) − fi|Tu
(15)

where ψ is taken over all permutations of {1, 2, . . . , S}. Matching
distance between the eigenvalues of Ψ̂ and Ψ is similarly
defined as

md Ψ, Ψ̂( ) ≔min
ψ

max
i

|λ̂ψ i( ) − e−jπfi |Tu
(16)

We will use the notation σk(Q) to denote the kth largest
singular value of a matrix Q.

The following theorem provides an upper bound on the
matching distance error between the true AoAs F and its
estimate F̂ obtained from beamspace ESPRIT:

Theorem 1. Consider the noisy measurement model Eq. 14. Let
F̂ be the estimated frequencies obtained from the beamspace
ESPRIT algorithm (Algorithm 1). Assume that rank(BX) � S. If
the noise level is moderately small such that

‖N‖2 ≤ σS B( )σS X( )σS U1( )
16

�
S

√ ‖W‖2 (17)

then the matching distance error between F̂ andF is bounded as

md F , F̂( )≤ CS1.5‖B‖2‖W‖2‖N‖2
σS B( )2σS X( )σS U1( )2 (18)

Here C is a universal constant, and U1 ∈ CN×S is defined in
Eq. 11.

Proof. The proof follows by combining Lemma 6 and 8 of
Appendix. See Supplementary Appendix for the details.

Remark 1. When S � 1, the bound Eq. 18 can be simplified to

md F , F̂( )≤ C′‖W‖2‖N‖2
‖WHa f1( )‖2‖X‖2 (19)

where C′ is a constant. The quantity ‖WHa (f1)‖2 controls the
error bound and represents the beamformer response to the

spatial frequency f1 (direction θ1). Note that a simple scaling
of the beamforming matrixW cannot improve performance since
it boosts both the noise and signal components. For N � 1, ‖WHa
(f1)‖2 � |wHa (f1)| represents the beamforming gain in direction
θ1. Of course, if we knew f1, we would choose w � a (f1) to
maximize |wHa (f1)|. In that case, ‖WHa(f1)‖2/‖W‖2 �

��
M

√
, and

the error will scale as 1/
��
M

√
. However, during channel sensing, f1

is unknown and w needs to be designed to ensure that a certain
beamforming gain is achieved over a target sector of interest. Such
a design will also decrease the error bound uniformly over that
region. In the next section, this will be the basis for beamformer
design.

6 ANALOG BEAMFORMER DESIGN FOR
MAXIMIZING THE MINIMUM GAIN
6.1 Review of Existing Beamformer Design
Approaches
As explained earlier, the choice of the beamformer is implicitly
tied to F . However, prior to channel estimation, the AoAs (F ) of
the multipaths are unknown, and it becomes impossible to
beamform along these directions. As an alternative, in order to
ensure beamforming gain over all possible multipath angles, it is
common to assume that the AoAs belong to a sector of interest
(Alkhateeb et al., 2014b; Ma et al., 2020). Let T: [fmin, fmax] be a
spatial sector of interest, and suppose we have prior knowledge
that the AoAs fi ∈ T. We will now review beamformer designs
that utilize this prior information to enhance the performance of
channel estimation algorithms when AoAs are within this sector
of interest (Chen et al., 2019; Ma et al., 2020). The most widely
used criterion for designing a hybrid beamformer for mmWave
channel sensing is to ensure (i) a constant beamforming gain over
the sector of interest, and (ii) zero gain outside the region T, i.e.,

|wHa f( )| � g, f ∈ T

0, f ∉ T
{ (20)

where g is the desired gain. The criterion Eq. 20 represents an
ideal brick-wall filter, and it cannot be realized in practice. A
common approach is to ensure the desired gain g only on a finite
grid of discretized frequencies (Chen et al., 2019; Alkhateeb et al.,
2014b; Ma et al., 2020). Specifically, Let Ag �
[a ~f1

, a ~f2
, . . . , a ~fNg

] ∈ CM×Ng be a dictionary of steering vectors

a(~fk) corresponding to Ng grid points with

~fk �
k − 1( )
Ng

, 1≤ k≤Ng.

Suppose k1 and k2 are respectively the smallest and largest
integers such that ~fk1

, ~fk2
∈ T. We introduce a vector g ∈ CNg :

g[ ]k � gejϕi , k1 ≤ k≤ k2
0, otherwise
{ ,

which enforces the gain constraints Eq. 20 at the discretized
directions ~fk. Note that a phase term ϕi is introduced to the
response to provide additional flexibility of design. The first step
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towards designing the desired beamformer w involves estimating
an ideal beamformer (v*) design by solving the following least
square problem (Alkhateeb et al., 2014b; Chen and Qi, 2018;
Chen et al., 2019; Ma et al., 2020):

v* � arg min
v∈CM

‖AH
g v − g‖2 (21)

Typically, the grid is chosen to satisfy Ng > M, which implies
that rank (Ag) � M, and a closed form solution for the design is
given by v* � (AgAH

g )−1Agg � 1/MAgg. The beamformers are
normalized to obtain v0 � v*/‖v*‖2. In a typical hybrid mmWave
system, the beamformer v0 is realized by a hybrid structure where
WRF ∈ CM×N is an RF (analog) beamformer implemented using
phase shifters, i.e.

WRF[ ]m,n � ejϕm,n , 1≤m≤M, 1≤ n≤N,

and a digital beamformer wBB ∈ CN×1. Therefore, the second
stage of the beamformer design involves approximating the ideal
design v0 under these additional constraints imposed by the
hardware, resulting in the following optimization problem
(Alkhateeb et al., 2014b; Chen et al., 2019)

min
WRF∈CM×N ,wBB∈CN

‖v0 −WRFwBB‖2
WRF[ ]m,n � ejϕm,n , ‖WRFwBB‖2 � 1

(22)

Several algorithms have been proposed to approximately solve
Eq. 22 based on Orthogonal Matching Pursuit (Ayach et al., 2014;
Alkhateeb et al., 2014b), alternating minimization (Yu et al., 2016;
Chen et al., 2019), and fast search based techniques (Chen and Qi,
2018; Chen et al., 2019) using suitable initialization schemes.

Recently, instead of enforcing the constraint Eq. 20, the
authors in (Ma et al., 2020) consider parametric beamformers
of the following form, parameterized by a ∈ R

w a( )[ ]m,n � g
��
M

√
2

ej m−1( )π−a( )f n−1( ) − ej m−1( )π−a( )f n( )

j M − 1( )π − a
( ) (23)

where each beamformer is responsible for a partition of T

determined by {f(n)}Nn�0 ∈ T. They propose to maximize the
following ratio as a function of the parameter a

S a( ) ≔ ∫T|w a( )Ha f( )|2df
∫1
0
|w a( )Ha f( )|2df (24)

The numerator of S(a) represents the power concentrated in
the sector of interest T, and the denominator represents the total
power. This criterion is maximized by performing a grid-based
search over a after simplifying the ratio Eq. 24. One drawback of
both of the aforementioned beamforming strategies is that the
design is not guaranteed to ensure a constant gain of g even on the
grid points. More importantly, the beamforming gain can drop
below the desired level (g) at several regions in T. There is no
analytical characterization of how small the gain can become in
these regions. This can lead to significant performance
degradation of beamspace channel sensing techniques,
especially if the multipath directions are aligned with the
above regions where gain is small. In order to overcome these

drawbacks, in the next section, we will propose a new “max-min”
criterion for beamformer design to boost the minimum
beamforming gain over T. Such a criterion will allow more
robust channel estimation uniformly over T.

6.2 Beamformer Design Strategy
Wemotivate our approach for beamformer design by focusing on
the quantity σS(W

HA), and relate it to the beamforming gain. It
can be seen from Eq. 18 that larger the value of σS(W

HA), smaller
the error of beamspace ESPRIT. Hence, one can aim to designW
that maximizes σS(W

HA). But such a W will depend on A(F ),
and we do not know the AoA’s F to begin with. In many cases
however, we can assume that the AoA belong to a region/sector of
interest given by T ≔ [fmin, fmax]. In other words

fi ∈ T, i � 1, 2, . . . , S

In this case, we wish to ensure that σS(WHA(F )) stays
uniformly large over the entire set T. Let αW be the smallest
value that σS(WHA(F )) can assume over T, i.e.,

αW ≔min
F∈TS

σS WHA F( )( )
We wish to design W in order to maximize αW (under

constant modulus constraints on W), which leads to the
following problem:

α+ ≔ max
W∈CM×N

αW, s.t. |Wm,n|∈ 0, 1{ } (25)

This problem belongs to the family of non-convex max-min
optimization problems, and it is challenging to solve it for the
most general setting. In the next section, we focus on providing
the solution of such an optimization problem for the scenario
when there is a single source S � 1, single RF chain N � 1, and
contrast the distinctions between the proposed criteria to the
existing beamformer designs reviewed in Section 1.

6.3 Optimal Solution for Single Source and
Single RF Chain
We consider the single path scenario (S � 1) where the channel is
given by ht � αta(f). This model has been widely used in the
mmWave communication literature where the path losses are
high and the channel is assumed to have only a single Line of
Sight (LOS) path that is dominant (Alkhateeb et al., 2014b;
Chiu et al., 2019). Our goal will be to optimize the design of a
single RF chain (N � 1), which is again motivated by typical
hybrid mmWave hardware systems that are equipped with
large antenna arrays but often just 1 RF chain (Roh et al.,
2014). For S � 1, N � 1, it can be verified that
σS(WHA(F )) � σ1(wHa(f)) � |wHa(f)|. We first develop a
framework for designing w that is optimized to maximize the
minimum gain over the entire sector of interest. Specifically,
this yields the following max-min problem:

ηT* ≔ max
w∈CM

min
f∈T

|wHa f( )|,
s.t. |wm|∈ 0, 1{ }, m � 1, 2, . . . ,M

(26)
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Notice that Eq. 26 aims to maximize the minimum (or
worst case) gain of the beamformer over the sector T. At this
point, we will like to distinguish the criterion Eq. 26 from
those discussed in Section 1. Although the quantity of
interest is wHa(f) in both cases, the design criteria
reviewed in Section 1 are fundamentally different from
Eq. 26. Firstly, the approaches in (Alkhateeb et al., 2014b;
Chen and Qi, 2018; Chen et al., 2019) solve a grid-based least
square loss Eq. 21, and therefore the obtained design is not
guaranteed to ensure constant gain g even on the grid points.
Indeed, there could be an adversarial multipath angle f0 ∈ T

where the observed gain is lower:

wH
0 a f0( )<g

In contrast, the criterion Eq. 26 can uniformly guarantee
beamforming gain of at least η+T in the entire sector T. This is
illustrated in Figure 1 where we plot the gain of two different
beamformers against the max-min design over the sector of
interest T � [0, 0.2]. As can be seen, the gain for “power-ratio”
(Ma et al., 2020) and “constant gain” designs (Chen et al.,
2019) both significantly fall below the desired level along
several directions in the sector T, whereas for the max-min
design the smallest (worst case) gain is larger than the other
designs.

Solving Eq. 26 over the set of all unimodular w can be a
challenging problem, and it can be difficult to quantify and
analyze the optimal solution. To make Eq. 26 tractable so that
we can obtain a closed form solution with “quantifiable”
minimum beamforming gain over the entire sector T, we
propose to choose w from a parametric class WT of
beamformers, which already obey the unimodular constraints.
We defineWT as follows. Given a “center frequency” fc ∈ T, and
an integer ma, 1 ≤ ma ≤ M, define b(fc,ma) ∈ CM as

b fc,ma( )[ ]m � exp −jfcπ m − 1( )( ), m≤ma

0, m>ma
{

Hence, b (fc,ma) represents a DFT beamformer withma active
antennas and whose pass band is centered at fc. Let
mr ≔ min{ 4

fmax−fmin
,M}. Given an integer ma satisfying 1 ≤ ma

≤ mr, we define Cma,T ⊂ CM as the set of all DFT beamformers
with ma active antennas, generated by varying the center
frequency fc over the interval [fmax − 2

ma
, fmin + 2

ma
]:

Cma,T � b fc,ma( ) ∈ C
M, fc ∈ fmax − 2

ma
, fmin + 2

ma
[ ]{ }

All beamformers in Cma,T therefore have the same beamwidth
determined byma with the flexibility of shifting the beam centers
to any location fc such that the desired coverage region T remains
in the main lobe of the beam, i.e., T ⊂ [fc − 2

ma
, fc + 2

ma
]. Finally,

we define the set WT that comprises of DFT beamformers of all
possible mainlobe widths, i.e.,

WT ≔ ⋃
mr

ma�1
Cma,T (27)

Using this class WT, we propose to solve

�ηT* ≔max
w∈WT

min
f∈T

|wHa f( )| (28)

Notice that the class of beamformers WT is quite broad,
consisting of multi-resolution beams of varying beam widths
(determined by ma), and for each resolution/beamwidth the
permissible beams are shifted copies of each other. Such
beamformers have two fold-advantages (i) they inherently
satisfy the desired constant modulus constraint for hardware
implementation using phase shifters and switches, and (ii) they
are amenable to theoretical analysis due to the parametric

FIGURE 1 | Comparison of beam patterns of two different beamformer
designs against the max-min design. Here N � 10, M � 128, T � [0,0.2].

FIGURE 2 | Effect of the number of active antennas on the realizable
beam patterns in WT with a single RF chain (N � 1, M � 40).
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structure. A key distinction compared to the designs described in
Section 1 is that we are only considering purely RF or analog
beamformers, without any baseband processing. As will be shown
in the simulations, with the same budget of RF chains, this max-
min design strategy yields superior performance compared to the
hybrid designs, especially for adversarial multipath
configurations.

The max-min design criterion involves a natural trade-off
between gain and coverage. As shown in Figure 2, when ma is
large the resulting beams are sharper and can offer higher
gains. Despite their higher gain, their coverage is limited
owing to the narrow main lobes. Since our goal is to ensure a
certain minimum gain uniformly across the entire sector T,
we must design the beam centers and select the widths
appropriately to satisfy this objective. The parametric
structure of WT allows us to obtain the following
expression for the beamforming gain for w � b (fc, ma):

‖wHa f( )‖22 � sin f − fc( ) πma
2

sin
f−fc( )π

2( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

Owing to the structure of WT, searching for the optimum w
reduces to finding the optimum center fc and active antennas ma

that jointly maximize the minimum gain over the entire sector of
interest T. Theorem 2 provides the optimal choice of this design.

Theorem 2. Let T � [fmin, fmax] ∈ [0, 1], Δf≔fmax − fmin. Given
the class of beamformers WT defined in Eq. 27, the optimal value
of Eq. 28 is given by

�ηT* �

sin
2

Δf

[ ]Δfπ/4( )
sin Δfπ/4( ) if Δf ≥

2
M

sin MΔfπ/4( )
sin Δfπ/4( )
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣ if Δf ≤
2
M

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
. (29)

The optimal value is attained by the beamformer
b(fc*, ma*) ∈ WT where

fc* � fmid � fmax + fmin

2

ma* �
2
Δf
[ ] if Δf ≥

2
M

M if Δf ≤
2
M

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(30)

where notation [x] refers to the closest integer to x.
Proof. The problem Eq. 28 is equivalent to the following

problem

max
fc,ma( )∈DM,T

min
f∈T

|b fc,ma( )Ha f( )| (31)

where DM,T denotes the set of (fc, ma) pairs such
that b(fc,ma) ∈ WT:

DM,T � fc,ma( )|fc ∈ fmax − 2
ma

, fmin + 2
ma

[ ], ma ≤mr{ }
Fix ma. Define g(fc,ma): T → R+ as:

g fc,ma( ) f( ) ≔ |b fc,ma( )Ha f( )| � ∑ma−1

i�0
ejπ fc−f( )i

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

�
sin fc − f( )maπ

2
( )
sin π

fc − f

2
( )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(32)

The function g(fc,ma)(f) is symmetric around fc, and is
monotonically increasing for f ∈ [fc − 2/ma, fc] and
monotonically decreasing for f ∈ [fc, fc + 2/ma]. Since
(fc,ma) ∈ DM,T, we have T ⊂ [fc − 2/ma, fc + 2/ma] for all
(fc,ma) ∈ DM,T. Therefore, it holds that

min
f∈T

g fmid ,ma( ) f( ) � g fmid ,ma( ) fmin( ) � g fmid ,ma( ) fmax( )
(33)

We first consider

fc >fmid (34)

Based on the definition of g(fc,ma)(f), for all (fc,ma) ∈ DM,T

we have

g fmid ,ma( ) fmin( ) � g fc,ma( ) fmin + fc − fmid( )( ), (35)

Further the fact (fc,ma) ∈ DM,T along with Eq. 34 implies
that

fc − 2/ma <fmin <fmin + fc − fmid( )<fc (36)

Thus

g fc,ma( ) fmin( )≤g fc,ma( ) fmin + fc − fmid( )( ) (37)

Using Eqs 33–35, 37 we have

min
f∈T

g fmid ,ma( ) f( ) � g fmid ,ma( ) fmin( )
� g fc,ma( ) fmin + fc − fmid( )( )
≥
a( )
g fc,ma( ) fmin( )

≥
b( )
min
f∈T

g fc,ma( ) f( )
where the inequality (a) follows from the monotonically
increasing behavior of g over the interval [fc − 2/ma, fc], and
Eq. 36 which implies fmin ∈ [fc − 2/ma, fc]. The inequality (b)
follows from the fact that fmin ∈ T. Hence, we get

min
f∈T

g fmid ,ma( ) f( )≥ min
f∈T

g fc,ma( ) f( ) (38)

Using a similar argument we can show that Eq. 38 also holds
when fc ≤ fmid.

Notice Eq. 32 implies that
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argmaxma ≤mr
g fmid ,ma( ) fmin( )∣∣∣∣∣ ∣∣∣∣∣ � argmax

ma ≤mr

sin Δf
maπ

4
( )∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ (39)

Therefore, it can be easily verified that the maximum value of
g(fmid ,ma)(fmin) over all (fc � fmid, ma) ∈ DM,T pairs is given as

max
fc�fmid ,ma( )∈DM,T

g fmid ,ma( ) fmin( ) (40)

� max
fc�fmid ,ma( )∈DM,T

g fmid ,ma( ) fmax( )

�

sin
2
Δf
[ ]Δfπ/4( )

sin Δfπ/4( ) if Δf ≥
2
M

sin MΔfπ/4( )
sin Δfπ/4( )
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣ if Δf ≤
2
M

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(41)

which will be attained at

ma* �
2
Δf
[ ] if Δf ≥

2
M

M if Δf ≤
2
M

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (42)

Optimality of (fmid, ma*) implies that for all
(fc � fmid, ma) ∈ DM,T we have,

min
f∈T

g fmid,ma*( ) f( )≥ min
f∈T

g fmid,ma( ) f( ) (43)

Hence as the result of Eq. 38, and Eq. 43, for any
(fc,ma) ∈ DM,T we have

min
f∈T

g fc,ma( ) f( )≤ min
f∈T

g fmid ,ma( ) f( )≤ min
f∈T

g fmid ,ma*( ) f( )
which completes the proof.

6.4 A Sub-band Splitting Design for Multiple
RF Chains
We now develop a heuristic for N > 1 RF chains that utilizes the
optimal design from Theorem 2. When N > 1, let W �
[w1,w2, . . . ,wN] ∈ CM×N be the analog beamforming matrix.
In this case, σS(W

Ha(f)) assumes the form

‖WHa f( )‖22 �∑N

k�1 ‖wH
k a f( )‖22

Similar to our prior objective, we now wish to ensure the
minimum value of ‖WHa(f)‖22 is maximized:

�ηI* ≔ max
w1 ,...,wN∈WT

min
f∈T

∑N
k�1

|wH
k a f( )|22 (44)

Instead of exactly solving Eq. 44, we will use our design for 1
RF chain to develop a subband splitting approach for designing
w1, w2, . . . , wN. In particular, given the interval T and a budget of
N RF-chains, we partition T into N subbands,

T � ⋃
N

k�1
Tk (45)

where Tk ≔ [fmin + (Δf) k−1N , fmin + (Δf) k
N] represents the kth

partition or subband of the sector. Such a subband design was also
considered in (Ma et al., 2020), but the criterion was different. In
particular, in (Ma et al., 2020), each beamformer is responsible for
maximizing the ratio Eq. 24 in the subband. Instead of
maximizing the power-ratio, we propose to maximize the
worst-case gain within each subband, which will prove to be
more robust, especially for adversarial settings. We solve N
different optimization problems to find wi, i � 1, 2, . . . , N as
follows

max
wk∈WTk

min
f∈Tk

|wH
k a f( )|, 1≤ k≤N (46)

As a result of the partition (Stewart, 1990), we can adopt the
optimal design obtained from Theorem 2 for each of the N
problems in (Hansen, 1987). This approach greedily designs
the columns of the matrix W such that the kth beamformer
wk maximizes the minimum gain over Tk. Let f

(k)
c and m(k)

a be
the center and number of active antenna for the optimum wk that
solves Eq. 46. Then, Theorem 2 dictates

f k( )
c � fmin + Δf( ) 2k − 1

2N
,m k( )

a � min
2N
Δf
[ ],M( ) (47)

This design follows from Theorem 2, where each of the N
intervals {Tk}Nk�1 are of length Δf/N, hence the optimal value of
m(k)

a is given by Eq. 30. In this case, we can obtain a lower bound
on ‖WHa(f)‖22 by using the gain characterization from
Theorem 2.

An example of this sub-band max-min design scheme is
illustrated in Figure 3, where the sector of interest T � [0, 0.5]
is partitioned into 5 subbands (partitions are shown using the

FIGURE 3 | Subband splitting approach for designing N � 5
beamfomers by partitioning the region of interest into N � 5 subbands and
choosing the optimal beamformer within each subband. A single RF chain is
responsible for maximizing the minimum gain in each subband/partition.
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dotted lines). Each of the available 5 RF chains maximize the
beamforming gain in each subband. The solid line indicates the
overall gain in the sector of interest showing reduced gain drop
over T.

7 NUMERICAL RESULTS

In this section, we experimentally validate our analysis of
beamspace ESPRIT (in Theorem 1), and also evaluate the
performance of the max-min beamformer proposed in Section 2.

In the first experiment, we study the effect of varying the
number (M) of antennas on the matching distance error. We fix
the AOAs of the channel paths to be F � {0.21, 0.29, 0.36, 0.38},
which belong to the region of interest T � [0.2, 0.4]. For each M,
the channel gains X are normalized to satisfy ‖X‖2 � 1. The
received signal in Eq. 4 is corrupted by bounded random noise,
normalized to satisfy ‖N‖2 � ϵ. We keepX fixed and only the noise
is randomly generated during the Monte Carlo experiments. We
compute the average matching distance error of beamspace
ESPRIT for this channel configuration averaged over L � 500
different noise realizations. In Figure 4, we plot the average
matching distance error of the beamspace ESPRIT algorithm
using the max-min beamformer proposed in Section 2. Although
the design was proposed for S � 1, it can be deployed for channels
with S > 1 multipath components as well. We vary the number of
antennas fromM � 32 toM � 128 for two different noise levels ϵ �
0.1, 0.5. From Theorem 1, for a fixed channel configuration (fixed
S, and F ), the matching distance error bound is proportional to
βM(W, N), given by

βM W,N( ) � ‖B‖2‖W‖2‖N‖2
σS B( )2σS X( )σS U1( )2

In order to validate the trend predicted by our theoretical
result, we overlay the average βM(W, N) (averaged over the noise
realizations), scaled by a factor of 10–3. As shown in Figure 4, the
average matching distance error follows the trend predicted by
the bound in Theorem 1. As expected, both the empirical error
and the trend based on βM(W, N) increase with ϵ. The
fluctuations in error (which are also consistent with the
fluctuations in the bound) can be attributed to the fact that as
we vary M, the gain of the beamformers at the (fixed) AoAs also
fluctuate.

We now compare the proposed max-min beamformer against
three other beamformer design strategies (Li et al., 2020; Chen
et al., 2019) which were reviewed in Section 1. In all of the
following experiments, we choose T � [0, 0.2] as our region of
interest. In all figures, “Power-Ratio” refers to the beamformer
designed using Eq. 23 (Li et al., 2020), “PS-ICD” refers to the
design in (Chen et al., 2019) which approximates the solution of
Eq. 21 using phase shifters, and “DFT” refers to a sub-selection of
the columns of a DFT matrix (according to the region of interest
and number of available RF chains). “Max-Min design” denotes
the beamformer described in Section 2, where we partition the
region of interest T and construct the optimal beamformers
corresponding to each region.

We first generate a single LOS path with
F � {0.18} ∈ T � [0, 0.2], and a fixed channel gain matrix X
satisfying ‖X‖2 � M. Similar to the previous setting, we
consider bounded noise with ‖N‖2 � ϵM to ensure that the
ratio ‖X‖2/‖N‖2 is fixed. In Figure 5, we plot the average
matching distance error for three different beamformers, and
overlay the average trend predicted by βM(W, N). The empirical
average matching distance error exhibits a similar trend as
predicted by βM(W, N). The performance gap observed
between the bounds is also reflected in the actual matching

FIGURE 4 | Comparative study of matching distance error as a function
of the number of antennas M, using the max-min beamforming scheme for a
multipath channel with S � 4 paths, N � 20 RF chains, T � 50 Snapshots. The
dotted lines illustrate the trend predicted by the bounds in Theorem 1.

FIGURE 5 | Comparative study of matching distance error as a function
of the number of antennas M, using the max-min and power ratio
beamforming schemes for a LOS channel with S � 1 path along F � [0.18],
N � 10 RF chains, T � 5 snapshots, and noise level ϵ � 0.5. The dotted
lines illustrate the trend predicted by the bounds in Theorem 1.
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distance error, hence, illustrating the effectiveness of the proposed
beamformer design by leveraging the error analysis.

In Figures 6–12, we assume that the path gains are i. i.d
random variables distributed as xs,t ∼ NC(0, σx). Furthermore,
the noise are assumed to be i. i.d random variables distributed as
nm,t ∼ NC(0, σn) and independent from the channel gains. We
define SNR as

SNR ≔ 10log
σx

σn

In Figures 6–8, we compare the average Matching Distance
error of beamspace ESPRIT as a function of SNR, using different

beamformers. In Figures 6, 7, the channel is assumed to have a
single LOS path, withM � 64 antennas, N � 5 RF chains, and T �
50 snapshots. In Figure 8, we consider a multi-path channel with
S � 4 paths, M � 128 antennas, N � 10 RF chains, and T � 50
temporal snapshots. We considered a specific channel
configuration where the AoAs are chosen from the set
F � {0.02, 0.1, 0.16, 0.18}. As can be observed, the max-min
design outperforms other schemes uniformly over the entire
range of SNR, maintaining a gap in error of about 10 dB. In
Figure 7, we further show how the performance of all the
beamformers degrade when the SNR becomes very small. In

FIGURE 6 | Comparison of performance of max-min beamformer
against power-ratio, PS-ICD and DFT beamformers as a function of SNR, with
channel path directions given by F � [0.18]. Each beamformer design is
realized with N � 5 RF chains where M � 64.

FIGURE 7 | Comparison of channel estimation performance of max-min
beamformer against power-ratio, PS-ICD and DFT beamformers in the SNR
regime of −50 dB to −10 dB, with channel path directions given by
F � [0.18]. Each beamformer design is realized with N � 5 RF chains
where M � 64.

FIGURE 8 | Comparison of performance of max-min beamformer
against power-ratio, PS-ICD and DFT beamformers as a function of SNR, with
channel path directions given by F � [0.02, 0.1, 0.16,0.18]. Each
beamformer design is realized with N � 10 RF chains where M � 128.

FIGURE 9 |Comparison of beamspace channel estimation performance
for a LOS channel with S � 1 path, M � 64 antennas, N � 5 RF chains as a
function of SNR. The plot shows the matching distance error averaged over
K � 100 different channel realizations by varying one of the AOAs
uniformly on a grid in the region of interest.
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such a low SNR regime, the matching distance error of one
channel path converges to half of the length of the region of
interest, i. e 20 log 10 (0.1) � −20 dB.

In the next experiment, we investigate the performance of
max-min beamformer with respect to different path directions
over the region of interest. In order to do so, we choose the path
angles from a uniform grid of size K � 100 over the region of
interest T, and plot the average matching distance error (Avg-
md) over all possible channel configurations. For a single path
LOS channel, let F k � 0.2(k−1)

K{ } be the AoA direction while F̂ k,l

refers to the estimate of F k for the lth realization. The Avg-md is
given as follows

Avg −md T, K, L( ) � 20log
1
KL
∑K
k�1
∑L
l�1

md F k, F̂ l,k( )
In Figure 9 we plot the Avg-md as a function of SNR, under a

similar setting as Figure 6. In Figure 10, we repeat this for a
multi-path channel, where three path directions are fixed, and the
AoA of the fourth path is varied over T, i. e,
F k � 0.02, 0.1, 0.18, 0.2(k−1)K{ }. The superior performance of the
Max-Min beamformer can be attributed to the fact that its
minimum gain over T is always larger than that of the other
beamformers.

Owing to a higher “worst-case gain” over the region of interest,
max-min beamformers enable a more robust channel estimation
in face of certain (adversarial) channel configurations/multipath
directions, compared to the other beamformers whose pass-band
gain can drop significantly below the desired (constant) level for
these directions, resulting in an overall degradation of the
average error.

In Figure 11, we demonstrate the effect of the total number of
temporal snapshots on the ESPRIT matching distance error
for different beamforming schemes. In this experiment, we fix
the SNR at −5 dB, and the other parameters are identical to
those used in Figure 8. The plot shows that our schemes is
effective even in the limited snapshot regime. Additionally,
the gap between the performance of Min-Max design and the
other beamformers steadily increases with the number of
snapshots.

Finally, Figure 12 compares the MSE of beamspace ESPRIT
against the beamspace Cramér-Rao Bound (CRB) for different
beamformers (Van Trees, 2004), under a similar setting as
Figure 6. As we can observe, the trend exhibited by the
empirical MSE is consistent with the trend shown by the CRB,
and the max-min beamformers exhibit a smaller CRB compared
to other beamformers.

FIGURE 10 | Comparison of beamspace channel estimation
performance for a multipath channel with S � 4 path, M � 128 antennas, N �
10 RF chains as a function of SNR. The plot shows the matching distance
error averaged over K � 100 different channel realizations by varying the
one AOA uniformly on a grid in the region of interest while three other AOAs are
fixed at [0.02, 0.1, 0.18].

FIGURE 11 | Matching distance error vs. the number of snapshots for
max-min beamformer and power-ratio, PS-ICD and DFT beamformers. The
channel path directions are given by F � [0.02, 0.1,0.16, 0.18]. Each
beamformer design is realized with N � 10 RF chains where M � 128.

FIGURE 12 | Comparative study of MSE and Cramér-Rao Bound (CRB)
as a function of SNR, using the max-min and power ratio beamforming
schemes for a LOS channel with S � 1 path alongF � [0.18],N � 5 RF chains,
M � 64 Antennas, T � 100 snapshots. The dotted lines denote
beamspace CRB.
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8 CONCLUSION

In this work, we have extended the analysis of single-snapshot
ESPRIT for beamspace and multi-snapshot scenarios. Our
analysis is non-asymptotic in the number of snapshots, and
provides an upper bound on the matching distance error
without requiring any specific distribution for the noise. The
error analysis revealed the role of the beamformer design. Based
on our theoretical analysis, we have proposed a novel max-min
criterion for designing beamformers which ensures a minimum
beamforming gain uniformly over a region of possible path
directions. We have considered a family of multi-resolution
beamformers which can be implemented with phase shifters,
and proposed the optimal beamformers from this family with
respect to the new max-min criteria. By conducting several
numerical experiments, we have empirically established the
superior performance of our designed beamformers compared
to other beamformers. In future, an interesting question would be
to extend the max-min design over a broader class of
beamformers.
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A. PROOF OF AUXILIARY LEMMAS FOR
THEOREM 1

Our proof follows similar arguments as [1] with necessary
modifications for beamspace and multi-snapshot scenario. For
completeness, we provide all auxiliary lemmas used.

Preliminaries
Let S1, S2 be any orthonormal bases for R(Uy) and R(Ûy),

respectively. The principal (or canonical) angles between the
subspaces R(Uy) and R(Ûy) are defined as the
Θ(S1, S2) ≔ [ω1,ω2, . . . ,ωS]T where ωk ∈ [0, π/2] satisfies:

cos ωi( ) � σ i SH1 S2( ) (48)

We consider the SVD of SH1 S2 � ~U~Σ~V
H
. Since ESPRIT is

invariant to the exact choice of the basis, for our analysis we
will consider the orthonormal bases for R(Uy) and R(Ûy) as
Uy � S1 ~U, and Ûy � S2 ~V. In this case, it can be verified that the
principal angles defined in (1) can be written as:

cos ωi( ) � |uH
i ûi|

Here we assumed that the singular vectors are ordered such
that ω1 ≥ ω2 ≥. . ., ≥ ωS. We also denote

sin Θ Uy, Ûy( )( ) ≔ sin ω1( ), sin ω2( ), . . . , sin ωS( )[ ]T

The augmented noise matrix is given by:

Ns ≔
N1

N2
[ ]

where N1,N2 ∈ CM−1×T represent matrices formed by selecting
the first M − 1 rows and last M − 1 rows of N, respectively. Let
~N � WHNs, we have the following bound:

‖~N‖22 ≤ ‖W‖22 ‖N1‖22 + ‖N2‖22( )
≤ 2‖W‖22‖N‖22

(49)

where the first inequality follows from the fact that
|Ns‖22 ≤ ‖N1‖22 + ‖N2‖22, and the second inequality holds since
both N1, N2 are submatrices of N.

For any matrix F, we adopt the notation σmax(F)≔‖F‖2, and
σmin(F)≔1/‖F†‖2. We first use Wedin’s theorem [2] to
bound ‖Uy − Ûy‖2.

Lemma 1. (Wedin’s Theorem [2]). Consider matrices
A,B,N ∈ CM×N such that

B � A +N
Consider the Singular Value Decompositions of A and B:

A � U1 U0[ ] Σ1

Σ0
[ ] V1

V0
[ ]H

B � ~U1
~U0[ ] ~Σ1

~Σ0
[ ] ~V1

~V0
[ ]H

where U1 ∈ CM×L, ~U1 ∈ CM×L consist of the L principal
singular vectors of A and B, respectively. Define A1 ≔ U1Σ1VH

1 ,

A0 ≔ U0Σ0VH
0 , B1 ≔ ~U1~Σ1 ~V

H
1 , B0 ≔ ~U0~Σ0 ~V

H
0 . If σmax(A0) ≤ α

and σmin(B1) ≥ α + δ for some α ≥ 0 and δ > 0, the following holds

‖ sinΘ R A1( ),R B1( )( )‖∞ ≤
max ‖NV1‖2, ‖NHU1‖2{ }

δ

Lemma 2. Consider the matrices A, B1, U1, V1 defined in Lemma
1. If rank(A) � L, and ‖N‖2 ≤ σL(A)/2, the following holds

‖ sinΘ R A( ),R B1( )( )‖∞ ≤
2max ‖NV1‖2, ‖NHU1‖2{ }

σL A( )

Proof. Note that since rank(A) � L, we have A0 � 0, and σmin(A) �
σL(A). UsingWeyl’s theorem [3] formatrix perturbation, we canwrite

σmin B1( )≥ σmin A( ) − ‖N‖2 ≥ σL A( )
2

where the last inequality follows from the assumption ‖N‖2 ≤
σL(A)/2. The conditions of Lemma 1 are satisfied with α � 0 and δ
� σL(A) completing the proof of Lemma 2. □

We will also be using the following standard result from [4,
Pg. 36].

Lemma 3. For any matrices A ∈ CM×K, and B ∈ CK×T, (M > K)
where rank(A) � K, we have

σK AB( )≥ σK A( )σK B( )

Lemma 4. Let Ŷ � BX + ~N, where Rank (BX) � S. Consider the
Singular Value Decompositions: BX � UyΣyVH

y ,
Ŷ � [Ûy Ûn]Σ̂y[V̂H

y V̂
H
n ]H, where Uy, Ûy ∈ C2N×S consists of

the S principle singular vectors. Assuming that the noise is
bounded as ‖~N‖2 ≤ σS(B)σS(X)/2, the following holds

‖Uy − Ûy‖2 ≤ 2
��
2S

√ ‖~N‖2
σS B( )σS X( ) (50)

Proof. When the noise ~N is bounded by
‖~N‖2 ≤ σS(B)σS(X)/2≤ σS(BX)/2, the assumptions of Lemma 2
are satisfied for L � S, which implies

‖ sinΘ Uy, Ûy( )‖∞ ≤
2max ‖~NVy‖2, ‖~NH

Uy‖2{ }
σS BX( )

≤
2max ‖~NVy‖2, ‖~NH

Uy‖2{ }
σS B( )σS X( )

Using the fact ‖Vy‖2 � 1, ‖Uy‖2 � 1, we have

‖ sinΘ Uy, Ûy( )‖∞ ≤
2‖~N‖2

σS B( )σS X( ) (51)

Now, under the canonical basis assumption, we have
‖ sinΘ(Uy, Ûy)‖∞ � sin(ω1) and for i � 1, 2, . . ., S
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‖ûi − ui‖22 � 2 1 − cosωk( )≤ 2 1 − cos2ωk( )≤ 2 sin2ωk

Therefore,

‖Uy − Ûy‖2 ≤ ‖Uy − Ûy‖F � ∑S
i�1

‖ûi − ui‖22⎛⎝ ⎞⎠1/2

≤ 2S sin2ω1( )1/2 � ��
2S

√
sinω1

(52)

The proof is completed by combining (52) and (51). □

Lemma 5. Consider the measurement model in (14). If rank(BX) �
S, and ‖Uy − Ûy‖2 ≤ σS(U1)/2, then

‖Ψ − Ψ̂‖2 ≤ 7‖Uy − Ûy‖2
σS U1( )2 (53)

Proof. Notice that

‖Ψ − Ψ̂‖2 � ‖ Û
†

1 − U†
1( )Û2 + U†

1 Û2 − U2( )‖2
≤ ‖ Û

†

1 − U†
1( )‖2‖Û2‖2 + ‖U†

1‖2‖ Û2 − U2( )‖2
≤ ‖ Û

†

1 − U†
1( )‖2 + ‖U†

1‖2‖ Ûy − Uy( )‖2
where the last inequality follows from the fact that Û2, Û2 − U2

are submatrices of Ûy and Ûy − Uy, respectively. Therefore, we
have ‖Û2‖≤ ‖Ûy‖2 � 1, and ‖Û2 − U2‖2 ≤ ‖Ûy − Uy‖2. By the
assumption in this lemma, we have,

‖Û1 − U1‖2 ≤ ‖Ûy − Uy‖2 ≤ σS U1( )
2

(54)

We use a result from [5, Theorem 3.2] which states that a matrix F
with rank S, and its perturbed matrix ~F � F + E satisfy the
following inequality:

‖F† − ~F
†‖2 ≤ 3‖E‖2

σS F( ) σS F( ) − ‖E‖2( )
provided the perturbation satisfies ‖E‖2 < σS(F). We use this result
by substituting F with U, and ~F with Û1.

From (54), the perturbation condition is satisfied and this
result leads to:

‖Û†

1 − U†
1‖2 ≤

3‖Û1 − U1‖2
σS U1( ) σS U1( ) − ‖Û1 − U1‖2( )

≤
6‖Ûy − Uy‖2
σS U1( )2

(55)

Therefore, we have that

‖Ψ − Ψ̂‖2 ≤ 6

σS U1( )2 +
1

σS U1( )( )‖Ûy − Uy‖2

≤
7‖Ûy − Uy‖2
σS U1( )2

(56)

Lemma 6. Consider the measurement model in (14) such that (17)
holds. Then the following bound is satisfied:

‖Ψ − Ψ̂‖2 ≤ 14
��
2S

√ ‖~N‖2
σS B( )σS X( )σS U1( )2 (57)

Proof. From (17) and (49), we have

‖~N‖2 ≤ σS B( )σS X( )σS U1( )
8
��
2S

√ ≤
σS B( )σS X( )

2
(58)

where the second inequality follows from the fact that σS(U1) ≤ 1
and S ≥ 1. By applying Lemma 4, (50) holds. Now, (50) and (58)
together imply that ‖Uy − Ûy‖2 ≤ σS(U1)/2. This ensures that the
conditions of Lemma 5 are satisfied. Combining (53) and (50)
leads to the desired result. □

Lemma 7.

md F , F̂( )≤ 1
2
md Ψ, Ψ̂( ) (59)

Proof. The proof follows directly from eq. (III.1) in [1] □

Lemma 8. Consider the measurement model in (14). If rank(BX) �
S, then

md F , F̂( )≤ S‖B‖2
σS B( )‖Ψ − Ψ̂‖2 (60)

Proof. Based on (9),Ψ is diagonalizable by the invertible matrix P.
Using Bauer-Fike theorem, [6], [4, Theorem 3.3] and Lemma 7,
we have

md F , F̂( )≤ 1
2

2S − 1( )κ P−1( )‖Ψ − Ψ̂‖2 (61)

where κ(P−1) � ‖P‖2‖P−1‖2. To bound κ(P−1), we use the fact that
Uy � BP and ‖Uy‖2 � 1. This implies that

κ P−1( )≤ κ B( ) � ‖B‖2
σS B( ) (62)
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VIPDA: A Visually Driven Point Cloud
Denoising Algorithm Based on
Anisotropic Point Cloud Filtering
Tiziana Cattai, Alessandro Delfino, Gaetano Scarano and Stefania Colonnese*

Department of Information Engineering, Electronics and Telecommunications, University La Sapienza of Rome, Rome, Italy

Point clouds (PCs) provide fundamental tools for digital representation of 3D surfaces,
which have a growing interest in recent applications, such as e-health or autonomous
means of transport. However, the estimation of 3D coordinates on the surface as well as
the signal defined on the surface points (vertices) is affected by noise. The presence of
perturbations can jeopardize the application of PCs in real scenarios. Here, we propose a
novel visually driven point cloud denoising algorithm (VIPDA) inspired by visually driven
filtering approaches. VIPDA leverages recent results on local harmonic angular filters
extending image processing tools to the PC domain. In more detail, the VIPDA method
applies a harmonic angular analysis of the PC shape so as to associate each vertex of the
PC to suit a set of neighbors and to drive the denoising in accordance with the local PC
variability. The performance of VIPDA is assessed by numerical simulations on synthetic
and real data corrupted by Gaussian noise. We also compare our results with state-of-the-
art methods, and we verify that VIPDA outperforms the others in terms of the signal-to-
noise ratio (SNR). We demonstrate that our method has strong potential in denoising the
point clouds by leveraging a visually driven approach to the analysis of 3D surfaces.

Keywords: point cloud, denoising, non-Euclidean domain, angular harmonic filtering, graph signal processing

1 INTRODUCTION

Digital representation of real 3D surfaces has a crucial importance in a variety of cutting-edge
applications, such as autonomous navigation (Huang J. et al., 2021), UAV fleets (Ji et al., 2021),
extended reality streaming, or telesurgery (Huang T. et al., 2021). Point clouds represent 3D surfaces
by means of a set of 3D locations of points on the surface. In general, those points can be acquired by
active or passive techniques (Chen et al., 2021; Rist et al., 2021), in presence of random errors, and
they may be associated with color and texture information as well. Point cloud denoising can in
general be applied as an enhancement stage at the decoder side of an end-to-end communication
system, involving volumetric data, for e.g., for extended reality or mixed reality services. Although
lossless compression of point clouds is feasible (Ramalho et al., 2021), color point cloud lossy coding
based on 2D point cloud projection (Xiong et al., 2021) is increasingly relevant both in sensor
networks (de Hoog et al., 2021) and autonomous systems (Sun et al., 2020). Nonlocal estimation
solutions (Zhu et al., 2022) or color-based (Irfan and Magli 2021b) solutions as well as solutions for
point cloud sequences (Hu et al., 2021a) have been proposed.

The extraction of visually relevant features on point cloud is needed for tasks as pattern
recognition, registration, compression and quality evaluation (Yang et al.s, 2020; Diniz et al.,
2021), and semantic segmentation. Point cloud (PC) processing has been widely investigated, and
many of the proposed processing methods are based on the geometric properties (Hu et al., 2021b;
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Erçelik et al., 2021). Still, feature extraction on PC is mostly
focused on information related to the point cloud shape. In
addition, new PC acquisition systems for surveillance (Dai
et al., 2021) or extended reality (XR) (Yu et al., 2021) require
processing tools operating both on geometry and texture. Shape
and texture processing needs development of new tools because
of the non-Euclidean nature of the real surfaces modeled by a
point cloud. In this direction, few studies in the literature
simultaneously leverage both geometry and texture
information. Furthermore, in the context of classical image
processing, several effective tools have been inspired by the
human visual systems (HVSs), which process both texture and
shape, and it is sensitive to angular patterns such as edges, forks,
and corners (Beghdadi et al., 2013). In particular, two-
dimensional circular harmonic functions (CHFs) have been
investigated for visually driven image processing and
specifically for angular pattern detection. CHFs have been
successfully applied to interpolation (Colonnese et al., 2013),
deconvolution (Colonnese et al., 2004), and texture synthesis
(Campisi and Scarano 2002). On the contrary, point cloud
processing lacks HVS-inspired processing tools, which can, in
principle, provide alternative perspectives.

In this article, we leverage a class of point cloud multiscale
anisotropic harmonic filters (MAHFs) inspired by HVS. MAHFs
were recently introduced in our conference article (Conti et al.
(2021)). First, we recall the MAHF definition and describe their
local anisotropic behavior that highlights directional
components of the point cloud texture or geometry. In
addition, we show their applicability to both geometric and
textured PC data. Second, we illustrate how MAHF can be
applied to visually driven PC denoising problems. Denoising is
a crucial preprocessing step for many further point cloud
processing techniques. In real acquisition scenarios, the
perturbations on the PC vertices or on the associated signal
severely affect the PC usability. MAHF is used to drive an
iterative denoising algorithm so as to adapt the restoration to
the local information. The proposed method differs from other
competitors (Zhu et al., 2022 and the references) in linking the
denoising with visually relevant features, as estimated by
suitable anisotropic filtering in the vertex domain. We test
the performance of the visually driven point cloud denoising
algorithm (VIPDA) on synthetic and real data from the public
database (Turk and Levoy 1994; d’Eon et al., 2017). Specifically,
considering different signal-to-noise-ratios by adding Gaussian
noise to the original data, we verify that our method
outperforms state-of-the-art alternatives in denoising data.

The structure of the article is as follows. In Section 2, we
review a particular class of HVS-inspired image filters, namely the
circular harmonic filters, which are needed to introduce our point
cloud filtering approach. In Section 3, we present a class of
multiscale anisotropic filters, formerly introduced in Conti et al.
(2021), and we illustrate their relation with visually driven image
filters. In Section 5, we present the visually driven point cloud
denoising algorithm (VIPDA) based on the proposed manifold
filters. In Section 6, we show by numerical simulations that the
VIPDA outperforms state-of-the-art competitors. Section 7
concludes the article.

2 CIRCULAR HARMONIC FUNCTIONS FOR
HVS-BASED IMAGE FILTERING: A REVIEW

Before the introduction of the MAHFs, a step back is necessary in
order to contextualize the research problems by investigating
other filter methods in the Euclidean domain.

In several important applications in the field of image
processing, circular harmonic functions (CHFs) have been
used (Panci et al., 2003; Colonnese et al., 2010). As mentioned
previously, CHFs have been widely applied in image processing
applications because they are able to detect relevant image
features, such as edges, lines, and crosses, i.e., they perform
the analysis in an analogous way to the behavior of the HVS
during the pre-attentive step. It is important to remark here that
the results of the order-1 CHFs are complex images, in which the
module corresponds to the edge magnitude while the phase
describes the orientation. Taken together, this filtering
procedure returns precious information about the structures of
the output image; in fact, it underlines the edges by
simultaneously measuring their intensity and direction. The
interest in CHFs also stems from the fact that they can be
integrated within an invertible filter bank, thereby being
exploited for suitable processing, for e.g., image enhancement,
in the CHF-transformed domain (Panci et al., 2003).

CHFs’ properties relate to the specific way in which they
characterize the information belonging to two points. In fact, they
encode the distance as well as the geometric direction that
joins them.

These aspects are evident in the mathematical formulation of
CHFs. Let us consider the 2D domain of the continuous CHF
described by the polar coordinates (r, ϑ) that, respectively,
represent the distance from the origin and the angle with the
reference x axis. The CHF of order k is the complex filter
defined as:

h k( ) r, ϑ( ) � gk r( )ejkϑ, (1)
where the influence of the radial (r) and the angular (ϑ)
contributions are separated by the two factors. With the aim
of preserving the isomorphism with the frequency space, the
functions gk(r) in Eq. 1 are usually isotropic Gaussian kernels.
The variable k defines the angular structure of the model. For k =
0, the zero-order CHF returns output as a real image, represented
by the low-pass version of the original one. As a general
consideration, when the order k increases, CHFs are able to
identify more and more complex structures on the images, such
as edges (for k = 1), lines (for k = 2), forks (for k = 3), and crosses
(for k = 4). We can see the effect of increasing the k order of the
heat kernel on a sphere in Conti et al. (2021).

Based on the definition of CHF and the introduction of a scale
parameter α, circular harmonic wavelet (CHW) (Jacovitti and
Neri 2000) of order k can be introduced and can be typically
applied in the context of multi-resolution problems.

Finally, it is worth observing that the CHF output has been
shown to be related to the Fisher information of the input w.r.t
rotation and translation parameters. The Fisher information of an
image w.r.t. shift/rotation estimation is associated with the power
of the image first derivative w.r.t. the parameter under concern
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(Friedlander 1984). The CHF in the 2D account for a local
derivative of the signal has been shown to be related to the
Fisher information w.r.t. localization parameters (Neri and
Jacovitti 2004).

In order to show a visual example of the application of CHF on
real data, we consider the “cameraman image,” and we apply first-
order CHF as an example to represent the effect of CHF on a real
image. We report the results in Figure 1, in which we can see the
module in panel A and the phase in panel B.

Stemming on these studies on directional harmonic analysis of
2D signals, we introduce in the following sections the multiscale
anisotropic harmonic filters to be adopted in the non-Euclidean
manifold domain.

3 MULTISCALE ANISOTROPIC HARMONIC
FILTERS

Although the HVS is very complex in nature, its low-level
behavior, as determined by the primary visual cortex, is well
characterized by being bandpass and orientation selective (Wu
et al., 2017). Therefore, the CHF mimics these features on 2D
images, and in this section, we show how to extend this behavior

to manifold filters. Specifically, in this section, we describe a new
class of visually driven filters operating on a manifold in the 3D
space; the preliminary results on such filters appear in Conti
et al.(2021). We extend the presentation in Conti et al. (2021) by
an in-depth analysis of their relation with the CHF and by providing
new results about their applications to point cloud filtering.

Our general idea consists in the extension of CHFs to 2D
manifolds embedded in 3D domains. In this direction, the two
key points to adapt to this new scenario are as follows: 1) we need to
define a smoothing kernel that corresponds to the isotropicGaussian
smoothing in the 2D case; and 2) we have to identify an angular
measurement on the surface of the manifold in the 3D space.

In the following sections, we elaborate on the filters
description first in the case of a 2D manifold defined in a
continuous 3D domain and then in the case of its discretized
version, as represented by a point cloud. The main notation is
reported in Table 1.

3.1 MAHF on Manifolds
We first introduce the multiscale anisotropic harmonic filter
(MAHF) on a continuous manifold M in R3. The first step
consists in the definition of a smoothing kernel, which is
necessary to adapt to Eq. 1 in this scenario. The smoothing
kernel should account on the intrinsic (non-Euclidean) distance
between a point p0 and a different point p on the manifold surface.

To this aim, we resort to the heat kernel that describes the
diffusion of the heat from a point-wise source located at a point p0
on the manifold to a generic other manifold point p, after the time
t. In formulas, the heat kernel Kt: M × M → R is found as the
fundamental solution of the heat propagation equation1 under
the initial condition f0(p) = δ(p − p0).

FIGURE 1 | Results of CHF application on the “cameraman image” (with k = 1). In panel (A), we have the module of the CHF |h(1)|, and in panel (B), we have the
associated phase ∠h(1).

TABLE 1 | Table of main notation.

Notation Description

M Manifold
G Graph associated to the point cloud
A Adjacency matrix
D Degree matrix
L Laplacian matrix
λ, u Eigenvalues and eigenvectors
p0, p Coordinates of point on the continuous manifold
pi, pj Coordinates of point on the discrete manifold
qi Noisy coordinates of points on the discrete manifold
p̂i Reconstructed coordinates after denoising
np, npi

Direction orthogonal to the continuous and discrete manifold
ϕ(k) MAHF of k order on the continuous Manifold
φ(k) MAHF of k order on the discrete Manifold

1Let Δ denote the Laplace–Bertrami operator, i.e., a linear operator computing the
sum of directional derivatives of a function defined on the manifold. The heat
propagation equation is written as:

Δf p, t( ) � −δtf p, t( ), f p, t � 0( ) � f0 p( ), (2)
where f(p, t) is the solution under initial condition f0(p).
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With these positions, given two points p0 and p on the
manifold surface, the heat kernel is expressed as an infinite of
suitable functions on the manifold. Specifically, let χs(p, s � 0, . . .
be the eigenfunctions of the Laplace–Bertrami (sum of directional
derivatives) manifold operator. Therefore, χs: M → R. For any
point pair (p, p0) on the manifold, the heat kernel is written as:

K M( )
t p, p0( ) � ∑∞

s�0
e−tαsχs p( )χs p0( ). (3)

The heat kernel K(M)
t (p, p0) has the interesting property to

represent a smooth function on the M manifold (Hou and Qin
2012), smoothly decreasing as a bell-shaped function at a rate
depending on the parameter t (Conti et al., 2021).

For what concerns angles, several definitions have been
proposed in the context of convolutional neural networks on
the manifold. Specifically, the polar coordinates on the geodesic
can be defined using angular bins. Alternatively, a representation of
points on the plane T , which is the plane tangent to themanifold in
the point p. In this work, we define the angle ϑ(M) in a similar way
to the second approach. As represented in the panel A in Figure 2,

the angle ϑ(M) corresponds to the azimuth in the spherical
coordinates of the point p, when the reference is the system
(t1,t1,n) with the origin centered in p and the n axis is normal
to the tangent plane T .

With these positions, the multiscale anisotropic harmonic
filters (MAHFs) ϕ of k order and centered in p0 are defined as
follows (Conti et al., 2021):

ϕ k( ) p, p0( ) � K M( )
t p, p0( )cos k ϑ M( ) p, p0( )( )︸													︷︷													︸

ϕ k( )
R

+j K M( )
t p, p0( )sin k ϑ M( ) p, p0( )( )︸													︷︷													︸

ϕ k( )
I

, (4)

with K(M)
t (p, p0) defined as in 3 and where we recognize the real

ϕ(k)R and imaginary ϕ(k)I part of the complex function ϕ(k)(p, p0).

3.2 MAHF on Point Clouds
In this subsection, we focus on the definition of MAHF on a 3D
point cloud. Let us consider the graph G associated with the point
cloud and defined as G � (V, E), where V is the set of N point

FIGURE 2 | Graphical representation of angles in the 3D space. In panel (A), we represent the continuous manifold M, in which we highlight the angle ϑ(M) in
orange. In panel (B), we have the discrete manifold on which a graph G is defined. The angle ϑ(G) is plotted in orange.

FIGURE 3 | Application of MAHF to texture (luminance) and shape (point cloud normals).
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cloud vertices pi with i = 1‥N, and E is the set of edges (or links).
The edge weights are represented by the N × N weighted
adjacency matrix A or by the Laplacian graph L = D − A,
being D, the degree matrix, which is a diagonal matrix with
elements on the principal diagonal computed as dii � ∑N

j�1aij. For
3D point clouds, the edge weights are selected such that the
Laplacian L approximates the continuous domain
Laplace–Beltrami operator (Belkin et al., 2009).

Let λn and un, n = 0, . . ., N − 1 denote the eigenvalues and
eigenvectors of L, respectively. In this case, the heat kernel at
the i-th and j-th point cloud points (pi, pj) is obtained as
follows:

K G( )
t pi, pj( ) � ∑N−1

n�0
e−tλnun i[ ]un j[ ], (5)

i.e., it depends on the weighted sum of the products of the i-th
and j-th coefficients of each and every Laplacian eigenvector.
The eigenvectors corresponding to small eigenvalues, i.e., the
low-frequency vectors of the graph Fourier transform defined
on the graph, dominate the sum for large values of the
parameter t.

As the continuous case, in the discrete scenario, we define the
angle ϑ(G) as the azimuth of the T tangent plane to pi, as
graphically represented in Figure 2B.

Similar to the continuous case, the multiscale anisotropic
harmonic filters (MAHFs) φ of k order and centered in pi are
defined as:

φ k( ) pi, pj( ) � K G( )
t pi, pj( )cos k ϑ G( ) pi, pj( )( )︸													︷︷													︸

φ k( )
R

+j K G( )
t pi, pj( )sin k ϑ G( ) pi, pj( )( )︸													︷︷													︸

φ k( )
I

, (6)

with K(G)
t (pi, pj) defined as in Eq. 5 and where we recognize the

real φ(k)
R and imaginary φ(k)

I parts of the complex function
φ(k)(pi, pj).

4 VISUALLY DRIVEN POINT CLOUD
FILTERING: MAHF AS ANISOTROPIC
ANALYSIS OF TEXTURE AND SHAPE IN
POINT CLOUDS

Let us consider a real-valued D-dimensional signal on the point
cloud vertices s(pi) ∈ RD, i = 0, . . ., N − 1. Applying k-th-order
MAHF for the vertex domain signal on graph filtering obtains the
output point cloud signal r(pi) as:

r pi( ) � ∑N−1

j�0
φ k( ) pi, pj( )s pj( ). (7)

The filtering realized by the MAHFs performs an
anisotropic harmonic angular filtering of the signal defined
on the point cloud. The period of the harmonic analysis
decreases as the filter order increases, and MAHF of
different orders k are matched to different angular patterns
of the input signal s(pi) i = 0, . . ., N − 1.

MAHF applies to both texture and shape signals, depending
on the choice of the input signal s(pi) i = 0, . . ., N − 1. For video
point clouds, the signal s(pi) can represent the luminance and the
chrominances observed at the point pi. If this is the case, the
MAHF output highlights texture patterns on the surface. On the
other hand, the signal s(pi) i = 0, . . .,N − 1 can be selected so as to
represent geometric information. A relevant case is when the
signal represents the normal to the point cloud surface at each
vertex pi as follows:

FIGURE 4 | Examples of two neighborhoods of different sizes Ki and Kj (left) around points characterized by different values of the mean square value of the MAHF
output ‖ν(qi)‖2 (right). The considered point cloud is a low-resolution version of the Stanford bunny in Turk and Levoy 1994).
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s pi( ) � nx pi( )
ny pi( )
nz pi( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � n pi( ), i � 0, . . . , N − 1. (8)

The application of MAHF to the signal defined as in Eq. 8 will
be exploited in the following derivation of VIPDA.

To sum up, the MAHFs can be applied to different kinds of
data defined on point clouds, and they provide a way to
extract several point-wise shape and texture point cloud
features for different values of the order k. A schematic
representation of MAHF application to texture
(luminance) and shape (point cloud normals) information
is illustrated in Figure 3.

5 VISUALLY DRIVEN POINT CLOUD
DENOISING ALGORITHM

In this section, we illustrate the VIPDA approach, based on
application of the aforementioned MAHF to the problem of
PC denoising.

Let us consider the case in which the point cloud vertices are
observed in presence of an additive noise. Thereby, the observed
coordinates are written as

qi � pi + wi, i � 0, . . . , N − 1, (9)
where wi is an i.i.d. random noise. The denoising provides an
estimate p̂i of the original locations pi. Let us remark that this
problem is different from recovery of a signal defined at the
vertices, which will be addressed in the future work.

Point cloud denoising algorithms typically leverage 1) data
fidelity (Irfan and Magli 2021a), 2) manifold smoothness (low-
rankedness) (Dinesh et al., 2020), and 3) local or cooperative
averaging (Chen et al., 2019) objectives.

Here, the local manifold smoothness is accounted by adapting
the estimator p̂i to the local shape variability as estimated at the
first algorithm stage. Specifically, the MAHF is applied to the
point cloud estimated normals n(0)(qj) as:

ν 0( ) qi( ) � ∑N−1

j�0
φ k( ) qi, qj( )n 0( ) qj( ). (10)

Thereby, each point qi is assigned a weight related to the
normal variations in its neighborhood. The key idea is that when
fast variations of the normal are observed around qi, the surface
smoothness is reduced, and the set of neighboring points to be
exploited to compute the estimate p̂i should be reduced
accordingly. Therefore, the size Ki of the neighborhood of the
point qi to be used in the estimation stage is selected based on the
MAHF-filtered signal ν(qi). Specifically, Ki is selected as a
function of the mean square value of the MAHF output, namely

FIGURE 6 | VIPDA overview.

FIGURE 5 | Schematic representation of the VIPDA iteration. We report
the original point p̂(l−1)

i obtained at the (l − 1) iteration, with the normal to the
tangent plane n(l−1) with p̂(l−1)

i . At the iteration (L), the position of the point is
updated obtaining the point ~p(l)

i .
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Ki � K ‖ν qi( )‖2( ),
whereK is an integer function defined on R. This is exemplified in
Figure 4 (left), which illustrates a point cloud (namely a low-
resolution version of the Stanford bunny in Turk and Levoy
(1994)) and two neighborhoods of different sizes Ki and Kj

around points characterized by different values of the mean
square value of the MAHF output, namely ‖ν(qi)‖2, plotted in
Figure 4 (right).

After the size of the estimation window at each point is given,
the denoising algorithm iteratively alternates 1) the computation
of a candidate estimate of the point location based on spatially
adaptive averaging over the Ki-size neighborhood of the i-th
vertex and 2) the update of the current estimate, along the
direction of the normal to the surface.

In formulas, at the l-th iteration, the candidate estimate of the
i-th point cloud vertex is computed as

~p l( )
i � α0p̂

l−1( )
i + ∑

j∈η i;Ki( )
αjp̂

l−1( )
j ,

where η(i; Ki) denotes the set of Ki nearest neighbors of the i-th
point cloud vertex. Then, the estimate is updated as

p̂ l( )
i � p̂ l−1( )

i + ρl0n
l−1( ) p̂ l−1( )

i( )n l−1( ) p̂ l−1( )
i( )T ~p l( )

i − p̂ l−1( )
i( ),

where ρ0 ∈ (0, 1] is a parameter controlling the update rate
throughout the iterations. Finally, the normals n(l)(p̂(l)i ) are
recomputed on the estimated point cloud p̂(l)i , i � 0, . . . , N − 1.

To sum up, the MAHF is applied once for all at the beginning
of the iterations. For each vertex, the set of neighboring points is
identified. Then, a candidate new point is computed as a weighted
average of the neighbor and of the point itself. Then, the point
estimated at the previous iteration is updated only by projection
of the correction on the direction of the normal to the surface, as
illustrated in Figure 5.

FIGURE 7 | Results of the application of MAHF (k = 1) on a two-valued signal (in panel (A)). We compute the MAHF, and we report the square of the module of the
output in panel (B).

FIGURE 8 | Results of the application of CHF (k = 1) on a discrete bidimensional step function in panel (A). We compute the output of the MAHF, and we report the
square of the module in panel (B) and the phase in panel (C).
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The normals to the surface are recomputed. The algorithm is
terminated after few iterations (1-3 in the presented simulation
results).

The algorithm is summarized as follows:
Input:Noisy point clouds coordinates qi, i = 0, . . ., N − 1; heat

kernel spread t; update rate control parameter ρ0.
Output:Denoised point clouds coordinates p̂i, i � 0, . . . , N −

1.
Inizialization:
Computation of the heat kernel.K(G)

t (pi, pj), j � 0, . . . , N − 1,
i � 0, . . . , N − 1
Computation of the normals n(0) and of their filtered

version. ν(pi) � ∑N−1
j�0 φ(1)(qi, qj)n(0)(qj)

Computation of Ki � K(‖ν(qi)‖2) and of the Ki nearest
neighborhood η(i; Ki)

Iteration: for l = 1, . . ., L − 1
Computation of the candidate estimate ~p(l)i � α0p̂

(l−1)
i +∑

j∈η(i;Ki)
αj p̂(l−1)j , with αj = (α0)/Ki

Update of the current estimate. p̂(l)i � p̂(l−1)i +
ρl[n(l−1)(p̂(l−1)i )][n(l−1)(p̂(l−1)i )]T(~p(l)i −p̂(l−1)i )

Update of the normals n(l)(p̂(l)i ).
An overview of the VIPDA algorithm stages appears in

Figure 6.

5.1 Remarks
As far as the computational complexity of VIPDA is concerned, a
few remarks are in order. First, VIPDA implies an initial MAHF-
filtering stage that implies the eigendecomposition. For the
computation in 5, the use of all the elements of the
eigendecomposition has a really high computational cost for

large N. To solve this limitation, Chebychev polynomial
approximation by Huang et al. (2020); Hammond et al. (2011)
can be applied in order to rewrite Eq. 5 as a polynomial in L. For
the sake of concreteness, we have evaluated the time associated
with each stage of the algorithm, implemented in Matlab© over a
processor using this approximation for the Bunny cloud with N =
8,146. The net time for the computation of the heat kernel
K(G)

t (pi, pj), j � 0, . . . , N − 1, i � 0, . . . , N − 1 sums up to
TKt � 40.7[s], the computation of the filtered normals ν(pi)
requires up to T] = 9.6[s], and the computation of the L = 3
or 4 iterations requires TL = 1.8[s]. Overall, the iterative denoising
algorithms require TVIPDA = 60.74, which is comparable with
state-of-the-art methods (e.g., the execution time on the same
machine for the method in Dinesh et al., 2020 is about 70[s]).

Second, VIPDA is iterative, and it is not suited for
parallelization. This observation stimulated the definition of an
alternative version of the algorithm, namely VIPDAfast, boiling
down to a single iteration and suitable for parallelization. This is
achieved by a simplified application of the VIPDA key concept,
that is, the adaptation of the size of the estimation neighborhood
to the MAHF-filtered output. In the single iteration algorithm
VIPDAfast, each point is straightforwardly estimated on a patch
whose size is as a given function of the MAHF output at that
point. Since all the estimates are obtained directly from the noisy
sample, the algorithm may be parallelized on different subsets of
points. The numerical simulation results will show that
VIPDAfast, suited for parallelization, approximates the
performance of the complete iterative VIPDA, especially on
relatively smooth point clouds. VIPDAfast is expected to
reduce the execution time in a way proportional to the
number of available concurrent threads.

FIGURE 9 |MAHF applied on the point cloud normals for different data: (A) red and black and (B) long dress. In the insets of each panel, we have original images.
Here, MAHFs are applied to the normals npi to the point cloud surface. We compute the square module of the MAHF output ‖ν(pi)‖2.
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Finally, a remark on the noise model is in order. Indeed, the
VIPDA at each iteration performs a local averaging, which tackles
Gaussian noise and, in a suboptimal way, also impulsive noise.
Still, the core of VIPDA allows 1) to adaptively select the
neighborhood of the vertex to be used in the estimate and 2)
to apply the correction to the noise component orthogonal to the
mesh surface. These two principles can also be applied when the
actual estimate is realized by different nonlinear operators tuned
to the actual noise statistics by Ambike et al. (1994). Therefore,
VIPDA can be extended to deal with different kinds of noise by
replacing the average operator with a suitable nonlinear one, this
is left for further study.

6 SIMULATION RESULTS

In this section, we present simulation results associated with the
application of MAHF on synthetic and real PC, and we measure
the performances of VIPDA. In particular, in subsec.6.1, we
illustrate the MAHF behavior, also in comparison with CHF, and
in subsec.6.2 we assess the performance of VIPDA, also in
comparison with state-of-the-art denoising algorithms.

6.1 MAHF-Based Point Cloud Filtering
In this subsection, we present some examples on the application of
MAHF on different point clouds. In this article, we introduce a point
cloud filteringmethod inspired byHVS, and we show its potential to

both geometric and texture PC data. The proposed class of filters
presents a local anisotropic behavior that highlights directional
components of the point cloud texture or geometry. The filter
output can be leveraged as input to various adaptive processing tasks.

First, we consider the case of a point cloud obtained by
equispaced sampling of a planar surface, over which a
discontinuous signal is defined. This case is illustrated in
Figure 7A), in which we see the point cloud in which a two-
valued signal is defined; the signal is characterized by a discontinuity
in the middle. Then, MAHF filtering (with k = 1) is applied. In
Figure 7B, we report the square of the module of the related MAHF
output. As expected, the MAHF highlights the vertices in
correspondence with the signal discontinuity. In order to
compare MAHF with CHF behavior, we take into account an
analogous scenario for CHF filtering, namely we consider an
image representing a discrete bidimensional step function, which
is represented in Figure 8A. We apply the k = 1 CHF to the image,
and we separately plot its module and phase in the panel Figures 8B,
C, respectively. The output of the k = 1 MAHF and CHF filters
highlights the areas in correspondence with the discontinuity of the
signal. Thereby, we recognize that the k = 1 MAHF filter
straightforwardly extends to the planar point cloud domain, the
behavior observed applying the k = 1 CHF filter on image data.
Indeed, we remark that theMAHF and CHF filters definitions in the
point cloud domain and image domain, respectively, are analogous,
and it is expected that the MAHF can retrieve structured
discontinuities of the signals defined on a point cloud.

FIGURE 10 |MAHF applied on luminance images for two point clouds: (A) red and black and (B) long dress.We report the original luminance images in the insets of
each panel. In this case, MAHFs are applied to the luminance s(pi). We compute the square module of the MAHF output, which corresponds to r(pi).
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After exemplifying the relation between MAHF and CHF, we
apply MAHF to open access point clouds. For this study, we
consider two point clouds belonging to the 8iVSLF dataset (d’Eon
et al., 2017). Specifically, we consider the point clouds red and black
and long dress (d’Eon et al., 2017), which are the 3D point clouds
illustrated in the insets of panels A and B in Figure 9. Each point
cloud vertex is associated to the red, green, and blue components of
the surface color as seen using a multi-camera rig. The original
point clouds red and black and long dress have been resampled to a
number of points equal to N = 9,622 and N = 9,378, respectively.

First of all, we apply MAHF to the normals npi, i � 0, . . . ,N − 1
to the point cloud surface2, and we compute the squaremodule of the

MAHF output, namely the estimated ‖ν(pi)‖2, i = 0, . . ., N − 1 in
Figure 9. We graphically represent it in gray-scale pseudo-colors in
Figure 9. The largest values of ‖ν(pi)‖2, i = 0, . . .,N − 1 are associated
to the vertices characterized by curvature changes in each point cloud.

Then, for each point cloud, we analyze the filtering of the color
information. At each vertex pi, i = 0, . . ., N − 1, we compute the
luminance given by the available RGB values, and we apply
MAHF by considering the luminance as the real-valued input
signal s(pi), i = 0, . . ., N − 1 over the point cloud graph. The
MAHF output r(pi) � ∑N−1

j�0 φ(k)(pi, pj)s(pj), i � 0, . . . , N − 1
is then computed. We present the square module r(pi) of the
MAHF filter output in Figure 10 for the two point clouds under
study. In this case, this method is able to highlight luminance
variations on the graph, and it spots out details in the images such
as the arms in panel A or the feet in panel B of Figure 10.

6.2 VIPDA Performances
After illustrating the application of MAHF to point cloud filtering
on shape and texture information by means of examples on real
data, we address the assessment of VIPDA in this subsection.

To this aim, we first illustrate the application of VIPDA over
synthetic data. Specifically, we consider the point cloud related to
the Stanford bunny (Turk and Levoy 1994), resampled at N =
8,146. The noisy coordinates qi of the points on the PC are
obtained as in Eq. 9. In the simulations, a Gaussian noise wi is
added to the original coordinates pi. The intensity of the additive

FIGURE 11 | Results of VIPDA at each step. We consider a point cloud related to the Stanford bunny (Turk and Levoy 1994) which is represented with its original
coordinates pi in panel (A). Then, a Gaussian noise wi is added with SNR = 38, and the noisy points qi on the point cloud are represented in panel (B). The colors
associated to the color bar correspond to the difference between noisy and original coordinates ‖pi − qi‖2. In panel (C),we report the output of the MAHF ‖ν(qi)‖2 applied
to the estimated normals nqi . In panel (D), we have results of VIPDA. We have p̂i points belonging to the denoised PC, and the colors relate to the difference
between reconstructed and original coordinates ‖p̂i − qi‖2.

TABLE 2 | Table of SNR with Stanford bunny point cloud.

SNRnoisy SNR(Dinesh et al. 2020) SNRaverage SNRiter SNRiterPARA

35 35.07 35.42 35.89 35.94
38 38.28 38.28 38.92 38.96
40 40.69 40.15 40.97 40.98
48 46.69 46.49 48.62 48.62

Highest values for each SNR are highlighted in bold.

2The point cloud normals are computed using the ©Matlab by the implementation
of the method in Hoppe et al. (1992).
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noise is measured by the signal-to-noise ratio (SNR), which is a
parameter varied in the following analyses, and it is computed as:

SNRnoisy � 10 log10
1
N∑N−1

i�0 ‖pi‖2
1
N∑N−1

i�0 ‖pi − qi‖2
. (11)

We plot the original point cloud in Figure 11A, in which the
pseudo-color is associated to the third coordinate of qi, i = 0, . . .,
N − 1 (coordinate w.r.t. the z-axis). In Figure 11B, we plot the
noisy point cloud obtained for SNRnoisy = 38dB. The pseudo-
colors of the point cloud represent the square module of the
difference between the noisy coordinates ‖pi − qi‖2, i = 0, . . .,N − 1
and the original ones computed as ‖pi − qi‖2. In this manner, the
point color (represented in a color scale from blue for zero values
and red for the maximum values) reflects how much each point is
corrupted by the additive Gaussian noise.

Then, we apply the MAHF to the estimated normals n(qi), i =
0, . . ., N − 1 of the noisy point cloud, and we compute the square
value of the MAHF output at each vertex, namely ‖ν(qi)‖2, i = 0,
. . .,N − 1. The so-obtained values are illustrated in Figure 11C, as
pseudo-colors at the vertices. We recognize that the largest values
are observed in correspondence to vertices in areas of normal
changes. These results exemplify that the MAHFs are able to
capture the variability of the signals.

Finally, we apply VIPDA to the filtered point cloud, and we
show the denoised point cloud in Figure 11D. Here, we have the
p̂i points reconstructed by VIPDA, and we define the signal
associated to each new point as the error computed between the
original coordinates p and the reconstructed ones as ‖pi − p̂i‖2.
From a visual analysis, we recognize that the points in D are closer
to original ones in Awith respect to absence of denoising in B; this
effect is more visible at the boundary of the point cloud. A more
quantitative result is provided by the following SNR computation:

Specifically, we design a signal-dependent feature graph
Laplacian regularizer (SDFGLR) that assumes surface normals
computed from point coordinates are piecewise smooth with
respect to a signal-dependent graph Laplacian matrix.

Finally, we perform analyses based on the SNR and compare
our method with different alternatives. In this direction, we first

consider the algorithm proposed in Dinesh et al., (2020), in which
authors perform a graph Laplacian regularization that starts from
the hypothesis that the normals to the surface at the point cloud
vertices are smooth w.r.t graph Laplacian. For sake of comparison,
we also study the average case, in which we analyze the PC results
from the local average of its spatial coordinates. Finally, we
consider the VIPDA and the VIPDAfast algorithms. In the
simulations, K(‖ν(qi)‖2) is set equal to a bi-level function,
depending on whether ‖ν(qi)‖2 is above the threshold θ or not.
We set t = 10 and α0 = 0.9 on all the data and θ � 0.06,K ∈ {3, 9}
on synthetic data and θ � 0.08,K ∈ {3, 15} on real data.

In order to perform the computations, we first consider the
Stanford bunny point cloud, and we select different levels of SNR,
namely SNRnoisy = 35, 38, 40, 48dB. Then, we take into account
different denoising algorithms and report the SNR achieved on
the denoised point cloud in Table 2. For each method, we
compute the SNR as the distance between the reconstructed
coordinates and the original ones as

SNR � 10 log10
1
N∑N−1

i�1�0‖pi‖2
1
N∑N−1

i�0 ‖pi − p̂i‖2
.

Our results show that our denoising method outperforms the
alternatives. The method with the parallelization even increases the
performances w.r.t. the iterative one. This is due to the particular
nature of the point cloud, in which the flat areas and the high
curvature areas are relatively easy to distinguish, and the method
coarsely operating on the two point sets achieves the best results.
This is more clearly highlighted on point clouds acquired on real
objects as illustrated in the following: We consider the two other
point clouds (Red and Black and LongDress) for two fixed levels of
noise with SNR at 40dB and 48dB. The results are, respectively,
reported in Tables 3, 4. SNR values show that the proposed
VIPDA, either in its original or fast version, performs better
than state-of-the-art competitors in denoising point cloud
signals corrupted by Gaussian noise. Finally, we consider a
smooth point cloud, namely a sphere with N = 900 points. Also
on this smooth point cloud, where the MAHF gives a uniform
output and the patch size is fixed, VIPDA achieves an SNR

TABLE 3 | Table of SNR with fixed SNR of noisy data at 40 dB with different point clouds, i.e., Stanford bunny, long dress and red and black, and spherical meshes.

Point cloud SNR(Dinesh et al. 2020) SNRaverage SNRVIPDA SNRVIPDAfast

Stanford bunny 40.69 40.15 40.97 40.98
Red and black 40.03 40.49 40.48 40.50
Long dress 39.99 40.49 40.63 40.63
Sphere 39.97 39.49 40.46 40.46

Highest values for each SNR are highlighted in bold.

TABLE 4 | Table of SNR with fixed SNR of noisy data at 48 dB with several point clouds, i.e., Stanford bunny, long dress and red and black, and spherical meshes.

Point cloud SNR(Dinesh et al. 2020) SNRaverage SNRVIPDA SNRVIPDAfast

Stanford Bunny 46.69 46.49 48.62 48.62
Red and black 48.05 47.72 48.26 48.27
Long dress 48.03 47.70 48.58 48.57
Sphere 48.09 38.25 48.26 48.26

Highest values for each SNR are highlighted in bold.
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improvement. The correction by VIPDA is restrained to the
normal direction and leads to a smooth surface. Thereby,
VIPDA achieves a SNR improvement also on smooth surfaces,
and an improvement due to the reduction of the normal noise
component is observed even in the limit case of a planar mesh.

It is important to mention that the performance of all the
methods, including the proposed method, degrades severely if the
SNR decreases. This is due to the fact that, in correspondence with
low SNR, the positions of the vertices are displaced such that the
positions of the noisy points may even exchange with respect to the
original ones, and this phenomenon is not recovered even though
the MAHF on the signal is recomputed at each iteration. A possible
solution to this would be to initially denoise the Laplacian associated
to the point cloud graph by leveraging a spectral prior, as in Cattai
et al. (2021), or by jointly exploiting the shape and texture
information; this latter point is left for future studies.

To sum up, these findings demonstrate the potential of the
proposed VIPDA approach for point cloud denoising and pave
the way for designing new processing tools for signals defined
over non-Euclidean domains.

7 CONCLUSION

This work has presented a novel point cloud denoising approach,
the visually driven point cloud denoising algorithm (VIPDA).
The proposed method differs from other competitors in linking
the denoising with visually relevant features, as estimated by
suitable anisotropic angular filters in the vertex domain.

VIPDA leverages properties inspired by those of the human
visual system (HVS), and it is viable for application on the texture
and geometry data defined over a point cloud. The VIPDA
approach leads to smooth denoised surfaces since it iteratively
corrects the noise component normal to the manifold underlying
the point cloud by projecting the observed noisy vertex toward
the plane tangent to the underlying manifold surface. The
performance of VIPDA has been numerically assessed on real
open access data and compared with state-of-the-art alternatives.

The proposed algorithm is effective in denoising real point
cloud data, and thereby it makes point cloud modeling more
suitable for real applications. Our findings pave the way to HVS-
inspired point cloud processing, both for enhancement and
restoration purposes, by suitable anisotropic angular filtering.
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Multivariate Lipschitz Analysis of the
Stability of Neural Networks
Kavya Gupta1,2*, Fateh Kaakai2, Beatrice Pesquet-Popescu2, Jean-Christophe Pesquet1 and
Fragkiskos D. Malliaros1

1Inria, Centre de Vision Numérique, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France, 2Air Mobility Solutions BL,
Thales LAS, Rungis, France

The stability of neural networks with respect to adversarial perturbations has been
extensively studied. One of the main strategies consist of quantifying the Lipschitz
regularity of neural networks. In this paper, we introduce a multivariate Lipschitz
constant-based stability analysis of fully connected neural networks allowing us to
capture the influence of each input or group of inputs on the neural network stability.
Our approach relies on a suitable re-normalization of the input space, with the objective to
perform a more precise analysis than the one provided by a global Lipschitz constant. We
investigate the mathematical properties of the proposed multivariate Lipschitz analysis and
show its usefulness in better understanding the sensitivity of the neural network with regard
to groups of inputs. We display the results of this analysis by a new representation
designed for machine learning practitioners and safety engineers termed as a Lipschitz
star. The Lipschitz star is a graphical and practical tool to analyze the sensitivity of a neural
network model during its development, with regard to different combinations of inputs. By
leveraging this tool, we show that it is possible to build robust-by-design models using
spectral normalization techniques for controlling the stability of a neural network, given a
safety Lipschitz target. Thanks to our multivariate Lipschitz analysis, we can also measure
the efficiency of adversarial training in inference tasks. We perform experiments on various
open access tabular datasets, and also on a real Thales Air Mobility industrial application
subject to certification requirements.

Keywords: lipschitz, neural networks, stability, adversarial attack, sensitivity, safety, tabular data

1 INTRODUCTION

Artificial neural networks are at the core of recent advances in Artificial Intelligence. One of the main
challenges faced today, especially by companies designing advanced industrial systems, is to ensure
the safety of new generations of products using these technologies. Neural networks have been shown
to be sensitive to adversarial perturbations (Szegedy et al., 2013). For example, changing a few pixels
of an image may lead to misclassification of the image by a Deep Neural Network (DNN), which
emphasizes the potential lack of stability of such architectures. DNNs being sensitive to adversarial
examples, can thus be fooled, in an intentional manner (security issue) or in undeliberate/accidental
manner (safety issue), which raises a major stability concern for safety-critical systems which need to
be certified by an independent certification authority prior to any entry into production/operation.
DNN-based solutions are hindered with such issue due to their complex nonlinear structure.
Attempts towards verification of neural networks have been made for example in (Katz et al., 2017;
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Weng et al., 2019). It has been proven in (Tsipras et al., 2018b)
that there exists a trade-off between the prediction performance
and the stability of neural networks.

In the last years, the number of works devoted to the stability
issue of neural networks has grown in manifolds. In these works,
the terms “stability”, “robustness” or “local robustness” are used
interchangeably with the samemeaning which is formally defined
in this paper as the extent to which a neural network can continue
to operate correctly despite small perturbations in its inputs. The
stability criterion considered here highlights the fact that these
small perturbations in the inputs do not produce high variations
of the outputs. Many approaches have been proposed, some
dedicated to specific architectures (e.g., networks using only
ReLU activation functions) and grounded on more or less
empirical techniques. We can break down broadly these
techniques into three categories:

• Purely computational approaches which consist in attacking
a neural network and observing its response to such attacks,

• methods based on (often clever) heuristics for testing/
promoting the stability of a neural net,

• studies that aim at establishing mathematical proofs of
stability.

These three kinds of strategies are useful for building and
certifying effectively robust neural networks. However, the
techniques based on mathematical proofs of stability are
generally preferred by industrial safety experts since they
enable a safe-by-design approach that is more efficient than a
robustness verification activity done a posteriori with a
necessarily bounded effort. Among the possible mathematical
approaches, we focus in this article on those relying upon the
analysis of the Lipschitz properties of neural networks. Such
properties play a fundamental role in the understanding of the
internal mechanisms governing these complex nonlinear systems.
Besides, they make few assumptions on the type of non-linearities
used and are thus valid for a wide range of networks.
Nevertheless, they generate a number of challenges both from
a theoretical and numerical standpoints.

Since DNNs are sensitive to small specific perturbations,
providing a quantitative estimation of the stability of such
architectures is of paramount importance for safe and secure
product development in domains such as aeronautics, ground
transportation, autonomous vehicles, energy, and healthcare.
One metric to assess the stability of neural networks to
adversarial perturbations is the Lipschitz constant, which
upper bounds the ratio between output variations and input
variations for a given metric. More generally, in deep learning
theory, novel generalization bounds critically rely on the
Lipschitz constant of the neural network (Bartlett et al., 2017).
One of the main limitations of the Lipschitz constant, defined in
either global or local context, is that it only provides a single
parameter to quantify the robustness of a neural network. Such a
single-parameter analysis does not facilitate the understanding of
potential sources of instability. In particular, it may be insightful
to identify the inputs which have the highest impact in terms of
sensitivity. In the context of tabular data mining, the inputs often

have quite heterogeneous characteristics. Some of them are
categorical data, often encoded in a specific way [e.g., one-hot
encoder (Hancock and Khoshgoftaar, 2020)] and among them,
one can usually distinguish those which are unsorted (like labels
identifying countries) or those which are sorted (like severity
scores in a disease). So, it may appear useful to analyze in a
specific manner each type of inputs of a NN and even sometimes
to exclude some of these inputs (e.g., unsorted categorical data for
which the notion of small perturbationmay be meaningless) from
the performed sensitivity analysis.

The contributions of the work are summarized below:

• A multivariate analysis of the Lipschitz properties of NNs is
performed by generating a set of partial Lipschitz constants.
This opens a new dimension to studying the stability
of NNs.

• Our sensitivity analysis allows us to capture the behaviour of
an individual input or group of inputs.

• The results of this analysis are displayed by a new graphical
representation termed as a Lipschitz star.

• Using the proposed analysis, we also study quantitatively
the effect of spectral normalization constraint and
adversarial training on the stability of NNs.

• We showcase our results on various open-source datasets
along with a real industrial application in the domain of Air
Traffic Management.

In the next section we give a detailed description of the
state-of-the-art related to the quantification of the Lipschitz
constant in neural networks. Section 3 gives our proposed
method pertaining to sensitivity of inputs and introduction to
Lipschitz stars. Section 4 provides an analytical evaluation
for our approach with synthetic datasets. The next section
gives detailed results on three open source datasets and a real
safety critical industrial dataset. The last section concludes
our paper.

2 OVERVIEW ON THE ESTIMATION OF THE
LIPSCHITZ CONSTANT OF
FEEDFORWARD NETWORKS
2.1 Theoretical Background
An m-layered feedforward network can be modelled by the
following recursive equations:

∀i ∈ 1, . . . , m{ }( ) xi � Ti xi−1( ) � Ri Wixi−1 + bi( ), (1)
where, at the ith layer, xi−1 ∈ RNi−1 designates the input vector,
xi ∈ RNi the output one, Wi ∈ RNi×Ni−1 is the weight matrix,
bi ∈ RNi is the bias vector, and Ri: R

Ni → RNi is the activation
operator. This operator may consist of the application of basic
nonlinear functions, e.g., ReLU or tanh, to each component of
the input. Alternatively, it may consist of a softmax operation
or group sorting operations which typically arise in max
pooling. In this model, when the matrix Wi has a
Toeplitz or a block-Toeplitz structure, a convolutive layer
is obtained.
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Since the seminal work in (Szegedy et al., 2013), it is known
that instability in the outputs of the neural networks may arise.
This issue, often referred to as the stability with respect to
adversarial noise, tends to be more severe when the training
set is small. However, it may even happen with large datasets such
as ImageNet. As shown in (Goodfellow et al., 2015), the problem
is mainly related to the choice of the weight matrices. One way of
quantifying the stability of the system is to calculate a Lipschitz
constant of the network.

A Lipschitz constant of a function T is an upper bound on the
ratio between the variations of the output values and the
variations of input arguments of a function T. Thus, it is a
measure of sensitivity of the function with respect to input
perturbations. This means that, if θ ∈ [0,+ ∞ is such that, for
every input x ∈ RN0 and perturbation z ∈ RN0 ,

‖T x + z( ) − T x( )‖≤ θ‖z‖, (2)
then θ is a Lipschitz constant of T. Note that, the same notation is
used here for the norms on RN0 and RNm , but actually different
norms can be used. If not specified, the standard Euclidean norm
will be used. Another important remark which follows from the
mean value inequality is that, if T is differentiable on RN0 , the
optimal (i.e., smallest) Lipschitz constant is

θ � sup
x∈RN0

‖T′ x( )‖S � sup
x∈RN0

sup
x∈RN0

‖T′ x( )z‖
‖z‖ , (3)

where T′(x) ∈ RNm×N0 is the Jacobian matrix of T at x and ‖ ·‖S
denotes the spectral matrix norm. Local definitions of the
Lipschitz constant are also possible (Yang et al., 2020). In
order to get more meaningful expressions of Lipschitz
constants, an important assumption which will be made in
this paper is that the operators (Ri)1≤ i ≤m are nonexpansive,
i.e., 1-Lipschitz. This assumption is satisfied for all the standard
choices of activation operators.

The first upper-bound on the Lipschitz constant of a neural
network was derived by analyzing the effect of each layer
independently and considering a product of the resulting
spectral norms (Goodfellow et al., 2015). This leads to the
following Trivial Upper Bound:

�θm � ‖Wm‖S‖Wm−1‖S . . . , ‖W1‖S. (4)
Although easy to compute, this upper bound turns out be

over-pessimistic. In (Virmaux and Scaman, 2018), the problem of
computing the exact Lipschitz constant of a differentiable
function is pointed out to be NP-hard. A first generic
algorithm (AutoLip) for upper bounding the Lipschitz
constant of any differentiable function is proposed. This
bound however reduces to Eq. 4 for standard feedforward
neural networks. Additionally, the authors proposed an
algorithm, called SeqLip, for sequential neural networks, which
shows significant improvement over AutoLip. A sequential neural
network is a network for which the activation operators are
separable in the sense that, for every i ∈ (1, . . . , m),

∀xi � ξ i,k( )1≤ k≤Ni
∈ RNi( ) Ri x( ) � ρi ξi,k( )( )1≤ k≤Ni

, (5)

where the activation function ρi: R → R
1. In (Virmaux and

Scaman, 2018), it is assumed that the functions (ρi)1≤ i≤m are
differentiable, increasing, and their derivative are upper bounded
by one. It can be deduced that a Lipschitz constant of the
network is

ϑm � sup
Λ1∈DN1 0,1[ ]( ),...,Λm−1∈DNm−1 0,1[ ]( )

‖WmΛm−1 . . . ,Λ1W1‖S, (6)

whereDN(I) designates the set of diagonal matrices of dimension
N × N with diagonal values in I ⊂ R. This bound simplifies as

ϑm � sup
Λ1∈DN1 0,1{ }( ),...,Λm−1∈DNm−1 0,1{ }( )

‖WmΛm−1 . . . ,Λ1W1‖S, (7)

which shows that 2Ni values of the diagonal elements of matrix Λi

have to be tested at each layer i ∈ (1, . . . , m), so that the global
complexity amounts to 2N1+/+Nm−1 and thus grows exponentially
as a function of the number of neurons. Estimating the Lipschitz
constant using this method is intractable even for medium-size
networks; thus, the authors use a greedy algorithm to compute a
bound, which may under-approximate the Lipschitz constant.
This does not provide true upper bounds.

In Combettes and Pesquet (2020b) various bounds on the
Lipschitz constant of a feedforward network are derived by
assuming that, for every i ∈ (1, . . . , m) the activation operator
Ri is αi-averaged with αi ∈]0, 1]. We recall that this means that
there exists a non-expansive (i.e., 1-Lipschitz) operator Qi such
that Ri = (1−αi)Id + αiQi. The following inequality is then
satisfied:

∀ x, y( ) ∈ RNi( ) ‖Ri x( ) − Ri y( )‖2 ≤ ‖x − y‖2 − 1 − αi
αi

‖x
− Ri x( ) − y + Ri y( )‖2. (8)

We thus see that the smaller αi, the more “stable” Ri is. In the
limit case when α1 = 1, Ri is non-expansive and, when αi = 1/2, Ri
is said to be firmly nonexpansive. An important subclass of firmly
nonexpansive operators is the class of proximity operators of
convex functions which are proper and lower-semicontinuous.
Let Γ0(RN) be the class of such functions defined from RN to
] − ∞,+∞]. The proximity operator of a function f ∈ Γ0(RN), at
some point x ∈ RN, is the unique vector denoted by proxf(x) such
that

proxf x( ) � argmin
p∈RN

1
2
‖p − x‖2 + f p( ). (9)

The proximity operator is a fundamental tool in convex
optimization. As shown in (Combettes and Pesquet, 2020a),
the point is that most of the activation functions (e.g.,
sigmoid, ReLu, leaky ReLU, ELU) currently used in neural
networks are the proximity operators of some proper lower-
semicontinuous convex functions. This property is also satisfied
by activation operators which are not separable, like softmax or
the squashing function used in capsule networks. The few

1More generally, a function ρi,k can be applied to each component ξi,k but this
situation rarely happens in standard neural networks.
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activation operators which are not proximity operators (e.g.,
convex combinations of a max pooling and an average
pooling) can be viewed as over-relaxations of proximity
operators and correspond to a value of the averaging
parameter greater than 1/2.

Based on these averaging assumptions, a first estimation of the
Lipschitz constant is given by

θm � βm;∅‖Wm◦ . . . ,◦W1‖ + ∑m−1

k�1
∑

j1 ,...,jk( )∈Jm,k

βm; j1 ,...,jk{ }σm; j1 ,...,jk{ },

(10)
where

∀ J ⊂ 1, . . . , m − 1{ }( ) βm;J � ∏
j∈J

αj⎛⎝ ⎞⎠ ∏
j∈ 1,...,m−1{ }\J

1 − αj( ),
(11)

for every k ∈ (1, . . . , m−1),

Jm,k � j1, . . . , jk( ) ∈ Nk 1≤ j1 < . . . , < jk ≤m − 1{ }, if k> 1;
1, . . . , m − 1{ }, if k � 1

{ (12)

and for every (j1, . . . , jk) ∈ Jm,k,

σm; j1 ,...,jk{ } � ‖Wm . . . ,Wjk+1‖S ‖Wjk . . . ,Wjk−1+1‖S . . . ‖Wj1 . . . ,W1‖S (13)

When, for every i ∈ (1, . . . , m−1), Ri is firmly nonexpansive,
the expression simplifies as

θm � 1
2m−1 ‖Wm . . . ,W1‖S + ∑m−1

k�1
∑

j1 ,...,jk( )∈Jm,k

σm; j1 ,...,jk{ }⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ (14)

If, for every i ∈ (1, . . . , m−1), Ri is separable2, a second
estimation is provided which reads

ϑm � sup
Λ1∈DN1 2α1−1,1{ }( ),

..

.
,

Λm−1∈DNm−1 2αm−1−1,1{ }( )

‖WmΛm−1 . . . ,Λ1W1‖S (15)

We thus see that, when α1 = . . . = αm−1 = 1/2, we recover Eq. 7
without making any assumption on the differentiability of the
activation functions. This estimation is more accurate than the
previous one in the sense that

‖Wm . . . ,W1‖S ≤ ϑm ≤ θm. (16)
It is proved in (Combettes and Pesquet, 2020b) that, if the

network is with non-negative weights, that is
(∀i ∈ {1, . . . , m}) Wi ∈ [0,+∞Ni×Ni , the lower bound in Eq. 16
is attained, i.e.,

ϑm � ‖Wm . . . ,W1‖S. (17)
Another interesting result which is established in (Combettes

and Pesquet, 2020b) is that similar results hold if other norms

than the Euclidean norm are used to quantify the perturbations
on the input and the output. For example, for a given i ∈ (1, . . . ,
m), for every p ∈ (1, + ∞), we can define the following norm:

∀xi � ξ i,k( )1≤ k≤Ni
∈ RNi( )

‖x‖p �
∑Ni

k�1
|ξ i,k|p1/p, if p< + ∞

sup
1≤k≤Ni

|ξ i,k|, if p � +∞ .

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (18)

If (p, q) ∈ (1,+∞)2, the input space RN0 is equipped with the
norm ‖ ·‖p, and the output spaceRNm is equipped with the norm ‖
·‖q, a Lipschitz constant for a network with separable activation
operators is

ϑm � sup
Λ1

∈DN1 2α1−1,1[ ]( ),
..
.
,

Λm−1∈DNm−1 2αm−1−1,1[ ]( )

‖WmΛm−1 . . . ,Λ1W1‖p,q (19)

� sup
Λ1∈DN1 2α1−1,1{ }( ),

..

.
,

Λm−1∈DNm−1 2αm−1−1,1{ }( )

‖WmΛm−1 . . . ,Λ1W1‖p,q (20)

where ‖ ·‖p,q is the subordinate Lp,q matrix norm induced by the
two previous norms. The ability to use norms other than the
Euclidean one may be sometimes more meaningful in practice
(especially for the ℓ1 or the sup norm). However, computing such
a subordinate norm is not always easy (Lewis, 2010).

2.2 SDP-Based Approach
The work in (Fazlyab et al., 2019) focuses on neural networks
using separable activation operators. It assumes that the
activation function ρi used at a layer i ∈ (1, . . . , m) is slope-
bounded, i.e., there exist nonnegative parameters ϒmin and ϒmax

such that

∀ ξ, ξ′( ) ∈ R2( ) ξ ≠ ξ′0ϒmin ≤
ρi ξ( ) − ρi ξ′( )

ξ − ξ′ ≤ϒmax.

As said by the authors, most activation functions satisfy this
inequality with min = 0 and max = 1. In other words, the above
inequality means that ρi is an increasing function and
nonexpansive. But a known result (Combettes and Pesquet,
2008, Proposition 1.4) states that a function ρi satisfies these
properties if and only if it is the proximity operator of some
proper lower-semicontinuous convex function. So it turns out
that we recover similar assumptions to those made in (Combettes
and Pesquet, 2020a).

Let us thus assume that min = 0, max = 1, and m ≥ 2. A
known property is that Ri is firmly nonexpansive if and only if

∀ x, y( ) ∈ RNi( )2( x − y( )⊤ Ri x( ) − Ri y( )( )≥ ‖Ri x( )
− Ri y( )‖2. (21)

The point is that, if Ri is a separable operator, this inequality
holds in a more general metric associated with a matrix

Qi � Diag qi,1,1, . . . , qi,Ni,Ni( ), (22)
2The result remains valid if different scalar activation functions are used in a
given layer.
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where (∀k ∈ {1, . . . , Ni}2) qi,k,k ≥ 0. In the following, the set of
such matrices (Qi)1≤ i≤m−1 will be denoted byQ. This means that

∀ x, y( ) ∈ RNi( )2( x − y( )⊤Qi Ri x( ) − Ri y( )( )≥
Ri x( ) − Ri y( )( )⊤Qi Ri x( ) − Ri y( )( ). (23)

For every (xi, yi) ∈ (RNi )2, let xi = Ri(Wixi−1 + bi) and yi =
Ri(Wiyi−1 + bi). It follows from Eq. 23 that

Wi xi−1 − yi−1( )( )⊤Qi xi − yi( )≥ xi − yi( )⊤Qi xi − yi( ). (24)
Summing for the first m−1 layers yields

∑m−1

i�1
Wi xi−1 − yi−1( )( )⊤Qi xi − yi( )≥ ∑m−1

i�1
xi − yi( )⊤Qi xi − yi( ).

(25)
On the other hand, ϑm > 0 is a Lipschitz constant of the neural

network T if

ϑ2m‖x0 − y0‖2 ≥ ‖Wm xm−1 − ym−1( )‖2. (26)
For the latter inequality to hold, it is thus sufficient to ensure

that

ϑ2m‖x0 − y0‖2 − ‖Wm xm−1 − ym−1( )‖2 ≥ 2
× ∑m−1

i�1
Wi xi−1 − yi−1( )( )⊤Qi xi − yi( ) − 2

× ∑m−1

i�1
xi − yi( )⊤Qi xi − yi( ). (27)

This inequality can be rewritten in matrix form as

x0 − y0

..

.

xm−1 − ym−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊤

M ρm, Q1, . . . , Qm−1( ) x0 − y0

..

.

xm−1 − ym−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦≥ 0 (28)

with ρm � ϑ2m and

M ρm, Q1, . . . , Qm−1( ) �
ρmIdN0 −W⊤

1Q1 0

−Q1W1 0 1

1 1 1

1 0 −W⊤
m−1Qm−1

0 −Qm−1Wm−1 2Qm−1 −W⊤
mWm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(29)

In the case of a network having just one hidden layer, which is
mainly investigated in (Fazlyab et al., 2019), the above matrix
reduces to

M ρ2, Q1( ) � ρ2IdN0 −W⊤
1Q1

−Q1W1 2Q1 −W⊤
2W2

[ ]. (30)

Condition Eq. 28 is satisfied, for every (x0, . . . , xm−1) and (y0,
. . . , ym−1) if and only if

M ρm, Q1, . . . , Qm−1( ) ⪰ 0. (31)

It is actually sufficient that this positive semidefiniteness
constraint be satisfied for any matrices (Q1, . . . , Qm−1) ∈ Q for�
ρ

√
m
to be a Lipschitz constant. The smallest possible value of the

resulting constant can be obtained by solving the following
Semidefinite Programming (SDP) problem:

minimize
ρm,Q1 ,...,Qm−1( )∈C

ρm, (32)

where C is the closed convex set

C � ρm, Q1, . . . , Qm−1( ) ∈ 0,+∞[ × Q[ (31) holds{ }. (33)
Although there exists efficient SDP solvers, the method

remains computationally intensive. A solution to reduce its
computational complexity at the expense of a lower accuracy
consists of restricting the optimization of the metric matrices Q1,
. . . , Qm−1 to a subset of Q.

One limitation of this method is that it is tailored to the use of
the Euclidean norm.

Remark 1. In (Fazlyab et al., 2019), it is claimed that Eq. 23 is
valid for every metric matrix

Qi � ∑Ni

k�1
qi,k,keke

⊤
k + ∑

1≤k<ℓ≤Ni

qi,k,l ek − eℓ( ) ek − eℓ( )⊤, (34)

where (ek)1≤ k≤Ni
is the canonical basis of RNi and

(∀(k, ℓ) ∈ {1, . . . , Ni}2) with k ≤ ℓ, qi,k,ℓ ≥ 0 Unfortunately,
this turns out to be incorrect. The erroneous statement comes
from a flaw in the deduction of Lemma 1 from Lemma 2 in
(Fazlyab et al., 2019). A counterexample was recently provided in
(Pauli et al., 2022).

2.3 Polynomial Optimization Based
Approach
The approach in (Latorre et al., 2020) applies to neural networks
having a single output (i.e., Nm = 1)3. The authors mention that
their approach is restricted to differentiable activation functions,
but it is actually valid for any separable firmly nonexpansive
activation operators. Indeed, when Nm = 1, the Lipschitz constant
in Eq. 19 reduces to

ϑm � sup
Λ1∈DN1 0,1[ ]( ),

..

.
,

Λm−1∈DNm−1 0,1[ ]( )

‖W⊤
1Λ1 . . . ,Λm−1W⊤

m‖pp , (35)

where pp ∈ (1, + ∞) is the dual exponent of p (such that 1/p +
1/pp = 1). Recall that p ∈ (1, + ∞) is the exponent of the ℓp-
norm equipping the input space. This shows that ϑm is
equal to

ϑm � sup

Φ x, λ1, . . . , λm−1( ) | ‖x‖p ≤ 1, λi( )1≤ i≤m−1 ∈ 0, 1[ ]N1+/+Nm−1{ },
(36)

3This can be extended to multiple output network, if the output space is equipped
with the ℓ+∞ norm.
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where, for every x ∈ RN0 and (λi)1≤ i≤m ∈ RN1+/+Nm−1 ,

Φ x, λ1, . . . , λm−1( ) � x⊤W⊤
1 Diag λ1( ) . . . ,Diag λm−1( )W⊤

m. (37)
Function Φ is a multivariate polynomial of the components of

its vector arguments. Therefore, if the unit ball associated with
the ℓp norm can be described via polynomial inequalities,
which happens when p ∈ N\{0} and p = + ∞, then finding ϑm
turns out to be a polynomial constrained optimization
problem. Solving such an optimization problem can be
achieved by solving a hierarchy of convex problems.
However, the size of the hierarchy tends to grow fast and
if the order of the hierarchy is truncated to a too small value,
the delivered result becomes inaccurate. Leveraging the
sparsity properties that might exist for the weight matrices
may be helpful numerically. Note that, the approach is
further improved in (Chen et al., 2020) by using Lasserre’s
hierarchy.

A comparison of the state-of-the-art and proposed approach is
presented in Table 1.

3 WEIGHTED LIPSCHITZ CONSTANTS FOR
SENSITIVITY ANALYSIS

To extend the theoretical results presented above on the
evaluation of neural network stability through their
Lipschitz regularity, we present in this section a new
approach based on a suitable weighting operation
performed in the computation of Lipschitz constants. This
enables a multivariate sensitivity analysis of the neural
network stability for individual inputs or groups of inputs.
We will start by motivating this weighting from a statistical
standpoint. Then we will define it in a more precise manner,
before discussing its resulting mathematical properties.

3.1 Statistical Motivations
For tractability, assume that the perturbation at the network input
is a realization of a zero-mean Gaussian distributed random
vector z with N0 × N0 covariance matrix Σ ≻ 0. Then, its
density upper level sets are defined as

Cη � z ∈ RN0 | z⊤Σ−1z≤ η{ }, (38)
for every η ∈]0,+∞ . The set Cη defines an ellipsoid where the
probability density takes its highest values. More precisely, the
probability for z to belong to this set is independent of Σ
(Supplementary Appendix S1) and is equal to.

P z ∈ Cη( ) � γ N0/2, η/2( )
Γ N0/2( ) , (39)

where Γ is the gamma function and γ the lower (unnormalized)
incomplete gamma function.

On the other hand, let us assume that the maximum standard
deviation σmax of the components of z (i.e., square root of the
maximum diagonal element of matrix Σ) is small enough. If we
suppose that the network T is differentiable in the neighborhood
of a given input x ∈ RN0 , as the input perturbation is small
enough, we can approximate the network output by the following
expansion:

T x + z( ) ≃ T x( ) + T′ x( )z. (40)
Let us focus our attention on perturbations in Cη. By doing so,

we impose some norm-bounded condition, which may appear
more realistic for adversarial perturbations. Then, we will be
interested in calculating

sup
z∈Cη

‖T x + z( ) − T x( )‖ ≃ sup
z∈Cη

‖T′ x( )z‖. (41)

By making the variable change z′ � z/
�
η

√
and using Eq. 38,

sup
z∈Cη

‖T x + z( ) − T x( )‖ ≃ �
η

√
sup
z′∈C1

‖T′ x( )z′‖

� �
η

√
sup
z∈RN0

z′≠0

‖T′ x( )z′‖
‖z′‖Σ−1

� �
η

√
σmaxsup

z′∈RN0
z′≠0

‖T′ x( )z′‖
‖z′‖Ω−1

,

(42)

where Ω � Σ/σ2max and ‖ · ‖Ω−1 � ���������(·)⊤Ω−1(·)√
. This suggests that,

in this context, the suitable subordinate matrix norm for
computing the Lipschitz constant in Eq. 3 is obtained by
weighting the Euclidean norm in the input space with Ω−1.
We can also deduce from Eq. 42, by setting z″ = Ω−1/2z′, that

sup
z∈Cη

‖T x + z( ) − T x( )‖ ≃ �
η

√
σmaxsup z″∈RN0

z″≠0

‖T′ x( )Ω1/2z″‖
‖z″‖

� �
η

√ ‖T′ x( )Σ1/2‖S.
(43)

On the other hand, based on the first-order approximation in
Eq. 40, T(x + z) is approximately Gaussian with mean T(x) and
covariance matrix T′(x)ΣT′(x)⊤. As
‖T′(x)ΣT′(x)⊤‖S � ‖T′(x)Σ1/2‖2S, we see that another
insightful interpretation of Eq. 43 is that, up to the scaling
factor

�
η

√
, it approximately delivers the square root of the

TABLE 1 | Comparison of state-of-the-art Lipschitz estimation approaches vs the proposed one.

Method Properties Sensitivity of inputs

Naive upper Bound [Goodfellow et al. (2014)] spectral bound, loose bound, univariate No
SDPLip [Fazlyab et al. (2019)] ℓ2 norm, more scalable to broad networks, univariate No
CPLip [Combettes and Pesquet (2020b)] ℓp ∈ (1, + ∞), not scalable to broad networks, univariate No
LipOpt-k [Latorre et al. (2020)] ℓp ∈ (1, + ∞), univariate No
Proposed scalable to broad networks, multivariate Yes
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spectral norm of the covariance matrix of the output
perturbations.

3.2 New Definition of a Weighted Lipschitz
constant
Based on the previous motivations, we propose to employ a weighted
norm to define a Lipschitz constant of the network as follows:

Definition 1. Let Ω be an N0 × N0 symmetric positive definite
real-valued matrix. We say that ${\theta}_{m}̂{\upOmega}$ is an
Ω-weighted norm Lipschitz constant of T as described in
Figure 1 if

∀ x, z( ) ∈ RN0( )2( ) ‖T x + z( ) − T z( )‖≤ θΩm ‖z‖Ω−1 . (44)
The above definition can be extended to non Euclidean norms

by making use of exponents (p, q) ∈ (1,+∞)2 and by replacing
inequality Eq. 44 with

∀ x, z( ) ∈ RN0( )2( ) ‖T x + z( ) − T z( )‖q ≤ θΩm ‖Ω−1/2z‖p. (45)
By changes of variable, this inequality can also be rewritten as.

∀ x′, z′( ) ∈ RN0( )2( ) ‖T Ω1/2 x′ + z′( )( )
− T Ω1/2z′( )‖q ≤ θΩm ‖z′‖p. (46)

Therefore, we see that calculating θΩm is equivalent to derive a
Lipschitz constant of the network T where an additional first
linear layer Ω1/2 has been added. Throughout the rest of this
section, it will be assumed that, for every i ∈ (1, . . . , m−1) the
activation operator Ri is separable and αi-averaged. It then follows
from Eq. 20 that an Ω-weighted norm Lipschitz constant of T is

ϑΩm � sup
Λ1∈DN1 2α1−1,1{ }( ),

..

.
,Λm−1∈DNm−1 2αm−1−1,1{ }( )

‖WmΛm−1 . . . ,Λ1W1Ω1/2‖p,q. (47)

Although all our derivations were based on the fact that Ω is
positive definite, from the latter expression we see that, by
continuous extension, ϑΩm can be defined when Ω is a singular
matrix.

3.3 Sensitivity with Respect to a Group of
Inputs
In this section, we will be interested in a specific family of
weighted norms associated with the set of matrices

Ωϵ,K | ∅ ≠ K ⊂ 1, . . . , N0{ }, ϵ ∈]0, 1]{ },
defined, for every nonempty subsetK of (1, . . . ,N0) and for every
ϵ ∈]0, 1], as

Ωϵ,K � Diag σ2ϵ,K,1, . . . , σ
2
ϵ,K,N0

( ), (48)
where

∀ℓ ∈ 1, . . . , N0{ }( ) σϵ,K,ℓ � 1 if ℓ ∈ K

ϵ otherwise.
{ (49)

If we come back to the statistical interpretation in Section 3.1,
Ωϵ,K is then (up to a positive scale factor) the covariance matrix of
a Gaussian random vector z with independent components4. The
components with indices in K have a given variance σ2max while
the others have variance ϵ2σ2max. Such a matrix thus provides a
natural way of putting emphasis on the group of inputs with
indices inK. Thus, variables ϑΩϵ,K

m will be termed partial Lipschitz
constants in the following.

The next proposition lists the main properties related to the
use of such weighted norms for calculating Lipschitz constants.
The proofs of these results are given in Supplementary
Appendix S2.

Proposition 1. Let (p, q) ∈ (1,+∞)2. For every nonempty subsetK
of (1, . . . , N0) and for every ϵ ∈]0, 1], letΩϵ,K be defined as above
and let ϑΩϵ,K

m be defined by (47). Let K0 and K1 be nonempty
subsets of (1, . . . , N0). Then the following hold:

1) As ϵ → 0, ϑ
Ωϵ,K0
m converges to the Lipschitz constant of a

network where all the inputs with indices out of K0 are kept
constant.

2) ϑ
Ω1,K0
m is equal to the global Lipschitz constant ϑm defined by
Eq. 20.

3) Let (ϵ, ϵ′)∈]0, 1]2. If Ωϵ,K0 ⪯ Ωϵ′,K1
, then ϑ

Ωϵ,K0
m ≤ ϑ

Ωϵ′,K1
m .

4) Function ϑ
Ω·,K0
m : ]0, 1] → [0,+∞[: ϵ ↦ ϑ

Ωϵ,K0
m is monotonically

increasing.
5) Let ϵ∈]0, 1]. If K0 ⊂ K1, then ϑ

Ωϵ,K0
m ≤ ϑΩϵ,K1

m .
6) Let ϵ ∈]0, 1], let K ∈ N\{0}, and let

ωK,ϵ � N0 − 1
K − 1

( ) 1 + N0

K
− 1( )ϵ( ). (50)

We have

max
K⊂ 1,...,N0{ }
cardK�K

ϑΩϵ,K
m ≤ ϑm ≤

1
ωK,ϵ

∑
K⊂ 1,...,N0{ }
cardK�K

ϑΩϵ,K
m . (51)

7) Let ϵ ∈]0, 1], let P be a partition of (1, . . . , N0), and let.

ωP,ϵ � 1 + (cardP − 1)ϵ.
We have

max
K∈P

ϑΩϵ,K
m ≤ ϑm ≤

1
ωP,ϵ

∑
K∈P

ϑΩϵ,K
m . (52)

FIGURE 1 | m-layered feedforward neural network architecture. For the
ith-layer, Wi is the linear weight operator, bi the bias vector, and Ri the
activation operator.

4Recall that this interpretation is valid when p = 2 in Eq. 47.
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8) LetK2 be such thatK1 ∩ K2 ≠ ∅ andK1 ∪ K2 � K0. Let pp ∈
(1, + ∞) be such that 1/p + 1/p@ = 1 Then

ϑΩϵ,K0
m ≤ ϑΩϵ,K1

m( )pp + ϑΩϵ,K2
m( )pp( )1/pp + o ϵ( ). (53)

Let us comment on these results. According to Property (i) in
the limit case when ϵ→ 0, only the inputs with indices in K0 are
used in the computation of the associated Lipschitz constant. In
turn, Property (ii) states that, when ϵ = 1, we recover the classical
expression of a Lipschitz constant where the perturbations on all
the inputs are taken into account. In addition, based on Property
(iv), the evolution of ϑ

Ωϵ,K0
m when ϵ varies from 1 to 0 provides a

way of assessing how the group of inputs indexed by K0

contributes to the overall Lipschitz behaviour of the network.
Although one would expect that summing the Lipschitz constants
obtained for each group of inputs would yield the global Lipschitz
constant, Properties (vi) and (vii) show that this does not hold in
general whatever the way the entries are split (possibly
overlapping groups of given size K or disjoint groups of
arbitrary size). Instead, after suitable normalization, such sums
provide upper bounds on ϑm. Furthermore, it follows from (2),
Eqs 51, 52 that the difference between these normalized sums and
ϑm tends to vanish when ϵ increases.

Note that, when looking at the sensitivity with respect to
individual inputs, i.e., when the considered set of indices are
singletons, both (6) (with K = 1) and (7) (with P � {{k} |
k ∈ {1, . . . , N0}} lead to the same inequality

max
k∈ 1,...,N0{ }

ϑΩϵ, k{ }
m ≤ ϑm ≤

1
1 + N0 − 1( )ϵ ∑N0

k�1
ϑΩϵ, k{ }
m . (54)

4 VALIDATION ON SYNTHETIC DATA

4.1 Context
To highlight the need for advanced sensitivity analysis tools in the
design of neural networks, we first study simple synthetic
examples of polynomial systems for which we can calculate
explicitly the partial Lipschitz constants. We generate input-
output data for the defined systems, and train a fully
connected model using a standard training, i.e., without any
constraints. We compare this approach with a training subject
to a spectral norm constraint on the layers.

Spectral Normalization: For safety critical tasks, Lipschitz
constant and performance targets can be specified as engineering
requirements, prior to network training. A Lipschitz target can be
defined by a safety analysis of the acceptable perturbations for
each output knowing the input range and it constitutes a current
practice in many industries. Imposing this Lipschitz target can
be done either by controlling the Lipschitz constant for each
layer or for the whole network depending on the application at
hand. Such a work for controlling the Lipschitz constant has
been presented in (Serrurier et al., 2021) using Hinge
regularization. In our experiments, we train networks while
using a spectral normalization technique (Miyato et al., 2018)
which has been proved to be effective in controlling Lipschitz

properties in GANs. Given an m layer fully connected
architecture and a Lipschitz target L, we can constrain the
spectral norm of each layer to be less than

��
Lm

√
. According to

Eq. 4, this ensures that the upper bound on the global Lipschitz
constant is less than L.

For each training, we study the effect of input variables on the
stability of the networks. As proposed in Section 3.3, for a given
group of inputs with indices in K, we will quantify the partial
Lipschitz constant ϑΩϵ,K

m . The obtained value of ϑΩϵ,K
m allows us to

evaluate how the corresponding group of variables may
potentially affect the stability of the network. For simplicity, in
this section, we will focus on the limit case when ϵ = 0 (see the last
remark in Section 3.2).

Partial Lipschitz constant values ϑΩ0,K
m , for all possible choices

for K, are computed using the numerical method described in
Section 2.2 and compared with the theoretical values derived in
the following subsection. More details on the models are also
provided in these sections.

4.2 Polynomial Systems
We consider regression problems where the data is synthesized by
a second-order multivariate polynomial. The system to be
modelled is thus described by the following function:

∀ ξ1, . . . , ξN0( ) ∈ RN0( ) f ξ1, . . . , ξN0( )
� ∑N0

k�1
akξk +∑N0

k�1
∑N0

l�1
bk,lξkξ l, (55)

where (ak)k∈N0
and (bk,l)1≤ k,l≤N0

are the real-valued polynomial
coefficients. Note that, such a polynomial system is generally not
Lipschitz-continuous. The Lipschitz-continuity property only
holds on every compact set. Subsequently, we will thus study
this system on the hypercube [−M,M]N0 with M > 0.

The explicit values of the partial Lipschitz constant on this
domain can be derived as follows. We first calculate the gradient
of f

∇f ξ1, . . . , ξN0( ) � zkf ξ1, . . . , ξN0( )( )1≤ k≤N0
, (56)

where, for every k ∈ (1, . . . , N0), zkf denotes the partial derivative
w.r.t. the k-th variable given by

zkf ξ1, . . . , ξN0( ) � ak +∑N0

l�1
bk,l + bl,k( )ξl. (57)

For every K ⊂ {1, . . . , N0}, the partial Lipschitz constant�ϑΩ0,K

of the polynomial system (restricted to [−M,M]N0 ) w.r.t. the
group of variables with indices in K is then equal to.

�ϑ
Ω0,K � sup

ξ1 ,...,ξN0( )∈ −M,M[ ]N0

��������������
λΩ0,K ξ1, . . . , ξN0( )√

, (58)

where, for every diagonal matrix Λ � Diag(ε21, . . . , ε2N0
)

with (ε1, . . . , εN0) ∈ [0,+∞N0 ,

λΛ ξ1, . . . , ξN0
( ) � ‖ ∇f ξ1, . . . , ξN0

( )( )⊤Λ1/2‖2

� ∑N0

k�1
εk zkf ξ1, . . . , ξN0

( )( )2. (59)

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 7944698

Gupta et al. Multivariate Stability of Neural Networks

65

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


Since the partial derivatives in Eq. 57 are affine functions of
the variables (ξ1, . . . , ξN0

), λΛ is a convex function. We deduce
that the supremum in Eq. 58 is attained when
ξ1 � ± M, . . . , ξN0

� ± M, so that �ϑ
Ω0,K

can be computed by
looking for the maximum of a finite number of values.

4.3 Numerical Results
In our numerical experiments, we consider a toy example
corresponding to N0 = 3 and

∀ ξ1, ξ2, ξ3( ) ∈ R3( ) f ξ1, ξ2, ξ3( ) � ξ1 + 100ξ3 − ξ22 + γξ1ξ3,

(60)
where γ ∈ [0,+∞. We deduce from Eq. 59 that

λΛ ξ1, ξ2, ξ3( ) � ε1 1 + γξ3( )2 + 4ε2ξ
2
2 + ε3 100 + γξ1( )2 (61)

and, consequently,

sup
ξ1 ,ξ2 ,ξ3( )∈ −M,M[ ]3

λΛ ξ1, ξ2, ξ3( ) � ε1 1 + γM( )2 + 4ε2M
2

+ ε3 100 + γM( )2. (62)
By looking at the seven possible binary values of (ε1, ε2, ε3) ≠

(0, 0, 0), we thus calculate the Lipschitz constant of f with respect
to each group of inputs. For example,

• if ε1 = 1, ε = 0, ε3 = 0, we calculate �ϑ
Ω0,K

with K � {1},
i.e., evaluate the sensitivity w.r.t. the first variable

• if ε1 = ε2 = 1, ε3 = 0, we calculate �ϑ
Ω0,K

with K � {1, 2},
i.e., evaluate the joint sensitivity w.r.t. the first and second
variables;

• if ε1 = ε2 = ε3 = 1, we calculate �ϑ
Ω0,K

with K � {1, 2, 3},
i.e., evaluate the sensitivity w.r.t. all the variables (global
Lipschitz constant).

These Lipschitz constants allow us to evaluate the intrinsic
dynamics of the system, that is how it responds when its
inputs vary.

Our interest will be now to evaluate how this dynamics is
modified when the system is modelled by a neural network. To do
so, three systems are studied by choosing γ ∈ (0, 1/10, 1) andM =
50. We generate 5,000 data samples from each system, the input
values being drawn independently from a random uniform
distribution. While training the neural networks, the dataset is

divided with a ratio of 4:1 into training and testing samples. The
input is normalized using its mean and standard deviation, while
the output is max-normalized. We build neural networks for
approximating the systems using two hidden layers (m = 3) with a
number of hidden neurons equal to 30 in each layer and ReLU
activation functions. The training loss is the mean square error.

For different values of γ, we report the values of the partial
Lipschitz constants in Tables 2, 3, 4. The variable θK corresponds
to �ϑ

Ω0,K
for the analytical value we derived from previous

formulas, whereas it corresponds to the Lipschitz constant
ϑΩ0,K
3 , when computed for the neural network trained either in
a standard manner or with a spectral normalization constraint.
The value of L used in the spectral normalization was adjusted to
obtain a similar global Lipschitz constant to the polynomial
system. In the caption, we also indicate the accuracy in terms
of normalized mean square error (NMSE) and normalized mean
absolute error (NMAE). These values are slightly higher for
constrained training, but remain quite small.

Comments on the results:

• In general, ξ3 impacts the output of this system the most,
and (ξ2, ξ3) mainly account for the global dynamics of the
system.

• With standard training, we see that there exists a significant
increase of the sensitivity with respect to the input
variations, so making the neural network vulnerable to
adversarial perturbations.

• By using spectral normalization, it is possible to constrain
the global Lipschitz constant of the system to be close to the
analytical global value while keeping a good accuracy. One

TABLE 2 |Comparison of Lipschitz constant values when γ = 0. Test performance
for standard training: NMSE = 0.007, NMAE = 0.005, for spectral
normalization: NMSE = 0.011, NMAE = 0.009.

Partial LC Analytical Standard Spectral normalized

Θ(1) 1 133.9 6.75
Θ(2) 100 211.7 76.3
Θ(3) 100 299.7 136.0
Θ(1,2) 100.0 229.0 102.2
Θ(1,3) 100.0 303.1 136.0
Θ(2,3) 122.5 314.2 141.2
Θ(1,2,3) 141.4 315.3 141.2

TABLE 3 | Comparison of Lipschitz constant values when γ = 1/10. Test
performance for standard training: NMSE = 0.006, NMAE = 0.005, for spectral
normalization: NMSE = 0.009, NMAE = 0.007.

Partial LC Analytical Standard Spectral normalized

Θ(1) 6 138.7 10.1
Θ(2) 100 219.2 90.0
Θ(3) 105 302.7 138.9
Θ(1,2) 100.2 231.6 108.1
Θ(1,3) 105.2 306.3 139.0
Θ(2,3) 145 316.4 147.2
Θ(1,2,3) 145.1 316.5 147.2

TABLE 4 |Comparison of Lipschitz constant values when γ = 1. Test performance
for standard training: NMSE = 0.006, MAE = 0.005, for spectral normalization:
NMSE = 0.014, NMAE = 0.009.

Partial LC Analytical Standard Spectral normalized

Θ(1) 51 274.7 59.5
Θ(2) 100 298.9 80.3
Θ(3) 150 388.7 183.7
Θ(1,2) 112.6 337.0 119.4
Θ(1,3) 158.4 392.2 183.7
Θ(2,3) 180.3 400.1 188.9
Θ(1,2,3) 187.4 400.5 189.0
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may however notice an increase of the sensitivity to ξ1 and
ξ3, and a decrease of the sensitivity to ξ2 with respect to the
original system.

• For all the three models, the values obtained with neural
networks follow the same trend, for different groups of
inputs, as those observed with the analytical values.

• Although the Lipschitz constant of the neural networks is
computed on the whole space and the one of the system on
(−50,50)3, our Lipschitz estimates appear to be consistent
without resorting to a local analysis.

These observations emphasize the importance of controlling
the Lipschitz constant of neural network models through specific
training strategies. In addition, we see that evaluating the
Lipschitz constant with respect to groups of inputs allow us to
have a better understanding of the behaviour of the models.

In this section, we have discussed the proposed method for
synthetic datasets. In the next section, the sensitivity analysis will
be made on widely used open source datasets and an industrial
dataset.

5 APPLICATION ON DIFFERENT USE
CASES

5.1 Datasets and Network Description
We study four regression problems involving tabular datasets to
showcase our proposed multivariate analysis of the stability of
neural networks. Tabular data take advantage of heterogeneous
sources of information coming from different sensors or data
collection processes. We apply our methods on widely used
tabular datasets: 1) Combined Cycle Power Plant dataset 5

which has 4 attributes with 9,568 instances; 2) Auto MPG
dataset 6 consists of 398 instances with 7 attributes; 3) Boston

Housing dataset 7 consists of 506 instances with 13 attributes. For
Combined Power Plant and Auto MPG datasets, we solve a
regression problem with a single output, whereas for Boston
Housing dataset we consider a two-output regression problem
with “price” and “ptratio” as the output variables. The attributes
in the dataset are a combination of continuous and categorical.
The datasets are divided with a ratio of 4:1 between training and
test data.

Thales Air Mobility industrial application represents the
prediction of the Estimated Time En-route (ETE), meaning
the time spent by an aircraft between the take-off and landing,
considering a number of variables as described in Table 5. The
application is important in air traffic flow management, which is
an activity area where safety is critical. The purpose of the
proposed sensitivity analysis is thus to help engineers in
building safe by design models complying with given safety
stability targets. The dataset consists of 2,219,097 training,
739,639 validation, and 739,891 test samples.

For all the models, we build fully connected networks with
ReLU8 activation function on all the hidden layers, except the last
one. The models are trained on Keras with Tensorflow backend.
The initializers are set to Glorot uniform. The network
architecture of the different models, number of layers, and
neurons are tabulated in Table 6. Combined Cycle Power
Plant dataset with (10, 6) network architecture is trained with
two hidden layers having 10 and 6 hidden neurons, respectively.
For Thales Air Mobility industrial application [10 × (30)] implies
that the neural network has 10 hidden layers with 30
neurons each.

5.2 Sensitivity Analysis with Respect to
Each Input
In this section we study the effect of input variables on the
stability of the networks. More specifically, we study the effect of
input variations on the stability of the networks by quantifying
ϑΩϵ,K
m with ϵ ∈]0, 1], for various choices of K, instead of a global
Lipschitz constant accounting for the influence of the whole set of
inputs. The obtained value of ϑΩϵ,K

m allows us to evaluate how the
corresponding group of variables may potentially affect the
stability of the network. By performing this analysis for several
choices of K, we thus generate a multivariate analysis of the
Lipschitz regularity of the network.

As shown by Proposition 1, varying the ϵ parameter is also
insightful since it allows us to measure how the network behaves
when input perturbations are gradually more concentrated on a
given subset of inputs.

Although our approach can be applied to groups of inputs, for
simplicity in this section, we will focus on the case when the setsK
reduce to singletons. In this context, we propose a new
representation for displaying the results of the Lipschitz

TABLE 5 | Input and output variables description for the Thales Air Mobility
industrial application dataset.

Variable Name Type

Input 0 Speed Continuous
1 Flight distance
2 Departure delay
3 Initial ETE
4 Latitude origin
5 Longitude origin
6 Altitude origin
7 Latitude destination
8 Longitude destination
9 Altitude destination
10 Arrival time slot 7 slots (categorical)
11 Departure time slot 7 slots (categorical)

Output 12 Aircraft category 6 classes (categorical)
13 Airline company 19 classes (categorical)
3 Refinement ETE continuous

5https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant.
6https://archive.ics.uci.edu/ml/datasets/auto+mpg.

7https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html.
8We present the results only for ReLU, but we tested our approach with other
activation functions such as tanh as well and found the trends in sensitivity of
inputs to be similar.
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analysis of a neural network. More precisely, we plot the values of
(ϑΩϵ,{k}

m )1≤ k≤N0
on a star or radar chart where each branch of the

star corresponds to the index k of an input. For each value of ϵ, a
new plot is obtained which is displayed in a specific color. Note
that, according to Proposition 3(iv), the plots generated for
different ϵ values cannot cross. When ϵ = 1, we obtain an
“isotropic” representation whose “radius” corresponds to the
global Lipschitz constant ϑm of the network. This
representation is called a Lipschitz star. All the results of our
analysis will be displayed with this representation.

For each dataset, we first perform a standard training when
designing the network. To facilitate comparisons, the Lipschitz
star of the network trained in such standard manner is presented
as the first subplot of all the figures in the paper. Next, we show
the variation in terms of input sensitivity, when 1) a Lipschitz
target is imposed, and 2) when an adversarial training of the
networks is performed. The network architecture remains
unchanged, for all our experiments and each dataset, as
indicated in Section 5.1. All the Lipschitz constants for each
value of ϵ are calculated using LipSDP-Neuron (Fazlyab et al.,

2019). Since an increased stability may come at the price of a loss
of accuracy (Tsipras et al., 2018a), we also report the
performance of the networks on test datasets in terms of
MAE (Mean Absolute Error) for each of the Lipschitz star plot.

5.3 Effect of Training With Specified
Lipschitz Target
Spectral norm constrained training is performed as explained in
Section 4.1. The results are shown for our three datasets in
Figures 2–5. On these plots, we can observe a shrinkage of the
Lipschitz stars following the reduction of the target Lipschitz
value. Interestingly, improving stability does not affect
significantly the performance of the networks. Let us comment
on the last use case in light of the obtained results.

Comments on the Thales Air Mobility industrial
application From the star plots, it is clear that the various
variables have a quite different effect on the Lipschitz
behavior of the network. This is an expected outcome
since these variables carry a different amount of

TABLE 6 | Network Architecture and training setup for different datasets.

Dataset Hidden
layers and neurons

Epochs Optimizer Learning rate

Combined cycle power plant (10, 6) 100 Adam 0.01
Auto MPG (16, 8) 1,000 RMSprop 0.001
Boston housing (10, 5) 500 RMSprop 0.001
Thales air mobility app. [10 × (30)] 100 Adam 0.01

The input attributes are normalized by removing their mean and scaling to unit variance.

FIGURE 2 | Sensitivity w.r.t. to each input on Combined Cycle Power Plant dataset. Influence of a spectral normalization constraint. (A) Standard training: Lipschitz
constant = 0.66, MAE = 0.007, (B) With spectral normalization: Lipschitz constant = 0.25, MAE = 0.0066.
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information captured by learning. From Figure 5 we
observe that variables 1—Flight Distance and 3—Initial
ETE play a prominent role, while variables 5—Longitude

Origin, and 8—Longitude Destination are also sensitive.
Some plausible explanations for these facts are mentioned
below.

FIGURE 3 | Sensitivity w.r.t. to each input on Auto MPG dataset. Influence of a spectral normalization constraint. (A) Standard training: Lipschitz constant = 2.75,
MAE = 0.05, (B) With spectral normalization: Lipschitz constant = 0.76, MAE = 0.04.

FIGURE 4 | Sensitivity w.r.t. to each input on Boston Housing dataset. Influence of a spectral normalization constraint. (A) Standard training: Lipschitz constant =
18.56, MAE(y1) = 2.45, MAE(y2) = 1.41, (B) With spectral normalization: Lipschitz constant = 8.06, MAE(y1) = 2.96, MAE(y2) = 1.35.
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• Flight distance: The impact of a change of this input can be
significant since because of air traffic management
separation rules, the commercial aircrafts cannot freely
increase their speed to minimize the impact of a longer
flight distance.

• Initial ETE: Modifying this input is equivalent to changing
the initial conditions, which will have a significant impact. It
is possible, in the worst case scenario, to accumulate other
perturbations coming from other coupled inputs and
parameters (e.g., weather conditions) and this is probably
the reason why the partial Lipschitz constant is very high,
and close to the global Lipschitz constant.

• Longitude origin and destination parameters: These
parameters are related to different continents and even
countries of the origin and destination airports and
probably with different qualities of air traffic equipment.

5.4 Effect of Adversarial Training
Generating adversarial attacks and performing adversarial
training constitute popular methods in designing robust neural
networks. However, these techniques have received less attention
for regression tasks, since most of the works deal with
classification tasks (Goodfellow et al., 2015; Kurakin et al.,
2018; Eykholt et al., 2018). Also, most of the existing works in
the deep learning literature are for standard signal/image
processing problems, whereas there are only few works
handling tabular data (Zhang et al., 2016; Ke et al., 2018). One
noticeable exception is (Ballet et al., 2019) which investigates
problems related to adversarial attacks for classification tasks
involving tabular data. Since our applications are related to
regression problems for which few existing works are directly

applicable, we designed a specific adversarial training method.
More specifically, for a given amplitude of the adversarial noise
and for each sample in the training set, we generate the worst
attack based on the spectral properties of the Jacobian of the
network, computed by backpropagation at this point. At each
epoch of the adversarial training procedure, we solve the
underlying minmax problem (Tu et al., 2019). More details on
the generation of adversarial attacks for regression attacks can be
found in (Gupta et al., 2021).

The generated adversarial attacks from the trained model at
the previous epoch are successively concatenated to the training
set for the next training epoch, much like in standard adversarial
training practices using FGSM (Goodfellow et al., 2015) and
Deepfool (Moosavi-Dezfooli et al., 2016) attacks. While generating
adversarial attacks on tabular data, some of the variables may bemore
susceptible to attacks than others. The authors of (Ballet et al., 2019)
take care of this aspect by using a feature importance vector. They also
only attack the continuous variables, disregarding categorical ones
while generating attacks. For the Power plant and Boston Housing
datasets, we attack all the four input variables, while on the MPG
dataset, we attack only the continuous variables. For the industrial
dataset, we generate attacks for the five most sensitive input variables.
We also tried attacking all the variables of the dataset but this was not
observed to be more efficient. The results in form of Lipschitz star are
given in Figures 6–9.

As expected, adversarial training leads to a shrinkage of the
star plots, which indicates a better control on the stability of the
trained models, while also improving slightly the MAE. In the test
we did, we observe however that our adversarial training
procedure is globally less efficient than the spectral
normalization technique.

FIGURE 5 | Sensitivity w.r.t. to each input on Thales Air Mobility industrial application. Influence of a spectral normalization constraint. (A) Standard training:
Lipschitz constant = 45.46, MAE = 496.37 (s), (B) With spectral normalization constraint: Lipschitz constant = 16.62, MAE = 478.88 (s).
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5.5 Sensitivity w.r.t. Pair of Variables
We now consider the case when the set K contains pairs of
elements. We first show the corresponding Partial Lipschitz

constants using a Lipschitz star representation in
Figure 10, for the different datasets we have discussed in
the article. Vertices in the Lipschitz star represent the

FIGURE 6 | Sensitivity w.r.t. to each input on Combined Cycle Power Plant dataset. Effect of adversarial training. (A) Standard training: Lipschitz constant = 0.657,
MAE = 0.007, (B) Adversarial training: Lipschitz constant = 0.37, MAE = 0.0068.

FIGURE 7 | Sensitivity w.r.t. to each input on Auto MPG dataset. Effect of adversarial training. (A) Standard training: Lipschitz constant = 2.75, MAE = 0.05, (B)
Adversarial training: Lipschitz constant = 1.84, MAE = 0.042.
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obtained Lipschitz constant value ϑΩϵ,K
m for all

possible combinations of pair of variables with varying
values of ϵ, i.e., it represents the sensitivity w.r.t. to that
particular pair.

As shown by Figure 10, this Lipschitz star representation can
be useful for displaying the influence of groups of variables
instead of single ones. This may be of high interest when the
number of inputs is large, especially if they can be grouped into

FIGURE 8 | Sensitivity w.r.t. to each input on Boston Housing dataset. Effect of adversarial training. (A) Standard training: Lipschitz = 18.56, MAE(y1) = 2.45,
MAE(y2) = 1.41, (B) Adversarial training: Lipschitz constant = 16.50, MAE(y1) = 2.35 MAE(y2) = 1.32.

FIGURE 9 | Sensitivity w.r.t. to each input on Thales Air Mobility industrial application. Effect of adversarial training. (A) Standard training: Lipschitz = 45.47, MAE =
496.37 (s), Adversarial training. (B) Lipschitz = 34.26, MAE = 494.7 (s).
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variables belonging to a given class having a specific physical
meaning (e.g., electrical variables versus mechanical ones). Such
Lipschitz star representationmight however not be very insightful
for identifying the coupling that may exist between the variables
within a given group. For example, it may happen that,
considered together, two variables yield an increased sensitivity
than the sensitivity of each of them individually. The reason why
we need to find a better way for highlighting these coupling effects
is related to Proposition 3(v) which states that, for every ϵ ∈]0, 1]
and (k, ℓ) ∈ {1, . . . , N0}2,

max ϑΩϵ, k{ }
m , ϑΩϵ, ℓ{ }

m{ }≤ ϑΩϵ, k,ℓ{ }
m . (63)

This property means that, when considering a pair of inputs,
the one with the highest partial Lipschitz constant will
“dominate” the other. To circumvent this difficulty and make
our analysis more interpretable, we can think of normalizing the
Lipschitz constant in a suitable manner. Such a strategy is a
common practice in statistics when, for example, the covariance
of a pair of variables is normalized by the product of their
standard deviations to define their correlation factor. Once

FIGURE 10 | Sensitivity w.r.t to pair of variables on (A) Combined Power Plant dataset (B) Auto MPG Dataset (C) Boston Housing dataset and (D) Thales Air
Mobility industrial application.
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again, we can take advantage of the properties established in
Proposition 3 to provide us a guideline to perform this
normalization. In addition to Eq. 63, according to Property (viii),

ϑΩϵ, k,ℓ{ }
m ≤ ϑΩϵ, k{ }

m( )p* + ϑΩϵ, ℓ{ }
m( )pp( )1/pp + o ϵ( )

≤ 21/p
p

max ϑΩϵ, k{ }
m , ϑΩϵ, ℓ{ }

m{ } + o ϵ( ).
(64)

The two previous inequalities suggest to normalize the
Lipschitz constant for pairs of inputs by defining

~ϑ
Ωϵ, k,ℓ{ }
m � 1

21/pp − 1
ϑΩϵ, k,ℓ{ }
m

max ϑΩϵ, k{ }
m , ϑΩϵ, ℓ{ }

m{ } − 1⎛⎝ ⎞⎠. (65)

Indeed, when ϵ is close to zero, Eqs 63–65 show that
~ϑ
Ωϵ,{k,ℓ}
m ∈ [0, 1]. Note that, for the diagonal terms, ~ϑ

Ωϵ,{k,k}
m � 0.

The higher ~ϑ
Ωϵ,{k,ℓ}
m , the higher the gain in sensitivity due to the

coupling between k and ℓ. The normalized values for the different
datasets are reported in Table 7.

5.6 Interpretation of the Results
We summarize some important observations/properties
concerning the stability of the NNs which can be drawn from
training on different datasets and leveraging the quantitative tools
we have proposed in this article.

a) Combined Power Plant Dataset
• “3—Exhaust Vacuum” is the most sensitive variable out of
the four variables.

• We observe for any variable coupled with “3” gives a higher
partial Lipschitz constant.

TABLE 7 |Second order normalized couplingmatrix with ϵ = 0.001 on (A)Combined Power Plant Dataset (B) AutoMPGDataset (C)Boston Housing Dataset and (D) Thales
Air Mobility industrial application.

Variable 1 2 3

0 0.22 0.57 0.04
1 — 0.15 0.04
2 — — 0.06

Variable 1 2 3 4 5 6

0 0.1 0.29 0.18 0.06 0.16 0.05
1 — 0.17 0.08 0.03 0.12 0.15
2 — — 0.14 0.03 0.20 0.11
3 — — — 0.11 0.39 0.56
4 — — — — 0.08 0
5 — — — — — 0.34

Variable 1 2 3 4 5 6 7 8 9 10 11

0 0.22 0.11 0.16 0.03 0.25 0.12 0.17 0.09 0.43 0.11 0.10
1 — 017 0.16 0.37 0.00 0.00 0.14 0.18 0 0.05 0.11
2 — — 0.17 0.05 0 0.23 0 0.35 0.061 0.02 0.00
3 — — — 0.35 0.07 0.21 0 0.12 0.02 0.16 0.01
4 — — — — 0.05 0.11 0.11 0.01 0.04 0.06 0.08
5 — — — — — 0.11 0.07 0.01 0.08 0.04 0.07
6 — — — — — — 0.01 0 0.16 0.35 0
7 — — — — — — — 0.27 0.1 0.03 0.76
8 — — — — — — — — 0.27 0.04 0.14
9 — — — — — — — — — 0.02 0.06
10 — — — — — — — — — — 0.01

Variable 1 2 3 4 5 6 7 8 9 10 11 12

0 0.01 0.03 0.01 0.03 0.21 0.03 0.23 0.09 0.21 0.27 0.06 0.28
1 — 0 0.03 0.01 0 0 0 0.12 0.07 0 0.24 0.03
2 — — 0 0.04 0.01 0.05 0.02 0 0.01 0.02 0 0.01
3 — — — 0.01 0.19 0 0.03 0.08 0.06 0.01 0.26 0.15
4 — — — — 0 0.02 0.17 0 0.01 0.06 0.01 0.01
5 — — — — — 0.06 0.13 0.11 0.13 0.07 0.19 0.27
6 — — — — — — 0.03 0.01 0.02 0.19 0.02 0.01
7 — — — — — — — 0.01 0.04 0.09 0.02 0.32
8 — — — — — — — — 0.07 0.02 0.29 0.03
9 — — — — — — — — 0.01 0.06 0.02 0.03
10 — — — — — — — — — 0 0.21 0.16
11 — — — — — — — — — — 0.00 0.07
12 — — — — — — — — — — — 0.12
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• From Table 7A, we see that the effect is mostly caused by
the sensitivity of “3” and there is no gain when coupled with
other variables. Hence, “3” dominates the overall sensitivity
of the NN.

• On the other hand, we observe that, “0” when coupled with
“1” and “2” becomes more sensitive as evidenced by the
gain in Table 7A.

b) Auto MPG Dataset
• Variable “6—Origin” and “3—Weight” are the most
sensitive variables.

• The values of partial Lipschitz constant peak when the
other variables are coupled with “3” or “6”.

• From Table 7B, we see that most of the values coupled
with either “3” or “6” are close to zero, except when “3”
and “6” are coupled together. Also, we see an exception
when “5” is coupled with either “3” or “6”. This suggests
that altogether “3”, “5”, and “6” have a higher impact on
the stability of the network.

c) Boston Housing Dataset
• Variable “7—DIS” and “11—LSTAT” are the most sensitive
variables.

• We observe a high partial Lipschitz constant when coupling
any variables with “7” or “11”.

• From Table 7C, we see that all the values for both “7” and
“11” coupled with other variables are close to zero, except
when “7” and “11” are jointly considered. Hence, “7” and
“11” dominate the sensitivity of the NN.

• We observe from the table of normalized values, that “2–9”
have a higher impact on the sensitivity of the NN when
coupled. Similar observation can be made for pairs
“2–8”,“1–4”,“3–4”.

d) Thales Air Mobility industrial application
• Variable “1—Flight distance”,“3—Initial ETE”, and
“8—Longitude Destination” are the most sensitive
variables.

• We see peaks in the partial Lipschitz constant values when
these highly sensitive variables are coupled with other
variables.

• But when analyzing the normalized tables, it becomes
clear that the gain is mostly due to these sensitive
variables.

• We also observe from Table 7D, an increased sensitivity of
“0” when coupled with other variables “5”, “7”, “10”, “11”,
and “13”.

6 CONCLUSION

We have proposed a new multivariate analysis of the Lipschitz
regularity of a neural network. Our approach, whose
theoretical foundations are given in Section 3, allows the
sensitivity with respect to any group of inputs to be

highlighted. We have introduced a new “Lipschitz star”
representation which is helpful to display how each input or
group of inputs contributes to the global Lipschitz behaviour
of a network. The use of these tools has been illustrated on four
regression use cases involving tabular data. The improvements
brought by two robust training methods (training subject to
Lipschitz bounds and adversarial training) have been
measured. More generally the proposed methodology is
applicable to various machine learning tasks to build “safe-
by-design” models where heterogeneous/multimodal/multi-
omic data can be used.
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Optimization of Network Throughput
of Joint Radar Communication System
Using Stochastic Geometry
Shobha Sundar Ram*, Shubhi Singhal and Gourab Ghatak

Indraprastha Institute of Information Technology Delhi, New Delhi, India

Recently joint radar communication (JRC) systems have gained considerable interest for
several applications such as vehicular communications, indoor localization and activity
recognition, covert military communications, and satellite based remote sensing. In these
frameworks, bistatic/passive radar deployments with directional beams explore the
angular search space and identify mobile users/radar targets. Subsequently, directional
communication links are established with these mobile users. Consequently, JRC
parameters such as the time trade-off between the radar exploration and
communication service tasks have direct implications on the network throughput.
Using tools from stochastic geometry (SG), we derive several system design and
planning insights for deploying such networks and demonstrate how efficient radar
detection can augment the communication throughput in a JRC system. Specifically,
we provide a generalized analytical framework to maximize the network throughput by
optimizing JRC parameters such as the exploration/exploitation duty cycle, the radar
bandwidth, the transmit power and the pulse repetition interval. The analysis is further
extended to monostatic radar conditions, which is a special case in our framework. The
theoretical results are experimentally validated through Monte Carlo simulations. Our
analysis highlights that for a larger bistatic range, a lower operating bandwidth and a higher
duty cycle must be employed to maximize the network throughput. Furthermore, we
demonstrate how a reduced success in radar detection due to higher clutter density
deteriorates the overall network throughput. Finally, we show a peak reliability of 70% of
the JRC link metrics for a single bistatic transceiver configuration.

Keywords: joint radar communication, stochastic geometry, throughput, bistatic radar, explore/exploit

1 INTRODUCTION

Over the last decade, joint radar communication (JRC) frameworks are being researched and
developed for numerous applications at microwave and millimeter wave (mmWave) frequencies Liu
et al. (2020). Through the integration of sensing and communication functionalities on a common
platform, JRC based connected systems offer the advantages of increased spectral efficiency through
shared spectrum and reduced hardware costs. The most common applications are WiFi/WLAN
based indoor detection of humans Falcone et al. (2012); Storrer et al. (2021); Tan et al. (2016); Li et al.
(2020); Alloulah and Huang (2019); Yildirim et al. (2021), radar enhanced vehicular
communications Ali et al. (2020); Kumari et al. (2017); Dokhanchi et al. (2019); Duggal et al.
(2020), covert communications supported by radar based localization Kellett et al. (2019); Hu et al.
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(2019) and radar remote sensing based on global navigation
satellite systems (GNSS) Zavorotny et al. (2014). All of these
systems consist of a dual functional (radar-communication)
transmitter and either a standalone or integrated radar/
communications receiver. When the radar receiver is not co-
located with the transmitter, the system constitutes a passive/
bistatic radar framework. This is the most common scenario in
sub-6 GHz indoor localization systems where the WiFi access
point serves as both a radar and communication transmitter and
humans activities are sensed for intrusion detection, surveillance,
or assisted living. The bistatic scenario is also encountered in
GNSS based remote sensing where the ground reflected satellite
signals are analyzed, at a passive radar receiver, to estimate land
and water surface properties Zavorotny et al. (2014). JRC based
systems are also being researched for next generation intelligent
transportation services where one of the main objectives is to
share environment information for collision avoidance, and
pedestrian detection eventually leading to autonomous driving.
MmWave communication protocols such as IEEE 802.11 ad/ay
characterized by high wide bandwidths and low latency have been
identified for vehicular-to-everything (V2X) communications
Nitsche et al. (2014); Zhou et al. (2018). However, due to the
severe propagation loss at mmWave carrier frequencies, they are
meant to operate in short range line-of-sight (LOS) conditions
with highly directional beams realized through digital
beamforming. In high mobility environments, beam training
will result in considerable overhead and significant
deterioration of latency. Hence, the integration of the radar
functionality within the existing millimeter wave
communication frameworks is being explored for rapid beam
alignment Kumari et al. (2017); Dokhanchi et al. (2019); Duggal
et al. (2019); Grossi et al. (2021). The wide bandwidth supported
by the mmWave signals along with the channel estimation
capabilities within the packet preamble are uniquely suited for
radar remote sensing operations. To summarize, we divide the
integrated sensing and communication systems into two broad
categories. In the first category, the communication transmitter
serves as an opportunistic illuminator whose parameters cannot
be modified for maximizing a passive radar receiver’s detection
performance. The second category is where a dual functional
system is implemented with optimized design parameters - such
as antennas, transmit waveform and signal processing
algorithms—for enhanced radar detection performance
without deterioration in the communication metrics Hassanien
et al. (2016); Mishra et al. (2019); Ma et al. (2021). In this work, we
consider the second category and focus on the time resource
management between the radar and communication
functionalities for maximizing communication network
throughput. A preliminary work on the detection metrics of a
bistatic radar was presented in Ram and Ghatak (2022). Here, we
consider a generalized passive/bistatic radar framework that can
be used to model the JRC application scenarios described above
and analyze the communication network throughput
performance as a function of radar detection metrics. The
monostatic radar scenario is considered as a limiting case of
the bistatic radar and the corresponding results are obtained as a
corollary.

Prior works have tackled the time resource management for
multi-functional radars Miranda et al. (2007). In Grossi et al.
(2017), the radar dwell time was optimized for maximum target
detection for a constant false alarm rate. In Ghatak et al. (2021),
the time resource management between the localization and
communication functionalities was determined as a function
of the density of base station deployment. During the radar/
localization phase, the transmitter must scan the angular search
space and determine the number and location of the mobile users.
Then these users must be served during the remaining duration
through directional/pencil beams. The exploration and service
process must be repeated periodically due to the motion of the
mobile user. Now, if the angular beamwidth of the search beams
are very narrow, then they will take longer to cover the search
space (for a fixed dwell time) and this will result in reduced
communication service time. However, the radar link quality will
be higher due to the improved gain and result in a larger number
of targets being detected. Hence, the overall network throughput
is a function of the explore/exploit time management. In this
paper, we use stochastic geometry (SG) based formulations to
optimize the network throughput as a function of the explore/
exploit duty cycle.

SG tools were originally applied to communication problems
in cellular networks, mmWave systems, and vehicular networks
Chiu et al. (2013); Andrews et al. (2011); Bai and Heath (2014);
Thornburg et al. (2016); Ghatak et al. (2018). In all of these
scenarios, there is considerable variation in the strength and
spatial distribution of the base stations. More recently, they have
been used in diverse radar scenarios to study the radar detection
performance under interference and clutter conditions Al-
Hourani et al. (2017); Munari et al. (2018); Ren et al. (2018);
Park and Heath (2018); Fang et al. (2020). These works have
considered the significant diversity in the spatial distributions and
density of radars. SG offers a mathematical framework to analyze
performance metrics of spatial stochastic processes that
approximate to Poisson point process distributions without the
requirement of computationally expensive system simulation
studies or laborious field measurements. Based on the
mathematical analysis, insights are obtained of the impact of
design parameters on system level performances. In our problem
related to JRC, there can be considerable variation in the position
of the dual functional base station transmitter, the radar receiver
and the communication end users who are the primary radar
targets. Additionally, the JRC will encounter reflections from
undesired targets/clutter in the environment. We model the
discrete clutter scatterers in the bistatic radar environment as
a homogeneous Poisson point process (PPP) similar to Chen et al.
(2012); Ram et al. (2020, 2021). This generalized framework
allows us to regard each specific JRC deployment, not as an
individual case, but as a specific instance of an overall spatial
stochastic process. Further, the target parameters such as the
position and radar cross-section are also modelled as random
variables. Using SG we quantify the mean number of mobile users
that can be detected by the radar provided the statistics of the
target and clutter conditions are known and subsequently
determine the network throughput. Then we use the theorem
to optimize system parameters such as the explore/exploit duty
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cycle, transmitted power, radar bandwidth and pulse repetition
interval for maximum network throughput. Our results are
validated through Monte Carlo simulations carried out in the
short range bistatic radar framework.

Our paper is organized as follows. In the following section, we
present the system model of the JRC with the bistatic radar
framework and describe the explore/exploit time management
scheme. In section 4, we provide the theorem for deriving the
network throughput as a function of the bistatic radar
parameters. In section 5, we offer the key system parameter
insights that are drawn from the theorem as well as the Monte
Carlo simulation based experimental validation. Finally, we
conclude the paper with a discussion on the strengths and
limitations of the proposed analytical framework along with
directions for future work.

Notation: In this paper, all the random variables are indicated
with bold font and constants and realizations of a random
variable are indicated with regular font.

2 SYSTEM MODEL

We consider a joint radar-communication (JRC) framework with
a single base station (BS), multiple mobile users (MU) and a single
passive radar receiver (RX) as shown in Figure 1A. The BS serves
as a dual functional transmitter that supports both radar and
communication functionalities in a time division manner as
shown in Figure 1B.During the Tsearch interval, the BS serves
as the radar transmitter or opportunistic illuminator and along
with the RX, forms a bistatic radar whose objective is to localize
the multiple MU in the presence of clutter/undesirable targets.
During this interval, the BS transmits a uniform pulse stream of τ
pulse width and TPRI pulse repetition interval, through a
directional and reconfigurable antenna system with gain Gtx

and beamwidth Δθtx. The radar must scan the entire angular
search space within Tsearch to find the maximum number of MU.
If the duration of an antenna beam is fixed at Tbeam (based on
hardware parameters such as circuit switching speed for
electronic scanning or Doppler frequency resolution
requirements), then the number of beams that can be searched
within Tsearch is given by

nbeam � Ω
Δθtx

� Tsearch

Tbeam
, (1)

whereΩ is the angular search space. In our problem formulation,
we set Ω = 2π to correspond to the entire azimuth angle extent.
During the remaining duration of Tserve, directional
communication links are assumed to be established between
the BS and the detected MUs. Thus the beam alignment for
communication during Tserve is based on radar enabled
localization during Tsearch. Since the position of the MU does
not remain fixed with time, the process of beam alignment is
repeated for every T = Tsearch + Tserve as shown in the figure. An
important tuning parameter in the above JRC framework is the
duty cycle ϵ � Tsearch

T . From (1), it is evident that
Δθtx � ΩTbeam

ϵT � 1
B0ϵ. Here, B0 is a constant and equal to T

ΩTbeam
.

Note that when the beams become broader, the gain of the radar
links become poorer. As a result of the deterioration in the radar
link metrics due to larger Δθtx, the detection performance
becomes poorer and fewer MU (η) are likely to be detected in
the search space. Thus η is directly proportional to ϵ. On the other
hand, the network throughput (ϒ) of the system is defined as

ϒ � η ϵ( ) 1 − ϵ( )D, (2)
where (1—ϵ) is the duty cycle of the communication service time
(Tsearch

T ). Here, we assume that the communication resources such
as spectrum are available to all the η detected MU and all the MU
are characterized by identical data rates D. The objective of our
work is to present a theorem to optimize the duty cycle ϵ for
maximumϒ under the assumption that the noise, MU and clutter
statistics are known and fixed during the radar processing time.
These conditions are generally met for microwave or millimeter-
wave systems Billingsley (2002); Ruoskanen et al. (2003). The
theoretical framework is derived for a generalized bistatic JRC
framework where inferences for monostatic conditions are
derived from limiting conditions.

Next, we discuss the planar bistatic radar geometry that we
have considered based on the north-referenced system described
in Jackson (1986). We assume that the BS is located in the
Cartesian coordinates (−L

2, 0) while the passive receiver, RX, is
assumed to be omnidirectional and located at (+L

2, 0). High gain
transmission links from the BS support high quality
communication link metrics. The gain of the passive RX
antenna is intentionally kept low so that the common search
space of the bistatic radar transmitter and receiver does not
become too narrow which would then have to be supported
by very time consuming and complicated beam scanning
operations. Note that the geometry considered here is
specifically suited to model short surveillance based JRC
systems (such as indoor/outdoor wireless communication
systems). It does not model the bistatic GNSS-R scenario
where both the transmitter and receiver are characterized by
high gain antennas; and a three-dimensional geometry would
have to be considered. The baseline length between the bistatic
radar transmitter and receiver is L. The two-dimensional space is
assumed to be populated by multiple scatterers - some MU (m)
and the remaining discrete clutter (c) scatterers. In real world
conditions, there can be significant variation in the number and
spatial distribution of the point scatterers (both MU and clutter)
in the radar channel. Further, the positions of scatterers are
independent of each other. The Poisson point process is a
completely random process since it has the property that each
point is stochastically independent to all the other points in the
process. Consequently, we consider the distribution of scatterers
as an independent Poisson point processes (PPP: Φ)—wherein
each instance is assumed to be a realization (ϕ) of a spatial
stochastic process. We specifically consider a homogeneous PPP
wherein the number of the scatterers in each realization follows a
Poisson distribution and the positions of these scatterers follow a
uniform distribution. Some prior works where discrete scatterers
have been modelled as a PPP are Chen et al. (2012); Ram et al.
(2020, 2021). We assume that the mean spatial densities of the
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MU and clutter scatterers are ρm and ρc respectively where ρm ≪
ρc. The position of an MU/clutter scatterer is specified in polar
coordinates (ri, θi), i ∈m, c where ri is the distance from the origin
and θi is the angle with the positive X axis. The distance from BS
and RX are Rtx

i and Rrx
i respectively and the bistatic range (κi) is

specified by the geometric mean of both the one-way propagation
distances (κi �

������
Rtx
i R

rx
i

√
). In bistatic radar geometry, the

contours of constant κi for a fixed L are called Cassini ovals
Willis (2005). Two regions are identified: the first is the cosite
region when L ≤ 2κi and the contours appear as concentric ovals
for different κi; and the second is when L > 2κi and the oval splits
into two circles centered around BS and RX. In our work, we
assume that cosite conditions prevail and that the bistatic angle at
MU is β. Note that when L is zero, β = 0 and the system becomes a
monostatic radar scenario. Here, the Cassini ovals become
concentric circles for different values of Rtx

i � Rrx
i � κi.

Classically, radar detection metrics and the radar operating
curve are obtained from binary hypothesis testing derived from
the Neyman-Pearson (NP) theorem Kay (1998). The probability
of detection, Pd, is the probability that a radar received signal
(along with noise and clutter) is above a predefined threshold
while the probability of false alarm, Pfa, is the probability that the
noise and clutter are above the threshold. For a fixedPfa, thePd is
directly proportional to the SCNR. For very simple scenarios
(pulse radars in the absence of clutter), the relationship between
Pd,Pfa and SCNR are given by the Albersheim’s equation Skolnik
(1980) while in more complex scenarios, the relationships have to
be derived from extensive measurements. In Ram and Ghatak
(2022), we presented a metric called the radar detection coverage
probability (PBi

DC) to indicate the likelihood of a radar target
being detected by a bistatic radar based on the signal-to-clutter-
and-noise ratio (SCNR). The metric is analogous to wireless
detection coverage probability which is widely studied in
communication systems to study the network coverage in
wireless links Andrews et al. (2011). We prefer the PBi

DC metric
is to Pd and Pfa since it offers physics based insights into system

performance and because of its tractable problem formulation.
Specifically, we use PBi

DC to estimate the mean number of detected
MU (η) as a function of ϵ and optimize the network throughput
(ϒ). An extended discussion on the derivations of Pd and Pfa

metrics are provided in the appendix of previous work on
monostatic radar in Ram et al. (2021). If the transmitted
power from BS is Ptx and the bistatic radar cross-section
(RCS) of the MU, σm, is a random variable, then the received
signal at RX, S, is given by the Friis radar range equation as

S κm( ) � PtxGtx θm( )σmH(κm), (3)
where H(κm) is the two-way propagation factor. In line-of-sight
(LOS) conditions this is

H(κm) � λ2

4π( )3 RtxRrx( )2 �
H0

κ4m
, (4)

where λ is the wavelength of the radar. In the above expression,
the gain of RX is assumed to be 1 since it is an omnidirectional
antenna. We assume that the gain of the BS is uniform within the
main lobe and is inversely proportional to the beam width: Gtx �
G0
Δθtx where G0 is the constant of proportionality that accounts for
antenna inefficiencies including impedance mismatch, dielectric
and conductor efficiencies. If we assume that theMU is within the
mainlobe of the radar, then using (1), Equation 3 can be
written as

S κm( ) � PtxG0σmH(κm)
Δθtx

� PtxG0B0ϵσmH(κm). (5)

In (3) and (5), we have assumed that only a single MU is within a
radar resolution cell, Ac. In the real world, a single radar
resolution cell may consist of one or more targets. However,
there is no way for the radar operator to distinguish or count the
targets that are within a single cell. Hence, it will always be
counted/considered as a single target. The amplitude of the target
signal will however fluctuate due to interference from the

FIGURE 1 | (A) Illustration of the joint radar-communication (JRC) scenario. The base station (BS) at (L2, 0) and indicated by a triangle is a dual functional transmitter
that supports both radar and comm. functionalities with a directional and reconfigurable antenna system of Δθtx beamwidth. An omnidirectional receiver (RX) at (−L

2, 0)
forms the passive/bistatic radar receiver. The channel consists of mobile users (MU) at (rm, θm) at distances, R

tx
m and Rrx

m, from BS and MU respectively indicated by blue
dots; and undesirable clutter scatterers indicated by red dots. The bistatic radar angle is β. (B) Timing diagram of the JRC framework where each T consists of
Tsearch = ϵTwhen the BS scans the angular search space for MU using nbeam of Tbeam duration. During the remaining Tserve duration, directional beam links are established
between BS and MU based on the localization by the radar during Tsearch.
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multiple points within the cell and this fluctuation is captured
with the Swerling models. Further, in the above discussion, we
assume a single tone pulse radar of bandwidth BW. However, the
system insights can be equally applied to other wide bandwidth
signals as well. The clutter returns, C, at the radar receiver is
given by

C κm( ) � ∑
c∈Φ∩Ac(κm)

PtxGtx θc( )σcH(κc). (6)

In the above expression, we specifically only consider those
clutter scatterers that fall within the same resolution cell, Ac,
as the MU. We use the generalized Weibull model Sekine et al.
(1990) to describe the distribution of the RCS (σc) of the
clutter points. For a given noise of the radar receiver, Ns =
KBTsBW where KB, Ts and BW are the Boltzmann constant,
system noise temperature and bandwidth respectively, the
signal to clutter and noise ratio is given by SCNR(κm) �
S(κm)

C(κm)+Ns
.

3 ESTIMATION OF NETWORK
THROUGHPUT OF JOINT
RADAR-COMMUNICATION
In this section we present the analytical framework to estimate the
network throughput of the communication framework as a
function of the explore/exploit duty cycle (ϵ). We use the PBi

DC
metric defined in Ram and Ghatak (2022) to estimate, η, the
number of MU detected by the radar during the search interval
Tsearch = ϵT that will be subsequently served during Tserve.
Theorem 1. The network throughput (ϒ) for an explore/exploit
duty cycle (ϵ) for a passive/bistatic radar based JRC system is
given by

ϒ � PBi
DC 2πκm − 3πL2

8κm
( ) ρmcτ

2
������
1 − L2

4κ2m

√ 1 − ϵ( )D (7)

where

PBi
DC � exp

−γNsκ4m
σmavgPtxG0B0ϵH0

+ −γρccτκ2mσcavg
B0ϵ κm + �������

κ2m − L2
√( ) σmavg + γσcavg( )⎛⎝ ⎞⎠ (8)

Proof.For an MU at bistatic range κm, the SCNR is a function
of several random variables such as the MU cross-section,
the position of MU, the number and spatial
distribution of the discrete clutter scatterers and their RCS as
shown below

SCNR κm( ) � PtxG0B0ϵσmH(κm)∑c∈Φ∩Ac(κm) PtxG0B0ϵσcH(κc) +Ns

� σm∑c∈Φ∩Ac(κm)
σcH(κc)
H(κm) + Ns

PtxG0B0ϵH(κm)
. (9)

We define the bistatic radar detection coverage probability (PBi
DC)

as the probability that the SCNR is above a predefined threshold,
γ. Therefore,

PBi
DC � P SCNR κm( )≥ γ( )

� P σm ≥ ∑
c∈Φ∩Ac(κm)

γσcκ4m
κ4c

+ γNsκ4m
PtxG0B0ϵH0

⎛⎝ ⎞⎠. (10)

The bistatic RCS, σm, has been shown to demonstrate similar
statistics as monostatic RCS Skolnik (1961). In this work, we
consider the MU to have Swerling-1 characteristics, which
corresponds to mobile users such as vehicles and humans
Raynal et al. (2011a,b), as shown below

P σm( ) � 1
σmavg

exp
−σm

σmavg

( ), (11)

where, σmavg is the average radar cross-section. Hence, (10) can be
expanded to

PBi
DC � exp ∑

c∈Φ∩Ac(κm)

−γσc
σmavg

− γNsκ4m
σmavgPtxG0B0ϵH0

⎛⎝ ⎞⎠
� exp

−γNsκ4m
σmavgPtxG0B0ϵH0
( )I κm( ). (12)

In the above expression, PBi
DC consists of two terms. The first

term consists entirely of constants and demonstrates the radar
detection performance as a function of the signal-to-noise ratio
(SNR). The second term, I (κm), shows the effect of the signal-
to-clutter ratio (SCR). Since, we are specifically considering the
clutter points that fall within the same resolution cell,Ac, as the
MU we can assume that H(κc) ≈ H(κm) in (10). We provide
further insights into this path loss approximation in our later
sections. Finally, the exponent of sum of terms can be written
as a product of exponents. Hence, I (κm) is

I κm( ) � E
σc ,c

∏
c∈Φ∩Ac(κm)

exp
−γσc

σmavg

( )⎡⎢⎣ ⎤⎥⎦, (13)

where E
σc ,c

is the expectation operator with respect to the clutter
scatterers and their corresponding cross-section. The probability
generating functional (PGFL) of a homogeneous PPP Haenggi
(2012) based on stochastic geometry formulations is given as

I � exp − E
σc ,c
∫∫

rc ,ϕc

ρc 1 − exp
−γσc

σmavg

( )( )d �xc( )[ ]( ), (14)

where ρc is the mean spatial density of the clutter scatterers. The
integral specifically considers the clutter scatterers that fall within
the same resolution cell as the MU. Bistatic radar literature
identifies three types of resolution cells—the range resolution
cell, the beamwidth resolution cell and the Doppler resolution
cell. In our study, the main objective of the radar is to perform
range-azimuth based localization. Hence, we consider the range
resolution cell, which based onWillis (2005); Moyer et al. (1989),
corresponds to

Ac κm( ) � cτRtx θm( )Δθtx
2 cos2 β θm( )/2( ) � cτRtx θm( )

B0ϵ 1 +
������������
1 − sin2 β θm( )
√( ), (15)
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for a pulse width of τ. In the above expression, note that the size of
Ac varies as a function of constant κm and the random variable θm.
Prior studies show that sin β takes on the value of sin βmax with a
very high probability when Rtx

m ≈ κm Ram and Ghatak (2022).
Based on bistatic geometry sin βmax �

������
L2
κ2m

− L4
κ4m

√
≈ L

κm
when κm > L.

Therefore, (15) reduces to

Ac ≈
cτκ2m

B0ϵ κm + ������
κ2m − L2
√( ) (16)

If we assume that the clutter statistics are uniform within Ac, then
the integral in (14) can be further reduced to

I � exp −E
σc

1 − exp
−γσc

σmavg

( )( )ρcAc[ ]( )
� exp −E

σc
1 − exp

−γσc

σmavg

( )( ) ρccτκ
2
m

B0ϵ κm + ������
κ2m − L2
√( )⎡⎢⎣ ⎤⎥⎦⎛⎝ ⎞⎠ (17)

If we define J(κm) � ρccτκ
2
m

B0ϵ(κm+
����
κ2m−L2

√
) as a constant independent of

σc, then it can be pulled out of the integral for computing the
expectation as shown below

I κm( ) � exp −J κm( )∫∞

0
1 − exp

−γσc

σmavg

( )( )P σc( )dσc( ). (18)

In our work, we specifically consider the contributions from
discrete/point clutter responses that arise from direct and
multipath reflections from the surrounding environment. We
model the radar cross-section of these scatterers using the
generalized Weibull model shown in

P σc( ) � α

σcavg

σc

σcavg

( )α−1
exp − σc

σcavg
( )α( ), (19)

where σcavg is the average bistatic radar cross-section and α is the
corresponding shape parameter. The Weibull distribution has
been widely used to model clutter due to its tractable formulation
and its adaptability to different environment conditions Sekine
et al. (1990). When the scenario is characterized by few dominant
scatterers, α is near one and corresponds to the exponential
distribution. On the other hand, when there are multiple
scatterers of similar strengths, then α tends to two which
corresponds to the Rayleigh distribution. The actual value of α
in any real world scenario is determined through empirical
studies. I (κm) in (18) can be numerically evaluated for any
value of α. But for α = 1, the expression becomes

I κm( ) � exp − γJ κm( )σcavg

σmavg + γσcavg
( ). (20)

Substituting (20) in (12), we obtain

PBi
DC � exp

−γNsκ4m
σmavgPtxG0B0ϵH0

+ −γρccτκ2mσcavg
B0ϵ κm + �������

κ2m − L2
√( ) σmavg + γσcavg( )⎛⎝ ⎞⎠. (21)

The above expression shows the probability that a MU at κm is
detected by the bistatic radar based on its SCNR. If we assume a
uniform spatial distribution, ρm, of the MU in Cartesian space,
then the mean number of MU that can be detected within the

total radar field-of-view at κm bistatic range from the radar will be
given by

η � PBi
DC κm( )ρmC κm( )δr, (22)

where C(κm) is the circumference of a Cassini oval and δr �
cτ

2 cos(β/2) is the range resolution of the radar. The parametric
equation for the Cassini oval is given in

r2m + L2

4
( )2

− r2mL
2 cos2θm � κ4m. (23)

Hence, the circumference C(κm) can be computed from

C κm( ) � ∫2π

0
rm θm( )dθm

� L

2
∫2π

0
cos 2θm ±

16κ4m
L4

− sin2θm( )1/2⎡⎣ ⎤⎦1/2 dθm ≈ 2πκm

− 3πL2

8κm
.

(24)
When κm > L, the estimation of (24) can be approximated to the
expression shown above. Note that for very large values of κm ≫
L, the scenario approaches monostatic conditions. Here, the oval
approximates to a circle of circumference 2πκm. Also, as
mentioned before β can be approximated to βmax. Hence
cos(βmax/2) ≈

������
1 − L

4κ2m

√
. Therefore, the mean number of

detected MU is

η � PBi
DC 2πκm − 3πL2

8κm
( ) ρmcτ

2
������
1 − L2

4κ2m

√ , (25)

and the resulting network throughput for the communication
links that are set up with detected MUs is

ϒ � PBi
DC 2πκm − 3πL2

8κm
( ) ρmcτ

2
������
1 − L2

4κ2m

√ 1 − ϵ( )D. (26)

4 OPTIMIZATION OF JOINT RADAR-
COMMUNICATION SYSTEM PARAMETERS
FOR MAXIMIZATION OF NETWORK
THROUGHPUT

In this section, we discuss the corollaries from the theorem
presented in the previous section. Based on these inferences,
we present how JRC parameters such as ϵ, τ, Δθtx and TPRI can be
optimized for maximum throughput. The results presented in
this section are experimentally validated using Monte Carlo
simulations. For the simulations, we assume that the bistatic
radar transmitter (BS) and receiver (RX) are located at (± L

2, 0)
respectively as shown in Figure 2.We consider a [200m × 200m]
region of interest. Radar, MU and clutter parameters such as
Ptx, L,Δθtx, Ns.σmavg, κ, σcavg and ρc are kept fixed and summarized
in Table.1. In each realization of the Monte Carlo simulation, the
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MU’s polar coordinate position, θm is drawn from a uniform
distribution from (0, 2π) and rm is computed for a fixed κm. The
RCS of the MU is drawn from the exponential distribution
corresponding to the Swerling-1 model. The mean number of
discrete clutter scatterers is equal to ρc times the area of the region
of interest. The number of clutter scatterers are different for each
realization and drawn from a Poisson distribution. The positions
of the clutter scatterers are based on a uniform distribution in the
two-dimensional Cartesian space while the RCS of each discrete
scatterer is drawn from the Weibull model. We compute the
SCNR based on the returns from the MU and the clutter
scatterers estimated with the Friis bistatic radar range
equation. Note that we only consider those point clutter that
fall within the BS mainlobe and within δr proximity of the two-
way distance of the radar and MU. In other words, they must lie
within the radar range limited resolution cell. To do so, we
compute the slope of the line joining the scatterer and BS
(m0). Then we compute m1 = m0 + tan (Δθtx/2) and m2 = m0

− tan (Δθtx/2) based on the radar BS beamwidth (Δθtx). The
scatterer is within the radar beamwidth provided the product of
the differences (m1—m0) and (m2—m0) is negative. Then we
check if the absolute difference of the two-way path lengths of
MU (Rtx

m + Rrx
m ) and point clutter (Rtx

c + Rrx
c ) is within the range

resolution δr. If the resulting SCNR is above the predefined
threshold γ, then we assume that the target is detected. The
results over a large number of realizations are used to compute
the PBi

DC for the results presented in Figures 3–8 (a) in this
section. Note that the Monte Carlo simulations are useful to test
some key assumptions made in SG based analysis such as the path
loss approximation of the point clutter within the radar range
limited resolution cell to the path loss of the MU.

4.1 Explore/Exploit Duty Cycle ()
In the JRC framework, a key parameter is ϵ � Tsearch

T , the duty cycle,
of the system. When ϵ is high, there is longer time for radar
localization (Tsearch) but less time for communication service
(Tserve) and vice versa. As a result, the radar beams can be narrow
while scanning the angular search space. This results in weaker

detection performance due to poorer gain. The Theorem (7)
shows the dependence of throughput ϒ on ϵ which can be
written as

ϒ ϵ( ) � A0e
−a/ϵ 1 − ϵ( ), (27)

where

a � −γNsκ4m
σmavgPtxG0B0H0

+ −γρccτκ2mσcavg
B0 κm + ������

κ2m − L2
√( ) σmavg + γσcavg( ) (28)

and

A0 � 2πκm − 3πL2

8κm
( ) ρmcτD

2
������
1 − L2

4κ2m

√ . (29)

We find the optimized ~ϵ for maximum throughput by equating
the first derivative of ϒ to zero.

Corollary 1.1. The optimum explore/exploit duty cycle (~ϵ) for
maximum throughput is given by

~ϵ �
������
a2 + 4a

√ − a

2
(30)

FIGURE 2 | Two realizations of Monte Carlo simulations with bistatic radar transmitter (BS) and receiver (RX) indicated by triangles. The BS is characterized by
narrow beam indicated by dashed blue lines with slopesm1 andm2 while RX is omnidirectional. Target is indicated by black dot while clutter scatterers inside and outside
the radar resolution cell are indicated by blue and red dots respectively.

TABLE 1 | Radar, target and clutter parameters used in the stochastic geometry
formulations and Monte Carlo simulations.

Parameter Symbol Values

Baselength L 5 m
Transmitted power Ptx 1 mW
Total time Tsearch + Tserve 1 s
Dwell time Tbeam 5 ms
Pulse width τ � 1

BW
1 ns

Noise temperature (Kelvin) Ts 300 K
Gain constant G0 1
Threshold γ 1
Mean clutter RCS σcavg 1 m2

Clutter density ρc 0.01 /m2

Mean MU RCS σmavg 1 m2
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The above case shows that the duty cycle is a function of the
SCNR of the JRC system (shown in a in (28)). Figure 3 shows the
variation of PBi

DC and ϒ with respect to ϵ for different values of
κm.The view graph, Figure 3A, shows that PBi

DC improves with
increase in ϵ. In other words, when we have longer search time, we
can use finer beams to search for the MU and thus have a greater
likelihood of detecting them. However, the same is not true for
the throughput (ϒ) shown in Figure 3B. An increase in ϵ initially
improves theϒ but subsequently causes a deterioration due to the
reduction in communication service time. The optimum ~ϵ in the
view graph matches the estimate from corollary (30). Since the
above metric is shown to be a function of κm, it becomes difficult
for a system operator to vary ϵ according to the position of the
MU. Instead, we recommend that the above tuning is carried out
for the maximum bistatic range of the JRC system which is
determined based on the pulse repetition frequency. The selection
of the PRF is discussed in subsection 5.4. Note that in the above
view graphs, the results obtained from Monte Carlo system
simulations closely match the results derived from the SG
based analysis.

4.2 Signal-to-Noise Ratio Vs
Signal-to-Clutter Ratio
Next, we discuss the effects of noise and clutter on the
performance of the JRC. As pointed out earlier, there are
two terms within the PBi

DC in (7) and (8).The first term
captures the effect of the SNR on the JRC performance
while the second term captures the effect of the SCR.
Figure 4 shows the effect of increasing the transmitted
power Ptx on PBi

DC and ϒ. The results show that PBi
DC and ϒ

increase initially with increase in power but subsequently, the
performance saturates because the clutter returns also increase
proportionately with increase in Ptx. On the other hand, when
we consider the radar bandwidth which is the reciprocal of the
pulse width (BW � 1

τ), we observe that there is an optimum
BW for maximum ϒ in Figure 5B. This is because when BW is
increased, the range resolution decreases and correspondingly
the clutter resolution cell size. As a result, fewer clutter

scatterers contribute to the SCNR. But, on the other hand,
the radar noise (Ns = KBTsBW) also increases which results in
poorer quality radar links.
Corollary 1.2. The optimum bandwidth B̃W for maximum
throughput ϒ is obtained by the derivation of (8) with respect
to BW and is given by

B̃W � ρccσcavgσmavgPtxG0H0

κ2mKBTs κm + ������
κ2m − L2
√( ) σmavg + γσcavg( )⎛⎝ ⎞⎠1/2

(31)

The Monte Carlo results in Figure 5A show good
agreement with SG results especially for higher values of
wider BW. At low narrow BW, the errors due to the path
loss approximation between the point clutter and the MU
become more evident. However, in real world scenarios,
microwave/millimeter JRC systems are developed
specifically for high wide bandwidth waveforms for
obtaining fine range resolution of the MU. Next we study
the impact of clutter density and clutter RCS in Figure 6 and
Figure 7. When the clutter density is low (ρc approaches zero),
we observe that PBi

DC decays at the fourth power of κm as shown
in Figure 6 and the throughput is entirely a function of the
SNR. For large values of κm, the system is dominated by the
effects of clutter rather than noise. We observe that the
throughput increases initially with increase in κm due to the
increase in number of MU within the area of interest and then
subsequently the throughput falls due to the deterioration in
the radar link metrics.

The effect of σcavg is less significant on PBi
DC and ϒ as both

curves are flat in Figures 7A,B. On the other hand, the
performances are far more sensitive to σmavg.

4.3 Monostatic Conditions
A monostatic radar is a specific case of bistatic radar where the
baseline length, L, and bistatic angle, β, are zero. Here, the one-
way propagation distance from the transmitter and receiver to the
target are equal. Hence, a monostatic radar can be assumed to be
at the origin with the bistatic range κm equal to the polar distance
rm. We can, then directly, derive the radar detection coverage

FIGURE 3 | (A) Detection coverage (PBi
DC) and (B) network throughput (ϒ) as a function of explore/exploit duty cycle (ϵ) for parametric bistatic range (κ).
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metric and throughput for this scenario from the bistatic case by
making the corresponding substitutions to (7) and (8) and derive
the following corollary.

Corollary 1.3. The radar detection coverage metric (PMono
DC )

and network throughput (ϒ) for a explore/exploit duty cycle (ϵ)
for a monostatic radar based JRC system is given by

ϒ � PMono
DC πrmρmcτ 1 − ϵ( )D (32)

where

PMono
DC � exp

−γNsr4m
σmavgPtxG0B0ϵH0

+ −γρccτrmσcavg

2B0ϵ σmavg + γσcavg( )⎛⎝ ⎞⎠ (33)

The corollary again shows that the detection performance
in the case of the monostatic radar can be studied through the
SNR (the first term within the exponent of (33)) and the SCR

FIGURE 4 | (A) Detection coverage (PBi
DC) and (B) network throughput (ϒ) as a function of transmitted power (Ptx) for parametric bistatic range (κm).

FIGURE 5 | (A) Detection coverage (PBi
DC) and (B) network throughput (ϒ) as a function of bandwidth (BW) for parametric bistatic range (κm).

FIGURE 6 | (A) Detection coverage (PBi
DC) and (B) network throughput (ϒ) as a function of bistatic range (κm) for parametric clutter density (ρc).
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(the second term within the exponent). The SNR deteriorates
as a function of the fourth power of the target distance while
the SCR deteriorates linearly as a function of target radial
distance. Hence, at greater distances we are limited by the
clutter rather than the noise. We compare the monostatic and
bistatic radar performances using the baseline length L as a
parameter in Figure 8. Note that for all values of L and κm in
the above study, the MU remains within the cosite region of
the radar. The result show that the PBi

DC does not vary
significantly for change from monostatic (L = 0) to bistatic
(L > 0) conditions. In other words, the mean number of MU
detected does not change significantly in both cases. The
throughput, on the other hand, shown in Figures 8B, is
higher for the monostatic case and appears to reduce
slightly for increase in baseline length. This is because the
circumference of the Cassini oval reduces slightly from the
monostatic case to the bistatic case as per (24). Hence, fewer
MU will be selected for a fixed bistatic range.

4.4 Pulse Repetition Interval
The maximum two-way unambiguous range of a radar,
Rmax � (Rtx

m + Rrx
m )max, is equal to cTPRI. Through the

intersection of the ellipse defined for a uniform Rmax and the
Cassini oval of constant κm, the two terms are related through

Rmax � cTPRI � L2 + 2κ2m 1 + cos β( ). (34)
Note that in the above expression, the bistatic range changes for
the parameter β. The maximum value that cos β can take is 1.
Hence, for a given radar’s TPRI

κmax � 1
2

c2T2
PRI − L2( )1/2. (35)

If we assume that at this range κmax ≫ L, then PBi
DC(κmax) is

given by

PBi
DC κmax( ) � exp

−γNs c2T2
PRI − L2( )2

16σmavgPtxG0B0ϵH0
+ −γρccτσcavg c2T2

PRI − L2( )1/2
4B0ϵ σmavg + γσcavg( )⎛⎝ ⎞⎠, (36)

and the throughput is given by

ϒ κmax( ) � PBi
DC κmax( ) π

2
c2T2

PRI − L2( )1/2ρmcτ 1 − ϵ( )D. (37)

In the above throughput expression, it is evident that if the
TPRI is larger, the radar detection performance deteriorates.
However, a larger number of MU are included in the region-
of-interest due to which there are some gains in the
throughput. We assume that if the Rmax is high enough to
ignore the effects of L, the radar operates under clutter limited
conditions, and the throughput is a function of TPRI, as
given in

FIGURE 7 | (A) Detection coverage (PBi
DC) and (B) network throughput (ϒ) as a function of mean clutter RCS (σcavg) for parametric mean target RCS (σmavg).

FIGURE 8 | (A) Detection coverage (PBi
DC) and (B) network throughput (ϒ) as a function of target bistatic range (κm) for parametric bistatic base length (L).
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ϒ TPRI( ) � exp − γρcσcavgc
2τTPRI

4B0ϵ σmavg + γσcavg( )⎛⎝ ⎞⎠ π

2
c2τTPRIρm 1 − ϵ( )D.

(38)
Corollary 1.4. Accordingly, the optimum pulse repetition

interval, ~TPRI, can be estimated for maximum throughput as

~TPRI �
4B0ϵ σmavg + γσcavg( )

γρcσcavgc
2τ

. (39)

The above expression shows that higher ϵ (resulting in narrow
beams) and shorter pulse duration (smaller τ) will allow for a
longer pulse repetition interval and unambiguous range due to
improvement in the link metrics.

4.5 Meta Distribution of
Signal-to-Clutter-and-Noise Ratio in a
Bistatic Radar
Although thePBi

DC is a useful metric for tuning radar parameters,
it only provides an average view of the network across all
possible network realizations of the underlying point process.
it is simply a spatial average of the detection performance of all
radars across all clutter realizations in the region of interest.
Hence, it does not reveal the performance of individual radars.
This inhibits derivation of link-level reliability of the radar
detection performance. In this regard, the meta-distribution,
i.e., the distribution of the radar PBi

DC conditioned on a
realization of Φ provides a framework to study the same. For
that, we introduce the random variablePBi

DCΦ, which denotes the
bistatic detection coverage probability conditioned on the
clutter realization, i.e., PBi

DCΦ � P(SCNR(κm)> γ|Φ). The
meta-distribution then is simply the distribution of the
random variable PBi

DCΦ. Its complementary CDF,

i.e., FPBi
DCΦ

(z) � P(PBi
DCΦ ≥ z), represents the probability with

which at least z fraction of the bistatic radar links experience
a successful radar detection when the SCNR threshold is set to γ.
Mathematically,

PBi
DCΦ � P SCNR κm( )≥ γ|Φ( )

� P σm ≥ ∑
c∈Φ∩Ac(κm)

γσcκ4m
κ4c

+ γNsκ4m
PtxG0B0ϵH0

∣∣∣∣∣∣∣∣∣∣Φ⎛⎝ ⎞⎠, (40)

� exp − γNsκ4m
σmavgPtxG0B0ϵH0

( )
× ∏

c∈Φ∩Ac(κm)

γσcavg Rtx
c( )−2 Rrx

c( )−2κ4m
σmavg + γσcavg Rtx

c( )−2 Rrx
c( )−2κ4m⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (41)

For a point clutter located at a distance, Rtx
c , from the

transmitter at an angle θtxc , we have
(Rrx

c )2 � (Rtx
c )2 + L2 + 2Rtx

c L cos(θtxc ). The direct evaluation
of the exact distribution of PBi

DCΦ is challenging. Thus, we
take an indirect approach to evaluate it through the calculation
of its moments. In particular, the bth moment of PBi

DCΦ is
given by:

Mb � E T b, κm( ) ∏
c∈Φ∩Ac(κm )

γσcavg Rtx
c( )−2 Rrx

c( )−2κ4m
σmavg + γσcavg Rtx

c( )−2 Rrx
c( )−2κ4m⎛⎝ ⎞⎠⎛⎝ ⎞⎠b⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

� T b,m( )E ∏
c∈Φ∩Ac(κm )

γσcavg Rtx
c( )−2 Rrx

c( )−2κ4m
σmavg + γσcavg Rtx

c( )−2 Rrx
c( )−2κ4m⎛⎝ ⎞⎠⎛⎝ ⎞⎠b⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

� 1
2π

T b,m( )∫2π

0
exp −ρc ∫

θtxm +Δθtx
2

θtxm −Δθtx
2

∫
Rtx+δr

2

Rtx−δr
2

1 − γσcavgy
−2y−2

r κ4m
σmavg + γσcavgy−2y−2

r κ4m
( )b

ydydθtxc
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dθm

� 1
2π

T b,m( )∫2π

0
exp −ρc∑b

k�1

b

k
( ) ∫

θtxm +Δθtx
2

θtxm −Δθtx
2

∫
Rtx+δr

2

Rtx−δr
2

− γσcavgy
−2y−2

r κ4m
σmavg + γσcavgy

−2y−2
r κ4m

( )k

ydydθtxc
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dθm,

(42)

FIGURE 9 | Comparison of the meta-distribution of the SCNR with and
without the path loss approximation of the clutter points. Here ϵ =0.5.

FIGURE 10 | Meta distribution of the SCNR for different SCNR
thresholds.
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where,T (b,m) � exp(− γbNsκ4m
σmavgPtxG0B0ϵH0

),yr � (y2 + L2 − 2yL cos(θtxc ))
1
2.

Now, for a large bandwidth, the range-resolution cell is relatively

small, and hence, with the path loss approximation
������
Rtx
c R

rx
c

√
� κm

for all clutter points within the cell, we have:

Mb � exp − γbNsκ
4
m

σmavgPtxG0B0ϵH0
( )En

σmavg

σmavg + γσcavg

( )nb⎡⎣ ⎤⎦
� exp − γbNsκ

4
m

σmavgPtxG0B0ϵH0
( )exp ρcAc κm( ) σmavg

σmavg + γσcavg

( )b

− 1⎛⎝ ⎞⎠⎛⎝ ⎞⎠ (43)

We note here that with the path loss approximation, only the
number of clutter points (and not their locations) inside the
range resolution cell n impacts the moment. Then, the
complementary CDF of the conditional PBi

DCΦ can be
evaluated using the Gil-Pelaez inversion theorem as:

FPBi
DCΦ

z( ) � 1
2
− 1
π
∫∞

0

I exp −ju log z( )( )( )Mju

u
du (44)

where, j � ���−1√
and Mju (·) is the ju-th moment of PBi

DCΦ.
In Figure 9 we see the impact of the path loss

approximation of the clutter points on the meta-
distribution of the SCNR.In particular, we see that since
with the path loss approximation, the meta-distribution
depends only on the number of clutter points within the
range resolution cell, the corresponding plot has a stepped
behaviour, where each step corresponds to a certain number
of clutter points. On the contrary, the plot without the path
loss approximation takes into account the relative
randomness in the locations of the clutter points within
the range resolution cell. For a given κm, the path loss
approximation may result in either an overestimation or
an underestimation of the actual meta-distribution.
However, such an analysis is out of scope of the current
work and will be investigated in a future work.In Figure 10 we
plot the meta-distribution of the SCNR for different SCNR
thresholds. This represents, qualitatively, a fine-grained
analysis of the radar detection. For a given γ the meta-
distribution evaluated at a given z represents the fraction
of radar links that experience a successful radar detection at
least z% of the time. For example, when the radar detection
threshold is set at γ = 0 dB, we observe that about half
(FPDCΦ(z) � 0.5) of the targets are detected with a reliability
of at least 70% (i.e., z = 0.7), while virtually no targets
(FPDCΦ(z) � 0) are detected with a reliability of 70% when
the detection threshold is set at γ = 3 dB. On the
lower reliability regime, interestingly, we observe that with
γ = 3 dB, more than 95% of the targets (FPDCΦ(z) � 0.95) are
detected with a reliability of at least 15% (i.e., with z = 0.15)
while the same for γ = 0 dB is lower (about 90%). This
also indicates that for a lower SCNR threshold, not only
the detection probability PBi

DC is higher, but also
guaranteeing higher reliability for individual links is more
likely. Remarkably, we observe that regardless of the value of
PBi

DC, none of the targets can be guaranteed to be
detected beyond 70% (z = 0.7) reliability, and

to achieve that, additional radar transceivers must be
deployed.

5 CONCLUSION

We have provided an SG based analytical framework to
provide system level planning insights into how radar
based localization can enhance communication throughput
of a JRC system. The key advantage of this framework is that
it accounts for the significant variations in the radar, target
and clutter conditions that may be encountered in actual
deployments without requiring laborious system level
simulations or measurement data collection. Specifically,
we provide a theorem to optimize JRC system parameters
such as the explore/exploit duty cycle, the transmitted power,
bandwidth and pulse repetition interval for maximizing the
network throughput. The results are presented for
generalized bistatic radar scenarios from which the
monostatic results are derived through limiting
conditions. We also provide a study on the meta-
distribution of the radar detection metric which provides
the key insight that none of the mobile users can be reliably
detected beyond 70% of the time with a single JRC
configuration. Our results are validated with Monte Carlo
simulations.

The analysis in this work is based on some assumptions:
First, we have assumed a planar bistatic radar geometry where
all the mobile users/radar targets fall in the cosite region
(baseline length is below twice the bistatic range). These
assumptions are satisfied in several JRC applications such as
indoor localization using WiFi/WLAN devices and in radar
enhanced vehicular communications. However, the
assumption does not hold for GNSS based bistatic radar
remote sensing where the transmitter is the satellite while
the receiver is mounted close to the earth and a three-
dimensional geometry would have to be considered. Hence,
our future work will focus on the modification to the SG based
analysis to analyze radar performance metrics under 3D, non-
cosite conditions of the bistatic radar.

Second, we have considered short range line-of-sight links
in our study which are applicable to mmWave JRC
implementations. However, real world deployments
encounter blockages that must be accounted for from a
JRC system design perspective. Similarly, the radar will
receive returns from sidelobes along with the main lobes
which has not been considered in our work. Finally, in our
throughput analysis, we have assumed that all the mobile
users have uniform data rates that can be supported. In real
world conditions, the requirements from individual users will
differ and there may be system constraints on the maximum
resource utilization. Therefore, the study of the performance
bounds due to more realistic channel, radar and mobile user
models will lead to more accurate estimation of the detection
performance and network throughput and would form the
basis of future studies.
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Third, in this work, we have confined our discussion to a single
bistatic radar framework. In the foreseeable future, wemay encounter
radar networks with a single transmitter and multiple receivers, or
even multiple transmitters and receivers. In these conditions, there
can be significant diversity in the radar and target geometry which
can be effectively analysed through SG. Research into multistatic
radar frameworks would form a natural extension to this work.
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Small Object Detection and Tracking
in Satellite Videos With Motion
Informed-CNN and GM-PHD Filter
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Small object tracking in low-resolution remote sensing images presents numerous
challenges. Targets are relatively small compared to the field of view, do not present
distinct features, and are often lost in cluttered environments. In this paper, we propose a
track-by-detection approach to detect and track small moving targets by using a
convolutional neural network and a Bayesian tracker. Our object detection consists of
a two-step process based on motion and a patch-based convolutional neural network
(CNN). The first stage performs a lightweight motion detection operator to obtain rough
target locations. The second stage uses this information combinedwith a CNN to refine the
detection results. In addition, we adopt an online track-by-detection approach by using the
Probability Hypothesis Density (PHD) filter to convert detections into tracks. The PHD filter
offers a robust multi-object Bayesian data-association framework that performs well in
cluttered environments, keeps track of missed detections, and presents remarkable
computational advantages over different Bayesian filters. We test our method across
various cases of a challenging dataset: a low-resolution satellite video comprising
numerous small moving objects. We demonstrate the proposed method outperforms
competing approaches across different scenarios with both object detection and object
tracking metrics.

Keywords: object detection, object tracking, PHD filter, CNNs, remote sensing

INTRODUCTION

In recent years, object detection and tracking in remote sensing videos have become a widely
attractive area of research. Novel satellite and Wide Area Motion Imagery (WAMI) technologies
have created an unprecedented demand for fast and automatic information retrieval. For example,
Airbus’ Zephyr high altitude drones can cover up to 20, ×, 30 km2 of continuous video surveillance,
or the Chinese Jilin-1 satellite captures ground images spanning several kilometers with a 1-m spatial
resolution imaged at 20 Hz.

The generated images contain essential information for civilian and military domains when
ground sensors are not locally available. Sample civilian applications include urban planning
(Wijnands et al., 2021), automatic traffic monitoring (Kaack et al., 2019), driving behavioral
research (Chen et al., 2021), or commerce management with ship monitoring (Cao et al., 2019).
Similarly, object detection and tracking contribute to military applications such as border protection
or abnormal activity monitoring. For example, the work proposed by Kirubarajan et al. (2000)
presents an approach to detect and tracks convoys in different scenarios such as road networks or
open fields.
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While object tracking has dramatically improved during the
last years, a significant amount of approaches solve problems that
contain large training datasets and feature-rich targets, such as
pedestrian tracking in surveillance cameras or city landscapes.
Nevertheless, novel methods need to tackle application-related
challenges such as small object tracking in remote sensing images
and have to overcome challenges such as datasets with scarce and
incomplete annotations.

Particularly, targets in satellite images and high altitude drones
present notable challenges to common detectors and trackers.
First, objects of interest are very small compared to the field of
view. For instance, Figure 1 shows a ground image with a
resolution of 1 m/pixel where vehicles span on average 5 × 6
pixels and resemble white moving blobs. In fact, numerous small
objects appear at subpixel levels such as motorcycles and are not
detectable for common appearance-based object detectors.
Additionally, images show diverse noise sources such as
illumination changes, clouds, shadows and environmental
phenomena such as wind or rain. These noise sources
generate numerous false positives when using motion as the
main feature for object detection. Moreover, satellites and
drones orbit introduce parallax effect noise for object detectors
and motion prediction noise for object trackers.

In this paper, we present improvements and further results of
our work presented by Aguilar et al. (2021) where we detect small
objects using motion and appearance information. We use three
consecutive frames to estimate moving object locations and we
refine the detections using a patch-based Faster RCNN (Ren et al.
(2015)). Specifically, in this paper we improve the patch-based
detection by adding the motion response into the Faster RCNN
input. The combination of motion and appearance information
on extracted patches improves significantly Faster RCNN’s object
detection.

Once we obtain object measurements, we feed the extracted
data to the probability hypothesis density (PHD) filter, proposed
by Mahler (2003). This filter models multi-object states under a
Markovian framework, where the state of each tracked object is

conditionally independent of all but the previous step. This
assumption simplifies the filter and allows it to be
computationally efficient in comparison to other related filters
at the cost of tracking single state instances instead of full target
trajectories. In this paper, we propose an enhanced version of the
PHD filter to propagate labels in time without compromising the
filter’s performance and also to discriminate surviving and
appearing objects in each frame.

This paper is divided into five sections. We discuss popular
object detection and tracking approaches used in satellite images
in Section 2. We discuss the proposed method in Section 3where
we present the object detection and object tracking approaches.
We show results for a challenging dataset in Section 4 and we
discuss the conclusion and future work in Section 5.

RELATED WORK

While object detection and tracking are related, for sake of
simplicity, we divide our literature review into two categories
composed of object detection and tracking applied to satellite
images.

Object Detection
Static Image Object Detection
Static image object detection methods rely on spatial information
to extract features and obtain object segmentation masks or
bounding boxes. Popular approaches include Faster-RCNN,
proposed by Ren et al. (2015), YOLO, proposed by Redmon
et al. (2016), Retina-Net, proposed by Lin et al. (2017). Although
these works obtain remarkable results across several benchmarks,
their performance decreases significantly when tested with small
objects or weakly labeled datasets such as in remote sensing
images. In fact, Acatay et al. (2018) presented a comprehensive
review and the drawbacks from using the base Faster-RCNN,
YOLO, and Single Shot Detectors (SSD) on aerial images. Several
researchers approached satellite object detection with modified

FIGURE 1 | Jilin-1 satellite image with provided annotations. Each colored box represents a target instance.
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appearance-based object detector approach for remote sensing
images. For example, Ren et al. (2018) proposed a modified
Faster-RCNN to detect small objects in satellite images by
modifying the anchor boxes, adding skipped connections, and
including contextual information. However, this method focuses
on capturing relatively large objects such as planes and large
ships. Similarly, Qian et al. (2020) proposed a modified version of
Faster-RCNN with a new architecture, new metric, and loss to
optimize the training of small objects bounding boxes that do not
overlap.

Motion-Only Object Detection
Motion-based detections consist principally in background
subtraction and frame differencing. A popular approach is to
model backgrounds with Gaussian distributions and parameters
derived from observations. This model has been extensively
expanded such as with the method proposed by Stauffer and
Grimson (2000) to use Gaussian mixture models (GMM) instead
of a single Gaussian distribution, or the work proposed by Han
and Davis (2012) which uses kernel density estimators (KDE) to
estimate background distributions and support vector machines
(SVM) to discriminate objects. Yang et al. (2016) proposed ViBe,
an approach that updates the background estimation persistently
and locally by using random selection. However, background
subtraction methods generate noisy results when dealing with
long sequences of images with a moving imaging system such as a
satellite or drone.

Similarly, frame differencing has shown robustness across
several methods. For example, Teutsch and Grinberg (2016)
proposed to use frame differencing together with numerous
post-processing filters to perform object detection in WAMI
images. Also, Ao et al. (2020) proposed to use frame
differencing together with noise estimation and shape-based
filters to extract objects. These approaches obtain reasonable
results but they rely on complex hand-crafted post-processing
steps that can be hardly adapted to different noise sources.

Motion models are often robust and computationally
lightweight; however, their performance relies heavily on
frame registration. Small errors in frame registration or
illumination changes often lead to large errors in motion-
based object detection.

Spatio-Temporal Convolutional Neural Networks
State-of-the-art methods aim to combine approaches from
both appearance and motion to improve object detection.
Generally, these methods use CNNs that take into account
both motion and appearance information to extract object
locations. For instance, LaLonde et al. (2018) proposed
ClusterNet and FoveaNet, a two-stage approach for
exploiting spatial and temporal data in small object
detection. They use five consecutive frames as input to an
under-sampling network to create clusters of object locations
(ClusterNet), and then they use a region specialized network
(FoveaNet) to refine the outputs of the first network. Also,
Canepa et al. (2021) proposed T-Rex Net, a network that uses
frame differencing as inputs to the network to improve small
object detection performance. Sommer et al. (2021) proposed

an appearance-based and motion-based object detector by
combining two networks, one to estimate moving objects
locations, and one to extract image features. These methods
showed promising results for ultra high resolution datasets
such as the WPAFB 2009 (AFRL (2009)) dataset which
contains a resolution of up to 0.25 cms/pixel; however,
these approaches cannot be directly applied to lower
resolution data such as at 1m/pixel as the target features
are lost and performing undersampling could miss the
small targets.

Object Tracking
Feature Tracking
Common tracking approaches for satellite images include the use
of correlation filters and expansions to this approach. Correlation
filters find similarities between frames to responses to learned
filters and match the coordinates and responses. For example, Du
et al. (2017) employed a correlation filter combined with three
frame difference to track objects in satellite images, and Xuan
et al. (2020) used correlation filters together with linear equations
to track objects even under occlusions. While these methods are
robust for object tracking, they rely on initialization and are
normally adapted to track single objects.

Joint Tracking and Detection
Numerous state-of-the-art tracking methods are deep learning-
based and learn to jointly detect and track objects. For instance
Bergmann et al. (2019) proposed Tracktor++ to use a CNN to
perform both object detection and tracking. Similarly,
Feichtenhofer et al. (2017) proposed Track to Detect and
Detect to Track to regress both bounding boxes for the object
dimensions and for the object temporal displacement. Among
robust CNN tracking approaches are attention-based methods
such as Patchwork, proposed by Chai (2019), which consists in
using an attention mechanism to predict the location of an object
in future frames. Jiao et al. (2021) created a survey of novel
generation deep learning-based techniques used for object
tracking, where methods mostly depend on correlating learned
features in time.

Track by Detection
Tracking by detection approaches include SORT, proposed by
Bewley et al. (2016) and its extension DeepSORT, proposed by
Wojke et al. (2017). SORT consists of an online multiple
object tracker (MOT) that uses multiple Kalman filters for
tracking and the Hungarian algorithm (Kuhn and Yaw
(1955)) for data association, and DeepSORT is an
extension that uses object features similarity to modify the
data association step. These approaches obtain state-of-the-
art results in remarkable computational times; however, due
to their pragmatic approach, they do not process a unified
multi-object data uncertainty model that can model
ambiguous target paths.

Reid (1979) proposed a Bayesian framework named multiple
hypothesis tracking (MHT) and Fortmann et al. (1980) proposed
the joint probabilistic data association (JDPA). These approaches
consider unified probabilistic models and propagate the data
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association combinatoric metrics on time. However, these filters
are often slow due to the complicated data association process
and the exponential increase of complexity with time.

Finally, the random finite set (RFS) framework and random
finite set statistics proposed by Mahler (2007) propose an
attractive track-by-detection paradigm without compromising
the computational time. Among popular trackers are the PHD
filter, proposed by Mahler (2003), the cardinally PHD filter,
presented by Vo et al. (2006), and novel methods such as the
Labelled Multi-Bernoulli Filter, developed by Vo and Vo (2013)
and its computationally efficient version Vo et al. (2017). In our
case, we propose an extended version of PHD filter due to its
robust results and significant computational advantages.

PROPOSED APPROACH

In this paper, we extend the work proposed by Aguilar et al.
(2021) which employs a 3-frame difference algorithm to
approximate target locations and a patch-based CNN to refine
detections. We extend this work by 1) concatenating the frame
difference response to the input for the neural network, 2) by
performing a tile-based patch selection rather than coordinate-
based patch selection. Finally, we use an extended version of the
PHD filter, a Bayesian multi-object tracker, to convert frame-wise
object detections into track hypothesis.

Motion Aware CNN for Object Detection
Motion Detector
We estimate object motion by finding differences between
consecutive frames and adding their responses to create a
likelihood 3FDk (i, j), where (i, j) ∈ R2 are the pixel
coordinates and k ∈ N is the time index. This process is
summarized in the equations:

ΔIk i, j( ) � Ik i, j( ) − Ik−1 i, j( ) (1)
3FDk i, j( ) � |ΔIk i, j( )| + |ΔIk+1 i, j( )| (2)

Sequentially, we binarize the 3FDk (i.j) response with a frame-
adaptive threshold to obtain rough object location estimates by
applying the formulas:

G i, j( ) � 1 3FDk i, j( )>Tk

0 otherwise
{ (3)

Tk � cpmax 3FDk i, j( )( ) (4)
Where c ∈ (0, 1) is a percentage-based threshold hyper-

parameter and is used to remove noisy 3-frame difference
responses. We chose c by performing grid search and choosing
values of c that would favor higher detection rates, in particular
we set c = 15% for all the experiments shown in Section 4. The 3-
frame difference approach yields good object location estimates
but it fails to perform shape regularization, detect low contrast
objects, and detect slow-moving targets. Therefore, we
complement the frame difference response with Faster RCNN
(Ren et al. (2015)). This addition helped to filter false positives,
discriminate nearby objects, and increase the detection rate.

We use the frame difference for two objectives: to reduce the
target search space and to feed this information to the neural
network. We begin by tiling the image starting at the origin and
using the response G (i, j) to find patches with moving objects.
The patch-based approach rather than full image-based approach
presents significant advantages: it contributes to focusing on
relevant areas rather than the whole image space, and it
contributes to training a network with scarce data because one
image can yield several training patches. We extract patches that
contain object hypothesis (given by the frame difference
response) and refine the detections using Faster RCNN.

We modify the inputs to the traditional Faster RCNN by
including three consecutive frames (shown in Figure 2B) and
by concatenating these images to the frame difference
response (shown in Figure 2C). This step is different from
our previous approach Aguilar et al. (2021) where we used
only one patch as input for the CNN. Using three frames
together with the frame-difference response provides an
additional cue for the network to detect moving objects
(denoted by cyan and yellow colors in the concatenated
inputs in Figure 2D. Figure 2E shows that our approach
detects very small moving objects such as motorcycles that
would have been missed by using only one frame as input. The
addition of motion information improves detection rates for
small moving objects and also reduces false positives of
vehicle-looking static objects. Section 4.3 shows further
details in the effect of using three frames and frame
difference as opposed to one frame.

Finally, we merge the patch results by performing global non-
maximum suppression and applying the respective offset to the
patch-based detections. The whole object detection process is
summarized in Figure 3.

Object Tracking With the GM-PHD Filter
Motion and Measurement Modeling
We define the state vector for the jth target at time k as xjk �[px, py, vx, vy, w, h]T where px, py ∈ R denote the target x and y
position, vx, vy ∈ R denote the target velocity components, andw,
h denote the target width and height respectively. We assume the
target motion is linear and adopt the constant velocity (CV)
model with Gaussian noise. Hence we assume the targets evolve
according to the equation: fk|k−1(xjk|xjk−1) � N(xjk;Fkx

j
k−1, Qk−1)

where Qk is the motion covariance and Fk is the transition matrix
defined as:

Fk �

1 0 τ 0 0 0
0 1 0 τ 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Where τ is a hyperparameter related to the sampling
frequency. Similarly, we define the ith measurement at time k
as zik � [px, py, w, h]T, where px, py, w, h ∈ R denote the x, y
coordinates, width and height respectively. We assume the noisy
and Gaussian measurements in the form of
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gk(zik|xk) � N (zik;Hkxk, Rk), where Rk is the measurement noise
covariance and Hk denotes the measurement matrix defined as:

Hk �
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

PHD Filter
We aim to estimate the multi-target states from a sequence of
possibly noisy or cluttered measurements. We approach this task

by using the random finite set (RFS) statistics defined by Mahler
(2007). This setup provides a Bayesian formulation for modeling
objects and observations as set-valued random variables.
Specifically, the collection of targets state at time k is defined
by Xk � {x1k, x2k, . . . xNk

k }, where xjk denotes the jth target state
vector at time k, andNk denotes the cardinally ofXk. Similarly, the
measurements at frame k are defined by the RFS
Zk � {z1k, z2k, . . . , zMk

k }, where Mk denotes the cardinality for the
measurement RFS at time k. Our objective is to model the multi-
target state posterior of Xk given all the previous measurements
Z1,2, . . . ,k, namely we aim to find pk|1:k (Xk|Z1:k).

FIGURE 2 |Modified input for Faster RCNN to incorporate motion information. (A) Sample input patch sequence. (B)Grayscale 3 frame concatenation. (C) Patch 3
frame difference response. (D) Concatenation of (C) and (B). (E) Sample object detector output.

FIGURE 3 | Object detection block diagram.
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The PHD filter provides an approximation to the optimal
multi-target filter by modeling the posterior pk|1:k (Xk|Z1:k) as a
Poisson random finite set and by recursively propagating its first-
order statistical moment, called probability hypothesis density
(PHD) function. The PHD filter achieves this task by iteratively
performing a two step process: the prediction step and the
update step.

The prediction step consists on estimating the PHD function
Dk|1:k−1 (Xk|Z1:k−1) at time k given only previous measurements,
abbreviated as Dk|k−1(x). The update step consists on estimating
the posterior PHD Dk|1:k (Xk|Z1:k) using the predicted
information and the new measurement obtained at time k and
is abbreviated to Dk|k(x).

The GM-PHD Filter
The Gaussian Mixture PHD Filter (GM-PHD), proposed by Vo
and Ma (2006), is a close form solution to the PHD recursion and
its convergence properties are analyzed by Clark and Vo (2007).
The GM-PHD relies on the assumptions of linear Gaussian
motion and measurement models explained in Section 3.2.1.
Additionally, the GM-PHD assumes the form of the posterior at
the previous time frame, Dk−1|k−1(x), has the form of a Gaussian
mixture given by:

Dk−1|k−1 x( ) � ∑Jk−1|k−1
j�1

wj
k−1|k−1N x;mj

k−1|k−1,P
j
k−1|k−1( ) (7)

Where Jk−1|k−1 is the number of Gaussian components and
ωj
k−1|k−1, m

j
k−1|k−1, P

j
k−1|k−1 are the weight, mean, and covariance

for each GM component in the posterior distribution at
time k − 1.

The GM-PHD filter estimates the predicted Dk|k−1(x) and
updated Dk|k(x) PHDs with Gaussian mixtures. The closed
form solution for the GM-PHD prediction step is given by the
equation:

Dk|k−1 x( ) � λ x( )

+ ps ∑Jk|k−1
j�1

ωk|k−1N x;Fk m
j
k−1|k−1, Q + Fk P

j
k−1|k−1 F

T
k( )
(8)

Where Fk and Q are respectively the transition and motion
covariance matrices defined in Section 3.2.1, ps is the survival
probability, and λ(x) is the birth RFS intensity which will be
described in Section 3.2.4. Finally, we update the GM-PHD
posterior following the equation:

Dk|k x( ) � 1 − pD( )Dk|k−1 x( ) + ∑
z∈Zk

× ∑Jk|k
j�1

ωj
k|k z( )N x; mj

k|k z( ),Pj
k|k( ) (9)

Where Dk|k−1(x) denotes the predicted GM components and
pD is the probability of detection. The terms mj

k|k(z) and Pj
k|k

represent the updated component mean and covariance and are
defined as:

mj
k|k z( ) � mj

k|k−1 + Kj
k z −Hk m

j
k|k−1[ ] (10)

Pj
k|k � I − Kj

kHk[ ]Pj
k|k−1 (11)

Kj
k � Pj

k|k−1H
T
k Hk Pj

k|k−1H
T
k + R[ ]−1 (12)

The updated component weight ωj
k|k(z) is defined as:

ωj
k|k z( ) � pD ωj

k|k−1l
j
k z( )

κk z( ) + pD∑Jk|k−1
i�1 wi

k|k−1l
i
k z( ) (13)

Where κk(z) denotes the clutter process intensity (modeled
with a Poisson Random Finite Set) and ljk(z) denotes the target-
measurement association likelihood defined as:

ljk z( ) � N zj, Hk m
j
k|k−1, S

j
k( ) (14)

Sjk � Rk + HkP
j
k|k−1H

T
k[ ] (15)

We estimate the filter’s inference cardinality by adding all the
weights in the posterior PHD and we apply merging and pruning
for components with very small weights in order to preserve the
computational advantages of the PHD filter.

PHD Filter Enhancements
We use a measurement-driven approach to estimate the birth
λ(x) intensity. Specifically, we use an adapted measurement
classification similar to Fu et al. (2018) to discriminate
measurements into surviving measurements, Zs

k and birth
measurements Zb

k. During each iteration, we use the
Hungarian algorithm to find the optimal matching between
the new measurement set, Zk, and the set of spatial
components of the predicted GM-PHD: {Hmj

k|k−1}j�1,2,...,Jk|k−1.
If the distance between a measurement and a predicted
component mean is less than a threshold, we classify the
target as surviving measurement, otherwise, all the unassigned
measurements are classified as a birth-proposal.

We implement the label preserving structure proposed by
Panta et al. (2009) as the original GM-PHD filter does not
account for target labels or past trajectories. This extension
initializes a label for every Gaussian mixture component and
propagates the label in time without affecting the filter
performance. Each birth step initializes new labels for each
birth component and the labels are tracked during the
prediction and the data association step. These advantages
contribute to keeping track of possible target trajectories
without compromising the filter computational load.

RESULTS

Evaluation Metrics
We evaluate our methods by using object detection and object
tracking metrics. We use ground truth annotations in the form of
ok = {o1, o2, . . . , oN}, where k is the frame number and oi = (px, py,
l) is a single annotated object at coordinates (px, py) with
associated label l. We let an estimated target be ôi � (p̂x, p̂y, l̂),
where p̂x, p̂y are the location components from the GM-PHD
filter inferred object state, and l̂ is the inferred associated label. At
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every frame, we match the set of detected targets with the set of
ground truth objects, we label an estimated target ôi as true
positive (TP) if is within five pixels away from an unmatched
ground truth object, otherwise, we label the object as a false
positive (FP). Similarly, we label any ground truth target that has
not been matched to an estimated target as a false negative (FN).
Finally, we call a track an identity switch (IDS) if its object track
hypothesis is associated with more than one ground truth label l.

Object Detection Metrics
For object detection, we report the F1 score which is a widely
accepted evaluation metric to evaluate the quality of the detector.
The F1 score is defined as:

F1 � 2p
PrecisionpRecall

Precision + Recall
(16)

Where precision denotes the ratio of relevant hypothesis
proposed by the object detector and is defined as:

Precision � TP

TP + FP
(17)

Recall denotes the percent of correctly detected objects in
comparison to the total number of available objects and is
defined as:

Recall � TP

TP + FN
(18)

We report these metrics as percentages, where the best score is of
100 and the worst score is 0. Additionally, we present a precision-
recall curve to show the robustness of the proposed approach over
the possible parameter ranges and to show its improved
performance over possible competing approaches. We use
these tests to choose the parameters for running the F1 score
for each listed method.

Object Tracking Metrics
We also report tracking metric ClearMOT, proposed by
Bernardin and Stiefelhagen (2008), as it has become a popular
and robust metric for tracking algorithms. We report the multiple
object tracking accuracy (MOTA) which evaluates the quality of
the recovered tracks. It considers FPs, FNs, and identity switches
(IDSs), The MOTA score is defined as:

MOTA � 1 − ∑N
k�1 FNk + FPk + IDSk( )∑N

k�1GTk

(19)

Where N refers to the number of frames, and FNk, FPk, IDSk,
GTK refers to the false negatives, false positives, identity
switches and number of ground truth objects at frame k
respectively. The MOTA score has a range in (−∞, 1),
where negative values report poor performances, and one is
the best possible score. In this work, we report the scores as a
percentages to keep consistency with literature. We also
report the multiple object tracking precision (MOTP),
which considers the average distance error between the
detected objects and the ground truth objects. The MOTP
is defined as:

MOTP � ∑N
k�1∑ck

i�1di,k∑N
k ck

(20)

FIGURE 4 | Areas of interest (AoIs) for method evaluation.

TABLE 1 | Ablation studies.

Precision Recall F1

Faster RCNN 56.73 72.76 61.69
Faster RCNN + Motion Information 69.46 73.33 70.05
Patch-Based Faster RCNN 69.06 70.96 69.22
Patch-Based Faster RCNN + Motion Information 78.13 70.40 76.14

TABLE 2 | Average F1 scores for different patch sizes.

Patch Size 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512
(full image)

F1 score 51.66 70.66 76.14 72.66 70.05
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Where ck refers to the number of correctly detected objects at
frame k and di,k denotes the distance between a ground truth
object and the detected hypothesis. The MOTP score is in the
range [0, ∞) where 0 denotes the perfect score and large values
denote worse performances.

Finally, we report track quality measures in a similar format to
Dendorfer et al. (2021).We call a trajectorymostly tracked (MT) if we
can persistently track at least 80% of its path. Similarly, we call a
trajectory mostly lost (ML) is we can track 20% or less of its ground
truth trajectory. We report these scores as percentages where larger
percentages of MT scores denote better performances but larger
percentages of ML scores denote worse performances.

Experiment Set up
For evaluation purposes, we use the CGSTL dataset, available
at https://mall.charmingglobe.com. This dataset contains a

video of the city of Valencia, Spain, recorded on 7 March
2017, by the Jilin-1 satellite. Its spatial resolution is 1 m/pixel
and the video spans 12 kms2, with a size of 3,071 × 4,096 pixels.
The video contains 580 frames and represents 29 s of video
imaged at 20 frames per second. The labels were provided by
Ao et al. (2020) and contain the (x, y) object center
coordinates, the width, and height of the object bounding
boxes. The provided ground truth contains strong labeling
for only moving targets in three areas of interest (AoI) of size
500, ×, 500 pixels (shown in Figure 4). The approximate
coordinate location for each area are AoI 1 [520, 1616], AoI
2 [1074, 1895] and AoI 3 [450, 2810] with respect to the first
frame. Additionally, we performed image stabilization
(ORB(Rublee et al. (2011)) to compensate for the satellite
motion during the recorded video. Finally, only one every
ten frames is labeled (58 total labeled frames), hence, we used
the stabilization procedure and linear interpolation between
frames to fill the label subsampling. The stabilization
procedure has a significant impact on object detection,
object tracking, and score evaluation across all 580 frames
as these methods depend on linear object motion and static
background. It is worth mentioning we improve the
stabilization procedure over our previous work (Aguilar
et al. (2021)) by using the Python OpenCV implementation
of ORB(Rublee et al. (2011)); hence our ‘true positive’ distance
criteria is set to five pixels rather than 20 pixels as in our
previous work.

All of the AoIs contain highways and moving vehicles at
high speed. AoI one contains a roundabout, where objects
reduce their velocity and travel in clusters. AoI two contains a
highway next to farming structures that create numerous false
positives for both motion and appearance-based object
detectors. AoI three contains a highway with objects
moving at high speeds. It is worth mentioning all AoIs
contain numerous motorcycles and very small objects that
are often missed in the ground truth annotations due to the
difficulty of labeling such objects at such low image resolution.
For each AoI, we trained the network using the other two AoIs
as training data due to the ground truth data scarcity. We
trained the networks using extracted patches of size 128 × 128
centered at ground truth objects and we augmented data by
using patch vertical and horizontal flips, and random
translations. We used the Pytorch implementation for
Faster-RCNN using a pre-trained ResNet50 proposed by
He et al. (2016) as backbone for feature extraction. The
networks were trained using an NVIDIA QUADRO using
stochastic gradient descend as optimizer with a learning rate
of lr = 0.005 and a weight decay of 0.0005.

Ablation Studies
We perform ablation studies to investigate the impact of using
patch-based inference and the impact of including motion
information on object detection quality. We report the F1
scores for our method using path-selection only, motion-
information only, and patch-selection and motion-
information combined. We evaluate these scores across all

FIGURE 5 | Sample object detection.

TABLE 3 | Object detection metrics.

AoI Detector Precision Recall F1

1 3 Frame-based, Ao et al. (2020) 85.8 79.3 82.42
ViBe, Yang et al. (2016) 80.9 63.8 71.33
GMM, Wren et al. (1997) 78.9 38.3 51.57
Faster-RCNN, Ren et al. (2015) 80.6 75.1 77.76
Patch-based-CNN, Aguilar et al. (2021) 91.5 76.9 83.57
Proposed Object Detection 90.2 80.9 85.32

2 3 Frame-based, Ao et al. (2020) 70.0 73.1 71.52
ViBe, Yang et al. (2016) 41.1 65.1 50.38
GMM, Wren et al. (1997) 61.0 65.1 62.95
Faster-RCNN, Ren et al. (2015) 27.2 66.9 38.65
Patch-based-CNN, Aguilar et al. (2021) 50.2 70.8 58.76
Proposed Object Detection 71.3 74.5 72.84

3 3 Frame-based, Ao et al. (2020) 62.3 48.7 54.68
ViBe, Yang et al. (2016) 74.4 56.9 64.47
GMM, Wren et al. (1997) 35.9 54.9 43.43
Faster-RCNN, Ren et al. (2015) 62.4 76.3 68.68
Patch-based-CNN, Aguilar et al. (2021) 65.5 65.2 65.33
Proposed Object Detection 72.9 67.8 70.26
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AoIs and report the average precision, recall, and the F1 scores
for each combination.

Patch-Based Inference
We test the effect of using a patch-based method by comparing a
full-image and patch-based inference with Faster RCNN.
Table 1 shows that a full-image Faster RCNN obtains a F1
metric of 61.69 but using a patch-based Faster RCNN increased
the F1 score to 69.22. The patch-based approach outperforms
Faster RCNN in the precision score because it reduces the search
space to areas with moving objects and decreases the ratio of
FPs. This result is expected as satellite images contain numerous
blob-looking objects that yield false positives and Faster RCNN
alone would detect the objects as vehicles. These results are
developed further and shown numerically and visually in
Section 4.4. Additionally, we test the effect of varying the
patch size by evaluating average object detection metrics

using patch sizes of 32, 64, 128, 256, and 512 (full image).
The size effects for the patch selection are depicted in Table 2,
were the highest F1 score is obtained for the patch size of 128 ×
128 pixels. During our experiments, we concluded that the patch
size of 128 × 128 focuses the CNN to smaller regions while
preserving contextual information. In fact, a patch size of 64 ×
64 yielded numerous false positives from static objects with
white-blob appearance. On the contrary, large patch sizes such
as 256 × 256 and 512 × 512 obtained large numbers of
misdetections due to the small object size in comparison
with the field of view.

Motion-Based Inference
We investigate the effect of includingmotion information by testing
the full-image Faster RCNN combined with motion information.
We achieve this task by feeding three consecutive frames
concatenated with the three frame difference algorithm to Faster

FIGURE 6 | Sample object detection in sub-region of AoI 1. First row: (A) sample patch . (B) Ground truth bounding boxes. (C) 3-frame difference response.
Second row: (D) Proposed method. (E)Output of patched-based Faster RCNN. (F)Output of Faster RCNN. Third row: (G)Output of ViBe. (H)Output of 3 frame based
detector. (I) Output of GMM detector.
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RCNN. Table 1 shows that including motion information for the
full-image Faster RCNN improves the F1 score from 61.69 to 70.05.
This improvement occurs due to the increase in the precision score,
from 56.73 to 69.46. Our results show that including motion
information also helps Faster RCNN to filter non-moving
objects in a similar fashion to using a patch-based approach.

Motion and Patch-Based Inference
Finally, we test the effects of including motion information and a
patch-based approach to the original Faster RCNN. Table 1 shows
that adding both motion information and patch-based inference
increased the F1 score of the original Faster RCNN by 6 and 7%
respectively. The combined effect of using a patch inference and
including motion information reduced the false-positive ratios

further, thus, increasing the precision score from 69.46 to 69.06 to
78.13. It is worth noting that neither the addition of motion or a
patch-based approach contributed to increasing the recall score. In
fact, full-image Faster RCNN obtains higher recall values than the
proposed approach at the cost of increasing the number of false
detections. These results suggest further development explained in
Section 5.

Object Detection Evaluation
We evaluate the proposed object detector using the F1 metric
mentioned in Section 4.1.1 and we compare its performance with
five competing object detectors: custom 3-frame difference
proposed by Ao et al. (2020), background subtraction using
Gaussian mixture models proposed by Wren et al. (1997),

FIGURE 7 | Sample object detection in sub-region of AoI 2. First row: (A) sample patch . (B) Ground truth bounding boxes. (C) 3-frame difference response.
Second row: (D) Proposed method. (E)Output of patched-based Faster RCNN. (F)Output of Faster RCNN. Third row: (G)Output of ViBe. (H)Output of 3 frame based
detector. (I) Output of GMM detector.
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ViBe, proposed by Yang et al. (2016), Faster RCNN, proposed by
Ren et al. (2015) and the Patch-based object detector presented by
Aguilar et al. (2021). We calibrate each method parameters by
running a precision-recall curve on AoI 1, shown in Figure 5. We
also show visual and numerical results for each AoI by reporting
the precision, recall, and F1 scores for each competing method in
Table 3 and by showing sample object detection results in
Figure 6 and in Figure 7.

We varied the threshold and confidence parameters for 11
points in the range (0, 1) for the methods: 3-frame difference,

GMM, Faster RCNN, Patch-based RCNN, and the proposed
approach. For ViBe, we changed the neighbor radius
parameter: R for 11 points in the range (5, 50). Figure 5
shows that our method is robust to parameter variations: it
obtains better F1 scores across a diverse parameter range as
the combination of appearance and time
information increases true positives and decreases false
negatives.

Figure 6 shows sample results for AoI 1. This area contains
clusters of small moving objects at a roundabout and also presents

TABLE 4 | Tracking Metrics for AoI 1. *Denotes ground truth measurements used for calibration and filter-only testing.

AoI Tracker Detector F1 MOTA MOTP MT ML

1 SORT Ground Truth Detections (Calibration)* 99.4* 99.1* 0.91* 63* 0*
3 Frame-based, Ao et al. (2020) 50.4 27.2 2.75 7 23
ViBe, Yang et al. (2016) 65.4 40.5 2.50 27 19
GMM, Wren et al. (1997) 49.3 30.7 2.57 13 33
Faster-RCNN, Ren et al. (2015) 70.3 48.2 2.94 23 14
Patch-based-CNN, Aguilar et al. (2021) 44.9 19.6 2.93 1 31
Proposed Object Detection 78.8 63.0 2.34 34 11

GLMB Ground Truth Detections (Calibration)* 94.95* 85.1* 1.80* 63* 1*
3 Frame-based, Ao et al. (2020) 71.14 36.3 2.02 35 6
ViBe, Yang et al. (2016) 67.02 37.4 1.53 32 13
GMM, Wren et al. (1997) 49.90 22.1 1.61 15 30
Faster-RCNN, Ren et al. (2015) 66.76 30.8 2.03 29 13
Patch-based-CNN, Aguilar et al. (2021) 73.86 46.9 1.93 33 11
Proposed Object Detection 83.8 66.6 1.19 35 12

GM-PHD Ground Truth Detections (Calibration)* 94.5* 89.7* 0.19* 58* 3*
3 Frame-based, Ao et al. (2020) 69.9 47.2 2.17 24 11
ViBe, Yang et al. (2016) 63.0 35.6 1.92 21 23
GMM, Wren et al. (1997) 48.5 27.0 1.98 14 33
Faster-RCNN, Ren et al. (2015) 71.7 47.7 2.36 31 22
Patch-based-CNN, Aguilar et al. (2021) 76.1 56.7 2.40 31 17
Proposed Object Detection 81.9 64.3 1.49 46 8

TABLE 5 | Tracking Metrics for AoI 2. *Denotes ground truth measurements used for calibration and filter-only testing.

AoI Tracker Detector F1 MOTA MOTP MT ML

2 SORT Ground Truth Detections (Calibration)* 99.6* 99.5* 0.857* 61* 0*
3 Frame-based, Ao et al. (2020) 54.81 26.6 2.14 17 26
ViBe, Yang et al. (2016) 50.50 -18.2 2.32 38 17
GMM, Wren et al. (1997) 74.54 54.1 2.26 35 13
Faster-RCNN, Ren et al. (2015) 53.28 -22.1 2.38 32 18
Patch-based-CNN, Aguilar et al. (2021) 42.33 15.1 2.72 6 22
Proposed Object Detection 82.78 66.4 2.08 47 12

GLMB Ground Truth Detections (Calibration)* 97.94* 93.3* 1.543* 35* 0*
3 Frame-based, Ao et al. (2020) 70.44 31.1 1.99 40 9
ViBe, Yang et al. (2016) 49.69 -34.5 1.49 39 13
GMM, Wren et al. (1997) 65.75 25.7 1.39 37 16
Faster-RCNN, Ren et al. (2015) 72.50 31.8 1.41 50 4
Patch-based-CNN, Aguilar et al. (2021) 57.60 33.3 1.88 39 5
Proposed Object Detection 83.75 65.1 1.21 52 2

GM-PHD Ground Truth Detections (Calibration)* 98.7* 97.7* 0.18* 36* 0*
3 Frame-based, Ao et al. (2020) 69.62 44.5 1.93 30 12
ViBe, Yang et al. (2016) 44.86 -31.6 1.77 23 23
GMM, Wren et al. (1997) 71.14 44.8 1.67 33 15
Faster-RCNN, Ren et al. (2015) 50.00 -51.9 1.87 40 9
Patch-based-CNN, Aguilar et al. (2021) 61.18 40.7 2.40 37 9
Proposed Object Detection 82.61 64.1 1.58 47 3
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numerous small vehicles such as motorcycles or bicycles. Figure 6
shows that ViBe and GMM struggle to detect small and low contrast
targets; hence, their recall values in Table 3 are the lowest for AoI 1.
Similarly, the 3-frame difference approach merges and splits nearby
targets. On the other side, Figure 6 shows that the supervised
approaches detect a large number of relevant objects; thus their

recall score for all these methods is greater than 75%. However, both
Faster RCNNand patch-based RCNN suffer from false positives such
as detecting objects in farms or buildings. These artifacts reduce the
overall F1 score for the detectors.

Figure 7 shows AoI two which contains two high-speed
highways next to buildings with rich textures that generate

TABLE 6 | Tracking Metrics for AoI 2. *Denotes ground truth measurements used for calibration and filter-only testing.

AoI Tracker Detector F1 MOTA MOTP MT ML

3 SORT Ground Truth Detections (Calibration)* 99.2* 98.4* 0.78* 46* 1*
3 Frame-based, Ao et al. (2020) 58.20 39.2 2.46 14 25
ViBe, Yang et al. (2016) 63.81 37.5 2.52 23 20
GMM, Wren et al. (1997) 68.77 47.9 2.54 26 16
Faster-RCNN, Ren et al. (2015) 70.3 48.2 2.94 23 14
Patch-based-CNN, Aguilar et al. (2021) 37.44 14.9 3.39 0 37
Proposed Object Detection 73.49 53.7 1.72 23 13

GLMB Ground Truth Detections (Calibration)* 99.60* 98.9* 1.43* 39* 0*
3 Frame-based, Ao et al. (2020) 54.40 9.70 1.85 22 23
ViBe, Yang et al. (2016) 63.13 33.8 1.70 25 19
GMM, Wren et al. (1997) 41.74 -62.6 1.78 21 18
Faster-RCNN, Ren et al. (2015) 71.59 48.7 1.19 34 7
Patch-based-CNN, Aguilar et al. (2021) 68.13 31.2 1.99 29 8
Proposed Object Detection 78.18 56.0 1.16 34 5

GM-PHD Ground Truth Detections (Calibration)* 99.8* 99.8* 0.12* 46* 1*
3 Frame-based, Ao et al. (2020) 61.80 39.7 2.11 22 24
ViBe, Yang et al. (2016) 60.42 32.3 2.13 19 21
GMM, Wren et al. (1997) 59.74 23.3 2.15 25 16
Faster-RCNN, Ren et al. (2015) 71.7 47.7 2.36 31 22
Patch-based-CNN, Aguilar et al. (2021) 69.44 42.7 2.79 23 12
Proposed Object Detection 77.53 57.1 1.26 32 7

FIGURE 8 | Sample Object Tracking. The square denotes the object current location and the line the object past locations. First column: ground truth marks.
Second Column: Faster RCNN (Ren et al., 2015) and SORT (Bewley et al., 2016). Third column: proposed tracking algorithm.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 82716012

Aguilar et al. Small Object Detection and Tracking

102

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


false positives. For example, Figure 7 shows clusters of moving
objects. Figure 7 shows that both Faster RCNN and the patch-
based RCNN detect false positives in the static background while
our approach can discriminate only moving objects. Table 3
shows that the proposed approach obtains better F1 scores than
all the competing methods, thanks to the better combination of
precision-recall. It detects more relevant objects while reducing
the overall ratio of false positives.

Object Tracking Evaluation
We compare object tracking using the MOTA, MOTP, MT and ML
and F1 scores shown in Tables 4, 5, 6. We compare the proposed
GM-PHD tracker with the SORT tracker, developed by Bewley et al.
(2016) and with the Generalized Labeled Multi-Bernoulli filter
(GLMB), developed by Vo et al. (2017). We test the tracking
outputs applied to each object detector shown in Table 3
combined with all 3 filters.

The rows marked with an asterisk* in Tables 4, 5, 6 show
tracking metrics using ground truth object detections as filter
inputs. These measurements simulate ideal object detectors
and contribute to calibrating the filters’ parameters. Tables 5,
6 show robust performance for all three trackers across AoI
two and AoI 3 (high-speed highways): all three filters obtain
MOTA scores close to 99%. However, Table 4 shows a case
where SORT outperforms the GM-PHD and the GLMB filter
when tracking with ground truth labels. SORT obtains a
MOTA score of 99.4% while the GLMB filter 85.1% and
GM-PHD filter obtains 89.7%. The GM-PHD and GLMB
filter decrease their performance mostly due to the
increased uncertainty and label switches for nearby slow-
moving targets inside the roundabout of AoI 1.

The second to seventh row of Tables 4, 5, 6 show metrics
for tracking results applied to each object detector output.
These detectors present considerable challenges for trackers
due to clutter measurements and numerous misdetections.
Tables 4, 5, 6 show that both the GLMB and GM-PHD filter
outperform the SORT filter for object detectors with high
detection rate. For instance, the GM-PHD filter obtains higher
MOTA scores for 3-frame difference, Faster-RCNN, patch-
based Faster-RCNN, and the proposed method. These results
are reflected in Figure 8 where the GM-PHD recovers most of
the objects moving in the roundabout. On the other hand,
SORT outperforms the GM-PHD and GLMB filters for object
detection with low detection rate such as ViBe and GMM,

where SORT obtains higher MOTA scores than the GM-PHD
filter but lower MOTA scores compared to the proposed
object detection and GM-PHD filter.

During our experiments, we determined that SORT
performs better in tracking cases with linear constant
motions, such as in AoI one and AoI 2. In fact, SORT
obtained better results than the GM-PHD and GLMB filter
for AoI two when applied in our proposed method. However,
SORT presented difficulties adapting to high-speed tracks as
in AoI 3. Figure 8 shows the incomplete track trajectories of
applying SORT to the outputs of Faster RCNN.

Finally, our modified GM-PHD filter presents similar
tracking performances to the GLMB filter. The GLMB
tracker slightly outperforms the modified GM-PHD filter in
most tracking scores in all three AoIs. This is an expected
result as the GLMB tracker shares the RFS framework with
GM-PHD but has been extended to jointly estimate object
states and tracks. Nevertheless, the GLMB filter retrieves
tracks at the cost of a high computational burden. In fact,
the efficient implementation of the GLMB filter (Vo et al.
(2017)) relies on a pre-processing PHD filter lookup step and
a Gibbs sampler step to perform joint prediction and update.
Vo et al. (2017) explain that the efficient GLMB filter has a
complexity of O(P2M), where P denotes the number of
hypothesis and M the number of measurements. On the
other hand, our proposed GM-PHD filter has a linear
complexity of O(PM). Additionally, we present sample
computational times using the default GM-PHD (O(PM))
filter and default GLMB (O(P2M)) filter implemented in
Matlab by Vo et al. (2017). Table 7 shows that the default
GLMB filter is on average 4.77 times slower than the default
GM-PHD filter. While our implementation of the GM-PHD
filter obtains slightly lower tracking scores, it presents a
considerable advantage in terms of computational
demands. This advantage is particularly important for on-
board applications where robusts online tracking algorithms
are preferred.

CONCLUSION AND FUTURE WORK

In this paper, we presented an improved track-by-detection
approach where we use motion information together with
neural networks to detect small moving objects on satellite
images. Additionally, we perform tracking by using a modified
version of the GM-PHD filter. Our version of the GM-PHD
uses a measurement-driven birth intensity approximation and
a label propagation in time. We present results for three AoIs
in a challenging dataset where our approaches do not only
outperform competing detection and tracking algorithms, but
also detect objects not labeled by the ground truth
annotations.

While our method performs detection and tracking, the
method still requires several improvements. For example, our
approach still misses several objects at sub-pixel level that appear
and disappear. This drawback could be improved by including

TABLE 7 | Computing times for modified GM-PHD and GLMB filters.

AoI Tracks Tracker Computing Time(s)

1 64 GLMB 227.02
GM-PHD 45.39

2 47 GLMB 129.06
GM-PHD 27.56

3 22 GLMB 82.26
GM-PHD 19.79
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the tracking information into the object detection in order to
perform a unified track-and-detection approach.
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How Scalable Are Clade-Specific
Marker K-Mer Based Hash Methods
for Metagenomic Taxonomic
Classification?
Melissa Gray, Zhengqiao Zhao and Gail L. Rosen*

Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical and Computer Engineering,
Drexel University, Philadelphia, PA, United States

Efficiently and accurately identifying which microbes are present in a biological sample is
important to medicine and biology. For example, in medicine, microbe identification allows
doctors to better diagnose diseases. Two questions are essential to metagenomic analysis
(the analysis of a random sampling of DNA in a patient/environment sample): How to
accurately identify the microbes in samples and how to efficiently update the taxonomic
classifier as new microbe genomes are sequenced and added to the reference database.
To investigate how classifiers change as they train on more knowledge, we made sub-
databases composed of genomes that existed in past years that served as “snapshots in
time” (1999–2020) of the NCBI reference genome database. We evaluated two
classification methods, Kraken 2 and CLARK with these snapshots using a real,
experimental metagenomic sample from a human gut. This allowed us to measure
how much of a real sample could confidently classify using these methods and as the
database grows. Despite not knowing the ground truth, we could measure the
concordance between methods and between years of the database within each
method using a Bray-Curtis distance. In addition, we also recorded the training times
of the classifiers for each snapshot. For all data for Kraken 2, we observed that as more
genomes were added, more microbes from the sample were classified. CLARK had a
similar trend, but in the final year, this trend reversed with the microbial variation and less
unique k-mers. Also, both classifiers, while having different ways of training, generally are
linear in time - but Kraken 2 has a significantly lower slope in scaling to more data.

Keywords: metagenomics, taxonomic classification, supervised classification, hash-based indexing, incremental
learning, algorithm scalability, benchmarking

BACKGROUND

DNA sequencing has enabled the investigation of microbial communities using cultivation-
independent, DNA/RNA-based approaches (Brul et al., 2010; Berg et al., 2020; Coenen, 2020).
We can think of these microbial communities as microscopic civilizations, in which bacteria not only
act independently but learn to cooperate and compete with each other, to gain more nutrients and
resources, and that result in advanced time-course patterns of microbial proliferation and death
(Figueiredo et al., 2020). As humans, we must take observations of microbiomes. While imaging is
still too coarse for observing 1011 cells per Gram of colon content (Sender et al., 2016), sampling their
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DNA from next-generation sequencing of microbes is commonly
used, with many other ‘omic techniques emerging that sample
measurements of the metatranscriptome, metaproteome, and
metabolome (Creasy et al., 2021). Microbiomes are found
everywhere on Earth, including soil, water, air, and animal
hosts (Nemergut et al., 2013). Understanding microbiomes is
the first step, with many potential engineering applications to
follow (Woloszynek et al., 2016).

Signal processing has played an important role in
metagenomic identification and taxonomic classification,
which is the supervised labeling of a taxonomic class to a
DNA/RNA sequencing read (Rosen and Moore, 2003; Rosen
et al., 2009; Borrayo, 2014; Alshawaqfeh, 2017; Elworth et al.,
2020). While taxonomic classification is the application that we
cover in this paper, metagenomics is not limited only to this
problem, and emerging techniques are proving useful for
unsupervised “binning” of metagenomics reads (Kouchaki
et al., 2019). Information-theoretic feature selection (Garbarine
et al., 2011) and deep neural network sequence embeddings
(Woloszynek et al., 2019), useful methods from signal
processing, can be performed before metagenomic taxonomic
classification to reduce feature dimensionality and computational
complexity.

As of 2019, over 80 metagenomic taxonomic classification
tools have been published (Gardner et al., 2019), while
benchmarking efforts try to quantify the most representative
ones (Ye et al., 2019). We have previously shown an in-depth
case study of the naïve Bayes classifier’s (and its incremental
version’s) accuracy and speed over the yearly growth of NCBI
(Zhao et al., 2020). Now, for this study, we study clade-specific
marker hash-based techniques, due to their popularity, efficiency/
speed, and comparable sensitivity/precision when benchmarked
against BLAST-based methods (Wood et al., 2014). These
algorithms have been shown to be competitive algorithms on
several benchmarks on real and simulated data (McIntyre et al.,
2017; Sczyrba et al., 2017; Meyer et al., 2021). In 2017, a
comparison of the two algorithms shows their performances
are relatively similar, with CLARK tending to yield better
relative abundance estimates than Kraken2, which can be due
to more genomes in their curated database (McIntyre et al., 2017).
While there are techniques like sourmash (Brown and Irber, 2016;
Liu and Koslicki, 2022; LaPierre et al., 2020) that can sketch
k-mer compositions, they do not perform well when the reference
genome is missing from the database (dibsi-rnaseq, 2016). While
Kraken2/CLARK has been shown to predict low-abundance false
positives, it has been shown that a larger database can improve
Kraken2 performance (LaPierre et al., 2020). Other techniques,
such as LSHvec (Shi and Chen, 2021), which embeds sequences
after a compression k-mers with a hash, may be able to transform
the some of the limitations of hash-based techniques using deep
learning. Therefore, LaPierre et al. and McIntyre et al.‘s study
invite an investigation into how database composition can affect
methods that use these efficient k-mer presence/absence to
differentiate clades, and this study can give insight into how
more recent hash-based techniques will perform.

It has been previously shown that database size influences the
accuracy of Kraken and its Bayesian extension Bracken (Nasko

et al., 2018). While the study highlights the percentage of
“unclassified” reads goes down as the database grows, it does
not fully examine time to run the algorithms over varying size
databases or how the final relative abundance result changes. As
genomes in the databases increase, the representation of the
organisms in the database may not always be uniform across
the tree of life. Withmutations, clade-identifying k-mers that may
have been previously discriminating between taxa before, may be
missing in updates, reducing the search capacity of these
methods. These identifying k-mers will not be captured simply
by looking at orthologs shared between genomes (Lan et al.,
2014). Therefore, the size of the database and its growth may
affect performance of the kmer-based algorithms in addition to
runtime.

CLARK and Kraken 2
CLARK and Kraken 2 are both well known metagenomic
classifiers, software that “reads” short sequences of DNA and
attempts to accurately identify what organism they came from.
Although CLARK and Kraken 2 are both clade-specific k-mer
hash-based metagenomic classifiers, they operate in different,
almost opposite, ways. Both software, like most classifiers,
decompose the DNA sequences into smaller features called
k-mers to make comparisons easier. Their k-mers are 31
nucleotides long by default. CLARK’s training step takes each
k-mer and cycles through all the genomes in its database to see if
any of them have that sequence. If more than one genome does,
then the k-mer is ignored and the program moves on to the next
one. Now when a query sequence is tested, for each k-mer in the
query, if only one genome matches it, then that genome’s score of
how many k-mers it matches the query is incremented. This
approach prioritizes the calculation of unique k-mers, or k-mers
that are only found in one genome to the query. After all the
k-mers are cycled through, the genome with the highest unique
k-mer score is deemed as the correct match. If the score is too low
or there are genomes that tie, then the sample DNA is marked as
unclassified (Ounit et al., 2015).

On the other hand, when Kraken 2 compares a k-mer in the
query to the genomes in its database, for any k-mer match, the
genome score is incremented by one. Kraken 2 doesn’t skip over
k-mers that are shared by multiple genomes (Wood et al., 2014).
Instead, it takes those into account. This approach prioritizes
common k-mers, specifically the k-mers that the genomes have in
common with the query DNA. The genome with the highest
common k-mer score is deemed the correct match. In the event of
a tie or if the scores do not meet Kraken 2’s default threshold (the
genome has a confidence threshold of 0.65), then the sample
DNA is marked as unclassified (Wood et al., 2019).

Goals
The goals of this paper are to examine the behaviors of
metagenomic classifiers as the information in their databases
increases over time: how much they classify, how they classify,
and how fast they classify. While similar studies have been
previously conducted, they are for other methods and for the
study of Kraken 2, it was limited. For example, Nasko et al. (2018)
examined Kraken’s performance for successive Refseq databases,
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but the metrics were mostly for speed and amount classified (but
not how the distribution of those classified changed). We wish to
gain a more comprehensive insight into the scalability of k-mer
based hash methods of metagenomic classifiers. We also wanted
to compare two well-known classifiers, CLARK and Kraken 2, to
see which one was more efficient and how both of them could
improve to be useful into the future as more genomes are
sequenced and added to their databases. Also, we previously
benchmarked the naive Bayes classifier (Zhao et al., 2020) for its
accuracy to classify (NBC classifies everything so the “amount” is
negligible) and speed, and we will use the same dataset (devised
on a yearly basis) in this study so that it can be fairly compared.

METHODOLOGY

Datasets
The build/train (sub-)databases are derived from the National
Center for Biotechnology Information (NCBI) Reference
Sequence (RefSeq) bacterial genome database (Sayers et al.,
2019) and the NCBI genbank assembly summary file for
bacteria available at ftp://ftp.ncbi.nlm.nih.gov/genomes/
genbank/bacteria/assembly_summary.txt. The test data is taken
from NCBI’s Sequence Read Archive (SRA ID: SRS105153)
(Huttenhower et al., 2012) and is a human gut sample from
the Human Microbiome Project (Nasko et al., 2018). We use
experimental data because it is more likely to contain a true
distribution of novel taxa.

Setup, Build, and Classify
The database snapshots from 1999 to 2020 were designed in
(Zhao et al., 2020). Statistics about the database growth in

genomes and their lineages can be found in that paper’s
Additional File 1: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC7507296/bin/12859_2020_3744_MOESM1_ESM.pdf. The
genomes from these lists were obtained in Kraken and usually
a subset was found in CLARK’s downloaded database. In the
supplementary additional file 2, we provide the Kraken/CLARK
overlap and the additional genomes in Kraken (that were not
found in CLARK’s database).

Kraken 2
Kraken 2’s default bacteria database was used to find the list of
bacteria genomes. All uncompleted genomes were filtered out,
leaving only the completed ones left in the list. Six lists (1999,
2004, 2009, 2014, 2019, and 2020) were then created, as shown in
Figure 1. Each was filled with genomes that were sequenced in
their respective years or before. For example, A bacteria genome
sequenced in 2010 would be in the 2014, 2019, and 2020 list, but a
genome sequenced in 2020 would only be present in the 2020 list.
For Kraken 2, those genome lists were then used to create library.
fna files that Kraken 2 uses in its databases (Wood et al., 2014).
Those library. fna files were then used to create six sub-databases
for Kraken 2 (1999, 2004, 2009, 2014, 2019, and 2020).

Creating the custom library. fna files required python
programs: summary. py and hive. py. After this set up, each
Kraken 2 sub-database was built and used to classify SRA ID:
SRS105153, a file containing about 70 million reads
(approximately 100-200bp in length per read) from a human
gut sample (Huttenhower et al., 2012).

CLARK
CLARK’s custom sub-databases were built with the same lists as
in Figure 1, but in a slightly different way. The difference is in
how CLARK stored its genomes. When CLARK’s default bacteria
database was downloaded, the genomes were stored in individual
FASTA files. Some files had more than one genome written in it,
but each file’s name corresponded to a GCF accession code. This
made sorting the genomes from the default bacteria database into
the custom databases much easier. After finding all the file paths
for each of the GCF accession numbers, those files would then be
copied into the “Custom/” folder of their corresponding custom
sub-database.

TCB � TB + (CR1 − CR2) (1)
Where TBC is the entire CLARK build time, TB is the runtime of
the initial stage of the build/training time of CLARK. It is then
added to the second stage of the build time which is calculated by
subtracting first run (which is the first stage build + classify
times), CR1, minus solely the classify times, CR2. CR1 is the
runtime for CLARK’s classification script
“classify_metagenomes.sh” when it is run with a particular
database for the first time, and CR2 is the runtime for
CLARK’s classification script when it is run on that same
database after the first time (second, third, etc. time).

Building a database with CLARK is not as straightforward as
with Kraken 2. CLARK does its database building in two parts: the
first part with its actual building script and the second part is built
when the database is first used during classification. CLARK also

FIGURE 1 | A proof-of-concept diagram for your reference.
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does not store the built database in a directory. Instead, if you
want to use a different database or previous database, the build
script must be run again, which includes both a build component
and a classify component. Due to this combination of steps in the
script, CLARK’s build time was calculated (Eq. (1)). This was
done by subtracting the second classification runtime (where only
classification occurred) from the first (where the second part of
database building was done). That difference was then added to
the runtime of the build script (the first part of the building) to get
the full runtime of CLARK’s database building.

Parsing the Results
Kraken 2
For the Kraken 2 classification results, the text files were
parsed line by line to gather information on whether that read
was classified and what it was classified as. This information
was stored into a Python dictionary, as well as a count variable
that kept track of how many reads were classified as a
particular taxa or how many were unclassified (Figure 2).
Traceback was also performed to include counts of every
taxonomic rank. For example, if a read was classified as genus
X, then genus X’s family, class, order, etc. would also be
counted.

CLARK
Since CLARK’s classification results were stored in. csv files,
they were easy to parse. Each row in the “Assignment”
column was read to ascertain what CLARK classified the
read as. Traceback was also performed here, and the
information was stored the same way Kraken 2’s was
(Figure 2).

Relative Abundance, Triangular
Bray-Curtis, and Graphing
Calculating Relative Abundance

RAi � Ci∑iCi
× 100% (2)

where RAi is the relative abundance for a particular taxonomic
class i. Ci is the number of times that a DNA read from class i is

observed in the sample divided by the number of all observations
(DNA reads) from all classes.

A general equation (Eq. 2) was used to calculate each taxa’s
relative abundance in two different ways. The first way was to
calculate the taxa’s relative abundance within the set of reads that
were given a classification label. This means that each read was
assigned one of {C0, C1, ..., CN-1}, where N is the number of
taxonomic units in a given taxonomic rank in the classification
results, and summed then divided by the total reads on the
taxonomic level (e.g. on the species level, each species is
incremented by the count of each read assigned to that species
and then divided by the total reads that classify on the species
level). In other words, the count of each taxa was divided by the
total number of classified reads, then multiplied by 100 to make it
a percentage.

The second way was to calculate the taxa’s relative abundance
among the total number of reads. To illustrate the labeling of all
reads, an unclassified category was added such that i ∈ {I, . . . , N,
unclassified} so that Cunclassified is accounted for as a bar in the
graph and in the denominator of the relative abundance
calculation. These results were exported to excel file sheets for
each taxonomic rank.

Graphing Relative Abundance
Each taxa’s relative abundance is compared to a 3% threshold,
meaning that any taxa that has a relative abundance above 3% of
the sample is plotted in its own bar. Any taxa that do not meet
these conditions are aggregated into the “Others” bar on their
respective graph. The Percent Classified was calculated from the
percent of unclassified reads and then plotted on top of the bar
graph as a scatter plot.

Calculating Pairwise Bray-Curtis Dissimilarity

∑|ui − vi|∑|ui + vi| (3)

Where ui is the relative abundance of taxonomic class i in one
comparison sample (e.g. 1999 database) and vi relative abundance
of a taxonomic class i in another sample (e.g. 2004 database).
Each sum is summed over the total number of taxonomic classes.

The Bray-Curtis dissimilarity (Eq. 3) is commonly used in
ecology to measure the differences between the community
compositions of two populations. In this study, we calculate
the Bray-Curtis dissimilarities between the classification results
of the sub-databases. The calculation of the Bray-Curtis
Dissimilarity was done by Scipy’s spatial. distance.braycurtis ()
function, and the equation for it (Eq. 3) came from (Scipy, 2021).
Using it in a pairwise fashion calculated a Bray-Curtis
dissimilarity with every combination of sub-database
(excluding duplicate pairs such as 1999 and 1999). This allows
every sub-database’s classification results to be compared to
each other.

These values were arranged in a grid and used to create a
heatmap of Bray-Curtis dissimilarity. The lower triangular
dissimilarity is left blank because those values are redundant.

FIGURE 2 | The taxa in CLARK and Kraken 2’s results and the number
of reads that were classified as that taxa (count).
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One heatmap shows how the classified part of each sub-database’s
results compare, while the other shows how the entire
classification results of each sub-database compare. On
heatmaps, 0 (zero) represents that the sub-databases are very
similar, while 1 (one) represents that the sub-databases are very
different (Figures 16–19).

RESULTS

Build/Training Time
Both normalizations follow the same trend: Kraken 2’s database
building procedure is faster than CLARK’s. Just by raw numbers,
shown in Figure 3, Kraken 2 had the fastest build time. It was
somewhat complicated to measure CLARK’s build time because
of how its build and classify procedure is not separated in the first
step (Eq. 1).

The raw data was then normalized with the size of each
classifiers’ sub-databases (in gigabytes shown in Figure 4 and
the number of genomes shown in Figure 5). CLARK has an
unusually large build time/GB for the smallest database (1999),
and then the time per GB decreases drastically. Kraken 2’s build
time/GB for the 1999 database is also much larger than its build

time for the other five databases, but it is still 30x shorter than
CLARK’s build time for the 1999 database. Also, Kraken 2’s build
time for the other five databases are less than half that of CLARK’s
in time/GB and even more for time/genome. Overall, even when
normalized to account for the difference in the size of databases
and number of genomes, Kraken 2’s database building procedure
ran several times faster than CLARK’s.

Classification Time
Conversely, CLARK’s procedure is faster at classifying than
Kraken 2’s. Just by raw numbers, shown in Figure 6, CLARK
had the shorter classification time for the 1999, 2004, 2009, and
2014 databases. Its classification time for the 2019 and 2020
databases, however, were longer than Kraken 2’s.

Normalizing the raw data by gigabytes (see Figure 7) and
genomes (see Figure 8), this time-trend remains similar. While
both start out with particularly long runtimes for their
classification procedures, Kraken 2’s is substantially higher and
remains that way, even after the drastic decrease after the 1999
database. But this time their runtimes are much closer in value
than the build/training times. CLARK classifies several times
faster for time/GB, but they are both similar in time/genome.

FIGURE 3 | CLARK and Kraken 2 raw Build Time (seconds).

FIGURE 4 | CLARK and Kraken 2 Build Time normalized by database
size (seconds/Gigabyte).

FIGURE 5 | CLARK and Kraken 2 Build Time normalized by the number
of genomes in the databases (seconds/genome).

FIGURE 6 | CLARK and Kraken 2 raw Classification Time (seconds).
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Overall, the methods are designed to perform the classification
procedure magnitudes faster than the build time, since users
usually want results quickly and are willing to spend a one-time
longer cost up-front.

Classification Results
Since there is no ground truth classification for the gut
microbiome sample, there is no way to check how accurate
CLARK or Kraken 2’s classifications are, but we can examine
how the number of reads classified changes as more genomes are
added to their databases.

CLARK generally had a higher percentage of classified reads
for all sub-databases except 2020, as shown in Figure 9. Even
when Kraken 2 had more genomes in its database to reference,
CLARK’s percent-classified was still higher. In 2004, CLARK
classifies about 5% of sequences while Kraken 2 classifies 1% (see
relative abundance tables in Supplementary Material), and this
difference compounded with the limitations of the databases
causes a significant dissimilarity between the classifiers (shown
later in Figure 20). Also, CLARK’s percentage of classified reads
dropped suddenly and drastically with the 2020 sub-database.

While Kraken 2’s classification percentages seemed to increase
steadily in an exponential curve, as shown in Figure 11, CLARK’s
had an unexpected decrease after 2019, as shown in Figure 10.
Figures 10, 11 show that CLARK and Kraken 2 classified reads in
a similar fashion for genus level, in terms of quantity and identity.
Since CLARK classified more than Kraken 2 in 2004, in
Figure 10, it found Bacteroides as the first genus to rise above
the 3% threshold (that we used for visualization). However, for
2020, CLARK only classified about 37% of the sample while
Kraken 2 classified nearly 50% (see relative abundance tables in
Supplementary Material). Also, Bacteroides and Phocaeicola are
the dominant genera detected by both metagenomic classifiers.
By 2020, for Phocaeicola, CLARK and Kraken 2’s general relative
abundance percentages were 10.66% and 13.47% respectively (see
relative abundance tables in Supplementary Material). For
Bacteroides, their percentages were 20.37% and 31.26%
respectively (see relative abundance tables in Supplementary
Material).

In Figures 12, 13, the differences between the genera that
CLARK and Kraken 2 classified are shown. It is also notable to
mention that CLARK and Kraken 2 did not detect Bacteroides to
the same extent using the 1999 and 2004 sub-databases. This is
probably due to CLARK’s ability to detect Bacteroides given the
limited database. Kraken 2 did not detect as many and therefore,
other bacteria genera (e.g. Bacteroidetes such as Porphyromonas)
were found in high abundance. Also in 2004, neither classifier
detected Phocaeicola in any significant amount, probably due to
the absence of that bacteria from the database.

What can be more contentious is the detection of Alistipes and
Faecalibacterium. While Faecalibacterium prausnitzii is detected
in the species level for 2009 and after for Kraken 2 (Figure 15), it
is not detected in the genus level in 2020 (Figure 13). This is due
to Kraken 2’s ability to assign more reads at the genus level than
the species level and while the Faecalibacterium has the same
number of reads in each, it falls below our 3% threshold for the
genus level. In fact, because Kraken 2 classifies less reads, there is
more of a diversity of bacteria meeting this 3% threshold as shown
in Figures 13, 15. However, for the 3 most abundant genera, the
classifications tend to agree more when run on recent databases.

On the species level, shown in Figures 14, 15. CLARK and
Kraken 2’s classification results also differ slightly in what they

FIGURE 7 | CLARK and Kraken 2 Classification Time normalized by the
size of the databases (seconds/Gigabyte).

FIGURE 8 | CLARK and Kraken 2 Classification Time normalized by the
number of genomes in the databases (seconds/genome).

FIGURE 9 | Graph comparing the number of genomes in their
databases with the percent classified for each sub-database for CLARK and
Kraken 2.
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classified. For example, only Bacteroides sp. M10 is found with
Kraken 2, and this may be due to the different species in the
different methods’ databases. However, by 2020, the methods
tend to be in more agreement on the sample composition. It is

also interesting to note that everything that CLARK classifies, it
classifies on all levels (Figures 12, 14), while Kraken 2 has
different percentages classified on each taxonomic level
(Figures 13, 15.)

FIGURE 10 | CLARK’s general relative abundance for Genus Level. Only taxa whose general relative abundance was at least 3% are shown as a colored bar here.
A bar for the Unclassified group is included. The percentage of classified reads for each year are shown as diamond markers.

FIGURE 11 | Kraken 2’s general relative abundance for Genus level. Only taxa whose general relative abundance was at least 3% are shown as a colored bar here.
A bar for the unclassified group is included. The percentage of classified reads for each year are shown as diamond markers.

FIGURE 12 | CLARK’s classified relative abundance for Genus Level. Only taxa whose classified relative abundance was at least 3% are shown as a colored bar
here. Only bars for classified reads are included. The percentage of classified reads traced back to genus level for each year are shown as diamond markers.
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We can see how increasing knowledge added to the training
database changes the classification results over time–using the
Bray-Curtis dissimilarity measure from the ecological
literature to quantify ecosystem dissimilarity. As expected,
the Bray-Curtis dissimilarity shows that the classification

results of the gut microbiome sample generally become less
similar as the time increases between sub-database versions,
shown in Figures 16–19. An exception is the Bray-Curtis
dissimilarity between the 2009 and 2014 sub-databases of
both CLARK and Kraken 2. That dissimilarity is even lower

FIGURE 13 | Kraken 2’s relative abundance for Genus level. Only taxa whose classified relative abundance was at least 3% are shown as a colored bar here. Only
bars for the classified reads are included. The percentage of classified reads traced back to genus level for each year are shown as diamond markers.

FIGURE 14 | CLARK’s relative abundance for Species level. Only taxa whose classified relative abundance was at least 3% are shown as a colored bar here. Only
bars for classified reads are included. The percentage of classified reads traced back to species level for each year are shown as diamond markers.

FIGURE 15 | Kraken 2’s relative abundance for Species level. Only taxa whose classified relative abundance was at least 3% are shown as a colored bar here. Only
bars for the classified reads are included. The percentage of classified reads traced back to species level for each year are shown as diamond markers.
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than the dissimilarity between the 2019 and 2020 sub-
databases (see Bray-Curtis dissimilarity tables in
Supplementary Material).

As we can see in Figure 18, the dissimilarity is greatest
between the CLARK classifications on the genus level between
1999 and any other year, since only a handful of genera were

FIGURE 16 |CLARK’s Bray-Curtis dissimilarity score for Family level. It is
a comparison between each sub-databases’ classification results for CLARK.
It includes comparisons of what CLARK classified as well as what CLARK
didn’t classify for each year. It is interesting that 2009–2014 databases
yield the most similar results on the family level (more similar than 2019–2020).

FIGURE 17 | Kraken 2’s Bray-Curtis dissimilarity score for Family
level. It is a comparison between each sub-databases’ classification
results for Kraken 2. It includes comparisons of what Kraken 2 classified
as well as what it didn’t classify for each year. Unlike CLARK, Kraken
2’s most similar results are from the 1999 and 2004 databases.

FIGURE 18 | CLARK’s Bray-Curtis Dissimilarity score for Genus level. It
is a comparison between each sub-databases’ classification results. It only
includes what CLARK classified. It is interesting that 1999 results are
significantly different from any other years’, while 2009–2014 and
2019–2020 are the most similar.

FIGURE 19 | Kraken 2’s Bray-Curtis Dissimilarity score for Genus level
between each sub-databases’ classification results. The comparison shows
that classified results are more similar for successive databases–although
some are more similar than others (such as 1999–2004 and
2009–2014).
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known and CLARK had a large number of percent classified in
2004 (seen in Figures 10, 12, 14) compared to Kraken 2. For
Kraken 2, since the percent classified did not increase for 2004,
the 1999 and 2004 classification results are very similar, as seen in
Figures 17, 19. This is also true for 2009 to 2014 for genus and
family level classifications for both CLARK nor Kraken 2 (and
result in more similar results than the transition from 2019 to
2020), as seen in Figures 16–19. This similarity reflects how the
change in percent classified (for both CLARK and Kraken 2)
between the 2009 to 2014 database years was the smallest change
seen in all the years (seen in Figures 10–15). This can be due to
the fact that the database additions did not add the gut microbes
that they are in or relatives of those in this metagenomic sample,
and those additions came later.

Finally, in Figure 20, we show the Bray-Curtis dissimilarity
between CLARK and Kraken 2 for each year and taxonomic level.
Interestingly, both make the same classifications in 1999 and are
pretty similar. In 2004, the dissimilarity is mainly because
CLARK classifies many more percentages of sequences than
Kraken 2 (which the Bray-Curtis measure takes into
consideration). CLARK classifying more sequences makes the
methods more discordant at higher levels of taxonomic tree in
2009. Since the family level has many more classes than order,
class, phyla, the Bray-Curtis values are very high for cases where
taxa exists in one classifier but not the other, and this is much less
likely with less classes at higher taxonomic levels. Taxa that are
uniquely classified by each method also contribute to
dissimilarity, but they are not the main contributors to the
large dissimilarity value. Interestingly, after 2004, in time, both
methods then become more concordant with increasing

knowledge, with some deviation in species and more
concordance on the phylum level. Now, in the latest 2020
database update, the results are slightly more discordant than
in 2009, despite having many more taxa classes, showing that the
methods are able to agree when the relevant gut taxa that is
“truly” in the sample is added to the database.

DISCUSSION

CLARK’s method of only comparing unique k-mers from a read
to its target genomes may have been what aided its classification
time but hindered its classification percentage. Because CLARK
ignores any k-mer in a read that is shared between two or more
targets (genomes in its database), it can work through data more
quickly. This method seems to allow it to eliminate unlikely
matches more efficiently. However, this also seems to make it
harder to match k-mers uniquely to genomes that are closely
related (ie. species level). The elimination of targets that have one
of the read’s k-mers in common could cause CLARK to eliminate
many genomes from being possible matches, most likely ending
up with no more targets to compare and resulting in an
unclassified read. This could explain why CLARK’s
classification percentage decreased between the 2019 and 2020
databases so drastically: as more and more similar species were
added, it became harder and harder for CLARK to match unique
k-mers to them.

Despite CLARK having more genomes in its database to get
through, it still classified faster than Kraken 2 under normalized
circumstances. This could be due to how it decides which genome
best matches the read. CLARKmay be classifying faster because it
only has to keep track of the unique k-mers in a read and compare
its targets to those, while ignoring the common k-mers. While
Kraken 2 has to keep track of all the common k-mers for every
genome it is comparing.

In the future, a further study should be conducted with
carefully designed mock communities or simulated
communities with CAMISIM (Fritz et al., 2019) to make sure
a carefully balanced novel/known set is contained in the training/
test sets. However, much is still not known about the underlying
k-mer distribution of novel organisms and their frequency.

CONCLUSION

In this paper, we compose a framework in which to compare
metagenomic taxonomic classifiers, in terms of their
computational time and classification agreement on a real
metagenomic sample. We studied hash-based methods and
found that a technique that eliminates common k-mers,
CLARK, classifies more and faster (at a cost of longer training
time) when trained on smaller and more diverse databases.
However, the percent of the sample that it can classify starts
to degrade for large databases. Kraken 2, on the other hand, gains
percent classified and significantly takes less time building and
classifying with more training data. Both methods’ agreement on
classification labels tend to converge as the database knowledge in

FIGURE 20 | The Bray-Curtis dissimilarity between the classified results
of CLARK and Kraken 2 for each taxonomic level over time (increasing
database size). Since only 4 organisms from 4 different phyla were classified in
1999, the similarity of the results is close. In 2004, a distinct issue is that
CLARK classified significantly more reads than Kraken 2, which skewed the
dissimilarity to be significant for all taxonomic levels. In 2009, the methods are
more concordant, and for the rest of the years, the species-level classification
is different while the phylum classification is more similar. The methods are
pretty similar on all taxonomic levels once again in 2020.
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each grows, and the database differences can cause some divergence
between the two methods’ classifications. The recommendation
from our study is that Kraken 2 tends to scale better with more
data. However, we recommend for future studies to extend this study
and compare many methods’ scalability in terms of time, percent
classified, and agreement with the experimental framework that we
introduce here.
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We consider the problem of joint beamforming and discrete motion control for mobile
relaying networks in dynamic channel environments. We assume a single source-
destination communication pair. We adopt a general time slotted approach where,
during each slot, every relay implements optimal beamforming and estimates its
optimal position for the subsequent slot. We assume that the relays move in a 2D
compact square region that has been discretized into a fine grid. The goal is to derive
discrete motion policies for the relays, in an adaptive fashion, so that they accommodate
the dynamic changes of the channel and, therefore, maximize the Signal-to-Interference +
Noise Ratio (SINR) at the destination. We present two different approaches for
constructing the motion policies. The first approach assumes that the channel evolves
as a Gaussian process and exhibits correlation with respect to both time and space. A
stochastic programming method is proposed for estimating the relay positions (and the
beamforming weights) based on causal information. The stochastic program is equivalent
to a set of simple subproblems and the exact evaluation of the objective of each
subproblem is impossible. To tackle this we propose a surrogate of the original
subproblem that pertains to the Sample Average Approximation method. We denote
this approach as model-based because it adopts the assumption that the underlying
correlation structure of the channels is completely known. The second method is denoted
asmodel-free, because it adopts no assumption for the channel statistics. For the scope of
this approach, we set the problem of discrete relay motion control in a dynamic
programming framework. Finally we employ deep Q learning to derive the motion
policies. We provide implementation details that are crucial for achieving good
performance in terms of the collective SINR at the destination.
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GRAPHICAL ABSTRACT |

1 INTRODUCTION

In distributed relay beamforming networks, spatially distributed
relays synergistically support the communication between a
source and a destination (Havary-Nassab et al., 2008a; Li
et al., 2011; Liu and Petropulu, 2011). The concepts of
distributed beamforming hold the promise of extending the
communication range and of minimizing the transmit power
that is being wasted by being scattered to unwanted directions
(Barriac et al., 2004).

Intelligent node mobility has been studied as a means of
improving the Quality-of-Service (QoS) in communications. In
(Chatzipanagiotis et al., 2014), the interplay of relay motion
control and optimal transmit beamforming is considered with
the goal of minimizing the relay transmit power, subject to a QoS-
related constraint. In (Kalogerias et al., 2013), optimal relay
positioning in the presence of an eavesdropper is considered,
aiming to maximize the secrecy rate. In the context of
communication-aware robotics, motion has been controlled
with the goal of maintaining in-network connectivity (Yan and
Mostofi, 2012; Yan and Mostofi, 2013; Muralidharan and
Mostofi, 2017).

In this work, we examine the problem of optimizing the
sequence of relay positions (relay trajectory) and the
beamforming weights so that some SINR-based metric is
maximized at the destination. The assumption that we adopt
is that the channel evolves as a stochastic process that exhibits
spatiotemporal correlations. Intrinsically, optimal relay
positioning requires the knowledge of the Channel State
Information (CSI) in all candidate positions at a future time
instance. This is almost impossible to achieve since the channel
varies with respect to time and space. Nonetheless, since the
channel exhibits spatiotemporal correlations (induced by the
shadowing propagation effect (Goldsmith, 2005; MacCartney
et al., 2013) that is prominent in urban environments), it can

be, explicitly or implicitly, predicted. We follow two different
directions, when it comes to the discrete relay motion control.

The first direction (Kalogerias and Petropulu, 2018; Kalogerias
and Petropulu, 2016) (we call it model-based) pertains to the
formulation of a stochastic program that computes the
beamforming weights and the subsequent relay positions, so
that some SINR-based metric at the destination is maximized,
subject to a total relay power budget, assuming the availability of
causal CSI information. This 2-stage problem is equivalent to a set
of 2-stage subproblems that can be solved in distributed fashion,
one by each relay. The objective of each subproblem is impossible
to be analytically evaluated, so an efficient approximation is
proposed. This approximation acts as a surrogate to the initial
objective. The surrogate relies on the Sample Average
Approximation (SAA) (Shapiro et al., 2009). The term
“model-based” is not to be confused with model-based
reinforcement learning. We just use it because this method (or
direction rather) assumes complete knowledge of the underlying
correlation structure of the channels, so it is helpful formalism to
distinguish this method from the second approach that makes no
particular assumption for the channel statistics.

The second direction (Evmorfos et al., 2021a; Evmorfos et al.,
2021b; Evmorfos et al., 2022) tackles the problem of discrete relay
motion control from a dynamic programming viewpoint. We
formulate the Markov Decision Process (MDP), that is induced
by the problem of controlling the motion. Finally, we employ
deep Q learning (Mnih et al., 2015) to find relay motion policies
that maximize the sum of SINRs at the destination over time. We
propose a pipeline for adapting deep Q learning for the problem
at hand. We experimentally show that Multilayer Perceptron
Neural Networks (MLPs) cannot capture high frequency
components in natural signals (in low-dimensional domains).
This phenomenon, referred to as “Spectral Bias” (Jacot et al.,
2018) has been observed in several contexts, and also arises as an
issue in the adaptation of deep Q learning for the relay motion
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control. We present an approach to tackle spectral bias, by
parameterizing the Q function with a Sinusoidal
Representation Network (SIREN) (Sitzmann et al., 2020).

Our intentions for this work lie in two directions. First, we
attempt to compare two methods for relay motion control in
urban communication environments. The two methods
constitute two different viewpoints in terms of tackling the
problem. The first method assumes complete knowledge on
the underlying statistics of the channels (model-based)
Kalogerias and Petropulu, (2018). The second method is
completely model-free in the sense that it drops all
assumptions for knowledge of the channel statistics and
employs deep reinforcement learning to control the relay
motion Evmorfos et al. (2022). In addition to the head-to-
head comparison, we propose a slight variation of the model-
free method that deviates from the one in Evmorfos et al. (2022)
by augmenting the state with the addition of the timestep as an
extra feature. This variation is more robust than the previous one,
especially when the shadowing component of the urban
environment is particularly strong.

Notation: We denote the matrices and vectors by bold
uppercase and bold lowercase letters, respectively. The
operators (·)T and (·)H denote transposition and conjugate
transposition respectively. Caligraphic letters will be used to
denote sets and formal script letters will be used to denote σ-
algebras. The ℓp-norm of x ∈ Rn is ‖x‖p ≜ (∑n

i�1|x(i)|p)1/p, for all
N ∋ p≥ 1. For N ∋ N≥ 1, SN, SN+(+) will denote the sets of
symmetric and symmetric positive (semidefinite) matrices,
respectively. The finite N-dimensional identity operator will be
denoted as IN. Additionally, we define J ≜

���−1√
, N+ ≜ 1, 2, . . .{ },

N+
n ≜ 1, 2, . . . , n{ }, Nn ≜ 0{ } ∪ N+

n and Nm
n ≜ N+

n \N
+
m−1, for

positive naturals n > m.

2 PROBLEM FORMULATION

2.1 System Model
Consider a scenario where source S, located at position pS ∈ R2,
wishes to communicate with user D, located at pD ∈ R2 but does
not have enough power to do so, or due to the topography, cannot
communicate in a line-of-sight (LoS) fashion. Therefore, R single-
antenna, trusted mobile relays are enlisted to support the
communication. The relays are deployed over a two-
dimensional space, which is partitioned into M × M imaginary
grid cells. Time evolves in a time-slotted fashion, where T is the
slot duration, and t denotes the current time slot. In every time
slot, a grid cell can be occupied by at most one relay.

Source S transmits symbol s(t) ∈ C, where E[|s(t)|2] � 1,
using power

��
PS

√ > 0. Let us drop for notational simplicity the
relay position dependence on t. The signal received by relay Rr,
located at pr(t), r = 1, . . . , R, equals

xr t( ) � ��
PS

√
fr pr, t( )s t( ) + nr t( ),

where fr denotes the flat fading channel from S to relay Rr, and
nr(t) denotes reception noise at relay Rr, with E[|nr(t)|2] � σ2,
r = 1, . . . , R.

Each relay operates in an Amplify-and-Forward (AF) fashion,
i.e., it transmits received signal, xr(t), multiplied by weight
wr(t) ∈ C. Due to the relays’ simultaneous transmissions, the
destination D receives

y t( ) �∑R
r�1

gr pD, t( )wr t( )xr t( ) + nD t( ),

where gr denotes the flat fading channel from relay Rr to
destination D, and nD(t) denotes reception noise at D. We
assume here that E[|nD(t)|2] � σ2D y(t) can be rewritten as

y t( ) �∑R
r�1

gr pD , t( )wr t( ) ��PS

√
fr pr, t( )s t( )︸															︷︷															︸

desired signal

+∑R
r�1

gr pD , t( )wr t( )nr t( ) + nD t( )︸													︷︷													︸
noise

≜ ysignal t( ) + ynoise t( ),

where ysignal(t) is the received signal component and nD(t)
represents noise at the destination.

In the following, we will use the vector
p(t) ≜ [pT1 (t) pT2 (t) . . . pTR(t)]T , to collect the positions of all
relays at time t.

2.2 Channel Model
The channel evolves in time and space and can be described in
statistical terms. In particular, during time slot t, the channel
between the source and a relay positioned at pr ∈ R2 can be
modeled as the product of four components (Heath, 2017), i.e.,

fr pr, t( ) ≜ fPL
r pr( )fSH

r pr, t( )fMF
r pr, t( ) ej2πϕ t( ), (1)

where fPL
r (pr) ≜‖pr − pS‖−ℓ/22 is the path-loss component with

path-loss exponent ℓ; fSH
r (pr, t) the shadow fading component;

fMF
r (pr, t) the multi-path fading component; and ej2πϕ(t), with ϕ

uniformly distributed in [0, 1], a phase term. A similar model
holds for the relay-destination channel gr (pr, t).

The logarithm of the squared channel magnitude of Eq. 1
converts the multiplicative channel model into an additive
one, i.e.,

Fr pr, t( ) ≜ 10log10 |fr pr, t( )|2( )
≜ αfr pr( ) + βfr pr, t( ) + ξfr pr, t( ),

with

αf
r pr( ) ≜ − ℓ 10log10 ‖pr − pS‖2( ),

βfr pr, t( ) ≜ 10log10 |fSH
r pr, t( )|2( ) ~ N 0, η2( ), and

ξfr pr, t( ) ≜ 10log10 |fMF
r pr, t( )|2( ) ~ N ρ, σ2ξ( ),

where η2 is the shadowing power, and ρ, σ2ξ are the mean and
variance of multipath fading component, respectively.

The multipath fading component, ξfr (pr, t), varies fast in
time and space, and is typically modeled as is i. i.d. between
different positions and times. On the other hand, the
shadowing component, βfr (pr, t), induced by relatively large
and slowly moving objects in the path of the signal, exhibits
correlation between any two positions pi and pj, and between
any two time slots ta and tb, as (Kalogerias and Petropulu,
2018)
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E βfr pi, ta( )βfr pj, tb( )[ ] � ~Σ
f
pi, pj( )e−|ta−tb |

c2 ,

where

~Σ
f
pi, pj( ) ≜ η2e− ‖pi−pj‖2/c1 ∈ RM2×M2

,

with c1 denoting the correlation distance, and c2 the correlation
time. Similar correlations hold for similarly βgr (pi, t).

Further, βfr (pi, t) and βgr (pi, t) exhibit correlations as

E βfr pi, ta( )βgr pj, tb( )[ ] � ~Σ
fg

pi, pj( )e−|ta−tb |
c2 ,

where

~Σ
fg

pi, pj( ) � ~Σ
f
pi, pj( )e−‖pS−pD‖2

c3

and c3 denoting the correlation distance of the source-destination
channel (Kalogerias and Petropulu, 2018).

2.3 Joint Scheduling of Communications
and Controls
Let us assume the same carrier for all communication tasks, and
employ a basic joint communication/decision making TDMA-
like protocol. At each time slot t ∈ N+

NT
, the following actions are

taken:

1. The source broadcasts a pilot signal to all relays, based on
which the relays estimate their channels to the source.

2. The destination also broadcasts pilots, which the relays use to
estimate their channels relative to the destination.

3. Then, based on the estimated channels, the relays beamform in
AF mode. Here we assume perfect CSI estimation.

4. Based on the CSI that has been received up to that point, a
decision is made on where the relays need to go to, and relay
motion controllers are determined to steer the relays to those
positions.

The above steps are repeated for NT time slots. Let us assume
that the relays pass their estimated CSI to the destination via a
dedicated low-rate channel. This simplifies information decoding
at the destination (Gao et al., 2008; Proakis and Salehi, 2008).

Concerning relay motion, we assume that the relays obey the
differential equation (Kalogerias and Petropulu, 2018)

_p τ( ) ≡ u τ( ), ∀τ ∈ 0, T[ ],
where u ≜ [u1 . . . uR]T , with ui: [0, T] being the motion
controller of relay i ∈ N+

R. Assuming the relays may move only
after their controls have been determined and their movement
must be completed before the start of the next time slot, we can
write (Kalogerias and Petropulu, 2018)

p t( ) ≡ p t − 1( ) + ∫
Δτt−1

ut−1 τ( )dτ, ∀t ∈ N2
NT
,

with p(1) ≡ pinit, and where Δτt ⊂ R and ut denote the time
interval that the relays are allowed to move in, and the respective
relay controller, in each time slot t ∈ N+

NT−1. It holds that

u(τ) ≡ ∑t∈N+
NT−1

ut(τ)1Δτt(τ), where τ belongs in the first NT −

1 time slots. In each time slot t, the length of Δτt, |Δτt|, must be
small enough, so that the shadowing correlation at adjacent time
slots is strong enough. These correlations are controlled by
parameter γ, which can be function of the slot width. Thus,
relay velocity must be of the order of (|Δτt|)−1. For simplicity,
here we assume that the relays are not resource constrained when
they move and they are only limited by their transmission power.

To determine the relay motion controller ut−1(τ), τ ∈ Δτt−1,
given a goal position vector at time slot t, po(t), it suffices to
decide on a path in SR, such that the points po(t) and p(t − 1) are
connected in at most time |Δτt−1|. Assuming the simplest path,
i.e., a straight line between poi (t) and pi(t − 1), for all i ∈ N+

R, the
relay controllers at time slot t − 1 ∈ N+

NT−1 is

uo
t−1 τ( ) ≜ 1

Δτt−1| | po t( ) − p t − 1( )( ), ∀τ ∈ Δτt−1.

Based on the above, the motion control problem can be
formulated in terms of specifying the relay positions at the
next time slot, given the relay positions at the current time
slot and the estimated CSI. We assume here for simplicity that
there exists some path planning and collision avoidance
mechanism, the derivation of which is out of the scope of
this paper.

For simplicity and tractability, we are assuming that the
channel is the same for every position within each grid cell,
and for the duration of each time slot. In other words, we are
essentially adopting a time-space block fading model, at least for
motion control purposes. This is a valid approximation of reality
as the grid cell size and the time slot duration become smaller, at
the expense of more stringent resource constraints at the relays,
and faster channel sensing capability. Under this setting,
communication and relay control can indeed happen
simultaneously within each time slot, with the understanding
that at the start of the next time slot, each relay must have
completed their motion (starting at the previous time slot–also
see our discussion earlier in this section–). In this way, our
approach is valid in a practical setting where communication
needs to be continuous and uninterrupted.

Additionally, we are assuming that the relays move sufficiently
slowly, such that the local spatial and temporal changes of the
wireless channel due to relay motion itself are negligible, e.g.,
Doppler shift effects. Then, spatial and temporal variations in
channel quality are only due to changes in the physical
environment, which happen at a much slower rate than that
of actual communication. Note that this is a standard
requirement for achieving a high communication rate,
whatsoever.

We see that there is a natural interplay between relay velocity
and the relative rate of change of the communication channel
Kalogerias and Petropulu (2018). The challenge here is to identify
a fair tradeoff between a reasonable relay velocity, grid size and a
time slot, which would enable simultaneously faithful channel
prediction and feasible and effective motion control (adherring to
potential relay motion constraints). The width of the
communication time slot depends on the spatial characteristics
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of the terrain, which varies with each application. This also
determines the sampling rate employed for identifying the
parameters of the adopted channel model. In theory, for a
given relay velocity, the relays could move to any position up
to which the channel remains correlated. However, as the per
time slot rate of communications depends on the relay velocity
(characterizing system throughput), the relays should move to
much smaller distances within the slot.

In the following we useC(T t) to denote the set of channel gains
observed by the relays, along their trajectories T t ≜ p(1) . . . p(t){ },
t ∈ N+

NT
. Then, T t may be recursively updated as

T t ≡ T t−1 ∪ p(t){ }, for all t ∈ N+
NT

, with T 0 ≜ ∅. In a more
precise sense, C(T t){ }t∈N+

NT
will also denote the filtration

generated by the CSI observed at the relays, along T t,
interchangeably. In other words, C(T t) denotes the information
(i.e., the σ-algebra) generated by the CSI observed up to and
including time slot t and p(1) . . . p(t), for all t ∈ N+

NT
. By

convention, we define C(T 0) ≡ C( ∅{ }) (i.e., as the trivial σ-
algebra C(T 0) ≜ ∅,Ω{ }), and we refer to time t ≡ 0, as a
dummy time slot.

2.4 Spatially Controlled SINR Maximization
at the Destination
Next, we present the first stage of the 2-stage generic formulation.
The 2-stage approach optimizes network QoS by optimally
selecting beamforming weights and relay positions, on a per
time slot basis. In this subsection, we focus on the calculation
of the beamforming weights. The calculation of the weights at
each step remains the same both for the stochastic programming
(model-based) method and the dynamic programming (model-
free) method.

Optimization of Beamforming Weights: At time slot t ∈ N+
NT

,
given CSI in C(T t), we formulate the problem (Havary-Nassab
et al., 2008b; Zheng et al., 2009)

maximize
w t( )≜ w1 t( ),...,wR t( )[ ]T

E PS t( ) |C T t( ){ }
E PI+N t( ) |C T t( ){ }

subject to E PR t( ) |C T t( ){ }≤Pc

, (2)

where PR(t), PS(t) and PI+N(t) denote the random
instantaneous power at the relays, the power of the signal
component and the power of the interference plus noise at the

destination, respectively, and where Pc > 0 denotes the total relay
transmission power budget. Based on the mutual independence
of source and destination CSI, (Eq. 2) can be expressed as
(Havary-Nassab et al., 2008b)

maximize
w t( )

wH t( )R p t( ), t( )w t( )
σ2
D + wH t( )Q p t( ), t( )w t( )

subject to wH t( )D p t( ), t( )w t( )≤Pc

, (3)

where, dropping the dependence on (p(t), t) or t for brevity,

D ≜ P0diag f1

∣∣∣∣ ∣∣∣∣2 f2

∣∣∣∣ ∣∣∣∣2 . . . fR

∣∣∣∣ ∣∣∣∣2[ ]T( ) + σ2IR ∈ S
R
++,

R ≜ P0hh
H ∈ S

R
+ , with h ≜ f1g1 f2g2 . . . fRgR[ ]Tand

Q ≜ σ2diag g1

∣∣∣∣ ∣∣∣∣2 g2

∣∣∣∣ ∣∣∣∣2 . . . gR

∣∣∣∣ ∣∣∣∣2[ ]T( ) ∈ S
R
++.

The optimization problem of Eq. 3 is always feasible, as long as
Pc is nonnegative, and the optimal value of Eq. 3 can be expressed
in closed form as (Havary-Nassab et al., 2008b)

Vt ≡ V p t( ), t( )
≜ Pcλmax σ2

DIR + PcD
−1/2QD−1/2( )−1D−1/2RD−1/2( ),

for all t ∈ N+
NT

, which can be further written as (Zheng et al.,
2009)

Vt ≡ ∑
i∈N+

R

PcP0 f pi t( ), t( )∣∣∣∣ ∣∣∣∣2 g pi t( ), t( )∣∣∣∣ ∣∣∣∣2
P0σ

2
D f pi t( ), t( )∣∣∣∣ ∣∣∣∣2 + Pcσ

2 g pi t( ), t( )∣∣∣∣ ∣∣∣∣2 + σ2σ2D
≜ ∑

i∈N+
R

VI pi t( ), t( ), ∀t ∈ N+
NT
.

The above analytical expression of the optimal value Vt in terms
of relay positions and their corresponding channel magnitudes
will be key in our subsequent development.

3 STOCHASTIC PROGRAMMING FOR
MYOPIC RELAY CONTROL

During time slot t − 1, we need to determine the relay positions
for time slot t, so that we achieve the maximum Vt. However, at
time slot t − 1, we only know C(T t−1), which does not include
information on the CSI that will be experienced during time slot t.
Therefore, exactly optimizing the relay positions at the next time
slot seems to be an impossible task.

FIGURE 1 | 2-Stage optimization of beamforming weights and relay
motion controls. The variable w*(t − 1) denotes the optimal beamforming
weights, selected at time slot t − 1.

FIGURE 2 | Figure for visualizing the Pipeline of the deep Q learning with
SIRENs approach.
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Since deterministic optimization of Vt with respect to p(t) is
not possible to be carried out during time slot t − 1, we can
alternatively optimize a projection of Vt onto the space of all
measurable functions of C(T t−1) Kalogerias and Petropulu,
(2018). Since, for every p(t) ∈ SR, Vt is of finite variance, we
can consider orthogonal projections. In other words, we can
consider the MinimumMean-Square Error (MMSE) predictor of
Vt given the available information C(T t−1). We can then
optimize the E Vt |C(T t−1){ } with respect to the point p(t),
which results in the 2-stage stochastic program (Shapiro et al.,
2009)

maximize
p t( )

E Vt ≡ ∑
i∈N+

R

VI pi t( ), t( )
∣∣∣∣∣∣∣∣∣∣∣C T t−1( )

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭

subject to p t( ) ∈ C po t − 1( )( )
, (4)

to be solved at time slot t − 1 ∈ N+
NT−1, where p

o(1) ∈ SR is the
initial positions of the relays and C(po(t − 1)) ⊆ SR denotes
spatially feasible neighborhood around point po(t − 1) ∈ SR,
which is the optimal decision vector determined at time slot t −
2 ∈ NNT−2 For example, C may be such that it does not allow the
relays to collide with each other, or with other obstacles in space
at their next slot positions. In general, C depends on t, but here,
for simplicity that dependence is not shown.

The map C(·) is typically referred to as finite-valued
multifunction, and we write C: SR6SR (Shapiro et al., 2009).
Additionally, problems (4) and (3) are referred to as the first-stage
problem and the second-stage problem, respectively (Shapiro et al.,
2009). The block diagram of the above described process is shown
in Figure 1.

As compared to traditional AF beamforming for a static case,
our spatially controlled system described above, uses the same
CSI as in the stationary case, to predict the optimal beamforming
performance in its vicinity in the MMSE sense, and moves to the
optimally selected location. The prediction here relies on the
aforementioned spatiotemporal channel model. Of course, this
requires a sufficiently slowly varying channel relatively to relay
motion, which can be guaranteed if the motion is constrained
within small steps.

3.1 Motion Policies & the Interchangeability
Principle
To assist in the process of understanding the techniques to
solve Eq. 4, we make note of an important variational property
of Eq. 4, related to the long-term performance of the proposed
spatially controlled beamforming system. Our discussion
pertains to the employment of the so-called
Interchangeability Principle (IP) (Bertsekas and Shreve,
1978; Bertsekas, 1995; Rockafellar and Wets, 2004; Shapiro
et al., 2009; Kalogerias and Petropulu, 2017), also known as the
Fundamental Lemma of Stochastic Control (FLSC) (Astrom,
1970; Speyer and Chung, 2008) Kalogerias and Petropulu,
(2018). The IP refers conditions that allow the interchange
of expectation and maximization or minimization in general
stochastic programs.

A version of the IP for the first-stage problem of (4) is
established in (Kalogerias and Petropulu, 2017) Specifically,
the IP implies that (4) is exchangeable by the variational
problem (Kalogerias and Petropulu, 2017)

maximize
p t( )

E Vt{ }
subject to p t( ) ∈ C po t − 1( )( )

p t( ) isC T t−1( ) −measurable

, (5)

to be solved at each t − 1 ∈ N+
NT−1. Upon comparing Eq. 5 and

the original problem Eq. 4 one can see that, the former
problem includes optimization of the unconditional
expectation of Vt over all (measurable) mappings of the
variables generating C(T t−1) to C(po(t − 1)). “This implies
that, in Eq. 5, p(t) is a function of all CSI and motion
controls up to and including time slot t − 1, whereas, in Eq.
4, p(t) is a point, since all variables generating C(T t−1) are fixed
before decision making. Aligned with the literature, any feasible
decision p(t) in Eq. 5 will be called an (admissible) policy, or a
decision rule. Exchangeability of Eqs. 4, 5 is understood in the
sense that the optimal value of Eq. 5, which is a number,
coincides with the expectation of the optimal value of Eq. 4,
which is a measurable function of C(T t−1) (and fixed for every
realization of the variables generating C(T t−1)). In other
words, maximization is interchangeable with integration, in
the sense that” (Kalogerias and Petropulu, 2017)

sup
p t( )∈Dt

E Vt{ } ≡ E sup
p t( )∈C po t−1( )( )

E Vt C T t−1( )|{ }
⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭,

for all t ∈ N2
NT

, where Dt denotes the set of feasible decisions for
(Eq. 5). Furthermore, due to our assumption that the control
space S is finite, the IP guarantees that an optimal solution to the
original stochastic program (Eq. 4) is also feasible and thus,
optimal, for (Eq. 5).

m1: t−1 ≜ FT 1( )GT 1( ) . . . FT t − 1( )GT t − 1( )[ ]T ∈ R2R t−1( )×1

(6)
μ1: t−1 ≜ αS p 1( )( ) αD p 1( )( ) . . . αS p t − 1( )( ) αD p t − 1( )( )[ ]Tℓ ∈ R2R t−1( )×1 (7)

cF G( )
1: t−1 p( ) ≜ cF G( )

1 p( ) . . . cF G( )
t−1 p( )[ ] ∈ R1×2R t−1( ) (8)

cF G( )
k p( )≜ E σS D( ) p, t( )σjS k( ){ }{ }

j∈N+
R

E σS D( ) p, t( )σjD k( ){ }{ }
j∈N+

R

[ ] ∈R1×2R, ∀k ∈N+
t−1

(9)

Σ1: t−1 ≜
Σ 1, 1( ) / Σ 1, t − 1( )

..

.
1 ..

.

Σ t − 1, 1( ) / Σ t − 1, t − 1( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ S

2R t−1( )
++ (10)

3.2 Near-Optimal Beamformer Motion
Control
One can readily observe that the problem of (4) is separable.
Given that, for each t ∈ N+

NT−1, decisions taken and CSI collected
so far are available to all relays, (4) can be solved in a distributed
fashion at the relays, with the ith relay being responsible for
solving the problem (Kalogerias and Petropulu, 2018)
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maximize
p

E VI p, t( ) ∣∣∣∣C T t−1( ){ }
subject to p ∈ Ci po t − 1( )( ) , (11)

at each t − 1 ∈ N+
NT−1, where Ci: R26R2 denotes the

corresponding section of C, for each i ∈ N+
R. Note that no local

exchange of intermediate results is required among relays; given
the available information, each relay independently solves its own
subproblem. It is also evident that apart from the obvious
difference in the feasible set, the optimization problems at
each of the relays are identical.

However, the objective of problem Eq. 11 is impossible to
obtain analytically, and it is necessary to resort to some well
behaved and computationally efficient surrogates. Next, we
present a near-optimal such approach. The said approach
relies on global function approximation techniques, and
achieves excellent empirical performance.

The proposed approximation to the stochastic program (11)
will be based on the following technical, though simple, result.

Lemma 1 (Big Expectations) (Kalogerias and Petropulu, 2018)
Under the assumptions of the wireless channel model, it is true
that, at any p ∈ S,

F p, t( )
G p, t( )[ ]∣∣∣∣∣∣∣∣C T t−1( ) ~ N μF,G

t | t−1 p( ),ΣF,G
t | t−1 p( )( ),

for all t ∈ N2
NT

, and where we define

μF,Gt|t−1 p( ) ≜ μFt | t−1 p( ) μGt | t−1 p( )[ ]T ,
μFt|t−1 p( ) ≜ αS p( )ℓ + cF1: t−1 p( )Σ−1

1: t−1 m1: t−1 − μ1: t−1( ) ∈ R,

μGt|t−1 p( ) ≜ αD p( )ℓ + cG1: t−1 p( )Σ−1
1: t−1 m1: t−1 − μ1: t−1( ) ∈ R and

ΣF,G
t|t−1 p( ) ≜ η2 + σ2ξ η2e−

pS−pD‖ ‖2
δ

η2e−
pS−pD‖ ‖2

δ η2 + σ2
ξ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− cF1: t−1 p( )

cG1: t−1 p( )[ ]Σ−1
1: t−1

cF1: t−1 p( )
cG1: t−1 p( )[ ]T ∈ S

2
++,

with m1:t−1, μ1:t−1, cF1: t−1(p), cG1: t−1(p), cFk(p), cGk (p) and Σ1:t−1

defined as in (6), (7), (8), (9), and (10) respectively, for all
(p, t) ∈ S × N2

NT
. Further, for every choice of (m, n) ∈ Z × Z,

the conditional correlation of the fields |f(p, t)|m and |g(p, t)|n
relative to C(T t−1) may be expressed in closed form as

E f p, t( )∣∣∣∣ ∣∣∣∣m g p, t( )∣∣∣∣ ∣∣∣∣n ∣∣∣∣C T t−1( ){ }
≡ 10 m+n( )ρ/20 exp

log 10( )
20

m
n

[ ]TμF,G
t | t−1 p( )⎛⎝ + log 10( )

20
( )2

m
n

[ ]TΣF,G
t|t−1 p( ) m

n
[ ]),

at any p ∈ S and for all t ∈ N2
NT

.

The detailed description of the proposed technique for
efficiently approximating our base problem (11) now follows.

Sample Average Approximation (SAA): This is a direct
Monte Carlo approach, where, at worst, existence of a
sampling, or pseudosampling mechanism at each relay is
assumed, capable of generating samples from a bivariate
Gaussian measure. We may then observe that the objective
of Eq. 11 can be represented, for all t ∈ N2

NT
, via a Lebesgue

integral as

E VI p, t( ) ∣∣∣∣C T t−1( ){ } � ∫
R2
r x( )N x; μF,G

t | t−1 p( ),ΣF,G
t | t−1 p( )( )dx,

for any choice of p ∈ S, whereN (·; μ,Σ): R2 → R++ denotes the
bivariate Gaussian density, with mean μ ∈ R2×1 and covariance
Σ ∈ S2×2+ , and the function r: R2 → R++ is defined as

r x( ) ≜ PcP010ρ/10 exp x1 + x2( )[ ]ς
P0σ2D exp x1( )[ ]ς + Pcσ2 exp x2( )[ ]ς + 10−

ρ
10σ2σ2

D

,

for all x ≡ (x1, x2) ∈ R2, where ς ≜ log(10)/10. By a simple
change of variables, it is also true that

E VI p, t( ) ∣∣∣∣C T t−1( ){ } � ∫
R2

r
��������
ΣF,G
t | t−1 p( )√

x + μF,G
t | t−1 p( )( )N x; 0, I2( )dx,

for all p ∈ S and t ∈ N2
NT

.
Now, for each relay i ∈ N+

R, at each t ∈ N+
NT−1 and for some

S ∈ N+, let {xji,t}j∈N+
S
be a sequence of independent random

elements in R2, such that xji,t ~ N (0, I2), for all j ∈ N+
S . We

also assume that all such sequences are mutually independent
of the channel fields F and G. Then, by defining the sample
average estimate

SS p, t( ) ≜ 1
S
∑
j∈N+

S

r
��������
ΣF,G
t | t−1 p( )√

xij,t−1 +μF,G
t | t−1 p( )( ),

the SAA of our initial problem Eq. 11 is formulated as

maximize
p

SS p, t( )
subject to p ∈ Ci po t − 1( )( ) , (12)

at relay i ∈ N+
R, solved at each t − 1 ∈ N+

NT−1. A detailed analysis of
the SAA problem Eq. 12 is out of the scope of our discussion
herein. Still, it is worth mentioning that the feasible of set of Eq.
12 is finite, and therefore its optimal solution possesses various
strong asymptotic guarantees in terms of convergence to the
optimal solution of the original problem, as S → ∞. For further
details, see (Shapiro et al. (2009), Chapter 5).

On the downside, computing the objective of the SAA
problem Eq. 12 assumes availability of Monte Carlo
samples, which could be restrictive in certain scenarios.
Nevertheless, assuming mutual independence of the
sequences {xji,t}j, for each i and each t is not required. In
fact, one could generate one sequence for all relays, per time
slot, or even better, one sequence for all relays, for all time slots
altogether. Such sampling schemes are legitimate, for two
reasons. First, all SAAs of the form Eq. 12 are solved
independently for each relay and at each time slot. Second,
Monte Carlo sampling is by construction statistically
independent from the spatiotemporal channel fields F and
G. As a result, such sampling schemes relax (in fact, eliminate)
the need for (pseudo)random sampling at each individual
relay. This makes them particularly attractive for practical
purposes.

We denote this approach as SAA for the rest of the paper. The
control flow of the SAA is presented in Algorithm 1.
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Algorithm 1. SAA

4 DEEP REINFORCEMENT LEARNING FOR
ADAPTIVE DISCRETE RELAY MOTION
CONTROL

4.1 Dynamic Programming for Relay Motion
Control
The previously mentioned approach tackles the problem of
relay motion control from a myopic perspective in the sense
that the stochastic program is formulated so as to select the
relay positions for the subsequent time slot with the goal of
maximizing the collective SINR at the destination only for that
particular slot.

The employment of reinforcement learning for the problem of
discrete relay motion control entails that we reformulate the
problem as a dynamic program. In this set up we want, at time
slot t − 1, to derive a motion policy (a methodology for choosing
the relays’ displacement) so as to maximize the discounted sum of
VIs (in expectation) from the subsequent time step t to the infinite
horizon.

To formally pose that program we need to introduce a Markov
Decision Process (MDP). The MDP is a tuple defined as
{S,A,P,R, γ} (Sutton and Barto, 2018):

The formulation of the dynamic program is as follows:
If γ is a discount factor, we can formulate the infinite horizon

relay control problem as:

maximize
u t( ),t≥0

E ∑∞
t�1

γt−1∑R
r�1

VI p t( ), t( )⎧⎨⎩ ⎫⎬⎭
subject to

C t( )
p t( )[ ] � e−1/c2C t − 1( ) +W t( )

p t − 1( ) + u t( )[ ]
u t( ) ∈ A is a function of C T t−1( )

, (13)

where u(t) is the control at time t (essentially determining the
relay displacement), and the driving noise W(t) is distributed as
N (0, (1 − e−2/c2 )ΣC) and C(0) ~ N (0,ΣC). ΣC is the covariance
matrix for all channels (source and destination) for all the cells in
the grid. The said covariance matrix is explicitly defined in
(Kalogerias and Petropulu, 2017) and admits a particular form

if the channels evolve according to the spatiotemporal Gaussian
process defined in 2.2.

Now, either the above problem defines a MDP or POMDP is
dependent on the history C(T t). In particular, if C(T t) is
generated by the whole state vector at each time slot then it is
easy to see that problem Eq. 13 is fully observable, since all CSI
generated by the environment is available for the relays to exploit
for deciding upon the subsequent displacement.

On the other hand, if C(T t) is generated by the relay decisions
together with only their local observations by their trajectories,
then problem Eq. 13 becomes partially observable. Specifically,
partial observability may be thought of as a dynamic observation
selection process, which only reveals CSI pertaining to the
trajectory of each relay, keeping the rest of the CSI hidden
from the decision making process.

4.2 Deep Q Learning for Discrete Relay
Motion Control
The employment of deep Q learning for relay motion control
expels the need for making particular assumption for the
underlying correlation structure of the channels.

Taking into account the (12) one can infer that we can
construct a single policy that is learned by the collective
experience of all the agents/relays and it constitutes the single
policy that the movement of all relays strictly adhere to. In that
spirit, we instantiate one neural network to parameterize the
state-action value function (Q) and it is being trained on the
experiences of all the relay. The motion policy is ϵ-greedy with
respect to the estimation of the Q function.

Initially, we adopt the deep Q learning algorithm as described in
(Mnih et al., 2015) and illustrated in Figure 2. Even though, as we
pointed out in the previous subsection, the state of the MDP is the
concatenation of the relay position p = s and the channels f (p, t) and
g (p, t), we follow a slightly different approach in the adoption of
deep Q learning. In particular, the input to the neural network is the
concatenation of the position p = [x, y] and the time step t. We
should note at this point that augmenting the neural network input
with the timestamp of the transition is a differentiation between the
algorithm presented in this current work and the solution proposed
in Evmorfos et al. (2022). This alternative, even though does not
affect the implementation much, provides measurable
improvements in cases where the power of the shadowing is
strong. The reward r is the contribution of the relay to the SINR
at the destination during the respective time step (VI). At each time
slot the relay selects an action a ∈ Afull.

In general, Q learning with rich function approximators such
as neural networks requires some heuristics for stability. The first
such heuristic is the Experience Replay (Mnih et al., 2015). Each
tuple of experience for a relay, namely
{state, action, next state, reward} ≡ s, a, s′, r}, is stored in a
memory This memory we denote as Experience Replay. For
the neural network updates, we sample uniformly a batch of
experiences from the Experience Replay and use that batch to
perform gradient descent to estimate the Q function (and
subsequently the decision-making policy).
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The second heuristic is the Target Network (Mnih et al., 2015).
The Target Network (Qtarget (s′, a′; θ−)) provides the estimation
for the targets (labels) for the updates of the Policy Network
(Qpolicy (s′, a′; θ+)), i.e., the network used for estimating the Q
function. The two networks share (typically) the same
architecture. We do not update the Target Network’s weights
with any optimization scheme, but, after a predefined number of
training steps, the weights of the Policy Network are copied to the
Target Network. This provides stationary targets for the weight
updates and brings the task of the Q function approximation
closer to a supervised learning paradigm.

Therefore, at each update step we sample a batch of
experiences from the Experience Replay and use the batch to
perform gradient descent on the loss:

L � Qpolicy s, a; θ+( ) − r + γ max
a′
Qtarget s′, a′; θ−( )( )( )2.

At each step, the Policy Network’s weights are updated
according to:

θ+t+1 � θ+t + λ Yt − Qpolicy s, a; θ+t( )( )∇θ+t Q s, a; θ+t( ).
where,

Yt � r + γ max
a′
Qtarget s′, a′; θ−t( )

The parameter λ is the learning rate. The parameter γ is a scalar
called the discount factor and γin (0, 1). The choice for the
discount factor pertains to a trade off between the importance
assigned to long term rewards and the importance assigned to
short term rewards. The parameters a, a′ ∈ Afull correspond to
the action chosen during the current state and the action chosen

for the next state (the state during the next time slot). Also, s and s′
correspond to the current state and the next state respectively. The
general pipeline of the deep Q learning algorithm is defined in
Figure 3.

When the relays move (the do not stay in the same grid cell
for two consecutive slots), they require additional energy
consumption. i some cases though, the diplacement to a
neighboring grid cell does not correspond to significant
improvement in terms of the cumulative SINR at the
destination. Therefore, to account for the energy used for
the application, we choose to not perform the ϵ-greedy
policy directly on the estimates Qpolicy (s, a; θ+) of the Q
function, but we decrease the estimates for all actions a, except
for the action stay, by a small percentage μ. In that way we
prohibit the relay displacement if this action does not
correspond to a significant increase in the expectation of
the cumulative sum of rewards (SINR). How significant this
displacement action should be for it to be performed pertains
to the choice of μ. For our simulations, in the subsequent
sections, we choose μ to be 1%.

4.3 Sinusoidal Representation Networks for
Q Function Parameterization
There have been many recent works which convincingly claim
that coordinate-based Multilayer Perceptron Neural Networks
(MLPs), i.e., MLPs that map a vector of coordinates to a low-
dimensional natural signal, fail to learn high frequency
components of the said signal. This constitutes a phenomenon
that is called the spectral bias in machine learning literature (Jacot
et al., 2018; Cao et al., 2019). The work in (Sitzmann et al., 2020)

FIGURE 3 | This is a heatmap for visualizing a trajectory of the relays. We can see the VI for all grid cells for four different time steps (each time step has a 2-time-slot
difference with the previous and the next). One can see the positions of the relays for every time slot. The relays are moving towards better and better positions (larger VIs).
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examines the amelioration of spectral bias for MLPs. The
inadequacy of MLPs for such inductive biases is bypassed by
introducing a variation of the conventional MLP architecture
with sinusoid (sin (·)) as activation function between layers. Tis
MLP alternative was termed Sinusoidal Representation Networks
(SIRENs), and was shown, both theoretically and experimentally,
to effectively tackle the spectral bias.

The sinusoid is a periodic function which is quite atypical as a
choice for activation function in neural networks. The authors in
(Sitzmann et al., 2020) propose the employment of weight
initialization framework so that the distribution of activations
is retained during training and convergence is achieved without
the network oscillating.

In particular, if we assume an intermediate layer of the neural
network with input x ∈ Rn, then the output is an affine
transformation using the weights w passed through the
sinusoid activation, therefore the output is sin(wTx + b). Since
the layer is not the first layer of the network, the input x is arcsine
distributed. With these assumptions it was shown in (Sitzmann
et al., 2020) that, if the elements of w, namely wi, are initialized
from a uniform distribution wi ~ U(−

�
6
n

√
,
�
6
n

√
), then

wTx ~ N (0, 1) as n grows. Therefore one should initialize the
weights of all intermediate layers with wi ~ U(−

�
6
n

√
,
�
6
n

√
). The

neurons of the first layer are initialized with the use of a scalar
hyperparameter ω0, so that the output of the first layer, sin (ω0Wx
+ b) spans multiple periods over [ − 1, 1]. W is a matrix whose
elements correspond to the weights of the first layer.

When we adopt the deep Q learning approach for discrete
relay motion control, we basically train a neural network (MLP)
to learn a low-dimensional natural signal from coordinates,
namely the state-action value function Q (s, a). The Q
function, Q (s, a), represents the sum of SINR at the
destination that the relays are expected to achieve for an
infinite time horizon, starting from the respective position s
and performing action a. The Policy Network, being a
coordinate MLP may not be able to converge for the high
frequency components of the underlying Q function that arise
from the fact that the channels exhibit very abrupt spatiotemporal
variations.

Therefore we propose that both the Policy and the Target
Networks are SIRENs. The control flow of the algorithm we

propose is given in Algorithm 2. We denote this as DQL-SIREN,
which stands for Deep Q Learning with Sinusoidal Representation
Networks.

Algorithm 2. DQL-SIREN

5 SIMULATIONS

We test our proposed schemes by simulating a 20, ×, 20 m grid.
All the grid cells are 1m × 1m. The number of agents/relays that
assist the single source destination communication pair is R = 3.
For every time slot the position of each relay is constrained within
the boundaries of the gridded region and also constrained to
adhere to a predetermined relay movement priority. Only one
relay can occupy a grid cell per time slot. The center of the relay/
agent and the center of the respective grid cell coincide.

When it comes to the shadowing part of our assumed channel
model, we define a threshold θ which quantifies the distance
in time and space where the shadowing component is
important and can be taken into account for the
construction of the motion policy. We assume that the
shadowing power η2 = 15 and the autocorrelation distance
is c1 = 10m and the autocorrelation time is c2 = 20sec. The
variances of noises at the relays and destination are fixed as
σ2 ≡ σ2D ≡ 1.The source and destination are fixed at
pS ≡ [10 0]T and pD ≡ [10 20]T .

Each one of the relays can move 1 grid cell/time slot and the
size of each cell is 1m × 1m (as mentioned before). The time slot
length is set to be 0.6sec. Therefore the calculation of the channel
and the decision of the movement for each relay should take up
an amount of time that is strictly less than the duration of the time
interval.

5.1 Specifications for the DQL-SIREN and
the SAA
Regarding the DQL-SIREN, we employ SIRENs for both the Policy
and the Target Networks. Each SIREN is comprised by three dense
layers (350 neurons for each layer) and the learning rate is 1e − 4.

FIGURE 4 | Comparison of the SAA, the DQL-SIREN and the Random
policy.
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The Experience Replay size is 3,000 tuples and we begin
every experiment with 300 transitions derived by a completely
random policy before the start of training for all the deep Q
learning approaches. The ϵ of the ϵ-greedy policy is initialized
to be 1 but it is steadily decreased until it gets to 0.1 This is a
very typical regime in RL. It is a very simple way to handle the
dilemma between exploration and exploitation in RL, where
we begin by giving emphasis to exploration first and then
gradually exploration is traded for exploitation. We copy the
weights of the Policy Network to the weights of the Target
Network every 100 steps of training. The batch size is chosen to
be 128 (even though the methods work reliably for different
batch sizes ranging from 64 to 512) and the discount factor γ is
chosen to be 0.99. We want to mention that small values for γ
translate to a more myopic agent (an agent that assigns
significance to short term rewards at the expense of long
term/delayed rewards). On the other hand, values of γ
closer to 1 correspond to agents that assign almost equal
value to long term rewards and short term rewards. For the
deep Q learning methods that we have proposed, we noticed
that for low values of γ converence and performance is
impeded, something that we attribute to the interplay of Q
learning and neural network employment rather than to the
nature of the underlying MDP.

We set the ω0 for the DQL-SIREN to 5 (the performance of the
algorithm is robust for different values of the said parameter). Finally,
we use the Adam optimizer for updating the network weights.

When it comes to the SAA, the sample size is set to 150 for the
experiments.

5.2 Synthesized Data and Simulations
We create synthetic CSI data that adhere to the channel statistics
described in 2.2.

In Figure 4, we plot the average SINR at the destination (in dB
scale) achieved by the cooperation of all three relays, per episode,
for 100 episodes, where every episode is comprised by 30 steps.
The transmission power of the source is PS = 57dbm and the relay
transmission power budget is PR = 57dBm. The assumed channel
parameters are set as ℓ = 2.3, ρ = 3, η2 = 15, σ2ξ � 3, c1 = 10, c2 = 20,
c3 = 0.5. The variance of the noise at the relays and destination are
σ2D � σ2 � 0.5.

We generate 3,000 = 100, ×, 30 instances of the source-relay
and relay destination channels for the whole grid (20, ×, 20).
Every 30 time steps we initialize the relays to random positions in
the grid and let themmove.We plot the average SINR for every 30
steps of the algorithms.

5.3 Simulation Results and Discussion
We present the results of our simulations in Figure 4. As we
stated before, the results correspond to the average SINR at the
destination for 100 episodes. Each episode consists of
30 time steps. The runs correspond to the average over six
different seeds.

We compare three different policies. The first one is the
Random policy, where each relay chooses the
displacement for the next step at random. The second
policy is the DQL-SIREN that solves the dynamic
program (maximization of the discounted sum of VIs for
every relay from the current time step to the infinite
horizon). The third policy is the myopic SAA that
corresponds to the stochastic program and optimizes each
individual relay’s VI for the subsequent slot.

As one can see that both the SAA and the DQL-SIREN
perform significantly better than the Random
policy (they both achieve an average SINR of
approximately 7 db in contrast to the Random policy that
achieves about 4 db). Table 1 contains a head-to-head
comparison of the SAA and the DQL-SIREN approaches
regarding some qualitative and some quantitative features.

The convergence of the DQL-SIREN is faster than that of
SAA. This is reasonable since, when it comes to the SAA
approach, for the first five episodes there have not been
collected enough samples (150). Both SAA and DQL-
SIREN perform approximately the same in terms of
average SINR. Towards the end of the experiments there is
a small gap between the two (with the SAA performing
slightly better). This can be attributed to the ϵ-greedy
policy of the DQL-SIREN, where ϵ never goes to zero
(choosing a random action a small percentage of the time
for maintaining exploration).

There are some interesting inferences that one can make,
based on the simulations. First of all, even though the SAA is
myopic and only attempts to maximize the SINR for the
subsequent time slot, works quite well in the sense of the
aggregated statistic of the average SINR. This is a clear
indication that, for the formulated problem, being greedy
translates to performing adequately in the sense of cumulative
reward.

Of course this peculiarity stands true only when the statistics
of the channels are completely known and do not change
significantly during the operation time. Apparently, in such a
scenario, the phenomenon of delayed rewards is not much
prevalent.

TABLE 1 | Table of comparison between the two methods regarding key features.

Features SAA DQL-SIREN

Channel statistics known (model-based) unknown (model-free)
Robustness w.r.t seeds extremely robust slight variation bt seeds
Memory size 150 transitions 3,000 transitions
Horizon myopic policies long horizon policies (for γ close to 1)
Exploration not required required (ϵ-greedy)
Best SINR achieved 7.4 db 7.2 db
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6 CONCLUSION

In this paper, we examine the discrete motion control for mobile
relays facilitating the communication between a source and a
destination. We compare two different approaches to tackle the
problem. The first approach employs stochastic programming for
scheduling the relay motion. This approach is myopic meaning that
it seeks to maximize the SINR at the destination, only at the
subsequent time slot. In addition, the stochastic programming
approach makes specific assumption for the statistics of the
channel evolution. The second approach is a deep reinforcement
learning approach that is not myopic meaning that its goal is to
maximize the discounted sum of SINR at the destination from the
subsequent slot to an infinite time horizon. Additionally, the second
approachmakes no particular assumptions for the channel statistics.
We test our methods in synthetic channel data produced in
accordance to a known model for spatiotemporally varying
channels. Both methods perform similarly and achieve significant
improvement in comparison to a standard random policy for relay
motion. We also provide a head-to-head comparison of the two
approaches regarding various key qualitative and quantitative

features. As future work, we plan on extending the current
methods for scenarios with multiple source-destination
communication pairs and, possibly, include the existence of
eavesdroppers.
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Bayesian Nonparametric Learning and
Knowledge Transfer for Object
Tracking Under Unknown
Time-Varying Conditions
Omar Alotaibi and Antonia Papandreou-Suppappola*

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, United States

We consider the problem of a primary source tracking a moving object under time-varying
and unknown noise conditions. We propose two methods that integrate sequential
Bayesian filtering with transfer learning to improve tracking performance. Within the
transfer learning framework, multiple sources are assumed to perform the same
tracking task as the primary source but under different noise conditions. The first
method uses Gaussian mixtures to model the measurement distribution, assuming that
the measurement noise intensity at the learning sources is fixed and known a priori and the
learning and primary sources are simultaneously tracking the same source. The second
tracking method uses Dirichlet process mixtures to model noise parameters, assuming
that the learning source measurement noise intensity is unknown. As we demonstrate, the
use of Bayesian nonparametric learning does not require all sources to track the same
object. The learned information can be stored and transferred to the primary source when
needed. Using simulations for both high- and low-signal-to-noise ratio conditions, we
demonstrate the improved primary tracking performance as the number of learning
sources increases.

Keywords: Bayesian nonparametric methods, machine learning, transfer learning, Gaussian mixture model,
Dirichlet process mixture model

1 INTRODUCTION

Most statistical signal processing algorithms for tracking moving objects rely on physics-based
models of the motion dynamics and on functions that relate sensor observations to the unknown
object parameters (Bar-Shalom and Fortmann, 1988; Arulampalam et al., 2002). Any uncertainty in
the motion dynamics or the tracking environment is most often characterized using probabilistic
models with fixed parameters. However, when the operational or environmental conditions change
during tracking, it is difficult to timely update the model parameters to better fit the new conditions.
Some of the algorithm assumptions may no longer hold during such changes, resulting in loss of
tracking performance. For example, radar performance has been shown to decrease when processing
echo returns from rain and fog conditions due to changes in signal-to-noise ratio (SNR) (Hawkins
and La Plant, 1959). As a result, unexpected changes in weather conditions will affect the accuracy of
estimating the position of a moving target. Such a degradation in performance could be avoided if
new information becomes available to help adapt the tracking algorithm.

Recent advances in sensing technology and increases in data availability have mandated the use of
statistical models driven by sensors and data and thus the integration of machine learning into signal
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processing algorithms (Mitchell, 1997; Hastie et al., 2016; Qiu et al.,
2016; Rojo-Álvarez et al., 2018; Little, 2019; Lang et al., 2020;
Theodoridis, 2020). For example, Gaussian mixtures, have been
extensively used for data clustering or density estimation (Fraley
and Raftery, 2002; Baxter, 2011; Reynolds, 2015). Different machine
learning methods have been used, for example, to overcome
limitations due to various assumptions on the sensing
environment and to solve complex inference problems. Transfer
learning is a machine learning method used to transfer and apply
knowledge that is learned from previous tasks to solve a current task
(Pan andYang, 2010; Torrey and Shavlik, 2010; Karbalayghareh et al.,
2018; Kouw and Loog, 2019; Papež andQuinn, 2019). Thismethod is
particularly advantageous when the data provided for inference is not
sufficient or is difficult to label (Jaini et al., 2017). Transfer learning
has been integrated into various signal processing applications,
including trajectory tracking and radioactive particle tracking
(Pereida et al., 2018; Lindner et al., 2022). Whereas many
machine learning methods are applicable to learning a set of
parameters of parametric models, Bayesian nonparametric
methods allow for probability models from infinite dimensional
families. They provide the flexibility to learn from current (and
adapt to new) measurements as well as to integrate prior knowledge
within the problem formulation (Ferguson, 1973; Antoniak, 1974;
Hjort et al., 2010; Orbanz and Teh, 2010; Müller and Mitra, 2013;
Xuan et al., 2019). Bayesian nonparametric methods have been
adopted in tracking applications to model uncertainty directly
from sensor observations. Dirichlet process mixtures were used to
learn unknown probability density functions (PDFs) of noisy
measurements (Escobar and West, 1995; Caron et al., 2008;
Rabaoui et al., 2012); hierarchical Dirichlet process priors were
used to learn an unknown number of dynamic modes (Fox et al.,
2011); Dirichlet process mixture models were used to cluster an
unknown number of statistically dependent measurements by
estimating their joint density (Moraffah et al., 2019); and the
dependent Dirichlet process was applied to learn the time-varying
number and label of objects, together with measurement-to-object
associations (Moraffah and Papandreou-Suppappola, 2018).

In this article, we propose tracking methods that integrate
learning methodologies with sequential Bayesian filtering to track
an object moving under unknown and time-varying noise
conditions. We consider a primary tracking source whose task is
to estimate the unknown dynamic state of the object using
measurements whose noise characteristics are unknown and
time-varying. Within the transfer learning framework, the
primary source acquires prior knowledge from multiple learning
sources that perform a similar tracking task but under different
conditions. The first approach considers learning sources that use
measurements with fixed and known noise intensity values and that
simultaneously track the same object as the primary source. The
Gaussian mixtures are used to model the measurement likelihood
distribution at each learning source, and the model parameters are
transferred to the primary source as prior knowledge. At the primary
source, the unknown measurement likelihood distribution is
estimated at each time step by modeling the transferred
information as a finite mixture whose weights are learned using
conjugate priors (Alotaibi and Papandreou-Suppappola, 2020). The
method is also integrated with track-before-detect filtering for

tracking in high noise conditions. As the many assumptions
made by this method can limit its applicability, we consider a
second approach for tracking in more realistic and complex
scenarios. This method considers learning sources with unknown
noise intensity and exploits Bayesian nonparametric learning by
modeling noise parameters using Dirichlet process mixtures. The
mixture parameters are learned using conjugate priors, whose
hyperparameters are modeled to provide estimates of the
unknown noise intensity. The learned models are stored and
made available to the primary source when needed (Alotaibi and
Papandreou-Suppappola, 2021). Both proposed methods are
extended to perform under high noise conditions by integrating
track-before-detect filtering with transfer learning.

2 MATERIALS AND METHODS

2.1 Overview of Learning Methods
2.1.1 Transfer Learning
Transfer learning (TL) differs from other machine learning
methods in that the data involved can originate from different
tasks or have different domains. It aims to improve the
performance of a primary source task by utilizing information
learned from multiple learning sources that may perform the
same or similar tasks but under different conditions (Arnold
et al., 2007; Pan and Yang, 2010; Torrey and Shavlik, 2010; Weiss
et al., 2016; Karbalayghareh et al., 2018; Kouw and Loog, 2019;
Papež and Quinn, 2019). This is specifically important when
sufficient data is not available at the primary source or when
labeling the data is problematic. The inductive TL method
assumes that the primary and secondary learning sources
perform different but related tasks under the same conditions.
On the other hand, the transductive TL method assumes that the
same task is performed by both the primary source and the
learning sources but under different conditions (Arnold et al.,
2007; Pan and Yang, 2010). In particular, the learning sources use
labeled data in order to adapt and learn a predictive distribution
that can then be used by the primary source to learn the same
predictive distribution but with unlabeled data. It is also
important to determine which of the learned information to
transfer to the primary source to optimize performance.

2.1.2 Gaussian Mixture Modeling
The unknown probability density function (PDF) of a noisy
measurement vector zk at time step k is often estimated using
the Gaussian mixture model (GMM). This is a probabilistic
model that assumes all measurements originate from a
mixture of M Gaussian components, and the mth component
PDF ND(zk; μm,k, Cm,k) is characterized by the mean vector μm,k

and the covariance matrix Cm,k,m = 1, . . .,M. The model is given
by1 (Fraley and Raftery, 2002; Reynolds, 2015):

1Throughout the paper, we use boldface lower case letters for row vectors, upper
case letters for matrices, and boldface upper case Greek letters for sets.
Supplementary Appendix A defines all acronyms and mathematical symbols
used in the paper.
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p zk | ϕk( ) � ∑M
m�1

bm,k ND zk; μm,k, Cm,k( ). (1)

where ϕk = [Φ1,k . . .ΦM,k] is the GMM parameter vector and
Φm,k � bm,k, μm,k, Cm,k{ }. The GMM parameters are learned
using the Dirichlet distribution conjugate prior for the weight
bm,k and the normal inverse Wishart distribution (NIWD)
conjugate prior for μm,k, Cm,k.

2.1.3 Dirichlet Process Mixture Modeling
A commonly used Bayesian nonparametric model for random
probability measures in an infinite dimensional space is the
Dirichlet process (DP) (Ferguson, 1973; Sethuraman, 1994).
The DP G defines a prior in the space of probability
distributions and is distributed according to DP(α, G0), where
α > 0 is the concentration parameter and G0 is the base
distribution. The DP G is discrete, consisting of a countably
infinite number of independent and identically distributed
parameter sets Θk randomly drawn from the continuous G0

(Sethuraman, 1994). The DP can be used to estimate the PDF
of measurement zk, with statistically exchangeable samples, as
follows:

p zk( ) � ∫p zk|Θ1: k( ) dG Θ1: k( ). (2)

It can also be used for clustering using mixture models.
Specifically, zk forms a cluster if p(zk | Θk) is parameterized by
the same parameter set Θk drawn from DP(α, G0). The DP
mixture (DPM) model is a mixture model with a countably
infinite number of clusters. Given DP parameter sets Θ1:k−1,
the predictive distribution of Θk, drawn from the DP for
clustering, is given by the Pólya urn representation

p Θk | Θ1: k−1, α, G0,Ψ( ) � α

k−1 + α
G0 Θk;Ψ( )

+ 1
k−1 + α

∑k−1
i�1

δ Θk −Θi( ). (3)

For a multivariate normal G0, Θk = {μk, Ck} consists of the
Gaussian mean μk and covariance Ck. The NIWD conjugate prior
with hyperparameter Ψ = {μ0, κ, Σ, ]} is used to model the
distribution of Θk.

2.2 Formulation of Object Tracking
2.2.1 Dynamic State Space Representation
We consider tracking a moving object with an unknown state
parameter xk using measurement zk at each time step k, k = 1, . . .,
K. The dynamic system is described by the state-space
representation.

xk � g xk−1( ) + vk−1 0 p xk|xk−1( ), (4)
zk � h xk( ) + wk 0 p zk|xk( ), (5)

where wk is the measurement noise vector and vk is a random
vector that accounts for modeling errors. The function g(xk)
models the transition of the unknown state parameters between
time steps, and h(xk) provides the relationship between the

measurement and the unknown state. The unknown state is
obtained by estimating the state posterior PDF p(xk | zk)
(Kalman, 1960; Bar-Shalom and Fortmann, 1988). This can be
achieved using recursive Bayesian filtering that involves two steps.
The prediction step obtains an estimate of the posterior PDF
using the transition PDF p(xk | xk−1) in Eq. 4 and the posterior
PDF p(xk−1 | zk−1) from the previous time step. The update step
amends the predicted estimate using the measurement likelihood
p(zk | xk) in Eq. 5. Assuming that the probabilistic models for vk in
Eq. 4 and wk in Eq. 5 are known, the posterior PDF can be
estimated recursively. Such methods include the Kalman filter
(KF), which assumes linear system functions and Gaussian
processes, and sequential Monte Carlo methods such as
particle filtering (Doucet et al., 2001; Arulampalam et al., 2002).

2.2.2 Tracking With Transfer Learning
We integrate transductive TL in our tracking formulation (see
Section 2.1.1), where a primary source and L learning sources
perform the same task of tracking a moving object. For ease of
notation, the primary source object state and measurement
vectors are denoted by xk and zk, as in Eqs. 4 and 5,
respectively; the corresponding ones for the ℓth learning
source, ℓ = 1, . . ., L, are denoted by xℓ,k and zℓ,k. The primary
source is tracking under time-varying conditions, resulting in
measurements with an unknown noise intensity ξk ∈ Ξp at time
step k in Eq. 5. Note that Ξp∈R+ is a set of discrete levels of noise
intensity values. The primary tracking is expected to benefit from
knowledge transferred from the L learning sources, provided that
the ℓth source measurement noise intensity ξ(ℓ,L), ℓ = 1, . . ., L,
takes values from the set Ξ∈R+ that has common values with Ξp.
This prior knowledge is in the form of learned probabilistic
models of the measurement noise distribution from each
learning source. At the primary source, the transferred models
are integrated into a finite mixture whose weights are learned
using Dirichlet priors.

2.2.3 Tracking Under Low Signal-To-Noise Ratio
Conditions
The measurements in Eq. 5 provided for tracking differ
depending on the SNR. For high SNRs, the object is assumed
present at all times and the measurements correspond to
estimated information from generalized matched filtering.
However, when the SNR is low, unthresholded measurements
are processed by integrating the track-before-detect (TBD)
approach with Bayesian sequential methods (Tonissen and
Bar-Shalom, 1988; Salmond and Birch, 2001; Boers and
Driessen, 2004; Ebenezer and Papandreou-Suppappola, 2016).
TBD incorporates a binary object existence indicator λk and
models the object existence as a two-state Markov chain. The
new formulation depends on the probability
Pd � Pr(λk � 0 | λk−1 � 1), which is the probability that the
object is not detected at time step k given that it was detected
at time k − 1. The transition PDF is given by

p xk, λk | xk−1, λk−1( ) � p xk | xk−1( ) 1 − Pd( ), λk � λk−1 � 1
pb xk( )Pb, λk � 1, λk−1 � 0

{ (6)
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where Pb � Pr(λk � 1 | λk−1 � 0) and pb(xk) is the initial PDF of
the object state when detected. The measurement likelihood is
given by

p zk|xk, λk( ) � p zk|xk( ), λk � 1
p wk( ), λk � 0.

{ . (7)

2.3 Tracking With Transfer Learning and
Gaussian Mixture Model Modeling
Following the tracking formulation in Section 2.2 within the TL
framework (see Section 2.1.1), we propose an approach to track a
moving object under time-varying measurement noise conditions
as our primary source task. It is assumed that L other sources are
simultaneously tracking the same object but using measurements
obtained from different sensors. The approach models the
measurement likelihood PDF of each learning source using
Gaussian mixtures and transfers the learned model parameters
to the primary source to improve its tracking performance. The
TL-GMM tracking method, summarized in Algorithm
1,discussed next, for high and low SNR conditions.

Algorithm 1. TL-GMM Recursive Tracking Algorithm

2.3.1 TL-GMM Tracking Method
2.3.1.1 Multiple Source Learning With TL-GMM
The task of the ℓth learning source is to estimate the posterior PDF of
the object state xℓ,k at time step k, given measurement zℓ,k, following
Eqs. 4 and 5. The measurement noisewℓ,k is assumed to have a zero-
meanGaussian distributionwith a known and constant intensity level
ξ(ℓ,L) ∈ ΞL; though not necessary, we assume that each source has a
unique intensity value. The state is recursively estimated using the
posterior PDF. It is first predicted using the prior PDF p(xℓ,k|xℓ,k−1).
Given the measurement zℓ,k, the measurement likelihood PDF is
estimated using Gaussian mixtures, as in Eq. 1.

p zℓ,k | xℓ,k,ϕℓ,k( ) � ∑M
m�1

bm,ℓ,kND zℓ,k | μm,ℓ,k, Cm,ℓ,k( ). (8)

Themth component has a mean μm,ℓ,k and a covariance matrix
Cm,ℓ,k and is weighted by the mixing parameter bm,ℓ,k, m = 1, . . .,
M. As the measurement noise intensity ξ(ℓ,L) is assumed to be
known at the learning sources, the noise covariance can be used to
initialize each GMM component with an equal probability bm,ℓ,1

= 1/M. The GMM parameter vector ϕℓ,k = [Φ1,ℓ,k . . .ΦM,ℓ,k], with
Φm,ℓ,k = {bm,ℓ,k, μm,ℓ,k, Cm,ℓ,k}, is learned using conjugate priors.
The weight bm,ℓ,k uses the Dirichlet distribution (Dir) prior with
hyperparameter γm,ℓ,k, and the Gaussian mean μm,ℓ,k and
covariance Cm,ℓ,k use the NIWD prior with hyperparameter set
m,ℓ,k. The resulting prior is

p ϕ
ℓ,k( ) � Dir bℓ,k |γℓ,k( ) ∏M

m�1
NIWD μm,ℓ,k, Cm,ℓ,k |m,ℓ,k( ), (9)

where bℓ,k = [b1,ℓ,k . . .bM,ℓ,k] and γℓ,k = [γ1,ℓ,k . . .γM,ℓ,k], and the
posterior PDF is

p xℓ,k ,ϕℓ,k | zℓ,k( )∝p zℓ,k | xℓ,k ,ϕℓ,k( ) p xk | xk−1( ) p ϕ
ℓ,k( ) p xk−1 ,ϕℓ,k−1 | zk−1( ). (10)

The derivation steps are provided in Supplementary
Appendix B.

2.3.1.2 Primary Source Tracking With TL-GMM
From the TL formulation in Section 2.2, the primary source
measurement noise wk in Eq. 5 is assumed to have a zero-mean
Gaussian with a covariance matrix Ck = ξk C, with noise intensity
ξk ∈ Ξp. At each time step k, the primary source receives the
modeled prior hyperparameter sets ϕℓ,k, ℓ = 1, . . ., L, in Eq. 9,
from each of the L learning sources and uses them to model the
primary measurement likelihood PDF as

p zk | xk, dk( ) � ∑L
ℓ�1

dℓ,k p zk | xk,ϕℓ,k( )
� ∑L

ℓ�1
dℓ,k ∑M

m�1
bm,ℓ,kND zk | μm,ℓ,k, Cm,ℓ,k( ), (11)

where dk = [d1,k . . .dL,k]. As the PDF in Eq. 11 is a collection of
PDFs and mixing weights (Lindsay, 1995; Baxter, 2011), it can be
viewed as a finite mixture model. The weight dℓ,k is learned using
a Dirichlet distribution conjugate prior with the hyperparameter
~γ
ℓ
. This learning step allows for the best matched learning sources

to be exploited at different time steps. The posterior PDF is thus
given by

p xk, dk | zk( )∝p zk | xk, dk( ) p xk | xk−1( )p dk( )p xk−1, dk−1 | zk−1( ), (12)
where p(xk | xk−1) is given in Eq. 4 and p(xk−1, dk−1 | zk−1) is the
posterior from the previous time step.

2.3.2 TL-GMM Tracking With Track-Before-Detect
When tracking under low SNR conditions, the
measurement likelihood PDF in Eq. 7 for the L learning
sources depends on the binary object existence indicator
λℓ,k. Following the GMM model in Eq. 8 for the TBD
formulation, the measurement likelihood for the ℓth
learning source, ℓ = 1, . . ., L, is
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p zℓ,k | xℓ,k, λℓ,k,ϕℓ,k( ) � ∑M
m�1

bm,ℓ,k ND zℓ,k|μm,ℓ,k, Cm,ℓ,k( ), λℓ,k � 1

wℓ,k, λℓ,k � 0

⎧⎪⎪⎨⎪⎪⎩ . (13)

The GMM model in Eq. 13 is used to obtain the posterior
PDF, following Eq. 10, as

p xℓ,k, λℓ,k,ϕℓ,k | zℓ,k( )∝p zℓ,k|xℓ,k, λℓ,k,ϕℓ,k( ) p xℓ,k, λℓ,k|xk−1, λℓ,k−1( )
· p ϕ

ℓ,k( ) p xk−1, λℓ,k−1,ϕℓ,k−1 | zℓ,k−1( ),
where p(xk, λℓ,k | xk−1, λℓ,k−1) is given in Eq. 6 and p(ϕℓ,k) in Eq. 9.
The PDF p(xℓ,k−1, λk−1, ϕℓ,k−1 | zℓ,k−1) is obtained from the
previous time step with probability (1 − Pd) when λℓ,k−1 = 1

and is otherwise set to its initial value. When tracking at the
primary source, following Eq. 11, the measurement PDF is

p zk | xk, λk,dk( ) � ∑L
ℓ�1

dℓ,k λℓ,k ∑M
m�1

bm,ℓ,k ND zk | μm,ℓ,k, Cm,ℓ,k( ), λk � 1

wk, λk � 0

⎧⎪⎪⎨⎪⎪⎩ .

The posterior PDF is, thus, given by

p xk, λk,dk | zk( )∝p zk | xk, λk, dk( ) p xk, λk | xk−1 , λk−1( )p dk( )p xk−1 , λk−1 , dk−1 | zk−1( ).

2.4 Tracking With Transfer Learning and
Bayesian Nonparametric Modeling
The TL-GMMmethod not only assumes that the learning sources
have known noise intensity, but it also requires both the primary
and learning sources to be simultaneously tracking the same object.
We instead consider the more realistic scenario, where each of the
learning sources is tracking under unknown noise intensity
conditions. Our proposed approach is based on integrating TL
with Bayesian nonparametric (BNP) methods to allow for
modeling of the multiple source measurements without the
assumption of parametric models. The learned model
parameters are stored and acquired as needed as prior
knowledge for the primary tracking source to improve its
performance when tracking under time-varying noise intensity
conditions. The TL-BNP approach is discussed next and
summarized in Algorithm 2.

2.4.1 Multiple Source Learning Using TL-BNP
Within the TL framework, the ℓth learning source, ℓ = 1, . . ., L, is
tracking a moving object using measurements embedded in zero-
mean Gaussian noise with unknown intensity ξ(ℓ,L). Using the DPM
model in Eq. 2 with base distribution Gℓ for the ℓth source, the DP
model parameter set Θℓ,k = {μℓ,k, Cℓ,k} provides the mean μℓ,k and
covariance Cℓ,k of the Gaussian mixed PDF p(zℓ,k | Θℓ,k, Ψℓ).

TABLE 1 | Noise intensity values from set ΞL for L learning sources in Examples 1–5, where Ξp is the set of the primary source noise intensity values.

Learning source noise intensity ξ(ℓ,L), ℓ = 1, . . ., L

L ΞL ξ(1,L) ξ(2,L) ξ(3,L) ξ(4,L) ξ(5,L) ξ(6,L) ξ(7,L) ξ(8,L) ξ(9,L) ξ(10,L)

1 {4, 5} 4.4
2 {5, 9} 8.2 5.8 Example 1, Ξp = {2, 8}
4 {2, 10} 1.5 6.3 4.2 9.4
10 {1, 10} 6.1 9.2 3.2 4.5 7.0 2.6 3.9 8.4 1.8 7.7

5 {1, 10} 2.1 7.4 3.2 9.0 1.5
5 {5, 10} 5.5 7.8 6.0 9.4 9.0 Example 2, Ξp = {4, 10}
5 {4, 10} 8.1 4.6 9.7 7.7 5.9
10 {1, 10} 2.8 5.7 8.8 5.0 7.1 9.4 6.5 8.9 5.3 3.4
10 {5, 10} 7.3 5.2 8.7 5.2 9.8 8.7 9.7 7.6 6.2 5.9

3 {12, 18} 12.1 17.1 13.8 Example 3, Ξp = {12, 18}

2 {6, 10} 6 10
3 {1, 9} 6 9 1 Example 4, Ξp = {2, 8}
5 {2, 10} 2 4 6 8 10
10 {1, 10} 4 3 6 8 2 5 1 7 10 9

5 {1, 7} 1 2 4 6 7 Example 5, Ξp = {4, 10}
5 {1, 10} 2 4 6 8 10

FIGURE 1 | Time variation of noise intensity ξk at the primary source in
Example 1.
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Parameter set Θℓ,k is learned using the NIWD conjugate prior with
hyperparameter set Ψℓ = {μ0,ℓ, κℓ, Σℓ, ]ℓ}, which can be computed
using Markov chain Monte Carlo methods such as Gibbs sampling
(West, 1992; Neal, 2000; Rabaoui et al., 2012). In (Rabaoui et al.,
2012), navigation performance under hard reception conditions was
improved by estimating NIWD hyperparameters in an efficient Rao-
Blackwellized particle filter (RBPF) implementation. In (Gómez-
Villegas et al., 2014), the sensitivity to added perturbations on
prior hyperparameters was demonstrated using the
Kullback–Leibler divergence measure.

Algorithm 2. TL-BNP Recursive Tracking Algorithm

Given measurement zℓ,k, the DP and NIWD model
parameters are

p Θℓ,k,Ψℓ |zℓ,k( ) ∝ p Θℓ,k |Θℓ,k−1,Ψℓ( ) p Ψℓ |Θℓ,k−1( ). (14)
The object tracking involves the estimation of the object

state xℓ,k, DP model parameter set Θℓ,k, and hyperparameter
set Ψℓ, given measurement zℓ,k. Their joint PDF
p(xℓ,k,Θℓ,k,Ψℓ |zℓ,k) is approximated using particle filtering
(Arulampalam et al., 2002), as detailed in Supplementary
Appendix C. At each time step k, Ns particles, x

(i)
ℓ,k−1 andΘ

(i)
ℓ,k−1,

FIGURE 2 | TL-GMM tracking in Example 1: Range RMSE performance
without transfer learning (L = 0) and with L = 1, 2, 4, 10 learning sources.

FIGURE 3 | Learned mixing weights dℓ,k, for k = 80 and ℓ = 1, 2, 3, 4 in
Example 1.

FIGURE 4 | Time variation of primary source noise intensity ξk in
Example 2.
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i = 1, . . ., Ns, are sampled from a proposal distribution to
obtain

p xℓ,k,Θℓ,k,Ψℓ |zℓ,k( ) ≈ ∑Ns

i�1
w i( )

ℓ,k δ xℓ,k − x i( )
ℓ,k( ) δ Θℓ,k − Θ i( )

ℓ,k( ). (15)

The joint prior PDF p(x(i)
ℓ,k,Θ

(i)
ℓ,k |x(i)ℓ,k−1,Θ

(i)
ℓ,k−1,Ψ

(i)
ℓ
) �

p(x(i)
ℓ,k|x(i)ℓ,k−1)p(Θ(i)

ℓ,k|Θ(i)
ℓ,k−1,Ψ

(i)
ℓ
) is selected as the proposal

distribution, which assumes that the object state and model
parameters are independent during prediction. Particles x(i)

ℓ,k
are drawn from the state prior p(x(i)

ℓ,k |x(i)ℓ,k−1) in Eq. 4. Particles
Θ(i)

ℓ,k are independently drawn using the Pólya urn representation
of the DP p(Θ(i)

ℓ,k |Θ(i)
ℓ,k−1,Ψ

(i)
ℓ
)in Eq. 3. Note that particlesΨ(i)

ℓ
are

drawn from p(Ψ(i)
ℓ
|Θ(i)

ℓ,k−1), that provides a probabilistic model
for the hyperparameter set. The weights in Eq. 15 are updated
using

w i( )
ℓ,k ∝ w i( )

ℓ,k−1 p zℓ,k |x i( )
ℓ,k,Θ

i( )
ℓ,k,Ψ

i( )
ℓ( ), (16)

where N is the number of zℓ,k samples. The Gaussian likelihood is
computed based on Eq. 5,

p zk |x i( )
ℓ,k,Θ

i( )
ℓ,0: k,Ψ

i( )
ℓ( ) � 1

2π( )N/2
�����
|C i( )

ℓ,k|
√

exp −1
2
zℓ,k − h(x i( )

ℓ,k( )T C i( )
ℓ,k( )−1 zℓ,k − h(x i( )

ℓ,k( )( ), (17)

using covariance matrix C(i)
ℓ,k from model parameter Θ(i)

ℓ,k in the
Gaussian mixed PDF p(zℓ,k |Θ(i)

ℓ,k,Ψ
(i)
ℓ
).

2.4.2 Primary Source Tracking With TL-BNP
The learned hyperparameter set Ψ � Ψ1, . . . ,ΨL{ } from the
learning sources is stored and made available, when needed, to
use as prior knowledge for the primary tracking task. Note that,
unlike with the GMM-based transfer, the learning source tracking
does not need to occur simultaneously as the primary tracking.
Thus, at the primary source, Ψ is used to learn the unknown and
time-varying measurement noise characteristics. Specifically,

p Θk, dk | zk,Ψ( ) � ∑L
ℓ�1

dℓ,k p Θℓ,k | zk,Ψℓ( ), (18)

where weights dk = [d1,k . . .dL,k] are learned with a Dirichlet
distribution prior with hyperparameter ~γ

ℓ
, and Θℓ,k are sampled

from the transferred learned parameters Ψℓ. The PDF p(Θℓ,k|zk,
Ψℓ) is given by

p Θℓ,k | zk,Ψℓ( ) ∝ p zk | Θℓ,k,Ψℓ( ) p Θℓ,k | Ψℓ( ). (19)
The posterior PDF is given by

FIGURE 5 | TL-GMM tracking in Example 2: Range RMSE performance with L = 5, 10 learning sources with varying sets of noise intensity values ΞL.

FIGURE 6 | TL-GMM tracking with TBD in Example 3: Range RMSE
performance without transfer learning (L = 0) and with L = 3 learning sources.
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p xk, dk,Θk|zk,Ψ( ) � p xk|Θk, dk, zk,Ψ( ) p Θk, dk | zk,Ψ( ), (20)

with p(Θk, dk|zk, Ψ) in Eq. 19 and estimating p(xk | Θk, dk, zk,Ψ)
with a PF.

Note that, similarly to the TL-GMM approach in
Section 2.3.2, the TL-BPN can also be extended to
incorporate the TBD framework for tracking under low
SNR conditions.

FIGURE 7 | TL-BNP tracking in Example 4: Modeling of unknown noise intensities ξ(1,2) and ξ(2,2) for L = 2 learning sources by varying the NIWD hyperparameter σ2
ℓ
.

FIGURE 8 | TL-BNP tracking in Example 4: Range MSE performance with L = 2, 5 using two different implementations, PF and RBPF, at the learning sources.
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3 RESULTS AND DISCUSSION

3.1 Simulation Settings
In this section, we simulate various scenarios of tracking amoving
object under time-varying conditions to demonstrate and
compare the performance of our two proposed methods. The
methods are discussed in Sections 2.3 and 2.4, and we refer to
them as the TL-GMM method (transfer learning and Gaussian
mixture modeling) and the TL-BNP method (transfer learning
and Bayesian nonparametric modeling), respectively. For both
methods, the noise intensity ξk at the primary source is assumed
to be unknown and time-varying. Note that our goal is not to

explicitly estimate the noise intensity ξk; we model and learn the
measurement noise intensity information in order to use it in
estimating the unknown object state.

For all simulations, our goal is to estimate a moving object’s
two-dimensional (2-D) position that is denoted by the object
state vector xk � [xk yk]T, k = 1, . . ., K, where (xk, yk) are the
Cartesian coordinates in meters. We assumed a simple first
order Markov process for the state transition, xk = xk−1 + vk−1,
and we selected a high variance of σ2v � 6 for the zero-mean
white Gaussian vector vk to emulate motion. The time
between time steps is 1 s and the total number of time
steps is K = 100. The sensor measurement vector zk at the
primary source is assumed corrupted by additive zero-mean
Gaussian noise with an unknown intensity ξk at time step k.
For the ℓth learning source, we generated a uniformly sampled
intensity value 1 ≤ ξ(ℓ,L) ≤ 10 for high SNR and 12 ≤ ξ (ℓ,L) ≤ 18
for low SNR, ℓ = 1, . . ., L. The measurement vector zk = [rk ζk]
consists of the object’s range rk �

������
x2
k + y2

k

√
and bearing ζk =

arctan(yk/xk). For low SNR tracking using TBD filtering, the
measurement vector zk in Eq. 7 corresponds to unthresholded
cross-ambiguity function measurements that are modeled as
2-D Gaussian resolution frames of range and bearing cells
(Ebenezer and Papandreou-Suppappola, 2016). In Eq. 6, we
set Pd = Pb = 0.03.

For the algorithm implementation, unless otherwise stated, we
used 10,000 Monte Carlo runs. The sequential importance
resampling PF was used for tracking in both approaches, with
Ns = 3, 000 particles. For GMM modeling, the number of
Gaussian mixtures was set to M = 10 as we considered a
maximum of L = 10 learning sources. Before receiving any
measurements, the initial NIWD hyperparameter set for the
GMM parameters was set to m,ℓ,0 � [0, 0], 3, diag([1, 1], 3){ }
in Eq. 9. For DPM modeling, we fixed the concentration
parameter to α = 0.1 the base distribution G0 as Gaussian in

FIGURE 9 | TL-BNP tracking in Example 4: Range MSE performance
with L = 0, 3, 10 learning sources with PF implementation.

FIGURE 10 | TL-BNP tracking in Example 5: Modeling of unknown intensities ξ(2,5) and ξ(3,5) for L = 5 learning sources by varying the NIWD hyperparameter σ2
ℓ
.
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Eq. 3. The initial NIWD hyperparameter set for DP was set to
Ψℓ,0 � [0, 0], 3, σ2

ℓ
I , 3){ } where I is the identity matrix. We used

simulations to study the selection of the initial σ2
ℓ
value, and we

selected an exponential forgetting factor of 0.9 to ensure that the
updated NIWD hyperparameters did not grow exponentially
(Berntorp and Cairano, 2016). The noise intensity values used
in different simulations, both for the primary source in set Ξp and
the L learning sources in sets ΞL, are summarized in Table 1.

For tracking performance evaluation and comparison, we use
the estimation mean-squared error (MSE) and root mean-
squared error (RMSE) of the object’s range. We use L = 0 to
denote tracking without transfer learning. For this tracker, we
generate the primary source noise intensity values from a uniform
distribution, taking values from Ξp = {1, 10} at each time step and
Monte Carlo run.

3.2 Tracking With TL-GMM Approach
3.2.1 TL-GMM: Effect of Varying the Number of
Learning Sources in Example 1
In the first simulation in Example 1, the primary tracking source
noise intensity ξk varies within Ξp = {2, 8}, as shown in Figure 1.
In particular, the intensity varies slowly from around ξk ≈ 7 up to
k = 25, before dropping to, and remaining at, around ξk ≈ 3 for the
remaining time steps. For performance comparison, we simulated
a tracker that does not use transfer learning (L = 0) and four
different trackers that use transfer learning using L = 1, 2, 4, 10
learning sources. The fixed known noise intensity value ξ(ℓ,L) of
the ℓth learning source, for ℓ = 1, . . .L, is provided in Table 1. The
RMSE of the estimated range is demonstrated as a function of the
time step k in Figure 2. As expected, the tracking performance is
worse when no prior information is transferred to the primary
source. Also, the RMSE decreases as the number of learning
resources L increases. For example, the RMSE performance is
higher when L = 2 than when L = 1. Compared with the primary

source intensity values in Figure 1 with the values used by the
learning sources, although ξ(1,1) = 4.4 for L = 1 and also ξ(2,2) = 5.8
for L = 2 are not used by the primary source, the value ξ(1,2) = 8.2
for L = 2 is close to the high values of ξk during the first 25 time
steps. Note that, for all five trackers, the RMSE decreases when
there is a large increase in the primary source SNR at k = 25. Also,
as the SNR remains high after k = 25, the RMSE is lower during
the last 75 time steps.

Figure 3 studies more closely the performance of the TL-
GMMwith L = 4 by providing the learned mixing weights dℓ,k, for
k = 80 and ℓ = 1, 2, 3, 4. From Figure 1, the primary source
intensity at k = 80 is 3.5, and the L = 4 learning source intensities,
fromTable 1, are ξ(1,4) = 1.5, ξ(2,4) = 6.3, ξ(3,4) = 4.2, and ξ(4,4) = 9.4.
We then use Δξ(ℓ) = |ξ(ℓ) − 3.5|, which is the absolute difference in
intensity between the ℓth learning source and the primary source
at k = 80, to examine its relation to the ℓth learned mixing weight
dℓ,80. We would expect that the learning source with the
minimum Δξ(ℓ) is the best match to the primary source at k =
80 and thus have the mixing weight dℓ,80. This is indeed the case,
as shown in Figure 3: the largest weight is d3,80 and Δξ(3) = 0.7 is
the minimum difference. We also observe that d4,80 is the smallest
weight as Δξ(4) = 5.9 is the maximum difference, and d1,80 and
d2,80 are about the same since Δξ(1) = 2 and Δξ(2) = 2.8 are close
in value.

3.2.2. TL-GMM: Effect of Varying Learning Source
Noise Intensity in Example 2
For this example, the primary source noise intensity ξk varies
withinΞp ∈ {4, 10} in Figure 4. Note that, as with Example 1, there
is an abrupt change in intensity (at k = 48); however, before and
after this change, the intensity undergoes higher variations than
in the previous example in Figure 1. We consider five different
cases using L = 5, 10 learning sources and vary the noise intensity
for a fixed L. The learning source intensity values ξ(ℓ,L), ℓ = 1, . . .,

FIGURE 11 | TL-BNP tracking in Example 5: Range MSE performance with L = 5 learning sources with varying intensity values Ξ5.
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L, and corresponding ΞL set are provided in Table 1. The range of
RMSE for the five cases is shown in Figure 5. We first note that
the RMSE decreases when the number of learning sources
increases from L = 5 to L = 10. Compared to the three cases
with L = 5, the best performance is achieved when the values of
noise intensityΞ5 ∈ {4, 10} match those of the primary sourceΞp ∈
{4, 10}. The longest interval, Ξ10 ∈ {1, 10} results in the worst
performance as the primary source does not have any values
between 1 and 4. The overall best performance of the primary
source is achieved using the highest L number, for which ΞL

closely matches Ξp.

3.2.3. TL-GMM: Effect of Low Signal-To-Noise Ratio at
the Primary Source in Example 3
In this example, we evaluate tracking under low SNR
conditions for an object entering the scene at time step k =
30 and leaving the scene at time step k = 70. The primary
source noise intensity ξk varies between the values of 12.5 and
16.5, with a sudden decrease at time step k = 40. We compare
the performance of tracking without TL (L = 0) and with TL
using L = 3 learning sources. The learning source noise
intensities for L = 3 are provided in Table 1. The RMSE of
the estimated range for both cases is shown in Figure 6. Note
that the tracking performance improves with TL, as expected.
Note that for both tracking methods, the RMSE is lower
between time steps k = 40 and k = 70. This is because the
SNR is higher during those time steps when compared to the
first 10 time steps of the object entering the scene.

3.3 Tracking With the TL-BNP Approach
3.3.1 TL-BNP: Effect of Initial NIWD Hyperparameters
on Noise Intensity Estimation in Example 4
When using the TL-BNP approach, we first demonstrate how
the modeling of the initial NIWD prior hyperparameter σ2

ℓ
in

Ψℓ affects the estimation of the noise intensity at the ℓ primary
source. We consider L = 2 learning sources whose noise
intensities are unknown. As shown in Table 1, their
corresponding true intensity values are ξ(1,2) = 6 and ξ(2,2)

= 10. Three different values of the variance hyperparameter
are considered, σ2

ℓ
� 8, 11, 15. As shown in Figure 7 (top), the

noise intensity ξ(2,2) = 6 for ℓ = 2 was correctly estimated both
when using σ22 � 11 and σ22 � 15. However, the unknown
noise intensity was learned faster (within the first 10 steps)
when σ22 � 11 as this value better matched the actual noise
intensity ξ(2,2) = 10. Similarly, from Figure 7 (bottom), the
rate of learning ξ(1,2) = 6 was faster with σ21 � 8 than with
σ21 � 15.

3.3.2 TL-BNP: Effect of Varying Number of Learning
Sources in Example 4
Figure 9 provides the estimation MSE performance comparison
between tracking without TL (L = 0) and tracking using the TL-
BNP approach with L = 3 and L = 10 learning sources for Example
4. Note that the TL-BNP is implemented using a particle filter
(PF), as discussed in Section 2.4.1. The primary source time-
varying noise intensity values ξk vary within Ξp ∈ {2, 8}. The
variation with respect to time is as follows: the noise intensity was

ξk ≈ 2 from k = 1 to k = 30, ξk ≈ 8 from k = 30 to k = 65, and ξk ≈ 4
from k = 65 to k = 100. As shown in Figure 9, the performance of
the TL-BNP tracker is higher than that of the tracker without TL.
It is also observed that the MSE performance using TL-BNP is
higher for L = 10 than for L = 3. This is explained by considering
the actual values of ξ(ℓ,3) and ξ(ℓ,10) in Table 1. Specifically, as the
variation of ξk remains around values 2, 8, and 10, all three values
are only in the set ΞL for L = 10 and not for L = 3.

For the same example, we also provide the range MSE in
Figure 8 for two additional numbers of preliminary sources, L = 2
and L = 5. It is interesting to note the similar MSE performance of
the primary tracking source using L = 5 in Figure 8 and L = 10 in
Figure 9. This follows from the fact that the primary source noise
intensity ξk takes only values 2, 8 and 4 throughout the K = 100
time steps, and both the L = 5 and L = 10 learning sources include
all three values. Specifically, ξ(1,5) = ξ(5,10) = 2, ξ(4,5) = ξ(4,10) = 8,
and ξ(2,5) = ξ(1,10) = 4.

3.3.3 TL-BNP: Algorithm Implementation in Example 4
Figure 8 also shows two additional MSE plots that correspond to
a different implementation of the posterior PDF in Eq. 15.
Specifically, the authors in (Caron et al., 2008) considered a
tracking problem using DPMs to estimate measurement noise;
their method did not include TL and also did not model the
hyperparameter setΨℓ. They implemented their approach using a
Kalman filter and a Rao-Blackwellized PF (RBPF). We
incorporated their RBPF approach within our TL framework
and hyperparameter modeling but with an extended Kalman
filter as our measurement function is nonlinear. The performance
comparison of the RBPF and our PF-based implementation in
Figure 8 showed a small improvement in performance for each L
value when the PF is used. Note, however, that the RBPF is
computationally more efficient than the PF.

3.3.4 TL-BNP: Effect of Initial NIWD Hyperparameters
on Estimating Noise Intensity in Example 5
Similar to Figure 7 in Example 4, we use Figure 10 in Example 5
to study how the estimation accuracy of the learning source noise
intensity ξ(ℓ,L) is affected by the selection of the NIWD variance
hyperparameter σ2

ℓ
. In this example, we considered low intensity

values for ξ(ℓ,L) but high values for σ2
ℓ
. Specifically, we used L = 5

learning sources with intensity values ξ(2,5) = 2 and ξ(3,5) = 4 from
the set Ξ5 = {1, 7} (see Table 1) and we varied σ2

ℓ
� 8, 11.

Figure 10 (top) shows that, although both values of σ23 resulted in
learning ξ(3,5) = 4, the learning process was faster when σ23 � 8
was selected. Note that both σ22 � 8 and σ22 � 11 were slow to
learn the mis-matched value of5ξ(2,5) = 2.

3.3.5 TL-BNP: Effect of Varying Learning Source
Intensity Values in Example 5
For the simulation in Example 5, we considered the noise
intensity variation at the primary source to be was ξk ≈ 4
from k = 1 to k = 45 and then ξk ≈ 10 from k = 45 to k =
100. We compare the MSE performance of the TL-BPN tracker
for L = 5 learning sources but with different noise intensity values,
as listed in Table 1. In the first case, the learning source intensity
set is Ξ5 = {1, 7} and, in the second case, it is Ξ5 = {1, 10}. As
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shown in Figure 11, both trackers perform about the same during
the first 45 time steps. This is because ξ(ℓ,5) = 4 is included in both
learning source cases. However, for the last 50 to 55 time steps,
only the second tracker with Ξ5 = {1, 10} includes ξ(ℓ,5) = 10,
matching the actual primary source noise intensity, and thus
performs better than the first case with Ξ5 = {1, 7}.

4 CONCLUSION

We proposed two methods for tracking a moving object under
time-varying and unknown noise conditions at a primary source.
Both methods use sequential Bayesian filtering with transfer
learning, where multiple learning sources perform a similar
tracking task as the primary source and provide it with prior
information. The first method, the TL-GMM tracker, integrates
transfer learning with parametric Gaussian mixture modeling to
model the learning source measurement likelihood distributions.
This method relies on the assumption that the noise intensity of
each learning source is known and also that the learning source
simultaneously track the same object as the primary source. As
these assumptions limit the applicability of the TL-GMM in real
tracking scenarios, we proposed a second method, the TL-BNP
tracker, that integrates transfer learning with Bayesian
nonparametric modeling. This method deals with the more
realistic scenario where the learning sources do not track the
same object and their measurement noise intensity is unknown
and learned using Dirichlet process mixtures. The use of the
Bayesian nonparametric learning method does not limit the
number of modeling mixtures. Also, as the learning and
primary sources do not need to track the same object, the
learned models can be stored and accessed when needed.
Using simulations, we demonstrated that the primary source
tracking performance increases as the number of learning sources
increases, provided that the learning source intensity values
match the noise intensity variation at the primary source.

An important consideration in the proposed methods is the
relevance of the learning sources selected by the primary

source. In particular, for the transfer to be successful, the
noise intensity of most of the selected learning sources must
match the range of possible noise intensity values of the
primary source. As demonstrated by the simulations, the
rate of learning the noise intensity was slow when there
was a mismatch between the learning source intensity and
the primary source noise variation. The methods would thus
benefit from adapting the learning source selection process,
for example, by using a probabilistic similarity measure as a
selection criterion.
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Blind visual quality assessment of
light field images based on
distortion maps

Sana Alamgeer* and Mylène C. Q. Farias*
1Department of Electrical Engineering, University of Brasília, Brasília, Brazil

Light Field (LF) cameras capture spatial and angular information of a scene,

generating a high-dimensional data that brings several challenges to

compression, transmission, and reconstruction algorithms. One research

area that has been attracting a lot of attention is the design of Light Field

images quality assessment (LF-IQA) methods. In this paper, we propose a No-

Reference (NR) LF-IQAmethod that is based on reference-free distortionmaps.

With this goal, we first generate a synthetically distorted dataset of 2D images.

Then, we compute SSIM distortionmaps of these images and use thesemaps as

ground error maps. We train a GAN architecture using these SSIM distortion

maps as quality labels. This trained model is used to generate reference-free

distortion maps of sub-aperture images of LF contents. Finally, the quality

prediction is obtained performing the following steps: 1) perform a non-linear

dimensionality reduction with a isometric mapping of the generated distortion

maps to obtain the LFI feature vectors and 2) perform a regression using a

Random Forest Regressor (RFR) algorithm to obtain the LF quality estimates.

Results show that the proposed method is robust and accurate, outperforming

several state-of-the-art LF-IQA methods.

KEYWORDS

image quality assessment, epipolar planes, canny edge detector, two-stream
convolution neural network, 4D light field images

1 Introduction

Unlike conventional cameras, Light Field (LF) camera captures spatial and angular

information of scene, which is represented by a scalar function L(u, v, s, t), where (u, v)

and (s, t) depict the angular and spatial domains, respectively. The 4D light field can be

described as a 2D projection of sub-aperture images (SAIs). Figure 1 illustrates a grid of

10 × 10 sub-aperture images of LFI (ArtGallery3) from the MPI dataset (Adhikarla et al.,

2017). SAIs are generated from micro-lens images, with an operation known as raw data

decoding. LF images (LFI) carry rich information that is widely used for refocusing

(Hahne et al., 2018) and 3-Dimensional (3D) reconstruction. However, the high-

dimensionality of LFIs creates several challenges to the area of communications,

requiring the development of specific compression (Hou et al., 2019), transmission,

and reconstruction techniques. Unfortunately, these techniques inevitably distort the

perceived quality of LFIs (Paudyal et al., 2017). In order to monitor the visual quality and
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quantify the amount of visual distortion in LF contents, we must

develop efficient LFI Quality Assessment (LF-IQA) methods.

The visual quality of images can be assessed (IQA)

subjectively or objectively. Subjective quality assessment

methods are experimental methodologies in which human

observers are asked to estimate one or more features of the

stimuli (e.g., the overall quality of a video). The data collected in

these experiments are statistically analyzed, often generating

Mean Opinion Scores (MOS) for each of the test stimuli.

Although subjective quality assessment methods are

considered as the most reliable ways of estimating quality,

these methods are time-consuming and cannot be

implemented in real-time systems. Objective quality

assessment methods (also known as quality metrics) are

algorithms that automatically assess the quality of a content

by measuring the physical signal. Based on the available reference

information, objective quality assessment methods are divided

into the full-reference (FR), reduced-reference (RR) and blind/

no-reference (NR) methods. To estimate the performance of

objective quality methods, we compare their output scores with

MOS values obtained using subjective methods.

As mentioned before, LFIs contain not only spatial

information, but also angular information. Therefore, classical

2D image quality assessment methods cannot be directly used for

LFI quality assessment. In the past few years, efforts have been

devoted to develop LF-IQA methods. For example, Tian et al.

(Tian et al., 2018) proposed a FR LF-IQA metric that uses a

multi-order derivative feature-based method (MDFM), which

extracts detailed features with different degrees with a discrete

derivative filter. Paudyal et al. (Paudyal et al., 2019) proposed a

RR LF-IQA that uses two IQA methods - SSIM (Wang et al.,

2004) and PSNR - to process the depth maps. Fang et al. (Fang

et al., 2018) presented a FR LF-IQA method that uses local and

global features to predict quality. The local features are extracted

from reference and test LFIs using a gradient magnitude

operator, while the global features are extracted from the

epipolar-plane images (EPIs) of reference and test LFIs using

the same operator. Tian et al. (Tian et al., 2020b) proposed a FR

LF-IQA method that uses symmetry information, which are

extracted using Gabor filters (Field, 1987), and depth features

computed from EPIs of the reference and test LFIs. Meng et al.

(Meng et al., 2020) presented a FR LF-IQA method that

computes the spatial LFI quality using the structural similarity

index metric (SSIM) of the Difference of Gaussian (DoG)

features of central SAIs and computes the angular LFI quality

using the SSIM of refocused images.

Tian et al. (Tian et al., 2020a) presented a FR LF-IQAmethod

in which the salient features are extracted from reference and test

EPIs and SAIs using single-scale and multi-scale log-Gabor

operators. The NR LFQA method proposed by Shi et al. (Shi

et al., 2019a) predicts quality using EPI information and natural

statistics. The NR LF-IQA method proposed by Luo et al. (Luo

et al., 2019) employs the spatial information from SAIs and the

angular information from the micro-lens images. Jiang et al.

(Jiang et al., 2018) proposed a FR LF-IQA method that uses the

entropy information and the gradient magnitude features to

extract spacial features from the SAIs. To extract the angular

features from SAIs, dense distortion curves are generated and the

best fitting features are chosen. Wei Zhou et al. (Shi et al., 2019b;

Zhou et al., 2019) proposed NR LF-IQA methods (BELIF and

Tensor-NLFQ, respectively) that are based on tensor theory,

employing SAIs view stacks along horizontal, vertical, left

diagonal, and right diagonal orientations. The local spatial

quality features are extracted using local frequency

FIGURE 1
A grid of 10 × 10 sub-aperture images of a Light Field image (ArtGallery3) from MPI dataset (Adhikarla et al., 2017).
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distribution, while the global spatial quality features are extracted

using the naturalness distribution of individual color channels.

Ak et al. (Ak et al., 2020) proposed a NR LF-IQA method based

on the structural representations of EPIs, by training a

convolutional sparse coding codebook and a Bag Of World

dictionary on EPIs. Shan et al. (Shan et al., 2019) designed a

NR LF-IQA method that is based on 2D (from SAIs) and 3D

(from EPIs) LFI features. Xiang et al. (Xiang et al., 2020)

presented a NR LF-IQA method (VBLFI) based on the mean

difference image and on curvelet-transform characteristics

of LFIs.

Despite of the work mentioned above, there is a lot of room

for improvement in terms of prediction accuracy, robustness,

computational complexities, and generality of NR LF-IQA

methods. In this paper, we propose a NR LF-IQA method

that is based on reference-free distortion maps. Considering

FIGURE 2
Block Diagram of the proposed no-reference light field image quality assessment method. (A) computation of SSIM distortion maps
corresponding to the original and test images, (B) training the GAN network using the SSIM distortion maps as labels, (C) testing the trained GAN
network to generate reference-free distortion maps of sub-aperture images of test LFIs, (D) computation of ISOMAP to generate feature vectors for
distortion maps generated in (C), and (E) training Random Forest Regressor with 1000 simulations for quality predictions.
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that pixel distortions are affected by neighboring pixels, we have

focused on designing a blind deep learning quality model using

pixel-by-pixel distortion maps. In summary, we present two

main contributions: 1) generation of reference-free distortion

maps, and 2) NR LF-IQA method that is derived from the

generated distortion maps.

To generate LF reference-free distortion maps, we have used

a deep-learning architecture called Generative Adversarial

Network (GAN) network (Goodfellow et al., 2014) that can

learn from synthetically generated distorted images and their

corresponding ground truth distortion maps. Since ground truth

distortion maps are not available in any of the existing IQA

datasets (Sheikh et al., 2006), we use distortion maps generated

by SSIM (Wang et al., 2004) as ground-truth distortion maps to

train the GAN. Specifically, first we generate a synthetically

distorted dataset of 2D images (because the sub-aperture

images are 2D representation of LFIs) and, then, we compute

SSIM distortion maps corresponding to the original and test

images, as shown in Figure 2A. Then, we train the GAN network

using the SSIM distortion maps as labels, as shown in Figure 2B.

The trained model is used to generate reference-free distortion

maps of sub-aperture images of test LFIs, as shown in Figure 2C.

The generated distortionmaps (GDMs) are used as measurement

maps for describing the test LFIs. Results show that the proposed

method outperforms other state-of-the-art LF-IQA methods.

The rest of the paper is organized as follows. Section 2

describes the proposed LF-IQA method. Section 3 describes

the experimental results. Finally, Section 5 presents our

conclusion.

2 Proposed methodology

Generative Adversarial Networks (GAN) consists of a pair of

competing network structures called generator (G) and discriminator

(D) respectively, which can learn deep features with sufficient labeled

training data. In this work, to learn the features of distorted images,

we use the Pix2PixGAN architecture (Isola et al., 2017) for the GAN

architecture because of its strong fitting capability. The Pix2PixGAN

is composed of promising approach for many image-to-image

translation tasks, especially those involving highly structured

graphical outputs. Most importantly, the Pix2PixGAN is general-

purpose, i.e., it learns a loss adapted to the task and data at hand,

which makes it feasible in a wide variety of settings.

Since a GAN architecture requires a large number of training

samples and LF-IQA datasets do not have a large number of

samples, we use the COCO-Stuff dataset (Caesar et al., 2018) to

generate a synthetically distorted dataset. The COCO-Stuff

dataset is derived from the COCO dataset (Lin et al., 2014).

This dataset has 1.2 million images captured from diverse scenes,

with a total of 182 semantic classes. Sample images of COCO-

Stuff dataset are shown in Figure 3.

To generate synthetic distorted versions of 1.2 million images,

we used the Albumentation library (Buslaev et al., 2020). In total,

FIGURE 3
Sample images taken from COCO-Stuff dataset (Caesar et al., 2018).
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we used 29 augmentation functions with pre-set parameters, which

are depicted in Table 1. In total, we generated a dataset with

3.57 million synthetically distorted images, which we named

cocostuffv2. Then, we computed SSIM distortion maps between

each reference and test images in the cocostuffv2 dataset. For

training the Pix2PixGAN architecture, we prepared an input tuple

imgAB of size 512 × 256, which consists of a concatenation of the

test image A and the SSIM distortion map B. Figure 4 shows some

examples of input tuples imgAB.

For training the Pix2PixGAN network, we divided the

cocstuffv2 dataset into two content-independent training and

validation subsets, i.e. distorted images generated from one

reference in the test subset are not present in the training

subset and vice-versa. We define a group of scenes as a group

containing the reference LFI and its corresponding test versions.

Then, 80% of the groups were randomly selected for training and

the remaining 20% were used for validation. It is worth

mentioning that we trained the Pix2PixGAN network from

scratch (instead of using pre-trained model) with 50 epochs.

Next, the trained Pix2PixGAN network is used to generate

reference-free distortion maps of the sub-aperture images of

corresponding test LFIs. Figure 5 illustrates examples of

generated distortion maps of central LF SAIs taken from the

MPI dataset (Adhikarla et al., 2017). Even though we have not

used any of LFIs in the training process, the Pix2PixGAN

network is able to localize distortions in test SAIs. As

TABLE 1 Distortions used from Albumentation Library.

Number Function Description

1 VerticalFlip Flip the input vertically around the x-axis

2 HorizontalFlip Flip the input horizontally around the y-axis

3 IAAPerspective Apply random four point perspective transformations to images

4 RandomRotate90 Randomly rotate the input by 90°

5 Transpose Transpose the input by swapping rows and columns

6 ShiftScaleRotate Randomly apply affine transforms: translate, scale and rotate the input

7 Blur Blur the input image using a random-sized kernel

8 OpticalDistortion Image magnification decreases with distance from the optical axis. Straight lines appear to bend outwards from the center of the
image

9 GridDistortion Grid-distortion is an image warping technique which is driven by the mapping between equivalent families of curves, arranged in
a grid structure Arad (1998)

10 HueSaturationValue Randomly change hue, saturation and value of the input image

11 IAAAdditiveGaussianNoise Apply additive gaussian noise to the input image

12 GaussNoise Apply gaussian noise to the input image

13 MotionBlur Apply motion blur to the input image using a random-sized kernel

14 MedianBlur Blur the input image using a median filter with a random aperture linear size

15 IAAPiecewiseAffine Place a regular grid of points on each image and then randomly move each point around by 1–5 percent with respect to the image
height and width

16 IAASharpen Sharpen the input image and overlays the result with the original image

17 IAAEmboss Emboss the input image and overlays the result with the original image

18 RandomContrast Adjust the contrast of an image or images by a random factor

19 RandomBrightness Randomly change brightness of the input image

20 Flip Flip the input vertically around the x-axis

21 strong_aug_oneOfs Custom function combined of distortions IAAAdditiveGaussianNoise, GaussNoise, MotionBlur, Blur, OpticalDistortion,
GridDistortion, IAAPiecewiseAffine, CLAHE, IAASharpen, IAAEmboss, RandomContrast, RandomBrightness and
HueSaturationValue

22 augment_flips_color Custom function combined of distortions CLAHE, RandomRotate90, Transpose, ShiftScaleRotate, Blur, OpticalDistortion,
GridDistortion and HueSaturationValue

23 RGBShift Randomly shift values for each channel of the input RGB image

24 JpegCompression Decrease Jpeg compression of an image

25 ToGray Convert the input RGB image to grayscale. If the mean pixel value for the resulting image is greater than 127, invert the resulting
grayscale image

26 RandomGamma Draw samples from a Gamma distribution

27 InvertImg Invert the input image by subtracting pixel values from 255

28 ChannelShuffle Randomly rearrange channels of the input RGB image

29 CLAHE Apply Contrast Limited Adaptive Histogram Equalization to the input image
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FIGURE 4
Random input samples from cocstuffv2 dataset. Distorted image A is obtained by Albumentation library of augmentations, where Distortion
Map B is obtained by SSIM index method.
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FIGURE 5
Examples of generated distortion maps of central SAIs of different test LFIs from MPI dataset (Adhikarla et al., 2017)
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illustrated in Figure 2D, to prepare the feature vectors for test

LFIs, we perform a non-linear dimensionality reduction using an

Isometric Mapping (Tenenbaum et al., 2000) (ISOMAP) on the

generated distortion maps. The ISOMAP algorithm contains

three stages. First, it computes k nearest neighbors. Then, it

searches for and establishes the shortest path graph. Finally, the

Eigen-vectors are computed over the largest Eigen values. The

algorithm outputs feature vectors in a multi-dimensional

Euclidean space that best represent the intrinsic geometry of

the data. As illustrated in Figure 2E, the prepared features vectors

of LFIs are fed to a Random Forest Regressor, which performs a

regression to predict the LF quality. We chose the RFR because in

previous studies it has shown a robust performance (Fern ández-

Delgado et al., 2014; Freitas et al., 2018), when compared to other

machinelearning algorithms (e.g. neural networks, support

vector machines, generalized linear models, etc.).

3 Experimental setup

To train and test the proposed method, we have used the

following four LF image quality datasets. We have chosen these

datasets because of their content diversity, the types of

distortions, and the availability of the corresponding

subjective quality scores.

• TheMPI Light Field image quality dataset (Adhikarla et al.,

2017) contains 13 different scenes with references, 336 test

LFIs, and the corresponding subjective quality scores

(Mean Observer Scores - MOS). This dataset has typical

light field distortions that are specific to transmission,

reconstruction, and display.

• The VALID Light Field image quality dataset (Viola and

Ebrahimi, 2018) contains five contents, taken from EPFL

(Rerabek and Ebrahimi, 2016) light field image dataset, and

140 test LFIs that are compressed using state-of-the-art

compression algorithms.

The dataset contains both subjective (MOS) and objective

quality scores (PSNR and SSIM).

• The SMART Light Field image quality dataset (Paudyal

et al., 2016, 2017) has 16 original LFIs representing both

indoor and outdoor scenes. The image content

corresponds not only to the scenes with different levels

of colorfulness, spatial information, and texture, but also

LF specific characteristics such as reflection, transparency,

and depth of field. The dataset also contains 256 distorted

sequences obtained using four compression algorithms,

with their corresponding MOS values.

• The Win5-LID Light Field image quality dataset (Shi et al.,

2018) contains six real scenes (captured by a Lytro Illum) and

four synthetic scenes, with a total of 220 test LFIs. The

selected contents carry abundant semantic features, such as

people, nature, and objects. The LFIs have an identical

angular resolution of 9, ×, 9. The real scenes have spatial

resolution equal to 434 × 625, while the synthetic scenes have

a spatial resolution equal to 512 × 512. The distortions are

obtained with compression and interpolation algorithms.

As performance evaluation methods, we used only the

Spearman’s Rank-Order Correlation Coefficient (SROCC) and

the Pearson’s Linear Correlation Coefficient (PLCC) for

simplicity. We compared the proposed NR LF-IQA method

with the following state-of-art LF-IQA methods: MDFM (Tian

et al., 2018), LFIQM (Paudyal et al., 2019), Fang et al. (Fang et al.,

2018), SDFM (Tian et al., 2020b), Meng et al. (Meng et al., 2020),

LGF-LFC (Tian et al., 2020a), NR-LFQA (Shi et al., 2019a), LF-

QMLI (Luo et al., 2019), Jiang et al. (Jiang et al., 2018), BELIF Shi

TABLE 2 Mean SROCC and PLCC values for VALID, SMART, MPI, and
Win5-LID datasets obtained by 1,000 simulations of RFR.

Dataset Distortion Proposed

SROCC PLCC

MPI QD 0.9290 0.9866

Gaussian 0.9886 0.9698

HEVC 0.9581 0.9876

OPT 0.9347 0.9394

Linear 0.9499 0.9960

NN 0.9753 0.9955

ALL 0.9743 0.9878

VALID 10bit_HEVC 0.9275 0.9871

10bit_P3 0.9864 0.9931

10bit_P5 0.9866 0.9843

10bit_VP9 0.9258 0.9797

8bit_HEVC 0.9758 0.9678

8bit_VP9 0.9380 0.9781

ALL 0.9650 0.9388

SMART HEVC 0.9101 0.9463

JPEG 0.9069 0.9501

JPEG2000 0.9529 0.8947

SSDC 0.9050 0.9713

ALL 0.9307 0.9529

Win5-LID HEVC 0.9690 0.9398

JPEG2000 0.9367 0.9752

LN 0.9550 0.9148

NN 0.9324 0.9286

EPICNN 0.9059 0.9383

ALL 0.9441 0.9535
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et al. (2019b), Tensor-NLFQ (Zhou et al., 2019), Ak et al. (Ak

et al., 2020), Shan et al. (Shan et al., 2019) and VBLIF (Xiang

et al., 2020). We also compared the proposed method with the

following 2D image/video quality metrics: PSNR-YUV (Sze et al.,

2014), IW-PSNR (Wang and Li, 2011), FI-PSNR (Lin and Wu,

2014), MW-PSNR (Sandić-Stanković et al., 2016), SSIM (Wang

et al., 2004), IW-SSIM (Wang and Li, 2011), UQI (Zhou and

Bovik, 2002), VIF (Sheikh and Bovik, 2006), MJ3DFR (Chen

et al., 2013), GMSD (Xue et al., 2014), NICE (Rouse and

Hemami, 2009) and STMAD (Vu et al., 2011).

For training and testing the RFR method, we divided each

dataset into two content-independent training and testing

subsets, i.e,. distorted images generated from one reference in

the testing subset are not present in the training subset and vice-

versa. We define a group of scenes as a group containing the

reference LFI and its corresponding distorted versions. Then,

80% of the groups were randomly selected for training and the

remaining 20% were used for testing. The partition was repeated

1,000 times to eliminate the bias caused by data division. We

reported the mean correlation values for the test set over

1,000 simulations.

4 Experimental results

Table 2 shows the correlation values obtained for the VALID,

SMART, MPI, and Win-LID LFI quality datasets. The rows in

this table show the results for each dataset and for each

TABLE 3 SROCC and PLCC values obtained for state-of-the-art LF-IQA methods tested on VALID, SMART, MPI, and Win5-LID datasets.

Category Type Methods Year MPI VALID SMART Win5-LID

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

Pre-defined
Functions

FR UQI 2002 0.7400 0.8460 0.9310 0.9550 0.6480 0.7980 0.8252 0.8764

FR SSIM 2004 0.9120 0.9320 0.9500 0.9640 0.7550 0.8010 0.6812 0.7880

FR VIF 2006 0.8600 0.8960 0.9620 0.9790 0.7260 0.8370 0.9347 0.9555

FR NICE 2009 0.5821 0.5122 0.6211 0.6544 0.5214 0.5426 0.4892 0.5002

FR STMAD 2011 0.8650 0.8940 0.7940 0.8020 0.6640 0.8010 0.8489 0.9074

FR IW-SSIM 2011 0.9320 0.9440 0.9650 0.9780 0.8060 0.8850 0.8212 0.8736

FR IW-PSNR 2011 0.9300 0.9160 0.9470 0.9670 0.7840 0.8520 0.8842 0.9022

FR MJ3DFR 2013 0.8720 0.9300 0.9560 0.9700 0.8160 0.8480 0.8836 0.8998

FR GMSD 2014 0.7358 0.7410 0.6821 0.6948 0.7264 0.8000 0.4352 0.5041

FR FI-PSNR 2014 0.8740 0.8510 0.7060 0.7060 0.7730 0.8320 0.6951 0.7419

FR PSNR-YUV 2014 0.9342 0.9452 0.9230 0.9310 0.9102 0.9211 0.9007 0.9215

FR MW-PSNR 2016 0.7251 0.7698 0.6869 0.6904 0.5281 0.5869 0.7582 0.7758

FR MDFM Tian et al. (2018) 2018 0.8346 0.8123 0.7120 0.7198 0.7535 0.7683 0.8157 0.8591

FR Fang et al. (2018) 2018 0.8065 0.7942 — — — — — —

RR LFIQM Paudyal et al. (2019) 2019 0.6815 0.7013 0.3934 0.5001 0.4503 0.4763 0.4503 0.4763

FR SDFM Tian et al. (2020b) 2020 0.8435 0.8423 0.824 0.8542 0.7514 0.7941 0.6742 0.7142

FR Meng et al. (2020) 2020 0.9579 0.9762 — — —

FR LGF-LFC Tian et al. (2020a) 2020 0.8543 0.8476 — — 0.8246 0.8276 — —

DL FR Jiang et al. (2018) 2018 - 0.8954 — — — — — —

NR BELIF Shi et al. (2019a) 2019 0.8854 0.9096 0.8863 0.8950 0.8367 0.8833 0.8719 0.8910

NR NR-LFQA Shi et al. (2019b) 2019 0.9119 0.9155 0.9257 0.9658 0.8803 0.9105 0.9032 0.9206

NR LF-QMLI Luo et al. (2019) 2019 — — 0.9286 0.9683 — — 0.8802 0.9038

NR Shan et al. (2019) 2019 — — — — 0.8917 0.9106 — —

NR Tensor-NLFQ Zhou et al.
(2019)

2019 0.9101 0.9225 0.9326 0.9746 0.8702 0.9028 0.9101 0.9217

NR Ak et al. (2020) 2020 0.8942 0.9005 — — — — — —

NR VBLIF Xiang et al. (2020) 2020 0.9015 0.9158 — — — — 0.9009 0.9232

DL + ML NR Proposed 2020 0.9743 0.9878 0.9650 0.9781 0.9307 0.9529 0.9441 0.9535
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distortion, with the “All” row corresponding to the results

obtained for the complete datasets. The proposed method

performs very well for the MPI dataset obtaining SROCC of

0.97 and PLCC of 0.98, and for the VALID dataset obtaining

SROCC of 0.96 and PLCC of 0.93. For the SMART dataset, the

method obtains SROCC of 0.93 and PLCC of 0.95, while for the

Win5-LID dataset, the method achieves SROCC of 0.94 and

PLCC of 0.95. Across the different distortions, the proposed

method also performed very well, with only a few distortions

showing slightly lower values (e.g. SROCC values of JPEG and

SSDC in SMART dataset, and EPICNN in Win5-LID dataset).

Table 3 illustrates the comparison of the results with other

state-of-the-art LFI-IQA methods. In this table, the NR and FR

LF-IQA methods are classified into three categories, taking into

consideration the models used to map the pooled features into

quality estimates. The categories include methods that use 1) a

pre-defined function, 2) a machine-learning (ML) algorithm, or

3) a deep-learning (DL) approach to obtain the predicted quality

score. Notice that, for simplicity, only the overall performance

(“ALL”) correlation values are reported for each dataset. Also,

since the authors of these LF-IQA methods did not publish their

results for all four datasets, our matrix is incomplete. For VALID

dataset, NR-LFQA (Shi et al., 2019a) and Tensor-NLFQ (Zhou

et al., 2019) methods have reported correlations separately for

8bit and 10bit compressed LF images. For comparison of results

in Table 3, we have shown averaged SROCC and PLCC obtained

by these methods for complete VALID dataset. Notice that the

proposed method has achieved the highest correlation values

among all LF-IQA methods for all of the four datasets. It is also

worth pointing out that the pooling andmapping strategies in the

proposed NR LF-IQA method has achieved significant

improvement in quality predictions and shown higher SROCC

and PLCC than the original SSIM method.

5 Conclusion

In this paper, we have proposed a blind LF-IQA method that

is based on reference-free distortionmaps. To generate reference-

free distortion maps from test LFIs, we have used a GAN deep-

learning architecture, the Pix2PixGAN, which learns from

synthetically generated distorted images and their

corresponding ground truth distortion maps. Since the ground

truth distortionmaps are not available in any of the existing LF or

image quality datasets, we use distortionmaps generated by SSIM

as the ground truth distortion map. Next, we train the

Pix2PixGAN using the synthetically generated dataset. The

proposed LF-IQA method has following five stages: 1)

Generation of a synthetically distorted dataset of 2D images,

2) Pix2PixGAN training to generate 2D distortion maps, using

SSIM distortionmaps as ground truth, 3) generation of distortion

maps of sub-aperture images using the trained Pix2PixGAN, 4)

non-linear reduction of dimensionality through Isometric

Mapping on the generated distortion maps to obtain the LFI

feature vectors, and 5) perform regression using RFR algorithm

to predict LFI quality. The correlation values of the proposed

method computed on four different datasets are higher than what

is obtained by other state-of-the-art LF-IQA methods. As future

work, we plan to explore using different state-of-the-art FR-IQA

metrics to generate the ground truth distortion maps, and train

the Pix2PixGAN architecture. It is worth pointing out that the

proposed method can work as a framework to train for other

types of no-reference LF-IQA methods.
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