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Editorial on the Research Topic
Chemoinformatics Approaches to Structure- and Ligand-Based Drug Design, Volume II

“Chemoinformatics Approaches to Structure- and Ligand-Based Drug Design, Volume II” follows the
success of the first volume of this Research Topic (RT) (Ferreira and Andricopulo, 2018). The field
has been more relevant than ever, especially in pandemic times, when Covid-19 hit the world and the
scientific community was urged to come up with fast and cost-effective solutions (Robinson et al.,
2022). Apart from the pandemic, chemoinformatics has been a core component in outstanding
developments across different therapeutic areas and will continue to be a strategic innovation driver
in the drug research and development (R&D) process (Chen et al., 2018; Ferreira and Andricopulo,
2019; Jiménez-Luna et al., 2021).

The second volume of this RT contains reviews and original research articles covering up-to-date
research on machine learning (ML), multiparameter optimization (MPO), quantitative structure-
activity relationships (QSAR), chemoinformatics servers, virtual screening, pharmacokinetics,
among other equally relevant topics. More than 140 authors from all over the world contributed
to the 20 articles that are part of this volume. Chemoinformatics investigations applied to different
conditions such as Covid-19, cancer, Chagas disease, inflammation, pain, and immunological
diseases are included. Additionally, novel approaches to pocket druggability analysis, multi-
target drug discovery, artificial neural networks, multi-conformation molecular docking,
molecular dynamics, and quantum studies are provided. Regarding target-based efforts, key
aspects of intermolecular recognition are reported for a variety of proteins, including cruzain,
G-protein coupled receptors (GPCR), phosphoglycerate mutase 1 (PGAM1), glutamate receptor, 5-
lipoxygenase-activating protein (FLAP), Janus kinase 1 (JAK1), CC chemokine receptor 7 (CCR?7),
and cyclin-dependent kinase 2 (CDK2).

An MPO campaign combining computational and experimental approaches yielded a series of
novel cruzain inhibitors (Pauli et al.). These compounds showed in vitro and in vivo trypanocidal
activity along with low toxicity and suitable pharmacokinetics, contributing to the advance of Chagas
disease drug discovery. Another study that integrated organic synthesis, biological evaluation, and
molecular modeling (Oliveira et al.) resulted in the discovery of a series of carvacrol-derived
sulfonamides with potent antioxidant, antinociceptive, and anti-edematogenic activities. Moreover,
3D-QSAR models (Wang et al.) were integrated with molecular docking and molecular dynamics to
investigate anthraquinone-based PGAMI inhibitors. Molecular modeling was also applied in
combination with virtual screening and molecular docking to investigate novel inhibitors of
JAK1 (Babu et al.), a critical enzyme for intracellular signal transduction and the development
of numerous types of cancer. Given the importance of GPCRs in drug design, a review article covers
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recent discoveries on allosteric GPCR ligands and bitopic
modulators (Egyed et al.). The role of the GPCR secondary
site was examined in terms of its effects on properties such as
binding affinity, selectivity, and kinetics. A further review article
examines the currently available tools used to analyze molecular
dynamics results (Baltrukevich and Podlewska).

Chemokines play a critical role in immunological signaling
and, therefore, can be explored as drug targets in different
diseases such as immunological and inflammatory conditions
and cancer (Salem et al., 2021). A set of experimentally validated
decoys were identified for CCR7 using a structure-based virtual
screening approach (Proj et al.). In addition to the traditional
single-target drug design paradigm, a new multitarget strategy is
reported in this RT (Valdés-Jiménez et al.). A computational tool
was developed to explore and identify druggable 3D
arrangements across different proteins. This algorithm allows
the comparison of quaternary structures and the evaluation of
druggability from the 3D structural pattern. However, defining
druggable and non-druggable protein cavities is neither a trivial
nor an obvious task (Ehrt et al, 2019). Departing from the
commonly used two-class classification models, a one-class
approach to assess druggability (Aguti et al.) using a
probabilistic kernel is communicated in this RT. The workflow
proved to be feasible in removing or reducing biases in the
classification of druggable pockets. Virtual screening has
become an important tool in drug discovery as it allows a
preliminary evaluation of large compound collections in short
timelines and costs (Ferreira and Andricopulo, 2021). A novel
virtual screening workflow (Venkatraman et al.) that can sample
billions of compounds and supports parallel and cloud
computing is reported. A collection of approximately 3.7
billion compounds against three Sars-CoV-2 proteins were
used to evaluate the effectiveness of the new virtual screening
pipeline. Another target-based study focuses on CDK2, which
participates in the regulation of the cell cycle and is a critical
player in cancer emergence. A series of aminopurine derivatives
was designed as novel CDK2 inhibitors (Liang et al.) with high
selectivity concerning other CDK isoforms. Anti-proliferative
activity against triple-negative breast cancer cells (TNBC) was
shown, which makes this series suitable starting points for
optimization.

ML has been a hot topic in drug discovery, which is reflected in
the number of articles on this theme published in this RT. Novel
molecular targets for Covid-19 drug repositioning were identified
(Lopez-Cortés et al.) by a combination of artificial neural
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networks, single-cell RNA sequencing, and interactome
analyses of the immunological system proteins. After a screen
of more than 1,500 proteins, 25 putative molecular targets were
identified. Interestingly, datasets containing more than 50,000
structurally diverse compounds with reported activity against
several breast cancer cell lines were used to generate predictive
models (He et al.). As a result, a web server was created to predict
the activity of query compounds against breast cancer cell lines.
Another online tool reported in this RT performs multi-
conformational molecular docking (Wang et al.) on estrogen
(ERa and Erf) and androgen (AR) receptors. In addition, this
interface runs 2D similarity searches against a database of known
ERa, ERP, and AR ligands. ML was also applied to identify the 2D
features associated with the anti-inflammatory properties of
FLAP inhibitors (Aliza Khan and Jabeen), which can assist the
design of optimized anti-inflammatory agents. Furthermore, this
RT brings to the readers an interesting analysis of the
extrapolation limits of different regression methods (von Korff
and Sander) applied to drug discovery along with an ML-based
QSAR model (Brown et al.) for the estimation of molecular
properties in drug design. In the field of deep learning, this
article Research Topic features a report of a deep graph neural
network (Shi et al.) to predict the interaction of small-molecule
compounds with protein binding cavities. An additional
important topic is drug resistance to antibiotics, which has
emerged as a major health concern all over the world. ML has
been applied to the field to identify novel chemical matter able to
circumvent the main resistance mechanisms found in bacteria
(Chowdhury et al, 2020). A review article examines recent
machine learning studies (Juki¢ and Bren) applied to the
identification of novel non-peptidic and peptidic antibacterial
compounds and drug targets.

This RT encloses articles that cover a broad range of
chemoinformatics applications to drug discovery and its many
interfaces with the chemical and biological sciences. The
knowledge shared through this RT could not be more relevant
and timely. We hope that the findings, insights, and analyses
reported herein contribute to the advance of drug discovery and,
ultimately, to the promotion of human health.
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Background: There is pressing urgency to identify therapeutic targets and drugs that
allow treating COVID-19 patients effectively.

Methods: We performed in silico analyses of immune system protein interactome
network, single-cell RNA sequencing of human tissues, and artificial neural networks to
reveal potential therapeutic targets for drug repurposing against COVID-19.

Results: We screened 1,584 high-confidence immune system proteins in ACE2 and
TMPRSS2 co-expressing cells, finding 25 potential therapeutic targets significantly
overexpressed in nasal goblet secretory cells, lung type Il pneumocytes, and ileal
absorptive enterocytes of patients with several immunopathologies. Then, we
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performed fully connected deep neural networks to find the best multitask classification
model to predict the activity of 10,672 drugs, obtaining several approved drugs,
compounds under investigation, and experimental compounds with the highest area
under the receiver operating characteristics.

Conclusion: After being effectively analyzed in clinical trials, these drugs can be
considered for treatment of severe COVID-19 patients. Scripts can be downloaded at
https://github.com/muntisa/immuno-drug-repurposing-COVID-19.

Keywords: COVID-19, immune system, single-cell RNA sequencing, artificial neural networks, drug repurposing

INTRODUCTION

The first zoonotic transmission of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) was located in China in
December 2019 (Tay et al., 2020), and it is the causative agent of
the coronavirus disease 2019 (COVID-19) (Sanders et al., 2020).
The World Health Organization (WHO) declared the outbreak of
COVID-19 as a Public Health Emergency of International
Concern on January 30, 2020, and a pandemic on March 11,
2020 (Gao Q et al., 2020). Classified in the Coronaviridae family
and Betacoronavirus genus, SARS-CoV-2 is the seventh CoV
known to infect humans, along with 229E, NL63, OC43, HKU1,
SARS-CoV, and Middle East respiratory syndrome (MERS)
(Oberfeld et al., 2020). Coronaviruses cause mild to severe
respiratory diseases and have high mutation rates that result
in high genetic diversity, plasticity, and adaptability to invade a
wide range of hosts (Peiris et al., 2004).

The first genome of SARS-CoV-2 named Wuhan-Hu-1 (NCBI
reference sequence NC_045512) was isolated and sequenced in
China in January 2020 (Zhou P et al, 2020; Zhu et al., 2020).
SARS-CoV-2 is a single-stranded positive-sense RNA virus of
about 30 kb in length (Zhou P et al., 2020; Ziegler et al., 2020).
The genomic structure is comprised of a 5 terminal cap structure,
14 open reading frames (ORFs) encoding 29 proteins, and a 3’
poly A tail (Wu A et al., 2020). ORFla and ORFlab are the largest
genes and codify 16 non-structural proteins (nspl to nspl6).
According to Gordon et al. (2020), nsps are involved in antiviral
response (nspl), viral replication (the nsp3-nsp4-nsp6 complex),
the protease 3CP™ (nsp5) (Zhang L et al, 2020), the RNA
polymerase (the nsp7-nsp8 complex), the single-strand RNA
binding (nsp9), the methyltransferase activity (nspl0 and
nspl6), the RNA-dependent RNA polymerase (nspl12) (Gao Y
et al, 2020), the helicase/triphosphatase (nspl13), the 3'-5'
exonuclease (nspl4), the uridine-specific endoribonuclease
(nspl5), and the RNA-cap methyltranspherase (nspl6)
(Gordon et al., 2020). Lastly, the 3’ terminus contains genes
that codify the spike (S) glycoprotein, the envelope (E) protein,
the membrane (M) glycoprotein, the nucleocapsid (N) protein,
and several accessory proteins (3a, 3b, p6, 7a, 7b, 8, 9b, 9¢c, and 10)
(Figure 1A) (Wu A et al,, 2020; Wu C et al,, 2020).

COVID-19 is caused when SARS-CoV-2 exploits the host cell
machinery for its own replication and spread (Ortiz-Prado et al.,
2020). SARS-CoV-2 entry into human cells is mediated by the S
glycoprotein that forms homotrimers protruding from the viral
surface (Walls et al., 2020). S1 and S2 are two functional subunits

of the S glycoprotein. Six receptor-binding domain (RBD) amino
acids (L455, F486, Q493, S494, N501, and Y505) of the S1 subunit
directly bind to the peptide domain of angiotensin-covering
enzyme 2 (ACE2) human receptor protein (Andersen et al,
2020; Cao et al.,, 2020; Wang Q et al., 2020; Yan et al., 2020).
The affinity constant for RBD of SARS-CoV-2 to ACE2 is greater
than that of SARS-CoV by as much as a factor of 10-15 (Wang Q
et al, 2020, Wang Y et al, 2020; Wrapp et al., 2020). S
glycoprotein is cleaved by the cathepsin L (CTSL) protease
(Muus et al., 2020), and the transmembrane serine protease
(TMPRSS2) in a functional polybasic (furin) cleavage site at
the S1-S2 boundary flanked for O-linked glycans (Hoffmann
et al., 2020; Walls et al., 2020). S2 subunit mediates subsequent
fusion between the human and viral membranes (Kirchdoerfer
et al.,, 2016; Yuan et al., 2017).

ACE2 is a type I membrane protein widely expressed in nasal
goblet secretory cells, lung type II pneumocytes, ileal absorptive
enterocytes, kidney proximal tubule cells, gallbladder basal cells,
among other human cells (Deng et al., 2020; Lamers et al., 2020;
Singh et al., 2020; Sungnak et al., 2020; Ziegler et al., 2020), and
participates in the maturation of angiotensin, a peptide hormone
that controls blood pressure and vasoconstriction (Donoghue
etal., 2000). After virus entry, many severe ill COVID-19 patients
developed clinical manifestations such as cough, mild fever,
dyspnea, lung edema, severe hypoxemia, acute respiratory
distress syndrome (ARDS) (Montenegro et al., 2020), acute
lung injury (Blanco-Melo et al., 2020), interstitial pneumonia,
increased concentrations of fibrinogen and D-dimer plasma
levels (Spiezia et al., 2020; Tang et al., 2020), elevated levels of
pro-inflammatory chemokines and cytokines such as interleukin
(IL) 6 (Herold et al., 2020; Sarzi-Puttini et al., 2020), low levels of
type I and III interferons (IFNs) (Blanco-Melo et al., 2020), high
levels of lactate dehydrogenase, hyperferritinemia, idiopathic
thrombocytopenic purpura caused by spleen atrophy (Zulfiqar
et al., 2020), formation of hyaline membrane (Yao et al., 2020),
hilar lymph node necrosis, lymphopenia (Terpos et al., 2020),
intravascular coagulopathy (Fogarty et al., 2020), pulmonary
thromboembolism (Rotzinger et al, 2020), hypotension
(Rentsch et al., 2020), cerebrovascular events (Mao et al,
2020), metabolic acidosis, kidney and hepatic
dysfunctions (Zhang C et al, 2020), secondary infections,
septic shock (Li H et al., 2020), and multi-organ failure (Wang
Q et al., 2020; Gupta et al., 2020; Wadman et al., 2020).

Additionally, SARS-CoV-2 interacts with the immune
system triggering dysfunctional immune responses to

severe
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FIGURE 1 | Interaction between human proteins and SARS-CoV-2 proteins. (A) Proteomic and genomic structure of SARS-CoV-2. (B) Human proteins physically
associated with SARS-CoV-2 proteins.

COVID-19 progression (Tay et al., 2020). Given that an
excessive inflammatory response to the novel coronavirus is

thought to be a major cause of disease severity and death
(Blanco-Melo et al., 2020; Mehta et al., 2020), a better

networks to reveal potential therapeutic targets for drug
repurposing against COVID-19.

understanding of the immunological underpinnings is
required to identify potential therapeutic targets. To fill in
this gap, we performed in silico analyses of immune system
protein-protein interactome (PPi) network, single-cell RNA
sequencing (scRNA-seq) of human tissues, and artificial neural

METHODS

Protein Sets
We have retrieved the 332 human proteins physically associated
with 26 of the 29 SARS-CoV-2 proteins proposed by Gordon et al
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(Figure 1B; Supplementary Table S1; Gordon et al., 2020). We
have also retrieved a total of 3,885 immune system proteins from
several databases such as the International ImMunoGeneTics
information system (http://www.imgt.org) (Giudicelli et al., 2005;
Lefranc et al., 2009; Lefranc et al., 2015), the InnateDB database
(https://www.innatedb.com/) (Breuer et al., 2013), and the David
Bioinformatics Resource (https://david.ncifcrf.gov/) (Huang et al.
,2009b; Huang et al., 2009a) using the gene ontology (GO) terms:
0002376 immune system process, 0045087 innate immune
response, and 0002250 adaptive immune response. Lastly, both
protein sets were integrated to identify the highest confidence
interactions and to design the immune system PPi network.

Protein-Protein Interactome Network

The immune system PPi network with a highest confidence cutoff
of 0.9 and zero node addition was created between the human
proteins physically associated with SARS-CoV-2 and their first
neighboring proteins of the immune system. This network was
generated using the human proteome of the Cytoscape StringApp
(Szklarczyk et al., 2015; Doncheva et al., 2019), which imports
protein-protein interaction data from the STRING database
(Szklarczyk et al.,, 2015). The degree centrality represents the
number of edges the node has in a network (Lopez-Cortés et al.,
2018; Lopez-Cortés et al., 2020b), and it was calculated using the
CytoNCA app (Tang et al., 2015). All nodes and edges were
organized through the organic layout, which produces clear
representations of complex networks, and lastly, the immune
system PPi network was visualized through the Cytoscape
software v.3.7.1 (Shannon et al., 2003).

Interestingly, Overmyer et al. published a large-scale multi-
omic analysis identifying 146 significantly expressed proteins in
patients with severe COVID-19 (Overmyer et al., 2020). We
located these proteins in our immune system PPi network and
generated the immune system PPi subnetwork encompassing the
significantly expressed proteins in severe COVID-19 and their
first neighbor nodes (cutoff = 0.9). Subsequently, we ranked the
overexpressed and underexpressed proteins according to the
highest degree centrality.

Additionally, Bouhaddou et al. published the global
phosphorylation landscape of SARS-CoV-2 infection identified
97 significantly expressed proteins in Vero E6 cells (Bouhaddou
et al., 2020). We located these proteins in both networks and
ranked the phosphorylated proteins according to the highest
degree centrality. Lastly, human proteins physically associated
with the SARS-CoV-2 proteins, immune system proteins,
significantly expressed proteins in severe COVID-19, and
significantly expressed phosphorylated proteins in SARS-CoV-
2 infection in Vero E6 cells were differentiated by colors in both
the immune system PPi network and subnetwork.

Functional Enrichment Analysis

The functional enrichment analysis gives curated signatures of
protein sets generated from omics-scale experiments (Reimand
et al,, 2019). We performed the enrichment analysis to validate
the correlation between the immune system PPi subnetwork and
biological annotations related to severe COVID-19, using the
protein set of the immune system PPi network as background set.

Drug Repurposing for COVID-19 Therapy

The enrichment was calculated using g:Profiler version
el101_eg48_pl4 baf17f0 (https://biit.cs.ut.ee/gprofiler/gost) to
obtain significant annotations (Benjamini-Hochberg false
discovery rate - FDR < 0.001) related to GO: biological
processes, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) signaling pathways, and Reactome signaling pathways
(Wang et al., 2016; Slenter et al., 2018; Raudvere et al., 2019; Jassal
et al., 2020). Lastly, the enrichment analysis was visualized in a
Manhattan plot, and the significant terms related to the
immunopathology of severe COVID-19 were manually curated.

Single-Cell RNA Sequencing Data

Ziegler et al. analyzed human scRNA-seq data to uncover
potential targets of SARS-CoV-2 amongst tissue-resident cell
subsets. They discovered ACE2 and TMPRSS2 co-expressing in
goblet secretory cells from nasal passages, type II pneumocytes
from lung epithelial cells, and absorptive enterocytes from ileal
epithelial cells (Ziegler et al., 2020).

After constructing the immune system PPi network between
the human proteins physically associated with the SARS-CoV-2
proteins, immune system proteins, and significantly expressed
proteins in severe COVID-19, we compared the transcriptomics
data of the network nodes between 10 nasal passage cells (goblet
cell, basal cell of olfactory epithelium, ciliated cell, endothelial
cell, fibroblast cell, glandular epithelial cell, mast cell, myeloid cell,
plasma cell, and T cell), 15 lung epithelial cells (ciliated
cell, lymphatic cell, fibroblast 1, fibroblast 2, macrophage 1,
macrophage 2, macrophage 3, mast cell, monocytes 1,
monocytes 2, neutrophil cell, proliferating cell, T cell, type I
pneumocytes, and type II pneumocytes), and 9 ileal epithelial
cells (cycling stem cell, early enterocyte 1, early enterocyte 2,
absorptive enterocyte, enteroendocrine cell, goblet cell, quiescent
stem cell, TA G1S cell, and TA G2M cell) to identify significantly
expressed genes in goblet secretory cells, type II pneumocytes,
and absorptive enterocytes.

The transcriptomics data was taken from the ‘COVID-19
Studies’ section of the Single Cell Portal (https:/singlecell.
broadinstitute.org/single_cell/covid19), and the Alexandria
Project (https://alexandria-scrna-data-library.readthedocs.io/en/
latest/introduction.html). The three single-cell databases
analyzed were: 1) nasal passage cells (Ordovas-Montanes et al.,
2018) (https://singlecell.broadinstitute.org/single_cell/study/
SCP253/allergic-inflammatory-memory-in-human-respiratory-
epithelial-progenitor-cells#study-visualize), 2) lung epithelial
cells (Ziegler et al.,, 2020) (https://singlecell.broadinstitute.org/
single_cell/study/SCP814/human-lung-hiv-tb-co-infection-ace2-
cells#study-visualize), and 3) ileal epithelial cells (Fujii et al,
2018) (https://singlecell.broadinstitute.org/single_cell/study/
SCP817/comparison-of-ace2-and-tmprss2-expression-in-
human-duodenal-and-ileal-tissue-and-organoid-derived-
epithelial-cells#study-visualize). Lastly, it is important to clarify
that the scRNA-seq analyses were done in cells non exposed to
the novel coronavirus.

The criteria of analysis of transcriptomics data of nasal passage
cells, lung epithelial cells, and ileal epithelial cells was the
following: ‘t-distributed stochastic neighbor embedding
(t-SNE) cell types’ as load cluster, ‘cell type ontology label’ as
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selected annotation, and ‘all cells’ as subsampling threshold.
Additionally, we adjust the mRNA expression taking into
account the Z-scores, that is, overexpressed mRNAs with
Z-scores > 2 and underexpressed mRNAs with Z-scores < —2.
Regarding visualization of transcriptomics data, we designed
heatmaps to compare the expression between cell types, dot
plots to visualize the percentage of cells expressing, box plots
to compare the expression scores of multiple genes for each cell
type taking into account the mean log normalized expression, and
2D t-SNE to visualize the expression score of significantly
expressed multiple genes per subpopulation cell.

Drug Repurposing

After identifying the significantly expressed biological molecules
present in the scRNA-seq analyses of ACE2 and TMPRSS2 co-
expressing human cells, we evaluated the druggability of these
molecules, and subsequently perform the drug repurposing
analysis.

From all the 75 previously identified and significantly
expressed biological molecules, only 31 had identification
number in the ChEMBL database (https://www.ebi.ac.uk/
chembl) (Gaulton et al., 2017), and from these 31 proteins, all
compounds were extracted from ChEMBL as follow: 1) all
reported interactions with (IC50, Ki, EC50, and GI50) where
extracted from ChEMBL version 26; 2) all extracted interactions
were labeled as active (1) or inactive (0) if values are less than
10 uM; and 3) if more than one report (active or inactive) is
available for the same compound-target interaction, the final
criteria (active or inactive) was assigned considering the 75% of
the information or rejected otherwise. From the 31 proteins, only
25 had identified molecules with active/inactive interactions after
considering the previous filters. Hence, we identified 25 potential
therapeutic targets for drug repurposing against COVID-19.

DeepChem package and Python Jupyter Notebooks (Oliver,
2013) were used to predict if drugs (DrugBank compounds) could
be active for multiple protein targets (Oliver, 2013) (https://
github.com/deepchem/deepchem). DrugBank  (https://www.
drugbank.ca/) contains comprehensive information about
drugs, their mechanism of action, and their targets (Wishart
et al., 2006; Wishart et al., 2018). The calculations used the
GPU of Google Colab and the correspondent scripts could be
found at GitHub repository: https://github.com/muntisa/
immuno-drug-repurposing-COVID-19. The fully-connected
deep neuronal networks (FCNNs) have been used to find the
best multitask classification model using 1,024 molecular circular
fingerprints (CFPs) as input descriptors for 15,377 ChEMBL
compounds and activity (1/0) for the 25 therapeutic targets as
outputs/tasks (Wu et al., 2018). The best model resulted from a
grid search for the best parameters have been used to predict the
activity of 10,672 drugs for the 25 targets. The performance of the
classifiers used during the training, grid search and test evaluation
of the best model was the area under curve (AUC) of the receiver
operating characteristic (ROC) curve (AUROC) (Hastie et al.,
2009), the default metric in DeepChem package. The ROC curve
is defined by the True Positive Rate (TPR) (or Sensitivity) vs. the
False Positive Rate (FPR) (or 1-Specificity) for each of the class of
the multi-task classifier for different class probability thresholds.

Drug Repurposing for COVID-19 Therapy

TPR = TP/(TP + FN), FPR = FP/(FP + TN), where TP = True
Positive; FP = False Positive; TN = True Negative; FN = False
Negative (from the confusion matrix that summarizes the results
of testing the classifier). AUROC represents the area under the
ROC curve, with values between 0 and 1 (1 = perfect model; 0.5 =
no skill/random model).

The main script of the repository (Immuno-Drug-
Repurposing-DeepChem-MultitaskClassification.ipynb) is
presenting all the methodology with python code and results.
The repository folder “datasets” contains the dataset with the
ChEMBL ID, SMILES formula, and the class of protein target
(multiclass_origDS_noDB.csv). The dataset that will be used by
the classifier contains the SMILES formulas of 15,377 ChEMBL
compounds that interacts with 25 different protein targets with
the following UniProt IDs: 000571, P00533, P01024, P01130,
P04233, P07339, P08962, P09668, P11021, P15291, P16070,
P17301, P21741, P25774, P25963, P26006, P27361, P35222,
P40763, P50591, P55085, Q15904, Q16665 Q99519, and
Q99814. This means that the dataset was composed by 15,377
examples with 25 classes. The multi-task classification model will
be able to predict if a compound with a SMILE formula could
have one or more protein targets simultaneously, using separated
tasks/outputs for each of the 25 proteins. It is not a simple
classification with only an output (class) that can predict only
a protein value from the 25 possible targets). The prediction
molecules that will be evaluated with the best classifier can be
found in DB_toPredict.csv (DataBank ID, SMILES formulas, and
the classes to predict). The input SMILES formulas will be used to
calculate molecular descriptors for all molecules (as model
inputs).

In the first step, CFPs molecular descriptor have been
calculated for both ChEMBL dataset and DrugBank prediction
set (Gaulton et al., 2017; Wishart et al., 2018) as a vector of 1,024
values for each compound. Thus, the dataset to build the future
classifier has 1,024 input features in 15,377 examples with 25
output classes (protein target).

In order to build a classifier (model), the training of the model
should be done with a training subset and the final model should
be tested for performance with a test subset that was not used
during the training process. In addition, if different classifiers
with different parameters are used during the training, there is a
need of an extra validation subset to decide the best classifier
(model) using a specific metrics (in our scripts: AUROC). Thus,
the dataset was splitted into 80%-10%-10% training-validation-
test subsets using RandomStratifiedSplitter (to maintain the same
ratio between the examples in all 25 classes as in the initial
dataset). The training and validation subsets were used to find the
best hyperparameters for the FCNN with 1,000 neurons
(MultitaskClassifier from DeepChem package). The constant
parameters are activation functions as relu, momentum of 0.9,
weights initialization using Glorot uniform method (Xavier
uniform initializer), learning rate of le-3, decay of le-6, lo
epochs, a single hidden layer (additional parameters could be
found in the main notebook of the repository). During the grid
search for the best model, 64 classifiers have been optimized with
different combination of the following parameters: batch size =
(128, 515), dropouts = (0.0, 0.1, 0.2, 0.3), batch normalization =
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(False, True), and hidden layer sizes (number of neurons) = (100,
500, 1,000, 1,024). Thus, the training subset was used for training
of each model/classifier and the validation subset was used to
decide the best model.

The test set was used to verify the performance of the best
model for each task/protein target (see Supplementary

Table S2). AUROC for the test subset was between 0.935
and 1.000 (mean AUROC = 0.989; standard deviation (SD) =
0.019). Additional results such as the AUROC values for
training, validation and test subset for each protein target
(task/class) are presented into the folder “results” as

multitasks_metrics_best.csv.
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The best model has 1,000 neurons in a hidden layer (dropout
of 0.5) with all parameters as ’activation’: ’relu’, ’'momentum’:
0.9, ’batch_size: 124, ’init: ’glorot_uniform’, ’data_shape™
(1024), ’learning_rate’: 0.001, ’decay’: 1le-06, 'nb_epoch’ 1,
‘nesterov’: False, ’dropouts’ (0.5), ‘nb_layers™ 1, ’batchnorm’
False, ’layer_sizes: (1000), ’weight init stddevs (0.1),
’bias_init_consts™ (1.0), ’penalty’: 0.0. This classifier was used
to predict the activity of 10,672 drugs from DataBank for the 25
immune system targets: DDX3X, EGFR, C3, LDLR, CD74,
CTSD, CD63, CTSH, HSPAS5, B4GALT1, CD44, ITGA2,
MDK, CTSS, NFKBIA, ITGA3, MAPK3, CTNNBI1, STATS3,
TNFSF10, F2RL1, ATP6API1, HIF1A, NEUI1, and EPASI (see
Supplementary Table S7 and multitasks_predictions_best.csv
in repository folder “results”). Lastly, the best predicted drug-
target associations were evaluated according to its first ATC
level (https://www.whocc.no/atc_ddd_index/), drug category,
mechanism of action, approval status by the US Food &
Drug Administration (FDA) or the European Medicines
Agency (EMA), the pharmacological indications, and the
current involvement in COVID-19 clinical trials (https://
www.clinicaltrials.gov/ct2/results?cond=COVID-19).

RESULTS

Immune System Protein-Protein

Interactome Network

In biological systems, specialized pathogens (i.e., SARS-CoV-2)
employ a suite of virulent proteins, which interact with key targets
in host interactomes to extensively rewire the flow of information
and cause diseases, such as COVID-19 (Vidal et al., 2011; Pan
et al., 2016; Kumar et al., 2020). The human proteins physically
associated with SARS-CoV-2 are the first line of host proteins,
which also interacts with molecular components involved in a
wide spectrum of biological processes and signaling pathways
within the cell. Therefore, analyzing the interactome of immune
system proteins may reveal novel components in SARS-CoV-2
immunopathogenesis.

Here, we generated the immune system PPi network
encompassing 1,584 nodes and 332,968 edges (Figure 2A). Of
them, 256 human proteins physically associated with SARS-CoV-
2 proteins had high-confidence interactions (cutoff = 0.9) with
1,390 immune system proteins belonging to the first neighbor
nodes (Supplementary Table S3). The degree centrality mean of
the human proteins physically associated with SARS-CoV-2
proteins was 23.6, and proteins with the highest degree
centrality were GNB1, GNG5, RBX1, RHOA, and TCEB1. On
the other hand, the degree centrality mean of the immune system
protein was 44.5, and proteins with the highest degree centrality
were UBA52, APP, FPR2, NCBP1, and NCBP2. Additionally, we
have identified 40 significantly expressed phosphorylated
proteins of SARS-CoV-2 infection according to the global
phosphorylation landscape in Vero E6 cells published by
Bouhaddou et al. (2020). The degree centrality mean of the
phosphorylated proteins was 59.8, and proteins with the
highest degree centrality were PIK3CA, MAPKI, MAPKS3,
SRC, and AKT1 (Supplementary Table S4). Lastly,

Drug Repurposing for COVID-19 Therapy

Supplementary Figure S1 details an expanded visualization of
the immune system PPi network.

Figure 2B shows the immune system PPi subnetwork
encompassing 319 nodes and 5,308 edges. Of them, 26
significantly expressed proteins in severe COVID-19 (15
overexpressed and 11 underexpressed) (Overmyer et al,
2020) had high-confidence interactions (cutoff = 0.9) with 49
human proteins physically associated with SARS-CoV-2
proteins, and with 281 immune system proteins belonging to
the first neighbor nodes. The degree centrality mean of the
overexpressed proteins was 33.5, and proteins with the highest
degree centrality were STOM, HSP90AA1, AGT, ORM1, and
ORM2. On the other hand, the degree centrality mean of the
underexpressed protein was 32.5, and proteins with the highest
degree centrality were KNG1, CFP, ALB, AHSG, and APOAL.
Additionally, we have identified 10 significantly expressed
phosphorylated proteins of SARS-CoV-2 infection in Vero
E6 cells in our subnetwork. The degree centrality mean of
the phosphorylated proteins was 32.2, and proteins with the
highest degree centrality were PIK3CA, MAPK1, SRC, MAPK3,
and AKT1 (Supplementary Table S4). Although it has been
shown that hubs of high-degree nodes are targets of numerous
human viral (Calderwood et al., 2007; De Chassey et al., 2008;
Gulbahce et al., 2012; Pan et al., 2016; Huttlin et al., 2017), and
are highly correlated with pathogenicity in cancer (Lopez-
Cortés et al., 2018; Ldpez-Cortés et al., 2020b; Cabrera-
andrade, 2020), COVID-19 is a novel disease and requires
more in-depth studies.

Functional Enrichment Analysis

The functional enrichment analysis was performed to validate the
correlation between the immune system PPi subnetwork and
biological annotations related to severe COVID-19. Therefore,
after generating the subnetwork encompassing 319 immune
system proteins, we performed a functional enrichment
analysis using g:Profiler to obtain significant annotations
(Benjamini-Hochberg FDR < 0.001) related to GO: biological
processes, KEGG signaling pathways, and Reactome signaling
pathways (Wang et al., 2016; Slenter et al., 2018; Raudvere et al.,
2019; Jassal et al., 2020).

Figure 3 details a Manhattan plot of 373 GO: biological
processes, 22 KEGG signaling pathways, and 29 Reactome
signaling pathways significantly associated with the 319
immune system proteins. However, after a manual curation
of GO terms related to the immunopathology of severe COVID-
19, the most significant GO: biological processes were
neutrophil degranulation (2.8 x 107°°), granulocyte activation
(3.9 x 107%%), myeloid leukocyte mediated immunity (3.7 x
107°°), inflammatory response (8.5 x 107°), blood coagulation
(2.0 x 1077), T-cell activation (3.6 x 1077), response to
interferon-gamma (1.9 X 1077), platelet degranulation (8.6 X
1077), and acute inflammatory response (6.6 x 107°). The most
significant KEGG signaling pathways related to severe COVID-
19 were chemokine signaling pathway (4.6 x 10™%), coagulation
cascade (1.2 x 1077), and antigen presentation (7.2 X 107°).
Lastly, the most significant Reactome signaling pathways related
to severe COVID-19 were neutrophil degranulation (2.3 x
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FIGURE 3 | Enrichment map analysis of the immune system PPi subnetwork. Significant GO: biological processes, KEGG signaling pathways, and Reactome
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107%%), innate immune system (1.8 x 10™*), hemostasis (1.0 x
107'%), signaling by VEGF (5.9 x 107), insulin-like growth
factor (6.8 x 1077), and platelet degranulation (4.9 x 107%)
(Supplementary Table S5).

Single-Cell RNA Sequencing Data Analysis
Omics medicine has evolved the way for identifying
therapeutically actionable targets for complex diseases.
However, one of the major limitations is the gene
expression variability due to the cellular heterogeneity of
organs (Gawel et al., 2019). Single-cell biology is a powerful
approach that provides unprecedented resolution to the
cellular and molecular underpinnings of biological processes
and signaling pathways of diseases in order to find therapeutic
targets (Ballestar et al., 2020). For instance, the significant
overexpression of programmed death 1 (PD-1) in innate
lymphoid cells as therapeutic target for cancer
immunotherapy (Yu et al., 2016).

Regarding COVID-19, there are several single-cell studies
focused on understanding the transcriptional and proteomics
insights into the host response for drug discovery (Ballestar et al.,
2020; Yang X et al,, 2020; Di Giorgio et al., 2020; Wu M et al,,
2020; Park and Lee, 2020; Prokop et al., 2020). Ziegler et al.
discovered ACE2 and TMPRSS2 co-expressing cells in nasal
goblet secretory cells, lung type II pneumocytes, and ileal
absorptive enterocytes through scRNA-seq data analyses
(Ziegler et al., 2020). Once we delimited the interactions
between human proteins physically associated with SARS-
CoV-2, and immune system proteins (immune system PPi
network), we analyzed the transcriptomics data of the 1,584
nodes using three single-cell databases incorporated into the
‘COVID-19 Studies’ section of the Alexandria Project (see
Methods), in order to reveal potential therapeutic targets for
drug repurposing against COVID-19.

Chronic rhinosinusitis samples (18,036 cells) developed by
allergic inflammation, and nasal scraping samples (18,704 cells)
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FIGURE 4 | Single-cell RNA-sequencing data analysis of the high-confidence immune system nodes in nasal passage cells. (A) Heatmap of significant
overexpressed genes (Z-score > 2) in nasal goblet secretory cells. (B) Dot plot of significant overexpressed genes in nasal goblet secretory cells and percentage of cells
expressing. (C) Box plots of nasal passage cell types according to their mean log normalized expression. (D) t-distributed stochastic neighbor embedding cell type and
mean log normalized expression focused on nasal goblet secretory cells.

conform the nasal passage cells. Figure 4A shows a heatmap of  expressed multiple genes (n = 5) onto 2D t-SNEs per
the five genes whose mRNAs were significantly overexpressed  subpopulation cell (total = 10 subpopulation cells). In
(Z-score > 2) in goblet cells. Figure 4B shows a dot plot detailing ~ summary, five immune system genes were overexpressed in
the five overexpressed genes, its Z-scores between 2.04 and 2.85,  the goblet cells from nasal passages.

and the percentage of goblet cells expressing the overexpressed Epithelial cells of lung tissue (18,915 cells) were the second
genes (>50%). Figure 4C shows box plots comparing the mean  single-cell database analyzed. Figure 5A shows a heatmap of
log normalized expression of the five overexpressed genes in  the 46 genes whose mRNAs were significantly overexpressed in
nasal passage cells. Goblet cells had the highest mean log  lung type Il pneumocytes. Figure 5B shows a dot plot detailing
normalized expression (1.57) compared to the other cells.  the 46 overexpressed genes, its Z-scores between 2.05 and 3.61,
Figure 4D projected the expression scores of the significantly ~ and the percentage of type II pneumocytes expressing the
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FIGURE 5 | Single-cell RNA-sequencing data analysis of the high-confidence immune system nodes in lung cells. (A) Heatmap of significant overexpressed genes
(Z-score > 2) inlung type Il pneumocytes. (B) Dot plot of significant overexpressed genes in lung type Il pneumocytes and percentage of cells expressing. (C) Box plots of
lung cell types according to their mean log normalized expression. (D) t-distributed stochastic neighbor embedding cell type and mean log normalized expression
focused on lung type Il pneumocytes.

overexpressed genes (>50%). Figure 5C shows box plots  thehighest mean log normalized expression (1.78) compared to
comparing the mean log normalized expression of the 46  other cells. Figure 5D projected the expression scores of the
overexpressed genes in lung cells. Type II pneumocytes had  significantly expressed multiple genes (n = 46) onto 2D t-SNEs
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FIGURE 6 | Single-cell RNA-sequencing data analysis of the high-confidence immune system nodes in intestine cells. (A) Heatmap of significant overexpressed
genes (Z-score > 2) in ileal absorptive enterocytes. (B) Dot plot of significant overexpressed genes in ileal absorptive enterocytes and percentage of cells expressing. (C)
Box plots of intestine cell types according to their mean log normalized expression. (D) t-distributed stochastic neighbor embedding cell type and mean log normalized
expression focused on ileal absorptive enterocytes.

per subpopulation cell (total = 15 subpopulation cells). In
summary, 46 immune system genes were overexpressed in
type II pneumocytes from lung cells.

Samples from adult human duodenum and ileum (15,347
cells) were the third single-cell database analyzed. Figure 6A
shows a heatmap of genes whose mRNAs were significantly
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FIGURE 7 | Circos plots that detail association between GO: biological processes, KEGG signaling pathways, and Reactome signaling pathways and the most

relevant immune system proteins for drug repurposing.
(>50%).

enterocytes expressing the overexpressed genes
Figure 6C shows box plots comparing the mean log

overexpressed in ileal absorptive enterocytes. Figure 6B shows a
normalized expression of the 29 overexpressed genes in ileal

dot plot detailing the 29 overexpressed genes, its Z-scores
between 2.02 and 2.67, and the percentage of ileal absorptive
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epithelial cells. Absorptive enterocytes had the highest mean log
normalized expression (0.86) compared to other cells. Figure 6D
projected the expression scores of the significantly expressed
multiple genes (n = 29) onto 2D t-SNEs per subpopulation

cell (total = 9 subpopulation cells). In summary, 29 immune
system genes were overexpressed in absorptive enterocytes from
ileal epithelial cells. The biological function of the 75
overexpressed genes is fully detailed in Supplementary Table S6).
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The current work proposes an innovative virtual high-
throughput screening to predict the activity of 10,672
compounds for 25 immune system targets fully detailed in the
Supplementary Table S7. The other 50 targets had not identified
molecules with active/inactive interactions in the ChEMBL
database as previously explained in Methods section.
Interestingly, the 25 potential therapeutic targets analyzed not
only were relevant in the immune system PPi subnetwork and the
scRNA-seq analyses, but also had significant associations with
biological processes and signaling pathways relevant to severe
COVID-19 (Overmyer et al, 2020). For instance, ATP6AI,
B4GALT1, C3, CD44, CD63, CTSD, CTSH, CTSS, DDX3X,
F2RL1, and NEUI1 were involved in neutrophil degranulation;
F2RL1, ITGA2, MAPK3, NFKBIA, and STAT3 in blood
coagulation or coagulation cascade; ATP6AP1, CD44, CD63,
CD74, HSPAS5, ITGA2, ITGA3, and MAPK3 in hemostasis;
lastly, CD63, HSPA5, and MAPK3 in platelet degranulation
(Figure 7).

The classification model was based on the molecular Circular
Fingerprints descriptors (calculated using SMILES formulas) of
15,377 ChEMBL compounds and its 25 therapeutic targets as
outputs/tasks. The best model obtained after a
hyperparameter grid search (64 topologies) as a fully
connected deep neuronal networks with 1,000 neurons in one
hidden layer, with the mean AUROC of 0.989 + 0.019 (AUROC
between 0.935 and 1.000 for 25 classes). Our free GitHub
repository contains the Jupyter notebook as python script
using DeepChem methodology, datasets, calculated descriptors,
best model, metrics of the model, and predictions. After applying
the best classification model, we evaluated drugs taking into
account the first ATC levels associated to COVID-19
symptoms, drug  category, mechanism of action,
pharmacological indications, and the best ranked AUROC
values (threshold > 0.8). Consequently, on one hand, we
obtained 44 approved drugs, 16 compounds under
investigation, and 35 experimental compounds with the
highest affinities for 15 immune system proteins
(Supplementary Table S8). On the other hand, we obtained
four approved drugs, nine compounds under investigation, and
16 experimental compounds with the highest multi-target
affinities for nine immune system proteins (Supplementary
Table S9).

Figure 8 details the AUROC affinity score of the best-
predicted experimental compounds, compounds under
investigation, and approved drugs per immune system protein
target and multi-targets. We found eleven different categories of
approved drugs, the anti-neoplastic and immunomodulating
agents were lanreotide, enzalutamide, topotecan, erlotinib,
methotrexate, imatinib, pemetrexel, lapatinib, sunitinib,
vandetanib, midostaurin, bosutinib, axitinib, ruxolitinib,
afatinib, ibrutinib, duvelisib, and gilterintinib; the anti-
hemorrhagic agent was fostamatinib; the anti-inflammatory
agents were clobetasol propionate, nedocromil, oxaprozin, and
beclomethasone dipropionate; the anti-malarial agent was
halofantrine; the anti-parathyroid agent was etelcalcetide; the
anti-viral agents were amprenavir, atazanavir, saquinavir,

was
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darunavir, fosamprenavir, lopinavir, paritrapevir, nelfinavir,
pibrentasvir, zanamivir, peramivir, and rilpivirine; the
antioxidant agent was allopurinol; the cardiovascular agents
were aliskiren, zofenopril, digitoxin, torasemide, and
triamterene; the central nervous system agents were citicoline
and cabergoline; the growth hormone-releasing hormone was
tesamorelin; and the only antibiotic was rosoxacin.

Interestingly, 13 (27%) of the 48 best-predicted approved
drugs are currently involved in approximately 54 COVID-19
clinical trials as detailed in Figure 9. The cardiovascular agents
with clinical trials are aliskiren, torasemide, and triamterene.
Aliskiren had an AUROC affinity of 0.993 on CTSD, and it is
a renin inhibitor used to treat hypertension; torasemide had an
AUROC affinity of 1.0 on EGFR, and it is used to treat edema
associated with heart, renal, and hepatic failures; and triamterene
had an AUROC affinity of 1.0 on EGFR, and it is used to treat
hypertension. The anti-viral agents with clinical trials are
atazanavir, darunavir, and lopinavir. Atazanavir had an
AUROC affinity of 0.997 on CTSD; darunavir had an AUROC
affinity of 0.999 on CTSD, and lopinavir had an AUROC affinity
of 1.0 on CTSD. All of them are protease inhibitors used to treat
HIV infection. The anti-neoplastic and immunomodulating
agents with clinical trials are enzalutamide, methotrexate,
imatinib, ruxolitinib, ibrutinib, and duvelisib. Enzalutamide
had an AUROC affinity of 0.983 on CTSS, and it is an
androgen receptor inhibitor to treat prostate cancer;
methotrexate had an AUROC affinity of 1.0 on EGFR, and it
is an antimetabolite used to treat breast cancer, lung cancer, head
and neck cancer, and non-Hodgkin’s lymphoma; imatinib had an
AUROC affinity of 1.0 on EGFR, and it is a BCR/ABL kinase
inhibitor used to treat chronic myeloid leukemia, acute
lymphoblastic leukemia, and gastrointestinal stromal tumors;
ruxolitinib had an AUROC affinity of 1.0 on EGFR, and it is
an inhibitor of JAK1/2 to reduce the hyperinflammation during
cytokine storm in thrombocythemia myelofibrosis; ibrutinib had
an AUROC affinity of 1.0 on EGFR, and it is an inhibitor of the
Bruton tyrosine kinase causing protection against immune-
induced lung injury; and duvelisib had an AUROC affinity of
1.0 on EGFR, and it is a PI3K inhibitor involved in the immune
homeostasis restoration and viral replication inhibition. Finally,
the anti-hemorrhagic agent with clinical trial was fostamatinib,
which had an AUROC affinity of 1.0 on EGFR, and it is an
inhibitor of spleen tyrosine kinase used to treat chronic immune
thrombocytopenia (Supplementary Table S10; Wishart et al.,
2018).

DISCUSSION

Since the finding of patient zero in China, a wide spectrum of
clinical manifestations has been discovered, as we have
understood the COVID-19 disease. The most common initial
symptoms are cough, fever, anorexia, and dyspnea (Wang D
et al., 2020; Berlin et al., 2020). The most common clinical
features in severe COVID-19 patients are dyspnea, severe
hypoxemia, lung edema, respiratory failure, ARDS
(Montenegro et al., 2020), lymphopenia (Terpos et al., 2020),
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Drug Category Drug Structure Pharmacological indication COVID-19 clinical trial identifier
- g )
Torasemide ,“A Renin-Angiotensin System (RAS). NCT04467931
DB00214 - f i: Edema associated with heart,
\©/ \Q renal or hepatic failures.
Cardiovascular agents Triamterene Y'Y Renin-Angiotensin System (RAS). NCT04467931
DB00384 SN Hypertension.
Aliskiren rDJ;M Renin-Angiotensin System (RAS). ChiCTR2000032314
DB09026 M SR /%} Hypertension, hypotension.
Atazanavir () Protease inhibitor. NCT04459286, NCT04452565, NCT04468087
DB01072 jf( HIV infection
e A % \ XY
Darunavir (o Protease inhibitor. NCT04425382, NCT04252274
Anti-viral agents DB01264 é{j@k HIV infection
Lopinavir o Protease inhibitor. NCT04372628, NCT04455958, NCT04499677,
BD01601 2 ©\ HIV infection NCT04425382, NCT04466241, NCT04364022,
. *I( LIt NCT04328012, NCT04255017, NCT04321174,
U o )i) NCT04295551, NCT04521400, NCT04261907,
b NCT04315948, NCT04275388, NCT04276688,
NCT04386876
f Enzalutamide * Androgen receptor inhibitor. NCT04456049, NCT04475601 \
DB08899 ¢ Metastatic prostate cancer.
Methotrexate ((I;( Antimetabolite. Breast cancer, NCT04352465, NCT04610567
DB00563 9 Y lung cancer, T cell ymphoma,
J\/IY@ head and neck cancer.
Imatinib O’C i Kinase inhibitor. Leukemia, NCT04357613, NCT04346147, NCT04394416,
DB00619 < o7 gastrointestinal stromal tumors. NCT04356495
Anti-neoplastic and o
immunomodulating (©)
agents Ibrutinib ) T Inhibition of Bruton tyrosine kinase. NCT04375397, NCT04439006
DB09053 };‘f Mantle cell lymphoma, chronic
] Q lymphocytic leukemia.
<
Duvelisib PI3K inhibitor. NCT04372602, NCT04487886
DB11952 ©\§\ Leukemia and lymphoma.
Ruxolitinib 4 Kinase inhibitor. NCT04348071, NCT04338958, NCT04362137,
DB08877 o g Thrombocythemia myelofibrosis. NCT04359290, NCT04355793, NCT04377620,
) NCT04366232, NCT04334044, NCT04374149,
L, NCT04338958, NCT04337359, NCT04331665,
K ) NCT04361903, NCT04348695, NCT04424056/
/Anti-hemorrhagic agent Fostamatinib W Kinase inhibitor. NCT04629703, NCT04581954, NCT04579393\
DB12010 IUY\] Chronic immune thrombocytopenia.
AT

4

FIGURE 9 | Best-predicted approved drugs involved in COVID-19 clinical trials. Cardiovascular agents, anti-viral agents, anti-neoplastic and immunomodulating
agents, and anti-hemorrhagic agent with their respective clinical trial identifier number, pharmacological indication, and chemical structure according to DrugBank.

cardiac arrhythmias, rhabdomyolysis, hyperferritinemia,
intravascular coagulopathy (Fogarty et al, 2020), and
pulmonary thromboembolism (Rotzinger et al., 2020). Also,
it has been observed that 15% of patients required supplemental
oxygen (Young et al., 2020), and 5% of patients required
mechanical ventilation. In addition, the smaller percentage of
patients who required mechanical ventilation suffered
comorbidities that lead to sepsis and septic shock (Rhee
et al,, 2020). Nowadays, it is known that SARS-CoV-2 is

capable of reaching other organs depending on the host
(Yang W et al,, 2020). Different studies worldwide refer that

clinical presentation vary between individuals, presenting
manifestations not only respiratory tract infection, but also
blood, skin, kidney, liver, ocular symptoms, neurologic signs,
among others (Adhikari et al., 2020; Wang Q et al., 2020).
Therefore, it is necessary to continuously review the reports on
clinical manifestations in order to get to know the behavior of
this disease as well as to think over the physiopathological
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mechanisms that allows us to better understand the related
complications (Gupta et al., 2020; Wadman et al., 2020).

The effective immune response of the host, including the
innate and adaptive ones, against SARS-CoV-2 seems to be
essential to control and solve the infection. However, the
clinical seriousness of COVID-19 could be associated to the
excessive production of pro-inflammatory cytokines, known as
‘cytokine storm’ (Fajgenbaum and June, 2020; Hussman, 2020),
or to the excessive production of bradykinin peptides, known as
‘bradykin storm’ (Garvin et al., 2020). This clinical paradigm is
still to be figured out, and that is why the effective treatment is still
uncertain. It is indispensable to understand the immunological
responses that are triggered off since the beginning of the
infection with SARS-CoV-2, so as to make progress in search
of effective therapeutic strategies.

Innate immune response executes the first line of antiviral
defense and is essential to obtain immunity against viruses
(Zhong et al., 2020). Pattern recognition receptors (PRRs),
codified by germline DNA, are responsible for recognizing
widely common molecular patterns shared by pathogens of a
certain group. Single-stranded and double-stranded viral RNAs
produced during the replication phase of SARS-CoV-2 are
recognized by endosomal TLRs (TLR7 and TLR8 or TLR3,
respectively) and cytosolic RIG-I like receptors (RLRs), mainly
RIG-I and MDA-5. After PRR engagement, downstream
signaling pathways trigger the activation and nuclear
translocation of key transcription factors, such as NF-kB, AP-1
and interferon regulatory factors (IRFs), and the ensuing
expression of inflammasome activation and anti-viral
cytokines (Lee et al, 2020). Among the most relevant
cytokines we can find interleukins (IL-1, IL-6, and IL-18), pro-
inflammatory TNF-a and TNF-8, and type I and III IFNs
(Blanco-Melo et al., 2020; Herold et al., 2020; McKechnie and
Blish, 2020). Consequently, cytokines induce antiviral processes
potentiating the innate and adaptive immune responses, limiting
CoVs replication capacity and inducing the elimination of the
virus cell reservoirs (Channappanavar et al., 2019; Blanco-Melo
et al., 2020). However, CoVs have developed mechanisms of
immune evasion where viral factors inhibit viral recognition by
PRR sensing, and cytokine expression and secretion. Individuals
with severe COVID-19 have demonstrated remarkably impaired
type I IFN values as compared to mild patients (Hadjadj et al.,
2020), and the interferon-induced overexpression of ACE2 may
be involved (Ziegler et al., 2020).

Mucosal immune responses against viruses are orchestrated by
myeloid cells such as macrophages, conventional DCs,
plasmacytoid DCs, and monocyte-derived DCs (Guilliams
et al., 2013). Accumulating evidence suggests that deregulation
of myeloid cell-mediated responses potentially triggers
lymphopenia, cytokine release syndrome, acute respiratory
distress syndrome (Mehta et al, 2020), and pathogenic
inflammation with high level secretion of IL-6, IL-2, IL-7,
IEN-y, IFN-I, and type III IFNs (Shi et al, 2019) in COVID-
19 patients with severe clinical manifestations.

Innate lymphoid cells (ILCs) are lymphoid-like immune cells
that lack the expression of rearranged antigen receptors. The non-
cytotoxic group I, II, and III ILCs and the cytotoxic natural killer
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(NK) cells form the ILC family (Vivier et al., 2018). Several
clinical data have reported that NK cells decrease in peripheral
blood of severe patients (Song et al., 2020; Yu et al,, 2020). An
in vitro study has identified that the CXCL9-11 chemokines are
overexpressed in lung cells infected with SARS-CoV-2, suggesting
that the CXCR3 signaling pathway drives NK cells from
peripheral blood to lungs in COVID-19 patients (Liao M
et al.,, 2020). In addition, NK cells have the quality to induce
lysis of infected cells causing severe hypoxemia and contributing
to the cytokine storm resulting in ARDS.

T cells are involved in fundamental processes in viral
infections. CD8 T cells eliminate infected cells and CD4
T cells help B cells for antibody production. Nevertheless,
immunopathology is generated when T cells are dysregulated.
Several reports have shown that moderate to severe COVID-19
patients with lymphopenia drastically reduce CD8 T cell and CD4
T cells in peripheral blood (Nie et al., 2020; Wen et al., 2020; Zeng
et al., 2020). T cells reduction in the blood is also a contribution of
mechanisms such as inflammatory cytokine milieu, which is why
lymphopenia has a correlation with TNF-q, IL-6, and IL-10 (Diao
et al, 2020; Wan et al., 2020). Conversely, clinical reports have
shown that convalescent patients have low pro-inflammatory
cytokine levels paired with restored bulk T cell frequencies
(Diao et al., 2020).

The humoral immune response plays a main role in the
clearance of cytopathic viruses and its memory response
prevents reinfection. According to Huang et al. and Wu et al.,
IgM, IgA, and neutralizing IgG antibodies can be detected in 12,
14 and 10-14 days, respectively, after symptom onset on average,
suggesting that SARS-CoV-2 causes a robust B cell response in
the majority of COVID-19 patients (Wu F et al., 2020; Huang
et al., 2020). Indeed, antibodies binding the RBD of the S
glycoprotein can have neutralizing properties, blocking virus
interactions with the human protein receptor ACE2 (Ju et al,
2020), thereby inhibiting/preventing target cell infection. The
B cell response to SARS-CoV-2 protects from the primary
infection and extends immunity against reinfection due to
memory B cells that can respond quickly by producing high
affinity neutralizing antibodies. However, it is yet impossible to
predict the duration of memory responses due to the timing of the
COVID-19 pandemic.

There is currently a limited number of known risk factors that
confer susceptibility to COVID-19. Several routine blood tests
and immunological biomarkers have been suggested to classify
patients with mild and severe symptoms. The routine blood test
biomarkers currently suggested are lymphocyte count (Tan et al.,
2020), neutrophil to lymphocyte ratio (Liu et al, 2020b),
C-reactive protein (Ji et al, 2020), lactate dehydrogenase
(Xiang et al., 2020), ferritin (Bataille et al., 2020), D-dimer and
coagulation parameters (Zhou et al., 2020b), serum amyloid
protein (Ji et al, 2020), N terminal pro B type natriuretic
peptide (Gao L et al, 2020), platelet count (Qu et al., 2020),
ultrasensitive troponin, and creatine kinase MB (Akhmerov and
Marban, 2020). On the other hand, immunological biomarkers
associated with different COVID-19 outcomes are CD4", CD8",
and NK cell count (Nie et al., 2020); PD-1 and Tim-3 expression
on T cells (Diao et al., 2020); phenotypic changes in peripheral

Frontiers in Pharmacology | www.frontiersin.org

23

February 2021 | Volume 12 | Article 598925


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Lépez-Cortés et al.

blood monocytes (Zhang D et al., 2020); expression levels of IP-
10, MCP-3, IL-1ra (Yang Y et al., 2020); IL-6 (Chen et al., 2020),
IL-8, IL-10, IL-2R, IL-1B (Gong et al., 2020), IL-4 (Fu et al., 2020),
IL-18, granulocyte macrophage colony stimulating factor (GM-
CSF) (Zhou et al., 2020a), IL-2, IFN-y (Liu et al., 2020a), and anti-
SARS-CoV-2 antibodies (Zhang B et al., 2020; Fu et al., 2020).

In this study, we performed proteomics, transcriptomics, and
artificial neural network analyses to reveal potential therapeutic
targets for drug repurposing to treat severe COVID-19. Firstly, we
generated an immune system PPi network encompassing 1,584
nodes and 332,968 edges. Of them, 256 human proteins
physically associated with SARS-CoV-2 proteins (Gordon
et al, 2020) had high-confidence interactions with 1,390
immune system proteins. The degree centrality mean of the
human proteins physically associated with SARS-CoV-2 was
23.6. GNB1, with the highest degree centrality, acts as a
modulator in transmembrane signaling systems, including the
GTPase activity (Gordon et al., 2020). The degree centrality mean
of the immune system proteins was 44.5. UBA52, with the highest
degree centrality, acts as a fusion protein that regulates
ubiquitination of ribosome (Kobayashi et al., 2016). Lastly, the
degree centrality mean of the phosphorylated proteins was 59.8.
PIK3CA had the highest degree centrality and significant
underexpression in SARS-CoV-2 infection in Vero E6 cells
(Bouhaddou et al.,, 2020; Figure 2A; Supplementary Figure S1).

Overmyer et al. published a large-scale multi-omic analysis
and identified 146 significantly expressed proteins in severe
COVID-19 (Overmyer et al., 2020). We located these proteins
and their high-confidence interactions in the immune system PPi
network and subsequently generated the immune system PPi
subnetwork encompassing 319 nodes and 5,308 edges. Of them,
26 significantly expressed proteins in severe COVID-19
(Overmyer et al., 2020) had high-confidence interactions with
49 human proteins physically associated with SARS-CoV-2
proteins, and with 281 immune system proteins. The degree
centrality mean of the overexpressed proteins was 33.5. STOM,
with the highest degree centrality, is located in cell membranes
regulating ion channels and transporters. Loss of localization of
the encoded protein is associated with hemolytic anemia shown
in COVID-19 patients (Algassim et al, 2020). The degree
centrality mean of the underexpressed proteins was 32.5.
KNGI, with the highest degree centrality, is the precursor for
bradykin synthesis, and is involved in the coagulation system
dysfunction of severe COVID-19 (Sidarta-Oliveira et al., 2020).
Lastly, the degree centrality mean of the phosphorylated proteins
was 322, and PIK3CA had the highest degree centrality
(Figure 2B).

SARS-CoV-2 employs a suite of virulent proteins that interact
with key targets in host interactomes to extensively rewire the
flow of information and cause COVID-19 (Vidal et al., 2011; Pan
et al.,, 2016; Kumar et al., 2020). Although it has been shown that
hubs of high-degree nodes are targets of numerous human viral
(Calderwood et al., 2007; De Chassey et al., 2008; Gulbahce et al.,
2012; Pan et al., 2016; Huttlin et al., 2017), COVID-19 is a novel
disease and requires more in-depth studies. Therefore, we
performed a functional enrichment analysis to validate the
correlation between the subnetwork proteins and COVID-19
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signatures published in studies worldwide (Figure 3). After a
manual curation of gene ontology terms, the most significant
biological processes were neutrophil degranulation (Shen et al.,
2020), granulocyte activation (Yang L et al, 2020), myeloid
leukocyte mediated immunity (Chen and John Wherry, 2020),
inflammatory response (Jose and Manuel, 2020; Merad and
Martin, 2020), blood coagulation (Vinayagam and Sattu,
2020), T-cell activation(Chen and John Wherry, 2020),
response to interferon-gamma (Hu et al, 2020), platelet
degranulation (Kuchi Bhotla et al, 2020), and acute
inflammatory response (Manjili et al, 2020). The most
significant KEGG pathways were chemokine signaling pathway
(Chua et al., 2020), coagulation cascade (Overmyer et al., 2020),
and antigen presentation (Li X et al,, 2020). Lastly, the most
significant Reactome signaling pathways were neutrophil
degranulation (Wang ] et al, 2020), innate immune system
(Ahmed-Hassan et al., 2020), hemostasis (Liao D et al., 2020),
signaling by VEGF (Kong et al., 2020), insulin-like growth factor
(Winn, 2020), and platelet degranulation (Overmyer et al., 2020).

According to Buccitelli & Selbach (Buccitelli and Selbach,
2020), proteomics and transcriptomics typically show
reasonable correlation, and integrating both types of data can
reveal exciting biology and gene expression patterns. In light of
this approach, the ‘COVID-19 Studies’ section of the Alexandria
Project represents a large effort to characterize this
immunopathology from a transcriptomics view. Ziegler et al.
analyzed human scRNA-seq data to uncover potential targets of
SARS-CoV-2 amongst tissue-resident cell subsets. They
discovered ACE2 and TMPRSS2 co-expressing in goblet cells
from nasal passage cells, type II pneumocytes from lung epithelial
cells, and absorptive enterocytes from ileal epithelial cells (Ziegler
et al.,, 2020). Therefore, after generating our immune system PPi
network, we screened the 1,584 nodes into 10 nasal passage cells,
15 lung epithelial cells, and nine ileal epithelial cells to identify
potential therapeutic targets for drug repurposing against
COVID-19.

We found 75 significantly overexpressed molecules (Z-score >
2) in nasal goblet secretory cells (n = 5) (Figure 4), lung type II
pneumocytes (n = 46) (Figure 5), and ileal absorptive enterocytes
(n = 29) (Figure 6; Reimand et al, 2019). Subsequently, we
analyzed the druggability of these 75 molecules (Methods
section), and identified 25 potential therapeutic targets with
ChEMBL ID and identified molecules with active/inactive
interactions.

Meaningfully, these potential therapeutic targets not only were
relevant in both the immune system PPi subnetwork and the
scRNA-seq data, but also were involved in biological processes
and signaling pathways related to severe COVID-19, such as
neutrophil degranulation, blood coagulation or coagulation
cascade, hemostasis, and platelet degranulation (Figure 7;
Overmyer et al, 2020). Several studies worldwide have
correlated these potential therapeutic targets with COVID-19.
For instance, MAPK3 and EGFR showed kinase activity in the
global phosphorylation landscape of SARS-CoV-2 infection
according to Bouhaddou et al (Bouhaddou et al, 2020).
CTSD, CD63, MKD, NFKBIA, MAPK3, STAT3, TNESF10,
F2RL1, HIF1A, NEUl, and EPAS1 were identified as
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significantly expressed targets in patients with severe COVID-19
according to Aschenbrenner et al (Aschenbrenner et al., 2020).
C3, LDLR, CTSH, B4GALT1 and NFKBIA were significantly
expressed targets in COVID-19 according to Alsamman & Zayed
(Alsamman and Zayed, 2020). HSPA5 was associated with the
viral entry, the endoplasmic reticulum stress, and anti-clotting
agents according to Law et al (Law et al, 2020). CD44 was
involved in the extravasation cascade with significant expression
in severe COVID-19 according to Chua et al (Chua et al., 2020).
Basu et al found significant expression of the ITGA2 and ITGA3
integrins in COVID-19 patients (Basu et al., 2020). DDX3X was
involved in the coronavirus-host protein-protein interactions
according to Perrin-Cocon et al (Perrin-Cocon et al., 2020).
Daniloski et al showed that ATP6AP1 induces shared
transcriptional changes in cholesterol biosynthesis in human
cells with SARS-CoV-2 infection (Daniloski et al., 2020).
Lastly, CD74, CTSS and CTNNBI were identified as potential
targets for SARS-CoV-2 diagnosis and treatment according to
Vastrad et al (Vastrad et al., 2020).

There is currently an urgent need for effective COVID-19
drugs. High-throughput screening for drug discovery has been
important in finding antiviral drugs focused on the SARS-CoV-2
spike protein (Micholas and Jeremy, 2020) and the main protease
(MPF™), as detailed in our previous study (Tejera et al., 2020).
However, computational structure-based drug discovery focused
on immune system proteins is imperative to select potential drugs
that, after being effectively analyzed in cell lines (i.e., African
green monkey cells) and clinical trials, these can be considered for
treatment of complex symptoms of COVID-19 patients. Drug
repurposing offers a potentially rapid mechanism to deployment,
since the safety profiles are known (Cabrera-Andrade et al., 2020;
Phimister et al., 2020).

We performed fully connected deep neuronal networks to
predict drugs with the highest affinities per target and multi-
targets. We identified 47 approved drugs, 25 compounds under
investigation, and 50 experimental compounds with the highest
AUROGC: for 15 (60%) of the 25 potential therapeutic targets. The
best-predicted approved drugs were enrolled in ten different
categories: anti-neoplastic and immunomodulating agents,
anti-hemorrhagic agents, anti-inflammatory agents, anti-
parathyroid agents, anti-viral agents, anti-oxidant agents,
cardiovascular agents, central nervous system agents, growth
hormone-releasing hormone, and antibiotics (see Results
section and Figure 8).

There are around 4,000 clinical trials on COVID-19 using
small molecules as single or combination agents with other anti-
viral agents worldwide. Interestingly, 54 clinical trials currently
correspond to 13 (27%) of the 48 best-predicted approved drugs
found in our study (Figure 9). The cardiovascular agents
implicated in the renin-angiotensin system are aliskiren,
triamterene, and torasemide. Aliskiren and triamterene are
renin inhibitors used to treat hypertension; and torasemide is
used to treat edema associated with heart, renal, and hepatic
failures. According to Garvin et al., the renin-angiotensin system
is an important pathway linked to hypertension and hypotension
in COVID-19 patients because it maintains a balance of blood
pressure (Garvin et al., 2020). The anti-viral agents are atazanavir,
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darunavir, and lopinavir. All of them are protease inhibitors used
to treat HIV infection. According to Mahdi et al., targeting of
SARS-CoV-2 MP™ by HIV protease inhibitors might be of limited
clinical potential due to the high concentration of drug required
to achieve this inhibition. However, any potential beneficial effect
in COVID-19 context might be attributed to acting on other
molecular targets (Mahdi et al., 2020). The anti-neoplastic and
immunomodulating agents are enzalutamide, methotrexate,
imatinib, ruxolitinib, ibrutinib, and duvelisib. Enzalutamide is
an androgen receptor inhibitor to treat prostate cancer;
methotrexate is an antimetabolite that inhibits the
dihydrofolate reductase and is used to treat breast cancer, lung
cancer, head and neck cancer, and non-Hodgkin’s lymphoma;
imatinib is a BCR/ABL kinase inhibitor used to treat chronic
myeloid leukemia, acute lymphoblastic leukemia, and
gastrointestinal stromal tumors; ruxolitinib is a Janus kinase 1
and 2 inhibitor that reduces the hyperinflammation during
cytokine storm in thrombocythemia myelofibrosis; ibrutinib is
an inhibitor of the Bruton tyrosine kinase causing protection
against immune-induced lung injury; and duvelisib is a PI3K
inhibitor involved in the immune homeostasis restoration and
viral replication inhibition. According to Saini et al, three
hallmarks of cancer, namely immune dysfunction,
inflammation, and coagulopathy are also seen in patients with
SARS-CoV-2 infection, providing a biological rationale for
testing anti-neoplastic agents for their ability to control the
severe COVID-19 symptoms. However, these anti-neoplastic
drugs should be evaluated carefully through well-designed and
often novel trial platforms to avoid detrimental effects in future
treatments (Saini et al., 2020). Finally, the anti-hemorrhagic
agent, fostamatinib, is an inhibitor of spleen tyrosine kinase
used to treat chronic immune thrombocytopenia. According to
Kost-Alimova et al., elevated mucin-1 (MUC1) protein levels
predict acute lung injury and ARDS with poor clinical outcomes,
and fostamatinib has been shown to reduce MUC1 abundance in
a relevant pre-clinical model and has demonstrated safety profile
in patients (Kost-Alimova et al., 2020; Tabassum et al., 2020).
Despite enormous scientific effort in drug repurposing studies
to inhibit SARS-CoV-2 proteins or control severe COVID-19
symptoms, significant limitations exist. The main concern
associated with drug repurposing studies involves the
implementation of well-designed validation assays through
clinical trials. Other main concerns are related to obtaining
the correct therapeutic doses, safety results to avoid
detrimental effects of repurposed drugs after treatments, and
delivery capabilities worldwide (Parvathaneni and Gupta, 2020).
All of this carried out counter clock due to the health emergency
triggered by the pandemic. However, the positive side of this
enormous scientific effort is to put forward recommendations for
transforming today’s tools into solutions for future pandemics
according to The National Symposium on Drug Repurposing for
Future Pandemics, on behalf of the National Science Foundation.
The current COVID-19 pandemic offers a unique opportunity
to strengthen mechanisms that promote the use of drug
repurposing processes—considering the drug safety profile and
the possibility of originate different adverse reactions in patients
with distinct concomitant diseases—; inclusively, in the ongoing or
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future clinical trials, having the potential to reduce the time and
costs for finding potential solutions to the current pandemic.
Additionally, contributing to future analysis for high threat
pathogens and rare diseases. This idea is welcomed by some
other authors who conveyed on the potential of drug repurposing
for common national and global health benefits (Yan, 2017).
Between the several advantages of this process, the one which
leads efforts to the use of the current information -on human
pharmacology and toxicology-of safe and affordable generic
drugs, is worth to remark. As also stated by Guy et al. (2020),
along with this statement, there is the urge to motivate the
transparency and compliance of the highest ethical principles
for the conduction of studies, including as a key potential for drug
repurposing, the visualization and sharing of negative results.
Mainly, promoting and assuring that well-designed randomized
clinical trials are timely implemented, especially during health
emergencies and crises. In this sense, drug repurposing will be
fulfilling its main objective: proposing potential, prompt, cost-
effective, and safe solutions for the public and global health
problems, with a human-centered approach.

The COVID-19 pandemic has evidenced that there is a strong
urge to strengthen health systems with a major emphasis on
health prevention and the major need, especially of low and
middle income countries, to publicly invest on research and
development. Consequently, the benefits of innovation and the
results of research should be always available and affordable to
anyone in need, to comply with the goal of public health
(Rottingen et al., 2012). This is of particular importance
during the current pandemic situation and on its aftermath.

From a global health perspective, initiatives directed to the
improvement of rapid data sharing are critical during health
emergency. This rapid sharing includes undoubtedly a
transboundary collaboration founded on the principles of
reliability and accuracy of the data (The Lancet, 2020).
Meaningfully, for preventing potential new or existing
pathogens to become high threats to human health and global
security, non-commercial basic research on microorganisms
should be assured. Additionally, introducing and promoting
genomic epidemiology and strengthening global laboratory
alliances would contribute to the national and global rapid
detection and containment of outbreaks, as also promoted by
the WHO. Accordingly, every country is sovereign and should
guarantee the protection and regulation of the use of its biological
resources, specifically working toward the Fair and Equitable
Sharing of Benefits. Nevertheless, international conventions on
the topic and national legislations should include fast track
options for research on pathogens (Knauf et al, 2019).
Relevantly, the links between human, environmental, and
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The synthesis and antioxidant, antinociceptive and antiedematogenic activities of
sulfonamides derived from carvacrol—a druglike natural product—are reported. The
compounds showed promising antioxidant activity, and sulfonamide derived from
morpholine (81) demonstrated excellent antinociceptive and antiedematogenic
activities, with no sedation or motor impairment. The mechanism that underlies
the carvacrol and derived sulfonamides’ relieving effects on pain has not yet been
fully elucidated, however, this study shows that the antinociceptive activity can be
partially mediated by the antagonism of glutamatergic signaling. Compound S$1
presented promising efficacy and was predicted to have an appropriate medicinal
chemistry profile. Thus, derivative 81 is an interesting starting point for the design of
new leads for the treatment of pain and associated inflammation and prooxidative
conditions.

Keywords: sulfonamides, pain, carvacrol, molecular modeling, antioxidant

INTRODUCTION

Pain is a major sorrowful condition that affects children, adolescents (Guindon et al., 2007; Schmidt
etal, 2010) and adults (Loeser and Treede, 2008) in several pathologies, including cancer (Ling et al.,
2012). Pain can impair daily activities, diminish life quality, and cause significant psychological
conditions (Rowlingson, 2000).

Pain is a clinically meaningful sign for the detection and evaluation of many diseases. Its
perception is complex, involving two distinct components, an emotional and a physiological or
sensorial component, called nociception (Tominaga et al., 2003). Animal models used for the
evaluation of antinociceptive activity involve several nociceptive responses generated by chemical,
mechanical or thermal stimuli (Silva et al., 2013).

Despite advances in the pharmacokinetics and pharmacodynamics of analgesic agents, their high
toxicity is a determinant of conflicting clinical results due to the need for drug associations and
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interactions, especially in chronic pain due to its bioplasticity, and
association with clinical conditions of anxiety and depression that
reduce the quality of life of patient.

Sound evidence indicates that amino acids, mainly glutamate,
found in C and A$ fibers, play a fundamental role in the
transmission of pain, as they provoke post-synaptic
depolarization and the propagation of nociceptive information
(Verri et al, 2006). Besides, abnormal excitability caused by
inflammation or injury wusually results from increased
expression or activation of receptors, which may be stimulated
by glutamate, favoring the maintenance of the painful stimulus
(Rao, 2009; Salvemini et al., 2011). Therefore, substances capable
of causing selective changes in glutamatergic signaling may give
rise to new analgesic and anti-inflammatory agents.

Upon inflammatory reactions, pro-inflammatory chemical
messengers stimulate resident cells, recruit nociceptors and
cells, and drive pain conduction (Manchope et al, 2016).
Furthermore, augmented oxidative stress upon inflammation
promotes nociception. For example, Reactive Nitrogen Species
(RNS) and Reactive Oxygen Species (ROS) in a direct and indirect
manner promote sensitization and activation of nociceptors
(Maioli et al., 2015). The unbalance between oxidative and
antioxidative agents in inflammatory reactions promotes
oxidative stress (Biswas, 2016). Even though many analgesic
agents can be used for the therapy of pain, research on novel
drug candidates is needed considering that the current analgesics
cause a broad diversity of adverse effects (Burgess and Williams,
2010).

Natural product structural motifs have been an invaluable
source of new chemical matter for drug design and medicinal
chemistry (Rodrigues et al., 2016). Recently, natural product
research in the industry has decreased because of compatibility

problems between natural-product extract collections and high-
throughput screening platforms (Koehn and Carter, 2005). In this
scenario, the monoterpene phenol 2-methyl-5-isopropyl-phenol,
known as carvacrol, is a simple molecule with no stereogenic
centers, with druglike properties and whose derivatives can be
used for structure-activity relationship (SAR) studies. Along with
the anti-inflammatory activity of carvacrol (Arigesavan and
Sudhandiran, 2015), researchers have been interested in
studying the analgesic action of this monoterpene.

Calcium and potassium channels are also directly related to
the transmission of painful impulses since they are central for the
release of neurotransmitters from nociceptor terminals. In this
sense, studies demonstrate that carvacrol promotes a vasorelaxant
response in upper mesenteric artery rings in rats, potentially
because it inhibits the influx of calcium ions mediated by voltage-
sensitive calcium channels (Cav), as well as the receptor-operated
channel (ROC) (Pires et al., 2015). Stock-actuated calcium
channels (SOC) seem to be associated with classical TRP
receptors (C6, C1, and TRPC) and also with melastatin TRP
receptor channel inhibition (TRPM7) (Figure 1). The observed
vasorelaxant activity may be involved in the hypotensive response
detected in in vivo studies (Dantas et al., 2015).

Melo et al. (2010) demonstrated that doses of 12.5, 25, and
50 mg/kg of carvacrol, administered orally, have an anxiolytic
effect and do not alter the locomotor activity of the animals. In a
previous study, we demonstrated that some synthetic
sulfonamides derived from carvacrol at a dose of 30 mg/kg,
intraperitoneal (ip), are able to reduce streptozotocin-induced
Alzheimer’s disease deficits, in addition to producing anxiolytic
and antioxidant effects, without affecting locomotor activity of
animals (de Souza et al., 2020). Also, it was confirmed that
carvacrol, administered orally, at single doses of 50 and
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100 mg/kg, produces significant inhibition of nociception caused
by chemical (formalin and acetic acid) and thermal stimulations
(hot-plate test) (Cavalcante Melo et al., 2012). Furthermore, part
of the mechanism by which carvacrol exerts its effects was
demonstrated by Zotti et al. (2013). The authors found that
carvacrol administered orally for seven consecutive days
(12.5mg/kg) was able to increase dopamine and serotonin
levels in the prefrontal cortex and hippocampus. Following
these findings, it has been demonstrated that carvacrol
promotes antinociceptive effects by a mechanism that is
independent on the activation of the opioid machinery and
the L-arginine-nitric oxide (NO) pathway (Cavalcante Melo
et al.,, 2012).

Sulfonamides derived from carvacrol have been investigated
recently, for which antibacterial properties (Oliveira et al., 2020)
and potential candidates for the development of drugs for the
treatment of Alzheimer’s disease have been reported (De Souza
et al., 2020). As mentioned above and due to the analgesic and
anti-inflammatory potential of carvacrol, in this research, the
antinociceptive potential of these sulfonamides was investigated.
Thus, this investigation is the first report to demonstrate the
potential antioxidant activity of sulfonamides derived from
carvacrol. Furthermore, this is the first report of sulfonamides
derived from carvacrol, rationally designed to the effective control
of pain via inhibition of the glutamatergic system. Additionally,
molecular docking and quantum investigations were carried out
to rationalize the in vitro and in vivo data.

Despite advances the pharmacokinetics and
pharmacodynamics of analgesic agents, their high toxicity
is a determinant of conflicting clinical results due to the need
for drug associations and interactions, especially in chronic
pain due to its bioplasticity, and association with clinical
conditions of anxiety and depression that reduce the
quality of life of patient (Berman and Bausell, 2000; Jensen
et al, 2001). Therefore, the development of new

in

chemotherapeutic agents for pain treatment, which is the
objective of this research, is extremely relevant in the
context of public health worldwide.

MATERIALS AND METHODS

Synthesis of Sulfonamides

All the solvents used were analytically pure. The reagents 5-
isopropyl-2-methylphenol (carvacrol), chlorosulfonic acid,
morpholine, 4-fluoroaniline, pyridin-2-yl methanamine, 2-
hydroxyaniline, 2,4-dichloroaniline were obtained from Sigma
Aldrich.

The synthesis sulfonamides S1-S5, as already described in
the literature (de Oliveira et al., 2016) was performed in two
steps: firstly, the synthesis of 4-hydroxy-2-isopropyl-5-
methylbenzene-1-sulfonyl chloride (ChS) was performed,
subsequently, the ChS was used in reactions with different
amines (Scheme 1). ChS was obtained from the reaction of
carvacrol to six equivalents of chlorosulfonic acid. The
sulfonamides obtained in this study were prepared from
ChS with two equivalents of amine added slowly. Reactions
were followed by thin layer chromatography (TLC). All
sulfonamides were purified by acid-base extraction and the
compounds were duly characterized by spectroscopic and
spectrometric techniques.

Behavioral Tests

Animal Models

Animal care and in vivo procedures were carried out according to
the ethical guides for the study in conscious animals of
experimental pain (Zimmermann, 1983). The experiments
were carried out after protocol approval from the Ethics
Committee of the Federal University of Santa Catarina—UFSC
(protocol PP00745). Male Swiss mice (25-35g) were obtained
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from UFSC. Animals were maintained in a 12 h light/12 h dark
cycle (lights on at 6:00 a.m.) under a temperature of 22 + 2°C with
water and food ad libitum. At least 1h before the tests, the
animals were acclimatized to the laboratory conditions. The tests
were executed from 8:00 a.m. to 12:00 a.m. The number of
animals and noxious stimulation intensity were kept at the
minimum needed to obtain consistent results.

Drugs and Reagents

The following substance was used: L-glutamic acid hydrochloride
(Sigma-Aldrich, St. Louis, MO, United States). This formulation
has a glutamate content of >99% measured by HPLC, according
to the manufacturer’s technical sheet. The carvacrol, used in this
work, was obtained commercially in liquid form by Sigma-
Aldrich, whose density is 0.976 g/ml at 20°C (lit.), melting
point 3-4°C (lit.) with a concentration of 98 %. Glutamate was
solubilized in isotonic saline solution (0.9% NaCl), and carvacrol
and sulfonamides derived from carvacrol (§1-S5, Scheme 1) were
dissolved in saline plus Tween 80. Tween 80 did not exceed a 5%
final concentration and did not show any activity by itself.
Control groups for each delivery route were given isotonic
saline with Tween 80 at 5%.

Glutamate-Induced Nociception

To demonstrate the possible interplay between the carvacrol
derivatives and the glutamatergic system, we evaluated
whether the compounds would antagonize the glutamate-
induced pain behavior of paw licking and biting. This
glutamate-induced model of nociception was reported
previously (Beirith et al,, 2002; Meotti et al.,, 2010). A 20 ul
glutamate solution (20 pmol/paw, in saline, with pH adjusted
to 7.4) was administered intraplantarly (i.pl.) in the ventral face of
the right hind paw. After the administration of glutamate, the
mice were monitored for 15 min. Nociception was monitored by
measuring with a chronometer the amount of time that mice
spent licking and biting the injected paw. The mice were given
vehicle intragastrically (i.g.) (10 ml/kg) or carvacrol derivatives
(0.0003, 0.003, and 0.03mg/kg) 1h before glutamate
administration.

Additionally, the thickness of the animal paw was measured
with a digital micrometer (0-25mm) before and after the
nociceptive response induced by glutamate (ipl.) to evaluate
the paw edema. The difference in thickness (mm) of the hind
paw, immediately before and after the test of glutamate, was
considered as an index of edema.

Evaluation of Locomotor Activity

The open-field test is widely used to assess spontaneous locomotor
activity in animals to exclude possible nonspecific effects of a drug on
the central nervous system (CNS), causing sedation or motor
dysfunction. This is an important measure to check for possible
false positives in pain studies, as these parameters can be easily
confused with an analgesic effect of the evaluated drug and cause
research bias. Thus, to examine the activity of the carvacrol
derivatives on spontaneous locomotion, the open-field test was
performed as described above (Nucci-Martins et al, 2016; de
Souza et al, 2020). The open-field test device was a wooden box

Sulfonamide Antioxidant and Antinociceptive Activity

(40 x 60 x 50 cm). The floor was split into 12 equal squares, and the
number of squares that the animal covered with all paws in a 6 min
session was registered. Mice were given the compounds (i.g., 0.0003,
0.003, and 0.03 mg/kg) or vehicle (i.g., 10 ml/kg) 1 h before the test.
Healthy mice that were not submitted to painful stimuli were used for
the assessment of locomotor activity in the open-field experiment.

Statistical Analyses

Results are reported as average values + standard deviation (SD) with
the exception of IDsy and ECs, values, which were calculated from
single experiments using nonlinear regression implemented in
GraphPad 7.0 (GraphPad software, San Diego, CA, United States).
The glutamate test with paw edema measurement and the open-field
test showed a normal data distribution in line with the Shapiro-Wilk
threshold (p = 0.05) and, thus, were submitted to one-way ANOVA
analysis and to Dunnett test for multiple analyses. Only p-values
below 0.05 were taken as significant (p < 0.05).

Antioxidant Assays

Scavenging Assay—Nitric Oxide

NO scavenging assay was performed using the method reported
by Sens et al. (2018). In this assay, sodium nitroprusside generates
NO radicals (NOe) which react with oxygen to generate nitrite
ions. The production of the nitrite ions is then determined with
the Griess reagent (1% sulfanilamide, 2% H;PO, and 0.1%
naphthylethylenediamine dihydrochloride). NO scavenging
activity was measured by adding 1.5ml phosphate buffer
saline (0.2 M, pH 7.4) and 1 ml sodium nitroprusside (10 mM)
to several concentrations of the test compounds (25, 50, 75, and
100 mg ml™") and incubating the reaction mixture for 150 min
(25°C). Next, 1 ml of Griess reagent was added to 1 ml of the
reaction solution. A wavelength of 546 nm was set to measure
absorbance (A), and the results of antioxidant assays were
expressed as ECs.

Scavenging Assay—Hydrogen Peroxide

The H,O, scavenging activity showed by the compounds was
measured spectrophotometrically using a method reported
previously (Sens et al, 2018). A 40 mM H,O, solution was made
in phosphate buffer (pH 7.4). 25, 50, 75, and 100 mgml " test
compound solutions in phosphate buffer (3.4 ml) were added to
the H,O, solution (0.6 ml). Absorbance was monitored at a
wavelength of 230 nm. The percentage of H,O, scavenging was
calculated, and the results were expressed as ECs.

Computational Studies

Small-Molecule Modeling and Preparation

All compounds were built in the Avogadro program (Hanwell
et al,, 2012). The structures of the compounds were optimized at
pH 7.4 to simulate the conditions found experimentally. Next, the
compounds were minimized with the MMFF94s force field
(Halgren, 1996) and the conjugate gradient method.

Density Functional Theory

All energy values of the lowest unoccupied molecular orbitals
(LUMO) and highest occupied molecular orbitals (HOMO) were
computed by the GAMESS (General Atomic and Molecular

Frontiers in Pharmacology | www.frontiersin.org

35

November 2021 | Volume 12 | Article 788850


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

de Oliveira et al.

Electronic Structure System) software (Schmidt et al., 1993). In
the calculation of simple energy, the Becke’s three-parameter
hybrid functional, the Lee-Yang-Parr correlation (B3LYP)
functional (Nageswari et al., 2018) and the 6-31G(d, p) basis
set were used in these molecular systems in gas phase, considering
the neutral and singlet structures. The computation was run
considering the Slater exchange potential correlation and the grid
methodology. The Hiickel method (Hiickel, 1931) generated an
initial estimate of molecular orbitals and electronic density.
Consequently, the self-consistent field (SCF) convergence was
attributed by the restricted Hartree-Fock (RHF) method
(Schmidt et al., 1993), which was limited to 30 iteration cycles.
LUMO and HOMO potentials were compared with the
experimental results of NO (EC50°) and peroxide (EC50129?)
elimination activities. Finally, HOMO-biological activity (ECso™
and ECs,%?) linear regression models were developed.

Molecular Docking

The PDB (Berman et al., 2002) was searched for structures of
Rattus norvegicus bound to antagonist corresponding to the
UniProt Gene Names Grinl and Grin2A-D (NMDA receptors;
23 structures found); Grial-4 (AMPA receptors; 16 structures
found); Grik1-5 (Kainate receptors; 20 structures found); Grml
and Grm5 (mGluR Group I receptors; 1 structure found);
Grm2-3 (mGluR Group II receptors; no structures found) and
Grm4-8 (mGluR Group III receptors; no structures found).
When more than one structure was available, a direct
comparison of the binding sites was performed to evaluate
their plasticity and select the smallest subset of structures
capable of representing it. For each subset, ensemble docking
calculations were performed. After identifying the structure of
each receptor with a higher affinity for the compounds, docking
simulations were performed individually. The structural data of
the heme domain of rat neuronal NO synthase bound to 6-(3-
fluoro-5-(3-(methylamino)prop-1-yn-1-yl)phenethyl)-4-
methylpyridin-2-amine (PDB 6NGJ) was additionally used.

In all docking calculations, performed with GOLD v.5.6.1 and
the ChemPLP (Korb et al., 2009) scoring function, the receptors
were kept rigid, and the ligands were treated with full flexibility.
The receptors were prepared using GOLD, and structural water
molecules were not considered. The atoms up to a distance of 8 A
from the crystallographic ligands in both the ensemble and
individual docking simulations were considered to define the
binding sites. PyMOL v.1.8 (Schrddinger, New York, NY) was
used to create the receptor-ligand figures.

Molecular Properties and Pharmacokinetics
Molinspiration Chemoinformatics was used for calculating
Octanol-Water Partition Coefficient (milogP), number of
atoms (natoms), Topological Polar Surface Area (TPSA),
molecular weight (MW), hydrogen bond donors (HBD) and
hydrogen bond acceptors (HBA), rotatable bonds (NRB),
Molecular Volume, and Lipinski RO5 violations.

The SwissADME tool (http://www.swissadme.ch) was
employed for the generation of the Bioavailability Radar, and
assess lipophilicity, druglikeness, medicinal chemistry and
pharmacokinetics parameters.

Sulfonamide Antioxidant and Antinociceptive Activity

TABLE 1 | Antioxidant activity of sulfonamides derived from carvacrol.

Compound NO scavenging activity H,0, scavenging activity
ECso (M) ECso (M)
S1 12.25 + 0.12 13.13 £ 0.11
S2 18.11 £ 0.14 20.16 + 0.17
S3 12.14 £ 0.28 13.85 £ 0.33
S4 18.76 + 0.22 20.28 + 0.14
S5 12.04 + 0.11 13.12 £ 0.18
Ascorbic acid 14.72 + 0.23 16.3 £ 0.26

RESULTS

The synthetic procedures for the sulfonamides S1-S5 (Scheme
1), following a recently reported methodology (de Oliveira et al.,
2016), were performed in good yields (85-95%).

Antioxidant Activity

The antioxidant activity of the sulfonamides derived from
carvacrol (Table 1) was analyzed by the NO and H,O,
scavenging activity assays.

Quantum Studies

The electronic properties were directly correlated with the
antioxidant activity of the molecules. The Egomo and Erumo
indicate the molecule’s ability to donate and receive electron
density, respectively. The difference between the two energy levels
is termed the band gap and gives an estimate of the reactivity of a
molecule. The distance between the HOMO and LUMO energy
levels is inversely proportional to the reactivity the compound.
The HOMO and LUMO potentials and band gap of the carvacrol
derivatives are shown in Figure 2.

Figure 3 shows the correlation between HOMO energy and
experimental ECso™© and EC5,"™2°% The correlation coefficients
+* and Person’s coefficient () of the EC5,™C versus EFOMO were
0.87 and 0.93, respectively. For ECso"2% versus E"O™©, r* and r
were 0.88 and 0.94, respectively. The angular coefficient values of
the equations EC5N° =  ECsoN°  (ETOMO)  and
EC5,20% = EC,,129% (EHOMO) were, respectively, 10.28 + 2.03
and 11.30 + 2.10umol. (L.eV)™'. In addition, the linear
coefficients were 87.90 + 1449 and 96.63 + 14.96 umol.
(L.eV)™!, respectively. From these equations, the minimal
values of EOMO (je, EC5,N° = ECs,2°? = 0) can find the
maximal activity. Thus, with the HOMO energy tending to
—-8.55¢eV for both equations, the maximal elimination of NO
and H,0, is reached for both experiments.

Antinociceptive Activity
For a better understanding of the antinociceptive effect of
sulfonamides derived from carvacrol (S1-S5), we used the
model of glutamate-induced (i.pl.) nociception. This method
allowed us to investigate the possible interaction of peripheral
antinociceptive action of the analyzed compounds with the
glutamatergic system. The results are shown in Figure 4.
Figure 5 shows the results of treatment with carvacrol and its
derivatives on paw edema induced by glutamate (i.pl.). Our results
show that only S1 and S5 were able to significantly reduce edema.
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FIGURE 2 | HOMO and LUMO potentials of the carvacrol derivatives estimated by the B3LYP method and 6-31G(d,p) basis set.

However, S1 inhibited edema more effectively and dose-dependently. ~ respectively. The value of IDsy, for compound S1 was 0.002
The percent inhibition values were: 36 + 10%, 47 + 6%, and 73 + 12%  (0.0009-0.005) mg/kg. Furthermore, the calculated values for the
for S1 at 0.0003, 0.003 and 0.03 mg/kg ig. respectively; 19 + 9%,  IDs, antiedematogenic effect of S1 (0.002 mg/kg) agree with the dose
33 + 6%, and 28 + 7% for S5 at 0.0003, 0.003, and 0.03 mg/kg i.g,  found in the glutamate test, showing homogeneity of the data in this

Frontiers in Pharmacology | www.frontiersin.org 37 November 2021 | Volume 12 | Article 788850


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

de Oliveira et al.

20 °®
19 4
Sl
E
3 17
D 18] ECs50H202 = (11.30 + 2,10) EHOMO
. (96.63 + 14.96)
1 o R =0.88
12{ @ Person’s r=0.94
7'4 -7’3 -7'2 "1 -7'0 -‘.'v9 -CVB
E"OMO (av)
1 ECgN° versus EHOMO
194 *
18 °
_:; 74
E 184
3
2 154 .
Q .
w14 ECsoNC = (10.28 = 2.03)"EHOMO +
o (87.90 + 14.49)
=087
2] %o Person’s r=0.93
74 73 72 J1 70 489 48
E 1OMO (ev)
FIGURE 3 | HOMO energy (E"°M) correlated with ECso"° and
ECgo 202,

group. Thus, we suggest that S1 may be an interesting target for the
reduction of edema in inflammatory conditions.

Figure 6 shows that intragastric administration of carvacrol and
compounds S1, S2, 83, $4, and S5 at doses ranging from 0.0003 to
0.03 mg/kg had no effect on the locomotion of animals in comparison
with the animals in the control group, suggesting that the compounds
do not induce impairment of motor function in the animals. These
results exclude the possibility that the antinociceptive action of
carvacrol and its derivatives is nonspecifically associated with
activity on the peripheral or central levels of locomotion control,
such as sedation or motor dysfunction.

Molecular Docking

As previously shown (Fundytus, 2001), the administration of
glutamate receptor (GluR) antagonists has an analgesic effect on
peripheral pain. To assess whether the mechanism of action of
S§1-85 is likely to involve these receptors, molecular docking
simulations were performed over different GluR structures of
Rattus norvegicus bound to antagonists (Supplementary
Table S1).

Sulfonamide Antioxidant and Antinociceptive Activity

For the predicted binding modes of S1-S5, the main
interactions involving the common scaffold are hydrogen
bonds with GIn405, Arg523, Thr518 and Ser572 and a
displaced m-stacking interaction with Phe484. Of these, the
interactions with Arg523, Thr518, and Phe484 are also
observed for the crystallographic antagonist TK40 (Ravn et al.,
2013). The main interactions observed for carvacrol are only
hydrogen bonds with Pro516 and Thr518 and the displaced
n-stacking interaction with Phe484 (Figure 7). For the
different R groups, mainly van der Waals interactions were
established. Only for the R groups of 83 and S5, -CH--n
interactions with Leu538 and Ser572, respectively, were
observed. Among all five molecules, $4 established the lowest
number of contacts. The scores of each analyzed pose are
presented in Supplementary Table S2.

The three levels of perception of pain—the cerebral
(Dickenson, 1995), spinal and peripheral (Gordh et al,
1995)—appear to be affected by NO. This compound is an
essential regulator of various immune and inflammatory
functions (Moncada et al, 1991). In this work, we
investigated, besides the NO scavenging activity, the possible
intermolecular interactions between the sulfonamides and NO
synthase. First, to validate the molecular docking protocol,
redocking analysis (Figure 8) of 5,6,7,8-tetrahydrobiopterin
(the crystallographic ligand, PDB ID 6NG]J) (Do et al, 2019)
was carried out with GOLD. The ligand occupied the same
interaction site in molecular docking when compared to the
crystallographic structure, with emphasis on hydrogen bond
interactions with Ser334, Val677, and Arg 596 and a =
interaction with Trp678.

The molecular docking results agree with the results
obtained in the in vitro (NO scavenging activity) and in
vivo tests. All compounds showed an inhibitory profile
against NO synthase, except S4, which was not effective in
all performed assays. The two most active compounds, S1 and
S5 presented lower IDs, values and higher values for the
scoring function, which demonstrate the high correlation
between the in vivo and in silico results. The higher activity
of these compounds was probably due to m stacking
interactions and a hydrogen bond between compounds S1
and S5 and Trp 678 (Figure 9), which were also observed for
the co-crystallized ligand, but was not found for the other
sulfonamides. The scores of each analyzed pose are presented
in Supplementary Table S3.

Molecular Properties

Physicochemical and topological parameters of compounds
S1-S5 were estimated to evaluate their pharmacokinetics
profile. The octanol-water partition coefficient (miLogP),
topological polar surface area (TPSA), molecular weight
(MW), number of atoms, hydrogen-bond acceptors (HBA)
and hydrogen-bond donors (HBD), number of rotatable bonds
(NRB), Lipinski RO5 violations, and molecular volume are
presented in Table 2. The silico-derived descriptor values were
compared with the solubility and permeability filters for drug
candidates reported by Lipinski (Barret, 2018), Oprea and Veber
(Veber et al., 2002).
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FIGURE 4 | Effect of compounds on nociception induced by glutamate (i.pl.) in mice. The pain behavior, translated by the nociceptive response of licking/biting hind
paws induced by glutamate (i.pl.), was evaluated 1 hour after treatment with carvacrol (A), $1 (B), S2 (C), S3 (D), S4 (E) and S5 (F) at doses ranging from 0.0003, 0.003,
and 0.03 mg/kg, i.g., (open bars) or vehicle/control (closed bar). Each bar denotes the average response for 6-8 animals, and the vertical lines represent the SEM
(standard error of mean). Asterisks (*) indicate the significance in comparison with the control group animals (o < 0.05, *p < 0.01, and **p < 0.001). One-way
ANOVA and Dunnett test for multiple comparisons were used to determine the statistical significance.

S5 (mglkg, i.g.)

The SwissADME web tool used to calculate the parameters
is available at http://www.swissadme.ch and allows
straightforward submission and analysis. It allows different
input methods, multi-molecule computation, and offers the
possibility to view and save results for each molecule, in
addition to an interactive and intuitive visualization tool.
To study the ADME parameters of the most active
sulfonamide in the in vitro and phenotypic tests (S1), the
Bioavailability Radar (Figure 10), lipophilicity, drug likeness
(Figure 11), medicinal chemistry and pharmacokinetics
(Figure 12) parameters were analyzed.

The Bioavailability Radar (Figure 10) provides a graphical
output for the drug-likeness of a compound. The central shaded
surface is the optimal domain for lipophilicity (XLOGP3 from
-0.7 to +5.0), size (MW from 150 to 500 g/mol), polarity (TPSA
from 20 to 130 A?), aqueous solubility (logS < 6), saturation
(fraction of sp3 carbons > 0.25), and flexibility (rotatable bonds <
9). Compound S1 falls within the optimal range for all
parameters.

In addition, S1 has a good medicinal chemistry and
synthetic accessibility profile, which is very important in
obtaining a drug that can be commercially distributed at a
more affordable price. Moreover, S1 has high gastrointestinal
absorption (GI) and blood-brain barrier permeability
(Figure 12).

DISCUSSION
Antioxidant Activity

The evaluation of the antioxidant activity of a series of
compounds should be performed in more than one
experiment, allowing for the reliability of the results (Sens
et al, 2018). Diverse in vitro antioxidant assays have been
published. Herein, the antioxidant ability of derivatives S1-S5
was determined in two in vitro tests. Subsequently, the results of
these tests were correlated with the findings from the HOMO and
LUMO studies.

Compounds S1, S3, and S5 were more active than ascorbic
acid (AA), which was used as the reference compound.
Compound S5 showed the highest activity, and $4
demonstrated to be the least active. A linear correlation was
found between both experimental results
(EC5029? = 1.085ECs,~° + 0.2250; 7* = 0.99).

NO plays a critical part in the control of multiple physiological
responses. Also, the NO cascade is associated with many
conditions, including Alzheimer’s disease (Di Meo et al,
2016). H,O, readily decomposes into water and oxygen,
resulting in the production of hydroxyl radicals (OHe), lipid
peroxidation and DNA injury, which makes it a target for
research of new compounds with antioxidant properties
(Phaniendra et al., 2015).
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FIGURE 5 | Effect of compounds on paw edema in rats induced by glutamate (i.pl.). The edema was evaluated 1 hour after treatment with carvacrol (A), S1 (B), S2

(C), S3 (D), S4 (E) and S5 (F) at doses ranging from 0.0003, 0.003, and 0.03 mg/kg, i.g., (open bars) or vehicle/control (closed bar). The animal paw thickness difference
was observed before and after the glutamate test. Each bar denotes the average response for 6-8 animals, and the vertical lines represent SD. Asterisks (*) indicate the
significance in comparison with the control group animals (*p < 0.05, **p < 0.01, and **p < 0.001). One-way ANOVA and Dunnett test for multiple comparisons
were used to determine the statistical significance.
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FIGURE 7 | (A) Docking-predicted binding modes in the rattus norvegicus NMDA-glycine binding site (PDB ID 4KFQ). The carbon atoms of each molecule are
represented in a different color. The carbon atoms of the crystallographic antagonist TK40 are shown in green. (B) Main interactions established by carvacrol in the
predicted binding mode. (C) Main interactions found by $1 in the predicted binding mode. Hydrogen bonds are represented in green and m-interactions in magenta.
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FIGURE 8 | Conformation of the crystallographic ligand in the binding site of NO synthase (PDB ID 6NGJ) after the redocking studies.

Extensive research has revealed that NO plays an essential role
in several biological processes, such as neurotransmission,
immune defense, and regulation of cell death (Snider and
McMahon, 1998). The early 20th century witnessed the
discovery of the role played by NO in nociception in both the
central and peripheral levels (Zhuo and Gebhart, 1997). One of
the physiological functions of NO was initially found in the
vasculature; it was shown that the role of endothelium-derived
relaxation factor (EDRF) could be quantitatively explained by the
formation of NO by endothelial cells (Moncada and Higgs, 2006).

Treatment of pain with NO donors began with the use of
nitroglycerin (NTG), which figures among the oldest treatments
for ischemic heart disease (Boden et al., 2015). Discovered in

1847, NTG was used for the therapy of pain in angina pectoris for
100 years. However, its mechanism of action was not revealed
until EDRF was identified as NO (Marsh and Marsh, 2000).
Independently, NO was found to be an endogenous activator of
soluble guanylate cyclase, resulting in the formation of cyclic
GMP (cGMP), which acts as a second messenger in many cells,
including the sensory neurons (Pereira et al., 2011).

NO is a highly reactive chemical messenger diffusible through
the cytoplasmic membranes that is critical for the control of
neuronal transmission, inflammation, cytotoxicity, and neural
plasticity (Pacher et al., 2007). NO modulates the excitability of
spinal sensory neurons and contributes to pain in different ways.
The control of NO biosynthesis is regulated by NO synthase
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FIGURE 9 | Top-scoring docking poses for 81 and S5 in the binding site of NO synthase (PDB ID 6NGJ).

TABLE 2 | Molecular properties of sulfonamides $1-S5.

(NADPH), and
(Forstermann and Sessa, 2012).

tetrahydrobiopterin (BH4) as cofactors
In this work, molecular

Property S1 s2 s3 4 S5 docking was used to investigate NOS inhibition by the
miLogP 2.43 4.20 257 3.77 5.32 carvacrol derivatives.

TPSA (A2 66.84 66.40 79.29 86.62 66.40

Natoms 20 22 22 22 23 Quantum Studies

EEVBVA 292'39 32:139 32%41 % 15'40 37j29 The HOMO profile showed a variation of the charge density among
HBD 1 2 2 3 2 the carvacrol derivatives. The HOMO and LUMO energies of
nviolations 0 0 0 0 1 compound S1 is —7.40 and —0.62 eV, respectively. The electronic
NRB . 3 4 5 4 4 density is concentrated in the phenol group for HOMO and LUMO.
Molecular volume (A% 268.14 278.75 286.46 281.83 300.89

(NOS) enzymes. Three NO synthase isoforms (NOS; EC
1.14.13.39) catalyze the production of NO (Férstermann and
Sessa, 2012). They use O, and L-arginine as substrates and flavin
mononucleotide (FMN), flavin adenine dinucleotide (FAD),

Compound S2, however, differs regarding the position of the charge
density for these orbitals. In HOMO (-6.86 €V), the orbitals are
concentrated on the fluoro-phenyl group. This is because fluorine
tends to attract electron density (electronegative atom). In LUMO
(-0.75 eV), the electronic density tends to be favorable in the phenol
group. The band gap in this compound is —6.11 eV. Compound S3
has HOMO and LUMO energies of —7.35 and —0.86 eV, respectively.

reduced nicotinamide-adenine-dinucleotide phosphate  The electronic density of HOMO tends to be located at the phenol. In
LIPO
0\\ //O
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N /\
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FIGURE 10 | The Bioavailability Radar for $1. The figure was generated online using SwissADME. Compound S1 combines good hydrophobicity and solubility,
which is vital for membrane transport and permeability. Also, it does not violate any of the filters proposed by Lipinski, Ghose, Veber, Egan, and Muegge (Figure 11).
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Consensus Log P, 1.88 Bioavailability Score  0.55

S1

FIGURE 11 | Lipophilicity and drug likeness for S$1. These parameters
were generated online using SwissADME.

LUMO, however, the electronic density concentrates in the region of
the pyridinic group. In compound $4, the HOMO charge density
surrounds the phenolic substituent (-6.83 eV). In LUMO, however,
the charge density concentrates in the carvacrol fragment (-0.59 V).
Differently from the other compounds, the charge distribution in S5
distributes throughout the structure in HOMO (-7.38 eV) and
LUMO (-1.01eV). In HOMO, the positive density concentrates
on the sulfonamide group and p-fluorine atom. In LUMO, however,
the same region is predominantly negative throughout the structure.
In ascorbic acid, the dihydroxyfuran has the HOMO electron density
(-6.91 eV) close to the hydroxyl groups in the resonant region. In
LUMO (-0.49eV), the signal of electronic density changes and
concentrates close to the oxygen atom of the furan group.

Antinociceptive Activity

Injection of glutamate (i.pl.) in the mouse paw causes significant
paw edema and nociception (Beirith et al., 2002; Meotti et al.,
2010). Figure 4 shows that systemic administration of carvacrol,
S1, S2, §3, and S5 significantly inhibits nociception induced by
injection of 20 pmol/paw glutamate, suggesting that these
compounds have an important therapeutic effect for the
treatment of acute pain of inflammatory origin, probably due
to a decrease in peripheral glutamatergic signaling. Treatment
with the compounds significantly reduced pain behavior
induced by glutamate (i.pl), characterized by spontaneous
licking/biting of the injected hind paw. Carvacrol was able to
reduce nociceptive behavior by 19 + 6 and 44 + 8% at 0.0003 and
0.003 mg/kg, respectively. Moreover, the sulfonamides derived
from carvacrol showed the following percent inhibitions: 16 +
5%, 62 + 5%, and 50 + 7% for S1 at 0.0003, 0.003, and
0.03 mg/kg, respectively; 26 + 5% and 34 + 6% for S2 at
0.003 and 0.03 mg/kg, respectively; 25 + 9% and 22 + 5% for
$3 at 0.003 and 0.03 mg/kg, respectively; 39 + 8% and 27 + 13%
for S5 at 0.003 and 0.03 mg/kg, respectively.

The calculated mean IDs value for sulfonamides derived from
carvacrol was 0.002 (0.001-0.002) mg/kg for S1, 0.442
(0.063-0.387) mg/kg. Thus, the results of the present study
demonstrate that carvacrol and S1, S§2, S3, and S5 reduce
nociception induced by glutamate (ipl), suggesting that
inhibition of the stimulatory mechanism via peripheral

Medicinal Chemistry Pharmacokinetics
PAINS Oalert  Glabsorption High
Brenk 0 alert BBB permeant Yes
Leadlikeness Yes P-gp substrate No
Synthetic accessibility 2.77 CYP1A2 inhibitor No

CYP2C19 inhibitor Yes
o o CYP2C9 inhibitor No
N7 CYP2D6 inhibitor No
@ CYP3A4 inhibitor No
Ho © Log K, (skin -6.83
s permeation) cm/s
FIGURE 12 | Medicinal Chemistry and pharmacokinetics for $1. These
parameters were generated online using SwissADME.

glutamatergic neurotransmission may contribute, at least in
part, to the antinociceptive effect of these compounds. In
addition, we would like to highlight that carvacrol and
compounds S1, S2, S3, and S5 may be interesting lead
compounds for acute pain, especially S1 (0.003 mg/kg) since it
presented the highest efficacy among the analyzed compounds.
Importantly, the compounds derived from carvacrol, selected
to carry out the in vivo experiments, were chosen from the results
presented in the molecular docking, quantum studies, and the
in vitro antioxidant activity. Our results corroborate previous
results (Arigesavan and Sudhandiran, 2015) which also found
antioxidant and anti-inflammatory effects after treatment with
carvacrol, using a carcinogenicity model in the colon of rats.
Moreover, previous studies demonstrated that carvacrol
attenuates  mechanical  hypernociception  induced by
carrageenan (Guimaraes et al., 2012) and the acute pain acetic
acid-induced abdominal constriction and formalin (Cavalcante
Melo et al., 2012). Also, it was shown (Barnwal et al., 2018) that
carvacrol increased the activities of antioxidant enzymes and
downregulated expression by reducing the inflammation marker
in positively dyed cells (iNOS, NF-kB, and COX-2) in a
pulmonary toxicity model. These data from the literature
reinforce  the antinociceptive, anti-inflammatory, and
antioxidant potential of carvacrol observed in our study.
Findings from the literature (Pacher et al., 2007; Forstermann
and Sessa, 2012) indicate that superoxide (SO, 0®*™)y and
peroxynitrite (PN, ONOO”, the product of its reaction) are
essential for the emergence of pain caused by different etiologies.
These findings reinforce the concept that ROS play an essential
part in NMDA activation, which is a critical ionotropic
glutamatergic receptor, which contributes to central and
peripheral pain. Therefore, this study supports previous results
(Wang et al., 2004) that stated that superoxide mediates
hyperalgesia (increased sensitivity to painful stimulation)
through M40403, a manganese(II) complex with a bis(cyclo-
hexylpyridine-substituted) macrocyclic ligand, which is a
superoxide dismutase mimetic. These findings disclosed the
central role played by superoxide in the peripheral signaling of
nociception. In addition, it was shown that the M40403
antihyperalgesic activity could not be reverted by naloxone,
which excludes the participation of opioid signaling cascades.
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Moreover, so far, few studies have investigated the effect of
carvacrol on neurotransmitter modulation. The studies by
Zotti et al. (2013) demonstrated that carvacrol, when ingested
regularly in low concentrations, influences brain activity by
increasing the levels of neurotransmitters such as serotonin
and dopamine, which can determine feelings of well-being and
reinforcing positive effects. Thus, our interest in investigating the
glutamatergic system has arisen, considering that glutamate is a
major mediator in the CNS, mediating excitatory
neurotransmission in mammals, including in sensory neurons
that convey pain, being strongly involved in the stimulation of
peripheral and central pain. Therefore, our findings are
unprecedented and relevant as they demonstrate the inhibitory
capacity of carvacrol on the peripheral glutamatergic pathway.

It was shown (Kuo et al., 2017) that carvacrol mitigated injury
in tissues and inflammation derived from periodontitis induced
by ligation. Besides that, carvacrol proved to attenuate
inflammatory response induced by carrageenan, decreasing
mouse paw edema (Guimardes et al., 2012). These data from
the literature support the anti-inflammatory, antinociceptive and
antiedematogenic effects of carvacrol observed in our study.
Importantly, paw edema and pain induced by glutamate are
essentially associated with non-NMDA ionotropic glutamate
receptors and NO production, a vasodilator, and an important
neurotransmitter (Beirith et al., 2002). When in excess, it may be
involved in the production of oxidative lesions in proteins. These
findings reinforce the importance of studying glutamate-induced
paw edema and nociception, as well as the beneficial effects of
carvacrol and its derivatives found in this study.

Our results agree with literature data which demonstrated that
carvacrol had no effect on the spontaneous locomotion in mice
(Cavalcante Melo et al., 2012; Guimaries et al., 2012). However,
these studies used a curve of carvacrol doses ranging from 25 to
100 mg/kg in the open-field test and we are the first group to test a
much lower dose curve for carvacrol (0.0003, 0.003, and
0.03 mg/kg) in pain, edema, and spontaneous locomotion. In
addition, Guimaries et al. (2012) demonstrated that carvacrol at a
dose of 100 mg/kg reduced the animals’ ambulation in the open-
field test, 30 min after intraperitoneal administration, showing
that this dose is not safe as it causes nonspecific effects on
locomotor activity and should be excluded in future pain
studies. It is already well described that some drugs can cause
motor slowness (bradykinesia) or even act as a muscle relaxant,
causing non-specific changes in the locomotor activity of animals
(Cartmell et al., 1991). In addition, drugs like benzodiazepines
and other anxiolytics decrease the exploratory behavior of
animals (Hazim et al, 2014). In this regard, it was
demonstrated (Coderre and van Empel, 1994) that many
glutamate antagonists, primarily via ionotropic NMDA
receptor, such as the receptor channel block MK-801, produce
significant antinociceptive effects, but decrease exploratory
behavior of animals. In contrast, our results demonstrate that
the intragastric treatment with the tested compounds can induce
a significant antinociceptive effect via inhibition of peripheral
glutamate, without causing any detectable motor dysfunction.
Thus, carvacrol and its derivatives S1, $2, §3, and S4 at doses up

Sulfonamide Antioxidant and Antinociceptive Activity

to 0.03 mg/kg have an attractive analgesic potential to treat acute
pain without causing CNS sedation.

Molecular Docking

In general, no significant binding modes were obtained
concerning poses matching the available structural criteria of
known antagonists (Ramirez and Caballero, 2018). Only the
docking simulations in the NMDA-GIuN; glycine binding site
(LBD-GluN;) excelled, which agrees with previous observations
for selective ligands of this site, such as HA-966, “which barely
interacts with other ionotropic glutamate receptors” (Planells-
Cases et al., 2005).

Considering the docking results and the non-ataxic effects of
the compounds at the administered doses, the compounds are
likely to be partial agonists, instead of agonists of the NMDA-
GluNT1 glycine binding site, such as rapastinel (Wood et al., 2008)
(GLYX-13 or BV-102), (+)-HA-966 (Millan and Seguin, 1993)
and the recently reported 1-amino-1-cyclobutanecarboxylic acid
(Fung et al., 2019).

Molecular Properties

The Lipinski RO5 applies to compounds that are active after oral
administration. The RO5 includes four physicochemical
property ranges (logP < 5, MW < 500, HBD < 5 and HBA <
10) that are present in 90% of the drugs that are active after oral
administration and have reached phase II clinical development
(Barret, 2018). The sulfonamides investigated in this work are
within the RO5 desirable range, except for the miLogP of
sulfonamide S5 (miLogP = 5.32), which is slightly higher
than expected.

TPSA correlates with a compound’s ability to permeate
biological membranes through passive transport. Medicinal
chemists use TPSA as an important parameter to optimize
drug permeation through membranes. Molecules having TPSA
values higher than 140 A? are likely to permeate poorly into cell
membranes (Pajouhesh and Lenz, 2005). For molecules that are
required to act in the CNS, penetration into the blood-brain
barrier is needed, which requires a TPSA lower than 90A”
(Hitchcock and  Pennington, 2006). All investigated
sulfonamides are in accordance with these parameters. A
molecule that has a higher number of rotatable bonds
becomes more flexible and have a good binding affinity with
the binding pocket. For a potential drug candidate, Veber
proposed that NRB should be <10. All investigated
sulfonamides are following this parameter.

The molecular volume assesses the transport properties of
molecules such as blood-brain barrier penetration. The calculated
values for this property are in line with the values expected for
drug candidates.

During the discovery of novel drugs, molecules with useful
therapeutic properties and low levels of toxicity are highly
desirable. In this process, knowledge of the absorption,
distribution, metabolism, and excretion profiles (ADME) is
essential. It is well-known that the early evaluation of ADME
during the drug discovery process reduces the attrition rates
during clinical development.
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CONCLUSION

In this study, we report the SAR for a series of carvacrol-
derived sulfonamides. The antioxidant and antinociceptive
activities of compounds S1-S5 were investigated using in vitro
and in vivo assays. All the sulfonamides showed antioxidant
activity in the in vitro tests comparable to that of the control
compound (ascorbic acid). The results gathered in the in vitro
antioxidant tests were linearly compared to the binding
energies of the HOMO frontier orbital (r* = 0.87 and 0.88)
calculated by DFT. The results of this study demonstrate that
carvacrol and its derivatives S1, §2, 83, and S5 were able to
reduce nociception induced by glutamate (i.pl.). Moreover,
these findings show that the intragastric treatment with the
tested compounds can induce a significant antinociceptive
effect via inhibition of glutamatergic peripheral system
without causing any detectable motor dysfunction, and not
affecting the locomotor activity of mice. Thus, carvacrol and
compounds S1, 82, $3, and S5 at doses up to 0.03 mg/kg have
an attractive analgesic potential to treat acute pain with no
CNS sedation. Docking simulations highlighted the
interactions between the compounds and the NMDA-
GluN; glycine binding site, which suggested that these
molecules act as selective partial agonists. Besides,
compounds S1-S5 exhibit physicochemical parameters and
pharmacokinetics compatible with drug candidates. Overall,
sulfonamides S1-S5 are suitable starting points for further
molecular optimization.
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PGAM1 is overexpressed in a wide range of cancers, thereby promoting cancer cell
proliferation and tumor growth, so it is gradually becoming an attractive target. Recently, a
series of inhibitors with various structures targeting PGAM1 have been reported,
particularly anthraquinone derivatives. In  present study, the structure—activity
relationships and binding mode of a series of anthraquinone derivatives were probed
using three-dimensional quantitative structure—activity relationships (3D-QSAR), molecular
docking, and molecular dynamics (MD) simulations. Comparative molecular field analysis
(CoMFA, r* = 0.97, g° = 0.81) and comparative molecular similarity indices analysis
(CoMSIA, r? = 0.96, g° = 0.82) techniques were performed to produce 3D-QSAR models,
which demonstrated satisfactory results, especially for the good predictive abilities. In
addition, molecular dynamics (MD) simulations technology was employed to understand
the key residues and the dominated interaction between PGAM1 and inhibitors. The
decomposition of binding free energy indicated that the residues of F22, K100, V112,
W115, and R116 play a vital role during the ligand binding process. The hydrogen bond
analysis showed that R90, W115, and R116 form stable hydrogen bonds with PGAM1
inhibitors. Based on the above results, 7 anthraquinone compounds were designed and
exhibited the expected predictive activity. The study explored the structure—activity
relationships of anthraquinone compounds through 3D-QSAR and molecular dynamics
simulations and provided theoretical guidance for the rational design of new anthraquinone
derivatives as PGAM1 inhibitors.

Keywords: PGAM1, molecular docking, molecular dynamics simulation, CoOMFA, CoMSIA

INTRODUCTION

Reprogramming energy metabolism has been regarded as one of the 10 essential hallmarks of cancer
cells (Hanahan and Weinberg, 2011), which was called the “Warburg effect.” In 1924, Warburg found
that cancer cells are more likely to metabolize glucose by means of aerobic glycolysis instead of
oxidative phosphorylation as in normal cells (Wang et al., 2018a; Huang et al, 2019b). Cancer
metabolic reprogramming is the performance of adapting to the environment during tumor formation
or metastasis. More and more scientists are focusing on the pivotal enzymes in the metabolic
reprogramming of cancer cells in order to find new cancer treatment targets (Wang et al., 2018b).
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Phosphoglycerate mutase 1 (PGAMI1) is a key enzyme that
catalyzes the invertible conversion of 3-phosphoglycerate (3-PG)
and 2-phosphoglycerate (2-PG) during the process of glycolysis
(Fothergill-Gilmore and Watson, 1989). Recent studies have
proven that once the expression of PGAM1 is upregulated, it
will promote tumor cell proliferation and tumor growth in
coordination with glycolysis and biosynthesis (Hitosugi et al.,
2012). PGAMI regulates the proliferation of cancer cells in term
of biosynthesis regulation, partly by regulating intracellular levels
of its product 2-PG and 3-PG (Hitosugi et al, 2012). In the
oxidative pentose phosphate pathway (PPP), 3-PG inhibits 6-
phosphogluconate dehydrogenase after binding, while 2-PG
feedback control of the levels of through activates 3-
phosphoglycerate dehydrogenase. In addition, PGAMI1 is
overexpressed in multiple cancers (Li and Liu, 2020),
including ovarian cancer (Zhang et al., 2020), non-small-cell
lung cancer (NSCLC) (Li et al., 2020), colorectal cancer (Liu et al.,
2008; Lei et al., 2011), pancreatic ductal adenocarcinoma (PDAC)
(Liu et al., 2018), prostate cancer (PCa) (Wen et al,, 2018), and
glioma (Xu et al., 2016). Particularly, high expression of PGAM1
was associated with poor prognosis in NSCLC patients (Sun et al.,
2018; Li et al, 2020). Downregulation of the expression of
PGAM1 or suppression of its metabolic activity will lead to
weakened cell proliferation and tumor growth (Hitosugi et al,
2012; Peng et al., 2016; Liu et al, 2018). Thus, PGAM1 is
considered to be an emerging target for cancer treatment.

Due to the important role of PGAM1 in the occurrence and
development of tumors, many researchers have focused on the
discovery and characterization of small molecules that can target
and modulate the metabolic activity of PGAMI1 (Huang et al,,
2019a). MJE3 was first revealed as a covalent PGAMI1 inhibitor
on Lys 100 by the Cravatt group in 2005 (Evans et al., 2005).
(-)-Epigallocatechin-3-gallate (EGCG) is a natural product
extracted from green tea, which was first discovered as a non-
substrate competitive PGAM1 inhibitor with potent inhibition
activity against PGAMI1 (Li et al, 2017). Anthraquinone
derivatives PGMI-004A (Hitosugi et al., 2012) and xanthone
derivatives (Wang et al, 2018b) were identified as allosteric
PGAM1 inhibitors by the Zhou group, which exhibited
moderate inhibition activity on PGAMI. As another
anthraquinone  derivative, HKB99 was identified to
allosterically obstruct the activation of PGAMI, thereby
affecting its catalytic activity and the intermolecular
interaction of ACTA2 (Huang et al., 2019¢; Liang et al., 2021).
Based on the excellent anticancer activity of PGMI-004A and
HKB99, new small molecules with the anthraquinone core have
been synthesized, which may have similar mechanisms of action
and therapeutic potential. Therefore, the design and development
of novel small molecules with an anthraquinone core targeting
PGAMI1 may prove to be an effective strategy for the treatment of
cancer cells.

Computer-aided drug design is an effective tool in the drug
discovery and design process. It can not only be used to predict
the activity of small molecules, explain the action mechanism,
and provide guidance for the design of more effective drug
molecules but also reduce the consumption of manpower and
material resources (Jorgensen, 2004). To elucidate the

QSAR Study of PGAM1 Inhibitors

structure-activity relationships and provide optimization
guidance for anthraquinone derivatives, 62 collected
compounds were employed to construct 3D-QSAR models
using CoMFA and CoMSIA methods. According to the
contour maps by 3D-QSAR and the crucial residues by MD
simulations, 7 compounds with high predictive activity were
designed. This study will provide a valuable theoretical basis
for the activity prediction and structural modification of targeted
PGAMI inhibitors containing anthraquinone structures.

MATERIALS AND METHODS

Data Sets and Preparation

In order to ensure the reliability of activity values and reduce
accidental errors, a set of 78 PGAMI inhibitors were retrieved
from different literature sources in terms of the same group
(Wang et al., 2018a; Wang et al., 2018b; Huang et al., 2019a;
Huang et al., 2019b). The molecular structure and experimental
bioactivity of all chemicals are listed in Table 1. First,
corresponding ICs, values of experimental bioactivity
expressed in nM were converted into negative logarithm
(-1gICsp) and acted as the dependent variable for the QSAR
modeling. According to the diversity of the molecular structure
and activities, all compounds were split into a training set and a
test set at a ratio of approximately 4:1. Finally, 62 compounds
were selected randomly as the training set and the remaining 16
compounds as the test set. The molecular structure of each
compound was determined using ChemDraw 18.0 and then
imported to SYBYL 6.9 (SYBYL, XX) to minimize the energy
based on the Tripos force field with a convergence criterion of
0.01 kcal/mol. The Gasteiger-Hiickel method was employed to
calculate the partial atomic charges. Then, the multisearch
strategy was performed to obtain the lowest energy
conformation, and the lowest energy geometry after being
filled with energy was reserved for alignment.

Molecular Alignment

Molecular alignment in terms of the same structure is considered
to be one of the most significant elements in the process of built
3D-QSAR modeling. Hence, molecular alignment based on the
most active molecule, 35, was employed by atom-by-atom fits.
After a common substructure is set, the dominant conformations
of the remaining 77 compounds are selected for superimposition.

Construction of CoMFA and CoMSIA

Models

The 3D-QSAR model for the training set compound was built
after alignment by using SYBYL 6.9 software. The CoMFA
(Cramer et al.,, 1988b) and CoMSIA (Cramer et al., 1988b) are
the most widely used methods for constructing 3D-QSAR. The
CoMFA and CoMSIA descriptors were obtained by placing the
superposed compound in a 3D cubic lattice with a grid spacing of
2 A. Using the SP® hybrid carbon as the probe atom, the
Lennard-Jones and the coulomb potential were applied to
obtain the steric field energy and electrostatic field energy of
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TABLE 1 | Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R R, Rs R, Rs Re X ICso pICso
(M)
1 \/©/ ! H OH H H H 0 10.10 5.00
F
2 H OH H H H 0 13.20 4.88
\(@F
3 H OH H H H 0 6.40 519
Cl
!
Cl
4 \;@ H OH H H H 0 10.2 4.99
Cl
5 (©)< H OH H H H o) 8.40 5.08
6 \/@/O H OH H H H 0 5.90 5.23
7 H OH H H H 0 5.50 5.26
8 H OH H H H o 6.00 520
o O H H H H H o 143 4.84
10 O H H H H -OCH3 0 6.50 5.19
19a H H H H CH3 0 8.60 5.07
12 H H -OCH3 H H 0 460 5.34
13 H H -CH3 H H o 8.00 510

(Continued on following page)
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TABLE 1 | (Continued) Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R4 R2 Rs R4 Rs Rs X ICso plICso
(uM)

14 H H cl H H 0 3.50 5.46

15 H H F H H 0 13.7 4.86

16 H H NO2 H H 0 210 5.68

17 H H OH H H 0 6.40 519

18 O H H ~COOCHS3 H H o) 2.70 5.57
% g
19 -CH3 OH H H H H -c=0 5.37 5.7
20 \/O OH H H H H -C=0 2.06 5.6
21 \(@ OH H H H H -C=0 175 5.76
22 \(@ OH H H H H -c=0 150 5.82
058 STN OH H H H H -C=0 0.36 6.44
NS
cl
24 OH H H H H -C=0 0.84 6.08
SN
=
e
25 0 OH H H H H -C=0 0.55 6.26
e
%6 0 OH H H H H -C=0 0.48 6.32

25

(Continued on following page)
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TABLE 1 | (Continued) Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R4 R2 Rs R4 Rs Rs X ICso plICso
(uM)
27 /\o(\©/o\ OH H H H H -C=0 2.81 5.55
CF,4
28 . OH H H H H -C=0 2.86 5.54
CF,
29 o OH H H H H -C=0 0.63 6.20

30 \(@X OH H H H H -c=0 0.55 6.6
31 OH H H H H =0 0.49 6.31

32¢

33 [ OH H H H H -C=0 1.29 5.89

34 \(@/O OH H H H H C=0 2.05 5.60

35 \/‘/‘ OH H H H H -C=0 0.097 7.01

36 F OH H H H H -C=0 0.25 6.60
g

37° C' OH H H H H -C=0 0.26 6.59
g

(Continued on following page)

OH H H H H -G=0 0.19 6.72
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TABLE 1 | (Continued) Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R4 R2 Rs R4 Rs Rs X ICso plICso
(uM)
38 OH H H H H -C=0 0.14 6.85
< N
39 OH H H H H -C=0 0.33 6.48
ol
CF3
40 \(©/ OH H H H H -C=0 2.60 5.59
41 \(©/OCF3 OH H H H H -C=0 0.54 6.27
49 : NO, OH H H H H -C=0 0.90 6.05
43 F3Ci)(\© OH H H H H -C=0 0.47 6.33
CN
42 \(©/ OH H H H H -C=0 2.20 5.66
45° \(©/F OH H H H H -C=0 0.61 6.21
46 \:@ OH H H H H -C=0 0.54 6.27
47 E F OH H H H H -C=0 0.79 6.10
N Cl
48 \(©/ OH H H H H -C=0 0.89 6.05
49 (j;©/C| OH H H H H -C=0 0.27 6.57
Cl
50 \;Q OH H H H H -C=0 0.28 6.55
51 OH -C=0 0.89 6.05

29
Q
Q
T
T
T
T

]

(Continued on following page)
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TABLE 1 | (Continued) Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R2 Rs R4 Rs Rs X ICso plICso

(uM)

R4
Br
52 \(@/ OH H H H H -C=0 0.90 6.05
Br.
53 \;@ OH H H H H -C=0 0.26 6.59

54 Br OH H H H H -c=0 0.20 6.70

55 \(©/ OH H H H H -C=0 0.35 6.46

56 \:@ OH H H H H -C=0 0.47 6.33
cl

57 \(@/ OH H H H H -C=0 0.26 6.59
cl

58 \(@/ -OCH3 H H H H -C=0 2.92 5.53

59 Q H H H H -C=0 2.00 5.70

o . .
'S \)]\NHNHz

60 \(©/CH3 OH OH H H H O 2.80 5.65
61 /\/@ OH OH H H H O 7.20 5.14

62 \(E)/CF3 OH OH H H H 0 1.90 5.72

63 OH OH H H H o) 3.50 5.46
CFs

6 OCF; OH OH H H H 0 6.30 5.20

65° \(@/F OH OH H H H o) 5.80 5.24

(Continued on following page)
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TABLE 1 | (Continued) Structure and corresponding activity data of reported PGAM1 inhibitors.

Number R4 R2 Rs R4 Rs Rs X ICso plICso
(uM)
66 \(@/C' OH OH H H H 0 5.50 5.26
Br
67 Y@/ OH OH H H H o) 3.60 5.44
68° \(©/ ! OH OH H H H o) 2.90 5.54
69° \(©///N OH OH H H H o) 1.90 5.72
70° \(@\ OH OH H H H 0 4.20 5.38
\\N
712 OH OH H H H 0 210 5.68
72 OH OH H H H 0 1.70 577
73 OH OH H H H o 1.60 5.80
74 \/@X OH OH H H H 0 1.20 5.92
75 \/@/O OH OH H H H o 2,60 5.50
76 O OH OH H H H o) 0.50 6.30
N
ST
77° O OH OH H H H 0 2.70 5.57
: N
78 OH OH H H H 0 1.00 6.00

Test set for the validation of the 3D-QSAR model.
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each lattice point. The contributions of the hydrogen bond
acceptor field, hydrogen bond donor field, and hydrophobic
field were calculated by the probe atom. The partial least
squares method (Cramer et al.,, 1988a) was employed to deal
with the linear correlation between the CoMFA and CoMSIA
fields and biological activity. The cross-validation correlation
coefficient (q%) and optimum number of components (N) were
obtained using the leave-one-out method for cross-validation
analysis. In addition, the 72, (Roy et al., 2013; Cardoso et al.,
2016), r;red, external standard deviation error of prediction
(SDEPext), and applicability domain (Roy et al., 2015; de Assis
et al., 2016) were also calculated to evaluate the performance of
built models.

Evaluation of the 3D-QSAR Models

The predictive capabilities of built 3D-QSAR models were
evaluated via the test set of 16 compounds. After all
compounds were superimposed upon compound 35, the pICs,
values of all compounds were estimated through the built
CoMFA and CoMSIA models.

Molecular Docking

To obtain more accurate docking results, the resolution of all
crystal structures of PGAMI in complex with small molecules
obtained from the RSCB Protein Data Bank (PDB) was
compared, and 5Y35, with the best resolution of 1.99 A, was
preserved as the docking template. Subsequently, the Protein
Preparation Wizard module within (Schrodinger, 2015) was
utilized to preprocess the crystal structure, including adding
hydrogens and side chains, deleting water molecules, and
calculating partial charges and protonation states by using the
OPLS2005 force field (Jorgensen et al., 1996). Then, a grid box
centered at the native ligand with a similar size was produced to
determine the binding pocket of PGAMI1 by using the Grid
Generation module of the Schrédinger package. All molecules
were preprocessed using the LigPrep module implemented in the
Schrodinger package, and the ionization states were calculated
using Epik (Shelley et al., 2007) at pH = 7.0 + 2.0. Finally, all
chemicals were docked into the binding pocket of PGAM1 and
evaluated using the standard precision (SP) mode of Glide. The
scale factor was set at 0.8, and the partial charge intercept was set
at 0.15. The 10,000 poses of each ligand during the initial docking
phase were preserved for evaluation.

Molecular Dynamics Simulations

To obtain the structural basis and significant residues involved in
the process of ligand binding, molecular dynamics simulations
were employed in terms of the crystal structure of compounds 23
and 49 using Amber16 (Case et al., 2005). The general AMBER
force field (GAFF) (Wang et al, 2004) was employed to
parameterize the compounds, while the AMBER f{f14SB force
field (Maier et al., 2015) was employed for the PGAM1 structure.
The partial charges of compounds were calculated by using the
restrained electrostatic potential fitting procedure (Bayly et al.,
1993; Cieplak et al., 1995; Fox and Kollman, 1998) based on the
electrostatic potentials calculated using the Hartree-Fock (HF)
method with the 6-31G* basis set in the Gaussian 09 package

QSAR Study of PGAM1 Inhibitors

(Frisch et al., 2009). Then, the complex was solvated in a cubic
box of TIP3P waters, with the solute 10 A away from the water
box boundary. After adding sodium ions to neutralize each
system, the steepest descent method followed by the
conjugate-gradient method were employed to minimize the
system every 2,500 steps. Subsequently, each system was
heated in the NVT ensemble from 0 to 300K in 50 ps
restraint on backbone atoms. The restraint force was gradually
decreased from 5 to 0.1 kcal/(mol A%) within 0.9 ns. Under a
periodic boundary condition, 50 ns MD simulations were
performed at 300K and 1atm without any restraint. The
particle mesh Ewald method (Linse and Linse, 2014) was used
to calculate the long-range electrostatic interactions, and the
SHAKE method (Ryckaert et al, 1977) was employed to
constrain all covalent bonds containing hydrogen atoms.

Trajectory Analysis

After the MD simulation finished, trajectories were dissected via
the Cpptraj module (Roe and Cheatham, 2013) in AmberTools
16. First, the root mean square deviations (RMSDs) value was
calculated in terms of the last 10 ns of each MD trajectory.
Second, the molecular mechanics/generalized born surface area
(MM/GBSA) approach (Massova and Kollman, 2000) was
applied to calculate the binding free energy. After withdrawing
a total of 2,500 snapshots, the MM/GBSA calculation was
executed on each snapshot. The binding free energy (AGuyna)
was calculated as follows (Hou et al., 2011; Sun et al., 2014):

A(;bind = Gcomplex - (Gprotein + Gligand)
where the energy term (G) is estimated as follows:

G = Eyauw + Eele + Gg + Ggasur

In the equations above, the Evdw, Eele, Ggp, and Ggpsur
represent van der Waals, electrostatic energy, the electrostatic
contribution to the solvation free energy, and non-polar
contribution to the solvation free energy, respectively. The
changes of conformational entropy were ignored. Moreover,
the total free energy was decomposed to each residue in
PGAMI to obtain the crucial residues contributed to the
ligand binding process.

RESULTS AND DISCUSSION

CoMFA and CoMSIA Models

In the present study, a series of 78 PGAM1 inhibitors were
obtained. The molecular structures and pICs, values of all
molecules are listed in Table 1. The quality of molecular
superposition is considered to be one of the important factors
affecting 3D-QSAR prediction accuracy (Cho et al., 1996). On the
basis of the structure and bioactivity of PGAMI inhibitors, the
compounds in the training set were aligned to compound 35,
which had the highest activity based on the common
substructure. It can be seen from Figure 1 that the common
skeleton of all molecules is overlapped. However, the side chains
of several compounds surround the common skeleton due to the
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FIGURE 1 | Structural alignment of all the molecules in the training set based on the common substructure of compound 35.

large difference. Then, the 3D-QSAR models of CoOMFA and
CoSIA were successfully developed.

To examine the predictive ability and reliability of the built
model, q” and r* were applied to evaluate the predictive power of
the built 3D-QSAR model, %, F, and SEE values were employed to
assess the reliability of the model, and r2,, 2 ;, and SDEP,,,
values were utilized for external validation of the model. Table 2
lists the classical parameter statistics of CoOMFA and CoMSIA
models. In general, r* > 0.7 and ¢°, r2,, 2, _, >0.5 are necessary for
a good model (Pratim Roy et al., 2009). As shown in Table 2, the
values of >, N, SEE, r*, 12, rlzmd, SDEP,, and F are 0.81, 6, 0.106,
0.97, 0.78, 0.89, 0.22, and 258.06, respectively. The results show
that the built CoMFA model exhibits a good stability and
predictive ability. The contribution of the steric field and the
electrostatic field is 81 and 19%, respectively, indicating that the
biological activity of compounds is more affected by the steric
field. In addition, the predicted activity of the new chemical is
only valid when the predicted compound falls within the
applicability domain of the developed model (Roy et al., 2015).
The calculated results show that all compounds are within the
application domain of the built CoOMFA model, so this prediction
result is reliable.

Different field combinations of CoMSIA models were
constructed, and it had been proved that CoMSIA-SEHA is
the best model. Based on this model, the values of q° N, SEE,
%, 72,121 SDEPy, and F are 0.82, 6, 0.11, 0.96, 0.79, 0.89, 0.23,
and 228.71, respectively. In this model, the contribution of the
steric field is 20%, that of the electrostatic field is 22%, that of the
hydrophobic field is 40%, and that of the hydrogen bond acceptor
field is 18%, respectively. The results show that the hydrophobic
field has a greater effect on the bioactivity of the PGAMI1
inhibitors. The calculation results of the application domain
show that almost all the compounds are within the application
domain of the CoSIA model, except for compound 24 with an

TABLE 2 | Summary of COMFA and CoMSIA models.

PLS statistics CoMFA CoMSIA
g 0.81 0.82
N 6 6
r? 0.97 0.96
F 258.06 228.71
2 0.78 0.79
rg,ed 0.89 0.89
SDEPgy 0.22 0.23
SEE 0.11 0.11
Steric 0.81 0.20
Electrostatic 0.19 0.22
Hydrophobic - 0.40
Hydrogen bond acceptor - 0.18

Spew of 3.87 and compound 25 with an S, of 4.06. By analyzing
the descriptors in CoMSIA, we found that compounds 24 and 25
have the largest electrostatic field contribution. The experimental
and predicted values of the biological activity of the training set
and the test set in the established CoMFA and CoMSIA models
are shown in Table 3.

The scatter plot of the experimental and predicted values of the
studied PGAMI inhibitor is shown in Figure 2. It can be seen
from Figure 2 that the experimental and predicted bioactivity
values of all molecules are distributed around the Y = X equation,
indicating that the predicted values are in good accord with the
experimental values, which further demonstrates that the model
has good predictive ability.

Contour Maps Analysis of CoOMFA and
CoMSIA

The structure-activity relationships between PGAM1 inhibitors
and activity can be well demonstrated by using 3D contour maps
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TABLE 3 | Experimental plCsq (Exp.), predicted plCsq (Pred.), and corresponding
residuals (Res.) of the anthraquinone derivatives.

Number pIC50 CoMFA CoMSIA

Exp Pred Res Pred Res
1 5.00 5.00 0.00 5.02 0.03
2 4.88 5.00 0.12 5.05 0.17
3 5.19 4.98 -0.21 514 -0.05
4 4.99 4.94 -0.05 511 0.12
5 5.08 5.11 0.04 5.11 0.03
6 523 5.34 0.11 5.15 -0.08
7 5.26 5.28 0.02 5.31 0.05
8 522 5.16 -0.06 5.18 -0.05
9 4.84 5.33 0.49 5.29 0.44
10 5.19 5.18 -0.01 5.29 0.10
11 5.07 5.26 0.19 5.21 0.15
12 5.34 5.35 0.01 5.24 -0.10
13 5.10 5.27 0.17 5.31 0.21
14 5.46 5.34 -0.12 5.29 -0.17
15 4.86 4.94 0.08 4.84 -0.03
16 5.68 5.78 0.10 5.67 -0.01
17 5.19 528 0.03 517 -0.02
18 5.57 5.38 -0.19 5.51 -0.05
19 5.27 5.46 0.19 5.31 0.04
20 5.69 5.61 -0.08 5.74 0.05
21 5.76 5.70 -0.06 5.74 -0.02
22 5.82 5.84 0.02 5.76 -0.07
23 6.44 6.33 -0.12 6.32 -0.13
24 6.08 6.09 0.01 5.88 -0.20
25 6.26 6.44 0.18 6.26 0.00
26 6.32 6.38 0.06 6.24 -0.08
27 5.55 5.59 0.03 5.48 -0.07
28 5.54 5.54 -0.01 5.46 -0.08
29 6.20 6.21 0.01 6.25 0.04
30 6.26 6.27 0.01 6.33 0.07
31 6.31 6.35 0.04 6.42 0.11
32 6.72 6.61 -0.11 6.51 -0.21
33 5.89 5.96 0.07 6.45 0.56
34 5.69 5.65 -0.04 5.69 0.00
35 7.01 7.08 0.07 6.97 -0.04
36 6.60 6.69 0.09 6.53 -0.07
37 6.59 6.84 0.26 6.80 0.21
38 6.85 6.84 -0.01 6.82 -0.03
39 6.48 6.48 0.00 6.66 0.18
40 5.59 5.61 0.03 5.53 -0.06
41 6.27 6.19 -0.07 6.33 0.06
42 6.05 6.08 0.03 6.13 0.08
43 6.33 6.31 -0.02 6.39 0.06
44 5.66 5.77 0.12 5.53 -0.12
45 6.21 6.21 0.00 6.38 0.17
46 6.27 6.43 0.16 6.37 0.10
47 6.10 6.09 -0.01 6.14 0.04
48 6.05 6.05 0.00 6.11 0.06
49 6.57 6.53 -0.04 6.49 -0.08
50 6.55 6.36 -0.19 6.40 -0.16
51 6.05 6.13 0.08 6.24 0.19
52 6.05 6.04 0.00 6.32 0.27
53 6.59 6.54 -0.05 6.51 -0.08
54 6.70 6.50 -0.20 6.49 -0.21
55 6.46 6.11 -0.34 6.39 -0.07
56 6.33 6.49 0.16 6.41 0.08
57 6.59 6.55 -0.03 6.44 -0.15
58 5.53 5.39 -0.15 5.56 0.02
59 5.70 5.69 -0.01 5.72 0.02
60 5.55 5.40 -0.15 5.62 -0.03
61 514 5.33 0.19 5.47 0.33
62 5.72 5.72 -0.01 5.72 0.00

(Continued in next column)
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TABLE 3 | (Continued) Experimental pICsq (Exp.), predicted plCsq (Pred.), and
corresponding residuals (Res.) of the anthraquinone derivatives.

Number pIC50 CoMFA CoMSIA

Exp Pred Res Pred Res
63 5.46 5.43 -0.03 5.46 0.00
64 5.20 5.17 -0.08 5.21 0.01
65 5.24 5.52 0.29 5.48 0.24
66 5.26 5.34 0.08 5.10 -0.16
67 5.44 5.33 -0.12 5.48 0.04
68 5.54 5.34 -0.20 5.47 -0.07
69 5.72 5.39 -0.33 5.69 -0.04
70 5.38 5.41 0.03 5.11 -0.27
71 5.68 5.31 -0.37 5.63 -0.04
72 5.77 5.78 0.01 5.70 -0.07
73 5.80 5.78 -0.02 5.75 -0.05
74 5.92 5.92 0.00 5.88 -0.04
75 5.59 5.51 -0.08 5.52 -0.07
76 6.30 6.30 0.00 6.27 -0.03
77 5.57 5.39 -0.18 5.57 0.00
78 6.00 5.96 -0.04 6.01 0.01

to display the QSAR equation. The field type Stdev* Coeff was
used to generate 3D contour maps. As shown in Figures 3, 4,
compound 35 with the best anti-PGAM1 activity was selected as
the template compound to dissect the results of CoMFA and
CoMSIA models.

The contour map of the steric field of CoMFA is shown in
Figure 3A, and the effect of the steric field on the activity is shown
in green and yellow. The presence of green regions around the
molecule indicates that the group with a large connecting space
contributes to increasing the activity of the compound, while the
presence of yellow regions indicates that the group with a large
connecting space may decrease the activity of the compound. As
can be seen from Figure 3A, there is a green region distributed on
the R, substituent, so the introduction of a slightly larger volume
of groups at the R; substituent site is conducive to the
improvement of the activity of the compound. For example,
compound 22 (pICsy = 5.82) with a benzene ring was
significantly higher than compound 19 (pICsy = 5.27) in
bioactivity. The contour map of the electrostatic field of
CoMFA is shown in Figure 3B, and the effect of the
electrostatic field on the activity is shown in blue and red. The
blue regions around the molecule indicate that the connection of
the electron-donating group is beneficial to the improvement of
the activity of the compound, while the red regions indicate that
the connection of the electron-withdrawing group is beneficial to
the improvement of the activity of the compound. From
Figure 3B, we can see that the connection of electron-
withdrawing groups near the R; substituent is conducive to
improving the activity of the compound, so it can explain how
the activity of compound 22 (pICs, = 5.82) is higher than that of
compound 19 (pICsy = 5.27). There is a blue region around the R,
substituents of anthraquinone, where the introduction of electron
groups is beneficial. For example, the bioactivity of compound 72
(pICso = 5.77) with a hydroxyl group was significantly higher
than that of compound 8 (pICsy = 5.22).

The contour map of the steric field (Figure 4A) and the
electrostatic field (Figure 4B) of the CoMSIA is very similar
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FIGURE 2 | Scatter plot of experimental and predicted bioactivity values (pICso)of the CoMFA (A) and CoMSIA models (B), respectively.
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PGAM1 acitivity, and red regions show where negative groups are favored.

FIGURE 3 | Steric contour map (A) and electrostatic contour map (B) of the CoMFA model based on molecule 35. Green regions represent bulky groups that
increase anti-PGAM1 activity, while yellow regions represent sterically unfavored regions. Blue regions show where positive groups are beneficial for increasing anti-
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to the CoMFA model, so they will not be explained here. The
contour map of the hydrophobic field of the CoMSIA model is
shown in Figure 4C. The cyan regions represent how the
introduction of the hydrophobic group is favorable to the
activity, while the white regions represent how the
introduction of the hydrophilic group is favorable to the
activity. There is a cyan region near the R; substituent,
indicating that the introduction of the hydrophobic group is
very helpful to the improvement of the activity. Therefore, the
biological activity of compound 22 (pICso = 5.82) is higher than
that of compound 19 (pICsy = 5.27). The contour map of the
hydrogen bond receptor field of CoOMSIA is shown in Figure 4D.
The orange area is where the hydrogen bond acceptor group is
conducive to the activity of the compound, and the purple area is
where the hydrogen bond donor group is conducive to the activity
of the compound. As shown in Figure 4D, there are purple

regions with substituents of R and R,, where hydrogen bond
donors can be imported to improve the anti-PGAMI activity of
the chemical. Moreover, a large purple region is near the nitrogen
atom on the amino group, suggesting that the group may be a
hydrogen bond donor.

Based on the outcome of COMFA and CoMSIA analysis, we
obtained the structure-activity relationship diagram of
anthraquinone compounds (see Figure 5). The introduction of
hydrogen bond donors in Region A is beneficial to improving the
activity of the compounds, such as the carbonyl group. The group
with a large space in Region B is conducive to the activity of the
compounds, such as biphenyl or p-cyclohexylbenzene (Huang
et al,, 2019b). The introduction of the hydrophilic group in
Region C is conducive to the activity, such as hydroxyl groups
(Wang et al., 2018a). The group with a small space in Region D
can improve the activity of the compound, such as hydrogen.

Frontiers in Pharmacology | www.frontiersin.org

59

November 2021 | Volume 12 | Article 764351


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Wang et al.

QSAR Study of PGAM1 Inhibitors

FIGURE 4 | Steric contour map (A), electrostatic contour map (B), hydrophobic contour map (C), and hydrogen bond acceptor contour map (D) of the CoMSIA

model based on molecule 35. Green regions are sterically favored regions, while yellow regions are sterically unfavored regions. Blue regions are where electron-donating
groups are favored, and red regions are where electron-withdrawing groups are favored. The cyan regions are where the hydrophobic group is favorable to the activity,
while the white regions are where the hydrophilic group is favorable to the activity.
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Molecular Docking Analysis

The molecular docking method was employed to interpret the
3D-QSAR result and study the structural basis between PGAM1
and inhibitors. First, the reliability of the glide docking algorithm
with the SP mode was evaluated by redocking analysis. It can be
seen from Figure 6 that the redocking conformations of the
molecule are well superimposed with the initial structure in
PGAM1 protein. The RMSD value between docking
conformation and native conformation is 0.005A. The results
suggest that the glide algorithm exhibits a good performance for
the PGAMI protein, which can reproduce the binding pose of the
native ligand. Subsequently, all chemicals were docked into the
binding site of PGAM1. However, we discover that the docking
scores of these compounds are not correlated with the inhibitory
activity, and the r* of pICs, vs. the docking score is 0.051, which
demonstrates the fact that glide docking is not appropriate for all
compounds. We speculate that one of the most important reasons
is that 3-PG plays an important role in the process of compounds
binding to PGAM1, and the glide scoring function currently used
is not suitable for this system. In addition, because PGAM1
catalyzes the conversion of 3-PG to 2-PG in the physiological
process, the current docking simulation methods cannot
completely simulate this process. Therefore, the docking score
and activity do not show a correlation.

Molecular Dynamics Simulations
In order to further analyze the atomic details of the interaction

between small molecules and PGAMI, molecular dynamics
simulations were employed based on the co-crystal complex of
compounds 23 (PDB ID: 5Y35) and 49 (PDB ID: 6ISN) using
Amber 16, respectively. 50 ns simulation was performed for each
complex. The RMSD plots of Ca, residues within the range of
ligand 5A, ligand, and 3-PG for complexes were shown in
Figure 7. By monitoring the fluctuation of RMSDs, it can be
found that the RMSD fluctuation of each system after 20 ns are all
within the range of 2A. Moreover, the fluctuation of binding free
energy over time was also monitored. As shown in
Supplementary Figure S1, binding free energy of each system
fluctuates around 30 kcal/mol after 35ns. In summary, these
results indicate that the two systems finally reached a stable state.

During the process of small molecules binding to PGAM1, the
hydrogen bond plays an important role as one of the most
important non-bonding interactions. In order to explore the
interaction between small molecules and PGAMI, the changes
of the hydrogen bond between each residue of PGAMI1 and the
inhibitor were also monitored. The fraction of the hydrogen bond
is greater than 10% as listed in Table 4. The results show that two
hydrogen bonds formed between compounds 23 and 49 and
Argll6, and the total occupancies are 180.12% and 38.48%,
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FIGURE 5 | Structure-activity relationship diagram of anthraquinone PGAM1 inhibitors.
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FIGURE 6 | Surface of PGAM1 and docking pose of the native ligand
based on the alignment. The yellow and cyan carbon atoms represent the
native ligand and the docking pose, respectively.

respectively. The results indicate that the hydrogen bonds formed
between Argl16 of PGAM1 and inhibitors play a remarkable role
in the binding of molecules. Besides, another hydrogen bond is
also formed between compound 23 and Arg90 with the
occupancy of 12.14%. It is precisely because the small
molecules form hydrogen bonds with Argl16 and Arg90 to fix
the anthraquinone skeleton of the compounds that compounds
23 and 49 are stably binding with PGAM1.

Binding Free Energy Calculation
The binding free energy is used as a reference standard for

evaluating the activity of molecules. It is generally believed
that the lower the binding value, the more stable the complex
formed by the protein and the small molecule. To evaluate the
binding affinity of each complex, the MM/GBSA method was
performed to calculate the binding free energy of inhibitors. It can
be seen from Table 5 that the binding free energy of compounds
23 and 49 are —27.40 kcal/mol and —27.85 kcal/mol, respectively,
which are consistent with their biological activities. Among them,
van der Waals energies (AE.q,) are —38.68 kcal/mol and
—41.63 kcal/mol, respectively, and their values are much lower
than other energy terms, indicating that hydrophobic interaction
is the major contributor to the ligand binding process. In
addition, electrostatic ~energy (AE.) also contributes
significantly to the binding free energy, which indicates that
electrostatic interaction also plays a vital role in ligand
binding. It is worth noting that the polar contribution (AGgg)
is not conducive to ligand binding, which may be attributed to the
large size of the binding pocket and the exposure of the
hydrophobic ligand to the solvent.

To further confirm the key residues referred to in the ligand
binding process, MM/GBSA calculation was performed to
decompose the binding free energy into inhibitor-residue
pairs. It can be seen from Figure 8 that the primary residues
with binding free energy less than —1 kcal/mol contributing to the
ligand binding are F22, K100, V112, W115, and R116. In order to
further observe the orientation of compounds and the position of
the key residues, we extracted the average structure (see Figure 9).
It can be seen from Figure 9 that compounds 23 and 49 adopt a
similar binding pose, which is surrounded by those critical
residues. Compound 23 forms three hydrogen bonds with
R90, W115, and R116. Among the three of them, R90 and
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FIGURE 7 | Fluctuation of RMSD values for two complexes during 50 ns MD simulation.
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TABLE 4 | Changes of the hydrogen bond over the MD simulations.

Complex Donor Acceptor
PGAM1-Compound 23 Arg116@N-H Ligand@0O5
Arg116@NE-H Ligand@05
Arg116@NE-H Ligand@N1
Arg90@N-H Ligand@O1
PGAM1-Compound 49 Arg116@N-H Ligand@0O1
Arg116@NE-H Ligand@0O1

Occupancy (%) Distance (A) Angle ()
75.08 2.93 152.74
59.12 3.11 144.82
45.92 3.24 15212
12.24 3.12 130.43
20.20 2.96 148.26
18.28 3.05 147.35

TABLE 5 | Calculated binding energy (kcal/mol) of inhibitor binding to PGAM1.

Terms PGAM1-Compound 23 PGAM1-Compound 49
AEge -26.51 + 7.59 -20.76 + 6.23
AE,gw -38.68 + 2.92 -41.63 + 3.31
AGgas -65.19 + 8.35 -62.39 + 8.01
AGgs 41.62 + 5.97 38.35 + 5.21
AGggsur -3.82 +0.16 -3.81 +£0.15
AGgq) 37.79 + 5.91 34.55 + 5.14
AGiing —27.40 + 4.21 -27.85 + 3.68

AGgas = Ao + AE g
AGso = AGgs + AGaasur:
AGping = AGgas + AGsor.

R116 show higher fraction in hydrogen bond analysis, while the
bond length of W115 is 3.4 A due to weak potency. For
compound 49, there is no hydrogen bond formed between
compound 49 and key residues, which may be due to the low
occupancy.

Design New PGAM1 Inhibitors

According to the structure-activity relationships obtained from
CoMFA and CoMSIA models, seven molecules with the
anthraquinone skeleton were designed as potential PGAMI1
inhibitors by introducing new substituents at different
positions of compound 35 (see Table 6). Compounds 79 and
80 were designed by adding the hydrogen bond donor in the R
position to form the key hydrogen bond. Compounds 81, 82, and
83 were designed by introducing the substituent in the R; position

—— PGAM1-Compound 23
1——PGAM1-Compound 49

0 W - v
-1
| K100
e
24 Nw11s
1 F22

Binding free energy (kcal/mol)

V112
-3
-4 4 *
R116
¥ T | T ¥ T L T
0 50 100 150 200
Residues

FIGURE 8 | Binding free energy decomposition plots for the two
systems.

to increase volume. Based on the contribution of the steric and
hydrogen bond donor, compounds 84 and 85 were designed.
The pICs, values of designed compounds were predicted by
built COMFA and CoMSIA models. As shown in Table 6, all of
the designed compounds exhibit better inhibitory activity
targeting PGAMI1 than compound 35, and the predictive
values are in accordance with the summarized
structure-activity relationships.
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FIGURE 9 | Average structures of PGAM1 with compounds 23 (A) and 49 (B). The bonds of residues and ligands are represented in stick, and the carbon atoms of
compound 23, compound 49, and residues are represented in yellow, cyan, and white, respectively. The red dotted line represents the hydrogen bond.

TABLE 6 | Newly designed PGAM1 inhibitors and the corresponding predicted activity value.

Number R, R, Rs R, Rs Re X CoMFA CoMSIA
79 Q/O OH H H H OH -C=0 7.07 7.03
OMe
80 OH H H H NH2 -C=0 7.05 6.99
OMe
81 p/g OH H H H H -C=0 7.16 6.83
Cl
82 K@/C( OH H H H H -C=0 7.14 7.07
OMe
83 OH H H H H -C=0 7.10 7.03
OMe
84 OH H H H OH -C=0 7.14 6.85
85 OH H H H OH -C=0 7.13 7.00
CONCLUSION models have achieved satisfactory results in terms of the statistical

In the present study, a combined strategy of 3D-QSAR, molecular
docking, and molecular dynamics simulations was applied to
explore the structure-activity relationships of anthraquinone
analogs. The built COMFA (q* = 0.81, > = 0.97, 2, = 0.78,
73 req = 0.89) and CoMSIA (q* = 0.82,* = 096,77, = 0.79,77, ;= 089)

results. The results show that the built models have good internal
and external predictive power. The acquired contour maps
elaborate the structure-activity relationships of anthraquinone
derivatives and successfully predict the activity of the test set.
According to the results of contour maps, the introduction of
hydrogen bond donors in Region A, the group with a large
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space in Region B, the hydrophilic group in Region C, and the group
with a small space in Region D could improve the activity of the
compounds. The calculated results of binding free energy suggest
that van der Waals interaction is the major contributor to the ligand
binding process. The decomposition binding free energy and
hydrogen bond show that small molecules with the
anthraquinone core mainly interact with F22, R90, K100, V112,
W115, and R116 of PGAMI. Based on these findings, 7 new
compounds with the anthraquinone core were designed, and the
predicted results show that all of the designed compounds exhibit
great inhibitory activity against PGAMI. The constructed 3D-
QSAR model will provide theoretical guidance for improving the
activity of anthraquinone derivatives and help to develop inhibitors
with potent anti-PGAM1 activity.
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Breast cancer (BC) has surpassed lung cancer as the most frequently occurring cancer,
and it is the leading cause of cancer-related death in women. Therefore, there is an urgent
need to discover or design new drug candidates for BC treatment. In this study, we first
collected a series of structurally diverse datasets consisting of 33,757 active and 21,152
inactive compounds for 13 breast cancer cell lines and one normal breast cell line
commonly used in in vitro antiproliferative assays. Predictive models were then
developed using five conventional machine learmning algorithms, including naive
Bayesian, support vector machine, k-Nearest Neighbors, random forest, and extreme
gradient boosting, as well as five deep learning algorithms, including deep neural networks,
graph convolutional networks, graph attention network, message passing neural
networks, and Attentive FP. A total of 476 single models and 112 fusion models were
constructed based on three types of molecular representations including molecular
descriptors, fingerprints, and graphs. The evaluation results demonstrate that the best
model for each BC cell subtype can achieve high predictive accuracy for the test sets with
AUC values of 0.689-0.993. Moreover, important structural fragments related to BC cell
inhibition were identified and interpreted. To facilitate the use of the model, an online
webserver called ChemBC (http://chembc.idruglab.cn/) and its local version software
(https://github.com/idruglab/ChemBC) were developed to predict whether compounds
have potential inhibitory activity against BC cells.

Keywords: breast cancer, machine learning, graph neural networks, molecular fingerprints, structural fragments
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1 INTRODUCTION

According to the latest data on the global cancer burden for 2020
released by the International Agency for Research on Cancer of
the World Health Organization, breast cancer (BC) surpassed
lung cancer in 2020 to become the most common cancer
worldwide. BC is the leading cause of cancer-related death
among women worldwide (Sung et al, 2021). BC consists of
the uncontrolled proliferation of mammary epithelial cells under
the action of many carcinogenic factors (Escala-Garcia et al,
2020), including alcohol consumption, smoking, overweight, and
mammographic density. BC is classified according to the
expression of the estrogen receptor (ER), progesterone
receptor (PR), human epidermal growth factor receptor 2
(HER2), and Ki-67 into five subtypes: Luminal A, Luminal B
(HER2-positive or HER2-negative), HER2-positive, and triple-
negative breast cancer (TNBC) (Harbeck et al., 2013). Among
these BC subtypes, TNBC is associated with poor survival
mediated by treatment resistance, and it is the most difficult
to treat with curative intent (Liao et al., 2021). Several drugs (e.g.,
anthracyclines and trastuzumab) have been approved by the U.S.
Food and Drug Administration (FDA) for the treatment of BC;
however, issues such as poor efficacy, toxicity, adverse drug
reactions, and the emergence of drug resistance have limited
their clinical use (Brower, 2013; Cameron et al., 2017; Shah and
Gradishar, 2018; Daniyal et al., 2021; Li and Li, 2021). Therefore,
there is an urgent need to discover and develop new drugs for the
treatment of BC, particularly for TNBC.

Innovative drugs (or active molecules) can be identified
through two mainstream screening methods: phenotypic-based
screening and target-based screening. Target-based screening has
been widely used to discover new drugs for the treatment of
human diseases in both the pharmaceutical industry and
academia for more than 30years (Chen et al, 2014; Zhang
et al, 2014; Wang et al.,, 2017a; Luo and Wang, 2017; Moffat
etal,, 2017; Shang et al., 2017). Target-based screening has several
advantages, including simplicity, lower cost, and easy to achieve
efficient structure-activity relationship (SAR) for lead
optimization (Croston, 2017). However, there are two major
concerns associated with target-based approaches: 1) the
identification and validation of druggable targets is difficult,
and if a selected target is undruggable, it may lead
practitioners to pursue projects and compounds that fail to
translate into clinical results (Croston, 2017) and 2) the
conventional “one drug, one target” paradigm has shown
unsatisfactory clinical results in human complex diseases (e.g.,
cancer (Wermuth, 2004), Alzheimer’s disease (Wang et al., 2017b;
Albertini et al., 2021), and infectious diseases (Morphy et al.,
2004; Li et al., 2019). Phenotypic-based screening (e.g., whole-cell
activity), an original but indispensable drug screening method,
has gained attention in recent years because of the number of
discovered and approved drugs (Liu et al., 2019; Childers et al.,
2020; Berg, 2021; Quancard et al.,, 2021). Two influential analyses
by Swinney and Anthony in 2011 and Swinney in 2013
highlighted that the majority of first-in-class drugs (new
chemical entities, NME) approved between 1999 and 2008
were identified through phenotypic screening approaches
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compared with target-based screening methods. In reality,
most FDA approvals of first-in-class drugs originated from
phenotypic screening before their precise mechanisms of
action or molecular targets were elucidated.

Although phenotype-based screening has advantages over
target-based screening for drug discovery, it is unscalable,
costly, and does not contribute to the understanding of the
mechanism of action of drugs. Several important technologies
including affinity-based approaches, functional genetic
approaches, cellular profiling approaches, and knowledge-
based (computational) approaches are currently available and
can be used to characterize the direct and indirect target space of
bioactive compounds from phenotypic screening (Schirle and
Jenkins, 2016; Sydow et al., 2019; Hughes et al., 2021).

Increased amounts of phenotypical pharmacological data on
cancer, Alzheimer’s disease, and infectious diseases have been
accumulated in the past 3 decades. Inspired by the available
phenotypic screening data, several efficient and cost-saving
computational models have been developed to accelerate the
drug design and discovery process (Zoffmann et al, 2019
Buckner et al., 2020; Chandrasekaran et al., 2021; Malandraki-
Miller and Riley, 2021). For example, in 2020, Stokes et al. first
reported directed message passing neural network models using a
collection of 2,335 compounds for those that inhibited the growth
of Escherichia coli (phenotype screening data) and then identified
the lead compound halicin with broad-spectrum antibacterial
activity (Stokes et al., 2020). Other machine learning-based
models have been established to identify new agents against
Methicillin-Resistant = Staphylococcus aureus (Wang et al,
2016b), Mycobacterium  tuberculosis (Ye al., 2021),
Pseudomonas aeruginosa (Fields et al, 2020), Plasmodium
falciparum (Ashdown et al, 2020), and Schistosoma (Zheng
et al, 2021). In the field of anticancer drug design and
discovery, phenotypical whole cell-based screening methods
have substantially advanced our ability to identify new
anticancer drugs. In previous studies, we reported the
development of computational models using integrated NCI-
60 cell-based phenotype screening data to identify new
anticancer agents (e.g., G03 and I2) with significant inhibitory
activity against various cancer cell lines (Guo et al,, 2019; Luo
et al, 2019). Although the reported integrated computational
anticancer models provided valuable data for discovering
anticancer agents, these models cannot distinguish or
selectively predict specific cancer cell subtypes (such as BC
and its subtypes). In addition, these prediction models have
not been developed into easy-to-use tools (e.g., local software
packages or online prediction platforms), which limits the use of
these models by practitioners in the field.

In the present study, we expanded our earlier efforts aimed at
developing reliable computational cell-based models to predict
cell inhibitory activity in BC and subtypes and provided a free
platform to share our models. A total of 588 cell-based models for
BC and subtypes were developed using five conventional machine
learning (ML) and five deep learning (DL) algorithms based on
three major types of molecular descriptors, fingerprints, and
graphs. We used the local outlier factor (LOF) (Breunig et al.,
2000) algorithm to evaluate the applicability domain of the best
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model for each BC cell line and applied the SHapley Additive
exPlanations (SHAP) (Lundberg and Lee, 2017; Lundberg et al.,
2020) algorithm to highlight significant structural fragments.
Finally, an online platform (http://chembc.idruglab.cn/) and
local software (https://github.com/idruglab/ChemBC) were
constructed based on reliable models to contribute to future
research.

2 METHODS

2.1 Dataset Collection and Preparation

All quantitative compound-cell associations (cell-based assays,
assay type: F) for available BC cell lines and normal BC cell lines
were collected from ChEMBL (Mendez et al., 2019) (downloaded
in March 2021) after the exclusion of metastatic cell lines. Each
BC cell dataset was then processed using the following steps: 1)
compounds with biological activity reported as ICsq, ECs, or GI5
were kept, whereas molecules that had no bioactivity record were
removed; 2) the units of bioactivity (i.e., g/mL, M, nM) were
converted into the standard unit in pM; 3) for a molecule with
multiple bioactivity values, the final bioactivity value was
obtained by averaging the available bioactivity records; 4)
according to previous studies (Fields et al., 2020; Ye et al,
2021), compounds with bioactivity values (e.g., ICsy, ECsq,
Glsp) <10uM were considered as active and vice versa;
molecules whose labels could not be unequivocally assigned
(e.g., activity <100 uM or activity >1 pM) were excluded from
the dataset; 5) all molecules were processed by removing salt and
optimized based on the MMFF94X force field using MOE
software (version 2018) with the default parameters. Finally,
14 cell lines with the number of active molecules (actives) and
inactive molecules (inactives) >50 were retained. Each cell-
compound dataset was randomly split into three sub-datasets:
training (80%), validation (10%), and test (10%). All datasets used
for the models described in the present study are freely available
at https://github.com/idruglab/ChemBC.

2.2 Molecular Representations Calculation
Choosing suitable molecular representations is essential for
developing acceptable and robust QSAR models. To a certain
extent, the molecular representation determines the upper limit
of the accuracy of the model. To fully characterize the chemical
information of these molecules, three distinct types of features
were calculated and used, including molecular descriptors-,
fingerprints-, and graph-based representations. RDKit
descriptors (RDKitDes), a set of 208 descriptors, were used.
Four fingerprint-based features including Morgan fingerprints
(ECFP-like, 1024-bits) (Rogers and Hahn, 2010), MACCS keys
(166-bits) (Durant et al., 2002), AtomParis fingerprints (2048-
bits) (Carhart et al., 1985), and 2D Pharmacophore Fingerprints
(PharmacoPFP, 38-bits) (Gobbi and Poppinger, 1998) were
implemented. The molecular descriptor- and fingerprint-based
representations were calculated using RDKit (Landrum, 2016)
(version: 2020.03.1).

The molecular graph (G) representative consisted of two
matrices for a given molecule: the N x N adjacency matrix A,
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representing a graph structure; and the N x F node-feature matrix
X, where N is the number of nodes and F is the number of node
features. The node-feature matrix contained the following atom
features: atom type, formal charge, hybridization, number of
bound hydrogens, aromaticity, number of degrees, number of
hydrogens, chirality, and partial charge. The edge representation
contained bond type, whether the atoms in the pair are in the
same ring, whether the bond is conjugated or not, and stereo
configuration of a bond (Kearnes et al., 2016). Most of them were
encoded in a one-hot manner into a molecular graph. In this
study, molecular graph-based representations were generated
using Deepchem (version: 2.5.0). For example, the
MolGraphConvFeatureizer module was used to calculate the
molecular graphs of Attentive FP, GAT, and MPNN models,
and the ConvMolFeaturizer (Duvenaud et al., 2015) module was
used to calculate the molecular graph of the GCN model.

2.3 Machine Learning Algorithms and Model

Construction

Five conventional ML algorithms (ie., RF, SVM, XGBoost, KNN,
and NB) and five DL algorithms (i.e., DNN, GCN, GAT, MPNN,
and Attentive FP) were used to develop classification models for
discriminating actives from inactives against breast cell lines. The RF,
SVM, KNN, and NB models were constructed using the Scikit-learn
(Pedregosa et al,, 2011) python package (https:/github.com/scikit-
learn/scikit-learn, version: 0.24.1); the XGBoost (Chen and Guestrin,
2016) models were developed using the XGBoost python package
(https://github.com/dmlc/xgboost, version: 1.3.3); and other graph-
based models were established using the DeepChem python package
(https://deepchem.io/). All descriptor- and fingerprint-based models
and graph-based DL models were trained on CPU [Intel(R) Xeon(R)
Silver 4216 CPU @ 2.10 GHz] and GPU [NVIDIA Corporation
GV100GL (Tesla V100 PCIe 32 GB)], respectively. In addition, we
used grid search to optimize hyperparameters for each model.
Detailed these modeling methods and their hyperparameters are
briefly described as follows.

2.3.1 Random Forest

RF is a representative ensemble learning approach. It establishes a
classifier or regressor by an ensemble of individual decision trees
and makes predictions as final output by vote or by averaging
multiple decision trees (Svetnik et al., 2003). Compared with a
decision tree, RF has high prediction accuracy, good tolerance to
outliers and noise, and is not easy to overfit. To obtain the best RF
model, the following five hyperparameters were optimized:
n_estimators (10-500), criterion (“gini” and “entropy”),
max_depth (0-15),  min_samples_leaf  (1-10), and
max_features (“log2”, “auto” and “sqrt”).

2.3.2 Support Vector Machine

SVM is a supervised ML algorithm that can be used for both
classification and regression tasks (Zernov et al., 2003). The basic
idea underlying SVM is to find the optimal hyperplane in the
feature space that can be obtained by maximizing the boundary
between classes in N-dimensional space, which distinguishes
objects with different class labels. SVM has been widely used
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in drug discovery-relevant applications such as compound
activity and property prediction (Heikamp and Bajorath,
2014). In the training of SVM models, two hyperparameters,
Kernel coefficient (gamma, “auto”, 0.1-0.2) and penalty
parameter C of the error term (C, from 1 to 100), were optimized.

2.3.3 Extreme Gradient Boosting

XGBoost is one of the so-called ensemble learning algorithms
under the Gradient Boosting framework and has achieved state-
of-the-art ranking results in many ML competitions. It has been
widely used in molecular property/activity prediction tasks (Jiang

7. et al, 2021; Li et al, 2021; Ye et al, 2021). Seven
hyperparameters were optimized in the training of XGBoost
models: learning_rate (0.01-0.1), gamma (0-0.1),
min_child_weight (1-3), max_depth (3-5), n_estimators

(50-100), subsample (0.8-1.0), and colsample bytree (0.8-1.0).

2.3.4 K-Nearest Neighbor

The basic idea of the KNN ML algorithm (Cover and Hart, 1967)
is to identify the k training samples closest to the test samples in
the training set based on distance measures (e.g., Euclidean,
Manbhattan, and Jaccard distance), and to make a prediction
based on the information of the k samples. The default
distance measure Euclidean was used in this study. The
following three hyperparameters were optimized: n_neighbors
(1-5), p (1-2), and weight function (“uniform”, “distance”).

2.3.5 Naive Bayes

NB is a classic classification ML method based on Bayes™ theorem
(Duda and Hart, 1973) and independent assumption of characteristic
conditions. For a given dataset, the joint probability distribution of
input and output is first learned based on the independent hypothesis
of characteristic conditions. NB is also widely used in drug discovery
practices (Wang et al., 2016b; Wang et al., 2016a; Wang et al., 2016b;
Guo et al, 2020). Two hyperparameters were optimized: alpha
(0.01-1) and binarize (0, 0.5, 0.8).

2.3.6 Deep Neural Networks

DNN is a typical DL algorithm and is essentially an artificial
neural network (McCulloch and Pitts, 1943) with multiple hidden
layers. It consists of many independent neurons, each of which
collects information from its connected neurons, and the
aggregated information is then activated through a nonlinear
activation function. The following key hyperparameters were
optimized: dropouts (0.1, 0.2, 0.5), layer_sizes (64, 128, 256,
512) and weight_decay_penalty (0.01, 0.001, 0.0001).

2.3.7 Graph Convolutional Network

GCN is a classic neural network that can use graph-structured
data as input (Kipf and Welling, 2016). It is composed of graph
convolution layers, a readout layer, fully connected layers, and an
output layer. The core idea of graph convolution is to use edge
information for aggregating node information, thereby
generating a new node representation. Various GCN
frameworks have been proposed. Duvenaud et al. (2015)
introduced a convolutional neural network that allows end-to-
end learning of prediction pipelines. In this study, we used

Prediction of Breast Cells Inhibition

Duvenaud’s GCN method, and the following hyperparameters
were optimized: weight_decay (0, 10e-8, 10e-6, 10e-4),
graph_conv_layers [(64, 64), (128, 128), (256, 256)], learning
rate (0.01, 0.001, 0.0001) and dense_layer_size (64, 128, 256).

2.3.8 Graph Attention Network

Attention mechanism (AM) is one component of a neural
network architecture, which can be embedded in the DL
models to automatically learn and calculate the contribution
of input data to output data. GCN cannot complete the
inductive task, namely, dynamic graph problems, and it is
not easy for GCN to assign different learning weights to
different neighbors. GAT (Velickovi¢ et al., 2017) introduces
an AM to address the disadvantages of previous approaches
based on GCN or its approximation. The weight of the features
of adjacent nodes depends entirely on the features of the nodes
and is independent of the graph structure. In the training of the
GAT model, the following hyperparameters were optimized:
weight_decay (0, 10e-8, 10e-6, 10e-4), learning rate (0.01, 0.001,
0.0001), n_attention_heads (8, 16, 32), and dropouts (0, 0.1,
0.3, 0.5).

2.3.9 Message Passing Neural Network

MPNN, proposed by Gilmer et al. (2017), is a common graph
neural network (GNN) framework for chemical prediction tasks.
It can directly learn the molecular characteristics from the
molecular diagram and is not affected by the graph
isomorphism. In the training of the MPNN model, six
hyperparameters were optimized: weight decay (10e-8, 10e-6,
10e-4), learning rate (0.01, 0.001, 0.0001), graph_conv_layers
[(64, 64), (128, 128), (256, 256)], num_layer_set2set (2, 3, 4),
node_out_feats (16, 32, 64), and edge_hidden_feats (16, 32, 64).

2.3.10 Attentive FP

Attentive FP, which was proposed by Xiong et al. (Xiong et al,,
2020), is currently a state-of-the-art GNN model for molecular
property prediction, and what is learned from the established
model is interpretable. It allows the model to focus on the most
relevant parts of the input by applying a graph AM. Herein, the
main hyperparameters were optimized as follows: dropout (0, 0.1,
0.5), graph_feat_size (50, 100, 200), num_timesteps (1, 2, 3),
num_layers (2, 3, 4), learning rate (0.0001, 0.001, 0.01), and
weight_decay (0, 0.01, 0.0001).

2.4 Performance Evaluation of Models

The following classification evaluation metrics were used to
evaluate the performance of the classification models:
specificity (SP/TNR), sensitivity (SE/TPR/Recall), accuracy
(ACC), Fl-measure (F1 score), Matthews correlation
coefficient (MCC), the area under the receiver operating
characteristic (AUC), and Balanced accuracy (BA). These
evaluation metrics are defined as follows:

SP = N (1)
" TN +FP
TP
SE= — 2
TP +FN )
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TP+TN
ACC = 3
TP+TN + FP+FN 3)
Fl - 2 x Precision X Recall 2xTP @
" Precision+ Recall =~ 2xTP+FN +FP
MCC - TP x TN - FN x FP
- (TP+EN)x (TP + FP) x (TN + FN) x (TN + FP)
(5)
TPR+TNR SE + SP
BA = il s )

2 2

where TP, TN, FP, and FN represent the number of true positives,
true negatives, false positives, and false negatives, respectively.

2.5 Model Interpretation

The interpretation of complex ML models remains a challenge
because ML algorithms are often a “black box”. Accordingly, we
used a recently-developed model-agnostic interpretation framework
termed SHapley Additive exPlanation (SHAP) to interpret the
established ML models presented in this study. Inspired by the
idea of cooperative game theory, the SHAP method constructs an
additive explanatory model. In this model, all features are considered
contributors. For each prediction sample, the model generates a
predicted value, and the SHAP value is the value assigned to each
feature in the sample. The greater the SHAP value, the greater the
contribution of the corresponding feature to the ML model. The
SHAP value is calculated as follows:

Vi = Yoase ¥ [ (X)) + f(Xig) + -+ + f (Xix) (7)

where X; represents the sample, Xj; represents the j feature of this
sample, y; represents the predicted value of the model for this
sample, Viaee represents the baseline of the entire model (usually
the mean of the target variable for all samples), f (Xj) is the SHAP
value of Xj;. Intuitively, f (Xj;) is the contribution value of the first
feature in sample i to the final predicted value y;. When f (X;;) > 0, it
indicates that this feature improves the predicted value and has a
positive effect. On the contrary, it shows that this feature reduces the
predicted value and has a reverse effect. Collectively, SHAP value can
reflect the influence of the feature in each sample and show the
positive and negative influence of the feature.

2.6 Model Applicability Domain

According to the principles of the Organization for Economic Co-
operation and Development (OECD), it is necessary to determine
the applicability domain (AD) of the QSAR model because of the
limited structural diversity of the molecules used in the training
dataset. From the perspective of ML, a suitable AD can prevent
the prediction deviation from being too large because the feature
range of the samples to be tested is too different from the training
dataset samples. Therefore, effective identification of Out-of-
Domain compounds is the basis for ensuring the reliability of
the established model. We used the LOF algorithm (Breunig et al.,
2000) to detect super-applicability domain compounds for the
best model for each BC or normal breast cell line. LOF is based on
the concept of local density, where the local area is given by
k-nearest neighbors, whose distance is used to estimate the
density. Regions of similar density can be identified by
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comparing the local density of an object with that of its
neighbors, and points that are much lower in density than
their neighbors are considered outliers.

3 RESULTS

3.1 Dataset Analysis and Model

Construction

According to the above-predefined criteria, 14 breast-associated cell
lines were obtained and distributed as follows: 1) two Luminal A
subtypes including MCF-7 and T-47D; 2) two Luminal B subtypes
including BT-474 and MDA-MB-361; 3) three HER-2+ subtypes
including MDA-MB-435, MDA-MB-453, and SK-BR-3; 4) six TNBC
subtypes including Bcap37, BT-20, BT-549, HS-578T, MDA-MB-
231,and MDA-MB-468; and 5) one normal breast cell line, HBL-100.
Accordingly, we selected these cell-based phenotypical datasets for
subsequent modeling. The model construction pipeline is shown in
Figure 1. Details on the 14 cell lines and their corresponding cell-
associated compound datasets are summarized in Table 1. The
compiled cell-based phenotype datasets included 34,801 unique
compounds and 54,909 cell-compound associations. Among
them, in 14 cell line datasets, 33,757 compounds were labeled as
actives and 21,152 compounds were labeled as inactives
(Supplementary Figure S1A). Supplementary Figure S1B shows
the proportions of actives and inactives in the 14 cell datasets (due to
the natural, although it may not be the best, we did not add theoretical
decoys to deliberately balance the data), with active compounds
accounting for approximately 40-78%.

The structural diversity and chemical space of compounds in
datasets play a key role in the predictive ability of the ML models.
Bemis-Murcko scaffold analysis (Bemis and Murcko, 1996) showed
that the proportion of the scaffolds for each BC cell line dataset was
between 19.70 and 53.41% (Table 1), suggesting that the anti-BC
compounds of each cell line were structurally more diverse. In
addition, the chemical space of the compounds in each dataset
can be depicted in a two-dimensional space using molecular weight
(MW) and AlogP. As shown in Supplementary Figure S2, the
training, validation, and test set compounds were distributed over a
wide range of MW (108.10-5,714.45) and AlogP (—55.54-42.62),
demonstrating that the compounds in the modeling datasets have a
broad chemical space. Based on the three different types of molecular
features (ie., molecular descriptors-, fingerprints-, and graph-based
features) and the selected ten types of ML algorithms, 476 single
models and 112 fusion models were developed. All models were
optimized based on the validation sets and selected based on the F1
score (Kc et al, 2021). The best models were selected for the
evaluation of external test datasets. The performance of the
established models is discussed in the following sections.

3.2 Performance of Descriptor-Based
Prediction Models for Breast-Associated
Cells

Firstly, 84 predictive models were constructed based on the
RDKit-descriptors using five traditional types of ML
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TABLE 1 | Breast cell line datasets used in this study.

Prediction of Breast Cells Inhibition

Cell lines Classification No. of compounds No. of scaffolds Scaffolds/compounds (%)
MDA-MB-435 HER-2+2 3,030 870 28.71
MDA-MB-453 HER-2+ 440 215 48.86
SK-BR-3 HER-2+ 2026 571 28.18
MCF-7 Luminal AP 29,378 5,787 19.70
T-47D Luminal A 3,135 926 29.54
BT-474 Luminal B® 811 308 37.98
MDA-MB-361 Luminal B 367 196 53.41
HBL-100 Normal cell line 316 110 34.81
Bcap37 TNBC? 275 73 26.55
BT-20 TNBC 292 146 50.00
BT-549 TNBC 1,182 497 42.05
HS-578T TNBC 469 215 45.84
MDA-MB-231 TNBC 11,202 2,672 23.85
MDA-MB-468 TNBC 1986 685 34.49

PHER-2+: HER2-positive breast cancers.

L uminal A: Luminal A breast cancer is hormone-receptor positive (estrogen-receptor and/or progesterone-receptor positive), HER2-negative, and has low levels of the protein Ki-67,

which helps control how fast cancer cells grow.

°Luminal B: Luminal B breast cancer is hormone-receptor positive (estrogen-receptor and/or progesterone-receptor positive), and either HER2 positive or HER2 negative with high levels

of Ki-67.
9TNBC: triple-negative breast cancer.
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algorithms (KNN, NB, RF, SVM, and XGBoost) and one deep
learning DNN method. For these traditional ML methods, the
optimized RDKit-descriptors were obtained wusing the
SelectPercentile module (Percentile = 30) implemented in the
scikit-learn package and then used as input features to construct
models. Each model is denoted as a combination of a given
molecular representation and ML algorithm (e.g., RF:RDKitDes).
For each cell dataset and the corresponding ML methods,
hyperparameters were optimized based on the validation sets
(detailed in the Methods section), and the best set of

hyperparameters are shown in Supplementary Table S1. The
detailed performance results for descriptor-based models are
listed in Supplementary Table S2. The performance of the
models (F1 score, BA, and AUC) for the test sets is
summarized in Figure 2. Overall, most descriptor-based
models performed well in BC cell inhibitory prediction tasks,
achieving a mean F1 score and BA value > 0.5. The RF model
performed the best in all cell lines, with higher average F1 scores
(0.840 + 0.073), BA (0.725 £ 0.073), and AUC (0.835 + 0.067).
Meanwhile, the XGBoost model also achieved good and/or
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FIGURE 2 | Performance of descriptor-based BC prediction models. (A) F1 scores of descriptor-based models. (B) AUC results of descriptor-based models. (C)
BC results of descriptor-based models.

comparable performance results (Figure 2). The detailed best-
performing RF:RdkitDes models results were achieved in five
breast cancer cell lines (BT-20, HS-578T, MCF-7, MDA-MB-231,
and T-47D), while the XGBoost:RDKitDes models also showed
superior performance in five breast-associated cell lines (BT-474,
HBL-100, MDA-MB-453, MDA-MB-468, and SK-BR-3). The
KNN:RDKitDes models exhibited the best performance in the
Bcap37, MDA-MB-361, and MDA-MB-435 cell lines. The SVM:
RDKitDes models performed well in BT-549.

AUGC, and BA values of the test sets are shown in Figures 3, 4 and
Supplementary Figure 3. Taking the average F1 score as a point
metric into consideration, the numbers of cell lines for which each
model was identified as the best-performing are shown in
Figure 5. No model, fingerprint, or ML algorithm could be
identified as the best-performing for the 14 cell line datasets,
demonstrating that it is necessary to screen different fingerprints
and different ML algorithms for the current breast cell-associated
modeling datasets (Figures 5B-F). Although the characteristics
of the four molecular fingerprints are different, the RF models
performed better than the other five ML models against most of
the 14 cell lines (Figures 3, 4, 5A). Meanwhile, the Morgan
fingerprint represents the best molecular feature representation
because the ML models based on Morgan fingerprints achieved
the best results for these modeling datasets (Table 2). Global
analysis of four fingerprint-based models also demonstrated that
RF methods can achieve a better performance than other ML
methods, with the highest average F1 score (0.848 + 0.006), BA
(0.750 + 0.013), and AUC (0.853 + 0.009).

3.3 Performance of Fingerprint-Based
Prediction Models for Breast-Associated

Cells

There were 336 models developed based on four types of
fingerprints (Morgan, MACCS, Atompairs, and PharmacoPFP)
using six types of ML algorithms (KNN, NB, RF, SVM, XGBoost,
and DNN). The detailed performance results for fingerprint-
based models are listed in Supplementary Tables S3-S6. The F1,
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FIGURE 3 | Performance of fingerprint-based BC prediction models. (A) F1 scores of the AtomPairs-based models. (B) F1 scores of the MACCS-based models.
(C) F1 scores of the Morgan-based models. (D) F1 scores of the PharmacoPFP-based models.

et al,, 2018; Yang et al.,, 2019; Xiong et al., 2020). Therefore, 56
molecular graph-based models were established using four types of
DL algorithms, including GCN, MPNN, GAT, and Attentive FP.
The detailed performance results of molecular graph-based models
are listed in Supplementary Table S7. As shown in Figure 6, the
Attentive FP models exhibited the overall best performance
compared with other GNN methods, with a relatively higher
average F1 score (0.831 + 0.070) and AUC (0.809 + 0.086). The
BA results are shown in Supplementary Figure S4. Figure 6C

3.4 Performance of Graph-Based Prediction
Models for Breast-Associated Cells

Compared with the traditional pre-tailored molecular descriptors
and/or fingerprints, the key feature of GNN is its capacity to
automatically learn task-specific molecular representations using
graph convolutions. The SOAT accuracies of GNN models and
their variants (e.g., GCN, MPNN, GAT, and Attentive FP) have
been reported in various molecular property prediction tasks (Wu
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FIGURE 4 | Performance of fingerprint-based BC prediction models. (A) AUC results of the AtomPairs-based models. (B) AUC results of the MACCS-based
models. (C) AUC results of the Morgan-based models. (D) AUC results of the PharmacoPFP-based models.

shows that the Attentive FP models performed the best in six breast ~ The GCN models showed the best performance in four breast cell
cancer cell lines including Bcap37, MCF-7, MDA-MB-453, MDA- lines (BT-549, HBL-100, MDA-MB-231, and MDA-MB-361), the
MB-468, SK-BR-3, and T-47D, making it the most frequent choice. =~ MPNN models performed the best in BT-20 and BT-474 cell lines,
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FIGURE 5 | (A) Summary of the optimal models for each fingerprint-based feature. (B) The best models among various fingerprint-based models for different kinds
of breast cell lines. The optimal models based on (C) AtomPairs, (D) MACCS, (E) Morgan, and (F) PharmacoPFP for different subtypes of breast cell lines.

and the GAT models performed the best in HS-578T and MDA-
MB-435 cell lines.

One advantage of the DL model is its capacity for multi-
task model building for attribute-related datasets to improve
the accuracy of the single-task model (Li et al., 2018).
Therefore, the multi-task models were trained by the entire
13 breast cancer cell-compound datasets based on the features
of the Morgan fingerprints using DNN and molecular graphs

using GCN, Attentive FP. Supplementary Table S8 shows
that the AUC of the multi-task models was not better than that
of the single-task models. Further data point distribution
analysis found that the number of common compounds
shared by 13 cell line datasets was small (only 12
molecules, Supplementary Figure S5), which explains the
poor performance results (Supplementary Table S8) of the
multi-task models.
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TABLE 2 | Optimal models in different datasets and the evaluation of test datasets.

Prediction of Breast Cells Inhibition

Molecular features Algorithms F1 scores’ BAX AuC'
Morgan DNN? 0.832 + 0.080 0.735 + 0.058 0.822 + 0.078
KNNP 0.836 + 0.084 0.771 + 0.063 0.821 + 0.069
NB° 0.775 + 0.094 0.720 + 0.079 0.782 + 0.078
RF 0.846 + 0.087 0.754 + 0.068 0.852 + 0.072
SVM©® 0.843 + 0.084 0.747 + 0.067 0.838 + 0.072
XGBoost' 0.832 + 0.076 0.728 + 0.062 0.813 + 0.079
Mean 0.827 + 0.026 0.743 + 0.019 0.821 + 0.024
MACCS DNN 0.831 + 0.076 0.737 + 0.060 0.822 + 0.067
KNN 0.846 + 0.050 0.759 + 0.056 0.798 + 0.067
NB 0.723 + 0.077 0.637 + 0.073 0.722 + 0.103
RF 0.853 + 0.066 0.761 + 0.064 0.860 + 0.067
SVM 0.851 + 0.064 0.755 + 0.059 0.830 + 0.068
XGBoost 0.842 + 0.074 0.760 + 0.056 0.842 + 0.068
Mean 0.824 + 0.050 0.735 + 0.049 0.812 + 0.049
AtomPairs DNN 0.853 + 0.050 0.759 + 0.057 0.842 + 0.063
KNN 0.851 + 0.037 0.781 + 0.051 0.828 + 0.064
NB 0.678 + 0.099 0.668 + 0.083 0.732 + 0.085
RF 0.851 + 0.066 0.753 + 0.054 0.858 + 0.059
SVM 0.847 + 0.062 0.737 + 0.069 0.829 + 0.066
XGBoost 0.840 + 0.074 0.755 + 0.041 0.837 + 0.075
Mean 0.820 + 0.070 0.742 + 0.039 0.821 + 0.045
Molecular Graph Attentive FP 0.831 + 0.070 0.721 + 0.086 0.809 + 0.087
GAT® 0.810 + 0.086 0.695 + 0.088 0.774 + 0.075
GCN" 0.818 + 0.076 0.710 + 0.091 0.798 + 0.100
MPNN' 0.821 + 0.080 0.696 + 0.109 0.781 + 0.090
Mean 0.820 + 0.009 0.708 + 0.011 0.793 + 0.015
PharmacoPFP DNN 0.824 + 0.072 0.705 + 0.091 0.803 + 0.105
KNN 0.840 + 0.060 0.755 + 0.075 0.782 + 0.070
NB 0.705 + 0.088 0.619 + 0.075 0.680 + 0.080
RF 0.840 + 0.064 0.731 + 0.070 0.840 + 0.060
SVM 0.835 + 0.068 0.722 + 0.064 0.823 + 0.059
XGBoost 0.838 + 0.049 0.727 + 0.072 0.825 + 0.058
Mean 0.814 + 0.054 0.710 £ 0.047 0.792 + 0.059
RDKit DNN 0.817 + 0.063 0.671 + 0.089 0.782 + 0.070
KNN 0.831 + 0.053 0.736 + 0.065 0.778 + 0.068
NB 0.753 + 0.068 0.605 + 0.083 0.672 + 0.108
RF 0.840 + 0.073 0.725 £ 0.073 0.835 + 0.067
SVM 0.805 + 0.091 0.656 + 0.086 0.761 + 0.077
XGBoost 0.836 + 0.084 0.740 + 0.071 0.839 + 0.060
Mean 0.814 + 0.032 0.689 + 0.054 0.778 + 0.061

ADNN: Deep neural networks.

PKNN: K-Nearest Neighbor.

°NB: Naive Bayesian.

9RF: Random forest.

°SVM: Support vector machine.

"XGBoost: Extreme gradient boosting.
9GCN: Graph convolutional networks.
"GAT: Graph attention network.

'MPNN: Message passing neural networks.
IF1 scores: F1-measure.

KBA: Balanced accuracy.

'AUC: Area under the receiver operating characteristics curve.

3.5 The Optimal Model for Each Breast Cell
Line and Further Validation

Comparison of the established molecular descriptor-, fingerprint-
,and graph-based models showed that Eq. 1 the RF algorithm had
a better performance capability than the other five ML methods,
with higher average metric values of F1 score, BA, and AUC

(Table 2) in both descriptor- and fingerprint-based models, while
XGBoost also achieved comparable results for these 14 modeling
datasets (Table 2 and Figure 5A); 2) among the established
56 graph-based models, Attentive FP architecture outperformed
the other three deep graph learning approaches (ie., GCN,
MPNN, and GAT) on average across all 14 datasets (Table 2);
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FIGURE 6 | Performance of graph-based BC prediction models. (A) F1 scores of graph-based models. (B) AUC results of graph-based models. (C) The optimal
models based on molecular graph for different subtypes of breast cell lines.

and 3) the performance of molecular fingerprint-based models is ~ selectivity for cancer cells rather than normal cells is one of
generally better than that of both descriptor- and graph-based  the main factors that limit the development of anticancer
models at least in these 14 datasets (Table 2), implying that graph ~ drugs for clinical use (Dy and Adjei, 2013; Guo et al., 2020).
DL methods do not achieve better results than the traditional ML For one normal breast cell line (HBL-100), the RF:Morgan
learning methods (especially for the two most efficient  model also showed good prediction results, with ACC and
algorithms, XGBoost and RF), which is consistent with a  AUC values of 83.9%, and 0.823, respectively, suggesting that
recent systematic comparison study (Jiang D. et al., 2021). this model can be used to detect whether a given molecule
According to the metrics of F1 score, BA, and AUC from  selectively inhibits breast cancer cells over normal human
the test sets, the optimal in silico predictive model for each  breast cells.
breast cell line is listed in Supplementary Table S9. Model fusion may improve the classification prediction
Fingerprint-based RF models performed the best because  performance of a single model by combining the
they ranked first in eight of 14 cell lines. Fingerprint-based  classification prediction results from the corresponding
XGBoost and SVM models are tied for second place and  multiple models. Both voting and stacking methods were
performed best in two of 14 breast cell lines each. For  used in this study for model fusion. As shown in Table 2,
example, the RF:Morgan model achieved higher prediction =~ Morgan fingerprint-based models performed the best in
results against MDA-MB-231 and T-47D breast cancer cell  different kinds of fingerprint-based models with an average
lines, with ACC values of 83.7 and 84.0%, respectively, and  F1 score of 0.827 + 0.026, and RF, XGBoost, and SVM
AUC values of 0.904 and 0.885, respectively. The lack of  algorithms performed best in most of the datasets (Figures
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FIGURE 7 | The performance of 10-fold cross-validation results in RF:Morgan and XGBoost:Morgan models. (A-D) F1 scores, AUC, BA, and ACC results in RF:
Morgan models. (E=H) F1 scores, AUC, BA, and ACC results in XGBoost:Morgan models.

5A,E). Therefore, RF, SVM, and XGBoost models for model
fusion were applied based on Morgan fingerprints. A total of 112
fusion models were established, and detailed performance

results

Supplementary  Tables

for these voting and stacking models are listed in
§10, S11. As shown in

Supplementary Figure S6, the average F1 scores of voting or
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FIGURE 8 | Based on the top 20 most important features of the RF:Morgan model in MDA-MB-231, (A) the SHAP values for each molecular substructure, and (B)
the mean of the absolute value of the SHAP value for each molecular substructure.

stacking models were similar in each dataset. In all the datasets  fingerprints were slightly but not significantly better than the
of breast cell lines, the RF + XGBoost voting model showed the  single models.

best average performance among fusion models, with average To validate the stability and reliability of the models
F1, BA, and AUC of 0.849 + 0.066, 0.749 + 0.075, and 0.845 +  presented, 10-fold cross-validation and 10 different random
0.075, respectively. The fusion models based on Morgan  seeds of data were used to retrain the models based on the
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FIGURE 9 | Important molecular substructures of the RF:Morgan model in MDA-MB-231 and the chemical structural of paclitaxel.

Morgan 314

organ 926

combination of Morgan fingerprints and two ML algorithms
(RF and XGBoost). The performance of 10-fold cross-validation
classification models is summarized in Supplementary Table
§12 and Figure 7. Overall, all RF:Morgan models performed
well, showing high F1 scores of 0.582-0.914, AUC values of
0.704-0.960, and ACC values of 0.685-0.878. XGBoost:Morgan
models showed a similar trend in the 10-fold cross-validation

experiment. In 14 cell line datasets, both RF:Morgan and XGBoost:
Morgan models consistently exhibited better performance with
different seeds (Supplementary Figure S7), and the performance
showed comparable or smaller variation compared with the
previous models based on a specific random seed. Taken
together, these results demonstrate that the models presented in
this study show stability and reliability. Y-scrambling testing was
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used to demonstrate that the results are not attributed to chance
correlation. As illustrated in Supplementary Figure S8, S9, the F1
scores, BA, and AUC values of the RF:-Morgan and XGBoost:
Morgan models were significantly higher than those of any of the
Y-scrambled models, which confirmed that the results were not
chance correlations.

3.6 Interpretation of the Optimal Model for
Each Breast Cell Line

To gain a deeper understanding of the established models, we used
the SHAP method to calculate the contribution of important
structural fragments. Because models based on the combination
of the RF and Morgan fingerprints had relatively high predictive
performance, we used TreeExplainer, a tree explanation method in
SHAP, to calculate the optimal local explanation for these RF:
Morgan models. In the MDA-MB-231 cell line as an example,
the top 20 favorable and unfavorable structural fragments for MDA-
MB-231 inhibition were determined based on the SHAP value and
are displayed in Figures 8, 9. As shown in Figure 8A, the feature
values are represented by different colors (red to blue). Redder points
indicate larger feature values. Morgan fingerprints only contain 1
(with this structural fragment, red) and 0 (without this structural
fragment, blue). For Morgan 128, Morgan 926, and Morgan 314 in
Figure 8A, most of the red points are in the positive value part and
most of the blue points are in the negative value part, indicating that
the predicted molecules with these fragments will have a higher
probability of anti-BC activity. On the contrary, Morgan 784 and
Morgan 171 have more red points in the negative value part,
indicating that high probabilities are judged by the model as
having no inhibitory effect on the MDA-MB-231 cell line. Taking
paclitaxel (a typical drug for BC treatment) as an example, it contains

Morgan 128, Morgan 926, and Morgan 314 but does not contain
Morgan 784 and Morgan 171, implying that it will be predicted to
have an inhibitory effect on the MDA-MB-231 cell line. In fact, this is
consistent with actual predictions and experimental results. The top
20 important structural fragments for other breast cell lines are
shown in Supplementary Figure S10-S35, which may facilitate
anti-BC lead compound selection and optimization.

3.7 Model AD

To further evaluate the generalization capability of our models, the
LOF algorithm was applied to detect super-applicability domain
compounds in the datasets. We first reduced the Morgan
fingerprints of 1,024 bits to two dimensions by Principal
Component Analysis in Scikit-learn and then used the LOF
module for calculation. As shown in Supplementary Figure
$36, there are fewer red points, which indicates that each
dataset has fewer super-applicability domain compounds.
Therefore, selecting compounds that are similar to those in the
datasets of this study may result in higher prediction accuracy
when using the present model. The molecular (feature) spaces can
be used to define the applicability domain, thus, a simpler way to
determine whether a molecule fits the models of this study is to
directly calculate the molecular weight of the molecule. Since the
molecular weight range of the molecules in this study is
108.10-5,714.45, we recommend using molecules in this range
for prediction, which can make the prediction more accurate.

3.8 Webserver and Local Version Software
for the Prediction of Anti-BC Agents

To facilitate the use of these models by experts and non-
experts in the field, we built a web-based online forecasting
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system called ChemBC (http://chembc.idruglab.cn/). To
expand the AD threshold of the established model, we
retained models for each breast cell line according to the
combination of Morgan fingerprint and RF using the entire
dataset, and then implemented these retained models into
ChemBC and its local version. According to the 10-fold
cross-validation (AUC = 0.780-0.928, ACC = 0.714-0.880),
the retrained models for 14 breast cell line datasets showed
excellent predictive performance. ChemBC was developed
based on the Django framework using the Python package.
The main functional module of ChemBC is prediction
(Figure 10) in which users can upload and/or online draw a
structure to easily and quickly predict the inhibitory activity
against 13 breast cancer cell lines and one normal breast cell
line. In addition, a local version executable software (https://
github.com/idruglab/ChemBC) was developed to perform
large-scale VS screening.

Taking paclitaxel as an example, it has a predicted score of 1.0 in
the MDA-MB-231 model, proving that it has a strong inhibitory
effect on the MDA-MB-231 cell line. Meanwhile, it has a predicted
score of 0.8 in the normal breast cell line (HBL-100), suggesting that
it is also toxic to the normal breast cell. Therefore, the ChemBC
webserver can not only predict whether the compound has an
inhibitory effect on breast cancer cells but also predict whether
the compound is toxic to one normal breast cell.

4 CONCLUSION

In this study, we collected datasets of phenotypic compound-
cell association bioactivity toward 13 breast cancer cell lines
and one normal breast cell line and constructed 588 models
based on three molecular representatives, including molecular
descriptors, fingerprints, and graphs using five conventional
ML and five DL algorithms. Compared with these established
models, the performance of RF:Morgan models was superior
to that of the other models based on molecular descriptors
and graphs. Based on RF:Morgan models, the important
favorable and unfavorable fragments for each breast cell
line generated using SHAP algorithms will be helpful for
lead optimization or the design of new agents with better
anti-BC activity. Although some fusion models based on
voting and stacking methods showed better performance
than single models, the observed improvement was minor.
Finally, the online platform ChemBC and its local version
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Cruzain, the main cysteine protease of Trypanosoma cruzi, plays key roles in all stages of
the parasite’s life cycle, including nutrition acquisition, differentiation, evasion of the host
immune system, and invasion of host cells. Thus, inhibition of this validated target may lead
to the development of novel drugs for the treatment of Chagas disease. In this study, a
multiparameter optimization (MPO) approach, molecular modeling, and structure-activity
relationships (SARs) were employed for the identification of new benzimidazole derivatives
as potent competitive inhibitors of cruzain with trypanocidal activity and suitable
pharmacokinetics. Extensive pharmacokinetic studies enabled the identification of
metabolically stable and permeable compounds with high selectivity indices. CYP3A4
was found to be involved in the main metabolic pathway, and the identification of metabolic
soft spots provided insights into molecular optimization. Compound 28, which showed a
promising trade-off between pharmacodynamics and pharmacokinetics, caused no acute
toxicity and reduced parasite burden both in vitro and in vivo.

Keywords: chagas disease, cruzain, medicinal chemistry, drug design, multiparameter optimization,
pharmacokinetics, molecular modeling

INTRODUCTION

Endemic in Latin America, Chagas disease affects 6-7 million people worldwide and has become an
emerging public health problem in nonendemic countries'. Among nonendemic nations, the greatest
burden occurs in the United States, which is estimated to have approximately 300,000 cases of the
disease (Pérez-Molina and Molina, 2018). Chagas disease kills ~12,000 people annually, and 70
million people are at risk of infection in the Americas®. Moreover, the disease is an important cause of
infectious cardiopathy worldwide, playing a key role in the global prevalence of cardiovascular

'https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis).
*https://www.paho.org/en/topics/chagas-disease.
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disease (Bern, 2015; Cucunubd et al, 2016). Chagas disease
significantly impacts the productivity of endemic countries,
which are estimated to lose more than US $7.2 billion per year
because of the disease (GBD DALYs and HALE Collaborators,
2016; Arnal et al, 2019). According to the World Health
Organization (WHO), the development of innovative
therapeutic approaches is required for this neglected tropical
disease (NTD) because of the lack of efficient control measures
and the insufficient research and development (R&D) funding. The
need for novel therapeutic approaches has become more evident
this year, as the WHO released a new roadmap for NTDs for
2021-2030, whose target is to eliminate the epidemics of these
diseases by 2030. Chemotherapy for Chagas disease consists of
benznidazole (BZ) and nifurtimox, two nitro compounds that have
limited efficacy and produce serious adverse reactions that lead up
to 40% of patients to discontinue treatment (Rodriques Coura and
De Castro, 2002). Given these shortcomings, the development of
novel, effective and safe drugs for the treatment of Chagas disease is
critically needed.

Cruzain (EC 3.4.22.51), the main cysteine protease of
Trypanosoma cruzi, has been broadly explored as a molecular
target in Chagas disease drug discovery (Engel et al., 1998;
McKerrow, 1999; Jose Cazzulo et al., 2001; Massarico Serafim
et al., 2014). This enzyme plays a key role in all stages of the
parasite’s life cycle, participating in processes such as nutrition,
differentiation, evasion of the host immune system, and invasion
of host cells (Ferreira and Andricopulo, 2017). Genetic studies of
T. cruzi and the efficacy of cruzain inhibitors in reducing parasite
load in vivo have validated the enzyme as a molecular target for
the discovery of novel drugs for Chagas disease (Zanatta et al.,
2008; Doyle et al, 2011; Ndao et al, 2014). Following these
investigations, various classes of cruzain inhibitors, such as
nitroalkenes, vinyl sulfones, thiosemicarbazones, and triazoles,
have been described in the literature (Rogers et al., 2012; Avelar
etal., 2015; Espindola et al., 2015; Neitz et al., 2015; Latorre et al.,
2016). In this work, we describe the design, synthesis, and in vitro
and in vivo evaluations of novel benzimidazole derivatives. In
addition to improving pharmacodynamic properties, such as
binding affinity and potency, we evaluated the
pharmacokinetic (PK) profile of newly synthesized and
previously described benzimidazoles (Ferreira et al., 2014) by
applying a multiparameter optimization (MPO) approach. MPO
has increasingly been adopted in the early phases of pharma R&D
to exclude pipeline compounds that feature poor PK profiles as
early as possible (Eddershaw et al, 2000; Andricopulo and
Montanari, 2005; Wang et al.,, 2007; Wang, 2009; Wang and
Skolnik, 2009). This study led to the discovery of potent cruzain
inhibitors with trypanocidal activity and innovatively contributed
to the identification of compounds with improved safety and PK
profiles to be explored for Chagas disease drug discovery.

MATERIALS AND METHODS

Expression and Purification
Pro-cruzain truncated at the C-terminus was expressed and
purified using a previously described protocol (Ferreira et al.,

Cruzain Inhibitors as Trypanocidal Agents

2019). Escherichia coli (strain MI15) cultures were grown
overnight at 37°C and 200 rpm in Luria Bertani (LB) medium
supplemented with ampicillin (100 pg/ml) and kanamycin
(50 ug/ml). Next, the cultures were diluted 10-fold in fresh LB
medium supplemented with 0.5 M NaCl, 0.2% glucose, 1 mM
betaine, 0.5M sorbitol, 100 pg/ml ampicillin, and 50 pg/ml
kanamycin and incubated at 37°C and 200 rpm. At an optical
density (ODggo) of 0.9, the cultures were incubated at 47°C for
20 min to promote the expression of chaperones. Then, the
expression of cruzain was induced by adding isopropyl B-D-
thiogalactopyranoside (IPTG) to a final concentration of 0.2 mM,
which was followed by overnight incubation of the cultures at
20°C and 200rpm. Next, the cultures were centrifuged
(5,000 rpm, 30min, 4°C), and the cells were suspended in
50 ml of lysis buffer (300 mM NaCl, 50 mM Tris-HCI, and
1.6 mg/ml lysozyme, pH 8.0) per liter of culture and lysed by
sonication (12 cycles of 30s). This cell lysate was centrifuged
(9,000 rpm, 30 min, 4°C), and the supernatant was collected.
Cruzain was precipitated by incubation with 35% ammonium
sulfate (2 h), and this suspension was centrifuged at 9,000 rpm for
30 min at 4°C. The precipitated cruzain was resuspended in lysis
buffer, and the sample was dialyzed to eliminate ammonium
sulfate. The soluble fraction of the dialysate was loaded on a
Ni-NTA column (Qiagen, Hilden, Germany), and the
contaminants were washed using washing buffer (300 mM
NaCl, 50 mM Tris-HCl, and 10 mM imidazole, pH 8.0).
Cruzain was eluted by applying an increasing imidazole
gradient: 25, 50, 75, 100, and 250 mM. The fractions
containing cruzain were pooled together and dialyzed against
1.5L of 0.1 M acetate buffer, pH 5.5, and then concentrated to
0.5mg/ml. Pro-cruzain was activated by incubation with
activation buffer (100 mM sodium acetate, pH 5.5, 10 mM
EDTA, 5mM DTT, and 1 M NaCl) at 37°C. The activation of
cruzain was monitored by following the enzymatic activity at 30-
min intervals, and the process was observed to stop after
approximately 1h. After activation, the enzyme was diluted
20-fold in binding buffer (20 mM sodium phosphate and
150 mM NaCl, pH 7.2) and added to thiopropyl Sepharose 6B
resin (GE Healthcare Life Sciences, Pittsburgh, PA). After
overnight incubation at 4°C, the resin was loaded on a
column, and cruzain was eluted with binding buffer
supplemented with 20 mM DTT. Fractions containing cruzain
were pooled together and stored in 0.1 M sodium acetate, pH 5.5,
at —=80°C.

Enzyme Kinetics Assays

Cruzain activity was followed by monitoring the cleavage of the
fluorogenic substrate Z-Phe-Arg-aminomethyl coumarin (Z-FR-
AMC), as previously described (Ferreira et al., 2019), using 96-
well flat-bottom black plates and wavelengths of 355nm for
excitation and 460 nm for emission. All cruzain assays were
performed in 0.1M sodium acetate buffer with 5mM
dithiothreitol (DTT) and 0.01% Triton X-100, pH 5.5. The
final concentration of cruzain was 1.5nM, and the substrate
concentration was 5.0uM (K, = 1.6 uM), except in the
experiments for K; determination, in which several
concentrations of substrate were used. The cleavage of the
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substrate was monitored for 5 min, and the activity was calculated
based on the initial reaction rates compared with the rate of a
DMSO control at 30°C. The ICs, values were independently
calculated by considering the rate measurements for at least
six inhibitor concentrations, each evaluated in triplicate. To
determine the mechanism of cruzain inhibition, eight
concentrations of the substrate Z-FR-AMC and four
concentrations of the inhibitor were employed, each in
triplicate. Kinetic parameters were determined using the
SigmaPlot (Systat Software Inc., Erkrath, Germany) enzyme
kinetics module. Compounds were tested in two or three
independent experiments. All enzyme assays were performed
using varying Triton X-100 concentrations (0, 0.01, and 0.1%)
(Ferreira et al., 2009). Compound concentrations were 100 (M in
the single-dose percentage inhibition assays.

Rhodesain Assays

Rhodesain activity was measured using a fluorescence-based
assay as previously described (Fonseca et al., 2015). The
cleavage rates of the fluorogenic substrate Z-Phe-Arg-
aminomethyl coumarin (Z-FR-AMC) were monitored at
wavelengths of 340nm for excitation and 440nm for
emission. All assays were performed in triplicate in a 0.1 M
sodium acetate buffer, pH 5.5, with 1mM beta-
mercaptoethanol and 0.01% Triton X-100. The final
concentration of rhodesain was 3nM, and the substrate
concentration was 2.5 uM. The cleavage of the substrate was
followed by continuous reading for 5 min, and enzyme activity in
the presence of 100 uM of each potential inhibitor was calculated
based on initial velocity rates compared to DMSO controls. All
compounds were tested in triplicate in three independent
experiments.

Molecular Docking

The three-dimensional structures of the cruzain inhibitors were
constructed using the standard geometric parameters embedded
in SYBYL-X 2.1 (Certara, Princeton, NJ). Each compound was
energetically minimized employing the Tripos force field (Clark
et al, 1989) and Powell conjugate gradient method (Powell,
1977), with a convergence value of 0.05kcal/mol.A, and the
Gasteiger-Hiickel model was used for charge calculation
(Gasteiger and Marsili, 1980). The molecules were docked
using GOLD 5.3 (Cambridge Crystallographic Data Centre,
Cambridge, United Kingdom) (Jones et al., 1997; Verdonk
et al., 2003) against the X-ray structure of cruzain (PDB ID
3KKU, 1.28 A) (Ferreira et al, 2010). The preparation of the
cruzain structure consisted of removing all water molecules and
inserting hydrogen atoms. The active site Cys25 was kept
negatively charged, and His162 was kept protonated. The
binding site was defined as a sphere with a 10 A radius
centered on the Cys25 sulfur atom. The default GOLD
parameters were applied for the molecular docking runs,
except for the search efficiency, which was changed to its
maximum value of 200%. The generated poses were evaluated
using the GoldScore scoring function, and the analysis of the
binding conformations was visualized using PyMOL 3.1
(Schrodinger, New York, NY) (Lill and Danielson, 2011).

Cruzain Inhibitors as Trypanocidal Agents

Biological Assays Against T. cruzi

Intracellular Amastigotes

Biological assays against T. cruzi intracellular amastigotes were
performed as reported previously using the T. cruzi Tulahuen
strain, which is genetically engineered to express the E. coli
B-galactosidase gene lacZ (Buckner et al., 1996). B-Galactosidase
catalyzes a colorimetric reaction with chlorophenol red (-D-
galactopyranoside (CPRG, Sigma Chemical Co., St. Louis, MO)
as the substrate. The assays were conducted in 96-well tissue
culture plates, and the compounds to be tested were prepared
in 100% DMSO. Epimastigotes were maintained in liver infusion
tryptone (LIT) enriched with 10% fetal calf serum (FCS),
streptomycin, and penicillin at 28C. Epimastigotes were
converted to trypomastigotes by incubation in Grace’s insect
medium (Sigma-Aldrich, St. Louis, MO) enriched with 10%
FCS at 28°C. Human HFF-1 fibroblasts were seeded at 2 x 10°/
well in 80 ul of RPMI 1640 without phenol red and incubated
overnight at 37°C and 5% CO,. Trypomastigotes were seeded at 1.0
x 10*/well in 20 pl of RPMI 1640, and the plates were incubated at
37°C and 5% CO,. The next day, the synthesized compounds were
added (50 pl) in 3-fold serial dilutions at concentrations ranging
from 0.4 to 300 uM, and the plates were incubated at 37°C and 5%
CO,. Each compound concentration was assayed in triplicate. After
120 h, 50 pl of chlorophenol red p-D-galactopyranoside (CPRG,
Sigma-Aldrich) and IGEPAL CA-630 (Sigma-Aldrich) at a final
concentration of 0.1% were added. The absorbance was measured
at a wavelength of 570 nm in an automated microplate reader. The
data were transferred to SigmaPlot 10.0 (Systat Software Inc.,
Erkrath, Germany) to determine the ICs, values. Benznidazole
(BZ, Sigma-Aldrich) was used as a positive control, and untreated
wells (100% parasite growth) were used as negative controls in all
plates. All compounds were tested in three independent assays.

Cytotoxicity Assays in HFF-1 Fibroblasts
The synthesized compounds were evaluated for their cytotoxicity
against HFF-1 cells using the MTS assay (Promega, Madison, WI)
(Barltrop et al.,, 1991) as previously described (Ferreira et al,
2019). HFE-1 fibroblasts were plated at 2 x 10°/well in 96-well
culture plates in RPMI 1640 without phenol red enriched with
10% FCS and incubated overnight at 37°C and 5% CO,. Next, 7
concentrations (0.1-100 uM) of the compounds were added in 3-
fold serial dilutions, each concentration in triplicate, and the
plates were incubated for 72 h at 37°C and 5% CO,. Next, 20 ul of
MTS was added to each well, and the plates were incubated for an
additional 4 h at 37°C and 5% CO,. The absorbance was measured
at 490nm using a spectrophotometer, and the data were
transferred to SigmaPlot 10.0 (Systat Software Inc., Erkrath,
Germany) to determine the ICsy values. Doxorubicin
(Sigma-Aldrich) was used as a positive control, and untreated
wells (100% growth) were used as negative controls in all plates.
All compounds were tested in two independent assays.

In Vitro Metabolic Stability in Liver

Microsomes
Isolated mouse (BD Gentest, Bedford, MA) and human liver
microsomes (XenoTech, Kansas City, KS) (Plant, 2004) were
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added at a final concentration of 0.25mg/ml to a solution
containing 40 mM dibasic potassium phosphate and 10 mM
monobasic  potassium  phosphate.  Stock  solutions  of
compounds at 5mM were prepared in 100% DMSO. A 50:50
quenching solution of acetonitrile (ACN) and methanol (MeOH)
was prepared. An NADPH solution was prepared at 10 mM. The
preparations containing the microsomes were added to each well
of the incubation plate (450 ul), which was then heated to 37°C for
10 min. The compounds were added to the respective wells of the
test plate (2 ul). Then, 300 pl of the microsome preparation was
added to each well of the test plate. The test plate was heated
under gentle rotation for 5 min at 37°C. Next, 90 pl of the mixture
contained in the test plate was added to the incubation plate,
making a final volume of 540 pl. Samples were collected at the
following incubation times: 0, 5, 10, 15, 20, and 30 min. To the
0 min sample plate, quenching solution (180 ul), NADPH (6 pl),
and the incubation plate mixture (54 ul) were added to each well.
The sample plate was then sealed, homogenized, and stored at
4°C. Then, 54 ul of the NADPH solution was added to the
incubation plate, which was homogenized. Before the
collection of each sample at the established times, 45 pl of the
quenching solution was added to each well of the corresponding
sample plates. After reaching the incubation times, 60 pl of the
mixture contained in the incubation plate was added to the
corresponding sample plates. The sample plates were then
sealed and stored at 4°C. After the collection of the last sample
(30 min), all sample plates were centrifuged at 3,800 rpm for
30 min. The supernatant from each well was collected and
transferred to clean plates for mass spectrometry. Five to 10 pl
of each sample was injected into an AB Sciex Triple Quad 5500
LC-MS/MS instrument.

In Vitro Metabolic Stability Using

Recombinant CYP Enzymes

Stock solutions of compounds at 5 mM were prepared in 100%
DMSO. An NADPH solution at 10 mM was prepared in a
50 mM potassium phosphate buffer. A solution at 100 pmol/
ml of each of the recombinant CYP450 enzymes (1A2, 2C8,
2C9, 2C19, 2D6, and 3A4) was prepared in 50 mM potassium
phosphate buffer (Proctor et al, 2004). A 50:50 quenching
solution of ACN and MeOH was prepared. 320 ul of each
CYP solution was added to the incubation plate, and 1 pl of
each compound was added to the compound plate. Then, 100 pl
of each CYP solution was added to the compound plate, and 10 pl
from the compound plate was added to the incubation plate. The
incubation plate was heated to 37°C with 600 rpm rotation for
10 min. To the 0 min plate, 30 pl of quenching solution, 1 ul of
NADPH, and 9 yl of the incubation plate solution were added
to each well, and the plate was sealed and stored at 4°C. Next,
10-pl samples were collected from the incubation plate at
different incubation times (5, 10, 20, 30, and 60 min). For
each time point, a separate plate containing 30 ul of quenching
solution and incubation plate solution was used. After collecting
the last sample, the plates were centrifuged for 20 min at
3,000 rpm. The supernatant from each well was collected and
transferred to new plates for mass spectrometry. Five to 10 pl of
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each sample was injected into an AB Sciex Triple Quad 5500
LC-MS/MS instrument. The compounds were tested at a final
concentration of 5 uM.

In Vitro Metabolic Stability in Hepatocytes
Rat and human hepatocytes were used (McGinnity, et al., 2004).
Samples were collected at six different time points during the
incubation period and analyzed by LC-MS/MS to determine the
T,, and the intrinsic clearance. Stock solutions of the CYP
inhibitors azamulin (8.75mM) and 1-ABT (350 mM) were
prepared. Next, the test compounds were added to 96-well
plates and incubated in Williams medium (Invitrogen,
A12176-01) supplemented with 2 mM L-glutamine and 15 mM
HEPES to reach a final concentration of 2 uM. Then, compounds
(50 pl) were transferred to other plates, one plate for each time
point (0, 15, 30, 60, 120, and 240 min), and incubated at 37°C and
5% CO, for 30 min. Cryopreserved hepatocytes were heated in a
wet bath at 37°C and dispensed in InVitroGRO HT medium
supplemented with 10% FCS, 0.15 uM hydrocortisone, 0.2 mg/ml
BSA, fructose, insulin, and amino acids. The cells were
centrifuged at 500rpm for 5min. The supernatant was
discarded, and the cells were resuspended in 1ml of
incubation medium heated to 37°C. Next, the cells were
counted and diluted to 1 x 10%ml in incubation medium. The
cell suspension was divided into 3 samples: without CYP
inhibitors; with 25uM azamulin, a CYP3A4 inhibitor; and
with 1 mM 1-ABT, an inhibitor of all CYPs. Each hepatocyte
sample with 12,500 cells/well was incubated with either azamulin
or 1-ABT for 30 min (except the group without CYP inhibitor).
To the plates with the test compounds, 12,500 cells/well were
added. The plates were incubated in a shaker at 37°C, 5% CO,,
and 300 rpm. At the specified time points, the hepatocyte
enzymatic activity was interrupted by the addition of 75 ul of
cold ACN, and the samples were read by LC-MS/MS.

Parallel Artificial Membrane Permeability
Assay

The permeability of the compounds was assessed using the
PAMPA method (Yu et al, 2015). The test compounds were
dissolved in DMSO to a concentration of 5mM. Next, the
compounds were diluted in a stock plate in saline phosphate
buffer (PBS), pH 6.5, containing 1% DMSO to a concentration of
1 pM. Then, 300 pl of each test compound was added to the donor
plate. Afterward, 200 pl of PBS buffer, pH 7.4, was added to the
acceptor plate. The donor plate was attached to the acceptor plate.
The assembled acceptor-donor plate was then incubated at 37°C
for 5 h under gentle agitation. To analyze the concentration of the
compounds by mass spectrometry, two analysis plates (one for
the donor and another for the acceptor plate) containing 300 pl of
MEOH:ACN 50:50 were prepared. To the donor analysis plate,
90 ul of PBS, pH 6.5, and 10 pl of the content of the donor plate
were added. For the acceptor analysis plate, 100 pl of the content
of the acceptor plate was added. To monitor any potential
decomposition/intrinsic instability of the test compounds in
solution, samples from the stock plate were subjected to LC-
MS/MS. The compounds that presented P, > 1.5 x 10~° cm/s were
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classified as permeable, while compounds that presented P, < 1.5
x 107 cm/s were considered poorly permeable or nonpermeable.

Experimental Distribution Coefficient

For the eLogD assays (Waring, 2010), each compound (5 pl) from
a 5mM stock solution was diluted in 245 pl of a solution
containing buffers A (5% MeOH, 10 mM ammonium acetate,
pH 7.4) and B (100% MeOH, pH 7.4) (50:50). Nine control
compounds with known eLogD and column retention times
(acyclovir, atenolol, antipyrine, fluconazole, metoprolol,
carbamazepine, ketoconazole, tolnaftate, and amiodarone;
eLogD values ranging from —1.86 to 6.1) were subjected to
LC-MS/MS in triplicate before and after the analysis of the
test compounds. Retention times were recorded for each
control and test compound in a C18 column. The retention
time of each control compound was plotted against the
respective eLogD values described in the literature (Lombardo
et al., 2002; Lombardo et al., 2004; Alelyunas et al., 2010). The
resulting linear equation (y = mx + b) was used to calculate the
eLogD values of the test compounds, in which x is the retention
time in minutes and y is the eLogD value.

Fraction Unbound

The fraction unbound (fu) (Masimirembwa et al., 2003) of the test
compounds was determined after incubation with different
media, namely, plasma, microsomes, and buffer with 10%
FCS. Equilibrium dialysis was performed in a 96-well plate
(HT-Dialysis, Gales Ferry, CT) in which each well was divided
by a semipermeable membrane (12-14kDa cutoff). The test
compounds diluted in either plasma, microsome suspension,
or buffer were added to one side of the membrane. Potassium
phosphate buffer (50 mM, pH 7.4) was added to the other side of
the membrane. A standard curve was used to calculate the
compound concentration (fu) on each side of the membrane.
Stock solutions of each compound were prepared in 100% DMSO
to obtain a final concentration of 1 mM. The following compound
concentrations were used: 1, 2, 20, 200, 2,000 and 5,000 nM. To
500 ul of medium, 0.5 pl of the compound stock solution was
added, and this was applied to one side of the well. Each
compound was evaluated in triplicate. Next, the plate was
assembled, sealed, and incubated at 37°C under rotation
(150 rpm) for 4 h. After the incubation period, the plates were
subjected to LC-MS/MS.

Biotransformation and Analysis of
Metabolites

Stock solutions of compounds at 5 mM were prepared in 100%
DMSO for the biotransformation analyses (Obach, 1999). Test
solutions of compounds at 1 mM were prepared in H,O/MeOH:
2/1 (v/v). A solution of 10 mM NADPH, a 50:50 quenching
solution of ACN and MeOH, and 100 mM phosphate buffer was
prepared. Isolated mouse (BD Gentest, Bedford, MA) and human
liver microsomes (XenoTech, Kansas City, KS) were dissolved to
2 mg/ml in phosphate buffer. One plate for the 0 min time point
and another for the 60 min time point were prepared. To these
plates, 178 ul of the microsome solution and 2pl of the
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compound stock solution (final test concentration of 5uM)
were added. The plates were incubated at 37°C for 5min
under gentle agitation. Next, 400 pl of the quenching solution
was added to the 0 min plate, which was followed by the addition
of 20 ul of NADPH. The plate was sealed and kept under
refrigeration (4°C). To the 60 min plate, 20 ul of NADPH was
added, and the plate was sealed and incubated at 37°C for 60 min
under gentle agitation. Next, 400 ul of quenching solution was
added to the 60 min plate. The two plates were centrifuged (4°C,
3300 rpm, 30 min), and the supernatant was collected for mass
spectrometry.

In Vivo Pharmacokinetics

The in vivo pharmacokinetic profiles of the compounds were
determined using male CD1 mice weighing 50 g (Davies and
Morris, 1993; Liu and Jia, 2007). The compounds were
administered in a single dose orally (0.5mg/kg) and
intravenously (0.5 mg/kg). Stock solutions of the compounds
in DMSO were diluted in Tween 80, PEG-400, and D5W (5%
dextrose in water) at a ratio of 2:5:20:73 (v/v). The injection
volume was 10 ml/kg. The remaining plasma concentration was
monitored over time by LC-MS/MS by collecting blood samples
(40 pl) at 10, 25, and 50 min and 1, 3, 6, 9, 12, and 24 h after
administration of the compound.

Pharmacokinetics Analysis by LC-MS/MS

For the biotransformation experiments and analysis of
metabolites in microsomes, an Ultra-High-Pressure Liquid
Chromatography instrument (UHPLC, Thermo Accela,
Waltham, MA) (Spaggiari et al., 2014) connected to an
automatic sample injector and a 1250 series pump was used.
The UHPLC system was connected to a Thermo Fisher
(Waltham, MA) LTQ Orbitrap mass spectrometer. For all
other analyses, an AB Sciex Triple Quad 5500 coupled to a
UHPLC equipped with a UV 1290 diode detector (Agilent
Technologies, Santa Clara, CA) and a CTC PAL self-collecting
system (LEAP Technologies, Carrboro, NC) was used. Q1 MS
positive ion mode (300-500 Da) was used to detect the ions of
the parent compounds. The UV detector was operated in
spectral mode (250-280 nm). A Hypersil Gold C18 (2.1 mm x
100 mm, 1.9 pum, Thermo Fisher) HPLC column was used.
The mobile phases were solvent A (0.1% formic acid in water)
and solvent B (0.1% formic acid in ACN). The flow was
adjusted to 0.55ml/min, and the injection volume was
adjusted to 20 ml. The gradient started with 1% solvent B for
0.4 min, reached 40% (solvent B) in 2.3 min and 95% (solvent B)
in 0.67 min, was maintained for 0.5 min, and returned to the
initial condition of 1%. This condition was maintained for
1 min before injection of the next sample. The peak area ratio
(peak area of the test compounds/peak area of the control
compounds) was converted to the percentage of remaining
compound, with the 0 min time point ratio set to 100%. T,
and CL;, were calculated from the percentage of remaining
compound versus the incubation time. From the resulting
function, the slope (k) was determined. The equations Ty,
(min) = In(2)/k and CLint in vitro (ui/min/mg) = K*1000/0.25 were
used to determine T, and CL;,.
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Animals for the In Vivo Assays
Thirty-day-old female Swiss mice weighing 20-25 g and procured

from the Center for the Development of Experimental Models for
Medicine and Biology (CEDEME/UNIFESP) served as the subjects
for these experiments. Animals were housed (5-6 per cage) in
polypropylene cages and kept under controlled temperature
(22-23°C) and humidity on a 12-h light/dark cycle (12h light,
12h dark; lights on at 6:30 am). Rodent chow and water were
available ad libitum throughout the experiments. The Committee
of Ethics in Research of the Universidade Federal de Sao Paulo
approved all the experiments (CEUA n° 5301080816).

Chemistry

Unless stated otherwise, all reactions were performed under an
atmosphere of argon with dry solvents and magnetic stirring
(detailed organic synthesis methods are in the Supplementary
Material). Dichloromethane (DCM) and triethylamine (Et;N)
were distilled from CaH,. Tetrahydrofuran (THF) was distilled
from sodium/benzophenone. Dimethyl formamide (DMF) was
purchased from Aldrich (anhydrous) and wused without
further purification. Yields refer to homogeneous materials
obtained after purification of reaction products by flash
column chromatography using silica gel (200-400 mesh) or
recrystallization. Analytical thin-layer chromatography was
performed on silica gel 60 and GF (5-40 um thickness) plates,
and the plates were treated with a basic potassium permanganate
stain or ninhydrin solution, heated and visualized under UV
light. Melting points were measured with a Buchi M-565
instrument and are uncorrected. 'H and proton-decoupled '*C
NMR spectra were acquired in CDCl;, CD;0D or ds-DMSO at
250 MHz ('H) and 62.5 MHz (**C) (Bruker DPX250), 400 MHz
('H) and 100 MHz (**C) (Bruker AVANCE 400), 500 MHz ('H)
and 125 MHz (**C) (Varian Inova 500), or 600 MHz (*H) and
150 MHz (**C) (Bruker AVANCE 600). Chemical shifts (§) are
reported in ppm using residual undeuterated solvent as an
internal standard (CDCl; at 7.26 ppm, CD;0D at 3.31 ppm,
de-DMSO at 2.50 ppm, and TMS at 0.00 ppm for 'H NMR
spectra and CDCl; at 77.16 ppm, CD3;OD at 49.0 ppm,
ds-DMSO at 39.52 ppm for >C NMR spectra). Multiplicity data
are reported as follows: s = singlet, d = doublet, t = triplet, q =
quartet, br s = broad singlet, dd = doublet of doublets, dt = doublet
of triplets, app d = apparent doublet, app t = apparent triplet,
m = multiplet, and br m = broad multiplet. The multiplicity is
followed by the coupling constant(s) in Hz and integration. High-
resolution mass spectrometry (HRMS) was measured using
electrospray ionization (ESI) (Waters xevo Q-tof, Thermo LTQ-FT
ultra, or Thermo Q Exactive) or using electron ionization (EI) (GCT
Premier Waters). The synthesis and characterization of compounds
1, 17, 18, 31-63 were previously reported (Ferreira et al,, 2014).

RESULTS AND DISCUSSION

Synthesis of Novel Benzimidazole

Derivatives
Phenoxyacetic acids of type 1 were prepared from the
corresponding substituted phenols by nucleophilic substitution

Cruzain Inhibitors as Trypanocidal Agents

with 2-bromoacetic acid or nucleophilic substitution with alkyl 2-
bromoacetic ester, followed by ester hydrolysis (Scheme 1A). A
subsequent reaction of activated carboxylic acid I with amine II
led to the formation of amides 1-4, 6, 8, 10-12, 14, and 16-18.
Alcohols 5 and 7 and aniline 9 were prepared by reduction
reactions of imides 4 and 6 with sodium borohydride and
nitrobenzene derivative 8 using hydrogenation under Pd/C
catalysis. Carboxylic acid derivatives 13 and 15 were
synthesized by hydrolysis under basic conditions of methyl
esters 12 and 14, respectively. N-alkylated compounds 19-29
were synthesized by N-alkylation of the benzimidazole moiety of
compounds 1, 17, and 18 with different electrophiles. N-Phenyl
derivative 30 was prepared as described in Scheme 1B by an
amidation reaction followed by cyclization and dehydration.

Design of Novel Cruzain Inhibitors

In this work, we designed a series of cruzain inhibitors based on a
previously identified benzimidazole derivative (18, Figure 1A)
(Ferreira et al., 20105 Ferreira et al., 2014). Considering the lead-
like profile of compound 18 and its activity against cruzain and 7.
cruzi, we selected this compound for a lead optimization program
and, for the first time, the pharmacokinetics and the in vivo
trypanocidal ability of this molecule and its analogs were
investigated. We explored compound 18 by appending diverse
substituents at the phenyl and benzimidazole rings to improve
both the interaction with cruzain and the PK profile. By adding
substituents at the phenyl ring, we aimed to enhance the
selectivity for cruzain over other proteases by promoting
hydrogen bonding with Glu208, a critical residue located in
the S2 subsite of the active site (Figure 1B). Glu208 is absent
in most other proteases, including human cathepsins. We
additionally focused on increasing the affinity and potency of
the compounds by exploring N-substitutions at the
benzimidazole and enabling additional interactions with the S1
and S1’ subsites.

Exploring the Benzimidazole and Phenyl
Rings

The structure and activity against cruzain of N-substituted
benzimidazoles are summarized in Table 1. Three out of the
derivatives that were initially evaluated showed ICs, values below
3 uM. Only compounds lacking the o-bromine at the substituent
appended to the benzimidazole core were active against cruzain.
No significant variation in the percent inhibition values was
observed for different Triton X-100 concentrations (0, 0.01,
and 0.1%), demonstrating that the inhibitors do not act as
aggregators (Supplementary Table S1).

The mechanisms of action of compounds 20 and 24 were
determined by measuring their remaining enzymatic activity in
the presence of distinct concentrations of the substrate and
inhibitors. Double reciprocal Lineweaver-Burk plots (Figure 2)
showed that unlike the benzimidazole analogs previously
described (Ferreira et al., 2014), compounds 20 and 24 act as
noncompetitive cruzain inhibitors with a higher affinity for the
free enzyme than for the corresponding enzyme-substrate
complex. The typical behavior of noncompetitive inhibitors
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10 min; (b) i) benzyl 2-bromoacetate, Ko.COg, DMF, r.t., 4-6 h; i) Pd/C (20%), Ho
N-Hydroxysuccinimide, DCM, triethylamine, 0°C, 30 min; iii) Il, sodium carbonate,
borohydride, MeOH, THF, r.t., 5 h; (f) Pd/C (20%), Hpg), MeOH, r.t., 2 h; (g) i) NaOH

diamine, n-butanol, 110°C, 18 h.

A PN OH ]
R--~ aorb o cord
,O/ —_— Ar” QJ\OH -
- U] N
Ar Phenoxyacetic acids |
HZNMLH
(m
o w4 ; o w4
,O\)J\ /\/I\N /O\)J\ V\N
Ar N X—R! Ar N
H H H R
1 Ar: phenyl 19 Ar: phenyl; R': (2-(2-bromophenoxy)ethy!
2 Ar: p-(acetylamino)phenyl 20 Ar: phenyl; R': (2-phenoxy)ethyl
3 Ar: m-(acetylamino)phenyl 21 Ar: phenyl; R': (2-benzyloxy)ethyl
R 4 Ar: p-(succinimidyl)phenyl 22 Ar: o-(methyl)-phenyl; R: (2-(2-bromophenoxy)ethyl
5 Ar: p-(4-hydroxybutylamidyl)phenyl 23 Ar: o-(bromo)-phenyl; R': (2-(2-bromophenoxy)ethyl
6 Ar: m-(succinimidyl)phenyl 24 Ar: phenyl; R": (2-phenoxy)propyl
7 Ar: m-(4-hydroxy-butylamidyl)phenyl 25 Ar: phenyl; R": methyl
f E 8 Ar: m-(nitr.o)phenyl 26 Ar: phenyl; R": benzyl
9 Ar: m-(amino)phenyl 27 Ar: phenyl; R": (but-3-enyl)
10 Ar: 6-hydroxynaphthyl 28 Ar: phenyl; R': (amino-carbonyl)methane
11 Ar: 7-hydroxynaphthyl 29 Ar: phenyl; R': (2-methoxy)ethy!
g 12 Ar: 6-methoxycarbonylnaphthyl
13 Ar: 6-carboxynaphthyl
E 14 Ar: 5-methoxycarbonylnaphthyl
9 15 Ar: 5-carboxynaphthyl
16 Ar: m-methoxy-p-nitrophenyl
17 Ar: o-(methyl)-phenyl
18 Ar: o-(bromo)-phenyl
o a
\)J\H/\)J\OH —_— O\)J\N/\/”\N
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L

Scheme 1 | (A) Reagents and conditions: (a) i) ethyl 2-bromoacetate, K;COg, DMF, r.t., 4-6 h; i) NaOH (6 mol. L™"), MeOH, r.t., 30 min; iii) HCI (6 mol. L™"), 0 C,
o EtOAc, MeOH, r.t., 1-2 h; (c) i) oxalyl chloride, DMF, DCM, r.t., 1 h; ii)

18-crown-6, potassium tert-butoxide, THF, r.t. or 45°C, 13-48 h. (B) Reagents and conditions: (a) i) oxalyl chloride, DMF, DCM, r.t., 30 min, i) N'-phenylbenzene-1,2-

30
NH,

EtOAc, r.t., 1 h; (d) Il, EDC, HOBY, trimethylamine, DMF, r.t., 8-15 h; () sodium
(6 mol. L"), MeOH, r.t., 20 min; iiy HCI (6 mol. L™"), 0°C, 10 min; (h) haloalkyls,

was additionally confirmed in another experiment, in which no
significant variation in ICsy values was observed with increasing
substrate concentrations at a constant protein concentration
(Supplementary Table S2).

Next, novel compounds were synthesized to evaluate the effect of
growing the N-substituent on the mechanism of action against
cruzain. Compound 1 (ICs; = 109 pM, Table 1), which, in
contrast with lead compound 18, lacks the o-bromine at the
phenyl ring, is more than 10-fold less potent than 18 (ICso
0.8 uM). Installing a methyl group as the N-substituent also
resulted in a decrease in activity (25, IC5p = 8.6 uM). As shown
in Figure 3, compounds 1 and 25 act as competitive inhibitors.
Growing the N-substituent to a benzyl (26, IC5, = 1.1 uM) enhanced
the activity; however, expanding to but-3-enyl (27, ICso = 13.7 uM)
significantly reduced the activity. Interestingly, in contrast with
compounds 1 and 25, compounds 26 and 27 act as

noncompetitive inhibitors (Figure 3). No significant variation in
the IC5, values of 26 and 27 was observed with increasing substrate
and constant protein concentrations, further corroborating the
noncompetitive inhibition mechanism (Supplementary Table S2).

These results clearly highlight the role played by the
N-substituents in the mechanism of cruzain inhibition. The
importance of the amine was previously demonstrated by
replacing the nitrogen with an oxygen atom, and the activity was
lost (Ferreira et al,, 2014). Additionally, the distinct N-substituents
allowed us to correlate the substituent volume with the mechanism of
inhibition. The lack of a substituent (1) or the presence of a methyl
(25) results in competitive inhibition, while bulkier groups such as
benzyl (26) and but-3-enyl (27) lead to noncompetitive inhibition.

In the next step, we explored substitutions at the phenyl
ring. Given that the phenyl ring of lead compound 18 occupies
the S2 pocket of the cruzain-binding site, we expanded the
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FIGURE 1 | (A) Cruzain inhibitor 18 was used as the lead compound for the design of novel benzimidazole derivatives. (B) X-ray structure of compound 18 in
complex with cruzain (PDB 3KKU, 1.28 A). Binding site residues (carbon in gray) and compound 18 (carbon in orange) are shown as sticks. A hydrogen bond is shown as
a dashed line. Cruzain subsites are labeled as S1, S1/, S2, and S3.

phenyl into a naphthyl system and appended different  Trypanocidal Activity, Physicochemical

hydrogen bond donors and acceptors to the phenyl ring.  Profile. and Cytotoxicity
The goal was to explore a potential interaction with Glu208. ’

' ) After the enzyme inhibition studies, active compounds were evaluated
As shown in Table 2, among the 15 synthesized compounds,

S for their activity against T. cruzi intracellular amastigotes and PK
the three naphthyl ana}ggs with either hydroxyl or ether at the properties (Table 3). Among the N-substituted analogs, compounds 20
meta oOr para positions were the most potent: 6- (ICso = 2.04 PM) and 24 (IC5, = 143 PM) were equipotent to the
hydroxynaphthyl 10 (ICsp = 3.4 uM), 7-hydroxynaphthyl 11" yeference drug BZ (ICs, = 1.45 uM). The only inactive compound in
(ICsp = 2.7 uM), and 6-methoxycarbonyl 12 (ICsp = 2.3 uM).  this series was the N-methyl analog 25. In general, these compounds
The design concept was corroborated by molecular docking  ,re more lipophilic than BZ, as shown by the LogP and eLogD values.
runs, which predicted the formation of a hydrogen bond Among the molecules in Table 3, six were classified as high-
between the hydroxyl groups of 10 and 11 and Glu208 permeability compounds (PAMPA higher than 1.5 x 10™° cm/s),
(Figure 4). To further corroborate the formation of a  ;nd nine were dlassified as low-permeability compounds (PAMPA
hydrogen bond with Glu208, we evaluated the activities of  lower than 1.5 x 107° cm/s).

six compounds against the enzyme rhodesain, a cysteine Most compounds with substituents on the phenyl ring were active
protease that has a similar active site to that of cruzain, in  against T. cruzi, with ICs, values in the low micromolar range (Table 3).
which Glu208 is replaced with an alanine residue (Lima et al., The exception was compound 13, which has a 6-carboxynaphthyl
2013). The activities of the compounds against cruzain were  moiety. Compound 13 showed moderate activity against cruzain
significantly more pronounced than their activities against  (IC5, = 24.2uM) in addition to a LogP value higher than those of
rhodesain, indicating the importance of interactions with  the other analogs. The combination of these two properties may be the
Glu208 for inhibition by 10 and 11 (Supplementary Table $3).  cause of the lack of trypanocidal activity of this compound.
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TABLE 1 | Structure and activity against cruzain of new N-substituted
benzimidazole derivatives.?

Compound Structure % ICso
Cruzain (uM)°
inhibition
(100 pMm)*
1 o N,@ % 10.9+1.0
|
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H
19 72 ND
i N,@
©/o\)l\u/\/kn
H 8
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@Br
20 1.04 + 0.7

SO0 s A
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(o]
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21 o . @ 76 1.60 + 0.4
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(Continued in next column)
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TABLE 1 | (Continued) Structure and activity against cruzain of new N-substituted
benzimidazole derivatives.®

Compound Structure % ICso
Cruzain (uM)P
inhibition
(100 um)*

24 81 22+1.2

i :
©/°\)]\N/\)\N
H
(o]
25 o N 87 86+1.7
|
0\)Lu/\/L’{
CH,
26 7 1.1+£02

27 o N,@ 79 137 + 1.4
©/°\)ku/\/”\
cH,
28 o 7/@ 81 121+ 24
©/°\)J\N/\/LN
H o]
NH,
29 o 7/@ 79 88+18
/0
86126

" @Kipi@ ’

AThe percentage of inhibition refers to the mean of three experimental measures.
PICso values were determined independently in triplicate using at least six
distinct inhibitor concentrations, and the values represent the mean + SD of 2-3
independent assays.
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FIGURE 2 | Lineweaver-Burk plots for compounds 20 (A) and 24 (B). Each curve represents a different inhibitor concentration.
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FIGURE 3 | Lineweaver-Burk plots for compounds 1 (A); 25 (B); 27 (C); and 26 (D). Each curve represents a different inhibitor concentration.

The benzimidazole derivatives were further evaluated regarding
their cytotoxicity against human HFF-1 fibroblasts, which were used
as host cells for T. cruzi (Table 4). Selectivity indices (SI), which
express the ratio between the ICs, values for HFF-1 cells and T. cruzi,
were calculated. Overall, the evaluated compounds exhibited no
significant toxicity against human HFF-1 fibroblasts. Three
compounds showed SI values comparable to or greater than that
of the reference drug BZ (SI > 33): 18 (SI > 61), 17 (SI > 35), and 37
(SI > 34). It is worth noting that compounds 1 (SI > 26) and 8 (SI >
29) also exhibited suitable SI values.

Determination of In Vitro and In Vivo
Metabolic Stability

A series of 10 benzimidazole derivatives were selected based on their
activity against cruzain and T. cruzi to undergo PK studies, including

in vitro and in vivo metabolism. Table 5 shows the in vitro results for
CLy, after incubation with human and mouse microsomes, fu, LogD,
and PAMPA. Corrected clearance values (CLj, ,,) were obtained by
calculating the ratio between CLy,, and fu. It is important to note that
only unbound drug molecules are available for clearance, interaction
with metabolizing enzymes and transporters, equilibration into tissues,
and pharmacological activity. Thus, PK, pharmacodynamics, and
toxicity are driven by unbound drug concentrations (Zamek-
Gliszczynski, et al, 2011). As such, protein binding (PPB) in
plasma, microsomes, and target tissues is routinely evaluated in
drug discovery to determine the respective fu values (Wang, et al,
2014). The drug-like space for unbound clearance lies at approximately
10 L/h/kg. As shown in Table 5, all benzimidazole derivatives have
CLint  values much higher than the drug-like reference and that of the
reference drug BZ. Compounds 17, 18, 37, which have IC5, " 4
values comparable to that of BZ, have CLy, ,, values ranging from ~10
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TABLE 2 | Structure and activity against cruzain of new benzimidazoles with
substituents at the phenyl ring.?

Compound Structure % Cruzain ICso
inhibition (uM)®
(100 pM)?
2 o N@ 79 45+05
|
N
3 YO o N 70 281 =
|
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12 ° N 100 2.3+0.6
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(Continued in next column)
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TABLE 2 | (Continued) Structure and activity against cruzain of new
benzimidazoles with substituents at the phenyl ring.?

Compound Structure % Cruzain ICso
inhibition (HM)®
(100 pm)?
14 ° N 92 8.3+2.1
|
o\)j\ /\/kn
H
CO,Me
15 o N 58 > 100
|
N
H

16 [&\ o 62 ND

AThe percentage of inhibition refers to the mean of three experimental measures.
biCso values were determined independently in triplicate using at least six distinct inhibitor
concentrations, and the values represent the mean + SD of 2-3 independent assays.

to 21 times higher than that of BZ, which could undermine the
achievement of the bioavailability levels required for biological
response. Most compounds listed in Table 5 had PAMPA values
higher than 1.5 x 10°cm/s and were classified as having good
permeability.

Next, the same set of molecules was evaluated for their in vivo
PK profile (Table 6). From this assay, information such as T,
plasma clearance (CL,), and bioavailability (F) were obtained. As
observed for the in vitro assays, all benzimidazoles had high
unbound clearance compared to that of BZ. The in vivo assays
reinforced the concept that the high clearance may be the reason
for the very low oral bioavailability (F) observed for the
benzimidazoles (0-35%) compared to that of BZ (90%).

In vitro experiments are faster and less expensive than in vivo
assays. Accessing the in vitro-in vivo correlation (IVIVC) for
metabolic stability is important to demonstrate whether one can
rely on in vitro studies and keep the use of animals to a minimum
for a series of molecules. The lack of IVIVC is also informative,
indicating that other metabolic routes are likely to be responsible
for the observed in vivo clearance. In our experiments, a positive
IVIVC was observed for fu-corrected clearance (Figure 5), which
allowed us to rely on in vitro assays for the prediction of in vivo
metabolic stability and prioritize compounds for further studies.

Determination of Metabolic Stability in
Human Hepatocytes and Identification of
CYP450 Isoforms

All compounds evaluated showed high clearance values, reaching
60-180% of mouse liver blood flow (5.4 L/h/kg), which is a
plausible explanation for their low bioavailability (0-35%). To
better understand pathways involved in the elimination of the
compounds, metabolic stability studies in human hepatocytes,
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W Glu208

and orange, respectively) are shown as sticks.

FIGURE 4 | Molecular docking predicted the binding conformations of compounds 10 (A) and 11 (B) in complex with cruzain (PDB 3KKU, 1.28 A), showing the
formation of hydrogen bonds (dashed lines) between the hydroxyl groups and Glu208. Binding site residues (carbon in gray) and compounds 10 and 11 (carbon in green

TABLE 3 | In vitro activity against T. cruzi and physicochemical properties of a subset of the benzimidazoles.

Compound Structure 1C5, ™ v PAMPA (x1076 cm/s) eLogD LogP PSA (A?)
(uMm)?
Bz? ()\ o 145+ 04 3.17 0.84 1.00 92.70
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1 o N@ 39+03 4.21 2.90 2.41 67.00
[
©/°\)LN/\/L=
H
20 . N@ 204+ 06 4.30 424 1.57 104.38
|
©/°\)I\N/\/‘\u
S
ot
24 . N/Q 143504 229 4.45 431 65.38
I
SBeAS
N f
Q
25 o N@ =100 1.46 2.93 262 56.15
|
SHRae
26 o @ 74 +2 8.72 4.06 4.20 56.15
©/°\)Lu/\/l,
(Continued on following page)
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TABLE 3 | (Continued) In vitro activity against T. cruzi and physicochemical properties of a subset of the benzimidazoles.
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ICsp values represent the mean + SD of three independent assays; BZ, benznidazole. eLogD and PAMPA were experimentally determined. LogP and PSA were predicted
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eLogD
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LogP
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TABLE 4 | Biological evaluation of a subset of the benzimidazoles against T. cruzi
and human HFF-1 fibroblasts.

Cruzain Inhibitors as Trypanocidal Agents

which contain the whole set of human phase I and phase II
hepatic metabolizing enzymes, were conducted. This experiment

Compound ICso™ % (UM)? ICsHFF (UM)° sI° was performed in the absence of CYP inhibitors for the
determination of the total clearance (Phase I + Phase II); in
gixorubicin S'OOiO'GO ?gg 133 the presence of 1-ABT (a CYP450 inhibitor) for the
1 39403 2100 .og  determination of the fraction of the compounds that are
2 12113 >100 >8 metabolized by the remaining Phase I as well as the
3 50+10 >100 >20  conjugating Phase II enzymes; and in the presence of
g 3~550'807 >188 >229 azamulin (a CYP3A4 inhibitor) for the identification of the
0+ 0. > > . . P . .
10 146407 100 — fra.lc.tlon‘ metabol.lzed by tbls .1§0.f0rm. This last assay provides
17 281+ 0.75 -100 >35 critical information for prioritizing compounds since CYP3A4
18 1.63 + 0.57 >100 >61 plays a key role in drug-drug interactions (DDIs) and is
20 2.04 + 060 >30 >14 associated with adverse effects and low efficacy when two or
Zg ;'jg * 2‘38 23000 >f; more drugs are taken together. Phase I metabolism, performed
B + Z. > >
+ . . . " ozo
o7 6.90 290 100 14  mainly l?y the CYP450 family, was responsible for 56-95% of the
28 6.8+ 0.9 5100 >15 metabolism of the compounds (mean = 78.1 + 12.9%). A much
32 7.90+2.13 >100 >12 lower contribution to total clearance was observed for all other
33 6.68 + 2.35 >100 >15  Phase I enzymes, which were responsible for 5-35% of the
g‘; 123; * 2:1 ?3000 >22 metabolism (mean = 21.9 + 13.6%). The central role played by
. + 0. > > . e .
a7 590 + 0.66 - 100 .32 CYP3A4 be.came apparent when the CYP3A4 inhibitor azamulin
38 11.14 + 319 ~100 -9 was used in the assay: the resulting clearance values were
, approximately 40% lower, reaching a minimum value of 31.6%
4ICsp values represent the mean + SD of three independent assays. d . 1 £ o h d ith 1
PICs, values represent the mean + SD of two independent assays. and a maximum value of 59.5% when compare with tota
CSelectivity index (Sl) = ICso ™ /ICs," V2. clearance values (Supplementary Figure S1).
TABLE 5 | In vitro PK profile of benzimidazole analogs.
Compound Structure CLint CLint fu CLint u CLint u eLogD PAMPA
(L/h/kg) human  (L/h/kg) mouse (L/h/kg) human  (L/h/kg) mouse (x107 cm/s)
N
BZ [\ o 15 4.4 1.0 15 4.4 0.8 3.2
H N)\“
NWH N
o
17 o N/Q 239 300.0 08 312 392.2 3.6 59
[
G/OJN/\/L”
H
18 o o N/Q 9.2 191.0 06 16.0 3345 3.9 56
[
©/°\)kN/\/Lu
H
31 il o N,Q 5.6 74.6 0.9 6.6 87.9 26 2.2
|
o\)J\N/\)\u
H
32 w o N@ 255 526.0 07 392 808.0 36 49
|
©/°\)J\N/\/ku
H
33 o N/Q 10.4 161.0 08 125 193.3 28 07
|
jonans
H
Br
(Continued on following page)
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TABLE 5 | (Continued) In vitro PK profile of benzimidazole analogs.

Cruzain Inhibitors as Trypanocidal Agents

Compound Structure CLint CLint fu CLint u CLint u eLogD PAMPA
(L/h/kg) human  (L/h/kg) mouse (L/h/kg) human  (L/h/kg) mouse (x107° cm/s)
34 o o N/Q 499 607.0 0.1 539.5 6562.2 44 03
i
e
H
35 o N/Q 211 565.0 05 439 11746 3.9 07
l
ootk
H
36 o o N/Q 28.8 705.0 08 38.2 935.0 3.8 47
1
G/\XHNLH
37 o N@ 229 745.0 0.9 269 874.4 3.9 19.7
I
©/°\)J\N/\/(\o
H
38 230.0 934.0 05 501.1 2034.9 4.1 7.7

Lt s
Sasan s

CLin, intrinsic clearance after incubation with human and mouse microsomes; fu, fraction unbound; CL;n , corrected clearance (CL;n/fu); eLogD, experimentally determined distribution

coefficient; PAMPA, parallel artificial membrane permeability assay.

After identifying the central role of CYP3A4 in the metabolism
of this series, the next step was to identify the involved isoforms
using recombinant CYP enzymes. CL;,; was determined based on
the residual amount of the compound over time. Additionally, the
contribution of each CYP isoform to metabolism was calculated
based on their relative abundance in humans. The information
generated by this experiment was essential to assess the risk of
potential drug-drug interactions (DDIs) for this series of
compounds. Molecules eliminated through multiple pathways
have reduced DDI potential and are therefore more suitable for
advancing to further steps in a drug discovery pipeline. The
benzimidazole derivatives are mainly metabolized by CYP3A4
(23-90%) (Supplementary Table S4). Although modest, a
contribution from isoforms CYP2D6 and CYP1A2 is observed,
featuring an attractive profile from a DDI perspective despite the
high clearance values.

Identification of Sites of Metabolism

All studies on benzimidazoles showed that these molecules are
metabolically unstable, and biotransformation mediated by
CYP3A4 is the major metabolic route. Therefore, studies to
identify the molecular sites of metabolism (SOM) were
performed. These studies can enable the blockage of these sites
by the inclusion of blocking groups to achieve appropriate levels
of metabolic stability. Ideally, these molecular changes should not
significantly affect the potency toward the molecular target. The
test compounds were then incubated with human and mouse
liver microsomes. Most of the metabolites were found to be
oxidation products mainly of the linker and benzimidazole

moieties (Supplementary Figures S2-S5). Strategies to block
these SOMs could include switching the amide position and
adding halogen atoms to the linker. At the benzimidazole ring,
N substitutions and the addition of halogens could be explored
(Supplementary Figure S6).

Metabolic Stability Studies for an Additional

Set of Benzimidazole Derivatives
After completing the PK profile for 10 molecules (set 1), an
additional set of 55 compounds (set 2) was evaluated to provide
additional information for the establishment of a SAR for
metabolic stability. The results for clearance after incubation
with human and mouse liver microsomes, eLogD, and
PAMPA are summarized in Supplementary Table S5. Some
set 2 compounds with lower clearance values than those of set
1 molecules were identified, some of which exhibited clearance
values comparable to that of BZ (Supplementary Figure S7).
The clearance values listed in Supplementary Table S5 show
that the presence of substituents on the phenyl ring might
influence the metabolic stability of the compounds.
Substituents at para and meta, for example, led to the most
stable compounds with the lowest CL;,,_u values. Among the
compounds with substituents at para, compounds 2, 4 and 5 are
highlighted, for which clearance values are in the same range of
BZ (CLjy¢_u = 1.50 L/h/kg). In addition, compounds 6 (CL;,;_u =
3.54 L/h/kg), 7 (CLiy_u = 1.50 L/h/kg), and 3 (CL;,_u = 6.90 L/
h/kg), with substituents at meta, showed drug-like profiles for
metabolic stability. Substituents at ortho also led to stable
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TABLE 6 | In vivo PK profiles of selected benzimidazole derivatives.

v PO
Cpd T1/2(h) Co (ng/ml)  V SS (L/kg) AUC CLp (L/h/kg) fu CLp, T1/2 (h) Cmax Tmax (h) AUC F (%)
(ng*h/ml) (L/h/kg) (ng/ml) (ng*h/ml)
Bz 0.8 961 1.1 1.020 1.0 0.99 1.0 1.5 404 0,4 1.040 90
17 0.5 153 4.4 83 6.3 0.06 104.3 — 0.0 — 0.0 0.0
18 0.2 283 1.8 84 3.2 0.03 103.7 — — 0.3 1.0 1.2
31 0.2 232 1.9 67 4.6 0.15 29.9 - 12.8 0.3 - -
32 0.2 220 25 53 5.9 0.04 157.4 — — 0.3 1.0 1.9
33 0.2 658 0.6 160 9.5 0.16 60.6 0.4 7.7 0.3 56.5 35.2
34 0.3 255 1.9 116 7.6 0.00 2,874.7 0.6 7.6 0.3 6.5 5.6
35 0.2 228 2.0 86 5.8 0.02 334.6 0.2 3.7 0.3 1.7 2.0
36 0.5 144 7.2 55 9.5 0.04 231.5 — 0.0 — 0.0 0.0
37 0.2 169 2.4 53 9.5 0.05 187.1 — 14.6 0.3 — —
38 0.4 126 3.3 82 6.2 0.01 430.5 — 25 0.3 — —

1V, intravenous administration; PO, oral administration; T;,», plasma half-life; Co, concentration at time = O; VSS, steady-state volume of distribution; AUC, area under the curve; CLp,
plasma clearance; fu, fraction unbound; CLp,, plasma clearance corrected for the fraction unbound; Cp.., peak plasma concentration; T.., time of peak plasma concentration; F,
bioavailability.
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FIGURE 5 | Clearance in vitro-in vivo correlation (IVIVC) plot showing a good correlation between the metabolic stability data. Benznidazole (green triangle);
benzimidazole analogs (orange diamonds).

compounds: 31 (CLj,,u = 6.6 L/h/kg), 42 (CL;,_u = 4.64L/ same trend, with CL;,; u values ranging from 70.23 to 3,366.34 L/
h/kg), and 43 (CLj,_u = 3.94 L/h/kg). h/kg. Overall, the clearance values for the benzimidazole derivatives
Set 2 compounds did not show significant structural variability =~ increased with increasing hydrophobicity (Supplementary Figure
in the linker region. Among the few exceptions are compounds  89). Seven set 2 compounds (1, 2, 3, 8, 10, 11, and 28) with suitable
48, in which sulfur replaced the linker oxygen (CLj, u=11.38L/  trypanocidal activity and in vitro clearance underwent in vivo PK
h/kg), and 58 (CLi,,_u = 16.99 L/h/kg) and 49 (CL;,_u=3.28 L/ studies. Overall, the set 2 compounds exhibited lower CLp_u values
h/kg), in which the position of the phenoxy fragment was  compared to those of the set 1 analogs (Supplementary Table S6),
modified by the introduction of a methylene group at the  with benzimidazoles 2 and 28 showing the most promising profiles
linker. At the benzimidazole ring, the introduction of a  (CLp_u of 4.16 and 3.98, respectively). Additionally, similar to the
hydrophilic amide led to high metabolic stability (28, CL;,_u profile observed for the set 1 compounds, a good correlation
= 1.53 L/h/kg). It is important to highlight the influence exerted ~ between in vitro and in vivo clearance was found for the set 2
by the physicochemical nature of the substituents at the phenyl  benzimidazoles (Figure 6).
and the benzimidazole on the stability of the compounds
(Supplementary Figure $8). The introduction of hydrophobic ~ In Vivo Toxicity and Trypanocidal Activity
substituents at the phenyl resulted in high clearance values, such ~ Compound 28 (ICs,"™ “** = 6.8 uM) was selected for a proof-of-
as those observed for compounds 44 (CL;,_u =70.62 L/h/kg),51  concept study given its suitable balance between
(CLipe_u = 65.56 L/h/kg), 52 (CLiy_u = 2,122.45 L/h/kg), and 60 pharmacodynamics and PK properties. Initially, we
(CLine_u = 194.48 L/h/kg). Hydrophobic substituents at the  determined the doses that elicited no acute toxicity. The
benzimidazole (19, 20, 21, 23, 26, 27, and 30) followed the = compound, solubilized in 10% DMSO aqueous solution, was
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FIGURE 7 | Acute toxicity and trypanocidal activity in vivo. (A) Open-field test. Mice were orally treated with vehicle (10% DMSO) or benznidazole (BZ) at doses of
150 mg/kg or 28 at doses of 150 and 300 mg/kg. (B) Parasitemia during T. cruzi infection in mice treated with vehicle, BZ or 28 (150 and 300 mg/kg) expressed as the
number of trypomastigotes per 5 pl of blood. The data represent the mean parasitemia + SEM (4-8 animals per group) for all assays. (C) Peak parasitemia expressed as
the number of trypomastigotes per 5 ul of blood in mice treated with vehicle, BZ or 28 (150 and 300 mg/kg) (*p <0.05 when compared to vehicle and other groups).
(D) Reduction of peak parasitemia (seventh day of infection) in mice treated with vehicle, BZ or 28 (150 and 300 mg/kg). Vehicle solution: 0.9% NaCl + 10% DMSO.
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administered orally in a single dose of 150 and 300 mg/kg of body
weight in female Swiss mice. Parameters related to behavior,
autonomic functions, neurological activity, and mortality were
assessed as toxicity signs. Soon after the administration of the
compound, mice were placed in a circular open-field arena
(40 cm diameter) with 50-cm-high walls to assess motor
deficits. Mortality and clinical signs associated with toxicity
were recorded 0.5, 2, 4, 8, and 24h after the single-dose
administration. After this period, toxicity signs were assessed
once a day for two consecutive weeks. The reference drug BZ at
150 mg/kg and vehicle (10% DMSO) were administered as
controls. No toxicity signs were observed within the 2 weeks of
observation for any of the tested doses. Additionally, no mortality
was observed (Figure 7A). One-way ANOVA did not reveal any
difference among the groups [F3,4 = 0.15; p = 0.9238], indicating
that treatment with 28 at doses of 150 and 300 mg/kg did not
cause locomotor deficits.

Considering the favorable acute toxicity results, the in vivo
trypanocidal activity of 28 was determined at single doses of 150
and 300 mg/kg for 5 days. Female Swiss mice were infected with
T. cruzi (Y strain) (Rodriguez et al., 2014) and treated via gavage
with five daily doses of BZ (150 mg/kg of body weight), 28 (150
and 300 mg/kg of body weight) and vehicle (10% DMSO).
Treatment started on day five after infection with T. cruzi. The
following parameters were evaluated in these experiments: level of
parasitemia after the treatment, suppression of peak parasitemia
(day seven after the infection), and reduction of parasitemia on the
peak day (day seven after infection). Parasitemia was expressed as
the number of T. cruzi trypomastigotes per 5 pul of blood and was
calculated using the Brener method (Brener, 1962). Repeated
ANOVA measures considering the factors treatment and day
(repeated measure) showed a main effect of treatment (F3,18 =
12.68; p < 0.05) (Figure 7B). On the seventh day of treatment,
when parasitemia reached its peak, one-way ANOVA indicated
a treatment effect (F3,16 = 7.47; p = 0.002). Post hoc analyses
indicated that the treatment with BZ significantly decreased
parasite burden compared with the other treatments (p < 0.05)
(Figure 7C). BZ and 28 (150 mg/kg) reduced peak parasitemia
by 100 and 36.9%, respectively, compared with the vehicle. At a
dose of 300 mg/kg, benzimidazole 28 showed an increase of 13%
in the peak parasitemia when compared with the vehicle
(Figure 7D). This dose-response effect is likely associated
with the modulation of physiological systems that increase
the susceptibility of the animals to infection with T. cruzi at
high doses of the compound. Further tests with lower doses
(75 mg/kg and 37.5 mg/kg) showed no reduction in parasitemia
levels (Supplementary Figure S10). The results of the in vivo
studies indicate a moderate ability of 28 to suppress peak
parasitemia at 150 mg/kg.

Considering that few molecular targets are validated in NTDs
(De Rycker et al., 2018) and the relatively unsuitable compounds
regarding toxicity and drug-likeness that have been historically
explored in the area, the findings reported herein address an
important gap in Chagas disease drug discovery. Regardless of the
mechanism of action, it is noteworthy that in rare cases a
compound succeeds in terms of efficacy in Chagas disease in
vivo infection models. This is a major hurdle in the field that can

Cruzain Inhibitors as Trypanocidal Agents

be related to the complex life-cycle biology of T. cruzi, and the
many poorly understood aspects of the interplay between the
parasite and the host (Libisch et al, 2021). Among the
compounds that reached this milestone, we can highlight vinyl
sulfone K777, CYP51-inhibitor azoles (including posaconazole),
and cruzain-inhibitor triazoles and carbamoyl imidazoles (Ferraz
et al., 2007; McKerrow et al., 2009; Brak et al., 2010; de Souza et al.,
2020). K777 was a landmark in the field as it was the first
compound to show the possibility to enter clinical trials for
Chagas disease. However, tolerability issues in dogs and
primates during the preclinical phase hampered the progression
of this compound toward clinical development. After the failure of
K777, it was discussed whether the toxicity issues would be due to
the irreversible mechanism of action and resulting lack of
selectivity of K777 over other proteases, which could include
human proteases. The case of K777 highlights the importance
of designing reversible cruzain inhibitors with improved selectivity
as are the benzimidazole derivatives investigated in this work. In
this study, we adopted the strategy of diversifying the substitution
pattern at the phenyl and benzimidazole regions. This approach led
to an enhanced interaction with cruzain and, by enabling the
formation of a hydrogen bond with Glu208, it improves the
selectivity for cruzain over other proteases. Glu208 is part of the
S2 subsite in the cruzain active site and is lacking in most other
proteases such as human cathepsins. The role played by the
formation of a hydrogen bond with Glu208 was investigated by
evaluating a set of compounds against rhodesain, a cysteine
protease that has an active site that resemble that of cruzain in
which an alanine replaces Glu208. The compounds were far more
active against cruzain over rhodesain, which indicates the
important part played by Glu208 in selectivity toward cruzain.

Another key finding reported in Chagas disease drug design was
the identification of CYP51-inhibitor antifungal azoles (Ferraz
et al,, 2007). These compounds, particularly Posaconazole and
E1224 (the ravuconazole prodrug), showed promising suppressive
effects in parasite burden in animal models of Chagas disease.
However, their failure in clinical trials raised fruitful discussions
regarding the mechanism of action of the compounds. Although
these azoles displayed a remarkable suppressive effect, they failed
in providing sustained parasite clearance when opposed to
benznidazole. These studies served to establish the landmark
that T. cruzi CYP51 is not a molecular target to be pursued in
Chagas disease drug discovery. These previous findings
demonstrate the critical importance of target validation and
identification of compounds that act by different modes of
action, for example, the modulation of cruzain. The compounds
studied herein showed a moderate reduction of parasite burden
and, therefore, open novel possibilities for future work on this
molecular target. Moreover, the benzimidazoles did not
demonstrate toxicity in animal studies, which, as seen in the
K777 case, can be an issue of cysteine protease inhibitors. The
best compound (28) administered orally to mice in a single dose of
150 and 300 mg/kg showed no toxicity signs for any of the doses
and, importantly, no mortality was observed.

Another important class of compounds is triazole-based
cruzain inhibitors, whose representative analogs showed
promising in vivo efficacy (Brak et al, 2010; Neitz et al,
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2015). These non-peptidic ketones irreversibly inactivate cruzain
by attaching covalently to Cys25, which can raise selectivity issues
and, therefore, be a drawback for further development. Regarding
the PK profile, optimization of these triazoles resulted in
enhanced bioavailability and exposure after oral dosing,
although they proved to inhibit CYP3A4, the most important
CYP isoform for the elimination of xenobiotics. The best
compound identified herein (28), showed a suitable tradeoff
among pharmacodynamics and PK properties. Regarding its
mechanism of action, inhibitor 28 is a reversible inhibitor and
interacts with Glu208, which reduces the probability of inhibition
of human proteases. Additionally, the extensive PK studies
enabled the identification of permeable, metabolically stable,
and bioavailable compounds with high selectivity indices, and
that are metabolized mainly by CYP3A4. Incubation of the
compounds with isolated recombinant CYPs using CYP3A4
and pan-CYP inhibitors as controls showed that the
benzimidazoles do not inhibit CYP3A4. These findings are
pivotal in the context of drug-drug interactions, particularly in
the case of chagasic patients who need to use different drugs to
mitigate the complications of the disease.

CONCLUSION

An MPO strategy for the optimization of benzimidazole derivatives
as antichagasic agents was developed. This strategy relied on the
parallel optimization of activity against cruzain and T. cruzi,
selectivity, and PK parameters such as metabolic stability and
permeability. New compounds were synthesized, and previously
synthesized analogs were thoroughly evaluated for PK properties.
Newly introduced N-substituents at the benzimidazole ring revealed
that increasing bulkiness at this site modifies the mechanism of
action toward cruzain from competitive to noncompetitive. These
results introduce new and interesting aspects regarding the binding
mode and mechanism of action of cruzain inhibitors. Newly
designed phenyl-substituted analogs showed increased inhibition
of cruzain over rhodesain, demonstrating the key role played by
Glu208 in the selective inhibition of cruzain over other proteases.
Some of the benzimidazole derivatives showed appropriate
metabolic stability and clearance values comparable to those of
drug-like molecules. Phase I oxidation reactions catalyzed by
CYP3A4 were detected as the main elimination pathway, and
the identified sites of metabolism provided insights into the
improvement of metabolic stability. Moreover, the analysis of the
in vitro trypanocidal and cytotoxicity data revealed a sound
selectivity index for the investigated compounds, indicating a
low potential for toxicity.

The applied MPO approach enabled the prioritization of
compounds considering an appropriate combination of
in vitro activity, toxicity, and PK properties. The gathered
in vitro data supported in vivo PK studies for representative
compounds. A solid IVIVC was obtained, demonstrating the high
predictive ability of the in vitro PK models for the corresponding
in vivo endpoints. Finally, acute toxicity and efficacy studies were
conducted for compound 28, which showed no toxicity signs and
a moderate reduction in peak parasitemia at 150 mg/kg.

Cruzain Inhibitors as Trypanocidal Agents

Importantly, the knowledge gathered in this study opens novel
opportunities to understand the molecular aspects of cruzain
inhibition, enabling the discovery of compounds with a good
trade-off between pharmacodynamics and pharmacokinetics.
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The prediction of the estrogen receptor (ER) and androgen receptor (AR) activity of a
compound is quite important to avoid the environmental exposures of endocrine-disrupting
chemicals. The Estrogen and Androgen Receptor Database (EARDB, http://eardb.
schanglab.org.cn/) provides a unique collection of reported ERa, ERpB, or AR protein
structures and known small molecule modulators. With the user-uploaded query
molecules, molecular docking based on multi-conformations of a single target will be
performed. Moreover, the 2D similarity search against known modulators is also
provided. Molecules predicted with a low binding energy or high similarity to known ERa,
ERB, or AR modulators may be potential endocrine-disrupting chemicals or new modulators.
The server provides a tool to predict the endocrine activity for compounds of interests,
benefiting for the ER and AR drug design and endocrine-disrupting chemical identification.

Keywords: estrogen receptor (ER), androgen receptor (AR), molecular docking, similarity search, web-server

INTRODUCTION

With the development of chemistry technology, numerous natural or non-natural compounds are
synthesized and used in the daily life of human beings such as medicines, perfumes, food additives,
automobiles, electronics, pesticides, textiles, plastics, and so on (Barr Dana et al., 2005; Judson et al., 2011).
It is noted that a number of the compounds act as endocrine-disrupting chemicals (EDCs) with the
potential to interfere the hormone systems in human or wild lives (Schug et al., 2011; Dionisio et al., 2015).
The occupational and environmental exposures of EDCs are strongly correlated with the adverse health
outcomes such as reproductive health, development disorders, oncological, immunological and
cardiovascular disease, obesity, and neurobehavior disorders (Elobeid and Allison 2008; Yilmaz et al,
2020; Boudalia et al., 2021; O’Shaughnessy et al., 2021; Priya et al., 2021). Numerous efforts have been
taken to identify that if a compound is endocrine-active or not. The Endocrine Disruptor Screening
Program (EDSP) and the Toxicology Testing in the 21st Century (Tox21) projects set up various in vitro
or in vivo assays to measure the potential effects of chemicals on the endocrine system in humans or
wildlife (Judson et al., 2010; Willett et al,, 2011; Judson et al,, 2015; Yilmaz et al., 2020). However, high costs
and low speed make the experimental methods not fulfill the need of testing the rapid increased number of
synthetic chemicals in use. Currently, only a small fraction of compounds have the experimental
determined endocrine activity data available (Egeghy et al., 2012; Tickner et al., 2019). It is of great need to
develop the predictive models to provide clues of the compounds’ endocrine activity.
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FIGURE 1 | (A) Three binding sites in the ligand-binding domain of the AR depicted based on PDBID 2POI and (B) the ligand-binding site flexibility of ERa in
complex with different compounds, estradiol ((8R,9S,13S,14S,17S)-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocy clopenta[a]henanthrene-3,17-diol) and 7Al
((1S,2R,49)-5,6-bis(4-hydroxyphenyl)-N-{4-[2- (piperidin-1-yl)ethoxy]phenyl}-N-(2,2,2-trifluoroethyl)-7-oxabicyclo[2.2.1]hept-5-ene-2-sulfonamide) (structures from
PDBID 5GS4 and 7RRX). Proteins are represented in a cartoon model, and compounds or residues, in a stick model. In (B), proteins from 5GS4 and 7RRX are
colored in cyan and orange, and the compounds estradiol and 7Al are colored in green and gray, respectively. Residues undergoing considerable conformation
changes, such as ILE 424, GLU419, HIS524, and LEU525 are depicted in the stick model.

The in silico methods, especially the ligand-based QSAR
(quantitative ~structure-activity relationships) approaches and
structural base docking methods, are widely used in the
computer-aided drug design field (Mao et al, 2021; Sabe et al,
2021). These methods are applied to predict the compound’s
activities against endocrine-related proteins, such as the estrogen
receptor (ER) and androgen receptor (AR) (Schneider et al., 2019).
The CERAPP (Collaborative Estrogen Receptor Activity Prediction
Project) and CoMPARA (Collaborative Modeling Project for
Androgen Receptor Activity) construct various predictive models
trained by different QSAR approaches for estrogen or androgen
receptor activity prediction (Mansouri et al., 2016; Mansouri et al.,
2020). Both categorical and continuous models are built based on the
dataset provided by the US. EPA, and a consensus model was
obtained by weighting the models on scores based on evaluated
accuracies of single models. Shen et al. collected the estrogenic activity
data from public sources and developed QSAR models based on the
dataset (Shen et al, 2013). Machine learning and deep learning
methods are also applied in EDC predictions and achieved a relative
high overall predictive accuracy (Zhang et al,, 2017). One of the
important limitations of the QSAR-based model is the quality of data
for model training (Maggiora 2006). The structure-based docking
method provides significant complementation for EDC prediction.
The “Endocrine disruptome” server provides docking models for 14
nuclear hormone receptors such as ER, AR, glucocorticoid receptor,
liver X receptors, etc. (Kolsek et al, 2014). However, only 18
structures are incorporated in the server.

ER and AR are also pivotal therapeutic targets due to the roles
in regulation of development, endocrinology, and metabolism,
and numerous compounds are developed to modulate the protein
functions. The nuclear receptors including the ER and AR are
composed of several functional domains, such as the N-terminal
domain (NTD), the DNA-binding domain (DBD), and the
ligand-binding domain (LBD) (McEwan 2009). The
investigation of PDB structures show that except the native
hormone-binding pocket, there are activation function 2 (AF-

2) pocket and binding function 3 (BF-3) pocket located on the
ligand-binding domain (LBD) of the ER and AR (Estébanez-
Perpind et al., 2007; Axerio-Cilies et al., 2011; Lack et al,, 2011;
Buzon et al., 2012). Compounds bound to either of the pockets
are demonstrated to interfere with the protein functions and the
related signal pathway as agonists or antagonists (Moore et al.,
2010; Nwachukwu et al., 2017) (Figure 1A). Even for the same
pocket, such as the native ligand-binding pocket, considerable
conformational changes occurred upon various types of
compound binding (Min et al,, 2021) (Figure 1B).

Current used small molecule docking programs such as
AutoDock Vina can only consider the flexibility of the small
molecule while keeping the protein conformation fixed (Trott
and Olson 2010). The bias will be introduced only when one of
the protein structures is used as the receptor for docking
experiments. To integrate the conformation change information
from the resolved structures, here we built docking models based
on all available complex structures of the ER and AR and
constructed a docking server (Estrogen and Androgen Receptor
Database, EARDB, http://eardb.schanglab.org.cn/). The user can
easily dock the compound of interest to the conformational
ensembles of ERa, ERB, and AR by several simple clicks. The
top 10 highest docking score poses among all the ensembles are
returned. The compound fit to any of the pocket may be potential
EDCs of the ER or AR. In addition, the 2D similarity search
function for the known ER or AR modulators is also implemented
based on data retrieved from the binding database. The aim is to
provide a tool to predict any possible ER or AR effectors with
multi-conformational docking models and ligand-based similarity.

MATERIAL AND METHODS

Construction of Docking Models
By using the advance search option, the structures of ERa, ERB,
and AR are retrieved from the PDB (the Protein Data Bank) with
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treated as a unique docking model. Then, the protein structure and
ligand structure are split into different files. AutoDock Vina is
chosen as the docking tool due to its excellent performance in
systematic docking program evaluations (Trott and Olson 2010;
Wang et al, 2016). The protein structures are operated by
Receptor_prepare.py to remove waters and add polar hydrogens
: : and Kollman charges to obtain the receptor pdbqt files. The docking
D box is defined by using the geometric center of the native binding
: ligand from the original PDB as the box center with 28 x 28 x 28 A in
size to include the entire binding site. Ligand_prepare.py is used to
generate the ligand pdbqt file. The flexible bonds are set as default,
and the Gasteiger charge is computed for the ligand. Both the
receptor and ligand pdbqt files are generated in the neutral pH
condition. The top ten docking poses are allowed to output with the
docking score. In the re-dock experiment, the native binding ligands
are docked into the corresponding receptors to validate the docking
protocol. The receptor files which possess docking poses less than
2 A rmsd with the native binding ligand are incorporated to the web
server to evaluate the user-submitted small molecules.

- Small molecules I

smi, mol2 '
or sdf file

: Cnmpu:tatinn:l

rtw

Uploaded:

Choose the
receptor type

o meeas Dogby
: ; : AutoDock Vina

Sewtol | o T

Top 10
binding modes

Activity Data Curation

We also collected the activity data of the reported ERa, ERp, and
AR agonist or antagonist from the binding database (http://www.
bindingdb.org) (Chen et al., 2001; Liu et al., 2007; Gilson et al.,
2016) to enable the user to evaluate the 2D similarity of his own
compound and the known ER/AR modulators. All the records
with the uniprot accession numbers of P03372, Q92731, and
P10275 are retrieved from the binding database and implemented
in the local server.

View the results ‘

FIGURE 2 | Workflow of the EARDB.

the uniprot accession numbers of P03372, Q92731, and P10275. The
structures with small molecules bound with the protein are used to

generate the docking models. Totally, 282, 29, and 81 PDB structures
are downloaded for proteins ERa, ERp, and AR, respectively. For a
crystal structure with multiple chains, each chain is separated and

Structure Similarity Search
In the structure similarity search function, the smi, mol2, or sdf
file of the interested compound need to be provided by the user.

TABLE 1 | Number of structures and docking models for ERa, ERB, and AR.

Number of successful
docked systems in

Protein name Number of crystal

structures with the

Number of docking
modes in re-dock

small molecule ligand experiment re-dock experiment?®
ERa 282 609 580
ERB 32 66 62
AR 81 105 o1

@Docking models with the lowest RMSD of docking poses less than 3.0 A are defined as successful docking systems.

<

c

-

FIGURE 3 | Representative poses from re-dock experiments of ERa (A), ERp, and (B) AR (C). The proteins are represented in a green cartoon model, and ligands
are represented in a stick model. The carbon atoms from crystal structures are shown in green color and those from the docking pose are shown in cyan.
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The Tanimoto similarity coefficient between the user-uploaded
small molecule and the ligands in the EARDB is computed by
Open Babel 2.3.2 based on the linear fingerprint of fragment
indices. The Tanimoto coefficient is a value range from 0 to 1,
representing the level of similarity between two molecules. The
value of 1 is the highest similarity and indicates the same
molecules, and the value of 0 is the lowest similarity. The
EARDB will automatically calculate the Tanimoto value for
each ligand in the database with the query compound and will
only return the ligands with similarity values higher than the
user-defined cutoff with a descending rank.

Implementation

The EARDB is installed on CentOS 7.6 server workstations. The
webserver platform is constructed by Apache 2.4.6, and the
website was built with PHP 5.6.4. The MySQL 5.7 Database
management system was used to organize, manage, and sort data
of various types. The open-source Java viewer NGL is embedded
on the webpage for 3D molecular visualization (https://nglviewer.
org/). Open Babel 2.3.2 is used for format transformation, 3D
coordinate generation, and 2D similarity search for the uploaded
files (O’Boyle et al., 2011). AutoDock Vina 1.1.2 (Trott and Olson
2010) is used to obtain the docking scores and binding modes
with default settings.

RESULTS AND DISCUSSION

Overview of the Database

The EARDB  (http://eardb.schanglab.org.cn/)  currently
implements two major functions, the 2D chemical similarity
search for known ER/AR modulators and the online docking
module to predict the potential ER/AR modulator (Figure 2). The
ligand database contains about 7,800 unique compounds
associated with 13,190 related activity records of the ER and
AR from Homo sapiens. For each ER/AR modulator entry, the
molecular chemical name, the 2D chemical structure and
monomer ID from the binding database are provided. The
online docking module provides a web-based interface to
predict the binding mode and binding affinity for the user-
uploaded compounds with the protein of interest. There are
three types of protein targets, including ERa, ERP, and AR.
For each type of target, structures in complex with differential
compounds are retrieved from the RCSB Protein Data Bank
(Rose et al,, 2011). Totally, 580, 62, and 91 docking models
derived from the experimental structures of ERa, ERpB, and AR
are available on the server.

The workflow of the web server is shown in Figure 2. For the
user-interested compound, the strict smi, mol2, or sdf format file
is needed to upload to the server. Two computational types are
provided as following: “S” for similarity search and “D” for
docking. For similarity search, the Tanimoto cutoff needs to
be defined by the user. By submission of the job, Open Babel 2.3.2
is launched on the server to retrieve any compounds with
Tanimoto values greater than the cutoff value. A molecular
table is presented on the webpage to display the results, and
also, a tab-delimited txt file is provided to download. For the

ER/AR Multi-Conformational Docking Server

E strogen and A ndrogen Receptor D atabase.
| CheckResult | lobStatus | ResutEample | Tutoral | Targetinformation | References
rAdditional Notes
For small molecule docking, no metal ions, free ions or salt form should be included in the upload files. O it will cause the failure of
the job.
Do not subnit the peptide molecules to the small molecule docking section. It will take a lot of computational time and no proper
results will be generated due to the initation of small molecule docking precedure.
rDocking:
- Upload Fil: [Upload |
(Example :FMH.smi, FMH.mol2, FMH.sdf)
+ Choose A Receptor: © AR OERA OERB
- Enter Mai Address: i E-Mal
Submit
B View Docking Results

Summary of Top 10 Models

L= =] P (TN FETY R
2AXAA 38664 2aX7A 3BSRA 3B6SA 3B6SA IRLIA 1ZOSA 2AX8A 3B67A
11.00 -10.80 -10.70 -10.70 -10.60 -10.50 -10.40 -10.00 -10.00 -9.90

Receptor Name
docking score (kcal/mol)

DOWNLOAD RESULT

Topio_pose

Act
Spin| Reset

View Docking Results

Summary of Top 10 Models.

] e [
eceptor Name 4IVWB STMUB 4IVWA 2G44B 3UUCD 4IW6A 4ZNVB SDWEA SDZ3A STLFA
docking score (keal/mol)  -9.30 -9.30 -9.20 -9.10 -9.10 -9.10 -9.10 -9.10 -9.10 -9.10

DOWNLOAD RESULT

action:
Spin | [Reset]

FIGURE 4 | (A) Input webpage for multi-conformational docking of ERa,
ERB, or AR; (B) The result page of multi-conformational docking (example
running for FHM); (C) The result page of multi-conformational docking
(example running for DDT).

docking module, the target type needs to be selected as the first
step. By submission of the job, ligand preparation, a series of
molecular docking experiments against all structures of the
specific target type will be automatically carried out on the
EARDB server. The top 10 models ranked by the predicted
binding affinities are kept and visualized in 3D by NGL. A
package of docking results is also provided to download from
the results page.
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FIGURE 5 | Input (A) and output (B) webpages for 2D similarity search.

Tanimoto MonomerID

18671

Validation of Docking Models

To consider the conformational change of proteins upon binding
different ligands, we retrieved all the protein-small molecule
complex structures of ERa, ERP, and AR from the PDB
website. As shown in Table 1, there are 282, 32, and 81
complex structures for ERa, ERpB, and AR, respectively. Based
on these structures, totally 621, 66, and 105 docking models were
obtained by separating chains. Then, the re-dock experiments
were performed to dock the native ligand from the experimental
structures to the protein active site. It is necessary to validate the
parameters set in the docking protocol, as well as if the protein
structure is qualified for docking. The root mean square deviation
(RMSD) between the docking poses generated by Vina and the
native ligand structure from the original experimental structure
are used to evaluate the accuracy of re-dock experiments. As
shown in Table 1 and Supplementary Table S1, among 780
docking models, 733 models obtained docking poses with RMSD
less than 2.0 A (Supplementary Table S1). The re-dock results of
1XP1 (ERa) (Blizzard et al., 2005), 2FSZ (ERP) (Wang et al.,
2006), and 2AX8 (AR) (Bohl et al., 2005) are shown here as
examples. The docking poses and the original crystal structures
are presented in Figure 3. The RMSD values of 1XP1 (ERa), 2FSZ
(ERp), and 2AX8 (AR) are 1.48, 0.87, and 1.12 A, respectively.

The docking poses superimpose well with the native ligand
structure from the original crystal structures, indicating the
docking procedure is able to recover the experimental
structures. To include more conformational diverse structures,
the docking models with RMSD less than 2.0 A are considered as
successful docking systems and kept in the receptor database to
provide readily to dock function on the web server.

Multiple Conformation-Based Docking

Multiple structures of ERa, ERB, and AR are collected from the
PDB database and prepared as docking models. The user could
upload the smi, sdf, or mol2 file of one small molecule and then
choose a receptor for docking (Figure 4A). An email address is
needed to receive the message of job submission and job status.
After the job is completed, a notification email will be sent to the
user’s email address. An investigation drug of AR, ligand name
from the PDB as FHM, was used as an example for multiple
conformational docking. FHM is a native ligand in the crystal
structure with PDBID as 2AXA. The sdf file of FHM was
uploaded, and the receptor type of the AR was selected. With
one click on submission button, the job is submitted to the server
conveniently. After about 3h running, ninety-three docking
experiments were finished. On the “Job Status” page, it is
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shown that the job was completed. By click the result link from
the email or by search for the job ID in the “Check Result” page,
the result page can be accessed. As shown in Figure 4B, a table of
the top 10 lowest energy poses is provided in the result webpage.
The PDBID of the receptor model and the corresponding docking
score are presented. For FHM, its original receptor file 2AXA
(chain A) obtained the lowest docking score as —11.0 kcal/mol.
The binding poses could also be explored by the NGL molecule
viewing window on the page. As the docking score of Vina is
fitted to the binding affinity, molecules with a low docking score
may be a possible modulator.

DDT (4,4-dichlorodiphenyltrichloroethane) is used as another
example. As a pesticide, DDT was banned because it acts as an
endocrine-disrupting chemical with ERa agonist activity
(Nwachukwu et al., 2017). The sdf file of the compound was
uploaded to the server, and ERa was chosen as the receptor to
perform the multi-conformation-based docking. The results are
displayed in Figure 4C. It is showed that the compound bound
well with various PDB structures of ERa, and the top ten lowest
docking scores ranged from -9.3 to -9.1 kcal/mol, indicating
DDT as a strong ERa binder (Figure 4C).

3.4 2D Similarity Search for Known ERaq,
ERp, or AR Modulators

Ligand-based chemical structure similarity search is provided on the
web server. As shown in Figure 5A, the user can choose a molecule
in the smiles format from the local storage and upload it to the
server. Here, we also take FHM as an example. The default value of
0.6 is taken as the Tanimoto cutoff. As shown in Figure 5B, the
monomerID from the binding database, ligand name, 2D chemical
structure, and Tanimoto value are presented. A hyperlink is added to
the monomer ID, and by clicking the ID, the user will be led to the
binding database webpage for detailed information, such as activity
values, assay description, and publication. The first hit in the table
with the Tanimoto value of 1.0 is the compound itself. Molecules
highly similar to the potent modulator may have the same function
and could be an endocrine active compound.

CONCLUSION

A web server, EARDB database, was constructed to predict the
potential ERa, ERP, and AR modulators. Both structure-based
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The BioChemical Library (BCL) cheminformatics toolkit is an application-based academic
open-source software package designed to integrate traditional small molecule
cheminformatics tools with machine learning-based quantitative structure-activity/
property relationship (QSAR/QSPR) modeling. In this pedagogical article we provide a
detailed introduction to core BCL cheminformatics functionality, showing how traditional
tasks (e.g., computing chemical properties, estimating druglikeness) can be readily
combined with machine learning. In addition, we have included multiple examples
covering areas of advanced use, such as reaction-based library design. We anticipate
that this manuscript will be a valuable resource for researchers in computer-aided drug
discovery looking to integrate modular cheminformatics and machine learning tools into
their pipelines.

Keywords: drug discovery, drug design, cheminformatics, open-source, deep neural network, QSAR, biochemical
library, BCL

INTRODUCTION

Computer-aided drug discovery (CADD) methods are routinely employed to improve the efficiency
of hit identification and lead optimization (Macalino et al., 2015; Usha et al., 2017). The importance
of in silico methods in drug discovery is exemplified by the multitude of cheminformatics tools
available today. These tools frequently include capabilities for tasks such as high-volume molecule
processing (Hassan et al., 2006; SciTegic, 2007), ligand-based (LB) small molecule alignment (Labute
et al., 2001; Jain Ajay, 2004; Chan, 2017; Brown et al., 2019), conformer generation (Cappel et al.,
2015; Kothiwale et al., 2015; Friedrich et al., 2017a, 2019), pharmacophore modeling (Hecker et al.,
2002; Acharya et al,, 2011; Vlachakis et al., 2015), structure-based (SB) protein-ligand docking
(Friesner et al., 2004; Meiler and Baker, 2006; Davis and Baker, 2009; Hartmann et al., 2009; Morris
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et al., 2009; Kaufmann and Meiler, 2012; Lemmon et al., 2012),
and ligand design. Increasingly, modern drug discovery relies on
customizable and target-specific machine learning-based
quantitative  structure-activity relationship (QSAR) and
structure-property relationship (QSPR) modeling during
virtual high-throughput screening (VHTS) (Lo et al, 2018;
Vamathevan et al., 2019).

Frequently, building a drug discovery pipeline with all of these
parts requires users to combine multiple different software
packages into their workflow. This can be challenging because
of different version requirements in package dependencies.
Moreover, file- and data-type incompatibilities between
packages can lead to errors and pipeline inefficiencies. Here,
we describe the BioChemical Library (BCL) cheminformatics
toolkit, a freely available academic open-source software
package with tightly integrated machine learning-based QSAR/
QSPR capabilities.

The BCL is an application-based software package
programmed and compiled in C++. This means that BCL
applications can be integrated into existing pipelines without

the need for package dependency management
(ie., maintaining directory-dependent virtual
environments, or keeping separate Miniconda

environments for each task). In addition, BCL applications
are modular and can be easily combined into complex
protocols with simple Shell scripts. Output files from the
BCL are primarily common file types that can also be read
as input by other software packages. Its command-line usage
will be familiar to users of the popular macromolecular
modeling software ROSETTA (Kaufmann et al., 2010). The
simple command line user interface (UI) makes it easy to
create complex protocols without extensive coding or
scripting experience. Our goal with this manuscript is to
describe  the core functionalities of the BCL
cheminformatics toolkit and provide detailed examples for
real use cases. At the end, we briefly discuss ongoing software
developments that may be of interest to users.

MOLECULE PREPARATION AND
PROCESSING

Fundamentals of BioChemical Library

Command-Line Syntax

The first thing to complete after downloading and installing the
BCL is to add the license file to the/path/to/bcl folder. We further
recommend adding/<path>/<to>/bcl to the
LD_LIBRARY_PATH and PATH environment variables in
the. cshrc/.bashrc. This allows users to access the BCL from
any terminal window simply by typing bcl. exe into the
command-line. For detailed setup instructions, read the
appropriate operating system (OS)-specific ReadMe file in bcl/
installer/.

The BCL is organized into application groups each of
which contains multiple applications. To view the application
groups and associated applications, run the BCL help
command:

The BCL Cheminformatics Toolkit

bcl.exe help

The BCL has application groups for cheminformatics, protein
folding, machine learning, and other tasks (Supplementary
Table S1). To isolate and view the applications associated with
the application group molecule, for example, run the application
group help command:

bcl.exe molecule:Help
Generally, the syntax to access a BCL application is as follows:
bcl.exe application_group:Application

The help menu for any application cans similarly be
accessed as

bcl.exe application_group:Application --help

These help options list the basic arguments and parameters
available for each application. More detailed help options are also
frequently available for individual application parameters. In this
way, all of the documentation required to run the BCL can be
readily accessed from the command line. The application groups
composing the core of the BCL cheminformatics toolkit include
the following: Molecule, Descriptor, and Model (Table 1).

Filtering
Molecules are input to the BCL in the MDL structure-data format
(SDF) file. Often, molecules that are downloaded or converted
from one source to another contain errors (e.g., incorrect bond
order assignments, undesired protonation states/formal charge,
etc.). Dataset sanitization is a critical component of
computational chemistry and informatics projects. The BCL
molecule: Filter application is the first step in correcting these
errors or identifying molecules that cannot be easily and
automatically corrected.

To see all of the options available in molecule:Filter, run the
following command:

bcl.exe molecule:Filter--help

or view the supplementary material (Supplementary Table
$2,83).

For the following examples we will make use of a set of the
Platinum Diverse Dataset, a subset of high-quality ligands in their
protein-bound 3D conformations (Friedrich et al., 2017b).

bcl.exe molecule:Filter \

-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_matched platinum_diverse_dataset_2017_01. matched.
sdf.gz \

-output_unmatched platinum_diverse_dataset_2017_01.
unmatched.sdf.gz \

-add_h -neutralize \

-defined_atom_types—simple \

-logger File platinum_diverse_dataset_2017_01. Filter.log
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TABLE 1 | Overview of BCL application groups covered in this manuscript.

Application Typical Inputs Typical Outputs
Group
Molecule Molecules (.sdf) Molecules (.sdf)
Descriptor Descriptor sets Dataset binary file (.bin)
Molecules (.sdf; Dataset comma-separated
GenerateDataset only) file (.csv)
Dataset binary file (.bin)
Dataset comma-separated
file (.csv)
Model Dataset binary file (.bin) Machine learning model(s)

Machine learning model(s) Predictions

This command reads in the SDF platinum_diverse_
dataset_2017_01. sdf.gz, saturates all molecules with hydrogen
atoms, neutralizes any formal charges, checks to see whether the
molecules have valid atom types (e.g., carbon atoms making five
covalent bonds are not valid), and then checks to see whether the
molecules have simple connectivity (e.g., whether they are part of
a molecular complex, such as a salt). The neutralization flag
identifies atoms with formal charge and tries to remove the
formal charge. The default behavior allows modification of the
protonation state of the atom (i.e., pH) and/or the bond order.
Other options (more or less aggressive neutralization schemes)
are also available and can be seen in the help menu. Adding
hydrogen atoms and neutralizing charges are not required
operations but are shown above to demonstrate the functionality.

All molecules that match the filter (i.e., molecules with defined
atom types and are not part of molecular complexes) are output
into platinum_diverse_dataset_ 2017_01. matched.sdf, and
molecules that fail to pass the filters are output into
platinum_diverse_dataset_2017_01. unmatched.sdf. In this
case, all molecules pass the filter. This allows the user to
review the molecules that failed the filter and choose to either
fix them or continue without them.

The molecule:Filter application can also be used to separate
molecules by property and/or substructure using the
compare_property_values flag. For example, to filter out
molecules that contain 10 or more rotatable bonds and a
topological polar surface area (TPSA) less than 140 A the
following command can be used:

bcl.exe molecule:Filter \

-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_matched platinum_diverse_dataset 2017_01. veber_pass.
sdf.gz \

-output_unmatched platinum_diverse_dataset_2017_01. veber_
fail.sdf.gz \

-compare_property_values TopologicalPolarSurfaceArea less 140 \
NRotBond less_equal 10 \

-logger File platinum_diverse_dataset_2017_01. veber.log

Of 2,859 molecules, 395 were first filtered out for have a TPSA
>140 A”, and then an additional 84 molecules that had greater
than 10 rotatable bonds were filtered out. Notice that the filters
are applied sequentially, and molecules must pass both filters to

The BCL Cheminformatics Toolkit

be output to the matched file. Alternatively, the any flag can be
specified such that if a molecule meets any one of the filter
criteria, then it is output to the matched file:

bcl.exe molecule:Filter \

-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_matched platinum_diverse_dataset_2017_01. any_pass.
sdf.gz \

-output_unmatched platinum_diverse_dataset_2017_01. any_fail.
sdf.gz \

-compare_property_values TopologicalPolarSurfaceArea less 140 \
NRotBond less_equal 10 \

-any -logger File platinum_diverse_dataset_2017_01. any.log

In this example, 2,801 molecules passed at least one of the
filters and only 58 were filtered out.

One may also filter based on substructure similarity. This is
particularly useful if there are specific substructures that are
desired or that need to be avoided. For example, aromatic
amines are a well-known toxicophore and cannot be
incorporated into potential druglike molecules; however, it is
not uncommon to find these substructures in datasets. Here, we
will filter a subset of DrugBank (Wishart et al., 2018) molecules to
remove aniline-containing compounds:

bcl.exe molecule:Filter \

-input_filenames drugbank_nonexperimental.simple.sdf.gz \
-output_matched drugbank_ nonexperimental.simple.anilines.
sdf.gz \

-output_unmatched drugbank nonexperimental.simple.clean.
sdf.gz \

-contains_fragments_from aniline. sdf.gz \

-logger File drugbank_nonexperimental.simple.toxicity_check.
log

In practice, we usually explicitly filter certain toxicophore
substructures via graph search with the
MoleculeTotalToxicFragments descriptor in conjunction with
compare_property_values flag; however, this example
illustrates the flexibility to filter by substructure similarity with
molecule:Filter. In addition to the standard use cases presented
here, molecule:Filter can identify molecules with clashes in 3D
space, conformers outside of some tolerance value from a
reference conformer, exact substructure matches, specific
chemical properties, and more. Some of these filters will be
further explored in other subsections.

Removing Redundancy
Another critical aspect of dataset sanitization is removing
redundancy. This is especially important when preparing
datasets for QSAR model training and testing. If molecules
appear more than once in a dataset, then it is possible that
they could appear simultaneously in the training and test sets,
leading to an artificial inflation in test set performance.

The BCL application molecule:Unique can help with this task.
It has four levels at which it can compare and differentiate
molecules:
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1. Constitutions—-compares atom identities and connectivity
disregarding stereochemistry;

Configurations-compares atom identities, connectivity, and
stereochemistry;

Conformations-compares configurations as well as 3D
conformations;

Exact-checks to see whether atom identities and order are
equal with the same connectivities, bond orders,
stereochemistry, and 3D coordinates.

The first time the BCL encounters a molecule in an SDF it
will store it in memory. Any additional encounters with the
same molecule (at the chosen level described above) will be
marked as duplicate encounters. The default behavior is to
output only the first encounter of each molecule. There are
cases in which a molecule appears multiple times but has
different MDL properties and/or property values. It may
not be desirable to lose the stored properties on
duplicate compounds. In such cases, the user can choose
to merge the properties or overwrite the duplicate descriptors
instead.

For example, one may want to see if any high-throughput
screening (HTS) hits have activity on multiple targets. Previously, we
published nine high-quality virtual HTS (VHTS) benchmark sets
for QSAR modeling binary classification tasks (Butkiewicz et al,,
2013). Here, we will take a look at the active compounds from each of
those nine datasets and see if any of them have activity on multiple
targets.

bcl.exe molecule:Unique \

-input_filenames 1798_actives.sdf.gz 1843_actives.sdf.gz \
2258_actives.sdf.gz 2689_actives.sdf.gz \

435008 _actives.sdf.gz 435034 _actives.sdf.gz \
463087_actives.sdf.gz 485290_actives.sdf.gz 488997 _actives.sdf.
gz \

-compare Constitutions \

—output_dupes all_actives.dupes.sdf.gz \

—logger File all_actives.unique.log

The output file all_actives.dupes.sdf.gz contains 22 molecules
that are active in at least two different datasets (note that each
individual dataset was pre-processed to remove redundant
molecules). If we want to merge the properties of these 22
compounds and isolate them from the rest of the actives, we
can perform a second molecule: Unique with the
merge_descriptors flag set, and then use molecule:Filter with
the contains flag to isolate the duplicated compounds:

bcl.exe molecule:Unique \

-input_filenames 1798_actives.sdf.gz 1843_actives.sdf.gz \
2258_actives.sdf.gz 2689_actives.sdf.gz \

435008 _actives.sdf.gz 435034 _actives.sdf.gz \
463087_actives.sdf.gz 485290_actives.sdf.gz 488997 _actives.sdf.
gz \

-compare Constitutions—merge_descriptors \

-output all_actives.unique_merged.sdf.gz \

-logger File all_actives.unique_merged.log
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followed by

bcl.exe molecule:Filter \

-input_filenames all_actives.unique_merged.sdf.gz \
-contains all_actives.dupes.sdf.gz \
-output_matched all_actives.dupes_merged.sdf.gz \
-logger File all_actives.dupes_merged.log

When merge_descriptors is passed, all unique properties are
included in the resultant output file. If the same property is present
on duplicates, then the first observation of that property is stored on the
output molecule. If overwrite descriptors is passed instead of
merge_descriptors, the last observation of a duplicate property is
stored. By default, without either of these flags only the MDL
properties on the first occurrence of a molecule are stored in the output.

It may be that some of the compounds in the previous example
that have activity on multiple targets are actually stereoisomers.
Here, the molecules were compared based on atom identity and
connectivity (Constitutions). Iterative runs of molecule:Unique
coupled with molecule:Filter can be used to identify such cases.

Sorting and Reordering

Sorting molecules is also useful during vHTS. After making predictions
on a million compounds with a QSAR model, frequently users will
want to identify some small top fraction of most probable hits for
experimental testing. This can be readily achieved with molecule:
Reorder (note-this example utilizes pseudocode for filenames):

bcl.exe molecule:Reorder \

-input_filenames < screened_molecules.sdf> \

-output < screened_molecules.best.sdf > -output_max 100 \
-sort <QSAR_Score> -reverse \

-logger File < screened_molecules.best.log>

In this example, the reverse flag indicates that the scores will be
sorted from largest to smallest (default behavior is smallest to
largest). Not more than 100 molecules will be output into the file
screened_molecules.best.sdf.gz because of the output_max
specification (the default behavior returns all molecules in the
new order).

In the previous section, we demonstrated that the BCL could
identify duplicate compounds at multiple levels of discrimination.
One important note is that redundant molecules are excluded
(i.e., sent to the output_dupes file) in the order in which they are
observed in the original input. Often, the user may want to control
this sequence by sorting the molecules according to some property.
In these cases, molecule:Reorder can be used to do just that.

Finally, a general note on SDF input and output. Aromaticity is
automatically detected when reading input files; however, output
structures are Kekulized (represented as alternating single-double
bonds) by default. To output an SDF that contains explicit aromatic
bonds (achieved by labeling bond order as 4 in the MDL SDF), pass
the explicit_aromaticity flag on the command line.

Making Fragments
The BCL application molecule:Split gives researchers a tool to
derive fragments from starting small molecules to aid in
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TABLE 2 | Fragment splits currently supported by the BCL.

Molecule Split
Implementation

Scaffolds

Inverse Scaffold

GADD Fragments
Largest Common Substructure

ECFP Fragments
Linear Fragments

Rings

Rings With Unsaturated
Substituents

Unbridged Aromatic Rings
Unbridged Rings

Chains
Rigid

Rigid Sans Amide

Isolate
Largest

Description

returns Murcko scaffolds of molecules (Bemis and Murcko, 1996)

returns the remaining components of a molecule after the Murcko scaffold is removed
(Bemis and Murcko, 1996)

splits molecules into GA-based Drug Database fragments (Daylight Theory: SMILES)
splits molecules into their maximum common substructures relative to an input set

splits molecules into radial fingerprint fragments similar to those used for extended connectivity
fingerprints (Rogers and Hahn, 2010)
splits molecule into linear non-branching fingerprint fragments similar to Obabel FP2 fingerprints

returns all ring components of molecules
returns ring components of molecules along with their unsaturated substituents

returns unbridged aromatic ring components of molecules
returns unbridged ring components of molecules

returns non-ring (chain) components of molecules

splits a molecule into rigid components; defined by breaking non-ring, non-amide single-bonds to
heavy atoms

splits a molecule into rigid components; defined by breaking non-ring, non-amide single-bonds to
heavy atoms

splits @ molecule with multiple disconnected parts (e.g., salt crystal) into component parts
splits a molecule with multiple disconnected parts (e.g., salt crystal) into component part and
returns the largest component by molecular weight
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Customizations

None

None

None

level of equivalence of element-
and bond- type comparisons
bond distance from each
reference atom

bond distance from each
reference atom

None

None

None
None

None
None

None

None
None

pharmacophore modeling, fragment-based drug discovery, and
de novo drug design. There are many different types of fragments
molecule:Split is able generate from whole molecule(s) (Table 2).

For example, we can derive the Murcko scaffold from the
FDA-approved 3rd generation tyrosine kinase inhibitor (TKI)
osimertinib (Ramalingam et al., 2017) as follows:

bcl.exe molecule:Split \
-input_filenames osimertinib. sdf.gz \
-output osi. murcko.sdf.gz \
-implementation Scaffolds

Alternatively, we could remove the Murcko scaffold and
return the other components:

bcl.exe molecule:Split \
-input_filenames osimertinib. sdf.gz \
-output osi. inverse_scaffold.sdf.gz \
-implementation InverseScaffold

Substructure comparisons are described in more detail in
Section 5.1.

Coordinate Information

The last application of interest for molecule processing is
molecule: Coordinates molecule: Coordinates is a minor
application that performs several convenience tasks. First,
molecule: Coordinates can recenter all molecules in the input
file(s) to the origin. Second, it can compute molecular centroids.

Third, molecule: Coordinates can compute statistics on molecular
conformers.

For example, passing the statistics flag compute statistics on
bond lengths, bond angles, and dihedral angles. Passing the
dihedral_scores flag will compute a per-dihedral breakdown of
the BCL 3D conformer score. The BCL 3D conformer score, or
ConfScore, computes an amide non-planarity penalty in addition
to a normalized dihedral score. Passing the amide_deviations and
amide_penalties will output the amide deviations and penalties
on a per-amide basis, respectively. This can be useful when
comparing conformations obtained from conformation
sampling algorithms, crystal structures, and/or molecular
dynamics (MD) trajectory ensembles. See Section 4 for more
information on conformer sampling.

COMPUTING MOLECULAR PROPERTIES

Computing molecular descriptors/properties is a critical
component of cheminformatics model building. We use the
term “properties” to refer to individual chemical features and
“descriptors” to refer to combinations of properties, often used to
train QSAR/QSPR models; however, the terms are often used
interchangeably in the BCL. In conjunction with substructure-
based comparisons, generating molecular descriptors is arguably
the foundation of LB CADD. The BCL was designed with a
modular descriptor interface and extensible property definitions
framework. This allows both developers and users alike to write
new descriptors for specific applications as needed. To see a list of
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available predefined molecular properties, perform the following
command:

bcl.exe molecule:Properties—help

The property interface is organized into two general
categories: 1) Descriptors of Molecules, and 2) Descriptors of
Atoms. As you will see throughout this section and Section 6,
properties can be modified and recombined in a highly
customizable fashion. See the Supplementary Materials for an
example containing multiple custom property definitions, as well
as for sample output from the molecule:Properties help menu
options detailing available features.

Computing Whole Molecule Properties

As the names suggest, some descriptors are intrinsic to the whole
molecule, while others are specific to atoms. For example,
compute some whole molecule descriptors for the EGFR
kinase inhibitor osimertinib:

bcl.exe molecule:Properties \

-input_filenames osimertinib. sdf.gz \

-output osi. mol_properties.sdf.gz \

-add Weight NRotBond NRings TopologicalPolarSurfaceArea \
-tabulate Weight NRotBond NRings TopologicalPolarSurfaceArea \
-output_table osi. mol_properties.table.txt

The flag add will add the specified properties to the SDF as
MDL properties. The tabulate flag will output the properties for
each molecule in row-column format in the file specified by
output_table. There is also a statistics flag that will compute basic
statistics for each of the specific descriptors across all the
molecules in the input SDFs and output to output_histogram.
The key observation regarding the output file is that the values for
Weight, NRotBond, etc., are emergent properties of the whole
molecule.

Computing Atomic Properties
Next, compute some atomic descriptors for osimertinib:

bcl.exe molecule:Properties \

-add_h-neutralize \

-input_filenames osimertinib. sdf.gz \

-output osi. atom_properties.sdf.gz \

-add Weight Atom_SigmaCharge Atom_TopologicalPolar
SurfaceArea \

-tabulate Atom_SigmaCharge Atom_TopologicalPolarSurfaceArea \
-output_table osi. atom_properties.table.txt \

-statistics Atom_SigmaCharge Atom_TopologicalPolarSurfaceArea \
-output_histogram osi. atom_properties.hist.txt

Notice here that the statistics flag outputs statistics across each
atom property rather than across each molecule property. This is
also the behavior when there are multiple input molecules.
Importantly, here we see that the output is an array of values
for each property. The indices of the array correspond to the atom
indices of the molecule.
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Performing Operations on Descriptors
Each category of descriptors can further be modified by

molecule-specific or atom-specific operations. For example,
some whole molecule properties can be obtained by
performing simple operations on the per-atom properties.
TopologicalPolarSurfaceArea (whole molecule property) is the
sum of Atom_TopologicalPolarSurfaceArea (atomic property)
across the whole molecule.

bcl.exe molecule:Properties \

-add_h-neutralize \

-input_filenames osimertinib. sdf.gz \

-output osi. mol_properties.sdf.gz \

-add TopologicalPolarSurfaceArea \

“MoleculeSum (Atom_TopologicalPolarSurfaceArea)”

Check to verify that TopologicalPolarSurfaceArea and
MoleculeSum (Atom_TopologicalPolarSurfaceArea) yield the
same value for osimertinib.

Examples of additional operations include other basic statistics
(mean, max, min, standard deviation, etc.), property radial
distribution function (RDF), Coulomb force, and shape
moment. See the help menu for additional options and details.

Combining Properties to Evaluate

Druglikeness

In Section 2.2 we discussed using the molecule:Filter application
to remove molecules from a dataset that failed specific
druglikeness criteria (e.g., TPSA >140 A%). Several familiar
druglikeness metrics come prepackaged in the BCL
(i.e., Lipinski’s Rule of 5 and Veber’s Rule), as well as several
others inspired by the literature and conventional medicinal
chemistry practices. For each molecule in the Platinum
Diverse dataset, count how many Lipinski and Veber
violations there are. In addition, count as drug-like all
molecules that have fewer than two Lipinski violations:

bcl.exe molecule:Properties \

-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_table platinum_diverse_dataset_2017_01. druglike.txt \
-tabulate LipinskiViolations LipinskiViolationsVeber
LipinskiDruglike

The property LipinskiViolations counts how many times a
molecule violates one of Lipinski’s Rules ( < 5 hydrogen bond
donors (HBD; -NH and-OH groups), <10 hydrogen bond
acceptors (HBA; any-N or-0), molecular weight (MW) < 500
Daltons, and water-octanol partition coefficient (logP) < 5). The
LipinskiViolationsVeber property computes the number of
times a molecule violates Veber’s Rule (infraction if TPSA
>140 A> and/or number of rotatable bonds >10). The
LipinskiDruglike property is a Boolean that returns 1 if fewer
than two Lipinski violations occur; 0 otherwise. There is
no equivalent Boolean operator for Veber druglikeness;
however, it is simple to implement one using the aforementioned
operators.
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bcl.exe molecule:Properties \

-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_table platinum_diverse_dataset_2017_01. veber_druglike.
tt \

-tabulate “Define [VeberDruglike Less (lhs
LipinskiViolationsVeber, rhs = 1)]” VeberDruglike

This command makes use of the Define and Less operators to
return 1 if there are no violations to Veber’s Rule and 0 otherwise.
New properties created with Define can also be passed to
subsequent operators on the same line. For example, one
could create a descriptor called VeberAndLipinskiDruglike by
doing the following:

bcl.exe molecule:Properties \

-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_table platinum_diverse_dataset_2017_01. veber_druglike.
txt \

-tabulate \

“Define [VeberDruglike = Less (lhs = LipinskiViolationsVeber,
rhs = 1)]”\

“Define [VeberAndLipinskiDruglike = Multiply (LipinskiDruglike,
VeberDruglike)]” \

VeberAndLipinskiDruglike

This new descriptor returns 1 if a molecule passes both
druglikeness filters, and 0 otherwise.

Many metrics can be created using the BCL descriptor
framework without modifying the source code. This can be
useful to users who come across novel methods in the
literature and wish to implement them in their own work.
Take as an example a seminal work from Bickerton et al,
which sought to quantify the chemical aesthetics of potential
druglike compounds. Bickerton et al. asked 79 medicinal chemists
at AstraZeneca to answer “would you undertake chemistry on this
compound if it were a hit?” for ~200 compounds each, to which
chemists replied either “yes” or “no” (Bickerton et al., 2012). They
generated a regression function that yielded a quantitative
estimate of druglikeness (QED) wusing eight chemical
descriptors: molecular weight, logP, number of hydrogen bond
acceptors, number of hydrogen bond donors, polar surface area,
number of rotatable bonds, number of aromatic rings, and
number of ALERTS (Bickerton et al., 2012).

Using the same dataset and descriptors as Bickerton et al.
(generously provided in their Supplemental Materials), similar
druglikeness metrics can be implemented in the BCL through the
descriptor framework. One approach could be to use the
operators described above to reproduce the algebraic
expression described in Eq. 1 of Bickerton et al. with the
parameters described in their Supplemental Materials. The
algebra expressed in BCL notation can be saved to an external
text file and passed to the command-line using standard shell
script syntax (e.g., @File.txt in Bash). Because there are relatively
few descriptors in the Bickerton et al. model, an alternative
approach could be to create a classification model.

Here, we demonstrate the latter by (Eq. 1) generating a
decision tree (DT) model and then 2) converting our DT into
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Classifying Druglike Potential for Hit Optimization
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FIGURE 1 | Classifying small molecules’ potential for hit optimization.
Models were trained to predict whether medicinal chemists would perform hit
optimization on target molecules (“yes” or “no”) starting with seven
descriptors: molecular weight, logP, number of hydrogen bond

acceptors, number of hydrogen bond donors, polar surface area, number of
rotatable bonds, number of aromatic rings. Model types include linear
regression (red), decision tree (blue), single-layer artificial neural network
(vellow), and the quantitative estimate of druglikeness score with cutoffs at
mean score for attractive molecules (0.67; gray) and the mean plus one
standard deviation (0.83; black) by Bickerton et al. (Bickerton et al., 2012).
Models trained on supplemental data from Bickerton et al. (Bickerton et al.,
2012).

a single logic statement to pass to the BCL descriptor interface.
For comparison, we also generate linear regression (LinReg) and
artificial neural network (ANN) models, and we include the
original QED score. All models are trained to predict a
chemist’s verdict for each potential compound based on the
descriptors used in Bickerton et al. (for details on model
training and validation, see Supplementary Methods; for
details on how to build machine learning models with the
BCL, see Section 7).

Model classification performance is displayed as a receiver-
operating characteristic (ROC) curve (Figure 1). Bickerton et al.
found that the mean QED score for molecules that medicinal
chemists found favorable was 0.67 (+0.16 standard deviation).
Taking the mean and mean plus standard deviation QED scores
as cutoffs, we see that QED performs comparably to multiple
linear regression. The ANN and DT perform better, but perhaps
owing to the small number of and simple relation between
variables there is no performance benefit of the ANN over the
DT (Figure 1).

Now that we have our DT, we can reduce it to a readable if-else
style format that can be converted into a BCL descriptor. Run the
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script SimplifyDecisionTree.py, passing as an argument the DT
model:

/path/to/bcl/scripts/machine_learning/analysis/
SimplifyDecisionTree.py \
./models/DT/model000000. model > DT. logic_summary.txt

We can see in the contents of DT. logic_summary.txt that the
first thing the DT checks is whether the small molecule has less
than two aromatic rings. Molecules with no aromatic rings are
excluded, and molecules with one aromatic ring are subject to
different criteria than molecules with two or more. Subsequent
criteria are then evaluated. We can rewrite the logic summary as a
descriptor and save it in a file called “dt.obj”. Then, we pass that
file to molecule:Properties as a descriptor definition and use it to
classify molecules:

bcl.exe molecule:Properties \

-add_h -neutralize \

-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_table platinum_diverse_dataset_2017_01. dt_druglike.
txt \

-tabulate “Define (Hitlike = @dt.obj)” Hitlike

The “dt.obj” code object file is a plain text file that can be
opened with any text editor. The syntax mimics the BCL
command-line syntax. Code object files are a convenient way
to write a long, multi-line BCL command-line that makes it easier
to build and reuse feature sets.

On the topic of druglikeness, it is worth noting that additional
advanced methods are also available to classify the chemical space
of molecules in a dataset. In some cases, it is useful to identify
potential drug-like compounds that not only fit the criteria
discussed above but are also similar to some known class (es)
of drugs. For example, when performing fragment-based
combinatorial library design for kinase inhibitors, in addition
to filtering out molecules that violate Veber’s rules, it may also be
desirable to filter molecules that are not sufficiently chemically
similar to existing kinase inhibitors. This can be accomplished by
building and scoring against an applicability domain (AD) model.
For further details on creating and using AD models in the BCL,
see Section 7.4.3.

We have described multiple uses of the molecule:Properties
application, placing special emphasis on how it can be utilized to
build different types of druglikeness metrics. As it is
fundamentally a tool to obtain information from small
molecule chemical structures, molecule:Properties can also be
used to help generate statistical potentials, chemical filters,
QSAR/QSPR models, and more. Some of these use-cases will
be explored in later sections.

SMALL MOLECULE CONFORMER
GENERATION

Small molecule 3D conformer generation is a critical aspect of
both SB and LB CADD because the biologically relevant
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conformation of the molecule of interest is rarely known a
priori. In SB molecular docking, small molecule flexibility is
often represented through the inclusion of multiple discrete
pre-generated conformers (Brylinski and Skolnick, 2008;
Morris et al., 2009; Lemmon and Meiler, 2012; Combs et al.,
2013; DeLuca et al., 2015). Small molecule conformations need to
be sampled to arrive at the correct binding pose. Molecules that
appear in binding pockets of substantially different proteins often
bind in distinct modes for each protein, suggesting that the
binding pose of the molecule need not be near the global
energy minima of the molecule (Nicklaus et al., 1995; Bostrom
et al., 1998; Perola and Charifson, 2004; Sitzmann et al., 2012;
Friedrich et al., 2018). Likewise, in LB pharmacophore modeling,
small molecules need to be flexibly aligned according to their
chemical properties to identify the biologically relevant 3D
features conferring bioactivity.

The BCL conformer generator, also called BCL:Conf, utilizes a
fragment-based rotamer library derived from the crystallography
open database (COD) to combine rotamers consisting of one or
more dihedral angles according to a statistically-derived energy
(Mendenhall et al., 2020). Clashes are dynamically resolved by
iteratively identifying clashed atom pairs and rotating the central-
most bonds between them without changing dihedral bins. In this
way, conformational ensembles are stochastically generated
according to likely rotamer combinations from the COD.

The BCL small molecule conformation sampler is a leader
among general purpose small molecule conformer generation
algorithms (Kothiwale et al., 2015; Mendenhall et al., 2020). In
this section, we demonstrate how to use the BCL to generate
global and local conformational ensembles and sample discrete
rotamers within a molecule.

Generating Global Conformational

Ensembles
Start by generating conformers of osimertinib with the default
settings. Here, all that is needed is an input filename and an
output filename:

bcl.exe molecule:ConformerGenerator \
-ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. global_confs.sdf.gz

The ensemble_filenames argument is equivalent to the
input_filenames argument used elsewhere (the difference is
historical). The conformers_single_file argument is one of two
output options. The other option is conformers_separate_files. As
implied by the name, in the former case all conformers are output
to a single file. In the latter case, if multiple molecules are input to
ensemble_filenames, then a unique SDF will be written for the
conformational ensembles of each of the input molecules [e.g., if
the input SDF(s) contained 10 molecules, then
conformers_separate_files would output 10SDFs each with a
conformational ensemble of one of the input molecules].

By default, BCL:Conf will perform 8,000 conformer generation
iterations, each of which rebuilds the molecule essentially from
scratch (excepting rigid ring structures and bonds that do not
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vary substantially in length or angle). Without any other options,
the top conformations will be clustered, yielding the 100 best-
scoring representatives of each different cluster. An unbiased
view of the conformational space around the ligand can be
obtained by setting the skip_cluster flag. For this application,
it is advisable to lower the number of iterations to roughly double
the number of desired conformations; the conformers are rebuilt
from scratch at every iteration, so there is little gain from doing
more iterations than conformers desired. The returned
conformers are sorted by score. Number of iterations and final
conformers can be specified with the max_iterations and
top_models flags, respectively.

Conformations can be filtered to remove highly-similar
conformations using the conformation_comparer flag (e.g., to
standard RMSD, dihedral distance, etc.) and the tolerance for
what constitutes an “identical” conformer increased from the
default (0.0) to an arbitrarily large value (note that RMSD- and
dihedral-based metrics have units of A and degrees, respectively)
(Kothiwale et al., 2015). For most applications, we recommend
the use of SymmetryRMSD with a modest tolerance of 0.25 A. By
default, the tolerance is adjusted automatically to yield the desired
number of clusters so as to best represent conformational space,
however, a user-provided tolerance is treated as a minimal
acceptable difference between clusters.

For high-throughput applications, we recommend reducing
iterations from 8,000 down to 800 or even 250. BCL:Conf’s speed
is nearly linear in number of iterations. Generally, more iterations
yield better performance, at a trade-off of slightly-faster than
linear increase in time per conformation when clustering is used
(Mendenhall et al., 2020).

Alternatively, if conformation_comparer is set to “RMSD 0.0”,
then no filtering or clustering is specified, and BCL:Conf will
perform max_iterations conformer generation iterations,
randomly select top_models conformers, sort them from best to
worst by score, and return them. This option is the fastest, and the
ensembles returned are arguably the most Boltzmann-like. For a
recent comparison of each set of parameters to one another and
other conformer generation algorithms, please see Mendenhall
et al,, 2020 (Mendenhall et al., 2020). We recommend generating
conformers with explicit hydrogen atoms added.

Generate conformers using two of the protocols described
protocols. First, run

bcl.exe molecule:ConformerGenerator \

-add_h -ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. symrmsd_cluster.confs.
sdf.gz \

-max_iterations 8,000 —top_models 25 \
-conformation_comparer SymmetryRMSD 0.25

Then,

bcl.exe molecule:ConformerGenerator \

-add_h -ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. raw.confs.sdf.gz \
-max_iterations 8,000 —top_models 250 -skip_cluster
-conformation_comparer RMSD 0.0
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Notice that the ensemble generated with the SymmetryRMSD
comparer and clustering enabled occupies the densest part
of the broader conformational space sampled in the raw
distribution.

Generating Local Conformational
Ensembles

Local sampling was implemented in the recent algorithmic
improvements to BCL:Conf (Mendenhall et al., 2020). The idea
is that sometimes users know or have predicted with some degree
of certainty a chemically meaningful or bioactive pose of a small
molecule, but additional refinement is needed. This is a common
use case when modeling protein-ligand complexes starting with
another ligand with some similarity to the ligand of interest
(Bozhanova et al.,, 2021; Hanker et al., 2021). When using pre-
generated conformers for docking or small molecule flexible
alignment, it is unlikely that the best ligand conformer will be
chosen and simultaneously have its position fully optimized in
Cartesian space. Local sampling around an input conformer allows
the user to refine ligand poses after an initial search.

Local sampling in the BCL is accomplished by restricting the
rotamer search in one of four ways:

1. -skip_rotamer_dihedral_sampling-preserve input dihedrals
to within 15-degrees of closest 30-degree bin (centered on
0°) in non-ring bonds.

2. -skip_bond_angle_sampling—preserve input conformer bond
lengths and angles

3. -skip_ring sampling-preserve input ring conformations

4. —change_chirality-by default, input chirality and isometry are
preserved. Use this flag to allow for generation of enantiomers
and stereoisomers.

These options are not mutually exclusive. Depending on how
they are combined, different levels of sampling can be achieved.
Moreover, they can be used in combination with any of the other
options (e.g., conformation comparison type, clustering)
described above. Generate local conformational ensembles of
osimertinib by first placing all three restrictions:

bcl.exe molecule:ConformerGenerator \
-ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. skip_all.local_confs.sdf.
gz \

-skip_rotamer_dihedral_sampling
-skip_bond_angle_sampling \
-skip_ring_sampling-skip_cluster

Next, apply only the skip_rotamer_dihedral sampling and
skip_bond_angle_sampling restrictions to generate a local
ensemble:

bcl.exe molecule:ConformerGenerator \
-ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. skip_dihed_ringlocal _confs.
sdfigz \
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-skip_rotamer_dihedral_sampling
-skip_ring_sampling-skip_cluster

Both of the ensembles show less conformational diversity than
the global conformational ensemble created in the previous
section. Notice the relative sampling differences between each
of the local conformation sampling protocols described.

Conformational Sampling of Substructures
Often times one may wish to only sample conformations of part
of a molecule. For example, in docking congeneric ligand series,
the core scaffold pose may be known with a high degree of
confidence, and the goal is to optimize the pose of the rest of the
molecule while keep the core scaffold fixed. Alternatively, crystal
structures of protein-ligand complexes often have low or missing
density for part of a bound ligand, and thus coordinate
assignment may not accurate. Discretely sampling specific
small molecule rotamers thus becomes a useful task to perform.

In the BCL, this is accomplished by first assigning an MDL
miscellaneous property named “SampleByParts” to the
molecule(s) of interest. The value of the SampleByParts
property corresponds to the 0-indexed atom indices of atoms
in dihedrals that are allowed to be sampled by molecule:
ConformerGenerator. By encoding this as a molecule-specific
property, we avoid multiple command-line calls with different
atom index specifications, allowing users to generate conformers
more rapidly for multiple molecules and/or different independent
rotamers within a molecule.

As an example, consider a crystal structure of epidermal growth
factor receptor (EGFR) kinase in complex with osimertinib (PDB
ID 4ZAU) (Yosaatmadja et al., 2015). This is the first publicly
available crystal structure of the EGFR-osimertinib complex. In
this structure, the solvent-exposed ethyldimethylamine substituent
is missing density. We will sample alternative conformations of the
ethyldimethylamine substituent than that which is proposed in the
PDB ID 4ZAU. First, add the corresponding atom indices to the file
osimertinib. sdf:

bcl.exe molecule:Properties \

-add “Define [SampleByParts = Constant (3,36,18,19,6,20,21)]”
SampleByParts \

-input_filenames osimertinib. sdf.gz—output \
osimertinib.sample_by_parts.sdf

Also, note that if you have many molecules for which you want
to assign SampleByParts atom indices and you do not want to have
to manually identify the relevant indices, you can also use the
molecule:SetSampleByPartsAtoms application. This application
sets SampleByParts indices based on comparison to user-
supplied substructures. With the SampleByParts property defined
in the SDF, generate global conformers as previously described:

bcl.exe molecule:ConformerGenerator \
-ensemble_filenames osimertinib. sample_by_parts.sdf.gz \
-conformers_single_file osimertinib. sample_by_parts.confs.sdf.
gz \

-top_models 250 —cluster

The BCL Cheminformatics Toolkit

Observe that sampling global conformers (i.e., sampling across
dihedral bins allowing bond angle/length adjustment and ring
conformer changes) with SampleByParts maintains the
coordinates of all unspecified atoms. In this case, only
dihedrals containing strictly the ethyldimethylamine atoms are
sampled (Figure 2). Similarly, SampleByParts can be used in
conjunction with the local sampling methods described above.

MOLECULE PROPERTY- AND
SUBSTRUCTURE-BASED COMPARISONS

A critical component of LB CADD is molecular similarity
analysis. Provided a set of molecules, we frequently want to
know how similar each molecule is to a reference molecule(s).
Fundamentally, this requires 1) defining what specifically will be
compared between the molecules, and 2) defining the metric with
which similarity will be measured. In the BCL, this is
accomplished primarily through use of the molecule:Compare
application. The command-line syntax of molecule:Compare
differs from the syntax of other applications discussed so far.
The SDF input files to molecule:Compare are passed as
parameters instead of argument flags.

bcl.exe molecule:Compare < mandatory_parameter_one.sdf> \
<optional parameter_two.sdf> —output < mandatory_output.file> \

This syntax strictly enforces two types of behavior:

1. Ifasingle SDF is specified as a parameter, then all molecules in
the file are compared with one another

. If two SDFs are specified, then the molecule(s) in the second
file will be compared against the molecule(s) in the first file.

Finally, it is worth noting that molecule:Compare’s performance
scales approximately linearly with number of threads for costly
comparisons. To enable threads, set -scheduler PThread
<number_threads>. We suggest setting number_threads to
number of physical cores on the device for maximum performance.

Defining Molecular Structures

The BCL encodes molecules as graphs where the edges are bonds, and
the atoms are nodes. For substructure-based comparisons, we can
define equivalence between bonds and atoms using various
comparisons dubbed comparison types. For any substructure-based
comparison between two or more molecules, some combination of
atom and bond comparison types is required, which defines the
equivalence class for the atoms and bonds, respectively. The default
combination differs between tasks. For a summary of available atom
and bond type comparisons, examine the help menu options of any
comparer that utilizes substructures. For example,

bcl.exe molecule:Compare \
-method “LargestCommonSubstructureTanimoto (help)”

will display the default atom and bond comparison types for
this comparison method as well as list the available comparison
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contouring at 2o.

FIGURE 2| Substructure sampling of small molecule rotamers with BCL:Conf. (A) Crystallographic structure of osimertinib bound to EGFR kinase (PDB ID 4ZAU)
contains missing density of the ethyldimethylamine substituent of osimertinib. (B) Global conformational sampling of the osimertinib ethyldimethylamine substituent
without perturbing the rest of the bound pose using BCL:Conf. Osimertinib electron density visualized with green mesh by importing the 2fo-fc map in PyMOL and

types. For example, if atom type resolution occurs at AtomType,
then an SP3 carbon would match another SP3 carbon but not an
SP2. If the resolution is lowered to ElementType, then all carbon
atoms can match one another independent of their orbital
configuration. Similarly, bond type resolutions of BondOrder
and BondOrderAmideWithIsometryOrAromaticWithRingness
will yield different substructure matches.

Not all similarity comparisons occur at the structural/
substructural level. A number of comparison metrics in the
BCL occur between properties computed at the whole
molecular, substructural, or atomic level. Further, distance-
based comparisons between molecules that are constitutionally
identical can also be made.

Similarity Scoring Between Constitutionally
Unique Molecules

In cases where the similarity between unique molecules is desired
there are broadly two approaches for measuring similarity: by
substructure and by property. These are not mutually exclusive;
depending on the desired resolution of the substructure
comparisons, one can further measure property differences
between substructures of different molecules.

One common substructure similarity metric is the Tanimoto
coefficient (TC), expressed between two molecules as the ratio of
matched-to-unmatched atoms:

|A N Bl

S N 1
Al + 1B~ [A N B] M

where A and B are the two molecules. The intersection of atoms in
(Eq. 1) is the size of the largest common substructure under the
specified comparison types. This is a specific formalism of the
more general Tversky index when both a and P are equal to 1:

|AN B

TC = )
|ANB|+alA—B|+pIB- A

)

The first-generation EGFR tyrosine kinase inhibitor gefitinib
and the second-generation inhibitor afatinib are structurally very
similar. Afatinib is modified from the gefitinib scaffold and

incorporates an acrylamide linker. Visualize the maximum
common substructure (MCS) of afatinib and gefitinib using
molecule:Split (Figure 3):

bcl.exe molecule:Split \

-implementation ~ “LargestCommonSubstructure
afatinib.sdf)" \

-input_filenames gefitinib. sdf.gz—output mcs_gef afa.sdf.gz

(file

Next, calculate the MCS TC of the gefitinib and afatinib:

bcl.exe molecule:Compare gefitinib. sdf.gz afatinib. sdf.gz \
-method LargestCommonSubstructureTanimoto-output
gef_afa_mcs_tani.txt

This method searches for the single largest common connected
substructure as the intersection of two molecules and computes
the TC. In this case, the MCS TC is approximately 0.48.
Sometimes searching for a single connected substructure can be
disadvantageous. For example, if the primary differences between
molecules results from core substitutions bridging two otherwise
identical halves, then the single largest common substructure
approach will fail to account for the complete degree of
similarity. Alternatively, the user can calculate the maximum
common disconnected substructure (MCDS) TC:

bcl.exe molecule:Compare gefitinib. sdf.gz afatinib. sdf.gz \
-method
LargestCommonDisconnectedSubstructureTanimoto \
—output gef afa_mcds_tani.txt

As expected, the MCDS TC is greater than the MCS TC at
approximately 0.86.

Distance-Based Scoring Between
Constitutionally Identical Molecules

In Section 4 we demonstrated how the BCL can be used to
generate small molecule conformational ensembles. One
common way to measure the performance of small molecule
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FIGURE 3 | Maximum common substructure between gefitinib and afatinib. (A) Afatinib (PDB ID 4G5J) and (B) gefitinib (PDB ID 4122) in their binding mode 3D
conformations next to (C) their maximum common substructure extracted with the BCL.

conformer generators is to measure how close we can recover
biologically relevant conformations. We can do this in the BCL by
measuring the RMSD or SymmetryRMSD of molecules in our
conformational ensemble to the experimentally determined
conformations. Generate a global ensemble of osimertinib:

bcl.exe molecule:ConformerGenerator \

-add_h -ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. confs.sdf.gz \
-max_iterations 8,000 —top_models 50 —cluster \
-conformation_comparer SymmetryRMSD 0.25 —generate_3D

Note that we are generating the molecule completely de novo
ignoring all information from input coordinates by using
generate_3D. Measure the heavy-atom symmetric RMSD to
the native conformation:

bclexe molecule:Compare osimertinib. sdf.gz osimertinib.
confs.sdf.gz \

-method SymmetryRMSD -logger File osi. sym_rmsd_nativelog \
-output osi. sym_rmsd_native.txt -remove_h

On examination of osi. sym_rmsd_native.txt, we see that see
that of our 25 generated conformers, 3 are less than 2.0 A from
the native conformer, and the best is approximately 0.66 A from
native. If we repeat this process for two additional TKIs, the first-
generation inhibitor erlotinib and the second-generation
inhibitor afatinib, we also see that we are able to obtain
multiple conformers less than 1.0 A from native.

In addition to RMSD-based metrics, molecule:Compare can
also measure distance in the form of dihedral angle sums and
dihedral distance bins. For additional information, examine the
help menu options.

Largest Common Substructure Alignment
The BCL can be used to align small molecules according to their
MCS. Unlike most of the examples in this section, this is
accomplished ~ through  the  molecule:AlignToScaffold
application by passing three parameters:

bcl.exe molecule:AlignToScaffold <scaffold> <ensemble> <output>

For example, to align afatinib to gefitinib based on their MCS,
use the following command:

bclexe molecule:AlignToScaffold gefitinib. sdf.gz afatinib.
sdf.gz \
afatinib.ats.sdf.gz \

Instead of aligning by MCS, the user may also align the target
ensemble to the largest rigid component of the scaffold structure
by passing the align_rigid flag. Moreover, if the user wants to a
define an alternative set of atoms to be aligned instead of the
defaults, this can be accomplished by specifying those atoms for
each the scaffold and target ensemble with align_scaffold_atoms
and align_ensemble_atoms, respectively.

Property-Based Flexible Alignment

In addition to substructure-based alignment, we can also perform
property-based alignment. Property-based alignment algorithms
typically maximize the overlap or minimize the distance between
molecular and/or atomic properties (Sliwoski et al., 2014). We
have previously demonstrated that the performance of the BCL
property-based alignment algorithm, also referred to as BCL:
MolAlign, is on par with leading academic and commercial
molecular alignment algorithms (Brown et al., 2019).

BCL:MolAlign combines the conformational sampling ability
of BCL:Conf with the property framework described in Section 3
to minimize the property-distance between two molecules
through flexible superimposition. The property-distance is
computed between mutually-matching atom pairs that are
dynamically updated with each iteration. Alignment pose
sampling is accomplished through a series of moves that
traverse the co-space defined by the relative position of the
two molecules to one another (Brown et al, 2019). BCL:
MolAlign can be used to perform alignments which can be
classified as rigid (two molecules with fixed conformers), semi-
flexible (one molecule with a fixed conformer, one molecule
whose conformers are sampled), and fully-flexible (two
molecules whose conformers are sampled).

To demonstrate how BCL:MolAlign can be used to perform
each of these alignments, consider the classic problem of
obtaining the crystallographic alignment of methotrexate
(MTX) and dihydrofolic acid (DHF). This example is a good
one because the intuitive heterocyclic overlap is not the correct
one (Labute et al., 2001). Instead, alignment of the binding
pockets of dihydrofolate reductase (DHFR) co-crystallized with
MTX (PDB ID 1DLS) and DHF (PDB ID 1DHF) shows only
partial heterocycle overlap and superimposition of the
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Rigid
Alignment

X-ray

FIGURE 4 | Property-based alignment of dihydrofolic acid and methotrexate with BCL:MolAlign. (A) Superimposed crystallographic structures of dihydrofolic acid
(DHF; PDB ID 1DHF) and methotrexate (MTX; PDB ID 1DLS) in complex with dihydrofolate reductase (DHFR). (B) Rigid alignment of DHF and MTX starting from the
bioactive conformers from the crystal structures. (C) Flexible alignment of MTX (flexible) to DHF (rigid, bioactive conformer). (D) Fully flexible alignment of DHF and MTX.
DHF is colored white and MTX is colored wheat. MTX was randomly rotated and translated prior to rigid alignment to DHF. All flexible alignments performed using

generate_3D to remove bias from start coordinates.

Semi-flexible
Alignment

Fully-flexible
Alignment

heterocycle carbonyl in DHF and an aromatic hydrogen bond
accepting nitrogen in MTX (Figure 4A). Perform a rigid
alignment of MTX to DHF with the following command:

bcl.exe molecule:Compare mtx. perturbed.sdf.gz dhf. sdf.gz \
-add_h-neutralize \

-output mtx_dhf rigid rmsdx.output \

-logger File rigid_alignment.log -random_seed \

-method “PsiField \

(

output aligned mol a = mtx. rigid_aligned.sdf,

iterations = 1,000,

number outputs = 1

X

The rigid alignment ranks the correct alignment mode as the
top scoring alignment (Figure 4B). Rigid alignments are rarely
useful for drug discovery because the bioactive conformation of
the target small molecule is usually unknown; however, they
provide a useful check for alignment scoring functions. Next,
flexibly align MTX to the DHFR-binding pose of DHF:

bcl.exe molecule:Compare mtx. perturbed.sdf.gz dhf. sdf.gz \
-add_h-neutralize \

-output mtx_dhf rigid_rmsdx.output \

-logger File semi-flexible_alignment.log -random_seed \
-method “PsiFlexField

(

output_aligned_mol_a = mtx. semiflex_aligned.sdf,
rigid_mol_b = true,

number_flexible_trajectories = 3,

fraction_filtered_initially = 0.25,

fraction_filtered_iteratively = 0.50,

iterations = 400,

filter_iterations = 200,

refinement_iterations = 50,

conformer_pairs = 500,

number_outputs = 1,

sample_conformers = SampleConformations (
conformation_comparer = SymmetryRMSD,
generate_3D = 1,tolerance = 0.10,rotamer_library = cod,
max_iterations = 8,000,max_conformations = 50,
cluster = true)

Y

Here, we can see that BCL:MolAlign correctly determines the
alignment of the heterocycles, central aromatic rings, and
(partially) the acidic groups (Figure 4C). Note that
rigid_mol_b is enabled, which fixes the pose of the second
parameter molecule. For a detailed description of how each
argument modifies the alignment algorithm, see Brown et al.
(Brown et al., 2019). For performance considerations, we
generally find that the number of conformer pairs is more
critical to pose recovery than the numbers of iterations at each
stage. For complex ligands with many rotational bonds, we
recommend increasing max_conformations and
conformer_pairs.

Fully-flexible alignment is useful when one is trying to recover
pharmacophore features without knowing the binding pose of
either molecule. Here, the goal is to align pharmacophore features
of the molecules, not recover the native pose of the target
molecule(s) by aligning to another molecule with a known
binding mode. Perform a fully-flexible alignment of MTX
and DHF.
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bclexe molecule:Compare mtx. dhf.
perturbed.sdf.gz \

-add_h-neutralize \

-output mtx_dhf rigid_rmsdx.output \

-logger File fully-flexible_alignment.log \
-random_seed-scheduler PThread 8 \

-method “PsiFlexField \

(\

output_aligned_mol_a = mtx-dhf. fullflex_aligned.sdf, \
rigid_mol_b = false, \

number_flexible_trajectories = 5, \
fraction_filtered_initially = 0.25, \
fraction_filtered._iteratively = 0.50, \

iterations = 800, \

filter_iterations = 400, \

refinement_iterations = 100, \

conformer_pairs = 2,500, \

number_outputs = 1, \

sample_conformers = SampleConformations ( \
conformation_comparer = SymmetryRMSD, \
generate_3D = 1 tolerance = 0.10,rotamer_library = cod, \
max_iterations = 8,000,max_conformations = 50, \
cluster = true) \

)»

perturbed.sdf.gz

Fully-flexible alignment of MTX and DHF does not recover
the most native-like conformations of MTX and DHF; however, it
does recover correct alignments of the heterocycles, central
aromatic rings, and acidic groups (Figure 4D). Notice that we
increased the number of conformer pairs from 500 to 2,500 when
we went from semi-flexible to fully-flexible alignment.

FEATURE GENERATION

The descriptor application group is the workhorse for molecule
featurization. Similar to the molecule:Properties application, the
descriptor application group provides command-line access to
the internal descriptor framework. Unlike molecule, descriptor is
dataset centric; its primary purpose is to generate, manipulate,
and analyze feature datasets for QSAR/QSPR. In this section, we
will demonstrate core applications in descriptor and how they can
be utilized in QSAR/QSPR modeling.

Generating Simple Datasets From

Molecules
Four specifications are required to generate feature datasets from
small molecules:

1. The molecules for which to generate the features; these can be
any valid SDF.

The types of features to generate; these are properties such as
those described in Section 3. Typically, these are stored in a
separate file and passed to the command-line at run-time;
however, they can also be specified directly on the command-

The BCL Cheminformatics Toolkit

line. Importantly, combining multiple descriptors for feature
generation requires the use of the Combine descriptor.

3. The feature result label; this indicates the output(s) that
models will train toward. This can be a constant value
(i.e., if featurization is being done for some purpose other
than model training), a property (e.g., LogP for a QSPR
model), or another label (e.g., bioactivity label from
experimental data).

. The output filename; three output types are available. The BCL
has a partial binary format with the “.bin” suffix that is used for
all model training. Feature datasets can also be output with the
“csv” suffix for a comma-separated values (CSV) file.
Moreover, “.csv” files and “bin” files can be interconverted.
In this way, features generated with the BCL can be used by
other software, and vice versa. For inter-operability with Weka
software, “.arff” format is also supported, with a limitation of
only working with continuous variables.

Generate a simple feature dataset consisting of several scalar
descriptors for a set of confirmed active M1 Muscarinic Receptor
positive allosteric modulators (PAMs) and corresponding true
negatives (Butkiewicz et al., 2013). The SDF corresponding to
these compounds is 1798. combined.sdf. These molecules have
been labeled with the MDL property “IsActive” such that the
confirmed actives have a value of 1 and the negatives have a value
of 0.

bcl.exe descriptor:GenerateDataset \

-source “SdfFile (filename = 1798. combined.sdf)” —id_labels
“String (M1)” \

-result_labels “Combine (IsActive)” \
-feature_labels “Combine (Weight,
HbondAcceptor)” \

-output 1798. combined.scalars.bin

LogP,HbondDonor,

Binary files were designed for rapid non-consecutive reading
and writing, but the interested reader will find that the file format
consists of a textual header specifying the properties and their
sizes followed by a simple binary output of all features. Dataset
information and statistics can be obtained by calling descriptor:
GenerateDataset compare. For example:

bcl.exe descriptor:GenerateDataset—-compare 1798.
combined.scalars.bin

To better understand the binary file encodings, convert 1798.
combined.scalars.bin to a CSV file:

bcl.exe descriptor:GenerateDataset \
-source “Subset (filename = 1798. combined.scalars.bin)” \
-output 1798. combined.scalars.csv

The first column of every row contains the ID label “M1” as
specified when the binary file was generated. The next four
columns contain the descriptors specified above: Weight,
LogP, HbondDonor, and HbondAcceptor. The very last
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column is the result value, which contains either 0 or 1 depending
on the value in the SDF MDL property “IsActive”.
Convert CSV file back to a binary file:

bcl.exe descriptor:GenerateDataset \

-source “Csv(filename = 1798. combined.scalars.csv, number
result cols = 1, number id chars = 2)” \

-output 1798. combined.scalars.bin

CSV files do not contain all of the supplementary
information contained within the partial binary file format.
Thus, certain information needs to be provided directly. For
example, we need to specify the number of characters that
are part of the row ID label, otherwise the BCL will try to
convert the string (or numerical) ID into feature values. ID
labels therefore must be fixed-width. In addition, we need to
tell the BCL how many of the columns are result values. By
default, the BCL will assume that only the last column is
the result label. By specifying number result cols = N, we tell
the BCL to take the last N columns of the CSV as the result
value(s).

Also notice that the feature and result label information is not
informative after converting from CSV to binary. The values are
transferred to the new file format, but the BCL obviously cannot
know where those values came from. These must be manually
specified.

bcl.exe descriptor:GenerateDataset \

-source “Csv(filename = 1798. combined.scalars.csv, number
result cols = 1, number id chars = 2)” \
-id_labels “String (M1)” \

-result_labels “Combine (IsActive)” \
-feature_labels “Combine (Weight,
HbondAcceptor)” \

-output 1798. combined.scalars.bin

LogP,HbondDonor,

In this case, the feature labels are internal parsable properties
of the BCL; however, when relabeling feature labels upon
converting from CSV to binary format, the user can specify
any labels so long as the total number of labels is consistent
with the number of feature columns.

Modifying Datasets

After generating a dataset or importing a CSV file and converting
it to binary format, feature datasets can be modified. The most
frequent form of modification is randomization. Training a
machine learning model, for example a neural network, often
requires dataset randomization.

bcl.exe descriptor:GenerateDataset \
-source “Randomize [Subset (filename = 1798. combined.scalars.
bin)]” \

-output 1798. combined.scalars.rand.bin

Binary files are read by the “Subset” retriever. The Randomize
operator is passed through the source flag and provided the
dataset retriever option corresponding to the binary file.

The BCL Cheminformatics Toolkit

Additional dataset operators can be classified by how they
modify the dataset. For example, the PCA (principal components
analysis) and EncodeByModel operators perform dimensionality
reduction across feature (column) space, while the KMeans
operator reduces dimensionality across molecule (row) space.
Other operators are useful during model training and validation,
such as Balanced, Chunks, and YScramble. Still others can be
used to select particular ranges of rows from a dataset, such as
Rows. Here, we will take a look at a few dataset operators. For full
details on all available dataset operators, see the descriptor:
GenerateDataset help menu.

Start by generating a dataset for the Kir2.1 inward rectifying
potassium channel using the dataset compiled in Butkiewicz et al.
(Butkiewicz et al., 2013) and the best performing LB descriptor set
from Mendenhall and Meiler (Mendenhall and Meiler, 2016).
This dataset contains 301,493 small molecules, 172 of which are
confirmed active molecules. For each molecule, there will be 1,315
feature columns and 1 result column.

bcl.exe descriptor:GenerateDataset \
-source “SdfFile (filename 1843.
-scheduler PThread 8 \

-feature_labels MendenhallMeiler2015. Minimal.object \
-result_labels “Combine (IsActive)” \

—output 1843. Minimal.bin-logger File 1843. Minimal.log

combined.sdf.gz)”

Randomize the dataset:

bcl.exe descriptor:GenerateDataset \

-source “Randomize (Subset (filename = 1843. combined.bin))” \
-output 1843. combined.rand.bin-logger File 1843. Minimal.
rand.log

Note that we could have generated a randomized dataset with
a single command by wrapping the SdfFile dataset retriever with
Randomize; however, the Randomize dataset retriever is unable
to support hyperthreading. Consequently, it is faster to generate
larger datasets first using multiple threads and randomize them
afterward. Next, perform PCA on the dataset using OpenCL to
accelerate the calculation with a GPU. The flag opencl is optional
and may not be supported on all platforms, but may provide a
substantial speedup, depending on the GPU and dataset size:

bcl.exe descriptor:GeneratePCAEigenVectors \

-training “Subset (filename = 1843. Minimal.rand.bin)” \
-output_filename 1843. Minimal. PCs.dat-opencl \
-logger File 1843. Minimal.PCs.log

Finally, generate a new feature dataset accounting for 95% of
the variance:

bcl.exe descriptor:GenerateDataset \

-source “PCA(dataset = Subset (filename = 1843. Minimal.
rand.bin), fraction = 0.95, filename = 1843. Minimal.PCs.
dat)” \

-output 1843. Minimal.rand.pca_095. bin-opencl \

-logger File 1843. Minimal.rand.pca_095. log
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Performing PCA on the dataset has reduced the number of
descriptors from 1,315 to 695. Alternatively, one could use
EncodeByModel to reduce the number of feature columns
using a pre-generated model. The following example utilizes
pseudocode and a hypothetical pre-generated ANN with the
MendenhallMeiler2015. Minimal.object features.

bcl.exe descriptor:GenerateDataset/

-source “EncodeByModel [storage = File (directory = /path/to/
model/directory, prefix model),retriever Subset
(filename=<my_binary_file.bin>)]” \

-output < my_encoded_binary_file.bin>

The input file < my_binary_filebin > would have 1,315
descriptors from MendenhallMeiler2015. Minimal.object, and
the output file < my_encoded_binary_file.bin > would have a
number of descriptors corresponding to the number of neurons
in the final hidden layer preceding the output layer of our
hypothetical pre-generated ANN.

As a practical note, we have found that PCA-based
dimensionality reduction useful for dataset visualization, but of
limited value in improving model performance. Performance can
often be recovered to that of the initial dataset when requiring at
least 95% of the variance to be preserved, but performance
improvement is rare from PCA, when using a regularized
method such as dropout-ANNS.

Suppose you encoded the same original feature set using two
different models and now want to combine the new encoded files
for further training. This can readily be accomplished with the
Combine operator.

bcl.exe descriptor:GenerateDataset \

-source “Combined [Subset (filename=<my_binary_file_lI.
bin>), Subset (filename=<my_binary_file_2. bin>)]” \
-output < my_combined_binary_file.bin>

Next, instead of performing dimensionality reduction along
the column (features) axis, we will reduce the dimensionality
along the row (molecule) axis. Perform K-means clustering of the
feature dataset to reduce our row number from 301,493 to 300.

bcl.exe descriptor:GenerateDataset \

-source “KMeans [dataset Subset (filename
combined.rand.bin), clusters = 300]” \

-output 1843. combined.rand.k300. bin \

-logger File 1843. combined.rand.k300. log

1843.

This form of dimensionality reduction is unlikely to be as
useful for training a deep neural network (DNN); however, it can
be useful in similarity analysis in low dimensional feature space.
Some of the datasets generated in this section will be referenced
again in Section 7 to train classification machine learning models.

Small Molecule Autocorrelation Descriptors
As indicated in the previous section, the BCL can also compute
signed autocorrelation functions. Autocorrelations are regularly
used as features in cheminformatics machine learning models

The BCL Cheminformatics Toolkit

(Sliwoski et al., 2014). When computed for atomic descriptors,
such as Atom_SigmaCharge, the autocorrelations sum pairwise
property products into distance bins by calculating the separation
between molecule atom pairs in number of bonds (2DA) or
Euclidean distance (3DA). Each distance bin is further separated
into three sign-pair bins corresponding to property value sign of
each atom in the pair (Eq. 3) (Sliwoski et al., 2015).

A(rg,mp) = Z?Z?S(m <rij< rb)P,-Pj, (3)
where r, and ry, are the boundaries of the current distance interval,
N is the total number of atoms in the molecule, r(; ;) is the distance
between the two atoms being considered, § is the Kronecker delta,
and P is the property computed for each atom. 2DAs are
conformation-independent, while 3DAs are conformation-
dependent (Figure 5).

The “dasatinibs.sdf” file contains the coordinates and
connectivity for two dasatinib molecules: one with 2D
coordinates, the other with 3D coordinates. Compute the
signed 2DA and 3DA for Atom_SigmaCharge on both
dasatinib molecules.

bcl.exe descriptor:GenerateDataset \

—source “SdfFile (filename = dasatinibs.sdf)” \
-feature_labels “Combine (3daSmoothSign (property = Atom_
SigmaCharge))” \

-result_labels “Combine [Constant (999)]” -output dasatinibs.
3da.csv \

-logger File dasatinibs.3da.log

bcl.exe descriptor:GenerateDataset \

—source “SdfFile (filename = dasatinibs.sdf)” \
-feature_labels “Combine [2DASmoothSign (property = Atom_
SigmaCharge)]” \

-result_labels “Combine [Constant (999)]” -output dasatinibs.
2da.csv \

-logger File dasatinibs.2da.log

Upon examination of the tabulated 2DA and 3DA values for
the two different dasatinib molecules, we observe that the 2DA
contains the same values in both cases, while the 3DA contains
unique values for the different conformers. To visualize the
variance in each 3DA distance bin, we can tabulate the 3DAs
for Atom_SigmaCharge on an ensemble of 3D conformations for
several different molecules (Figure 6). Dasatinib is a TKI with 7
rotatable bonds, amprenavir is a HIV protease inhibitor with 12
rotatable bonds, AZD1283 is an antagonist of the P2Y12 receptor
with 9 rotatable bonds, and ethinyl estradiol is a synthetic
estradiol with only 1 rotatable bond that binds and activates
estrogen receptors.

We can see that the variance in each descriptor column
increases as a function of distance and number of rotatable
bonds. In ethinyl estradiol there is little change in descriptor
column variance as a function of distance. In contrast, molecules
with increasing numbers of rotatable bonds display increasingly
large variances at longer distance bins. This suggests that
increasing conformational heterogeneity at longer distance
bins leads to increased noise. Indeed, we have previously
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FIGURE 5 | lllustration of signed autocorrelation descriptors. Signed autocorrelations are the sums of products of each atom property pair (e.g., io,j2) in a distance
bin defined by (A) bond separation, or (B) Euclidean distance in 3D space. Within each distance bin, atom property pairs are further separated into bins corresponding to
the sign of the property of the first (left hand side of ‘/’) and second (right hand side of ‘/’) atoms in the pair.

S labels and store them as separate code object files. As
e e e e mentioned previously, the code object file format is the
gaussian=False,interpolate=True) same format as allowed on the command line.
03579 6 Dasatinib A
A Amprenavir A
030{ o AZD1283
% Ethinyl Estradiol N : MACHINE LEARNING ARCHITECTURES
0251 .« “s|  AND APPLICATIONS
A
g 0201 1 The BCL supports multiple machine learning algorithms for
£ 0154 4 N QSAR/QSPR modeling. Among the methods available are
> st | . ANNSs (including DNNs and multitasking neural networks)
0.10 4 4 (Dahl, 2014; Bharath et al., 2015; Mendenhall and Meiler,
2016; Xuetal., 2017), support vector machines (SVM) (Kawai
0.051 et al., 2008; Ma et al., 2008; Mariusz et al., 2009), Kohonen
0.00 1 networks (KN) (Kohonen, 1990; Korolev et al., 2003; Wang
| | | | ! | | | et al., 2005), restricted Boltzmann machines (RBM) (Le Roux
0 10 20 30 40 50 60 70 and Bengio, 2008; Tijmen Tieleman, 2008), and decision trees
Bin # (DT) (Mariusz et al., 2009; Sheridan, 2012; Butkiewicz et al.,
FIGURE 6 | Signed 3DA variance increases with bin distance in flexible 2013). GPU acceleration is available for ANNs and SVMs
molecules. The 3DA distance bins extend to 6.0 A at intervals of 0.25 A. At through OpenCL (Munshi, 2008). The primary application
each distance bin, there are three sign-pair bins (~/—, +/+, —/+). group for machine learning in the BCL is model. To see the

applications within model, check the help menu:

found that extending LB 3DAs beyond approximately 6.0 A
generally results in reduced performance on QSAR
classification tasks (Sliwoski et al., 2015), consistent with our
example here (Figure 6). Importantly, however, at shorter
distances where there is less conformational heterogeneity we  Qyerview of BioChemical Library Model

are able to improve our performance with 3DAs even when the .. - .

active conformation of the small molecule is unknown (Sliwoski -I-I;:'rae,":::‘gnllagrg Xg!:gg:lg? user to the overall workflow

et al., 2015; Mendenhall and Meiler, 2016). Moreover, models . . .. . .
involved in training, analyzing, and subsequently testing BCL

making predictions on molecules that are fairly rigid (e.g., steroid ) . . L
ng P V116 ( 5 machine learning models. The basic workflow for model training
derivatives) may benefit from longer range distance bins. . . .
is the same for each machine learning method and can be

It is also possible to use molecule:Properties to tabulate and . . T
P P completed via the model:Train application. To see the

compute statistics for molecules instead of plotting the CSV . . . .
. available machine learning methods, access the help options
file data from descriptor:GenerateDataset. Here, we used s .
within model:Train.

descriptor:GenerateDataset to illustrate its usage. In
practice, we do not just use a single 3DA or 2DA, but
instead build sets of descriptors for feature and result

bcl.exe model:Help

bcl.exe model:Train --help
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TABLE 3 | Machine learning model types.
Model Name

Applicability Domain Kohonen

Applicability Measure Kohonen

The BCL Cheminformatics Toolkit

Description

A Kohonen map-based implementation to detect whether a point is within the applicability domain of a model. All nodes will
use the same spline for computing applicability. This implies an assumption that the model in question has the most difficulty
predicting things far from any node center, regardless of which node center it is

A Kohonen map-based implementation to detect whether a point is within the applicability domain of a model. All nodes will
have their own distance metric, which is valid if the model is capable of distinguishing between classes of features (e.g., if the

model in question is a Kohonen map itself)

Decision Tree

Kappa Nearest Neighbor
Kohonen
Leverage

A decision tree trained using one of several methods to partition feature indices

A k-nearest-neighbor predictor; iteration optimizes k
A Kohonen-network based predictor
Computes the leverage matrix (projection or hat matrix), which allows identification of significant outliers that would likely

substantially influence any simple linear model of system. A returned value >2 represents probable outliers, while greater
than 3 represent definitive outliers. The average value is 1 for all values in the training set

Linear Regression
Multiple Output Support Vector Machine
Neural Network

Performs multiple linear regression
A support vector machine with multiple outputs using sequential-minimal-optimization
A neural network with many customizable hyperparameters (e.g., hidden layer count, layer size, dropout type and fraction,

transfer function, initialization with pre-generated models, learning rate, weight update/backpropagation scheme, etc.)

Restricted Boltzmann Machine
Support Vector Machine

As of this writing, the available model types can be found in
Table 3. The most reliable way to see available model types is via
the help menu options of your version of the BCL.

To expose all options for a particular machine learning
method, pass the algorithm name as the first parameter to the
application with the help menu request:

bcl.exe model:Train “<training algorithm>(help)”

The following is a typical command-line format to train a
model beginning with a pre-generated descriptor binary file:

bcl.exe model:Train < training algorithm> \

-max_minutes < maximum time of training in minutes> \
-max_iterations < maximum number of training iterations> \
-final_objective_function < performance metrics for model
evaluation> \

-feature_labels < names of descriptors> \

-training < training set> \

-monitoring < monitoring set> \

-independent < independent set> \

-storage_model < location in which to store the model> \
-opencl < enables GPU acceleration> \

-logger File < log file>

Model performance is evaluated with the user-specified
objective function. The choice of objective function is typically
related to the task being performed (e.g., classification vs
regression) (Table 4).

BCL model:Train is designed to readily enable cross-
validation. The application is flexible with respect to
serialization of model predictions for each of the monitoring,
independent, and training partitions as well as writing of
the model itself. For example, in five-fold cross-validation, the
dataset is split into five chunks. For each round of cross-

A restricted Boltzmann machine neural network
A support vector machine trained using sequential-minimal-optimization

validation, the model is trained on four-fifths of the dataset,
and the other fifth “independent” set is left out for testing. One of
the chunks can additionally be specified as the monitoring
dataset. The monitoring dataset can be used for -early
termination of the model training session to prevent
overtraining (early termination is largely deprecated in favor
of dropout to prevent earlier termination; we demonstrate it
here to illustrate the syntax).

The initial dataset set is split into monitoring,
independent, and training partitions with model:Train by
assigning chunks with the dataset retriever responsible for
binary format files, Subset. In the following pseudocode
example, we will set the options to divide the training set
into the following five chunks (0-indexed): chunks one to four
will be used as the training set, and chunk 0 will be used as
both the monitoring set and the independent set (this is
appropriate only if the monitoring dataset is not being
used for early termination).

-training “Subset (number chunks = 5,chunks = [1, 4],
filename=<my_dataset.bin>)”

-monitoring “Subset (number chunks = 5,chunks =
filename=<my_dataset.bin>)”

-independent “Subset (number chunks = 5,chunks
filename=<my_dataset.bin>)”

[0],

= [0],

Dataset partitioning is repeated for each round of cross-
validation until each chunk takes a turn as the independent
set. Then, the predictions of all the test sets are pooled
together by the model:PredictionMerge application:

bcl.exe model:PredictionMerge \
-input_model_storage ‘File (directory =
,prefix = model)’ \

-output < output_pooled_predictions>

/path/to/models/
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TABLE 4 | Objective functions for machine learning models.

Name

Accuracy
AUC (Area under the receiver operating characteristic curve)

LogAUC

MCC (Matthew’s correlation coefficient)
PPV (Positive predictive value)
Enrichment factor

MAE (Mean absolute error)

MAE_NMAD (MAE normalized by the mean absolute deviation)

RMSD (Root-mean-square deviation)

NRMSD (RMSD normalized by the range)
RMSD_NSTD (RMSD normalized by the standard deviation)

This command line averages predictions made on the same
independent set, though other pooling operations are available
(see help). Prediction performance is evaluated with the specified
objective function on the pooled predictions using the model:
ComputeStatistics application:

bcl.exe model:ComputeStatistics \

-input < output_pooled_predictions> \

-obj_function < performance_metric> \
-filename_obj_function < output_performance_metric_file>

Simplifying the Model Training and
Validation Framework in Practice
To simplify model training, we have written a Python script
“launch.py” to perform training and cross-validation with one
command.

To see a list of model training operations (descriptor selection
or scoring, for example):

/path/to/bcl/scripts/machine_learning/launch.py-h
To see the list of available flags for cross-validation, call

/path/to/bcl/scripts/machine_learning/launch.py-t
validation-h

Cross-

The following pseudocode example generates a simple linear
regression model:
/path/to/bcl/scripts/machine_learning/launch.py -t
validation \
--cross-validation 5 --local \
--learning-method LinearRegression (objective function
RMSD, \

Cross-

The BCL Cheminformatics Toolkit

Prediction task Formula
ot _ IP+IN
Classification Accuracy = “5ii
Classification TPR = 5t
FPR = i
AUC = [ TPRA(FPR)
Classification j‘” TPR d (log (FPR))
IogAUC = Jesgs —— 7
| 0, /009 (FPR)
P _ TP+ TN-FP+FN
Classification MCC = sy kP
Classification PPV = -IE
o . PPV (x%.
Classification EF (x%) = st
Regression N
MAE = S If () - il
!
Regression MAEmap = —MAE_
aY Wiyl
Regression N 2
RMSD = \[1 3. (f (x) - /)
1
' _ S|
Regression NRMSD = =MD
Regression RMSD_NSTD = S0

Stdev (y)

solver = Cholesky (smoothing = 0)) \
--id linear_regression --final-objective-function RMSD \
--datasets < my_dataset.bin > --override-memory-multiplier: 1.25

More complex commands can be easily prepared inside of
a configuration file to be passed to the “launch.py” script. A
sample configuration file is available in the Supplementary
Material.

bcl/trunk/scripts/machine_learning/launch.py-t
cross_validation \
--config-file config. example.ini

The “launch.py” script will automatically generate three
new directories titled “log_files”, “results”, and “models”. Into
each of those three directories a labeled directory (name
specified with the id flag) is made. Model prediction output
files and results of the final objective function are stored in
the labeled directory within the “results” folder. Log files,
commands, and autogenerated scripts are stored in the
labeled directory within the “log_files” folder. Finally, final
model details are stored in the labeled directory within the
“models” folder.

In addition to running the training jobs locally, training can be
run on a SLURM cluster using the slurm flag. In this way, large
cross-validation jobs may leverage high-performance computing
with minimal changes to the configuration. See additional
configuration operations, such as slurm-host, using launch.
py-t cross-validation-h.

Applying Models to Independent Test Sets
for Virtual High-Throughput Screening

Note that in the above examples the training and test splits are
derived from the same binary format file. This is not strictly
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necessary, and the user can supply alternatively derived
validation splits prepared in separate files. Moreover, using
a dataset split as the independent test set is generally only
useful for model validation. To apply trained model
predictions to new molecules in a VHTS, either model:Test
or molecule:Properties can be used. For example, if a model is
trained and validated using five-fold cross-validation, then the
merged prediction on an external test set can be made as
follows with model:Test:

bcl.exe model:Test \

-retrieve_dataset “Subset (filename=<vHTS.test.bin>)” \
-storage_model “File (directory = /path/to/models/,prefix =
model)” \

-average output < vHTS.model test.csv> -logger File <
vHTS.model_test.log>

Likewise, predictions can be made with molecule:Properties
using the Prediction operators:

bcl.exe molecule:Properties-input_filenames < vHTS.test.sdf> \
—tabulate \

“Define {predicted_activity = PredictionMean [storage = File
(directory = /path/to/models/,prefix = model)])}” predicted_activity \
“Define {local_ppv PredictionInfo [predictor = File
(directory /path/to/models/,prefix model),metrics
(LocalPPV)]}” local_ppv \

“Define {XActive = Multiply [predicted_activity, Greater (lhs
= local_ppv,rhs = 0.50)]}” XActive \

-output_table < vHTS.prop.test.csv > -logger File < vHTS.prop.
testlog>

Notice that scoring new compounds via molecule:Properties
allows multiple outcome metrics to be reported and modified on-
the-fly, while scoring with model:Test just outputs the raw
prediction values (and optionally just the mean with average).
In this case, the output of model:Test is equivalent to
“predicted_activity” from molecule:Properties. The property
“XActive” is the “predicted_activity” score when the local PPV
is greater than 0.5, and 0.0 otherwise. The localPPV metric
calibrates model output values to local classification
probability on the test sets. It is an estimate of the PPV at a
singular model output value. This is in contrast to traditional
PPV, which specifies the value of a prediction at, or above, a given
output value (assuming positive parity). This metric assumes that
the trained model prediction value varies monotonically with the
actual prediction likelihood.

Supervised Learning

Training a Standard Artificial Neural Network to
Classify Kir2.1 Positive Allosteric Modulators

ANNSs are one of the most commonly employed classes of non-
linear classifiers in QSAR modeling for LB-CADD due to their
strong predictive power (Dahl, 2014; Xu et al., 2017; Vamathevan
etal., 2019). To see all the options available to a neural network in
the BCL, call

The BCL Cheminformatics Toolkit

bcl.exe model:Train “NeuralNetwork (help)”

The BCL supports shallow and deep single- and multi-tasking
neural networks. Transfer functions include linear, sigmoid,
rectified linear, and leaky rectified linear. For a network with L
hidden layers indexed [ € (1...L), forward propagation for
le(0...L—1) can be described as

z(l+1) — w(l+1)yl + b(l+1)’

y(l+1) — f(z(l+1))

where y is the output vector at layer / connected to the input
vector z*V at layer I+1 by weights w and biases b, and f is the
transfer function applied to each set of inputs into the I+1 layer.
Correspondingly, the activation of a single neuron i in hidden
layer I+1 can be represented as

(4)
®)

(I+1) (I+1) 1 (I+1)
i wi oy b,

— f(zi(l+l))

to yield the output yi(l“) from layer I+1. We have found that for
classical QSAR tasks a simple mean-squared error (MSE) cost
function is adequate.

Historically, overtraining in ANNs has been prevented by
early termination of training when the monitoring dataset
improvement rate or improvement scores fail to progress
beyond a pre-determined extent. More recently, we have
demonstrated that dropout is a better alternative to prevent
model overtraining in QSAR tasks (Mendenhall and Meiler,
2016). The dropout approach has been described elsewhere in
detail (Nitish et al., 2014). Briefly, during forward propagation
each layer of the ANN is assigned a probability p according to
which the output value y! of each i neuron in the layer 1 will be
independently set to zero (i.e., “dropped”).

Zi(lﬂ) — W(l+1)(1‘l*yl) +bi(l+1)’

(6)
™)

z

(I+1)
Yi

®)

Here, r' is a vector with the same dimensions as y' whose

values are either 0 (at fraction p) or 1 (at fraction 1—p) and
multiplied elementwise by the values in 3'. At the end of every
training batch, r' is shuffled. If neurons are dropped with a
probability p, then at test time the corresponding weights are
scaled down by the factor 1—p.

Train a shallow (single hidden layer) neural network to classify
molecules as either active or inactive PAMs of Kir2.1 beginning
with the randomized dataset we generated in Section 6.2:

launch.py -t cross-validation --local \
--datasets 1843. combined.rand.bin --id 1843. ann.1x32_005_025 \
--config-file config. example.ann.ini \

The configuration file specifies the learning method as follows:

learning-method: ‘NeuralNetwork ( \

transfer function = Sigmoid, \

weight update = Simple (alpha = 0.50,eta = 0.05), \
dropout (0.05,0.25), \
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objective function = % (objective-function)s, \

scaling = AveStd, steps per update = 1, hidden architecture (32), \
balance = True, balance target ratio = 0.10, \

shuffle = True, input dropout type = Zero \

y

Note that we are asking for an ANN with one hidden layer
composed of 32 neurons. The input and hidden layers will have 5
and 25% dropout, respectively. In addition, we have enabled class
balancing. We have far fewer active (172) than inactive (301,321)
compounds. Balancing oversamples the underrepresented
(minor) class to achieve a ratio of (in this case) 0.10 with the
most common class (major). The balance max repeats flag can
also be set to specify the maximum number of times that a feature
can be repeated. This does not lead to overtraining because of
dropout. Batch size is controlled with the steps per update flag.
The objective-function variable is defined in the configuration
file as

“AucRocCurve (cutoff = 0.5,parity = 1,x_axis_log = 1, min fpr
= 0.001, max fpr = 0.1)”

Additional variables, such as the maximum number of
training iterations (20), number of rounds of cross-validation
(5), monitoring dataset (independent set), etc. are also set in the
configuration file.

As a comparison, train an additional ANN with the same
parameters using the feature set whose dimensions were reduced
with PCA in Section 6.2:

launch.py -t cross-validation --local \
--datasets 1843. combined.rand.pca_095. bin \
--id 1843. pca_095. ann.1x32_005_025 \
--config-file config. example.ann.ini \

The “launch.py” pipeline automatically generates a ROC curve
for each model with and without a log scaled x-axis (Figure 7).
The overall AUC is quite similar between the two methods
(Figures 7B,D); however, the model trained with the PCA
descriptors has worse early enrichment (logAUC = 0.39) than
the model trained with the full descriptors (logAUC = 0.46)
(Figures 7A,C).

Training a Deep, Multitasking Neural Network to
Predict Solubility
Predicting physicochemical properties such as solubility is a
challenging but critical component of lead compound
optimization. Many substitutions to a candidate molecule may
increase the potency or selectivity, but at the cost of worsening
solubility, metabolic stability, or other properties. Therefore, it is
advantageous to prioritize synthesis and evaluation of derivatives
that are simultaneously predicted to be active and have a
promising chemical profile. To do this, we need a target-
agnostic QSPR model.

Dahl and colleagues demonstrated that multitask learning
could improve the prediction of multiple outputs
simultaneously if the training tasks are correlated (Dahl, 2014;
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Xu et al,, 2017). As an example of how such a model is trained
with the BCL, we will train a deep neural network to
simultaneously predict three measures relating to solubility:
the water-octanol partition coefficient (logP), the aqueous
solubility (logS), and the hydration free energy (i.e., the
solvation free energy in water; AGpydration)- Note that not the
descriptors, model architecture, nor hyper-parameters have been
optimized for performance. This can be seen as an “out of the
box” model a user might create.

Molecules for training and validation are sourced from
previously  published  databases  (Syracuse  Research
Corporation, 1994; Edward W.; Lowe et al., 2011; Mobley and
Guthrie, 2014; Wu et al., 2018) and combined with BCL molecule:
Unique to remove redundant compounds (see Supplementary
Methods for details). Note that we anticipate some additional
error in predictions introduced by not averaging replicate
experimental measurements of QSPR properties prior to
removing redundancy. Generate three datasets: One with all of
the unique compounds (Full), another that contains only those
compounds with all three result labels (Dense), and one that
contains all of the compounds minus those with all three result
labels (Full-Dense). The following command generates the
feature set for all of the compounds with three result labels
encoded by MDL property labels:

bcl.exe descriptor:GenerateDataset \

-source “SdfFile (filename = all_logp_logs_dgsolv.sdf.gz)” \
-feature_labels VuMendenhallMeiler2019. Scalar_Mol2D.object \
-result_labels “Combine (LogP_actual, LogS_actual,dG_hydration_
kcal-mol)” \

-output all_logp_logs_dgsolv.Scalar_Mol2D.bin \

-logger File all_logp_logs_dgsolv.Scalar_Mol2D.log \
-scheduler PThread 8 —compare

To  generate  the  Dense  feature  set, add
the-forbid_incomplete_records flag. The two binary format
files should contain 35,874 and 448 rows, respectively, and the
third dataset should contain the difference between them, 35,426.
The distribution of result values overlaps reasonably well between
the Full and Dense datasets, with the exception of the LogS
distributions (Figure 8).

Randomize the datasets before training the model. The
configuration file config. exmple.mdnn.ini sets up the neural
network architecture:

learning-method: “NeuralNetwork ( \

transfer function = Rectifier (0.05), \

weight update = Simple (alpha = 0.50,eta = 0.005), \
dropout (0.05,0.25, 0.05), \

objective function = % (objective-function)s, \

scaling = AveStd, steps per update = 10, hidden architecture
(128,32), \

balance = False, shuffle = True, input dropout type = Zero \
)

Note that our network contains 2 hidden layers with 128 and
32 neurons, respectively, with 5% dropout on the input layer, 25%
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FIGURE 7 | ROC curve comparison Kir2.1 activity prediction models with different descriptors. Models were trained with either (A,B) the Minimal dataset containing
959 non-redundant standard LB descriptors (see Supplemental Data) on alog10 (A) or linear (B) x-axis, or PCA-modified LB descriptors accounting for 95% variance on
a log10 (C) or linear (D) x-axis.

dropout on the first hidden layer, and 5% dropout on the second
hidden layer. Our objective function will be MAE_NMAD since
this is a regression task. We will perform five-fold cross validation
(specified in the configuration file). Train the network:

launch.py -t cross-validation --local \

--datasets all_logp_logs_dgsolv.Scalar_Mol2D.rand.bin \

--id all_logp_logs_dgsolv.Scalar_Mol2D.2x256-32_005_025_005 \
--config-file config. example.mdnn.ini --just-submit

The just-submit flag sends the process to the background.
Train the dense network as well; it should take less time since
there are relatively few examples in the training sets. Check the
log_merge.txt file in the corresponding “log_files” subdirectory to
view the final objective function for each of the three result labels
(Table 5).

In cases where the training set has small deviation from the
mean value, MAE will be lower, which can be misleading. To

address this, we normalize MAE by MAD. Here, we see that the
model trained on the Dense set of features learned LogP the best.
However, this may be an artifact of the reduced training space. If
we were to evaluate whether the Dense model was able to
extrapolate beyond the very small training set, we would
almost certainly see worse performance.

To illustrate this, evaluate the predictive power of our
Dense model on molecules in our Full-Dense training set,
and vice versa. This can be accomplished using either model:
Test or molecule:Properties as described in Section 7.1. The
results of this analysis are in Table 6. The model trained on
the Full-Dense set does a good job predicting the QSPR
properties for the Dense molecule set, achieving Pearson
correlation coefficients between 0.82 and 0.99 for the three
tasks. We see that the values we obtained in the internal
random-split 5-fold cross validation (Table 5) agree with
those obtained on the Dense set predictions (Table 6). In
contrast, despite having the best five-fold cross-validation
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FIGURE 8| Result value overlap between the Full and Dense datasets. Density normalized histograms of LogP, LogS, and AGrygration between the Full (35874 total,
35113 LogP, 20721 LogsS, 1,339 AGhyqration; gray) and Dense (448 total for all values; green) datasets.

TABLE 5 | Five-fold cross validation results for multitask modeling of solubility prediction. These table values are automatically calculated and output in the log_merge.txt file
in the corresponding subdirectory of the autogenerated “log_files” directory. The Full set consisted of 35,874 molecules (with 35113 LogP, 20721 LogS, and 1,339
AGygration result labels). The Dense set consisted of 448 molecules (with 448 LogP, 448 LogS, and 448 AGiyqration result labels). The Ful-Dense set contained 35,428
molecules (with 34665 LogP, 20273 LogS, and 891 AGhygration result labels).

QSPR Prediction

LogP LogS AGhydration

Analysis Metric MAE MAD MAE/MAD MAE MAD MAE/MAD MAE MAD MAE/MAD

Model Feature Set Full 0.61 0.95 0.64 0.21 1.51 0.14 1.64 3.62 0.45
Dense 0.20 0.68 0.29 0.24 1.51 0.16 1.53 3.58 0.43
Full—Dense 0.51 0.97 0.53 0.23 1.51 0.15 2.03 3.85 0.53

performance (Table 5), the model trained on the Dense  Training a Decision Tree

feature set performs extremely poorly at predicting DT isatree-based machine learning algorithm that partitions

quantitative QSPR properties of the Full-Dense molecule  the dataset into smaller subsets as it develops. A DT starts

set (Table 6). from a root node, branches out to internal nodes, and ends at
Taken together, these data suggest that there is likely a  leaf nodes. To see the different options of a decision tree, call

significant fraction of molecules in the Full-Dense set that

occupy an area of feature space not represented in the 448 bcl.exe model:Train “DecisionTree (help)”
molecule Dense set. This is a good example that internal
randomized cross-validation on a small training set is not an The default option of the decision method chooses the features

accurate predictor of external test set performance unless the  for data splitting with the maximum information gain, and its
external test set is within a similar domain of applicability =~ prediction performance is scored by accuracy.

(Tetko et al., 2008; Sheridan, 2012). Applicability domains in

the BCL will be discussed in more detail in Section 7.5. learning-method: DecisionTree ( \
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TABLE 6 | QSPR external test-set predictions. Results of predicting QSPR properties on the Dense dataset with the model trained on the Full-Dense feature set, and results
of predicting QSPR properties on the Full-Dense dataset with the model trained on the Dense feature set. The table is organized such that the values indicate the
performance of the model trained with the indicated set of descriptors on the alternate test set. The Dense set consisted of 448 molecules (with 448 LogP, 448 LogS, and
448 AGhyaration result labels). The Full-Dense set contained 35,428 molecules (with 34665 LogP, 20273 LogS, and 891 AGhydration result labels).

Model Feature Set

Full—Dense Dense
QSPR Prediction LogP LogS AGhydration LogP LogS AGhydration
Analysis Metric MAE 0.94 0.27 1.71 580.32 65.18 30.03
MAE/MAD 1.37 0.18 0.48 599.81 43.20 7.80
R 0.88 0.99 0.82 0.00 -0.11 -0.05
p 0.89 0.99 0.88 0.48 0.88 0.75

objective function = Accuracy, \
partitioner = InformationGain, \
Activity cutoff = 0.5, \

nodes core = SplitRating, \

min split = 0\

)

There are two factors that determine the order of features and
their corresponding splitting values in dataset partitioning in a
decision tree: partitioners and node scores. Four types of
partitioners are currently implemented in the BCL:
InformationGain, Gini, ROC, and Sequence. The first three
options rate the feature to split the dataset by information
gain, Gini index, and area under the curve of the local ROC
curves (Ferri et al., 2002), respectively. The last option only allows
splits that result in at least one pure node.

While the partitioner determines how to calculate the split
rating of different configurations of dataset partition, the node
score type dictates how to rank different combinations of
feature order and their corresponding splitting values. Four
types of node scores are currently implemented in the BCL:
split rating (SplitRating), number of correct predictions before
splitting (InitialNumIncorrect), split rating times initial
number of correct predictions
(RatingTimesInitialNumIncorrect), and sum of number of
incorrect predictions before and after data splitting
(InitialIncorrectPlusFinalCorrect). The users can also
control the minimum number of incorrect classifications of
a node by assigning a value to the min split flag.

A DT was employed in Section 3.4 to classify small molecules’
potential for hit optimization. The BCL can convert DTs into
descriptor files that can be used to help defined new properties.
For more details, see Section 3.4.

Unsupervised Learning

Adjusting Tunable Parameters in a

Self-Organizing Map

A self-organizing map (SOM), also commonly referred to as a
Kohonen map, is an unsupervised learning method that is
commonly used in clustering and dimensionality reduction.
The SOM produces a low-dimensional (typically one to two
dimensions), discretized representation of the input space of
the training samples, called a map. This method applies

competitive learning to reach a solution, as opposed to
conventional feed-forward neural networks, which utilize
error-correction learning. To see the options available to a
Kohonen map model, call

bcl.exe model:Train “Kohonen (help)”

Here is the typical configuration file setup to build a Kohonen
map model:

learning-method: Kohonen (

shuffle = True, scaling = AveStd, map dimensions = (10, 10), \

steps per update = O,radius = 7.5, length = 140, Neighbor

kernel = Bubble, \

Initializer = RandomlyChosenVectors, cutoff = 0.5, objective

function = RMSD \

)

Before training a Kohonen map, users may shuffle the
training set (shuffle = True). Similar to the ANNs, there
are two options for scaling the input: AveStd and MinMax.
The former works best when the input descriptors are
continuous, and the latter is ideal for sparse and/or
discretized input data. Regarding the configuration of the
SOM, the map dimensions option dictates the number of
nodes, or neurons, in each direction of the map. Setting the
steps per update flag (i.e., batch size) to 0 indicates that all
training rows will be used for each iteration.

The initial radius of the neighborhood function, radius, is the
maximum distance between the neighbor neuron and the best
matching unit (BMU). Increasing the radius generally increases
model quality at the expense of training time. In our experience,
diminishing returns are met when the radius approaches 1/3 to 1/2
the total distance of the map. The number of iterations it takes for the
radius to decrease to 0 in the given neighbor kernel function is given
by length. The radius of the neighborhood is gradually reduced as the
number of the iterations t increases, such that by 4+#length the
original radius is reduced to size 0:

radius,.; = radius,()(l

t+1 )
4 x length )

Each iteration, the neurons compete by measuring their
distances to the input dataset. The neuron j, with associated

Frontiers in Pharmacology | www.frontiersin.org 136

February 2022 | Volume 13 | Article 833099


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Brown et al.

weight vector w, with the lowest distance d to the randomly
selected input vector x is the winner.

dj(x) = Z (-xi - wji)z:

i

(10)

Iterations proceed for the entire batch size prior to updating
neuron weights. The next step is updating the weights within the
neighborhood of the winning node. There are two options for the
neighbor kernel function: Bubble and Gaussian. The new weights
are updated as

wi' = wj; + oc;Bj(xf - wﬁj), (11)
where the { is 0.8 for the wining node and 0.2 for other nodes in
the neighborhood and learning rate a is ex p (—{4istance Lo winner)
for the Gaussian kernel and 1 for the Bubble kernel. The Bubble
kernel keeps the learning rate constant inside the neighborhood,
while the Gaussian kernel reduces the learning rates for more
distant nodes, at a substantial performance cost.

Finally, users can select one of the objective functions
mentioned above to evaluate the prediction performance of
the model. At test time, the model will assign an AD score for
each external compound. This AD score is the normalized
distance of that compound to the closest node of the training
set. For instance, a tested molecule with an AD score of 0.90 is
further from the closest node than 90% of other molecules in the
training set. In other words, that molecule’s feature space was not

so well-represented in the training dataset.

Training a Self-Organizing Map Druglikeness
Applicability Domain

We will use the BCL to build class-specific druglikeness
applicability domain (AD) models from the structures of
FDA approved drugs: 58 opioid receptor modulators and 82
kinase inhibitors (Wishart et al., 2018). From each set of
molecules, 5 molecules are randomly removed from the
training set for external validation. Training occurs on the
remaining molecules. The AD models will be used to
measure the similarity between external compounds and a
“typical drug” targeting opioid receptors or kinases. Generate
a configuration file for the AD called AD. config containing the
following:

learning-method: “ApplicabilityDomainKohonen ( \

shuffle = 0, map dimensions (% (cluster_num)s), steps per
update = 0, \

length = 140, radius = 7.5, neighbor kernel = Bubble, \
initializer = RandomlyChosenVectors, scaling = AveStd, cutoff
=0.5,\

share distance metric = True

Y

Note that the map dimensions are set by the cluster_num flag
in the training command. Generate feature set for each molecule
file using descriptor:GenerateDataset. Train the kinase set AD
model:

The BCL Cheminformatics Toolkit
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FIGURE 9 | Applicability domain models differentiate molecular

structures targeting unique proteins. Each box plot represents AD scores of
five drugs that target either kinases or opioid receptors. AD models trained on
kinase and opioid training datasets are colored in red (legend: kinaseAD)

and blue (legend: opioidAD), respectively.

launch.py -t cross_validation --config-file AD. config \
--datasets kinase. train.Scalar_ UMol2D.bin \
--id kinase. Scalar_UMol2D.AD --max-iterations 200 \
--local --no-cross-validation --cluster_num 5

Afterward, train the opioid receptor set AD model. Next,
we can evaluate the test sets with each AD model, beginning
with the kinase inhibitor test set with the kinase inhibitor AD
model:

bcl.exe model:Test -retrieve_dataset \

“SdfFile (filename = kinase.test.sdf.gz)” \

-storage_model \

“File (directory = ./models/kinase_mol2d_scalar_AD, prefix =
model)” \

-output kinase_kinaseAD.test.out

The AD scores are listed in the output data file. The first two
lines are the format name, and the dimension of the data table.
The AD scores of five test compounds are stored in the second
columns of the last 5 lines. We can see that our test set
compounds from the FDA approved kinase inhibitor list have
a shorter AD distance than our molecules in the opioid receptor
test set, and vice versa (Figure 9). These scores represent the
distance of each test compound to the feature space occupied by
the training set FDA approved kinase inhibitors. In other words,
they tell us how far we are from drug-like feature space for this
group of inhibitors. The output AD scores are summarized in
Figure 9.

DRUG DESIGN

Up to this point we have demonstrated vHTS predictions on pre-
existing external datasets. Screening external datasets can be very
valuable because of the ever-increasing number and availability of
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FIGURE 10 | Multicomponent reaction-based design of dopamine receptor D4 antagonist candidates. (A) The 4-component split-Ugi reaction utilizing a piperazine

as the diamine. Hydrogen atoms are represented implicitly. Atom numbers correspond to mappings between reactant and product atoms. The density of molecules
generated with respect to (B) the predicted activity local PPV for each classification result label, (C) number of hydrogen bond donors, hydrogen bond acceptors, or
rotatable bonds, (D) topological polar surface area, and (E) the computed logP. LogP estimates are computed using the Full neural network from Section 7.4
(XLogP; gray), the property-based cLogP approach from Xing and Glen, 2002 (Xing and Glen, 2002), and the atom-based cLogP approach from Mannhold et al., 2008
(Mannhold and Van de Waterbeemd, 2001). (F) Density of generated molecules with respect to synthetic accessibility score (x-axis) and predicted dopamine receptor D4
antagonist activity (local PPV for 100 nM classification; y-axis). The 2D histogram density is log10-scaled. (G) Structural representation of six randomly selected
molecules from a sample of 198 designs that had local PPV values greater than or equal to 0.80 for predicted activity at 100 nM.
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public, commercial, and institutional small molecule repositories.
Nevertheless, it is also frequently the case that computation can
be applied to assist specific medicinal chemistry projects. For
example, in silico drug design can conceivably be utilized for
library design, hit explosion, or scaffold hopping. Here, we will
demonstrate how to perform multicomponent reaction (MCR)-
based drug design with the BCL.

Defining Reaction Files for Drug Design
Reaction-based drug design in the BCL proceeds according to user-
defined MDL RXN (.rxn) files. There are a number of predefined
reactions located in bcl/rotamer_library/functional reactions.
Reactions can be single-component intramolecular reactions, or
multi-component intermolecular reactions of up to four unique
reagents. Reactants must have their atoms mapped to corresponding
atoms in the product(s). Atom mapping is required for substituents
on the input reagents to be merged with the product(s).

The reaction design framework functions in part by performing
substructure comparisons of candidate reagents to reactant structures
drawn in the RXN file. Substructure matching occurs at a resolution of
ElementType for atoms and BondOrderOrAromatic for bonds. If
there are candidate reagents that collectively can match all reactant

positions in a reaction, then the reaction can proceed. Note that unlike
input SDFs for molecule files, aromaticity must be shown explicitly in
the RXN file to be interpreted. Also note that reactant matching will
only match hydrogen atoms if they are drawn explicitly.

Executing Reaction Design

In this example, we will generate products according to a 4-
component split-Ugi reaction utilizing piperazine as the diamine
scaffold in all designs (Figure 10A).

bcl.exe molecule:React \

-starting_fragments piperazine. sdf -reagents reagents_le_20. sdf \
-reactions./rxns_dir/ -routine Random -repeats 9 -
ligand_based \

-fix_geometry -fix_ring_geometry -extend_adjacent_atoms 2 \
-output_filename ugi_products.sdf -logger File ugi_reaction.log
The individual molecule fragments passed via
starting fragments are treated as required reaction
compon