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Editorial on the Research Topic

Advances in ecoacoustics

The global decline of biodiversity in the wake of expanding human development

(United Nations, 2019a), resource depletion (United Nations, 2019b), and climate change

(IPCC, 2021) motivates research in basic and applied ecological science. The new

scientific discipline of ecoacoustics (Sueur and Farina, 2015) creates an epistemological

bridge between ecology, acoustics, animal behavior, biotremology, and semiotics,

providing fresh perspectives to study ecosystem function and new tools for ecological

monitoring in terrestrial and aquatic ecosystems. Advances in affordable hardware

(Pavan et al., 2022) mean that we can now passively, remotely and continuously record

acoustic environments; advances in machine learning provide potential methods to

digest the big data generated, but many theoretical and practical issues remain. We

are pleased to introduce this special issue on Advances in Ecoacoustics that makes

important contributions to the development of the semantic, conceptual and theoretical

foundations, analysis methods and infrastructures necessary for ecoacoustics to advance

as a scientific discipline that is equipped to tackle the urgent environmental issues we

face today.

Four articles address core definitions, concepts, and theoretical principles in

ecoacoustics. A primary focus of the field is the investigation of the ecological role of

soundscape. However, the term “soundscape” encompasses diverse concepts, including

objective physical phenomena and subjective perceptions (ISO 12913-1, 2014). With

the aim of operationalising the concept of soundscape in conservation, Grinfeder

et al. propose three new functional categories to clarify soundscape definitions: distal,

proximal, and perceptual.
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FIGURE 1

Ecoacoustics epistemological domain and competencies.

Ecoacoustics has traditionally focused on air-borne sounds

in the range of human hearing [soundscape definition given

by (ISO 12913-1, 2014)]; but now includes infrasounds

and ultrasounds used by animals for communication

and echolocation. In addition, recent research suggests

that substrate-born vibrations are important sources of

environmental information (Hill et al., 2019), as studied by

the new discipline of Biotremology. Šturm et al. introduce

the concept of vibroscape as the substrate-borne analogy

of the soundscape and ecotremology as the study of its

ecological significance. Ecotremology expands the paradigm of

ecocoustics to new registers and opens fresh possibilities for

non-invasive monitoring of arthropod species that are essential

for ecosystem functioning.

The conceptual framework of ecoacoustics describes

the components of the soundscape according to their

sources: biological (biophony), geophysical (geophony),

and human-produced (anthropophony and technophony)

sounds. However, it is common in applied ecoacoustics

to focus on biophony, disregarding anthropophony and

geophony as noise (Figure 1). Farina et al. emphasize the

importance of geophonies as key drivers of adaptation

and habitat selection and highlight the value of including

geophonies in ecocoustic analyses, especially when monitoring

climatic changes and their ecological consequences. Following

classical niche theory (Hutchinson, 1957), the acoustic niche

hypothesis (ANH) (Krause, 1987), posits that species’ acoustic

repertoires tend to be partitioned in acoustic space to avoid

interference and signal masking. In contrast, the clustering

hypothesis (Tobias et al., 2014) predicts that convergent

acoustic features may be beneficial to reinforce acoustic

communities. By observing signal overlap between montane

tropical wet forest bird communities in Costa Rica and Hawai‘I,

Hart et al. tested these hypotheses and found evidence of

temporal partitioning but not of clustering, lending support to

the ANH.
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Two articles address the theory and application of

ecoacoustics in land-management. Human impact on natural

systems is typically considered in terms of physical aspects of

habitat degradation. Sánchez et al. investigated the impact of

vegetation structure versus industrial anthropophony on the

Lincoln sparrow (Melospiza lincolnii) occupancy at three sites

in Northern Alberta, Canada. Their results demonstrate the

importance of species-specific acoustic habitat and promote

further research on the ecological consequences of human

impact on soundscapes as well as physical habitats. The need

for cost-effective tools to guide decision-making in sustainable

forest management has never been more pressing and there

is growing evidence that forest diversity is related to acoustic

diversity. Using simple soundscape features to analyse the

acoustic environment of Panamian forests, Müller et al. report

that relative to monoculture forests, polycultures increased

orthopteran acoustic activity at night in tropical forests. These

results bolster growing evidence for the value of ecoacoustics as

a cost-effective monitoring tool in land-management.

Three articles focus on new computational methods

for ecoacoustic monitoring using both global soundscape

indices and automated species identification. Acoustic indices

provide simple statistical summaries of the spectral and/or

temporal distribution of energy in an acoustic recording.

Single indices may capture intensity or spectral distribution

but are insufficient to capture the complex patterns emerging

from soundscapes. Scarpelli et al. integrate compound

indices with time series classification and machine learning

to provide a semi-automated classification method for

terrestrial soundscapes.

Fully automated species detection remains a challenge.

Traditional methods require an extensive, manually labeled

call library for training data, which is often obviated by

time, funding or data availability. Eichinski et al. describe

the successful application of active learning methods (a semi-

supervised machine learning approach using unlabelled data)

to predict multiple avian species in a novel habitat. Brodie

et al. similarly address the inherent challenges of working

with vast data sets. False-color spectrograms (Towsey et al.,

2018a), generated from an open-source analysis tool (Towsey

et al., 2018b), are used to visualize and detect chorusing

of multiple species of frogs in large acoustic data sets,

creating an efficient manual ecoacoustic analysis workflow that

complements automated approaches.

The final two articles address the critical issues of ensuring

ecoacoustics is founded on open-access principles to ensure

sustainable, scalable and open practices. Parsons et al. sound

the call for a global library of underwater biological sounds

and stress the value of an open-access reference library, data

repository, training platform, and citizen science application

to support aquatic ecoacoustics. Vella et al. report the

results of an Australia-wide workshop to identify key issues

in realizing open ecoacoustic monitoring in Australia. This
is an important exercise that would be valuable to carry

out globally.

At a time of unprecedented biodiversity decline,

ecoacoustics has the potential to become a key ecological

discipline to support cost-effective, long-term monitoring of

ecosystems and provide a scalable paradigm for ecological

research. The articles in this special issue contribute to

the important tasks of developing the language, concepts,

theoretical foundations, research tools, methods, and open

infrastructures necessary to advance the field in order to address

some of the pressing environmental issues of our time through

open and equitable science.
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Timing Is Everything: Acoustic Niche
Partitioning in Two Tropical Wet
Forest Bird Communities
Patrick J. Hart* , Thomas Ibanez†, Kristina Paxton†, Grace Tredinnick,
Esther Sebastián-González† and Ann Tanimoto-Johnson

Department of Biology, University of Hawai‘i at Hilo, Hilo, HI, United States

When acoustic signals sent from individuals overlap in frequency and time, acoustic
interference and signal masking may occur. Under the acoustic niche hypothesis (ANH),
signaling behavior has evolved to partition acoustic space and minimize overlap with
other calling individuals through selection on signal structure and/or the sender’s ability
to adjust the timing of signals. Alternately, under the acoustic clustering hypothesis, there
is potential benefit to convergence and synchronization of the structural or temporal
characteristics of signals in the avian community, and organisms produce signals that
overlap more than would be expected by chance. Interactive communication networks
may also occur, where species living together are more likely to have songs with
convergent spectral and or temporal characteristics. In this study, we examine the fine-
scale use of acoustic space in montane tropical wet forest bird communities in Costa
Rica and Hawai‘i. At multiple recording stations in each community, we identified the
species associated with each recorded signal, measured observed signal overlap, and
used null models to generate random distributions of expected signal overlap. We then
compared observed vs. expected signal overlap to test predictions of the acoustic niche
and acoustic clustering hypotheses. We found a high degree of overlap in the signal
characteristics (frequency range) of species in both Costa Rica and Hawai‘i, however,
as predicted under ANH, species significantly reduced observed overlap relative to the
random distribution through temporal partitioning. There was little support for acoustic
clustering or the prediction of the network hypothesis that species segregate across
the landscape based on the frequency range of their vocalizations. These findings
constitute strong support that there is competition for acoustic space in these signaling
communities, and this has resulted primarily in temporal partitioning of the soundscape.

Keywords: acoustic niche hypothesis, birdsong, spectral and temporal overlap, acoustic signaling, temporal
partitioning, acoustic clustering hypothesis

INTRODUCTION

Acoustic signaling is a major form of social behavior in many terrestrial and aquatic organisms.
When acoustic signals sent from individuals overlap in frequency and time, acoustic interference
and signal masking occurs, which may reduce the receiver’s ability to discriminate information from
the signal (Klump, 1996; Brumm and Slabbekoorn, 2005). Under the acoustic niche hypothesis

Frontiers in Ecology and Evolution | www.frontiersin.org 1 October 2021 | Volume 9 | Article 7533638

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2021.753363
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fevo.2021.753363
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2021.753363&domain=pdf&date_stamp=2021-10-15
https://www.frontiersin.org/articles/10.3389/fevo.2021.753363/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-753363 October 11, 2021 Time: 16:32 # 2

Hart et al. Acoustic Hart Niche Partitioning

(ANH; Krause, 1987, 1993), signaling behavior has evolved to
minimize overlap with heterospecific calling individuals through
selection on signal structure and the sender’s ability to adjust
the timing of signals. This hypothesis may be viewed as an
extension of the niche theory of Hutchinson (1957) whereby
acoustic space is a resource that organisms may compete for and
that can be partitioned both spectrally (frequency range of the
signal) and temporally.

The ANH is central to describing how animal signals in diverse
calling communities are dispersed in space and time and is a
major organizing hypothesis in the field of soundscape ecology
(Pijanowski et al., 2011). While the ANH makes intuitive sense
and is based on both anecdotal and empirical evidence from
a broad range of studies and signaling taxa (Farina and James,
2016), the degree to which organisms partition acoustic space in
order to reduce interference remains the subject of recent debate
(Tobias et al., 2014). Studies in biodiverse calling communities
such as cicadas (Sueur, 2002), crickets (Schmidt et al., 2013),
anurans (Chek et al., 2003; Sinsch et al., 2012; Villanueva-Rivera,
2014), and birds (Planqué and Slabbekoorn, 2008; Kirschel et al.,
2009; Luther, 2009) have found evidence for niche partitioning
through the apparent evolution of signal character displacement
among species (e.g., by adjusting the frequency range of a
signal to minimize overlap with those of other calling species
in the community). However, acoustic signaling across a calling
community typically occurs within a relatively narrow frequency
range that reflects transmissibility of the signal in a particular
habitat (Acoustic Adaptation Hypothesis; Morton, 1975; Ey and
Fischer, 2009), body size and morphology of the sound producing
organs (Ryan and Brenowitz, 1985; Suthers and Zollinger, 2008;
Friis et al., 2021), the receiver’s ability to detect and interpret
signals (Wiley and Richards, 1982), and sexual selection (Mikula
et al., 2021). Thus, acoustic signals are relatively constrained
in the way their spectral characteristics can vary to reduce
interference with other biotic and abiotic sounds.

Time is a second major dimension along which acoustic niche
partitioning may occur. Studies have demonstrated that birds
can adjust the fine-scale timing of their signals (as opposed to
adjusting the signals themselves) to take advantage of temporal
gaps in acoustic space and thus minimize temporal acoustic
overlap with other birds (Ficken et al., 1974; Popp et al., 1985;
Suzuki et al., 2012; Yang et al., 2014) and even insects (Hart
et al., 2015). However, those studies that have reported temporal
adjustments in signals generally did so for select species or species
groups and not the signaling community as a whole. Because the
time axis of the acoustic niche is less constrained and thus may
be more finely partitioned than the spectral axis, there is great
potential for the evolution of behaviors that allow individuals
within diverse calling assemblages to adjust the timing of their
signals to avoid other signals at the community level. Thus,
ANH may operate more through the temporal dimension than
the spectral one.

Alternately, signals produced in diverse calling communities
may converge in their spectral characteristics, timing, or
both. Cody (1969, 1973) and Grether et al. (2009) described
convergence in song and other behaviors in sympatric species
that may function to reduce interspecific competition. Song

characteristics may also converge on spectra that maximize the
propagation of vocalizations under the characteristics of the
habitat (Cardoso and Price, 2010), or they may converge in
time due to intentional song overlapping (Todt and Naguib,
2000; Malavasi and Farina, 2013). Song within diverse signaling
communities may also function as an extended communication
network that selects for the clustering of species with similar
signaling characteristics (Tobias et al., 2014). Under the acoustic
clustering hypothesis, instead of partitioning acoustic space,
organisms in diverse signaling communities produce signals that
converge structurally and/or temporally and that overlap more
than would be expected by chance. This hypothesis also predicts
that species living together are more likely to have songs with
convergent spectral and or temporal characteristics than those
not living together (Tobias et al., 2014).

Tropical wet forests have the most species-rich assemblages
of organisms that signal acoustically, and thus competition
for acoustic niche-space is expected to be strongest there
(Slabbekoorn, 2004; Planqué and Slabbekoorn, 2008). In this
study, we examine the fine-scale timing of signals in acoustic
space and the relevance of the acoustic niche and acoustic
clustering hypotheses in montane tropical wet forest bird
communities in both Hawai‘i and Costa Rica. We first assessed
the potential for acoustic interference by characterizing the
frequency range of signals produced by bird species we recorded
during the dawn chorus in each community. We then identified
the species associated with each recorded signal at multiple
recording stations in each community and measured observed
signal overlap within and among species. Null models (Gotelli
and Graves, 1996; Masco et al., 2015) were used to generate
random distributions of expected signal overlap, and observed
vs. expected signal overlap was compared to test predictions of
the acoustic niche and acoustic clustering hypotheses for the two
bird communities. We also used null models to test a prediction
of the acoustic clustering hypothesis that species living together
are more likely to have songs with convergent characteristics.

MATERIALS AND METHODS

Study Sites
The Costa Rica study site was within an approximately 360 ha
forest fragment at the Organization for Tropical Studies (OTS)
Las Cruces Biological Field Station in southern Costa Rica at
elevations between 1,025 and 1,200 m. This site is dominated
by a mix of primary and secondary wet forest with a canopy
up to 30 m tall and a midcanopy layer comprised of broadleaf
trees, palms, and tree-ferns. Mean annual precipitation ranges
from 3,500 to 4,000 mm and mean annual temperature at Las
Cruces Biological Station is ∼21◦C (Zahawi et al., 2015). The
bird checklist maintained by OTS for the station is comprised
of over 400 species, including many migrants (Martìnez, 2010).
The Hawai‘i study site was within the Maulua tract of Hakalau
Forest National Wildlife Refuge on the island of Hawai‘i. The
canopy at this site is dominated by Metrosideros polymorpha-
Acacia koa trees up to 25 m tall with a mid-canopy of at least
six native tree and tree-fern species. Mean annual precipitation is
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approximately 2,250 mm and mean annual daily temperature is
∼15◦C at the study site (Juvik and Juvik, 1998). Hakalau contains
the most intact forest bird community remaining in the state with
nine native species, plus an additional four non-native species
that are common in the forest. Within each of the two study sites,
we recorded bird songs using autonomous acoustic recorders
(SM2 Wildlife Acoustics Inc.) placed ∼1 meter above the ground
at six different locations separated by at least 200 m. Recordings
were made for 3–5 days at each location, depending on weather
conditions. We programmed the acoustic recorders to record at
5-min intervals (5-min on and 5-min off) from first light until
11:30 during the breeding season months of June through July
2012 in Costa Rica and March through April 2015 in Hawai‘i.
Recordings were made in WAV file format at a sampling rate
of 44.1 kHz using a single omnidirectional microphone (SMX-
II Wildlife Acoustics) with a sensitivity of −35 dBV/pa and
frequency response of 20–20,000 Hz. This study relied solely
on the use of passive acoustic monitors placed in the forest
to collect acoustic data. No animals were captured, handled,
housed, monitored, or followed. No University IACUC permits
were required for this study. Permission to conduct fieldwork
was given by landowners in both Costa Rica (Organization
for Tropical Studies) and Hawai‘i (Hakalau Forest National
Wildlife Refuge).

Acoustic and Statistical Analysis
Within each study site, we randomly selected 1 day at each of the
six sensor locations. We then selected three consecutive 5-min
recordings per day during the dawn chorus (when birds are most
acoustically active) that did not contain rain for acoustic analysis.
Cicada choruses, particularly those of the large-bodied cicada
(Zammara smaragdina), generally occur near the end of the
dawn chorus and can alter signal production for birds in Costa
Rica [22]. We excluded recordings with cicada choruses from
the analyses, resulting in two recording locations in Costa Rica
with only two 5-min recordings available. All selected recordings
were then visualized on a spectrogram using Raven Pro 1.5
software (K. Lisa Yang Center for Conservation Bioacoustics,
2014).

We identified the bird species associated with each
vocalization, then used the selection tool in RavenPro 1.5
to determine the minimum and maximum frequency and
signal start and end time for all bird vocalizations within each
5-min recording period. Only selected vocalizations > 5 dB
of the background noise of each recording were included
in the analysis. All signals were measured using a Hann
window type and a window size of 23.2 ms, window overlap
of 50%, and DFT (discreet Fourier transform) size of 1024
samples. For each of the six recording locations in Costa Rica
and Hawai‘i, we calculated total species richness across the
10–15 min recording periods, and vocalization rate as the
total number of vocalizations within a 5-min time period.
We examined differences in frequency range (Hz), signal
length (s), vocalization rate (per 5-min period), and species
richness between Hawai‘i and Costa Rica using Wilcoxon
Rank Sum tests in R (R Core Development Team, 2018,
version 3.5.1).

We used a novel null model approach to test the ANH. For
each of the six recording locations in Costa Rica and Hawai‘i (10–
15-min recording period), we computed the observed number of
overlapping pairs of vocalizations as the number of times any
two vocalizations overlapped simultaneously on the temporal
and spectral axes by at least 1-Hz. We then generated an
expected level of overlap by randomizing the beginning of
each vocalization (within each 10–15-min recording period)
but keeping the duration and frequency range unchanged. This
was repeated 500 times to generate an expected distribution of
vocalization overlaps. We then used the pnorm R function to
calculate P-values as the probabilities of getting the observed
numbers of overlapping pairs of vocalizations, or more extreme
numbers, if the null hypothesis is true. Significantly fewer (P-
value < 0.025) observed overlaps than expected based on the
null distribution supports the ANH, while significantly more
observed overlaps than expected (P-value > 0.975) supports the
acoustic clustering hypothesis.

To test an additional prediction of the acoustic clustering
hypothesis that species with similar vocalization characteristics
are more likely to co-occur across the landscape, we calculated
the observed number of species pairs with vocalizations that
overlapped in mean frequency range at each recording location
(six in Costa Rica and six in Hawai‘i). We then calculated an
expected number of species pairs with overlapping vocalizations
by randomizing the occurrence of species at each recording
location (from the pool of all species recorded in either
Costa Rica or Hawai‘i) while keeping species richness at that
location unchanged. This was repeated 500 times to generate
an expected distribution of number of species pairs that overlap
in frequency and used the pnorm function in R to calculate
P-values as described above. This allowed us to examine if the
species detected at a recording location converge in their song
characteristics more than those collected randomly from the pool
of species that were detected from the study site.

RESULTS

Vocalizations Pool
We detected 39 vocalizing species from Costa Rica and 10 from
Hawai‘i in the recordings selected for analysis. Three of the
10 species from Hawai‘i were non-native (Cardinalis cardinalis,
Leiothrix lutea, Zosterops japonicus) and accounted for < 10% of
total vocalizations. There was a total of 2,880 vocalizations with
a duration of 1,614 s from Costa Rica and 4,489 vocalizations
detected with a duration of 6,097 s from Hawai‘i. According to
species accumulation curves the recording length (10–15 min)
was long enough to capture species diversity at a location
(Figure 1). In all recording locations except one in Costa Rica
(CR1), the number of recorded species reached a plateau by the
end of the recording period.

Potential for Overlap Between Species
Vocalizations
We found a high degree of overlap in the frequency range
used by species in both Costa Rica and Hawai‘i (Figure 2). In
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FIGURE 1 | Species accumulation curves (mean of 500 iterations) for each of
six recording locations in Costa Rica and Hawai‘i.

Hawai‘i, 44 of the 45 pairs of species (i.e., 98%) had potentially
overlapping vocalizations (i.e., the mean frequency range of
their signals overlapped by at least 1-Hz). Indeed, only the
native Loxops coccineus and the non-native Cardinalis cardinalis
vocalized using totally different frequencies (Figure 2). In Costa
Rica, 570 of the 741 pairs of species (i.e., 77%) had potentially
overlapping vocalizations. The mean frequency range used by
species was significantly higher in Hawai‘i than in Costa Rica
(Figure 3A, P = 0.0014) while species’ vocalization lengths were
similar (Figure 3B, P = 0.1320). Vocalization rates (i.e., the
number of recorded vocalizations per 5-min. period) tended to be
lower in Costa Rica (median = 135) than Hawai‘i (median = 258)
(Figure 3C, P = 0.1320), but the number of species per location
was significantly higher in Costa Rica (median = 16) than in
Hawai‘i (median = 7) (Figure 3D, P = 0.0047).

Temporal Overlap
Observed signal overlap was far less than expected if the
beginning time of each vocalization was random. Despite the high
degree of overlap in frequency range used by species as described
above for Costa Rica and Hawaii, the temporal distribution
of vocalizations was arranged in a way to reduce vocalization
overlaps (Figure 4). In most recording locations the observed
number of pairs of overlapping vocalizations (in both time and
frequency) was significantly lower than expected under random
temporal distribution of vocalizations.

Species Co-occurrence
There was little relationship between species distribution
(recording locations the species was detected at) and the
vocalization frequencies of species across recording locations in
Costa Rica and Hawai‘i (Figure 5). In most locations the observed
number of species pairs vocalizing in overlapping frequencies (by
at least 1-Hz) did not differ significantly from expectations under
random distribution of species between locations. However, in
two locations in Costa Rica the observed number of species
pairs vocalizing in overlapping frequencies was significantly
higher than expected, indicating that species with overlapping
frequencies were more likely to occur in these locations than
species with non-overlapping frequencies.

DISCUSSION

There was a high degree of overlap in the spectral characteristics
of the signals (vocalization frequency range) of species in
both Costa Rica and Hawai‘i, and thus great potential for
interference between the different signals. However, we found
significantly fewer observed overlaps of acoustic signals than
expected if the beginning of signals were dispersed randomly
at five out of six locations in Costa Rica and 4 out of six
in Hawai‘i (Figure 4). We found only weak evidence for the
prediction of the acoustic clustering hypothesis that species
living together (at the level of recording location within a
study site) are more likely to have songs with convergent
spectral and or temporal characteristics than those not living
together (Figure 5). There was also no support for the
hypothesis that signals would be temporally clustered in acoustic
space as there were no cases from our recording locations
in either Costa Rica or Hawai‘i where the observed number
of overlaps between signals was greater than expected (based
on randomization of signal timing). Together, these findings
indicate that birds adjust the timing of their signals to minimize
spectral overlap at the community level and constitute strong
support for ANH.

Adaptive timing of signal production has been demonstrated
for select pairs or groups of species, but has not yet been
shown to operate across entire bird communities within the short
temporal scales as described here. Cody and Brown (1969) were
the first to demonstrate that birds can reduce competition for
acoustic space by adjusting the fine-scale timing of their signals.
In this case wren-tits (Chamaea fasciata) and Bewick’s wrens
(Thryomanes bewickii) were shown to sing asynchronously,
based on when the other species was vocalizing. Similarly,
Ficken et al. (1974) showed that two species of forest birds,
the least flycatcher (Empidonax minimus) and red-eyed vireo
(Vireo olivaceous), adjust the temporal pattern of their singing
to reduce overlap among their songs. Popp et al. (1985) showed
that four species that commonly sang in a Wisconsin broad-leaf
forest, wood thrush (Hylocichla mustelina), eastern wood pewee
(Contopus virens), great crested flycatcher (Myiarchus crinitus),
and ovenbird (Seiurus aurocapilla), significantly avoided singing
during the song of the other species. Yang et al. (2014)
experimentally demonstrated that Eurasian wrens (Troglodytes
troglodytes) avoid song overlaps by timing their songs to start
right after the end of a stimulus song. Planqué and Slabbekoorn
(2008) examined signal dispersion in a diverse Peruvian bird
assemblage and found significantly less temporal overlap among
select species pairs that vocalize in overlapping frequencies.
Similarly, Luther (2009) created principal components from the
acoustic characteristics of signals of 82 species in a Brazilian
wet forest and found evidence of acoustic partitioning for
those species that sing at similar locations and time. In
particular, species that sang at a recording location during
a 30-min period beginning at sunrise had songs that were
more greatly dispersed in acoustic space than those that sang
at different times throughout the morning. We should note
that analysis of principal components of signal characteristics
is a helpful way to examine how the signals of different
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FIGURE 2 | List of detected species with their vocalization ranges (left figures) and their locations of occurrence (right figures) in Costa Rica and Hawai‘i. On the left
figures, gray background represents potential overlapping in a given frequency, the darker the background, the higher the number of species using this frequency.

species are dispersed relative to each other but cannot clarify
differences in observed vs. expected (random) overlap of those
characteristics in real time.

Can birds process incoming auditory signals quickly enough
to avoid overlap between their own signals and those of others
in a species rich calling community? The mechanisms by
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FIGURE 3 | Comparison of species vocalization characteristics (A,B), the number of vocalizations per 5-min record (C), and number of species recorded per
location (D) between Costa Rica (CR) and Hawai‘i (HI) (P-value indicates the significance of Wilcoxon’s rank sum test).

which birds are able to temporally partition acoustic space have
received little attention, but center on how long it takes for
a signal to travel from sender to receiver, and how long it
takes the receiver to process it and make a decision to not
sing. Sound travels approximately 1 m in 2.9 ms (0.0029 s)
so it would take a signal at most about 90 ms to reach a
receiver within its approximate 30 m radius signal envelope.
Reaction times to auditory signals have been described for
a range of species and environmental conditions, particularly

for those that engage in elaborate duets that involve precise
timing of signals among mates. Thorpe (1963) measured a
mean reaction time of 144 ± 12.6 ms between first and second
note in antiphonal duetting black-headed gonolek (Laniarius
erythrogaster) pairs, and Power (1966) reported mean reaction
times ranging from 100 to 164 ms in duetting orange-chinned
parakeets (Brotogeris jugularis). Mean reaction time to sound
stimuli for starlings (Sturnus vulgaris) in a laboratory setting
was 80 ms ± 14.4 ms (Pomeroy and Heppner, 1977) while
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FIGURE 4 | Comparison of observed and expected number of heterospecific pairs of vocalizations with overlapping vocalization times and frequencies in each
location (significance “***”α = 0.001, “**”α = 0.01). The null distributions were generated using 500 randomizations of the beginning of vocalizations (keeping number,
length and spectral characteristics unchanged).

FIGURE 5 | Comparison of observed and expected number of pairs of species with overlapping vocalization frequencies in each location (significance “**”α = 0.01).
The null distributions were generated using 500 randomizations of species distribution across locations (keeping species richness per location unchanged).

Cuthbert and Mennill (2007) described mean gaps between M
and F phrases in Plain wren (Thryothorus modestus modestus)
duets to be as little as 50 ms. Thus, birds may make a decision
in as little as 50 ms or less to hold off on vocalizing if they
detect another vocalization in very close proximity, with the
lag time in the decision to not produce a vocal signal due to
the presence of another signal increasing by 2.9 ms for each
meter further away a signaler is located. The ability to avoid
signal overlap would therefore increase with decreasing distance
from signaler to receiver. This may be one reason (along with
amplitude differences) why signals that are produced at greater
distances overlap more than those produced nearby.

Birds may also make use of temporal patterns in song among
acoustically active species, allowing them to better predict when
empty “niches” will occur in acoustic space and to quickly fill
them. Of course, timing songs based on the temporal patterns
of other species can become complicated in a diverse calling
community, and most studies of song timing based on the
calls of other individuals have primarily been demonstrated
for intraspecific song (Todt and Naguib, 2000). For example,
both blackbirds (Wolffgramm and Todt, 1982) and nightingales
(Hultsch and Todt, 1982) have been shown to base the timing of
their song on the patterns of other calling individuals. In a diverse
neotropical wet forest in Brazil, Luther (2008) demonstrated that
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four co-occurring species of birds coordinated both the timing
and response of signals in order to reduce acoustic interference
during the dawn chorus. Malavasi and Farina (2013) found
evidence of coordinated choruses among different bird species in
an Italian bird community whereby deliberate temporal overlaps
occurred while at the same time avoiding spectral overlap and
thus signal jamming. Some bird species may also be specialized
for calling at different periods during the dawn chorus, possibly to
take advantage of favorable environmental conditions for sound
propagation. There may be a range of strategies among species
in each community for avoiding overlap, and none are mutually
exclusive. In fact, some of the acoustic overlaps we detected may
be intentional forms of song-overlap within and among species
(Todt and Naguib, 2000).

In weak support of the network hypothesis, we did observe
significantly more species pairs with overlapping frequencies co-
occurring than expected under the null at two out of six recording
locations in Costa Rica, though there were none in Hawai‘i.
This indicates that bird species in these forests may segregate to
some degree across the landscape based on the frequency range
of their vocalizations. It would be worthwhile to expand the
number of sites and recording locations in Costa Rica to further
explore the possibility that there is synchronization in the use
of acoustic space through interactive communication networks.
In contrast to our findings, and in support of the network
hypothesis, Tobias et al. (2014) and Kleyn et al. (2021) reported
significant clustering of acoustic signals in a species-rich wet
forest bird community in southeast Peru and southeastern Brazil,
respectively. However, the temporal scale at which clustering
occurred was within 10-min time blocks, much larger than
the finer scale of individual songs that we report here. The
more subtle form of partitioning that we describe provides
evidence that birds have evolved and/or learned behaviors to
significantly reduce interference and masking by other birds
signals primarily through fine-scale temporal partitioning. This
reduces the selection pressure for the evolution of structurally
dissimilar signals, and allows birds to produce signals that
are better adapted for information transmission (e.g., mate
attraction, territoriality, contact) in their particular habitat. This
form of acoustic niche partitioning can occur even where signal
synchrony and communication networks are common in the
community. Thus, temporal acoustic niche partitioning and
acoustic clustering (that results from communication networks)
are not necessarily mutually exclusive, at least at the level at which
they have been examined to date.

While we found evidence for acoustic niche partitioning
in both communities, and despite similarities in signaling rate
and in the range of spectral bandwidths used, we found that
overlap between different vocalizations was more common in
Hawai‘i than in Costa Rica (Figure 4), possibly because greater
species richness in Costa Rica has led to stronger selection
for reducing interspecific signal overlap there. In addition,
the island of Hawai‘i is geologically younger than much of
Costa Rica (∼0.5 vs. 2.5–15 my) (Alvarado and Cárdenes,
2016) so there are likely differences in length of time available
for the evolution of signal character displacement between
locations. There may be a phylogenetic effect as well—the Costa

Rican bird community represents a far greater diversity of
avian lineages than Hawai‘i, where most of the current species
have evolved through adaptive radiation from just a handful
of colonizations from distant continents (Freed et al., 1987;
Lerner et al., 2011). Differences in signal function may also
partially explain the different levels of signal overlap between
the two communities. Most of the Costa Rica species sampled
here maintain year-round territories (Stiles and Skutch, 1989),
whereas most of the Hawaiian species are generally non-
territorial outside the breeding season. The function of song
may be more associated with promoting social cohesion, with
less selection against reducing interspecific signal overlap, in
communities with higher densities of individual species that are
non-territorial.
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High rates of biodiversity loss caused by human-induced changes in the environment
require new methods for large scale fauna monitoring and data analysis. While
ecoacoustic monitoring is increasingly being used and shows promise, analysis and
interpretation of the big data produced remains a challenge. Computer-generated
acoustic indices potentially provide a biologically meaningful summary of sound,
however, temporal autocorrelation, difficulties in statistical analysis of multi-index data
and lack of consistency or transferability in different terrestrial environments have
hindered the application of those indices in different contexts. To address these issues
we investigate the use of time-series motif discovery and random forest classification of
multi-indices through two case studies. We use a semi-automated workflow combining
time-series motif discovery and random forest classification of multi-index (acoustic
complexity, temporal entropy, and events per second) data to categorize sounds in
unfiltered recordings according to the main source of sound present (birds, insects,
geophony). Our approach showed more than 70% accuracy in label assignment in
both datasets. The categories assigned were broad, but we believe this is a great
improvement on traditional single index analysis of environmental recordings as we can
now give ecological meaning to recordings in a semi-automated way that does not
require expert knowledge and manual validation is only necessary for a small subset of
the data. Furthermore, temporal autocorrelation, which is largely ignored by researchers,
has been effectively eliminated through the time-series motif discovery technique applied
here for the first time to ecoacoustic data. We expect that our approach will greatly
assist researchers in the future as it will allow large datasets to be rapidly processed and
labeled, enabling the screening of recordings for undesired sounds, such as wind, or
target biophony (insects and birds) for biodiversity monitoring or bioacoustics research.
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INTRODUCTION

Biodiversity loss is a global environmental issue (Cardinale et al.,
2012), and it is now imperative to develop methods to efficiently
monitor wildlife, accounting for spatial and temporal coverage
(Joppa et al., 2016). Remote sensing techniques are being used
to fill this gap, as they can be applied over large geographic
areas where access may be difficult, allowing for some degree
of unattended monitoring (Kerr and Ostrovsky, 2003). Remote
sensing techniques include a range of technologies, like satellite
imaging (Bonthoux et al., 2018), camera traps (Fontúrbel et al.,
2021), Unmanned Aerial Vehicles (UAVs) (Nowak et al., 2019),
and passive acoustic monitoring (PAM) (Froidevaux et al., 2014;
Wrege et al., 2017).

Passive acoustic monitoring is now routinely used in terrestrial
environments to monitor biodiversity (Gibb et al., 2019) with
several purposes, such as understanding acoustic community
composition of frog choruses (Ulloa et al., 2019), investigating
acoustic species diversity of different taxonomic groups (Aide
et al., 2017), and bird species recognition based on syllable
recognition (Petrusková et al., 2016). Long-term recording can
enable detection of species responses to important environmental
impacts like climate change (Krause and Farina, 2016), and
species recovery following extreme weather events (Duarte et al.,
2021). However, recordings comprise large datasets which can
be challenging to store, access and analyze (Ulloa et al., 2018).
Subsampling is one way of dealing with these constraints, but
it can limit the temporal and/or spatial scale of monitoring,
therefore methods to analyze and filter recordings are necessary.

Currently, analysis of acoustic recordings still heavily relies
on manual listening and inspection of recordings: this greatly
limits the applicability of PAM. One alternative to that is
to summarize acoustic information using acoustic indices,
which mathematically represent different aspects of sound (e.g.,
frequency, intensity, etc.) (Sueur et al., 2014). Acoustic indices
have, in some cases, been inspired by ecological indices. For
example, the acoustic diversity index (Villanueva-Rivera et al.,
2011) is based on the Shannon diversity index (Shannon and
Weaver, 1964). NDSI (Gage and Axel, 2014) measures the ratio
between biophony (biological sounds) and anthrophony (human
and technological sounds) and is derived from NDVI, an index
used in the remote sensing analysis of vegetation (Pettorelli,
2013). Acoustic indices have been used in different contexts such
as to evaluate the differences in faunal beta-diversity between
forests and plantations (Hayashi et al., 2020), to detect rainfall
in acoustic recordings (Sánchez-Giraldo et al., 2020), to examine
differences among indices representing taxonomic groups (e.g.,
birds, anurans, mammals and insects) (Ferreira et al., 2018), to
relate indices with bird diversity (Tucker et al., 2014), and to
identify frog species (Brodie et al., 2020).

Although there are numerous acoustic indices to choose
from, different indices represent different acoustic phenomena
in terrestrial environments, and the translation of acoustic into
ecological information may vary depending on the context
(Machado et al., 2017; Jorge et al., 2018; Bradfer-Lawrence et al.,
2020). While there is no consensus on linking one index to one

taxa, research has shown that combining indices can provide
a good representation of different soundscapes (i.e., sounds in
the landscape), especially across varying environments (Towsey
et al., 2018), and can even be used to recognize different species
(Brodie et al., 2020). Visualization tools such as false-color
spectrograms (FCS) successfully combine three acoustic indices
[Acoustic Complexity Index (Pieretti et al., 2011), Temporal
Entropy (Sueur et al., 2008) and Events per Second (Towsey,
2018)] allowing different sound sources to be identified. The FCS
and its combination of indices have been shown to provide a good
representation of soundscapes in different contexts (e.g., Brodie
et al., 2020; Znidersic et al., 2020). While visual representations
of soundscapes are useful for scanning recordings for different
phenomena (like rain, wind, or a frog chorus, for example),
there is currently no available tool to statistically analyze these
images. The underlying index data used to create the FCS can
be retrieved and analyzed, but the mathematical interpretation of
multiple indices remains a challenge, and therefore the statistical
analysis of single indices is currently the favored approach.
If mass deployments are required, [e.g., Australian Acoustic
Observatory—(Roe et al., 2021)], we need to develop reliable,
reproducible analysis methods with some degree of automation.

Furthermore, most statistical methods used for continuous
recordings require an approach that accounts for temporal
autocorrelation of the data (i.e., most statistical tests applied
in ecology require independence of data). This means that
each minute is not independent of the previous one in a
recording, and this is often ignored in ecoacoustic studies. While
spatial autocorrelation can be dealt with through experimental
design, temporal correlation exists even when data are non-
continuous (e.g., subsampled for example 1 min every 15 min)
or arbitrarily split into time periods (e.g., day/night). Standard
statistical approaches which assume independence of data cannot
be applied for autocorrelated data.

Aiming to address the different challenges faced by researchers
when analyzing recordings, we present a novel workflow for
analyzing multi-index acoustic data. Our goal was to provide
a tool that can be used by ecologists in a rapid assessment
of terrestrial acoustic recordings. By having such a tool,
ecologists can forward recordings of interest (i.e., for species
identification) to specialists more efficiently, but also have quick
metrics to compare ecosystems and/or recordings from different
points in time. To deal with autocorrelated data capturing
repeated patterns in acoustic indices is an alternative. Using the
Hierarchical Based Motif Enumeration (HIME) (Gao and Lin,
2017) of acoustic indices, repetitive patterns of the data were
detected (here referred to as motifs) in continuous recordings. As
the algorithm searches for repetition of patterns in the time-series
(Zolhavarieh et al., 2014) it was expected that noisy minutes (i.e.,
non-signal) would be excluded from the results as they tend to be
random and not have a structure that repeats across time. Here we
outline a semi-supervised method to classify the motifs according
to dominant sounds. We demonstrate the transferability of the
analysis in different environments and timescales with two case
studies using data from two distinct ecosystems and recorded
with different sampling schemes and devices.
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MATERIALS AND METHODS

Acoustic Analysis
The recordings were analyzed using AnalysisPrograms.exe
(Towsey et al., 2020) three indices were used to create
FCS (Towsey et al., 2014). These indices are: (1) Acoustic
Complexity – quantification of relative changes in amplitude
(Pieretti et al., 2011); (2) Temporal Entropy – concentration of
energy overall the amplitude envelope (Sueur et al., 2008); (3)
Events Per Second – number of acoustic events that exceeds 3dB
per second (Towsey, 2018). FCS have been used successfully to
represent a range of different soundscapes (Brodie et al., 2020;
Gan et al., 2020; Indraswari et al., 2020; Znidersic et al., 2020),
and provide a visual tool to aid in the identification of sounds,
reducing the time required for verification of data.

The analysis was done directly on the unprocessed recordings,
meaning that no noise (unwanted sounds) was removed
beforehand. Acoustic data will have different sound sources and
the presence of noise is common. Moreover, pre-processing can
be time consuming, and so we tested the method without any type
of pre-processing (i.e., cleaning up) of the data.

All analyses were performed using R and scripts are available
at http://doi.org/10.5281/zenodo.4784758 (Scarpelli, 2021).

The HIME algorithm was applied to find significant motifs
in variable length time-series. This algorithm was used because
it accounts for temporal structure in data. It is widely used
in other fields, including medical research (Liu et al., 2015),
weather prediction (McGovern et al., 2011), and animal behavior
(Stafford and Walker, 2009). The algorithm works by applying a
moving window along the time-series and searching for repetitive
sequences. The user sets the minimum window length, which will
be the starting point and the length will progressively increase.
There is a compromise between the window length and the
motifs’ identification: small windows are more likely to have
a pair, but not with necessarily meaningful patterns while big
windows are less likely to have a matching sequence.

The analysis process can be seen in Figure 1 and detailed steps
are presented in the text below.

Subsequence Time-Series Search
The step-by-step process of the sub-sequence search is described
in Table 1.

Feature Extraction and Random Forest
Model
Wavelet transform (Lau and Weng, 1995) and feature extraction
were then performed on individual motifs (which are also
time-series). Wavelets was used so both frequency and time
information were preserved when extracting features. Each time-
series was treated as an individual sample for feature extraction,
training, and testing. Based on the extracted features, a Random
Forest (RF) classification model was trained using manually
labeled data and then the classification model was used to
discriminate between sound categories within motifs, attributing
ecological meaning to the motifs. RF classification is a supervised
machine learning technique (Breiman, 2001), and has been used

in numerous research fields such as genomics (Díaz-Uriarte and
Alvarez de Andrés, 2006), satellite image classification (Pal, 2005),
and soundscape analysis (Buxton et al., 2018). The algorithm
classifies the data into groups using different combinations of
features. It has been reported to perform well because it uses an
ensemble learn strategy by combining different methods during
the learning process, providing more accurate and generalized
results (Cutler et al., 2012). In this study all the motifs were
labeled. It was necessary to first test the testing sample size
that maximized accuracy, while avoiding overfitting. This was
done by progressively increasing training samples and measuring
accuracy at each round. Accuracy was not greatly improved
using more than 30% labeled data, and so this threshold was
established. It was important that motifs were labeled using
their corresponding spectrogram to show exactly what sound
the index was capturing. In cases where the signal was unclear,
these recordings were sound-truthed. This allowed maximizing
label information, while keeping some generalization (i.e., not
identifying species, for example). More categories of labels can
increase training difficulty because categories become similar,
making it difficult for the algorithm to discriminate between
them. Additionally, biophony is now classified according to their
soundtope (Farina, 2014). Soundtopes are the collective sounds
produced by biophony at the same time.

Table 2 describes each step of the process and the
expected output.

Case Study
One of the limitations of using acoustic indices as a measure
of biodiversity is that recent studies have shown variable
success, that is largely context-dependent. In this case study,
we demonstrate how our novel method overcomes this issue
by testing and validating our approach in two very different
ecosystems, including varying background noise and different
acoustic recorders.

Dataset 1: Bowra
Data were collected at Bowra Wildlife Sanctuary in semi-arid
western Queensland, Australia (Figures 2A,B). The sanctuary is
owned by the Australian Wildlife Conservancy, and it is known
for its abundant birdlife. The property covers more than 14,000
hectares in the Mulga Lands Bioregion of Australia (Figure 2B).
The topography is mostly flat, and the vegetation is dominated
by Acacia woodlands, Mitchell tussock grasslands, and Coolabah
(Eucalyptus coolabah) woodlands along ephemeral creek lines.
The region has very low annual precipitation rates, with an
annual mean of 373.3 mm (Australian Government Bureau of
Meteorology, 2020).

Audio Sampling
Data were acquired using 12 SongMeter four recorders (Wildlife
Acoustics), with a sampling rate of 44.1 kHz and 16 bits in stereo.
Recorders were placed 200 m apart, (Figures 2B,C), operating
continuously for approximately 40 h/sampling point. Sampling
points were selected across a gradient of different vegetation
communities and proximity to creek lines. To demonstrate the
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FIGURE 1 | Flowchart with the analysis steps and expected results.

TABLE 1 | Description of the steps to be followed to perform subsequence motif search, actions that should be done by the user and expected output.

Step Action Output

1.1 Structure acoustic indices
values as time-series

Order acoustic indices as a time series (i.e., date, time, and minute). One time-series per index/location, resulting in
three files (one per index) per location.

1.2 Motif search algorithm Set start window length. Motifs start, end, length and distance metric.

1.3 Process motif results Using the output from the motif search and provided parameters,
overlapping sequences were identified and removed, retaining only
non-overlapping patterns. This is conducted for each index and
location because different indices measure different aspects of sound,
and therefore overlaps in time were permitted across different indices.

Unique sequences, i.e., non-overlapping patterns

1.4 Crop spectrograms using
motif parameters

Cut spectrograms corresponding to each index (provided by
AnalysisPrograms.exe) according to each motif to provide images for
each sequence.

One image per motif

methods in a graphical way, one sampling point was chosen
(white square in Figure 2C) for data visualization.

The data collection period coincided with a dust storm with
high wind speeds, so recordings were very noisy and biophony
was masked for large recording segments (pink/purple across all
frequency bands in Figure 4A). While noise presents a challenge
for data analysis, environmental conditions vary and are beyond
researcher control, thus it is important that the method presented
here is tested under varied and real circumstances.

Dataset 2: Samford Ecological Research Facility
The second dataset used was 1 month of data (March 2015) from
the Samford Ecological Research Facility (SERF), a SuperSite in
the Terrestrial Ecosystem Research Network (TERN). The TERN
initiative established in 2009 monitors terrestrial ecosystem
attributes over time at a continental scale. The data collected
through this initiative are freely available through the TERN
data portal1.

Samford Ecological Research Facility is situated approximately
20 km from Brisbane in the South-East Queensland Bioregion,
Australia (Figure 3). The region experiences a sub-tropical

1https://portal.tern.org.au

climate and high levels of forest fragmentation and urbanization
(Figure 3). The topography is gently undulating, and the
vegetation consists of Eucalypt open forest (dominated by
Eucalyptus tereticornis, Eucalyptus crebra and Corymbia species)
and notophyll vine forest.

Audio Sampling
The audio was collected continuously for 1 month using one
SongMeter2 (Wildlife Acoustics) at 22,050 Hz, in WAV format.
The sampling point was located on the edge of the property as
demonstrated in Figure 3.

RESULTS

Different lengths and minimum window sizes were tested for
the two datasets and the minimum length selected was 30 min
for both datasets. From an ecological perspective, 30 min of
recording provides good resolution of fine-scale phenomena (e.g.,
a single species calling). Moreover, it can reveal soundscape
changes throughout a day as the HIME progressively increases
the window size. Having the same window length for both
datasets is an advantage as it allows future comparisons to be
made between results. All the selected motifs were labeled for
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TABLE 2 | Description of the steps to be followed to random forest classification, actions that should be done by the user and expected output.

Step Action Output

2.1 Feature
extraction

Wavelet transform was used to extract the discriminant features of the motifs (dwt function in wavelets
package in R (Aldrich, 2020), with haar filter applied and periodic boundary)

Individual time-series transformed

2.2 Labeling
the data

Data was labeled using two categories of sounds:
Class, representing the dominant sound present (i.e., bird, insect, wind, silence), and
Component, representing the category the Class belongs to in the soundscape context (i.e., geophony,
biophony or silence).
A set of labeling rules was followed to standardize the process, minimize biases and simplify data input into
the RF algorithm. The motifs were labeled according to the predominant sound visualized on the
corresponding spectrogram. For motifs with more than one sound source, the dominant sound in terms of
duration and/or intensity was chosen as its corresponding label. Motifs that were predominantly quiet but
with a minimum presence of any sound type, were labeled accordingly. New label categories were only
created if the label was persistent throughout the dataset, providing enough samples for training and
testing.

30% of dataset labeled

2.3 RF—
component

Classification was first run based on Component, splitting the data into bigger groups, and then categorized
into constituent Classes. Preference was given to maintaining a similar number of labels per category, index,
and location, so that the training set contains most of the expected variation. However, depending on the
amount of variation within each Class, it may be necessary to have more labels in one Class than another.
To maintain balance between Classes and the need to prioritize labels in a certain Class, labeling and
training was undertaken iteratively. That is, a small subset of labels were created (approximately 10%), the
RF model run, accuracy checked (count of correctly assigned labels), and the process repeated. In each
round, the new labels were taken from the random sample pool but because balance plays a significant
role, if a category needed more labels (i.e., accuracy was much lower than other categories), they were
“arbitrarily” selected from the pool. The “out-of-bag” method of selecting predictors used in the RF
algorithm usually results in overfitting avoidance (Genuer et al., 2010), nevertheless, overfitting can still occur
if run without splitting the data into training and testing. Therefore, training was kept between 60–70%, and
testing between 40–30%.

Best number of features to be
used, mean decrease in accuracy
(based on Gini coefficient) and
overall accuracy of the classification
model (n labels correctly assigned/n
labels incorrectly assigned)

2.4
RF—optimizing
Component

The first run of the complete model was undertaken with default parameters and then optimized by finding
the hyperparameters, i.e., the number and type of wavelet features that contribute the most to improving
accuracy. The number of decision trees was 500. The parameters were optimized by using the function
tuneRF in package randomForest in R (Liaw and Wiener, 2003) and by selecting the variables with mean
decrease accuracy > 0. If accuracy was improved with optimized parameters, this version was retained.
Lastly, the model was run for the entire dataset to classify unlabeled data.

All motifs with component labels

2.5 RF—class Repeat steps from the Component model using only data that had been labeled by the algorithm as
biophony (unwanted Classes from the previous labeling—wind, rain, and silence—were now filtered). In
addition, the accuracy across Classes was iteratively checked, and if unbalanced, more motifs were labeled.

Best number of features to be
used, mean decrease in accuracy
(based on Gini coefficient) and
overall accuracy of the classification
model (n labels correctly assigned/n
labels incorrectly assigned)

2.6
RF—optimizing
classes

The first run of the complete model was undertaken as described above in 2.4. All motifs with Classes labeled

both datasets so that the model accuracy could be measured, and
sample size could be correctly estimated. The Bowra dataset had
549 selected motifs with a mean distance of 3.88 ± 1.24 and a
mean length (in minutes) of 35.14 ± 3.88. The SERF dataset had
789 selected motifs with a mean distance of 4.28 ± 0.81 and a
mean length (in minutes) of 36.02 ± 2.83. SERF dataset had 10%
more hours than Bowra (542 and 494, respectively) and 43% more
selected motifs.

Dataset 1: Bowra
Figures 4C,E,G show the motifs found (in color) for
each index in relation to the whole time-series for one
sampling point at Bowra. These figures reveal that for
all three indices, the hours of the day that correspond to
dawn (5:15–5:16 h) and dusk (6:49–6:50 h) most motifs
were identified, while almost none in the middle of the
day. It can also be seen on the gray-scale spectrograms

how each index is capturing slightly different soundscape
components, although all of them recorded wind in the
middle of the day (blurred sections) (Figures 4B,D,F). It
is also evident different motifs identified across indices
(Figures 4C,E,G).

Component Classification
The Component classification had an overall accuracy of 75%.
The accuracy per category and overall misclassifications can be
seen in Figure 5. The model correctly identified most biophony
(94%) motifs while geophony motifs were less accurately
identified (45%).

Class Classification
The overall accuracy of the Class labels was 70%. The model
performed better for birds (80%) than insects (59%) for this
dataset (Figure 6).
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FIGURE 2 | (A) Queensland map indicating Brisbane and Bowra. (B) shows in orange the transect inside the property and (C) show the transects and a Google
satellite layer with the different vegetation communities across the transect. The white square highlights the point that will be used here as an example for figures.

Dataset 2: Samford Ecological Research
Facility
Figures 7C,E,G shows 1 day of the complete time-series with
the motifs identified in color. The false-color spectrogram can be
seen in Figure 7A and the corresponding gray-scale spectrograms
can be seen in Figures 7B,D,F. As seen for Bowra, some segments
were interpreted as significant by the motif search algorithm,
whereas others were not.

Component Classification
The overall accuracy of the model classification was 73% and the
performance per Component can be seen in Figure 8. The model
misclassified motifs primarily due to the presence of geophony
alongside “dominant sounds” in the recordings. In these cases,
the algorithm has identified segments as geophony, whereas the
researcher has not.

Class Classification
The overall accuracy for the Classes was 81%. The individual
accuracies for the Classes can be seen in Figure 9. There were
three classes for this dataset: birds, insects and “both,” as there

were motifs with both insects and birds, especially during the
dawn and dusk choruses.

DISCUSSION

The approach proposed here using time-series motif discovery
and random forest classification represents a significant
improvement in how acoustic indices are currently analyzed for
terrestrial soundscapes. It resolves some major challenges and
constraints associated with acoustic data analysis including: (1)
accounts for temporal autocorrelation of acoustic data, which
violates most statistical test assumptions; (2) combines more than
one index to assign soundscape components; and (3) performs
in different contexts, as demonstrated by the finding that the
same set of indices identified the same soundscape components
in different ecosystems surveyed at different times, using varying
recording schemes.

Acoustic recording and indices are now routinely used to
monitor biodiversity (Doohan et al., 2019; Moreno-Gómez et al.,
2019), but statistical analysis of recordings is problematic due
to temporal autocorrelation. By using sub-sequence time-series
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FIGURE 3 | (A) Location map of Samford Ecological Research Facility (SERF) in Australia. (B) SERF in relation to Brisbane CBD and great Brisbane. (C) Shows the
property and the pink dot corresponding to the sampling point.

search, we were able to group sequences of minutes with
repetitive patterns across the recordings, reducing the number of
consecutive minutes analyzed as independent samples.

Acoustic data analysis approaches are varied and include
linear mixed models (Francomano et al., 2020), mean differences
(Carruthers-Jones et al., 2019), manual inspection and tagging
species or groups of interest (Ferreira et al., 2018) or using
non-index based metrics (like amplitude and frequency) direct
from sound files (Furumo and Aide, 2019). Despite the variety
of ways to analyze sound data, single index approach is still
one of the most common approaches. As previously stated,
single index data can be problematic because they cannot be
consistently interpreted across different taxonomic groups or
environments. For example, studies using ACI have shown that
this index was positively correlated with bird species (Jorge
et al., 2018; Mitchell et al., 2020), but also rain and wind
(Duarte et al., 2015). Acoustic entropy has been found to have
higher values in biodiversity rich habitats (Sueur et al., 2008),
although higher values in quiet recordings and lower values in
recordings dominated by insects have also been documented
(Bradfer-Lawrence et al., 2019). Other studies have also tried to
find a direct relationship between one index and one taxonomic
group (Brown et al., 2019; Indraswari et al., 2020) but this

relationship often does not hold across environments. From
these findings we can conclude that a single index provides
only a crude or obscure representation of biodiversity and is
context-dependant. However, in our study, we have developed,
validated and tested a new workflow that can be used in
different terrestrial environments. This is particularly important
because with recent advances in development of cost-effective
ecoacoustic technology, passive acoustic recording is becoming
a commonplace ecological survey approach worldwide. It is
important that analytical tools are developed to meet this need,
and are transferable across environments, providing standardized
outputs for comparison or benchmarking.

An alternative to analyzing single index data is to combine
indices, but this has been rarely attempted. One study used
clusters to combine indices and classify major soundscape
components (Phillips et al., 2018). However, their method still
relies on listening to many recording minutes, which is extremely
time-consuming and usually not feasible for large datasets.
Another study combined indices using RF models to predict
avian species richness (Buxton et al., 2018) and revealed that
acoustic entropy and ACI were among the best predictors of
avian biodiversity. But still, their aim was to link indices to a
specific taxonomic group. Our approach is different because it
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FIGURE 4 | Visualizations of data from Bowra. The dotted lines are marking midnight. (A) False-color Spectrogram; (B) ACI gray-scale spectrogram; (C) ACI
time-series and motifs (purple); (D) ENT gray-scale spectrogram; (E) ENT time-series with motifs (blue); (F) EVN gray-scale spectrogram; (G) EVN time-series with
motifs (green).

shifts the focus from the index itself, to instead examine what
is being captured by it. While often the focus of an ecological
study is a target species or taxonomic group, soundscapes can
provide valuable insights on processes (such as geophony and
anthropophony) that may influence biodiversity. Until now, no
analytical approach exists that can efficiently extract soundscape
components in a semi-supervised and transferable way.

Using index-based spectrograms for visual inspection of
recordings, we were able to accurately assign sound labels to
motifs, extrapolating these labels to the whole data. Although a
certain level of generalization was required when using multiple
indices and automated classification techniques, this approach
represents a progression from single indices and the manual
identification of sounds or calls. Along with the generalization

required, there were also issues with misclassifications by
the algorithm. Nevertheless, inspection of misclassified motifs
showed that, for example, some of them that were not classified
as wind, did have wind present. The labeling process was based
on the most predominant sound, which does not exclude the
possibility of having more than one sound present at a given
motif. In fact, the presence of more than one soundscape
component is quite common, and for the SERF data here
presented an additional label had to be created to address multiple
dominant sounds in one motif. Ecosystems are complex and
biodiversity is subject to a variety of influencing factors that will
change according to geography and its features (Gaston, 2000).
This variation challenges the use of automatic analyses, and it
also makes it harder to compare different contexts. Nevertheless,
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FIGURE 5 | Alluvial graph showing proportions and number of motifs of manual labels on the left-hand and model labels on the right-hand side for the component in
the Bowra dataset. The lines in the middle going from manual to model labels indicate the misclassification. The accuracy per class is also shown in the figure.

FIGURE 6 | Alluvial graph showing proportions and number of motifs of manual labels on the left-hand and model labels on the right-hand side for the classes in the
Bowra dataset. The lines in the middle going from manual to model labels indicate the misclassification. The accuracy per class is also shown in the figure.

it is necessary to establish a baseline for analysis so recordings can
be effectively used for environmental and temporal comparisons.
Moreover, it highlights the importance of the label process
that provides the researcher with the opportunity to adjust the
method to the context.

As the two study sites were in different ecoregions (Bowra
is classified under the Temperate Grasslands, Savannas and
Shrublands while SERF is Temperate Broadleaf and Mixed

Forest (Environment Australia, 2000), it was expected that their
soundscapes would vary due to the distinct biodiversity, ecology,
and environmental conditions. Besides expected differences, the
SERF dataset had 10% more minutes than Bowra, but 43% more
motifs. Potential explanations include that SERF has a more
complex soundscape, or more likely that the increase may be
attributed to the lack of wind at SERF relative to Bowra, resulting
in more minutes with signal and less noise.
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FIGURE 7 | Visualizations of data from 1 day (10/03/2015) of SERF dataset. The dotted lines are marking midday and midnight as reference. (A) False-color
Spectrogram; (B) ACI gray-scale spectrogram; (C) ACI time-series and motifs (purple); (D) ENT gray-scale spectrogram; (E) ENT time-series with motifs (blue);
(F) EVN gray- scale spectrogram; (G) EVN time-series with motifs (green).

Although soundscapes are known to vary between different
environments, major soundtopes (Farina, 2014) were still
expected to be found in both ecosystems (e.g., dawn and
dusk choruses). Daily cycles were evident across the month at

SERF, although variation could still be detected. This reflects
environmental processes which also vary naturally across days.
For example, areas near urban settlements, such as SERF, traffic
noise can exhibit differences between weekdays and weekends.
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FIGURE 8 | Alluvial graph showing proportions and number of motifs of manual labels on the left-hand and model labels on the right-hand side for the components
in the SERF dataset. The lines in the middle going from manual to model labels indicate the misclassification. The accuracy per Class is also shown in the figure.

FIGURE 9 | Alluvial graph showing proportions and number of motifs of manual labels on the left-hand and model labels on the right-hand side for the classes in the
SERF dataset. The lines in the middle going from manual to model labels indicate the misclassification. The accuracy per Class is also shown in the figure.

Biophony is also expected to change in response to temperature,
rainfall, sunlight, and many other environmental factors that
influence animal behavior (Pijanowski et al., 2011). The
differences found here among and within ecosystems emphasizes
again the importance of labeling motifs by a researcher before
running the algorithm. Each recording will have distinct features
that need to be addressed before data analysis. Furthermore, it
provides an opportunity for the researcher to understand patterns
and to become acquainted with the data specific to the site. It is
also important to keep in mind that like other sampling methods,

acoustic surveys are a snapshot of the moment in which the
recordings were made. In order to track changes and effectively
use this method as a biodiversity monitoring tool, it is important
to establish sampling schemes that can capture different moments
in time so that natural variation can be examined (Metcalf et al.,
2020), as well as man-made impacts.

The labels in this study were generalized, however, future
research could attempt to create more specific categories. At the
same time, we argue that keeping upper levels of categories is
important for model optimization, but it also might be useful
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when comparing results across datasets and studies. For example,
every environment might have different species assemblages
but similar patterns of biophony. For this reason, we believe
the method presented here will help standardize analyses in
ecoacoustics research. Another improvement that can be done is
to assign more than one soundscape category per motif, creating
a rank of sound presence. In this way, the misclassifications could
be measured more accurately and potentially improved.

CONCLUSION

Ecoacoustics is a promising tool which is widely used to monitor
biodiversity, and it has increased even more with the advent
of acoustic indices. Nevertheless, until now there has been no
consensus on how to transform acoustic indices into broad,
transferrable ecological information, especially when combining
indices. It is crucial to have an approach that standardizes and
enables rapid assessment of terrestrial soundscapes. Although the
analysis presented here treats indices separately as independent
time series, there is no distinction between them for classification.
This is important because it addresses the narrow assumption
that each index serves as a good proxy for measuring specific
taxonomic groups, and that these relationships will hold in
different contexts. By combining different analysis techniques
(time-series motif discovery and RF model classification), we
were able to label grouped minutes of recordings translating
acoustic indices into important components of the soundscape.
We tested this approach on two datasets acquired using different

recording devices and from different environments, providing
strong evidence that this method can capture important
temporal patterns in insect and bird biodiversity, as well as
environmental geophonic sounds across environments. Given
the global biodiversity loss that we are currently facing in the
Anthropocene (Johnson et al., 2017), it is even more important
that monitoring and methods of analysis are developed allowing
to track changes in biodiversity.
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Humans categorize unwanted sounds in the environment as noise. Consequently,
noise is associated with negative human and ecological values, especially when it
is derived from an anthropogenic source. Although evidence confirms that many
machine-generated anthropogenic sounds have negative impacts on animal behavior
and communication, natural sources of non-biological sound, such as wind, rain,
running water, and sea waves (geophonies) have also been categorized as noise
and are frequently dismissed or mischaracterized in acoustic studies as an outside
factor of acoustic habitats rather than an integrated sonic component of ecological
processes and species adaptations. While the proliferation of machine-generated sound
in the Biosphere has become an intrusive phenomenon in recent history, geophony
has shaped the Earth’s sonic landscapes for billions of years. Therefore, geophonies
have very important sonic implications to the evolution and adaptation of soniferous
species, forming essential ecological and semiotical relationships. This creates a need
to distinguish geophonies from machine-generated sounds and how species respond to
each accordingly, especially given their acoustic similarities in the frequency spectrum.
Here, we introduce concepts and terminology that address these differences in the
context of ecoacoustics. We also discuss how Acoustic Complexity Indices (ACIs) can
offer new possibilities to quantifiably evaluate geophony in relation to their sonic contest.

Keywords: ecoacoustics, geophonies, noise, natural quiet, sonic signature

INTRODUCTION

Environmental sounds represent an important phenomenon that is integral to the functioning
of ecological systems (Gage and Farina, 2017). Natural and human-generated sounds are deeply
interwoven with the ecological processes and patterns driven by biotic and abiotic relationships
(Sueur and Farina, 2015; Gage and Farina, 2017). As such, these sounds are integrated elements
within semiotic interactions, as well as measurable indicators of ecological relationships and
environmental degradation (Krause et al., 2011; Pijanowski et al., 2011; Farina, 2014; Fuller et al.,
2015; Krause and Farina, 2016; Mullet et al., 2016).

The global decline of biodiversity in the wake of expanding human development (United
Nations [UN], 2019b), resource depletion (United Nations [UN], 2019a), and climate change
(IPCC, 2021) has driven ecologists to examine these relationships in traditional and novel ways.
The emerging field of Ecoacoustics has revealed the important role sound plays in ecological
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relationships (Farina, 2014; Farina and Gage, 2017). These
discoveries have expanded the field of ecology to new frontiers
with an increasing degree of relevance in the scientific
community (Xie et al., 2020). Accordingly, ecoacoustics has
added to the growing literature on bioacoustics, environmental
impacts of machine-generated sounds on wildlife communities
(Shannon et al., 2016; Jerem and Mathews, 2021), and the
use of sounds as proxies for assessing environmental quality
(Botteldooren et al., 2006; Booi and van den Berg, 2012).

A great deal of work has focused on the impact machine-
generated sounds (technophony) have on soniferous species
(Jerem and Mathews, 2021). As a result, it is a common
practice in acoustic studies to separate the different sound
sources of biophony (e.g., bird songs and calls) from the
technophonic sounds of machines where biophonies are the
singular soundscape component evaluated against the presence
of “noise.” Noise, in this context, is generally considered the
technophony of every machine-generated signal that interferes
with animal communication and/or causes a change in animal
behavior and/or physiology (Tafalla and Evans, 1997; Barber et al.,
2010). Technophony is an emergent component of many sonic
environments and has a significant influence on the occupancy
and habitat selection of many species (Mullet et al., 2017a).

The study of noise impacts on animals follows a long-standing
“human-vs.-nature” paradigm that emphasizes the separation
of human actions from non-human, natural processes (Barr,
1972). However, it is not unusual for the natural phenomenon
of geophony (e.g., geophysical sounds generated by wind,
rain, running water, sea waves) to be lumped together with
technophony as “noise” (Klump, 1996; Brumm, 2010; Koper and
Plön, 2012; Luther and Gentry, 2013; Bunkley et al., 2015) despite
the differential semiotic interpretations wild animals likely have
of these two sonic components. In these cases, animal sounds
(biophony) are evaluated against a more generic “background
noise” (Luther and Gentry, 2013), “ambient noise” (Ryan and
Brenowitz, 1985), or “environmental noise” (Kight and Swaddle,
2011), often associated with geophysical sounds. Currently, the
sonic-ecological relevance of geophonies remain ambiguous in
acoustic studies even though they are present in every terrestrial
and aquatic environment in some form. Furthermore, there
exists a confusing characterization of geophony as having both
negative acoustic qualities in the form of “environmental noise”
and positive acoustic qualities in the form of “natural quiet”
(Mace et al., 2004; Manning et al., 2007, 2018; Lynch et al.,
2011). The indistinction between geophony and noise, along with
the lack of reporting the role geophony plays in bioacoustics
and ecoacoustics studies, are leaving an unavoidable gap in our
understanding of sonic-ecological relationships.

In this paper, we clarify the distinction between noise,
geophony, and natural quiet in order to establish a common
language that serves to mitigate continued confusion in
the ecoacoustics literature. We also discuss the active role
geophony plays in ecological processes and the relevance
of geophony in species evolution, communication, and
habitat selection. We emphasize the need to establish clear
reasoning for combining or separating geophonies from
technophonies in acoustic studies and provide an example of

how acoustic indices can be useful tools to address geophony in
acoustic analysis.

ETYMOLOGY OF NOISE, GEOPHONY,
AND NATURAL QUIET IN
ECOACOUSTICS

As with any new field of science, there is a need to establish
an etymology to properly describe its subjects and theoretical
philosophies while building upon and/or clarifying language
commonly used and accepted in the literature. Ecoacoustics has
put a great deal of effort into creating a cohesive vocabulary of
terms that explicitly describes its subjects and theories (Sueur and
Farina, 2015; Mullet et al., 2017a; Farina et al., 2021a; Farina and
Li, 2021). This endeavor has been an evolving process as new
ideas, hypotheses, and philosophies emerge. Our intent here is to
clarify, introduce, and define terminology associated with noise
and geophony for future ecoacoustic investigations.

Noise and Technophony
The origins of the word noise are largely uncertain, but at
least date back to the Greek period. Linguistically, noise is a
derivative of the Greek word “nautes” (sailor) and the Latin
word “nausea,” meaning disgust, annoyance, discomfort, or
seasickness. Other origins have come from the Latin “noxia,”
which means hurting, injury, or damage. Contemporarily, noise
is broadly defined as unwanted sound. Yet, more specifically,
the Oxford English Dictionary describes noise as a sound
that is especially loud or unpleasant, causing disturbance or
confusion among other sounds, and contains no meaningful
information. Noise is inherently negative and subjectively defined
by human perception.

Notably, the linguistic roots of noise from the pre-industrial
age clearly indicate that unwanted sounds were not originally
associated with the sounds of machines. However, over the past
two centuries, the proliferation of steam and combustion engines
and electronics have introduced new anthropogenic sounds into
the environment (Pivato, 2011). As machine-generated sounds
made their way through human society, from the workplace to
the home and across the globe from agriculture to air and sea
travel, machine-generated sounds have become a novel intrusive
and detrimental affliction to human and environmental health
(Goines and Hagler, 2007; Jerem and Mathews, 2021).

Consequently, the impact of machine-generated sounds on
the environment has become an increasingly popular subject
of investigation (Jerem and Mathews, 2021) with considerable
evidence of its negative influence on animal behavior (Brumm
and Slabbekoorn, 2005; Habib et al., 2007), community ecology
(Francis et al., 2009), and species habitats (Nowacek et al.,
2007; Barber et al., 2010; Chan et al., 2010; Slabbekoorn et al.,
2010; Mullet et al., 2017a). Because of their human origin,
machine-generated sounds fit within the ecoacoustics category
of anthropophony, but more exclusively under the subcategory
of technophony (Mullet et al., 2016). This separation is based
on the difference between the biological and cultural sounds
that humans have been making for millennia (e.g., music, song,
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language) with the more recent sounds generated by machine
technology. Anthropophony of the former has evolved complex
semiotic relationships in human societies and nature, while the
latter generates sounds with generally no semiotic intent or
relevance. This distinction is important because noise is an
anthropocentric term often used to define machine sounds as
unwanted sounds. This likely stems from how humans perceive
the sonic relationship with the environment by distinguishing
what is natural from what is unnatural in both human culture and
ecologically (Booi and van den Berg, 2012; Gomes et al., 2021).

Because of this, it is vital to be aware that by using the term
noise, without explicit definition, the researcher is inherently
assuming the sonic element is also unwanted by their non-
human animal subjects without providing evidence to support
their assumptions. This results in implicit bias of a study’s design
and confounds ecological interpretation. Therefore, there must
be a clear definition in the ecoacoustics literature for the word
noise. We suggest that noise be generally defined as machine-
generated sound (technophony) that is unwanted or undesirable
to humans. In this way, studies of “noise” impacts to wildlife must
also clarify why or provide evidence that the variable of noise is
“unwanted” to their study subjects (see Barber et al., 2010; Luo
et al., 2015; Jerem and Mathews, 2021).

Conversely, technophony, as a distinct soundscape
component, is an important contribution to acoustic habitats
with significant ecological implications outside human
perceptions (Mullet et al., 2017a). Similar to the soundscape
component of biophony being ecologically distinguished
by the sounds of soniferous species, technophony in the
environment can also be distinguished by the presence of
human technological sounds. Yet, technophonies cannot be
reliably defined as unwanted sounds in non-human animals. The
term noise (as defined above) does not adequately apply to the
perspective of a non-human animal, but the term technophony
still remains relevant. This is because non-human animals
do not interpret the meanings of or differentiate between
technophonic sources with the same semiotic mechanisms as the
human originators. Nevertheless, the presence of technophony
within the soundscape still plays an important role in animal
behavioral ecology.

We recognize that technophony takes on a variety of
characteristics in nature depending on its source. We propose
three categorizes of technophony to generalize how it more
commonly occurs in the environment. These categories include
continuous technophony, ephemeral technophony, and abrupt
technophony. Continuous technophony is characterized as
constant machine-generated sound(s) in the environment,
occurring over long temporal periods with little or no
change. Some typical sources of continuous technophony
include oil compressors, highway traffic, and airport traffic.
Ephemeral technophony is not constant but occurs intermittently
over temporal periods where environments experience a
gap between machine-generated sound disturbance events.
Ephemeral technophony sources include helicopter and airplane
flybys, intermittent vehicle sounds on roads less-frequented
than highways, and motorboats. Finally, abrupt technophony is
derived from short temporal bursts of machine-generated sounds

that do not persist over time. Examples of abrupt technophony
sound sources are gunshots, explosions, and pile drivers. These
three categories of technophony can also be applied to noise when
presented from an anthropocentric perspective.

Geophony
Since the Earth and its atmosphere were formed 4 billion years
ago, geophysical sounds have shaped the sonic environment. It
was under these sonic conditions where the biological sounds
of organisms in marine, freshwater, and terrestrial environments
began their long and extensive process of evolution into
the diverse animal orchestra we hear today. Concurrently,
the Earth’s own geomorphological evolution influenced the
formation of sonic environments, acoustic habitats, and acoustic
communities. It is reasonable to suggest that geophony is
an inescapable, and integrated, semiotic component to the
sonic environment, species evolution, and ecological processes.
Because of this close relationship between biological organisms
and geophysical sounds, it is inappropriate to combine geophony
with noise without explicitly identifying the reasoning to do
so. By dismissing the relevance of geophony in ecoacoustics
studies or combining geophony with noise, one dismisses
and misinterprets the fundamental nature of soundscapes and
ecological relationships (Gomes et al., 2021).

Geophony has been clearly defined to be sounds generated
by the Earth and its geophysical events (Pijanowski et al., 2011;
Farina, 2014; Farina et al., 2021a). However, like technophony,
geophony can be placed into three general categories that
include continuous geophony, ephemeral geophony, and abrupt
geophony. Continuous geophony includes those geophysical
sounds that persist for long periods of time in the landscape.
Perfect examples of continuous geophony include continuous
free-flowing rivers and streams and sea waves. Ephemeral
geophony consists of the geophysical sounds that do not persist
in nature but occur intermittently over time, such as, the sounds
of wind, rain, and ephemeral streams. Abrupt geophony are
geophysical sound events that occur suddenly and in short time.
Earthquakes, landslides, avalanches, and volcanic explosions are
abrupt geophonic sound sources.

Sonic Signature
Sonotopes are distinct assortments of biophony, geophony,
and technophony embedded within every portion of a land
mosaic that vary in space, time, source, and intensity (Farina,
2014; Farina et al., 2021a). Such variability operates at different
temporal and spatial scales and is sensed differently among
species. In the presence of biophony, technophony, and certain
geophony, each sonotope possesses a unique sonic ambience we
call a sonic signature. We generally define sonic signature as the
ever-present ambient sounds that form the sonic foundation of
a sonotope. The sonic signature forms the primary occupied
acoustic niche that soniferous species must sonically compete
with in the most fundamental of ways (Figure 1). The Earth’s
primordial sonic signatures likely played significant roles in the
evolution of animal sounds. The late Professor Stuart H. Gage
(pers. comm. Michigan State University) described the sonic
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FIGURE 1 | Spectrogram comparison between two subarctic sonotopes located in Aialik Bay (coastal) (A) and Exit Glacier (interior) (B) of Kenai Fjords National Park
in south-central Alaska (60◦ N; 150◦ W) on 08 July 2019 at 00:00 and 03:00, illustrating the presence of geophonic ambiences, respectively, characterized by the
sounds of waves and a glacial creek, that occur in the absence of biophony, ephemeral/abrupt geophony, and anthropophony at 00:00 and in the presence of
biophony during the dawn chorus at 03:00. Note that the geophonic ambience of the coastal sonotope possesses a different sonic signature given the range of
low-frequency spectra than that at the interior sonotope, including differences in the intensity and composition of biophonies at higher frequencies between locations.

signature as the primeval sound of the Earth, the geophonic
sounds that remain when all else is absent.

A sonic signature can be the result of a single or combination
of sound sources (e.g., wind, running water, sea waves). The
nature of a sonic signature determines its impact on the ecology
of animals, all of which are species-specific. Based on this
perspective, it is reasonable to hypothesize that the recurrent
sounds of a sonotope’s sonic signature have a role in the
characterization and selection of a species’ habitat (e.g., Tonolla
et al., 2010, 2011; Mullet et al., 2017b; Decker et al., 2020;
Linke et al., 2020) and therefore, provides a baseline of ambient
sounds for a species’ semiosis, as well as a quantifiable subject of
ecoacoustics investigations (Putland et al., 2017).

Subarctic environments can exhibit periods of time when
biophonies, technophony, and ephemeral/abrupt geophonies
are not present within the acoustic space (Figure 1). In
this case, there still exists an ambient background of low-
frequency, low-sound energy geophony that is continuous
and ever-present. This phenomenon of geophonic ambience
contrasts sharply with time periods when the acoustic space
becomes occupied by biophonies, ephemeral/abrupt geophonies,
and technophony but still remains a primary component of
individual sonotopes (Figure 1). Thus, geophonic ambience

creates a sonic signature that shapes the composition of
acoustic habitats.

We acknowledge that sonic signatures are not exclusively
geophysical sounds. In fact, the heavily developed metropolitan
regions of the world possess a sonic signature of technophonic
ambience often produced by vehicle traffic. Similarly, finer-
scaled urban sonotopes may have their own unique sonic
signature depending on sound sources of the underlying
ambience. Examples of these finer-scaled sonotopes are airports
and manufacturing plants. Both geophony- and technophony-
based sonic signatures are important ecological components to
understanding biophonies and animal behavior.

Distinguishing Noise From Geophony
In order to understand the ecological role geophony plays in the
environment, one must recognize the implications that research
presents when combining geophony with technophony under the
moniker of “noise.” We have provided pragmatic reasons why
geophony is not noise (i.e., unwanted sounds) in an ecological
sense. However, we recognize that intense geophonic sources
(e.g., waterfalls, torrents, sea waves) may be considered unwanted
sounds from a human perspective, especially when assessing the
acoustic qualities of an area for listening to biophonies.
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This highlights an important distinction to make when using
the term noise to describe geophonies and technophonies. We
first must acknowledge that the continuous and homogenous
sounds of sonic signatures from a human perspective appear as
uninformative “noise” but, in fact, the geophonic ambience of
a sonotope most likely serves as a critical form of information
in animal communication and habitat selection. Secondly,
intense geophonic and technophonic sounds possess true and
ecologically relevant attributes in the form of masking effects
on certain sound sources. Masking can simply be described
as one sound interfering with the detection of another sound.
The ecological implications of this phenomenon have been
demonstrated by the low-frequency sounds (1–4 kHz) of
roads and oil compressor fields effecting the ability of some
organisms to hear vocalizing cohorts that call within the same
frequency range (Ortega, 2012; Ortega and Francis, 2012).
Intense geophonic sounds (e.g., high wind events) have also
been problematic for detecting and discerning low-frequency
biophonies (Mullet et al., 2016).

We suggest that researchers identify the types of geophony
and technophony that may influence the results of their acoustic
investigations. By doing so, the results of acoustic studies can
be interpreted in the context of geophonies as a distinct sonic
variable independent of technophony and as an ecological driver
of species adaptations and evolution. We recommend that
researchers avoid characterizing natural geophonic ambience
as unwanted sound (i.e., environmental noise, ambient noise,
background noise) (Codarin et al., 2009) for the purpose of
avoiding confusion between an anthropocentric perception and
one determined by animal semiotics. However, we recognize that
animal avoidance behavior to technophony (Luo et al., 2015),
geophony (Hayes and Huntly, 2005), and even biophony (Stanley
et al., 2016) provides a rare opportunity to characterize some
sound sources as unwanted sounds from an animal’s perspective.

Natural Quiet
As noise expands to nearly every corner of the Earth, there has
become increased interest to locate the world’s quietest places
(Cox, 2014). Only recently has natural quiet become a term
used in bioacoustics and ecoacoustics literature (Mace et al.,
2004; Votsi et al., 2014; Mullet et al., 2017b). Natural quiet is
simply defined as a period of time when noise does not disturb
natural sounds (Manning et al., 2007). This vague definition
obviously suggests that natural quiet is composed of any form
of biophony and geophony but also implies that there is some
level of sound amplitude identified by some receiver as “quiet.”
More importantly, natural quiet, like noise, is a human construct.
Humans easily identify natural sounds as separate from human
sounds, but quiet lends itself to a more technical and often
subjective definition we will not elaborate on here. Natural quiet
within the human domain consists specifically of natural sounds
identified according to non-human categories and quiet can be
defined according to a relative measure of human perception (i.e.,
decibels) (e.g., Ambrose, 2006).

Natural quiet does not mean “silence,” the complete absence
of sound. Although uncommon in the literature, silence has
been misused to describe natural sounds (Pfeifer et al., 2020)

or used interchangeably with natural quiet (Hempton and
Grossmann, 2009). The distinction between natural quiet and
silence is important in order to avoid confusing audible-sensorial
phenomena with the absence thereof. In fact, sounds are ever-
present in nature because of the myriad of sound-producing
interactions that occur at micro- and macro-scales of ecosystem
processes (Smucker et al., 2006; Tornel et al., 2010; Fuller et al.,
2015; Wall et al., 2017).

The sensitivity of a receiver to these sounds depends
on their audible range of detection and the frequency and
sound energy emitted by these processes. This suggests that
sounds that occur outside a receiver’s audible range are of
less significance to its ecology than sounds they can hear.
Yet, the frequency spectrum is not continuously occupied by
sounds within a receiver’s range of hearing. As illustrated
in Figure 1, sounds are absent within a given frequency
spectrum (e.g., 5,000–11,000 Hz) over a 1-min period at
midnight (00:00). By definition, these vacant frequencies are
silent to the receiver (i.e., SM4 Song Meter standard microphone,
Wildlife Acoustics, Inc., Maynard Massachusetts) despite the
microphones capability to detect sound events within this
range. In this case, an argument can be made that silence
does exist, but only in the context of the receiver. Therefore,
the absence of sounds can be considered species-specific and
unique by an individual’s threshold of hearing. Unfortunately,
this example is not what is insinuated as silence in the
literature, nor is it considered to explain the sonic characteristics
of natural quiet.

There has been some effort to measure natural quiet as a
quantifiable variable (Lynch et al., 2011). This has stemmed
from an interest in empirically characterizing undeveloped, wild
landscapes in the context of human sonic experiences in nature.
This approach emphasizes the anthropocentric perspective of
what is considered natural (i.e., non-human sounds) and quiet
(e.g., some baseline decibel level). Although this approach
has benefited the preservation of natural soundscapes and
expanded our understanding of human-nature connections
through sound, natural quiet in this context provides very little
relevance to understand ecological processes. We propose that
the term natural quiet explicitly refer to the interpretation of
a soundscape’s acoustic qualities based on human perception
and cultural definitions of “natural” and should not be applied
to ecoacoustics studies intended to explain ecological processes
where human perception is not the focus.

In an ecological context, it is important to acknowledge the
absence of sounds within frequency spectra as an important
characteristic of sonic environments. Regrettably, most
bioacoustic and ecoacoustic studies have narrowly focused
on the occupancy of multiple frequency spectra by biophony
to describe the biodiversity of life in many parts of the world
(Bertucci et al., 2016; Raynor et al., 2017; del Castillo Domínguez
et al., 2021; Dröge et al., 2021; Farina et al., 2021b). Similarly,
many studies have concentrated on the occupancy of acoustic
partition to test the Acoustic Niche Hypothesis (Krause, 1993)
as a viable explanation of sonic-animal ecology and evolution
(Villanueva-Rivera, 2014; Bignotte-Giró and López-Iborra,
2019). However, the evidence of a “silent acoustic niche”
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(Figure 1) reverses the emphasis of interest to understand the
sonic environment where the absence of biophony, geophony,
and anthropophony are just as vital to understanding natural
ecological processes. The opposing perspective of silent acoustic
niches in the context of occupied acoustic niches is increasingly
important as many ecosystems face catastrophic declines in
biodiversity due to climate change, and human impacts (Krause
et al., 2011; Krause and Farina, 2016). We recommend that more
work be done on this subject.

GEOPHONY AS A DRIVER OF
ADAPTATION AND HABITAT SELECTION
AND A COMPONENT OF ECOSYSTEMS

Despite evidence that supports the effect geophonies have on
the sonic behavior of marine (Brumm and Zollinger, 2011; Holt
and Johnston, 2014; Guazzo et al., 2020; Helble et al., 2020)
and terrestrial animal vocalizations (Brumm and Slater, 2006;
Preininger et al., 2007; Brumm and Naguib, 2009; Samarra et al.,
2009; Vargas-Salinas et al., 2014) and species evolution (Ryan
and Brenowitz, 1985; Brumm and Slabbekoorn, 2005), there
still exists a gap in our understanding the natural selection
process of geophony in animal evolution, more specifically in
terrestrial systems. Boeckle et al. (2009), for instance, found rock-
kipper frogs (Staurois latopalmatus) in habitats with continuous
geophony from waterfalls emitted higher frequency calls and
had smaller body sizes than cohorts where geophony was not as
sonically pronounced. Zhao et al. (2017) demonstrated the role of
geophony in mate selection among little torrent frogs (Amolops
torrentis). They observed that females selected males that emitted
higher frequency calls in areas where the geophony from streams
had high sound amplitude. Males that emitted lower frequency
calls in quieter environments were less likely to acquire a mate.

The literature that exists strongly suggests that geophony in
marine and terrestrial systems has a significant role in the habitats
animals select to inhabit in a landscape. It has been established
that the composition and patterns of soundscapes are directly
linked to the temporal and spatial arrangements of landscapes
(Fuller et al., 2015; Mullet et al., 2016). Thus, sonotopes and
their unique sonic signatures are essential components to the
homogenous ecotopes that occur across the landscape. In this
context, the temporal and spatial configuration of geophony is
a fundamental sonic element of a species’ habitat that exists
within an ecotope. Mullet et al. (2017a) describe the ecological
relationships between animal behavior and habitat selection in
their seminal Acoustic Habitat Hypothesis.

Since geophony is generated by the vibrations of the physical
environment (e.g., sound of wind from rustling leaves, sound
of waves from the crashing of ocean water, sound of rain
impacting vegetation); the sources, acoustic characteristics, and
semiotics of geophony vary temporally and spatially depending
on climatic conditions, geomorphology, and vegetation. As an
example, the continuous geophony of a river will have differential
sonic and semiotic significance based on the distance a sound-
dependent species is from the source. However, the manner in
which geophony attenuates from the river is also dependent

on the geomorphology and vegetation communities of the land
surrounding it. In this case, geophony becomes subject to
the composition and structure of the physical and biological
environment creating unique sonotopes and acoustic habitats
across a heterogenous, riparian landscape.

The many forms geophony can take in both its source
and intensity are the consequences of complex geophysical
phenomena. The characteristics of geophony across spatial scales
can be influenced by elevation gradients, topography, global and
microclimate dynamics, and successional stages of vegetation
communities. Similarly, geophonies express temporal variation
too, depending on its source (e.g., river sounds compared to
rain showers), geographic region, time of day, and season.
Some good examples of spatial and temporal differences in
geophony are evident in the seasonal patterns of rainfall
constituting the Amazon’s wet and dry season (Sombroek,
2001) compared to the more extreme seasonal differences in
geophony of south-central Alaska’s boreal forests with rainy
summers and actively flowing streams (Mullet, 2020) to winters
with prolonged periods of ambient geophony interspersed with
intense wind events over frozen lakes, rivers, and tundra
(Mullet et al., 2016). The Amazon’s wet season comes with
increased geophony from rain but also marks the height of
the breeding period for many songbirds that coincides with
food availability (Stouffer et al., 2013). Similarly, the biophony
of south-central Alaska increases considerably in summer
months as the geophony of rushing water and rain dominate
the soundscape (Mullet, 2020) while most soniferous species
migrate or become dormant over winter (Mullet et al., 2016).
These geophonically-related ecological processes are not only a
product of geography, geomorphology, and vegetation, but their
seasonality is also a result of the Earth’s planetary tilt toward the
Sun.

It is reasonable to hypothesize that the scale of ecological
factors contributing to geophony are naturally integrated into
the evolution and adaptation of animals and the dynamic
complexities of Earth system processes. Subsequently, these
relationships impact the manner in which sound-dependent
species instinctually and cognitively select and occupy habitats.
Even more so, the effects of anthropogenic climate change are
having profound impacts on physical and biological systems
(Rosenzweig et al., 2008). As a result, the attributes of geophonies
at fine and coarse scales are likely changing temporally and
spatially in a way that can alter the natural selection process
they have on animal communities and species distributions. This
underlines the importance of including geophony as a key subject
in ecoacoustics studies.

GUIDANCE FOR THE STUDY AND
ANALYSIS OF GEOPHONY

It is important for us to extend our competency of ecoacoustics
in order to better understand the ecological resiliency of the
sonic environment and its relationships to natural processes
and human activity. As we have expressed earlier, the inclusion
of geophony in ecoacoustics investigations is paramount to
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embodying a holistic knowledge of ecology. In fact, the full
characterization of soundscapes can contribute to a greater
breadth of knowledge than the narrow perspective of simply
describing biophony or noise impacts to soniferous species
and communities.

We are aware of the objective difficulties that exist to currently
discern, measure, and evaluate geophony in ecoacoustic studies
(see methods by Mullet et al., 2016). Nevertheless, including
information concerning the characteristics and dynamics of
geophonies in ecoacoustics greatly enhances the description of
the sonic environment in which species operate and disclose their
ecological relationships. To do this, it is necessary to create new,
and improve on current, ecoacoustic tools that can be applied in
ecoacoustics methodologies.

Geophonies, like many environmental sounds, can be
efficiently detected and recorded using autonomous recording
stations (ARS). This method enables a researcher to standardize
their sample rate and recording intervals while allowing the
recording device to run unattended for long-periods of time,
generating a broad temporal sample of geophonic events. The
temporal sampling period is dependent on the research question
(see Buxton et al., 2016; Krause and Farina, 2016; Mullet et al.,
2016, 2017b; Mullet, 2020 for examples), but we recommend 1-
min as a sufficient recording interval. Sonic data collected by ARS
are often generated as a digital waveform (wav) file which can
be processed into a metric or index using the computation of an
algorithm suitable to answer the focused research question.

Geophonies are often characterized by more continuous
patterns when compared to the ephemeral nature of biophonies,

like bird calls. In fact, wind and rain events last longer than
a few seconds or minutes compared with the short duration
of bird calls. Only insects exhibit continuous biophonies but
are typically discernable within a specific frequency spectra.
Contrarily, geophonies often span a wide range of frequencies
depending on the source and over longer time intervals (30 s
to hours). Their sonic patterns are typically more homogenous
than most technophonies and biophonies. In order to adequately
describe such processes, the frequential and temporal resolution
with which data are analyzed should be fixed accordingly.

Few studies have approached the investigation of geophonies
in terrestrial environments especially focusing on the capacity of
ecoacoustic metrics to filter out geophonic events. Mullet et al.
(2016) for instance, resolved to listening to thousands of sound
recordings to parse out and quantify geophonies from biophonies
and technophonies. This challenge has not been lost on other
investigators (Bedoya et al., 2017; Sánchez-Giraldo et al., 2020).
While terrestrial ecoacoustic studies have struggled with this
issue in recent years, a more abundant literature testifies to the
interest in and analysis of geophonies in marine systems that
have measured the effect of rainfall (Medwin et al., 1992; Ma
and Nystuen, 2005; Amitai and Nystuen, 2008; Ferroudj et al.,
2014) and wind (Pensieri et al., 2015; Cauchy et al., 2018) on
underwater sounds. While our expertise lies within terrestrial
soundscapes and acoustic analyses applicable to these systems,
we recognize that marine bioacoustics and ecoacoustics methods
could prove useful.

Unlike studies that apply multiple acoustic indices to quantify
and explain biophonies, we propose the Acoustic Complexity

FIGURE 2 | Graphical representation of four Acoustic Complexity Indices (ACIft, ACIftevenness, ACItf and ACItfevenness) that are used to generate sonic codes in the
analysis of ecoacoustic events in a sound recording. ACIft measures the sound energy across the frequency spectra within selected segments of time (ACIftn), while
ACIftevenness calculates the distribution of sound energy within the frequency spectra across all time segments. ACItf measures the sound energy within specified
frequency intervals (ACItfj) across the recording period (time), while ACItfevenness calculates the distribution of sound energy across all frequency intervals over the
recording period.
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Indices (ACIs) (Pieretti et al., 2011; Farina et al., 2016) as a
convenient set of metrics, powered by the recent SonoScape
software (Li and Farina, 2021) that operates at multiple
scales, offering the possibility to sample sound recordings at
different temporal resolutions to extract the ecoacoustic events
of geophony and to filter sonic signals according to an energetic
threshold.

In brief, the main performance of ACI enables the measures
of sonic information based on the difference that occurs between
successive intensity pitches and operates at every temporal scale
of a sampling regime. Sonic energy can be measured across time
for any frequency interval given the study’s sample rate. Four
ACI metrics (ACItf, ACItfevenness, ACIft, and ACIftevenness) can be
employed to measure sonic information across frequencies at any
predetermined temporal interval (Li and Farina, 2021; Figure 2).
In this way, ACItf measures the sonic information within a single
frequency interval while ACItfevenness calculates the distribution
of ACIft across multiple frequency intervals. The amount of sonic
information included across frequencies is measured by ACIft
with ACIftevenness used to calculate the distribution of ACIft values
along a specified temporal interval (Figure 2).

Geophonic events (e.g., an isolated gust of wind or period of
rain) can be classified within the SonoScape software using the
combination of ACIft, ACIftevenness and ACItfevenness that returns
a sonic code that ranges from “000” to “999” (Farina et al., 2018).
A sonic code of “000” is equivalent to “no sonic signal,” whereas
a sonic code of “999” represents a sonic signal that completely
saturates the entire frequency spectra and time sequence. Heavy
rain and strong wind events are often characterized by a sonic
code of 999. Sonic codes are obtained for every time interval a
wav file is sub-divided into.

For instance, if we process a wav file of 300 s at a resolution of 1
s, we obtain 300 codes, one for each second interval. If we reduce
the temporal resolution to calculating indices at intervals of 6 s,
we obtain 50 codes, and so on. Sonic code values are strongly
affected by the temporal resolution (i.e., time interval) chosen by
the analyst because the temporal dimensions potentially delimit
the field of existence of an ecoacoustic event. This is true if
one desires to capture abrupt geophonic events like thunder. In
this case, the sonic matrix must be appropriately segmented into
intervals of 2–3 s for the event to be detected within the sonic
code calculation. Similarly, the ephemeral geophony of wind or
sea waves may require 10–30 s, while the continuous geophony
of sonic signatures spread across long temporal scales. For rain,
the time interval depends on whether the sonic events are short-
or long-duration rain showers.

The usefulness of ACI for identifying, quantifying, and parsing
out geophonies from biophonies and technophonies lends itself
to the manner in which the indices of sonic events are calculated
based on their occurrence within frequency spectra and over
time intervals. The diverse, but unique, nature of geophonies can
be relatively easy to distinguish from biophonies. However, we
recognize that the similarities in sonic characteristics between
sonic signatures of continuous geophony (e.g., rivers) and
continuous technophony (e.g., highways) or the ephemeral
occurrence of intermittent passing cars at less-traveled roadways
and wind events may confuse ACI results. More investigation is

underway to address these issues. Although we recognize that
other scientists are addressing the issues of geophony in acoustic
analysis (Bedoya et al., 2017; Sánchez-Giraldo et al., 2020),
there appears to be open opportunities to explore ACI beyond
biophonies to measure and quantitatively interpret geophonies
within sonic environments.

CONCLUSION

The geophonies of Earth have been an evolutionary driver
of animal physiology and communication across a diverse
array of extant and extinct species. Given their ever-present
influence on the sonic environment, animal behavior, and human
experience, we suggest that geophonies must occupy a more
central position in the study and understanding of ecological
processes. This is even more important now that the expansive
impacts of anthropogenic climate change to the Biosphere
present exceptional risks to displacing and reconfiguring sonic
events, if not driving many soundscapes to extinction (Sueur
et al., 2019). Among these are certainly the geophonies that are
directly associated with Earth’s processes. Unfortunately, these
changes have already begun, and we must strive to obtain a higher
standard of ecoacoustics research (Krause and Farina, 2016).

As we currently explore the surface of Mars (Leighton, 2021),
we have acquired the first recordings of Martian geophony.
This scientific achievement may give us insights to the role
geophony has played in Earth’s primordial history, or perhaps,
a peak into Earth’s distant future. Our pursuit of knowledge
to understand the ecology of our own world must not negate
the fundamental elements and phenomena that have shaped its
existence. The quest to understand geophony among the myriad
of biological and anthropogenic sounds can only open new
doors to discovery here on Earth. We invite further research on
this subject to generate a more holistic understanding of their
semiotic relationships.
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Many organizations are attempting to scale ecoacoustic monitoring for conservation
but are hampered at the stages of data management and analysis. We reviewed current
ecoacoustic hardware, software, and standards, and conducted workshops with 23
participants across 10 organizations in Australia to learn about their current practices,
and to identify key trends and challenges in their use of ecoacoustics data. We found
no existing metadata schemas that contain enough ecoacoustics terms for current
practice, and no standard approaches to annotation. There was a strong need for
free acoustics data storage, discoverable learning resources, and interoperability with
other ecological modeling tools. In parallel, there were tensions regarding intellectual
property management, and siloed approaches to studying species within organizations
across different regions and between organizations doing similar work. This research
contributes directly to the development of an open ecoacoustics platform to enable the
sharing of data, analyses, and tools for environmental conservation.

Keywords: ecoacoustics, open data, open science, monitoring, conservation, standards

INTRODUCTION

Australia has incredible fauna biodiversity, across a sparsely populated landscape, with many
species under threat. Ecoacoustics offers a much-needed approach to large-scale threatened species
and biodiversity monitoring. Yet there remain challenges to realizing this important vision both
in Australia and globally. This paper presents an investigation into how ecoacoustics monitoring
might be scaled-up to complement other ecological monitoring methods in the face of global
biodiversity loss.

Passive acoustic monitoring offers the advantages of non-invasive, long-duration sampling of
environmental sounds, including biodiversity, can detect cryptic species (Znidersic et al., 2020),
estimate species richness (Xie et al., 2017), evaluate ecosystem health (Deichmann et al., 2018), and
be used to model a species’ spatial distribution (Law et al., 2018). However, the ease with which large
amounts of data can be collected complicates storage, analysis, and interpretation of results. Despite
the development of new computing and visualization techniques (Eichinski and Roe, 2014; Phillips
et al., 2017; Towsey et al., 2018; Truskinger et al., 2018), ecoacoustics research is currently hampered
by bottlenecks in analysis and data management (Gibb et al., 2019). One challenge includes the
amount of time, effort, and expertise needed to create labeled datasets with which to produce and
evaluate automated call recognizers (McLoughlin et al., 2019). The use of automated methods of call
identification to produce these datasets can greatly reduce the time compared to manual methods,
but also increase the likelihood of false positives and negatives (Swiston and Mennill, 2009). The
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skillsets of computing science and ecology are also rarely
held by the same person (Mac Aodha et al., 2014) leading
to potential misalignments between data collection and data
management protocols even in close collaborations (Vella
et al., 2020). Scaling up ecoacoustics research will require
a considerable effort to address the lack of standardization
for acoustic data and metadata collection (Roch et al., 2016;
Gibb et al., 2019), as well as the development of communities
and platforms that enable the sharing of annotated datasets
and tested species detection techniques. Enabling acoustic data
categorization by citizen scientists also holds great promise
(Jäckel et al., 2021). For example, citizen scientists engaging with
Hoot Detective [a collaboration between the Australian Acoustic
Observatory (A2O), the Australian Broadcasting Commission,
Queensland University of Technology, and the University of
New England, for National Science Week] have at the time
of writing identified 2,624 native owl calls (Noonan, 2021). In
the following, we focus on the Australian context, however, the
challenges and opportunities that are identified are likely to be
applicable in others.

A key initiative in ecoacoustics data collection, management
and analysis has emerged in Australia, namely the Australian
Acoustic Observatory (A20).1 The A2O (Roe et al., 2021), is
a continent-wide acoustic sensor network collecting data from
360 continuously operating sensors. This and the Ecosounds
platform,2 which manages the ecoacoustics data, visualization
and analysis of negotiated research collaborations, are both using
the open-source Acoustic Workbench software (Truskinger et al.,
2021) available on GitHub. Other ecoacoustics data management
is enabled by the Terrestrial Ecosystem Research Network
(TERN3) project, which houses ecoacoustics data collected from
TERN SuperSites: long-term research sites collecting a range of
environmental data, including acoustic data. Another platform
of note is the Atlas of Living Australia (ALA4), which aggregates
a wide range of environmental data (i.e., observance records),
but does not currently support the ingest of audio annotation
observance records in a standardized form (Belbin and Williams,
2016). Finally, the Ecocommons5 platform promises to support a
wide range of ecological modeling and a analysis needs, including
those of ecoacoustics, through access to curated datasets, tools,
and learning materials. While this suggests extensive support
for ecoacoustics data management and analysis, in practice,
ecoacoustics research continues to rely upon ad hoc approaches.
For example, while many organizations in Australia, including
universities, governments, non-government agencies such as
Birdlife International, are collecting acoustic data, driven by the
increasing availability of low-cost recorders, subsequent analysis
tools are being developed on an individual/region basis. While
recognizer development is a valid area of investigation, in this
paper we focus instead on what is needed to effect smoother data
interchange and improve the scale at which ecoacoustics analyses

1https://acousticobservatory.org
2https://www.ecosounds.org/
3https://www.tern.org.au/
4https://www.ala.org.au/
5https://www.ecocommons.org.au/

can be conducted. One means of addressing these aims is through
the sharing of resources and expertise. Making ecological data
open has obvious benefits, such as the re-use of datasets to answer
new research questions, and the possibility of new discoveries
through meta-analysis of disparate datasets (Chaudhary et al.,
2010; Cadotte et al., 2012). Open data also enables local and
specific data to address questions dealing with larger spatial and
temporal scales (Hampton et al., 2013), and creates the impetus to
make data findable, accessible, interoperable and reusable (FAIR,
Wilkinson et al., 2016). One way data can be made findable
is through linked data (structured data which is interlinked
with other data, so it becomes more useful through semantic
queries) (Bizer et al., 2011). Sharing data also opens the possibility
of networking and collaboration with other researchers in and
across fields. However, the movement toward open ecological
data has been slow, due in part to concerns about time investment
not being returned, lack of data standards, missing infrastructure,
intellectual property issues, amongst others (Enke et al., 2012).
Data also has a financial value, and can be withheld out of fear
of losing research funding (Groom et al., 2015). The reluctance
to share data for the reason of poor investment return is being
slowly overcome through systems of reward and attribution
(Heidorn, 2008), though these may be most effective within
academic fields. While some infrastructure and standards have
been developed for some forms of ecological practice, these
are still in development for the management of ecoacoustics
data and metadata.

Though there is also value in standards being applied to
other natural or anthropogenic sounds, it should be noted that
this paper focuses on biophony and ecoacoustics applications
for biodiversity monitoring. Ecoacoustics standards development
promises to promote understanding of long-term biodiversity
trends by making acoustic data and metadata transfer across
different platforms and software possible. Data and metadata
standardization also goes hand-in-hand with the development of
standardized approaches to ecoacoustic survey and study design.
Currently, research on this topic has identified key applications
(Sugai et al., 2019), approaches based on ecological research aim
(Gibb et al., 2019), project specific guides (Roe et al., 2021)
and some comprehensive guidelines, however, ones that do not
yet provide guidance on best practice (Browning et al., 2017),
or instead, focus on specific uses, such as the production of
indices (Bradfer-Lawrence et al., 2019). Standardization would
promote collaborative and collective efforts to collect verified
call data for neglected taxa and regions (e.g., tropical terrestrial
biomes). Centralized sound libraries containing consensus data
and metadata standards (e.g., date/time of recording, geographic
location, recording parameters, sensor position) (Roch et al.,
2016), would also improve the accessibility and comparability
of reference sound libraries (Mellinger and Clark, 2006).
However, the movement toward standardization, as in most
interdisciplinary endeavors is slow and full of friction (Edwards
et al., 2011), making human-centered methods a useful approach
(Vella et al., 2020).

An open science approach to ecoacoustics research should
greatly increase the availability of biodiverse data annotations and
call recognizers, and with standards, can maximize conservation
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outcomes through sharing limited resources for monitoring.
However, the steps to achieving this are unclear. This study
seeks to produce an overview of current practices, analytic
techniques, and available metadata schemata, as well as produce a
grounded understanding of how these are implemented (or not)
across a range of organizations with a focus on conservation,
land management, and research. Consequently, this research
was largely driven by a human-centered approach to technology
design with a series of online workshops conducted with a
wide range of ecoacoustics practitioners. This paper concludes
with a series of recommendations to guide the development
of open ecoacoustics both within the Australian context and
internationally.

MATERIALS AND METHODS

The overall aim of this research was to inform the development
of an open ecoacoustics platform and linked resources to scale-
up ecoacoustics monitoring both nationally and internationally.
As such, the study focused on current resources and practices
utilizing exploratory review and online workshops.

Our choice to conduct workshops with a wide range of
ecoacoustics practitioners was driven from a human-centered
approach to technology design. We believe it necessary to do this
kind of scoping with real users in a real-world context as the
rich data provided by this approach provides insight into how to
design for adoption and accessibility.

Review
We conducted a review of available ecoacoustic hardware,
software tools and field-wide standards to better our
understanding of common practices, availability of techniques
and tools, and limitations related to the management and
analysis of ecoacoustic data. An additional aim of the review was
to identify common data formats, metadata fields, and analysis
related to ecoacoustic data to inform the development of a
metadata schema. We conducted a search of the literature and
included reviews of the field of bioacoustics and ecoacoustics,
and searched literature on bioacoustic and ecoacoustic related
software using the following search terms: “ecoacoustics,”
“bioacoustics,” “review,” “automated processing,” “long duration
recording,” “metadata,” “analysis software,” “call recognizers,”
“detection algorithm,” “recognizer performance,” “repository,”
“standards.” The search of the literature was conducted between
May and August 2021 and involved searching Google Scholar
and the Queensland University of Technology’s Library for the
above keywords. Advanced search terms included articles from
2019 to present. These publications referred to other relevant
literature, which was also included. We also accessed technical
guides of the hardware and software tools identified and created
summary tables of the information found. Existing standards for
ecoacoustic analysis procedures and the ingesting of metadata
were identified. This review also informed the development
of materials for the following workshops with ecoacoustics
researchers, and organizations that were incorporating this
research method into their programs.

Workshops
Online workshops were conducted from 25 June to 1 September
2021, under QUT Human Ethics Clearance 2021000353. We
recruited participation from partner organizations and end users.
In this study, we are reporting upon the end user workshops only.
These workshops were carried out across two sets:

1. Current Practices: The first user workshop aimed to
understand how users work and interact with their current
data, tools, and technologies; explore how current activities
are performed with the support of current technologies;
and identify issues faced within those current practices and
potential solutions to those issues.

2. Requirements Gathering: The second user workshop
aimed to map out an “ideal” open ecoacoustics platform;
gather requirements that would increase accessibility and
improve the user experience; produce a skeleton training
plan; and list IP conditions.

Participants
End users (N = 23) were recruited from ten organizations
within Australia who were largely responsible for or focused
on conservation management, protecting endangered species,
and conducting ecological and environmental research. They
included universities, conservation advocacy groups, and State
government departments. Wherever possible, participants were
placed in workshops with others from the same organization.

The first set of workshops had twenty participants drawn
from nine groups (Australian Wildlife Conservancy, Birdlife
Australia, Charles Sturt University, Department of Biodiversity,
Conservation and Attraction (Western Australia), Department of
Primary Industries, Parks, Water and Environment (Tasmania),
Griffith University, James Cook University, Museums Victoria,
and University of Melbourne. In total, eight workshops were
conducted, and each workshop ran for approximately 2 h.

The second set of workshops had eleven participants from six
groups (Australian Wildlife Conservancy, Bush Heritage, James
Cook University, Museums Victoria, University of Melbourne,
and Birdlife Australia). In total, five workshops were conducted
(each between 1 and 2 h in length) and included eight participants
who had also participated in the first set.

Participants varied greatly in their familiarity with
ecoacoustics data collection, management, and analysis.
This was most likely due to the participants holding different
roles within organizations (e.g., project manager vs. project
officer), as well as these organizations having different sets of
capacities, funding models, and priorities (e.g., universities vs.
conservation advocates).

Procedure
Each workshop was 2 h in duration, was run via Zoom and Miro
(an online, collaborative whiteboard tool), and was audio and
video recorded. At least two members of the research team were
present during the workshops, with one running the workshop
and the other taking notes. At the conclusion of each workshop,
screenshots and photos were taken of the mapping activities
completed in Miro and the spreadsheet template.

Frontiers in Ecology and Evolution | www.frontiersin.org 3 January 2022 | Volume 9 | Article 80957645

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-809576 January 10, 2022 Time: 14:24 # 4

Vella et al. Realizing Open Ecoacoustic Monitoring

Workshop 1—Current Practices
At the beginning of each workshop participants were asked to
introduce themselves, their role, the organization they were from
and the aims of that organization, and their interest in the project.
We then explored their current practices around ecoacoustics
research, data collection and analysis.

As part of this exploration, we created a spreadsheet template
of some of the functional aspects of common software, tools and
platforms used in the workflow of ecoacoustic data management
and analysis. We asked participants to use this template to
identify the tools they were using in their analysis process, as
well as better understand how they use them and some of the
pain points associated with them. Once this was complete, we
then ran a brainstorming session which explored this workflow
to highlight issues and potential solutions within that workflow.

Workshop 2—Requirements Gathering
At the beginning of each workshop, participants were asked to
introduce themselves. They were then immediately shown a Miro
board with a selection of ecoacoustics study designs. They were
asked if there were any that we hadn’t captured, and which were
more important to them.

Following this they were shown example ecoacoustics use
cases (one of these is presented in Figure 1), and this used to
prompt discussion of their own use cases. These were listed
and then reproduced in a similar format to that of Figure 1,
i.e., they captured the flow of ecoacoustics data from the field,
survey through to data management, analysis, and use (see pink
boxes in Figure 1). Discussion followed from the construction
of this use case.

Once a use case was completed, it was duplicated. Participants
were then asked to think about how they would like this
process modified and where. Prompts included thinking about
what platforms or tools would remain essential; what parts
of the research process they would like to outsource; how
they’d like to manage data storage. The duplicated use case was
changed as necessary, and notes taken. These use cases were
also used to frame discussion about training resources (what
was needed, ideal delivery system, and formats); data sharing
(data sensitivities, what conditions would be necessary to enable
sharing). Lastly, participants were asked if there were any use
cases that were worth considering in the future.

Workshop Data Analysis
The analyzed dataset includes audio transcripts, Miro board
outputs, and facilitator notes taken during the workshop. Audio
transcripts and facilitator notes were analyzed in Nvivo, Release
1.5. All data went through a deductive coding process driven
by particular areas of research focus, which were used as
deductive codes when analyzing data from both workshop 1
and 2. These codes included tools and technologies; current
research practices and activities; data collection, management,
and analysis; standards; education and training; relationships;
needs and expectations; and challenges.

Authors 1, 2, and 3 each individually analyzed the Workshop
1 audio transcripts and facilitator notes. Following this,
they met to discuss their initial analysis and examine the
Miro board outputs. All insights from this process were
captured in Miro, where they then conducted deductive
coding to collate participant findings within codes created
from predetermined research questions. These insights were
used to inform Workshop 2. Author 1 conducted deductive
coding of the outputs of Workshop 2 utilizing both the
initial codes and the codes created from the data from
Workshop 1, collecting insights from this process also in
Miro. At the conclusion of both workshops, a final round of
discussion amongst Authors 1, 2, 3, and 4, was conducted
using data from both workshops to determine the contents of
the final themes.

RESULTS

Review Findings
This review was conducted with the aim of promoting
standardization across ecoacoustics research. Standardizing data
should reduce some of the frictions of interoperability between
analysis programs and the harvesting of metadata from audio
recordings. In turn, by making analyses and comparisons
between analyses easier, data standardization should also
encourage the development of standardized protocols. The
following outlines the state of current guidelines and standards
for acoustic recorders, data, analysis tools and techniques,
and acoustic annotation. Following this is an overview of
interoperability between tools; methods for evaluating recognizer

FIGURE 1 | An example ecoacoustics use case showing the flow of data between multiple organizations. The research group QUT Ecoacoustics accesses data
from an ecoacoustics portal the A2O which is then shared with the Hoot Detective citizen science project.
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performance; available acoustic repositories and registries; and
finally, a summary of the key findings and gaps.

Standards for Acoustic Recorders
We reviewed the technical specifications and available metadata
fields for acoustic sensor devices Song Meter 4, Song Meter SM4
Bat FS, Song Meter Mini, Song Meter Mini Bat, Song Meter Micro
from Wildlife Acoustics, Inc.,6 BAR-LT from Frontier Labs,7

AudioMoth, µMoth from Open Acoustic Devices8 (Hill et al.,
2018), Swift from Cornell Lab,9 and Bugg.10 Detailed information
is supplied as Supplementary Material, but in brief we found
that for all sensor devices except Bugg, technical specifications
were easily accessible either on the website, in linked technical
guides and user documents or related publications. A metadata
standard for audio collected by BAR-LT sensor includes a
comprehensive list of terms of key recorder and recording
attributes, however this standard is not adopted by other
sensor devices and is not in a format readily transferable
to other devices. Whilst there are a wide variety of audio
recorders available, there are no common standards between
manufacturers, particularly those related to metadata standards
that capture: timestamps including UTC offsets; location stamps;
gain; serial numbers for sensors, microphones, and memory
cards; microphone type; firmware version; temperature; battery
level. The Wildlife Acoustic devices share a proprietary standard
which has been reversed engineered (i.e., a program was written
to interpret the information present in audio headers11), however,
this method is less efficient and potentially less accurate than
working from a common standard. In addition to technical
specifications of the audio sensor, it is important that metadata
relating to environmental and ecological factors is accounted
for in statistical analysis (Browning et al., 2017). It is therefore
recommended that any relevant environmental or ecological
metadata (e.g., rainfall, temperature, phenological events) be
collected in addition to audio.

Standards for Data
Biodiversity Information Standards (TDWG, originally called
Taxonomic Database Working Group)12 have developed such
as Darwin Core (Wieczorek et al., 2012) and Audubon Core
(GBIF/TDWG Multimedia Resources Task Group, 2013) that
have the overall aims of facilitating the sharing of information
about biodiversity and representing metadata originating from
multimedia resources and collections respectively. The intent of
Audubon Core is to inform users of the suitability of the resource
for biodiversity science application—a feature that would be
desirable in an ecoacoustics standard. The Audubon Core
standard contains several vocabulary terms relating specifically to
audio resources and helps to promote the integration of existing
standards by drawing vocabulary from other standards such

6https://www.wildlifeacoustics.com
7https://frontierlabs.com.au
8https://www.openacousticdevices.info
9https://www.birds.cornell.edu/ccb/swift/
10https://www.bugg.xyz/
11https://github.com/riggsd/guano-spec
12http://www.tdwg.org

as Darwin Core, Dublin Core (DCMI, 2020) and others. The
standard, however, does not contain metadata terms that directly
capture metadata pertaining to audio analysis and results and
as such would need to be extended upon to capture all of the
metadata fields that could be desired in an ecoacoustics standard.
The metadata structuring rules named “Tethys,” developed by
Roch et al. (2016) more adequately address metadata fields
that are not currently captured by existing systems and that
are specific to bioacoustic research design, analysis and quality
control (Roch et al., 2016). These include terms relating to the
fields of project, quality control, description of analysis method
and algorithm used, and a description of annotation effort and
annotation boundaries Whilst “Tethys” is a good example of a
published standard of practice capturing metadata beyond just
segments of audio in time, the schema is difficult to adopt outside
of the Tethys Metadata Workbench. Drawing upon the example
of “Tethys,” standards for ecoacoustic data should not only
capture metadata about the recording itself, but metadata about
the project, deployment (including survey design), recordings,
objects annotated (including annotation effort and parameters)
and analysis (including description of methods, algorithms,
parameters, results and performance statistics). By applying
standards to data in this way, comparisons and analyses of data
would be easier and the development of standardized protocols
would be encouraged (Roch et al., 2016).

Analysis Tools and Techniques
The entire analysis workflow of an ecoacoustics project can
include various stages, such as collection of data, storage of
data, manual analysis of data, automatic analysis of data,
documentation of methods, and sub-sampling analysis effort.
This review focused on common analysis software and does not
represent a comprehensive list of analysis software, nor of the
latest automated approaches to data processing. For example,
the Practical AudioMoth Guide (Rhinehart, 2020) contains a list
of software targeted at or used by bioacoustics researchers and
that is either stable, currently in active development or recently
released as of 2020.13 Darras et al. (2020) reviewed software
tools built specifically for ecoacoustics and find limited software
that can perform all of the data processing tasks required and
Priyadarshani et al. (2018) reported 19 software tools, of which
3 were no longer in use as of 2020 (Darras et al., 2020). Browning
et al. (2017) list 19 software packages and tools for analysis of
acoustic recordings, including a brief summary of each software
and status of availability. It is important to note that software
is continually updating, with new methods of analysis emerging
in the literature.

We reviewed a range of free and proprietary software
(some requiring a license), consisting of cloud-based,
locally run, server run, command line based or software
with graphical user interfaces. The list of software reviewed
includes: Audacity, Kaleidoscope Lite and Kaleidoscope
Pro (Wildlife Acoustics, 2019), Raven Lite (K. Lisa Yang
Center for Conservation Bioacoustics, 2016) and Raven Pro

13https://github.com/rhine3/audiomoth-guide/blob/master/resources/analysis-
software.md
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(K. Lisa Yang Center for Conservation Bioacoustics, 2011),
AviaNZ (Marsland et al., 2019), Rainforest Connection (RFCx)
Arbimon (Aide et al., 2013), Ecosounds, Biosounds (Darras
et al., 2020), and BioAcoustica (Baker et al., 2015). The reviewed
software also includes popular command line run packages
such as bioacoustics (Marchal et al., 2021), monitoR (Hafner
and Katz, 2018), and seewave (Sueur et al., 2008). All the
software reviewed have some form of visual data inspection
capacity and all software have analysis capabilities to varying
degrees. Most have annotation capabilities, with approximately
half having recognizer building capacity and only a few with
recognizer tuning and testing capabilities. Few have detection
review capabilities, and standards for evaluating recognizer
performance are inconsistent across software. Furthermore, in
the literature, there is a lack of consensus on the best approach
to evaluating recognizer performance (see section “Evaluating
Recognizer Performance”).

Of the above software, we highlight the following four
software with qualities that promise to assist with realizing
scalable ecoacoustics in being capable of the management and
visualization of soundscape-level acoustic data, whilst also being
able to support multiple kinds of analyses: Ecosounds, BioSounds
(Darras et al., 2020), AviaNZ (Marsland et al., 2019), and
RFCx Arbimon (Aide et al., 2013). The Ecosounds website
is a key platform for the management, access, visualization
and analysis of environmental acoustic data through the open-
source and freely available Acoustic Workbench software—
which the website hosts. In addition, the Ecosounds website
acts as a repository of environmental recordings, and any
annotations made are downloadable and available as.csv files
making annotation outputs readable across multiple software. An
advantage of the Ecosounds platform is that it is cloud based and
supports the visualization and navigation of long duration and
continuous recordings.

Similar to Ecosounds, BioSounds is an open-source, online
platform for ecoacoustics which can manage both soundscape
and reference recordings, be used to create and review
annotations and also perform basic sound measurements in
time and frequency (Darras et al., 2020). On the platform,
recordings can be collaboratively analyzed and reference
collections can be created and hosted (Darras et al., 2020).
However, a major limitation of BioSounds is that at present,
it does not have the capacity to develop species-specific
recognizers and therefore lacks the capacity to develop efficient
solutions for automatic analysis of long duration datasets—
something which has been identified as one of the major
barriers for the expansion of terrestrial acoustic monitoring
(Sugai et al., 2019).

Another open-source and freely available software for
automatic processing of long-duration acoustic recordings is
AviaNZ (Marsland et al., 2019). This software facilitates the
annotation of acoustic data, provides a preloaded list of species
(based on New Zealand bats and birds for annotation IDs)
and facilitates the building and testing of recognizers whilst
providing performance metrics and statistics. AviaNZ can import
annotations made with other software as well as export any
lists of annotations or verified detections, therefore more readily

interfacing with other software. In addition, pre-built detectors
(for several New Zealand species of bats and birds) are available
for use in AviaNZ and any filters (recognizers) created by
users using AviaNZ can be uploaded for use on the platform,
facilitating the sharing of resources among users.

RFCx Arbimon14’s free, cloud based analytical tool can be
used to upload audio (and bulk upload.csv files), visualize,
store, annotate, aggregate, analyze, and organize audio recordings
(Aide et al., 2013). RFCx Arbimon’s analysis capabilities includes
automated species identification and soundscape analyses—
functions that support the analysis of both bioacoustic and
ecoacoustic audio data.

Our review findings support that, of the software available for
data processing, none support the entire workflow or can perform
all data processing tasks required by ecologists when analyzing
large acoustic data sets (Darras et al., 2020).

Approaches to Annotations
There are many reasons why practitioners may choose to
annotate sound data collected from the monitoring program,
and these may depend on the aims of the study or program
and range from being taxa dependent to purpose specific.
Whilst there is no single approach to annotation, common
approaches usually include start and stop times of the sound
event in either time, frequency, or both, such as by the
drawing of a box on a spectrogram around the event. In
addition to the creation of annotations, some software can
compute an array of acoustic parameters of signals of interest,
which can be exported for use in statistical analyses (Rountree
et al., 2020). Raven Pro software, for example, has over 70
different measurements available for rectangular time-frequency
selections around signals of interest. As such, there is no standard
approach to annotations. Depending on what the annotation
was trying to capture/measure and what software was used to
complete the annotation, variable metadata about the annotation
may be available. Uniquely, the “Tethys” metadata schema
introduced by Roch et al. (2016) provides an example of a
structure that aims to capture annotation effort—that is, what
proportion of detections were made systematically “OnEffort”
and which detections were made opportunistically “OffEffort.”
Specifying the analysis effort with “Tethys” includes denoting
which portions of the recording were examined, as well as
the target signals were being detected (“Effort”) (Roch et al.,
2016). Considering the analysis effort is especially relevant when
considering the number and frequency of annotations made.
Considering this effort can prompt questions such as: what
portion of the data were analyzed?; were all calls found, or were
only one call per site/per day identified?; given the analysis effort,
can the species truly be declared absent from the recordings?
(Roch et al., 2016). Given the varying approaches to annotation, it
would be useful to understand the level of effort and a description
of the protocols used to create annotations. This could be done
through the creation of a standard that offers different levels of
certification of the annotation made, ranging from: (0) unknown
or unstructured; (1) a protocol was followed, (2) a protocol was

14https://arbimon.rfcx.org/
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followed and verified and finally, (3) a protocol was followed and
verified, but by multiple people.

Interoperability
With no single, unified approach to analysis of ecoacoustic data,
ideally, components of analysis tools will be able to interoperate.
Within the reviewed software, aspects of interoperability have
been identified due to the capacity of software to ingest data
of a certain format, as well as export data in a certain format.
For example, Kaleidoscope Pro can create CSV format output
files of detections and verified detections, and AviaNZ are RFCx
Arbimon can import annotations from software in CSV or
Excel format. Ecosounds can export upon request: annotations,
acoustic indices and recognizer events detected CSV files. Raven
Pro can export.txt format files of annotations and detection
measurements, and the MonitoR packages can export sound data
as text files—all of which can be imported by Audacity. The
Seewave package can also import audio markers exported by
Audacity. Whilst there exists some degree of interoperability due
to common data formats of underlying audio data, translational
issues are likely to arise when file formats are not supported;
the exact structure and semantics of annotations varies between
tools and additional scripts are needed; or when there is difficulty
accessing and sharing resources and tools.

Evaluating Recognizer Performance
Without consistent metrics to quantify performance, it can be
difficult to compare performance of analysis techniques across
studies and across techniques. In addition, Browning et al.
(2017) report that classification errors for proprietary software
are often inadequately reported. It is desirable that recognizer
performance metrics are included with any reporting of use of a
recognizer, and that details of the construction of the recognizer
are included (Teixeira et al., 2019). Whilst there are a range of
metrics that can be used to evaluate classification performance
and compare performance across studies, four agreed upon key
metrics recommended by Knight et al. (2017) and Priyadarshani
et al. (2018) are: precision, recall, accuracy, and F1 score (the
harmonic mean of precision and recall). Calculating these four
metrics for each automatic classification task allows users to
contrast performance results of analyses and studies of potentially
vastly different designs by using common metrics of assessment.
One promising tool in development, egret (Truskinger, 2021), can
be used to report efficacy of recognizers and publish the results
in a standard format by evaluating precision, recall, accuracy
metrics. By promoting such standards in future, comparison
of studies that previously would not have been possible due
to different approaches in assessing and reporting classification
metrics, will become possible.

Available Archives
The need for more extensive and detailed collections of labeled
ecoacoustic data to support automated call recognition has
been identified (Gibb et al., 2019). These can take the form of
registries (that register the various locations of data), repositories,
and reference libraries We define a repository as software
capable of storing annotations for large acoustic datasets—the

annotations of which are particularly important for supervised
machine learning tasks (McLoughlin et al., 2019). Of the above
reviewed software, Ecosounds, BioSounds, AviaNZ, and RFCx’s
Arbimon have the capacity to also act as a repository. Separate
to repositories are reference libraries, for example Macauly
sound library,15 Xeno-Canto16 (mainly oriented for birds) and
BioAcoustica (Baker et al., 2015) and Zenodo17 Whilst reference
libraries and repositories offer potentially high quality reference
material, often certain taxonomic groups, habitats and regions
are data deficient (Browning et al., 2017). Further limitations of
reference libraries and repositories is that currently recordings
of single species prevail over soundscape recordings (Gibb
et al., 2019; Abrahams et al., 2021). If these potentially data
rich repositories and reference libraries are to be used in the
development, testing, comparison and validation of machine
learning methods for ecoacoustic applications, then standardized
methods of describing these datasets will ensure that they
are both findable to researchers and assessable for fitness and
inclusion into studies.

Key Findings and Identification of Gaps
This review finds that there is no one best approach or best choice
of analysis techniques or best software that can be used in the
processing of ecoacoustic data. Few freely available, open-source
analysis tools available unify the multiple steps of the ecoacoustics
workflow. Whilst there is some evidence of interoperability
among software, few software have the capacity to share analysis
and annotations. Some key reference libraries and repositories
exist, however there is a lack of availability of strongly labeled
datasets (in both publications and repositories) due to the absence
of clear standards and the effort required to create such datasets.
Few software that have the capacity to manage soundscape level
data by visualizing large amounts of acoustic data also have the
capacity to develop and test species-specific recognizers. Of the
metadata schemas reviewed, none contain enough ecoacoustics-
specific terms to capture the level of data that practitioners,
moving forward, may wish to track. Finally, whilst conventions
for annotations exist, there is yet to be a standard approach
to annotations which is likely to continue to impact upon the
reusability of labeled training datasets using in machine learning
classification tasks.

Workshop Findings
Our workshop revealed tensions around data management and
identified a range of analytic pain points. Participants reported a
need for help locating learning resources that describe the most
appropriate software, analytic techniques, and processes. We also
identified a range of considerations for encouraging ecoacoustics
data openness, and interoperability challenges.

Data Management and Analysis
Common practices around data storage included the collection
of data on hard drives and memory cards, and their subsequent

15www.macaulaylibrary.org
16www.xeno-canto.org
17https://zenodo.org
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storage on the same. Backup of data could include duplication
onto more hard drives, and very occasionally, cloud storage.
Cloud storage costs were mitigated by making use of free services
such as Arbimon.

Effort was expended creating consistent file structures when
data was collected from different recorders (with different
associated metadata); as well as when porting data between
software with different data fields (see Figure 2 for an example
workflow from Workshop 2). Participants would make use of
multiple software and platforms to access the functionality they
needed. While simple scripts could address these, less computer
science savvy users were not always able to easily produce
these. Ad hoc workarounds were developed that might negatively
impact reuse of data, for example the division of large sound files
into 1-min segments to expedite analysis. This practice destroys
associated metadata necessary for archiving and produces a set of
files that might negatively impact the performance of any hosting
platform (decreasing the likelihood that a platform might accept
this data at a later date).

Recognizer development was similarly hampered, both in
terms of learning the best techniques to apply, applying these
techniques, annotation of datasets, and verification. Users from
conservation advocacy groups reported, in some cases, that
analyses being outsourced to contractors to overcome some of
these issues. Many participants identified that expert validation
was particularly important, especially when monitoring critically
endangered species. Most users trained recognizers with datasets
specific to regions and because of regional variation in species’
calls, recognizer re-use in other regions may be limited or
challenging. Anascheme (Gibson and Lumsden, 2003) was
identified as a potential solution because it had developed
“regional keys,” a signature for a species across different regions.
Participants reported a strong desire for a “toolkit” of recognizers
from many regions, however there was also a need for these
recognizers to be associated with metadata or “notes” describing
the process through which the recognizer was developed.

Finally, citizen science was seen as a possible solution to the
bottleneck in the generation of annotated datasets, but existing
platforms have not been optimized for audio tasks. For example,
Zooniverse (Simpson et al., 2014) and Arbimon (Aide et al., 2013)

were being used for annotation and verification of identifications
but were not well suited to audio analysis or segmentation.

Training and Education
Finding training for new techniques was described as a “black
box,” or opaque, by one participant. Participants sought training
information and help from hardware manufacturers (e.g.,
Wildlife Acoustics, 2019), software forums, authors of academic
papers on ecoacoustics, and through their networks. Knowledge
varied across groups, with the university groups reporting greater
confidence in their ability to choose and carry out the most
appropriate analysis technique for their research question and
data. Conservation advocacy groups were interested in being able
to enable community groups to work on their own projects, as
well as to upskill land managers, but had limited capacity (time,
money, staff) to learn ecoacoustics analysis techniques. Choice
of tool was driven by cost, familiarity, recommendation, and any
additional benefits (e.g., free data storage, such as with Arbimon).

Participants identified a need for advice on best practice,
across a range of areas including:

• Guidelines on data collection procedures including how
to design monitoring programs to best use acoustics with
other techniques in the field

• Choice of monitoring tools
• Ideal recording parameters for the target species or habitat
• How to prepare and analyze data, including the best

techniques for developing recognizers
• The kinds of metadata that should be collected
• How to compare different types of data in a meaningful way

Specific examples were preferred that showed how people
have tackled problems. Some mechanism for triaging analytic
techniques based on data type and research question was also
seen as desirable. Participants also demonstrated varied levels
of confidence and capacity for learning the programming skills
necessary for some analytic and data management tasks, with
universities being better equipped than conservation advocacy
groups. Developing user interfaces and tools that account for
users with low levels of programming experience or the time

FIGURE 2 | Example workflow of species occupancy detection.
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FIGURE 3 | Workflow for ecosystem condition analysis using ecoacoustics data.

to learn these may supplant the need for some forms of
technical training.

Workshops were the preferred format for the delivery of
ecoacoustics training and education, though it was noted that
attending live events was challenged by fieldwork commitments.
Workshops were seen as a way to collaborate across disciplines
(ecology, computer science) to solve current problems. Having
materials online and always available was considered necessary,
particularly for organizations operating with limited resources
and those engaging in seasonal fieldwork. Forums were
desirable as this would allow researchers to ask questions and
seek expert advice.

Interoperability
Participants reported using analysis tools including RFCx
Arbimon, Audacity, Kaleidoscope Lite and Pro, Raven Lite and
Pro, various R scripts including MonitoR, Seewave and more. It
was recognized that being able to relate acoustics data to other
forms of data provided much needed context. Consequently,
there was a strong desire to be able to input ecoacoustics
data into other ecological modeling tools, for example to relate
acoustic data to environmental variables such as water level,
habitat structure, or vegetation, or to spatially and temporally
model species occupancy. Figure 3 shows a current practice in
which indices and verified annotations are compared with other
types of data using an analysis process with multiple streams.
Interoperation with other platforms such as Atlas of Living
Australia (Belbin and Williams, 2016) was also seen as desirable.

Hardware outputs, e.g., file formats, were not always well
suited to analytic software requirements and the need for
common data interchange formats was recognized. Issues were
identified with the upload and download of audio from
analytic platforms.

Intellectual Property and Sharing
Participants reported a lack of awareness regarding other groups’
ecoacoustics projects, with siloing of information sometimes
experienced within groups operating across multiple regions.
There was a strong desire to discover and use acoustic data and/or
recognizers that others had developed as this would minimize
the labor costs of monitoring and increase their overall ability to
monitor environments.

Various barriers to sharing this data were identified.
Participants universally stated a reluctance to share data on

sensitive species (e.g., critically endangered), and noted that
partnership agreements with academics, landowners, commercial
companies, and Indigenous communities may also impact
sharing. Less anticipated was the disclosed reluctance to share
data that might be leveraged for philanthropic funding by
another organization. In the space of not-for-profit conservation
advocacy, this funding is directly tied to being able to
show novel or innovative outcomes that might engage the
public, and organizations were in competition for these funds.
Another barrier to sharing large acoustic datasets was the
possibility of it containing human voices and an inability to
automatically detect them.

Methods to encourage sharing included producing clear
guidelines and licensing agreements for sharing and copyright
of data. Levels of access were also explored that might give
users more control over who could access the data, and when.
Associated location data would in some cases need to be obscured
(e.g., private land, sensitive species). Intellectual property
agreements would need to account for relationships between
universities, other not-for-profit organizations, community
groups, Indigenous communities, and commercial enterprises.

DISCUSSION

Realizing scalable ecoacoustics monitoring is hampered by some
of the problems common to emerging fields. These include
a lack of consensus regarding the best techniques to apply
to a given research problem, and a lack of infrastructure to
accommodate the specificities of data use and management.
This study combined a review and workshops with ecoacoustics
practitioners, to identify key issues for scaling up ecoacoustics
monitoring programs. Contributing factors were identified by
both the review and the workshop methods. These include
a lack of standardization in methods, poor software and
platform interoperability, difficulty finding training resources
and best practice examples, and a lack of ecoacoustics data
storage infrastructure available to a wide range of ecoacoustics
practitioners. Of these, some practitioners were impacted more
than others, with university-led users having greater access to
expertise, as well as high-performance computing and data
storage. Specific data sensitivities were also identified that impact
how data sharing would be negotiated. The next section discusses
these points and offers recommendations across the areas of
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enabling the sharing of data and metadata; standardization and
other improvements to ecoacoustics data analysis workflows; and
knowledge and skill acquisition for a range of actors. Finally,
we make recommendations to ensure that ecoacoustics research
becomes increasingly open and FAIR (Wilkinson et al., 2016).

Registries and Repositories
Making datasets and call recognizers searchable through
either a registry or repository would enable the field of
ecoacoustics to greatly expand its analytic capacity, by allowing
recognizers to be re-used, and by increasing the number of
cross-region and longitudinal comparisons that can be made
(Hampton et al., 2013). Repositories also contribute to the
wider ecoacoustics landscape by reorienting research toward
openness, as they represent successful negotiations around
intellectual property rights, and the fields’ long-term aspirations.
The movement toward open data requires a critical mass,
where the most common and basic operations are documented,
open, and standard.

We propose a method for sharing recognizers and evaluation
datasets. Each recognizer made should be published to a source
code repository, like a GitHub repository. This model allows
researchers to publish recognizers openly by default while also
allowing for private repositories (useful for embargo situations).
Users can also maintain sovereignty for their recognizers (as they
are version controlled), group recognizers together by project or
organization, and generate DOIs automatically through services
like Zenodo. Training and test datasets, depending on their
size, can be published with the recognizers, or linked from the
repository by using tools like Git LFS18 or the increasingly popular
DVC toolset, which is used to track datasets for experiments
(Kuprieiev et al., 2021). Tools like egret (Truskinger, 2021) can
be used to report efficacy of recognizers and publish the results
in a standard format. Template recognizer repositories can be
set up and published along with guides to make this process
easier for beginners.

Standardization and Interoperability
Standards would also greatly support interoperability between
software and platforms. Our review of metadata standards reveals
there are few dedicated environmental audio standards, and none
that are open and accessible. Whilst Tethys is the best example
of a metadata schema containing fields that go beyond just
technical specifications of acoustic sensor devices and ecological
and environmental data accompanying recordings, we suggest
that the most sustainable and responsive model for standards
development is open—something that Audubon Core excels
at. Further, we believe that linked data and formal ontologies,
while important, aren’t useful in day-to-day scientific work.
We propose that linked data standard (such as Dublin Core,
and the extensions relevant to us, like Biodiversity Information
Standards, Audubon Core, and the annotations interest groups)
are most important to technical implementers, like archives,
software, device manufactures and other actors that need to
share data or otherwise interoperate. Not one of our workshop

18https://git-lfs.github.com/

participants mentioned linked data, ontologies, or other technical
minutiae, however, this is explained by the lack of participants
with a background focused on structuring information so that it
is searchable, persistent, and linked to other data.

Currently ecoacoustics practitioners are using a wide range of
acoustic editing and analytic tools to complete analysis. Whilst
some software may focus on targeting one or a few analysis
functions within the ecoacoustic workflow, key challenges remain
in managing soundscape level data. In particular, the capacity to
develop or test species-specific recognizers, and to upload and
visualize large amounts of acoustic data challenges practitioners.
Issues also emerge when porting data between software to
access additional functionality. Ideally, there needs to be more
integration of a suite of analysis functions tools into software to
perform a greater proportion of the acoustic analysis workflow.
Alternatively, translational software that assists with software
interoperability could address some of these issues. There is also
a need to compare ecoacoustics data with other forms of data
(e.g., to conduct spatial modeling). Although there are ad hoc
approaches to achieve this (see Law et al., 2018), these analyses
would be greatly aided by free, non-proprietary, cloud-based
tools. While there are some software that meet one or more of
these requirements, few can capture all three criteria in a way that
can be scaled-up.

Opening up ecoacoustics data necessarily requires
consideration of interoperability with existing data platforms,
and for this to include publishing to or allowing access to
audio data and derived data (e.g., annotations or calculated
statistics from audio data). These are opportunities where
translational tools can help scientists transfer their data
between platforms using formal data standards, for example,
to enable annotations of acoustic events to be uploaded as
observance records to the Atlas of Living Australia. Similarly,
existing citizen science platforms (e.g., Zooniverse) that are
not currently well suited to acoustics data categorization and
annotation could benefit from generalized tools for working
with audio. Working with these platforms to enhance their
capacity to utilize acoustic data will greatly aid the development
of automated methods of detection and raise the profile of
ecoacoustics more broadly.

Best Practice and Training
Relatedly, ecoacoustics training resources aimed at
undergraduate ecology and land management courses would
greatly aid the development and the standardization of methods
in the field. As an emerging field, best practice is a work-in-
progress. To date, no comprehensive guide to ecoacoustic
survey and study design exists, though promising directions are
indicated (Browning et al., 2017; Bradfer-Lawrence et al., 2019;
Gibb et al., 2019; Sugai et al., 2019). However, there is currently
enough collective knowledge to provide worked examples of how
to approach a number of research questions with ecoacoustics
methods. File organization, sensor deployment, sensor settings,
relevant field data needed for collection, dealing with audio files,
recommendations for storage, and many other topics are all
worthwhile publishing. The goal should be broad adoption of
easy-to-use best practices that are easy to understand. With this
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platform of practices set up, the goal will be to have these de facto
standards coalesce into true standards. Suggested data formats
and layouts, become de facto standards through adoption, and
critical mass will lead to tools that interoperate with these
formats, which will realize gains for the community. Similarly,
to the recognizer registry proposed above, there will be need for
public contribution, version tracking, citable, and transparency
when developing these standards of practice. A wiki platform
or a source code repository are ideal choices if consumers see a
website first, and editors can be onboarded in a friendly manner.

In addition to best practices, there is value in creating
more formal training resources. Based on our participants’
responses we can suggest that training resources need to
be free for not-for-profits, on-demand, modular, facilitate
interactive learning (questioning/answering), and tied to research
questions. Ideally, any educational material recommends the
use of software. Currently, with a plethora of analysis software,
tools, and techniques available, there is no clear guide to
what technique/software to apply when, or to which ecological
problem. Of the software reviewed, categories of analysis software
ranged from being locally installed, run from the cloud or a
server, with either command line or Graphic User Interface
interaction. Some software is paid and requires a license, whereas
others are freely available. The choice of analysis software and
technique will largely depend on requirements such as whether
the software is free, whether it can handle large amounts of
acoustic data, whether it can perform analysis to the desired
level and whether it is accessible to the user. We recommend
that formal training resources recommend software that is open-
source and caters for a range of technical experience—allowing
for simple and effective analyses with little to no code, scaling
up to resources supporting advanced programming (like deep
learning research).

Open Ecoacoustics
Addressing these components—registries and repositories,
standardization and interoperability, best practices, and
training—will allow ecoacoustics monitoring to practically scale
up. Collectively, these improvements will also make ecoacoustics
methods more accessible for less well-resourced actors such
as not-for-profit conservation organizations. These groups are
well-versed in the promotion of conservation initiatives as well
as community engagement and—together with improvements
in ecoacoustics citizen science methods—these groups have the
potential to greatly influence the public imagination. This in turn,
can support the movement toward gaining widely accessible
open ecoacoustics data repositories. However, the changes
suggested above do not entirely address the challenges of open
ecoacoustics. As such, we make the following recommendations
for promoting open ecoacoustics research:

• Publication of ecoacoustics research should require
submission of data to an appropriate repository.

# Recognizers or other classification tools should be
published as per the recognizer repository concept.

# Original audio recording data should be placed in a
suitable archive, such as an Acoustic Workbench instance
or RFCx’s Arbimon.

• Opportunities for decentralized community
collaboration should be produced, particularly for
best practices and guides.

• Ecoacoustics leaders and organizations should place an
emphasis on open by default research and data. Options
for sensitive data or proprietary intellectual property
agreements need to continue to exist but should be
communicated as the exception to the rule.

# Particularly for vulnerable species, archives of data
must be transparent in their dissemination of said
data and build trust with stakeholders when storing
data. Options for embargos and fine-grained access
control are paramount. These levels of access are to be
reviewed periodically.

# Some forms of metadata must remain open regardless
of data sensitivities, e.g., project name, what type of
data was collected, who collected it, and how it was
collected may be negotiated stay open so that data
remains searchable, but users may wish for greater levels
of control regarding the where and when.

• Ecoacoustic platforms (software, archives, and hardware)
must work cooperatively on formal data standards
and interoperation.

• Ecoacoustic archives must invest persistent identifiers
for their data collections. Datasets need to be associated
with Digital Object Identifiers (DOIs), other research
related persistent identifiers, and citing data must
become commonplace.

Limitations
We did not review every available tool, technique, or software
relating to ecoacoustics. Further review of existing survey and
study designs that synthesize commonalities would also be
valuable. Obvious next steps include systematically reviewing
the literature and supplementing this with a broad survey of
common practices, worldwide. However, we are confident, based
upon similarities with the workshop findings, that the current
review does provide a representative illustration of the types of
techniques currently used in the ecoacoustics field.

The workshop participants from organizations conducting
conservation research and/or land management. We did not
recruit participants from industry (e.g., forestry, agriculture,
mining), or commercial environmental consultants. It seems
likely that these groups may have different needs for intellectual
property protection that would impact open data agreements.
Further research in this direction could consider how
commercial and conservation-focused ecoacoustics interact
and how data openness and protections might be achieved.
Additionally, participation in the workshops was limited to
Australian ecoacoustics practitioners. Australia is unique in
its environmental conditions and species, and some of the
problems our participants face may not be faced by ecoacoustics

Frontiers in Ecology and Evolution | www.frontiersin.org 11 January 2022 | Volume 9 | Article 80957653

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-809576 January 10, 2022 Time: 14:24 # 12

Vella et al. Realizing Open Ecoacoustic Monitoring

practitioners elsewhere. Though the opposite is also true,
and the specificities of what is needed to realize scalable
ecoacoustic monitoring in other parts of the globe requires
further investigation.

While the workshop participants mentioned complexities with
the development of call recognizers with training data from
species of different regions to their target species, we did not
follow up with an in-depth account of how they tackled this
technically. Clearly, there is a need for tools and techniques that
can address regional variation in calls, and this remains a design
challenge that could be further explored through a canvasing of
current techniques.

CONCLUSION

This study of current ecoacoustics practices, tools, and standards
highlights the key obstacles for realizing scalable ecoacoustic
monitoring for conservation and suggests ways to move forward.
Strategies have been identified that address the challenges
identified by workshop participants, and the gaps established
by the review. Amongst these are the continued development
of formal standards by platforms and the establishment of
open-source best practices for scientists and related stakeholders
(e.g., land managers in charge of deployment). Additionally,
the development and production of training and learning
materials is needed to guide the next generation of ecoacoustics
researchers. Recognizer repositories and registries should be
established with a focus on open-by-default methods and
practices. This will be supported by the publication of data
along with research being strongly encouraged by organizations
and journals, and a focus on FAIR data—that is findable,
accessible, interoperable, and reusable (Wilkinson et al., 2016)—
and persistent identifiers for said data.

There is massive potential for the ecoacoustics field to
influence biodiversity research and conservation, as well as
computing techniques in related fields (e.g., bioinformatics).
With the aforementioned suggestions implemented, the
field of ecoacoustics can continue to grow into an
established science.
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Continuous recording of environmental sounds could allow long-term monitoring of
vocal wildlife, and scaling of ecological studies to large temporal and spatial scales.
However, such opportunities are currently limited by constraints in the analysis of
large acoustic data sets. Computational methods and automation of call detection
require specialist expertise and are time consuming to develop, therefore most biological
researchers continue to use manual listening and inspection of spectrograms to analyze
their sound recordings. False-color spectrograms were recently developed as a tool
to allow visualization of long-duration sound recordings, intending to aid ecologists in
navigating their audio data and detecting species of interest. This paper explores the
efficacy of using this visualization method to identify multiple frog species in a large set
of continuous sound recordings and gather data on the chorusing activity of the frog
community. We found that, after a phase of training of the observer, frog choruses could
be visually identified to species with high accuracy. We present a method to analyze
such data, including a simple R routine to interactively select short segments on the
false-color spectrogram for rapid manual checking of visually identified sounds. We
propose these methods could fruitfully be applied to large acoustic data sets to analyze
calling patterns in other chorusing species.

Keywords: acoustic monitoring, Ecoacoustics, frog chorusing, acoustic data analysis, acoustic data visualisation,
chorus detection

INTRODUCTION

Passive acoustic monitoring is now a standard technique in the ecologist’s toolkit for monitoring
and studying the acoustic signals of animals in their natural habitats (Gibb et al., 2019; Sugai et al.,
2019). Autonomous sound recorders provide significant opportunities to monitor wildlife over long
time frames, and at greater scale than can be done physically in the field. Recording over extended
periods and locations provides insight into species’ activity patterns, phenology and distributions
(Nelson et al., 2017; Wrege et al., 2017; Brodie et al., 2020b), and allows for the study and monitoring
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of whole acoustic communities (Wimmer et al., 2013; Taylor
et al., 2017). Continuous and large-scale acoustic monitoring
has become feasible as technological advances have provided
smaller, cheaper recording units with improved power and
storage capacities. However, the large streams of acoustic data
that can be collected must be mined for ecologically meaningful
data, and so the problem of scaling of observations has been
translated into a problem of scaling data analysis (Gibb et al.,
2019). Ecologists using acoustic approaches require effective and
efficient sound analysis tools that enable them to take advantage
of the scaling opportunities in large acoustic data sets.

Often, computer-automated approaches to detecting and
identifying the calls of target species, such as pattern recognition
and machine learning, are put forward as the solution to
analyzing big acoustic data (Aide et al., 2013; Stowell et al.,
2016; Gan et al., 2019). However, developing automated detection
pipelines requires a high level of signal processing, computational
and programming expertise, as well as considerable time and
effort in labeling call examples to train classifiers, and then
test and refine their performance (e.g., Brodie et al., 2020a).
Unsupervised machine learning methods circumvent the need
for labeled data but still require a large amount of data, and
considerable time and expertise, to compute learning features and
interpret the results (Stowell and Plumbley, 2014). Long-duration
field recordings often contain intractable amounts of noise and
variability in the quality of calls, and achieving accurate species
identification is challenging in large-scale studies or studies
of multiple species (Priyadarshani et al., 2018). The focus of
automated acoustic analysis has been on detection of individual
calls, but this granularity of data is often not what is required in
studies of population chorusing activity, and call detections are
instead aggregated into calls per unit of time. The time and effort
in developing automated species detection methods to create
results of limited practical use means this approach is not feasible
in many studies and monitoring programs. Thus, manual sound
analysis continues to be used in the majority of ecological studies
using acoustic methods (Sugai et al., 2019), while automated call
detection methods continue to be developed and improved (e.g.,
Ovaskainen et al., 2018; Marsland et al., 2019; Brooker et al., 2020;
Kahl et al., 2021; Miller et al., 2021).

The manual approach to analyzing environmental sound
recordings for studies of vocal animals, is to inspect each
sound file using specialized software with both spectrogram
and playback functions (e.g., Audacity1; Raven, Cornell Lab
of Ornithology). An observer familiar with the calls of target
species will typically scan the spectrogram visually for candidate
sounds, and may use playback to confirm the species when
uncertainty exists. In this way, an expert observer does not
need to playback and listen to the entire recording to analyze
it and identify the species present. This can be more efficient
than designing automated call recognizers for short-term studies
where there are few target species. However, manual analysis
of sound recordings becomes impractical for large-scale studies
(long-term or many species). As a consequence, many acoustic
surveys are still designed with restricted sampling regimes

1https://www.audacityteam.org

that permit manual analysis. By programming recording units
to record for a limited time at regular intervals throughout
the study period, the temporal and spatial scale of surveys
can still be kept large while keeping manual analysis feasible.
Restricted sampling regimes have disadvantages over continuous
recordings, however, such as a reduced likelihood of detecting
rare species or species that vocalize infrequently (Wimmer et al.,
2013), as well as a narrower temporal sampling resolution, which
may miss ecological patterns of interest. Therefore, techniques
that allow analysis of long, continuous audio recordings that do
not rely on statistical techniques that are beyond the expertise of
many users (e.g., machine learning), and that do not restrict the
amount of time sampled, are required.

Recent developments in computational approaches to the
analysis of environmental sound recordings have led to software
tools being made available that generate visual representations of
sound recordings at scales of 24-h or more. Towsey et al. (2014)
developed a method of representing a long sound file in a single
spectrogram that can be viewed whole on a standard computer
monitor screen. This was achieved by using acoustic indices,
which are numerical summaries of the sound signal calculated
at coarse time scales, and which can be considered a form of
data compression (Sueur et al., 2008; Pieretti et al., 2011). The
compressed spectrograms were generated using three different
acoustic indices calculated at 1-min resolution and mapping the
values to three color channels (red, green, and blue) to form a
“false-color” spectrogram. The sound content of the recording is
reflected in the visual patterns which highlight dominant sound
events. While these false-color spectrograms were devised to
visualize general patterns in the soundscape, exploration of the
patterns revealed that the calls of some species could be identified
in the images (Indraswari et al., 2018; Towsey et al., 2018b). An
example of a false-color spectrogram for a recording used in this
study is presented here (Figure 1).

This manuscript presents a method of using long-duration
false-color spectrograms to navigate and sample a large set
of environmental recordings to detect species in a chorusing
frog community. The impetus for applying this method was to
collect data on the chorusing phenology and nightly chorusing
activity of frog species at multiple breeding sites. We present
simple R (R Core Team, 2021) routines for generating false-
color spectrograms and for interactive selection of time segments
to automate the process of finding and opening the segments
of interest in the audio for manual analysis. We also test the
accuracy of an observer, after some learning experience, to
visually identify the frog species present at the study sites from
patterns on the false-color spectrograms. Our aim is to outline
and describe a protocol that will be useful to ecologists looking for
an easily implemented method of navigating acoustic recordings
and identifying the calls of target species.

MATERIALS AND METHODS

Acoustic Recordings
Long-duration sound recordings were made at frog breeding
sites near Townsville, north Queensland, Australia (19.357◦ S,
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FIGURE 1 | (A) Example false-color spectrogram of a recording used in this study with chorusing of three frog species dominant. The frog choruses show as pink
and purple tracks below 4.5 kHz. Sporadic birds calls occur (green/yellow), and insect choruses are prominent as pink and blue tracks above 4 kHz. The horizontal
dotted lines delineate 1000 Hz frequency intervals (labeled in kHz on the axis outside the figure for clarity). Colors are derived from three acoustic indices (Acoustic
complexity – red; Entropy – green; and Event count – blue) which are defined in the text. (B) The same false-color spectrogram image with the chorusing frog
species identified inside the labeled boxes.

146.454◦ E). Recording units (HR-5, Jammin Pro, United States)
were set to record continuously at 10 sites each night
throughout a 19-month period from October 2012 to April 2014.
Recorders were housed in water-proof metal boxes with external
microphones in plastic tubing, and recordings were made in MP3
file format (128 kbps bit rate; 32000 Hz sampling rate). The study
area is in a tropical savanna ecoregion and frogs in this habitat
are nocturnal, so recordings were only made during the night.
Most recordings were between 10- and 13-h duration, typically
commencing between 1800 and 1930 h and ending after sunrise.
The number of nights recorded at each site during the study
period ranged from 375 to 473 nights (audio was not obtained
for all nights because of recording equipment failure). At the end
of recording period we had collected 3,965 nightly recordings
totaling approximately 46930 h of audio.

Generation of False-Color Spectrograms
False-color spectrograms were produced using the QUT
Ecoacoustics Audio Analysis Software v.17.06.000.34

(Towsey et al., 2018a) following the methods detailed in
Towsey et al. (2015) and Towsey (2017). Audio recordings were
divided into 1-min segments, re-sampled at a rate of 22,050
samples per second and processed into standard spectrogram
form using a fast-Fourier transform with Hamming window and
non-overlapping frames of 512 samples per frame (∼23.2 ms per
frame). Acoustic indices were calculated for each minute segment
in each of 256 frequency bins from 0 to 11025 Hz (bandwidth
∼43.1 Hz). False-color spectrograms can be produced using
a combination of any three of the calculated acoustic indices,
which are mapped to red, green and blue colors. We used
the default combination of indices output by the software –
the acoustic complexity index (ACI), spectral entropy (ENT)
and acoustic events (EVN) (Table 1). This combination of
acoustic indices best displays biotic sounds of interest in the
false-color spectrograms, because they are minimally correlated
and highlight different features (Towsey et al., 2018b).

The analysis to calculate acoustic indices and produce false-
color spectrograms for our large set of recordings was done by the
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TABLE 1 | Definitions of acoustic indices used in composing false-color
spectrograms, calculated for each minute in each frequency bin
(Towsey et al., 2014; Towsey, 2017).

Acoustic index Description

Acoustic complexity
index (ACI)

The average relative change in sound amplitude from
one frame to the next.

Entropy (ENT) A measure of temporal concentration of acoustic energy.

Event count (EVN) The number of acoustic events exceeding 3 dB.

QUT Ecoacoustics Research Group’s data processing lab using
multiple computers which were dedicated to research analyses.
However, the QUT Ecoacoustics Audio Analysis program is
available as open source software and can be run on a personal
computer. The program is downloaded as an executable file
and run from the command line which provides flexibility for
scripting and batch processing on different platforms (Truskinger
et al., 2014). R code to run the open source version on multiple
sound files in a single process is provided on GitHub (Brodie,
2021). When tested on a desktop PC (16 GB RAM, Intel(R)
Core(TM) i7-7700 CPU @ 3.60 GHz) and running analyses in
parallel, a 12-h recording took on average 7 min to analyze. For
large data sets where this rate of output is inadequate, dedicated
high-peformance computing facilities or professional support
may be required.

Navigation and Inspection of False-Color
Spectrograms
The QUT Ecoacoustics Audio Analysis software output a set
of files for each separate audio file including the raw acoustic
index values in CSV files, and the false-color spectrograms
as PNG image files. All the PNG image files of the ACI-
ENT-EVN indices combination were placed into a single
directory for each site for ease of navigation through each
set of images. Each pixel on the false-color spectrogram
images represented 1 min on the time scale and approximately
43 Hz frequency range. A time scale is included on the
image displaying the time since the start of the recording
or, if a valid date and time is included the audio filenames,
the time of the recording. Therefore, the position of a
pixel on a false-color spectrogram informs the time position

within the audio recording (x-axis), and the approximate
frequency range (y-axis). We used the XnView image viewer
application (v 2.432) to view the PNG image files, as this
application displays the position coordinates of the mouse
pointer on the image. This allowed identification of the
precise point, in number of minutes, from the start of
the recording.

The patterns in the false-color spectrograms reflect the
dominant sound sources in each time segment and frequency
bin. Learning to relate visual patterns to sound events was
done by identifying potential sounds of interest on the false-
color spectrogram images and then manually inspecting the
corresponding minute in the audio file to identify potential
sound sources. We used Audacity audio software (see text
footnote 1) for playback of the raw audio and viewing in standard
spectrogram format.

R Routines for Efficient Analysis
Although sound analysis software packages such as Audacity can
open and display long sound files, opening and navigating long
recordings is inefficient when short segments from many separate
recordings need to be analyzed. We made the analysis more
efficient using R routines in the RStudio environment (RStudio,
2021) to slice short segments of the recordings at specified time
points using the “Audiocutter” function in the QUT Ecoacoustics
Audio Analysis software (Towsey et al., 2018a). The R routines
included user-defined functions to select and cut audio segments
using two alternative methods of selection:

(i) direct user input - the user entered the start minute (the
x-value identified on the false-color spectrogram image)
and desired length of audio segment as variables into the
R script;

(ii) interactive selection – the user invoked a function from
the R ‘imager’ package (Barthelme, 2021) which opened a
graphic window displaying the false-color spectrogram and
prompted the user to select the desired minute(s) (x-value)
interactively on the image (the ‘grabPoint’ function to select
a single x-value, or the “grabRect” function to select a range
of x-values).

2https://www.xnview.com/en

TABLE 2 | Results of accuracy test of visual identification of frog species in 321 test minutes using false-color spectrograms.

Species Minutes
present

Correct
(TP)

Incorrect
(FP)

Missed
(FN)

Not present
(TN)

Precision
TP/(TP + FP)

Recall (sens)
TP/(TP + FN)

Specificity
TN/(TN + FP)

Rhinella marina 132 125 1 7 189 99.2% 94.7% 99.5%

Litoria fallax 149 140 3 9 172 97.9% 94.0% 98.3%

Litoria nasuta 100 88 3 12 221 96.7% 88.0% 98.7%

Limnodynastes convexiusculus 30 28 0 2 291 100.0% 93.3% 100.0%

Limnodynastes terraereginae 21 17 2 4 300 89.5% 81.0% 99.3%

Limnodynastes peronii 15 13 0 2 306 100.0% 86.7% 100.0%

Litoria rubella 7 4 0 3 314 100.0% 57.1% 100.0%

Minutes present, number of randomly selected minutes in which the species was confirmed to be calling; TP, True positive; FP, False positive; FN, False negative;
TN, True negative.
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The user input was then passed to the “Audiocutter” function
which cut the selected minute(s) from the audio file and opened
the selected segment in the Audacity program. The R code files
have been made available on GitHub (Brodie, 2021).

Validation of False-Color Spectrograms
as a Species Identification Tool
To validate that the false-color spectrograms were a reliable
tool for visual identification of the frog species in this data set,
a random selection of minutes was analyzed by an observer
(SB) before being validated by inspecting the raw audio. Fifty
false-color spectrograms (i.e., for recordings of different nights)
from three sites were chosen which had not been previously
analyzed. A random selection of up to 20 one-minute segments
was made from each spectrogram using a random number
generator. The presence of frog species was predicted for each
randomly selected minute in each recording solely from visual
inspection of the false-color spectrogram and prior to any
inspection of the audio file. The visually based predictions were
then validated by inspecting the corresponding audio segment
using the Audacity program. A total of 321 separate minutes were
randomly selected for validation, and the identification precision,
recall and specificity metrics were calculated for each species
identified. The frog species present at the study sites aggregate
at water bodies to breed and males call in choruses. We did not
distinguish between times when only one individual was calling
and more than one individual was calling, since the ultimate aim
is to use calling or chorusing as an indicator of breeding activity.
It should be noted that this test was performed after the observer
(SB) had gained some familiarity with the species’ patterns in the
false-color spectrograms of the data set, and had an expert level
of ability to identify the calls of the frog species present in the
raw audio.

RESULTS

Using the false-color spectrograms as a visual guide to the
sound content of long environmental recordings, we were able
to efficiently collect data on the presence and timing of chorus
activity of multiple species of frogs in a large set of acoustic
recordings. This method greatly reduced the manual listening
effort required when compared to scanning entire recordings
and increased the detectability of species over a method using
a restricted sampling regime of regular time intervals. The time
taken to survey the nightly recordings using the R routine to
select, cut and open short segments of audio ranged from a few
seconds (on nights with no frog chorusing) to 90 min (a full 13-
h continuous recording with 11 species of frogs identified and
extensive chorus activity). The average time taken to survey each
night was 14 min.

In the test of species identification accuracy, 9 false-positive
identifications were made, and 39 false-negative identifications
(species missed) out of a total of 454 occurrences of any frog
species (Table 2). As a result, precision (the percentage of correct
identifications) was very high for all species present. Recall (the
percentage of actual species occurrences detected) was high for

the most common species, but low for Litoria rubella which was
present in only 7 of the minutes selected for validation.

Inspection of the possible reasons for the identification errors
revealed that other noises in the same frequency band caused
the false-positive detections (Table 2). Litoria fallax and Litoria
nasuta were falsely detected occasionally because they were
confused with visual patterns made by splashing water. L. fallax
was also falsely detected in one instance when insect noise was
present. L. fallax has a call in the frequency range 2–6 kHz,
which overlaps with some insect sounds. L. nasuta was falsely
detected in one instance when L. rubella was calling, and once
when L. fallax was calling. L. nasuta has a short, broadband
call in the frequency range 1–4 kHz which entirely overlaps the
calls of L. rubella and partly that of L. fallax. Rhinella marina,
which has a long, low-frequency call made up of a trill of rapid
pulses, was misidentified only once when rapid dripping of water
onto the recorder housing created a similar pattern on the false-
color spectrogram. In two instances, R. marina was mistakenly
identified as L. terraereginae. The calls of these two species
overlap in the frequency range of approximately 500–900 Hz.
False-negative identifications (species missed) occurred either
because the missed species was obscured by other dominant noise
(vehicles, wind, other frogs or insects) or because the calls were
very faint and distant, very short bouts or one individual calling
at a very slow rate.

DISCUSSION

Visualization of long sound recordings is an innovative approach
for providing insight into the acoustic structure of environmental
soundscapes, and to aid detection of wildlife vocalizations. We
found that false-color spectrograms generated using acoustic
indices were a reliable and accurate method of identifying
the chorus activity of individual species in a large community
of chorusing frogs. A routine using the R programming
environment was developed that automates searching and
opening segments of sound files after interactive selection on
the false-color spectrogram image. This method provided an
easily implemented and practical tool for biological researchers
to explore and navigate sound recordings for species of
interest, and provides opportunities for increasing the scale of
acoustic analysis with open-source software tools. False-color
spectrograms allowed easy identification of which recordings
contained large amounts of vocal activity and those that did not.
For example, recordings with no frog chorusing had false-color
spectrograms with very little color pattern in the frequency range
below 4 kHz (e.g., Figure 2). This allowed us to quickly eliminate
nights with no frog chorus activity without the need to manually
check the audio file, and focus on those recordings with high
vocal activity (e.g., Figure 3).

The use of visualization as a tool to analyze long recordings
in ecological studies was developed independently by several
researchers (Wiggins and Hildebrand, 2007; Towsey et al., 2014)
but, despite its demonstrated usefulness, it has not been applied
extensively in practice. Wiggins and Hildebrand (2007) first
devised a method of visualizing sound recordings by averaging
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FIGURE 2 | False-color spectrogram of a recording used in this study showing a night with no frog vocal activity. The dominant sounds are insect choruses above
4 kHz. The occasional pink and red tracks at 3–4 kHz are also insects. Sporadic sounds below 3 kHz which occur include wind, passing vehicles and occasional
bird calls. The obvious green broadband mark at approx. 23:40 hrs is made by water birds splashing and flapping wings close to the microphone. The horizontal
dotted lines delineate 1,000 Hz frequency intervals (labeled in kHz on the axis outside the figure for clarity).

FIGURE 3 | False-color spectrogram of a recording used in this study which features the choruses of six frog species calling simultaneously. The horizontal dotted
lines delineate 1,000 Hz frequency intervals (labeled in kHz on the axis outside the figure for clarity). Patterns are sometimes obscured by other dominant species but
can be distinguished at other times.

spectral power values over chosen time frames to generate
compressed spectrograms. Their method was implemented in the
MATLAB programming environment using the Triton software
package (Wiggins, 2007) which also facilitates navigation to
specific segments of the raw audio for manual analysis. Published
examples have applied visualization using the Triton package in
marine environments, for which it was designed, to detect whale
calls (Soldevilla et al., 2014) and describe marine soundscapes
(Rice et al., 2017), but it has also been used in freshwater
environments to detect chorusing of an underwater-calling frog
(Nelson et al., 2017), and in terrestrial environments to detect
chimpanzee vocalizations (Kalan et al., 2016).

The false-color spectrograms developed by Towsey et al.
(2014), Towsey et al. (2015), and demonstrated here, progressed

the concept of soundscape visualization, by using acoustic indices
that highlight biological sounds. The method of visualization
using three color channels based on different metrics enables
display of more complex patterns, and highlights a greater variety
of sound sources than using the single spectrogram power values.
False-color spectrograms have been used in ecological studies to
describe and compare soundscapes, by using the visual images
to detect the dominant sounds in the environment (Dema et al.,
2018; Campos et al., 2021). Several studies have shown the calls
of individual species can be detected visually using false-color
spectrograms. Towsey et al. (2018b) and Znidersic et al. (2020)
were able to visually detect the presence of cryptic marsh birds.
Brodie et al. (2020b) used the method to confirm the nightly
presence of invasive toad calling activity.
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The general advantage of visualization of environmental
recordings is that it allows rapid detection of candidate sounds of
interest without relying on complex computational methods, and
reduces the effort required to manually scan sound files. While
previous published studies have used false-color spectrograms
for detecting species presence and characterizing soundscapes,
here we have demonstrated the method can scale to studies of
communities of chorusing frogs over extended time periods and
multiple locations. The constant choruses of several frog species
left unique traces on the false-color spectrograms which, in many
instances, could be confidently identified without the need to
analyze the raw audio, decreasing further the manual analysis
required. Manual inspection of the audio, either by listening or
viewing the standard spectrogram, was still required for many of
the recordings where the noise source of presence of a frog species
was unclear. Therefore, there is a limit to the scalability of using
this method for very large data sets.

The high precision and specificity of frog species identification
achieved in the test cases (Table 2) reflects the low rate of
false-positive detections. That is, patterns on the false-color
spectrograms were only very occasionally incorrectly identified
as another species. The majority of identification errors were
missed species’ presence, in cases where the frog calls were distant
and low-quality in the recording, or there was a low rate of
calling. Low-quality, background calls will always be difficult
to detect regardless of the method used. The accuracy results
presented here are better for the 5 species that are shared with
a previous study investigating the use of automated classification
using acoustic indices and machine learning (Brodie et al., 2020a).
This suggests that even with considerable time and effort to label
training data and train classification models, automated methods
may still not perform as desired, and manual methods such that
presented here may be more suitable.

Our aim in this study was not to compare the accuracy
of species identification using false-color spectrograms with
automated detection methods, as these are different approaches
to data reduction and analysis of acoustic data. The use of
false-color spectrograms to survey acoustic recordings for target
species can reduce the amount of manual analysis required, but
still requires significant manual effort and time to learn to identify
patterns of interest. In addition, computing time to calculate
acoustic indices and generate the images is considerable for
large data sets. Automated species detection for environmental
sound recordings is a rapidly advancing field, however, may
not be feasible or practical for all acoustic studies. The most
successful automated detection algorithms are for species with
well-described calls which are distinct from the calls of other
species (e.g., Walters et al., 2014 for bats; reviewed in Kowarski
and Moors-Murphy, 2020 for fin and blue whales) or for which
large sets of training data are available (e.g., Kahl et al., 2021;
Miller et al., 2021). Nonetheless, the challenge of automating
analysis of acoustic data is far from solved for many research
questions. Automated animal call detection is now the domain
of computer scientists and computational experts, and there is
considerable time and expertise required in developing accurate
detection algorithms. Further, recent reviews have revealed that
the majority of studies utilizing automated call detection methods

incorporate manual human intervention in post-processing
stages, such as manual validation and cleaning of call detection
results (Sugai et al., 2019; Kowarski and Moors-Murphy, 2020).
There are inevitable trade-offs in time, cost and effort when
researchers decide whether to utilize automated or manual
methods in their acoustic data analysis.

Several factors combine to render frog choruses visually
distinct and readily identifiable on the false-color spectrograms.
Frog choruses tend to be persistent through time, often
continuing for several hours, and are the dominant sound at
breeding sites during breeding periods. Frog calls are repetitive
and consistent in structure within species, but vary in both
structure and frequency range among species. This method of
using visualization to analyze long-duration audio is, therefore,
highly suited to monitoring frog communities where species form
persistent, loud choruses at breeding sites. This approach would
also be applicable to other chorusing species, such as soniferous
insects. Sounds that occur over short periods may also be visible
on the false-color spectrograms but are less obvious than patterns
that extend through a large portion of the recording. Some
nocturnal birds that call continuously for at least a few minutes,
such as owls and cuckoos, can also be identified (Phillips et al.,
2018; personal observation). Short bursts of sounds may also be
highlighted on the false-color spectrograms if they are louder
than other sounds in the same minute segment, so this technique
of detecting sounds is not limited to species with long-duration
calls. However, it became clear from our experience analyzing
this data set that the representation of sounds in the false-color
spectrograms is dependent on other sounds present in the same
minute segment and frequency band. The loudest sounds in
each segment are highlighted so that the choruses of several
frog species were sometimes obscured, or masked, in periods of
high chorus activity dominated by other frog species. On the
other hand, soft short calls may be identified in other periods
when there are no competing noises in the same frequency
range (Znidersic et al., 2020; personal observation). We found
that the masking by dominant frog species could be somewhat
overcome by using long, continuous recordings rather than
shorter, intermittent recordings. Having a complete, continuous
recording for each study night meant we could detect most
of the chorusing frog species at some point in the false-color
spectrogram when masking was reduced. Whether false-color
spectrograms are a suitable tool for the detection of a species
depends on the likelihood of capturing calling individuals within
range of the microphone and the level of competing noise in the
target frequency range.

A further advantage to the approach described is that all
software used was open source and does not require a specialized
platform. The QUT Ecoacoustics Audio Analysis program3

automatically performs all processing of raw audio, calculation of
acoustic indices and generation of the false-color spectrograms.
Some knowledge of running programs from a command-line
environment is required, but user input requirements are limited
to defining the input and output files, with some configuration
options. The interactive selection functions were implemented in

3https://github.com/QutEcoacoustics/audio-analysis/releases
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R using R Studio (Brodie, 2021), and are simple to run for users
with basic knowledge of the R programming environment. R is
now widely used in ecological research (Lai et al., 2019) and easily
accessible for most researchers.

The false-color spectrograms can be a useful tool to analyze
long recordings, even without the R routine program, simply by
manually opening the corresponding sound file and navigating
to the time-point of interest indicated on the false-color
spectrograms. The interactive R routine was created to increase
time efficiency, as shorter sound files are quicker to open than
longer files, and when opened can be immediately inspected
without having to navigate through a long recording to the
relevant time point. In addition to increased efficiency, the R
routine reduces the risk of human error. When dealing with large
sets of sound files there is a risk of choosing the wrong file if many
files have similar names with the same date, or of navigating to the
wrong time point in long recordings.

Although automated methods of identifying species in
acoustic data is an advancing field of research, many researchers
continue to use manual analysis methods in acoustic monitoring
studies. Our aim in this paper was to demonstrate a work-flow
including the practical application of false-color spectrograms
(Towsey et al., 2014) as a navigation aid to streamline the manual
analysis of acoustic data. The process described here takes this
innovative method of visualizing sound and incorporates it into
an efficient routine for detecting the chorusing of multiple species
of frogs in large acoustic data sets. The accuracy achieved in
identifying multiple species of frogs from field recordings taken
at different times and locations confirms this can be a reliable
method of species detection and identification. Used as a means
to quickly scan the content of recordings for target sounds, the
amount of manual analysis is greatly reduced. There is potential
for its use in increasing the coverage of ecological monitoring
programs, particularly where automated methods of analysis are
not practical or feasible. In describing and outlining our process
of utilizing false-color spectrograms to analyze long-duration

recordings, we seek to make this method accessible and practical
for use by other researchers using acoustic monitoring methods.
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Temporal Soundscape Patterns in a
Panamanian Tree Diversity
Experiment: Polycultures Show an
Increase in High Frequency Cover
Sandra Müller1* , Oliver Mitesser2, Linda Oschwald1, Michael Scherer-Lorenzen1 and
Catherine Potvin3

1 Department of Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany, 2 Field Station Fabrikschleichach,
Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany, 3 Neotropical Ecology
Lab, Department of Biology, Smithsonian Tropical Research Institute, McGill University, Montreal, QC, Canada

In this ecoacoustic study we used the setting of a tropical tree diversity planted forest
to analyze temporal patterns in the composition of soundscapes and to test the effects
of tree species richness on associated biodiversity measured as acoustic diversity. The
analysis of soundscapes offers easy, rapid and sustainable methods when assessing
biodiversity. During the last years the quantification of regional or global acoustic
variability in sounds and the analysis of different soundscapes has been evolving
into an important tool for biodiversity conservation, especially since case studies
confirmed a relationship between land-use management, forest structure and acoustic
diversity. Here we analyzed soundscapes from two seasons (dry and rainy season)
and aurally inspected a subset of audio recordings to describe temporal patterns in
soundscape composition. Several acoustic indices were calculated and we performed
a correlation analysis and a non-metric multidimensional scaling analysis to identify
acoustic indices that: (i) were complementary to each other and such represented
different aspects of the local soundscapes and (ii) related most strongly to differences
in acoustic composition among tree species richness, season and day phase. Thus,
we chose “High Frequency Cover,” “Bioacoustic Index,” and “Events Per Second”
to test the hypothesis that acoustic diversity increases with increasing tree species
richness. Monocultures differed significantly from polycultures during night recordings,
with respect to High Frequency Cover. This index covers sounds above 8 kHz and thus
represents part of the orthopteran community. We conclude that increasing tree species
richness in a young tropical forest plantation had positive effects on the vocalizing
communities. The strongest effects were found for acoustic activity of the orthopteran
community. In contrast to birds, orthopterans have smaller home ranges, and are
therefore important indicator species for small scale environmental conditions.

Keywords: ecoacoustics, tree diversity experiment, high frequency cover, acoustic diversity, soundscape,
temporal patterns
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INTRODUCTION

Habitat loss, agricultural activities, global warming and the
introduction of exotic species lead to massive decreases of
biodiversity all over the world (Sala et al., 2000; Cardinale et al.,
2012; IPBES, 2019b). With habitat loss being a major driver
of species loss and deforestation still increasing dramatically
in the tropics (Brooks et al., 2002; IPBES, 2019a), afforestation
is an important and widely used tool for restoring ecosystems
and mitigating climate change. Although evidence shows that
tree species mixtures can improve multi-functionality in forest
(van der Plas et al., 2016, 2017), particularly forest productivity
and Carbon storage (Potvin and Gotelli, 2008; Potvin et al.,
2011; Ammer, 2019; Guillemot et al., 2020), most areas pledged
for afforestation are currently set to become monocultures
(Lewis et al., 2019). Monocultures are likely less suited
than natural secondary forests or mixed-species plantations
for promoting and restoring associated biodiversity (Perfecto
et al., 1997; Ampoorter et al., 2020). Increasing tree species
richness in plantations might have multiple consequences for
the associated fauna, by providing a broader range of food
sources for both generalists and specialists herbivores, which
could scale up to higher trophic levels (Brose, 2003; Potts et al.,
2003; Castagneyrol and Jactel, 2012; Pekin et al., 2012; Ebeling
et al., 2018). Additionally, changes in tree species richness has
consequences for microclimatic conditions that could affect both
diversity and abundance of the animal communities as well as
temporal activity patterns (Walker, 1975a,b; Akutsu et al., 2007;
Checa et al., 2014; Kunz et al., 2019; Campos-Cerqueira et al.,
2020; Burivalova et al., 2021).

Biodiversity assessments in species rich tropical regions are
time and resource consuming. This is particularly true for
arthropods, as species identification for arthropods can take years
and demand expert knowledge in taxonomy. But also for well-
known taxonomic groups such as birds sampling is time, money
and labor intensive. During the last decade passive acoustic
monitoring and ecoacoustic methods have been proven a useful
and rapidly expanding tool for fast detection of biodiversity
trends, especially in response to land-use change (Burivalova
et al., 2018, 2019, 2021). Acoustic surveys do have the advantages
of being rapid, sensitive to multiple taxa, non-invasive and easy
to apply over large areas and long term periods simultaneously
at multiple locations (Sueur et al., 2008). Soundscapes are driven
by the composition of different vocalizing communities and thus
follow their respective vocal activity patterns resulting in specific
diurnal and seasonal soundscapes patterns. However, for tropical
habitats, little is known about such acoustic temporal patterns, as
most ecoacoustic studies so far have focused on temperate regions
(Scarpelli et al., 2020). The majority of tropical ecoacoustic
studies focused on diurnal patterns indicate that insects dominate
most of the diurnal soundscape, leaving a rather small “empty”
acoustic niche for birds at dawn and dusk (Aide et al., 2017). In
mature tropical forests these dawn and dusk periods result in an
overall soundscape saturation peak, with soundscape saturation
being defined as the proportion of active acoustic frequency
bins within a recording (Burivalova et al., 2018). Much less is
known on seasonal acoustic trends in the tropics, which likely

relate to changes in precipitation and humidity, often driven
by the alternation of dry and rainy seasons (Rankin and Axel,
2017; Opaev et al., 2021). Additionally, some studies indicate that
disturbances and changes in microclimate might interact with the
diurnal and seasonal (acoustic) activity patterns of the tropical
fauna (Akutsu et al., 2007; Checa et al., 2014; Campos-Cerqueira
et al., 2020; Burivalova et al., 2021; Fontúrbel et al., 2021).

Phenological acoustic activity patterns can be studied by
the application of ecoacoustic methods and its large variety
of acoustic indices that have been developed so far (Sueur
et al., 2014; Eldridge et al., 2018; Oliveira et al., 2021). In
the past, these indices have been successfully used as proxies
for various aspects of ecosystem biodiversity and as tools for
conservation (Sueur et al., 2008; Pekin et al., 2012; Fuller
et al., 2015; Buxton et al., 2016, 2018; Mammides et al.,
2017; Burivalova et al., 2018; Gasc et al., 2018; Turner et al.,
2018; Shaw et al., 2021). These findings suggest that habitat
heterogeneity positively affects acoustic diversity and thus also
species richness, at least for vocalizing taxonomic groups. Habitat
gradients that were tested in previous ecoacoustic studies were
sometimes substantial. Dröge et al. (2021) for example confirmed
good relationships between acoustic indices and land-use types,
testing a gradient from rice paddies to old growth forests. In
the present study we wanted to test how changing a single
habitat parameter, that is tree species richness, effects the
acoustic composition and temporal dynamic of the acoustic
community during the diurnal cycle in both the dry and wet
seasons. Experimental plantations are an ideal platform for
testing such a question as all other environmental variables
can be kept rather constant. This research took advantage of
the Sardinilla planted forest, set up in Panama in 2001 to
study the effects of tree species richness on ecosystem functions
(Scherer-Lorenzen et al., 2005). Here we performed acoustic
monitoring in plots with different tree species richness ranging
from monocultures to five-species polycultures to test our
hypothesis that acoustic diversity increases with increasing tree
richness. Based on previous studies highlighting the dominance
of insects in tropical soundscapes and given the small size
of the research plots we further hypothesized that particularly
orthopteran vocalizations should increase with increasing tree
species richness (Aide et al., 2017; Campos-Cerqueira et al.,
2020).

Above and beyond testing the effect of tree species richness
on acoustic diversity, our objectives were to examine how tree
species richness effected acoustic patterns through different
seasons and day phases and which acoustic indices can be used
to capture complementary acoustic patterns.

MATERIALS AND METHODS

Study Site
The Sardinilla planted forest is part of the global research network
TreeDivNet, which aims to quantify the relation between tree
species richness and ecosystem functioning (Paquette et al.,
2018). The experimental site of Sardinilla is located in the
central north of Panama (9◦19′30′′N, 79◦38′00′′W) at an altitude
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of 70 m. The area’s original forest was logged in the early
1950’s. After 2 years of agriculture, land-use turned into pasture.
The total experimental area covers approximately nine hectares
(Scherer-Lorenzen et al., 2007).

The tree plantation included six native tree species that
form a gradient from fast-growing pioneers to slow long-
lived tree species. Planted fast-growing species were Cordia
alliodora [(Ruiz and Pav.) Oken] and Luehea seemannii
(Triana and Planch.), whereas intermediate-growing species were
Anacardium excelsum [(Bertero and Balb. ex Kunth) Skeels]
and Hura crepitans (L.). Cedrela odorata (L.) and Tabebuia
rosea [(Bertol.) Bertero ex A.DC.] were chosen as slow-growing
tree species. In total, there were 24 plots of 45 m by 45 m
consisting of twelve monoculture plots (two per species), six
three-species mixtures (one per growth rate category) and six
identical six-species plots (Potvin and Gotelli, 2008). One tree
species, Cordia alliodora, failed to establish. We thus considered
the realized species richness (5, 3, 2, and 1) rather than the
original richness (6-3-1) (Figure 1). In 2017, after 16 years of
growth, a data collection campaign took place during which we
set up automatic recording devices to monitor acoustic diversity.
The recording period ranged from 30 March 2017 to 11 June
2017, covering parts of the dry and the rainy season. The dry
season in Sardinilla lasts from end of December to April followed
by 8 months of rainy season, which is reflected in monthly
precipitation sums of Sardinilla ranging from 48 to 70 mm in
March over 115–142 mm in April up to 306–344 mm in May and
290–339 mm in June 2017 (Hydrometeorology Management of
ETESA, 2017). Days were differentiated into four phases: dawn
(05:30–09:00), day (09:10–15:50), dusk (16:00–19:30) and night
(19:40–05:20).

Recording Methods
Recordings were made in all five-species plots, all three- and two-
species plots and five monoculture plots (one for each species)
using prototypes of the SET-Recorders (Soundscape Explanatory
Terrestrial, Lunilettronik, Fivizzano)1. One monoculture (Hura
crepitans) and two five-species plots were excluded from further
analysis as recordings stopped after just a few recording
minutes. Thus, in total we analyzed data from 14 plots (four 4
monocultures, 3 two-species, 3 three-species, and 4 five-species).
The autonomous recorders were equipped with omnidirectional
microphone capsule [EMY-63M/P, sensitivity (0 dB = 1 V/Pa.
1 kHz): dB −38 ± 3, signal to noise ratio: >60 dB, input
voltage of the ADC: 0.75 Vrms (personal communication with
Lunilettronik Coop.)]. The microphone gain was manually set
to +25 dB. The signals were sampled at 48 kHz with a 16 bits
digitization, recording for 1-min every tenth minute during 24 h
a day. This recording schedule allowed us to cover the whole
diurnal cycle, while at the same time covering an extended time
period from the dry season into the rainy season. The devices
were installed on a tree in the center of the plots, positioned
at 1.7 m height always facing south, away from the main wind
direction. To assess the quality of the audio data the first and last
recordings per recording period were listened to.

Aural Classification of Audio Files
Adapting the protocol developed by Gasc et al. (2018), we
randomly selected a subsample of our recordings – 10 audio files
per day phase (4), season (2) and richness level (4), resulting
in 320 audio files in total. First author SM listened to each

1http://www.lunilettronik.it/prodotto/set-soundscape-explorer-terrestrial/

FIGURE 1 | Images of two plots of the Sardinilla planted forest. Left: Example of a five-species mixture; right: example of a monoculture with Luehea seemannii.
Photographs are curtsey of Matthias Kunz and were taken in the middle of each plot, on June 10th 2017.
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of these audio files and visualized the spectrogram classifying
them according to the three soundscape categories biophony,
geophony, and anthropophony (Pijanowski et al., 2011). It was
possible that the same audio file contained several of these
categories. Furthermore, SM noted for all recordings containing
biophony the presence and absence of different vocalizing animal
groups, that were anurans, birds, cicada, insects vocalizing in
mid-frequency ranges (4–8 kHz) and insects vocalizing in high-
frequency ranges (8–24 kHz); again it was possible to assign
several subcategories to the same audio file. The presence of other
soundscape components such as wind, rain, planes, cars, barking
dogs, human voices, and other identifiable sounds was also noted,
but we did not use this information for further analysis. In
accordance with Gasc et al. (2018) the duration of each category
and subcategory as well as the range of song types were recorded.
As only birds differed very slightly in that respect among tree
species richness levels we refrained from presenting that data.

Calculation and Selection of Acoustic
Indices
In total we calculated different acoustic features using “Analysis
Program” (Towsey et al., 2018) and the Bioacoustic Index
(Boelman et al., 2007). Data preprocessing involved the package
“stringr” (Wickham, 2019). We used “High Amplitude” and
“Clipping Index” to identify recordings with very loud wind and
rain noises and excluded all recordings with values > 0 from
further analysis. False-Color-Spectrograms (Towsey et al., 2014,
2018) were produced to identify periods with strong rain and
wind, which were additionally excluded from further analysis. We
assumed that strong rain and strong wind events were identical
for all plots. This method allowed us to identify the exact start of
the rainy season in that year as being the 15 April 2017.

After calculating acoustic indices, a correlation analysis and
a non-metric multidimensional scaling (NMDS) analysis to
select acoustic indices for further analysis (see Supplementary
for further details) were performed. This served to identify
indices that were most complementary to each other and thus
were most likely to capture different soundscapes components
during the different day phases and seasons (Towsey et al., 2014;
Phillips et al., 2018). The selection was based on the following
criteria (i) acoustic indices should not be significantly correlated
among each other (Supplementary Figures 1–11); (ii) selected
acoustic indices should relate to the NMDS axis that separate the
different day phases, seasons and mixture levels (Supplementary
Figures 12–14).

Based on these criteria, “High Frequency Cover”, “Bioacoustic
Index,” and “Events Per Second” were selected for analysis.
“High Frequency Cover” describes the “fraction of noise-reduced
spectrogram cells that exceed 3 dB in the high-frequency band”
(8–24 kHz) (Towsey, 2018). The “Bioacoustic Index” is calculated
as the “area under each curve included all frequency bands
associated with the dB value that was greater than the minimum
dB value for each curve. The area values are thus a function
of both the sound level and the number of frequency bands
used by the” fauna (Boelman et al., 2007). “Events Per Second”
represents a “measure of the number of acoustic events per

second, averaged over the same noise-reduced 1-min segment.
An event is counted each time the decibel value in a bin crosses
the 3-dB threshold from lower to higher values” (Towsey, 2018).
Insect sounds that cover a frequency band for the whole duration
of the audio file (e.g., monotonous stridulations) are not counted
as an acoustic event.

Statistical Methods
Statistical analyses were performed using R 4.0.2 (R Core Team,
2020). For the selected acoustic indices, we model diurnal
patterns per season using generalized additive models (GAMs)
and tested if parameter estimates for tree species richness level
were significant. Tree species richness level (Mix) and season
were included as factors, time of the day as smoother and
“PlotID” as a random effect. Tropical acoustic communities show
diurnal and seasonal activity patterns, to test this we added
interaction terms for tree species richness level and season, as
well as an additional smoother interaction term for time of day
and season. GAMs were calculated using the “mgcv” package

TABLE 1 | Model specifications and output for High Frequency Cover.

High frequency cover

Family: Beta regression (26.985)
Link function: logit

Formula:
HighFreqCover ∼ mix × season + s(ToD, by = mix, k = 50, bs = “cc”) + s(ToD,
by = season, k = 50, bs = “cc”) + s(PlotID, bs = “re,” k = 10)

R2 adj = 0.275; Deviance explained = 32.8%; −REML = −2.0008e + 05;
Scale est. = 1; n = 101,846

Parametric coefficients

Estimate Std. error z Value Pr(>|z|)

SR1: Monoculture dry
season (intercept)

−2.98 0.09 −34.73 <0.001***

SR2 – two tree species 0.61 0.13 4.67 <0.001***

SR3 – three tree
species

0.47 0.13 3.62 <0.001***

SR5 – five tree species 0.30 0.12 2.49 <0.05*

Season rain −0.21 0.01 −20.00 <0.001***

SR2:rain 0.04 0.01 2.83 <0.01**

SR3:rain 0.02 0.01 1.13 >0.2 n.s.

SR5:rain −0.003 0.01 −0.22 >0.8 n.s

Approximate significance of smooth terms

edf Ref.df Chi.sq p-Value

s(ToD):SR1 12.26 48 77.75 <0.001***

s(ToD):SR2 7.26 48 18.23 <0.001***

s(ToD):SR3 11.16 48 49.23 <0.001***

s(ToD):SR5 2.33 48 2.66 <0.001***

s(ToD):seasondry 23.44 48 685.762 <0.001***

s(ToD):seasonrain 34.06 48 619.562 <0.001***

s(PlotID) 9.98 10 4,041 <0.001***

Mix: tree species richness level (SR1, SR2, SR3, and SR5 for 1, 2, 3, and 5 tree
species), season: dry and rainy season, ToD, Time of day (hour).
Significant levels are given as: ***p < 0.001, **p < 0.01, *p < 0.05, .p > 0.1.
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TABLE 2 | Model specifications and output for Bioacoustic Index.

Bioacoustic index

Family: Scaled t(3.383,0.364)
Link function: identity

Formula:
BioAcousticlog ∼ mix × season + s(ToD, by = mix, k = 50, bs = “cc”) + s(ToD,
by = season, k = 50, bs = “cc”) + s(PlotID, bs = “re”, k = 10)

R2 adj = 0.224; Deviance explained = 23%; −REML = 73,683; Scale est. = 1;
n = 101,846

Parametric coefficients

Estimate Std. error z Value Pr(> |z|)

SR1: Monoculture dry
season (intercept)

4.62 0.073 63.05 <0.001***

SR2 – two tree species 0.30 0.112 2.70 <0.01**

SR3 – three tree
species

0.001 0.112 0.01 >0.900 n.s.

SR5 – five tree species −0.01 0.104 −0.07 >0.900 n.s.

Season rain 0.211 0.006 33.78 <0.001***

SR2:rain −0.20 0.010 −21.53 <0.001***

SR3:rain 0.12 0.010 13.42 <0.001***

SR5:rain −0.03 0.010 −3.78 <0.001***

Approximate significance of smooth terms

edf Ref.df Chi.sq p-Value

s(ToD):SR1 9.03 48 83.99 <0.001***

s(ToD):SR2 22.62 48 243.03 <0.001***

s(ToD):SR3 20.59 48 348.08 <0.001***

s(ToD):SR5 0.24 48 0.24 <0.001***

s(ToD):seasondry 39.28 48 2,355.94 <0.001***

s(ToD):seasonrain 42.44 48 3,270.66 <0.001***

s(PlotID) 9.99 10 8,437.77 <0.001***

Mix: tree species richness level (SR1, SR2, SR3, and SR5 for 1, 2, 3, and 5 tree
species), season: dry and rainy season, ToD: Time of day (hour).
Significant levels are given as: ***p < 0.001, **p < 0.01, .p > 0.1.

(Wood, 2011). Model diagnostics were assessed graphically and a
specific distribution family was necessary for each acoustic index.
Respective model specifications can be found in Tables 1–3.
For graphical outputs we use the packages “ggplot2” (Wickham,
2016) and “tidymv” (Coretta, 2021).

RESULTS

Temporal Patterns and Soundscape
Composition
Aural Inspection
The number of recordings containing biophony did not change
substantially across day phases and season, as biophony was
recorded in almost all recordings that were aurally inspected
(Figure 2). Both geophony and anthropophony appeared mostly
during the day and rarely at night, but were overall less
frequent than biophony. The most common geophony sounds
were light wind and rain, as recordings with heavy rain and
strong wind were excluded from the recordings. Anthropophony

TABLE 3 | Model specifications and output for Events Per Second.

Events Per Second

Family: negative binomial (158034.093)

Link function: log

Formula:
EventsPerSecondsqrt ∼ mix × season + s(ToD, by = mix, k = 50,
bs = “cc”) + s(ToD, by = season, k = 50, bs = “cc”) + s(PlotID, bs = “re”,
k = 10)

R2 adj = 0.26; Deviance explained = 22.7%; −REML = 83,641; Scale
est. = 1; n = 101,846

Parametric coefficients

Estimate Std. error z Value Pr(> |z|)

SR1: Monoculture dry
season (intercept)

−1.15 0.178 −6.450 <0.001***

SR2 – two tree species 0.79 0.272 2.904 <0.01**

SR3 – three tree
species

0.33 0.272 1.220 >0.200 n.s.

SR5 – five tree species 0.14 0.252 0.239 >0.500 n.s.

Season rain −0.35 0.024 −14.377 <0.001***

SR2:rain −0.002 0.031 −0.070 >0.900 n.s.

SR3:rain −0.01 0.033 −0.279 >0.700 n.s.

SR5:rain −0.16 0.032 −4.861 <0.001***

Approximate significance of smooth terms

edf Ref.df Chi.sq p-Value

s(ToD):SR1 8.13 48 144.431 <0.001 ***

s(ToD):SR2 13.54 48 303.000 <0.001 ***

s(ToD):SR3 9.61 48 347.404 <0.001 ***

s(ToD):SR5 0.002 48 0.002 <0.001 ***

s(ToD):seasondry 30.84 48 3,617.442 <0.001 ***

s(ToD):seasonrain 31.80 48 3,906.556 <0.001 ***

s(PlotID) 9.97 10 3,279.162 <0.001 ***

Mix: tree species richness level (SR1, SR2, SR3, and SR5 for 1, 2, 3, and 5 tree
species), season: dry and rainy season, ToD, Time of day (hour).
Significant levels are given as: ***p < 0.001, **p < 0.01, .p > 0.1.

consisted of sounds from planes, undefinable machinery, nearby
constructions, vehicles, and chainsaws.

Distinct patterns were found between day – when birds and
non-biophony sounds were dominating the soundscape – and
night – with orthopterans occupying a large frequency band
(Figure 3). Other sound sources in the Sardinilla planted forest
included insects vocalizing in mid-frequency ranges (4–8 kHz,
mainly crickets), anuran (dominating the range just below the
crickets) and cicada (rare events, overlapping with crickets in the
frequency domain). Bird vocalizations were recorded from dawn
until dusk, and dominated the day recordings. This dominance
resulted from a reduced number of recordings with vocalizations
from anurans and insects rather than an increase in bird activity.
Thus, the aural inspection did not indicate a clear peak of bird
vocal activity at dawn and dusk, as can be observed in temperate
or boreal biomes. There was no observable seasonal trend for
birds. Anurans were least active during the day but this activity
increased in the rainy season. Insects singing in mid–frequency
ranges were also least active during the day, with a slight increase
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FIGURE 2 | Soundscape composition of recordings in terms of biophony, geophony, and anthropophony. Number of recordings for each category from the 320
recordings that were aurally classified, per season, day phase, and tree species richness level. Recordings could contain more than one soundscape component.

in the rainy season. Insects singing at high frequency ranges
showed clear activity peaks at dusk and night with no strong
seasonal patterns. Cicadas were not common to observe, and
showed an irregular pattern with a slight higher frequency of
observations during day and dusk in the dry season.

Comparison of Acoustic Indices
The correlation analysis revealed that acoustic indices could be
grouped into four clusters (Supplementary Figure 1). Cluster
1 consisted of Entropy of Average Spectrum and Entropy of
Variance Spectrum. These indices showed higher values at night
compared to day, with only slight differences among rainy
and dry season (Supplementary Figures 2, 3). These indices
were negatively correlated with indices from cluster 2 and 4
and were therefore not included in further analysis. Cluster
2 consisted of Acoustic Complexity Index, Mid Frequency
Cover and Bioacoustic Index. All indices showed distinct dawn
peaks and different patterns between dry and rainy season
(Supplementary Figures 4–6). From this cluster we chose the
Bioacoustic Index for further hypothesis testing, also based on
results from an NMDS analysis (Supplementary Figure 12). The
Bioacoustic Index showed peaks at dawn and dusk, slightly lower
values during the day and lowest values at night (Figure 4).
During the rainy season, the patterns for these indices changed:
index values increased throughout the day, but particularly
at midday, resulting in less pronounced peaks at dawn and

dusk. Thus, the Bioacoustic Index corresponded to anuran and
bird acoustic activity patterns identified in the aural inspection.
Cluster 3 consisted of High Frequency Cover and Spectral
Density. These indices also showed higher values at night
compared to day (as cluster 1, Supplementary Figures 7, 8).
From this cluster we chose High Frequency Cover for further
analysis. High Frequency Cover was designed to represent the
orthopteran community that predominantly communicates in
high frequencies, while few other vocalizing animal groups
occupy this frequency range. Peaks at night for High Frequency
Cover, as well as a slight reduced High Frequency Cover in the
rainy season (Figure 5) could be verified by the aural inspection
(section “Aural Inspection” and Figures 3, 5). Cluster 4 consisted
of Low Frequency Cover, Events per Second and Temporal
Entropy. These indices showed strong peaks during the day,
without peaks at dawn and dusk, and very low values at night
(Supplementary Figures 9–11). Dry season had higher peak
values than the rainy season. From this cluster Events Per Second
was chosen for further analysis (Figure 6).

Effects of Tree Species Richness on
Temporal Patterns of Acoustic Indices
There was a significant lower High Frequency Cover in
monocultures at night, compared to polycultures (Figure 5),
and parametric coefficients for polycultures were significantly
different from the monocultures (Table 1). Polycultures did
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FIGURE 3 | Detailed biophony composition analysis, from the 320 recordings that were aurally classified, per season, day phase, and tree species richness level.
Recordings could contain more than one biophony component. All recordings containing biophony were classified according to presence of birds, anurans, insects
vocalizing in mid-frequency ranges (4–8 kHz, MF Insects), insects vocalizing in high-frequency ranges (8–24 kHz, HF Insects) and cicadas.

FIGURE 4 | Fitted values for bioacoustic index over a diurnal cycle (time of day) per season (dry and rainy season) and tree SR level. Dashed vertical line indicate
sunrise (ca. 06:00) and sunset (around 18:30).
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FIGURE 5 | Fitted values for high frequency cover over a diurnal cycle (time of day) per season (dry and rainy season) and tree species richness level (SR). Dashed
vertical line indicate sunrise (ca. 06:00) and sunset (around 18:30).

FIGURE 6 | Fitted values for events per second over a diurnal cycle (time of day) per season (dry and rainy season) and tree SR level. Dashed vertical line indicate
sunrise (ca. 06:00) and sunset (around 18:30).

not differ from each other, but two-species mixtures showed a
slight but significant lower decrease of High Frequency cover
in the rainy season than the other plots (Table 1). In the dry
season the parametric coefficients for two-species mixtures were
significantly higher than for the other mixture levels in terms of
the Bioacoustic Index, and differences were most pronounced

at night (Figure 4 and Table 2). In the rainy season the
three-species mixtures showed higher values than the other plots
at midday. For Events Per Second the two-species mixtures
showed parametric coefficients significantly different from the
monocultures while the other polycultures did not (Table 3),
and had a significantly higher day peak during the dry season.
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Differences among two-species mixtures and the other tree
species richness levels were less pronounced but still significant
during the rainy season (Figure 6).

DISCUSSION

Indices to Capture Temporal Patterns of
Acoustic Diversity
Different acoustic indices capture different aspects of the
soundscape. By choosing non-redundant indices, it is possible
to capture complementary patterns in the soundscape, and
attribute them to specific groups in the acoustic community
(Buxton et al., 2018; Eldridge et al., 2018; Phillips et al.,
2018). Since acoustic community composition and dynamics
vary among different biomes in interaction with local geophony
and anthropophony, it may be necessary for each ecoacoustic
study to identify its own unique set of indices to describe
soundscape composition. Ross et al. (2021) tested several acoustic
indices within different sonic conditions for their performance
in capturing biological meaningful patterns and sensitivity in
respect to noise. Most commonly used indices showed sensitivity
to various confounding sound sources (Ross et al., 2021). Even
though they came up with very useful practical recommendation
for the suitability of different indices in different sonic conditions,
studies in other biomes identified different sets of acoustic
indicators to best describe their specific soundscape (Fuller et al.,
2015; Ng et al., 2018; Turner et al., 2018; Carruthers-Jones et al.,
2019; Oliveira et al., 2021).

If we understand acoustic indices as an integrative measure
of biodiversity that reflects the soundscape composition and
particularly the acoustic communities as a whole in response to
human activity and ecological gradients (Pijanowski et al., 2011;
Farina, 2014; Farina and Gage, 2017) we also have to understand
that a single acoustic index will rarely correspond only to a single
vocalizing animal group (Retamosa Izaguirre et al., 2021). This
is probably especially true in the tropics as different vocalizing
animal groups often vocalize at the same time (Eldridge et al.,
2018) and could explain why in our study the temporal patterns of
the chosen acoustic indices did not match the patterns of a single
vocalizing animal group perfectly well. This is in line with other
studies, mostly on birds, that have shown an often significant but
weak correlation of acoustic indices with bird richness (Moreno-
Gómez et al., 2019; Dröge et al., 2021). Even though recent studies
indicate that such correlations might be improved if species
richness is based on bioacoustic identification from acoustic
recordings rather than point-count assessments (Shaw et al.,
2021). In contrast, studies focusing on the relationship of acoustic
indices with parameters that describe ecological condition such
as vegetation structure, vegetation complexity, habitat type, land-
use intensity and/or distance to the nearest road often report
acoustic indices to be good indicators (Tucker et al., 2014; Fuller
et al., 2015; Burivalova et al., 2018; Ng et al., 2018).

By the selection process we applied and by analyzing different
temporal acoustic niches, we could identify three complementary
indices that allowed us to test effects of tree species richness on
different vocalizing communities. As Metcalf et al. (2020) argued,

the interpretability of acoustic indices can be greatly improved
by calculating them in ecological meaningful time and frequency
bins. But even then, given the integrative properties of acoustic
indices in capturing soundscape components, interpretability of
acoustic index patterns might not be very straight forward. Aural
inspection of a subset of recordings supported the interpretability
in our study. Nevertheless, aural inspection only indicated
the presence or absence of certain vocalizing groups across
day phases and season, while acoustic indices respond also to
diversity, distance and abundances of vocalizing animal groups.

High Frequency Cover in our study matched the temporal
acoustic activity patterns identified for orthopteran vocalizing
in high frequencies, and was therefore a useful tool to identify
effects of tree species richness on this insect community. The
Bioacoustic Index is frequently used in ecoacoustic studies and
it was designed to specifically pick up bird vocalization patterns
(Boelman et al., 2007). In our study it seemed to be driven
both by bird and anuran vocalizations. While aural inspection
of recordings did not suggest a change in activity patterns of
birds in our study, the increase in Bioacoustic Index during
the rainy season might be mainly driven by an increase in
anuran activity. Also Boullhesen et al. (2021) found a very good
relationship between the Bioacoustic Index and frog vocal activity
patterns and frog species richness. Opaev et al. (2021) found a
similar increase of Bioacoustic Index with increasing humidity
just before the monsoon season, which they associated with
the onset of the breeding season for both birds and anurans.
In a study of different forest types in the Valdivian temperate
rainforests of southern Chile, Fontúrbel et al. (2021) observed
a clear peak of bird vocalizations at dawn only in old- growth
forest, while it peaked at noon in plantations, and in the afternoon
in logged forests and showed a variable pattern in secondary
forest, suggesting that daily activity peaks of birds could depend
on forest understorey and forest structure. Our data showing
that birds were active throughout the day from dawn until dusk
and dominated the soundscape at noon is coherent with the
observations made in Chilean plantations.

Events Per Second was correlated with Low Frequency Cover
and Temporal Entropy and showed a clear peak during the day,
but no peaks at dawn and dusk. This might have related to
an increase in geophony and anthropophony during the day
recordings (Figure 2), which should both be related to Low
Frequency Cover (Gage and Axel, 2014; Shaw et al., 2021). The
two-species mixtures were a result of establishment failure of
Cordia alliodora. Which could have resulted in higher wind
noises in these plots due to lower stand density and might explain
partly that these plots showed significantly higher values for
Events Per Second throughout the day, in comparison to the
other plots. Additionally, Events Per Second might relate to a
dominance of birds while insects showed a reduced activity. This
would relate also to the fact that Events Per Second is reduced in
the rainy season when the dominance of birds is also reduced due
to an increase in anuran activity.

Since the high frequency ranges - in most environments we
can think of - are occupied exclusively by orthopterans (and
sometimes bats), the usefulness of High Frequency Cover can
probably be generalized to other ecosystems and habitats. The
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situation is more complex in mid-frequency ranges where more
than one vocalizing animal group is active. Other studies have
addressed the advantages and disadvantages of different acoustic
indices under different environmental conditions, and useful
overviews can be found, for example, in Bradfer-Lawrence et al.
(2019), Zhao et al. (2019), Ross et al. (2021), Sánchez-Giraldo
et al. (2021), and Shaw et al. (2021).

Effects of Tree Species Richness
High Frequency cover, revealed a positive effect of polycultures
on insect acoustic activity that might relate to abundance of
this vocalizing insect group. This confirmed our hypothesis
that planting polycultures has positive effects on associated
biodiversity, specifically manifested within the orthopteran
community due to their small home ranges. Birds in contrast
are likely to be more mobile and their home ranges might not
be restricted to a single plot. A recent meta-analysis revealed
that bird diversity in plantations is lower than in natural forests
but that overall faunal diversity, including birds, benefits from
planting a mix of native tree species (Bohada-Murillo et al., 2020;
Wang et al., 2021)

An increase in tree species richness could increase orthopteran
abundance and diversity via an improved variety of food sources,
especially for specialist plant consumers. A mechanism that is
modulated by trophic interactions, as was shown for grassland
ecosystems (Siemann, 1998; Ebeling et al., 2018). In forests
these relationships were often studied under the objective of
testing tree species richness effects on herbivore damage on trees
(associational resistance hypothesis, Jactel et al., 2021), and not
how it would affect orthopteran diversity. Still, there is evidence
that herbivore arthropod diversity and abundance is related to
tree diversity and that this relationship between plant diversity
and consumer diversity might be particularly strong in the tropics
(Becerra, 2015). Given that many orthopteran are highly host tree
specific, the effect of tree species identity has to be considered as
well (Novotny and Basset, 2005).

Another mechanism could be the indirect effect of tree species
richness on microclimate and microhabitats. In a global meta-
analysis, canopy cover, which affects microclimate, was the most
important driver of faunal biodiversity (Wang et al., 2021).
How microclimate can change the acoustic communities was
addressed by Campos-Cerqueira et al. (2020) and Burivalova et al.
(2021). In their study selective logging resulted in microclimatic
changes that decreased humidity in the logging gaps. This had
impacts on amphibians and understory specialist birds, and
certain insect groups. Anurans are driven by the presence of
microhabitats and waterbodies while tree species richness itself
is likely less important (Duellman, 1988; Oda et al., 2016). In
our study we found tree species richness effects on Bioacoustic
Index, suggesting that anuran and maybe also bird activity was
positively related to two-species mixtures in the dry season and
three-species mixtures in the rainy season.

The sensitivity of insects to land-use induced habitat and
microclimatic changes could make them very suitable indicators
for disturbance regimes in tropical forests (Akutsu et al., 2007;
Campos-Cerqueira et al., 2020). These studies highlight the
urgency for including insects into biodiversity assessments. While

acoustic identification of insects in the tropics poses a significant
challenge, acoustic indices can give valuable insights in temporal
activity changes, and indicate changes in abundance and diversity
(Oliveira et al., 2021). Thus, acoustic monitoring has great
potential to become an important additional monitoring tool
which is crucial particularly for tropical ecosystems (Lamarre
et al., 2020). In our study, differences in microclimate among
plots might be a result of the different tree species richness levels,
that result from differences in above ground space use efficiency
(Sapijanskas et al., 2014). Additionally, the failure of one tree
species resulted in larger canopy openings of some plots, mainly
the two-species mixture. If insects profit from canopy gaps this
could explain why two-species mixture often showed the highest
acoustic activity.

CONCLUSION

In this study we showed that planting polycultures increased
orthopteran acoustic activity at night, and this may be related
to an increase in abundance and maybe also richness of this
taxonomic group. Given the small scale of the plots and the young
age of the planation this would indicate that this animal group
is most sensitive to these small scale habitat differences in our
experimental forest plantation, making them important indicator
species for monitoring ecosystem changes. Additional to direct
effects of tree species richness and tree species identity, variations
in microclimate most likely drive the observed differences in
acoustic patterns across season and day phases. We have shown
that ecoacoustics can provide valuable insights in studying the
interaction between forest features, associated biodiversity and
acoustic activity patterns in the tropics where these interactions
are far less studied than in temperate regions.
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Aquatic environments encompass the world’s most extensive habitats, rich with sounds
produced by a diversity of animals. Passive acoustic monitoring (PAM) is an increasingly
accessible remote sensing technology that uses hydrophones to listen to the underwater
world and represents an unprecedented, non-invasive method to monitor underwater
environments. This information can assist in the delineation of biologically important
areas via detection of sound-producing species or characterization of ecosystem type
and condition, inferred from the acoustic properties of the local soundscape. At a
time when worldwide biodiversity is in significant decline and underwater soundscapes
are being altered as a result of anthropogenic impacts, there is a need to document,
quantify, and understand biotic sound sources–potentially before they disappear.
A significant step toward these goals is the development of a web-based, open-access
platform that provides: (1) a reference library of known and unknown biological sound
sources (by integrating and expanding existing libraries around the world); (2) a data
repository portal for annotated and unannotated audio recordings of single sources
and of soundscapes; (3) a training platform for artificial intelligence algorithms for signal
detection and classification; and (4) a citizen science-based application for public users.
Although individually, these resources are often met on regional and taxa-specific scales,
many are not sustained and, collectively, an enduring global database with an integrated
platform has not been realized. We discuss the benefits such a program can provide,
previous calls for global data-sharing and reference libraries, and the challenges that
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need to be overcome to bring together bio- and ecoacousticians, bioinformaticians,
propagation experts, web engineers, and signal processing specialists (e.g., artificial
intelligence) with the necessary support and funding to build a sustainable and scalable
platform that could address the needs of all contributors and stakeholders into
the future.

Keywords: soundscape, bioacoustics database, artificial intelligence, biodiversity, passive acoustic monitoring,
ecological informatics

BACKGROUND

Aquatic (i.e., marine, brackish, and freshwater) environments
encompass the world’s most extensive habitats, rich with
sounds produced by a diverse range of animals. Advances in
data acquisition, storage and processing that enable increased
recording durations at reduced costs, and easier logistics of sensor
deployment and retrieval, have made passive acoustic monitoring
(PAM) a more accessible and feasible tool than ever before
(Lindseth and Lobel, 2018; Chapuis et al., 2021; Wall et al., 2021).
Combined with an increasing appreciation of the ecological
importance of acoustic cues to almost all aquatic fauna, these
advances have expanded the field of underwater bioacoustic and
ecoacoustic research to increasing numbers of researchers and
organizations (Lindseth and Lobel, 2018). The result has been an
almost exponential increase in the volume of aquatic PAM data
being collected around the world, in conjunction with increases
in soundscape research (Lindseth and Lobel, 2018; Mooney et al.,
2020; Duarte et al., 2021). Researchers now routinely collect
substantially more PAM data, on an increasing number of taxa,
and in more locations than ever before, from freshwater to
marine, from shallow waters to the deep, and from tropical to
polar regions (Wall et al., 2021). Higher sampling frequencies
and longer deployment durations mean that datasets may now
easily exceed terabytes in size and years in duration, potentially
containing millions of sounds and hundreds of different types
(Waddell et al., 2021; Wall et al., 2021). This makes manual
classification of underwater sounds by experts—the traditional
method of verifying call presence and source identification—
increasingly difficult (Mooney et al., 2020; Waddell et al., 2021).

PAM is already used for a multitude of biological applications.
Examples include monitoring, characterizing and delineating
underwater soundscapes, and investigating aquatic communities
(e.g., Desjonquères et al., 2015; Erbe et al., 2015; Menze et al.,
2017; Mooney et al., 2020; Stanley et al., 2021); documenting
the distribution and migration patterns of the great whales (e.g.,
Risch et al., 2014; Tsujii et al., 2016; Davis et al., 2020; Warren
et al., 2021); characterizing the spatial and temporal responses of
fish choruses to environmental drivers like temperature, salinity,
lunar phase, tide, and time of sunset (e.g., Barrios, 2004; Rountree
et al., 2006; Parsons, 2010; Straight et al., 2015; Rice et al., 2016;
McWilliam et al., 2017; Parsons et al., 2016; Karaconstantis et al.,
2020; Linke et al., 2020); understanding how animals change their
behavior and distribution in response to climate change (Gordon
et al., 2018), anthropogenic noise sources (e.g., Thompson et al.,
2013; Cerchio et al., 2014; Erbe et al., 2019; Meekan et al., 2021),
algal blooms (e.g., Rycyk et al., 2020) and extreme weather events

like hurricanes (e.g., Locascio and Mann, 2005; Fandel et al.,
2020; Boyd et al., 2021; Schall et al., 2021); understanding how
prey change their sound production rates or behaviors with
the presence of predators (e.g., Luczkovich and Keusenkothen,
2007; Hughes et al., 2014; Bailey et al., 2019; Burnham and
Duffus, 2019); and how noise and propagation conditions can
affect communication spaces (e.g., Alves et al., 2016; McKenna
et al., 2021). This wide range of uses for PAM is expanding with
developments in technology, providing a great volume of easily
accessible data on aquatic life.

With an increase in the use of PAM, there is increasing
awareness of the impacts the acoustic environment (i.e.,
frequency-dependent propagation loss) can have on
characteristics of recorded sound. For example, the same
humpback whale song may produce different received spectra in
two spatially separated recordings, depending on propagation
conditions, and appear as two different types of calls. Sound
production mechanisms (e.g., directionality of the source signal)
can also influence recorded sound characteristics, such as the
azimuth-dependent received spectra of some odontocete calls
(Lammers and Au, 2003). Together with the impact of signal-
to-noise ratio (SNR) on the clarity of a sound sample, these
factors all affect the reproducibility of signals, which needs to be
considered when assessing the sound samples provided to, and
by, a sound library.

Underpinning much of this work is the ability to identify
or characterize sound sources either to assess them individually
or understand their contribution to the overall soundscape
(Mooney et al., 2020; McKenna et al., 2021). We are beginning
to understand how these biological sounds, together with
anthropogenic and geophysical sounds that make up the
local soundscape (Schafer, 1969, 1977; Southworth, 1969;
Krause, 2008; Hildebrand, 2009), can collectively provide
information on physical habitats, biodiversity, and aquatic
ecosystem health (Mooney et al., 2020). PAM is proving
to be one of the most effective ways to monitor visually
elusive but vocal species in aquatic environments, which can
potentially aid in more effective conservation management,
such as spatio-temporal zoning measures found in marine
park areas or fishery closures (Coquereau et al., 2017;
Nikolich et al., 2021). At a time when global biodiversity
is in significant decline (Sala and Knowlton, 2006; Worm
et al., 2006; Marques, 2020) and increasingly impacted by
climate change (e.g., Poloczanska et al., 2013; Sydeman et al.,
2015), there is a need to document and understand as
many sound sources in the ocean as possible, potentially
before they disappear.
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There are 126 marine mammal species, approximately 35,000
known species of fish, and nearly 250,000 documented species of
marine invertebrates in the world (Froese and Pauly, 2021; World
Register of Marine Species, 2021), and the number of known
soniferous (actively sound-producing) species underwater is
consistently increasing (see Figure 1 for spectrograms of example
sounds). There are even a handful of reports of sound produced
by birds underwater (e.g., Thiebault et al., 2019). It is thought
that all aquatic mammal species exhibit soniferous behavior
underwater and reports have so far confirmed this trait for almost
all of them (e.g., Mellinger and Clark, 2006; Richardson et al.,
2013). Calls of many marine mammal species are often distinctive
and can even show significant variability among individuals (e.g.,
Janik and Sayigh, 2013; McCordic et al., 2016; Bailey et al., 2021).
Additionally, as comparatively large and charismatic species,
mammals can often be verified as the source of a sound with
nearby surface sightings or from studies of animals in human care
(e.g., Rogers et al., 1996).

Overall, validated sounds have been attributed to a much
lower proportion of species from the speciose groups of aquatic
invertebrates and fishes, than for marine mammals. Whereas
almost all marine mammals are confirmed to produce sounds
underwater, this behavior has been validated for fewer than
100 species of aquatic invertebrates (e.g., Popper et al., 2001;
Coquereau et al., 2016) and approximately 1,000 fish species
(Kaatz, 2002; Parmentier et al., 2017; Bolgan et al., 2020a;
Looby et al., 2021; Rice et al., 2022); however, the former
includes members of Alpheidae, the “snapping shrimp” family
with over 500 species and the latter represents over two-thirds
of fish families, implying many more species are soniferous
(Parmentier et al., 2021). Fishes and invertebrates are typically
more difficult to validate in the field than mammals (e.g.,
Sprague and Luczkovich, 2001; Riera et al., 2017), though visual
confirmation is on occasion achieved (e.g., Lobel, 1992, 1996,
1998, 2001; Allen and Demer, 2003; Lobel et al., 2010; Parsons
et al., 2013a) or inferred by weight-of-evidence from the species
present at the time of recording and their behavior (e.g., Tricas
and Boyle, 2014; Pyć et al., 2021), or by localization (e.g., Parsons
et al., 2009; Mouy et al., 2018). Sound travels much farther
than light underwater and efficiently through turbid waters that
often prohibit visual source validation more than a few meters
from an observer or camera, or even ranges of centimeters in
turbid environments (Harvey et al., 2004; Jones et al., 2019).
This is particularly problematic when the source in question
is “small and cryptic,” found within an assemblage of several
species’, at great depth, or within complex habitat. Moreover,
many fish and invertebrate species are predominantly nocturnal,
rendering simultaneous visual and audio observations arduous
or impossible (e.g., Spence, 2017). Thus, while some sources
have been confirmed, the majority of fish and invertebrate
sounds and choruses remain anonymous, uncharacterized and
largely unreported, as they do not comprise sounds of a project’s
target species. Recordings taken under controlled conditions
(e.g., within tanks or aquaria) can provide confirmation of
species’ sound production (e.g., Sprague and Luczkovich, 2001)
as well as other information on sound-producing behavior
that could be challenging to collect in the field (e.g., Montie

et al., 2017; Riera et al., 2018); however, assessment of the
acoustic characteristics and behavioral context of these sounds
requires additional consideration. The material, dimensions
and background noise within a constrained environment, for
example, affect the received signal (e.g., Akamatsu et al., 2002).
Additionally, soniferous behavior may be affected by captivity,
such as the acclimation time, surroundings and number of other
individuals within the environment, among other factors (e.g.,
Holt and Johnston, 2014). The nature and extent of the effects
of captivity has on recorded sounds and overall acoustic behavior
may vary between species and potentially even individuals (e.g.,
Bolgan et al., 2020b,c).

Although substantial work has been conducted on
freshwater species, predominantly on fishes and initially
in aquaria (Gerald, 1971; Desjonquères et al., 2020;
Grabowski et al., 2020; Linke et al., 2020; Roca et al., 2020;
Rountree and Juanes, 2020; Higgs and Beach, 2021), the
majority of efforts to record aquatic biological sounds
have historically focused on the marine environment
(Greenhalgh et al., 2020). Freshwater recordings present
a variety of complexities that are less common in the
marine environment, such as terrestrial, aerial and water-
surface sounds from birds, insects, and road or air traffic
(Erbe et al., 2018; Linke et al., 2020; Rountree et al., 2020;
Leon-Lopez et al., 2021).

In addition to the difficulties in identifying soniferous
species, there is also potential variability in sound types and
characteristics of sound production for a given species (e.g.,
McIver et al., 2014; Parsons and McCauley, 2017; Bolgan et al.,
2020c). There are very few species where the entire suite of calls
has been captured and even at a single location, full repertoires
are rarely confirmed or reported. Further, numerous taxa are
cosmopolitan, either as wide-roaming individuals, such as the
great whales, or as broadly distributed species, such as many
fishes. Some of these global (and regional) travelers exhibit
dialects, or completely different signal structures among regions,
several of which evolve over time (e.g., Parmentier et al., 2005;
Garland et al., 2011; Figure 1).

Alongside active sound production for the purported purpose
of communication, many aquatic species produce “passive
sounds” as a by-product of other life-functions, such as eating,
swimming, and crawling (e.g., Fish, 1948; Moulton, 1958, 1960,
1963, 1964; Uno and Konagaya, 1960; Mallekh et al., 2003;
Radford et al., 2008; Rountree et al., 2018; Ajemian et al., 2021;
Tricas and Boyle, 2021; Figure 1). These passive sounds may
be less acoustically complex or distinct than active sounds;
however, they still provide important contributions to the
soundscape and have demonstrated ecological signal potential in
select circumstances (Banner, 1972; Connor et al., 2000; Tricas
and Boyle, 2014; Rountree et al., 2018). Thus, while collating
global records of known sound production may be feasible to
accomplish (e.g., for fishes; Looby et al., 2021), because of the
variation in sound within and among species and individuals,
the effort required to collect and maintain representative sounds
for every species is a continuous and laborious process. Further,
even when unidentifiable biological sounds are described in
detail, there remains no global system with which to attempt to
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FIGURE 1 | Example spectrograms produced (1,024 point-long Hanning window, 0.9 overlap, frequency display 50–20,000 Hz, relative received levels) from: two
simultaneous recordings of a humpback whale (Megaptera novaeangliae) song in (A) 20 m and (B) 40 m depth waters off Okinawa, Japan, (recording locations
separated by ≈500 m, note the lack of high-frequency energy in B); (C) a complex call and (D) a single grunt sound from gulf toadfish (Opsanus beta); (E) two
sounds from a 20–30 cm-long sooty grunter (Hephaestus fuliginosus); (F) one sound from a 7 cm-long spangled grunter (Leiopotherapon unicolor); (G) 4 s of
sounds made a crawling kina urchin (Evechinus chloroticus) and (H) 4 s of sounds produced by a New Zealand paddle crab (Ovalipes catharus). Power spectral
density axes in each spectrogram are relative and span 50 dB re 1 µPa2/Hz. Spectrograms are for comparative purposes and, as such, recording conditions and
methods are not provided. All recordings sampled at 44.1 ksps except that producing panel (E), which was sampled at 48 ksps.
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characterize or identify them (Anderson et al., 2008; Rountree
et al., 2020).

Although some of these sources are obvious, pervasive,
and readily observed in long-term recordings, many more
are rare and of lower amplitude, often going undetected
unless the observer is specifically searching for them (Mooney
et al., 2020). Many studies are conducted with single- or
limited-species objectives, although these recordings are
often filled with a great diversity of sounds. Collectively
there are now multi-millions of recording hours around
the world that could potentially be assessed for a plethora
of both known and, to date, unidentified biological
sounds. Only recently have studies begun to address
the groupings of such sounds, in the field of acoustic
community ecology (Desiderà et al., 2019; Bolgan et al.,
2020a; Di Iorio et al., 2021).

SOUND LIBRARIES

The provision of audio samples is an important activity as it
is often difficult for a researcher to confirm that a sound they
have recorded is the same as one that has been previously
identified, based on a description in a journal or website.
This is particularly true if the two were recorded under
different environmental conditions. A library provides first-
hand examples for comparison, preferably with a spectrogram
that has clear annotations describing the specific time and
frequency range of the target signals, along with sufficient
metadata to facilitate comparison between user and library
samples, to maximize the use of the library. The audio-visual
combination provides the user with a good understanding of
the call type (under the recorded conditions). This combination
can be particularly important for high-biodiversity systems such
as coral reefs, where even a short recording can pick up
multiple animal sounds.

Several independent libraries of biological sounds, many of
which either contain aquatic examples, or have an underwater
focus, have been established around the world (see Table 1 for
selected examples). Existing libraries often focus on species of
interest that are targeted by the host institute’s researchers and
are often recorded from a particular phylum or more restricted
taxon, with a smaller selection of opportunistically recorded
species. A few libraries describe many known sound sources from
a region as the basis for an article describing reported species
distribution in the region, including standardized characteristics
of each sound type for the species, with a link to a website where
the sounds can be downloaded (e.g., Erbe et al., 2017). Other
libraries are national and may be incrementally expanded by
contributions of a handful of researchers with associated papers
outlining sounds as they are observed (Table 1). The FishSounds
website project, for example, began with a systematized, global
review of fish species examined for sound production (with or
without documented sonifery) in the peer-reviewed and gray
literature, which is now being expanded to include representative
recordings of fish sounds contributed by researcher donations
of known and unknown fish species (Looby et al., 2021). This

is a significant step; however, this library currently only accepts
recordings of fish sounds that can be associated with some form
of published reference.

In general, existing libraries are “silos”—lacking the
cohesiveness that a taxa-independent global library or network
could provide. Moreover, PAM is not a traditional method
of categorizing or preserving information on diversity. Thus,
keeping such libraries up to date has not been a focus and,
in recent years, many libraries have lagged in their updates.
Sustainability and accessibility of a sound collection is critical,
particularly when it is tied to a single researcher, rather than a
host institution.

Finally, few libraries identify what is missing from their
catalogs. While this is a more complex task for fish and
invertebrates, examples like Cornell University’s Macaulay
Library have a list of target species for which they have fewer
than 10 recordings. As our list of confirmed sources and
known soniferous species increases, so does the ease with which
the unconfirmed sources can be identified via a “weight of
evidence” approach.

Here, we provide justification for the creation of a global
bioacoustics platform that integrates and expands on existing
libraries by describing five critical characteristics of such a
program and what its extensions can bring to acoustic research
and monitoring. The benefits of a global sound library include:
(1) a full inventory of known underwater sound sources; (2) a
baseline of unidentified biological sounds; (3) the foundation for
a training platform for detection and classification algorithms (at
both a source and soundscape level); (4) standardized metadata
for understanding how, when, and where the recordings
were made; and (5) an open-access (including for citizen
science/public users) database to make aquatic biological sounds
more accessible to the general public and allow them to upload
sounds and add to the dataset (see Figure 2, for a conceptual
diagram of such a potential integrated library). In addition
to these benefits, the global sharing of such an expansive
database—from potentially numerous contributors—holds the
potential for multiple broadscale collaborations on regional and
international trends of PAM detections. Similar efforts have
been achieved in related fields, like acoustic telemetry (e.g.,
Hussey et al., 2015; Sequeira et al., 2019; Lédée et al., 2021;
Matley et al., 2021), and visual censusing of marine fauna (e.g.,
Langlois et al., 2020), fostered by open forums and working
groups to develop such research. We also discuss some of
the technical challenges in developing this platform, historical
hurdles that may have prevented previous attempts at such global
data sharing environments, and a potential way forward for
building this resource.

The discussion presented in this paper originated within
the “Working Group on Acoustic Measurement of Ocean
Biodiversity Hotspots” of the International Quiet Ocean
Experiment (Boyd et al., 2011), an international program of
research, observation and modeling formed to better characterize
and understand ocean sound fields and the effects of sound on
marine life. This collaboration was then expanded to include
authors that are involved in the development, presentation and
maintenance of existing underwater bioacoustics repositories;
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TABLE 1 | Example biological sound libraries with recordings of mammal, fish, avian and invertebrate sounds.

Title (host) Weblink (citation) Details

Audio Gallery (Discovery of Sound in the Sea) https://dosits.org/galleries/audio-gallery/
(Vigness-Raposa et al., 2012)

Sound samples of 44 marine mammal, 29 fish and 4 invertebrate
species from around the world

Fish Sounds (University of Rhode Island) http://www.gso.uri.edu/fishsounds/ (Fish and
Mowbray, 1970)

155 sound samples of 153 fish species from the Western North
Atlantic (Fish and Mowbray, 1970)

The SOUND Table (FishBase) https://www.fishbase.de/topic/List.php?group=
sounds (Kaschner, 2012)

121 sound samples of 90 fish species, mostly from the Western
North Atlantic (Fish and Mowbray, 1970)

Macaulay Library (Cornell University) https://www.macaulaylibrary.org/ (Macaulay
Library, 2021)

1,189,562 sound samples of 10,056 bird species and 2,674
non-bird species

Marine Mammals of Australia and Antarctica
(Curtin University)

http://cmst.curtin.edu.au/research/marine-
mammal-bioacoustics/ (Erbe et al., 2017)

Sound samples of 43 marine mammal species from Australasia

Ocean Networks Canada (Sound Cloud) https://soundcloud.com/
oceannetworkscanada/albums (Ocean
Networks Canada, 2021)

60 sound samples of marine mammal and fish species from
Canada

Watkins Marine Mammal Sound Database
(Woods Hole Oceanographic Institution)

https://cis.whoi.edu/science/B/whalesounds/
index.cfm (Sayigh et al., 2016; Watkins Marine
Mammal Sound Database, 2021)

About 15,000 sound samples of 55 marine mammal species, as
well as about 1,600 full soundscape recordings, mainly collected
during the career of William Watkins

Sonothèque (Muséum National d’Histoire
Naturelle)

https://sonotheque.mnhn.fr/ (Sonothèque,
2018)

19,589 sound samples of wildlife species, including marine
mammals and fishes, predominantly collected by Bernie Krause
with additional contributors

British Library Sound Archive (The British
Library)

https://sounds.bl.uk/Environment (The British
Library, 2021)

240,000 sound samples of 10,000 bird, mammal, amphibian,
reptile, fish, and invertebrate species from around the world

Voices in the Sea (University of California San
Diego)

http://voicesinthesea.ucsd.edu/ (Voices in the
Sea, 2018)

Sound samples of 33 Cetacean and 10
Pinniped species

FishSounds (MERIDIAN) https://www.fishsounds.net (Looby et al., 2021) 240 sound samples of 130 fish species

MobySound mobysound.org (Heimlich et al., 2021) Sound samples of 25 Cetacean and 2 Pinniped species

Animal Sound Archive (Museum für Naturkunde
in Berlin)

https://www.tierstimmenarchiv.de/
(Tierstimmenarchiv, 2021)

120,000 sound samples of any wildlife, including invertebrates,
marine mammals, and fishes

FonoZoo (Museo Nacional de Ciencias
Naturales Madrid)

http://www.fonozoo.com/ (FonoZoo, 2021) 11,656 sound samples of 1,620 species, including invertebrates,
marine mammals, amphibians and fishes

i.e., an overall partnership that represents various stakeholder
groups—including bio- and ecoacousticians, and research
specialists of a variety of taxa and ecosystems. All of these authors
are aware of the benefits a global library of underwater biological
sounds offers to the scientific, environmental management and
public sectors. This paper, however, is not meant to dictate the
exact form such a global underwater biological sounds library
should take, but is meant to renew and revitalize discussion
on the topic, present some of the many considerations such
an effort would require, and describe a possible path forward
for us or others to undertake as opportunities and interests
arise. A more detailed discussion of such a program, involving
a wider network of contributors, is planned through upcoming
stakeholder engagement and scoping workshops.

CHARACTERISTICS OF A GLOBAL
LIBRARY OF UNDERWATER
BIOLOGICAL SOUNDS

Applications of an Inventory of “Known”
Sounds
Creating a reference library of aquatic sounds from known
origins will broaden our reference list for confirming the
sources of sounds that appear in recordings and help expand

our knowledge of aquatic acoustic diversity, as well as our
understanding of taxonomic biodiversity and ecology. Bringing
known sounds together in a unified depository or single
platform with links to multiple existing databases facilitates easy
comparison among species, locations, species repertoires, and
recording methodologies.

Studies often focus on a single or a limited number of
species and, therefore, so does a project’s data analysis. Although
the advent of multi-species automated detection platforms has
brought significant advances in the terrestrial environment
(Potamitis, 2014; Sueur and Farina, 2015; Farina et al., 2018;
Kahl et al., 2021), such analyses are currently lagging behind
in the underwater environment. The potential to process each
dataset for sources beyond the focal species is rarely undertaken
due to the funding and effort required as well as a lack of
individual knowledge about all the different sounds and sources
that exist. Easing this burden requires a collective effort to detect,
identify, characterize, and collate sources. A global reference
library of underwater biological sounds would increase the ability
for more researchers in more locations to broaden the number
of species assessed within their datasets and to identify sounds
they personally do not recognize. Such access would ultimately
lead to a description and catalog of acoustic biodiversity
around the globe, and an increased understanding of acoustic
ecology. A global database could serve broader questions, like
determining universal trends in underwater sound production,
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FIGURE 2 | Conceptual diagram of the basic structure and data flow within a potential global integrated library and database sharing platform.

while individual, specialized repositories could continue to
inform and detail other topics, such as documenting the presence
of soniferous species in a particular region.

Spatiotemporal Species Mapping
The expansion of PAM data collection has increased our
understanding of spatiotemporal patterns of individual species’
presence and acoustic behavior. As a result, reported distributions
of these species are being expanded. Even some of the great
whales are being found in places they were not expected (Allen
et al., 2021), and occasionally a new species (Rosel et al., 2021)
or a new sound (Rice et al., 2014; Cerchio et al., 2020) is
discovered. This fact could prove vital for soniferous fauna, as our
ever-changing climate ensures that many species are modifying
their distributions and broadening or reducing their ranges (e.g.,
Scheinin et al., 2011; Ramirez et al., 2017; Bonebrake et al., 2018).
Biologically important areas can be mapped; spawning grounds,
essential fish habitat, and migration pathways can be delineated
(e.g., Luczkovich et al., 1999; Rountree et al., 2006; Mann et al.,
2009; Morano et al., 2012a; Schärer et al., 2014; Bertucci et al.,

2015; Lammers and Munger, 2016; Karaconstantis et al., 2020);
the timing of reproductive activities can be associated with the
environment (e.g., Mann and Grothues, 2008; Parsons, 2010;
McWilliam et al., 2017; Zarada et al., 2019); and displacement
from preferred habitats due to anthropogenic activities and noise,
such as that from shipping lanes and exploration surveys, can
be mapped (e.g., Tyack, 2008; Castellote et al., 2012; Rako et al.,
2013). These and other questions can be queried on broader
scales if we have a global catalog of sounds.

Comparisons of Signal Structure
Comparison of sounds from a single species across broad areas
and times provides the ability to understand signal diversity
and evolution, and to gain insights into species ecology (e.g.,
Tellechea et al., 2010). Fin whale (Balaenoptera physalus) calls,
for example, differ among populations (Delarue et al., 2009)
between the Northern and Southern hemispheres (Gedamke and
Robinson, 2010; Širović et al., 2013, 2017; Aulich et al., 2019),
as well as over seasons (Morano et al., 2012b). Pilot whales
(Globicephala melas), on the other hand, produce similar call

Frontiers in Ecology and Evolution | www.frontiersin.org 7 February 2022 | Volume 10 | Article 81015685

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-810156 February 7, 2022 Time: 13:17 # 8

Parsons et al. Global Underwater Biological Sounds Library

types across the hemispheres even though populations’ home
ranges do not (or no longer) cross the equator, raising interesting
questions about their acoustic ecology and evolution (Courts
et al., 2020). Fishes may also develop “dialects,” such as the
different acoustic characteristics of agonistic sounds produced by
the skunk anemonefish (Amphiprion akallopisos) in Madagascar
compared with those in Indonesia (Parmentier et al., 2005).
Cultural evolution of humpback whale (Megaptera novaeangliae)
song has been observed across ocean basins, providing greater
understanding of population interactions across the Pacific
Ocean (Garland et al., 2011) and around the coast of Australia
(Allen et al., 2018). Call structure, and source spectra of blue
(Balaenoptera musculus) and pygmy blue whales (Balaenoptera
musculus brevicauda) around the world evolve through time,
with peak frequencies changing each year (e.g., McDonald
et al., 2009; Gavrilov and McCauley, 2012), such that detection
algorithms developed in 1 year may not be successful some
years later; thus, keeping libraries up to date aids classification
efforts. Sound production between similar species within a
taxonomic family can also be compared, such as those of
mulloway (Argyrosomus japonicus) and black jewfish (Protonibea
diacanthus) in Australia (Parsons et al., 2012, 2013b, 2016) with
those of French meagre (A. regius) in Europe (Lagardère and
Mariani, 2006; Bolgan et al., 2020b), or those of various species
of toadfishes in the Pacific, Indian, and Atlantic oceans (Thorson
and Fine, 2002; Rice and Bass, 2009; Mosharo and Lobel, 2012;
Alves et al., 2016; Staaterman et al., 2018; Pyć et al., 2021), to
better understand the variation within families.

Acoustic Communities
There is increasing evidence that the study of acoustic
communities, based on acoustic characteristics of the sounds
emitted by animal communities, provides ecologically relevant
information (Francis et al., 2009; Farina and James, 2016;
Desiderà et al., 2019; Mooney et al., 2020). Soundscapes
provide unique opportunities to investigate the biodiversity and
community of soniferous species, frequency and temporal niche
partitioning, and organism-environment relationships (Ruppe
et al., 2015; Di Iorio et al., 2021; McKenna et al., 2021).
However, this field is in its infancy and requires a catalog
of identified sounds to develop reliable and time-efficient
classification techniques that will be necessary for describing the
acoustic communities and relating them to the underlying animal
assemblages (Mooney et al., 2020).

Environmental Noise
Anthropogenic noise, such as that from vessels, exploration,
construction, and aerial vehicles (Reine et al., 2014; Newhall
et al., 2016; Pangerc et al., 2016; Erbe et al., 2018; Chion et al.,
2019; McCauley et al., 2021; Parsons et al., 2021), is a growing
pollutant in the underwater environment and high ambient noise
levels, such as those found in areas of intense human activity,
inhibit signal detection (Hildebrand, 2009; Duarte et al., 2021).
If the observer knows a target species’ signal characteristics,
these sounds may be more easily detected, but without prior
knowledge of either presence or structure of sounds, listening
through the noise can be difficult. This has been highlighted by

the recent COVID “anthropause” experienced at various aquatic
locations around the world (e.g., Bates et al., 2021; De Clippele
and Risch, 2021; Dunn et al., 2021; Gabriele et al., 2021; Ryan
et al., 2021), where removal of the anthropogenic component
of some soundscapes has provided an opportunity to observe
sounds (and therefore presence) of marine fauna that might
otherwise be lost in the noise (e.g., Pine et al., 2021). However,
it is not just anthropogenic noise that limits acoustic detection of
marine fauna. The ocean is naturally noisy and geophysical noise
(such as from wind and ice) exceeds anthropogenic noise in many
regions and seasons (e.g., Farcas et al., 2020; Erbe et al., 2021;
Sertlek, 2021). The number and intensity of storms and extreme
weather events are expected to increase with climate change (e.g.,
Cheal et al., 2017), inevitably contributing further noise to the
underwater environment (e.g., Zhao et al., 2014; Ashokan et al.,
2015; Zhang et al., 2018). A reference library of sounds, as well
as detection algorithms, would significantly ease the detection of
sounds in low SNR environments.

Assisting Unknown Source Identification
A sound catalog can provide a reference for comparison
with unknown sounds to assist in their source identification,
potentially through an online tool, within the library. The
associated metadata that accompanies recordings (discussed
below) may also contribute to a weight-of-evidence approach in
identifying sound sources. Sainburg et al. (2020), demonstrated
the use of unsupervised learning to assemble acoustic signals
displaying similar spectral-temporal modulation features into
groups. Such exploratory data analysis tools will assist in
identification of sound sources; however, their design and
functionality may be dependent on the amount of data (general
and source-specific acoustic data and validation data), the
distribution of the source signal and potential sources, and the
characteristics of the signal, among other factors. In selected
species, where sound production has not yet been confirmed, it
may be possible to use signals reported from a closely related
species to assist in detecting sounds or choruses from the targeted
species. Calls produced by terapontid fish species, for example,
are often similar, but not all species within the family have
been reported to produce sound (Parmentier et al., 2016; Looby
et al., 2021). Although not definitive, sound production by related
species can provide evidence toward soniferous behavior, though
caution is warranted as species that appear morphologically
similar can be acoustically different, such as Ophidiformes (Mann
et al., 1997; Parmentier et al., 2006, 2010).

Basis for Machine Learning Development
A library of reference sounds requires only a handful of examples
for each individual sound type. In contrast, a dataset for training
artificial intelligence (AI) requires a far larger number of signals,
ideally several thousands of examples (e.g., Madhusudhana
et al., 2020, used > 11,000 replicates of the same call type
to build robust detectors). The library itself can be of benefit
as it provides the basis from which the AI datasets can be
developed either through providing numerous examples for
directly training models, or for facilitating event mining from
previously collected data streams (Xie et al., 2008; Zhang et al.,
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2013). For example, Miller et al. (2021) initiated an open-access
library of annotated recordings to train and evaluate automated
detectors of Antarctic blue whale and fin whale (B. physalus)
calls. The library was designed to include recordings from a
broad range of instruments, locations, environmental conditions,
and years, to ensure that robust detectors can be developed and
tested across a suite of recording conditions. However, given
the scope of this library initiated through the Southern Ocean
Research Partnership Fin and Blue Whale Acoustics Group (Van
Opzeeland et al., 2014), it is unlikely to be extended to other
regions and taxa.

As the number of samples of a given sound type reaches
critical mass, and recordings of them are also sufficiently rich in
signals recorded under different conditions (e.g., SNR, acoustic
environment, recording methods), that sound type can be flagged
as available for the development of detection algorithms. Indeed,
presenting the information on current sample numbers within
each sound type could promote contributors to target them,
increasing the likelihood of collectively bringing the dataset up to
the required level. If it can be achieved, a library that includes an
entire species’ sound repertoire will assist in validating detection
algorithms and provide the ability to expand these algorithms
to datasets where the call type was not the original target for
analysis, and conduct this on a global, rather than local scale. For
species that produce sounds that change with time, historical data
and continual updating of the library could assist in predicting
future evolution (Gavrilov and McCauley, 2012).

Database of Unknown Sounds
A database of unidentified sounds is, in some ways, as
important as one for known sources; as the field progresses,
new unidentified sounds will be collected, and more unidentified
sounds can be matched to species. These sounds and the times
and locations of their recording can form a basis for future
identification and ease mapping of the species’ distribution once
the source has been confirmed. Given the increasing rate of data
collection, it is better to start building a map of these sounds
as soon as possible. The library can also provide evidence to
help test hypotheses of source species for unknown sounds if
there are sufficient recording locations that can be compared
to distribution maps of potential source species (e.g., those
produced from catch data or visual census).

Although the analysis of acoustic communities benefits from a
baseline of cataloged sounds, most sound sources that contribute
to the soundscape remain uncertain and most libraries only
archive signals with known species’ identity. In addition, we know
more about the sounds of endangered or commercially important
species than those of commonly encountered species (Luczkovich
et al., 2008; Popper and Hawkins, 2019). This knowledge
gap has impeded effective use of underwater soundscapes
in monitoring marine biodiversity, but much information on
acoustic ecology can still be gleaned from categorized sound
types of unknown origin (Le Bot et al., 2015; Rountree et al.,
2019; Bertucci et al., 2020; Bolgan et al., 2020a; Di Iorio
et al., 2021). A library to archive unknown sounds and their
recording times and locations will be crucial for guiding
future studies of marine bioacoustics and biodiversity. This is

especially important in areas that are rarely investigated or
where source identification is particularly problematic, such
as the twilight and midnight zones, where a description of
unknown sounds can give us insights on biodiversity in the
deep ocean (e.g., Mann and Jarvis, 2004; Rountree et al., 2012;
Lin et al., 2019).

Platform for Training Deep-Learning
Applications
Signal- and image-processing techniques have been used in
the temporal and spectral domains to automatically detect and
quantify fauna sounds. For example, click detectors operating
on waveforms have been applied to recordings of dolphins
and porpoises (e.g., Sostres and Nuuttila, 2015), belugas
(Le Bot et al., 2015), sperm whales (Madhusudhana et al., 2015),
beaked whales (e.g., Yack et al., 2010; Le Bien, 2017), and
snapping shrimp (e.g., Bohnenstiehl et al., 2016; Du et al., 2018).
Matched-filtering of spectrograms has been used to detect highly
stereotypical sounds of some whales and fishes (e.g., Mellinger
and Clark, 1997; Ricci et al., 2017; Madhusudhana et al., 2020;
Ogundile and Versfeld, 2020). Information entropy detectors
have been applied to aberrant (non-stereotypical) tonal sounds
(Erbe and King, 2008). Detectors are further applied to wavelets
and the cepstral domain as well (e.g., Alias et al., 2016; Noda
et al., 2016; Malfante et al., 2018). Machine and deep learning
(AI) methods have been increasingly used to classify and detect
sources in multiple applications (e.g., Lin et al., 2017; MacAodha
et al., 2018; Bergler et al., 2019; Stowell et al., 2019).

There have been considerable advances in the fields of facial
and voice recognition that have advanced public use of phone-
based apps to identify music, plants, and the calls of frogs and
birds (Kahl et al., 2021). However, this success has been largely
due to the enormity of the respective databases from which
AI algorithms can be trained, a goal that has only recently
become possible in the aquatic environment and only for selected
call types. The sheer enormity of data now collected in many
underwater acoustic studies, together with the myriad of signals
often present and the extreme amount of time required to search
these records in more “standard” methods, means there is a
clear opportunity for AI to improve efficiency and extract more
information from these datasets. Increasingly, neural networks
and other AI methods are being used to detect marine mammals
in historical recordings such as of humpback whales across
the Hawaiian archipelago (Allen et al., 2021), and multiple
cetacean species along the west coasts of Canada and Australia
(Mellinger and Clark, 2006). Detections of pulse trains, typically
based on previously identified or grouped inter-pulse timing (the
time between pulses of sound) are being successfully applied to
count the number of echolocating individuals and fish sounds
within datasets (Bahoura and Simard, 2010; Le Bot et al., 2015;
Ibrahim et al., 2018).

Many machine learning techniques have been developed
under the framework of AI (e.g., Shamir et al., 2014). Application
of these techniques has begun to coalesce and recent studies now
extract multiple features to detect the different types of signals,
such as Malfante et al. (2018), who tested 84 extracted features
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to detect and characterize four general classes of fish sounds:
(1) impulsive (pulses with signal separation > 1 s); (2) trains
of > 15 pulses audible as either a single tone or a series of
knocks in quick succession; (3) wide-band signals of 10–30 s in
duration; and (4) short signals with harmonic structure. Each
of these sound types required the detection of different features
and individual machine learning. The recent development of
deep learning has significantly reduced the work required in
feature extraction (Shiu et al., 2020; Kahl et al., 2021; Waddell
et al., 2021) and even made end-to-end learning feasible, in
which AI models automatically learn features from raw audio to
perform signal detection and classification. Successful examples
include avian calls (Bravo Sanchez et al., 2021), odontocete
clicks (Luo et al., 2019; Roch et al., 2021), and frog calls (Xie
et al., 2020). Hand-selected features, such as peak frequency and
frequency bandwidth measured manually or automatically, are
no longer a necessity.

Developing a global database that can assist in modifying
or developing algorithms in the underwater environment holds
significant potential for detecting, classifying, and quantifying
spatiotemporal distribution and abundance of aquatic fauna.
Such a global database of known and unknown sound sources
can benefit both supervised and unsupervised machine learning.
Supervised machine learning is effective when training data
of detection/classification targets are available. However, most
underwater biodiversity assessments are unable to make sure
all sound sources are already covered in the training database.
Unsupervised machine learning may help discover the structure
of sound categories from a substantial number of unlabeled
recordings and reduce the effort required in manually annotating
signal types and characteristics (Frasier et al., 2017; Phillips
et al., 2018; Lin et al., 2021; Ozanich et al., 2021). Deep-learning
models that have learned the structure of labeled and unlabeled
recordings archived in this global database will be adaptable to
other applications, via transfer learning (Yosinski et al., 2014).
Therefore, this global library will benefit the detection and
quantification of signal types, which may be added to a suite of
acoustic metrics, to be used collectively as scene classifiers, to
routinely characterize the soundscape.

Any AI model must learn the difference between target
signals and background noise. Voice recognition techniques
often begin with clean recordings and synthesize training data by
adding noise to the known reference (Lu et al., 2013; Xu et al.,
2015). These are then used to train models to extract speech
from recordings that contain real noise and target signals in
long-term recordings. Such data augmentation techniques have
proven effective in improving the performance of AI models
and have been widely applied in speech and music enhancement
models (see review in Lin and Tsao, 2020). Recordings of
biological sounds with high SNR will therefore be crucial to the
development of a marine fauna AI database. The ultimate goal of
an AI algorithm is that it can accurately classify sounds through
any or all recordings of any duration and noise level.

An audio database for training AI models requires large
numbers of recordings for one species or sound type of unknown
origin. The goal of building such a database is to train a model
that can effectively recognize species-specific or sound type

acoustic features. This requires signals that have been recorded
and processed to a certain set of criteria. Although it is difficult
to assess how many recordings will be needed, in general the
greater the number of sound samples and the higher the sound
quality, the more reliable and precise the automatic classification
becomes, as the algorithm learns and improves its performance
with increasing data availability (Zhong et al., 2020). For species
with more complex vocal repertoires, greater amounts of training
data further improve classification. Thus, the prerequisite to
apply these techniques is a robust and representative training
dataset, which is what the library we propose here could provide.

Citizen Science
AI has facilitated the development of many highly popular
image-based animal, plant and music recognition applications
(apps). Possibly the best known is iNaturalist,1 though other
more taxonomically focused applications are emerging (e.g.,
Merlin BirdID,2 WikiAves).3 The iNaturalist app started as a
crowd-sourced community, where people uploaded animal or
plant photos to be identified by other users, and has become a
place where images are identified by artificial intelligence. In the
biological sounds space, FrogID4 and BirdNet5 have shown the
possibility of using machine learning with signal processing to
allow researchers and citizen scientists alike to identify frogs and
birds by recording calls with a phone (Rowley et al., 2019; Kahl
et al., 2021).

Much like BirdNet and FrogID, a library of underwater
biological sounds and any automated detection algorithms
would be useful not only for the scientific, industry and
marine management communities, but also for users with a
general interest. Acoustic technology has reached the stage
where a hydrophone can be connected to a mobile phone
so people can listen to fishes and whales in the rivers and
seas around them. Therefore, sound libraries are becoming
invaluable to citizen scientists and the general public, with
signal-processing automated detection algorithms supporting the
decision networks behind apps like FrogID and BirdNet for
someone to record a sound and identify the source. FrogID
has over 50,000 recordings uploaded for the > 240 species of
frogs in Australia, and the Cornell Lab of Ornithology’s BirdNet
app has been downloaded over 1,000,000 times and has records
of 3,000 species of bird calls across 40 countries (Kahl et al.,
2021). As evidence of this type of application moving into the
underwater world, the River Listening app,6 which began in
Australia (Barclay et al., 2018), encourages the general public to
record sounds in rivers and coastal waters to listen to the sounds
of fishes. Further, Chapuis et al. (2021) showed the utility of
waterproof recreational recording systems (such as GoPros) to
collect information on underwater soundscapes and in particular,
recording and cataloging biological sounds, while Lamont et al.

1https://www.inaturalist.org/
2https://merlin.allaboutbirds.org/
3https://www.wikiaves.com.br/
4https://www.frogid.net.au/
5https://birdnet.cornell.edu/
6https://www.riverlistening.com/
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(2022) highlighted how low-cost alternative hydrophones and
recording systems (such as the Hydromoth) are becoming
increasingly available to scientists and the general public. These
types of systems can provide valuable PAM data; however, the
calibration, variability in sensitivity and directionality, and low
signal-to-noise ratios mean additional considerations must be
made, to be able to use the data within the library, in particular,
for sound analysis purposes.

Increased sampling efforts from citizen scientists could be
invaluable for the detection of vocal fauna in coastal and inland
waters. For example, FishBase7 uses community input to provide
information on each species (Froese and Pauly, 2021), while
Redmap (Range Extension Database & Mapping project)8 is more
explicit, inviting the general public to spot, log, and map marine
species that are uncommon in Australia, or along particular
parts of the coast to monitor changes in species distribution.
Future online libraries, such as the Open Portal to Underwater
Soundscapes (OPUS)9 would be expected to facilitate public
contributions, similar to WhaleFM,10 a citizen science project
that focused on categorization of call types produced by two
cetacean species.

Metadata and Functionality
Creating a library with established metadata and information
criteria will help standardize the format in which signals
are reported, optimize use of the library, and ease future
classifications of sounds (Frazao et al., 2019). It is important to
provide guidelines on all the pertinent information that could
be provided by a person collecting the original recording and
that should be included when it is presented, for example, as a
static spectrogram on a library website (Parsons, 2010; Warren
et al., 2018; Frazao et al., 2019; Looby et al., 2021; Miller et al.,
2021). Such metadata standardization can also build confidence
in the library’s utility and attract support from national bodies
for its application, such as the ADEON noise reporting standards
(e.g., Ainslie et al., 2017). Each criterion may not be required for
entry of a sample into the library, but the level of information
supplied determines the level of potential use of a sample within
the database. There are three criteria that determine how useful
a recording could be to the database and how it could fit with
known information about the species and its soniferous behavior
around the world. These relate to the information available about
the recording and the source species:

• Metadata pertaining to the specific recording (e.g.,
recording equipment and pre-amplifier used, calibration,
model, and sensitivity; recording settings such as
gain, sampling rate, number of bits and duty cycle;
recording methodology such as deployment configuration;
environmental conditions such as depth and bottom
characteristics; location and timing), and how it is
presented (e.g., un-/calibrated waveform, spectrum with

7https://www.fishbase.us/home.htm
8https://www.redmap.org.au/
9https://epic.awi.de/id/eprint/53610/
10https://whalefm.wordpress.com/

specified window lengths, resolution, FFT/DFT size, and
overlap, or the code and settings associated with a plugin
automatically generating visualizations of the recording).
Recordings taken under controlled conditions (e.g., within
tanks or aquaria) have additional acoustic and behavioral
considerations and therefore require additional metadata,
such as the tank material and dimensions, acclimation time
and number of other individuals present.

• Information about the source species in general, such as
recording-specific information (e.g., behavioral context if
concurrent visual observations were made); more general
information may be supplied by the contributor or updated
by the host, through continued review of literature (e.g.,
known distribution, auditory ability, known sound types
and their characteristics, and sound production mechanism
and typical behavioral contexts associated with sound
production, if known). This information provides context
to place calls into a species’ known behaviors.

• Associated information about the location relative to the
broader region (e.g., description of community species
composition, habitat, and local soundscape information).
This information provides a broader picture of how the
local environment may have affected the animal producing
the sound.

Defining these requirements, their level of detail, and the
final platform design requires the collective expertise of biologists
(who have experience related to the potential numbers and types
of sounds a species may exhibit), acousticians (who appreciate
the impact that propagation losses, sampling methods, and
processing techniques may have on the characteristics of the
audio clips), signal processing experts (who develop and apply
detection, classification, and recognition algorithms, and who
can detail the needs of turning example signals into a database
for automated detection), and data scientists/database developers
(who can develop a scalable and searchable database that can be
effectively used and accessed by a broader user community).

In such a way, data are optimized at a quality that is useful
for future applications, such as AI development or global-scale
meta-analyses and reviews of sound production. Users would
benefit from not only the sounds themselves, but the associated
metadata about the sounds (Teixeira et al., 2019; Kahl et al.,
2021; Lin et al., 2021) and, if there are multiple recordings,
a classification of the sound type in which it fits (Sainburg
et al., 2020). This information can assist in categorization of an
unknown sound and provide context around the recording from
an environmental, methodological, or behavioral perspective.
However, the level of data made available in the library for each
species and each recording depends on the information provided
by the contributor, and researchers from fields with different
objectives, backgrounds, and experiences, who typically report
information in different ways. The most common example in
bioacoustics is the classification of signals by phonetic description
(onomatopoeia), such as the “thwop,” “muah,” and “boop” of
humpback whale social sounds (Recalde-Salas et al., 2020),
and various onomatopoeic descriptions of species-specific and
unidentified fish sounds (e.g., Tavolga, 1971; Thorson and Fine,
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2002; Staaterman et al., 2018; Waddell et al., 2021). Such calls
may also be reported in a physics-focused context that include
categories of frequency- or amplitude- modulated or continuous-
wave signals (Erbe et al., 2017).

Finally, the library and its potential as an AI database would
benefit from a scalable design that allows frequent expansion and
a web platform that can be continually updated. The database
would include a user-friendly interface to investigate data and
upload sounds, with automated quality control. Presentation
of the data is also a consideration, not only with respect to
the variety of signals, but also individual recording locations
and their temporal distributions. Data portals, such as the
interactive maps of the North West Atlas in Australia,11 allow
viewers to choose any study site in a map and view a synopsis
of species composition and a video snapshot of the site,
along with environmental data. This could also be achieved
from an acoustic perspective. For example, the data portal of
the Integrated Marine Observing System12 allows viewers to
peruse long-term spectrograms of recording sites for a user-
defined period. An interactive map that can incorporate all
these options becomes a user platform for the acoustic data.
OPUS is a recent initiative driven by the International Quiet
Ocean Experiment that is currently under development and
includes some of these functions. This program was created to
share underwater soundscapes through audio and synchronized
spectral visualizations at staggered temporal resolution. It allows
viewers to select locations from a map and explore local
soundscapes while also logging events of interest, thereby inviting
the public to participate in creating overall logs with acoustic
events that can support further processing of the data.

HISTORIC HURDLES AND CHALLENGES

This is not the first time a global approach to data sharing
has been suggested in underwater acoustics research. In recent
years, multiple international research and blue economy-focused
workshops have repeatedly identified the need for global sharing
of data, technology, and best practices, to grow techniques
and ensure that economic, environmental, and social benefits,
developed through the application of knowledge, are realized
to the benefit of all (e.g., World Wildlife Fund [WWF], 2017;
European Commission, 2018). Most recently, the emergence
of COVID-19 has provided a perfect example of the need
for international transparency and collaboration to maximize
research opportunities and rapidly respond to urgent needs, and
it has highlighted how achievable this approach is with modern
technology (Apuzzo and Kirkpatrick, 2020). In an acoustics
forum, among other workshops, the special sessions of the
Acoustical Society of America [ASA] (2018) identified that there
are “an increasing number of applications of machine learning
methods in ocean acoustics, particularly when working with large
data sets” and discussions focused on data access, code-sharing,
and reproducible research.

11https://northwestatlas.org/nwa/map/gallery
12https://portal.aodn.org.au/search

An integrated sound sharing platform begins with three
main areas of development to focus and pool efforts: large-
scale archives of annotated and unannotated audio data, the
open-access reference library of identified and unidentified sound
sources, and data mining processes, including AI algorithms.
Acoustic repositories and data portals, such as OPUS and IMOS,
are becoming increasingly common. Importantly, initiatives such
as the allocation of 15 petabytes for a passive acoustic data portal
by the National Center for Environmental Information (NCEI) of
the National Oceanic and Atmospheric Administration (NOAA;
United States of America) illustrate the growing appreciation and
realization of this need at the national scale (Wall et al., 2021).

Reference libraries have existed on various scales for many
years and advances in technology are quickly increasing their
ability to expand and integrate user contributions. The Detection
Classification, Localization and Density Estimation (DCLDE)
and the Detection and Classification of Acoustic Scenes and
Events (DCASE) workshop series (2003–2022 and 2013–2022,
respectively) have focused on data mining and analytical
approaches. These groups have been the main producers of public
datasets to advance machine learning applications of biological
sounds in the ocean (Frazao et al., 2019) and the workshops
regularly provide training sets to test detection algorithms under
different conditions (e.g., various frequency-dependent SNR
and propagation losses).13 Their outputs have shown what is
achievable from data-sharing of comparatively “small” platforms
(previously up to 10 TB), which complement the sharing of
open-source code that individuals are increasingly providing with
the publication of analytical works (e.g., Bergler et al., 2019;
Bermant et al., 2019; Madhusudhana et al., 2020; Lin et al., 2021).
Together these activities highlight the potential for applications
of data-sharing of acoustic information to be applied to larger
repositories that are now more achievable with cloud-based
options, such as AI for Social Good,14 or government supported
platforms, such as the NCEI.

Although the development of a global integrated and open-
access underwater sound reference library, repository and sharing
platform has been suggested previously, despite these discussions
and the increasing appearance and support for individual
components of such a program, it has not been fully realized
on an international level. The main barrier to creating an
international database of aquatic bioacoustics may be as simple
as sourcing adequate funding to achieve such a sizable task, due
to a lack of awareness of the value and importance of the product
among organizations with the financial resources to support its
creation and continuation.

To make a global underwater sound library a success, broader
engagement, buy-in, and support of the scientific community
will be needed, as well as providing incentives for individuals
to contribute their sounds and algorithms to the library (e.g.,
Bradbury et al., 1999; Gaunt et al., 2005). There are several non-
trivial hurdles to establishing this buy-in. Firstly, researchers
often need to be convinced about the value of open and
accessible science that may counterbalance more individualistic

13http://www.soest.hawaii.edu/ore/dclde/dataset/
14https://ai.google/social-good/
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benefits associated with their intellectual property and therefore
encourage contribution of recorded sounds to a repository;
this parallels the ongoing broader scientific cultural change
toward promoting data sharing and accessibility. A repository
that provides a way to have example sounds as citable data
(such as through providing a DOI number) further motivates
individuals to contribute by ensuring they receive appropriate
future credit for their original recordings; however, this is
matched with the consideration that in some cases, contribution
may require signing over copyright and access rights for that
acknowledgment. Secondly, a repository needs to reduce burdens
for individuals to contribute sounds and provide a system that
can easily ingest audio and relevant metadata (Bradbury et al.,
1999). A third challenge is raising the awareness that many
individual archives are not as permanent as individuals think;
analog media often degrades over time (Gaunt et al., 2005) and
hard drives are not immune from failure, so depositing sounds
in a sustainable repository is an urgent need, particularly for
older recordings. One example of such archiving is the recovery
and digitization of the fish sound recordings taken by Fish
and Mowbray (1970), as described in Rountree et al. (2002).
Launching a new library is particularly taxing as it requires
building the interest of potential contributors to maximize
their donations, while having limited outputs to offer initially.
This could be alleviated by integrating efforts from existing
libraries and archives, rather than initiating an entirely new
database, which will also increase the library’s appeal to potential
funding sources.

There may also be more nebulous factors that have limited the
provision of appropriate funding, including the likely duration
of the program (i.e., including long-term planning and on-going
resources to maintain the platform) and facilitating the repeated
meeting of numerous global partners needed to identify and
agree on its structure and criteria. Securing the longevity of the
program is vital to the usefulness of the platform as libraries that
are not scalable, well-maintained, and continually updated can
quickly become redundant or outdated. The world’s increasing
awareness around the environmental costs of data storage and
processing mean that consideration of carbon neutrality will also
be a key factor in the design and longevity of the program.

Passive acoustic research is now, it appears, rapidly
approaching a nexus point. The changing environment and
decreasing biodiversity are compelling the documentation of
baseline acoustic observations. Technical advances associated
with data collection and an increasing number of researchers
and institutes collecting PAM data are providing the ability to
create bioacoustic databases. Concurrently, awareness of the
importance of acoustic cues to aquatic fauna, the impacts of
noise on them and the potential for acoustic communities to
provide an indication of ecosystem health has reached a stage
where PAM is becoming appreciated as a mainstream data source
across more species and ecosystems than ever. Finally, public
interest and access to user applications means citizen scientists
can drive widespread knowledge sharing. Now is the time to
facilitate that progress by gathering the acoustic, ecological, and
bioinformatic community together to realize an aquatic-sounds
sharing platform.

FUTURE STEPS

The development of an international platform for sharing
acoustic data is non-trivial and requires identifying and
describing a number of inter-dependent factors including:
(1) sources and protocols for securing and maintaining
significant funding at national and international levels; (2) global
interdisciplinary collaboration and stakeholder consultation to
develop and agree on criteria for data supply and reporting
and system configuration that produce the most useful, yet
user-friendly, environment; (3) an appropriate scalable platform
on which the facility can be hosted; (4) an open forum
to facilitate open access and common development of AI
algorithms; (5) continual system management and quality
assurance; (6) establishment and agreement on the use of
data and metadata standards; and (7) on-going promotion
and engagement to ensure maximum use, such as open
working groups to foster international collaborations focused
on global spatiotemporal trends in detected aquatic fauna.
These are multidisciplinary tasks requiring input from bio-
and eco-acousticians, bioinformatics experts, AI engineers, web
engineers, and stakeholders. To begin our journey along this
shared pathway, we recommend a multi-disciplinary workshop
to detail all the requirements for developing an appropriate
library/database to fulfill the needs of all that may wish to access
it and to detail the resources needed to support the work. Such an
effort is critical and timely as we enter the UN Decade of Ocean
Science for Sustainable Development.
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Our awareness of air-borne sounds in natural and urban habitats has led to the
recent recognition of soundscape ecology and ecoacoustics as interdisciplinary fields
of research that can help us better understand ecological processes and ecosystem
dynamics. Because the vibroscape (i.e., the substrate-borne vibrations occurring in
a given environment) is hidden to the human senses, we have largely overlooked
its ecological significance. Substrate vibrations provide information crucial to the
reproduction and survival of most animals, especially arthropods, which are essential to
ecosystem functioning. Thus, vibroscape is an important component of the environment
perceived by the majority of animals. Nowadays, when the environment is rapidly
changing due to human activities, climate change, and invasive species, this hidden
vibratory world is also likely to change without our notice, with potentially crucial
effects on arthropod communities. Here, we introduce ecotremology, a discipline that
mainly aims at studying substrate-borne vibrations for unraveling ecological processes
and biological conservation. As biotremology follows the main research concepts of
bioacoustics, ecotremology is consistent with the paradigms of ecoacoustics. We
argue that information extracted from substrate vibrations present in the environment
can be used to comprehensively assess and reliably predict ecosystem changes. We
identify key research questions and discuss the technical challenges associated with
ecotremology studies.
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INTRODUCTION

Our awareness of sounds in natural and urban environments has led to the recognition of
soundscape ecology (Pijanowski et al., 2011a) and ecoacoustics (Sueur and Farina, 2015). These two
interdisciplinary research fields in an non-invasive way increase the understanding of ecological
processes and ecosystem dynamics through acoustic monitoring that can assess biodiversity and
human impact on terrestrial, freshwater and marine ecosystems (reviewed in Linke et al., 2018;
Miksis-Olds et al., 2018; Sugai et al., 2019). However, in contrast to the prevailing general belief
that organisms mainly rely on information provided by air-borne or underwater sounds, research
over the past decade suggests that substrate-borne vibrations are one of the most prevalent sources
of environmental information (Cocroft et al., 2014; Hill et al., 2019). Vibrational signaling is the
most common and taxonomically widespread form of mechanical communication (Cocroft and
Rodríguez, 2005; Cocroft et al., 2014). Animals can also perceive and use vibrational information
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available in the environment outside of the communication
context, for example to detect prey, host or predators (Virant-
Doberlet et al., 2019). Substrate vibrations can provide relevant
information about the environment for plants (Appel and
Cocroft, 2014; Mescher and Pearse, 2016) and bacteria (Reguera,
2011). The increased awareness of the importance of substrate
vibrations to organisms has recently led to the definition of
biotremology (see Table A1), a new field of animal behavior
research (Hill and Wessel, 2016; Hill et al., 2019).

Here, we aim to expand biotremology beyond behavioral
studies by promoting the concepts of vibroscape and
ecotremology. We argue that information on substrate
vibrations present in the environment can be useful to
comprehensively assess ecosystem functions and propose more
effective conservation plans in the future. We first introduce
the concepts of vibroscape and ecotremology, highlighting the
similarities and differences to soundscape and ecoacoustics.
We then identify the key research questions that should be
addressed, and finally, we discuss some challenges associated
with ecotremology studies and possible applications. In line with
our own research and existing literature, we focus primarily on
terrestrial habitats.

VIBROSCAPE AND
ECOTREMOLOGY—THE CONCEPTS

Sound and Vibration
Our intent here is not to delve into the physics of sound
and vibration, but to briefly discuss some conceptual
issues relevant to understanding the nature of mechanical
information in the environment that can be used for ecosystem
assessment and surveys.

For the purpose of ecosystem monitoring, the separation
between sound and vibration may be surprisingly difficult. Sound
and vibration are two terms so commonly used in everyday
life that they are generally accepted as distinct. However, the
terminology and definition of sound and vibration may differ
between physicists, mechanical engineers and biologists (Cremer
et al., 2005; Hill, 2008; Hill and Wessel, 2016; Mortimer,
2017; Strauß et al., 2021). Here we follow the biological
definition of sound where detection mechanism is important
(Hill, 2009; Hill and Wessel, 2016). Both sound and vibration
are at the source generated by mechanical vibrations and the
energy is transferred through the surrounding medium (air,
liquid or solid) by mechanical waves characterized by particle
oscillation (Cremer et al., 2005; Hill, 2008, 2009; Caldwell,
2014). In more fluid homogenous media like air and water,
mechanical waves propagate as longitudinal compressional
(pressure) waves with particle oscillations in the direction of
wave propagation and are primarily detected by pressure (or
pressure difference) receivers known as ears [but see exceptions
in fish (Popper and Hawkins, 2018)]. In solids, various types
of mechanical waves relevant to animal behavior propagate
at the interface between two media (surface-borne waves)
and are received by mechanoreceptors detecting the particle
displacement perpendicular to the direction of wave propagation

(Hill, 2008, 2009; Hill and Wessel, 2016; Hill et al., 2019;
Strauß et al., 2021). Here, we refer to the former as sound and
the latter as vibrations. Energy is also transferred across the
interface between two media: the mechanical waves propagating
through the air induce particle oscillations in the solid medium
with which the air is in contact. Thus, the same source (e.g.,
a stridulating bushcricket sitting on a plant) simultaneously
generates mechanical waves in both surrounding media (air
and solid, i.e., plant or ground), both directly by mechanical
vibrations of the body and indirectly by a transfer of energy
between the two media (Caldwell, 2014; Hill and Wessel, 2016;
Figure 1).

The propagation of substrate vibrations through the
environment is more complex than the propagation of air-
or water-borne sound. First, a vibrating source induces in
the substrate several different types of mechanical waves
simultaneously, while the substrate geometry and material
composition influence their transmission properties and
frequency dependence (see e.g., Michelsen et al., 1982; Aicher
and Tautz, 1990; Barth, 1998; Hill, 2009; Polajnar et al., 2012;
Mortimer, 2017; Hawkins et al., 2021). In addition, differences
in physical properties within and between plants, with and
between soil types, and with and between ground covers make
the propagation of vibrations through the habitat highly difficult
to predict (Hill, 2009; Elias and Mason, 2014; Strauß et al.,
2021). Although the substrate can be any solid surface or
object in the environment, the most relevant natural substrates
from the perspective of ecosystem monitoring are plants and
ground, including river- and seabed (Cocroft and Rodríguez,
2005; Roberts and Elliott, 2017; Hawkins et al., 2021). In the
literature, vibrations propagating through the ground are often
referred as seismic (e.g., Arnason et al., 2002). The environment
has a major impact on the transmission and detectability of
vibrational signals: geometry (size and shape) and physical
characteristics (density, elasticity) impact signal attenuation and
distortion (Hill, 2009; Elias and Mason, 2014; Mortimer, 2017).
Although substrate vibrations are generally considered as a short
range communication channel, the active space of arthropod
vibrational signals on a shrub or tree has been shown to extend
up to several meters (McVean and Field, 1996; Barth, 2002).
The effective range of seismic signals can even cover kilometers
as demonstrated by long-range seismic communication in
elephants (Günther et al., 2004; Narins et al., 2016). From the
plant on which an insect emits signals, vibrational signals are
transmitted to neighboring plants via touching leaves, stems and
roots (Šturm et al., 2019) and also across smaller air-gap between
plants that are not physically connected (Eriksson et al., 2011;
Gordon et al., 2019).

Soundscape and Vibroscape
Substrate-borne vibrations are ubiquitous in nature (Hill, 2009).
Analogous to soundscape (Pijanowski et al., 2011a), vibroscape
has been defined as a collection of all vibrations emanating
from the environment, that includes biological, geophysical and
anthropogenic components (Šturm et al., 2019).

Except some high intensity anthropogenic and geophysical
sources (e.g., train, earthquake), vibroscape is hidden from
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FIGURE 1 | Schematic presentation of sources that can contribute to a vibroscape recorded in a hay meadow habitat. The main source of biological vibrations are
vibrations emitted by animals, either during intraspecific vibrational communication (blue waves), or as an incidental by-product of other activities [red dotted waves,
vibrations induced by locomotion (walking deer, digging mole, walking insect) and feeding (insect nymphs on the roots)]. Biological component also includes directly
(yellow wave, stridulating grasshopper) or indirectly induced vibrational components of air- borne animal sounds (pink waves: stridulating grasshopper, singing bird,
calling deer, wing buzzing bee). The main source of geophysical vibrations is wind (black dotted wave). Anthropogenic vibrations (directly and indirectly induced)
(black waves) are represented by a car. Other sources not shown (e.g., animals communicating with vibrational signals underground, landing of insects on the plant,
rain) also contribute to vibroscape.

human senses and we need to understand it primarily
from the perspective of organisms decoding the vibrational
information present in the environment. Taking this perspective
is challenging due to the size disparity between humans
and organisms relying on substrate vibrations, from tiny
fruit flies (Drosophilidae) to large elephants. Species-specific
ability to generate and detect substrate vibrations results in
different spatial scales. For example, for an insect, vibroscape
can represent a meadow area of 50 square centimeters,
whereas for elephants it can cover an area of several
square kilometers.

Regardless of spatial scale, the vibroscape potentially includes
more contributing sources than soundscape. It incorporates
the sources which may be located above or below ground
and may induce vibrations directly by body movements or
indirectly by producing sound, whereas only the air-borne
component of sound-producing sources contributes to the
terrestrial soundscape (Figures 1, 2). Vibroscape characteristics
and vibrational communities are largely unexplored but first
analyses indicate that terrestrial vibroscapes are dominated
by frequencies below 2 kHz. This frequency band includes
wind vibrations (geophysical vibrations), human-generated
vibrations (anthropogenic vibrations), as well as animal signals
(biological vibrations) (Šturm et al., 2019, 2021; Figure 2).

It is currently estimated that more than 240,000 arthropod
and vertebrate species use vibrational signaling in various
intraspecific interactions (Cocroft and Rodríguez, 2005; Uhl and
Elias, 2011; Narins et al., 2016).

Ecoacoustics and Ecotremology
The importance of substrate vibrations in communication and
survival of most animals has now been well established (Hill,
2009; Cocroft et al., 2014; Virant-Doberlet et al., 2019). However,
the ecological significance of vibroscape has been so far largely
overlooked (Šturm et al., 2019, 2021). While ecoacoustics studies
sources of air- or water-borne sounds as indicators of ecological
processes (Sueur and Farina, 2015), ecotremology aims at
recording, monitoring and understanding the vibrations that
emanate from natural environments. The theoretical framework
on which ecoacoustics is based–the acoustic niche hypothesis
(ANH) and the acoustic adaptation hypothesis (AAH) (Sueur
and Farina, 2015)–provides the foundation for ecotremology
as well. Ecotremology opens up the possibility of monitoring
a wide variety of arthropod species that are essential for
ecosystem functioning and conservation, but are not accessible
through other non-invasive methods. Considering vibroscape is a
unique way to monitor neglected but crucial animal biodiversity
found in grasslands and bushlands, ecotremology also gives the
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FIGURE 2 | Visualizations of the vibroscape recorded by laser vibrometer in the form of spectrograms. (A) Simultaneous recording of soundscape (above) and
vibroscape (below) from Bistra (Slovenia) meadow on July 6, 2021. Vibroscape was recorded on wild strawberry (Fragaria vesca). Red frames indicate bird songs of
European goldfinch (Carduelis carduelis) observed on both channels; (B) Vibroscape recorded on herbaceous plant hedge bedstraw (Galium mollugo) in a hay
meadow at Bistra (Slovenia) on July 7, 2018. Frames of different color indicate different types of vibrational signal (species unknown). Note strong constant
background vibrational noise induced by wind in the frequency range up to 1 kHz. (C) Vibroscape recorded from a spider web (from f. Lyniphidae) includes
vibrational signals of the Aphrodes bicincta in a hay meadow at Bistra (Slovenia) on July 14, 2020. (D) Vibroscape recorded on a dogwood bush (Cornus sanguinea)
at Bistra on June 20, 2019 (signallers unknown). All spectrograms obtained with the R package seewave (Sueur et al., 2008).
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opportunity to approach in a passive way the ecology of unique
populations, communities and landscapes.

ECOTREMOLOGY—KEY RESEARCH
QUESTIONS TO BE ADDRESSED

The research questions and applications of ecotremology are
largely the same as those of ecoacoustics (Sueur and Farina,
2015; Farina and Gage, 2017; Farina, 2018; Linke et al., 2018).
However, because vibroscape studies are still in their infancy
and due to some fundamental differences between environmental
sound and vibration, several specific research questions should be
addressed first.

Spatial and Temporal Variation in
Vibroscape
The extent and significance of spatial and temporal variation
are fundamental questions that should be resolved before
the implementation of ecotremological ecosystem monitoring,
reflecting our lack of personal experience of the natural
vibratory world. Due to heterogeneity of the substrate that
affects damping and selective frequency filtering, the amplitude
of emitted vibrational signals may be reduced below detection
level 10 cm away from the plant on which an arthropod
is signaling. As a consequence, the recorded vibroscape may
change substantially and unpredictably over a few centimeters
(Šturm et al., 2019, 2021). In such a situation, any vibration
sensor will pick up signals from an area that is several order
of magnitude smaller than with microphones, downscaling the
spatial range of observation.

Vibroscape may be plant species-specific due to the geometry
and transmission properties of the plant, and the plant-dwelling
animals that can be host specific inside and on the plant.
Furthermore, spatial position of individual plant within the
habitat may crucially influence the recorded vibroscape due to
neighboring plants with their specific characteristics or abiotic
conditions (e.g., sunny or shady, wind-exposed or sheltered
position) (Šturm et al., 2021).

Vibroscape composition also shows substantial diel and
seasonal changes (McNett et al., 2010; Šturm et al., 2021). To
develop adequate sampling design, studies of signal transmission
on different substrates within the natural habitats, including
sediments in aquatic environments (Roberts and Elliott, 2017;
Hawkins et al., 2021) along with a comprehensive analysis of
variation in vibroscape characteristics over short distances within
a single field-site and long-term 24-h recordings are vital.

In comparison with ecoacoustic studies, vibroscape
monitoring lags far behind due to technical challenges associated
with field recordings (Šturm et al., 2019) and several technical
issues should be resolved before a general ecotremological
approach can be developed. Autonomous vibration recorders
for vibroscape monitoring are currently not available and the
cost of equipment for registering substrate vibrations over an
array of multiple sensors, as usually deployed for soundscape
analyses, may be a limiting factor and solutions should be sought
to develop inexpensive vibroscape recording approaches.

While affordable seismic sensors such us geophones are
available (e.g., Reinwald et al., 2021), recording from substrates
like plants requires a different recording approach. Portable laser
vibrometers are the most sensitive and avoid the problem of mass
loading, but are costly and complex. However, there are other
less expensive sensors available (Nieri et al., 2022). Although
accelerometers are likely to be less suitable to reliably attach
to herbaceous plants and grasses, they currently hold the most
promising solution for recording with an array of sensors.

Characterization of Vibroscape and
Vibrational Communities in Different
Habitats and Ecosystems
The only existing vibroscape study focused on a temperate
hay meadow at a single site (Šturm et al., 2021). Before
generalizations can be made, comprehensive comparative studies
of vibroscape recorded on different substrates and in different
habitats and ecosystems, including aquatic environments, are
needed, not only to characterize the biological component as
mentioned above, but also the contributions of geophysical and
anthropogenic components.

Ecotremology appears as a challenging field of research.
First of all, the number of sources is relatively high, implying
an additional level of complexity due to rich communities.
Second, due to the complex pattern of vibration propagation
through solids under field conditions, the degradation of signals
is unpredictable with particularly important frequency and
temporal changes (Michelsen et al., 1982; Casas et al., 2007;
Polajnar et al., 2012; Mortimer, 2017; Brandt et al., 2018;
Šturm et al., 2019). Third, ecotremology cannot refer to a
public sample libraries as they exist for bird, amphibian or
mammal sounds. The lack of a library hinders the manual or
automatic identification of vibrational sources. The establishment
of a comprehensive public library of vibrational signals that
would include not only reference signals recorded in the
laboratory, but also signals recorded on different natural
substrates under different field conditions, is essential to the
implementation of ecotremological studies. Ideally, such library
should also include vibrational components of air-borne sounds
and incidental vibrations.

Selection pressures pertinent to AAH and ANH, respectively,
associated with evolutionary constraints on acoustic signals (e.g.,
Sueur and Farina, 2015; Farina and James, 2016; Krause and
Farina, 2016) are also relevant to the processes underlying
the observed structure and complexity of vibroscape. Because
the effects of the physical environment on the evolution of
vibrational signals and signaling strategies are especially strong
(Cocroft et al., 2010; Endler, 2014), studies of the structure and
dynamics of vibrational communities are likely to provide good
model systems for the effects of adaptation and competition on
partitioning of the communication channel (Šturm et al., 2021).

Relation Between Soundscape and
Vibroscape
Although vibroscape includes also the vibrational component
of air-borne sounds, it is not possible to predict vibroscape
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richness and structure of a particular habitat from its soundscape
characteristics (Šturm et al., 2021). The variety of potential
sources contributing to the vibroscape composition (Figure 1)
might also suggest that the vibroscape could be richer than the
soundscape. However, this is not necessarily the case and the
relation certainly depends on habitat, season and diel dynamics.
Simultaneous recordings of soundscape and vibroscape should
determine complementary mechanical information available in
the environment and provide crucial information for appropriate
sampling design.

Link Between Vibroscape Composition
and Ecosystem State
Vibroscape has remained “out of sight, out of mind” until recently
and there is no existing information about the composition and
structure of vibroscape in the past. Current natural vibrational
communities may already have been altered due to habitat
loss and fragmentation, biological invasion, climate change and
anthropogenic noise. Although there is so far no information on
the impact of human activities on vibroscapes, field studies of
the effects of anthropogenic vibrations showed negative effects
on animal behavior (Shier et al., 2012; Day et al., 2019; Phillips
et al., 2020; Mortimer et al., 2021; Roberts and Howard, 2022).
The recording of pristine and disturbed vibroscapes appears as a
prerequisite for future work; however, there is also a need to build
reference libraries and baseline information to assess the possible
future changes of vibroscapes.

Acoustic indices are often used to characterize soundscape
and acoustic communities or to find proxies of local biodiversity
(e.g., Sueur et al., 2014; Gasc et al., 2015; Buxton et al., 2018;
Eldridge et al., 2018). In ecotremology, the relationship between
rich biological vibroscape component and ecosystem state has
not yet been established and is not likely to be straightforward.
Indices developed to characterize soundscape might not be
directly applicable to vibroscapes. In addition, the indices have
been shown to be sensitive to background noise when soundscape
monitoring has a low signal-to-noise ratio (e.g., Desjonquères
et al., 2015). As a preliminary test, we compared the hay
meadow vibroscape recorded at different times of the day,
when vibrational signaling activity was the highest (mid-day)
and the lowest (midnight). We could not find any consistent
correlation between aurally and visually determined richness
and abundance of vibrational signals and spectral entropy Hf,
Acoustic Complexity Index ACI (both calculated in frequency
range from 200 Hz to 4,000 Hz), the envelope energy M,
Acoustic Entropy Index H and Acoustic Complexity Index ACI
(both calculated in frequency range from 0 to 20,000 Hz).
However, this initial work does not preclude that other indices
might perform better and could be used for a rapid vibroscape
assessment in the future.

DISCUSSION

In contrast to terrestrial soundscapes, which can be perceived and
recorded in everyday life humans have no personal experience
with natural vibroscapes. The sensory barrier that isolates the

vibroscapes from human perception greatly limits both popular
and scientific interests in vibroscape. However, there is no good
reason to assume a forest soundscape is more important than a
meadow vibroscape. Recordings of deep-sea soundscapes have
proved that previously inaccessible sounds can greatly attract
the attention of large audiences, including scientists, artists and
citizens (Duarte et al., 2021). The development of low-cost and
reliable recording equipment suitable for long-term unsupervised
field-recordings in research programs, but also for opportunistic
recordings is necessary to increase interest in this hidden form
of biodiversity.

As in ecoacoustic studies, vibroscape recordings may generate
a large amount of raw data reaching several TB very quickly
(Šturm et al., 2019). Manual identification is highly time-
consuming, so that large datasets cannot be thoroughly processed
by a small number of observers and automated species
identification and diversity assessment is needed. At present,
manual identification and assignation of vibrational signals by
listening and visualization of spectrograms is still challenging due
to unpredictable changes in signal structure during transmission,
high levels of vibrational noise overlapping the frequency range
of vibrational signals, and the lack of reference libraries. The
great majority of vibrational signals are unknown, so it can be
challenging for an inexperienced listener to distinguish signals
from incidental vibrations caused by locomotion or feeding
(Šturm et al., 2019). Computational methods for automatic
classification and identification of vibrational signals have not
yet been tested on field recordings (Korinšek et al., 2019; Šturm
et al., 2019, 2021). Nevertheless, even taking into account specific
challenges encountered in vibroscape recordings, automatic
identification of signals should be possible using recent AI
techniques such as convolutional neural networks applied to
spectrogram images (Stowell et al., 2019). This option will be
possible only if the identification models can be trained with
annotated datasets. This again underlines the need of expert and
shared libraries.

Seismology is a well-established discipline (e.g., Lecocq
et al., 2020) and therefore it is not surprising that it has
already provided the first applications of ecotremology in
monitoring elephants either by vibrational component of
their infra-sound vocalizations or by incidental vibrations
induced by locomotion (Wood et al., 2005; Mortimer et al.,
2018; Parihar et al., 2021; Reinwald et al., 2021). The latter
approach also allows differentiating between large mammal
species (Wood et al., 2005). Substrate vibrations created by
gunshots could also be invaluable in monitoring poaching
(Mortimer et al., 2018).

Monitoring plant-dwelling arthropods provides more
challenging application, but nevertheless a preliminary study
showed that species-specific vibrational signals of insect
pests could be identified in the vibroscape recorded in
the vineyard (Akassou, 2021). Monitoring insects through
vibroscape analysis could provide important information on
the dynamics of insect populations that have been shown to
be in severe decline, threating the state of ecosystems and, as
consequence, human society (e.g., Wagner, 2020; Miller, 2021;
Wagner et al., 2021).
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CONCLUSION

Vibrational signaling is the most common form of mechanical
communication. Although substrate vibrations provide a
rich and reliable source of information to the majority
of animals, humans have so far overlooked vibroscape
as an essential element of the natural environment that
can have important effects on ecological processes and
ecosystem dynamics. Several key technical challenges
will have to be resolved, before such approach can be
implemented in the monitoring. We believe that with the
increased awareness about vibroscape and the growing
research interest and demand for technical solutions, the
implementation of ecotremological monitoring will be
feasible within the next decade. We encourage researchers,
artists and citizens to incorporate ecotremology into
their projects to gain better awareness and knowledge of
hidden vibroscapes.
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APPENDIX

TABLE A1 | Table of relevant terms as used in the main text with their definitions.

Term Definition References

Vibration Different types of waves on the boundary between two distinct media Hill and Wessel, 2016

Biotremology The study of mechanical communication by surface-borne waves Hill and Wessel, 2016

Vibroscape A collection of biological, geophysical and anthropogenic vibrations emanating from a given landscape Šturm et al., 2019

Ecotremology Discipline studying substrate-born vibrations for unraveling ecological processes This paper

Sound Purely longitudinal wave in homogeneous medium Hill and Wessel, 2016

Bioacoustics Study of the production, transmission and reception of animal sounds Mcloughlin et al., 2019

Study of mechanical communication by acoustic waves Hill and Wessel, 2016

Soundscape Collection of biological, geophysical and anthropogenic sounds that emanate from a landscape and which
vary over space and time

Pijanowski et al., 2011b

Ecoacoustics Ecological investigation and interpretation of environmental sound Sueur and Farina, 2015
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Automatically detecting the calls of species of interest in audio recordings is a common
but often challenging exercise in ecoacoustics. This challenge is increasingly being
tackled with deep neural networks that generally require a rich set of training data.
Often, the available training data might not be from the same geographical region as
the study area and so may contain important differences. This mismatch in training and
deployment datasets can impact the accuracy at deployment, mainly due to confusing
sounds absent from the training data generating false positives, as well as some variation
in call types. We have developed a multiclass convolutional neural network classifier for
seven target bird species to track presence absence of these species over time in cotton
growing regions. We started with no training data from cotton regions but we did have
an unbalanced library of calls from other locations. Due to the relative scarcity of calls
in recordings from cotton regions, manually scanning and labeling the recordings was
prohibitively time consuming. In this paper we describe our process of overcoming this
data mismatch to develop a recognizer that performs well on the cotton recordings
for most classes. The recognizer was trained on recordings from outside the cotton
regions and then applied to unlabeled cotton recordings. Based on the resulting outputs
a verification set was chosen to be manually tagged and incorporated in the training set.
By iterating this process, we were gradually able to build the training set of cotton audio
examples. Through this process, we were able to increase the average class F1 score
(the harmonic mean of precision and recall) of the recognizer on target recordings from
0.45 in the first iteration to 0.74.

Keywords: bird monitoring, ecoacoustics, deep learning, biodiversity, species recognition, active learning

INTRODUCTION

Surveys of birds belonging to various functional groups over time can give farmers information
about the health of the ecosystems on their farms. It is in the interest of cotton farmers to improve
biodiversity and ecosystem function on their farms: healthy ecosystems may improve productivity
of the farms in the long term through pest suppression (Garcia et al., 2020) and there is an increasing
demand for environmentally sustainable products (Kumar et al., 2021). Monitoring avian diversity
is also valuable in order to document their response to changes in their environment over time,
particularly in regard to weather events and climate change (Both et al., 2010).
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Monitoring the presence of a particular bird species in a
location traditionally requires an ecologist to periodically visit
the location, stay for a period of time to make observations,
often returning repeatedly to account for the intermittent nature
of bird presence (Newell et al., 2013). In recent years audio
recordings have been used to lessen the time burden on
ecologists: rather than multiple trips to the location, a recorder
can be deployed and the data collected periodically, a less
frequent and quicker task than the on-site surveys (Acevedo and
Villanueva-Rivera, 2006; Wimmer et al., 2013). Surveys can be
then done by listening to the audio recordings at a time that
suits the ecologist. While this decreases the total work somewhat,
there is still a large time burden involved with listening to the
audio. Passive acoustic monitoring is increasingly being applied
to monitor Australian birds particularly in conservation contexts
(e.g., Leseberg et al., 2020; Teixeira et al., 2021).

Automated detection of bird species can dramatically speed
up this process. Creating a machine learning model for species
recognition requires access to training examples; how many
training examples depends on the difficulty of the recognition
task. Furthermore, the training examples should be as close
as possible to the audio that will be encountered when the
recognizer is deployed. A mismatch between training data
and the unlabeled inference data encountered at deployment
is an issue encountered in many machine learning scenarios
and is known as dataset shift or domain shift (Dockès et al.,
2021; Kouw and Loog, 2021; Stacke et al., 2021). This can
arise from regional variation in call types, or a difference in
background noise profiles due to vegetation or other local
conditions. It is also likely that the types of confusing signals
found in the deployment location will be different from those
encountered in the training data, such as machinery, traffic
or other anthropogenic sound, or different types of non-target
animal vocalizations.

There are two issues that arise from this: firstly, having a
mismatch between the training data and the deployment location
could cause the recognizer accuracy to suffer when deployed,
and secondly, without examples from the deployment location
in the test set, the accuracy of the recognizer at deployment is
not known, as the only accuracy measurements available are for
the non-deployment location. This is often problematic because
in real world applications, labeled recordings from the study
location may not exist. This can be partly alleviated by sourcing
the training and testing data from a wide variety of locations as
this is likely to increase generalizability of the model, however
it is not a replacement for having labeled recordings from the
deployment location.

In this paper, we describe our approach to training a deep
learning convolutional neural network (CNN) detector of seven
species of interest in Australian cotton farms, referred to as
the target species: Australasian Pipit (Anthus novaeseelandiae);
Golden-headed Cisticola (Cisticola exilis): Mistletoebird
(Dicaeum hirundinaceum); Rufous Whistler (Pachycephala
rufiventris); Australian Boobook (Ninox boobook); Striated
Pardalote (Pardalotus striatus); and Striped Honeyeater
(Plectorhyncha lanceolata). Figure 1 shows spectrograms of
example vocalizations from each of these species.

These species were chosen based on several criteria. Firstly,
they cover multiple functional groups of interest—insectivores,
frugivores, nectarivores, and predators. Secondly, they are known
to occur across multiple cotton growing regions within Australia
(Smith et al., 2019). They are expected to be present in
numbers where changes in the frequency of their presence
will be detectable: i.e., not so common that they are always
present no matter if the health of the ecosystem deteriorates or
improves, but and not so rare that they never occur. Finally,
they have reasonably distinguishable calls, compared to some
other candidates.

The challenge was that we started with no labeled examples of
these species in recordings from cotton regions. Using recordings
from other regions we built a recognizer that was able to find
enough of the target species that it could be used to optimize
the process of manually labeling cotton recordings to build the
training dataset. This process was iterated, with each iteration
adding more examples from cotton regions.

Related Research
For the last decade or more, interest in using acoustics for
ecological monitoring has been steadily increasing, bolstered by
a drop in the price for recording hardware and storage (Roe et al.,
2021) and more recently by advances in automated analysis (Xie
et al., 2019). For a number of years, deep learning techniques
have dominated these automated analysis approaches (Gupta
et al., 2021). In the 2018 Bird Audio Detection challenge a
competition for classifying 10-s audio clips as containing a bird
or not, the highest performing entries were all convolutional
neural networks, with the most accurate results achieved using a
transfer learning setup, with both resnet50 and inception models
(Lasseck, 2018).

Deep learning models, and machine learning models in
general, are trained on one set of examples, and tested on a
different set, referred to as the test set. Much published research
uses datasets where the training data and test data are drawn from
the same datasets (Narasimhan et al., 2017; Xu et al., 2020). While
this is valuable and interesting for exploring different algorithms,
in many real-world ecological applications the model will be
deployed in new environments. Other research tests models on
datasets not used in training (Stowell et al., 2019), which is a much
more challenging test of generalizability of the models.

This paper describes challenges related to this ability for the
model to generalize from one dataset to another. Most of the
literature presents an academic exercise in increasing accuracy on
an available test dataset. There is little research published on how
to approach the situation where the species recognizer is to be
deployed for a real-world ecological purpose but data from that
deployment location does not exist.

The main approach we took is an active learning approach.
Generally speaking, active learning involves the model
making predictions on unlabeled examples, selecting the
most informative of these for labeling based on a query strategy,
querying an oracle for the label, and then updating its weights
based on this new training example (Cohn et al., 1994; Wang
et al., 2019). This technique has been proposed in a number of
ecoacoustics studies: Kholghi et al. (2018) adopted this approach
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FIGURE 1 | Target species and their vocalizations. Australiasian Pipit, photo credit: https://commons.wikimedia.org/wiki/User:Summerdrought; https://creative
commons.org/licenses/by-sa/4.0/; Golden-headed Cisticola, Mistletoebird, Rufous Whistler, Australian Boobook, photo credit: https://commons.wikimedia.org
/wiki/User:JJ_Harrison; https://creativecommons.org/licenses/by-sa/4.0/legalcode. Striated Pardalote, photo credit: https://en.wikipedia.org/wiki/User:Fir0002;
https://creativecommons.org/licenses/by-nc/3.0/legalcode. Striped Honeyeater, photo credit: https://commons.wikimedia.org/wiki/User:Aviceda; https://creative
commons.org/licenses/by-sa/3.0/legalcode.

to speed up labeling audio for soundscape classification. Qian
et al. (2017) assessed the performance of active learning for
classifying a library of bird calls. These studies, however, are
made on constrained artificial tasks, and tend to focus on the
mathematics of the query strategy for selecting new samples.

This paper describes our experience in applying an active
learning approach to developing species recognizers for our
biodiversity monitoring project, using a mismatched initial
labeled dataset. As well as describing the network architecture
and active learning query strategy, we describe the progression
of how the dataset grew, and how the accuracy metrics for each
target species changed accordingly.

MATERIALS AND METHODS

Dataset Building Through Verification of
Results
Data Sources
Original Dataset

Ecosounds1 is a website built using the QUT Ecoacoustics
Workbench (Truskinger and Cottman-Fields, 2017) and serves

1www.ecosounds.org

as a repository for annotated ecological audio recordings. It
contains several datasets for which we had permission to use,
and which served as a starting point. These recordings were
from a variety of locations in eastern Australia, but none of
which were cotton regions. This dataset consisted of recordings
with vocalizations annotated with time and frequency bounds of
variable length. The numbers of examples for each species from
this dataset is shown in Table 1.

In addition to examples of the target species, a varied selection
of negative examples was also included in the training data.

TABLE 1 | Number of initial recordings from other regions.

Label Count

Australasian Pipit 1

Golden-Headed Cisticola 9

Mistletoebird 383

Nothing 174

Other 503

Rufous Whistler 5,000

Australian Boobook 464

Striated Pardalote 2,380

Striped Honeyeater 144
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Examples from every non-target species available to us was
included. The class containing non-target species events is
referred to as “other.”

Cotton Recordings
We deployed Song Meter SM3 recorders (Wildlife Acoustics)
on Australian cotton farms in the Narrabri region of northern
New South Wales in early 2020, and the St George, Miles
and Dalby regions of southern Queensland in late 2020 and
early 2021, shown in Figure 2 and Table 2. The recorders
were programmed to record for 2 h starting just before
dawn and 1 h during dusk at 24 kHz and default gain
settings. Ecosounds was used to store and later annotate these
cotton recordings.

Convolutional Neural Network Verification Workflow
Figure 3 illustrates the workflow to build the dataset so that it
contains examples from the cotton recordings.

Initial Labeling of Cotton Recording
Two species were under-represented in the non-cotton dataset:
Australasian Pipit and the Golden-headed Cisticola. Recognizers
were built for these species, using the QUT Ecoacoustic Analysis
Programs software (Towsey et al., 2020). These do not use learned
features or machine learning but rather use human-designed
features with thresholds manually set based on human knowledge
about the call structure. The results of these recognizers were
used to filter the cotton recordings. Combined with some random

FIGURE 2 | Cotton regions where recordings were taken. Imagery (C)2021
Landsat/Copernicus, Data SIO, NOAA, U.S. Navy, NGA, GEBCO, Imagery
(C)2021 TerraMetrics, Map data (C)2021 Google.

TABLE 2 | Recording period for training data.

Region Number of Sites Period Total hours

Narrabri 12 March 2020 249

St George 2 December 2020–March 2021 331

Miles 2 December 2020–March 2021 317

manual sampling, this provided sufficient examples to initiate
training of the CNN, however, due to the high number of false
positives and scarcity of the target species, it was a slow and
inefficient exercise. A recognizer was also built for Australian
Boobook as this was an easier task due to the simple call structure
and quieter time (night) when they are active. Through this
process, a variety of examples for the negative classes as well as
a handful of examples for other target species were found. The
numbers for each species are show in column T1 of Table 3.

Training and Verification
Using a dataset comprised of both these initial cotton annotations
and the non-cotton annotations, the CNN was trained. Then the
following steps were performed repeatedly.

• The long unlabeled recordings were segmented into non-
overlapping 4 s segments which were each then classified
as belonging to one of the seven positive classes or on of
the two negative classes. As well as the predicted class, the
network also provides the probability for every class.

• These predictions and probabilities were then used to
select the subset that was most likely to contain examples
of the target species. Links to find these segments on
ecosounds were generated.

• An expert avian ecologist then correctly annotated the
selected segments.

• The dataset was recreated from all available annotations,
including these new additions.

This kind of iterative process is known as active learning. New
examples are added to the training set by selecting them based on
the estimated new information they will add to the classifier.

Query Strategy for Selection of Segments for
Verification
For the initial iterations, there were low numbers of detections for
the positive classes. For many of the classes none of the segments
were classified as that class. As these were unlabeled segments,
it was not possible to know whether this was because there were
few individuals of those species present in those recordings or the
recall for those species was very low.

A protocol for selection of the subset for human verification
was designed with the goals of (a) increasing the number of
examples of each of the target species (b) correctly labeling the
segments that the classifier was least sure about.

Firstly, for each species we included the 20 examples with
the highest probability for that class. In cases where there were
fewer than 20 segments classified as that class, we still selected
the top 20 examples using the probabilities output by the CNN.
That is, a particular segment might be the highest scoring for
one species even if that probability is lower than the probability
for another species. An example with a very high probability
that is verified to be correct may only marginally improve
the recognizer performance. This is because, for the particular
variations of the vocalization that is added to the training set,
the network is already performing well. However, if it turns out
that these high probability predictions were incorrect, then it
is very valuable to include them as training examples to rectify
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FIGURE 3 | Iterative workflow for verifying classification results.

these mistakes in subsequent iterations. Furthermore, an example
that the recognizer correctly identifies is often the case that other
examples are present nearby in the recording that may not have
been detected. These can be easily manually scanned for and
added by navigating in the Ecosounds interface.

Secondly, for each species, we included for verification the
10 examples that were classified as that class (or fewer if there
were fewer than 10 detections) but had the lowest probability of
belonging to that class—those that the CNN was least sure about.
These are likely to contain interesting and unique confusing
sounds, and are therefore valuable to include in the dataset.

Thirdly, for each species we included a random selection of 10
segments that were classified as belonging to that class (or fewer
if there were fewer than 10 detections). This can be used to get an
idea of the precision for each class.

TABLE 3 | Number of examples from cotton region recordings for each class at
each iteration T1 to T8.

Label T1 T2 T3 T4 T5 T6 T7 T8

Australasian Pipit 59 59 59 59 60 62 85 101

Golden-Headed Cisticola 156 156 156 156 268 294 399 426

Mistletoebird 2 2 2 7 24 34 57 68

Nothing 8 91 91 224 344 404 447 500

Other 990 1,207 1,291 1,329 1,692 1,847 1,893 1,923

Rufous Whistler 12 12 12 12 51 82 84 89

Australian Boobook 534 536 536 547 557 564 564 568

Striated Pardalote 3 3 3 5 5 15 15 15

Striped Honeyeater 3 3 3 9 48 75 102 108

For the “other” and “nothing” classes, we did the same, but
with only five examples between them. The reason for this lower
number, is that examples of these classes are very easy to find
and are likely to be included through false positive detections of
the bird species.

This resulted in a maximum of 300, 4-s segments to verify
on each iteration. However, the actual number may be fewer, as
the same segments can be included in more than one selection,
especially where there were few or no detections for some species.

Incorporation of Verified Samples Into the Dataset
For each of these, links were generated to view and listen to the
segments on the Ecosounds website, with some padding to give
more context. These verified segments now have annotations that
are then incorporated into the training/testing.

To ensure that the accuracies for the model trained on
different stages of the dataset were comparable with each other,
the model is retrained from scratch (i.e., transfer learning from
the initial weights provided by the model, described in the next
section), rather than fine tuning the previously trained model.

We repeated this process a total of eight times. Table 3 shows
the number of examples from cotton regions after each iteration.

Convolutional Neural Network
Architecture and Data Preprocessing
Convolutional Neural Network Architecture
The CNN architecture that was chosen is Resnet34 (He et al.,
2015). It is a deep convolutional neural network designed for
image classification, but which has been shown to perform
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well when trained on ecological audio (Lasseck, 2018). It is a
model that has been tested in many applications and the model
parameters pre-trained on a large image dataset are available to
allow transfer learning. The input to this architecture is a square
image of size 224 × 224 pixels. The network was implemented
and trained using the FastAI python library (Howard and
Gugger, 2018), built on Pytorch.

The output of the final fully connected layer is passed through
a softmax function to give a probability for each class. In
addition to a class for each of the seven target species, there
is one for events that were not vocalizations from the target
species labeled as “other,” and one for segments that only contain
background noise, labeled as “nothing.” Collectively these two
classes will be referred to as “negative examples.” The decision
to separate the negative class into “other” and “nothing” was
made due to the likely ease of determining the difference of
discriminating between these two and the potential usefulness of
being able to filter silent segments for applications like random
sampling in the future.

The CNN does not localize the vocalization to a region within
the input segment, but simply selects which of the classes the
segment belongs to. We chose to use a single class architecture,
meaning that it assumes that only one of the target species will be
present, with the probabilities for all the classes adding to one.
While this assumption may not necessarily always be true, we
did not come across any examples in cotton recordings where
this was the case. In the event that it does occur the pipeline
for extracting training examples from our library is set such
that it would include separate overlapping examples for the two
species. While this would necessarily cause the accuracy on one
of the two species to suffer slightly, it happened so infrequently
that it was deemed to be worth the benefit of the simplified
architecture as well as the dataset curation that a single class
classifier brings.

Audio Preprocessing
The annotations from which the training set was generated
were of variable length, due to the variable length nature of
the vocalizations. The CNN network requires a fixed size input.
While this could be achieved through simply squashing the image
down, as is common in standard image recognition, the nature of
spectrograms means this is unlikely to be appropriate. Instead,
a fixed duration segment of the variable length segment was
cropped at random from the longer variable length segment as
the input to the network. A different random crop was taken each
time the image was fed into the network. To allow for this random
cropping, for each annotation, a 1 s padding was added before
and after the full second marks that enclose the annotation, or
if the annotation was less than 4 s, the annotation was centered
in a 6 s clip with the boundaries on the nearest whole second.
For these short events, when cropped randomly, the resulting
4 s segment contains the entire vocalization. This is illustrated
in Figure 4.

The call library contains recordings at a variety of different
sample rates. For the resulting spectrogram images to be
comparable with each other, the inputs to the CNN should
all be at the same sample rate. For this reason, all recordings

were resampled to 16,000 Hz. Below are some considerations in
choosing the frequency to resample to.

Because the number of rows of the spectrogram is fixed,
lowering the top frequency gives a higher frequency resolution.
However, it may not be desirable to down-sample too far.
By including at least some of the frequency band above
the top frequency of the target calls, more information is
available to the CNN. For example, it may be that some
acoustic event resembles the target species vocalization within
the low frequency band, but also extends into the high
frequencies, and this is the information that can be used to
successfully discriminate.

Up-sampling is likely to be detrimental, and so the common
frequency to resample to must be equal to or lower than the
lowest frequency of the testing/training sets. Up-sampling will
introduce artificial blank space at the top of the spectrogram,
which could bias the network if certain classes are more likely
to occur in those recordings. That is, the network might make an
association between up-sampled audio and a given class.

Spectrogram Generation
For each variable length audio segment, a mel-scale spectrogram
was generated. With 16 kHz audio, a short time Fourier transform
(STFT) hop length is 286 samples to fit the desired 224-pixel
width of 4 s of spectrogram. We found this works well with
a window size of 512 samples with overlap of 226 samples
(44%). A high pass of 100 Hz was applied to remove very
low background noise. The python librosa package was used
to produce a mel-scale spectrogram. The mel-scale increases
the frequency resolution for low frequencies and reduces it for
high frequencies.

The amplitude was converted to a log scale, a common practice
for audio processing, and more closely represents the way that
the ear processes sound. That is, a certain difference in amplitude
between two low amplitude sounds will be more noticeable than
the difference in amplitude between two high amplitude sounds.
These log amplitude values were then normalized between 0
and 255 to produce the pixel color. Normalizing over very short
duration audio can have drawbacks. If the segment is very quiet
or contains only background noise, this background noise is
unnaturally amplified. However, this does not seem to cause the
performance of the network to suffer and is a simple way to scale
to pixel values.

Resnet was originally designed for red-green-blue (RGB) color
images, with the input a 224 × 224 × 3 tensor. The spectrogram
is a two-dimensional grid of log amplitude values. These values
of the pixels can be mapped to a three-dimensional array using a
number of different color mapping schemes, for example red for
high values and blue for low values. This kind of color mapping
is often used when visualizing spectrograms for human viewers
as it can be aesthetic, since loud events stand out from the
background as a different color. We opted for a simpler grayscale
mapping where the spectrogram is duplicated to each of the
three color channels, as it is easier to implement, and there does
not appear to be any evidence in the literature that grayscale is
worse. The computational overhead for redundant layers on the
input is negligible.
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FIGURE 4 | Segmentation of variable length audio, for both short (left) and long (right) annotations showing green bounding box of the time and frequency limits of
the annotation.

Spectrograms were pre-generated rather than generated on the
fly as part of the pipeline. This accelerates the training process as
spectrograms can be generated once rather than every epoch.

Data Augmentation
Training was performed on spectrograms of 4-s clips. Four
seconds was chosen for a number of reasons. Vocalizations
of the target species can be longer than 4 s, and the audio
segment needs to be long enough that it captures enough of
the vocalization to distinguish the class. However, it cannot be
too long as this will increase the likelihood that other sounds
will be included, and very short vocalizations would comprise
a very small proportion of the overall size of the spectrogram
image. The duration also needs to be reasonable to fit a square
spectrogram image.

The training examples were of variable length depending on
the duration of the example vocalization. On each epoch of
training, a random 4 s segment was taken from the variable length
segment. This trains the network to discriminate calls no matter
which point of time they appear in the 4 s segment, that is the
recognizer is time invariant.

Training examples were also blended with negative examples
taken from cotton regions from the training set. Negative
examples were selected, multiplied by between 0.1 and 0.3
randomly then added to the augmented training example before
normalization, which has the effect of audio-mixing on the
spectrogram images. This effectively synthesizes new training
examples with not only more variety of background sounds, but
background sounds that appear in the soundscape where the
recognizer will be eventually deployed.

All data augmentation was performed on the fly for each batch
of forward propagation on the training set, and the number of
training examples mentioned in this paper does not include the
contribution of augmentation.

Training
Examples were randomly allocated as either training (85%) or
testing (15%). This was done deterministically for each file by
taking a cryptographic hash of the id for the annotation mod
100 and splitting it according to the resulting value. This has
the advantage of easily ensuring that a particular example would
always belong to the same part of the split, which potentially
allows for finetuning of the model produced by the previous
iteration of the verification loop (although we chose not to
do this so that the results could be compared between each
iteration) without cross contamination between training and test
sets. The drawback is that for classes with very few examples, the
proportion of training examples can end up being greater or less
than 85%. Often in machine learning there is a third dataset split,
the validation set, which is used to calculate metrics to inform
hyperparameter tuning during the course of training, however,
this was not applicable to our design.

To prevent the massive class imbalance in the dataset from
biasing the CNN, care was taken in training so that on each
epoch the network used the same number of examples from each
class. This was achieved by repeating examples from classes that
had few examples. Thus, the only class that had its examples
fed into the network exactly once per epoch was the class with
the most examples (Rufous Whistler). Training continued for
four epochs, as this was when the test set error rate stopped
showing improvement.

RESULTS

After each iteration of training, metrics were calculated on the test
set. For each class the precision (the fraction items predicted to
belong to the class which were correct), and recall (the fraction of
items that belong to the class which were predicted as belonging
to that class) were calculated, as well as the F1 score, the harmonic

Frontiers in Ecology and Evolution | www.frontiersin.org 7 March 2022 | Volume 10 | Article 810330115

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-810330 March 14, 2022 Time: 10:44 # 8

Eichinski et al. Bird Species Recognizer

TABLE 4 | Metrics for classification on test set for iteration 1, 5, and 8.

Precision Recall F1 Count Precision Recall F1 Count

T1 cotton T1 all

Australasian Pipit 0.8 0.667 0.727 6 0.667 0.667 0.667 6

Golden-Headed Cisticola 0.529 0.529 0.529 17 0.529 0.529 0.529 17

Mistletoebird 0 0 0 1 0.864 0.844 0.854 45

Nothing 0.333 0.333 0.333 3 0.774 0.923 0.842 26

Other 0.917 0.935 0.926 154 0.806 0.816 0.811 239

Rufous Whistler 0.5 0.667 0.571 3 0.98 0.984 0.982 740

Australian Boobook 1 0.988 0.994 83 0.981 0.963 0.972 162

Striated Pardalote 0 0 0 1 0.95 0.942 0.946 380

Striped Honeyeater 0 0 0 0 1 0.8 0.889 20

Accuracy 0.903 0.903 0.903 268 0.935 0.935 0.935 0.935

Macro average 0.453 0.458 0.453 268 0.839 0.83 0.832 1,635

Weighted average 0.898 0.903 0.9 268 0.935 0.935 0.935 1,635

T5 cotton T5 all

Australasian Pipit 0.8 0.667 0.727 6 0.8 0.667 0.727 6

Golden-Headed Cisticola 0.711 0.75 0.73 36 0.692 0.75 0.72 36

Mistletoebird 0.714 0.625 0.667 8 0.86 0.827 0.843 52

Nothing 0.711 0.771 0.74 35 0.725 0.862 0.787 58

Other 0.909 0.895 0.902 256 0.855 0.827 0.841 341

Rufous Whistler 0.6 0.857 0.706 7 0.979 0.992 0.986 754

Australian Boobook 1 0.988 0.994 85 1 0.945 0.972 164

Striated Pardalote 0 0 0 1 0.953 0.963 0.958 380

Striped Honeyeater 0.4 0.286 0.333 7 0.864 0.704 0.776 27

Accuracy 0.871 0.871 0.871 0.871 0.932 0.932 0.932 0.932

Macro average 0.649 0.649 0.644 441 0.859 0.837 0.845 1,818

Weighted average 0.874 0.871 0.872 441 0.933 0.932 0.932 1,818

T8 cotton T8 all

Australasian Pipit 0.8 0.8 0.8 10 0.8 0.8 0.8 10

Golden-Headed Cisticola 0.824 0.848 0.836 66 0.812 0.848 0.83 66

Mistletoebird 0.8 0.75 0.774 16 0.812 0.867 0.839 60

Nothing 0.772 0.863 0.815 51 0.779 0.905 0.838 74

Other 0.922 0.902 0.912 276 0.856 0.837 0.846 361

Rufous Whistler 0.714 0.909 0.8 11 0.979 0.989 0.984 741

Australian Boobook 0.988 0.988 0.988 85 0.987 0.957 0.972 164

Striated Pardalote 0 0 0 1 0.963 0.947 0.955 380

Striped Honeyeater 0.846 0.688 0.759 16 0.929 0.722 0.813 36

Accuracy 0.891 0.891 0.891 0.891 0.931 0.931 0.931 0.931

Macro average 0.741 0.75 0.743 532 0.88 0.875 0.875 1,892

Weighted average 0.892 0.891 0.891 532 0.932 0.931 0.931 1,892

Metrics are calculated for both all test examples and test examples from cotton.

mean of the precision and recall. We also determined the overall
accuracy, which is the fraction of items that were predicted
correctly, however, since our dataset was so unbalanced, this may
give an over-optimistic picture, as classes that contributed most
to the accuracy because they had a lot of examples also tended
to have higher precision and recall. We prefer to summarize
by averaging precision, recall and F1 across the classes with
each class weighted equally. This macro average of F1 score was
deemed the most important metric for the overall performance
of the recognizer.

Table 4 lists all the metrics for the recognizer after the first and
last iteration of training, as well as the middle iteration to give a
sense of the progress. The macro average F1 score increased from
0.45 to 0.74 between the first iteration (T1) and the final iteration
(T8). Also included are the confusion matrix for T1 and T8 in
Figure 5.

The results differed for each of the classes, depending on the
ease of discriminating species calls, the number of examples in
both cotton and non-cotton, and the abundance of the species in
the unlabeled cotton recordings used to build the dataset.
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FIGURE 5 | Confusion matrix for T1 (left) and T8 (right).

The Rufous Whistler was an interesting example. Initially we
had thousands of examples from non-cotton regions, but only 12
from cotton regions, three of which were included at random in
the test set. The initial precision and recall over the entire test set
was very high (F1 score of 0.98), however this did not generalize
to cotton with 0.5 precision and 0.67 recall, although with such
a small number the recall especially may be heavily influenced
by random variation. For the 5th iteration (T5) we had added
39 new examples and the precision and recall increased to 0.6
and 0.86, respectively. Finally, for the 8th iteration there were a
total of 89 examples, with the precision and recall increasing to
0.71 and 0.91, respectively. This improvement is interesting since,
although the number of examples of Rufous Whistler in cotton
increased more than sevenfold, this still comprised less than 2%
of the examples.

The Australian Boobook and the “other” class showed no
improvement, as they were already performing quite well
with the initial cotton examples that were added through
the verification of non-machine-learning Ecoacoustics Analysis
Programs detections. The Australian Boobook was the least
challenging of the seven target species because it is active at
night when there are fewer confusing sounds. The recall of the
“other” class lowered slightly as the dataset was built. This might
be because the sheer variety of events that belong to the “other”
means that, although we were adding misclassified confusing
events into the training set for “other,” we were also adding
confusing events to the test set that were not necessarily similar
to those added training examples. Regardless, this slight drop in
recall for the negative classes has no impact on the usefulness of
the model as a species detector.

Some species were not found in great numbers using the
verification loop workflow. The Australasian Pipit initially had 59
examples from cotton, which was increased to 101. The reported
recall in cotton for the Australasian Pipit was initially 0.68,
meaning that it should have been able to detect this species in

the unlabeled recordings. It is possible that Australasian Pipits
were not present or not particularly active during the time period
during which the recordings were made. This species was largely
absent from the non-cotton recordings, however, there were
enough found through the early laborious efforts to create some
initial examples.

The Striated Pardalote initially only had three examples
from cotton region recordings, with over 2,000 from non-
cotton recordings. The is eventually increased to 15 examples,
however due to the way that training, and test data was split,
only one example was included in the test set. The recall on
non-cotton recordings was quite high at 0.93, and therefore
we would have expected to find more examples in cotton if
they were present.

The Striped Honeyeater was one of the species with the best
improvement. It initially had only three examples from cotton
recordings, none of which ended up in the test data, and so
metrics could not be calculated. At T5 the number of examples
had increased to 48, and the F1 score from the model trained on
this was 0.3. By T8 the number of examples had grown to 108 and
the F1 score increased to 0.76.

The overall macro average F1 of the test set of all recordings
also increased from 0.83 to 0.88. This was initially surprising,
since the overall number of new examples from cotton recordings
added was only a fraction of the total recordings. However,
for some classes, namely Australasian Pipit, other, nothing, and
Striped Honeyeater, the proportion of new examples added
between T1 and T8 was high.

It can be seen that the first few iterations were relatively
unsuccessful in finding new examples across many of the species,
and then the rate of finding new examples started to accelerate.
One explanation for this might be that early on there were many
incorrect detections of target species that were labeled as “other”
on verification. It wasn’t until the after this initial addition to the
training set of confusing sounds present only in the deployment
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location that the model was able to reduce false positive rate
enough for target species to begin to be added.

DISCUSSION

Example of Data Mismatch
A potential cause for mismatch is a systematic bias in the
labeled recordings. For example, our labeled Australian Boobook
recordings, which were made at night, were often accompanied
by cicadas stridulating. Our negative set of recordings of class
“other” was designed to include a wide variety of calls by
sampling from the full range of annotations. However, this did
not happen to contain many annotations of cicadas. This led
to the CNN learning to associate the presence of cicadas with
Australian Boobooks and therefore produced many false positive
Australian Boobook detections where cicadas were present. In
this example, the one iteration of verifications remedied this;
these false positives were added to the training set and the
precision for Australian Boobooks increased.

Bias Introduced Through Feedback
A limitation of using results from a classifier to find more training
examples is that it may be missing a certain variety of call type that
were never included and therefore it continues to miss. While
we can estimate the proportion of detections of each class that
were correct (precision), which gives the false positive rate, it is
not possible to measure the proportion of each class in unlabeled
recordings that were found (recall), as only a small fraction of
the analyzed duration is verified, meaning we can’t know the
false negative rate. We tried to address this as best as we could
by doing some random sampling of segments in close temporal
proximity to any true positive detection. This is because it is likely
that individuals or members of the group will call repeatedly,
and this approach had some success on occasion. However, the
expertise of the ecologist doing the verifications is important
here, as their knowledge of the habits of the different species
at different seasons, times of day and vegetation types informed
their decision to dedicate time to this search.

Acceptable F1 Scores for Drawing
Conclusions
The main purpose of this classifier is to detect differences in
species richness among the target species over long periods of
time, drawing on the aggregations of many individual predictions
of 4-s segments. It is possible to compare the presence of a
particular species between two sets of many recordings even
with a number of errors, as this process of aggregation removes
the impact of the individual errors. In theory, as long as the
errors are made in a consistent way across the two sets of
recordings being compared, any F1 score above that of random
guessing (0.11 for a nine-class classifier) could still be useful if
aggregated across enough data. Of course, in reality, the errors
will not necessarily be random or consistent. For example, there
may be a sound source that causes confusion present in one
of the sets of recordings and not the other. Most of our target
species ended with F1 scores around 0.8–0.9, which should be
enough to compare sets of recordings on aggregate, even with

the potential of these confusing sounds not being spread evenly
across the recordings.

CONCLUSION

Through an iterative process of training, classifying unlabeled
recordings, verifying and retraining, we were able to build a
dataset for the cotton regions of eastern Australia that can be
used to train a convolutional neural network to achieve a macro
average F1 score across seven target species of birds plus two
negative classes of 0.74%. This F1 score would likely continue
to improve with further iterations. In the future, this ecoacoustic
analytical approach will be deployed with the aim of monitoring
changes in the mean proportion of functional guilds of birds in
response to on-farm vegetation management in cotton growing
regions of Australia, providing valuable information to assist the
cotton industry in preserving biodiversity.
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Anthropogenic noise can create an acoustic environment detrimental for animals that
communicate using acoustic signals. Currently, most studies of noise and wildlife come
from traffic noise in cities. Less is known about the effects of noise created by industry in
natural areas. Songbirds far from cities, but influenced by industry, could be affected by
noise, but also are likely to be impacted by changes in vegetation conditions related to
industrial development. We described the importance of industrial noise (from facilities
and transportation) on occupancy of Lincoln’s Sparrow (Melospiza lincolnii) relative to
habitat change caused by vegetation alteration and edge effects. Lincoln’s Sparrows
naturally breed in varying seral stages and types of boreal forest. To test the influence
of industrial noise, we selected three areas in Northern Alberta, Canada with high,
medium, and low levels of industrial development and varying road density. At each
area, we deployed a systematic arrangement of autonomous recording units (280 units
in total, separated by 600 m) for 3 consecutive days. To measure noise, we developed a
method that used the relative noise values extracted from the recordings of 8 frequency-
octave bands. We obtained three noise measurements: noise with high energy in the
low part of the spectrum (mean 0.5–1 kHz), masking level noise (mean 2–8 kHz),
and noise in all frequency octave bands (mean 0.5–16 kHz). Proportion of chronic
noise sources explained the highest variation of noise in the environment, and less
by traffic noise. We found Lincoln’s Sparrow had a higher occupancy in areas with
higher proportion of industrial disturbances, shrubs and grass, and decreased in noisy
areas. Masking level noise had a negative effect on Lincoln’s Sparrow occupancy in
areas with industrial disturbances, relative to areas with similar changes in vegetation
structure, but no noise. Masking noise could indicate limitation in communication as
noise increases. Our study amplifies the findings of others that future research should
consider not only anthropogenic changes to vegetation in human-altered landscapes,
but also human-caused changes to acoustic environments.
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INTRODUCTION

Anthropogenic noise is a selective pressure on species occupancy,
especially for animals that rely on acoustic signals for
communication. It has been reported for birds additional
responses in terms of species richness, productivity, and
abundance. The main driver for the decreases in all these
population parameters is the elevated traffic and ambient noise
in urban environments (Reijnen et al., 1996; Stone, 2000). In
general, species richness and densities of breeding birds decrease
close to roads with high traffic volume or in noisy parts of cities
(Reijnen et al., 1996; Forman et al., 2002; Perillo et al., 2017;
Carral-Murrieta et al., 2020). Other kinds of noise might similarly
degrade the quality of habitat for songbirds (Bayne et al., 2008;
Francis et al., 2009; Nenninger and Koper, 2018).

Certain types of anthropogenic noise are more likely to
overlap spatially and temporally with the morning singing
times of songbirds (Slabbekoorn and Ripmeester, 2008).
Whereas urban and traffic noise are intermittent, with variation
throughout time, industrial noise typically produces constant
noise. This means that urban noise can be more or less likely to
overlap temporally with the morning singing times of songbirds
depending on latitude and time of year. This variation may
provide some flexibility to birds in terms of when to sing in
order to communicate effectively. By contrast, industrial noise
typically produces constant noise across all times of day and
year (Bayne et al., 2008; Francis et al., 2009). For example,
in the boreal forest of Canada, compressor stations, injection
wells, and processing facilities from the oil sands industry creates
constant noise (Northrup and Wittemyer, 2013; Nenninger and
Koper, 2018) adjacent to breeding bird habitat. Moreover, many
forms of chronic industrial noise occur at low frequencies (0–
2.5 kHz) with high amplitude levels (75–90 dB at the source),
reaching as much as 105 dB at the largest industrial facilities
(MacDonald et al., 1996). Despite the potential large effect of such
noise in natural areas, chronic noise from compressor stations
and processing facilities in conjunction the vehicle traffic to
maintain these types of equipment has been less studied than the
intermittent traffic noise in urban environments (Slabbekoorn
and Ripmeester, 2008; Francis, 2015; Halfwerk and Slabbekoorn,
2015; Shannon et al., 2016).

The limited comparisons of birds in quiet versus noisy areas
created by industrial development in wilderness areas have
shown species-specific responses. Previous work in Alberta’s
boreal forest found lower densities for all birds combined, lower
densities for some common species, and reduced occupancy
rates for a number of species close to noisy compressor stations
relative to silent well sites with similar vegetation disturbance
(Bayne et al., 2008). However, not all species showed negative
effects, and some showed trends toward being more abundant
near noisy compressor stations (Bayne et al., 2008). Similarly,
bird assemblages in noisy areas of New Mexico differed in
comparison with quiet sites, which were associated with high
acoustic masking of certain species close to generators (Francis
et al., 2009). A major difference was that the western scrub-
jay (Aphelocoma californica), a nest predator, decreased in sites
with anthropogenic noise. In turn, lower predation rates for

other bird species were observed in noisy areas suggesting
a potential benefit of noise for some species (Francis et al.,
2009, 2012). For secondary cavity-nesting birds, some species
had higher occupancy close to noisy generator, while others
had lower occupancies (Kleist et al., 2017). Clearly, the effects
of anthropogenic noise on birds are variable and complex,
indicating that more studies are needed to understand why
species react differently to intermittent and chronic noise in
otherwise natural ecosystems, and why some species do or do not
react to noise (Francis and Barber, 2013).

The habitat requirements of a species is one potential source
of variation that may influence how noise impacts birds. It is
well documented that vegetation type influences habitat selection
by birds (MacArthur et al., 1962; MacArthur, 1964), but these
effects may differ among seral stages. Most of the species studied
by Bayne et al. (2008) that were more sensitive to industrial
noise also tended to prefer mature forest. Whether species that
use early seral habitat and prefer edges react to noise is not
well understood. If the human disturbance that creates noise
also changes vegetation structure and composition (i.e., through
edge effects and creating new early seral vegetation patches),
then responses to noise may be confounded by the presence of
more suitable habitat closer to noisy areas. Thus, similarly to
cities, noisy areas in remote locations may attract more tolerant
species (or “urban exploiters” sensu Blair, 1996; McKinney, 2002).
Sensitive species that cannot use disturbed or edge vegetation
may simply be filtered out by loss of habitat rather these species
avoiding noisy areas per se (Blair, 1996; Cardoso et al., 2018).
In the boreal forest near industrial facilities associated with oil
and gas extraction, there is considerable variation in the state
of the vegetation related to natural processes as well as human
disturbances, which make it possible to separate the relative
importance of habitat change versus noise (Venier and Pearce,
2007; Venier et al., 2014; Dabros et al., 2018).

A fundamental challenge in summarizing studies that purport
to study how birds respond to noise is that in some studies, direct
measures of noise are not quantified (i.e., Bayne et al., 2008).
Instead, surrogate variables (i.e., distance to noise source, noisy
vs. quiet, traffic volume) are often used. Quantification of noise
measurements are needed to separate the relative importance
of noise relative to changes in habitat conditions caused by
the disturbances that create noise. At the same time, there are
many ways to measure noise and there has been very limited
assessment of how birds react to different ways of quantifying
noise (Scobie et al., 2016).

An additional factor that is rarely addressed in noise
impact studies is the possibility that vegetation conditions
interact with noise transmission by altering sound absorption
(Martens and Michelsen, 1981). Low-frequency sounds can
transmit farther distances in open areas, while denser vegetation
can provide a vertical obstruction to the sound waves that
can mitigate the distance anthropogenic noise travels (Truax,
1978; Rossing and Fletcher, 2004). Whether different vertical
obstructions related to vegetation type make the surrounding
habitat more or less suitable for some songbird species because
of differences in the way noise transmits in different vegetation
types remains poorly studied.
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Lincoln’s Sparrow (Melospiza lincolnii) is a common songbird
that breeds in many different vegetation types in Alberta’s
boreal forest (Alberta Biodiversity Monitoring Institute [ABMI],
2020). Previous work suggests they are more likely to be
found near relatively quiet pipelines and well sites with
disturbed vegetation than mature forest (Bayne et al., 2016).
Studying a species that prefers disturbed areas provides a
unique way to test the importance of noise because we know
their habitat requirements are met in areas where industrial
development is occurring. An additional factor that can mediate
the occupancy of the species could be its vocal features. In
general, songbirds with low-frequency songs are less abundant
or showed lower occupancy in noisy sites than those with higher
frequency vocalizations (Proppe et al., 2013; Francis, 2015).
Lincoln’s Sparrow songs range from 1.5 to 7.5 kHz (Cicero
and Benowitz-Fredericks, 2000; Figure 1C); therefore, its songs
are partially overlapping with anthropogenic noise that usually
concentrates at low frequencies (<2 kHz; Lohr et al., 2003).
We addressed this topic with four primary objectives to: (1)
develop a cost-effective way of quantifying noise levels from
industrial activities that could be used to statistically separate the
effects of noise from vegetation disturbance caused by energy
development in natural areas; (2) determine how vegetation
structure influences noise transmission in the boreal forest; (3)
assess if occupancy of Lincoln’s Sparrow was influenced by noise,
vegetation disturbance, or both; and (4) test if different ways
of quantifying noise (noiseLOW, noiseHIGH, noiseALL) altered
our conclusions.

MATERIALS AND METHODS

Study Area
Our study area was located in the boreal forest in Alberta,
Canada (Figure 1A), where there is active presence of the energy
industries. It is dominated by upland boreal forest with variation
in industrial disturbances that creates areas of forest regeneration,
edges, seismic lines, among others. It is known that Lincoln’s
Sparrow inhabit disturbed areas in the boreal forest (Bayne
et al., 2016), providing an opportunity to explore changes in
occupancy given the habitat relative to industrial noise. Based on
our objectives, we performed the following tests: (1) the influence
of vegetation, noise sources, and disturbances on industrial noise
(response variable), and (2) the effect of industrial noise on
Lincoln’s Sparrow occupancy (response variable).

The data were collected in June 2015 using autonomous
recording units (ARUs) deployed at different areas of
disturbances created by the oil sands industry in Northern
Alberta, Canada. According to the Alberta Biodiversity
Monitoring Institute (ABMI) human footprint classification
system1, these areas vary considerably in levels of human
footprint with some areas containing industrial infrastructure
such as processing facilities and compressor stations. All sites
also included roads, well sites (active and abandoned), and
seismic lines (Dabros et al., 2018; Figure 1A).

1www.abmi.ca

FIGURE 1 | (A) Sample design. Autonomous digital recorders deployed 600 m apart in three areas of industrial disturbances in Northern Alberta, Canada. Upper
areas correspond to high and medium industrial settings. Lower area corresponds to low industrial settings. (B) Spectrograms of noise variation at a specific station
in the low, intermediate, and high industrial settings areas. (C) Spectrogram of two Lincoln’s Sparrow songs showing the different elements in the song.
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In the sampling design, we selected three large areas in which
to sample a gradient of industrial disturbances. We defined
site as an area of multiple ARUs (n = 98, 83, and 99 ARUs
at each of three sites) and a station as one ARU deployed
within the site. ARUs were located in grids 600 m from the
adjacent recorders, comprising an area of 3,600 ha (Figure 1).
The ARUs were originally laid out in systematic grids of 100
units, but recording failures reduced the actual number. These
areas comprised a systematic design that was random in location
with respect to roads and distance to various noise sources
(Supplementary Figure 1).

Acoustic Survey
Recordings were collected with SM2 and SM3 recorders (Wildlife
Acoustics) with two omni-directional microphones (SMM-A1
sensitivity: −4 ± 3 dB, 0 dB = 1 V/pa at 1 kHz). Previous to
their deployment, we tested the sensitivity of each microphone
using an Extech 94 dB sound calibrator. We ensured all ARUs
had microphones with gain gaps between the left and right less
than 4 dB (Lankau, 2015). We stored all the recordings in SD
cards in stereo format (WAV) at a sampling rate of 44.1 kHz and
16-bit resolution. We defined the recording time to be 10 min
long at 0500 h, which matches the highest peak of vocal activity of
most boreal birds. We attached ARUs to trees with wood screws
at 1.5 m height, facing North, for 3–4 consecutive days from May
25 to July 6, 2015. Most of the acoustic data analyzed were from
recordings collected in June, which corresponds to the breeding
season of the study species.

A group of five expert transcribers in songs and calls of Alberta
birds identified the songs and calls in each 10 min recording
for the 3 days of the acoustic surveys. We saved all detections
including location of the site, weather (presence of rain or wind),
and industrial noise classified as low, intermediate, or high, in a
database (Figure 1B). We excluded windy and rainy recordings.
This classification index provided a reference of noisy and quiet
stations at each site at which we then measured noise levels more
precisely as described below.

Site Variables
Quantitative Noise Measurements
We defined industrial noise as the sounds generated by industrial
equipment, such as machinery, trucks, wells, and compressor
stations. This type of noise concentrates the highest amplitude
levels in the low frequencies of the acoustic spectrum at less than
2,000 Hz (Nemeth and Brumm, 2010; Luther and Gentry, 2013).
We obtained noise measurements in two different ways. First, we
used Raven Pro (2019) 1.6 (Cornell Lab of Ornithology 2019)
to extract noise values manually at each recording by Natalie V.
Sánchez, measuring 1 s sections in the power spectra window of
the recordings (Hann window type, 700 samples, and a discrete
Fourier transform size of 2,048 samples with a temporal overlap
of 50%). We did this at times without bird vocalizations at both
the beginning (within minute 0–1) and the end (within minute
9–10) of each 10 min recording. From each 1 s section of the
recording, we extracted the relative values of amplitude (average
amplitude in FSdB, Raven Pro user manual) for six 1/3-frequency
octave bands (500, 1,000, 2,000, 4,000, 8,000, and 16,000 Hz).

We defined the low and high frequency limits for each 1/3-
frequency octave band following values reported in the literature
(Sueur, 2018).

Given that we had recordings for 3 consecutive days at
the same ARU stations and the majority of industrial noise is
constant, we expected noise levels would be similar between
days. We tested this assumption with a repeated measures
ANOVA by analyzing noise level over the 3 sample days
for five stations that were randomly selected at each site.
Average noise levels did not vary between days (F2,267 = 0.344;
P = 0.709; Supplementary Figure 2). Consequently, in the
following analysis, we only included the average noise level
obtained as described above from the six frequency octave bands,
which we extracted from the recording on a single day that
was selected randomly. It is important to clarify that the ARUs
and the microphones were not calibrated to obtain absolute
measurements of amplitude, thus noise levels should be viewed
as relative amplitude values where the noisy sites had the highest
noise values and were closer to 0 while quieter places had more
negative values.

We classified the noise measurements from Raven Pro into
three noise types: (1) noiseLOW measured low frequency sounds
with concentrated energy in 500 and 1,000 Hz frequency octave
bands; (2) noiseHIGH was defined as the average values of
relative decibels from 2,000 to 8,000 Hz, which is more likely to
directly interfere with communication by masking bird songs in
the maximum peak of hearing of most passerine birds (Okanoya
and Dooling, 1988; Dooling et al., 1992) including our study
species (Cicero and Benowitz-Fredericks, 2000); and finally, (3)
noiseALL included all frequency octave bands (measurements
from 500 to 16,000 Hz). This last measurement can be interpreted
as a measurement of total noise since it includes all the
frequency octave bands.

The second method was calculated using Kaleidoscope
Pro (version 5.2; Wildlife Acoustics Inc., Concord, MA,
United States). This was used to obtain measurements of nineteen
1/3 frequency octave bands (from 19.7 to 2,000 Hz). These are
the same octave-bands settings used by Marín-Gómez et al.
(2020) to assess the effects of anthropogenic noise on occupancy
by owls. Both methods showed a high correlation at 500 Hz
(r = 0.81, P < 0.0001) and 1,000 Hz (r = 0.83, P < 0.0001)
(Supplementary Figure 3). Given the strong correlation, we
decided to only use the noise values obtained with Raven Pro
in our subsequent analyses since we were more confident those
values did not include biotic sounds.

Vegetation
At each station, we calculated the proportion of vegetation within
a 150 m radius buffer from the Alberta Vegetation Inventory
(AVI). We extracted proportion of conifer forest, deciduous
forest, mixed-wood forest, grass, and shrubs. When assessing if
noise transmission was influenced by vegetation conditions, we
grouped plant species into three categories as follows: (1) conifer:
high density conifer stands dominated by black spruce (Picea
mariana); (2) mixedwoods: medium density deciduous forest
dominated by trembling aspen (Populus tremuloides) or mixed-
woods of trembling aspen and white spruce (Picea glauca); and
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(3) open areas containing shrubs and/or grass. We used ArcGIS
10.6.1 (Environmental Systems Research Institute, Inc., Redlands,
CA, United States) to calculate the buffer and to extract the
proportion of vegetation.

We extracted the proportion of the 150 m radius buffer that
was conifers and mixedwoods by age class (0–19, 20–40, 41–100,
and more than 100 years old). Class 20–40 years did not have
any values in the three study areas. Therefore, we collapsed 0–
19 to 20–40 to a new category 0–40. Then, we created a new
categorical variable called “age” with three levels: young forest
(0–40 years), mature (40–100 years), and old forest (more than
100 years). Each ARU was placed in an age class based on the age
class most common in the buffer. Human disturbance variables
were extracted from a 150 m buffer (around each station) using
the Human Footprint Inventory GIS layer (see text footnote 1).

Statistical Analysis
Factors Influencing Noise Levels
Our sites were selected based on the amount of energy sector
disturbance visible from satellite imagery. Thus, prior to ARU
deployment we did not know if noise levels actually differed
between sites. To test if our designations of low, moderate, and
high footprint sites actually had different noise levels, we used
an ANOVA to test if the average noise levels were significantly
different between sites (each ARU was treated as a replicate). We
ran three separate ANOVAs using noiseLOW, noiseHIGH, and
noiseALL, as the response variable. In addition, we tested whether
the noise measurements using all the frequency octave-bands had
differences in relative amplitude between the sites. We compared
the average slopes of noise measurements (response variable)
between the three sites (fixed effect), using all the frequency
octave bands measurements (obtained with Raven Pro) with a
Generalized Linear Mixed Model (GLMM).

We then assessed whether the various noise metrics were
associated with different types of energy sector footprint. Using
generalized linear models with a Gaussian distribution and
identity link, we tested six hypotheses about what the various
noise metrics were measuring (see Table 1 for model structure):
(1) they described general noise in the environment caused by
nuisance factors that vary in some unknown way as a function
of forest composition (conifer, mixedwood, open) and age
(young, mature, old), but not energy sector footprint (hereafter
vegetation); (2) they were correlated with the proportion of

total energy footprint within a 150 m buffer (proportion of area
disturbed by abandoned well, active well, facility, road, seismic
line, and pipeline) with no designation of the type of noise
that each footprint is likely to create; (3) they were correlated
with purported chronic noise sources like oil sands processing
facilities, compressor stations, and active injection wells; (4)
they were correlated with intermittent noise sources like roads,
abandoned wells, pipelines, and seismic lines that are used to
access the energy network via trucks and off-highway vehicles;
(5) if both chronic or intermittent contributed to our noise
measurement in an additive way; and (6) if chronic versus
intermittent noise contributed to noise measurements in an
interactive way. Natural variation in environment (vegetation)
was included in all models.

Occupancy Models
We estimated the factors influencing Lincoln’s Sparrow
occupancy using the single-season occupancy model framework
(MacKenzie et al., 2002). The model estimates the occupancy
(psi) and the detection probability (p) based on the detection
history of singing birds of 3 consecutive days recorded per
station. We generated 42 models that allowed us to test the
following hypotheses: (a) any variation in Lincoln’s Sparrow
occurrence was simply due to detection error caused by time of
sampling (Day of year, hereafter DOY); (b) natural vegetation
conditions are the primary driver of occupancy; (c) any type of
energy development (footprint) creates altered habitat conditions
that influence Lincoln’s Sparrow occupancy; (d) linear features
(proportion of area disturbed roads, seismic lines, and pipelines)
create edge habitat preferred by Lincoln’s Sparrow; (e) polygonal
features (active well, abandoned well, facility) create early seral
open habitat preferred by Lincoln’s Sparrow; and (f) both linear
and polygonal features create habitat for Lincoln’s Sparrow but at
different rates.

To these six basic model structures, we added the three
different noise measurements (noiseLOW, noiseHIGH, and
noiseALL) to see if we observed different responses on the
occupancy side of the equation (24 models). Finally, we evaluated
whether the three noise metrics influenced detection across all
models under the premise that noise may influence our ability
to observe Lincoln’s Sparrow, even when present, because of
reduced ability to aurally detect them because of the noise.
Day of year was included on the detection side of all models.

TABLE 1 | Model structure and description of the variables included in the respective model to test the noise hypotheses.

Model structure Description of the variables

Noise ∼ vegetation Vegetation = proportion of conifers + mixedwood + open + age (young + mature + old)

Noise ∼ footprint + vegetation Footprint = proportion of energy footprint (excluding vegetation)

Noise ∼ chronic + vegetation Chronic noise footprint = proportion of chronic noise sources (facilities + compressor stations + active injection
well sites)

Noise ∼ intermittent + vegetation Intermittent noise footprint = proportion of intermittent noise sources (roads + abandoned wells + pipelines
+ seismic lines)

Noise ∼ chronic + intermittent + vegetation

Noise ∼ chronic × intermittent

Forest age is a categorical variable.
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FIGURE 2 | (A) Predicted noise level for noiseLOW at the high, intermediate, and low footprint sites. (B) Predicted average noise levels for noiseLOW in young,
mature, and old forest ARU locations. Error bars are 95% CI.

Time of day was controlled by our experimental design that
standardized recording times. The models were ranked using
Akaike Information Criteria (AIC, Burnham and Anderson,
2002). The best model had the lowest AIC value. All the
occupancy models and model selection analyses were performed
with the software RStudio (version 1.4.1106) and the R package
“unmarked” (Fiske and Chandler, 2011).

RESULTS

Factors Influencing Noise Levels
We analyzed recordings from 280 stations at sites that we a priori
ranked as having high, moderate, and low levels of energy
footprint. There were significant differences in average noise for
noiseLOW (F2,277 = 44.5, P < 0.0001), noiseHIGH (F2,277 = 15.9,
P < 0.0001), and noiseALL (F2,277 = 36.9, P < 0.0001),
among sites. Post hoc Tukey’s test for noiseLOW found that
the low footprint site had lower noise levels than the moderate
(difference:−9.42;−11.88,−06.96 95% CI) or high footprint site
(difference: 7.28; 4.71, 9.85 95% CI). Moderate and high footprint
sites were similar in term of noise (difference: −2.14; −4.71,
0.43 95% CI) (Figure 2A). noiseLOW contains the higher values
of noise; therefore, we considered that this metric reflected the
stronger differences between sites. The linear regression of the log
transformed relative amplitude values including all the frequency
octave bands also showed differences between the slope of both

the high site and the intermediate site with the low site (Table 2
and Figure 3).

The three noise metrics were correlated. The correlation
coefficient (r) for the three noise metrics was: noiseLOW vs.
noiseHIGH = 0.71, noiseLOW vs. noiseALL = 0.95, noiseHIGH
vs. noiseALL = 0.88. The model that best predicted the variation
in all three noise measurements was the one including the
variables Chronic Noise footprint× Intermittent Noise footprint
(Table 3). The AIC weight for this model was 0.99 for three noise
metrics. Given the correlation between noise metrics, it was not
surprising that the same model was selected as having the best
fit, but there were some distinct differences in beta estimates
(Table 4). Across all models, age of forest showed the same effect
on noise level with the lowest noise level in mature forests. Based
on 95% confidence intervals, this was lower than old forests,
which had intermediate noise levels. Young forest had the highest
noise levels and the 95% CI do not overlap with mature forest, but
did overlap with old forest (Figure 2B).

TABLE 2 | Linear regression analysis adjusted testing the differences between
measurements of frequency octave band slopes between sites (high, moderate,
and low levels of noise).

β SE df t-value p-value

High-moderate −4.96 0.25 1084 0.71 0.4796

Moderate-low −4.46 0.25 1090 4.02 <0.0001

High-low −1.98 0.13 1180 4.83 <0.0001
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FIGURE 3 | Relative measurements of sound amplitude measured from recordings for the six frequency octave bands per site using Raven Pro software. Sites are
represented by symbols and fitted lines. High industrial disturbances, black dots and line; moderate footprint, hollow diamonds and dotted line; low disturbances,
gray triangles and line.

There was a variation in how proportion of forest had an
influence on the different noise measurements. For noiseLOW,
conifer and mixedwood had beta values that included zero based
on 95% CI, and the more open habitat had the loudest noiseLOW
scores (Figure 4). For noiseALL, conifer had beta values that
included zero indicating no change in noiseALL controlling for
other variables. NoiseALL increased as mixedwood increased, but
not as steeply as in open vegetation (Figure 4). When there is an
natural open area surrounding a chronic noise source, noiseALL
reached at the ARUs is higher than in less open areas (Figure 5).
NoiseHIGH showed a very different pattern. Conifer and open
had 95% CI that included zero while there was an increase in
noiseHIGH as mixedwood increased (Figure 4).

In all models, the interactive model between chronic noise
footprint and intermittent noise footprint was a far better fit
than the additive model. The patterns were the same across all
noise metrics (Figure 6). When the proportion of chronic noise
footprint increased and intermittent noise footprint was low,

TABLE 3 | Results from AIC comparisons of generalized linear models that predict
how the three noise metrics respond to various models of vegetation conditions
(vegetation = conifer, mixedwood, and open as continuous variables, and age
class as categorical variable) and type of energy footprint (Chronic
noise = facilities + active well + road; Intermittent noise = abandoned
well + seismic line + pipeline), and total footprint (footprint).

Models nPars AIC
noiseALL

AIC
noiseLOW

AIC
noiseHIGH

Chronic × intermittent
+ vegetation

9 1482.3 1880.4 1390.1

Chronic + intermittent
+ vegetation

8 1502.1 1896.6 1406.5

Chronic + vegetation 7 1504.5 1902.0 1405.0

Intermittent + vegetation 7 1563.9 1949.9 1458.6

Footprint + vegetation 7 1502.1 1895.0 1410.2

Vegetation 6 1567.8 1956.8 1457.9

nPars, number of parameters.

noise was the highest. NoiseHIGH and noiseLOW represented
the higher levels of noise considering chronic noise and
intermittent noise sources (Figure 6).

Occupancy Models
Lincoln’s Sparrow was detected at 123 of 280 stations (at
55 of 98, 45 of 83, and 23 of 99 stations grouped as sites:
high, moderate, and low industrial sites, respectively); the naïve
occupancy estimate was 0.48. Along the noise gradient, Lincoln’s
Sparrow occupancy was best explained by proportion of total
disturbances, proportion of open areas, and masking noise
levels (noiseHIGH) in the range 2,000–8,000 Hz frequency
octave bands (Table 5 and Figure 7). The beta estimates of
the best model indicated a positive effect of the total footprint,
and open areas. Lincoln’s Sparrow had higher occupancy in
sites with greater proportion of industrial settings, regenerating
vegetation, such as grass and shrubs, and young forest stands
(Figures 7A,B,D). Masking noise (noiseHIGH) showed change
on Lincoln’s Sparrow occupancy, decreasing as noise increased.
However, there is a high variation in the occupancy estimate as
noise increased (Figure 7C).

Variation in occupancy was observed within the three noise
measurements. For noiseLOW frequency octave bands (500 and
1,000 Hz) and noiseALL, predicted occupancy was positive as
noise increased and it changed to neutral when we included
vegetation and footprint as predictors. A different pattern was
observed using masking noise (2,000–8,000 Hz; noiseHIGH); it
changed from slightly positive to neutral with vegetation, and
to a slight negative response when we included vegetation and
footprint as predictors (Table 6 and Figure 8).

DISCUSSION

In recent years, wildlife responses to noise have been an
area of active investigation with the main focus being urban
environments (Francis and Barber, 2013; Shannon et al., 2016;
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TABLE 4 | Model parameters from the best-fitting models that predict the three different noise metrics as a function of vegetation and energy footprint variables.

noiseALL noiseLOW noiseHIGH

Conifer 0.40 (−2.10, 2.87) 0.88 (−4.16, 5.92) 0.20 (−1.90, 2.30)

Mixedwood 1.81 (0.05, 3.56)* 2.05 (−1.53, 5.62) 2.26 (0.77, 3.74)*

Open 2.82 (0.14, 5.50)* 7.99 (2.53, 13.44)* 0.32 (−1.95, 2.59)

Young vs. mature −1.12 (−2.18, −0.06)* −2.26 (−4.42, −0.09)* −0.83 (−1.72, 0.08)

Young vs. old 0.38 (−1.03, 1.80) 0.98 (−1.91, 3.87) 0.04 (−1.16, 1.24)

Mature vs. old 2.28 (0.89, 3.67)* 4.78 (1.99, 7.57)* 1.26 (0.26, 2.55)*

Chronic 11.05 (8.84, 13.26)* 20.61 (16.12, 25.10)* 8.52 (6.65, 10.39)*

Intermittent 12.16 (6.87, 17.45)* 26.17 (15.40, 36.93)* 7.09 (2.61, 11.58)*

Chronic × intermittent −40.49 (−57.44, −23.53)* −75.06 (−109.59, −40.54)* −31.48 (−45.86, −17.10)*

Intercept −74.10 (−75.27, −72.92)* −69.14 (−71.55, −66.73)* −77.17 (−78.18, −76.17)*

95% CI are shown in brackets. *95% CI not overlapping cero.

FIGURE 4 | Predicted noise levels from the three noise metrics with increasing proportions of conifer, mixedwood, and open habitats. Error bands are 95%
confidence intervals. ∗ Indicates a significant relationship.

Ciach and Fröhlich, 2017), while industrial sites and the noise
associated to their activities remain understudied (Habib et al.,
2007; Francis et al., 2011b). Our approach to directly measure
noise with ARUs and compare it to the occupancy of a
disturbance tolerant species addresses this knowledge gap by
separating the effects of vegetation structure and industrial
noise in a remote area undergoing energy development. We
found that industrial activities, specifically facilities and certain
roads, increased the levels of noise in the environment. We

also found that Lincoln’s Sparrow occupancy responded to a
gradient of noise variation showing a tendency to decrease as
masking noise increases in conditions with similar levels of
disturbance to vegetation.

The idea that the energy industry and the noise generated
by its activities have negative effects on songbird occupancy
comes from the few previous studies that compared noisy to
non-noisy industrial areas (Bayne et al., 2008; Francis et al.,
2011a). A potential drawback of this dichotomous approach to
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anthropogenic noise is the lack of opportunity to understand
bird responses to continuous variation in levels of noise. For
example, intermediate levels of noise may be less detrimental
than an extreme noisy vs. non-noisy contrast. In this study,
we had 280 ARU stations describing a gradient of industrial
noise levels at different sources as well as distances to those
noise sources. Similarly, Marín-Gómez et al. (2020) studied the
variation of occupancy for an owl species in a gradient of noise in
an urban area, finding that levels of noise in the−60 and−40 dB
ranges (relative amplitude levels at the frequency octave bands
under 2,000 Hz) influenced occupancy, but values below −60 dB
elicited no effect. Here, we assessed three different quantitative
measurements of noise that were not previously considered as
explanatory predictors of bird occupancy inhabiting the boreal
forest in the context of industrial noise. Frequency octave bands
from 2,000 to 8,000 Hz and low frequency octave bands (500 and
1,000 Hz) concentrated the higher levels of sound energy (from
−60 to −40 dB), which were also the ones predicting changes in
occupancy by our study species.

Measuring Noise and Factors That
Influence Noise Levels
Although there are potential limitations of using ARUs to
measure noise levels, we found strong relationships between
energy sector footprint and our noise metrics. The large sample
size allowed us to test multiple hypotheses about how noise
may spread in complex environments with relationships that
are somewhat dependent on the metric of noise used. There
are numerous processes affecting sound propagation, such as
attenuation and reverberation due to vertical objects (Wiley
and Richards, 1978, 1982; Naguib and Wiley, 2001). Here, the
proportion of open areas was positively associated with higher
noise levels recorded at a given ARU. A priori we expected
that open habitats might have higher noise levels because of
fewer obstructions. Sound propagates spherically, and energy
decreases with square of distance from the source (6 dB for

FIGURE 5 | Graphical representation of model predictions of the relationship
between noiseALL and proportion of footprint though to create chronic noise
as influenced by proportion of open habitat. Proportion of chronic footprint is
centered to observe in detail changes in values higher than the mean.

each doubling of distance), but when sound encounters dense
trees there is often a greater decrease (as high as 5–10 dB)
for each doubling of distance (Naguib and Wiley, 2001). The
known impediment to sound caused by vegetation makes it
surprising that proportion conifers or proportion mixedwood
were not important predictors of sound intensity. This may
have occurred because other kinds of vegetation also absorbed
sound. While there is often an inverse correlation between the
proportion conifer or proportion mixedwood with proportion
open, that correlation was not strong in our study area (r =−0.04,
r = −0.12). Another unexpected result was that mixedwood
was positively related with the noiseHIGH metric, but this
may have resulted spuriously if the locations where particularly
high frequency noises occurred were disproportionately located
in mixedwoods. Further assessments of noise propagation are
needed to more completely understand the role of vegetation
structure in such areas.

The use of measurements in different octave bands to evaluate
occupancy by Lincoln’s Sparrow was key to understand at which
frequencies in the acoustic spectrum noise caused the strongest
effect. Controlling for vegetation and energy footprint was an
important component of understanding the impacts of noise,
which could otherwise be confounded with habitat type. While
Lincoln’s Sparrow can clearly be found in areas with noise,
this species likely does not prefer noisy sites per se, but rather
prefers habitat types in early seral stages that tend to be closer
to noise sources (best occupancy model including noiseHIGH,
total footprint, and open areas). Our noise metrics obtained
from un-calibrated recordings on ARUs can benefit the study
of noise in the wild because it allows for comparisons in
diverse spatial settings with realistic variation in environmental
noise. By measuring noise directly over several frequencies with
Wildlife Acoustic SM2 recorders, we reduced variation between
measurements that could otherwise be caused by equipment
type. With the improvements of recording devices (especially
microphones), modern equipment can eliminate some of the
sounds made by the devices themselves to strengthen the
inferences that can be made about noise effects. By recording
ARU makes, models, and settings, researchers can support robust
comparisons of these types of noise measurements across studies.

The interaction between chronic noise and intermittent noise
for the three noise metrics shows the complexity of measuring
noise along an industrial gradient. High chronic noise was driven
by the presence of large industrial facilities, active wells, and
compressor stations. Thus, the noise received by the ARUs in
our study was more likely to be a function of relatively few
noise sources. As the proportion of intermittent noise increased,
total noise increased even with low footprints from chronic noise
sources. Interestingly, at high levels of chronic noise, intermittent
noise from roads did not add much to the total noise levels
we observed. One reason for this could be that our method
of measuring noise level was not able to properly measure the
cumulative effects of noise (Sueur, 2018). The major highway
and multi-lane gravel roads that take workers from the highway
to the oil sands facilities generated much of the intermittent
noise in our study area. However, traffic speeds are generally
lower close to oil sands facilities to support greater safety, which

Frontiers in Ecology and Evolution | www.frontiersin.org 9 March 2022 | Volume 10 | Article 810087128

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-810087 March 29, 2022 Time: 10:49 # 10

Sánchez et al. Songbird Responses to Industrial Noise

FIGURE 6 | Change in noise metrics represented in 3-D contour plots showing predicted noise level as an interactive function of proportion of area covered by
footprint thought to generate chronic noise vs. proportion of area covered by footprint thought to generate intermittent noise. Graphs shows for noiseALL,
noiseLOW, and noiseHIGH.

differs from the generally positive effect on noise of traffic speed
(Parris and Schneider, 2009). While not reported here, we also
modeled the distance to facilities and roads as noise predictors,
but these models did not fit as well as the proportion metrics,
suggesting a cumulative noise effect is occurring that cannot
easily be measured with distance to variables.

Lincoln’s Sparrow Response
Generally, songbirds with low-frequency songs are less abundant
in noisy sites than those with higher frequency vocalizations

(Proppe et al., 2013; Francis, 2015). This is why most
studies that have assessed noise have focused on low-frequency
anthropogenic noise. Therefore, we expected that Lincoln’s
Sparrow would occupy sites with moderate-high levels of noise
because their songs are generally less masked above 2,000 Hz. In
addition, sparrows have shown acoustic flexibility in their songs
that may allow them to better adjust to anthropogenic noise by
altering their vocalizations (Wood and Yezerinac, 2006; Gentry
and Luther, 2017). Occupancy models including noiseLOW
or noiseALL as predictors, suggested that Lincoln’s Sparrow
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TABLE 5 | Occupancy and detection probability models (AIC values) explaining Lincoln’s Sparrow variation.

Set Psi (occupancy) p (detection) NO noise noiseALL noiseLOW noiseHIGH

1 No control variables DOY 832.577 823.597 818.518 831.002

Vegetation DOY 806.22 805.088 800.969 808.221

Vegetation + footprint DOY 784.065 785.9411 784.538 783.587

Vegetation + linear DOY 801.990 802.658 800.0418 803.895

Vegetation + polygon DOY 785.686 786.806 784.473 786.177

Vegetation + polygon + linear DOY 790.293 792.042 790.151 789.483

2 No control variables DOY + NOISE 832.577 825.297 821.794 831.2069

Vegetation DOY + NOISE 806.22 803.757 802.126 807.0216

Vegetation + footprint DOY + NOISE 784.065 785.721 784.552 785.745

Vegetation + linear DOY + NOISE 801.990 799.646 798.101 802.793

Vegetation + polygon DOY + NOISE 785.686 787.592 786.971 787.361

Vegetation + polygon + linear DOY + NOISE 790.293 791.357 790.499 792.146

We performed the models in two sets: (1) Models including only Date of Year (DOY) in the detection side, and (2) Models including DOY + Noise variables in both, the
occupancy and the detection probability side of the models. Noise variables included: noiseLOW (average 500–1,000 Hz frequency octave bands), noiseHIGH (average
2,000–8,000 Hz frequency octave bands), and noiseALL (average 500–16,000 Hz frequency octave bands). Vegetation = (conifers, mixedwood, open, age), and energy
footprint variables (Linear features = pipelines, seismic lines, roads; Polygonal features = well sites, facilities, compressor stations; Footprint = total footprint) are included
as explanatory predictors of habitat preference. Model with the lowest AIC (best model) is bolded.

FIGURE 7 | Lincoln’s Sparrow occupancy predicted values (95% CI, gray shade) explained by (A) proportion of footprint, (B) proportion of open areas (grass and
shrubs), (C) industrial noise values (average dB from 2,000 to 8,000 Hz frequency octave bands), and (D) forest age class. Confidence intervals for noise are shown
in Figure 8.

occupancy increased with noise; nevertheless, these were not the
best predictors. These results could be interpreted as Lincoln’s
Sparrow can live in noisy areas and either do not experience or
have adapted to negative effects of noise on their communication.
The best fitting occupancy model suggested that natural variation
that made for suitable habitat was more important than the
effects of noise. However, the negative effect of occupancy of
high frequency industrial noise (noiseHIGH) warrants further
investigation, and suggests that noise may have impacts even on
species that is otherwise highly tolerant to human disturbance.

The generality of our results may depend on whether the
noise levels we monitored were sufficient to inhibit aural
communication in Lincoln’s Sparrow or whether the birds
adapted their songs to be able to communicate in areas with
noise. Lincoln’s Sparrow songs can be masked by industrial
noise as there is an overlap in the low frequency syllables of
their song with industrial noise under 2,000 Hz, with syllables
ranging between 1.5 and 8 kHz (Cicero and Benowitz-Fredericks,
2000; Sockman, 2009). Therefore, acoustic flexibility of Lincoln’s
Sparrow song features could be a possible adaptation for living
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TABLE 6 | Beta estimates (±SE) of best occupancy model including the three
different noise metrics. The best model included noiseHIGH.

Parameters noiseALL noiseLOW noiseHIGH

Psi Conifer −0.33 (0.95) −0.32 (0.95) −0.36 (0.96)

Open 5.30 (2.20) 5.49 (2.20) 5.48 (2.39)

Mixedwood −0.67 (0.68) −0.72 (0.68) −0.35 (0.67)

Old 0.19 (0.48) 0.11 (0.48) 0.32 (0.47)

Young 1.21 (0.44) 1.21 (0.44) 1.28 (0.44)

Footprint 3.98 (1.16) 3.82 (1.15) 4.08 (1.04)

p DOY 0.003 (0.01) 0.003 (0.1) 0.005 (0.1)

DOY, Day of Year. Bold numbers indicate variables affecting Lincoln’s Sparrow
occupancy (see Figure 7).

in noisy areas, as described for other sparrow species exposed
to similar industrial noise (Curry et al., 2018). However, in
other work, we showed that Lincoln’s Sparrow did not shift the
minimum frequency of its song in this environment (Sánchez,
2021). By contrast, some other species have been shown to shift
the frequencies of their songs in response to anthropogenic noise
(Slabbekoorn and Peet, 2003; Proppe et al., 2011; Cardoso, 2014;
Roca et al., 2016).

This study is one of the first to directly use noise
measurements to predict occupancy of a wild songbird in

the context of chronic industrial noise and to do so in an
environment that consists mainly of natural habitat. Another
important feature of our study was to measure noise at
multiple octave-bands, which resulted in a non-biased method
to characterize the noise along an industrial gradient, giving
a quantitative description of noise rather than a categorical
human judgment. This method can be used to test potential
limitations in communication in songbirds and will be valuable
for song transmission experiments that test masking and song
degradation for species exposed to noise. Understanding masking
noise and how it influences song degradation over space
are key biological issues related to chronic industrial noise
that require more investigation. We found a negative effect
of high frequency noise on Lincoln’s Sparrow occupancy in
a gradient of industrial noise; therefore, this result suggests
a potentially deleterious effect of noise that interferes with
communication, and not of other noise types. Future studies will
be needed to understand the effects of noise on communication,
physiological state, and reproductive success. For terrestrial
passerines and especially for Neotropical migrants who find new
conditions for reproduction every year in Northern Latitudes,
understanding the multiple environmental factors that could
diminish quality of breeding territories requires attention for
conservation actions.

FIGURE 8 | Lincoln’s Sparrow occupancy predicted values (95% CI, gray shade) changed with each noise metric. Each row represents three set of models: noise as
unique predictor, and when additional variables are included (e.g., noiseALL, noiseALL + vegetation, and noiseALL + vegetation + proportion of footprint). Each row
shows how Lincoln’s Sparrow occupancy estimates varied by noiseALL (A,D,G), noiseHIGH (B,E,H), and noiseLOW (C,F,I).
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The concept of soundscape was originally coined to study the relationship between
humans and their sonic environment. Since then, several definitions of soundscapes
have been proposed based on musical, acoustical and ecological perspectives.
However, the causal mechanisms that underlie soundscapes have often been
overlooked. As a consequence, the term “soundscape” is frequently used in an
ambiguous way, alternatively pointing to objective realities or subjective percepts.
Through an interdisciplinary review, we identified the main biotic and abiotic factors
that condition non-anthropogenic terrestrial soundscapes. A source-filter approach
was used to describe sound sources, sound propagation phenomena and receiver’s
characteristics. Interdisciplinary information was cross-referenced in order to define
relationships between factors, sound sources and filters. Those relationships and
the associated references were organized into a functional block diagram. This
representation was used to question the different uses and meanings of the soundscape
concept found in the literature. Three separate categories were then suggested:
distal soundscape, proximal soundscape and perceptual soundscape. Finally, practical
examples of these different categories were described, in relation to the diagram. This
new systemic approach to soundscapes should help ecoacousticians, bioacousticians,
psychoacousticians and environmental managers to better understand soundscapes
and protect natural areas in a more significant way.

Keywords: soundscape, environmental factors, sound sources, sound propagation, distal soundscape, proximal
soundscape, perceptual soundscape

INTRODUCTION

The concept of soundscape, which has been widely used in different scientific contexts during
the last decades (Kang and Aletta, 2018), was originally introduced in by Southworth (1969)
who was studying the perception of urban acoustic environment. Southworth first defined the
soundscape as “the quality and type of sounds and their arrangements in space and time.”
Schafer later popularized the term (Schafer, 1977). Through the study of the history of human
soundscapes, Schafer exposed the rising emergence of noise pollution as a potential threat to
human health and culture. Although Schafer did not have any scientific evidence at the time, he
feared that the growth of what he called “low-fidelity soundscapes” at the expense of “high-fidelity
soundscapes” would alter man’s relationship with nature and decrease his concern for ecosystem
well-being. Later, with the emergence of soundscape ecology (e.g., Pijanowski et al., 2011) and
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more recently ecoacoustics (e.g., Sueur and Farina, 2015),
the concept of soundscape evolved to designate an acoustic
space that could be studied within the frame of ecology.
Today, many studies show that the concerns of Schafer were
justified and that soundscapes play a significant role in our
understanding of natural environments, as well as our own well-
being (Ratcliffe, 2021).

However, the definition of soundscape still appears as vague
and ambiguous. Pijanowski et al. (2011) defined the soundscape
as “the collection of biological, geophysical and anthropogenic
sounds that emanate from a landscape and which vary over space
and time reflecting important ecosystem processes and human
activities.” Although this definition appears to be consensual
and shared, at least in 2011, by Pijanowksy’s co-authors, the
soundscape concept is actually associated with a wide variety of
objects. As Farina and Pieretti (2012) noted, “The landscape can
be defined in several ways according to the epistemological basis
adopted and the discipline.”

In his seminal book Soundscape Ecology (2014), Farina
proposed several definitions of the soundscape, two of
them being: “an acoustical composition that results from
the voluntary or involuntary overlap of different sounds
of physical or biological origin” and “the acoustic context
produced and, in turn, perceived in different ways by both
animals and humans.” The first definition is parsimonious
with that of Pijanowski, but the second explicitly relates
the soundscape to perception of the acoustic environment.
Farina will later make the distinction between the vibroscape,
which represents all the vibrations present in an area, and
the soundscape, that he finally defined as “the part of the
vibroscape perceived as sound by an organism” (Farina
et al., 2021). However, contemporary literature relates the
vibroscape to substrate-borne sounds only (Šturm et al.,
2022). Still, Farina’s last definition of soundscape suggests that
animals play an active role in building the soundscape as an
intellectual construct, which matches the definition from the
International Standardisation Organisation (ISO, 2014) where
the soundscape results from the listener’s understanding
of an acoustic environment. Moreover, incorporating
auditory perception aspects into the soundscape puts an
emphasis on cognitive constraints that were not included in
Pijanowski’s definition.

Barchiesi et al. (2015) presented the soundscape as an
equivalent of the “acoustic scene”, designating the sound
produced by the environment. In the context of acoustic scene
classification, the acoustic scene pulls away from Pijanowski’s
holistic soundscape and rather describes the sounds that arrive
to an observer. Celis-Murillo et al. (2009) went further and
suggested that a recording contained all the information that
was embedded in a soundscape, and that a 360◦ display was
a faithful replication of this soundscape. The idea that the
soundscape and its recording are one and the same is common
in soundscape composition. According to Westerkamp (2002), a
soundscape may be understood as the result of the juxtaposition
of environmental sound recordings that provide an “artistic,
sonic transmission of meanings about place, time, environment
and listening perception.” In soundscape composition, the

ecological origin of sounds that is emphasized in Pijanowski’s
definition has been replaced by the “meaning” that people
attribute to the sounds. In Payne et al. (2009), merged both
objective and subjective aspects of soundscapes into their own
definition: “Soundscapes are the totality of all sounds within a
location with an emphasis in the relationship between individual’s
or society’s perception of, understanding of and interaction
with the sonic environment.” However, this definition does not
state whether the object of study is a physical (thus, external)
phenomenon, or a perceptual (thus, internal) understanding of
complex acoustic assemblages.

As Farina et al. rightfully said, “ecoacoustic research to
date has focused predominantly on the development of tools
for environmental monitoring, rather than theoretical and
conceptual development and explication” (Farina et al., 2021).
Some clarification could be obtained by identifying the causes
and effects behind the soundscape concept. The description of
the ecological factors that influence the production of sound
sources and alter their acoustic qualities should help to better
understand the dynamic relationship between sound sources,
sound propagation, and sound perception. The causes and effects
could be organized according to the principles of information
theory, in which communication is the result of a source
that generates a signal which passes through a transmission
channel and conveys information to the receiver (Shannon and
Weaver, 1949; see Reza, 1994). This approach allowed speech
production and later animal communication research to tackle
animal vocal communication through the source-filter theory.
The source-filter theory decomposes vocal sound production
into a larynx (the source) and a supralaryngeal vocal tract (the
filter) (Lindblom et al., 2010; Taylor et al., 2016). Following these
principles and taking a bioacoustic perspective, animal vocal
production can be considered as a source signal that is filtered
a first time by the acoustic particularities of the environment,
and a second time by the auditory system of the receiver. In
ecoacoustics, biophony and geophony may be considered as a
collection of sound sources, and sound propagation and auditory
perception as two different kinds of acoustic filters operating one
after the other.

Here we aim at clarifying the terrestrial soundscape concept
by listing and drawing the interactions between the causes
and effects that explain non-anthropogenic soundscapes so that
original ecological interactions, without human pressures, can be
underlined. Soundscapes, as ecological phenomenons, were born
and structured in non-anthropogenic environments. Although
it is appropriate to say that anthropophony today represents
a prevalent part of soundscapes around the world, including
natural protected areas (Barber et al., 2011; Buxton et al., 2017),
anthropophony is not indispensable to the clarification of the
soundscape concept. Consequently, a source-filter approach was
used, combined with an interdisciplinary review, in order to
describe cause and effect relationships regarding biophony and
geophony only. A systematic functional block diagram was
then built in order to clarify factors, sources and filters. This
description helped to unravel the soundscape conundrum. The
resulting causal cartography offered a tool to deliberate on
which meaningful concepts were hidden behind the soundscape

Frontiers in Ecology and Evolution | www.frontiersin.org 2 June 2022 | Volume 10 | Article 894232136

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-894232 June 9, 2022 Time: 16:48 # 3

Grinfeder et al. A Functional Description of Soundscapes

polysemy. All of this led to the definition of three distinct
soundscape categories: the distal soundscape, the proximal
soundscape and the perceptual soundscape.

METHODS

Studying Terrestrial Non-anthropogenic
Acoustic Environments
Only non-anthropogenic terrestrial environments were
considered in this study. Often referred to as “natural” or
“pristine,” these environments do not contain any trace of
human activity, that is any trace of anthropogenic sounds, also
called “anthropophony.” It is acknowledged that this selection
is a double simplification. However, terrestrial and marine
soundscapes have been studied independently since the origin
of soundscape ecology and ecoacoustics because air and water
have different acoustic properties. In addition, excluding the
anthropophony opens the possibility to focus on primary
ecological processes that have occurred before the development
of modern industries and the consequent rise of anthropophony.

Source-Filter Approach and Categories
In a source-filter approach, source signals (input) go through
a filtering process, giving rise to a final signal (output).
The properties of sources and filters depend on external or
environmental factors which can affect the output signal
properties (Figure 1). Soundscape components were therefore
classified into environmental factors, sound sources and
acoustic filters. Environmental factors were themselves
divided into five categories: temporal factors, spatial factors,
abiotic factors, biotic factors and acoustic factors. Sound
sources were the primary sonic objects before considering
any environmental alteration. Biotic sound sources were
grouped into biophony and abiotic sound sources were
grouped into geophony. Acoustic filters were separated into
sound propagation filters, which depend on environmental
conditions, and receiver filters, which depend on the receiver’s
characteristics (i.e., location, structure) and acoustic sensitivity
(i.e., auditory capacities).

Interdisciplinary Literature Review
Environmental factors, sound sources and acoustic
filters were listed and their relationships stated by
conducting an interdisciplinary literature review on
non-anthropogenic terrestrial soundscapes. The review
covered animal behavior, animal physiology, community
ecology, landscape ecology, meteorology, climatology,
environmental acoustics, soundscape ecology, ecoacoustics
and psychoacoustics. Because birds were overrepresented
in papers dealing with biophony (Shannon et al., 2016),
we cannot rule out a possible bias toward this taxonomic
group when identifying the cause and effect mechanisms.
Still, it is important to note that birds are, with insects,
the main contributors to non-anthropogenic terrestrial
soundscapes compared to amphibians and mammals
(e.g., Phillips et al., 2018).

Semantics
As the literature review was interdisciplinary, several concepts
were named differently according to the disciplines. Terms were
therefore chosen by applying the following criteria in order of
priority: (1) the term that was the least ambiguous, (2) the
term that was the most shared by the scientific community,
and (3) the term that would be the most understandable by the
ecoacoustic community.

Functional Block Diagram
Functional block diagrams (FBD) are logic models that represent
each object as a block, linked to one or more blocks by an arrow
or different connectors (Papazoglou, 1998). FBDs, which are used
in systems engineering, ecology modeling and risk management,
help to visualize the relationships between objects, as well as
specifying the nature of these relationships. Since each block
represents a potential cause or effect, the construction of FBDs
helps to consider any important causal links or objects in the
literature. Here, each environmental factor, sound source and
acoustic filter was represented as a block, which was connected
to other blocks with directional arrows to symbolize cause and
effect relationships. Using a color-blind safe color palette named
“Okabe-Ito”, we colored the boxes according to their categories.
The source-filter approach consisted in a linear approach that was
translated into a linear diagram to be read from left to right.

ENVIRONMENTAL FACTORS

Temporal Factors
Temporal factors take into account time changes at different
scales. Animal and geophysical sounds produce acoustic
variations at time scales ranging from milliseconds to minutes.
Day hour has direct and indirect influences on animal behavior,
known as diel activity (Balakrishnan, 2016; Phillips et al., 2018;
Gil and Llusia, 2020). Lunar cycle is also known to regulate
animal behavior, in particular for acoustic communication (Grant
et al., 2013; York et al., 2014). Seasons through weather variations
regulate yearly animal activity, known as phenology (Suthers
et al., 2016; Phillips et al., 2018), and affect the composition of
local species assemblages.

Spatial Factors
Spatial factors correspond to abiotic factors that are specifically
linked to the geographical location of the soundscape, that
is its geospatial coordinates. Topography and ground surface
can impact sound propagation with obstacles and elevation
inducing ground effects and sound scattering (cf. section
“Acoustic Factors”).

Abiotic Factors
Climate regulates animal and vegetal biotic factors. Climate
mostly depends on the studied area geographical location and the
season.

Weather produces geophonic sound sources, impacts
vegetation and alters animal behavior and distribution
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FIGURE 1 | Simplified soundscape functional block diagram. Environmental factors, sound sources and acoustic filters are represented through a source-filter
approach. The influence of geophony and biophony on biotic factors introduce feedback loops that partially explain the complexity of soundscape dynamics.

(Birch, 1957; Thuiller et al., 2008; Elkins, 2010). Rain also alters
hydrologic landscape sounds such as rivers. Wind can produce
a salient acoustic meteorological effect that generates amplitude
fluctuations when it occurs in open areas such as meadows (cf.
section “Acoustic Factors” and “Sound Propagation”).

Climate and weather, along with vegetation (cf. section
“Biotic Factors”), influence the local microclimate, which can
be described by the temperature, humidity and sun irradiance
of a given area. Local microclimates influence animal behavior
(Gil and Gahr, 2002), as well as acoustic meteorological effects
such as atmospheric absorption (cf. section “Acoustic Factors”).

Biotic Factors
Biotic factors cover a large range of phenomena from
physiological characteristics to ecological relationships. Here,
we curated a list of biotic factors that have been frequently
cited in the literature regarding biophony production and/or
sound propagation. The first three factors (vegetation, acoustic
community, and acoustic behavior) describe species and their
intrinsic traits, whereas the last three factors (population density,
territory distribution and trophic interactions) account for the
complexity of intraspecific and interspecific dynamics.

Vegetation, either herbaceous or woody, affects the sound
propagation. The thickness, geometry and porosity of plant
components (stems, trunks, leaves) impact sound propagation
through acoustic scattering and ground effects (cf. section
“Acoustic Factors”). Vegetation is also a core determinant of the
local microclimate, especially in closed habitats. The presence of
vegetation near an open habitat can have an influence on wind
currents and create specific sound speed profiles (Forrest, 1994).

In ecology, a community is an assemblage of species found in a
given area and sharing the same resource. In soundscape ecology

and ecoacoustics, an acoustic community is an assemblage of
species sharing the same acoustic space (Gasc et al., 2015; Farina
and James, 2016). Species assemblages vary geographically and
can evolve through time depending on the season, environmental
change and migration (Morin, 2009). Acoustic communities
are the main elements of the biophony. Species assemblages
are therefore crucial to obtain a good knowledge of local
species dynamics.

Acoustic behavior is a behavior expressed by an individual
emitting a sound. In terrestrial habitats, most animals produce
intentional sounds for intraspecific communication. The
information encoded in these signals includes courtship,
territory defense, alarm, distress, kin contact, and parent-
offspring interactions (Bradbury and Vehrencamp, 2011).
Incidental sounds are mainly due to locomotion including
walk and flight during, among others, habitat exploration,
foraging, and prey escape. However, incidental sounds can
appear as intentional and the line between the two can be blurry
(Clark, 2016).

Population density is the number of acoustically active
individuals in a given area and represents the abundance of
sounds produced locally (Dawson and Efford, 2009; Thomas
and Marques, 2012). On an ecological level, population
density depends on population dynamics which are affected by
trophic interactions and the species intrinsic rate of increase
(Hanski and Gilpin, 1991).

Territory distribution is the position in space of any
animal which can participate in biophony in a given area.
Whereas the location of abiotic factors can be identified from
topographical sources, the position of animals varies greatly
due to individual movements in relation with the defense of
their territory and with the exploration and exploitation of their
home range (Birch, 1957). The position and trajectory of each
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biophonic animal is necessary to assess the spatial dynamics
of the soundscape.

Trophic interactions are the core of inter-specific
relationships in a given ecosystem. Trophic interactions are
also influenced by abiotic factors (Rosenblatt and Schmitz, 2014).
Fundamental trophic interactions such as prey-predator and
plant-animal interactions considerably influence animal behavior
and incidentally affect biotic sound sources through acoustic
behavior (Siemers and Schaub, 2011; Medina and Francis, 2012).

Acoustic Factors
Ground effects describe the reflection of sound waves on the
ground, which changes the distance that the sound wave can
travel. This phenomenon produces destructive (attenuation)
or constructive (amplification) interferences depending on the
phasing of the resulting sound waves. Ground effects can
therefore have a significant impact on sound propagation,
especially at low frequencies (Embleton, 1996; Swearingen and
White, 2007; Tarrero et al., 2008). The composition of the
different layers determines the ground impedance which is
responsible for the reflection. The magnitude of ground effects
also depends on the sound source distance to the ground (Ellinger
and Hödl, 2003).

Sound scattering occurs when sound wavelength is smaller
than the dimension of surrounding objects such as tree trunks
and foliage. Sound scattering consists of absorption, refraction
and reverberation (reflection). Scattering impacts more high
frequencies than low frequencies. Sound scattering depends on
forest characteristics including tree density, foliage density, leaf

shape, and rock configuration (Swearingen and White, 2007;
Tarrero et al., 2008) and is more significant in closed habitats than
in open habitats.

Meteorological effects regroups all abiotic and biotic
phenomenons that impact sound propagation due to climate
and weather. Humidity can facilitate atmospheric absorption.
Ambient temperature which is linked to the canopy structure
and solar irradiance changes sound speed (Swearingen and
White, 2007). The combination of temperature fluctuations
and wind currents can cause atmospheric turbulence
that results in irregular amplitude fluctuations (cf. section
“Sound Propagation”) (Embleton, 1996; Larom et al., 1997).
Meteorological effects are more prominent in open habitats and
for long distance communication.

SOUND SOURCES

Geophony
Geophony is produced by abiotic sources (Figure 2). Here,
we divide geophonic sounds into two main categories: weather
sounds, like rain and wind, and hydrologic sounds, like waterfalls
and rivers. Such sounds are dominated by relatively broadband
and transient sounds (Lewicki, 2002; Theunissen and Elie, 2014).
Other geophonic sound sources that have a low rate of occurrence
and have been less studied, such as thunder, forest fire or seismic
activity were not considered here. Still, it is important to state that
such geophony can, during a certain timeframe, have a pervasive
impact on soundscapes.

FIGURE 2 | Detailed soundscape functional block diagram: focus on geophony.
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Weather sounds depend on meteorological variables, but also
on biotic factors. The occurrence and power of weather sounds,
like the force of the wind or the intensity of rain, are linked to
climatic and meteorological factors, whereas the textural quality
of weather sounds depends on the physical elements of the
landscape with which weather phenomena interact. For example,
the interaction between wind force (linked to abiotic factors) and
tree foliage (linked to biotic factors) design wind sound. Similarly,
leaf shape and soil texture change rain sound. During episodes
of storms, high wind or heavy rain can generate a significant
broadband noise that can alter animal behavior at various levels
(Lengagne and Slater, 2002; Brumm, 2004; Tishechkin, 2013;
Farji-Brener et al., 2018; Geipel et al., 2019).

Hydrologic sounds are produced by endemic moving bodies
of water such as rivers or waterfalls. Unlike weather sounds,
hydrologic landscape sounds are pervasive, although their
presence and quality can depend on climatic and meteorological
factors. A small stream can disappear during the dry season,
whereas a river can become a prevalent sound source during a
rainy day. The noise produced by rivers can have an impact on
species territory distribution (Gomes et al., 2021).

Biophony
Biophony is produced by biotic sources, either intentionally or
incidentally. Animals are the main sources of biophony. Each
biophonic sound results from the species-specific behavior of an
individual positioned in the landscape. Biophony encompasses
a large variety of sounds that are themselves produced by a
large variety of sound production systems (e.g., vocalization,
stridulation, percussion): biophonic sounds range from periodic
(as in the case of pure tones) to almost noisy sounds, may
be stationary or fluctuating and range from narrowband to
broadband sounds (Hauser, 1996; Tembrock, 1996; Bradbury and
Vehrencamp, 2011).

Recent studies in sensory neuroscience that aimed to assess
the acoustic statistics of natural scenes and isolated biological
sounds suggest that most recorded animal vocalizations, that is to
say animal sounds emanating from a vocal apparatus with vocal
chords, are dominated by relatively slow amplitude modulations
(below ∼10 Hz) with fine harmonic structure (Nelken et al.,
1999; Lewicki, 2002; Theunissen and Elie, 2014). However, other
frequent events such as stridulations have rather sudden onsets,
often with fast fluctuations, and these studies still need to be
extended to larger and more diverse sound databases. Biophony
involves numerous types of biotic and abiotic factors, different
modalities of these factors for each species, and complex internal
dynamics such as prey-predator interactions with feedback
loops (Figure 3).

Ambient Sounds
Ambient sounds, usually referred to as “background sounds,”
“background noise,” “ambient noise” or “silence,” are the result of
the combination of two types of sounds: external ambient sounds
and internal ambient sounds. As their common appellation
suggests, ambient sounds are often considered as background
sounds, meaning that they are mostly understood as inherently
undesirable sounds. Most of today’s terrestrial ecoacoustic

literature intends to remove ambient sounds instead of studying
them for their intrinsic qualities. But ambient sounds are not
only a significant component of soundscapes, they also constitute
the main, if not only, source of sound during periods of
reduced biotic and abiotic activity such as nights or winters (e.g.,
Grinfeder et al., 2022).

External ambient sounds, also called “environmental noise,”
consist in a mixture of biophonic and geophonic signals that are
too attenuated and/or distorted to be separated and identified
(Forrest, 1994). External ambient sounds are usually described
as showing most energy below about 2 kHz, but it remains
unknown to which extent biophony and geophony, respectively,
influence the acoustic nature of external ambient sounds.
However, one can make the assumption that biophonic and
geophonic ambient sounds should occur on different parts of
the amplitude spectrum, follow different periodicities, and overall
possess distinguishable features.

Internal ambient sounds are sounds that are produced by
the receiver’s body and can only be perceived by it. For animals,
internal ambient sounds can have neural, vascular or pulmonary
origins. For artificial recorders, internal ambient sounds are
mechanical or electronic sounds that result from the recorder’s
physical configuration and operation.

ACOUSTIC FILTERS

Sound Propagation
During sound propagation, the acoustic characteristics of the
environment filter the signal and produce attenuation and
distortion (Figure 4). This filter can be characterized by a
transfer function which captures the shape of a known signal
after its transmission through the habitat. Signal attenuation and
distortion may reduce the amount of information encoded or
limit the transmission of the information over a specific distance,
usually known as the active space.

Attenuation is the decrease of intensity of a sound traveling
through a medium. Attenuation is mainly due to spreading
loss and atmospheric absorption (cf. section “Acoustic Factors”).
Sound attenuation is frequency dependent, with a greater
effect on high frequencies (Wiley and Richards, 1978; Forrest,
1994). Moreover, ground effects can generate shadow zones that
drastically attenuate sounds in areas that can be close to the
source (Roberts et al., 1981).

Distortion mainly results from sound scattering and
meteorological effects (cf. section “Acoustic Factors”). Time,
amplitude and frequency alteration of sounds can occur such
that temporal smearing or amplification can be observed after
transmission. Temporal smearing, mainly due to reverberation,
may mask high rate amplitude modulation. Irregular amplitude
fluctuations, due to atmospheric turbulence, may mask low rate
amplitude modulation (Richards and Wiley, 1980).

Receiver
A receiver is a system which operates a transduction of acoustic
energy into mechanical or electrical energy. The receiver acts
as a filter which can be defined with a transfer function.
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FIGURE 3 | Detailed soundscape functional block diagram: focus on biophony.

A receiver can be an animal, including a human, or a machine,
in particular a microphone. The characteristics of the receiver
include observational condition and transduction. Here, we
consider the receiver as a passive observer of the soundscape.
Consequently, the receiver does not retroactively act on factors,
nor does it influence the sound sources.

Observation conditions consist of the position, orientation,
structure (e.g., head, neck and torso for humans) and movement
of the receiver’s body.

Transduction is constrained by the amplitude dynamic
range, integration time and frequency response of the
transducer. Each species and each individual may have specific
transduction properties.

BUILDING OPERATIONAL DEFINITIONS

Operational definitions are warranted to specify the scientific
value and usefulness of the soundscape concept. Such definitions
should allow to formulate qualitative and quantitative hypotheses
and predictions that could guide scientific investigations through
experimental designs (Popper, 1959). As indicated below, we
adopted a source-receiver approach and distinguished between
different categories of soundscape events according to the

configuration and nature of the potential receivers and their
relationship to sound sources. Each category represents a
different kind of possible semantic relationship to the soundscape
and the three categories should be considered as complementary
rather than contradictory (Figure 5).

Three Categories of Events
During the construction of the FBD, the question of the specific
placement of “soundscape” arose several times. The soundscape
was first placed after the receiver, implying that the soundscape
was the result of the recording or perception of filtered sound
signals. However, this choice seemed unsatisfying because of
its inconsistency with other soundscape definitions such as
Pijanoswky’s one. Three potential locations for the soundscape
concept were identified on the diagram: (1) in the area of
biophony, geophony and sound propagation blocks, (2) before
the receiver block, and (3) after the receiver block. The first
location corresponds to Pijanowski’s definition and consists of
an “external” but purely theoretical event. The second location
is similar to Barchiesi’s definition, consists of an “external” event
that is not theoretical and represents the sonic information that
is transformed by the environment but not yet recorded by a
microphone or perceived by an observer. The third location
corresponds to Farina’s definition where the soundscape is more
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FIGURE 4 | Detailed soundscape functional block diagram: focus on sound propagation.

FIGURE 5 | General soundscape functional block diagram. The distal soundscape is closer to environmental factors and their influence on sound production and
propagation. The proximal soundscape is located just before the receiver and represents an ideal point of observation which includes external ambient sounds. The
perceptual soundscape is the soundscape representation that the receiver progressively builds through its psychoacoustic apparatus. Compared to Figure 1, the
“internal ambient sound” block was added in order to clarify the perceptual soundscape category.

subjective and consists of an “internal” event that can be
attributed to a perceptual representation.

Farina et al. (2021) were the first to differentiate soundscape
categories that they called “soundscape epithets.” The latent

soundscape is “a portion of vibroscape that is not perceived by
a particular individual as sound but that can be heard by others.”
This concept (or any equivalent) does not seem to be included in
ecoacoustic research yet. The sensed soundscape is “the portion
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of the acoustic information that a particular organism is sensitive
to but are not necessarily integrated into a physiological or
behavioral reaction.” Finally, the interpreted soundscape is “the
subset of soundscape that makes a difference to the organisms.”
This distinction between sensed and interpreted soundscape
matches, to some extent, the hierarchy made by psychophysicists
between low-level (i.e., sensory) and high-level (i.e., cognitive)
processing stages. However, these soundscape epithets do not
integrate the external-oriented uses of the soundscape concept.
This led us to believe that there was a need to introduce a different
operational categorization of the soundscape concept, aimed at
discriminating the different usages present in the literature.

In the second half of the 20th century, psychologists and
philosophers made the distinction between distal, proximal and
perceptual events. A distal event is an event as it is produced at
the source, far from the observer. A proximal event is an event
as it arrives at the receiver and after it has been altered by its
propagation from the distal location. Finally, a perceptual event is
an event as it has been processed by the observer to link successive
proximal events into a singular interpretation (Cooper, 1992).
We followed this three-fold partition to divide the soundscape
concept into three separate categories. This opened the possibility
to draw a parallel between previous soundscape definitions
and a new nomenclature of soundscape into distal soundscape,
proximal soundscape and perceptual soundscape.

The Distal Soundscape
Landscape ecology, which can be considered as a parent
of soundscape ecology, studies ecological invariant patterns
of interest that emerge from a collection of singular events
(McGarigal and Urban, 2001). Since a landscape event cannot
be assimilated to a singular signal, it would be more accurate
in this context to consider a soundscape event as a collection of
sound signals in a prespecified area. This spatial and temporal
distribution of sound signals is theoretical because no observer
can receive at the same time the total acoustic information that
occurs in a given area. It is the collection and identification of
invariant spatial and temporal patterns, such as the bird dawn
chorus, that gives external clues about the soundscape dynamics.
Consequently, when we consider the soundscape as the acoustic
equivalent of the landscape, we consider the distal soundscape.

This definition can still be seen as vague because the acoustic
scale of the sound signals has not been defined. Should the
sound of a worm moving in the soil be considered when
studying the distal soundscape at the scale of vertebrates? Or
more generally, what is the time period used to study the distal
soundscape? The patterns that soundscape ecologists observe
only occur at a specific time, frequency and amplitude range,
which is often implied but rarely stated. These ranges define the
acoustic scale of the distal soundscape and complete the spatial
scale of the defined area. However, the acoustic scale is altered
by acoustic factors which will alter the accessibility of sound
information (cf. section “Sound Propagation”). In contrast with
conventional distal events, the distal soundscape should therefore
encompass sound propagation in order to correctly reflect its
complexity. The distal soundscape is therefore defined as the
spatial and temporal distribution of sounds in a prespecified

area, in relation to sound propagation effects. When described, a
distal soundscape should be associated with a specific time period
and a specific acoustic range. This soundscape category can be
represented by an acoustic cartography or a thorough description
of the sound patterns that occur in a specific area.

The Proximal Soundscape
In visual psychophysics, the “ambient optic array” represents
a visual point of observation (Gibson, 2014). Whereas the
perception of the ambient optic array (the “visual scene”) should
change from one observer to another, the ambient optic array
remains consistent and represents all the potential information
that can be retrieved by any observer at any point in time.
Barchiesi et al. (2015) suggested that the acoustic scene could be
thought of as an acoustic equivalent of the ambient optic array,
but this would be a matter of interpretation. In order to clarify
this, we suggest using the notion of proximal soundscape in this
context. Where the distal soundscape requires the survey of all
the potential effects of sound propagation that can occur on a
given area, the proximal soundscape is the effective filtering of
these sound signals at one point in space. Although there is only
one distal soundscape for a given area, there is a multiplicity of
proximal soundscapes occurring in the same area, corresponding
to every potential receiver position. The proximal soundscape is
therefore defined as the collection of propagated sound signals
that occurs at a specific point in space. This soundscape category
can be represented by an “ideal” recording with a limitless
acoustic scale (cf. section “The Distal Soundscape”) and no
internal ambient sound (cf. section “Ambient Sounds”).

The Perceptual Soundscape
A perceptual event consists of acquiring proximal events through
time and/or space, and linking them into a dynamic “internal”
representation. Consequently, a perceptual event is a subjective
representation built by the observer, suited for a given task, in
order to make sense of the acquired information. For any living
observer, the analysis of a proximal soundscape involves multiple
sensory and cognitive processes operating in a sequential and/or
parallel fashion. These processes (or computations) take time.
Some are automatic and fast, and others are more controlled
and slow (see Neuhoff, 2004). Over the past century, research in
auditory psychophysics, neuroscience and cognitive psychology
has shown that the auditory processing of complex acoustic
mixtures such as proximal soundscapes requires – among other
things – the segregation of these scenes into “streams” or
“auditory objects” on the basis of simultaneous and sequential
grouping mechanisms (e.g., Bregman, 1990; Moore and Gockel,
2012; Młynarski and McDermott, 2019), and the computation of
acoustic attributes such as pitch, loudness, timbre and dynamic
patterns (e.g., Moore, 2012; Thoret et al., 2020). Auditory
processing of proximal soundscapes also involves bottom-up
attentional processes that enhance the sensory representation
(the “salience”) of certain acoustic events (these events “pop
out”; Kayser et al., 2005; Huang and Elhilali, 2017; Filipan
et al., 2019) as well as memory and decision processes.
Recent work in brain imaging (Irwin et al., 2011) reveals the
existence of two distinct neural processing pathways recruited
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by soundscapes: (i) an auditory bottom-up analysis pathway
(from the auditory periphery to the cortical centers) and (ii) an
emotional processing pathway involving two central structures
well known in emotional response. The observer eventually
constructs a more elaborate “cognitive representation” that
results from deeper (e.g., semantic) processing. This cognitive
representation may finally be stored in episodic and semantic
autobiographical memory (e.g., Tekcan et al., 2015).

Since there is a multiplicity of proximal soundscapes,
there is an infinite number of perceptual soundscapes,
depending on the receiver’s nature, observation conditions
and processing stages. The perceptual soundscape is therefore
defined as the individual subjective interpretation of a
proximal soundscape. This soundscape category can be
represented in many ways depending on the processing stage
that is considered.

APPLICATIONS AND IMPLICATIONS

In this section, we propose applications of the distal, proximal
and perceptual soundscape concepts. Each application refers to
the global functional diagram (Figure 6).

Soundscape Recordings
Soundscape recordings are the fundamental material of
soundscape ecology and ecoacoustics. Microphones receive a
proximal soundscape that is then transformed by an analog
to digital converter into a digital audio file. The digital signal
is afterward converted into a given numerical representation
thanks to specific mathematical operations. This can lead to
different visual representations including waveforms, amplitude
spectra, or spectrograms.

Due to the holistic dimension of distal soundscapes, it is
not possible to consider a unique point of recording as an
accurate reproduction of a distal soundscape. In other words,
an infinity of soundscape recordings is theoretically required
to properly assess a distal soundscape. Consequently, the use
of the expression “soundscape recording” in this context can
be inappropriate. However, it is reasonable to assume that a
limited set of recordings provide a partial approximation of the
distal soundscape and can be defined as a “distal soundscape
recording.” Despite the fact that such apparatus could not
encompass all the sounds that occur in a given area, the
identification of sound patterns across recordings can give
general but useful clues about spatio-temporal sound dynamics
(e.g., Rodriguez et al., 2014).

For proximal soundscapes, soundscape recordings can be
considered as an approximation of the absolute sonic object that
proximal soundscapes represent. Since soundscape recordings
are limited by their acoustic scale (cf. section “The Distal
Soundscape”), it is important to note that soundscape recordings
give an incomplete representation of the information available
at a given point of observation. Soundscape recordings are
often limited to the audible frequency range of humans, 20 Hz
to 20 kHz, missing potentially important information in the
infrasonic and ultrasonic domains.

With regard to perceptual soundscapes, soundscape
recordings convey acoustic information that stimulates the
sensory organ (e.g., the cochlea for humans) but only a fraction
of it is taken into account by the sensory system of the observer,
each species showing a unique “listening bandwidth” and
spectro-temporal resolution. For those reasons, soundscape
recordings should not be confused with perceptual soundscapes,
even with “low-level” perceptual representations.

Consequently, any subsequent processing stage of the former
soundscape recording, whether it is sonic or numerical, can also
be seen as some form of soundscape recording or representation.
This is why the use of “soundscape recording” in this context
should be accompanied by the explicit soundscape category in
question, that is “distal soundscape recording” or “proximal
soundscape recording”. When referring to the subjective
experience, the term “perceptual soundscape” should be used.

Distal Soundscapes and Temporal
Patterns
As presented in Figure 5, the distal soundscape is the soundscape
that is the least affected by filtering processes, which allows the
study of sound sources and their relationship with environmental
factors. Distal soundscape can therefore be useful to reveal the
processes that drive the diel and seasonal patterns of biophony
and geophony. If we take the example of a temperate cold
forest, diel patterns can be predicted by assessing the relationship
between biotic factors such as birds’ circadian rhythms and
temporal factors such as moon and annual cycles. As shown
in Grinfeder et al. (2022), yearly patterns can be predicted by
combining biotic factors such as vegetation seasonal cycle and
weather abiotic factors such as temperature, snowfall, rainfall and
wind. In this study, the description of invariant features (i.e., the
periodicity of a selection of acoustic sources) in a specific area
(i.e., the same habitat) were used as evidence for the description
of the forest’s distal soundscape dynamics.

Proximal Soundscapes and the Listening
Experience
Whereas distal soundscapes are often used to describe sounds at
an ecological scale, proximal soundscapes are usually considered
as means to change the individual experience of the sonic
environment. The work of Bernie Krause consists of recording
natural non-anthropogenic environments in order to study their
composition and reproduce the sonic, subjective experience
of listening in non-anthropogenic areas through soundscape
composition (Krause, 2015). Here, the task focuses not on
studying the ecological dynamics of the soundscape but on
using observation points as references to produce a work
of art to share with an audience. The information that is
retrieved from these references is the type of sound sources
(geophony and biophony), as well as potential sound propagation
effects if needed. Since soundscape composition aims at
inspiring “environmental listening awareness” (Westerkamp,
2002), soundscape composers allow themselves to take creative
liberties. However, linking sound sources and acoustic filters to
the corresponding environmental factors could help building
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FIGURE 6 | Detailed soundscape functional block diagram. The complex entanglement of the different types of environmental factors reveals the underlying
complexity of soundscapes. This diagram can be used as a graphical display of current soundscape related knowledge, or as a tool to evaluate the potential impact
of environmental change on non-anthropogenic terrestrial soundscapes.

proximal soundscape “reconstructions”, which are consistent
with validated ecological knowledge. The reconstruction of
proximal soundscapes could then be improved, going beyond
the raw superposition of bird song recordings (Gasc et al.,
2015; Zhao et al., 2019; Morrison et al., 2021). Such a
tool would provide a new kind of ecoacoustic ground-
truth that may be useful to rigorously evaluate biodiversity
indexes among others.

Perceptual Soundscapes
Tympanic ears appeared about 210–230 million years ago
(Grothe and Pecka, 2014). It is thus reasonable to assume
that through selective adaptation, the auditory system of many
species has evolved to develop and optimize a capacity to
analyze soundscapes, efficiently detect biological sound sources
and discriminate levels of biodiversity in close environments
(e.g., Webster et al., 2017). Indeed, soundscapes provide crucial
information about potential resources, preys, predators, mates
and habitat structure.

As discussed in section “The Perceptual Soundscape,” the
existence of a multiplicity of perceptual processing stages
within the observer’s auditory and cognitive system makes the
conception of a singular comprehensive example of perceptual
soundscape difficult. In addition, the understanding of perceptual
soundscapes has more often been the source of speculations
based on landscape ecology, such as the hypothesis of the
“cognitive soundscape” (Farina, 2014; Barchiesi et al., 2015),
rather than a source of objective data production. Cognitive
psychology and neurosciences can be used to draw operational
hypotheses aiming to assess basic aspects of soundscape
perception and test the respective roles of low- and high-level
auditory mechanisms (Theunissen and Elie, 2014). For instance,
are we humans able to discriminate between soundscapes

associated with distinct habitats - which represent a specific
combination of environmental factors - or temporal factors such
as seasons or moments of the day? The answer is probably
“yes” but information about the capacities of human listeners
is clearly lacking. Many other questions arise. Are biological
sound sources processed differently from geophonic sound
sources? To which extent are we able to distinguish levels of
biodiversity with our ears? These questions among others pave
the way for an entirely new research program in the cognitive
sciences of audition.

CONCLUSION

Despite the ambiguity that the soundscape concept has
been carrying since Schafer’s seminal work, there is an
opportunity to distinguish three distinct but complementary
categories. The distal soundscape is the spatial and temporal
distribution of sounds in a prespecified area, in relation
to sound propagation effects. The proximal soundscape
is the collection of propagated sound signals that occurs
at a specific position in space. The perceptual soundscape
is the individual subjective interpretation of a proximal
soundscape. By explicitly clarifying soundscape definitions,
we hope to make soundscape ecology more operational. The
soundscape, which is often summarized as a simple collection
of individual sounds, underlies a complex association of sound
sources and acoustic filters that are affected by an array of
environmental factors. We hope that the graphical display
of these relationships can help ecologists and environment
managers to formulate relevant scientific hypotheses, anticipate
the ecoacoustic impact of anthropogenic and non-anthropogenic
environmental changes and guide conservation policies.
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