Research Topic

Advances in Tribochemistry

About this Research Topic

Mechanochemical reactions are ubiquitous, but often go unnoticed or are considered atypical. One example of mechanochemistry is a chemical reaction that occurs at the sliding interface of two solid materials, often called tribochemical reactions. Another example is the synthesis of organic chemicals through ...

Mechanochemical reactions are ubiquitous, but often go unnoticed or are considered atypical. One example of mechanochemistry is a chemical reaction that occurs at the sliding interface of two solid materials, often called tribochemical reactions. Another example is the synthesis of organic chemicals through the collision of solid particles, for example in ball milling processes. Mechanochemical reactions are quite different from chemical reactions that occur through heating, photon irradiation, or electrical bias. In contrast to these chemical reactions, for which the transition or flow of electrons between electronic states leads to changes in the atomic positions of molecules involved in the reactions, a mechanistic understanding of mechanochemically-activated reactions, in which a mechanical force alters reaction energies and pathways, has not yet been well established.

Mechanochemical reactions rely on factors such as mechanical interaction, temperature, physical and chemical properties of solid surfaces, and even environmental factors such as additives or gas molecules. Therefore, it is extremely challenging to elucidate the potential reaction pathway due to the very large number of degrees of freedom and complexity of reaction conditions involved in buried interfaces. Central questions include: how are mechanical stresses transferred to molecules from external solid surfaces, displacing the molecular conformation from equilibrium states or positions; and how to control reaction pathway or gates that can suppress unwanted reactions, or facilitate wanted reactions. Recent technological advances such as the atomic force microscope, transmission electron microscope, and other microscopic approaches offer promising alternatives to studying these issues. This experimental approach needs to be complemented by numerical simulations such as reactive molecular dynamic (MD) simulations and density functional theory (DFT) calculations.

We welcome reviews and original research articles that address, but are not limited to, the following themes:
• Tribochemical reactions at sliding interfaces with additives and related applications
• Theory, modeling, and experiments of tribochemical wear
• Modeling and simulations of mechanochemical reactions based on MD and DFT simulations
• Superlubricity due to mechanochemical reactions
• Novel multiscale computational approaches for studying mechanochemical reactions
• Novel experimental approaches such as high resolution and surface enhanced spectroscopies


Keywords: mechanochemical reactions, tribochemical wear, computer simulations, reaction kinetics, reaction pathway


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

04 October 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

04 October 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..