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Editorial on the Research Topic

Current advances in precision microscopy

The field of precision microscopy has undergone a transformative evolution, driven

by the integration of advanced imaging techniques, multiplex staining methods, as

well as the application of computer vision techniques in artificial intelligence (AI) for

image analysis. These innovations are not only enhancing our ability to visualize and

analyze biological samples with unprecedented precision but are also paving the way

for significant advancements in personalized medicine and precision diagnostics. The

articles in this Research Topic collectively highlight the cutting-edge developments in

precision microscopy, showcasing how these technologies are being leveraged to gain

deeper insights into cellular and molecular processes, improve diagnostic accuracy, and

ultimately, contribute to better clinical outcomes.

From the development of high-throughput imaging platforms that integrate machine

learning algorithms for the analysis of 3D organoids and immune cell co-cultures, to

the creation of novel software tools like Trapalyzer for the quantitative analysis of

neutrophil extracellular trap formation, the advancements in precision microscopy are

revolutionizing the way we study and understand complex biological systems across

millions of cells, through 2D to 3D tissue spatial dimensions, incorporating temporal

aspects. The integrative analyses of omics data and multiplex imaging, as discussed in one

of the opinion articles, exemplifies the potential of these integrated approaches to provide

a comprehensive understanding of cellular communication and its implications for disease

progression and treatment.

The application of advanced light and fluorescence microscopy techniques, such

as super-resolution microscopy and single-molecule imaging, is enabling researchers

to visualize cellular processes with remarkable detail, aiding in the mechanistic

understandings required for the development of targeted therapies. The integration of

machine learning and deep learning techniques is further enhancing the accuracy and

automation of biomarker identification and disease state analysis. Furthermore, multiplex

staining methods are allowing for the simultaneous detection of multiple biomarkers,

significantly improving the diagnostic capabilities at the molecular level.
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The collective contributions of these articles underscore

the transformative potential of precision microscopy in

advancing our understanding of biological systems and improving

clinical outcomes. By leveraging cutting-edge technologies and

interdisciplinary approaches, researchers are making significant

strides toward the realization of precision medicine. The

integration of advanced imaging techniques, multiplex staining

methods, and AI-driven analysis for patient samples, pre-clinical

models and in vitro cell cultures is not only enhancing our ability

to visualize and analyze biological structures with unprecedented

precision but is also paving the way for significant advancements

in personalized medicine and precision diagnostics.

As we continue to push the boundaries of what is possible with

precision microscopy, it is essential to foster global collaboration,

implement rigorous governance, and address ethical dilemmas

head-on. By doing so, we can harness the full potential of

these technologies for societal benefit, ensuring that precision

microscopy aligns with humanity’s highest aspirations. The

future of precision microscopy is bright, and with continued

innovation and interdisciplinary engagement, we are poised to

make groundbreaking discoveries that will shape the future of

medicine and healthcare.

1. Analysis of organoid and immune cell co-cultures by machine

learning-empowered image cytometry.

This study presents a high-throughput imaging analysis

platform that integrates automated imaging techniques and

advanced image processing tools to analyze 3D organoids in co-

cultures with immune cells (Stüve et al.). By employing machine

learning algorithms, the platform can accurately identify and

classify organoids, facilitating the study of organ development,

immune disorders, and drug discovery.

2. Single cell analysis of the localization of the hematopoietic

stem cells within the bone marrow architecture identifies

niche-specific proliferation dynamics.

The publication combines flow cytometry with confocal

microscopy and image analysis to investigate the location as well as

the dynamics of HSCs (Mazzarini et al.). The results indicate that in

aged mice, hematopoietic stem cells exhibit highly dynamic cycling

and show a preference for interactions within the niche that directs

their differentiation.

3. In situ Veritas: Combining omics and multiplex imaging

to facilitate the detection and characterization of cell-cell

interactions in tissues.

This opinion article discusses the potential of combining omics

data with multiplex imaging to detect and characterize cell-cell

interactions within tissues (Ritter). Such an approach can provide

a comprehensive understanding of cellular communication and its

implications for disease progression and treatment.

4. Human intravital microscopy in the study of sarcomas: an

early trial of feasibility.

This brief report highlights the successful utilization of real-

time intravital microscopy during the surgical removal of large

sarcomas (Gabriel et al.). This method gives critical and immediate

insight into data such as tumor vessel characteristics as well

as their potential impact on administration and effectiveness of

drug treatments.

5. Using quantitative single molecule localization microscopy to

optimize multivalent HER2-targeting ligands.

This publication investigates the effect of different treatment

regimens in cultured breast cancer cells on the organization of

HER2 receptor (Wakefield et al.). The group used super-resolution

microscopy in combination with other techniques to spatially

analyse HER2 distribution. These findings give valuable new

insights and may improve treatment strategies for HER+ breast

cancer patients.

6. Trapalyzer: A computer program for quantitative analyses

in fluorescent live-imaging studies of neutrophil extracellular

trap formation.

Trapalyzer is a novel software tool designed for the

quantitative analysis of neutrophil extracellular trap (NET)

formation in live-imaging studies (Ciach et al.). This tool

enhances the precision of NET quantification, providing valuable

insights into the role of neutrophils in immune responses and

inflammatory diseases.

7. A dual decoder U-net-based model for nuclei instance

segmentation in hematoxylin and eosin-stained

histological images.

The publication is introducing a dual decoder U-Net-based

model for the segmentation of nuclei stained by hematoxylin

in histological tissue images (Mahbod et al.). This algorithm is

showing excellent segmentation performance and is the top-ranked

method in the MoNuSAC post-challenge leaderboard.

8. Quantitative characterization of macrophage, lymphocyte

and neutrophil subtypes within the foreign body

granuloma of human mesh explants by 5 marker multiplex

fluorescence microscopy.

This study emphasizes the potential for detailed

characterization and spatial distribution analysis of immune

phenotypes at inflammatory sites caused by surgical mesh (Klinge

et al.). It offers insights into the complex interactions within

this process and may contribute to the development of new

treatment strategies.

9. Establishment and verification of neural network for rapid

and accurate cytological examination of four types of

cerebrospinal fluid cells.

This study introduces a deep neural network (DNN)

for counting and classifying cerebrospinal fluid (CSF) cells,
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improving diagnostic efficiency (Jiang et al.). Using May-

Grünwald-Giemsa stained images, the DNN accurately identifies

key cell types and outperforms expert examination with 95%

accuracy and an 86% reduction in turnaround time. The

results demonstrate the potential of DNN classifier in clinical

CSF cytology.

This Research Topic on Current advances in

precision microscopy provides a snapshot of technological

development in a highly innovative and vibrant scientific

environment. We hope that this Research Topic will help

spread the excitement the authors share with regards

to this Research Topic and we wish our readers an

insightful read!
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Columbia, Vancouver, BC, Canada, 4 School of Microelectronics, Xidian University, Xi’an, China, 5 The State Key Laboratory

for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement

Technology, Xi’an Jiaotong University, Xi’an, China

Fast and accurate cerebrospinal fluid cytology is the key to the diagnosis of many

central nervous system diseases. However, in actual clinical work, cytological counting

and classification of cerebrospinal fluid are often time-consuming and prone to human

error. In this report, we have developed a deep neural network (DNN) for cell counting

and classification of cerebrospinal fluid cytology. The May-Grünwald-Giemsa (MGG)

stained image is annotated and input into the DNN network. The main cell types

include lymphocytes, monocytes, neutrophils, and red blood cells. In clinical practice,

the use of DNN is compared with the results of expert examinations in the professional

cerebrospinal fluid room of a First-line 3A Hospital. The results show that the report

produced by the DNN network is more accurate, with an accuracy of 95% and a

reduction in turnaround time by 86%. This study shows the feasibility of applying DNN

to clinical cerebrospinal fluid cytology.

Keywords: neural network, white blood cell, cerebral spinal fluid, classification, clinical, image recognition

INTRODUCTION

The central nervous system (CNS) is one of the most crucial systems in the human body. One
important aspect of the CNS is the cerebral spinal fluid (CSF), which is typically sterile and only
contains around 1–5 white blood cells (WBCs) per microliter (µl) under normal conditions. Many
neurological diseases cause changes in cerebrospinal fluid cytology, especially in infectious diseases
of the nervous system. When perturbed by an infectious disease, the human body responds by
increasing WBC population leading to an inflammation of the CNS, which leads to increased
mortality and morbidity if not correctly diagnosed and properly treated. The global burden of CNS
infections in 2016 was tabulated in a recent study (1) and estimated to be 9.4million incidences with
a mortality rate of 5% or 458,000 deaths annually. With such a high clinical priority and impact,
there is always a need for improvement on the aspect of rapid diagnose for CNS infection.
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Jiang et al. A Neural Network for CSF Examination

The current diagnostic method for CNS infections consists of
a series of tests, such as CSF test, culturing, and gram staining.
In developing countries, the sensitivity of culturing and gram
staining is low (2). CSF test is the most commonly used and
includes several crucial key factors, such as cell counting, cell
staining, and cell identification. Treatment usually begins at the
onset of signs of CNS inflammation, immediately after the cell
count and differential cell count become abnormal. This WBC
identification is typically achieved with the May-Grünwald-
Giemsa (MGG) staining of the CSF, which stains the nucleus
and granules of the WBCs. In the case of one of the biggest
hospitals in the northwestern region in China where this study
is conducted, the hospital annually treats 120,000 outpatients
with neurological diseases and among these, 4,000 patients are
suspected of CNS infections (3). Because of this number, the
hospital employs a large number of resources with an estimated
10 working hours per day dedicated just for CSF cell counting,
cell staining, and cell identification alone.

Recent years have seen the boon of machine learning for
analyzing large datasets and in particular, deep neural network
(DNN) has been used to help to analyze and differentiate red
blood cells (RBCs) and WBCs in whole blood (4–10). These
studies imply different tactics, such as image segmentation,
clustering, thresholding, local binary pattern, and edge detection
(6). However, the initial implementation of these strategies
for this application resulted in low clinical accuracies, thus
accommodating a more generalized model, a generic object-
detection neural network, such as region-based convolutional
neural network (R-CNN), was explored and found to be more
successful (11). To date, there have not been any studies forWBC
differentiation in CSF using any machine-learning algorithms to
the best of our knowledge.

In this study, the objective is to explore the feasibility of letting
DNN to completely replace the currently employed manual labor
leading to significant improvement in cell counting accuracy
and cost savings. DNN is utilized in the differentiation of
lymphocyte, monocyte, neutrophil, and erythrocytes for CNS
inflammation diagnosis. To highlight how DNN accomplishes
this, there are three main pillars presented in this study: (1)
systematic validation of the DNN to confirm the similar quality of
care to current standards, (2) analysis of accuracy and precision
in automation, and (3) analysis of time savings if applied to the
real case. The data reported in the present study are expected to
greatly improve patient care when it comes to the diagnosis of
infectious CNS diseases.

MATERIALS AND METHODS

MGG Staining Procedure and OM Capture
Details
Patients suspected of CNS inflammation had their CSF drawn
from a typical lumbar puncture, where usually 10ml of CSF was
collected. The CSF was then split into two parts: (1) for cell
count, 10 µl of CSF was dropped onto a hemocytometer and
cells were counted, (2) based on the cell count, a proportional
amount of CSF was used in the cytocentrifuge, and the cells

were concentrated onto a microscope slide. MGG staining was
done by first taking the microscope slide out and fixing them
with acetone-formaldehyde. After they were fixed, the slides
were stained with an MGG staining kit. The samples were then
observed under a normal optical microscope (Leica DM2500)
with the 20× lens used first to get a general idea of the patient’s
condition. Additional 100× images were subsequently taken
when particular cells of interest were located; these 100× images
were the type sent to the DNN for training and testing. Afterward,
the fixed microscope slides were preserved in a sample bank in
case of future analysis.

Preprocessing
All images were taken using an optical microscope (Leica
DM2500) with the 100× lens. Images are in the format of 8-
bit JPEG. Each image was individually labeled with the type
of each cell using an open-source software called Labellmg
(12) by trained technicians with cell identification experience
of 10 y. The Labellmg also helps to establish spatial locations
of each cell by the function of the “user draw boxes”.
Then, the saturation, the contrast, and the brightness of all
images were randomly adjusted. All images were also randomly
horizontally flipped.

Training and Inference
Model training was performed in Python 3.6 and TensorFlow
1.14 using two NVIDIA 2080Ti 11 GB graphics processing units.
Models were based on the Faster R-CNN architecture. The DNN
software is a region-based convolution neural network (CNN)
so it has great edge detection capability. It uses label mapping
to separate labeled areas from the non-labeled background
areas. Labeled images were split into two sections with a
ratio of 9:1 and were separately put into the training and
the testing folders, respectively. Model weights were initialized
with weights pre-trained on the COCO database. Models
were trained for 4-way classification (lymphocytes, monocytes,
neutrophils, and RBCs). The RMSprop optimizer was used
with a softmax loss and an exponential decay rate schedule
with an initial learning rate of 0.001. Models were trained
for 32,000 steps. The batch size was 4 and the Intersection
over Union (IOU) threshold was 0.5. The model for each
training episode was selected based on the PASCAL VOC
detectionmetrics on the validation set. Predictions were averaged
across all models and all cell images to produce a final
prediction for each case. An external test set comprised of
images from the rest of the dataset was used to evaluate the
generalization performance of the model. Preprocessing scripts
were written in Python to organize the data for utilization in
TensorFlow. And the training was done until the loss function
was saturated and observed via Tensorboard. Once the newly
trained model was frozen, validations were done on the test
image folder and compared with the ground truths of the trained
technicians. After a reasonable accuracy was achieved, additional
unlabeled images were evaluated with the frozen DNN model.
For the training process of the DNN, 1,300 images, which
include around 30,000 cells, were individually labeled and fed
into the program.

Frontiers in Medicine | www.frontiersin.org 2 January 2022 | Volume 8 | Article 7491469

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Jiang et al. A Neural Network for CSF Examination

FIGURE 1 | (A) Optical microscope image taken at 100× with a scale bar of 10µm. Cells were fixed and stained with MGG, which provides a light color to the

cytoplasm of the cell and purple color to the lobes of the nucleus. Labels for the three WBCs and the RBCs can be seen in the picture. (B) Schematic of how the

object-detection DNN model is trained to form its basic architecture. The model structure is Faster R-CNN with an initial learning rate of 0.001, a batch size of 4, and

an IOU threshold of 0.5. The structure along with an online database was used to train the DNN model and then with the basic architecture, the weights and biases

are optimized for the MGG-stained cell images of each classification. MGG, The May-Grünwald-Giemsa; DNN, deep neural network; RBC, red blood count; WBC,

white blood cell.

RESULTS/DISCUSSION

Validating the DNN
The application of the DNN in this study is in the identification of
the 4 main types of cells found in infectious CNS disease patients’
CSF. The four main types of cells typically found are lymphocyte,
monocyte, neutrophil, and erythrocytes. When a doctor suspects
a CNS infection, the routine procedure of lumbar puncture is
done and CSF is withdrawal from the patient, which will be
stained for clear cell identification by the hospital technicians.
The MGG staining provides a red acidic stain, a blue basic

stain, and a purple color for cellular components (13, 14). This

effectively gives the RBCs a dark gray or red-pink color, the
WBCs a blue color with the lymphocyte a distinctive singular

round purple nucleus, the monocyte with a large and bean-
shaped purple nucleus, and finally the neutrophil with multi-

lobed purple-colored nucleus (15). An example of MGG staining

is shown in Figure 1A, where all four types of cells can be seen
from CSF for one patient.

The DNN model employed for this study is based on

an object-detection image-based neural network built on the
TensorFow and pre-trained on the COCO dataset (16). The

basics of a neural network can be considered as a repeating

algorithm that classifies the importance of an input based on an
activation function. An activation function is similar to the action

potential of a human neuron cell, where a necessary stimulus

causes the firing of the neuron, which is an all-or-nothing
process. This is analogous to artificial neural networks where the
activation function is a mathematical threshold value and once
that is met, the result is similar to the firing of a human neuron.
There are additional nuances to this mathematical equation
with a coupling of weights and bias values, and the resultant
firing is not a step function, but a specialized mathematical
function containing in-between 0 and 1 activation values; an
example is the sigmoid function. However, the main concepts
translate to the idea that only the important characteristics of
an image will be filtered through this activation function with
each of these characteristics being represented as a neuron in
one layer of the neural network. The addition of multiple layers
gives rise to the non-linearly of a DNN and these features
allow a DNN to recognize an image, similar to mimicking
the image processing of a human brain. Coupled with the
introduction of CNN, the processing requirement for image-
based neural networks dropped significantly, paving the way
for large advancements in the field (17). However, the detailed
description and workings of each of these improvements are
beyond the scope of this study, and a sample of this literature can
be found in References. (11, 18, 19).

The application of the DNN to recognize WBCs and RBCs
was made possible by first applying the pre-trained DNN to a
database of optical microscope (OM) images labeled by doctors
for each cell classification. The specifics of the Faster R-CNN
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FIGURE 2 | A trend graph of the number of cells per patient needed for

certain patient condition examples. It can be seen that after a certain amount

of cells, the percentage of the WBC type saturates thus determining the

number of cells needed for a successful and accurate hospital report. This

trend graph shows that on average, 315 cells are needed with even the onset

of saturation starting at around 150 cells. WBC, white blood cells.

model used can be found in this study (11, 19) and the training
on the open-source image database, COCO by Microsoft (16),
allowed for a DNN architecture to handle the complexities of the
various cell types. As can be seen in Figure 1B, this pre-trained
DNNmodel has already predetermined the number of layers, and
neurons are needed for an optimal score of the COCO database
and by carrying out a process of transfer learning (20), this model
has re-trained itself by adjusting its weights and biases for MGG-
stained cell images. The specific structure of the DNN model is
Faster R-CNN, and an initial learning rate was 0.001, the batch
size was 4, and the IOU threshold was 0.5.

The typical hospital protocol in WBC type classification
involves checking around 200 cells per patient. This is known
as the cell classification step and it is one of the most time-
consuming processes for the hospital. As can be seen in
Supplementary Table 1, there are significant numbers of patients
the hospital handles daily and as such, the hospital has the CSF
Cytology Department to devote half-day daily to handle the
suspected CSF samples. According to the hospital, the 200 cell
minimum is an arbitrary standard set a while ago without much
scientific basis but has not led to failure. As such, an objective
study was also done to determine the minimum number of cells
needed per patient and also to determine the minimum number
of images needed to be taken per patient. Figure 2 shows the
result of this focused study where only the three mainWBC types
are compared with the total number of cells identified per patient.
For a typical hospital CSF cytology report, the doctors base their
diagnosis on the percentage of these WBCs. The CSF Cytology
Department has stored cytological smears of more than 100,000
patients in the last 10 y. Among these cytological smears diseases,

FIGURE 3 | The DNN model’s training accuracy shows its precision vs. the

number of iteration steps. As can be seen that the graph takes on a 1/x,

asymptotic relationship with saturation quickly established within the first few

thousand steps. After 200,000 iterations, the precision % has not improved

that much and the training of the model stopped, which took around 2 days of

nonstop training. DNN, deep neural network.

TABLE 1 | The number of cells labeled in the validation dataset between human

and AI for each cell type.

Erythrocyte Lymphocyte Monocyte Neutrophil

Human

Person 1 13 66 67 41

Person 2 12 43 48 40

Person 3 20 77 70 43

Person 4 27 80 73 54

Human std dev 7 17 11 6

DNN

Round 1 28 77 66 50

Round 2 28 77 66 50

Round 3 28 77 66 50

Round 4 28 77 66 50

AI Std Dev 0 0 0 0

5 different cases can be categorized: (1) low WBC count (W =

0–4), (2) high neutrophil cell count, (3) high RBC count, (4)
medium WBC count (W = 5–50), and 5) high WBC count (W
≥ 50). According to the characteristics of these types, we selected
the corresponding cytological smears. Then we collected OM
images of cells on each smear to analyze the threshold number
of cells and the percentage of each cell type and subsequently to
determine the required collecting cell number for each smear.

For Case 1, the low cell count typically means that the CSF
of the patient is within the normal range and that the symptoms
exhibited by the patient are from a different cause. However, Case
1 also has another difficulty where the entire cytospin sample
contains typically <200 cells. As can be seen in Figure 2, the gray
curves depict this, and the saturation of the curves is not met. For
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Cases 2–5, there are enough cells present and Figure 2 shows that
saturation of the curves occurs after 315 cells are labeled. This
number was calculated from an average of all the curves and from
interpolations between data points after the minimum condition
of saturation occurred. The onset of saturation can also be seen
around 150 cells, but the error margin of 5% can be calculated.

For the training of the DNN, 100× OM images were taken,
and every cell in each image was labeled by a trained technician
and cross-checked with specialized doctors. For the training
process of the DNN, 1,300 images or around 30,000 cells were
individually labeled and fed into the program. To verify the
effectiveness of the training process, Figure 3 shows the loss value
plotted against the number of iterations. The lower the value
of the loss function indicates the more fully trained the DNN
model. The loss function has become to an absolute limit of 0,
which indicates that the model is perfectly trained. Generally, all
DNN models are given trained values with a certain amount of
noise, or in this case, a variety of images of different situations, so

that the DNN can have the flexibility and not be over-fitted to a
degree that it cannot identify images perfectly matching its initial
training dataset. Figure 3 shows the output loss values in gray
along with a moving average for a better visual representation
of the graph. An exponential decay function is also fitted to
highlight the saturation of the loss function. The training of
this DNN took around 200,000 iterations and around 2.5 days.
However, once a DNN is trained, it requires only around 7 s for
an output.

The Precision of the Neural Network
Besides merely relying on the loss function plot, a cross-check
of the validation was performed to verify the accuracy of the
DNN model. A certain portion of the image dataset was kept
from training as the testing validation set, and the ratio amount
chosen was 9:1. For comparison, four trained technicians were
also arranged to label the same validation dataset, and then
their results were compared with the DNN’s prediction. Table 1

FIGURE 4 | An example output of the DNN model with boxed labels along with the model’s percentage prediction. One can see the predicted outputs of neutrophil,

monocyte, lymphocyte, and erythrocyte with their respective colors along with the DNN model’s percentage prediction. In addition, some cells are labeled with the

“unknown” label tag (tan and orange boxes) when the prediction percentage is below 80% or when the shape of the cell indicates a possibility of a rare cell type (i.e.,

basophil, eosinophil, mitotic, etc.). DNN, deep neural network.
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TABLE 2 | Blind testing results of the DNN vs. the Hospital Diagnosis Report.

% Lymphocyte % Monocyte % Neutrophil

Hospital Technician

Patient 1 (ID# 190931) 5 3 92

Patient 2 (ID# 191155) 1 7 91

Patient 3 (ID# 191172) 18 23 59

Patient 4 (ID# 191158) 87 6 7

DNN

Patient 1 (ID# 190931) 7 18 75

Patient 2 (ID# 191155) 4 7 90

Patient 3 (ID# 191172) 27 20 53

Patient 4 (ID# 191158) 89 8 3

Comparison Between Human vs AI

Patient 1 (ID# 190931) 2 16 16

Patient 2 (ID# 191155) 3 0 1

Patient 3 (ID# 191172) 9 3 6

Patient 4 (ID# 191158) 2 2 3

Average Difference 4 5 7

shows the labeling results of the validation dataset comparing
the variations between the human labeling and the labeling of
the DNN. The immediate takeaway is the confirmation that the
multiple evaluation rounds of the DNN will produce the same
result, however, that is not always the case. As can be seen
in Supplementary Figure 1, there is a possibility for the DNN
within the same validation round and with the same model
version to produce two different image labeling outputs. In this
case, the four validation rounds did not produce any variations.
The other interesting factor comes from the human side with SD
among the technicians producing large variability. However, such
inaccuracy is suitable in the clinical setting where speed is more
important and the WBC typing percentage can have a swing of
± 10% as the MGG cell classification report is only one of the
many diagnostic tests typically done in series on a patient’s CSF.
This further shows the importance of implementing artificial
intelligence (AI) in cell classification to improve the accuracy of
the clinical results to reduce the reliance on subsequent tests in
aiding the diagnosis of the doctor.

There are two outputs of the DNN program: (1) a labeled
image with each DNN-recognized cell boxed with its prediction
percentage, and (2) a report with the statistics of the recently
run evaluation. An example of the output image can be seen
in Figure 4 where the four major cell types are labeled by the
DNN program. The program puts a predicted boxed area around
the target cell and then gives each cell a classification prediction
percentage. If that percentage falls under 80%, then the program
will instead add another orange box over the original label and
give it the label “unknown” so that a human technician can
manually check the cell. Moreover, the cells that the program
outputs the light brown boxes correspond to the “unknown”
label, which is the more rare cell types (lymphoid, mitotic,
basophil, etc.) and these will require the human technicians to
check them as well. While the spatial location is innovative, it
has not been widely used for common diagnosis reports, the

TABLE 3 | The time-saving potential when compared between the DNN and

hospital technician.

Average time per

day (mins)

Average time per

patient (mins)

%

Hospital technician

Cell classification 211 ± 25.3 13.4 ± 0.86 N/A

Report writing 70 ± 13.4 4.4 ± 0.20 N/A

Total time 281 ± 38.5 17.8 ± 0.92 N/A

DNN

Cell classification 34 ± 4.5 2.2 ± 0.04 N/A

Report writing 3 ± 0.3 0.2 ± 0.00 N/A

Total time 37 ± 4.8 2.4 ± 0.04 N/A

Time saved 243 ± 38.8 15.5 ± 0.92 86 ± 4

DNN, deep neural network.

percentage of WBC types is important for diagnosis, and the
program calculates and outputs a statistical report of the three
major WBC types.

Accuracy of the Neural Network
To determine the effectiveness of the DNN in a real-world
application setting, a blind test was performed and the
comparison can be found in Table 2. During the blind test,
the images were taken by operators without knowledge of the
hospital report and given to a DNN operator, without any
patient information except their ID number. The ID number
is scrambled with the key being kept by a third party. From
Table 2, the average differences show that the DNN model is
fairly accurate when compared with the hospital report with
the largest margin of error in cell classification with neutrophil
and the largest patient variability with Patient #1. Overall, the
DNN was able to handle the various infectious disease cases
presented to it, they are as follows: (1) high neutrophil count,
(2) high RBC count, (3) even distribution of WBC types, and
(4) high lymphocyte count. The average accuracy of this DNN
for these three WBC types is 95%. Compared to similar studies
done on whole blood, our result is on similar levels of accuracy
(6–8, 10). In addition, the average accuracy of this DNN is
similar to these three WBC types of the same patient. Patient
#2 provides a sample with a high neutrophil count. For Patient
#2, the average error of this DNN for these three WBC types is
minimal, i.e., only ∼1.3%. For Patient #3 with a close amount
of three WBC types, the average error of this DNN for these
three WBC types is ∼6%. In addition, for Patient #4 with a high
lymphocyte count, the average error of this DNN for these three
WBC types is ∼2.3%. For Patients #2–4, the error of this DNN
for monocytes is minimal compared to those of lymphocytes and
neutrophils. However, for Patient #1, neutrophils and monocytes
showed large recognition errors. Upon closer inspection of the
data discrepancy for Patient #1, it was found that the DNN
had not previously encountered abnormal neutrophil images
during its training phase. These abnormal neutrophil pictures
had the individual nuclei lobes clustered together into a similar
shape of the monocyte nuclei producing a false negative result;
an example of this can be seen in Supplementary Figure 2.
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These misclassifications led to the uneven monocyte/neutrophil
percentage and thusly incorrect report. To better apply the DNN
for future clinical situations, the training regime will have more
of an emphasis on the number of patients trained rather than the
number of cells trained for each cell classification to account for
the complex clinical patient situations.

Time-Saving Potential
One of the main advantages of using the DNN program to
replace the mundane task of cell type labeling is the time savings
for the doctors so that their attention can be more focused
on other tasks. To quantify these time savings, a short survey
was conducted during a working week to estimate the time
committed on each patient and daily basis. An example of the
complete survey can be found in Supplementary Table 1,Table 3
shows the time required by the hospital personnel for the two
time-saving procedures that the DNN can contribute: 1) cell
classification and 2) report writing. As can be seen in Table 3,
the DNN can save around 16min per patient and around 4 h
per day; this amounts to a doctor time reduction of 86% daily.
The DNN time was calculated from the validation dataset and
extrapolated with an average number of patients from the short
survey. The minimum number of cells per patient, extrapolated
from Figure 2, and the average number of cells per image were
also factors used. In addition, the DNN processing time required
per image was also found to be independent of the number of
cells present, with processing time slowing down as heat became
more difficult to dissipate from the machine.

CONCLUSION

This study presents a pioneering application of image-based
DNNs to patient samples in a clinical setting. Image analysis
of MGG-stained patient samples is done for CSF cytology. By
applying neural network technology to the clinical space of cell-
type classification, a significant saving in time has been achieved.
The daily saving in the time spent counting cells of hospital
technicians is estimated to be approximately 86 ± 4%. DNN
further rendered more consistent analyses capability against the
large variability common to human classification analyses. Blind
tests result in an average accuracy of 95% among the three WBC
types, with the addendum being that the accuracy of the program
can always be improved further with additional training from a
wider variety of patients. This report clearly demonstrates the
promise of DNN in clinical practices pertaining to infectious
diseases of the CNSs.
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Foreign bodies such as fibers of a surgical mesh induce a typical reaction with an

inflammatory infiltrate that forms a surrounding granuloma. This infiltrate is dominated

by macrophages, lymphocytes, and neutrophils, whereas its extent of collaboration is

widely unknown. In this study, we analyzed 12 samples of surgical meshes explanted

from humans by multiplex analyses with three different 5-marker panels – 1. macrophage

panel: CD68, CD86, CD105, CD163, and CD206; 2. lymphocyte panel: CD3, CD4,

CD8, CD20, and CD68; and 3. neutrophil panel: CD15, histone, MPO, NE, and CD68.

Measurement of fluorescence intensity within nuclear masks resulting from DAPI nuclear

staining allows exact quantification of cells considered “positive” at a user-defined

mean intensity threshold of > 100. Obviously, however, there is no natural threshold

as a biological criterion for an intensity that separates “positive” stained cells from

unstained cells (“negative”). Multiplex staining of 5 markers always reveals a high rate of

coexpression for almost all of the 25 possible marker combinations (= 32 combinations,

when using 5 markers simultaneously). The present staining results demonstrate that

various morphological and functional subtypes of macrophages, lymphocytes, and

neutrophils are abundant in the foreign body granuloma (FBG), which were investigated

by regions of interest (ROI) with an area of 1 mm2. The widespread coexpression of two

or more markers underscores the complex collaboration network of the inflammatory

infiltrate. The ability to combine spatial distribution with exact numerical analysis may

offer new perspectives for our understanding of the complex interactions in this

multidimensional process.
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INTRODUCTION

The repair of hernias as defects of the abdominal wall with
possible protrusion of intestine is the most frequent procedure of
visceral surgery.Within the past decades, the closure of the hernia
orifice turned from simple suture to extended reinforcement with
non-absorbable textile structures, the so-called meshes. These
porous devices elicit a foreign body reaction that culminates in
the formation of a foreign body granuloma (FBG), consisting of
an inflammatory infiltrate surrounded by a fibrotic capsule. In
some cases, revision surgery is required, mainly because of hernia
recurrence, infection, or chronic pain, where these devices with
ingrown and adherent tissue need to be removed or replaced.

Image cytometry with the use of various specific antibodies
against cellular proteins and staining with several different
fluorescent dyes enables the determination of various cell types
and their functionality. Measurement of the mean intensities in
the area of a nucleus offers the possibility of precise quantification
of the number of “positive” cells and thus characterization of the
local cellular response to the foreign body.

Quantified analysis of the foreign body reaction at the cell
molecular level in terms of precision medicine is essential to
determine the different risk profiles of mesh materials.

Macrophages have been shown to be the predominant
actors of the chronic inflammation around these foreign
bodies, with some of them fusing to multinucleated foreign
body giant cells (FBGCs) (Supplementary Figure 1A in
Supplementary Material 1). Characteristic surface markers
are CD68 as pan-macrophage marker, CD86 for M1 subtype,
CD105 indicates macrophage activation, and CD163 and also
CD206 reflect M2 subtypes (1). Though these subtypes appear
with distinct spatial distribution, they all can be found within

TABLE 1 | List of monoclonal antibodies.

Antibody Clone Dilution Incubation time Manufacturer Host

Macrophage panel

CD68 KP1 1:6,000 30min at RT or overnight at 4◦C Dako Mouse

CD86 BO63 1:200 Novus Biologicals Mouse

CD105 SN6h 1:25 Dako Mouse

CD163 5C6FAT 1:800 BMA Biomedicals Mouse

CD206 15/2 1:200 Origene Mouse

Neutrophil panel

CD68 KP1 1:6,000 30min at RT or overnight at 4◦C Dako Mouse

CD15 I112R.1 1:2,000 Diagnostic BioSystems Mouse

Histone H3 Polyclonal 1:2,000 Abcam Rabbit

MPO EPR20257 1:4,000 Abcam Rabbit

NE Polyclonal 1:400 Abcam Rabbit

Lymphocyte panel

CD3 F7.2.38 1:1,000 30min at RT or overnight at 4◦C Dako Mouse

CD4 4B12 1:500 Dako Mouse

CD8 CD8/144B 1:500 Dako Mouse

CD20 L26 1:600 Dako Mouse

CD68 KP1 1:6000 Dako Mouse

Monoclonal antibodies used in this study sorted by panel. Additional information: type of clone, dilution, incubation time, manufacturer, and host. MPO, myeloperoxidase; NE, neutrophil

elastase; RT, room temperature.

a FBG. Recently, it has been shown that lymphocytes may also
be the important components of the foreign body reaction
(Supplementary Figure 1B in Supplementary Material 1).
Corresponding surface markers are CD3 for T-lymphocytes,
CD4 for T-helper cells, CD8 for cytotoxic T cells, and
CD20 for B-lymphocytes (2). Besides macrophages and
lymphocytes, neutrophils have been supposed to contribute
to the inflammatory process (Supplementary Figure 1C

in Supplementary Material 1), in particular by forming
neutrophils extracellular traps (NETs) (3). Characteristic
immune markers for NETs are CD15 for neutrophils, and
antibodies against myeloperoxidase (MPO), neutrophil elastase
(NE), and histone, and in particular the colocalization of all these.

However, it is not clear how many cells of the FBG show these
surface markers and if there is some overlapping. As multiplex
staining can provide this valuable information, we examined the
macrophage pattern, lymphocyte pattern, and neutrophil pattern
on 12 explanted mesh samples with 5 markers each and analyzed
and quantified their coexpression profiles using the scanning
system TissueFAXS PLUS with the StrataQuest Analysis Software
from TissueGnostics, Vienna, Austria (4, 5).

MATERIALS AND METHODS

We analyzed 12 meshes, all of which have been used for
abdominal wall hernia repair in humans: 2 plugs, 1 multifilament
polyester (PES) mesh, 2 monofilament polyvinylidene fluoride
(PVDF) meshes, 3 polypropylene (PP) meshes, and 4 composite
PP meshes, combined with an absorbable part. Meshes with
ingrown tissue were removed between 2001 and 2020 because
of recurrence, pain, or infection after being incorporated for 2
months to 17 years (Ethics Committee approval: EK 239/19).
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FIGURE 1 | Appearance of HE-stained meshes in bright field microscopy, with or without polarization filter, and with fluorescence microscopy. All polymers visible with

pol. filter. Surface of PP and PVDF fibers visible as ring formation with autofluorescence at 410–520 nm, whereas polyester fibers visible at 410–520 and at

640–890 nm. Scale bars = 50µm.
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TABLE 2 | List of LED modules, filters with excitation and emission [wavelength/FWHM], and staining/fluorophore.

Marker LED ZEISS filter Excitation Emission Staining/Fluorophore

Nuclear UV DAPI 96 HE 390/40 450/40 DAPI

First Violet 47 Cy 436/25 480/40 OpalTM 480

Second Green Cy3 46 HE 500/25 535/30 OpalTM 520

Third Yellow AF594 43 HE 550/25 605/70 OpalTM 570

Fourth Red Cy5 50 Cy 640/30 690/50 OpalTM 650

Fifth Far red Cy 7E 708/75 809/81 OpalTM 780

FIGURE 2 | Example of mesh-tissue section stained with macrophage panel. Labeling for nuclei with DAPI (blue), macrophages with CD68 (turquoise), M1

macrophages with CD86 (green), activated macrophages with CD105 (yellow), M2 macrophages with CD163 (red), and CD206 (magenta). Asterisks mark fiber

locations, scale bars = 50µm.

Prior to immunofluorescence staining, mesh samples were
checked for the presence of mesh and FBGs by hematoxylin
and eosin (H&E) with the addition of a polarization filter. By
immunohistochemical staining with diaminobenzidine (DAB),
we confirmed the functionality and dilution of the antibody
markers. All mesh samples showed the typical foreign body
reaction around the mesh fibers with an inner layer of
inflammatory infiltrate, followed by an outer fibrotic layer. Most
specimens showed a varying number of lymphocytes and FBGCs,
and also small vessels at the mesh-tissue interface.

Immunofluorescence Staining
General

All steps were performed at room temperature. Serial 2-µm
sections of each specimen were labeled with a first marker and

subsequently with 4 other markers (Table 1). The “macrophage
panel” includes CD68 (pan-macrophage), CD86 (M1), CD105
(activated macrophages), and also CD163 and CD206 both (M2).
The “neutrophil panel” includes CD15 (neutrophils), histone H3,
MPO, NE, and CD68. The “lymphocyte panel” includes CD3
(pan-T-lymphocyte), CD4 (T-helper cell), CD8 (cytotoxic T cell),
CD20 (pan-B-lymphocyte), and CD68 (Supplementary Figure 1

in Supplementary Material 1).
The order of the fluorophores or fluorescent dyes was always

kept the same for all panels; OpalTM 480 was used first,
followed by OpalTM 520, OpalTM 570, OpalTM 650, and finally
OpalTM 780. All antibodies used were monoclonal and diluted
with antibody diluent (with Background Reducing Components,
Dako, Germany). Secondary antibodies were applied with
ImmPRESSTM HRP (peroxidase) Polymer Detection Kit (Vector,
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TABLE 3 | Comparison of cells located in the FBG and in the scar tissue by means of the macrophage panel.

Macrophage panel FBG Mean (SD) n = 72 Scar Mean (SD) n = 12 t-test

CD68 CD86 CD105 CD163 CD206

All “positive” cells for a given marker, independent of the other markers (n. d., not defined; pos., positive)

pos. n. d. n. d. n. d. n. d. 405 (319) 475 (708) 0.778

n. d. pos. n. d. n. d. n. d. 418 (325) 266 (211) *0.044

n. d. n. d. pos. n. d. n. d. 407 (429) 374 (680) 0.823

n. d. n. d. n. d. pos. n. d. 430 (397) 270 (325) 0.113

n. d. n. d. n. d. n. d. pos. 266 (260) 76 (55) *0.000

All possible marker combinations (pos., positive; neg., negative)

neg. neg. neg. neg. neg. 1,045 (500) 1,387 (895) 0.326

pos. neg. neg. neg. neg. 71 (89) 184 (308) 0.230

neg. pos. neg. neg. neg. 58 (99) 37 (41) 0.299

neg. neg. pos. neg. neg. 57 (109) 78 (176) 0.718

neg. neg. neg. pos. neg. 111 (149) 57 (68) *0.033

neg. neg. neg. neg. pos. 43 (86) 18 (20) 0.053

pos. pos. neg. neg. neg. 69 (118) 57 (68) 0.745

pos. neg. pos. neg. neg. 17 (41) 43 (120) 0.465

pos. neg. neg. pos. neg. 10 (13) 8 (7) 0.367

pos. neg. neg. neg. pos. 5 (13) 2 (2) 0.194

neg. pos. pos. neg. neg. 14 (31) 9 (8) 0.278

neg. pos. neg. pos. neg. 6 (7) 7 (7) 0.658

neg. pos. neg. neg. pos. 10 (26) 2 (3) *0.027

neg. neg. pos. pos. neg. 52 (101) 52 (127) 0.974

neg. neg. pos. neg. pos. 12 (36) 7 (11) 0.266

neg. neg. neg. pos. pos. 27 (60) 5 (5) *0.004

pos. pos. pos. neg. neg. 54 (88) 52 (83) 0.949

pos. pos. neg. pos. neg. 18 (29) 11 (13) 0.197

pos. pos. neg. neg. pos. 11 (18) 2 (2) *0.001

pos. neg. pos. pos. neg. 20 (65) 39 (118) 0.558

pos. neg. pos. neg. pos. 1 (3) 1 (2) 0.795

pos. neg. neg. pos. pos. 5 (10) 1 (1) *0.001

neg. pos. pos. pos. neg. 17 (42) 9 (8) 0.194

neg. pos. pos. neg. pos. 8 (20) 2 (3) *0.048

neg. pos. neg. pos. pos. 5 (16) 1 (2) 0.110

neg. neg. pos. pos. pos. 21 (47) 6 (6) *0.017

pos. pos. pos. pos. neg. 39 (54) 50 (72) 0.668

pos. pos. pos. neg. pos. 22 (39) 4 (5) *0.004

pos. pos. neg. pos. pos. 19 (34) 3 (4) *0.001

pos. neg. pos. pos. pos. 6 (14) 2 (3) 0.129

neg. pos. pos. pos. pos. 25 (56) 4 (5) *0.003

pos. pos. pos. pos. pos. 62 (81) 15 (13) *0.000

Mean number of “positive” cells per 2,000 cells. For the FBG, six circular ROIs including mesh fibers were analyzed per sample (n = 12). Comparison with t-test between 280,760 cells

located in the FBG and 6,445,165 cells in the whole sample (= scar). Statistically significant differences are marked with asterisks.

Laboratories, US). Fluorochromes were diluted with 1x Plus
Amplification Diluent (PerkinElmer, US).

Protocol

Tissue sections with the explanted mesh devices were
deparaffinized with xylol, rehydrated through graded alcohol and
Milli-Q, before incubation in 3.5% formalin for 10min. Sections
were then placed in a cuvette filled with Milli-Q and pH6 citrate

buffer (1:10) and treated with a Decloaking ChamberTM (Biocare
Medical, US) for 10min at 110◦C. Afterward, sections were
washed with Milli-Q and TBST Tris (buffered saline with Tween
20, Dako) and cooled. Non-specific binding was blocked by
incubation with antibody diluent for 10 min.

These steps were followed by incubation with the primary
antibody of the first marker. After incubation, sections were
rinsed in TBST Tris and incubated with the secondary antibody
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for 20min, before applying staining with the OpalTM 480 Reagent
Pack (1:100, PerkinElmer) for 10min. Sections were then washed
with TBST Tris and placed in a cuvette filled with AR6 buffer
(PerkinElmer) and Milli-Q (1:10). The cuvette was microwave
treated for 3min at 385W reaching a maximal temperature of
92◦C and 15min at 120W reaching a maximal temperature
of 90◦C, before being cooled with cold water. Sections were
removed and rinsed with Milli-Q.

Afterward, the primary antibody of the second marker was
applied after having blocked again with the antibody diluent for
10min. Sections were rinsed in TBST Tris and incubated with
the secondary antibody for 20min, before applying staining with
the OpalTM 520 reagent pack (1:100, PerkinElmer) for 10min.
Sections were then washed with TBST Tris and placed in a cuvette
filled with AR6 buffer (PerkinElmer) and Milli-Q (1:10). The
cuvette was microwave treated for 3min at 385W reaching a
maximal temperature of 92◦C and 15min at 120W reaching a
maximal temperature of 90◦C, before being cooled with cold
water. Sections were removed and rinsed with Milli-Q.

Subsequent markers were applied the same way as the
second marker. After the fifth staining cycle (application
of the fifth marker), all tissue sections were mounted with
VECTRASHIELD R© HardSetTM Antifade Mounting Medium
(Vector) withDAPI and coverslipped. The whole staining process
for one panel took 3 days in total.

Analysis of the Fluorescence Images or
Stainings
Fluorescence imaging was performed with an Axio Imager 2
microscope (20x, ZEISS, Germany) with an attached Colibri
7 light source (ZEISS, Germany) and the TissueFAXS PLUS
system (TissueGnostics, Austria). The light source contains
six LED modules and seven fluorescence channels, each
producing monochromatic light of a different wavelength.
LED-optimized filters and direct coupling increase sensitivity
and ensure optimum excitation and emission spectra (Table 2,
Supplementary Material 2).

Images were processed and quantitatively analyzed with
StrataQuest Analysis Software (v7, TissueGnostics, Austria).
Before applying the analysis app, the minimum and maximum
ranges for each filter were set by automatically adjusting the
saturation, and the mean minimum and maximum intensities of
the slides were used for each marker in each panel.

DAPI images were used to detect and segment nuclei. Nuclei
areas were used to measure the mean staining intensities for the
five different markers (in six selected circular ROIs with an area
of 1 mm²). The ROIs were selected such that the mesh fibers
were located in the center. We recorded the total number of
cells with a mean intensity > 100, considered to be “positive.”
The number of “positive” cells was normalized to 2,000 cells
(mean of number of cells within the ROIs, reflecting mainly the
inflammatory infiltrate of the FBG) for each of the 32 possible
combinations of the five markers. Then, the mean of 12 slides
each with 6 ROIs was determined. The results of the total of 72
ROIs were compared to the analyses of the entire tissue samples,
which were considered mainly as scar tissue.

With a cut-off value of 100 for the mean intensity in the
nucleus area for the “positive” cells, the analyses yielded on
average <5% “false-positive” cells (Supplementary Material 3).

RESULTS

Autofluorescence of HE-Stained Meshes
During the preparation and cutting process of the thin tissue
sections (2µm), most of the polymer fibers were removed,
though some fibers remained in all samples (Figure 1). After
HE staining, polymer fibers were slightly visible as milky clouds,
whereas with the use of a polarization filter, all polymers
were hyperintense and could be clearly distinguished from
the hypointense surrounding tissues. When using the filters
of the fluorescence microscopy, an intrinsic autofluorescence
of the fibers became apparent. PP and PVDF showed a
marked outer ring formation or “bark” at wavelength of 410–
520 nm, in case of the PP with pronounced fragmentation. In
contrast, the multifilament PES fibers demonstrated an intense
autofluorescence of the entire fiber at both 410–520 nm and 640–
890 nm. The illumination of the entire PES fibers is probably due
to birefringence within the small (∼20µm) individual fibers.

The frequent fragmentation of the “bark” seen for PP
may represent the surface degradation of the fibers seen after
incorporation in tissues (6). This fragmentation could also be
clearly observed with the use of a polarization filter.

Multiplex Fluorescence Microscopy With
Five Macrophage Cell Markers: CD68,
CD86, CD105, CD163, and CD206
All five markers were detected within the 1 mm2 ROIs
around mesh fibers that marked the FBG, whereas their spatial
heterogeneity confirmed their protein specificity (Figure 2). At
first glance, cells in close vicinity to the fiber usually expressed not
only a single marker, but often coexpressed multiple macrophage
markers, which was confirmed by quantification using a mean
nuclear intensity cut-off of 100 (Table 3).

Of the mean 2,000 cells of the ROIs, which included the
majority of the FBG, more than 400 cells were either CD68+,
CD86+, CD105+, or CD163+, whereas only 206 cells expressed
CD206. Almost half of the cells (n= 1,045) did not express any of
the five markers, whereas 341 showed only one marker, and 614
showed at least some coexpression, and 62 even coexpressed all
five markers. Most of the 405 CD68+ cells coexpressed CD86+
(n= 294,∼70%), half of them CD105+ (n= 221). Coexpression
of CD68 and CD163 was seen in 179 cells and CD68 with CD206
in 131 cells.

Comparison of scar tissue vs. the FBGROIs showed significant
differences mainly for CD86+ (p < 0.044) and CD206+ (p <

0.001) cells, which were predominantly seen within the FBG.
Cells coexpressing all five markers were mainly seen in the FBG
(62 vs. 15, p < 0.001).

Depicting the linearly scaled scatter plots for the mean
cellular intensities of two markers usually showed a homogenous
cloud with a dense cluster marking the background and a
continuous transition to the labeled cells without any clear
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FIGURE 3 | Examples of linear scatter plots from macrophage panel. Scatter plots of mean cellular intensities of two markers in a 1 mm2 ROI placed around fibers of

a PP mesh plug. Lines in the scatter plots mark the cut-off value 100. Cytometric analysis was performed with StrataQuest 7. Asterisks mark fiber locations.

FIGURE 4 | Example of mesh-tissue section stained with lymphocyte panel. Labeling for nuclei with DAPI (blue), macrophages with CD68 (turquoise), T-lymphocytes

with CD3 (green), T-helper cells with CD4 (yellow), cytotoxic T cells with CD8 (red), and B-lymphocytes with CD20 (magenta). Asterisks mark fiber locations, scale bars

= 50µm.
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TABLE 4 | Comparison of cells located in the FBG and in the scar tissue by means of the lymphocyte panel.

Lymphocyte panel FBG Mean (SD) n = 72 Scar Mean (SD) n = 12 t-test

CD68 CD3 CD4 CD8 CD20

All “positive” cells for a given marker, independent of the other markers (n. d., not defined; pos., positive)

pos. n. d. n. d. n. d. n. d. 360 (287) 183 (156) *0.004

n. d. pos. n. d. n. d. n. d. 304 (288) 124 (101) *0.000

n. d. n. d. pos. n. d. n. d. 345 (289) 169 (160) *0.005

n. d. n. d. n. d. pos. n. d. 395 (399) 288 (217) 0.185

n. d. n. d. n. d. n. d. pos. 93 (193) 31 (38) *0.015

All possible marker combinations (pos., positive; neg., negative)

neg. neg. neg. neg. neg. 1,104 (523) 1,803 (1,445) 0.174

pos. neg. neg. neg. neg. 119 (111) 58 (57) *0.008

neg. pos. neg. neg. neg. 48 (60) 21 (17) *0.004

neg. neg. pos. neg. neg. 58 (101) 34 (43) 0.242

neg. neg. neg. pos. neg. 115 (144) 136 (137) 0.680

neg. neg. neg. neg. pos. 38 (85) 14 (17) *0.031

pos. pos. neg. neg. neg. 12 (25) 2 (3) *0.006

pos. neg. pos. neg. neg. 59 (88) 21 (25) *0.006

pos. neg. neg. pos. neg. 39 (66) 40 (51) 0.986

pos. neg. neg. neg. pos. 1 (4) 0 (1) 0.072

neg. pos. pos. neg. neg. 32 (42) 18 (19) 0.070

neg. pos. neg. pos. neg. 45 (64) 20 (19) *0.011

neg. pos. neg. neg. pos. 12 (32) 3 (5) *0.045

neg. neg. pos. pos. neg. 25 (65) 13 (17) 0.145

neg. neg. pos. neg. pos. 3 (7) 1 (1) *0.012

neg. neg. neg. pos. pos. 3 (12) 2 (3) 0.185

pos. pos. pos. neg. neg. 19 (30) 5 (5) *0.003

pos. pos. neg. pos. neg. 20 (54) 3 (4) *0.022

pos. pos. neg. neg. pos. 0 (1) 0 (0) 0.363

pos. neg. pos. pos. neg. 34 (55) 26 (37) 0.481

pos. neg. pos. neg. pos. 0 (1) 0 (0) 0.099

pos. neg. neg. pos. pos. 0 (1) 0 (0) 0.896

neg. pos. pos. pos. neg. 33 (55) 17 (22) 0.122

neg. pos. pos. neg. pos. 16 (34) 4 (7) *0.015

neg. pos. neg. pos. pos. 6 (20) 2 (3) 0.105

neg. neg. pos. pos. pos. 2 (7) 0 (1) 0.075

pos. pos. pos. pos. neg. 60 (80) 25 (32) *0.018

pos. pos. pos. neg. pos. 1 (1) 0 (1) 0.371

pos. pos. neg. pos. pos. 0 (0) 0 (0) 0.635

pos. neg. pos. pos. pos. 0 (1) 0 (0) 0.310

neg. pos. pos. pos. pos. 7 (25) 2 (4) 0.127

pos. pos. pos. pos. pos. 1 (4) 1 (3) 0.618

Mean number of “positive” cells per 2,000 cells. For the FBG, six circular ROIs including mesh fibers were analyzed per sample (n = 12). Comparison with t-test between 234,177 cells

located in the FBG and 5,775,972 cells in the whole sample (= scar). Statistically significant differences are marked with asterisks.

subsets of cell clusters with distinct intensities (Figure 3). Just
as little, a clear separation of “positive” cells could not be
seen, for any of the five markers (Supplementary Figures 1,
2 in Supplementary Material 4). Noteworthy, the intensity of
CD68 correlates with the intensity of CD86 in a linear way
as a long oval cloud, and also with CD163, whereas the mean
cellular intensities for CD68 and CD105 and also CD68 and
CD206 were more distributed at higher intensities. Remarkably,
also the intensities of CD86 correlate linearly with CD163

and CD206, which indicate the high plasticity and continuous
spectrum of macrophages between the antiinflammatory (M1)
and inflammatory (M2) states.

As already indicated by the previous work of Dievernich et al.
using double stainings, only a minority of cells that just expressed
a single marker can be assigned to a specific cell type (1). As we
restricted the analyses just to the inflammatory infiltrate of the
granuloma in this study, we did not look for spatial gradients.
However, though the markers used were thought to separate the
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FIGURE 5 | Examples of linear scatter plots from lymphocyte panel. Scatter plots of mean cellular intensities of two markers in a 1 mm2 ROI placed around PP mesh

fibers. Lines in the scatter plot mark the cut-off value 100. Cytometric analysis was performed with StrataQuest 7. Asterisks mark fiber locations.

cells into distinct morphological or functional subgroups, the
expression profiles of the cells within the FBG were found to be
considerably more complex than expected with a high level of
interference or coexpression.

Multiplex Fluorescence Microscopy With
Four Lymphocyte Cell Markers: CD3, CD4,
CD8, CD20, and CD68 as Reference
All lymphocyte markers were detected within the 1 mm2 ROIs
around mesh fibers that marked the FBG, but CD20+ cells were
mainly seen in clusters outside the FBG (Figure 4). In close
vicinity to the fibers, there were predominantly CD68+ cells and
CD4+ cells, whereas in a distance of 10 to 20µm, there were
accumulations of CD3+ and CD8+ cells. Single CD20+ cells
were distributed equally all over the FBG. Cells in close vicinity to
the fiber usually express not only a single marker, but also often
coexpressed multiple (Table 4).

Of the mean 2,000 cells of the sphere in the FBG, more
than 300 cells were CD68+, CD3+, CD4+, or CD8+, and
only CD20+ cells were markedly less with 93 cells. CD8+ cells
were most common. A total of 148 cells were even “double-
positive” for CD4 and CD8 (CD4+CD8+ cells). Half of the
CD8+ cells costained for CD3, but only 25% of the CD4+
cells. Of 395 CD8+ cells, there are only 115 “single-positive”
cells, 45 are CD8+CD3+, 39 are CD8+CD68+, and 20 are
CD3+CD8+CD68+. Of 345 CD4+ cells, there are 58 exclusively
positive for CD4, 32 are CD4+CD3+, 59 are CD4+CD68+, and
19 are CD3+CD4+CD68+. Altogether, among the CD4+ cells,

in the mean per 2,000 cells, there were 93 that were CD68+ but
not CD3+, 88 were CD3+ but not CD68+, and 81 were positive
for both CD3 and CD68 (Table 4).

Comparing the scar area vs. ROIs within the FBG showed
significant differences for CD68+ (p < 0.01), CD3+ (p < 0.001),
CD4+ (p < 0.01), and CD20+ (p = 0.015) cells, which all were
predominantly seen in the FBG, but no differences for CD8+
cells. Cells coexpressing all five markers were almost absent
(Table 4).

Depicting the linearly scaled scatter plots for the intensities of
twomarkers in the lymphocyte panel showed a clearer separation
for CD68+ and CD3+, CD68+ and CD8+, and CD68+ and
CD20+, and also CD3+ and CD4+ and CD3+ and CD20+ cells
compared to the marker combinations of the macrophage panel,
as indicated by an “L” configuration. However, coexpressing cells
were also present (Figure 5). As for the macrophage marker, a
clear separation of “positive” cells could not be seen.

Multiplex Fluorescence Microscopy With
Four Neutrophil Cell Markers: CD15,
Histone, MPO, and NE
All these markers were detected within the ROIs (Figure 6,
Table 5). Whereas, histone usually appeared within the area of
the nuclear mask, CD15, MPO, and NE were often found in
the extranuclear area, too. CD15+ (p = 0.010) and histone+
(p = 0.049) cells were seen significantly more often in the FBG
compared to the general scar tissue.
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FIGURE 6 | Example of mesh-tissue section stained with neutrophil panel. Labeling for nuclei with DAPI (blue), macrophages with CD68 (turquoise), neutrophils with

CD15 (green), histone (yellow), myeloperoxidase (MPO, red), and neutrophil elastase (NE, magenta). Asterisk marks a fiber location, scale bars = 50µm.

The linearly scaled scatter plots usually revealed point clouds
with a wide distribution of intensities rather than oval clouds with
less variation in intensities (Figure 7). Many CD68+ cells showed
coexpression of CD15, histone, MPO, and NE, and CD15+ cells
were usually positive for histone, MPO, and NE, as expected.

Noteworthy, considerable extranuclear DAPI areas (EDA)
were visible near the meshes (Figure 8). As DAPI is considered
to bind specifically to DNA, these DAPI deposits can indicate the
presence of neutrophil extracellular traps (NETs). Lowering the
ranges for DAPI and excluding the area of the nuclear masks,
EDAs could be identified, separated from the nuclear area, and
the expression of the marker analyzed in the EDAs. Though
the clinical relevance of neutrophils and NETs still is obscure,
this study demonstrated their presence within the inflammatory
infiltrate of the FBG and may be considered as the reason for
long-term immunological problems of some patients (7).

Collaborative Network of Macrophages,
Lymphocytes, and Neutrophils Within the
FBG
Considering positive staining as intensities above mean + 2 SD,
there were abundant CD68+macrophages, CD3+ lymphocytes,
and CD15+ neutrophils seen within the inflammatory infiltrate
around PP fibers (Figure 9). Visualization revealed the spatial
expression of the 13markers used, and some of them coexpressed

in similar cell clusters. Of the 4,560 possible correlations among
the different panels of “positive” or “negative” markers, there
were 898 significant Pearson’s two-sided correlations (p < 0.05)
reflecting the many functional linkages among the various
markers. Since most markers showed, at least in some cells,
that their expression occurred independently of the expression
of other markers, higher correlations with r > 0.6 were rare
(n= 81).

DISCUSSION

In comparison with previous studies with just two
markers besides DAPI, the use of 5-marker multiplex
immunofluorescence microscopy demonstrated the marked
complexity of the biology within a FBG. The distinct spatial
distribution of the markers within the entire tissue sample
confirmed the high specificity of the antibody–protein binding.
However, the complex and overlapping expression signature
demonstrated that there was hardly any cell pattern that
uniformly determined the presence of a specific subgroup or cell
cluster with either identical origin or similar functionality.

The separation of M1 and M2 macrophages due to their mere
staining with CD86 or CD163/CD206 appears to be incomplete
to mirror the high heterogeneity of the macrophage response to
the meshes. All the more so as the lymphocytic system obviously
contributes to a similar extent and complexity. Additionally,
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TABLE 5 | Comparison of cells located in the FBG and in the scar tissue by means of the neutrophil panel.

Neutrophil panel FBG Mean (SD) n = 72 Scar Mean (SD) n = 12 t-test

CD68 CD15 Histone MPO NE

All “positive” cells for a given marker, independent of the other markers (n. d., not defined; pos., positive)

pos. n. d. n. d. n. d. n. d. 374 (272) 516 (499) 0.354

n. d. pos. n. d. n. d. n. d. 264 (323) 144 (86) *0.010

n. d. n. d. pos. n. d. n. d. 250 (345) 135 (137) *0.049

n. d. n. d. n. d. pos. n. d. 300 (347) 241 (249) 0.485

n. d. n. d. n. d. n. d. pos. 262 (315) 204 (175) 0.363

All possible marker combinations (pos., positive; neg., negative)

neg. neg. neg. neg. neg. 1,242 (444) 2,069 (1,802) 0.141

pos. neg. neg. neg. neg. 111 (112) 290 (353) 0.109

neg. pos. neg. neg. neg. 48 (64) 24 (15) *0.006

neg. neg. pos. neg. neg. 59 (107) 30 (37) 0.083

neg. neg. neg. pos. neg. 58 (80) 67 (91) 0.764

neg. neg. neg. neg. pos. 100 (178) 82 (88) 0.586

pos. pos. neg. neg. neg. 34 (53) 33 (39) 0.929

pos. neg. pos. neg. neg. 13 (22) 9 (12) 0.462

pos. neg. neg. pos. neg. 23 (31) 53 (111) 0.362

pos. neg. neg. neg. pos. 22 (39) 26 (32) 0.663

neg. pos. pos. neg. neg. 6 (9) 2 (3) *0.010

neg. pos. neg. pos. neg. 35 (65) 15 (14) *0.028

neg. pos. neg. neg. pos. 5 (9) 2 (3) *0.028

neg. neg. pos. pos. neg. 15 (32) 6 (9) 0.052

neg. neg. pos. neg. pos. 31 (51) 20 (26) 0.285

neg. neg. neg. pos. pos. 5 (12) 5 (3) 0.898

pos. pos. pos. neg. neg. 8 (22) 3 (4) 0.118

pos. pos. neg. pos. neg. 39 (99) 24 (25) 0.282

pos. pos. neg. neg. pos. 5 (10) 3 (4) 0.262

pos. neg. pos. pos. neg. 17 (39) 8 (13) 0.131

pos. neg. pos. neg. pos. 10 (21) 11 (19) 0.854

pos. neg. neg. pos. pos. 10 (27) 13 (14) 0.551

neg. pos. pos. pos. neg. 8 (18) 4 (6) 0.099

neg. pos. pos. neg. pos. 2 (4) 1 (1) 0.055

neg. pos. neg. pos. pos. 3 (7) 2 (1) 0.098

neg. neg. pos. pos. pos. 5 (12) 3 (3) 0.222

pos. pos. pos. pos. neg. 23 (48) 9 (16) 0.054

pos. pos. pos. neg. pos. 4 (9) 2 (2) 0.062

pos. pos. neg. pos. pos. 11 (28) 7 (8) 0.373

pos. neg. pos. pos. pos. 15 (30) 13 (25) 0.757

neg. pos. pos. pos. pos. 3 (8) 1 (2) 0.216

pos. pos. pos. pos. pos. 31 (84) 12 (16) 0.096

Mean number of “positive” cells per 2,000 cells. For the FBG, six circular ROIs including mesh fibers were analyzed per sample (n = 12). Comparison with t-test between 304,998 cells

located in the FBG and 6,471,629 cells in the whole sample (= scar). Statistically significant differences are marked with asterisks.

not least, the detection of EDAs around the mesh fibers with
abundant expression of histone, MPO, and NE underlines the
importance of the neutrophils and their formation of neutrophil
extracellular traps, which may be responsible for the ongoing
chronic inflammation and any possible autoimmune stress.

However, despite the high evidence for the present high
level of coexpression, any attempt for quantification of
immunohistochemistry has severe limitations:

The possible impact on functionality by the expression
of proteins with variable intensities, which may be the
consequence of different concentrations of the binding
epitopes on the cells, is known, but hard to control (8).
The poor quality of the tissue with, for example, long
ischemia before fixation may reduce the binding sites
further. Patient’s biology and their immunological response
may differ to an unknown extent. The surgical trauma and
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FIGURE 7 | Examples of linear scatter plots from neutrophil panel. Scatter plots of mean cellular intensities of two markers in a 1 mm2 ROI placed around PP mesh

fibers. The lines in the scatter plot mark the cut-off value 100. Cytometric analysis was performed with StrataQuest 7. Asterisks mark fiber locations.

wound infection may change the local tissue response to the
mesh materials.

Quantification of multiplex staining results, of course, has
lots of confounders, such as overlaying background signals,
unspecific binding of the primary or secondary antibody, distinct
affinity binding of the dye, variable number of binding sites
in heterogeneous cells, and alteration of epitopes by ischemia
or the fixation procedure. Some of them can be excluded by
reasonable spatial staining pattern and using various controls.
However, for the question at what staining intensity a cell
should be considered “positive” there still is not an easy answer.
Sometimes, the staining signal is relatively weak but distributed
over most of the cell, whereas in other cases, a hyperintense signal
emanates from only part of the cell, resulting in the same mean
signal. Without additional analysis, it is impossible to define any
as functional “negative” or “positive.” Adjusting the intensity
ranges using imaging tools can decrease or increase the image
contrast, but it does not solve the problem. We decided to use
the automatic ranges provided by TissueFAXS for the StrataQuest
analyses and to use a fixed cut-off value of 100 to determine
“positive” cells.

Any quantification needs to define a reliable cut-off to
determine at what intensity a cell may be considered “positive”
(9). The cut-off usually does not result from natural order
with distinct intensities but always has to be fixed manually
and arbitrarily (10). The intensity may be measured as mean
or maximum in an eroded or dilated nuclear mask. The
definition of reliable ROIs is essential to overcome the usual

huge heterogeneity of the tissue samples, in particular, if the
mesh fibers are removed during the cutting process. Using
specific LED light sources in combination with bandpass filters
ideally matched to their spectra and selected fluorescent dyes,
any artificial overlap by interfering signals must be avoided. A
mean intensity > 100 does not automatically reflect a “positive”
cell for a maker. It has to be checked by visual control and
backward gating whether the staining pattern is reasonable
and in accordance with the published literature. Conversely, a
mean intensity < 100 does not prove that the cell does not
express the marker anyhow. However, a fixed cut-off value
of 100 reduces the subjective impact of a manual gating and
improves reproducibility.

This “high” cut-off valuemay exclude several cells that are only
partially or overall “weakly” stained, but a lower cut-off would
result in higher percentages without contradicting the fact that
there are many coexpressions and complex marker patterns in
cells of a FBG.

Despite the many limitations mentioned above in quantifying
cells with “positive” staining, the present protocol provides tools
to analyze the inflammatory response to meshes in a highly
standardized, reproducible, reliable, and objective manner.

In regard to the many confounders with an impact on the
cell response to meshes and in consideration of the limited
information given by clinicians, this study cannot link its
quantification of inflammatory cells with a specific clinical
outcome. However, this protocol and the results for this mix of
various materials may serve as a standard for future comparisons
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FIGURE 8 | Tissue section of infected composite PP mesh labeled for nuclei with DAPI (blue), macrophages with CD68 (turquoise), neutrophils with CD15 (green),

histone (yellow), myeloperoxidase (MPO, red), and neutrophil elastase (NE, magenta). EDAs indicate the presence of neutrophil extracellular traps (NETs). Asterisk

marks a fiber location, scale bars = 50µm.

to detect any gross violation from the standard and to identify
high-risk materials.

CONCLUSION

The cells of the inflammatory infiltrate around mesh fibers
showed a variable signature of macrophage, lymphocyte,
and neutrophil markers in multiplex immunofluorescence
microscopy. Instead of distinct subgroups of cells with clear
marker profiles, we found comprehensive interference resulting
in a blurred cloud of overlapping coexpression. A clear
physiological threshold to separate “negative” and “positive” cells
was not seen for any of the 13 markers, which, in contrast, all
showed a continuous spectrum of intensities. In addition to the
polarization filter in bright field microscopy, viewing polymer
fibers with bandpass filters can help to analyze meshes and their
degradation in tissue specimens.

The recent decades of research in the field of biomaterials
and meshes, respectively, have been characterized by
semi-quantitative analyses mainly focusing on macrophages,
defined by immunohistochemistry usually with CD68 as
the only marker. These results have been used to assess
the biocompatibility and potential risks of the implants.
However, these approaches obviously were not able to reflect
the complexity of the foreign body reaction around the
material and to provide data for reliable comparisons. In this
study, we demonstrate that single marker approaches are
not suitable to define specific subgroups of immunological
cells in the FBG, which is possible with multiplex methods.
Furthermore, by focusing on the mean intensities within
the nuclear area, a precise quantification is feasible. The
present data of a variety of different meshes thus provide
a first standard for future comparisons. It still has to be
shown by additional methods and/or targeted material
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FIGURE 9 | Collaboration network in the FBG. Left: Example image from a video file (available as Supplementary Material) showing all “positive” cells (threshold =

mean + 2 SD) for all 13 markers on a DAPI image; CD86 is shown here. Inset: CD68+ macrophages (red), CD3+ lymphocytes (green), and CD15+ neutrophils (blue)

in the FBG of a PP mesh. Asterisks mark fiber locations. Right: Significant Pearson’s correlations (p < 0.05) within and between macrophage (MP), lymphocyte (LP),

and neutrophile (NP) panels. Marker colored green = positive and marker colored light gray = negative. The stronger the saturation of the depicted correlations

between individual marker combinations, the higher is their correlation coefficient.

modifications, which of these marker profiles are relevant
for the clinical outcome. This study clearly demonstrates that
future analyses should be done with multiplex imaging to enable
precision medicine.
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A dual decoder U-Net-based
model for nuclei instance
segmentation in hematoxylin
and eosin-stained histological
images
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Danube Private University, Krems an der Donau, Austria, 3Department of Computer Science,
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Medical University of Vienna, Vienna, Austria, 5Austrian Center for Medical Innovation and

Technology, Wiener Neustadt, Austria, 6Department of Research and Development, TissueGnostics
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Even in the era of precision medicine, with various molecular tests based on

omics technologies available to improve the diagnosis process, microscopic

analysis of images derived from stained tissue sections remains crucial for

diagnostic and treatment decisions. Among other cellular features, both nuclei

number and shape provide essential diagnostic information. With the advent of

digital pathology and emerging computerizedmethods to analyze the digitized

images, nuclei detection, their instance segmentation and classification can

be performed automatically. These computerized methods support human

experts and allow for faster and more objective image analysis. While

methods ranging from conventional image processing techniques to machine

learning-based algorithms have been proposed, supervised convolutional

neural network (CNN)-based techniques have delivered the best results. In

this paper, we propose a CNN-based dual decoder U-Net-based model to

perform nuclei instance segmentation in hematoxylin and eosin (H&E)-stained

histological images. While the encoder path of the model is developed to

perform standard feature extraction, the two decoder heads are designed to

predict the foreground and distance maps of all nuclei. The outputs of the two

decoder branches are then merged through a watershed algorithm, followed

by post-processing refinements to generate the final instance segmentation

results. Moreover, to additionally perform nuclei classification, we develop an

independent U-Net-based model to classify the nuclei predicted by the dual

decoder model. When applied to three publicly available datasets, our method

achieves excellent segmentation performance, leading to average panoptic

quality values of 50.8%, 51.3%, and 62.1% for the CryoNuSeg, NuInsSeg,

and MoNuSAC datasets, respectively. Moreover, our model is the top-ranked

method in the MoNuSAC post-challenge leaderboard.
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digital pathology, medical image analysis, nuclei segmentation, machine learning,
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1. Introduction

Evaluation of images obtained from tissue sections stained

with hematoxylin and eosin (H&E) has long been the gold

standard method in medicine for disease diagnosis, cancer

grading, and treatment decisions (1). While at some point it

was predicted that molecular biology would replace traditional

histopathology, even in the era of precision medicine, where an

ever-growing list of molecular tests based on omics technologies

is available to support precision oncology, microscopic analysis

and interpretation of the information contained in H&E-stained

tissue sections provides critical information for diagnostic and

treatment decisions. It is time- and cost-efficient, and can be

applied to small amounts of tissue, while rapid intra-operative

tissue analysis based on H&E staining of cryosections remains

indispensable to assist surgeons in deciding how to proceed

with surgery. H&E-stained histological image analysis also

provides valuable information formedical scientists studying the

pathophysiology of diseases (2, 3).

Interpretation of H&E-stained images by experts such as

pathologists, clinicians, or scientists is however the bottleneck of

the common manual analysis as it is time-consuming and prone

to inter-observer differences. With the advent of microscopy-

based slide scanners that acquire and digitize histological images,

computer-aided image analysis systems have been introduced

to support human experts and to make the process faster and

more objective (4). Computerized methods and in particular

deep neural network (DNN)-based algorithms have been shown

to be capable of providing diagnostic interpretation with

similar accuracy to medical experts (5, 6), while computer-

aided analysis can also enable the extraction of quantitative and

complex qualitative features that are not recognized by human

experts (7).

The nuclei are the most prominent cell organelles. Since

they are present in almost all eukaryotic cells, their detection

enables cell localization. Various intra- and extra-cellular factors

determine the nuclear shape. This results in a physiologic

variation of nucleus shapes that can be used to identify

sub-populations of cells (8). Moreover, there are significant

morphological alterations of nuclei in diseases. Cancer, for

example, is known to alter nuclear parameters such as size

and shape. These variations are thus an important piece of

information contributing to tumor diagnosis and grading (9).

Consequently, automated detection, segmentation and in some

cases classification of nuclei are important processing steps of

computer systems used in histological image analysis in the

clinical and scientific context.

Various computer-assisted approaches have been proposed

for nuclei instance segmentation, ranging from conventional

image processing techniques to classical machine learning

and advanced deep learning-based approaches (10–12).

Image processing techniques such as adaptive thresholding

or watershed segmentaion are still widely used for

non-sophisticated images. Open-source software packages,

such as ImageJ2 (13) or CellProfiler (14) have in-built image

processing engines that can be used for microscopic image

analysis, for example, for the segmentation of cell nuclei.

However, for tissue samples where the nuclei are close together

or even overlap or show considerable differences in intensity,

such methods generally do not perform well (15, 16). For

more complex images, machine learning, and in particular

convolutional neural network (CNN)-based approaches,

can be exploited (12). In the medical domain where access

to fully annotated dataset is limited, more and more semi-

supervised and unsupervised approaches are being used

to deal with this issue (17, 18). However, supervised deep

learning (DL) and specially CNN-based approaches still

deliver the best performances in most cases. Supervised CNN

algorithms have shown excellent detection, segmentation

and classification performance for a range of medical image

modalities such as COVID-19 detection in X-ray images (19),

cervical cell classification or pollen grain classification in

microscopic images (20–22) or foot ulcer segmentation in

clinical images (23). CNN-based techniques for nuclei instance

segmentation (and classification) can be broadly classified

into two main categories, detection-based methods such as

Mask R-CNN (24), and encoder-decoder-based approaches

such as the U-Net model and its variants (25–27), while more

recently, hybrid approaches have also been proposed to perform

nuclei instance segmentation in H&E-stained histological

images (28–30). Although these methods have shown significant

improvement compared to other non-DL-based approaches,

a robust and accurate model for the segmentation of nuclei of

multiple cell types in different organs that generalizes well for

different datasets is still challenging to achieve.

In this paper, we propose a novel architecture, consisting

of one encoder and two decoders, to perform nuclei instance

segmentation in H&E-stained histological images. While the

encoder performs standard feature extraction, the decoders

are designed to predict image foreground and distance maps

of all nuclei. To verify robustness and generalisability of our

segmentation model, we test it on three publicly available

datasets and demonstrate it to achieve excellent instance

segmentation performance. Moreover, to perform nuclei

classification, we develop an independent U-Net-based model

that classifies the objects detected by the dual decoder model.

Applied on the CryoNuSeg (31) and NuInsSeg (32) datasets

(both datasets for instance segmentation of cell nuclei) and the

MoNuSAC dataset (16) (a dataset for instance segmentation and

classification of cell nuclei), our method yields average panoptic

quality (PQ) scores of 50.8%, 51.3%, and 62.1%, respectively.

Furthermore, it is the top ranked entry in the MoNuSAC post-

challenge leaderboard1.

1 https://monusac-2020.grand-challenge.org/Results/.
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FIGURE 1

Generic workflow of the proposed method. The blue and green parts represent the nuclei instance segmentation and nuclei classification

components, respectively.

2. Method

Our approach is inspired by our previous work on nuclei

instance segmentation in H&E-stained histological images

in Mahbod et al. (27). However, in contrast to there, where two

separate models were designed to predict nuclei foreground and

nuclei distance maps, a single model performs both tasks in our

proposed approach. In addition, we also present an independent

classification model to extend the workflow to also perform

nuclei classification (if required). Figure 1 illustrates the generic

workflow of our proposed model for performing nuclei instance

segmentation (blue sections) and classification (green sections).

In the following, we describe the details of the utilized datasets,

our proposed model, and the experimental setup.

2.1. Datasets

We use four datasets of H&E-stained histological images,

namely the CryoNuSeg (31), NuInsSeg, MoNuSeg (15), and

MoNuSAC (16) datasets. Details on how we exploit these

datasets in different experiments are given in Section 2.6.

CryoNuSeg, NuInsSeg, and MoNuSeg are manually

annotated datasets for nuclei instance segmentation. The

CryoNuSeg dataset contains 30 image patches of 512 × 512

pixels from 10 different human organs, NuInSeg comprises

667 image patches of the same size from 31 human and

mouse organs, while MoNuSeg contains 44 images of size of

1, 000× 1, 000 pixels from 9 human organs.

MoNuSAC is a manually annotated dataset for nuclei

instance segmentation and classification and has 209 and 101

image patches in the training and test set, respectively. The

images are of varying sizes, ranging from 82 × 35 to 1, 422 ×

2, 162 pixels, and are derived from four human organs. Four

nuclei classes are manually labeled, namely epithelial (21,752

nuclei), lymphocyte (23,460 nuclei), neutrophil (803 nuclei), and

macrophage (894 nuclei).

Further details of the datasets can be found in Table 1 and

the respective publications/repositories.

2.2. Pre-processing

Considering the dataset and the task (either nuclei

instance segmentation or nuclei instance segmentation and

classification), we apply the following pre-processing steps:

• Intensity normalization: we normalize the intensity values

of the images in all datasets to the standard range of [0; 1]

as normalization has shown to be an important step in

training a CNN nuclei segmentation model (33).

• Augmentation: we apply various forms of morphological

and color augmentations during the training phase

including random horizontal/vertical flipping, random

scaling and random contrast as well as brightness shifts.

• Generating additional ground truth masks: we create

refined binary masks and elucidation distance maps from

the provided manual binary annotations in all datasets to

train the dual decoder segmentation model. To generate

a refined binary masks, we remove the touching borders

between the overlapping nuclei and then apply an erosion

operation to obtain a better distinction between close
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TABLE 1 Details of the utilized datasets.

# patches # nuclei Magnification # organs Patch size # classes Source

CryoNuSeg 30 7,596 40× 10 512× 512 - TCGA

NuInsSeg 665 30,698 40× 31 512× 512 - IPA

MoNuSeg 44 28,846 40× 9 1, 000× 1, 000 - TCGA

MoNuSAC 310 46,909 40× 4 82× 35− 1422× 2, 162 4 TCGA

TCGA=The Cancer Genome Atlas; IPA= Institute for Pathophysiology and Allergy Research, Medical University of Vienna.

FIGURE 2

Image examples from the employed datasets (first row), the

refined masks generated from ground truth annotations (second

row), and the obtained distance maps (third row).

objects as suggested in Mahbod et al. (27). Examples of

generated masks for each dataset are shown in Figure 2.

For the MoNuSAC training data, we also create multi-

class labeled masks to train the classification model. The

generated refined binary and labeled masks are only used

in the training phase, and for performance evaluation,

the originally labeled masks are compared with the

model’s predictions.

2.3. Model

Our proposed method for nuclei instance segmentation is

a dual decoder U-Net-based model. The generic architecture

of the developed model is shown in Figure 3. The encoder

part of the model has a similar architecture as the original

U-Net model, with five convolution blocks, followed by max-

pooling layers to extract deep features from the images. In

contrast to the original U-Net architecture, we also add drop-

out layers between convolutional layers as regularisers (with a

rate of 0.1). The generated features in the encoder are then

fed to the two decoder paths to predict nuclei foreground and

nuclei elucidation distance maps, respectively. The architectures

of these two decoders are identical except for the last layer.

Both have five convolutional layers, which are equipped with

drop-out layers similar to the encoder, and we use transposed

convolutional layers in the decoders to up-sample the feature

maps. The last activation functions in the first (distance map)

and second (binary mask) decoders are linear and sigmoid

activations, respectively. We use 3 × 3 convolutional kernels

and ReLu activation layers in all other layers, both for encoder

and decoder. The loss function of the distance map head is a

mean squared error loss function, while the loss function of the

binary mask head is a combination of Dice loss and binary cross-

entropy loss. We merge the three losses, giving equal weight to

each loss term.We utilize the Adam optimiser (34) and an initial

learning rate of 0.001 to train the dual decoder model. We train

the model for 120 epochs while dropping the learning rate by a

factor of 0.1 after every 20 epochs. The model is trained from

scratch after Xavier initialization (35) of the weights.

To obtain the final instance segmentation results, the

outputs of the dual decoder models are merged as shown

in Figure 1. We first calculate the average nucleus size from

the semantic segmentation results (binary mask head), and

then apply a Gaussian smoothing filter to the distance map

predictions with the kernel size of the file derived from the

average nucleus size. Finally, we identify the local maxima from

the filtered predicted distance maps and use them as seed points

for a marker-controlled watershed algorithm (36) to produce the

labeled segmented masks.

To perform nuclei classification as required in the

MoNuSAC challenge, we design an independent U-Net-based

classification model to the workflow. The generic architecture

of the developed classification model is shown in Figure 4. The

encoder and decoder of the classificationmodel are similar to the

dual decoder model but with a unique decoder with a softmax

activation in the last layer. Moreover, in contrast to the dual

decoder model, here we generate four output masks, one for

each nucleus class. We use a combination of categorical cross-

entropy andDice loss (with equal weights) as loss function, while

the other parameters are identical to the dual decoder model.

The output from the classification network is used to determine

the nuclei classes of the predicted objects by the dual decoder

model. We use a majority voting approach based on the output
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FIGURE 3

The architecture of the proposed dual decoder model for nuclei instance segmentation. The two decoders are designed to perform binary

segmentation and distance map prediction, respectively. For simplicity, skip connections between the encoder and two decoders are not shown.

FIGURE 4

The architecture of the classification model for nuclei instance categorization. The di�erent colors in the output represent the nuclei classes in

the MoNuSAC dataset. For simplicity, skip connections between the encoder and two decoders are not shown.

of the classification model to choose the nucleus type for each

object.

2.4. Post-processing

We remove tiny detected objects (with an area less

than 30 pixels) from the segmentation masks during post-

processing. Any holes inside detected nuclei are filled using

morphological operations.

For the MoNuSAC experiments, we also remove the vague

areas from the final instance segmentation and classification

masks. The challenge organizers provide these vague areas for

the entire test set images. We use a five-fold cross-validation

model ensemble and test-time augmentation (TTA) for our

finalized submission for the MoNuSAC post-challenge phase,

as these methods have been shown to boost the segmentation

performances in other studies (37) including our own (38).

We use 90-degree rotated and horizontally flipped images

for TTA.
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2.5. Evaluation

To evaluate the results for the nuclei instance segmentation

tasks (CryoNuSeg and NuInsSeg), we use Dice score, aggregate

Jaccard Index (AJI), and the panoptic quality (PQ) score. While

the Dice score characterizes the general semantic segmentation

performance, AJI and PQ score also evaluate a model’s

ability to separate touching objects and thus quantify instance

segmentation performance. A higher Dice score, higher AJI and

higher PQ score indicate better performance; further details

about the evaluation indices can be found in Graham et al. (39)

and Kirillov et al. (40). We also perform statistical Wilcoxon

signed-rank test method (37, 41) for each of the evaluation index

to compare our model with other approaches.

For the combined nuclei instance segmentation and

classification task (MoNuSAC), we use the average PQ score per

nuclei class for evaluation. The MoNuSAC challenge organizers

performed the evaluation based on the 101 test images of the

challenge dataset. Further details about the submission process

and multi-class mask format for evaluation can be found on the

challenge website2 and in Verma et al. (16).

2.6. Experimental setup

We conduct three experiments to evaluate the performance

of our proposed method. In the first two experiments, we

use the CryoNuSeg and NuInsSeg datasets, respectively, to

evaluate nuclei instance segmentation performance. In the

third experiment, we assess nuclei instance segmentation and

classification performance using the MoNuSAC and MoNuSeg

datasets with the MoNuSeg dataset only being used for training

but not for evaluation purposes. We run our experiments

with an identical setup to the one proposed in the reference

studies (16, 31) to compare our results with other state-of-the-

art algorithms.

For the CryoNuSeg experiment, we follow the 10-fold cross-

validation (10CV) scheme proposed in the original study (31),

for which the dataset (30 images) is divided into 10-folds (each

containing three images) based on the organs. Then, in each CV

fold, the images from nine organs are used for training, while the

images from the remaining organ are used for testing. We use

full-sized images of 512×512 pixels both for training and testing.

For the NuInsSeg experiment, we use a 5-fold cross-

validation scheme as suggested in the NuInsSeg repository3.

Full-sized images of 512 × 512 pixels are used for training

and testing. We utilize an identical suggested random state to

generate the folds.

For the MoNuSAC experiment, we use images of size 256×

256 randomly cropped from the MoNuSeg dataset to pre-train

2 https://monusac-2020.grand-challenge.org/.

3 https://www.kaggle.com/datasets/ipateam/nuinsseg.

the dual decoder model. Then, we utilize 256 × 256 cropped

images from the MoNuSAC training set to fine-tune the model.

Since some MoNuSAC images are smaller than 256 × 256

pixels, we use white pixel padding to create 256 × 256 pixel

images. To train the classification model, we extract overlapping

patches from the MoNuSAC training images.To address the

class imbalance in the dataset, we extract more patches from

the underrepresented classes, taking into account the number of

nuclei in each class in the training set. In total, 14,862 patches

are generated to train the classification model. To evaluate the

performance, we use the test set of the MoNuSAC challenge.

The test images are first padded (white pixel padding) to create

square images and then resized to suitable image sizes (the

closest size divisible by 32). We apply the inverse steps to the

predicted results to have the final segmentation masks identical

to the original MoNuSAC test image sizes. It should be noted

that the evaluation in this experiment was performed directly by

the challenge organizers.

All experiments are performed on a single workstation with

an Intel Core i7-8700 3.20 GHz CPU, 32 GB of RAM and a

TITIAN V NVIDIA GPU card with 12 GB of installed memory.

Matlab software (version 2020a) is used to prepare the datasets

and generate segmentationmasks, while the Tensorflow (version

2.4) and Keras (version 2.4) deep learning frameworks are used

for model training and testing.

3. Results and discussion

The nuclei instance segmentation results on the CryoNuSeg

dataset are given in Table 2, which lists the Dice score, AJI and

PQ score of our proposed model as well as of several other

approaches. The comparative results are split into three sections.

The first section (first row) compares our method (row

8) with a standard image processing technique using the

StrataQuest (SQ) software (version 7.1) 4. We use SQ’s pre-built

image processing engines to derive the results. We use adaptive

thresholding, local maxima detection, Watershed algorithm and

morphological operations to derive the results. The results show

that our model delivers a much better performance considering

all three evaluation indices.

The second section (rows 2–4) is an ablation study.

This section shows the performance of a single semantic

segmentation U-Net (row 2), a single distance U-Net (row 3),

and two independent models for semantic segmentation and

distance map prediction (row 4) as suggested in Mahbod et al.

(27). The results of the ablation study confirm the superior

performance of our proposed dual decoder approach (row 8)

compared to the sub-models for all three evaluation indices.

4 TissueGnostics GmbH https://tissuegnostics.com/products/

contextual-image-analysis/strataquest.
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TABLE 2 Nuclei instance segmentation results on CryoNuSeg dataset

based on 10CV configuration from Mahbod et al. (31).

Dice [%)] AJI [%)] PQ [%)]

Standard image processing 71.9 (*) 39.9 (*) 32.0 (*)

U-Net+Watershed (25, 36) 79.3 (*) 47.8 (*) 40.4 (*)

Distance U-Net+Watershed (27, 42) 74.7 (*) 48.6(*) 37.5 (*)

Two-stage U-Net (27) 80.3 (*) 52.5 (*) 47.7 (*)

Attention U-Net (43) 79.4 (*) 48.2 (*) 41.7 (*)

Residual attention U-Net (43, 44) 79.8 (*) 49.1 (*) 42.7 (*)

CellPose (45) 77.6 (*) 52.6 50.9

Proposed dual decoder U-Net 81.5 54.1 50.8

(*) signs for each evaluation index show statistical differences (p < 0.05) between our

proposed method and other approaches.

The third section (rows 5–7) compares the performance

of our method (row 8) with other state-of-the-art DL-based

algorithms. As is evident from the ablation study and reported

results in the table, our proposed dual decoder U-Net-based

model outperforms the other approaches based on the Dice

score and AJI and delivers very competitive performance based

on the PQ score.

It should be noted that for all reported results in the table

(besides the standard image processing technique where a set

of fixed empirically-driven parameters are used), we utilize the

exact same 10CV folds suggested in Mahbod et al. (31). These

results confirm our proposed algorithms’ excellent semantic

and instance segmentation performances. Examples of this

performance are given in Figure 5, which shows nuclei instance

segmentation results for some CryoNuSeg images.

We report the results of instance segmentation of our model

and several others on the NuInsSeg dataset in Table 3, all based

on identical 5CV folds as defined in the repository. Similar

to the previous experiments for the CryoNuSeg dataset, we

report the results in three sections for comparison to standard

image processing technique (first row), ablation study (rows 2-

4) and comparison to other deep learning- based approaches

(rows 5-7). The results in the first two sections confirm the

superior performance of our proposed method compared to

standard image processing and sub-models derived from our

dual decoder architecture.

As we can see in the third section, our proposed model

(row 8) clearly achieves the best instance-based segmentation

performance (i.e., the highest AJI and PQ score), while

delivering slighlty inferior semantic segmentation performance

based on the Dice score. In Figure 6, we show some examples of

the automatic segmentations obtained from our approach.

The results in Tables 2, 3 also show that the majority

of the DL-based results are superior in comparison to the

applied standard image processing approach by a large margin,

FIGURE 5

Example results on CryoNuSeg test images, selected from

adrenal gland (top), larynx (middle), and lymph node (bottom)

samples.

TABLE 3 Nuclei instance segmentation results on NuInsSeg dataset

based on the 5CV configuration from the repository.

Dice [%)] AJI [%)] PQ [%)]

Standard Image processing 47.8 (*) 23.6 (*) 10.7 (*)

U-Net+Watershed (25, 36) 78.8 50.5 (*) 42.8 (*)

Distance U-Net+Watershed (27, 42) 74.1 (*) 50.3 (*) 41.0 (*)

Two-stage U-Net (27) 76.6 (*) 52.7 (*) 47.2 (*)

Attention U-Net (43) 80.5 (*) 45.7 (*) 36.4 (*)

Residual attention U-Net (43, 44) 81.4 (*) 46.2 (*) 36.9 (*)

CellPose (45) 74.7 (*) 52.8 (*) 48.0 (*)

Proposed dual decoder U-Net 79.4 55.9 51.3

(*) signs for each evaluation index show statistical differences (p < 0.05) between our

proposed method and other approaches.

especially in Table 3 (minimum difference of 26.3%, 22.1%, and

25.7% for the Dice, AJI and PQ score, respectively).

The results obtained on the MoNuSAC dataset are given in

Table 4. Since the results are directly provided by the challenge

organizers and they only report results in terms of average PQ

scores, we do so also in the table. It should be noted that the

results are slightly different from the original report in Verma

et al. (16) since the authors of Verma et al. (16) detected a bug

in the evaluation code; the official updated results (identical to

those in Table 4) are available in Verma et al. (46), while further

details about the evaluation error can be found in Foucart

et al. (47).

Our proposed method is top-ranked in the MoNuSAC post-

challenge leaderboard and would be ranked second considering
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both legacy and post-challenge phases. For nuclei class-

dependent scores, our model achieves the second, second, fourth

and second rank for the epithelial, lymphocyte, neutrophil, and

macrophage class, respectively. While our method yields very

competitive scores in comparison to the top-ranked approach,

the results are not directly comparable since the latter used the

PanNuke dataset of about 200,000 segmented nuclei (48), i.e., a

vastly larger dataset, for pre-training. Samples results from the

MoNuSAC experiment are shown in Figure 7.

In general, our results in Tables 2–4 show superior or at least

very competitive nuclei instance segmentation performance of

our model in comparison to other state-of-the-art methods.

Multi-task learning in encoder-decoder-based architectures has

become more popular in recent years. Works such as DDU-

Net (49) for small-size road detection in high-resolution remote

sensing images, ADU-Net (50) for rain and haze removal in

FIGURE 6

Example results on NuInsSeg test images, selected from human

brain (top), human cardia (middle), and human cerebellum

(bottom) samples.

natural images or two-stage and dual-decoder convolutional

U-Net (51) ensembles for vessel and plaque segmentation

in ultrasound images are examples of multi-task models for

semantic segmentation or image reconstruction. In our study,

we propose a novel dual-task model for a new application, i.e.,

nuclei instance segmentation in histological images.

While here we report results on datasets that mainly

serve for development and benchmarking purposes, our final

intention is to make use of our method in either clinical

or research applications. Automatic nuclei segmentation and

classification are essential tasks in digital pathology; they

enable nuclei morphology analysis, cell type classification, as

well as cancer detection and grading. Our model can add to

the qualitative and quantitative analyses of cells in cancer-

affected tissues whenever H&E-stained tissue sections are part

of the diagnostic pipeline. For example, in the histopathologic

examination of prostate tissue biopsies, nuclei segmentation

is still a decisive factor for diagnosing and grading prostate

FIGURE 7

Example results on MoNuSAC images. The colors in the ground

truth and segmentation masks represent the di�erent nuclei

types (red = epithelial, yellow = lymphocyte, blue = neutrophil,

and green = macrophage).

TABLE 4 Nuclei instance segmentation and classification results on the MoNuSAC challenge test data in terms of average PQ scores for di�erent

nucleus classes.

Team Epithilial cells Lymphocytes Macrophages Neutrophils Average Rank

TIA-Lab 60.3 63.5 63.1 66.5 65.8 L1

SJTU-426 62.2 56.0 61.2 63.0 61.8 L2

IIAI 60.1 55.6 60.5 61.3 60.5 PL2

Sharif_hooshpardaz 55.2 54.5 50.2 60.0 58.2 PL3

IVG 56.7 45.8 51.2 60.0 55.3 L3

Proposed 61.0 57.1 55.4 65.2 62.1 PL1

In the rank column, L represents the legacy leaderboard, while PL refers to the post-challenge leaderboard.
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cancer. A concentration of epithelial nuclei on the prostate

gland’s boundaries indicates an intact tissue structure (the tissue

is thus benign). On the other hand, spreading of epithelial nuclei

with irregular shapes across the stroma areas suggests that the

biopsy sample is malignant (52, 53). Following the detection and

segmentation of nuclei with our proposed model for instance

segmentation, the classification component of our model

could thus be trained to distinguish healthy and malignant

nuclei shapes.

Previous work has suggested that the same trained

algorithms often yield different performance metrics for

tissues from different organs (54, 55). Thus, effective nuclei

segmentation methods which can be generalized across various

cell, tissue and organ types are required. Our model has

demonstrated to perform very well on different datasets

containing various organs generated by different laboratories

or clinics. Another application scenario is pharmacological

research, where imaging technologies have become essential

tools for drug development. Here, our method could enable

rapid and accurate evaluation of in vivo experiments, where the

effect of certain drugs on cell number (i.e., nuclei number) or

the shape and size of the nuclei should be tested, specifically

in organs with a high density of nuclei. If, in this context,

it is required to evaluate the effect of the drug on certain

cell types, such as immune cells or cancer cells, further

training of the classification component of our model might

be required.

Last no least, some recent work, such as low-cost U-

Net (56) and pruned models (57), introduce computationally

less expensive models to reduce inference time and make the

CNN-based algorithm more applicable in a real clinical setting,

and we aim to extend our work in this direction in our

future research.

4. Conclusions

Nuclei instance segmentation and classification are essential

in analyzing H&E-stained whole slide histological images. In

this paper, we have proposed a multi-task encoder-decoder-

based model to identify, segment, and if additionally required

classify nuclei in histological image patches. The proposed

model is demonstrated to yield excellent performance on three

benchmark datasets and shown to outperform other state-of-

the-art approaches.
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Human intravital microscopy in
the study of sarcomas: an early
trial of feasibility

Emmanuel M. Gabriel1*, Kulkaew Sukniam2, Kyle Popp3
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1Department of General Surgery, Division of Surgical Oncology, Mayo Clinic, Jacksonville,
FL, United States, 2Department of General Surgery, Philadelphia College of Osteopathic Medicine,
Suwanee, GA, United States, 3Florida State University, Tallahassee, FL, United States
Sarcomas comprise a vast and heterogenous group of rare tumors. Because of

their diversity, it is challenging to study sarcomas as a whole with regard to their

biological and molecular characteristics. This diverse set of tumors may also

possess differences related to their tumor-associated vasculature, which in turn

may impact the ability to deliver systemic therapies (e.g., chemotherapy, targeted

therapies, and immunotherapy). Consequently, response to systemic treatment

may also be variable as these depend on the ability of the therapy to reach the

tumor target via the tumor-associated vasculature. There is a paucity of data

regarding sarcoma-related tumor vessels, likely in part to the rarity and

heterogeneity of this cancer as well as the previously limited ability to image

tumor-associated vessels in real time. Our group has previously utilized confocal

fluorescent imaging technology to observe and characterize tumor-associated

vessels in real time during surgical resection of tumors, including cutaneous

melanoma and carcinomatosis implants derived from gastrointestinal,

gynecological, or primary peritoneal (e.g., mesothelioma) tumors. Our prior

studies have demonstrated the feasibility of real-time, human intravital

microscopy in the study of these tumor types, leading to early but important

new data regarding tumor vessel characteristics and their potential implications

on drug delivery and efficacy. In this brief report, we present our latest descriptive

findings in a cohort of patients with sarcoma who underwent surgical resection

and real-time, intravital microscopy of their tumors. Overall, intravital imaging

was feasible during the surgical resection of large sarcomas.

Clinical trial registrations: ClinicalTrials.gov, identifier NCT03517852;

ClinicalTrials.gov, identifier NCT03823144.
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Introduction

Sarcomas comprise a vast, heterogeneously diverse group of

malignancies that afflict connective tissues of the body, including

bone, nerve, and soft tissue. There are over 80 defined sarcomas,

each with specific therapeutic approaches that are often

multidisciplinary and require a high level of expertise to provide

the most optimal outcome (1, 2). Despite the diversity of this group

of tumors, even the most common types of sarcomas are relatively

rare compared to other cancers (such as cutaneous tumors or breast

cancer). This leads to inherent difficulty in investigating the

underlying molecular biology and biodiversity of this group of

tumors, and likely contributes to the limited sarcoma treatment

options compared to other cancers, resulting in high rates of tumor

recurrence or disease progression (3). Similar to these challenges,

the tumor-associated vasculature of sarcomas has largely been

unstudied. While certain sarcomas by their nature are

intrinsically vascular (namely angiosarcomas), the extent of

vascularity for many of the more common sarcomas (such as

gastrointestinal stromal tumors or GISTs, liposarcomas, and

leiomyosarcomas) are undefined.

Our group has utilized innovative technologies to study tumor-

associated vessels in real time among patients undergoing surgical

resection (4). These investigations were initially performed in

patients undergoing wide local excision of cutaneous melanoma

(5). In this first trial of its kind, real-time, intravital fluorescence

microscopy was successfully performed to identify, characterize,

and quantify melanoma-associated vessels, revealing drastic

differences in human tumor-associated vessels as compared with

normal (control) vessels. We have since broadened our study of

tumor-associated vessels by using human intravital microscopy to

examine the tumor vessels in patients with peritoneal

carcinomatosis (6). In this recent clinical trial, further differences

in tumor vessel density and functionality were identified, whereby

patients who had received neoadjuvant systemic therapies and

experienced partial response qualitatively had lower proportions

of non-functional tumor-associated vessels and higher proportions

of functional, normal vessels compared to patients who had stable

or progressive disease. Other groups have also started to investigate

tumor-associated vessels in other cancer settings in humans,

including esophagogastric, colorectal, and bladder cancers (7–10).

These differences are important to recognize and define because

systemic drug delivery is highly dependent on the tumor

vasculature (11–13). Our group and others have shown that

manipulation or optimization of blood flow through tumor-

associated vessels at the time of drug delivery can improve tumor

responses in animal cancer models (14–17). However, little is

known about these interventions on sarcoma-associated vessels.

Therefore, to increase the understanding of sarcoma tumor-

associated vessels, we analyzed a cohort of 10 sarcoma patients

who underwent surgical resection and real-time, intraoperative

tumor vessel imaging. Our main objective was to determine the

feasibility of intravital microscopy (IVM) in the observation of

sarcoma-related tumor vessels. Herein, we present a descriptive

analysis of our results.
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Patients and methods

Patient selection

Patients were enrolled in single center, nonrandomized clinical

trials at Mayo Clinic in Jacksonville, Florida, USA. These trials

included Intravital Microscopy (IVM) in Patients with Peritoneal

Carcinomatosis (ClinicalTrials.gov identifier: NCT03517852) and

Intravital Microscopy in Human Solid Tumors (ClinicalTrials.gov

identifier: NCT03823144) (6, 8). Both trials received IRB approval

from the Mayo Clinic (IRB #17-009823 and IRB #18-010370,

respectively). The protocols for these trials, and the inclusion and

exclusion criteria had previously been reported and are available

through nct.gov (6, 8). Briefly, patients underwent informed

consent for participation and received a fluorescein skin prick test

to evaluate the low risk of an allergic reaction to the fluorescein dye

used to enhance the intravital in-human observations of blood

vessels. Recorded information included demographic data (age, sex,

body-mass index, race, history of smoking, history of diabetes, prior

abdominal surgery), sarcoma-specific data (tumor histology and

subtype, grade, primary versus recurrent diagnosis, size of the

primary tumor with the longest dimension reported), and

treatment-related variables (receipt and type of neoadjuvant and/

or adjuvant chemotherapy or other systemic therapy; receipt of

neoadjuvant radiotherapy, radiographic response to neoadjuvant

therapy as measured by standard RECIST criteria, surgical

approach, and complications from surgery including

cytoreduct ion surgery with or without hyperthermic

intraperitoneal chemotherapy, or CRS-HIPEC, when applicable).
Intravital microscopic observations
in patients

The technique for real-time human intravital microscopy had

also been previously described by our group (6, 8). Briefly, we

utilized the ultra-high definition (UHD) probe-based confocal laser

endomicroscopy device (Gastroflex, Cellvizio System, Mauna Kea

Technologies, Paris, France). Sarcoma-associated vessels were

observed at 100x magnification. Videos were obtained in a

proprietary format video files (.mkt) for post hoc data analysis.

Offline quantification of vessel characteristics was performed using

the Mauna Kea Technologies IC-Viewer (Mauna Kea Technologies,

Paris, France). All images/videos were stored on a password-

protected institutional hard drive for later analysis.

Prior to surgical resection, tumor vessel observations were

performed on two separate sarcoma-bearing areas and two

separate non-tumor bearing control areas. The tumor areas and

control areas were separated by a distance of at least 10 centimeters

(cm). We selected the tumor areas based on the highest amount of

gross tumor burden that was visualized, which was up to the

surgeon’s discretion at the time of the resection. Common gross

characteristics of abnormal tissue included color (often white or

gray compared to yellow normal tissue), texture (often firm

compared to soft), and infiltration into normal organs or
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structures. Observations occurred either through open or minimally

invasive (laparoscopic or robotic) approaches. Prior to the

observation, the surgeon instructed the anesthesiologist to

administer 1 ml of fluorescein (AK-Fluor® fluorescein, 10% at

100 mg/mL) intravenously followed by a 10 ml saline flush.

During the fluorescein administration, the Gastroflex probe was

positioned over the first predetermined sarcoma field to be ready for

observation once the recording was initiated. After 10-15 seconds of

administering the fluorescein, the dye could be visualized within

functional tumor vessels. Each predetermined area was observed for

60-90 seconds, for a total of about 4-6 minutes for the entire patient

observation. Within each area, multiple fields were observed over an

area of approximately 2 square cm during each observation period.

In order to facilitate stabilization of the HIVM observations,

respirations were temporarily restricted by the anesthesiologist for

a maximum of approximately 30 seconds per observed area. By

approximately 5-6 minutes after the fluorescein administration, the

dye (which has a molecular weight of 332.31 g/mol) extravasated

into the background stroma, which in turn increased the fluorescent

signal of the surrounding stromal tissue as compared to any

functional vessels (normal or tumor-associated) present within

the field of view. Similar to our prior study in peritoneal

carcinomatosis, the observation for a given patient was completed

when fluorescein was noted to have extravasated out of tumor/

control vessels into the surrounding background tissue (6).

Characterization of the tumor vessels and the measured

parameters had previously been described by our group (5, 6, 9).

Briefly, we characterized the following tumor vessel characteristics

during the intraoperative observations: (1) vessel identification per

high power field, (2) vessel density, (3) fluorescein uptake as a

measure of tumor vessel functionality (dye uptake) or non-

functionality (lack of dye uptake), and (4) blood flow velocity.

Vessel density (for both functional and non-functional) was

calculated by dividing the number of vessels by the number of

fields of observation per area (control or tumor). The percentage of

non-functional vessels per area (tumor or control) was calculated by

dividing the number of non-functional vessels by the total number

of vessels observed (# non-functional vessels/# non-functional

vessels + # functional vessels) times 100. IC-Viewer software was

used to measure vessel diameter (d) at the vessel’s largest width as

well as vessel length prior to any branching points. Blood flow

velocity (v) was evaluated by determining the time that distinct

features (e.g., a prominent red blood cell or clump of red blood cells)

in an observed vessel would take to travel a known distance.

Velocity was calculated by dividing the measured distance by the

time taken to travel that distance, and then averaging these values

for at least 3 points per vessel. No velocities were calculated for non-

functional vessels as by definition, these vessels did not support any

blood flow.
Statistical analyses

Demographic and clinical characteristics were summarized

using the mean and standard deviation (std) for continuous

variables, and using frequencies for categorical variables. Vessel
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characteristics (diameter, density, and velocity) were summarized

using mean and std. The two-sided, paired t test was used to make

comparisons between the control and treatment groups.

Progression-free (PFS) and disease-specific survival (DSS) were

summarized using standard Kaplan-Meier methods. All analyses

were conducted in SAS v9.4 (Cary, NC) at a significance level of

0.05. As this was a study of IVM feasibility, the statistical analysis

was limited to descriptive statistics. Correlative analyses of vessel

characteristics with outcomes (response to neoadjuvant

chemotherapy, PFS, or DSS) were not performed.
Results

Patient demographics, tumor-specific
characteristics, and treatment outcomes

Between January 1, 2018 and December 31, 2022, we enrolled

10 patients with sarcoma as part of our clinical trials

(NCT03517852 Intravital Microscopy in Patients with Peritoneal

Carcinomatosis and NCT03823144 Intravital Microscopy in

Human Solid Tumors). Patient and tumor-specific characteristics

are shown in Table 1. Most patients had retroperitoneal

liposarcomas (5 total, 2 well-differentiated and 3 dedifferentiated).

Half of the tumors (5/10) were high grade, and 4 were recurrences.

Only 2 patients received neoadjuvant systemic chemotherapy

(including doxorubicin/ifosfamide/mesna and doxorubicin/

olaratumab), but 4 patients received neoadjuvant radiation (55-60

Grey). Of these patients, there were no partial responses, and 3

patients had stable disease with 1 patient having disease

progression. One patient received multiple rounds of adjuvant

chemotherapy (including gemcitabine/docetaxel, doxorubicin/

olaratumab, and pazopanib). One patient also required liver

ablation for a metastasis. Two patients had died at the time of

our analysis. The individual progression-free and disease-specific

survivals are reported in Table 1. The median follow-up was 2.5

years. Unlike our most recent study in peritoneal carcinomatosis,

correlations of tumor vessel characteristics and response to

neoadjuvant treatment or survival outcomes were not calculated

due to the small cohort of sarcoma patients.
HIVM vessel characteristics

Table 2 shows the vessel characteristics obtained from the in-

human intravital observations. Similar numbers of tumor and

control fields were observed within our patient cohort (p = 0.22).

Statistically significant differences between the tumor and control

fields were observed for some blood vessel characteristics. Similar to

our previous study in peritoneal carcinomatosis, tumor-associated

areas were observed to have a higher density of non-functional

vessels (p < 0.0018) and a higher proportion of non-functional

vessels compared to non-tumor control areas (p < 0.0032) (6).

Similarly, the mean blood flow velocity of functional vessels within

tumor areas was significantly slower than the mean velocity of

functional vessels within non-tumor areas (p < 0.0001), which was
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also the case with the tumor-associated vessels in patients

with carcinomatosis.

Conversely, there were no statistically significant differences

between the density of functional vessels (p = 0.92), the diameter of

functional vessels (p = 0.35) within control and tumor areas, or the

vessel length among either functional (p = 0.78) or non-functional

(p = 0.67) vessels within control and tumor areas. Some of these

findings were different from our study in peritoneal carcinomatosis,

where there were statistically significant differences among these

parameters. Specifically, there was a lower density of functional

vessels associated with carcinomatosis, and the average diameter of

functional vessels was smaller in tumor areas compared with the

diameter of functional vessels in control areas (6). In our prior study

in patients with peritoneal carcinomatosis, the mean diameter of

non-functional vessels was similar between the tumor and non-

tumor areas (p = 0.15). However, in this study of patients with

sarcoma, there was a statistically significant difference in the

diameter of non-functional vessels, whereby non-functional

tumor vessels were larger than non-functional control vessels.

Table 3 summarizes the differences between vessel characteristics

in our current study with sarcoma and our previous study in

patients with peritoneal carcinomatosis (NCT03517852 Intravital

Microscopy in Patients with Peritoneal Carcinomatosis).

Representative examples of real-time images of sarcoma and

non-tumor vessels among individual patients are shown in Figure 1

(scale bar = 20 mm). Observations from well-differentiated (A) and

dedifferentiated (B) retroperitoneal liposarcomas, gastrointestinal

tumors (C), and leiomyosarcomas (D) are depicted for both control

and sarcoma areas. The outlines of individual adipocytes could be

visualized within the normal fatty area controls in the liposarcoma

panels (A and B). Individual red blood cells could also be observed

within a given functional blood vessel. Part E demonstrates an

example of how blood flow velocity was observed and estimated by

tracking a distinct cluster of red blood cells traveling through a

functional blood vessel in a visualized normal (control) area for a

patient with a dedifferentiated liposarcoma. Similar to our previous

clinical trials in melanoma and peritoneal carcinomatosis, aberrant

and non-functional sarcoma-associated vessels could be observed

using our intravital microscope. There was a high proportion of

non-functional vessels observed in tumor areas, with several panels

demonstrating the juxtaposition of functional and non-functional

vessels within the same field of view. Arrows highlight qualitative

differences between normal and sarcoma-associated vessels.

Discussion

To our knowledge and extensive review of the literature, this

was the first in-human study of sarcoma-associated vessels in real

time. When comparing sarcoma-associated vessels to normal

control vessels, we expectedly demonstrated that tumor areas had

on average a higher density and proportion of non-functional

vessels compared to control areas. This was observed in our

previous trials in melanoma and peritoneal carcinomatosis (5, 6).

However, unlike our previous studies, in this trial we demonstrated

differences among other vessel characteristics, specifically among
TABLE 1 Patient, tumor, and treatment-related variables.

Variable N (#)

Age (years) mean (std) 62.1 (10.8)

Sex female 3

male 7

Body mass index (BMI) mean (std) 30.5 (2.6)

Race Asian 1

White 9

Smoking history current 0

former 1

never 9

Diabetes no 8

yes 2

Histology retroperitoneal liposarcoma 5

gastrointestinal stromal
tumor

2

uterine leiomyosarcoma 1

pleomorphic sarcoma 1

leiomyosarcoma 1

Grade low/well-differentiated 4

intermediate 1

high/dedifferentiated 5

Recurrence no 4

yes 6

Tumor size (longest dimension,
cm)

mean (std) 8.8 (5.5)

Previous abdominal surgery no 4

yes 6

Surgical approach open 8

laparoscopic/robotic 2

Neoadjuvant therapy no 8

yes 2

Neoadjuvant radiotherapy no 6

yes 4

Adjuvant chemotherapy no 9

yes 1

RECIST response (N = 4) partial response 0

stable disease 3

progressive disease 1

Survival (median months, 95%
CI)

progression-free 2.6 (2.5,
2.7)

disease-specific 2.9 (2.8,
3.0)
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the density of functional vessels, the diameter of functional vessels,

and the diameter of non-functional vessels (Table 3). Interestingly,

these differences are consistent with the increasing body of

knowledge that supports a vascular heterogeneity among tumor

types. Indeed, there is considerable tumor vessel heterogeneity (in

addition to tumor genetic and molecular heterogeneity) that exists

between tumor types. While most of this data has been reported in

animal models, there are some clinical studies that describe tumor

vessel heterogeneity. For example, Mezheyeuski et al. showed in

pathologic stage II/III colon cancer specimens (312 patients) that

increased vessel density was associated with increased response to

chemotherapy (18). Also pertaining to colorectal cancer, Herrera

et al. showed that tumor-associated vessels may influence the

interaction between stromal fibroblasts and circulating effector T

cells, potentially optimizing immune crosstalk and anti-tumor

responses (19). Using preclinical models of melanoma, our own

group has demonstrated that drug delivery can depend on intra-

arterial or intravenous delivery, and that blood flow through tumor-

associated vessels can be optimized to enhance systemic treatment

delivery, which in turn improves therapeutic responses (16, 17).

Our ongoing translational studies seek to develop methods of

dynamic tumor vessel control with the end goal of optimizing

tumor blood flow at the time of systemic drug delivery. These

include experiments with fluorescently-labeled effector T cells,

fluorescently-labeled liposomal nanoparticle formulations of
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sustained-released targeted therapies, and chemotherapies that

display intrinsic autofluorescence (e.g., doxorubicin), each of

which are combined with dynamic tumor vessel control.

Furthermore, other groups have shown that modulation of tumor

vessels through targeted nanoparticle technology can normalize

blood flow through neurologic tumors, leading to increased drug

delivery with the same goal of improving treatment response

(20, 21).

These findings from neurologic cancers, gastrointestinal

cancers, and cutaneous malignancies are imperative to more

comprehensively understand and investigate because tumor-

associated vessel heterogeneity (with regard to structure and

functionality) may impact drug delivery and therefore affect

multidisciplinary treatment efficacy (22–25). It has been

increasingly shown that the most successful chemotherapeutic

agents and targeted inhibitors require adequate distribution to the

tumor via the circulation, or else they are rendered ineffective (14,

26–29). Even cell-based onco-immunotherapeutics, such as

adoptive cell transfer and CAR T cells, are similarly dependent

upon accessing the tumor via the vasculature, and better outcomes

have been directly correlated to immune cell infiltration of the

tumor (30–32). A considerable amount of study has focused on

elucidating the properties of tumor vessels and overcoming

limitations to therapy that involve these heterogeneously

organized and functional vessels (33–37). Therefore, our trial
TABLE 2 Comparison of tumor and non-tumor (control) vessel characteristics during intravital microscopic observations.

Variable
Sarcoma Cohort

(N = 10)

Mean (Std, Range) P value

Number of observed fields Control 6.67 (1.94, 3-12) 0.22

Tumor 8.20 (2.96, 4-10)

Density of functional vessels Control 2.12 (0.88) 0.92

Tumor 2.17 (1.22)

Density of non-functional vessels Control 0.11 (0.17) 0.0018

Tumor 1.02 (0.72)

% Non-functional vessels Control 4.59 (7.68) 0.0032

Tumor 35.69 (26.18)

Diameter of functional vessels (mm) Control 23.35 (12.5) 0.35

Tumor 18.05 (11.36)

Diameter of non-functional vessels (mm) Control 14.11 (3.27) 0.034

Tumor 21.34 (8.86)

Length of functional vessels (mm) Control 187.55 (52.64) 0.78

Tumor 166.72 (68.72)

Length of non-functional vessels (mm) Control 148.83 (78.41) 0.67

Tumor 160.29 (49.65)

Velocity of functional vessels (mm/s) Control 430.49 (49.74) <0.0001

Tumor 286.77 (44.45)
fron
tiersin.org

https://doi.org/10.3389/fonc.2023.1151255
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gabriel et al. 10.3389/fonc.2023.1151255
provides the initial step in characterizing vessel heterogeneity

among patients with sarcoma, which are often refractory to

radiation and systemic treatments.

Key to our IVM trial was the use of the Gastroflex fluorescent

microscope. IVM provides several advantages over conventional

imaging techniques, such as ultrasound, computerized tomography

(CT) scan, or magnetic resonance imaging (MRI). Whereas these
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more conventional imaging techniques provide a more global view

of these often large sarcomas, they cannot provide imaging

resolution at the capillary level in the way that IVM can (as

shown in Figure 1) (9). IVM can also provide longer real-time

imaging at the time of surgery, where differences in blood pressure

or blood flow can be analyzed. However, currently IVM is mostly

limited to imaging of surface malignancies. In our current report,
TABLE 3 Comparison of vessel characteristics between sarcoma (current trial) and peritoneal carcinomatosis (previous trial NCT03517852 Intravital
Microscopy in Patients with Peritoneal Carcinomatosis).

Variable Sarcoma Peritoneal Carcinomatosis

control versus tumor

Number of observed fields No difference No difference

Density of functional vessels No difference Control > tumor

Density of non-functional vessels Tumor > control Tumor > control

% Non-functional vessels Tumor > control Tumor > control

Diameter of functional vessels (mm) No difference Control > tumor

Diameter of non-functional vessels (mm) Tumor > control No difference

Velocity of functional vessels (mm/s) Control > tumor Control > tumor
D

A B

E

C

FIGURE 1

Images of tumor and non-tumor vessels among individual patients with sarcoma. Observations of sarcoma-associated vessels from well-
differentiated (A) and dedifferentiated (B) retroperitoneal liposarcomas, gastrointestinal tumors (C), and leiomyosarcomas (D) are depicted for both
control and sarcoma areas. Similar to our previous clinical trials in melanoma and peritoneal carcinomatosis, aberrant and non-functional sarcoma-
associated vessels could be observed using our intravital microscope. Arrows highlight qualitative differences between normal and sarcoma-
associated vessels. White arrows highlight nonfunctional vessels (absence of fluorescent dye uptake). Yellow arrows indicate aberrant loop or branch
patterns. (E) Example calculation of how blood flow velocity was observed and estimated by tracking a distinct cluster of red blood cells traveling
through a functional blood vessel in a visualized normal (control) area for a patient with a dedifferentiated liposarcoma. The left frame shows the
cluster of interest (within yellow oval) at first time point. The right frame shows the same cluster traveling a measurable distance with the blood
vessel. The velocity calculation is shown to derive velocity in mm/s.
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only the surface of the sarcomas could be observed and imaged.

More conventional techniques (US, CT, MRI) can better

characterize the inner portions of the tumor, which often display

heterogeneous characteristics compared to the superficial tumor

areas. For example, the tumor surface tends to be the most active in

terms of replication and growth as the tumor expands outwards and

display increased enhancement on contrasted imaging modalities,

whereas the core of the tumor tends to become more necrotic as the

vasculature cannot support the deeper tumor tissues and so may

display decreased internal enhancement. Thus, there are limitations

to using IVM to analyze parenchymal tumors, unless they are

exposed during surgical resection. Indeed, at this time IVM may

be very useful for surface malignancies such as cutaneous cancers as

our group previously demonstrated (5). In addition, during

resection of larger sarcomas (greater than 10 cm), we were

limited in observing the most grossly abnormal tumor areas.

While observations of the entire sarcoma could be performed

during the course of the surgery, this would have significantly

prolonged operative times and exposure to anesthesia, which may

have increased the undue risks for patients. Therefore, while we

assume that there would be similarities to the tumor vasculature

along different surface areas of the sarcoma, additional sarcoma-

related vessel heterogeneity may exist that could not be

characterized by our approach.

We recognize that there are other limitations in our analysis,

similar to our previous studies (5, 6). Our cohort of sarcoma

patients was small and only one-third of the patients in our

previous trial of peritoneal carcinomatosis. Consequently, this

brief research report focuses mainly on the feasibility of IVM in

the study of sarcomas and only provides a descriptive analysis of the

results. In addition, there was considerable diversity among the

tumor histologies within our sarcoma patient cohort. Therefore,

this trial was not sufficiently powered to analyze any associations

between tumor-associated vessel characteristics and outcomes,

namely response to neoadjuvant therapies and survival (PFS and

DSS). However, our continuation of NCT03823144 Intravital

Microscopy in Human Solid Tumors will likely address this

limitation of statistical power with a larger cohort of patients. In

fact, to date we have enrolled 30 patients with ovarian tumors who

have received neoadjuvant chemotherapy. Our future investigation

will evaluate tumor vessel characteristics with response to

neoadjuvant chemotherapy and survival outcomes.

In conclusion, despite the acknowledged limitations, this

analysis represents the first in-human study of sarcoma-associated

vessels in real time. While similarities were identified among

sarcoma-associated vessels and peritoneal carcinomatosis-

associated vessels from our previous trial, there were also

significant differences providing new, direct real-time evidence to

support the existence of vascular heterogeneity for different tumors

and the feasibility to observe these differences during the course of

surgical resection. Further study with a larger cohort of patients

with a single type of cancer will potentially correlate tumor-

associated vessels with treatment outcomes and help tailor

individualized anti-cancer therapy.
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Introduction: The progression-free survival of patients with HER2-positive

metastatic breast cancer is significantly extended by a combination of two

monoclonal antibodies, trastuzumab and pertuzumab, which target independent

epitopes of the extracellular domain of HER2. The improved efficacy of the

combination over individual antibody therapies targeting HER2 is still being

investigated, and several molecular mechanisms may be in play: the combination

downregulates HER2, improves antibody-dependent cell mediated cytotoxicity,

and/or affects the organization of surface-expressed antigens, which may

attenuate downstream signaling.

Methods: By combining protein engineering and quantitative single molecule

localization microscopy (qSMLM), here we both assessed and optimized

clustering of HER2 in cultured breast cancer cells.

Results: We detected marked changes to the cellular membrane organization of

HER2 when cells were treated with therapeutic antibodies. When we compared

untreated samples to four treatment scenarios, we observed the following HER2

membrane features: (1) the monovalent Fab domain of trastuzumab did not

significantly affect HER2 clustering; (2) individual therapy with either trastuzumab

or (3) pertuzumab produced significantly higher levels of HER2 clustering; (4) a

combination of trastuzumab plus pertuzumab produced the highest level of HER2

clustering. To further enhance this last effect, we created multivalent ligands using

meditope technology. Treatment with a tetravalent meditope ligand combined

with meditope-enabled trastuzumab resulted in pronounced HER2 clustering.

Moreover, compared to pertuzumab plus trastuzumab, at early time points this

meditope-based combination was more effective at inhibiting epidermal growth

factor (EGF) dependent activation of several downstream protein kinases.

Discussion: Collectively, mAbs and multivalent ligands can efficiently alter the

organization and activation of the HER2 receptors. We expect this approach could

be used in the future to develop new therapeutics.

KEYWORDS

HER2, meditope, valency, single molecule localization microscopy, trastuzumab,
pertuzumab
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1. Introduction

Roughly 20% of breast cancers exhibit overexpression and/or
gene amplification of human epidermal growth factor receptor
2 (HER2). These cases are typically associated with aggressive
disease and poor outcomes (1–6). The patient outcomes have
been significantly improved by therapeutic monoclonal antibodies
(mAbs) targeting HER2 (7–13). The first mAb therapy against
HER2 to be approved by the U.S. Food and Drug Administration
(FDA) was trastuzumab; it binds close to the transmembrane
domain of HER2, on an extracellular region (domain IV), and
it may inhibit HER2 homodimerization (14). At least four
mechanisms of action have been suggested for trastuzumab:
it induces internalization and degradation of HER2, activates
antibody-dependent cellular cytotoxicity (ADCC), prevents
shedding of the HER2 extracellular domain, and/or inhibits
downstream signaling (15–17). While trastuzumab may benefit
patients through one or more of these effects, a significant challenge
in the clinic has been both intrinsic and acquired resistance (15,
18). Understanding the manifestation of these mechanisms is
critical to guide alternative treatment strategies.

The combination of mAbs have been suggested as an approach
to improve clinical outcomes in several cancers (13, 19, 20). In
fact, patients with HER2-positive breast cancer benefited when
they received a combination of trastuzumab and pertuzumab plus
chemotherapy (10–13, 21). Pertuzumab binds to the extracellular
domain II (the dimerization domain) of HER2 and inhibits
its heterodimerization with other HER family members (22,
23). Pertuzumab may prevent HER2/HER3 heterodimerization,
activate ADCC, and inhibit downstream signaling (9, 17, 22, 23).
When pertuzumab was combined with trastuzumab, the density
of HER2 on the plasma membrane was reduced (24, 25). The
enhanced efficacy of trastuzumab plus pertuzumab may also be
associated with two additional effects: an increase in ADCC (17)
and inhibition of both homo- and hetero-dimerization of HER2,
which subsequently attenuates the HER2 signaling cascade (26–
28). Local differences in HER2 membrane patterning in different
cell types (29–33) also point toward functional differences, which
are likely relevant to the therapeutic response. Details that would
shed light on these mechanisms remain poorly understood at
the molecular level, and accordingly, our group and others have
been studying how therapeutic agents affect HER2 molecular
organization as a means to gain additional insight to ultimately
improve clinical outcomes.

To this end, we have developed methods for quantitative
single molecule localization microscopy (qSMLM). This approach
is designed to count detected receptors, report on the spatial
patterns of these receptors, and define their regional heterogeneity.
In our prior study, we observed significant changes in HER2
spatial organization when cultured cells were treated with
the chemotherapeutic agent paclitaxel and targeted inhibitor
afatinib (31). We have also extended HER2 single molecule
localization microscopy (SMLM) imaging to patient specimens
(32). Importantly, in cultured cell lines and pre-treatment patient
biopsies, we observed that HER2 density and clustering appear to
correlate with therapy sensitivity/response (33). Herein, we have
applied qSMLM to study in more detail how HER2 patterning
is affected by different antibody-based agents, either alone or in

combination. In addition to studying clinical therapies, we probed
a set of pre-clinical reagents known as meditopes. These small,
peptide-based molecules bind to a unique site within the Fab
arm of the clinically relevant antibody cetuximab (that targets
epidermal growth factor receptor, EGFR). This site has also been
engineered into other mAbs which we have named meditope-
enabled mAbs (memAbs) (34). MemAbs retain their affinity,
selectivity, and function (35–38). Importantly, this technology
allows us to add unique functionality to mAbs, including “non-
covalent crosslinking” through multivalent meditopes. Here, we
observe that the valency of meditope-based reagents modulates
the spatial patterns and activity of HER2 in the presence of a
trastuzumab memAb. These results indicate that reagent valency
may be exploited to develop novel antibody-based therapeutics.

2. Materials and methods

2.1. Coverslip preparation

Twenty-five-millimeter #1.5 coverslips (Warner Instruments)
were cleaned and coated with fibronectin-like engineered protein
[25 µg/ml in phosphate buffer saline (PBS), pH 7.4, Sigma] as
described before (32).

2.2. Cell culture

MDA-MB-468 and SK-BR-3 cells (originally obtained from
the American Type Culture Collection, ATCC) were cultured in
Phenol Red-free Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% fetal bovine serum, 1 mM sodium
pyruvate, 100 units/ml penicillin, 100 units/ml streptomycin, and
2 mM L-alanyl-L-glutamine. MDA-MB-453 cells (also from ATCC)
were cultured in DMEM-F12 media supplemented with 10% fetal
bovine serum, 0.5 mM sodium pyruvate 100 units/ml penicillin and
100 units/ml streptomycin. BT-474 cells were cultured as described
previously (32).

2.3. HER2-paGFP plasmid construct

A perbB2-EGFP pcDNA3.1(+) plasmid was purchased from
Adgene (plasmid # 39321). This plasmid was used for iterative
site directed mutagenesis to mutate the EGFP coding region into
paGFP. The following primer pairs were used for iterative site
directed mutagenesis to alter five amino acids in the EGFP coding
region of the plasmid:

Primer pair 1
5’ CCCACCCTCGTGACCACCTTTAGTTACGGCGTGCAG

TGCTTC 3’
5’ GAAGCACTGCACGCCGTAACTAAAGGTGGTCACGAG

GGTGGG 3’
Primer pair 2
5’ GAACGGCATCAAGGCGAACTTCAAGATCC 3’
5’ GGATCTTGAAGTTCGCCTTGATGCCGTTC 3’
Primer pair 3
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5’ GACAACCACTACCTGAGCCATCAGTCCAAACTGAG
CAAAG 3’

5’ CTTTGCTCAGTTTGGACTGATGGCTCAGGTAGTGG
TTGTC 3’

After each round of site directed mutagenesis, the DNA was
transformed into BP5alpha competent cells (Biopioneer) and plated
on LB/ampicillin agar plates at 37◦C. Single colonies were selected
from the plate and amplified in 10 ml LB culture to purify plasmid
DNA to be used for the next round of site directed mutagenesis.
After the final round of SDM was complete, the plasmid was sent for
Sanger sequencing at the City of Hope Integrative Genomics Core.

2.4. Antibodies, antibody fragments, and
fluorescent dye conjugation

Pertuzumab and trastuzumab (Genetech) were clinical grade.
Trastuzumab memAb I83E (referred to here as trastuzumab
memAb, or TmemAb) and wild type trastuzumab (for ADCC
experiments) were prepared similarly as described before (34).

The Fc used for control studies was obtained from a papain
digest of clinical trastuzumab. The Fc was purified by application
of the papain digest material to first a protein L column (GE, 5 ml)
with collection of the flow through. The flow through material was
concentrated and further purified by gel filtration chromatography
(GE, superdex 10/300 GL). The fractions were concentrated and
stored at−80◦C.

Fab trastuzumab was generated through the digestion of the
clinical trastuzumab with immobilized papain (Pierce) and purified
by reverse purification with protein A (GE Healthcare) and SEC on
a HiLoad 16/600 pg Superdex 75 column (GE Healthcare).

MemAbs were labeled with Alexa Fluor 647 (AF647) dyes
presenting an N-hydroxysuccinidimidyl ester (NHS) group for
protein conjugation. A solution with 4–6 x excess of dye dissolved
in dimethyl sulfoxide was mixed with a solution of 1 mg/ml of
TmemAb in PBS, pH 7.4, and 0.02 M NaHCO3. The conjugation
reaction solution was placed on a rotator for 30 min at room
temperature and quenched with 1.5 M hydroxylamine (pH 8.5)
for 10 min. Unconjugated dye was removed by passing the
solution through a size exclusion chromatography column (Bio-
Rad, Hercules, CA, USA) while any potential aggregates were
removed by passing labeled Ab through a 300-kDa concentrator.
Measurements from a NanoDrop 1000 (Thermo) were used to
calculate (with respect to the dye correction factor) the final
concentration and degree of labeling for each fluorescent antibody.
Approximately one dye per antibody (degree of labeling ∼1) was
obtained in all cases for antibodies labeled with AF647. These
conditions are desired as an increased degree of labeling has been
reported to decrease affinity for trastuzumab (39).

2.5. M2Fc and M4Fc

M2Fc contains the meditope sequence fused to the N-terminus
of the Fc using a flexible 37 amino acid sequence (Supplementary
methods). For the M4Fc moiety, the meditope sequence is placed
at both N and C-termini using flexible 39 and 30 amino acid linkers
respectively (Supplementary methods). Each were produced in

insect cells. Specifically, baculovirus encoding each were produced
in TNI insect cells according to the manufacturer’s protocol by
transfecting M2Fc or M4Fc expression vectors and propagating the
virus three times (Expression Systems). TNI cells were seeded in
ESF921 media at a density of 1e6 cells/ml and allowed to grow
overnight. The following day, high titer baculovirus containing the
M2Fc or M4Fc expression vectors was added to the TNI cells at
a MOI of 50 and the cells were allowed to produce protein. After
three days, cells were separated from the media by centrifugation
and media containing M2Fc or M4Fc was placed over a protein A
column for purification. M2Fc or M4Fc in PBS was further purified
using fast protein liquid chromatography.

2.6. Antibody dependent cell-mediated
cytotoxicity (ADCC) assay

Antibody dependent cell-mediated cytotoxicity assays were
conducted using a luciferase reporter-based core kit according to
manufacturer instructions (G7010, Promega). SK-BR-3 cells were
used as the target cell line and seeded at 5,000 cells per well in a
96-well white, tissue-culture treated plate in DMEM with 10% FBS
one day prior to conducting the ADCC assay. The next day, media
was replaced with 4% low IgG serum in RPMI media, according to
kit protocol. Dilutions of listed antibodies were made at 1:2 starting
at 1 nM antibody in the presence or absence of 10 nM M4Fc and
added to cells along with the effector cells provided. Antibodies at
1 nM, with or without M4Fc, were also added to wells containing no
target or effector cells as a negative control. Cells were incubated at
37◦C for 6 h prior to adding luciferase substrate. Luminescence was
measured on a Synergy 4 multi-mode microplate reader (BioTek)
with a 0.5 s integration time. Each experiment was repeated at least
three times with three technical replicates per experiment.

2.7. Transfection and antibody treatment
of cells for imaging

MDA-MB-468 cells were transiently transfected 48 h after
plating on coverslips using Jet Prime (PolyPlus) according to
the manufacturer’s instructions. For steady-state measurements,
cells were washed with PBS at 37◦C and fixed with 4% (w/v)
paraformaldehyde and 0.2% (w/v) glutaraldehyde (EMS, Cat# 157-
8 and 16019, respectively, Hatfield, MA, USA) in PBS for 30 min at
room temperature; fixation was quenched with 25 mM glycine for
10 min as described before (32).

For Ab/Ab fragment treatments, 24 h after HER2-paGFP
transfection, MDA-MB-468 cells were washed with media and
treated with: 20 nM Fab trastuzumab, 10 nM trastuzumab, 10 nM
pertuzumab, or 10 nM trastuzumab combined with 10 nM
pertuzumab in media for 10 min. Cells were washed again
with warm media and fixed/quenched as described above. For
multivalent meditope treatment, MDA-MB-468 cells transfected
with HER2-paGFP were first incubated with meditope-enabled
trastuzumab memAb for 10 min. After a quick warm media wash,
cells were incubated with 10 nM Fc, 10 nM M2Fc, 20 nM M2Fc, or
10 nM M4Fc in media for indicated times and fixed. To assess the
effect of multivalent meditopes on endogenous HER2, BT-474 cells

Frontiers in Medicine 03 frontiersin.org52

https://doi.org/10.3389/fmed.2023.1064242
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1064242 April 10, 2023 Time: 15:40 # 4

Wakefield et al. 10.3389/fmed.2023.1064242

were incubated with 10 nM TmemAb-AF647, alone or premixed
with 10 nM multivalent meditope (i.e., M2Fc and its variants or
M4Fc), for 10 min at 37◦C and subsequently fixed as described
above. Alternatively, cells were stained with 10 nM TmemAb-
AF647 postfixation as indicated. All incubations were performed
at 37◦C in the cell culture incubator.

About 0.1 µm TetraSpeck beads (Life Technologies) served as
fiducial markers in all experiments to correct any lateral drift as
described before (40). Coverslips in Attofluor cell chambers (Life
Technologies) were imaged immediately after preparation in PBS
(to detect paGFP using photoactivated localization microscopy,
PALM) or direct stochastic optical reconstruction microscopy
(dSTORM) imaging buffer (41) (to detect AF647, using dSTORM).

2.8. Optical setup, image acquisition, and
data analysis

PALM and dSTORM imaging were performed using a 3D
N-STORM super-resolution microscope system (32). Data was
acquired using NIS Elements 4.3 software and ANDOR Solis 4.23.
Images of 256 × 256 pixels (27 µm × 27 µm for PALM and
41 µm × 41 µm for dSTORM) were collected with a frame rate
of 100 ms (PALM) and 10 ms (dSTORM). paGFP, which is a
monomeric optical highlighter protein with good signal to noise
ratio, was activated and excited with a 488 nm laser with power
values ranging from 1.5 to 2 mW (measured out of the optical
fiber) and a 505/15 emission filter. paGFP molecules were imaged
until the signal was completely exhausted—typically 15,000–
25,000 frames were acquired. For fluorescently labeled trastuzumab
memAb (TmemAb-AF647), dSTORM imaging was performed
similarly as before (32), with a laser power of 120 mW (measured
out of the optical fiber) and acquiring 20,000–40,000 frames
until the AF647 signal was exhausted. Additionally, NIS-Elements
software was used with the following identification settings to
capture positive signal and produce localization data for analysis:
700 as the minimum number of photons/localization, 200 nm
minimum localization width, 400 nm maximum localization width,
300 nm initial fit width, 1.3 maximum axial ratio, and 1 pixel
maximum displacement.

We characterized the blinking behavior of paGFP and
TmemAb-AF647. As described previously (31, 32), the average
number of localizations was approximately 5 for paGFP, whereas
the average number of localizations for TmemAb-AF647 was
approximately 3. These values represent the average number of
localizations (discrete appearances α) of the fluorescent probe for
a given set of imaging conditions and particular optical setup (31,
40, 42). We have demonstrated that robust molecular counting can
be obtained using this approach (31, 32).

Pair correlation (PC) analysis and k-means-like clustering
analysis were performed using MATLAB (The Mathworks, Inc.,
Natick, MA, USA) on 10–18 µm2 regions of interest (ROIs) as
described previously (31, 32, 40, 42, 43). To briefly summarize
key steps in the analysis, images of cells were first binarized using
localization xy-coordinate centers obtained from NIS-elements.
Localizations corresponding to noise (precision values outside the
98th percentile) were removed from these images. Individual ROIs
were placed across the cells and the total number of localizations

from within these regions was divided by a constant value (α,
respective to the specific fluorophore) to obtain detected densities
in terms of the number of molecules. Auto-correlation functions
were computed using fast Fourier transforms to obtain the number
of molecules per cluster and cluster radius (40, 42). Subsequently,
localization precision and the cluster radius from PC analysis
were directed into a k-means-like clustering algorithm (32, 43)
to determine the fraction of clustered receptors. This calculation
groups detected localizations via thresholds for spatial parameters
(PC cluster radius and average localization precision) and a
temporal parameter (maximum fluorophore dark time). Molecules
were counted as part of a cluster (more than two receptors) if these
spatiotemporal requirements are met; otherwise, molecules were
counted as unclustered. All codes for this analysis workflow have
been provided previously (32, 42) and the described approach was
validated using Monte Carlo simulations (32).

The calculation for all p-values was performed in Excel
using the Student’s t-test with a one-tailed distribution and
heteroscedastic two-sample unequal variance type.

2.9. Drug treatment for Western blot
assays

Cells were treated with PBS as vehicle control, 10 µM afatinib
(LC LABS) for the indicated times. For multivalent meditope
treatment, cells were treated with 10 nM trastuzumab memAb
for 10 min, washed with warm media briefly and subsequently
treated with either 10 nM Fc, 10 nM M2Fc, or 10 nM M4Fc
for the indicated times. For parenteral antibody treatment, cells
were treated with 10 nM trastuzumab and 10 nM pertuzumab in
combination for the indicated times. The meditope treated and
parental antibody treated cells were then washed briefly with warm
media and treated with or without 10 ng/ml EGF (Genscript).
All drug incubations were performed at 37◦C in a cell culture
incubator. To test for HER2-paGFP transfection activity, cells were
treated with 10 ng/ml EGF for 30 min.

2.10. Kinetic studies

Cells were treated with multivalent meditopes as described
above for the indicated times. Cells were lysed for immunoblotting
with phospho-Akt, total Akt, phospho-HER2, total HER2,
phospho-Erk1/2, total Erk1/2, phospho-EGFR, and total EGFR.
Blots were imaged and quantified using the Image Lab software
(Biorad). Akt, Erk1/2, and EGFR phosphorylation at each time
point was quantified and normalized by calculating the ratio of
pAkt over total Akt, pErk1/2 over total Erk1/2, and pEGFR over
total EGFR, respectively, in each lane. The relative phosphorylation
was normalized to the maximum response by control Fc at each
time point. The experiment was repeated five times independently
to calculate an average normalized relative phosphorylation.

2.11. Western blot

To prepare protein extracts for immunoblotting, cells were
pelleted by centrifugation and washed two times using ice-cold PBS.
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The pellets were subsequently resuspended in lysis buffer (150 mM
sodium chloride, 50 mM Tris, pH 8.0, 1% NP-40, Protease and
Phosphatase Inhibitor Mini Tablets, Pierce) and rotated at 4◦C for
30 min to lyse the cells. The cells were then centrifuged for 20 min
at 10,000 rpm at 4◦C. The supernatant consisting of the protein
lysate was stored at−80◦C. SDS-polyacrylamide gel electrophoresis
and western blotting procedures were carried out using the treated
cell lysates as per standard protocols. Primary antibodies used
included anti-phospho-EGFR (Tyr 1068) (rabbit monoclonal, Cell
Signaling), anti-EGFR (rabbit monoclonal, Abcam), anti- phospho-
HER2 (tyr877) (rabbit monoclonal, Abcam) anti-HER2 (rabbit
monoclonal, Abcam), anti-phospho-Akt (S473) (rabbit polyclonal,
Abcam), anti-Akt (rabbit polyclonal, Abcam), anti-phospho-
Erk1/2 (Thr202/Tyr204) (rabbit monoclonal, Cell Signaling);
anti-Erk1/2 (rabbit polyclonal, Abcam); and anti-β-actin (mouse
monoclonal, Cell signaling). Proteins were detected with Pierce
ECL detection reagents (Pierce). The blots were imaged on a Biorad
Chemidoc imager.

3. Results

3.1. Evaluation of a functional
HER2-paGFP construct

In SMLM, target molecules of interest are detected via
fluorescent reporters. Since one of our objectives was to use
qSMLM to map the membrane organization of HER2 in breast
cancer cells, we genetically tagged HER2 with photoactivatable
green fluorescent protein (HER2-paGFP) and expressed this
construct in MDA-MB-468 cells. This breast cancer cell line has
a very low expression level of HER2 (32) and high expression
of EGFR (44) and is considered HER2 negative. We then
compared levels of HER2-paGFP expressed in MDA-MB-468 cells
to native HER2 found in HER2 overexpressing SK-BR-3 breast
cancer cells. According to our results from Western blot analysis
(Supplementary Figure 1), the amount of expressed HER2-paGFP
in MDA-MB-468 cells was comparable to endogenous HER2 in
SK-BR-3 cells. In addition, both cell lines were exposed (for 0,
5, 30 min) to one of two treatments: either epidermal growth
factor (EGF) or a combination of EGF + afatinib. EGF is a
ligand for EGFR and has been shown to stimulate growth and
differentiation, activate HER2, and promote phosphorylation of
receptor tyrosine kinases. Conversely, afatinib is an irreversible
inhibitor of both EGFR and HER2. During the treatments, we
followed the phosphorylation status of five protein kinases involved
in HER2 signaling: HER2, EGFR, protein kinase B (Akt), and
extracellular signal-regulated kinases 1 and 2 (Erk1/2). Treating
both cell lines with 10 ng/ml EGF led to the phosphorylation of
all four kinases. Phosphorylation was reduced when both cell lines
were additionally treated with 10 µ M afatinib.

We next assessed how the phosphorylation of EGFR (Y1068)
was affected by HER2-paGFP expression. Using Western blot
analysis (Supplementary Figure 2), we probed the phosphorylation
of EGFR when 10 ng/ml EGF was applied to the following cells:
SK-BR-3, MDA-MB-468, MDA-MB-468 expressing HER2-paGFP,
and MDA-MB-453 cells. MDA-MB-453 breast cancer cells do not
express significant amounts of EGFR and HER2. As expected,

MDA-MB-453 cells did not show EGFR phosphorylation following
EGF treatment. Treatment of the other three cell lines with EGF
showed increased phosphorylation of EGFR. This increase was
more pronounced in MDA-MB-468 expressing HER2-paGFP than
in MDA-MD-468 cells, which have minimal endogenous HER2.
Altogether, results in Supplementary Figures 1, 2 suggest that the
HER2-paGFP construct is functional.

3.2. Therapeutic antibodies affect
clustering of HER2

Using qSMLM, we assessed the distribution of HER2-paGFP
in cultured MDA-MD-468 cells. As shown in Figure 1, HER2
was imaged both in the steady state and upon the following
four treatments: Fab trastuzumab, trastuzumab, pertuzumab, and
the combination of trastuzumab + pertuzumab. While some
degree of HER2 clustering was observed in both the steady
state and upon treatment with Fab trastuzumab, an increase
in clustering was evident for all mAb treatments (Figure 1A).
We assessed the imaging data using analysis algorithms to
define the distribution of detected HER2 molecules per cluster
(Figure 1B), the distribution of HER2 cluster radii (Figure 1C),
and the fraction of clustered HER2 molecules (Figure 1D).
The detected HER2 densities are shown in Supplementary
Figure 3A and corresponding localization precision distributions
are shown in Supplementary Figure 4A. Individual mAb
treatments, trastuzumab or pertuzumab, resulted in an increased
frequency of larger clusters with radii > 80 nm (Figure 1C, in
gray). Trastuzumab + pertuzumab treatment produced the highest
frequency of larger clusters (>80 nm radii) that contained > 8
HER2 molecules (Figures 1B, C, in gray). Additionally, the fraction
of clustered HER2 molecules increased when breast cancer cells
were treated with trastuzumab, pertuzumab, or a combination
of trastuzumab + pertuzumab. Overall, the combination of
trastuzumab + pertuzumab led to the most pronounced increase
in HER2 clustering.

3.3. Clustering of HER2 increases upon
treatment with multivalent reagents

Meditopes are cyclic 12-mer peptides that bind tightly
(∼400 nM) to a unique site within the Fab arm of cetuximab
(34). Previously, we demonstrated that this meditope-binding site
is absent in human mAbs but can be readily grafted onto them;
we termed the constructs meditope-enabled Abs (memAbs). We
have demonstrated that the presence of the meditope does not affect
antigen binding of memAbs (35–38). Here, we used the technology,
in concert with qSMLM, to determine how the clustering of HER2
was affected by the valency. To this end, we fused the meditope
sequence to either the N-termini or both the N- and C-termini
of an IgG1 Fc (CH2-CH3) domain. We used this approach to
generate two multivalent meditopes: Fc-divalent meditope (M2Fc)
and Fc-tetravalent meditope (M4Fc).

Using qSMLM, we identified how the clustering of HER2-
paGFP in MDA-MB-468 cells was affected by trastuzumab
memAb (TmemAb) in combination with one of the following
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FIGURE 1

Effect of mAbs on HER2 nanoscale organization. (A) SMLM images of HER2-paGFP within a region from MDA-MB-468 cells in steady state and upon
mAb/Fab treatment. An example for steady state HER2 is shown on the left, and examples for the organization of HER2 upon 10-min treatment with
20 nM Fab trastuzumab, 10 nM trastuzumab, 10 nM pertuzumab, and co-treatment with 10 nM trastuzumab and 10 nM pertuzumab are shown from
left to right. All treatments were performed at 37◦C. Scale bars: 200 nm. Standard PALM image analysis was employed (68) and localizations were
grouped using a maximum blinking time of 5 s for paGFP and group radius of three times the maximum localization precision. (B) Distribution of
detected HER2-paGFP molecules per cluster in steady state and upon mAb treatment. (C) Distribution of cluster radius of HER2-paGFP in steady
state and upon mAb treatment. (D) Fraction of clustered HER2-paGFP molecules with SEM; *denotes p value ≤ 0.05. Quantitative analysis (B–D) was
based on the following cell and region of interest (ROI) statistics: steady state (12 cells, 26 ROI), Fab trastuzumab (12 cells, 26 ROI), trastuzumab (13
cells, 30 ROI), pertuzumab (13 cells, 36 ROI), and co-treatment with trastuzumab and pertuzumab (12 cells, 29 ROI). ROIs for analysis were 10-18
µm2. While Fab trastuzumab had minimal effect on the HER2 distribution, mAbs and mAb combination induced significant clustering.

ligands: Fc domain (monovalent control), M2Fc (divalent meditope
ligand), and M4Fc (tetravalent meditope ligand). Treatments
were assessed at 3 and 10 min by qSMLM (Figure 2A and
Supplementary Figure 5). The detected HER2 densities are shown
in Supplementary Figure 3B and the associated localization
precision distributions are shown in Supplementary Figure 4B.
We assessed the imaging data upon each treatment using the
same analysis as the therapeutic antibodies to obtain quantitative
information on the distribution of detected HER2 per cluster
(Figure 2B), the distribution of HER2 cluster radii (Figure 2C),
and the fraction of clustered HER2 (Figure 2D). While some
HER2 clustering was observed for all treatments at 3 min, it
was most pronounced for tetravalent meditope M4Fc combined
with TmemAb. This combination produced the highest frequency
of larger-sized clusters (>80 nm radii) occupied with >8 HER2
molecules (Figures 2B, C in gray), and the highest fraction of
clustered HER2 (Figure 2D). While still present at 10 min, the
magnitude of HER2 clustering was reduced across all treatments.

3.4. Endogenous HER2 in BT-474 breast
cancer cells shows a high degree of
clustering upon treatment with
multivalent reagents

In addition to mapping the nanoscale organization of HER2-
paGFP, where HER2 is covalently attached to the fluorescent
reporter, we assessed the organization of endogenous HER2 in

breast cancer BT-474 cells. To this end, TmemAb was covalently
labeled with a suitable fluorescent reporter, Alexa Fluor 647
(AF647), for qSMLM. For steady state, cells were first fixed
and subsequently stained with TmemAb-AF647 postfixation (PF).
To assess the effects of multivalent ligands, live cells were first
incubated with reagents and subsequently fixed. In the latter
scenario, we tested the following six treatments: (1) TmemAb-
AF647 alone; (2–5) TmemAb-AF647 + one of four M2Fc ligands;
and (6) TmemAb-AF647 + M4Fc. In all cases, TmemAb-AF647 was
administered at a 10 nM concentration. In the case of M2Fc, the
length of the meditope linker was varied (c10, c20, c30, and c37) to
probe the impact of meditope geometry on HER2 clustering.

SMLM images in Figure 3A illustrate that M2Fc and M4Fc
induce an increase in HER2 clustering in combination with the
TmemAb. Figure 3B summarizes the average detected molecular
density of HER2 (as detected with TmemAb-AF647) and the
corresponding localization precision distributions are provided in
Supplementary Figure 4C. The p values for the HER2 densities
are given in Supplementary Table 1. The highest HER2 densities
were detected when TmemAb-AF647 was paired with either M2Fc
(c37) or M4Fc (Figure 3B). According to studies in different cell
lines, the normal function of HER2 may be influenced by local
differences in HER2 spatial arrangement on the cell membrane:
monomers, dimers, and clusters (29–33). We thus analyzed the
imaging data to determine nanoscale organization of endogenous
HER2 upon multivalent ligand treatment, Figures 3C, D. We
identified the fraction of TmemAb-bound HER2 as either an
isolated receptor (monomer), a cluster of two receptors, or a cluster
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FIGURE 2

Effect of multivalent meditope-based ligands on HER2 nanoscale organization. (A) SMLM images of HER2-paGFP from a region on MDA-MB-468
cells upon treatment with trastuzumab memAb (TmemAb) in combination with Fc or Fc-multivalent meditiope constructs. Image pairs from left to
right show HER2 upon treatment with 10 nM TmemAb for 10 min and subsequent incubation for either: 3 or 10 min with Fc; Fc-divalent meditope
(M2Fc); or Fc-tetravalent meditope (M4Fc). All treatments were performed at 37◦C and cells were briefly washed with warm media before treatment
with Fc or Fc-meditope constructs. Scale bars: 200 nm. Standard PALM image analysis was employed (68) and localizations were grouped using a
maximum blinking time of 5 s for paGFP and a group radius of three times the maximum localization precision. (B) Distribution of detected
HER2-paGFP molecules per cluster upon treatment with TmemAb in combination with Fc or Fc-multivalent meditiope treatment. (C) Distribution of
cluster radius of HER2-paGFP upon treatment with TmemAb in combination with Fc or Fc-multivalent meditiope treatment. (D) Fraction of clustered
HER2-paGFP molecules with SEM; *denotes p value ≤ 0.05. Quantitative analysis (B–D) was based on the following cell and region of interest (ROI)
statistics: TmemAb and Fc treatment for 3 min (12 cells, 27 ROI), TmemAb and Fc treatment for 10 min (12 cells, 26 ROI), TmemAb and M2Fc
treatment for 3 min (12 cells, 28 ROI), TmemAb and M2Fc treatment for 10 min (14 cells, 34 ROI), TmemAb and M4Fc treatment for 3 min (12 cells,
30 regions), TmemAb and M4Fc treatment for 10 min (12 cells, 28 ROI). ROIs for analysis were 10–18 µm2. Treatment with M4Fc for 3 min had a
significant clustering effect on the HER2 distribution.

with more than two receptors; the p values for the fraction of
clustered HER2 are given in Supplementary Table 2. Based on
the analysis (Figure 3C), HER2 monomers were most abundant
when TmemAb-AF647 was used alone (PF or in live cells)
and lower frequencies of HER2 monomers were observed when
TmemAb-AF647 was combined with multivalent meditopes. By
far the highest percentage of clustered HER2 was observed for the
tetravalent meditope (Figure 3D).

3.5. Combination of memAbs and
multivalent meditopes significantly
reduces receptor tyrosine kinase
phosphorylation at early time points

Given these findings, we were interested in identifying
how multivalent treatments affected downstream HER2 signaling
pathways. For example, data suggests HER receptors may be
highly expressed in a trastuzumab resistant setting (45–52) and
may associate into signaling platforms to activate pathways
and compensate for trastuzumab-induced inhibition (45, 52).
We thus tested how exposing MDA-MB-468 cells that express
HER2-paGFP to different treatments affected the phosphorylation
of HER2, EGFR, Akt, and Erk1/2. Western blot analysis was
used to identify the impact of four different treatments: (1)

TmemAb + Fc; (2) TmemAb + M2Fc; (3) TmemAb + M4Fc; and (4)
trastuzumab + pertuzumab. After the treatments were administered
for the indicated times (Figure 4A), cells were incubated for an
additional 30 min at 37◦C either in the presence or absence of
EGF. Images of the Western blots are shown in Figure 4A. The
relative phosphorylation of Akt, HER2, and EGFR was calculated
as a ratio (pReceptor divided by total Receptor) and normalized
to the maximum response by Fc (Figure 4B). Remarkably, both
TmemAb + M2Fc and TmemAb + M4Fc effectively blocked EGFR,
HER2, and Akt phosphorylation at 10 min. Compared to the
control (TmemAb + Fc), phosphorylation of EGFR, HER2, and Akt
was attenuated with TmemAb and multivalent meditope ligands at
30 min; the effect was more pronounced with M4Fc. Compared
to the control, phosphorylation of EGFR, HER2, and Akt was
attenuated with trastuzumab + pertuzumab at 10 and 30 min, but
to a lower extent.

3.6. Treatment with
TmemAb + tetravalent meditope
activates antibody dependent cellular
cytotoxicity

One mechanism promoted by trastuzumab, which may lead
to improved clinical outcomes, is ADCC (15, 16). Similarly,
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FIGURE 3

Trastuzumab memAb and multivalent meditopes induce HER2 reorganization. (A) SMLM images of AF647 labeled trastuzumab memAb (TmemAb)
targeting HER2 on BT-474 cells. Live cells were incubated with 10 nM TmemAb-AF647, alone or premixed with 10 nM multivalent meditope (i.e.,
M2Fc and its variants or M4Fc), for 10 min at 37◦C and subsequently fixed. Alternatively, cells were stained with 10 nM TmemAb-AF647 postfixation
(PF). Scale bars: 200 nm. (B) Average molecular density of HER2 detected with TmemAb; the p values are provided in Supplementary Table 1.
(C) Fraction of TmemAb-bound HER2 identified as an isolated receptor (blue), within a cluster of two receptors (red), or as part of a cluster with
more than two receptors (gray). (D) Percentage of clustered proteins within a given ROI; the p values are provided in Supplementary Table 2.
Quantitative analysis (B–D) used the following cell and region of interest (ROI; 18 µm2) statistics: TmemAb PF (14 cells, 29 ROI), TmemAb (14 cells,
34 ROI), TmemAb + M2Fc10 (16 cells, 40 ROI), TmemAb + M2Fc20 (17 cells, 39 ROI), TmemAb + M2Fc30 (15 cells, 35 ROI), TmemAb + M2Fc (23
cells, 43 ROI), and TmemAb + M4Fc (24 cells, 57 ROI).

pertuzumab has been shown to activate ADCC and the
enhanced efficacy of the antibody combination treatment
has been explained, in part, by this mode of action (9,
17). Since clustering and phosphorylation were significantly
increased by the tetravalent meditope, we were interested
in measuring how it affected ADCC. To this end, SK-BR-3
cells were exposed for 6 h at 37◦C to one of four treatments:
(1) trastuzumab; (2) trastuzumab + M4Fc; (3) TmemAb; (4)
TmemAb + M4Fc. The concentration of M4Fc was held at
10 nM while we assessed different concentrations of the Abs.
Consistently across the various concentrations (Figure 5),
the highest levels of ADCC activity were observed when cells
were treated with TmemAb + M4Fc. A control experiment
(Supplementary Figure 6) was performed, which demonstrated
that ADCC activity was negligible without target or effector
cells. Overall, these results suggest that the multivalent meditope,
in combination with meditope-enabled trastuzumab, enhances
ADCC activity.

4. Discussion

While the precise mechanism of mAb combinations is still
being investigated, trastuzumab plus pertuzumab combined with
chemotherapy is now part of the clinician’s armamentarium to
treat HER2-positive breast cancer. Multiple mechanisms have been
presented to explain its clinical utility, including its ability to

block (homo- and hetero-) HER2 dimerization, increase ADCC,
and/or attenuate the HER2 signaling cascade (9, 17, 26–28).
Recent studies have demonstrated additional effects of HER2
associated with receptor nanoscale organization. For example,
high expression levels of HER2 on breast cancer cells appear to
drive individual receptors into detectable molecular clusters and
potentially altering interactions with adjacent cells (30). Large
HER2 clusters also appear to be more resistant to internalization
when activated (53–57). Of interest, abnormal trafficking into
intracellular compartments appears to be a common theme for cell
surface receptors involved in tumor development (58, 59). Indeed,
HER2 has been detected within nanometer sized cholesterol-
enriched plasma membrane domains (60–62) that support rapid
signaling. Additionally, membrane HER2 nanoscale clustering is
sensitive to treatment with targeted or chemotherapeutic agents
(31) and may be associated with therapy response in HER2-
positive breast cancer (33). These studies suggest there is a
potential link between important physiological events, such as the
membrane residency time of HER2, and local differences in the
membrane organization of HER2. Given that the propagation of
signals in vitro occurs on minute time scales (Supplementary
Figures 1, 2), we probed the molecular dynamics of HER2
membrane organization at early time points. We show that
mAb(s)/memAb-ligand treatments affect cell surface receptor
clustering; the observed effects were dependent on ligand valency.
Moreover, these treatments also affected downstream processes,
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FIGURE 4

Effects of multivalent meditopes on cell signaling pathways upon EGF stimulation of HER2-paGFP transfected MDA-MB-468 cells. Cells were
treated with 10 nM trastuzumab memAb for 10 min, followed by either 10 nM Fc, M2Fc, M4Fc or Fc for indicated times. Cells were incubated for
additional 30 min without or with addition of 10 ng/ml EGF. Alternatively, cells were co-treated with 10 nM trastuzumab and 10 nM pertuzumab for
indicated periods of time. After brief wash with warm media, cells were incubated for additional 30 min without or with addition of 10 ng/ml EGF. All
treatments were performed at 37◦C; cells were briefly washed with warm media before and after treatment with Fc or Fc-meditope constructs.
(A) Phosphorylation of EGFR(Y1068), HER2(Y877), and downstream signaling targets Akt(S473) and Erk1/2(p42/44 T202/Y204) was determined using
Western blot analysis for cells treated as described above. (B) Relative phosphorylation of Akt, HER2, and EGFR for cells treated as described above
was calculated as the ratio of pAkt over total Akt, pHER2 over total HER2 or pEGFR over total EGFR and normalized to the maximum response by Fc
at the indicated time points. Results are representative of 5 independent experiments. Colors show Fc treatment in gray, M2Fc treatment in blue,
M4Fc in red, and combined parental trastuzumab and pertuzumab in purple. M4Fc has the highest inhibition of EGF mediated phosphorylation.

including phosphorylation in HER2 signaling pathways, at notably
short timeframes.

To understand the effects of mAb and memAb therapies on
HER2 molecular organization, we combined meditope technology,
which allows us to control the valency of the treatment, with
qSMLM. These technologies enabled us to report on the effect of
valency on molecular density and organization of HER2. Because
SMLM imaging requires a fluorescent reporter, we applied both
PALM (detecting HER2 genetically tagged with optical highlighter
protein, in this case, paGFP) and dSTORM (detecting HER2 tagged
with an affinity reagent that contains a fluorescent dye, in this case,
AF647) to comprehensively assess HER2 clustering. HER2-paGFP
was transiently overexpressed in MDA-MB-468 breast cancer cells
(very low levels of endogenous HER2). Having established the
functionality of the construct (Supplementary Figure 1, 2), we
set out to map how the membrane organization of HER2-paGFP
was affected by either clinical therapies or our meditope reagents.
For the therapeutic antibodies, the images show that the most
extensive clustering of HER2 (Figure 1) was produced when cells
were treated with a combination of pertuzumab + trastuzumab.
For the meditope reagents, the most significant clustering of HER2
(Figure 2) was observed when cells were treated with TmemAb plus

the M4Fc. Similar results were obtained when we used fluorescently
labeled trastuzumab to detect native HER2 in BT-474 breast
cancer cells (Figure 3A): by far the highest fraction of clustered
HER2 was observed for the tetravalent meditope (Figure 3D).
Of note, trastuzumab can likely bind both sterically accessible
dimeric HER2 and monomeric HER2 (63). However, trastuzumab
cannot bind—and thus detect—HER2 that is sterically hindered
(e.g., with heavily glycosylated proteins) or HER2 that lacks
an extracellular trastuzumab binding domain. Accordingly, using
fluorescently labeled trastuzumab we have previously reported (33)
differences in HER2 clustering in cell lines that have a different
expression of large, glycosylated proteins (e.g., JIMT-1 cells vs. SK-
BR-3 cells). Thus, trastuzumab can sensitively detect changes in
HER2 clustering at different receptor densities and local membrane
environments.

In the canonical mode of signaling, cell surface dimerization
of HER receptors leads to interaction between their intracellular
kinase domains, transphosphorylation of tyrosine residues in the
C-terminal ends, and initiation of signals that are transduced to
the nucleus via different pathways including mitogen-activated
protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt,
and phospholipase C gamma (PLCgamma) pathways. Interestingly,
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FIGURE 5

Effects of M4Fc on ADCC in SK-BR-3 cells. ADCC activity was measured in SK-BR-3 cells treated with increasing doses of trastuzumab or
trastuzumab memAb in the presence or absence of 10 nM M4Fc for 6 h. Data was compiled from three experiments and analyzed using a 2-way
ANOVA (*p < 0.05; **p < 0.01). Data is normalized to the untreated (0 nM antibody) cell signal. Treatment with M4Fc in the presence of trastuzumab
memAb shows higher levels of ADCC activity.

activated HER2 can resist significant endocytosis (54). While
trastuzumab-induced receptor downregulation is a slow process, it
can affect the remodeling of the plasma membrane at early time
points (preceding endocytosis) (64). Given that mAb treatment
(with or without multivalent ligands) can quickly alter HER2
nanoscale organization, we next probed if these biologics can
also affect the propagation of signals. We show that changes
to HER2 organization at early time points are accompanied by
changes in physiological function. The multivalent meditopes
(complexed with TmemAb) that show the most pronounced
HER2 clustering also exhibited the highest inhibition of EGF-
mediated phosphorylation (Figure 4). Additionally, tetravalent
meditope/TmemAb enhanced ADCC (Figure 5).

In addition to canonical signaling, HER fragments can signal
directly. Such fragments are typically generated by the action
of alpha and gamma secretases. For example, previous work
has shown gene transcription to be regulated by a nuclear
carboxy-terminal fragment comprising the cytoplasmic domain of
HER4 (65, 66) and HER2 (67). Importantly, a fragment of the
intracellular domain of HER2, termed 611-CTF (carboxy terminal
fragment), can constitutively homodimerize and regulate MET,
EPHA2, matrix metalloproteinase 1, interleukin 11, angiopoietin-
like 4, and different integrins, promoting mammary tumor growth
and metastasis. Future experiments are needed to explore if the
membrane nanoscale organization of HER receptors is associated
with fragment generation and activity.

Altogether, our results suggest that high valent treatments,
achieved either through a combination of clinical Abs or meditope
technology, have the capacity to arrange HER2 on the membrane
of breast cancer cells, may abrogate elements of the HER2 signaling
cascade, and may ultimately lead to the elimination of breast cancer
cells. This study as well as others highlight the role of valency
on receptor dynamics and geography. The multivalent ligand
approach may be a general strategy for manipulating receptor

clustering applicable to many unique targets (e.g., PD-L1, CD38,
CD19). Beyond increasing the valency, this approach also vitiates
the need to identify additional mAbs to non-overlapping epitopes.
However, the consequences of massive clustering will be unique
for each system and need to be assessed. Critically, this study
also suggests that qSMLM can provide valuable information and
guide the effort to design multivalent biologics (e.g., bispecific and
biparatropic mAbs) for therapeutic intent.
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Single cell analysis of the
localization of the hematopoietic
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marrow architecture identifies
niche-specific proliferation
dynamics
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Anatomy, University Campus Bio-Medico, Rome, Italy, 4National Center for HIV/AIDS Research, Istituto
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Sanità, Rome, Italy, 6National Center for Preclinical and Clinical Research and Evaluation of

Pharmaceutical Drugs, Istituto Superiore di Sanità, Rome, Italy

Introduction: Hematopoietic stem cells (HSC) reside in the bone marrow

(BM) in specialized niches which provide support for their self-replication and

di�erentiation into the blood cells. Recently, numerous studies using sophisticated

molecular and microscopic technology have provided snap-shots information

on the identity of the BM niches in mice. In adults, HSC are localized around

arterioles and sinusoids/venules whereas in juvenile mice they are in close to

the osteoblasts. However, although it is well recognized that in mice the nature

of the hematopoietic niche change with age or after exposure to inflammatory

insults, much work remains to be done to identify changes occurring under these

conditions. The dynamic changes occurring in niche/HSC interactions as HSC

enter into cycle are also poorly defined.

Methods: We exploit mice harboring the hCD34tTA/Tet-O-H2BGFP transgene

to establish the feasibility to assess interactions of the HSC with their niche as

they cycle. In this model, H2BGFP expression is driven by the TET trans-activator

under the control of the human CD34 promoter which in mice is active only in

the HSC. Since Doxycycline inhibits TET, HSC exposed to this drug no longer

express H2BGFP and loose half of their label every division allowing establishing

the dynamics of their first 1-3 divisions. To this aim, we first validated user-friendly

confocal microscopy methods to determine HSC divisions by hemi-decrement

changes in levels of GFP expression. We then tracked the interaction occurring in

old mice between the HSC and their niche during the first HSC divisions.

Results: We determined that in old mice, most of the HSC are located

around vessels, both arterioles which sustain quiescence and self-replication, and

venules/sinusoids, which sustain di�erentiation. After just 1 week of exposure to

Doxycycline, great numbers of the HSC around the venules lost most of their GFP

label, indicating that they had cycled. By contrast, the few HSC surrounding the

arterioles retainedmaximal levels of GFP expression, indicating that they are either

dormant or cycle at very low rates.

Conclusion: These results reveal that in old mice, HSC cycle very dynamically and

are biased toward interactions with the niche that instructs them to di�erentiate.

KEYWORDS

hematopoietic stem cells, GFP reporter, quantitative microscopy, microenvironment,

aging, adipocytes
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1 Introduction

Recent studies, using a combination of mouse models,

expression profiling and sophisticated multicolor confocal

microscopy coupled with high power computer technologies, have

demonstrated that under steady-state conditions the hematopoietic

stem cells (HSC) are localized in areas of the bone marrow (BM)

microenvironment defined as the HSC niche (1–5). The BM

contains several niches, each one of them representing a unique

cellular configuration that regulates specific aspects of the HSC

fate. The most studied of the BM niches are the endosteal and

the vascular niche. The endosteal niche consists of osteoclasts,

osteoblasts and mesenchymal cells and is supposed to retain HSC

into quiescence and to assure that they undergo self-renewal upon

division. The vascular niche is composed by the endothelial cells

surrounding the vessels and by pericytes surrounding the sinusoids

and regulates the differentiation and mobilization of the HSC. The

niche may affect HSC fate directly, by secreting factors such as stem

cell factor (SCF) and C-X-C motif chemokine ligand 12 (CXCL12),

necessary for their survival and proliferation, and indirectly, by

recruiting cells such as megakaryocytes, macrophages and other

stromal cells, which are responsible to secrete factors, such as

platelet factor 4 (PF-4, also known as CXCL4) and Transforming

Growth Factor-β (TGF-β) that induce HSC into quiescence

allowing them to retain stemness (6).

In adult mice and under steady state conditions, the majority

of HSC are located near the vascular niche, in particular around

the arterioles (7). However, the location of HSC withing the

BM architecture changes with age and under conditions of

inflammation. In juvenile mice (3-weeks of age) HSC are found in

high numbers near stromal cells expressing CXCL12 or associated

with the osteoblast niche of the bone. By contrast, studies in

old (>8-months old) mice, have identified profound changes in

the localization of the HSC within the BM architecture, although

the identity of the niche in these old mice has not been well

characterized as yet (8–11). Experimentally induced inflammation,

such as treatment with the pro-inflammatory cytokine interferon-

γ, greatly reduces the interaction of the HSC with the arteriole

niche, reducing their self-renewal potential, while increasing their

interaction with the perisinusoidal niche, favoring differentiation

and exhaustion (7, 12–14).

All these studies have two caveats: (1) they are all conducted

on mice with the same genetic background (C57Bl6) and therefore

they do not reflect the variability of the human population and

(2) they provide snapshots of HSC fate in the mouse BM but

say little on the dynamics of HSC location as they cycle. To

study the cycling of the HSC, the Moore laboratory has developed

the hCD34tTA/TET-O-H2BGFP transgenic mouse model (15–17).

The hCD34tTA gene encodes a tet-Transactivator (tTA), which is

suppressed by doxycycline (Doxy), under the control of the human

CD34 promoter. The human CD34 promoter is active only in the

HSC, restraining the expression of tTA to the HSC (16). TET-O-

H2B-GFP encodes a H2B-GFP fusion gene under the control of

the TetO element activated by tTA which is expressed only in the

HSC. Therefore, in double hCD34tTA/TET-O-H2BGFP transgenic

mice only the HSC are labeled by GFP. When mice are treated with

Doxy, HSC lose half of their label following each division. It takes

approximately 4 divisions for the HSC to lose their label. By flow

cytometry, the HSC, identified by the SLAM phenotype (18, 19),

may be divided based on hemi-decrements of GFP intensity into

four populations: G0, which express maximal GFP levels and never

divided, and cells which divided 1, 2, 3, and 4 times expressing,

respectively, half (GFP1), a quarter (GFP2), an eighth (GFP3) or

none (GFP4) of the maximal GFP level. Using this model, the

Moore laboratory has demonstrated the feasibility to study the

dynamics of the HSC proliferation in youngmice under steady state

conditions and after stimulation with G-SCF (20–23). By tracking

the cumulative division history of the HSC throughout life, the

Moore laboratory has also identified a slow-cyclingHSC population

that contains all the long-term repopulation activity of the HSC

(15). This population undergoes four self-renewal divisions which

last progressively longer time and then enters in a state of dormancy

which is retained for the rest of the life of the mice. The niche which

sustains the “dormant” and “cycling” HSC in these old mice has not

been identified as yet.

Since the hCD34tTA/TET-O-H2BGFP transgenic mice express

autofluorescence signals only in the bones (Dr. Moore personal

communication), we decided to exploit the power of confocal

microscopy to validate these mice as a model to track the HSC

localization within the BM architecture as they divide. Given the

limited information available on the identity of the niche which

sustains the “dormant” and the “cycling” HSC in oldmice discussed

above (15), these studies were performed in hCD34tTA/TET-O-

H2BGFP mice >11-months old. In addition, since TGF-β is one

of the factors which retain the HSC into quiescence (24), the

hCD34tTA/TET-O-H2BGFP mutation was brought in the CD1

background which express a baseline pro-inflammatory signature

(25) that includes high levels of TGF-β. Th CD1 model allow

assessing the number of HSC in proliferation under physiologically

high TGF-β levels similar to that found in some of the elder

population (26).

2 Materials and methods

2.1 Mice

Transgenic mice were bred in the animal facility of Istituto

Superiore di Sanità as described (27, 28). The original huCD34tTA

and TetO-H2BGFP single transgenic mice were provided by Dr.

Katery Moore (15–17). The single mutant mice were bread with

wild type CD1 mice to create double huCD34tTA/TetO-H2BGFP

transgenic mice in the animal facility of Istituto Superiore di Sanità

according to standard genetic protocols (15–17) and backcrossed

for at least 10 generation before being included in this study. All the

mice used in these experiments were genotyped by PCR at birth as

a control that they carried the double mutation. huCD34tTA/TetO-

H2BGFP mice (6 females, 11–15 months of age) were divided into

two groups, one received tap water ad libidum, and the other one

received tap water supplemented with Doxy (0.5 mg/mL; Clontech

laboratories, Mountain View, CA, USA). After 1-week, the mice

in both groups were sacrificed under humane conditions (cervical

dislocation previous general anesthesia with an overdose of gaseous

isoflurane 4%, Aesica Queenborough Ltd, Queenborough, UK)

and their femur harvested for analyses. Selected experiments were

performed with 2-months old huCD34tTA/TetO-H2BGFP female
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mice (n = 3). All the experiments included single TetO-H2BGFP

transgenic mice as control for possible leakage of the expression

of the transgene. The experiments were performed according

to the protocols D9997.121 approved by the Italian Ministry of

Health on September 2nd 2021, and according to the European

Directive 86/609/EEC.

2.2 Flow cytometry determinations

Mononuclear BM cells were incubated with a cocktail

of antibodies containing APC-CD117, APC-Cy7-Sca1, PE-Cy7-

CD150, biotin-labeled CD48, and biotin-labeled anti-lineage

antibodies. After 30min of incubation on ice, cells were washed and

stained with streptavidin-PE-Cy5, and cell fluorescence analyzed

with the Gallios FACS analyzer (Beckman Coulter, Brea, CA, USA).

The enriched HSC population was defined as LSK (Lin–/CD48–

/c-kit+/Sca-1+), while long-term repopulating HSC were defined

by the SLAMphenotype (Lin–/CD48–/c-kit+/Sca-1+/CD150+) as

previously described (18, 19). All the antibodies were purchased

from BD-Pharmingen (San Diego, CA, USA). Dead cells were

excluded by Sytox Blue staining (0.002mM, Molecular Probes,

Eugene, OR, USA). Results were analyzed with the Kaluza analysis

version 2.1 (Beckman Coulter, Cassina de Pecchi, Italy). Hemi-

decrements of the GFP levels expressed by the SLAM were used

to divide them into four classes of proliferation as described by Qiu

et al. (20). Briefly, cells expressing the maximal level of GFP were

defined G0 because did not underwent DNA replication events;

cells expressing half of the maximal level were defined G1 because

underwent 1 DNA replication cycle; cells expressing a quarter of

the maximal level were defined G2 because underwent 2 DNA

replication; cells expressing an eighth of the maximal level were

defined G3 because underwent 3 DNA replication and, finally cells

with barely detected levels of GFP, G4 because they underwent at

least 4 DNA replication events. The hemi-decrements described

in the paper were determined by hand because of the challenges

to properly divide into classes of descendent fluorescence with the

FlowJo program (FlowJoTM v10.8, FlowJo LLC, Ashland, Oregon,

USA) the signal from the rare SLAM cells (data not shown).

2.3 Histology and confocal microscopy
determinations

Femurs were fixed in formaldehyde (10%, v/v with neutral

buffer), incubated for 1 h + 4◦C with BM biopsy decalcifying

solution (EDTA 10%) and included in paraffin. Sections

(3µm) were stained with hematoxylin–eosin (Hematoxylin

Cat. #01HEMH2500, Eosin cat#01EOY101000, Histo-Line

Laboratories, Milan, Italy). Slides were observed and images

acquired with the NanoZoomer 2.0-RS microscope (Hanamatsu

Photonic K.K., Hamamatsu City, Japan,), using the NDP.view2

software for NanoZoomer (Hanamatsu Photonic K.K). Sequential

sections were stained with DAPI (D9542-5MG, Sigma Aldrich)

and analyzed with the confocal microscope Zeiss LSM 900 (Carl

Zeiss GmbH, Jena, Germany) in Airyscan mode. Excitation lights

were generated by a 405 nm Laser for DAPI and with an argon ion

488 nm laser for GFP. Optical thickness varied from 0.50µm for

the 10x objective to 0.20µm for the 63x objective. All images were

captured under the same conditions and were process and analyzed

with the Zen Blue (3.2) software (Carl Zeiss GmbH, November

2021) and the ImageJ (version 1.53t) software (National Institutes

of Health http://imagej.nih.gov/ij, accessed on 23 November

2018). Three-dimensional reconstructions were obtained by

the full set of stack images, 15 images for the 20× objective

and 34 images for 63× objective using the Zen Blue software.

Nuclei were counterstained with Hoechst 33342, trihydrochloride

and trihydrate (Invitrogen), and the samples mounted with

Fluor-shield histology mounting medium (Catalog F6182-10MG,

Sigma-Aldrich). In selected experiments, the sections were stained

with the CD150 antibody (rabbit polyclonal, anti-SLAM/CD150

antibody-N-terminal, cat. no. ab156288, Abcam, Cambridge,

UK) coupled with the Alexa Fluor 568-conjugated goat anti-

rabbit antibody (Invitrogen, Waltham, MA, USA), as control

of the specificity of the GFP label, while endothelial cells were

positively identified by staining the sections with the rabbit anti

von Willebran factor (vWF) antibody directly conjugated with

ALEXAFLUO (Cat. no. ab9378, Abcam, Cambridge, UK).

2.4 Single cell quantification of GFP
intensity

Images were captured at 8 bit and processed with the Fiji

software (ImageJ version 1.53t). The intensity of the GFP signal in

the nucleus was measured as described in Supplementary Figure 1.

Briefly, (1) color channels are split in 3 single components: Red,

Green and Blue. (2) In the Blue channel, it is applied a threshold

(60 as lower limit and 255 as highest limit) for selecting the area

stained with DAPI (Blue component of the original image) which

corresponds to the nucleus. Superimposed or strictly packed nuclei

have been resolved applying a binary process called “watershed”

that separates adjacent nuclei. (3) Applying this criterium, the

number and areas for each single nucleus present in the image is

determined. (4) The resulting image is converted into a mask that

excluded all pixels outside the holes created by the recognition of

the single nuclei. This mask is superimposed to the signal from the

Green channel of the same image which contains information on

the GFP signal. (5) This process generates an image containing the

GFP information (as gray levels) only related to the areas where the

nuclei are located. All pixels outside the nuclei are set to zero. For

each single nucleus it was then determined the minimum, maximal

andMean value of the gray signal. This process allows to determine

for each image the number of nuclei present and theMean,minimal

and maximal level of GFP signal (in arbitrary unit) contained in

each nucleus.

2.5 Statistical analysis

GFP levels were measured as Mean value by confocal

microscopy and as total fluorescence (GFP-A) by flow cytometry.

The overall GFP values between untreated and Doxy-treated

mice were compared by T Student’s Test. Differences in GFP
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FIGURE 1

FACS analyses of the hemi-decrement changes in GFP expression occurring in the HSC of the BM after 1 week of exposure to Doxy. (A)

Representative FACS analyses of Lin-neg BM cells from double mutant mice (15-months old males) either untreated or exposed to Doxy for one

week. The levels of GFP expressed by the Lin-neg cells are also presented as control. The levels of GFP expressed by the LSK and SLAM cells are

divided into the G0, G1, G2. G3 and G4 gates, as reported (20). The gating used to define the LSK and SLAM populations are also indicated. The white

lines indicate the levels of GFP expressed by the BM cells from a single TetO-H2BGFP transgenic mouse, used as negative control. The total number

of events analyzed is 10,000 per sample which correspond to 500 LSK cells (5% of 10,000 events) and 155 SLAM cells (31% of 500 cells) for the

untreated group and to 420 LSK cells (4.2% of 10,000 events) and 114 SLAM cells (27.2% of 500 cells) for the Doxy group. (B) Percentage of cells in

the various GFP classes over the total frequency of SLAM cells in the BM of untreated or Doxy treated-mice. Data are presented as mean of those

observed in three mice per group. The distribution of the cells among the classes in the two groups is statistically significant by Chi-Square test. The

statistical analyses of the di�erences within each class is reported in Supplementary Figure 2.

values among untreated and Doxy-treated mice were analyzed by

One-way Analysis of variance (ANOVA) and the Tukey-Kramer

Adjustment for Multiple Comparisons. Confocal microscopy

evaluation of GFP levels in single cells were grouped in classes

by two different methods: (1) Levels were grouped in 3 classes

according to cumulative percent or (2) grouped in four classes

according to the maximum value of GFP intensity registered; the

first cut off is represented by half the maximum value of GFP

intensity, the second cut off is half the value of the first cut off,

and the third cut off correspond to half the value of the second

cut off. Chi Square Test was used to compare proportions of the

categories of these two grouping classes in untreated vs. Doxy-

treated mice and within the bone marrow architecture. Mann-

Whitney Test was used to compare fluorescence intensity classes

by FACS determination because the data do not show normal

distribution. P-values for this test were showed both two-tailed

and 1-tailed, under the assumption that we expected one group of

mice to be better than the other one. All the statistical analysis was

performed with the SAS R© version 9.4 (SAS Institute Inc. 100 SAS,

Campus Drive Cary, NC, USA).

3 Results

3.1 Tracking HSC cycling by flow cytometry

The Moore laboratory has pioneered the use of untreated

and Doxy-treated huCD34tTA-TetO-H2BGFP mice to track the

cycling of HSC by flow cytometry during the lifespan of mice of

C57Bl6 background (15). In preliminary experiments, we tracked

the cycling of the HSC in old huCD34tTA-TetO-H2BGFP mice

harboring the mutation in the CD1 background which, by contrast

with C57Bl mice, express a pro-inflammatory phenotype at baseline

(26). In these experiments, 15-months old huCD34tTA-TetO-

H2BGFP mice were exposed to Doxy in their drinking water for

only 1 week and the frequency of LSK and SLAM cells, as well
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TABLE 1 Comparison of the levels of cKIT and CD150 (as mean fluorescent intensity, MFI) expressed by the LSK and SLAM cells divided for fluorescence

classes presented in Figure 1.

LSK SLAM

Untreated (n = 3) Doxy (n = 5) P-value (t-test) Untreated (n = 3) Doxy (n = 5) P-value (t-test)

cKIT (CD117) MFI

G0 26.5± 1.4 25.8± 4.0 0.5354 24.0± 2.2 24.9± 3.9 0.7738

G1 28.7± 3.5 25.9± 1.5 0.1192 28.9± 2.5 24.4± 2.9 0.0087

G2 32.8± 4.2 28.0± 2.0 0.0480 36.6± 6.8 28.6± 2.4 0.0300

G3 30.2± 5.0 27.0± 3.1 0.2688 29.9± 18.2 29.8± 5.1 0.9915

G4 24.6± 1.9 24.1± 3.8 0.8158 18.1± 5.5 23.2± 3.0 0.1092

CD150 MFI

G0 n.a. n.a. 28.4± 3.3 47.8± 9.6 0.0128

G1 n.a. n.a. 26.5± 3.0 41.2± 6.9 0.0101

G2 n.a. n.a. 22.1± 4.2 38.2± 11.3 0.0537

G3 n.a. n.a. 20.5± 5.2 35.3± 12.3 0.0875

G4 n.a. n.a. 26.5± 10.4 35.6± 12.9 0.3268

n, number of mice in the experimental group; n.a., not applicable.

FIGURE 2

Representative analyses of the GFP levels expressed by the single cells from the BM of an untreated double mutant female mouse (11-months old).

(A) Reconstruction of the whole femur from the representative double mutant mouse stained by Hematoxylin/Eosin. Scanning was performed with a

resolution equivalent to that of a x40 objective. (B) Reconstruction of the whole femur from the same representative double mutant mouse shown in

A stained with DAPI by confocal microscopy. The original images were acquired at x200 magnification. Blu = DAPI, Green = GFP. (C) Zeta stacking

(each photogram a di�erent focal plane) at X400 magnification of images collected by confocal microscopy in order to confirm the nuclear

colocalization of both the DAPI and the GFP signal. Two representative GFP positive cells are shown. Images are presented as individual DAPI (left

panels) and GFP (central panels) and as merged (right panels) signals.

as the expression of the GFP in these cells, were evaluated by

flow cytometry (Figure 1). Treatment with Doxy did not alter the

frequency of LSK or SLAM cells which were equivalent in the

two groups (LSK: 5.4 ± 0.5 vs. 5.1 ± 1.6% of total Linneg cells;

SLAM: 34.5 ± 4.4 vs. 32.15.4 ± 7.2 of the LSK, respectively). GFP

was expressed almost exclusively by the LSK and SLAM. Very few
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FIGURE 3

Doxy reduces the levels of GFP expressed by the single cells detected by confocal microscopy in the femur sections from untreated or Doxy-treated

mice. (A) Comparison between the overall GFP levels expressed by single cells from the BM sections of the untreated (blue) and Doxy-treated (red)

mice (two mice per group), as indicated. All the GFPpos cells present in one section were considered. The data are reported with statistical analyses

in a table format below the graph. (B) Distribution of the GFP levels expressed by individual cells (each dot a di�erent cell) from the femur of

untreated (blue dots) and Doxy-treated (red dots) mice, as indicated. In this case, the GFP levels are divided into four classes by hemi-decrement

analyses of the maximal levels of GFP intensity determined. (C) The same distribution of the GFP levels shown in B but divided into 3 classes

according to the cumulative percentage of the values distribution. The total number of events presented in (B, C) is 1,033 (526 for untreated and 507

for the Doxy-treated group). (D, E) Frequency of the cells in the various GFP classes over the total frequency of SLAM cells observed in the BM of

either untreated or treated-mice. Data are presented as mean of those observed with two mice per group. Both in (D, E), di�erences in cell

distribution among the classes in the two groups are statistically significant by Chi-Square test.

(∼10%) of the Linneg cells contained GFP. In a previous study,

we identified that the LinnegcKitnegSca1neg cells that express GFP

are larger than the other cells, contain the GFP signal mostly

in their cytoplasm and express F40/80, suggesting that they are

macrophages that have phagocytized HSC (26). By contrast, robust

numbers of LSK and SLAM expressed GFP at a level which

spanned over 4 logs, supporting the knowledge that expression

of TetO-H2BGFP is switched off in the progeny generated by

the first differentiative division of the HSC and that its content

decreases by half with every cell division thereafter (20). Treatment

with Doxy for only 1 week induced significant changes in the

distribution of the SLAM among the various classes of fluorescence

intensity with an enrichment in the frequency of SLAM expressing

barely detectable levels of GFP (Figure 1). In depth analyses of the

differences in the distribution of the SLAM in the various classes of

GFP intensity indicates a statistically significant reduction in the

frequency of SLAM in the G1 and G2 classes and a statistically

increase in that of SLAM in G4 after Doxy treatment by 1-tailed

Mann-Whitmey analyses (Supplementary Figure 2).

The levels of cKIT and CD150 expressed by SLAM in

the untreated and Doxy group according to their fluorescence

classification was also determined (Table 1). There is no difference

in the level of expression of these two antigens among the classes

within the same experimental group. However, the G1 and G2 cells

from the untreated group expressed levels of cKIT significantly

greater than those of the corresponding cells from the Doxy group,

while the G0 and G1 cells of this group express levels of CD150

significantly lower than those expressed by the corresponding

cells in the Doxy group. The physiological significance of these

differences is presently unclear.

These results indicate that the SLAM in the BM of old mice

expressing constitutively higher levels of TGF-β are a dynamic cell

population with few of the very positive cells entering in cycle but

with as many as 12–7% of the intermediate positive cells entering

cycle over a 1-week period.

3.2 Tracking HSC cycling by confocal
microscopy

To investigate the distribution of GFP positive cells within

the BM architecture, we first confirmed that great numbers

of small cells expressing robust levels of GFP signal in their

nucleus were detectable by confocal microscopy (Figures 2A,

B). By contrast, GFP positive cells were not detectable in the

femur from a single TetO-H2BGFP mouse, used as negative

control (Supplementary Figure 3). Sequential Z stacking images
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FIGURE 4

Both in untreated and in Doxy-treated mice, GFP positive cells are localized in all the areas of a femur (both in the epiphysis and in the diaphysis).

Reconstruction of the femur from a representative untreated and Doxy-treated mutant mouse (middle panels) and detail of the epiphysis (left

panels) and of the diaphysis (right panels) of the same femur obtained by confocal microscopy. The Dapi and GFP signals are merged. The

rectangles in the middle panels indicate the areas shown at greater magnification in the panels on the side. Original magnification x100 and x200 for

the entire femurs and their detail, respectively.

indicated that the green GFP signal was co-localized with DAPI,

confirming that GFP was localized in the nucleus of these cells

(Figure 2C).

Using the criteria defined in Supplementary Figure 1, the levels

of GFP detected in the nucleus of single cells from the BM of

untreated and Doxy-treated double mutant mice were determined

(>500 cells per group) (Figure 3). Overall, the levels of GFP

intensity expressed by the single cells from the Doxy-treated mice

was significantly lower than that expressed by the untreated mice

(Figure 3A). As observed by flow cytometry, the levels of GFP

determined by confocal microscopy in the single cells from both

groups did not have a normal distribution and showed a peak at 23

and 14 arbitrary units, respectively. Since the GFP is expressed in

the nuclei only of the HSC and of their immediate progeny, we used

GFP staining and small size as criteria to recognize HSC and their

immediate progeny. We divided the cells according to their GFP

intensity by two statistical methods: the first method was similar to

that used by flow cytometry and divided the cells into four classes

based on hemy-decrements of GFP intensity (Figure 3B). These

classes are basically similar to the G0 (never divided); G1 (divided

once), G2 (divided twice) and G3 (divided three times) recognized

by flowcytometry. It is worthy of attention that, since the confocal

analysis used in this study did not include a positive marker for

HSC identification, it does not allow to identify the progeny of the

fourth division of HSC (G4, that express barely detectable levels

of GFP by flow cytometry). The second method divides the cells

into cumulative percentage of their intensity score in three classes

which partially overlap with those identifies by hemi-decrements.

In both cases, the difference in the distribution of the individual

cells among the classes of GFP intensities from the untreated

and the Doxy-treated mice is highly significant (p < 0.0001 by

Chi square) (Figures 3D, E). Also by confocal microscopy, the

greater differences between untreated and Doxy-treated cells were

represented by a decrease in the frequency of cells expressing the

highest levels and increases in the cells expressing intermediate

levels of GFP.

3.3 The most positive GFP+ cells are
localized around vessels

By confocal microscopy analysis, the cells expressing GFP were

distributed along the entire femur (Figure 4). Both in the untreated

and in the Doxy-treated mice, the GFP positive cells were more

frequent in the epiphysis below the metaphyseal line and in the

medulla. They were localized either around optical empty spaces,

or in their proximity (within 20µm) although some GFP positive

cells was also observed within the BM parenchyma. Observations

at greater magnification, indicated that the empty spaces which

were lined by strongly GFP positive cells had the structure of small

vessels (Figure 5A). Given the thickness of the sections (3µm)

and the fact that we have not made 3D BM reconstructions by

combining images collected from multiple consecutive sections,

the distinction between cells located near vessels and within the

parenchyma may be artificial.
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FIGURE 5

Cells expressing high levels of GFP are often found located around vessels. (A) 3D reconstruction of an arteriole (top panel) and of a venula (bottom

panel) surrounded by small GFP positive cells. (B) Confocal microscopy observation of a representative BM section stained with the von Willebrand

(vWF) antibody. The arrows indicate representative GFP pos cells localized around the vessels which are lined by vWF positive cells. To be noted the

presence of a vessel surrounded by vWF positive endothelial cells which does not contain GFP-positive cells (symbol) but associated with a

megakaryocyte in the process to release platelets (the large cells with multi-lobated nucleus positive for vWF indicated by the asterisk). (C) Confocal

microscopy observation of a representative BM section stained with the CD150 antibody showing that all the GFPpos cells around the vessel are also

CD150pos (yellow arrows) while there are same CD150pos which are not labeled by GFP (asterisks). The image shows the anastomosis between two

venules, one cut transversally and another one cut longitudinally. This anastomosis identifies the two vessels as sinusoids. The straight line indicates

the localization of the basal lamina while the dotted line indicates the junction between the two vessels. The small green cells in the vessel cut

longitudinally are red blood cells. To be noted the GFPposCD150+ cells located in the lumen of the vessel cut transversally and the

GFPnegCD150pos cells located near the transversal vessel that appears in cytodieresis. Original magnification x600 (arterioles and venula) and x200

in all the other panels.

By morphology, we identified two types of vessels: arterioles,

circular areas well delimitated by a lumen wall composed by

elongated cells with endothelial-like morphology and surrounded

by a thick layer of cells, probably representing muscle cells,

and venules, elliptic/collapsed spaces surrounded by a thin layer

of elongated cells. In most of the cases, the morphology does

not allow us to discriminate whether these elliptic structures

are represented by veins or sinusoids. The morphological

hypothesis that these structures are vessels was confirmed by

determining that they were lined by cells that reacted with a

von Willebrand Factor (vWF) antibody, a marker for endothelial

cells (Figure 5C).

To confirm that the GFP labeled cells surrounding the vessels

are HSC, we performed a pilot experiment in which the BM

sections were stained with the CD150 antibody (the SLAM marker

used in flow cytometry) (Figure 5B). This experiment confirmed

that all the GFP labeled cells express CD150, and are therefore

HSC, and identified a CD150pos cell population which is not

labeled by GFP and that may represent the G4 Class identified by

flow cytometry.

Single cell analyses of the levels of GFP expression according

to location confirmed that, overall, the cells expressing GFP

were mostly located around vessels which were surrounded

by almost 50% of all the GFP+ cells detected in a femur

section (518 vs. 237 + 238 cells, respectively, Figures 6A, B).

It also indicated that 30% (by hemi-decrements) or 70% (by

cumulative percentage) of the cells with the highest levels of GFP

expression were located near vessels (p < 0.0001 in both cases)

(Figures 6C–E). As expected, in old mice, very few GFP labeled

cells were present near the endosteum of the trabecular bone

(Supplementary Figure 4).

To start investigated the effects of age on the frequency

and localization of GFP+ cells, a preliminary experiment was

performed to analyze the distribution of GFPpos cells within

the bone marrow architecture of young (2–3-months old) mice

(Supplementary Figure 5). The frequency of GFP+ cells in the

BM of these young mice was much lower than that detected in

the BM of old mice (compare the frequency of GFP+ events

in Figure 4; Supplementary Figure 5). In addition, the GFP+

cells were localized both near the endosteum of the bone and

the vessels.

These results confirm that in old mice the endothelial cells

surrounding the vessels are an important niche for the most

primitive HSC.
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FIGURE 6

The cells expressing the highest levels of GFP are localized in proximity of the vessels. (A) Distribution of the levels of GFP expressed by single cells

(each symbol a di�erent cell) according to their localization. GFP positive cells were divided into cells surrounding vessels, in close proximity (within

20 ?m) of a vessel or within the BM parenchyma, as indicated. The cell localization was determined by the Image J program and by the control

software of acquisition ZenBlue. (B) Overall GFP intensity expressed by the cells according to their location. (C) Number and GFP content [Mean

(+/-SD)] of the single GFP+ cells analyzed for each localization. The p value was analyzed by ANOVA. (D, E) Distribution of single cells expressing

di�erent levels of GFP fluorescence intensity divided by either the hemi-decrement or the cumulative percent criteria (the same criteria as in

Figure 3). In both analyses, Chi-Square test shows statistically significant di�erence in the localization of the GFP positive cells, with the cells

expressing the highest levels localized around vessels.

3.4 Doxy-treatment spares the GFP label
expressed by cells surrounding the
arterioles

In untreated mice, the strongest GFP positive cells were

observed surrounding vessels with the morphology of both

arterioles and venules (Figure 7A). One week of Doxy treatment

reduced the levels of GFP expressed by the cells located in all

the areas of the femur (Figures 7B, C). The greatest reductions,

however, were observed in the levels of GFP expressed by the

cells surrounding the vessels (50% overall reduction from 32.5 vs.

16.9 fluorescence intensity, before and after Doxy, respectively).

Morphological analyses indicates that the fluorescence intensity is

either lost or retained by all the cells surrounding a specific vessel

(Figure 7A). In the Doxy-treated group, the cells that retain the

highest levels of GFP appear co-localized all around vessels with

the morphology of arterioles.

4 Discussion

The double huCD34tTA-TetO-H2BGFP mutant mouse has

provided important information on the dynamics of HSC cycling

over time (15, 21, 23). These studies have identified that 60% of

HSC from young (12-weeks old) C57Bl mice remain quiescent

over a period of 12 weeks (20). In this model, HSC are supposed

to be retained into quiescence by the high levels of expression

of genes of the TGF-β pathway. Treatment with factors, like

G-CSF, which induce HSC mobilization, does not reduce the

number of quiescent HSC, suggesting that in these mice HSC have

greater affinity for the niche that retain them quiescent (23). With

age, HSC enter into a state of dormancy which is retained for

the rest of the life of a mouse (15). Whether the niche which

sustains the “dormant” HSC in old mice is similar from that

that sustain “cycling” HSC in young mice has not been clarified

as yet.

Other studies, using multi-color confocal microscopy and

expression profiling, have identified that in adult mice HSC are

preferably located near vessels and are retained into quiescence by

the niche which surrounds the arterioles while they are induced

in proliferation by that surrounding the venules (1, 2, 4, 6, 29,

30). Since in old mice the HSC which remain quiescent are a

minority, most of the HSC should be associated with a niche still

poorly identified that sustain their proliferation, causing the HSC

exhaustion which results in the anemia and thrombocytopenia

observed in old mice.
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FIGURE 7

Treatment with Doxy specifically reduces the GFP levels expressed by cells surrounding venules. (A) Confocal microscopy analyses of the femur from

representative untreated and Doxy-treated mice stained with DAPI and GFP. The images indicate that in untreated mice cells expressing high levels of

GFP surround both arterioles (white asterisks) and venules (yellow asterisks) while in the Doxy-treated animal high GFP expression is retained only by

cells surrounding the arterioles. (B) Distribution of the GFP fluorescence intensity expressed by single cells from the BM of untreated (blue dots) or

Doxy-treated (red dots) mice (two mice per group) according to their localization within the BM architecture (each symbol a di�erent cell). (C)

Number of single cells analyzed and Mean (+/−SD) of the levels of GFP expressed by the single cells from the BM of untreated or Doxy-treated mice

according to their localization. The p-values were calculated by ANOVA with a post-hoc analysis.

The study presented here couples the power provided by the

double huCD34tTA-TetO-H2BGFP mutant mouse with that of

confocal microscopy to study the association of the HSC with

their niche as they cycle in old mice with the spontaneous pro-

inflammatory profiling provided by the CD1 background (28). In

fact, compared tomice of other strains, such as C57Blmice, the pro-

inflammatory profile of the bone marrow from CD1 mice includes

increased bioavailability of TGF-β, a factor known to induce HSC

into quiescence promoting their self-replication (24).

A first set of experiments validated information on HSC cycling

obtained in our model by comparing the levels of GFP intensity

observed in the SLAM by flow cytometry with that obtained

by measuring the nuclear levels of GFP in cells with a small

size (a morphological criteria for HSC identification) by confocal

microscopy. The fact that GFP signaling was barely observed in

the BM of single TetO-H2BGFPmutant mouse with both methods,

provided evidence for the specificity of our determinations. A

significant difference between determinations of the cycling status

of the HSC by flow cytometry and by confocal microscopy is that,

by flow cytometry HSC are independently recognized by the SLAM

marker while by the confocal microscopy assessment used in this

paper GFP is both a marker for the HSC and for their cycling

state. For this reason, HSC that divided more than four times,

i.e., expressing barely detectable levels of GFP, can be identified

by flow but not by the confocal microscopy method used in this

manuscript. With this caveat, there was a good correlation between

the HSC which never divided (quiescent HSC) and those that

underwent 1, 2, and 3 divisions over one 1-week period determined

with the two methods. In fact, with both methods, only a minority

(10 vs. 5–10%) of the cells remained quiescent over a 1-week

period while most of them (60% in both cases) underwent 1–3 cell

divisions. These results indicate that in old mice HSC are a very

dynamic populations and undergo numerous divisions over just 1

week time.

Single cell analyses of the distribution of the labeled HSC

within the BMmicroenvironment indicated thatmost of the labeled

HSC were located near vessels. It also indicated that the cells

surrounding the vessels were those expressing the highest GFP

intensity. This last result indicates that the HSC near the vessels

are either quiescent or had divided at most once. After Doxy, the

majority of the GFP labeled cells were still located near vessels.

However, there was no longer difference between the intensity of

GFP expressed by the HSC near the venules and those present in

the BM parenchyma, indicating that in just 1-week period the HSC

around the vessels had cycled few times. Interestingly, the arterioles

were the vessels which were surrounded by the few HSC which
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retained label after Doxy, suggesting that this niche supports either

HSC which are quiescent or that enter in cycle at a rate lower than

once a week. It is also possible that this niche sustains the dormant

HSC identified by the Moore laboratory to be uniquely present in

old mice (15). Since, because of the pro-inflammatory environment

provided by the CD1 background, the levels of TGF-β are similarly

high around the arterioles and the venules, it is possible that the

arterioles produce additional factors, still to be identify, which

retain HSC into a quiescent/dormant state (7). This hypothesis

is supported by the observation that all the cells surrounding a

specific arteriole retain label. However, further confocal microscopy

studies, outside the purpose of this paper, which will compare

the location of the labeled HSC using age, sex and time of Doxy

treatment as independent variables, are necessary to clarify whether

in oldmice theHSC around the arterioles are quiescent or dormant.

The rigor of these new studies will be greatly increased by including

the CD150 marker to positively identify the HSC.

In conclusion, our results indicate that aged HSC are

actively cycling and are mostly associated with venules,

confirming that these cells are biased for interacting with

the niche that instructs them to differentiate (4, 7, 30). The

very few old HSC that retain label are located around the

arterioles, providing morphological evidence that this niche may

represent the niche that sustain the dormant HSC present in

old mice.
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SUPPLEMENTARY FIGURE 1

Graphic representation of the method developed to quantify the levels of

GFP in the nucleus of single cells in the BM from the double mutant mice.

(A) Workflow describing the process of quantification of the GFP intensity in

single cells from the femur of the mice. The first step is the reconstruction

of the image of the entire femur by slide scanner for H&E or by stitching the

individual images acquired by confocal microscopy stained with DAPI. In

both cases images have the same resolution as that acquired by a 20X

objective. The second step consists in the examination of the green signals

released by the GFP acquired by confocal microscopy. The third step is the

quantification of the GFP intensity in the single cells by ImageJ (see Material

& Methods for further detail of this quantification). (B) Visualization of the

sequential steps described in A including representative images. Images are

acquired with a 40x objective. The first step is to split color channels and

analyze the Blue component converting them in a 8 bit, 255 gray levels

image. Same threshold values have been adopted for all images. The

resulting image is then used as mask to contour of the objects of interest in

the Green component image in which the gray levels have been measured.

SUPPLEMENTARY FIGURE 2

Doxy significantly decreases the frequency of GFP positive SLAM in the G1

and G2 group and increases those present in the G4 group detected by flow

cytometry. Data are presented as median (plus min and max) of those
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observed with three mice per group. Statistical analyses was performed by

Mann-Whitney and by Mann-Whitney (1-tailed) tests.

SUPPLEMENTARY FIGURE 3

GFP is not detected by confocal microscopy in the BM from mice arboring

only the TetOH2BGFP transgene. (A) Reconstruction of the whole femur

from a representative single TetOH2BGFP transgenic mouse stained either

by Hematoxylin/Eosin (A) or analyzed by confocal microscopy for DAPI and

GFP. Original magnification x200.

SUPPLEMENTARY FIGURE 4

GFP labels cells are seldomly found close to the endosteum of the

trabecular bone. Bright field (on the left) and GFP/Hoechst staining (on the

right) of a section of the trabecular bone from a representative 15-months

huCD34tTA/TetO-H2BGFP transgenic male mouse. The dotted line in the

left panel indicates the area occupied by the trabecular bone. Original

magnification x600.

SUPPLEMENTARY FIGURE 5

Distribution of the GFP label cells within the bone architecture of a young

(2–3-months old) huCD34tTA/TetO-H2BGFP transgenic male mouse. (A)

Reconstruction of the whole femur from a 2-months double mutant mouse

stained by Hematoxylin/Eosin. Scanning was performed with a resolution

equivalent to that of a 20x objective. (B) Reconstruction of the whole femur

from the same representative double mutant mouse shown in A stained

with DAPI by confocal microscopy. (C) Large magnifications of the areas of

the epiphysis, diaphysis and trabecular bones indicated in (B) showing the

detail of the localization of the GFP labeled cells within the bone

architecture. Results are representative of those observed with three

individual mice. Original magnification x40 and x200 for the entire femur

and its details, respectively.
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Immunity—The consequence of coordinated cellular
interactions

In 1898, microscopic examinations were used to study changes in lymphoid tissues and

cell distribution in pathological settings (1). More than 100 years after these first discoveries,

the complexity of lymphoid organ composition and the existence of distinct immune-cell

subpopulations with a diverse set of functions has been described.

For the adaptive immune system to function efficiently, complex series of spatial and

temporal interactions between specialized immune cells must take place. This has been a field

of vigorous interest, exemplified by the fact that nearly 100.000 papers have been published

dealing with the keywords “interaction” and “immune cells” (PubMed search March 2023).

Understanding cell-cell communication—resulting in immunological pathways—is being

supported by a range of sophisticated analysis pipelines, ranging from in vitro and ex vivo

single-cell sequencing analysis to genic analysis of immunological alterations. In this context,

it is commonly accepted that cells can communicate through juxtacrine and paracrine

processes (2). Signal transmission and reception between neighboring cells is fundamentally

involved in the regulation of immunological processes, ranging from tissue homeostasis to

defense mechanisms against tumour cells or pathogens. However, the final decryption of

immunological programs responsible for coordinated and dynamic immunological adaption

is multi-factorial and remains challenging.

Exploring the unknown below the surface of
tissues—From single cell omics to spatial
transcriptomics

Flow-cytometric analysis represents a central pilar of immunophenotyping (3). Based

on this technique, it could be shown that immune cells sense and release many molecular

mediators capable of modifying immune cell development, phenotype, and function.

However, the limited availability of fluorescently labeled antibodies imposes limitations
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on the detection of different epitopes. Consequently, other

approaches such as single-cell RNA sequencing (scRNA-seq)

have been established, allowing an upscaling of the analytic

dimensions (4). What was previously impossible becomes routine.

Transcriptomic datasets in combination with computational

analytic pipelines can match raw data with cell clusters of interest

and identify biomarkers involved in the developmental trajectory

of immune cells (5–7). While these sequencing approaches

improve our ability to analyse different cell populations in a

variety of contexts, some limitations remain (5). Especially the

enzymatic digestion of tissues is critical, as mediators released

during tissue processing for single-cell analysis can result in cell

activation or death (6). Consequently, rare cell populations can

be lost and valuable information about cell-cell interactions and

the transcriptome are overlooked. Most importantly, single-cell

preparations abolish the spatial context of the cell populations and

information about cell-cell interactions become inaccessible (2).

Spatial transcriptomics (ST) (7, 8) address these shortcomings by

detecting and localizing mRNA transcripts within tissues (2) and

became “Method of the Year” in 2021 (9).

In contrast to early in situ hybridization techniques which

only detect a single transcript (10), ST can detect a broad range

of genes expressed within defined detection spots, containing

barcoded poly-T oligonucleotides capable of trapping their

complementary tissue mRNA. However, the resolution of detection

spots can range from two to 55 microns [2 µm: High-definition

spatial transcriptomics (11), 10µm Slide-seq, Slide-seq v2 (12,

13); 55 µm: Visium spatial gene Expression (7)], leading to

considerable uncertainty regarding the precise cell assignment

of any identified mRNA. These relatively large spot areas

represent therefore a major limitation (14) to this technique,

since it is challenging to assign the generated RNAseq data

to a distinct “cell type” within a sampled portion of tissue.

Furthermore, even with a tissue thickness of less than seven

microns, the processed tissue-sample still represents a three-

dimensional cell layer (15, 16) containing cells stacked on top

of each other, which causes a further inaccuracy of cellular

specificity. Consequently, the genetic information of adjacent

contaminating cells is easily trapped within the measured spot

(14). These issues can be limited by integrating additional

gene expression profiles from scRNA-seq or other single-cell

genomic approaches and subsequent predictions of location

specific cell-type proportions. This complex procedure also called

“deconvolution” (2) requires the application of certain algorithms

[e.g. SPOTlight (17), SpatialDWLS (18), stereoscope (19), robust

cell-type decomposition (14)]. After cell-type scoring, a scRNA-

seq-based assignment can be calculated to predict the RNA

localization. This process is called “mapping” and can be achieved

by the integration of suitable algorithms, such as Harmony (20),

LIGER (21), or Seurat Integration (22).

Due to the occurrence of mismatched data sets, the current

integrating computational models used for deconvolution and

subsequent mapping are reaching their limits. Therefore, it remains

difficult to precisely determine the spatial context of cell subsets (2).

The essential aspects are summarized below: First, pre-sequencing

issues are caused by the fact that classical sc-RNAseq data show

a tendency towards a higher sequencing depth compared to most

ST-methods (2, 16). Second, a preparation of single cells from

tissues can also induce artificial stress responses, that do not

take place in intact tissues (23). Third, a loss of cell subsets

during the enzymatic preparation of tissues can further induce

mismatches and problems during deconvolution steps (24, 25).

Fourth, it is possible that “clustering capture spots” may uncover

cell subsets only captured by spatial barcoding (2). Thus, a

precise decryption of cell-cell interactions by ST still remains an

ambitious goal.

Decrypting cellular communications
in situ—Pushing the limits of in situ

resolution by combining multimodal
workflows

It is widely accepted that tissue-resident cells are continuously

involved in short-range (<200µm) communication (2). This is of

crucial importance for the maintenance of organ architecture and

coordination of immune responses. Some monospecific receptor-

ligand-interactions have already been decoded, highlighting

distinct immunological programs (26–28). However, the mode

of action by which cellular phenotype adoption takes place,

especially within a given temporal microenvironment, is still

not fully understood. In line with this challenging question,

different in situ approaches have been established to uncover

cell-cell communication. A combination of multiplexed ion beam

imaging (MIBI) and ST has been used to evaluate receptor-

ligand proximity or ligand-receptor-target co-expression. Based

on these computed data and appropriate algorithms, it is feasible

to determine distinct multi-cellular areas of communicating and

non-communicating cell subsets within tissues (8). The achieved

resolution of the techniques used in “marker-mapping” and

creating immunological landscapes is promising [Slide-seq 10µm;

ST 50–100µm; MIBI 800×800µm (12, 29)]. Most recently, a

bead-based method produced high-definition ST with resolutions

nearly comparable to the size of individual cells (11). Therefore,

an integration of different ex vivo and in situ techniques might be

suitable to push the limits in contextualized modeling of spatial

cellular communication (30) in the near future. However, in silico

generated landscapes still remain constructed based on computed

models of cell type specifications (29). This reconstruction of

“highly probable signaling networks” is often based on scRNA-

seq data, without exact pairing transcriptomic quantification with

probability-based protein identification (30). Models capable of

indexing both transcriptomes and epitopes by sequencing, such

as CITE-seq, already exist (31) and will help to combine RNA-

data and protein abundance in a contextual manner. However,

as Alexander F. Schier has already asked: . . . “Is “landscapes” even

the proper analogy for multidimensional phenotypic complexity?

Addressing these questions requires the multiplex in vivo measuring

of dozens of transcripts over time and at single-cell resolution — a

Holy Grail technology that is not yet available”. . . (29).
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FIGURE 1

PIC characterization and implementation for contextual multiplex imaging. (A) Ex vivo and in vitro cultures, exposed to antigens, can be used for

sorting single cells (sc; T cells or DCs) and physical interacting cells (PIC) [For further reading, see Giladi et al. (32)]. (B) Implementation of scRNA-seq

and PIC-seq algorithms for subsequent characterization of gene modules (exemplary for T cells and DCs). (C) Grouped by their contributing myeloid

or T-cell subset identities, it is possible to assign distinct gene modules to PICs: e.g., genes u, v, w to DC subsets and genes x, y, z to T-cell subsets

[For further reading, see Giladi et al. (32)]. The putative gene expression profiles of PIC-contributing cell subsets are depicted. Specific “APC gene

modules” of migratory DCs (red star) and “T-cell gene modules” of activated T cells (green star) can be generated [For further reading, see Giladi et al.

(32)]. (D) Gene modules assigning specific cellular phenotypes can be used for panel designs and multiplex imaging. PICs consisting of migratory

(Continued)
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FIGURE 1 (Continued)

DCs and activated T cells can be computed (orange insert). A contextualized detection of “migratory DCs” physically interacting with “activated T

cells” becomes possible (highlighted by distinct DC and T cell shapes and colors). (E) Based on the phenotype of cells that contribute to PICs, a

virtual channel (orange contour) can be generated by imaging software tools, capable of contextualized image analysis in situ. PICs (orange contour)

consisting of “migratory DCs (red shape)” and “activated T cells (green shape)” can be computed. (F) Visualization and further characterization of PICs

of interest (orange contour). It is feasible to dissect “cold” cell interactions (blue insert; non-reactive cells) from “hot” cell interactions (red insert;

reactive cells) resulting in T-cell activation. (G) Di�erent pathogens (viruses, protozoan, bacteria etc.) and models must be considered for the

generation of context-adapted gene modules. This would allow a detailed characterization of gene modules of PICs in a pathogen-specific manner.

A contextualized generation of PIC-associated gene modules will permit the decryption of two central immunological categories: beneficial adaptive

immune responses, resulting in protective host defense mechanisms against pathogens and immunopathological process, associated with chronic

diseases. (H) Multicentre data acquisition and storage (PIC atlas) for the long-term generation of contextualized gene models and subsequent marker

design. This concept will allow an allocation of certain immunological attributes to PICs, in a contextualized manner. A spatial detection of PICs

contributing to disease chronification or successful immunity would become possible. (I) Conceivable applications of the PIC-seq concept in

translational medicine are depicted. Left side: vaccination development. Based on experimental models and definition of gene modules (green box),

it is possible to define PICs that are contributing to protective immunity against pathogens. This protective gene signatures can be compared with

gene modules of PICs that occur after immunization with di�erent vaccine protocols. Such an approach might be useful for the selection of most

promising (green check) and ine�cient (red cross) vaccine formulation. Right side: biomarker identification in tumour immunology. Physical

interactions among tumour and immune cells are supposed to play crucial roles in immune modulation, progression and response to treatments

(46). Thus, contextualized analysis of tumour-immune communications would improve the understanding of the tumour-immune interface.

Comparable to the described immune cell interactions [compare (A–H)] a biocomputational analysis of gene modules, associated with physically

interacting immune and tumour cells, might help to identify biomarkers, involved in protective tumour-immune interactions. The integration of those

biomarker in high precision imaging, would lead to massive improvements of contextual resolutions regarding tumour cell/e�ector cell interactions.

This feature will help to correlate microenvironmental neoplasia with molecular modifications—aspects that are crucial for the evaluation of tumour

progression and therapy controls.

Computed cell-cell communication
networks—First steps in decrypting
physically interacting cells in situ

Unbiased mapping of omics to a spatial context opens

a new dimension in the field of immunology (29). Given

the ST-limitations described above and the multidimensionality

of cell-interactions, a precise characterization of single cells

in situ still seems to be a distant goal. To understand

the immunological relevance of physically interacting cells

[PICs, (32)] in situ, a combination of existing sequencing

methods and data sets might be promising. Given the broad

spectrum of cell-cell communication during homeostasis and

pathological conditions, it is impossible to present one conceptual

workflow of data processing, covering all cell subsets and

immunological responses. Thus, I would like to address this

aspect of “PIC-decryption” based on dendritic cell (DC)/T-

cell interactions.

Initiation of adaptive immunity by DCs involves a cascade of

fine-tuned bidirectional processes (33). We and others have been

able to identify that certain subsets of DCs are mandatory for

adaptive T-cell responses against pathogens (34, 35). In this context,

the formation of immunological synapses between DCs and T

cells is crucial for T-cell polarization (36–38). Although DC/T-cell

interactions are of high clinical relevance, current genomics and

imaging tools for their detection and precise in situ characterization

are still limited, possibly due to the fact that PICs must be analyzed

in situ on a cell-by-cell basis. There is one general problem: Within

lymphoid organs, all cells are close neighbors due to the density of

the tissues.

One must realize that proximity alone is not sufficient to

induce cell activation or differentiation. Thus, a robust detection-

signature, capable of highlighting PICs like DC/T-cell interactions

by multiplex imaging systems, would be of tremendous importance

for the field to understand early events in adaptive immunity (32).

PICs isolated from tissues, are already under investigation (32,

39, 40). The pipeline of PIC-transcriptome analysis [abbreviated

as PIC-seq (32)] is encouraging (41). One strength of this PIC-

seq-concept lies in the combination of transcriptome data from

ex vivo isolated PIC-complexes and respective single-cell data

(32). If transcriptional profiles of PICs are sufficiently different, a

good deconvolution is possible and PIC-seq data can be generated

(42). To further calculate the transcriptional profiles of PICs,

other pipelines and algorithms, such as the Giotto workflow

(43), SpaOTsc algorithm (44), or CSOmap (45) might be also

be implemented.

Using PIC-seq and a dermal infection model with

Nippostrongylus brasiliensis (Nb), it could be shown that PICs

consisting of dermal-derived DCs that present Nb-antigens

to T cells, upregulate distinct transcriptional profiles—also

called gene modules (32). In case of Nb-infection, this DC-

specific gene module is composed of chemokines (Ccl22 and

Ccl17) and co-stimulatory genes CD40, Ebi3, and Dll4 (32).

The T cell-specific gene modules of PICs seem to be more

complex, due to the heterogeneity of T cells that interact

with DCs (32). However, co-culture experiments revealed

that T cells that interact with antigen-presenting DCs show

a reduced Th-precursor program (Klf2, Sell) associated with

an induction of interferon type-I response (Stat1, Irf7), and

metabolic programs (Myc and Npm1), as well as an upregulation

of cytokines, chemokine receptors and effector genes (Tigit, Il22,

Cxcr6, Pdcd1, and Tnfrsf9) (32). Based on these data, it can

be concluded that DCs, which physically interact with T cells

(Figures 1A–C), express distinct PIC-associated gene modules

(32). Consequently, it is possible to design gene module-derived

staining panels, allowing a refined identification of DC/T-cell

interactions by multiplex imaging and tissue image cytometry (47)

(Figures 1D–F).
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From PIC-associated gene modules to
functionality: antibody-based
multiplex imaging might represent a
powerful tool for the characterization
of PICs in translational clinical
research

Focusing on physically interacting DC/T cells, Gialdi

and colleagues could demonstrate that PICs are associated

with a distinct expression of gene modules, under defined

experimental conditions (32) (Figures 1A–E). This aspect

represents a major limitation of the PIC-approach. Based

on the huge antigen repertoire of pathogens and the

corresponding heterogeneity of adaptive immunity, a context-

adapted generation of gene modules is of crucial importance

to avoid restrictive and oversimplified conditions. This

approach is also necessary to ensure the determination

of pathogen-adapted gene modules, expressed by PICs of

interest (Figure 1G). Referring to the complexity of possible

DC/T-cell interactions, a multicentre global database might

represent a mandatory prerequisite for the identification of

contextualized gene modules (Figure 1H). In line with the

integration of high-dimensional data sets, an acceptable point

of data reduction can be achieved, allowing the compilation

of gene module-based antibody panels, useful for the spatial

characterization of PICs, in a context-dependent manner

(Figure 1H). This strategy might be further integrated into

the new discipline of spatiotemporal molecular medicine,

which aims to decrypt pathological processes within a spatial

context (48, 49). A variety of applications in the field of

basic research and translational medicine are conceivable.

Two aspects are of particular importance in translational

medicine: identification of potent vaccination strategies and

biomarker identification in the field of tumour immunology

(Figure 1I).

Conclusion

It is quite clear that antigen-specific immunity represents

more than the sum of its parts. Based on the multimodal

incorporation of single-cell omics, ST, PIC-seq, and other

cutting-edge technologies, deep-learning reconstruction of gene-

regulatory and cellular networks in situ will become possible

soon. This will be of central importance to understand the

cellular crosstalk in tissues and for the decryption of complex

immune responses within pathological tissues at a so far

unknown level.

Author contributions

Conceptualization, investigation, and writing—original

draft: UR.

Funding

This study was supported by the Bavarian Research Network

(bayresq.net; Bavarian State Ministry for Science and the

Arts, UR).

Acknowledgments

Many thanks to Russell Ulbrich of ScientiaLux LLC

(www.scientialux.com) Worcester Massachusetts, United States of

America, for critical reading and readability improvement of the

manuscript. Lisa Schmidleithner (Department for Immunology,

LIT—Leibniz Institute for Immunotherapy—Universitätsklinikum

Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg)

for critical reading of the manuscript and sharing BioRender

icons created with BioRender.com. Graphic abstract illustration

credits from Servier Medical Art (https://smart.servier.com/),

reproduced under Creative Commons License attribution 3.0

Unported License.

Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

1. Montgomery DWV. Report of a case of epithelioma of the skin of the face, with
unusual course of infection of lymph-nodes. Ann Surg. (1898) 27:193–8.

2. Longo SK, Guo MG Ji AL, Khavari PA. Integrating single-cell and spatial
transcriptomics to elucidate intercellular tissue dynamics. Nat Rev Genet. (2021)
22:627–44. doi: 10.1038/s41576-021-00370-8

3. Nolan JP. The evolution of spectral flow cytometry. Cytometry A.
(2022). doi: 10.1002/cyto.a.24566

4. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. Mrna-
Seq whole-transcriptome analysis of a single cell. Nat Methods. (2009) 6:377–
82. doi: 10.1038/nmeth.1315

Frontiers inMedicine 05 frontiersin.org78

https://doi.org/10.3389/fmed.2023.1155057
http://www.bayresq.net
http://www.scientialux.com
http://www.BioRender.com
https://smart.servier.com/
https://doi.org/10.1038/s41576-021-00370-8
https://doi.org/10.1002/cyto.a.24566
https://doi.org/10.1038/nmeth.1315
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ritter 10.3389/fmed.2023.1155057

5. Chen G, Ning B, Shi T. Single-Cell Rna-Seq technologies and related
computational data analysis. Front Genet. (2019) 10:317. doi: 10.3389/fgene.2019.00317

6. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell
lineage: ontogeny and function of dendritic cells and their subsets in
the steady state and the inflamed setting. Annu Rev Immunol. (2013)
31:563–604. doi: 10.1146/annurev-immunol-020711-074950

7. Stahl PL, Salmen F, Vickovic S, Lundmark A, Navarro JF, Magnusson J,
et al. Visualization and analysis of gene expression in tissue sections by spatial
transcriptomics. Science. (2016) 353:78–82. doi: 10.1126/science.aaf2403

8. Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL, Meyers RM, et al. Multimodal
analysis of composition and spatial architecture in human squamous cell carcinoma.
Cell. (2020) 182:497–514 e22. doi: 10.1016/j.cell.2020.05.039

9. Marx V. Method of the year: spatially resolved transcriptomics. Nat Methods.
(2021) 18:9–14. doi: 10.1038/s41592-020-01033-y

10. Ritter U, Moll H, Laskay T, Brocker E, Velazco O, Becker I, et al. Differential
expression of chemokines in patients with localized and diffuse cutaneous american
leishmaniasis. J Infect Dis. (1996) 173:699–709. doi: 10.1093/infdis/173.3.699

11. Vickovic S, Eraslan G, Salmen F, Klughammer J, Stenbeck L, Schapiro D, et al.
High-definition spatial transcriptomics for in situ tissue profiling. Nat Methods. (2019)
16:987–90. doi: 10.1038/s41592-019-0548-y

12. Rodriques SG, Stickels RR, Goeva A,Martin CA,Murray E, Vanderburg CR, et al.
Slide-Seq: a scalable technology for measuring genome-wide expression at high spatial
resolution. Science. (2019) 363:1463–7. doi: 10.1126/science.aaw1219

13. Stickels RR, Murray E, Kumar P, Li J, Marshall JL, Di Bella DJ, et al. Highly
sensitive spatial transcriptomics at near-cellular resolution with slide-Seqv2. Nat
Biotechnol. (2021) 39:313–9. doi: 10.1038/s41587-020-0739-1

14. Cable DM, Murray E, Zou LS, Goeva A, Macosko EZ, Chen F, et al. Robust
decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol. (2022)
40:517–26. doi: 10.1038/s41587-021-00830-w

15. Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D, Golan M, et al.
Single-cell spatial reconstruction reveals global division of labour in the mammalian
liver. Nature. (2017) 542:352–6. doi: 10.1038/nature21065

16. Lohoff T, Ghazanfar S, Missarova A, Koulena N, Pierson N, Griffiths JA,
et al. Integration of spatial and single-cell transcriptomic data elucidates mouse
organogenesis. Nat Biotechnol. (2022) 40:74–85. doi: 10.1038/s41587-021-01006-2

17. Elosua-Bayes M, Nieto P, Mereu E, Gut I, Heyn H. Spotlight: seeded nmf
regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes.
Nucleic Acids Res. (2021) 49:e50. doi: 10.1093/nar/gkab043

18. Dong R, Yuan GC. Spatialdwls: accurate deconvolution of spatial transcriptomic
data. Genome Biol. (2021) 22:145. doi: 10.1186/s13059-021-02362-7

19. Andersson A, Bergenstrahle J, Asp M, Bergenstrahle L, Jurek A, Fernandez
Navarro J, et al. Single-cell and spatial transcriptomics enables probabilistic inference
of cell type topography. Commun Biol. (2020) 3:565. doi: 10.1038/s42003-020-01247-y

20. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast,
sensitive and accurate integration of single-cell data with harmony. Nat Methods.
(2019) 16:1289–96. doi: 10.1038/s41592-019-0619-0

21. Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ. Single-
cell multi-omic integration compares and contrasts features of brain cell identity. Cell.
(2019) 177:1873–87 e17. doi: 10.1016/j.cell.2019.05.006

22. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM,
et al. Comprehensive integration of single-cell data. Cell. (2019) 177:1888-902
e21. doi: 10.1016/j.cell.2019.05.031

23. Femino AM, Fay FS, Fogarty K, Singer RH. Visualization of single rna transcripts
in situ. Science. (1998) 280:585–90. doi: 10.1126/science.280.5363.585

24. Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez
JD, et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic
preoptic region. Science. (2018) 362. doi: 10.1126/science.aau5324

25. Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL, Meyers RM, et al. Multimodal
analysis of composition and spatial architecture in human squamous cell carcinoma.
Cell. (2020) 182:1661–2. doi: 10.1016/j.cell.2020.08.043

26. Forster R, Davalos-Misslitz AC, Rot A. Ccr7 and its ligands: balancing immunity
and tolerance. Nat Rev Immunol. (2008) 8:362–71. doi: 10.1038/nri2297

27. Vinuesa CG, Cook MC. The molecular basis of lymphoid architecture and B Cell
responses: implications for immunodeficiency and immunopathology. Curr Mol Med.
(2001) 1:689–725. doi: 10.2174/1566524013363276

28. Cook MC, Korner H, Riminton DS, Lemckert FA, Hasbold J, Amesbury M, et al.
Generation of splenic follicular structure and B cell movement in tumour necrosis
factor-deficient mice. J Exp Med. (1998) 188:1503–10. doi: 10.1084/jem.188.8.1503

29. Schier AF. Single-cell biology: beyond the sum of its parts. Nat Methods. (2020)
17:17–20. doi: 10.1038/s41592-019-0693-3

30. EfremovaM, Teichmann SA. computational methods for single-cell omics across
modalities. Nat Methods. (2020) 17:14–7. doi: 10.1038/s41592-019-0692-4

31. Brombacher E, Hackenberg M, Kreutz C, Binder H, Treppner M. The
performance of deep generative models for learning joint embeddings of single-cell
multi-omics data. Front Mol Biosci. (2022) 9:962644. doi: 10.3389/fmolb.2022.962644

32. Giladi A, Cohen M, Medaglia C, Baran Y, Li B, Zada M, et al. Dissecting
cellular crosstalk by sequencing physically interacting cells. Nat Biotechnol. (2020)
38:629–37. doi: 10.1038/s41587-020-0442-2

33. Hespel C, Moser M. Role of inflammatory dendritic cells in innate and adaptive
immunity. Eur J Immunol. (2012) 42:2535–43. doi: 10.1002/eji.201242480

34. Brewig N, Kissenpfennig A, Malissen B, Veit A, Bickert T, Fleischer
B, et al. Priming of Cd8+ and Cd4+ T cells in experimental leishmaniasis
is initiated by different dendritic cell subtypes. J Immunol. (2009) 182:774–
83. doi: 10.4049/jimmunol.182.2.774

35. Ritter U, Osterloh A, A. New view on cutaneous dendritic cell
subsets in experimental leishmaniasis. Med Microbiol Immunol. (2007)
196:51–9. doi: 10.1007/s00430-006-0023-0

36. Cassioli C, Baldari CT. Lymphocyte polarization during immune
synapse assembly: centrosomal actin joins the game. Front Immunol. (2022)
13:830835. doi: 10.3389/fimmu.2022.830835

37. Rodriguez-Fernandez JL, Criado-Garcia O. The actin cytoskeleton at
the immunological synapse of dendritic cells. Front Cell Dev Biol. (2021)
9:679500. doi: 10.3389/fcell.2021.679500

38. Castro-Sanchez P, Aguilar-Sopena O, Alegre-Gomez S, Ramirez-Munoz R,
Roda-Navarro P. Regulation of Cd4(+) T cell signaling and immunological synapse
by protein tyrosine phosphatases: molecular mechanisms in autoimmunity. Front
Immunol. (2019) 10:1447. doi: 10.3389/fimmu.2019.01447

39. Zimara N, Florian C, Schmid M, Malissen B, Kissenpfennig A, Mannel
DN, et al. Langerhans cells promote early germinal center formation in response
to leishmania-derived cutaneous antigens. Eur J Immunol. (2014) 44:2955–
67. doi: 10.1002/eji.201344263

40. Bendall SC. Diamonds in the doublets. Nat Biotechnol. (2020) 38:559–
61. doi: 10.1038/s41587-020-0511-6

41. Qian X, Harris KD, Hauling T, Nicoloutsopoulos D, Munoz-Manchado AB,
Skene N, et al. Probabilistic cell typing enables fine mapping of closely related cell types
in situ. Nat Methods. (2020) 17:101–6. doi: 10.1038/s41592-019-0631-4

42. Koch L. Transcriptional profiling of physically interacting cells. Nat Rev Genet.
(2020) 21:275. doi: 10.1038/s41576-020-0229-9

43. Dries R, Zhu Q, Dong R, Eng CL Li H, Liu K, et al. Giotto: A Toolbox for
integrative analysis and visualization of spatial expression data. Genome Biol. (2021)
22:78. doi: 10.1186/s13059-021-02286-2

44. Cang Z, Nie Q. Inferring spatial and signaling relationships
between cells from single cell transcriptomic data. Nat Commun. (2020)
11:2084. doi: 10.1038/s41467-020-15968-5

45. Arnol D, Schapiro D, Bodenmiller B, Saez-Rodriguez J, Stegle O. Modeling cell-
cell interactions from spatial molecular data with spatial variance component analysis.
Cell Rep. (2019) 29:202–11e6. doi: 10.1016/j.celrep.2019.08.077

46. Biswas A, Ghaddar B, Riedlinger G, De S. Inference on spatial heterogeneity
in tumour microenvironment using spatial transcriptomics data. Comput Syst Oncol.
(2022) 2:3. doi: 10.1002/cso2.1043

47. Meshcheryakova A, Mungenast F, Ecker R, Mechtcheriakova D. Tissue Image
Cytometry. (2021). In: Imaging Modalities for Biological and Preclinical Research: A
Compendium, Volume 1. IOP Publishing. doi: 10.1088/978-0-7503-3059-6ch14

48. Wang X, Fan J. Spatiotemporal molecular medicine: a new era of clinical
and translational medicine. Clin Transl Med. (2021) 11:e294. doi: 10.1002/ct
m2.294

49. Wang T, Peng Q, Liu B, Liu Y, Wang Y. Disease module identification
based on representation learning of complex networks integrated from gwas,
eqtl summaries, and human interactome. Front Bioeng Biotechnol. (2020)
8:418. doi: 10.3389/fbioe.2020.00418

Frontiers inMedicine 06 frontiersin.org79

https://doi.org/10.3389/fmed.2023.1155057
https://doi.org/10.3389/fgene.2019.00317
https://doi.org/10.1146/annurev-immunol-020711-074950
https://doi.org/10.1126/science.aaf2403
https://doi.org/10.1016/j.cell.2020.05.039
https://doi.org/10.1038/s41592-020-01033-y
https://doi.org/10.1093/infdis/173.3.699
https://doi.org/10.1038/s41592-019-0548-y
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1038/s41587-020-0739-1
https://doi.org/10.1038/s41587-021-00830-w
https://doi.org/10.1038/nature21065
https://doi.org/10.1038/s41587-021-01006-2
https://doi.org/10.1093/nar/gkab043
https://doi.org/10.1186/s13059-021-02362-7
https://doi.org/10.1038/s42003-020-01247-y
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1016/j.cell.2019.05.006
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1126/science.280.5363.585
https://doi.org/10.1126/science.aau5324
https://doi.org/10.1016/j.cell.2020.08.043
https://doi.org/10.1038/nri2297
https://doi.org/10.2174/1566524013363276
https://doi.org/10.1084/jem.188.8.1503
https://doi.org/10.1038/s41592-019-0693-3
https://doi.org/10.1038/s41592-019-0692-4
https://doi.org/10.3389/fmolb.2022.962644
https://doi.org/10.1038/s41587-020-0442-2
https://doi.org/10.1002/eji.201242480
https://doi.org/10.4049/jimmunol.182.2.774
https://doi.org/10.1007/s00430-006-0023-0
https://doi.org/10.3389/fimmu.2022.830835
https://doi.org/10.3389/fcell.2021.679500
https://doi.org/10.3389/fimmu.2019.01447
https://doi.org/10.1002/eji.201344263
https://doi.org/10.1038/s41587-020-0511-6
https://doi.org/10.1038/s41592-019-0631-4
https://doi.org/10.1038/s41576-020-0229-9
https://doi.org/10.1186/s13059-021-02286-2
https://doi.org/10.1038/s41467-020-15968-5
https://doi.org/10.1016/j.celrep.2019.08.077
https://doi.org/10.1002/cso2.1043
https://doi.org/10.1088/978-0-7503-3059-6ch14
https://doi.org/10.1002/ctm2.294
https://doi.org/10.3389/fbioe.2020.00418
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Rupert Ecker,
TissueGnostics GmbH, Austria

REVIEWED BY

Jin Jiaqi,
Harbin Medical University, China
Diana Mechtcheriakova,
Medical University of Vienna, Austria

*CORRESPONDENCE

Michał Aleksander Ciach

m.ciach@mimuw.edu.pl

Anna Gambin

aniag@mimuw.edu.pl

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 17 August 2022
ACCEPTED 24 April 2023

PUBLISHED 08 June 2023

CITATION

Ciach MA, Bokota G, Manda-Handzlik A,
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Trapalyzer: a computer program
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fluorescent live-imaging studies
of neutrophil extracellular
trap formation
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Neutrophil extracellular traps (NETs), pathogen-ensnaring structures formed by

neutrophils by expelling their DNA into the environment, are believed to play an

important role in immunity and autoimmune diseases. In recent years, a growing

attention has been put into developing software tools to quantify NETs in

fluorescent microscopy images. However, current solutions require large,

manually-prepared training data sets, are difficult to use for users without

background in computer science, or have limited capabilities. To overcome

these problems, we developed Trapalyzer, a computer program for automatic

quantification of NETs. Trapalyzer analyzes fluorescent microscopy images of

samples double-stained with a cell-permeable and a cell-impermeable dye, such

as the popular combination of Hoechst 33342 and SYTOX™Green. The program is

designed with emphasis on software ergonomy and accompanied with step-by-

step tutorials to make its use easy and intuitive. The installation and configuration

of the software takes less than half an hour for an untrained user. In addition to

NETs, Trapalyzer detects, classifies and counts neutrophils at different stages of

NET formation, allowing for gaining a greater insight into this process. It is the first

tool that makes this possible without large training data sets. At the same time, it

attains a precision of classification on par with state-of-the-art machine learning

algorithms. As an example application, we show how to use Trapalyzer to study

NET release in a neutrophil-bacteria co-culture. Here, after configuration,

Trapalyzer processed 121 images and detected and classified 16 000 ROIs in

approximately three minutes on a personal computer. The software and usage

tutorials are available at https://github.com/Czaki/Trapalyzer.

KEYWORDS

neutrophil, neutrophil extracellular traps, fluorescent microscopy, digital image
processing, image annotation, SYTOX™ green, chromatin, quantification
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1 Introduction

Neutrophils are the most abundant group of white blood cells in

humans. They are often described as the organism’s “frontline

soldiers”, responsible for fighting pathogens during the initial

stages of infection (1, 2). One of their fighting strategies is the

formation of Neutrophil Extracellular Traps (NETs), web-like

structures formed from the cells’ DNA, which ensnare and

putatively kill microbes (3, 4). NETs help to fight infections, but

may also harm the host by damaging surrounding tissues and

promoting inflammation (5). Research shows that excessive or

insufficient formation of NETs plays a role in a number of

diseases, including periodontitis, thrombosis, and arthritis (6, 7).

A better understanding of the dynamics of NET formation may lead

to improved diagnostics and treatment of those diseases. This

requires both qualitative studies of the biology of this process as

well as quantitative studies of its rates in different conditions.
1.1 The biology of NET formation

NET formation induced by either ionomycin or the presence of

Candida albicans has recently been studied on a cellular level by the

means of high-resolution time-lapse microscopy (8). The authors have

observed that this process progresses through a sequence of stages,

shown schematically in Figure 1. The onset of NET formation is

marked by the disassembly of the actin cytoskeleton and the formation

of plasma membrane microvesicles containing cytosolic components.

Next, the neutrophils’ chromatin gradually decondenses, with its

fluorescent staining becoming spatially homogeneous. During and

after chromatin decondensation, the nucleus loses its characteristic

lobulation and becomes partially or fully rounded. After some time, a

rapid disruption of the nuclear envelope causes a release of the DNA

into the cytoplasm. Simultaneously, the plasma membrane gradually

increases its permeability, causing membrane-impermeable markers to

enter the cell. Finally, the plasma membrane ruptures, releasing the

genetic material to the environment.
1.2 Methods and technical challenges of
computer-assisted NET quantification

In recent years, there has been a growing interest in developing

computational methods of NET quantification to make it more
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replicable and objective, while at the same time less laborsome and

time-consuming (9). A number of computer programs for NET

quantification has been released, either based on machine learning

algorithms, including convolutional neural networks and support

vector machines (10–12), or digital image processing techniques,

including image thresholding and classification of regions of

interest (ROIs) based on features such as area or circularity (13–

15). Modern machine learning-based methods are capable of

quantifying not only NETs, but also cells at certain stages of NET

formation, giving a greater insight into the dynamics of this

process (12).

However, the complex nature of NET formation poses a

substantial difficulty in developing software tools to analyze it.

Furthermore, there are numerous experimental methods of NET

quantification (7, 16, 17), and each experimental method not only

requires a different computational approach, but also determines

which stages of NET formation can be quantified. For example,

microvesicle shedding is visible using high-resolution differential

interference contrast microscopy, but not in fluorescent

microscopic images of stained DNA. It is a challenging task to

pinpoint distinct cell morphologies that can be rigorously

quantified, provide their mathematical characterization, and use it

to develop an algorithm for an automatic image annotation.

As a consequence, the currently available software solutions

have a number of drawbacks which limit their usability. Computer

programs based on machine learning require laborious manual

preparations of large training data sets and are often difficult to

use for users without a computer science background. Some of

those programs annotate ROIs only using bounding boxes instead

of a pixel-wise detection. This allows for a simple counting of

NETs and cells, but not for more detailed analyses of their shapes

and areas. On the other hand, the currently available tools based

on digital image processing, which are free from many of those

limitations, quantify NETs, but not the numbers of neutrophils at

different stages of NET formation. One of the reasons for this

situation is that they are arguably more difficult to develop. While

machine learning algorithms, given a manually annotated data set,

are able to figure out the crucial steps of image annotation by

themselves, tools based on digital image processing techniques

need an explicit, human-designed algorithm for this task.

Developing such an algorithm requires an in-depth expert

knowledge of the analyzed process and dedicated studies on

how to mathematically describe and distinguish different

cell morphologies.
FIGURE 1

A schematic representation of the selected stages of Neutrophil Extracellular Trap (NET) formation, based on (8).
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1.3 Trapalyzer: a new computer program
to analyze the dynamics and rates of
NET formation

In this work, we present Trapalyzer (Figure 2), a computer

program for the analysis and annotation of fluorescent microscopy

images of neutrophils and NETs double-stained with a cell-permeable

and a cell-impermeable fluorescent DNA dye, such as a combination of

Hoechst 33342 and SYTOX™ Green. Our software extends the

capabilities of the currently available tools by quantifying more stages

of NET formation without the need for large training data sets. This has

been made possible by extensive studies of fluorescent microscopy

images by an interdisciplinary team composed of clinical scientists,

statisticians, and computer scientists, which have resulted in a small set

of ROI features that characterize the stages, and a scoring system that

uses those features to classify cells. To make NET quantification more

reliable and robust, the program also detects artifacts in the green

channel which can be caused e.g. by background signal or

autofluorescence (18). Trapalyzer is freely available as a plug-in for

the PartSeg software (19). It can be easily combined with other

PartSeg’s features, such as image pre-processing and feature

extraction, which further increase the software’s usability.
1.4 High-throughput computational
analysis of thousands of cells with a user-
friendly software

Trapalyzer offers two modes of analysis: an interactive session

and a batch processing mode. The interactive session allows the user
Frontiers in Immunology 0382
to set the program’s parameters and visualize the annotation, while

the batch processing mode can be used to process multiple images

in a single run and save the results in a convenient Excel

spreadsheet. The user can specify the information to be

computed, both image-wise (such as the number of neutrophils at

a given stage of NET formation, the percent of image area covered

by NETs, or the quality of annotation) and ROI-wise (such as the

area of each ROI, its bounding box, or assigned class). Since

Trapalyzer detects ROIs on a pixel-wise basis instead of simple

bounding boxes only, it can also calculate multiple different features

describing their morphologies.

Trapalyzer is designed with an emphasis on software ergonomy

and ease of use. The plug-in requires no installation other than

downloading and placing in the PartSeg’s directory and is

accompanied with easy to follow tutorials available on the project’s

website. The tutorials guide the users through a step-by-step procedure

to tune the program’s parameters and configure its output. This allows

the users to easily learn how to use the software and apply it to their

own experiments even if they have no background in computer science,

giving Trapalyzer the potential to be routinely used in laboratories

researching diverse aspects of NET formation.
1.5 Quantitative analyses of NET formation
in different experimental conditions

We validate our approach on a publicly available benchmark

data set of neutrophils stimulated with peroxynitrite published in

(12) and show that it attains a similar performance to convolutional
FIGURE 2

A screen shot of Trapalyzer running in an interactive session of PartSeg. The left window shows a fluorescence microscopy image taken as a part of

our neutrophil killing assay with a double staining with SYTOX™ Green and Hoechst 33342 DNA dyes. The right window shows the image annotated
by Trapalyzer.
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neural networks using just a fraction of the training data set. We

then show how Trapalyzer can be applied to an experiment on the

dynamics of neutrophil-E. coli bacteria interactions, where we study

the cells’ progression through the stages of NET formation. The

results of this experiment agree with observations made for

individual cells by other authors (8).
2 Methods

To establish the quantifiable classes of ROIs for NET formation

studies, we have performed a neutrophil killing assay of Escherichia

coli bacteria. To verify our conclusions and to assess the

performance of our approach we have downloaded a benchmark

set of images in which neutrophils were incubated without bacteria

and NET formation was induced by various chemical stimuli.
2.1 Reagents

Roswell Park Memorial Institute (RPMI) 1640 medium,

HEPES, SYTOX™ Green, and Hoechst 33342 were purchased

from Thermo Fisher Scientific (Waltham, USA). LB broth was

purchased from Sigma Aldrich (St Louis, MO, USA).
2.2 Preparation of blood neutrophils

Neutrophils were obtained from peripheral blood of one healthy

blood donor. Blood sample was purchased at Local Blood Donation

Centre and according to local regulations, the blood donor enabled

blood donation center to sell their blood samples for scientific

purposes and the consent of bioethical committee was not required.

Blood was collected into a citrate tube and processed within 2 hours

from collection. Neutrophils were isolated using density gradient

centrifugation followed by polyvinyl alcohol sedimentation, exactly

as described in (20). Isolated neutrophils were suspended in RPMI

1640 medium with 10 mM HEPES (RH).
2.3 Preparation of bacteria

Escherichia coli (American Type Culture Collection(ATCC)

25922 strain) were grown overnight in LB broth with shaking. In

the morning, an aliquot of bacterial culture was taken, diluted 100 x

in a fresh LB medium and grown for subsequent 2-3 hours.

Subsequently, bacterial cultures were washed and resuspended in

RH medium.
2.4 Co-culture of neutrophils with bacteria

Neutrophils were seeded into the wells of 48-well plates at the

density of 2×104 cells/well and allowed to settle for 30 minutes at

37°C, 5% CO2. Subsequently, E. coli was added into the appropriate

wells at the multiplicity of infection of 4 or 1 (E.coli: neutrophil).
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Neutrophils incubated without bacteria were used as a control

group. A technical duplicate for each condition was prepared. For

each intended timepoint (t=0, 60, 90, 120, 180 minutes), a separate

48 well plate was prepared. The plates were centrifuged for 5

minutes at 250 g to allow the contact of bacteria with neutrophils.

The plates were incubated at 37°C, 5% CO2 for a specified time and

then the samples were stained with SYTOX™ Green (100 nM) and

Hoechst 33342 (1.25 μM for 10 minutes. Four images of each well

were taken with Leica DMi8 fluorescent microscope equipped with

a 10× magnification objective (Leica, Wetzlar, Germany). Overall,

120 images have been obtained.
2.5 Benchmark data set

A benchmark data set of images of neutrophils and NETs

stained with SYTOX™ Green and Hoechst 33342, published in

(12), was downloaded from https://github.com/krzysztoffiok/CNN-

based-image-analysis-for-detection-and-quantification-of-

neutrophil-extracellular-traps on May 19, 2019. For evaluation of

Trapalyzer’s accuracy, we have selected the validation set in file

large_validation_set.zip, subdirectory xml_pascal_voc_format/

images/oryg. The validation set consists of 57 images. Manual

annotations of the images were accessed in subdirectory

xml_pascal_voc_format/annotations/oryg. Annotations in xml

files were handled using the lxml library of the Python 3

programming language. For tuning of Trapalyzer’s parameters,

additional 10 images were selected from the fi le orig

inal_uncompressed_images_with_pascalvoc_annotations.zip,

rescaled to match the dimentions of the validation set images and

converted to the TIFF format using the convert program from the

ImageMagick suite.
3 Results

3.1 Quantifiable stages of NET formation

In order to pinpoint the stages of NET formation that are

suitable for quantification using an automated algorithm, we first

analyzed manually a set microscopic images of a neutrophil-E. coli

co-culture.

3.1.1 Stages of NET formation identified
with high-resolution time-lapse microscopy
can be observed in low-resolution
fluorescent microscopy

Most of the cells in the images taken at t=0 min exhibited a

typical appearance of unstimulated, polymorphonuclear

neutrophils, without detectable signal in the extracellular channel

(Figure 3A). In images taken between t=60 and t=120 min, we have

observed cells which were visibly brighter and highly circular

(Figure 3B). This morphology most likely corresponded to cells

with a rounded nucleus. Individual cells exhibited this morphology

in t=0 min as well. We have also observed ROIs with larger areas,

lower brightness, and cloud-like appearance, with no signal in the
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extracellular channel (Figure 3C). We assume that this morphology

corresponded to cells with a ruptured nuclear envelope. We did not

observe such cells in t=0 min. In images taken after t=60 min, and

mostly in the later stages of the experiment, we have observed cells

with cloudy appearance and detectable signal in the extracellular

channel (Figure 3D). This morphology corresponded to cells with a

permeabilized plasma membrane. The intensity of signal in the

extracellular channel varied highly for those cells, indicating a

gradual permeabilization, in agreement with (8). Throughout the

experiment, we have also observed ROIs with significantly larger

areas than individual cells, with intense signal in the extracellular

channel and detectable signal in the total DNA channel (Figure 3E).

This morphology corresponded to NETs.

3.1.2 Not all stages of NET formation are suitable
for an automatic quantification

Unstimulated neutrophils, cells with rounded nuclei, cells with

ruptured nuclear envelopes and cells with permeabilized plasma

membranes have distinct morphologies in fluorescent microscopy

images, making them suitable for automatic detection by a software

tool. On the other hand, neutrophils inbetween those stages, in

particular neutrophils undergoing chromatin decondensation and

nuclear rounding, are more difficult to classify. The stage of

chromatin decondensation (between the onset of NET formation

and nuclear rounding) does not seem to have a clear delineation
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from its surrounding stages with simple qualitative features. As

such, this stage does not seem to be a good candidate for a separate

class in an automatic classification scheme, at least in fluorescent

microscopy images of double-stained DNA. Accordingly, we have

decided against distinguishing cells with decondensed chromatin as

a separate class of objects. As a consequence, such ROIs were

automatically classified as either unstimulated cells or cells with

rounded nuclei, depending on the advancement of the NET

formation process.

3.1.3 Clumps of bacteria are an important class of
ROIs in neutrophil killing assays

Starting from t=120 min, we observed clumps of bacteria, both

in the total DNA channel and in the visible light (Figure 4). In

fluorescent light, they appeared as highly amorphous, low-

brightness objects without well-defined edges. With the

exponential growth of bacteria, those clumps become prevalent in

t = 180 min, motivating the decision to include them as yet another

class of ROIs.

3.1.4 Handling artifacts in the extracellular
channel can further improve the precision of NET
area quantification

At the boundaries of NETs, where the chromatin density is low,

the fluorescent signal tends to be low as well, making the
B C D EA

FIGURE 3

Neutrophils at different stages of NET formation visible in fluorescent microscopy with SYTOX™ Green/Hoechst 33342 double staining. The source
images were taken as a part of the neutrophil E coli co-culture study. (A) Polymorphonuclear (unstimulated) neutrophils; (B) Neutrophils with
rounded nucleus; (C) Neutrophils with ruptured nuclear envelope; (D) Neutrophils with permeabilized plasma membrane; (E) An example of a
neutrophil extracellular trap. Scale bar = 10µm, microscope magnification 100x.
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classification difficult even for human experts (10). Although

the low-intensity regions of NETs can be highlighted by

increasing the brightness and contrast of the image in the pre-

processing stage, the brightness of some regions of NETs can be

roughly similar to the background level. On the other hand, the

background brightness level itself can be slightly uneven due to e.g.

varying plastic density, plastic autofluorescence, or proximity to the

edge of the well. As a consequence, increasing the image brightness

can result in the appearance of artifacts that can be mistaken for

NETs by automatic classifiers (Figure 5). When we increased the

brightness to capture all the detectable NET regions, we have

observed such artifacts in approximately 15% of our images.

Therefore, if NETs are to be labeled precisely and reliably in a

pixel-wise manner, a NET quantification algorithm should be able

to detect and signal potential artifacts in the extracellular channel.

On the other hand, if the precise determination of NET boundaries

is not needed, the image brightness can simply be adjusted so that

artifacts do not jeopardize the analysis. In this case, detection of

artifacts may be unnecessary and, accordingly, Trapalyzer allows

the user to disable this feature.

Additionally, we have observed individual artifacts in the green

channel (with no detectble signal in the Hoechst 33342 channel)

with the size of one to a few neutrophil cells. These artifacts may

have been caused by out-of-focus cells with permeabilized plasma
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membrane or a slight contamination with pollen grains. However,

since such objects jointly constituted less than 0.1% of ROIs in all

images, they did not pose a risk of biasing the results of automatic

classification and could be safely ignored.
3.2 ROI features at different stages

Based on the results presented in (8) and our analysis of

fluorescent microscopy images, we consider seven classes of ROIs:

unstimulated neutrophils; cells with decondensed chromatin and

rounded nuclei; cells with ruptured nuclear envelopes; cells with

permeabilized plasma membranes; neutrophil extracellular traps;

clumps of bacteria; and artifacts in the extracellular channel. After

fixing the set of ROIs that could potentially be quantified in

fluorescent microscopy images of double-stained DNA, we looked

for a minimal set of features that could be used to distinguish them.

3.2.1 Stages of NET formation have characteristic
values of three ROI features

Polymorphonuclear neutrophils could be distinguished from

other classes by a relatively small size and average brightness on the

total DNA channel and the lack of signal inthe extracellular DNA

channel. Neutrophils with rounded nuclei could be distinguished
FIGURE 5

Detecting artifacts in the extracellular channel can improve the accuracy of the determination of the boundaries of NETs. (A) An example of a NET
with low-brightness regions caused by low chromatin density. Using only the high-brightness regions would underestimate the area occupied by
the NET. (B) Enhancing the image contrast highlights the NET boundaries, but also reveals a slightly uneven background brightness. Without a
proper implementation in the classification algorithm, background regions with a higher brightness can be a source of errors. The image was taken
as a part of the neutrophil-E. coli co-culture study at t=180 min with multiplicity of infection equal 1.
FIGURE 4

A typical appearance of a clumps of bacterial cells (arrows) in the visible and the fluorescent light compared to the appearance of neutrophil cells at
different stages of NET formation. The contrast of the fluorescent images has been enhanced to better visualize the bacteria. The image was taken
as a part of the neutrophil-E. coli co-culture study at t=90 min with multiplicity of infection equal 4. Scale bar = 50 µm, magnification 100x.
Combined channels: Hoechst 33342 in blue, SYTOXTM Green in green as in Figure 3.
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from other ROIs by particularly high values of average brightness in

the total DNA channel. Neutrophils with ruptured nuclear

envelopes typically had larger areas than both previous classes. In

some cases, they had similar areas to neutrophils with rounded

nuclei, but could be distinguished from this class by lower average

brightness. Neutrophils with permeabilized plasma membrane

covered the same range of areas and brightness in the total DNA

channel as the three previous classes. However, they could be easily

distinguished from other cells as the only ones with detectable

signal in the extracellular DNA channel.

3.2.2 Standard deviation of extracellular signal
separates artifacts in the extracellular channel
from NETs

Large areas and intense signal in the extracellular DNA channel

distinguished NETs from cells, but not from artifacts in the

extracellular channel caused e.g. by uneven background

brightness. However, due to differences in chromatin density, the

brightness of NETs was spatially non-homogeneous, while for the

artifacts it was mostly uniform, especially after applying a median

filter. This was effectively captured by setting a threshold for the

standard deviation of brightness of NETs in the extracellular DNA

channel. Notably, with this approach, any ROI that does not

conform to the characterization of a NET is classified as an

artifact, regardless of its physical origin.

We did not observe an increase in classification accuracy when

we additionally included an upper threshold for ROI circularity of

NETs, as proposed by other authors (14). On the contrary, NETs

can be highly circular in shape (Figure 3), especially when formed in

the absence of bacteria (12).

3.2.3 Laplacian of Gaussian values characterize
clumps of bacteria

The most defining feature of bacterial clumps was the low,

highly non-homogeneous signal in the total DNA channel.

However, the standard deviation of brightness failed to

distinguish them from other classes of ROIs. Another

characteristic feature was the lack of well-defined borders, which

was effectively captured by small values of the average Laplacian of

Gaussian (LoG) of the total DNA channel.

Five features distinguish eight classes of ROIs. The progression

of NET formation, the observed morphologies of different stages in

fluorescent microscopy images, and the mathematical features that

characterize them motivate the classification of ROIs into the

following classes:
Fron
• PMN neutrophils, polymorphonuclear, unstimulated

neutrophils, with a moderate cell size and brightness, and

a lack of signal on the extracellular DNA channel;

• RND neutrophils, cells with decondensed chromatin and

rounded nucleus, with higher brightness than PMN

neutrophils;

• RUP neutrophils, neutrophils with ruptured nuclear

envelope, with larger cell sizes than RND neutrophils and

possibly lower brightness than PMN neutrophils;
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• PER neutrophils, neutrophils with a permeabilized plasma

membrane, with detectable signal on the extracellular DNA

channel;

• NETs, Neutrophil Extracellular Traps, with an intense

signal on the extracellular DNA channel, low to no signal

on the total DNA channel, and noticeable standard

deviation of the brightness;

• Groups of bacteria, with low brightness and LoG values in

the total DNA channel, and possibly moderate signal on the

extracellular DNA channel due to possible co-localization

with NET fragments;

• Artifacts in the extracellular channel, With a moderate,

mostly homogeneous signal in the green channel;

• Unclassified ROIs, on the intracellular channel, not

matching any of the previous classes. This class includes

any potential artifacts in the intracellular channel.
Note that the set of features is smaller than the set of classes

thanks to a combinatorial approach to class characterization.
3.3 Classification workflow

The processing of a single fluorescent image with two channels (an

extracellular DNA channel and a total DNA channel) is represented

schematically in Figure 6. In the pre-processing stage, the user may

decide to use one of a number of filters provided by PartSeg (including

the Gaussian and the median filter) on any or both channels. In the

subsequent ROI detection stage, segmentation is performed on both

channels by simple thresholding and detecting connected components.

The brightness thresholds for both channels can be adjusted by the user

during an interactive session of PartSeg to obtain a segmentation that

matches a manual annotation.

In the first classification stage, Trapalyzer classifies ROIs on the

extracellular DNA channel. Small ROIs on the extracellular channel,

which typically correspond to neutrophils with a permeabilized plasma

membrane, are not processed at this stage. If an ROI has a sufficient size

and its average brightness and standard deviation are within user-

defined ranges, it is classified as a NET. Otherwise, it is flagged as an

“extracellular unknown” class, corresponding e.g. to artifacts caused by

autofluorescence, uneven brightness, or atypical NETs that require

manual inspection.

In the second classification stage, Trapalyzer classifies ROIs in

the total DNA channel. For each class, Trapalyzer computes a score

that measures whether a given ROI matches its user-defined

characterization. The general idea behind the class score is to

ensure that all of the ROI features are within appropriate ranges

for this class, with an error margin that allows some flexibility when

defining the ranges.

Formally, let x are the value of a particular feature (e.g.

brightness) of a given ROI, and let [l,u] are the acceptable interval

for this feature for a given class of ROIs (e.g. RUP neutrophils). For

a single feature, we define a partial score function S(x;l,u,s) where

the s parameter controls the extent of the error margins. The idea

behind the partial score function is that S(x;l,u,s) equals 1 if x∈[l,u]
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and falls smoothly to 0 is x becomes distant from the interval [l,u]

with the decrease rate controlled by s. Formally, we want S to be

equal to 0 either when x ≤ l − sl u−lu+l = l − Dl(s) or x ≥ u + su u−l
u+l =

u + Du(s). This way, the left and right error margins for the

characteristic range, Dl(s) and Du(s), adjust to the interval length

and its boundary values. Because of this, a single value of the error

margin parameter s can be set for all features regardless of their

units and typical values.

The properties described above are satisfied by the following

function, where l0 = l − Dl and u0 = u + Du define the range in

which we want S to have a non-zero value:

S(x;  l, u, s) =

1 if x ∈ ½l, u�
1
2 +

1
2 sin (p

x−l+Dl
Dl

− p
2 ) if x ∈ ½l0, l�

1
2 +

1
2 sin (p

x−u+Du
Du

− p
2 ) if x ∈ ½u, u0�

0 otherwise

8>>>>><
>>>>>:

To obtain a final score for a given class, we multiply the partial

scores for all the features of the analyzed ROI. This ensures that an

ROI fully matches a class when all the features are within or

sufficiently close to their acceptable ranges.

An ROI is determined as belonging to a given class if the score

for this class is sufficiently high (by default above 0.8), and the

scores for all the other classes are sufficiently low (by default below

0.4). The upper threshold for the scores of “competing” classes

ensures that an ROI is classified unambiguously. If an ROI does not

reach a sufficiently high score for any class, or reaches a high score

for more than one class, it is flagged as an unknown class that

requires a manual inspection.

During the second classification stage, we mask the regions

occupied by NETs and artifacts in the extracellular channel and

ignore ROIs in those regions. This is because, if a neutrophil lies
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within such a region, it is either difficult or impossible to accurately

distinguish whether or not it has a permeabilized plasma

membrane, and classification would therefore be unreliable. On

the other hand, the number of such ROIs is typically small

compared to the overall number of ROIs, and ignoring them had

a relatively small influence on the overall performance of

the software.

After both classification stages are completed, Trapalyzer

evaluates the quality of image annotation. We define the quality

score as Q = 100 · (1 − U=S) %, where U denotes the area covered

by unclassified ROIs and S denotes the area covered by all detected

ROIs. We use the areas of ROIs instead of their numbers to make

the score robust to small artifacts that otherwise do not interfere

with the analysis.
3.4 Validation on a benchmark data set

In order to assess Trapalyzer’s accuracy, we have compared it to

previously reported results achieved with convolutional neural

networks (CNNs) on a publicly available benchmark data set

(12). To match the original study, we have restricted the

classification to four classes: PMN, RUP and PER neutrophils and

NETs (the RUP neutrophils were referred to as decondensed in the

original work).

First, we tuned the parameters on 10 images selected from a

training data set. Then, we used Trapalyzer’s batch processing mode

to analyze a full validation data set of 57 images containing 1083

manually annotated objects. We compared the resulting annotation

with the manual one provided with the data set. We used an

Intersection over Union (IoU) threshold of 0.10, meaning that we

match objects if the overlap of their bounding boxes is at least 10%

of their joint area. The IoU value was based on previous results in

NET quantification (10, 12). In case of more than two ROIs with

overlapping bounding boxes, the pair with the highest IoU was

selected as a match.

3.4.1 Consistent image acquisition conditions are
crucial for automated image analysis

The results of Trapalyzer annotation are shown in Table 1, and

an example annotation is shown in Figure 7A. On average, 11.90%

of ROIs were unclassified in each image, with two images exceeding

50% due to atypically low brightness of cells, likely caused by a low

exposure time.

3.4.2 Simple classification workflow
achieves precision on par with
convolutional neural networks

Over all ROI classes, Trapalyzer achieved an average precision

of 95%, higher than 91% reported for the CNN classifier trained on

188 images. Precision varied slightly between classes, with the

highest equal 100% for RUP neutrophils, and the lowest equal

89% for PER neutrophils, caused by annotating some NETs as

neutrophils with permeabilized plasma membrane. Separating

NETs from PER neutrophils is difficult due to the gradual nature
FIGURE 6

A flowchart of Trapalyzer.
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of chromatin release into the extracellular environment, so

mismatches between the manual and automatic annotation are to

be expected.

3.4.3 Trapalyzer avoids uncertain classifications

We have achieved an average recall of 75%, lower than 93%

reported for the CNN. However, the recall varied greatly between
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classes, from 44% for RUP neutrophils up to 91% for PMN and PER

neutrophils. Approximately half of the RUP neutrophils were

flagged as an unknown ROI class, suggesting imperfect parameter

estimation from the training data set. This stands in agreement with

a philosophy that when parameters are misspecified, it is safer to

avoid classifying ROIs than to classify them wrong. Note that, in

practice, it is always possible to fine-tune the parameters on

additional images to increase the recall.
FIGURE 7

Examples of annotations of fluorescent microscopy images of NETs and neutrophils double-stained with Hoechst 33342 and SYTOX™ Green, with
neutrophils acquired from different patients, NET formation induced with different stimuli, and different microscope magnifications. (D, H) Trapalyzer
identified the following classes of objects: Red: Neutrophil Extracellular Traps; Green: PMN (polymorphonuclear) neutrophils; Light blue: RND
(rounded nuclei) neutrophils; Pink: RUP (ruptured nuclear envelope) neutrophils; Yellow: PER (permeabilized plasma membrane) neutrophils; Dark
blue: artifacts in the extracellular channel. (A–D) A fragment of an image from the benchmark data set (12). NET formation was triggered with 100
µM peroxynitrite. Scale bar = 75µm, magnification 400x. (E–H) A fragment of an image taken as a part of the neutrophil-E. coli co-culture study at
t=120 min with multiplicity of infection equal 1. Scale bar = 125µm magnification 100x. In this example, two closely located emerging NETs in the
bottom part of the image were flagged as a potential artifact for manual inspection due to low standard deviation of brightness in the extracellular
channel. Lowering the standard deviation threshold results in their proper classification as NETs.
TABLE 1 The results of an analysis of a publicly available benchmark data set of 57 fluorescent microscopic images.

Ground truth (manual annotation)

NET PMN neu RUP neu PER neu Unmatched Total predicted Precision

Trapalyzer NET 223 1 0 5 2 231 0.97

PMN neu 0 365 3 0 14 382 0.96

RUP neu 0 0 34 0 0 34 1.00

PER neu 16 0 4 200 5 225 0.89

Unknown 1 31 37 4 59 132 N/A

Unmatched 66 2 0 11 0 79 N/A

True
total

306 399 78 220 80 Avg=0.95

Recall 0.73 0.91 0.44 0.91 N/A Avg=0.75
fr
N/A, Not Applicable.
Shaded values: NETs and neutrophil cells. Values in bold: correctly classified ROIs.
ontiersin.org

https://doi.org/10.3389/fimmu.2023.1021638
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ciach et al. 10.3389/fimmu.2023.1021638
3.4.4 Quantifying NET area is more reliable than
NET count

The recall value for neutrophil extracellular traps was 73%,

caused by difficulties with matching Trapalyzer and manual

annotations. Inspecting selected images showed that Trapalyzer

missed fragments of NETs with a low brightness (on the verge of the

background signal), causing low IoU values due to large differences

between detected and manually generated bounding boxes.

Moreover, NETs tend to merge if released by closely located cells

and, although a human expert can detect such cases and identify

individual nets, our approach to segmentation treats them as a

single object. This agrees with observations made by other authors

that the numbers and areas of individual NETs are difficult to

quantify algorithmically, and quantifying the total image area

covered by NETs is more reliable (10).
3.5 A detailed analysis of a neutrophil-E.
coli co-culture

As an example application of Trapalyzer, we have performed a

detailed analysis of the 120 fluorescent microscopy images of

neutrophils incubated with or without E. coli bacteria, which we

used to establish quantifiable classes of ROIs in the previous

subsections. We have tuned the software’s parameters on a set of

selected 10 images and further adjusted them on images with large

numbers of unclassified ROIs. The correctness of annotation was

then validated by an expert on 5 images. An example annotation of

a fragment of an image is shown in Figure 7. In total, Trapalyzer

detected and annotated 16924 ROIs, including 10905

polymorphonuclear neutrophils, 733 neutrophils with a rounded

nucleus, 266 neutrophils with a ruptured nuclear envelope, 2742

neutrophils with a permeabilized plasma membrane, 344 NETs, 698

clumps of bacteria, 265 artifacts on the SYTOX™ Green

extracellular channel, and 971 unclassified components in the

Hoechst 33342 total DNA channel.

3.5.1 Population-level results support the current
model of NET formation

The total number of cells detected by Trapalyzer stayed

approximately constant over the duration of the experiment

(Supplementary Figure S2), in agreement with the fact that only a

few cells release NETs, showing that the experimental conditions

and image acquisition methods were consistent. We observed a

gradual decrease of the number of PMN neutrophils over time and

the transition to RND, RUP, and PER cell morphology types

(Supplementary Figure S1), in agreement with the observations

made for individual cells in (8). NETs were formed continuously

throughout the experiment and their number seemed to grow

linearly in all experimental conditions, including the control

group without bacteria (Supplementary Figure S2). However, the

rate of NET formation is higher in the co-cultures than in the

control, indicating that the presence of bacteria successfully induced

NET formation.
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3.5.2 ROI-level results suggest an additional
stage of NET formation

The properties of ROIs classified as neutrophils at different

stages of NET formation are shown in Figure 8. Different classes

were clearly separated by the ROI features used in our classification

workflow, which confirms their distinct natures. We observed a

gradual increase in cell size as NET formation progressed. The

average brightness was the highest for RND neutrophils, likely due

to chromatin decondensation and increased dye affinity, and

decreased after the rupture of the nuclear envelopewhen the

chromatin occupied a larger area. A visibly bi-modal distribution

of the brightness of RND neutrophils suggests that there may be an

additional stage NET formation, which causes this group to be

composed of two different types of cell morphologies. This

phenomenon requires further studies.

3.5.3 Mathematical modeling of the
dynamics of a neutrophil population
poses additional challenges

Neutrophils stayed viable for a prolonged period of time in the

negative control without bacteria. From the perspective of

mathematical modeling, this means that traditional models based

on ordinary differential equations may not be suitable to describe an

in vitro cultured population of neutrophils. More sophisticated

mathematical techniques,such as delay differential equations, may

be required to model the dynamics of NET formation in

such experiments.

3.5.4 A small number of false positives did not
influence the overall conclusions

The number of bacterial groups grew exponentially in time

when bacteria were present in the sample (Supplementary Figure

S2). This suggests that, in our experimental conditions, neutrophils

had a limited capability to eliminate pathogens. We have observed a

small number of false positive results in the control group without

bacteria. In 8 out of 40 images for this experimental condition there

were between one and three improperly detected clumps of bacteria,

corresponding to image artifacts and misclassified neutrophil cells.

In comparison, in the experimental condition with four bacterial

cells per neutrophil, there were up to 100 bacterial groups for t=180

min. As a consequence, the number of false positive detections of

bacterial clumps was comparatively small and did not influence the

overall conclusions.
4 Discussion

Software tools designed for the analysis of microscopic images

of neutrophils and neutrophil extrcellular traps (NETs) can be

roughly partitioned into two groups. The first group consists of

tools based on machine learning, such as convolutional neural

networks (CNNs) or support vector machines (SVMs). The

second group consists of tools based on classical image processing

techniques, such as edge detection, image filtering etc.
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Trapalyzer employs the latter approach. It detects ROIs using a

thresholding operation and classifies them as NETs, neutrophils at

different stages of NET formation, or clumps of bacteria based on a

handful of features such as ROI area and average brightness. An

ROI is assigned to a class if it matches it unambiguously according

to a scoring function.

Our reasons tomake Trapalyzermachine learning-free are twofold.

First, machine learning algorithms require extensive training data sets

on which they learn how to distinguish between different types of

objects. Preparing such a data set can take many days for a trained

expert. The algorithm is then capable of classifying objects in new

images only as long as their morphology closely resembles the objects

encountered in the training data set. This is particularly limiting in case

of NETs, because their morphologies may differ depending on the

experimental conditions, such as the substance used to stimulate

neutrophils to release the traps (7). Even minor changes in

experimental conditions, such as microscope magnification or

exposure time, may require a retraining of the algorithm by a

machine learning expert. This negates one of the purposes of such

tools, which is to make analyses easier, faster, and less laborsome.

Despite the varying morphology, NETs retain certain

characteristic features - large size, signal in the extracellular channel

- that can be used to detect and quantify them. Identifying such

features and using them in Trapalyzer makes the software more

robust to small variations in morphology and more general in terms

of applications to different experiments. A change in microscope

magnification or exposure time requires only a simple change of a few

parameters instead of retraining of the whole algorithm. On the other

hand, since the parameter values depend on the equipment used in a

particular laboratory, we do not include a default set of parameters in

Trapalyzer. Instead, we provide an easy to follow tutorial with a step-

by-step procedure of tuning them, available on the project’s website.

The second reason to avoid the use of machine learning algorithms

is that they typically operate on a black-box basis, meaning that the way

they arrive at their classification is unknown and often too complex to

be understood by humans (21). As a consequence, if a neural network

misclassifies a given type of ROIs in a given experiment, it is either

difficult or impossible to identify why this happens and how to fix it.
Frontiers in Immunology 1190
On the other hand, digital image processing techniques and simplified

algorithms used in Trapalyzer provide control over the classification

process without sacrificing the precision of the results. The user may

freely decide which cell types are of interest in a given experiment and

which features to use for classification. If an ROIs is misclassified by

Trapalyzer, it is easy to check which parameter of the software has an

improper value and adjust it.

In this work, we detect and classify polymorphonuclear neutrophils

solely based on their size and average brightness. Due to their

characteristic shapes, some measure of ROI circularity could

potentially also be a characteristic feature of this morphology. Two

common measures of this feature are the ratio of the ROI area to

squared perimeter and the ratio of the ROI area to squared diameter.

However, none of those measures was capable of distinguishing

polymorphonuclear neutrophils from other stages of NET formation

and improve the accuracy of classification. This is because some

segments corresponding to those cells are elongated but otherwise

highly regular, and both circularity measures are high in such cases.We

did not find anymathematical characterization of the irregular shape of

polymorphonuclear neutrophils that would be useful for our purposes.

Trapalyzer is designed for studies based on double staining of

neutrophils with DNA-binding dyes and live imaging of unfixed

samples. Despite the characteristic morphology of NETs in such

images, their identification based solely on DNA staining may not

always be sufficient. This technique is complementary to, but not a

substitute of, immunohistological staining which confirms the

presence of characteristic proteins ornamenting DNA threads,

such as neutrophil elastase, histones, or myeloperoxidase.

Immunofluorescent labeling is especially important when novel or

uncommon inducers of NET release are studied (12, 13).

Nevertheless, once the formation of NETs is confirmed by

immunostaining, double-staining of the DNA provides a robust

and easy way to quantify the phenomenon of NET release.

To our knowledge, Trapalyzer is the only currently available

computer program capable of quantifying not only NETs in terms of

their number and area, but also the numbers of neutrophils at

different stages of NET formation, in experiments where extensive

training data sets are not available. Currently, Trapalyzer can only be
BA

FIGURE 8

Properties of ROIs classified as neutrophils at different stages of NET formation. (A) ROI area (in number of pixels). (B) Average pixel brightness in the
total DNA channel. The third feature, average brightness on the extracellular channel, had a non-zero value only for the neutrophils with
permeabilized plasma membrane. Abbreviations of NET formation stages: PMN, polymorphonuclear; RND, rounded nuclei; RUP, ruptured nuclear
envelope; PER, permeabilized plasma membrane.
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applied to cultures of isolated neutrophils. Extending the software

capabilities to handle co-incubation of neutrophils with other types of

cells, e.g. cancer cells, is a potential direction of future developments.
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Analysis of organoid and immune 
cell co-cultures by machine 
learning-empowered image 
cytometry
Philipp Stüve 1†, Benedikt Nerb 1,2†, Selina Harrer 1, Marina Wuttke 1, 
Markus Feuerer 1,2, Henrik Junger 3, Elke Eggenhofer 3, 
Bianca Lungu 4, Simina Laslau 4 and Uwe Ritter 1,2*
1 Division of Immunology, LIT – Leibniz Institute for Immunotherapy, Regensburg, Germany, 2 Chair for 
Immunology, University of Regensburg, Regensburg, Germany, 3 Department of Surgery, University 
Hospital Regensburg, Regensburg, Germany, 4 TissueGnostics SRL, Iași, Romania

Organoids are three-dimensional (3D) structures that can be  derived from 
stem cells or adult tissue progenitor cells and exhibit an extraordinary ability to 
autonomously organize and resemble the cellular composition and architectural 
integrity of specific tissue segments. This feature makes them a useful tool 
for analyzing therapeutical relevant aspects, including organ development, 
wound healing, immune disorders and drug discovery. Most organoid models 
do not contain cells that mimic the neighboring tissue’s microenvironment, 
which could potentially hinder deeper mechanistic studies. However, to use 
organoid models in mechanistic studies, which would enable us to better 
understand pathophysiological processes, it is necessary to emulate the in situ 
microenvironment. This can be  accomplished by incorporating selected cells 
of interest from neighboring tissues into the organoid culture. Nevertheless, the 
detection and quantification of organoids in such co-cultures remains a major 
technical challenge. These imaging analysis approaches would require an accurate 
separation of organoids from the other cell types in the co-culture. To efficiently 
detect and analyze 3D organoids in co-cultures, we developed a high-throughput 
imaging analysis platform. This method integrates automated imaging techniques 
and advanced image processing tools such as grayscale conversion, contrast 
enhancement, membrane detection and structure separation. Based on machine 
learning algorithms, we were able to identify and classify 3D organoids within dense 
co-cultures of immune cells. This procedure allows a high-throughput analysis 
of organoid-associated parameters such as quantity, size, and shape. Therefore, 
the technology has significant potential to advance contextualized research using 
organoid co-cultures and their potential applications in translational medicine.

KEYWORDS

organoid, lymphocytes, co-culture, imaging, Matrigel®

1 Introduction

Cell-based assays are invaluable tools in clinical research for studying the interactions 
between immune, stromal, and parenchymal cells in vitro. However, most of these in vitro 
models cannot entirely mimic complex in vivo processes since 2D cell-monolayer models do 
not contain a tissue-specific microenvironment (1). During the last decades, stem cell- or adult 
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tissue progenitor cell-derived organoids have emerged as suitable in 
vitro applications in translational research of human chronic diseases 
(2, 3). Organoids are self-organized, 3D multicellular tissue cultures, 
serving as artificial model systems of organs (2, 4–7). They can 
be generated in vitro from almost every murine and human tissue, 
such as the liver, intestine, and brain (8). Since organoids also resemble 
many features of native human organs, such as functionality and 
structure, they are also referred to as “mini-organs” (2).

A requirement for conducting mechanistic studies with organoids 
is to develop experimental systems that accurately replicate the 
functional and structural complexity in vivo. Various scientific 
techniques, such as molecular analysis, gene editing, and imaging, can 
be used to characterize functional organoid models (9). Based on 
these experimental protocols, organoid technology offers a wide range 
of immunological applications, varying from basic research, including 
the analysis of tissue biology, tumor immunology, and host-pathogen 
interactions, to screening of drugs in regenerative medicine (3).

However, classical organoid cultures lack cells from the adjacent 
tissue microenvironment, such as immune, parenchymal, and stromal 
cells, thus potentially limiting mechanistic studies. Therefore, 
co-culturing organoids with cells from their adjacent tissue is 
necessary to gain a higher level of physiologically contextualized 
organoid research (3).

Several experimental in vitro systems are currently available to 
investigate the involvement of immune cells in stem cell development 
and organoid formation (reviewed in (3)). In the context of tumor 
research, tumor organoids can be used either for the identification of 
tumor-reactive T cells (10) or for testing organoid-cytolysis induced 
by chimeric antigen receptor (CAR)-engineered lymphocytes in 
combination with immune checkpoint inhibitors (11–13). Other 
co-culture systems of organoids, which simulate the microenvironment 
of the intestinal lamina propria, are also used to investigate the 
crosstalk between intestinal immune cells and epithelial stem cells in 
the context of tissue development or inflammation (14–18). Most 
recently, a relevant interaction between T cells and intestinal stem cell 
development has also been proposed (15, 17, 18).

Organoid co-cultures may also be a promising tool for basic and 
translational research, as potential communication between organoids 
and other cell subsets can be investigated. This setup would allow the 
characterization of immune- or parenchymal-derived factors that are 
expected to modulate organoid development. To this end, high-
throughput brightfield imaging of the entire culture wells can 
be performed, generating time-lapse and end-point analyses (19). 
However, the quantification of experimental parameters, such as 
organoid number, size, and shape, still remains challenging due to the 
following reasons: Firstly, 3D stereoscopic organoid cultures are 
embedded in Matrigel® or other appropriate extracellular matrix gels, 
such as Hydrogel® or Geltrex® (20). Thus, organoids grow at different 
focus levels and may appear out of focus under fixed focus conditions 
during microscopy (21). Secondly, due to their heterogeneous 
differentiation status, the organoids have different shapes and 
dimensions (21). Thirdly, dense cell clusters of proliferating immune 
cells are similar to organoids and have the potential to generate 
interfering imaging signatures, leading to false positive results.

Most of the previously published image-processing algorithms 
were developed for the analysis of organoid cell cultures in the absence 
of additional cell subsets (compare Table  1). To date, no high-
throughput image analysis workflow is published that are capable of 

identifying and quantifying organoids within co-cultures. Thus, 
we  developed an organoid detection application (Organoid App), 
which provides a reliable and effective tool for the high-throughput 
identification, validation, and quantification of organoids in co-cultures 
with immune cells. In order to realize this methodological project, 
we used extrahepatic cholangiocyte organoid (ECO) cultures (6, 26), 
which served as a model system for studying homeostasis and 
regeneration as they contain both stem cells and differentiated epithelial 
cells (27). These ECOs were co-cultured with polarized human effector 
T cells. For the development of our Organoid App, we  used the 
commercially available StrataQuest image cytometry platform.

In summary, our Organoid App enables the exploration of 
complex questions concerning the influence of human immune cell 
subsets and other compounds on organoid growth and development. 
This advancement offers great potential for addressing challenging 
applications in the field of translational medicine.

2 Materials and equipment

Detailed information about material and equipment is 
summarized in Table 2. Materials including hardware components 
and in vitro culturing of organoids are described below.

2.1 Hardware and software components

End-point analysis of organoid co-cultures (Figures 1A,B) were 
conducted using the automated TissueFAXSiPLUS (TissueGnostics, 
Vienna, Austria; Objective: EC Plan Neofluar 5x/0,25 M27, Zeiss, 
Oberkochen, Germany) system, including scanning with the 
appropriate TissueFAXS-plates software module (TissueGnostics). 
The time-lapse image acquisition was performed with the Incucyte® 
SX5 Live-Cell Analysis System (Sartorius, Goettingen, Germany) 
(Figure  1C). The Incucyte® Organoid Analysis Module (Cat. No. 
9600-0034) was operated with the following settings: segmentation 
radius of 200 μm, segmentation sensitivity of 50, segmentation edge 
split with edge sensitivity of 70, cleanup with hole fill of 500,000 μm2 

and adjusted pixel size of −4. Additionally, filters for organoid 
quantification were set for a minimal area of 19,000 μm2 and maximal 
eccentricity of 0.8. Image analysis by the OrganoSeg (22), software was 
conducted according the instructions given by the developer1 (28). As 
mentioned in the OrganoSeg manual2 (28), the following settings were 
used for optimal organoid detection. Given the fact that the ideal 
parameters of “Intensity threshold” and “Window size” vary from 
image to image, they had to be adapted for each individual image. 
Images with different levels of complexity were analyzed according the 
following parameters: Level #1 – Segmentation, “Out-of-focus 
correction” (default: ON), “Differential interference contrast (DIC) 
correction” (default: OFF); “Intensity threshold” 0.1172; “Window 
size” 90; “Size threshold” 699. Level #2: – Segmentation, “Out-of-focus 
correction” (default: ON), “DIC correction” (default: OFF); “Intensity 

1 https://github.com/JanesLab/OrganoSeg.git

2 https://github.com/JanesLab/OrganoSeg/blob/main/BortenMA_

OrganoSeg_Readme_GitHub.pdf
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threshold” 0.82987; “Window size” 20; “Size threshold” 513. Level #3 
– Segmentation, “Out-of-focus correction” (default: ON), “DIC 
correction” (default: OFF); “Intensity threshold” 1; “Window size” 100; 
“Size threshold” 699. After automatic segmentation, no organoids 
were manually removed or combined using “Spheroid editing toolbar.” 
Analysis desktop configuration: device name DESKTOP-R2MMV91, 
Processor Intel(R) Xeon(R) W-2133 CPU @ 3.60 GHz 3.60 GHz, 
Installed RAM 24.0 GB (23.7 GB usable), System type 64-bit operating 
system, x64-based processor, Edition Windows 10 Pro 
for Workstations.

2.2 Generation of extrahepatic 
cholangiocyte organoids (ECOs)

For organoid generation (Regensburg University, ethical 
committee, reference 16-101-5-101), gallbladder tissues (2 cm2 or less) 
were washed twice with cold Earle’s Balanced Salt Solution (EBSS; Cat. 
No.: 24010043, Gibco/Thermo Fisher Scientific Inc., Schwerte, 
Germany), cut into small pieces, and digested in 4 mL digestion 
solution: 25 mg/mL Collagenase from clostridium histolyticum (Cat. 
No.: C9891-100 mg SIGMA/Merck KGaA, Darmstadt, Germany) in 
EBSS for 20 min at 37°C with soft shaking and filtered through a 
70 μM Nylon CellStrainer (Cat. No.: 130-098-462 Miltenyi, Bergisch 
Gladbach, Germany). Dissociated cells were centrifuged at 1500 rpm 
(470 g) for 5 min at 4°C and washed twice with Base-medium 
(antibiotic-antimycotic 100x, Cat. No.: 15240-062, Gibco/Thermo 
Fisher Scientific Inc., New York, USA, 100 U/mL penicillin, 100 μg/mL 
streptomycin, AmphotericinB 1 μg/mL, L-Glutamine 2 mM Cat. No.: 

G7513-100 mL SIGMA/Merck KGaA, Darmstadt, Germany, HEPES 
50 mM Cat. No.: H0887-100 mL, SIGMA/Merck and Advanced 
DMEM F12 Cat. No.: 12634028, Gibco/Thermo Fisher Scientific Inc). 
Organoid cultures were established according to previously published 
methods (6, 26). In brief, cell pellets were resuspended in organoid 
culture medium mixed with Matrigel® (Cat. No.: 356230 Corning, 
Corning, New  York, United  States of America) in a 50/50 ratio. 
Matrigel® was allowed to solidify for 15 min at 37°C before adding 
organoid culture medium. Organoid culture medium was based on 
ADV/DMEM-F12 (Cat. No.: 12634010, Gibco) supplemented with 
1 M Hepes (Cat. No.: P05-01100, PAN-Biotech, Aidenbach, Germany), 
100 mM L-Glutamin (Cat. No.: P04-80100, PAN-Biotech), 3.6% Anti-
Anti (Cat. No.: 15240062, Gibco, Fisher Scientific GmbH, Schwerte, 
Germany), 1% N2 serum-free supplement (Cat. No.: 17502-048, 
Gibco) 1% B27 serum-free supplement (Cat. No.: 12587-010, Gibco), 
1 mM N-Acetyl L-Cystein (Cat. No.: A9165, Sigma/Merck KGaA, 
Darmstadt, Germany), 10 nM Gastrin I  (Cat. No.: G9145, Sigma/
Merck KGaA) and the following growth factors: 1 μg/mL of 
recombinant human R-spondin 1 (Cat. No.: 120-38, Peprotech, 
Hamburg, Germany), 10 mM Nicotinamin (Cat. No.: N0636, Sigma/
Merck KGaA), 5 μM A83-01 (Cat. No.: 9094360, BioGems/Hölzel 
Diagnostika GmbH, Hohenzollernring, Germany), 10 μM Forskolin 
(Cat. No.: 1099, R&D/Bio-Techne, Wiesbaden, Germany), 50 ng/mL 
human epidermal growth factor (EGF, Cat. No.: AF-1000 Peprotech), 
50 ng/mL human hepatocyte growth factor (HFG, Cat. No.: 100-39, 
Peprotech) and 100 ng/mL human fibroblast growth factor-10 
(FGF-10, Cat. No.: 100-26, Peprotech). For the first 72 h after thawing, 
10 μM of Y-27632 (Cat. No.: BioGems/Hölzel Diagnostika GmbH) 
was added to the media and only 25 ng/mL of HGF was used. Medium 

TABLE 1 Organoid detection pipelines.

Name Organoid model Imaging pipeline Organoids analysis Co-culture Ref.

OrganoSeg
 ‐ Colorectal cancer

 ‐ Pancreas

 ‐ Grayscale images 

(brightfield, phase-

contrast, differential-

interference contrast)

 ‐ One Focus level

Size, distributions and 

morphology

No (22)

OrgaQuant Intestinal epithelium
 ‐ Grayscale images 

(brightfield)

 ‐ One Focus level

Diameter in pixel No (23)

OrganoidTracker Small intestinal epithelium
 ‐ Immune fluorescent 

labeled H2B-mCherry

 ‐ One Focus level

Tracking No (24)

DNN Alveolar
 ‐ Grayscale images 

(brightfield)

 ‐ Merged z-stacks

Tracking number No (21)

OrganoID Pancreatic cancer
 ‐ Grayscale images 

(brightfield)

 ‐ One Focus level

Area tracking No (25)

D-CryptO Colon culture
 ‐ Grayscale images 

(brightfield)

 ‐ Merged z-stacks

Size diameter number No (1)
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TABLE 2 Key resources.

Biological samples: recombinant proteins

Reagent or resource Source Identifier

human R-Spondin 1 Peprotech Cat. No.: 120-38

human EGF Peprotech Cat. No.: AF-1000

human HFG Peprotech Cat. No.: 100-39

human FGF-10 Peprotech Cat. No.: 100-26

human EGF-10 Peprotech Cat. No.: AF-1000

IL-2 Novartis Proleukin® S

Software and Algorithms

OrganoSeg Borten et al., https://github.com/JanesLab/OrganoSeg

StrataQuest

v7.1.1.138

TissueGnostics https://tissuegnostics.com/products/contextual-image-analysis/strataquest

Incucyte® Organoid Analysis ModuleIncucyte Sartorius https://www.sartorius.com/en/products/live-cell-imaging-analysis/live-cell-

analysis-software/incucyte-organoid-analysis-software

TissueFAXS-plates software v7.1.6245.120 TissueGnostics https://tissuegnostics.com/products/scanning-and-viewing-software/tissuefaxs-

imaging-software

GraphPadPrism 9.5.1 for macOS GraphPad Software, LLC. https://www.graphpad.com

Plastic material

48-well plate Corning/Merck KgaA Cat. No.: CLS3548

CellStrainer Miltenyi Cat. No.: 130-098-462

Critical cell culture components

Matrigel® Corning Cat. No.: 356230

HEPES PAN-Biotech Cat. No.: P05-01100

L-Glutamin PAN-Biotech Cat. No.: P04-80100

Antibiotic-antimycotic Gibco Cat. No.: 15240062

N2 serum-free supplement Gibco Cat. No.: 17502-048

B-27 serum-free supplement Gibco Cat. No.: 12587-010

N-Acetyl L-Cystein Sigma/Merck KgaA Cat. No.: A9165

Gastrin I Sigma/Merck KgaA Cat. No.: G9145

Nicotinamin Sigma/Merck KgaA Cat. No.: N0636

A83-01 BioGems/

Hölzel Diagnostika GmbH

Cat. No.: 9094360

Forskolin R&D/Bio-Techne Cat. No.: 1099

Y-27632 BioGems/

Hölzel Diagnostika GmbH

Cat. No.: 1293823

DPBS Gibco Cat. No.: 14190-094

TexMACS™ Medium Miltenyi Biotec Cat. No.: 130-097-196

T Cell TransAct™ Miltenyi Biotec Cat. No.: 130-111-160

ADV/DMEM-F12 Gibco Cat. No.: 12634010

EBSS Gibco/Thermo Fisher Scientific Inc., Cat. No.: 24010043

Collagenase SIGMA/Merck KgaA Cat. No.: C9891

Cell separation reagents

Pancoll® PAN-Biotech Cat. No.: P04-601000

biotinylated anti-human CD8 (clone HIT8a) BioLegend Cat. No.: 300904

anti-biotin ultrapure microbeads Miltenyi Biotec Cat. No.: 130-105-637

Imaging hardware

TissueFAXSiPlus TissueGnostics https://tissuegnostics.com/products/fluorescence-brightfield-cytometer/

tissuefaxs-i-plus

Incucyte® SX5 Live-Cell Analysis System Sartorius https://www.sartorius.com/en/products/live-cell-imaging-analysis/live-cell-

analysis-instruments/sx5-live-cell-analysis-instrument?&utm_

source=google&utm_medium=cpc&utm_campaign=incucyte&utm_

term=brand&utm_content=search&gad=1&gclid=CjwKCAjw-7OlBhB8EiwAno

OEk3ycK0ZXXZanqBUwI_8aUyKfrOQNgP3NbvxddlEF7IIGWCaaQMbVhRo

C0TsQAvD_BwE
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was changed every 3–4 days. Organoids were split every week by 
mechanical dissociation into small fragments and transferred to fresh 
Matrigel®.

2.3 Organoid co-culture with immune cells

For the isolation of CD8+ T cells from human blood, leukocyte 
reduction chambers (provided by Transfusion Medicine, University 

Hospital Regensburg; ethical committee, reference number 13-0240-
101 and 19-1414-101) were used. Leukocytes were initially diluted 
three times in DPBS (Cat. No.: 14190-94, Gibco), and the resulting 
blood and PBS mixture was split in two fractions and underlaid with 
an equal amount of Pancoll® (Cat. No.: P04-601000, PAN-Biotech, 
PAN-Biotech GmbH, Aidenbach, Germany). Samples were 
centrifuged at 1,000xg for 20 min at RT, with acceleration set to four 
and brake to zero. The PBMC layer was isolated and washed twice by 
centrifugation steps. CD8+ T cells were isolated by column-based 

FIGURE 1

Detection of organoids in co-cultures of organoids and immune cells. (A) Organoid culture: Extrahepatic cholangiocyte organoids (ECOs) were 
generated from gallbladder tissue. (B) Culture strategy: ECOs and immune cells embedded in Matrigel® were co-cultured for a period of 6  days. 
Details are given in Section 2.2 and 2.3. (C) Imaging strategies: Culture plates are incubated within cell incubators for end-point analysis or the 
Incucyte® system, allowing an incubation and imaging for a period of 6  days. (D) Acquisition of images: Capturing red, green and blue (RGB) images 
with z-depth enables the generation of images with high plasticity. (E) Image processing and analysis: Import of images and image identification 
information (ID: well number and time point) in suitable devices for subsequent detection and quantification of organoids by the StrataQuest-
supported Organoid App. (F) Challenging tasks: The main challenging tasks of organoid detection are depicted. Upper row: Red arrows indicate 
contour mimicry (left), contour fusing (middle) or contour disruption (right). Red areas highlight the regions that might interfere with a precise 
detection of organoids. Lower row: The aimed precision of organoid detection is highlighted in green. The bars represent 500  μm.
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magnetic separation using biotinylated anti-human CD8+ (clone 
HIT8a, Cat. No.: 300904 Biolegend, Koblenz, Germany) and anti-
biotin ultrapure microbeads (Cat. No.: 130-105-637, Miltenyi Biotec, 
Bergisch Gladbach, Germany), followed by fluorescence-activated cell 
sorting of viable CD8+ T cells.

100,000 cells/well were seeded in TexMACS™ medium (Cat. No.: 
130-097-196, Miltenyi Biotec) supplemented with 1% Penicillin/
Streptomycin and activated with T Cell TransAct™ (1:100) (Cat. No.: 
130-128-785, Miltenyi Biotec) in the presence of a cytokine mix for 
effector T-cell differentiation. Due to ongoing confidential work on 
this topic, further details about the T-cell phenotype cannot 
be  provided. The absence of this confidential information is not 
relevant to the presentation of the developed Organoid App and will 
be discussed in follow up studies in detail.

After 4 days, CD8+ effector T cells were harvested and rested in 
TexMACS™ medium with 100 U/mL IL-2 (Proleukin® S Novartis, 
Nürnberg, Germany) for three days. Subsequently, 200,000 T cells 
were stimulated with T Cell TransAct™ (Miltenyi Biotec) o/n before 
harvesting the cells. Organoids were harvested and washed with PBS 
to remove Matrigel®. For co-culture experiments, organoids and 
effector T cells were mixed in a ratio of 20 organoids/10,000 effector 
T cell in organoid culture medium without growth factors. The mixes 
were pelleted and resuspended in a 50/50 mixture of Matrigel® and 
organoid culture medium supplemented with growth factors as 
described above. Then, 25 μL of the mixture was seeded in the center 
of the wells of a 48-well plate (Cat. No.: CLS3548, Corning/Merck 
KGaA) and incubated at 37°C for 15 min to allow matrix solidification 
and dome formation. Finally, 300 μL of organoid culture medium 
supplemented with growth factors and 100 U/mL IL-2 was added and 
co-cultured by 37°C and 5% CO2 in the Incucyte® SX5 Live-Cell 
Analysis Instrument (EssenBioscience/Sartorius, Göttingen, 
Germany). Scans of the individual wells were scheduled every 8 h over 
a period of 6 days. To assess the influence of the growth factor EGF on 
organoid growth, organoid co-cultures were cultured with or without 
50 ng/mL human EGF.

2.4 Statistical analysis of data

Raw data (*.xls or *.xlsx) were imported into GraphPadPrism 9 
macOS for subsequent graphical presentation and statistical analysis. 
Multiple t-tests (Multiple Mann–Whitney tests; unpaired; 
nonparametric), one way ANOVA tests (Kuruskal-Wallis test, Dune’s 
multiple comparison) and Šídák’s multiple comparisons test were used 
for statistical analysis.

2.5 Calculation of precision and recall

For the evaluation of the potential of software’s to detect 
organoids, we  verified the software-based results manually 
be  counting true positive (TP), false positive (FP) and false 
negative (FN) signals. The parameters precision (positive 
predictive value) and recall (sensitivity) have been calculated 
according the formula: Precision = TP/(TP + FP); Recall = TP/
(TP + TN) (29). Consequently, the following parameter associated 
questions could be addressed. Precision: What proportion of the 

positive identifications were actually correct? Recall: What 
proportion of true positives was correctly identified?

3 Methods

3.1 Probing technical limitations of 
automated detection and quantification of 
organoids in co-cultures

The influence of immune cells on the growth of organoids is 
gaining more and more acceptance in the field (3, 8, 11–18, 30, 31). In 
this study, we chose the ECO organoid model in combination with 
lymphocytes embedded in Matrigel® domes to generate time-lapse 
and end-point images for subsequent analysis (Figures 1A–E).

Based on the 3D structure of Matrigel® domes, a combination of 
multiple images taken at different focus distances was performed 
[TissueFAXSiPLUS: z-stacks, n = 4, range 310 μm; Incucyte®: 
brightfield organoid scan mode, object driven focus, z-depth < 2.9 mm 
(32)]. This allows for a high-contrast visualization of both organoids 
and lymphocytes embedded within different layers of the Matrigel® 
dome (Figure 1D; Supplementary Figure S1).

Based on these initial data, an accurate detection of organoids 
within heterogeneous and dense in vitro cultures remains challenging 
due to three main aspects (Figures 1D, F). Firstly, clusters of immune 
cells that are located close to organoid structures can mimic organoid 
morphology based on their cellular density. Therefore, the detection 
algorithms could recognize false positive structures based on contour 
mimicry. Secondly, when organoids are in close proximity to each 
other, the algorithm may recognize them as a ‘single organoid 
structure’ due to contour fusion, which underestimates the actual 
organoid number. Thirdly, the integrity of organoid contours can 
be disrupted due to inadequate imaging quality or the presence of 
overlapping immune cells.

To address these challenges, high-throughput software pipelines 
that can accurately detect organoid structures in complex samples 
would be a valuable asset in studying the immunological aspects of 
organoid growth. Several software tools have been released to identify 
and characterize organoids cultured in the absence of other cellular 
components (Table  1). Based on our knowledge, no imaging 
workflows have been developed to quantify organoid-immune cell 
co-culture systems in a high-throughput manner. Thus, we questioned 
whether existing codes or commercial software tools can distinguish 
between organoid structures and densely clustered immune cells.

Scientists can quantify organoids using different tools, such as 
ImageJ or handwritten notes. These results are quite accurate, but can 
also show variations, depending on who counted the organoids 
(Figures  2A,F). However, it is exceedingly challenging and time 
consuming to precisely determine the organoid’s area and density 
utilizing manual techniques. Furthermore, this manual approach is 
unsuitable for high-throughput analyses. We  used automated 
approaches, such as customized Incucyte® software packages and the 
OrganoSeg (22) detection algorithm, to identify and quantify 
organoids within co-cultures. Images of increasing complexity (level 
#1 – #3) have been included in this study. Our findings showed that 
the detection of organoids by both existing software tools is not 
optimized for heterogeneous co-cultures. All analyzed images, ranging 
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FIGURE 2

Quantification of organoids within immune cell co-cultures. Images of immune cell/organoid co-cultures representing different degrees of complexity 
(levels #1-#3) have been analyzed. (A) Organoids from level #1 – #3 were counted manually by four different scientists using the ImageJ counting 
function or written notes on the original pictures. Each image was counted 11 times. Representative images with organoids marked by red dots are 
shown. The depicted number represents the median number of organoids within the field of view. (B–D) Automated analysis of different degrees of 
complexity (levels #1-#3). Left: Images were analyzed using OrganoSeq. Right: Images were analyzed using the manufacturers’ Incucyte® Organoid 
Analysis Module. Blue outlines visualize organoids which are detected by the respective software. Detailed software settings are described in Section 2.1. 
Red highlight false negative (FN) or false positive (FP) detections of organoids. (E) Representative examples of correct organoid detections (blue outline; 
filled with green). The filled red area indicates “organoid structures” that are detected FN or FP. (F) Comparison of organoid numbers, analyzed by the 
different software tools (counting: median plus 95% confidence interval is shown; Incucyte® and OrganoSeg analysis: each dot represents an analysis).
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from intermediate (level #1; Figure 2B), to high (level #2; Figure 2C), 
to very high complexity (level #3; Figure 2D) showed false negative 
(FN) and/or false positive (FP) organoid structures. The most 
prominent FP and FN detection problems are given in Figure 2E. In 
comparison to manual counting by ImageJ (n  = 68  in level #1, 
n = 108 in level#2, n = 120 in level #3), the Incucyte® and OrganoSeg 
software tools only highlighted a few (n < 39) organoid structures 
(Figure 2F). The calculated values for precision and recall, which are 
basic concepts for evaluating the performance of detection algorithms, 
show very low levels (Incucyte®: level #1 precision = 0.43/recall = 0.43, 
level #2 precision = 0.00/recall = 0.00, level #3 precision = 0.10/
recall = 0.042; Organoseg: level #1 precision = 0.33/recall = 0.37, level 
#2 precision = 0.06/recall = 0.08, level #3 precision = 0.00/recall = 0.00; 
data not shown). This indicates very strong limitations regarding the 
detection of organoids. Despite the fact that the automated tools failed 
to accurately identify organoids, we plotted the number of “organoid 
structures” that were identified by the software (Figure 2F). In line 
with the unacceptable levels of recall and precision, those organoid 
numbers do not reflect the real situation (Figure 2F). Thus, we can 
conclude that the tested software tools or algorithms are limited in 
their ability to correctly recognize organoids under co-culture 
conditions (Figure 2). Therefore, our objective was to develop a high-
throughput pipeline for the identification and quantification of 
organoid structures in lymphocyte co-cultures.

3.2 Image acquisition and data import for 
subsequent organoid detection by the 
StrataQuest-supported Organoid App

To improve the identification and quantification of organoid 
structures in lymphocyte co-cultures, we developed a StrataQuest-
supported Organoid App. This software allows the processing of 
different image configurations and formats, ranging from time-lapse 
to end-point analysis of organoid development in co-cultures. In this 
context, an appropriate image sample identification code (ID) is 
mandatory for automated StrataQuest analysis, regardless of the image 
source. This ID must contain information about the plate number, well 
number, stimulation, and time point. Imported images obtained from 
alternative systems, such as Incucyte®, exhibit the following 
characteristics: 8-bit depth, resolution of 1,536 × 1,152 pixels, and a file 
size of approximately 4.5 MB. Consequently, a microscope field of 
view (FOV)-correction to 2,560×2,000 pixel must be performed by the 
StrataQuest software before starting the analysis. A simplified 
workflow of the organoid detection is summarized below and 
visualized in Figure 3.

3.2.1 Generation of a virtual channel
The input image is converted into a virtual grayscale image 

(Figure 3A; Step #1). This step is mandatory for an optimal signal 
(high grayscale-values) to noise (low grayscale-values) separation. The 
contours of organoids with high contrast intensities become 
prominent and represent the key element for subsequent organoid 
detection, as well as for separating the inner areas from the 
surrounding environment.

3.2.2 Background correction
A median filter is employed to create a suitable background model 

that is then subtracted from the grayscale image (Figure 3A; Step #2). 

This helps to reduce or eliminate non-uniform and high background 
signals, such as those arising from immune cells and other 
non-organoid structures.

3.2.3 Grayscale image enhancement
A membrane detection algorithm is used to identify the contour 

areas of putative organoid-like structures. The software automatically 
enhances the intensity and contrast of the organoid borders 
(Figure 3A; Step #3) and processes them for subsequent verification 
and detection. After converting the original image to grayscale 
(Figure 3A, Step #2), the contours of the organoids exhibit a high level 
of intensity. As a result of this image processing, the membrane shows 
a higher grayscale intensity compared to the rest of the structures, 
including background and immune cells. This allows the algorithm to 
search for changes in intensity (higher or lower) within a defined set 
of growth steps. Finally, the algorithm detects shifts in intensity from 
a lower to a higher value and then back to a lower value and can define 
the shapes of maximum intensities that represent the border structure 
of the organoid. The output of this process is a black and white masked 
image in which the white areas represent the membrane-like 
structures identified by the membrane detection algorithm. The 
grayscale image is then supplemented with the identified membrane 
in order to highlight the contours of the organoids. This enhancement 
produces a refined grayscale image, utilized as the input for training 
the classifier.

3.2.4 Classifier training by machine learning
Machine learning refers to the classification engine operated by 

the Organoid App, which can use representative images for each 
complexity category defined by the user. The machine learning process 
focuses on the dissection of real “organoid contour” and non-organoid 
structures, such as immune cells, which we  call “tissue” in this 
publication. The enhanced grayscale image was used as the input 
image to facilitate the detection of the organoid contour (Figure 3A, 
Step #4; Supplementary Figure S2). After providing possible organoid 
boundaries and structures, the classifier is trained to identify all 
structures that are “real organoids”. In parallel, the classifier recognizes 
a so-called “tissue” that consists of immune cells and/or background. 
Various features such as intensity, morphology, Haralick texture, and 
environmental context, including Gaussian and median filters, are 
used to train the classifier by marking structures of interest and 
contaminating background signals (Supplementary Figure S2). The 
results are displayed as coded map images, where each organoid 
structure is marked with a color corresponding to its assigned 
boundary (Figure 3A, Step #5). Real-time detection and visualization 
of organoids during classifier training enables quality control of the 
classifier. The machine learning program supported by the Organoid 
App can be repeated until optimal recognition of organoids is achieved 
in the selected training images.

3.2.5 Organoid contour and background 
detection

The contour mask (generated by the classifier) is highlighted in 
blue (Figure 3A; Step #5). Each disjunct object which generates a 
contour/organoid seed is assigned a unique image ID. The term 
“seeds” refers to an initial value that is used to initialize a random 
number generator algorithm, which then generates a sequence of 
random numbers based on that seed. These contour/organoid 
candidates are evaluated by morphological and intensity-based 
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FIGURE 3

Simplified overview of the organoid detection workflow using the StrataQuest-powered Organoid App. The principal steps are depicted. Details are 
given in the main text. (A) After converting the original images to grayscale, a median filter is applied to create a background layer, which is then 
subtracted from the grayscale image (Step #1). This step helps to reduce interfering signals and eliminates non-uniform and high background signals 
(Step #2). An additional membrane detection step is integrated, for accurate discrimination of the organoid boundary (Step #3). The enhanced 
grayscale image is subjected to the machine learning procedure (classifier; Step #4) to identify the contours (contour mask, highlighted in blue) as well 
as the tissue or background (background mask; highlighted in orange). This analysis provides a boundary specification for the organoids (contours 
mask: blue area, background mask: orange area). By combining the input data from steps #5 and #6, a final organoid specification can be performed. 
Organoid boundaries (blue areas) and background (orange areas) are separated for individual images (Steps #5 and #6) and are further processed. 
Organoid candidates are generated (highlighted in orange, Step #7). A two-layer specification of the contour of the organoid cores (Step #8, 

(Continued)
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measurements (Figure  3A; Step #5). The background detection 
(highlighted in orange) allows the subtraction of structures that are 
not associated with organoids. This mask (including immune cells and 
debris), which is generated by the classifier, assigns a unique 
processing ID to each disjunct object, generating candidates for 
organoid seeds (Figure 3A; Step #6). The background mask (generated 
by the classifier) is labeled in red and separated from the actual 
organoid inner areas based on size criteria (Figure 3A; Step #7).

3.2.6 Organoid body detection (seeds; inner area)
To visualize organoid bodies, seeds can be  used to generate 

random gray intensities or patterns for labeling and distinguishing 
different organoids or regions of interest within an image. These 
candidates are evaluated using morphological and intensity-based 
measurements. To implement this process, the background gate 
(Figure  3A; Step #7) is used for subtracting the background for 
subsequent analyses. Based on the area (indicated gate) a unique ID is 
assigned to each disjunct object. Contours of the organoids are also 
used to validate the seeds (green contour; Figure 3A; Step #8). The 
candidates (Figure 3A; Step #9) are evaluated by morphological and 
intensity-based measurements, by two subsequent intervals. First, raw 
organoid body selection is performed by selecting the small tissue 
objects, which might represent potential organoids inner areas. 
Second, a more accurate organoid seed selection is performed by 
evaluating the intensities around the seeds from the previous step. A 
valid seed is surrounded by a calculated organoid contour (compare 
diagram: Seed candidate contour area (Figure 3B; Step #10, upper 
right quadrant)). The selected seeds are processed further using 
morphological operations (compactness) to better represent the inner 
area of organoids (Figure 3B; Step #11).

3.2.7 Organoid detection and parameter adaption
The identified seeds (compare diagram: Organoid candidate area 

(μm2) vs. compactness; (Figure 3B; Step #11)) are combined with 
small contours, corresponding to small organoids where the inner 
area identification is very difficult or impossible. Organoid structures 
can now be detected based on two criteria: body; highlighted in green 
(Figure 3C; Step #12) and contour; highlighted in yellow (Figure 3C; 
Step #12). The resulting organoids are highlighted by the Organoid 
App in randomized colors (Figure 3C; Step #13). If the detection of 
organoids within the group of selected images is insufficient regarding 

FN or FP organoid structures, the classifier can be retrained again to 
achieve optimal automated detection of organoid candidates.

3.2.8 Growing mask adaption and deletion of 
background signals

The raw organoid seed detection is combined with the contour 
mask, generated by the classifier, to create a growing mask (Figure 3D). 
Reconstruction of the organoids is performed by a growing algorithm 
that determines the final seeds on the growing mask. The growing step 
limits are defined by the parameter “Organoid – Grow Radius 
adaptation” (Figure 3D). For a precise adaption of organoid detection, 
it is also possible to adjust distinct growing masks accordingly. 
Additionally, an appropriate contour-size adaption enables the 
exclusion of background signals (Figure 3D). The identified organoids 
can be automatically categorized according to distinct areas.

4 Results

4.1 Quality control

The Organoid App was developed based on images of organoid 
co-cultures with immune cells (Figure 2A; level #1). Therefore, the 
default settings of the machine learning engine can be used to start the 
organoid detection procedure. Based on the heterogeneous quality of 
images and the varying density of organoids within cell culture plates, 
a project-specific adaption of the machine learning classifier is 
recommended to increase the quality of analysis.

Even though the default settings for organoid detection allow the 
identification of most organoids, some are not recognized (false-
negative). In addition, organoid-like structures may be incorrectly 
identified (false-positive) as organoids (Figure 4A; top row). After 
appropriate classifier training and machine learning, the ability to 
recognize organoids in co-cultures is further improved (Figure 4A; 
lower row). Based on the high-throughput analysis of growing 
organoids from day 0 to day 6, the organoids exhibit varying densities 
and structures. Due to the significant variability and artifacts present 
in culture plates, the Organoid App has only very minor limitations, 
with high values of precision and recall (level #1 precision = 0.92/
recall = 0.95, level #2 precision = 0.91/recall = 0.91, level #3 
precision = 0.95/recall = 0.93; data not shown). This indicates that the 

highlighted by green lines) and the inner region of the organoids (Step #9, highlighted by filled green areas) is used for further recognition of the 
organoids. (B) Gating strategies. Representative gating and back gating tools for quality controls are depicted. Upper row: The histogram shows the 
range of structures that are processed by the software for subsequent organoid detection. The gate (blue square) captures signals that serve as basis 
for further evaluation. The back-gating function can be used to highlight (orange) all structures representing the defined gate in the original image 
(Step #10). Lower row: The organoid compactness signature is used to define the final detection parameters (Step #11). The gate (blue square) 
captures all signals that serve as final basis for quantification of organoid area, number and shape. The bar represents 500  μm. (C) Identification of 
organoid candidates. Representative specifications are depicted (Step #12). The organoid contours (yellow) and areas (green) are highlighted. Individual 
organoids are visualized by the software by randomly selected colors (Step #13). (D) Parameter adaption. Right side: the growing masks of organoid 
seeds and the corresponding limits of the growth radii can be adjusted until the exact limit of the organoid candidates is reached. Upper image: 
original. Middle image: the organoid detection (orange area) based on default growing parameters is shown. The arrows highlight the growing mask. 
An adaption of the organoid seeds’ grow radius (value  =  280.00) and the organoid grow radius (value  =  90.00) revealed an optimal detection of the 
organoid area (filled inner orange area). The bars represent 50  μm. Right side: the contour areas of organoid candidates can be adapted. Upper image: 
original. Middle image: the organoid detection (orange and blue contour line) based on default settings of contour area settings is shown. Wrong 
positive structures (immune cells contours red; highlighted by arrows) area detected as possible organoid structures. An adaption of the contour area 
(parameter adaption: remove contours below 20  μm2) revealed an optimal detection of the organoid contours (orange area and red contour line). The 
bars represent 100  μm. Middle row: based on the contour area of organoid seeds (x-axis) and their corresponding intensity (y-axis) potential seeds 
candidates (inner area) can be determined for subsequent organoid detection. The upper right gate includes potential seeds candidates highlighted in 
red by back gating. These structures are further processed for organoid detection.

FIGURE 3 (Continued)
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FIGURE 4

Classifier training and quality control by the StrataQuest-supported Organoid App. (A) Images with different levels of complexity (level #1 to #3) were 
analyzed by the default settings of the Organoid App (upper row) and after machine learning-based (lower row) classifier training. Representative 
modifications are highlighted by red and black dotted lines. The red lines indicate corrections of formerly false positive structures. The black lines 
indicate corrections of formerly false negative structures. The bars represent 500  μm. (B) The number of organoids is presented according to the 
indicated method of analysis. Visual quantification: the median and 95% confidence interval is shown. Each symbol represents an individual counting 
result (compare Figure 2). StrataQuest [(SQ)-default and SQ-trained: Each dot represents an analysis]. (C) The quality of area measurement is shown. 
Upper row: Areas detected by the StrataQuest based Organoid App (filled structures) and manually delineated boundaries (annotations and dotted 
black lines) of organoids. Representative images of different complexities (levels #1 to #3) are depicted. The bars represent 500  μm. Lower row: Linear 
regression plots, comparing the areas of organoids in μm2. The x-axis indicates the areas of manual delineation (MD). The y-axis indicates the areas of 
automated analysis performed by StrataQuest (SQ) using the Organoid App. Images with different complexities (level #1 to #3) were analyzed. A linear 
regression model was used to calculate the value of variation between the data. The R2 values are depicted.
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Organoid App correctly identifies the majority of organoids. The 
identification and separation of overlapping organoids and technical 
artifacts remains indeed a real challenge, but has been largely solved 
with this application (Figures 4A,B).

The number of organoids detected by both the standard 
(StrataQuest (SQ)-default) and trained (SQ-trained) algorithm lies 
within the 95% confidence interval of the manually counted organoid 
numbers (Figure 4B). This result can be explained by the fact that after 
classifier training the number of false positives structures decreased 
(compare Figure  4A red arrows), whereas the detection rate of 
previously undetected organoids increased (compare Figure  4A 
black arrows).

In addition to the validation of the organoid detection count, the 
accuracy of the organoid area determination was verified. Randomly 
selected organoids were manually delineated and measured. These 
data were compared with the areas calculated by the Organoid App 
recognition algorithms. The corresponding linear regression graphs 
revealed a highly significant correlation between the Organoid 
App-based and manual-area measurements (Figure 4C). Our organoid 
application achieves a high degree of accuracy in organoid detection, 
closely paralleling the accuracy of the human eye (Figure  4C; 
Supplementary Figure S3B).

4.2 Characterization of organoid 
development within co-cultures in the 
presence of exogeneous compounds

A pilot study was conducted to evaluate the ability of the Organoid 
App to identify an aberration in organoid development under different 
growth conditions. In this context, we focused on two central aspects. 
First, we tested whether organoid growth can be monitored over time. 
Second, we addressed whether the simultaneous presence of a growth 
factor and immune cells can affect organoid differentiation in terms 
of size and compactness. To this end, we have included the epidermal 
growth factor (EGF) in our study, as EGF has already been used in a 
number of studies on organoid differentiation (27, 33–36).

Images were acquired over a period of 6 days with the Incucyte® 
SX5 Live-Cell Analysis System and imported into StrataQuest. An 
initial screening of the data revealed that the number and size of the 
organoids changed significantly over the course of a 6-day culture 
period. Even the density of immune cells in the in vitro system 
exhibited substantial fluctuations due to cell proliferation, as illustrated 
in Figure  5A. To ensure accurate detection of organoids by the 
Organoid App, we trained the classifier on a set of six representative 
images. These selected images were imported and merged into a single 
dataset. Based on this dataset, it was feasible to achieve a 
comprehensive training covering the full range of cell culture 
heterogeneity, including organoid density, overlapping structures and 
imaging quality (Figure  5B). After appropriate classifier training, 
image analysis was conducted.

StrataQuest allows the export of meta data in different file formats 
such as *.pdf, *.xls and *.xlsx for subsequent graphical display and 
statistical analysis (Figure 5C). This enables the import and further 
processing by other software tools. Consequently, adequate statistical 
analyses and data visualization can be  performed. Our analysis 
showed an increase in the absolute number of organoids over time, 
both in untreated and EGF-treated culture conditions (Figure 5D). 

However, the total number of organoids was reduced in the presence 
of EGF (Figure 5D).

To determine whether the development of organoids with a 
distinct size was affected by EGF, organoids of different sizes were 
analyzed. This characterization revealed that the number of organoids 
(day 1–day 6) with a size between 18,000 μm2 and 60,000  μm2 is 
impaired in the presence of EGF (Figure 5E). The number of organoids 
with a size between 60,000 μm2 and 120,000 μm2 was only partially 
(day 3 and day 4) affected by EGF (Figure 5E). In contrast, EGF does 
not influence the development of organoids below 18,000 μm2 or 
above 120,000 μm2 in general (Supplementary Figure S4).

The Organoid App also enables the determination of individual 
organoid sizes within the co-culture system. Comparing day 2 with 
day 5 of organoid co-culture, the average size of organoids increased, 
independent of EGF (Figure 5F; upper dot plots). We also analyzed 
the influence of EGF on organoids growth on day 2 and 5 and found 
that while EGF had no effect on the size distribution of organoids on 
day 5 (Figure 5F: lower right dot plot), on day 2 EGF led to a very 
slight increase in average organoid size (Figure 5F: lower left dot plot).

In addition to the quantification of organoid number and size, the 
compactness of individual organoids can be determined. Compactness 
can be assessed using various quantitative metrics, such as the ratio of 
the organoid’s volume to its surface area or the degree of sphericity. 
These measurements provide information about the overall structural 
integrity and density of organoids. A high compactness value indicates 
a well-developed cohesive circular organoid structure, while a lower 
value may indicate a diffuse arrangement of cells within an amorph 
organoid. We found increased compactness at day 2 compared to day 
5 (Figure 5G), indicating that the organoids become less compact 
during culture.

Based on these first proof-of-principle experiments, it can 
be concluded that a sound quantification of organoid number, size and 
compactness in co-cultures with immune cells is possible by using the 
Organoid App in high-throughput analysis. Our study also confirms 
that the Organoid App effectively detects subtle differences in the 
chosen culture conditions. We found that EGF has the potential to 
affect the development of distinct organoid subsets (Figure 5H).

We have also incorporated the Incucyte® software for subsequent 
quantification of organoids in co-cultures, despite its obvious 
limitations in organoid detection (compare Figure 2B; right column). 
These data revealed that the Incucyte® software was not able to detect 
the differences in organoid growth between untreated and EGF-treated 
co-cultures, which could only be  identified by the Organoid App 
(Figures  6A,B). Due to the limitations of the Incucyte® software 
(Figure 6C), these data cannot be used to further interpret the effect 
of EGF on organoid growth. The Organoid App, powered by 
StrataQuest and capable of detecting and quantifying of organoids, 
showed that EGF can dampen the growth of organoids in co-culture 
systems (Figures 6A,B). These data are consistent with the data shown 
in Figure 5D. Further analysis and comparison of organoid growth 
with OrganoSeg was not performed due to the limitations of this 
algorithm in organoid detection.

5 Discussion

The debate on whether or not engineered cell-based in vitro 
models, such as organoids, can faithfully reproduce the structures and 
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FIGURE 5

Organoid development in the presence of immune cells and EGF. (A) Graphical examples of different organoid growth conditions are depicted. (B) Based 
on the given complexity, the classifier is trained by using images (n = 6) representing the range of the given cell culture complexity. (C) The analysis of the 
entire project (n = 170 images) is based on the project-specific classification and detection settings. (D) The total number of organoids and (E) organoids 
within a distinct size range are depicted. Each symbol represents the total number of organoids within one well. Quadruplicates from n = 3 different 
donors are shown. The red horizontal line highlights the median. Multiple t-test (Multiple Mann–Whitney tests; unpaired; nonparametric) have been used 
to compare organoid cultures in the absence (w/o EGF; black circle) and presence (plus EGF; blue filled triangle) of EGF. The p values are indicated. (F) The 
individual size of organoids at day 2 and day 5 is shown. Each dot represents the size of one single organoid within the culture wells. The horizontal line 
highlights the median. Quadruplicates from n = 3 donors are shown. Multiple t-test (Multiple Mann–Whitney tests; unpaired; nonparametric) have been 
used to compare organoid co-cultures in the absence (w/o EGF; blue circle) and presence (plus EGF; blue circle) of EGF. The p values are indicated. 
(G) The mean of organoid candidates’ compactness at day 2 and day 5 is shown. Each dot represents the area of a single organoid. The horizontal line 
represents the median. Quadruplicates from n = 3 donors have been implemented in the data analysis. One way ANOVA tests (Kuruskal-Wallis test, Dune’s 
multiple comparison) have been used comparing organoid cultures in the absence (w/o EGF; black circle) and presence (plus EGF; blue filled triangle) of 
EGF. The p values are indicated. (H) The diagram illustrates a potential interpretation of the data: The development of organoids with an intermediate size 
(highlighted in blue) between 18,000 μm2 and 60,000 μm2 is reduced in the presence of EGF. The growth of the blue organoids is EGF-dependent (EGF-
dependent organoids). Gray organoids can grow in the absence of EGF (EGF-independent organoids).
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functions of the original organ in vivo is ongoing (37, 38). Although 
organoid systems are limited in their ability to mimic the properties 
of complex in vivo tissues relevant to physiological or pathological 
processes in tissues, organoid cultures are still useful tools for studying 
fundamental mechanistic questions (39). Healthy and pathologically 
altered tissues, however, are composed of different cell types. 
Therefore, adding tissue-specific stromal or immune cells to organoid 
cultures may improve the physiological context of organoid 
development. Developing multicellular organoid models that better 
represent in vivo micro-environments is still challenging, but progress 
is already evident (39–42).

In addition to the complexity of the multicellular organoid model 
system itself, the strength of the analytic data is influenced by the 
image quality and structural diversity of the acquired objects. Even 
when image quality is excellent, the subsequent processing is still 
limited by other factors such as contour mimicry, fusion, and 
superposition of structures. These artifacts may result in the incorrect 
identification of organoid structures causing false negative or false 
positive data and therefore low values of recall and precision. 

Consequently, it is crucial to display organoid boundaries with 
maximum contrast to achieve clear visual delineation, which can 
be accomplished with our newly developed Organoid App.

Although machine learning classifiers are highly sophisticated, 
technical limits remain. We do not believe that any currently available 
algorithm will accurately detect 100% of the target structures since 
optical structure recognition involves the analysis and interpretation 
of visual data. While significant progress has been made in the fields 
of computer vision and image processing, achieving “100% accuracy” 
in optical structure detection remains a theoretical ideal rather than a 
practical expectation.

Several challenges hinder the achievement of perfect accuracy in 
optical structure detection. Artifacts and variability within optical 
data, caused by imaging conditions like illumination or sensor 
limitations, can lead to significant detection errors. Complex and 
overlapping optical patterns and structures make an accurate detection 
difficult, potentially resulting in incorrect outcomes. Algorithm 
limitations also pose challenges, as diverse algorithms have individual 
strengths and weaknesses and may not cover all scenarios effectively. 

FIGURE 6

Comparison of automated organoid detection applications. (A) The total number of organoids determined by the StrataQuest Organoid App (SQ; 
orange lines; plus, EGF solid, w/o EGF dotted) and Incucyte® (blue lines; plus EGF solid, w/o EGF dotted) is shown. The median from quadruplicates of 
n  =  3 different donors plus the 95% confidence interval is depicted. (B) The Šídák’s multiple comparisons test highlights the statistical data of selected 
samples. (C) Representative analysis (day 5 w/o EGF) are shown. Left: StrataQuest-supported Organoid App (black arrows highlight correct exclusion of 
organoid- mimicking contours). Middle: Incucyte® analysis (red arrows highlight wrong detection of organoid-mimicking contours). Right: Inserts with 
higher amplification are depicted. The bars represent 500  μm.
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Additionally, human subjectivity in defining and recognizing optical 
structures introduces variability due to differences in expert criteria 
for setting detection thresholds.

Despite this technical hurdle, our data demonstrates that the 
Organoid App can accurately detect organoids in co-cultures. This was 
achieved by separating the organoid structures from the other 
contaminating structures such as immune cells and imaging artifacts. 
Even though the Organoid App occasionally fails to correctly 
recognize a minority of overlapping structures, most of them are 
detected correctly. In contrast to other software solutions such as 
Incucyte® or OrganoSeg, we were able to precisely detect organoids in 
co-cultures with immune cells for the first time. Therefore, we utilized 
the Organoid App to examine organoid growth under varying 
conditions. In this context, we questioned whether the Organoid App 
is able to highlight differences regarding the growth of organoids 
under the given co-culture conditions.

The term “growth of organoids” can be used to either address the 
numerical expansion of organoid structures, or the increase in size of 
a single organoid. Organoids are usually derived from progenitor cells 
which have the potential to differentiate into complex and self-
organized structures (7, 43, 44). Exactly these early multicellular 
organoid precursors may be different in terms of their potential for 
organoid formation and subsequent growth. Accordingly, it can 
be assumed that the growth of individual organoids is determined by 
their cellular composition and the ability of the respective precursor 
cells to form organoids (2). Thus, the number of detected organoids 
can reflect the potential of organoid precursors to replicate and to 
survive under the given conditions. The increase in organoid size 
indicates the potential of organoid associated cells to replicate. In 
order to make a statement about organoid growth, both parameters 
should be taken into account. It is quite possible that the number of 
organoids can increase without an expansion in size. To confirm or 
exclude heterogeneity in organoid growth, it is also necessary to 
consider the parameter of individual organoid sizes within the 
co-culture. Various organoid-associated parameters, such as quantity, 
average size, and individual size, and compactness might therefore 
offer a promising approach for a more detailed characterization of 
organoid development within culture conditions.

Due to these facts, we evaluated time-lapse images of organoid 
co-cultures with immune cells in order to determine the effect of the 
growth factor EGF on organoid development. Based on the data 
we  have generated with the Organoid App, we  can conclude that 
organoids can be  formed and detected under the given culture 
conditions. However, EGF is capable of suppressing organoid growth 
within the selected culture conditions. While the effect of EGF on 
ECO differentiation and growth has not been analyzed yet, there are 
a variety of reports on the use of EGF for organoid differentiation in 
the absence of differentiated immune cells (27, 33–36). Our results 
show that the combination of immune cells and EGF results in a 
reduced expansion of organoids within the co-culture. In this context, 
it is noticeable that the total number of organoids with a distinct size 
is reduced. This suggests that certain organoids are still able to grow 
effectively in the presence of EGF. The increase in organoid size could 
be due to increased cell-proliferation within the organoid bodies and/
or accumulation of extracellular matrix components within the 
organoid structures. Thus, it can be assumed that individual organoids 
react differently to EGF. This effect might be explained by the fact that 
the composition of organoids regarding stem cells and other cell 

subsets is not homogeneous. While we could detect an increase in 
organoid size between day 2 and 5, regardless of the presence of EGF, 
the size of individual organoids was increased slightly in the presence 
of EGF on day 2 but not on day 5. In addition, we evaluated the 
compactness of the organoids in culture and found a reduction of 
compactness on day 5 compared to day 2, independent of the presence 
of EGF. This is an indication of a possible transformation to less 
“circular” organoids.

The initial pilot experiment studying the effects of EGF on 
organoid development in co-cultures with immune cells yielded these 
primary results. EGF shows a detrimental impact on individual 
organoids over the culturing period, leading to a decrease in the 
number of organoids of certain sizes. However, despite this reduction, 
certain organoids within the co-culture exhibit an increase in size 
when exposed to EGF. Hence, EGF appears to impact the early-stage 
organoid development in co-culture with CD8+ effector T cells, 
leading to a reduced proportion of organoids capable of growth under 
specific immune cell culture conditions. It is known that conventional 
human T lymphocytes do not express the EGFR (45). However, 
distinct differentiated T-cell subsets such as regulatory T cells, can 
express the EGFR and benefit from other EGFR ligands such as 
amphiregulin (46, 47). The expression of EGFR by T cells that are in 
close proximity to organoids, as well as their potential role in 
regulating EGF-dependent organoid formation, remains unknown 
and warrants further investigation.

In summary, our presented high-throughput imaging solution 
offers great potential for further analysis and detection of organoids 
within co-culture systems. The Organoid App can be helpful in the 
development of innovative diagnostic and therapeutic strategies by 
enabling the study of organoids in the presence of human immune 
cells and exogenous substances such as drugs or cytokines.
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