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Editorial on the Research Topic

Nutritional Management for the Energy Metabolism in Animals

Energy metabolism is the process of generating energy (ATP) from nutrients, including both
aerobic respiration (oxygen present), anaerobic respiration (fermentation) as well as fatty acid and
amino acid metabolism (1). Energy homeostasis is central to animals to maintain normal function
and production.

The Research Topic includes 14 papers, one review, and 13 research articles, concerning energy
metabolism and its nutritional management, as well as the effect of gut microbiome and host
mitochondria on energy homeostasis at various environmental situations and physiological stages
of animals.

One study, Du et al. investigate the effect of different dietary energy levels on the rumen bacteria
and meat quality in yak. They suggest that muscle quality of longissimus pectoris of yak fed
with high dietary energy level was better, evidenced by the significantly increased water content
and crude fat content. Additionally, the high energy diet also elevated the abundance of bacteria
related to carbohydrate metabolism in the rumen. They draw the conclusion that high energy diet
improved the meat quality of yak mainly by affecting the ruminal amyl lytic bacteria abundance to
provide substrates for fatty acid synthesis.

Animals adapt to various changing environment by adjusting their development, metabolism
and behavior to improve their chances of survival and reproduction (2). In this Research Topic,
Kong et al. use the metabonomics and blood biochemical indexes to investigate the metabolic
changes of dairy cows in different high-altitudes. With the increasing of altitude, the different
metabolites are mainly enriched in amino acid metabolism and sphingolipid metabolism. And
sphingolipid metabolism showed a negative correlation with increased altitude. Meanwhile, they
(Kong et al.) uncover the specific mammary metabolic mechanism in hypoxic dairy cows. The
results reveal that hypoxia exposure was associated with the elevation of AGPAT2-mediated
glycerophospholipid metabolism. These intracellular metabolic disorders consequently lead to
the lipid disorders associated with apoptosis of bovine mammary epithelial cells. A certain key
nutrient deficiency also affects the metabolism and reproduction. A study of Qian et al. shows that
vitamin E deficiency in the early post-partum period of cow will significantly down-regulate the
apolipoprotein A3, serum amyloid protein A4 and pantetheinase-1 protein abundance in plasma,
among which pantetheinase-1 is closely related to dairy cow subclinical vitamin E deficiency and
can be a potential biomarker.

Natural materials of animal origin are involved in regulating nutrient metabolism (3, 4). The
paper by Mesgaran et al. indicate that rumen-protected l-carnitine plays a role in supporting
production, enhancing liver metabolism and regulating health biomarkers of high-yielding dairy
cows during perinatal period. Based on these findings, the authors suggest that the effects of
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perinatal feeding of l-carnitine on the uterus should be further
studied to determine its impact on offspring performance and
health. Wang X. et al. find that estrogen promotes glycogen
synthesis and storage, and maintains energy homeostasis by
enhancing extracellular glucose uptake and regulating autophagy.
They suggest that estrogen is necessary to protect cells from
apoptosis and enhance the immune potential of PMNs. However,
the mechanism by which estrogen regulates glucose metabolism
remains unclear.

In addition to animal derived natural materials, plant extracts
and probiotics also show the strong ability to interfere the
animal nutritional metabolism. Four studies about plant extracts
are presented in this Research Topic. Based on the beneficial
effect of resveratrol on intestinal injury, the authors (Huang et
al.) find that resveratrol can improve intestinal injury induced
by deoxynivalenol through mitochondrial autophagy in weaned
piglets. Yang et al. find that dietary supplementation of Eucommia
ulmoides leaf extract (ELE) in finishing pigs improves the carcass
traits and reduces the lipid levels by activating the AMPK-ACC
pathway to regulate lipid metabolism. Results from Wang Q.
et al. indicate that feeding Phragmites australis shoot remainder
(PSR) silage could improve the growth performance, alter the
rumen bacteria diversity and the corresponding function. They
demonstrate that PSR silage could partially substitute (30%)
corn silage for beef cattle breeding. The study of Afzal et al.
elaborates that dietary supplementing with 3.5%Moringa oleifera
leaf powder (MOLP) improves the antioxidant status, milk yield,
and reproductive performance in goats. Moreover, Han et al.
suggest that maternal dietary supplementation with Bacillus
subtilis protease and Bacillus subtilis improves the reproductive
performance and overall health indicators of sows, as well as the
growth and development of their offspring.

In recent years, the nutrition and metabolism of special
economic animals and pets have also attracted much attention.
Bao et al. find that metabolizable energy intake (MEI), caloric
production (HP) and retained energy (RE) of male Sika deer
decreased significantly as the apparent digestibility of carbon and
nitrogen increased with the decrease of feed intake. Particularly,
they calculate the net N requirement for maintenance (NNm)
and net protein requirement for maintenance (NPm) of growing

male sika deer, fill the gap in net energy and protein requirements
and serve as basic data for establishing the nutritional standards
for sika deer breeding in China. Obesity is troubling the health
of pet dogs. Lyu et al. compare the inflammatory response and
fecal metabolome of dogs fed a high-fat vs. a high-starch diet, and
suggests a high-starch diet is more suitable for feeding pet dogs.
The high-starch diet promotes the lipid metabolism, antioxidant
effects, protein biosynthesis and catabolism, mucosal barrier
function and immune regulation compared to a high-fat diet in
healthy lean dogs. Additionally, Li has conducted an interesting
review on a state-of-the-art overview on recent advances in
systems biology in canine cardiac disease. He discusses this topic
based on three aspects: (1) the changes occurring in each of the
three components of energy metabolism in myxomatous mitral
valve disease (MMVD) and heart failure (HF); (2) the changes
in circulating and myocardial glutathione, taurine, carnitines,
branched-chain amino acid catabolism and tryptophanmetabolic
pathways; (3) the potential role of the gut microbiome in
MMVD and HF. He emphasizes that systems biology and high-
throughput multi-omics techniques are likely to be used for
canineMMVD andHF, and that as new techniques emerge, it will
be possible to provide breakthrough nutritional interventions for
the treatment of pet dogs with heart disease such as MMVD.

Therefore, the Research Topic provides a review of the articles
on the nutritional management of animal nutrition metabolism,
and lists some of the authors’ new research inspirations based
on the current research results and some of the significant
contributions of the researches.
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The Chinese Academy of Sciences, Changsha, China

In high-altitude area, hypoxia is a serious stress for humans and other animals, disrupting

oxygen homeostasis and thus affecting tissue metabolism. Up to now, there are few

reports on the metabolic changes of dairy cows at different altitudes. In this experiment,

metabonomics technology and blood biochemical indexes were used to study the

metabolic changes of dairy cows in different altitudes. The results showed that the

different metabolites were mainly enriched in amino acid metabolism and sphingolipid

metabolism, and sphingolipid metabolism showed a negative correlation with increased

altitude. The results of this study will enrich the hypoxia-adaptive mechanism of dairy

cows in high-altitude areas and provide a theoretical basis for the nutritional regulation

of performance and disease treatment of dairy cows in high-altitude areas.

Keywords: metabonomics, high altitude, Jersey cattle, difference, hypoxia

INTRODUCTION

From the medical point of view, there is no obvious geological boundary between high and low
altitudes, but from the evidence of plateau-related diseases, it is generally believed that high altitude
(HA) refers to the altitude of 1,500m or above the average sea level (1). It can be divided into three
levels: high altitude (1,500–3,500m), extremely high altitude (3,500–5,500m), and extreme altitude
(>5,500m) (2). The main challenge faced by vertebrates at high altitude is that the reduction of
oxygen partial pressure (PO2) limits the aerobicmetabolic rate, which leads tometabolic adaptation
to reduce oxygen demand (3). At present, the research on animal metabolism adaptability at
high altitude mainly includes rats (4), pigs (5), donkeys, and sheep (6). There are few reports on
the metabolic adaptation of dairy cows in high-altitude areas, and the description of metabolic
differences of dairy cows between different altitudes is less.

As an important breed of dairy cattle in countries with developed animal husbandry,
Jersey cattle has the characteristics of rough feeding tolerance, strong disease resistance, and
strong adaptability (7). In addition, Jersey cattle’s milk fat color is yellow, its fat globules
are large and easy to separate, and it is an ideal raw material for processing high-quality

7
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cream (8). Butter (mainly composed of milk fat) provides
rich nutrients for residents in high-altitude areas and is an
indispensable life product. What is more, it was found that the
adaptability of Jersey cattle was the best among the different
breeds introduced to high-altitude areas. Therefore, there is a lot
of interest in Jersey cattle adapting to high altitudes.

Recent studies have found that people from low altitude
to high altitude will cause significant remodeling of tissue
metabolism, as well as changes in the level of circulating
metabolism (9, 10). Hypoxia can inhibit the oxidativemetabolism
of heart (11) and skeletal muscle (12), reduce the ability
of fatty acid oxidation (13), and increase glycolysis (14) in
rodents and non-plateau native people. Based on miRNA and
proteomics, we found that Jersey cattle adapt to high-altitude
hypoxia by regulating inflammatory homeostasis (15). However,
the specific metabolic adaptation mechanism of Jersey cattle
transferred from low altitude to high altitude is still unclear.
Metabonomics based on mass spectrometry (MS) is a method
to study the overall changes of small-molecule metabolites,
reflecting the physiological activities in organisms (16). In this
study, metabonomics was applied to explore the metabolic
changes of Jersey cattle in different altitudes. This will enrich the
adaptive mechanism of Jersey cattle at high altitude and lay a
theoretical basis for subsequent nutritional regulation.

MATERIALS AND METHODS

This study was carried out based on the animal protection and
use guidelines of the Animal Protection Committee, Institute
of Subtropical Agriculture, Chinese Academy of Sciences
(protocol ISA-201809).

Animals and Experimental Design
Eighteen multiparous Jersey cattle (400 ± 28 kg) were selected
and randomly divided into three groups (six cattle in each group)
in Shenyang [altitude 50m; high-altitude-free (GJ) group],
Nyingchi [altitude 3,000m; high-altitude (CJ) group], and Lhasa
[altitude 3,650m; extremely high-altitude (XJ) group] for 60 days
in the autumn. Six animals were randomly selected from each
group for metabonomics analysis and other measures. Based on
the Chinese Feeding Standard of Dairy Cow (MOA, 2004), basic
diets meeting the nutritional requirements of energy, protein,
minerals, and vitamins are prepared (Table 1). The same TMR
diet was fed ad libitum.

Measurement of Blood Oxygen Saturation
After the vulva of the cow was opened, and the liquid was
dried with an absorbent paper. The blood oxygen saturation
was measured with Nonin Avant 9600 (Nonin Medical, Inc.,
Plymouth, MN, USA) blood oxygen saturation detector. The
sensor probe was close to the vulva skin to measure the blood
oxygen saturation (BOS). The average of the three measurements
is taken as the measurement value.

Blood Sample Preparation
Before the morning feeding on the last day of the experiment,
all cows were punctured through the caudal vein to take blood

TABLE 1 | The difference of plateau adaptability of dairy cows at different altitudes.

Items Treatment SEM P-value

GJ CJ XJ

BOS (%) 90.08 84.55 72.48 1.541 0.001

NO (µmol/l) 168.03 202.62 184.45 6.571 0.006

NOS (U/ml) 1,607.45 1,863.94 1,744.45 44.636 0.004

EPO (mU/ml) 4,838.19 5,254.33 5,689.11 144.903 0.003

HSP70 (ng/ml) 19.34 19.81 20.13 0.233 0.039

HIF-1 (ng/l) 138.33 165.44 193.66 13.501 0.018

VEGF (ng/ml) 167.05 185.44 207.32 7.659 0.006

BOS, blood oxygen saturation; NO, nitric oxide; NOS, nitric oxide synthase; TRP, total

reactive protein; EPO, erythropoietin; HSP70, heat shock protein 70; VEGF, vascular

endothelial growth factor; HIF, hypoxia-inducible factor; GJ, high-altitude-free group; CJ,

Nyingchi (altitude 3,000m; high-altitude group); XJ, Lhasa (altitude 3,650m; extremely-

high-altitude group).

samples. The blood samples in the anticoagulant tube were
centrifuged at 3,000 rpm for 10min at 4◦C. The plasma was
collected and stored in a refrigerator at−80◦C for metabonomics
analysis. The blood samples collected by a non-anticoagulant
tube were centrifuged at 2,500 rpm for 5min. The serum was
collected and stored in a refrigerator at 4◦C for determination
of biochemical indexes.

High-Altitude Adaptation Index
Determination
The levels of nitric oxide (NO), nitric oxide synthase (NOS),
total reactive protein (TRP), erythropoietin (EPO), heat shock
protein 70 (HSP70), vascular endothelial growth factor (VEGF),
and hypoxia-inducible factor (HIF) in serum were measured by
ELISA kit.

Metabolite Extraction
Firstly, the 100 µl plasma obtained by centrifugation was mixed
with 300 µl methanol (including internal standard 1µg/ml),
vortexed for 30 s, sonicated in ice bath for 10min, and incubated
at −20◦C for 1 h to precipitate protein. Secondly, to process
the sample, it was centrifuged at 12,000 rpm for 15min
at 4◦C. Finally, the supernatant was transferred to a liquid
chromatography–mass spectrometry (LC/MS) sample bottle at
−80◦C for storage and standby and used for the analysis of
UHPLC-QE Orbitrap/MS. Quality control (QC) samples were
prepared by mixing the same supernatant from all samples.

Liquid Chromatography With Tandem Mass
Spectrometry Analysis
A liquid chromatography with tandem mass spectrometry (LC–
MS/MS) analysis was performed using a UHPLC system (1290,
Agilent Technologies, Santa Clara, CA, USA) coupled with a
UPLC HSS T3 column (2.1mm × 100mm, 1.8µm) with Q
Exactive (Orbitrap MS, Thermo Fisher Scientific, Waltham,
MA, USA). Mobile phase A was positive in 0.1% formic acid
aqueous solution and negative in 5 mmol/l ammonium acetate
aqueous solution, and mobile phase B was acetonitrile. The
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FIGURE 1 | PLS-DA score plot of the three groups in plasma of Jersey cattle using the identified metabolites in positive ionization mode. (A) The difference of CJ vs.

GJ; (B) the difference of XJ vs. GJ; (C) the difference of CJ vs. XJ.

FIGURE 2 | Volcanic plots of the three groups in plasma of Jersey cattle using the identified metabolites in positive ionization mode. (A) The results of CJ vs. GJ; (B)

the results of XJ vs. GJ; (C) the results of CJ vs. XJ.

elution gradient was set as following: 0min, 1% B; 1min, 1%
B; 8min, 99% B; 10min, 99% B; 10.1min, 1% B; and 12min,
1% B. The flow rate was 0.5 ml/min. The injection volume is
3 µl. In LC/MS experiments, QE mass spectrometer can obtain
MS/MS spectra on an information-dependent basis (IDA). In this
mode, the acquisition software (Xcalibur 4.0.27, Thermo Fisher
Scientific, Waltham, MA, USA) continuously evaluates full-
scan measured MS data while collecting and triggering MS/MS
spectral acquisition according to pre-selected criteria. ESI source
conditions were set as follows: sheath gas flow rate of 45 arb,
auxiliary gas flow rate of 15 arb, capillary temperature of 400◦C,
full MS resolution of 70,000, MS/MS resolution of 17,500, impact
energy of 20/40/60 eV, and injection voltage of 4.0 kV (positive)
or−3.6 kV (negative).

Statistical Analysis
ProteoWizard was used to convert the original data into mzXML
format and processed by MAPS software (version 1.0). A data
matrix consisting of retention time (RT), mass/charge ratio
(M/Z), and peak strength was generated. The internal MS2
database was used for metabolite identification. The card value
standard of differential metabolites was that a p-value of Student’s
t-test was <0.05. Meanwhile, the variable importance in the
projection (VIP) of the first principal component of OPLS-DA
model is >1.

RESULTS

Physiological and Biochemical
Characteristics
The difference of plateau adaptability of dairy cows at different
altitudes is shown inTable 1. Compared with cows at low altitude
(GJ), blood oxygen saturation of cows at high altitude (CJ) and
extremely high altitude (XJ) was significantly lower (P < 0.05),
and blood oxygen saturation of cows at extremely high altitude
was significantly lower (P < 0.05) than that of cows at high
altitude. In addition, the level of NO, NOS, EPO, HSP70, HIF-
1, and VEGF decreased (P < 0.05) significantly with the increase
of altitude.

Overview of Differential Metabolomic
Profiles
In positive ionization mode, compared with the GJ group, a
total of 105 and 103 differential metabolites (VIP > 1, p < 0.05)
were found in the CJ and XJ groups (Supplementary Table 1).
In addition, 124 differential metabolites were identified in the CJ
group compared with the XJ group (Supplementary Table 1).
Partial least-squares discriminant analysis (PLS-DA) was
performed to obtain a global overview of the differences in
metabolites among the three groups (Figure 1). The R2Y and
Q2 values of the PLS-DA models are all above 0.93. The above
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FIGURE 3 | Heatmap of hierarchical clustering analysis for the three groups in palsma of Jersey cattle using the identified metabolites in positive ionization mode. (A)

The clustering results of CJ vs. GJ; (B) the clustering results of XJ vs. GJ; (C) the clustering results of CJ vs. XJ.

FIGURE 4 | Pathway analysis of the identified metabolites in positive ionization mode in plasma of Jersey cattle exposed to different altitudes. (A) The pathway

analysis results of CJ vs. GJ; (B) the pathway analysis results of XJ vs. GJ; (C) the pathway analysis results of CJ vs. XJ.

results indicate that exposure to various altitudes can interfere
with the metabolism of dairy cows, which is also supported by
the observation results of volcanic plots (Figure 2).

Comparison of Metabolomic Profiles
Among the Three Altitudes
In positive ionization mode, the heat map constructed from
the 105, 103, and 124 differential metabolites revealed two
diverse metabolomic profiles of various altitudes (Figure 3).
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis indicated that up-regulated metabolites in the CJ group
were mainly enriched in aminoacyl-tRNA biosynthesis;
sphingolipid metabolism; phenylalanine, tyrosine, and
tryptophan biosynthesis; and valine, leucine, and isoleucine

biosynthesis (Figure 4A). Up-regulated metabolites in the
XJ group were enriched in aminoacyl-tRNA biosynthesis;
phenylalanine, tyrosine, and tryptophan biosynthesis;
phenylalanine metabolism; and valine, leucine, and isoleucine
biosynthesis (Figure 4B). In addition, compared with the XJ
group, the up-regulated pathways were mainly aminoacyl-
tRNA biosynthesis; phenylalanine, tyrosine, and tryptophan
biosynthesis; sphingolipid metabolism; and phenylalanine
metabolism in the CJ group (Figure 4C). The details of all
enriched pathways are shown in Supplementary Table 2.

Key Metabolite Identification
Metabolites that could be utilized to distinguish the CJ group
from the XJ group were identified on the basis of VIP >
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FIGURE 5 | Differential metabolite abundances in plasma of Jersey cattles at different altitudes. (A) The abundance of identified differential metabolites for CJ VS GJ in

positive ionization mode. “CJ and GJ” represent high altitude and control group, respectively; (B) the abundance of identified differential metabolites for XJ VS GJ in

positive ionization mode. “xJ and GJ” represent extremely high altitude and control group, respectively; (C) the abundance of identified differential metabolites for CJ

VS XJ in positive ionization mode. n = 6, *p < 0.05.

1, FC > 1, and p < 0.05. L-methionine, L-tryptophan, L-
arginine, and L-lysine in the aminoacyl-tRNA biosynthesis
pathway; L-tyrosine in phenylalanine; tyrosine and tryptophan
biosynthesis and L-valine in valine; leucine; and isoleucine
biosynthesis showed higher abundance (P < 0.05) in the CJ
group than in the GJ and XJ groups (Figure 5 and Table 2).
Phytosphingosine in sphingolipid metabolism showed higher
abundance (P < 0.05) in the CJ group than in the GJ and
XJ groups (Figures 5A,C and Table 2), while sphinganine in
sphingolipid metabolism and L-proline in aminoacyl-tRNA
biosynthesis and L-phenylalanine in phenylalanine, tyrosine,
and tryptophan biosynthesis showed lower abundance (P <

0.05) in the XJ group than in the GJ group (Figure 5B and
Table 2). In addition, L-proline in aminoacyl-tRNA biosynthesis
and L-phenylalanine in phenylalanine, tyrosine, and tryptophan
biosynthesis showed higher abundance (P< 0.05) in the CJ group
than in the XJ group (Figure 5C and Table 2).

DISCUSSION

The oxygen partial pressure in the atmosphere is 60% that of the
sea level. The dairy cows imported into the area under low oxygen
environment have a higher incidence rate of altitude sickness.
Since the beginning of the last century, the introduction of
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TABLE 2 | Differentially expressed metabolites of different groups.

Group MS2 name VIP P-value Fold change

CJ vs. GJ L-Methionine 1.6063 0.0003 2.1971

L-Arginine 1.8007 0.0000 2.8363

L-Valine 1.6853 0.0001 2.0993

L-Lysine 1.7777 0.0000 2.7309

L-Tryptophan 1.5732 0.0006 1.5375

L-Tyrosine 1.3827 0.0056 1.4700

Phytosphingosine 1.3112 0.0424 2.0365

Sphinganine 1.3867 0.0119 0.5381

XJ vs. GJ L-Arginine 1.5491 0.0001 2.2398

L-Valine 1.1395 0.0213 1.3945

L-Lysine 1.4544 0.0003 1.8684

L-Proline 1.0817 0.0198 0.7967

L-Phenylalanine 1.1146 0.0189 0.8009

CJ vs. XJ L-Phenylalanine 1.3532 0.0008 1.3407

L-Arginine 1.0112 0.0019 1.9071

L-Methionine 1.5442 0.0003 3.1485

L-Valine 1.3466 0.0013 1.5054

L-Lysine 1.3119 0.0012 1.4616

L-Tryptophan 1.2364 0.0072 1.3042

L-Tyrosine 1.5141 0.0003 1.7095

L-Proline 1.1753 0.0080 1.2348

Phytosphingosine 1.2049 0.0359 2.1468

Sphinganine 1.5114 0.0000 0.3056

GJ, high-altitude-free group; CJ, Nyingchi (altitude 3,000m; high-altitude group); XJ,

Lhasa (altitude 3,650m; extremely-high-altitude group).

Holstein dairy cows from the mainland in Tibet has failed. Later,
due to the strong adaptability of Jersey cattle, we introduced
Jersey cattle and achieved good results. Our previous research
explored its adaptive mechanism from the miRNA and proteome
level (15). This paper further elaborated its good adaptive
mechanism from the metabolic level, as well as the adaptive
differences at different altitudes.

The results showed that the blood oxygen saturation of Jersey
cattle in high-altitude and very-high-altitude areas decreased
with the increase of altitude, which may be due to the functional
damage of lung tissue caused by high altitude, resulting in the
decrease of lung oxygen supply and the obstruction of carbon
dioxide exhalation, which eventually led to more severe hypoxia
in dairy cows with the increase of altitude (17). Hypoxia can
promote the production of vasodilator in vivo, and vasodilator
can inhibit the formation of vascular injury and pulmonary
hypertension caused by hypoxia (18). NO is a very effective
vasodilator (19), which can promote vasodilation, increase blood
flow velocity, and prevent vascular remodeling caused by hypoxia
(20). Studies have shown that hypoxia can increase the expression
of NOS, which can be used to explain the findings of this
experiment that the level of NOS increases with altitude (21).
In addition, the level of NO also increased with the elevation,
which may be due to the increase of the expression of nitric
oxide, which is the core mechanism of mammalian adaptation
to hypoxia (22, 23). However, the level of NO and NOS was

higher in the CJ group than in the XJ group, whichmight resulted
from downregulation of arginine and proline metabolism leading
to the production of oxidative stress (24). The results showed
that the expression of HIF was up-regulated under hypoxia (25),
which was consistent with the results of this experiment. HIF can
increase the expression of EPO after it enters the cells (26), so
it can adapt to high-altitude hypoxia by increasing the oxygen-
carrying capacity of the body (27). Therefore, the higher the
altitude is, the higher the level of EPO is, as was shown in our
results. VEGF is recognized as the most typical target gene of
HIF-1 α (28). In this study, it was found that HIF-1 was up-
regulated with the increase of altitude, which may be because
HIF-1 regulates VEGF to promote the formation of blood vessels
to adapt to hypoxia (29). In addition, studies have shown that
Hsp70 can protect against tissue hypoxia and organ damage by
degrading HIF-1 α activity under hypoxia (30), which leads to the
increase of HSP70 level with altitude. To sum up, we can find that
dairy cows will show varying degrees of adaptive physiological
response with the increase of altitude.

In this study, we also predicted the involved pathways affected
by altitude differences by using KEGG analyses. The differential
metabolites involved in aminoacyl-tRNA biosynthesis were L-
arginine, L-tryptophan, L-lysine, L-methionine, and L-proline.
In this study, we found that the level of L-arginine increased
with altitudes, and its rule of change is the same as that of NO
(31), which might resulted from NO that could be synthesized
from L-arginine (32). During hypoxia exposure, L-tryptophan
levels in tissues increased significantly, which may be caused by
blocked energy metabolism (33). Previous studies have shown
that hypoxia can lead to the increase of lysine and methionine
concentration (34), and it is consistent with the results of this
experiment that lysine and methionine concentration increases
at high altitude and very high altitude, which may be due to
a disturbance of osmotic balance associated with hypoxia (35).
A recent metabolic study has shown that a variety of amino
acids, including proline, may be involved in the regulation of
intracellular osmotic pressure during environmental hypoxia
and may act as osmotic fluid (36), which might indicate that
proline adapts to hypoxia as an osmolyte. These results suggested
that dairy cows adapted to different altitudes by regulating the
metabolic pathway of aminoacyl-tRNA biosynthesis.

In the present work, the pathway of valine, leucine, and
isoleucine biosynthesis was both up-regulated in the CJ and
XJ groups. Studies found that hypoxia contributed to the
accumulation of L-valine (37), which was consistent with the
results in the CJ group. However, there was lower abundance
of L-valine in the XJ group, which might resulted from
the application of valine to avoid mitochondrial damage or
convert to other amino acids (38, 39). The differentially
expressed metabolites of phenylalanine, tyrosine, and tryptophan
biosynthetic signaling pathways in the CJ and XJ groups were
tyrosine and phenylalanine, respectively. In the CJ group,
the level of tyrosine increased, which might be due to the
replenishment of insufficient energy supply to adapt to hypoxia
stress (33). However, in the XJ group, the level of phenylalanine
was reduced, which may be due to the more severe immune
and inflammatory responses in cows at extremely high altitude
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(15), and phenylalanine needs to be converted into tyrosine to
regulate oxidative stress, immune response, and inflammation,
thus protecting the body from damage (40). These results suggest
that dairy cows adapt to high-altitude hypoxia by upregulating
phenylalanine metabolism and phenylalanine, tyrosine, and
tryptophan biosynthetic signaling pathways.

Phytosphingosine and sphingosine are two important
metabolites involved in sphingolipid metabolism. The results of
this study showed that sphingolipid metabolism pathway was
up-regulated under hypoxia. In the presence of hypoxia, elevated
levels of plant sphingosine in the blood of cows in the CJ group
(41) were found in this experiment, which might be caused by
changes in key enzymes regulating sphingosine metabolism (42).
The decreased level of sphingosine may be due to the conversion
of blood sphingosine into plant sphingosine (43), which regulates
angiogenesis in response to hypoxia stress (44). Additionally,
we found that the sphingolipid metabolism pathway was up-
regulated in dairy cows at high altitude compared with those at
extremely high altitude, suggesting that sphingolipid metabolism
might be negatively correlated with the adaptability to elevated
altitude (42).

CONCLUSION

In this experiment, we detected the related indexes of high-
altitude adaptation in Jersey dairy cows in the GJ, CJ, and XJ
groups, which replenished the basic data of blood biochemical
indexes of Jersey dairy cows from different altitudes. At the same
time, it was found that Jersey cows can adapt to high-altitude
hypoxia mainly through up-regulation of amino acid metabolism
and sphingolipid metabolism. Additionally, it was found that the
metabolism of sphingolipid was negatively correlated with the
ability to adapt to hypoxia induced by elevated altitudes.
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The objective of this study is to study the effects of dietary intake levels on energy

metabolism, carbon (C), and nitrogen (N) balance and to determine the maintenance

requirements of energy and protein for male sika deer during their growing period. A

total of 16 1-year-old male sika deer with similar body weight (BW) (63.25 ± 2.42 kg)

were selected, with four animals per feed intake level. The feeding levels of the four

groups for deer were 40, 60, 80, and 100% of the recommended amount, respectively.

The nutrient digestibility and methane production were measured through digestion trials

and respiratory trials. A 4 × 4 Latin Square design was performed in a respirometry trial.

The results show that the apparent digestibility of C and N gradually increased as the

level of feed intake decreased. Furthermore, with a decrease in feed intake level, the

metabolic energy intake (MEI), heat production (HP), and retained energy (RE) of male

sika deer significantly decreased (P < 0.01). The requirements of metabolic energy for

maintenance (MEm) and net energy for maintenance (NEm) of growing deer are 251.17

and 223.62 kJ kg−1BW0.75d−1, respectively, as estimated according to the logarithmic

regression equations between HP and MEI. The net N requirement for maintenance

(NNm) and net protein requirement for maintenance (NPm) of growing male sika deer

based on the linear relationship between retained nitrogen (RN) and daily nitrogen intake

(NI) were 251.8mg kg−1BW0.75d−1 and 1.57 g kg−1BW0.75d−1, respectively. The NEm

and NPm values obtained from this experiment fill the gap in net energy and protein

requirements and serve as basic data for establishing the nutritional standards forsika

deer breeding in China.

Keywords: carbon and nitrogen balance, maintenance requirement, methane emission, net energy, net protein

INTRODUCTION

Sika deer (Cervus nippon) produce traditional Chinese medicine velvet antler and thus they are
important ruminants in China. The nutritionals level of domestic sika deer are mainly drawn from
foreign nutritional standards, such as NRC (1). However, since China has a vast territory, rich
pasture resources, and many deer species, it is actually unreasonable to deal with all situations
using a foreign standard. Moreover, the nutritional requirements for male sika deer during their
growing period have not been fully determined in China, which limits the efficient development
of sika deer industry. Therefore, it is essential to study the nutritional requirements of sika deer to
improve production performance and ensure efficient utilization of feed.
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To study the energy and protein maintenance requirements
of 1-year-old male sika deer, carbon-nitrogen (C-N) balance
method was used in this study, as well as the measurement
of methane emissions through an open-circuit respiration
measurement system. The C-N balance method has been used
to calculate retained energy (RE), assuming that all energy
is retained in the form of fat or protein (2). Therefore,
this study further explores the effects of feeding levels on
energy metabolism, C-N balance, and methane emission and
uses the C-N balance method to determine the maintenance
energy and protein requirements of male sika deer during the
growing period.

MATERIALS AND METHODS

The study was carried out in the antler deer breeding base of
the Institute of Special Animal and Plant Science, CAAS. All
experiments were performed in accordance with the Animal Care
and Use Guidelines of the Institute of Special Animal and Plant
Science (Jilin, China).

Animals and Treatments
A total of 16 1-year-old male sika deer with similar body weight
(BW; 63.25± 2.42 kg) were selected, with four animals per intake
level. The deer were divided into four treatment groups, and
the experiment was carried in four experimental stages. Each
stage lasted for 12 days. The feeding levels of the four groups
for deer were 40, 60, 80, and 100% of the recommended amount,
respectively, following the nutrition requirements of feed for deer
(1). To reduce the inaccuracy of the test data caused by the deer’
body conditions, the deer were given a rest for 5 days and fed a
normal nutrition level diet after each stage. The deer were fed two
equal meals at 06:30 and 15:30 daily, and they can drink freely.
The dietary composition and nutritional content of basal diets
are shown in Table 1.

Digestibility Trials
The digestibility of nutrients was measured by digestion trials.
Deer were weighed at the beginning and end of the collection
period. The feed refusals and feces were collected and weighed
every day. Feces were collected every day for 3 days, stored at
−20◦C, then mixed and sampled again before chemical analysis,
and dried at 65◦C. Urine was collected in a bucket containing
20mL of 10% concentrated sulfuric acid to avoid loss of nitrogen
from urine. All the collected urine was weighed, and 3% of the
daily urine output was sampled for analysis.

Gas Metabolism
Four open-circuit respiration calorimetry chambers with a
volume of 17.82 m3 (450 × 180 × 220 cm) were used in this
study. In short, air conditioners and heaters were used to regulate
the respiration chambers to maintain a constant temperature and
humidity. A vacuum pump was used to continuously extract gas
from the respiration chambers. The gas concentration in each
respiration chamber was measured using an analyzer at a 3-min
interval. O2 was measured with a zirconia sensor, while CO2

TABLE 1 | Composition and nutritive levels of control diet.

Parameter Concentration

Composition (%)

Corn flour 22

Soybean meal 12

Lucerne 50

Distillers dried grains with soluble (DDGS) 4

Corn germ meal 5.5

Molasses 5

NaCl 0.5

Conjugated linoleic acid 0.5

Additives* 0.5

Total 100

Measured nutrient concentration(dry matter)

Gross energy (GE,MJ/kg) 14.03

Crude protein (CP, %) 15.80

Neutral detergent fiber (NDF, %) 41.54

Ether extract (EE, %) 3.31

Acid detergent fiber (ADF, %) 16.16

Ca (%) 0.76

P (%) 0.50

*Contained the following per kg of premix: Mg, 76mg; Cu, 36mg; Zn, 43mg; Fe, 53mg;

vitamin A,2484 IU; vitamin D3,496.8 IU; vitamin K3, 0.23mg; vitamin B1,10.092mg;

vitamin B2,0.69mg; vitamin B12,1.38mg; folic acid, 0.023mg; nicotinic acid, 1.62mg;

calcium pantothenate, 1.15mg; CaHPO4,5.17 g; CaCO3,4.57 g.

and CH4 were measured with a non-dispersive infrared sensor
in the analyzer.

The concentration of CH4, CO2, and O2 was measured
according to the method proposed by Tovar-Luna (3). Air was
first analyzed for CH4, followed by CO2 and O2. Before each
test, analyzers were calibrated with standard gas mixtures (19.5%
and 20.5% O2, 0.0% and 1.5% CO2, and 0.0% and 0.3% CH4).
The temperature and humidity in the calorimetry room were
maintained at 20–23◦C using an air conditioner at 50–55% using
a dehumidifier, respectively (Whirlpool, Benton Harbor, MI).

An open-circuit respiratory heat measurement system was
utilized at Deer Breeding Base of the Institute of Special Animal
and Plant Science, CAAS (Jilin, China). A 4 × 4 Latin Square
design was performed. Four deer were selected, with one deer
put into one metabolism bin. After the 24-h adaptation period,
CH4 and CO2 production of the individuals was measured for
24 consecutive hours. To avoid stress response in the deer in
the metabolic cage, all animals had been trained previously. To
reduce the inaccuracy of the test data caused by the deer’ body
conditions, the deer were given a rest for 5 days and fed a normal
nutrition level diet after each stage.

Chemical Analyses
The content of dry matter (DM), ash, Ca, and P in the feed,
orts, and feces were analyzed by the method of AOAC (4).
The concentrations of neutral detergent fiber (NDF) and acid
detergent fiber (ADF) were determined according to the method
described by Van Soest et al. (5). A bomb calorimeter (IKA C200,
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TABLE 2 | Effect of feed intake on body weight, dry matter intake (DMI), and energy balance in the digestion and respirometry tiral.

Itema Feed level P-value

100% 80% 60% 40%

DMI (kg d−1) 1.90 ± 0.12a 1.72 ± 0.25b 1.14 ± 0.13c 0.76 ± 0.06d <0.001

BW1 (kg) 64.26 ± 3.87 62.15 ± 4.36 59.83 ± 3.83 56.43 ± 4.17 <0.001

GE1 intake (kJ kg−1BW0.75d−1) 1174.51 ± 109.56a 1080.20 ± 103.21b 743.48 ± 78.31c 517.89 ± 57.62d <0.001

Fecal energy (FE) (kJ kg−1BW0.75d−1) 385.24 ± 15.87a 339.32 ± 21.56b 206.09 ± 20.31c 118.79 ± 12.57d <0.001

Urinary energ y (UE) (kJ kg−1BW0.75d−1) 36.40 ± 3.51a 34.01 ± 2.87b 23.35 ± 3.56c 16.87 ± 2.91d <0.001

Methane energy (kJ kg−1 BW0.75d−1) 76.34 ± 7.31a 73.04 ± 8.52a 55.91 ± 7.63b 43.01 ± 5.45c 0.035

Methane energy/GE (%) 6.48 ± 1.13a 6.69 ± 0.89a 7.52 ± 1.25b 8.32 ± 1.37c 0.631

DE1 (kJ kg−1 BW0.75d−1) 769.27 ± 20.51 745.88 ± 25.87 537.39 ± 24.01 399.10 ± 18.75 <0.001

MEI1 (kJ kg−1 BW0.75d−1) 752.87 ± 35.05a 686.87 ± 28.67a 434.04 ± 20.55b 286.23 ± 18.96c <0.001

DE/GE (%) 65.50 ± 7.82a 68.98 ± 8.31a 72.27 ± 7.69b 77.18 ± 7.53c 0.023

ME/GE (%) 64.10 ± 6.55 65.46 ± 7.69 69.18 ± 5.81 74.27 ± 7.13 0.045

ME/DE (%) 95.38 ± 9.66 95.29 ± 8.75 94.89 ± 8.94 94.44 ± 9.02 0.532

1BW, body weight; GE, gross energy; DE, digestible energy; ME, metabolisable energy; MEI, ME intake.
a−d In the same row, values without a different superscript differ (P < 0.05).

Germany) was used to measure gross energy (GE) in diets and
feces. The GE of urine samples was measured with the method
described by Deng et al. (6, 7). Carbon and nitrogen content in
the feed, orts, feces, and urine was estimated in a C-N analyzer
(Elementary Vario MAX CN, Germany).

Data Calculation
Metabolizable Energy
The content of metabolizable energy (ME) in the diet was
calculated based on the data obtained from the digestion trials.
The difference between GE intake and fecal energy was thought
to be digestible energy (DE). TheME of the diet with four feeding
levels was obtained by subtracting CH4 energy and urinary
energy from DE. Energy equivalent of CH4 was 39.54 kJ L

−1 (8).

Carbon and Nitrogen Balance
In the C-N method, it is assumed that all energy is retained in
the form of fat or protein (9), and the RE is determined based on
the analysis of the C-N balance. C balance is the total amount of
C retained in the body, and the amount of C retained in fat can
be calculated by subtracting the amount of C retained in protein
determined by N balance from the C balance. Assuming that fat
has an energy equivalent of 39.76 kJ g−1 and contains 0.767C
and protein has an energy equivalent of 23.86 kJ g−1 and contains
0.16N and 0.52C, the RE in fat (REfat) and protein (REprotein)
can be calculated. Energy retained as fat (REf) and protein (REp)
can be calculated as follows:

REp= N balance (g)× 6.25× 23.86;
REf = (C balance (g) - N balance (g) ×6.25×0.52) × 1.304 ×
39.76 (2).
RE can be calculated as RE = REp + REf according to
Brouwer (8).

Requirements of Energy and Protein for Maintenance
The difference between the metabolic energy intake (MEI) and
the retained energy was thought to be heat production (HP).

According to the method described by Lofgreen and Garrett
(10), the antilog of the linear regression intercept between the
HP and MEI logarithms was used to estimate the net energy
demand for maintenance (NEm, kJ kg−1 BW0.75) of male sika
deer. According to the method proposed by Galvani et al. (11),
the ME requirement for maintenance (MEm, kJ kg−1BW0.75)
was calculated by iterating the semi-logarithmic linear regression
equation until HP was equal to MEI. The maintenance efficiency
(km) of ME was calculated as NEm/MEm.

The net protein requirement for maintenance was estimated
by a linear regression equation between the daily retained N (RN;
mg kg−1 BW0.75) and the daily N intake (NI, g kg−1 BW0.75).
The intercept of this regression equation represents the loss of
endogenous and metabolic N. The result of multiplying the loss
by factor 6.25 was assumed to be the net protein requirement for
maintenance (NPm, g kg−1 BW0.75).

Statistical Analysis
Data were presented as means± SD. The effects of feeding levels
on the apparent digestibility of nutrients, energy values, energy
balance, carbon-nitrogen balance, CH4, and CO2 emissions were
analyzed using PROC GLM of SAS 8.0 (SAS Institute, Inc.; Cary,
NC). The differences among the treatments were considered
statistically significant with P < 0.05.

RESULTS

DM Intake and Energy Balance
The effects of feed intake on BW, dry matter intake (DMI),
and energy balance in the digestion and respirometry trials are
present in Table 2. Different feeding levels had a significant
impact on DM intake (P < 0.05). The feed levels significantly
affected the BW of deer. The BW decreased significantly with
the decrease of feed levels. As feed intake increased, total energy
intake (GEI), fecal energy (FE), urine energy (UE), DE, ME, and
methane energy significantly decreased (P < 0.05), while DE/GE,
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TABLE 3 | Effect of feed intake on daily methane (CH4) and carbon dioxide (CO2) emissions.

Item1 Feed level P-value

100% 80% 60% 40%

CH4 emission

L d−1 61.26 ± 6.13a 50.15 ± 6.03b 41.82 ± 3.97c 30.53 ± 3.66d 0.012

L kg−1 BW0.75d−1 2.70 ± 0.38a 2.27 ± 0.42a 1.89 ± 0.35b 1.77 ± 0.31c 0.021

L kg−1DMI 29.24 ± 3.59a 31.16 ± 3.15a 35.81 ± 3.52b 48.07 ± 5.03c 0.035

CO2 emission

L d−1 610.50 ± 50.21a 530.25 ± 48.33b 480.36 ± 36.53c 389.55 ± 36.21d <0.001

L kg−1 BW0.75d−1 26.92 ± 3.27a 23.94 ± 2.46b 22.33 ± 2.08b 18.93 ± 1.88c 0.038

L kg−1DMI 308.32 ± 29.56a 321.28 ± 28.57b 430.06 ± 35.41c 512.57 ± 49.32d <0.001

1BW, body weight; DMI, dry matter intake.
a−d In the same row, values without a different superscript differ (P < 0.05).

methane energy/GE significantly increased (P < 0.05). There was
no significant difference between ME/GE and ME/DE when the
deer experienced different levels of diets (P > 0.05).

CH4 and CO2 Emissions
The effects of feed intake level on CH4 and CO2 emissions are
shown in Table 3. Feed intake level significantly affected CH4

emission. CH4 emission (L d−1; L kg−1 BW0.75 d−1) decreased (P
< 0.05) as the feeding level decreased in the growing period. CH4

emission (L kg−1 DMI) showed an opposite trend (P < 0.05).
At the same time, feed intake level also produced significant

effects on CO2 emission. The CO2 emission (L d−1; L kg−1

BW0.75 d−1) decreased (P < 0.05) as the feeding level decreased.
However, CO2 emission (L kg−1 DMI) showed an opposite trend
(P < 0.01).

C-N Balance
Table 4 shows the effects of feed intake level on daily C-N
balance, retained energy, and heat production, fecal C, urinary,
and retention C were significantly affected by the level of feed
intake (P < 0.05). The above indicators showed a significant
downward trend. The content of CO2-C and CH4-C significantly
decreased (P < 0.05) as feed intake level decreased, but the
apparent digestibility of C (digestible C) was not affected by the
feed intake level (P > 0.05).

RE and HP significantly decreased with a decrease in feed
intake (P < 0.05), so did the energy retention components REp
and REf. NI, FN, UN, RN, and protein deposited significantly
decreased (P < 0.05) as feed intake level decreased, but the
apparent digestibility of N had no difference at different feeding
levels (P > 0.05).

Nutrient Apparent Digestibility
The effects of feed intake level on the apparent digestibility of dry
matter (DM), organic matter (OM), acid detergent fiber (ADF),
and neutral detergent fiber (NDF) are shown in Table 5. As the
feed intake decreased, the digestibility of DM, OM, ADF, and
NDF significantly increased (P < 0.05).

Requirements of Energy and Net Protein
for Maintenance
The estimated values of MEm, NEm, and NEm/MEm (Km) are
shown in Table 6, and the linear relationship between logHP
and MEI is also shown in Figure 1. The NEm value of the male
sika deer was determined to be 223.62 kJ kg−1 BW0.75d−1 by
calculating the antilog of the regression intercept, and the MEm
value was calculated to be 251.17 kJ kg−1 BW0.75d−1 through
iteration of the regression equation between LogHP onMEI until
HP is equal to MEI. Meanwhile, the Km (NEm/MEm) value was
calculated to be 0.89.

The linear relationship between RN and NI is shown in
Table 7, Figure 2. Endogenous and metabolic loss of N was
calculated as 251.8mg kg−1 BW0.75d−1 by estimating the
intercepts of the linear regression of RN on NI. The NPm value
was calculated to be 2.045 g kg−1 BW0.75d−1 for growing male
sika deer.

DISCUSSION

Energy Balance and C-N Balance
The CH4 emission rate is a key factor used to assess the potential
degree of global warming and to estimate enteric CH4 estimation
(12). The results of this study show that the CH4 emission
rate increased as the feeding level decreased for male sika deer
during their growing period. It may be an important strategy
to increase feeding during the above maintenance period to
reduce enteric CH4 emission (13), which is consistent with the
results of this study. For Dorper crossbred ram lambs, CH4

energy/GE increased but DE/GE, ME/GE, and ME/DE decreased
in their growing period as the feeding level increased (6). These
are consistent with the results for growing male sika deer in
this study, except for ME/DE, which was not affected by feed
intake. In this study, the ME/DE of male sika deer was 95.01%,
which was higher than that of lamb (6), broiler (14), and sheep
(15). This may be related to different dietary components and
interspecies differences.

Flatt (16) found that DE and CH4 energy of cows decreased
but their urinary energy remained unchanged during their
pregnancy. In contrast, Ferrell et al. (17) reported that any
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TABLE 4 | Effect of feed intake on carbon (C) and nitrogen (N) balances (g kg−1 BW0.75 d−1), heat production (HP) (kJ kg−1 BW0.75 d−1), and retained energy (RE)

(kJkg−1 BW0.75 d−1) by sika deer.

Item1 Feed level P-value

100% 80% 60% 40%

C (g kg−1 BW0.75d−1)

Intake 50.52 ± 6.03a 42.69 ± 4.31b 35.21 ± 5.38c 24.75 ± 3.51d <0.001

Fecal 24.22 ± 3.56a 19.51 ± 2.43b 14.34 ± 2.65c 9.13 ± 2.41d 0.011

Urinary 1.82 ± 0.09a 1.53 ± 0.21b 1.21 ± 0.18c 0.96 ± 0.25d 0.013

CO2-C 14.67 ± 2.56a 13.05 ± 1.08a,b 12.17 ± 2.56b 10.32 ± 2.37c 0.032

CH4-C 1.56 ± 0.23a 1.31 ± 0.32a,b 1.09 ± 0.33b 1.02 ± 0.19c 0.021

Retention C 8.25 ± 0.35a 7.27 ± 0.56a,b 4.40 ± 0.57b 2.32 ± 0.27c

Apparent C digestibility (%) 52.06 ± 4.82 54.30 ± 4.32 59.27 ± 6.03 63.11 ± 7.38 0.2232

N (g kg−1 BW0.75d−1)

Intake (NI) 2.12 ± 0.35a 1.96 ± 0.26b 1.34 ± 0.31c 0.93 ± 0.17d 0.018

Fecal (FN) 1.10 ± 0.12a 0.98 ± 0.10b 0.54 ± 0.11c 0.32 ± 0.05d 0.022

Urinary (UN) 0.63 ± 0.11a 0.61 ± 0.09a,b 0.41 ± 0.08b 0.30 ± 0.04c 0.017

Retention N(RN) 0.38 ± 0.08a 0.30 ± 0.04a,b 0.24 ± 0.05b 0.20 ± 0.02c 0.020

Apparent N digestibility (%) 48.04 ± 4.13 50.10 ± 4.87 59.70 ± 5.61 65.72 ± 5.88 0.235

Protein deposited (g kg−1 BW0.75d−1) 2.38 ± 0.21a 1.88 ± 0.36b 1.50 ± 0.32c 1.38 ± 0.22d 0.031

Rep (kJ kg−1 BW0.75d−1) 56.66 ± 4.87a 44.74 ± 3.96b 35.79 ± 3.96c 32.81 ± 4.57d 0.043

REf (kJ kg−1 BW0.75d−1) 363.71 ± 30.52a 326.38 ± 29.56b 187.69 ± 25.31c 83.21 ± 9.34d 0.012

RE (kJ kg−1 BW0.75d−1) 420.31 ± 40.31a 371.08 ± 32.31b 223.48 ± 30.67c 116.02 ± 13.52d 0.018

HP (kJ kg−1 BW0.75d−1) 332.50 ± 27.86a 315.76 ± 28.78a,b 210.56 ± 25.36b 170.21 ± 19.34c 0.013

1HP, heat production; RE, retained energy; REp, RE for protein; REf, RE for fat; NI, nitrogen intake; FN, fecal nitrogen;UN, urinary nitrogen; RN, retained nitrogen.
a−d In the same row, values without a different superscript differ (P < 0.05).

TABLE 5 | Effect of feed intake level on DM, ADF and NDF intake, excretion and apparent digestibility by sika deer.

Item1 Feed level P-value

100% 80% 60% 40%

DM (g kg−1BW0.75d−1)

Intake 83.74 ± 9.78a 77.69 ± 8.46b 53.00 ± 6.21c 36.93 ± 3.58d <0.001

Fecal 41.69 ± 5.65a 35.88 ± 4.52ab 22.46 ± 3.51b 14.75 ± 2.42c <0.001

Apparent DM digestibility (%) 50.21 ± 6.03a 53.82 ± 6.37ab 57.63 ± 6.84b 60.05 ± 6.82c 0.035

OM (g kg−1BW0.75d−1)

Intake 71.18a 66.03a 45.05b 31.39c 0.038

Fecal 33.54a 30.17a 18.19b 12.11c 0.042

Apparent OM digestibility (%) 52.88a 55.31a 59.63bc 61.42 0.022

ADF (g kg−1BW0.75d−1)

Intake 13.53 ± 2.58a 12.55 ± 2.41a 8.56 ± 1.34b 5.97 ± 1.06c <0.001

Fecal 9.45 ± 2.41a 8.46 ± 1.85b 5.52 ± 1.10c 3.58 ± 0.96d <0.001

Apparent ADF digestibility (%) 30.12 ± 5.61a 32.56 ± 4.23b 35.43 ± 4.36bc 40.05 ± 4.31c 0.033

NDF (g kg−1BW0.75d−1)

Intake 34.78 ± 2.56a 32.27 ± 3.52ab 22.02 ± 3.15b 15.34 ± 2.06c <0.01

Fecal 24.51 ± 3.87a 21.55 ± 2.69b 13.89 ± 2.06c 8.99 ± 1.87d <0.001

Apparent NDF digestibility (%) 29.53 ± 2.45a 33.21 ± 4.57b 36.91 ± 4.05bc 41.37 ± 5.04c 0.021

1BW, body weight; DM, dry matter; OM, organic matter; ADF, acid detergent fiber; NDF, neutral detergent fiber.
a−d In the same row, values without a different superscript differ (P < 0.05).

difference in energy digestibility of heifers due to pregnancy
was insignificant compared to differences in feeding levels. The
current data of male sika deer during their growing period

suggest that the methane energy, urinary energy, fecal energy,
and DE increased as the feed intake level increased. The results
of this study are consistent with those reported above.
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TABLE 6 | Estimates of heat production (HP, kJ kg−1BW0.75d−1) and metabolisable energy (ME) intake (MEI, kJ kg−1BW0.75d−1) in the equation to predict net energy

requirement for maintenance of sika deer.

BW, kg Equation RMSEa R2 Number of deer P-value NEm (kJ kg−1 BW0.75d−1) MEm (kJ kg−1 BW0.75 d−1) Km

56.43–64.26 LogHP = 2.3495(±

0.0212) + 0.0005(±

0.0002) × MEI

0.0831 0.9246 12 <0.001 223.62 251.17 0.89

aRMSE, root mean square error; Km, the efficiency of ME utilization for maintenance was computed as NEm/Mem.

FIGURE 1 | The relationship between the logarithm of heat production (HP) and metabolizable energy intake (MEI) of sika deer in the indirect calorimetry method.

LogHP = 2.3495(± 0.0212) + 0.0005(± 0.0002) × MEI; R2
= 0.9246, P < 0.001, n = 12.

Blaxter (18) found that because the C-N balance method
involvedmore analysis andmeasurement than the energy balance
method, errors of about 30% may be encountered. As revealed
by Kishan et al. (19), for male buffaloes and crossbred cattle,
energy levels affected the excretion of C and N in urine, the
C in urine was significantly related to DE intake (P < 0.01),
but the urinary, CO2, and CH4 carbon outgo were not affected.
There is also a correlation between N excretion and urinary
C content (20). These are consistent with the results of this
study. Furthermore, the results of this study show that the
apparent digestibility of C was 52–63%, which is consistent with
the results reported by Blaxter and Wainman (20). There is a
certain difference between RC and RN calculated using the C-
N balance method in this study. Graham (21) found that the RN
calculated using the comparative slaughter method decreased as
the number of gestation days increased. In this study, RN and

RE decreased as the levels of feeding decrease. This is consistent
with the results of Zhang et al. (15), Singh et al. (22), and George
et al. (23).

Ferrell (24) found that energy intake affected HP because
of the metabolic activity of visceral organs. As the MEI of
growing cattle increased, HP increased exponentially (25–27).
As indicated by the results of Taylor and Turner (28), HP
increased as the nutrient level increased, which is mainly due
to the increased metabolism associated with energy retention.
Analysis of energy metabolism for growing cattle indicated that
HP increased exponentially with an increase in MEI level (25).
It has been well-established that HP will increase significantly
during pregnancy (29). In this study, MEI and HP gradually
decreased, accompanied by a decrease in feeding levels, which
may be due to the thermal effect of reduced feed. Meanwhile,
ME intake decreased, leading to a decrease in HP (26, 30, 31).
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TABLE 7 | Estimates of retained N (RN, g kg−1 BW0.75 d−1) and N intake (NI, g kg−1 BW0.75 d−1) in the equation to predict net protein requirement for maintenance

(NPm, g kg−1 BW0.75 d−1).

BW, kg Equation RMSEa R2 Number of deer P-value NNm (mg kg−1BW0.75 d−1) NPm (g kg−1 BW0.75 d1)

56.43–64.26 RN = −0.2518(± 0.1352) +0.407(± 0.0524) × NI 0.1235 0.8479 12 <0.001 251.8 1.57

aRMSE, root mean square error; NNm, net N requirement for maintenance (mg kg−1 BW0.75 d−1) calculated as the intercept of this regression; NPm = NNm × 6.25; BW, body weight.

FIGURE 2 | The relationship between the retained nitrogen (RN) and nitrogen intake (NI) of arctic foxes in the indirect calorimetry method. RN = −0.2518(± 0.1352) +

0.407(± 0.0524) × NI. R2
= 0.8479, P < 0.001, n = 12.

These are consistent with the findings in growing and fattening
pigs reported by Zhang et al. (32).

The REp value is much lower than REf value. When deer
were fed at 40% of the intake level, REp and REf reached their
minimum values. These results are consistent with the findings in
Hu sheep (15) and in arctic foxes (33). In this study, the decrease
in the feed intake of male sika deer led to the reduction of NI, FN,
and UN. As the feed intake decreased, RN gradually decreased
from 0.38 to 0.20 g kg−1 BW0.75d−1. This is consistent with the
findings of Singh et al. (22).

Nutrient Digestibility
The digestibility of nutrients in the rumen is the competition
result between digestion and passing rate. Among them, the
passing rate is positively correlated with dry matter intake (34).
Degen and Young (35) found a correlation between increased
digesta passage rates and increased feed intake. In this study, the
digestibility values of C, N, DM, OM, ADF, and NDF increased

significantly with a decrease in diet intake, indicating that
dietary restriction can improve the digestibility and utilization
of nutrients. The deer body promotes nutrient digestibility and
utilization to meet maintenance requirements while feed intake
is less. Deng et al. (6) found that the apparent energy digestibility
(DE/GE) and metabolic rate (ME/GE) of lambs fed ad libitum
were lower than lambs fed in a restricted manner. The results
on male sika deer in this study are consistent with the above
research results.

Energy and Protein Requirements for
Maintenance
The logarithmic relationship between MEI and HP is often used
to calculate NEm. HP is equal to NEm in the case of zero MEI
(10, 26). Similarly, MEm can also be calculated by extrapolating
HP where it is equal to MEI. The values of NEm and MEm
calculated by the regression equation were 223.62 and 251.17 kJ
kg−1 BW0.75d−1, respectively. The Km was calculated to be 0.89
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in this study. Li et al. (36) studied the energy metabolism of adult
male sika deer and determined that the requirement of MEm of
adult sika deer was 516 kJ kg−1 BW0.75d−1. The result is greater
than that in this study. The reason may be the different ages of
the deer selected for experiments and the different physiological
states of each period. Adult deer need more energy to maintain
their growth and antler. In contrast, for deer in the growing
period, more energy is used for the development and growth
of their own bodies, and thus less MEm was observed in them.
The Km value in this study is higher than that (0.707) reported
by Li (36) in adult deer and that of lambs and sheep (14, 15,
32). This may also be related to the age of the selected deer.
Luo et al. (37) reported that the difference in MEm seems to
depend mainly on the change in NEm rather than Km, which
can explain the difference in MEm requirements. The values
of NEm and MEm vary from species to species. For animals,
the species, physiological stages, environmental temperature, and
feed composition also affect the values of NEm andMem (14, 38).
MEm was 768 kJ kg−1 BW0.75d−1 and 501 kJ kg−1 BW0.75d−1

at 18 and 24◦C, respectively for adult female mink (38). In this
study, male sika deer with a bodyweight of 56.43–64.26 kg were
selected. Meanwhile, the temperature in the respiration chamber
was 22◦C, and the male sika deer in Northeast China during their
growing period was chosen. These may be the main reasons why
the NEm and MEm values are different from those in previous
reports (36).

ARC (39) assumed that NPm equal to the amount of protein
that can offset the loss of urine, feces, and dermal N, except
for growing lambs because they do not consider dermal loss
ARC. For lambs and sheep (15, 40), the regression equation
between RN and daily NI is an effective method to obtain NPm
throughN-balance trails. The intercept of the regression equation
represents the endogenous and metabolic N loss. According to
the regression equation between the daily NI and RN of the male
sika deer during their growing period, the values of NNm and
NPm were estimated to be 251.8mg kg−1 BW0.75d−1 and 2.045 g
kg−1BW0.75d−1, respectively. Chizzotti et al. (26) reported that
the NPm estimated according to the relationship between RN
and daily NI using the comparative slaughter method is greater
than the NPm determined based on the relationship between
RN and daily NI using the N-balance method. This discrepancy
may be due to losses of N that are not accounted for by the
N balance method. The scurf protein represents about 20% of
the maintenance requirement of the ARC system. However, no
data was present in growing male sika deer. The N balance
trails can reduce animal injuries and meet animal welfare
requirements and is an important method for estimating net
protein requirement.

CONCLUSIONS

In conclusion, the MEm and NEm values of growing male sika
deer were estimated to be 223.62 and 251.17 kJ kg−1 BW0.75d−1,
respectively, according to the logarithmic regression between the
HP and MEI The NNm and NPm values of growing male sika
deer were estimated to be 251.8mg and 2.045 g kg−1BW0.75d−1,
respectively, based on the linear regression relationship between
daily NI and RN. These results fill the gap in the research on
the net energy and protein requirements of male sika deer and
provide basic data for determining the nutritional requirements
of sika deer in China.
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Ping Yan 1* and Xuezhi Ding 1,2*

1 Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese

Academy of Agricultural Sciences, Lanzhou, China, 2 Key Laboratory of Veterinary Pharmaceutical Development, Ministry of

Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural

Sciences, Lanzhou, China, 3 State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou

University, Lanzhou, China

The effects of different dietary energy levels on the ruminal bacterial population, selected

meat quality indices, and their relationship in yak longissimus thoracis (LT) muscle were

assessed in this study. A total of 15 castrated yaks were randomly assigned to three

groups with low- (NEg: 5.5 MJ/Kg, LE), medium- (NEg: 6.2 MJ/Kg, ME), and high- (NEg:

6.9 MJ/Kg, HE) dietary energy levels and occurred in the cold season (March to May).

All yaks from each treatment group were humanely slaughtered and sampled on the day

of completion of their feeding treatment. The results showed that the water content and

crude fat levels of the LT muscle were markedly elevated in the HE group (P < 0.05),

while the shear force was drastically reduced (P = 0.001). Methionine, aspartic acid, and

glycine levels in the LT muscle were higher in the LE group compared with the ME and

HE groups (P< 0.05). The glutamic acid level in the ME group was greater in comparison

to the LE and HE groups (P < 0.05), while the histidine level in the ME group was higher

than that in the HE group (P < 0.05). Additionally, the HE diet significantly elevated

(P < 0.05) the abundance of carbohydrate metabolism-associated bacteria including

Prevotella_1, Lachnospiraceae_NK4A136_group, U29_B03, Ruminiclostridium_6, and

Ruminococcaceae_UCG_013 in the rumen. The results of the Spearman’s rank

correlation analysis showed that the abundance of uncultured_bacterium_f_vadinBE97

and uncultured_bacterium_f_Lachnospiraceae showed a significant influence on the

indicator of IMF and SF. In conclusion, a high dietary energy level improved the meat

quality in the LT muscle of yak mainly by increasing the relative abundance of ruminal

amylolytic bacteria to provide substrates for fatty acid synthesis.

Keywords: yak, dietary energy level, meat quality, longissimus thoracis, carbohydrate metabolism related bacteria

24

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2021.718036
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2021.718036&domain=pdf&date_stamp=2021-09-22
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pingyanlz@163.com
mailto:dingxuezhi@caas.cn
https://doi.org/10.3389/fvets.2021.718036
https://www.frontiersin.org/articles/10.3389/fvets.2021.718036/full


Du et al. Energy Diet Improved Meat Quality

INTRODUCTION

Yak (Bos grunniens), is known as “the treasure of the plateau”
and is mainly distributed in the area of Qinghai Tibetan Plateau
at an altitude of above 3,000m (1). It provides more than
90% of the milk and about 50% of the meat consumed in
this region (2). Yak meat is a semi-wild natural green food
and known as the crown of beef. It is rich in protein, amino

acids, carotene, calcium, phosphorus, and other trace elements.
However, the yak cannot obtain enough feed supply due to
the long-term extensive grazing, breeding mode, and lack of
forage biomass during the cold season. This malnutrition state
results in a long growth cycle and poor meat quality such as

low level of tenderness, intramuscular fat content, and taste
(3). With the global rise in the importance of green food and
growing consumer demand, the production of high-quality yak
meat is of extensive concern domestically and internationally.
The use of supplementary feeding could be an effective way
to reduce the gap between the production of high-quality
yak meat and increased market demand (4). Liu et al. (5)
reported that fattening yaks with a total mixed diet in the
cold season can improve the yield and quality of the yak

meat. Zhang et al. (4) reported that supplementing a diet with
high-protein in early-weaned yaks could increase intramuscular
fat accumulation. Similarly, Kang et al. (6) demonstrated that
the growth performance, meat production, and meat quality
of yak could be improved by increasing the dietary energy
concentration. These results suggested that the dietary energy
concentration has a positive impact on the growth performance,
carcass characteristics, meat production, and meat quality
of livestock.

Rumen microbiota plays a pivotal role in feed digestion
and acts synergistically to degrade plant structural and non-
structural carbohydrates into volatile fatty acids (VFAs) and
microbial proteins (MCP) (7). The end products of rumen
fermentation (VFA) are used as the substrate for fueling other
animal tissues (including liver, fat, and muscle) and MCP are
required by the host to produce meat and milk (8). The change
of rumen bacterial community structure was reported to be
closely related to the composition of the diet (9). Dietary
components affect rumen fermentation and the structure of
the rumen microbial population (9). It has been reported that
high-energy diets increased rumen amylolytic and propionate-
producing bacteria populations such as Prevotella, Ruminobacter
amylophilus, Succinimonas amylolytica, and Bifidobacterium
(10). Feeding high-starch and high-grain diets decreases some
fibrolytic bacteria, i.e., Ruminococcus flavefasciens, Fibrobacter
succinogenes, and Butyrivibrio fibrisolvens (11, 12). Lin et al. (13)
demonstrated that sheep had a capacity to remodel the structure
of the microbiota to adapt to a high-grain diet for a long time;
Ruminococcus, Prevotella, and Bifidobacterium were tolerant to
the diet with stable proportions in each treatment in a sheep
model. Thus, diet is a main factor affecting rumen microbial
diversity, and its nutritional levels or nutrients composition have
a significant effect on rumen microbial communities, which
may be due to the bacterial preference for feed ingredients,
specific metabolites, and rumen environment (14). In addition,

improving dietary energy levels is an effective approach to
facilitate the growth performance in yaks and the utilization
of dietary energy sources depends on the digestion of feed
nutrients by rumen microorganisms (15). However, the details
of how dietary energy level regulates ruminal microbiota
remain unclear.

Intramuscular fat (IMF) and its fatty acid composition
play pivotal parts in determining the meat grade for human
consumption (16). It has been widely recognized that the meat
grade and flavor are intimately linked to the degree of IMF and
fatty acid profiles (17). Several studies highlighted that the IMF
content in animal meat could be enhanced by providing a high-
energy diet (18). The fat content and fatty acids in ruminants are
mainly affected by the dietary nutrition and bacterial metabolism
in the rumen (19). However, little information is available about
themechanism by whichmodulatory effects of rumenmicrobiota
contribute to improving the muscle fatty acid profile, amino
acids composition, and other quality parameters of yak fed with
different levels of dietary energy. Thus, the aim of this study
was to investigate the effects of dietary energy levels on the
meat quality, rumen bacteria populations, and the relationship
between rumen bacteria and meat quality parameters. Moreover,
rumen bacteria contributing in the improvement of meat
quality on the yak longissimus thoracis (LT) muscle would
be identified.

MATERIALS AND METHODS

Experimental Procedure and Sample
Collection
This experiment was performed at Hongtu Yak Breeding
Cooperatives of Tibetan Autonomous Prefecture in Gansu
Province, China. A total of 15 adult castrated yaks (initial
BW, 276.1 ± 3.5 kg) originating from the local herders
were randomly allotted to different energy level treatments,
i.e., low energy level (LE: 5.5 MJ/kg), medium energy level
(ME: 6.2 MJ/kg), and high energy level (HE: 6.9 MJ/kg).
The basic diet composed mainly of 40% oats silage, 40%
micro-storage of corn straw, and 20% highland barley hay.
Energy levels of three diets met or exceeded the estimated
requirements for a 275 kg finishing beef cattle with an
average daily gain of 1 kg in the Feeding Standard of Beef
Cattle (NY/T 815-2004). The details of the ingredient and
nutritional composition for energy diets have been presented
in our previous study (20) and briefly summarized in
Supplementary Table S1.

All the yaks underwent an acclimatization period of 15 days
before study commencement, whereby the designated dietary
regimens were implemented accordingly for 60 days. Throughout
the study, the animals were individually fed twice daily ad
libitum and had free access to water provisions. After 60 days,
the animals were fasted for 12 h and consequently, humanely
slaughtered by electrical stunning. The LT (12th−13th rib)
samples were rapidly removed from the carcass regions in
quadruplicate, placed within a sterile vacuum packaging, and
ultimately stored at 4◦C. In addition, LT samples that are required
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to determine the amino acid/fatty acids (FA) content were stored
at−80◦C.

Analytic Methods for Chemical
Composition and Amino Acids
The chemical compositions for the LT samples were determined
according to Chinese recommended standardized protocols.
Water content was determined in line with GB/T 5009.3-
2010 through the direct-drying methodology. The crude protein
content (Kjeldahl N × 6.25) was determined in line with GB/T
5009.5-2010 through the Kjeltec Auto Analyzer R©. The IMF
content was determined in line with GB 5009.6-2003 using a
Soxhlet Extractor. The crude ash content was determined in
line with GB/T 9695.18-2008. The amino acid concentrations
were determined based on the previously reported method
(GB/T5009.124-2003) (21) using a liquid chromatography (LC,
u3000, Thermo FisherTM).

Meat Quality
The pH value of the LT was determined at 1 h and 24-h post-
mortem using a portable pH-meter (PHBJ-260, purchased from
INESA Scientific Instrument Co., Ltd.). The pH meter was fitted
with a spear tip pH electrode and an automatic temperature
compensation probe, and it was calibrated with pH 4.01 and
7.00 buffers in advance. A portable colorimeter (Minolta CR400,
Konica Minolta, Japan) equipped with an 8-mm aperture, 10◦

viewing angle, and D65 illuminant was used to determine the
meat color. For each meat sample, five different positions were
selected to determine the brightness value (L∗), redness value
(a∗), and yellowness value (b∗). Chroma value (H∗) and color
saturation value (C∗) were calculated based on the L∗, a∗, and
b∗ values.

Cooking loss and shear force (SF) were determined according
to a procedure adapted from Honikel (22) and Oillic (23).
For cooking loss determination, five thawed LT samples that
underwent external fat trimming and light blotting for moisture
removal were weighed and this readout was recorded as the
initial weight. Consequently, the LT samples were heated using a
water bath at 80◦C up to an internal temperature of 70◦C, which
was monitored using an internal thermocouple (Eirelec Ltd.TM,
Ireland). All LT samples were cooled to room temperature,
residual moisture was removed using a tissue paper, and weights
were measured and recorded as the final weight.

Preparation loss was represented by the final weight/initial
weight (%). The prepared LT samples were sliced into five cubes
(6 cm ∗ 3 cm ∗ 3 cm) and the SF of each cube was determined
using a Warner-Bratzler shear apparatus. For water loss analysis
(pressing loss), a 10 g LT sample from each animal—wrapped
with 12 layers of filter paper—was pressed by a force of 10
kg/cm2 for 5min. Residual moisture was lightly removed and the
sample weight was quickly recorded as the final weight. Data were
presented as a percentage of the final weight/10.

Rumen 16s rDNA Sequence Data Analysis
The raw data of the 16s rDNA sequence for rumen bacteria of
yaks in the LE, ME, and HE groups were obtained from our
previous study (24), which have been deposited in the European

Nucleotide Archive (ENA) at EMBL-EBI under the accession
number PRJEB34298. The previous analysis was conducted
4 years ago, and the representative sequences of operational
taxonomic units (OTUs) were annotated by using the GreenGene
database (25) (uploaded in 2013) which led to 30% of the high-
quality reads on the genus level not being annotated. Thus, in
this study, we re-analyzed the sequence data using an updated
database and the details for the analytic methods are as follows.
Raw paired-end reads were merged using the FLASH (version
1.2.11) software to generate the contigs and then assigned to
each sample according to the unique barcodes (26). The contigs
underwent quality control through trimming and filtering by
Trimmomatic (version 0.33) with a criterion, i.e., sequences
with an average quality <20 over a 50-bp sliding window were
rejected (27), then chimeras were identified and removed by
the UCHIME (version 8.1) software (28) to obtain high-quality
sequences. The generated high-quality sequences were clustered
into OTUs by USEARCH (version 10.0) at 97% similarity levels,
and the OTUs were filtered when an abundance of <0.005%
(29) was observed. We selected the sequences with the maximum
abundance in eachOTU as the representative sequences using the
QIIME (version 1.9.0) software, and the representative sequences
of the OTUs were compared with the SILVA database (version
132) using the RDP classifier with a 0.80 confidence threshold
(30). After that, Chao1, Shannon and Simpson indices, and
Good’s coverage were subsequently calculated using QIIME
with the default parameters (31). Principal coordinate analysis
(PCoA) was performed using Bray-Curtis distance. To evaluate
the effect of the dietary treatment on the microbial taxa, we
used the linear discriminant analysis effect size (LEfSe) to
identify different taxa using a critical value of LDA Score > 2.0
and P-value < 0.05 (32). To further understand the specific
functions of each group of bacteria, PICRUSt2 software (33)
was employed for comparing species make-up from the 16S
sequencing datasets. The newly determined functional gene
compositions were consequently predicted through the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database at level 3.
Redundancy analysis (RDA) was used to analyze the relationships
between differential bacteria and rumen fermentation parameters
(TVFA, acetate, propionate, butyrate, valerate, and pH) on
OmicStudio (LC-Bio Technology Co., Ltd., Hangzhou, China).

Statistics and Analyses
The SPSS version 24.0 (SPSS Inc., Chicago, IL, USA) was
used to analyze the data. The data of meat quality and the
concentration of amino acids were analyzed by a one-way
analysis of variance (ANOVA) followed by Duncan’s post-hoc
testing procedure for multiple comparisons. Alpha diversity was
analyzed using Kruskal–Wallis test in the SPSS 24.0 software.
Results were presented as means ± SEM. P-values <0.05
were regarded as statistically significant. Correlation networks
based on Spearman’s rank correlation analysis between the
relative abundance of key bacteria associated with carbohydrate
metabolism and the meat quality indices (SF, IMF, SFA, MUFA,
and PUFA) in the LT showing |r| > 0.60 and P-value < 0.05 were
considered as a significant correlation.
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RESULTS

Effects of Different Energy Levels on the
Meat Chemical Analysis and Meat Quality
of the Longissimus Thoracis Muscle
Effects of different dietary energy levels on the LT muscle
chemical composition and meat quality of yaks are shown in
Tables 1, 2, respectively. The LT water and IMF content were
significantly promoted (P < 0.05) in the HE group, compared
to the LE and ME groups. However, dietary energy levels did
not influence (P > 0.05) LT crude protein and ash content. No
differences (P > 0.05) in the pH1h, pH24h, and meat color indices
in the muscle were found among the treatments. Compared to
the LE group, cooking loss and water loss of LT significantly
decreased (P < 0.05) in the HE group, but were comparable to
the ME group. The shear force was markedly reduced (P < 0.05)
in response to the increasing dietary energy levels.

Effects of Different Energy Levels on the
Amino Acids Profile and Fatty Acid
Composition of the Longissimus Thoracis

Muscle
The essential amino acids (EAAs) and non-essential amino acids
(NEAAs) levels in the LT muscle of yak are listed in Table 3.
Methionine levels in the ME and HE groups were significantly
decreased (P < 0.05), compared with the LE group. While, the
other EAA levels were unaffected (P> 0.05) by the dietary energy
levels. The aspartic and glycine levels in the ME and HE groups
were significantly elevated (P < 0.05) in comparison to the LE
group. Compared to the ME group, the level of glutamic acid in
the LE and HE groups was lower, whereas the level of histidine in
the ME group was higher than the HE group but comparable to
the LE group.

The fatty acid composition of the LT muscle is listed in
Supplementary Table S2, which was previously published (18).
Briefly, no differences were observed (P > 0.05) in the total
monounsaturated fatty acid (MUFA) and polyunsaturated fatty
acids (PUFA) between the LE and ME groups, while the
proportions of saturated fatty acids (SFA) in the ME and HE
groups were significantly higher (P < 0.05) than the LE group.
The concentrations of SFA in the HE group was markedly
elevated compared to the ME group. In this study, MUFA and
PUFA levels in the HE group were markedly elevated compared
to the other groups (P < 0.05).

Diversity Taxonomy and Function
Prediction of Rumen Bacteria
In this study, the unannotated reads were only 0.30% at
the genus level after re-annotating the OTU based on
the SILVA database compared to 33.83% unannotated
reads of the previous study annotated by the GreenGene
Database (Supplementary Table S3). Microbial abundance and
heterogeneity were assessed through the alpha diversity indices.
Alpha diversity measures revealed that different dietary energy
levels have a little effect on (P > 0.05) the number of OTUs, the
ACE and Chao1 estimator, and the Shannon index (Figure 1A).

The PCoA based on the Bray-Curtis distance showed that the
HE group presented a degree of diversity discrepancy with
the other two groups (Figure 1B), indicating that the rumen
bacterial community changed significantly with the increase
of dietary energy. In addition, 19 phyla were discovered in the
rumen for all groups (Figure 1C). Firmicutes, Bacteroidetes,
Kiritimatiellaeota, and Tenericutes were the dominant phyla
across all groups. Firmicutes and Bacteroidetes were the most
dominant phyla, accounting for 88% of the total population.
Concomitantly, 212 classifiable genera were detected in all
samples. The results of LEfSe analysis at the genus level are
shown in Figures 1D,E. In detail, the rumen bacteria in the
ME group were mainly composed of Lachnoclostridium_10 and
uncultured_bacterium_o_SAR324_cladeMarine_group_B at
the genus level, while uncultured_bacterium_f_F082
and uncultured_bacterium_f_Marinilabiliaceae were
significantly (P < 0.05) more abundant in
the LE group. In addition, eight bacterial taxa
including uncultured_bacterium_f_Lachnospiraceae,
uncultured_bacterium_c_MVP_15,
Lachnospiraceae_NK4A136_group, U29_B03,
uncultured_bacterium_f_vadinBE97, Ruminiclostridium_6,
Prevotella_1, and Ruminococcaceae_UCG_013 were
overrepresented (P < 0.05) in the HE group at the genus level.

PICRUSt2 was used to investigate the possible microbial
metabolic pathways. As shown in Figure 2A, the mean
proportion of starch and sucrose metabolism was the
highest in the rumen microbial metabolism pathway, and
was significantly higher in the HE group than in the LE group
(P = 0.026). Meanwhile, carbohydrate metabolism was also
higher (P = 0.024) in the HE group than in the LE group
based on the level 3. The proportion of metabolic pathways
at level 3 between the LE and ME groups had no difference
(P > 0.05), while the abundance of significantly different
metabolic pathways between the ME and HE groups were lower
than 0.25%, therefore, the results of these two comparisons did
not present.

The Relationship Between the SF, IMF of
Longissimus Thoracis, and the Relative
Abundance of Differential Bacteria,
Phenotype of Fatty Acid Profile
To illustrate the relationship between the significant taxa and
ruminal fermentation parameters that were published previously
(the data are presented in Supplementary Table S4) (24), and
an RDA ranking map was generated (Figure 2B). In detail,
the bacterial genera uncultured_bacterium_f_Marinilabiliaceae,
Lachnoclostridium_10, and uncultured_bacterium_f_F082
exhibited a positive relationship with the pH value,
and showed a negative relationship with the total
VFA, acetate, propionate, butyrate, and valerate.
The relative abundance of Prevotella_1, U29_B03,
Ruminiclostridium_6, uncultured_bacterium_f_Lachnospiraceae,
uncultured_bacterium_c_MVP_15, Ruminococcaceae_UCG_013,
uncultured_bacterium_f_vadinBE97, and Lachnospiraceae_
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TABLE 1 | Effects of dietary energy levels on the nutritional components in the longissimus thoracis muscle of yak.

Items Groups SEM P-value

LE ME HE

Water content (%) 68.94b 70.30ab 72.04a 0.518 0.035

Protein content (%) 23.60 23.78 24.42 0.393 0.702

IMF content (%) 0.56c 0.92b 1.34a 0.102 0.001

Crude ash content (%) 1.66 1.72 1.84 0.038 0.135

LE, low energy level; ME, medium energy level; HE, high energy level; SEM, standard error of the mean; IMF, Intramuscular fat.
a,b,cValues in the same row with different superscript letters differ significantly (P < 0.05).

TABLE 2 | Effect of dietary energy levels on the quality in the longissimus thoracis muscle of yak.

Items Groups SEM P-value

LE ME HE

pH1h 6.56 6.62 6.65 0.020 0.145

Ph24h 5.60 5.63 5.57 0.024 0.624

Cooking loss (%) 36.69a 32.42ab 28.91b 1.212 0.017

Driage (%) 29.49a 25.89ab 23.05b 1.069 0.033

Shear force (N/cm2) 74.50a 66.89b 55.96c 0.233 <0.001

CIE L* 34.22 34.88 35.29 0.250 0.222

CIE a* 18.18 18.32 18.82 0.138 0.143

CIE b* 8.16 7.88 8.24 0.087 0.226

CIE H* 24.18 23.30 23.65 0.274 0.445

CIE C* 19.94 19.94 20.54 0.132 0.094

LE, low energy level; ME, medium energy level; HE, high energy level. SEM, standard error of the mean.
a,b,cValues in the same row with different superscript letters differ significantly (P < 0.05).

NK4A136_group was positively associated with the total VFA,
acetate, propionate, butyrate, and valerate.

The correlation results revealed 20 significant Spearman’s
correlations between differential bacteria and meat quality
traits (SF and IMF) as well as fatty acid profile (SFA, MUFA,
and PUFA) (R > 0.60, P < 0.05, Figure 2C). In detail, the
SF had a negative relationship with Ruminiclostridium_6,
U29_B03, uncultured_bacterium_f_vadinBE97, uncultured_
bacterium_f_Lachnospiraceae, SFA, and PUFA, and a
positive relationship with uncultured_bacterium_f_F082.
The IMF exhibited a significantly positive correlation
with uncultured_bacterium_f_Lachnospiraceae, uncultured_
bacterium_f_vadinBE97, and PUFA. In addition,
the SFA was positively correlated with
Ruminiclostridium_6, U29_B03, Ruminococcaceae_UCG_013,
uncultured_bacterium_f_Lachnospiraceae, IMF, MUFA,
and PUFA. The PUFA had a positive relationship with
uncultured_bacterium_f_Lachnospiraceae and uncultured_
bacterium_f_vadinBE97.

DISCUSSION

In the current study, the effects of dietary energy level on
the phenotypic parameters related to the meat quality in the

LT muscle of yak were focused. Meanwhile, the relationships
between meat quality and ruminal bacteria were illustrated,
and the contribution of bacteria on fatty acid synthesis in the
LT muscle through generating substrates (mainly volatile fatty
acids) was assessed. These findings gained a comprehensive
understanding of the regulatorymechanisms of the improvement
of the meat quality induced by different dietary energy levels.

It is necessary to have a detailed understanding of the
physical and chemical properties (e.g., pH, color), as well as the
storage quality of meat to determine the quality of meat after
slaughtering (34). The pH value of meat is an essential factor
that influences the color, tenderness, cooking loss, shelf-life, and
other physicochemical properties (35). After slaughtering, the
breakdown of glycogen in themuscles results in the accumulation
of a large amount of lactic acid which led to a pH reduction of
the meat to an ultimate pH value at 24 h (36). Previous studies
demonstrated that the optimal range of pH24h for beef cattle is
between 5.4 and 5.6 (37); once the pH24h value is higher than
6.0, the meat tends to be dark, firm, and dry (DFD) (38). In
this experiment, dietary energy levels showed no impact on the
pH24h of the LT muscle and the pH values of yak meat in each
group were within or near to the aforementioned optimal range,
suggesting that high-quality yak meat in each group was earned.
Cooking loss and water holding capacity are important factors in
evaluating the meat quality, which affect the juiciness of cooked
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TABLE 3 | Effect of dietary energy levels on the amino acids content in the longissimus thoracis muscle of yak.

Items Groups SEM P-value

LE ME HE

EAA (mg/g) Threonine 10.24 10.10 9.87 0.114 0.434

Valine 11.77 11.56 11.08 0.155 0.185

Methionine 0.11a 0.09b 0.09b 0.003 0.006

Isoleucine 10.52 10.42 9.93 0.146 0.221

Leucine 19.24 18.83 18.33 0.231 0.292

Phenylalanine 9.96 9.50 9.59 0.145 0.426

Lysine 21.52 21.09 20.47 0.258 0.263

NEAA (mg/g) Aspartic acid 24.94a 22.90b 23.05b 0.327 0.006

Glutamic acid 36.58b 38.82a 35.03b 0.534 0.004

Cystine 8.01 7.15 7.73 0.161 0.074

Serine 9.60 9.28 9.19 0.104 0.243

Glycine 10.19a 9.14b 8.90b 0.221 0.023

Histidine 8.59ab 9.12a 8.34b 0.130 0.030

Arginine 13.96 13.92 13.28 0.162 0.154

Alanine 13.27 12.86 12.68 0.140 0.220

Proline 8.21 7.81 7.72 0.110 0.159

Tyrosine 8.11 7.78 7.58 0.105 0.114

LE, low energy level; ME, medium energy level; HE, high energy level; EAA, essential amino acids; NEAA, non-essential amino acids; SEM, standard error of the mean.
a,b,cValues in the same row with different superscript letters differ significantly (P < 0.05).

meat (39). In the present study, the significant decreasing trend of
cooking loss and water loss were observed with increasing dietary
energy levels, which is consistent with the study of Kang et al.
(6). Shear force is an important indicator of meat tenderness.
The tenderness of the meat is a major characteristic that is highly
related to the overall acceptability of consumers of yak meat. It
is highly variable and can be affected by many factors, including
muscle fiber temperament, connective tissue composition, and
protease configuration modulations within the muscle mass (40).
In this study, shear forces were decreased with increasing dietary
energy levels. It falls outside the optimum range proposed by
Miller et al. (41). The discrepancy in the results might be due
to the difference in the diet, age, and breed (42). Zeng et al.
(43) have demonstrated that a drastic reduction in shear force
due to elevated dietary energy levels could be attributed to an
enhanced IMF content. IMF affects the modification of muscle
fiber condition, the composition, and content of connective tissue
in the muscle, and the configuration of protease in muscle,
which can affect muscle tenderness (44). Our results showed
that high-energy diets resulted in an elevated IMF content,
which can reduce collagen cross-linking and contributes to the
tenderness of the meat (45). Liu (46) and Hwang et al. (47)
reported that the IMF content has a positive correlation with
meat tenderness and juiciness. Furthermore, in this trial, the
water content and IMF content in the LTmuscle elevated with the
increase in the dietary energy level. Therefore, we speculated that
the difference in yak meat tenderness receiving different dietary
energy levels could be explained through the IMF variations
and fatty acid composition. It has been reported that the
rumen bacteria could indirectly affect the metabolite deposits

within the muscle-mass due to their interplays with the host
organism (48).

Amino acids are the basic components of animal protein,
and the changes in the amino acid composition directly affect
the nutritional value of the meat (49). Since EAA could not be
synthesized in vivo, the difference in the methionine content in
the LT muscle for each group might be caused by differences
in the dietary methionine content. The rumen microbiome is
essential for meat generation, with rumen microbial protein
being a major precursor for meat protein (50). The contents
of aspartic acid, glycine, glutamic acid, and histidine might be
affected by the microbial synthesis in the rumen. Streptococcus
bovis, Selenomonas ruminantium, and Prevotella bryantii of
rumen microorganisms are reported to be involved in the de
novo synthesis of amino acids (51). In this study, dietary energy
levels significantly affected the relative abundance of Prevotella.
Generally, the levels of glutamate/glutamine in beef were the
highest, accounting for 16.5% of the total amino acids, followed
by aspartic (52), which is consistent with the results of the present
study. The increased glutamic acid production in the rumen of
ruminants can increase glutamic acid synthesis, and glutamine
can be converted into glucose in vivo (53). Therefore, the increase
of glutamic acid content in the LT muscle of yak fed with a
medium dietary energy level might be due to the contribution
of rumen microorganisms.

In the current study, neither the alpha diversity nor the
relative abundances of the main phyla showed significant
variations among the different dietary treatments. The relative
abundances of the Firmicutes and Bacteroidetes were observed to
be important phyla in the three groups. At the genus level, the
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FIGURE 1 | Effect of dietary energy level on the diversity and structure of ruminal bacteria. (A) Differences in yak ruminal bacterial diversity and richness between the

LE, ME, and HE groups. Box plot showing the alpha diversity of the rumen bacterial communities in yaks given different dietary energy levels. (B) Principal-coordinate

analysis (PCoA) of bacterial communities based on OTUs. (C) Effects of dietary energy levels on the yak rumen bacterial composition at the phylum level. Each bar

and color represent the average relative abundance of each phylum, and the 10 most abundant taxa are shown. (D) Linear Discriminant Analysis Effect Size (LEfSe).

Histogram of the LDA scores for differentially abundant genera among the HE, ME, and LE groups (LDA score ≥ 3). (E) A cladogram showing the differences in the

relative abundance of the taxa at five levels between the HE, ME, and LE groups.

majority of the genera present in all groups were not affected by
the different diets, which is consistent with the results reported
by Bi et al. (54). Interestingly, most of the differential bacteria at
the genus level belonged to the carbohydrate-degrading bacteria.
Rumen microbes degrade carbohydrates into volatile fatty acids
(VFAs) to provide 70–80% of the metabolizable energy (55),

which are the main substrates for the synthesis of milk fat
and body fat (56). Genus Prevotella_1 is a dominant beneficial
bacterial species, which plays a vital role in the degradation of
starch, xylan, protein, peptide, hemicellulose, and pectin (57).
In the present study, the abundance of Prevotella_1 increased
with the level of starch in the diet, which is consistent with a
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FIGURE 2 | Predicted function analysis of ruminal bacteria and correlation analysis between the phenotypic values and ruminal main taxa. (A) Pathways were

predicted by PICRUSt2. The significant microbial metabolic pathways between the HE and LE groups (P-value < 0.05) are shown. (B) Redundancy analysis (RDA) of

the sequencing data of the 16S rRNA gene showing relationships between the differential bacteria and environmental factors (TVFA, acetate, propionate, butyrate,

valerate, and pH). TVFA, Total VFA; Ac, Acetate; Pr, Propionate; Bu, Butyrate; Va, valerate; ub, uncultured_bacterium. (C) Spearman’s correlation network showing

relationships between the relative abundance of differential bacteria at the genus level and the meat quality indices. Only the strong correlations (|r| > 0.60 and

P-value < 0.05) were showed in the correlation networks.

previous study in Holstein-Friesians bulls (58). In the current
study, Prevotella_1 had the highest LDA score in the HE group,
which is mainly involved in the fermentation of starch and
production of propionic acid. U29_B03 is a member of the
phylum Bacteroidetes belonging to the family Rikenellaceae,
and was found to be involved in the degradation of structural
carbohydrates (59). In addition, a previous study has reported
that the relative abundance of Rikenellaceae was elevated in
humans and mice when fed a diet with a high resistant starch
level (60). Similarly, the relative abundance of U29_B03 was
found to be significantly higher in the HE group than in the
ME and LE groups, which indicates that the genus U29_B03
might be involved in carbohydrate degradation, especially starch

metabolism. The genus uncultured_bacterium_f_vadinBE97,
which belongs to efficient sugar-fermenting families (vadinBE97)
(61), was significantly higher in the HE group than in
the other groups. The bacterial families Lachnospiraceae
and Ruminococcaceae are known to produce butyrate by
degrading complex polysaccharides, including starch (62), which
supported our results of a dramatic increase in the abundance
of four genera (uncultured_bacterium_f_Lachnospiraceae,
Lachnospiraceae_NK4A136_group, Lachnospiraceae_10,
Ruminiclostridium_6, and Ruminococcaceae_UCG_013) which
belonged to the families Lachnospiraceae and Ruminococcaceae.
The uncultured_bacterium_c_MVP_15 is rare in the rumen and
its function needs to be studied further; however, its bacterial
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phylum (Spirochaetes) has shown that it is primarily responsible
for the degradation of starch in a starch-fed reactor (63). In
the current study, we observed a decreased abundance of
uncultured_bacterium_f_F082 with increasing dietary energy
levels, which was consistent with the results of Zened et al.
(11) that uncultured or unclassified bacteria in the rumen were
negatively affected by starch addition.

Microbial potential function analysis with PICRUSt2
indicated that the most prominent functional categories were
starch and sucrose metabolism and carbohydrate metabolism
at the KEGG level 3 metabolic category. As we expected, the
proportion of starchmetabolismwas higher in theHE group than
in the LE group when the dietary energy levels increased (corn as
the main energy source and the starch content increased with the
dietary energy level). Actually, rumen microbial degradation of
dietary starch elevated the propionic acid concentration with the
increase of starch content. Propionic acid is mainly used in the
gluconeogenesis of the liver to synthesize glucose. Propionic acid
and glucose are substrates of long-chain fatty acid esterification
and fat formation in IMF (64). In the present study, the IMF was
found to be significantly positively corrected with SFA and PUFA,
probably the high degree of biohydrogenation of unsaturated
fatty acids in the rumen and the contribution of SFA to
intramuscular fat deposition was greater than that of unsaturated
fatty acids (48). Genus uncultured_bacterium_f _vadinBE97
and uncultured_bacterium_f_Lachnospiraceae had a positive
influence on the content of IMF, indicating these bacteria
underwent a rapid proliferation with the increase in substrates
to degrade dietary carbohydrate and provide VFAs to IMF
deposition. Ruminiclostridium_6 and U29-B03 had a positive
influence on the SFA and VFAs had a negative influence on
the SF, suggesting that the above-mentioned bacteria may
patriciate might participate in carbohydrate metabolism to
produce VFAs, thereby facilitating IMF deposition to promote
tenderness in the LT muscle. Ruminococcaceae_UCG-013
genus is famous for its ability to degrade cellulose and
hemicellulose in the rumen and produce butyric acid (65).
However, in this study, Ruminococcaceae_UCG-013 had a strong
positive correlation with butyric acid and SFA, suggesting that
Ruminococcaceae_UCG-013 was tolerant to a high starch diet. In
summary, the aforementioned bacteria mainly degraded dietary
starch into VFAs that provided substrates for fatty acid synthesis
and, finally, accelerated the fat deposition and enhanced the meat
quality in the LT muscle.

It must be taken into account that the exploration of rumen
microbial degradation products might be associated with the
observed phenotypic differences in the LT muscle. However, the
underlying mechanism is still not well-known and more research
is needed. Another limitation of this study is that the sample
size was too small because yaks are important and expensive for
herders, so there is no way to expand the sample size.

CONCLUSIONS

Feeding different energy level diets improved fat deposition,
water holding capacity, and tenderness and changed the content
of functional amino acids in the LT muscle of yak. Moreover, the
carbohydrate metabolism-related bacteria, especially amylolytic

bacteria, were positively correlated with the content of IMF but
had a negative impact on SF. The results indicated that high
dietary energy levels could improve the meat quality in the LT
muscle of yak through increasing the abundance of amylolytic
bacteria and their fermentation products to provide substrates for
fatty acid synthesis.
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Hypoxia exposure can cause a series of physiological and biochemical reactions in the

organism and cells. Our previous studies found the milk fat rate increased significantly

in hypoxic dairy cows, however, its specific metabolic mechanism is unclear. In this

experiment, we explored and verified the mechanism of hypoxia adaptation based on

the apparent and omics results of animal experiments and in vitro cell model. The results

revealed that hypoxia exposure was associated with the elevation of AGPAT2-mediated

glycerophospholipid metabolism. These intracellular metabolic disorders consequently

led to the lipid disorders associated with apoptosis. Our findings update the existing

understanding of increased adaptability of dairy cows exposure to hypoxia at the

metabolic level.

Keywords: metabonomics, lipidomics, hypoxia, lipid metabolism, dairy cow

INTRODUCTION

Mammary gland has the special function of secreting milk and is mainly made up of mammary
epithelial cells (MECs). A lot of components in milk can only be synthesized by MECs. The
number and activity of mammary epithelial cells reflect the lactation ability of mammary gland
(1, 2). Therefore, mammary epithelial cells play an important role in mammary development and
lactation. In high-yield dairy cows, a large number of milk production and secretion will cause
spikes in energy demand of mammary cells. Thus, its aerobic metabolism activity is significantly
enhanced by regulating lipid metabolism (3), leading to hypoxia (determined by arteriomammary
venous O2 and CO2 level) in the mammary internal environment (4).

Hypoxia is a pathological process involved in a variety of physiological and biochemical changes
(5). Hypoxia can cause cell damage, including cell apoptosis, oxidative stress, mitochondrial
dysfunction and abnormal lipid metabolism (6). Marques et al. (7) found that increasing lipid
storage and inhibiting lipid catabolism could adapt to hypoxia stress. Under hypoxia, lipid storage
is mediated by hypoxia inducible factor 1α (HIF1α), and lipid levels are increased by regulating
the expression of peroxidase in lipid metabolism (8). The inhibition of hypoxic lipolysis is mainly
achieved by reducing the expression of PPAR γ 2 (7) and inhibiting fatty acid β-oxidation (9). As
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one of the main substances in milk, milk fat is mainly composed
of triglycerides (more than 95%) synthesized from fatty acids and
a small amount of other lipids (10, 11). At present, the research
on the regulation mechanism of milk fat synthesis mostly focuses
on the effects of genetics (12), environment (13), hormone levels
(14), and nutritional status (15). However, the mechanism of
milk fat synthesis of dairy cow in hypoxic condition has not
been elucidated.

Metabolomics based on chromatography and mass
spectrometry is a research method to search for the relative
relationship between small molecule metabolites and
physiological and pathological changes (16). At present,
studies on metabolic changes under environmental stress have
been carried out in many animals (17, 18). Lipidomics is
becoming an important research field based on the development
of mass spectrometry and bioinformatics (19). Although some
researchers have used these methods to explore the lipid response
of dairy cows under biological stress (20), and metabonomics
and lipidomics can be used as powerful tools to identify new
signaling pathways in hypoxic stress (21, 22), our understanding
of lipid responses to hypoxic stressor is still limited. In our
previous studies, the results showed that the level of milk
fat increased under hypoxia. Therefore, we speculated that
the increase of milk fat level was caused by hypoxia through
regulating lipid metabolism. In order to test this hypothesis,
we first detected the serum biochemical indicators and milk
quality, and then constructed a hypoxia stress model of bovine
mammary epithelial cells (BMECs) in vitro, and finally carried
out metabonomics and lipidomics analysis. We found that
acylglycerol-3-phosphate acyltransferase 2 (AGPAT2)-mediated
glycerophospholipid metabolism played an important role in
the process of hypoxia induced increase in lipid synthesis. This
will help us to understand the mechanism of hypoxia adaptation
more comprehensively.

MATERIALS AND METHODS

The present study was carried out based on the Animal Care
and Use Guidelines of the Animal Care Committee, Institute
of Subtropical Agriculture, Chinese Academy of Sciences,
Changsha, China, with protocol ISA-201710.

Animals and Experimental Design
Twelve multiparous Holstein dairy cows (600 ± 35 kg) were
chosen and randomly divided into two groups in Shenyang (GH)
(average altitude 50m). One group (six cattle in each group) was
selected and raised in Nyingchi (CH) in autumn (average altitude
3,000m) for 30 days. Another group was raised in Shenyang at
the same time for 30 days. The experimental animals were in
good physiological condition, and they were not pregnant cows,
but were in early lactation (the third month after delivery). The
animals were raised in a single column to reduce the stress caused
by excessive exercise.

The TMR basal diet (Table 1) is prepared according to the
Feeding Standards of Dairy Cattle in China, which can meet
the energy, protein, minerals and vitamins required for basic

TABLE 1 | Ingredient composition and nutrition levels of the diet (% of DM).

Items Content (%)

Diet composition

Chinese leymus 37.5

Corn silage 22.5

Corn 15.2

Wheat bran 5.3

Soybean meal 9.2

DDGS 8.4

Calcium hydrophosphate 1.4

Premixa 0.5

Nutrient composition

CP 13.1

NDF 39.6

Ca 0.6

P 0.4

NELb, MJ/kg DM 5.4

aOne kilogram of premix contained mixed vitamins, 800,000 IU; Fe, 1,500mg; Cu,

1,000mg; Zn, 11,000mg; Mn, 3,500mg; Se, 80mg; I, 200mg; and Co, 50 mg.
bNEL was calculated. DDGS, distillers dried grains with soluble; CP, crude protein; DNF,

neutral detergent fiber; NEL, Net energy of Lactation.

metabolism of dairy cows (23). All dairy cows were freely
supplied the same TMR diet.

Sample Preparation
On the last day morning, all experimental animals were
punctured through the caudal vein and collected blood into K2
EDTA anticoagulant vacuum tube before the feeding. Plasma was
separated from blood samples by centrifugation at 3,000 g for
10min, and then collected and stored at −80◦C for subsequent
metabolomic analysis. Serum samples were collected from blood
at 4,000 rpm for 5min and stored at −40◦C for subsequent
detection of biochemical indicators. Milk samples (10mL) were
collected on the morning and evening of the last day of this
experiment. The collected milk samples were stored in a −20◦C
freezer for milk fat level detection.

Analysis of the Serum Biochemical
Indicators and Milk Quality
The levels of triglyceride, total cholesterol and high-density
lipoprotein were measured by Enzyme-Linked Immunosorbent
Assay (ELISA) Kits (Sekisui Diagnostic Ltd., Stamford, CT,
USA) through an automatic blood analyzer (Hitachi 7170A,
Japan). Milk fat was detected by Basic Unit MilkoScan FT 76150
(FOSS, Denmark).

Cell Culture and Treatment
BMECs were isolated and cultured based on the methods
described previously (24). In brief, Bard Magnum biopsy gun
and biopsy needle were selected as the tools for udder tissue
collection. Fifty to one hundred mg of tissue from 2-year-old
late-lactation dairy cows were collected from the midpoint of
the upper quarter of the posterior area of the udder 3 h after
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milking by No. 12 biopsy needle. The samples was harvested and
transferred to the lab immediately. The samples were washed
3 times with DPBS (D8662, sigma, USA), and then transferred
to clean cell culture dishes with tweezers. The tissue was cut
into 1mm3 pieces with surgical tweezers. The tissue blocks were
evenly daubed on the bottom of the cell culture dish and placed
upside down in the carbon dioxide cell incubator for 2–4 h. Then
appropriate complete medium [including DMEM/F12 (12400-
024; Gibco, USA), 10% fetal bovine serum (FBS; Sigma-Aldrich,
St. Louis, MO), penicillin/streptomycin (Baoman Biotechnology,
Shanghai, China), and 4µg/ml prolactin (Sigma-Aldrich)] was
added for culture. When the epithelial cells reached about 80%
of the bottom of the culture dish, the cells were subcultured with
0.25% trypsin. The cells were purified by differential adhesion
and then cryopreserved (25). Purified cells were counted and
inoculated in culture dishes. When the cells reached 70–80%
confluence, they were treated with hypoxia. The medium was
changed every 2–3 d. BMECs were exposed to hypoxia (1% O2)
for 72 h. Cells cultured in an incubator with normoxia (21% O2)
were served as controls.

siRNA Transfection
AGPAT2 siRNA library for various parts of AGPAT2
mRNA and negative control siRNA (NC) were designed
and provided by Ribo Bio (Guangzhou, China). The siRNA
sequence of AGPAT2 applied was shown as following:

siRNA-1: 5
′

-CTACCGTTGTTATAGGTG-3
′

(control),
siRNA-2: 5

′

-GGAGAATCTCAAAGTGTGG-3
′

, siRNA-3:
5
′

-TGTCAAGACGAAGCTCTTC-3
′

. BMECs were transfected
with 2mg of the AGPAT2 siRNA or NC siRNA in 10mL X-
tremeGENE siRNA Transfection Reagent (03366236001, Roche).
Twenty-four hours after transfection, the cells were collected and
used for subsequent index detection.

Determination of Triglyceride (TAG)
Content in Cells
BMECs were pretreated with hypoxia for 72 h. TAG levels were
determined as described previously (26). Briefly, the treated
cells were firstly digested by trypsin and collected, and then
the triglyceride test solution was extracted according to the
instructions of the triglyceride detection kit (Applygen, Beijing,
China). Finally, the microplate reader (BIORAD, CA, USA)
was adjusted to the appropriate wavelength and the triglyceride
content was calculated according to the OD value.

Oil Red O (ORO) Staining
BMECs were pretreated with hypoxia for 72 h. The formation of
lipid droplets was observed according to the method previously
described (27). Briefly, the treated BMECs cells were fixed with
10% neutral formaldehyde fixing solution (Sigma-Aldrich, St.
Louis, MO, USA), stained with ORO (Sigma-Aldrich), then
rinsed and decolorized with 75% alcohol/60% isopropanol, and
finally re-stained with light hematoxylin (Sigma-Aldrich) and
sealed with glycerol gelatin for observation and photography
under the microscope (Olympus, Tokyo, Japan).

Fluoroboron Dipyrrole (BODIPY) Staining
After hypoxia treatment, the cells were collected and fixed with
4% formaldehyde (Sigma-Aldrich), then rinsed using phosphate
buffer, stained by BODIPY493/503 (Thermo Fisher Scientific,
MA, USA), and then covered with tablet sealant containing
DAPI. Finally, confocal laser microscope was used to take photos
and observe the distribution of lipid droplets.

Real-Time PCR
After treatment of hypoxia for 72 h, the level of genes related
to milk fat synthesis were determined as described previously
(28). In brief, 1 × 106∼1 × 107 cells were taken from each
sample, and the cells were washed with PBS. PBS was removed
and 1mL of RNA extraction reagent Trizol (Invitrogen) was
added. RNA was extracted after lysis. Genomic DNA was cleared
by DNaseI (Thermo Scientific), and the quality and quantity
of RNA obtained were evaluated by Nano Drop 2000 (Thermo
Scientific). Primers were designed using Primer 5.0 software,
and PCR Primer sequences were shown in Table 2. The PCR
amplification conditions were as follows: pre-denaturation at
95◦C for 30 s; after denaturation at 95◦C for 5 s, each gene was
annealed at the optimum annealing temperature for 20 s and
72◦C for 20 s, a total of 40 cycles were carried out. After PCR
reaction, the melting curve was drawn to judge the correctness of
the amplified products. The temperature raised from 60 to 95◦C
at the rate of 0.5◦C/5 s. Using β-actin as internal reference, the CT
values of each sample were homogenized. Under the condition
that the amplification efficiency of each target gene and β-actin
was basically the same, the expression levels of related genes were
compared and analyzed by 2−11CT using the gene expression
level of control group as the reference (29).

Western Blotting Analysis
After treatment of hypoxia for 72 h, the protein isolation and
western blotting of BMECs were conducted based on previous
methods (30, 31). Briefly, in 10% SDS-polyacrylamide gels,
electrophoresis separation was performed for each sample and
pre-stained standard (Bio-RAD Laboratories, Berkeley, CA,
USA). The polyvinylidene fluoride (PVDF) membranes (Bio-
RAD Laboratory) containing isolates were firstly incubated with
primary antibodies (see Table 3) at 4◦C overnight, washed and
then incubated in a blocking solution with secondary antibody
(1:6,000, Proteintech) at 25◦C for 2 h. The images were taken and
analyzed by a Alpha Imager 2200 digital imaging system (Digital
Imaging System, Kirchheim, Germany).

Metabolomics and Lipidomics Analysis
One hundred microliters of blood samples/BMECs were
collected. Three hundred microliters methanol (including
internal standard) was added to the sample, and protein
precipitation was obtained by vortices. Samples after vortex were
then centrifuged at 12,000 rpm for 15min. Finally, transfer the
supernatant to LC-MS loading bottle for storage at −80◦C for
UHPLC-QEOrbitrap/MS analysis (metabolomics). Cells samples
were homogenized with MTBE and sonicated in ice-water bath
for 5min. Then the sonicated samples were centrifuged at a
rate of 3,000 rpm at 4◦C for 15min. Three hundred microliters
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TABLE 2 | Gene primers.

Gene

Name

GeneBank No. Primer Sequence (5′-3′) Product

Size

(bp)

GCAGCCCCTCAAGCGAACAGT

FASN NM_001012669.1 123

ACCGCCTCCTGCTCTTCCTCACGTAA

CTCTTTGTTTGGTCGTGATTGCTCT

ACACA NM_174224.2 126

CTGGCAAGTTTCACCGCACAC

CCAACAACTCTGCCTTTATGATGC

SCD1 NM_173959.4 155

TGACTGACCACCTGCTTGCC

CCCTGCAAAACACAGACCCA

CD36 NM_001278621.1 178

ATGGTTATAATGCCTTGCTGATGCT

ACCAAGCCTACCACAATCATCG

FABP3 NM_174313.2 170

ACAAGTTTGCCGCCATCCAG

AGCGAGAACATCCCTTTTACCCT

LPL NM_001075120.1 91

GCAATTCTCCAATATCCACCTCCGT

TTCCCAAGAGCTGACCCGAT

PPARG NM_181024.2 185

TCCCCACAGACCCGGCAT

ACAGCCCACAACGCCATCGAG

SREBP1 NM_001113302.1 248

CCTCCACTGCCACAAGCCGACAC

ACTGTTAGCTGCGTTACACC

β-actin NM_173979.3 167

TGCTGTCACCTTCACCGTTC

FASN, fatty acid synthase; ACACA, acetyl-CoA carboxylases alpha; SCD1, stearoyl

coenzyme A1; CD36, Fatty acid synthase subunit beta; FABP3, fatty acid binding protein

3; LPL, lipoproteinlipase; SREBP1, sterol regulatory element binding protein1; PPARG,

peroxisome proliferator-activated receptor gamma.

TABLE 3 | Details of the primary antibodies.

Name No. Host species Dilution Supplier

PPARG ab45036 Rabbit 1:500 Abcam

SREBP1 14088-1-AP Rabbit 1:1,000 Proteintech

β-actin 66009-1-Ig Mouse 1:5,000 Proteintech

PPARG, peroxisome proliferator-activated receptor gamma; SREBP1, sterol regulatory

element binding protein1.

of supernatant was taken and dried. Then, the dried samples
were reconstituted and centrifuged. Appropriate amount of the
recombinant supernatant was put into a new sample bottle for
LC/MS analysis (lipidomics).

LC-MS/MS Analysis for untargeted metabolomics: UHPLC
system (1290, Agilent Technologies) combined Q exactive
(Orbitrap MS, thermo) performed the LC-MS/MS analysis for
this trial. The mobile phase A used in the instrument is 0.1%
formic acid aqueous solution and acts as a positive. Mobile phase

B is acetonitrile, while ammonium acetate aqueous solution acts
as negative. The sample size required for the test is 3 µl. The
characteristic of the mass spectrum is to obtain the MS/MS
spectrum in an information-dependent basis (IDA).

LC-MS/MS Analysis for untargeted lipidomics: the UPLC
system used in this test is unique in that it is equipped with
kinetex C18 column and Exionlc infinity system. Mobile phase
A (positive) is a mixture of water, acetonitrile and ammonium
formate, while mobile phase B (negative) is a mixture of
acetonitrile, isopropyl alcohol and ammonium formate. The
loading quantity is 2µl. Spectra were obtained using a TripleTOF
5600 mass spectrometer.

For data processing of metabonomics, the original data is
converted intomzXML format by proteowizard and processed by
internal program. The program is developed by R and based on
xcms for peak detection, extraction, comparison, and integration.
The MS2 internal database (BiotreeDB) was then used for
metabolite annotation. The cutoff value for comments is set to
0.3. For data processing of lipidomics, the raw data files (.wifff
format) have been converted to mzXML format through the
msConvert program in the Proteowizard. Firstly, the CentWave
algorithm in XCMS was used to detect the peak value of MS1
data, and then the obtained MS/MS spectra were matched with
LipidBlast library to obtain the lipids screened in the experiment.

Statistical Analysis
SPSS software is mainly applied for data analysis. The levels of
triglyceride in cells, relativemRNA expression of genes associated
with milk fat synthesis and protein abundance were analyzed
using one-way ANOVA. The data are shown as the mean± SD.

Q Exactive Orbitrap (Thermo Fisher Scientific, USA) and
Ultra High Performance Liquid Tandem Chromatography
Quadrupole Time of Flight Mass Spectrometry (UHPLC-
QTOFMS, AB Sciex, USA) were applied to analyze the
data of metabolomics and lipidomics. Principal component
analysis is conducted on the normalized original data to
observe the reliability of the data. Orthogonal partial least
squares discriminant analysis (OPLS-DA) was used to filter out
the non-conforming metabolites. Univariate statistical analysis
(UVA) was used to screen the differential metabolites [P
< 0.05, and Variable Importance in the Projection (VIP)
> 1] and make the volcanic map. KEGG, PubChem and
other authoritative metabolite databases were used to analyze
the metabolic pathways of differential metabolites. Self-built
database from Shanghai Biotree biotech CO., Ltd. was used to
lipidomics analysis.

RESULTS

Serum Lipid Metabolism Related Indexes
and Milk Fat Level
As shown in Figure 1, the level of serum triglycerides and high-
density lipoprotein increased (P< 0.05) in hypoxia-stressed dairy
cows compared with hypoxia-free dairy cows. In addition, the
dairy cows in hypoxia group had higher (P < 0.05) milk fat level
than that of the control group.
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FIGURE 1 | Lipid metabolic changes of altered by hypoxia exposure in milk and blood of dairy cows. (A) Changes of milk fat and protein. “GH and CH” represent

control, hypoxia group, respectively; (B) Changes of serum biochemical indexes. CHO, Cholesterol; TAG, triglycerides; HDL, high-density lipoprotein. n = 6, *p < 0.05.

Plasma Metabolomics Analysis of Hypoxic
Dairy Cows
As shown in Figure 2, we could observe the metabolic changes
induced by hypoxia exposure in plasma of dairy cows. In positive
ionization mode, 4,083 metabolic characteristics of plasma were
extracted to establish PLS-DAmodel (Figure 2A). Goodness of fit
(R2Y) and predictive power (Q2) are often used to verify PLS-DA
model. The R2Y and Q2 values of the PLS-DA model are both
>0.9, which indicates that the PLS-DA model has good fitting
and strong prediction ability. In combination with the results of
the volcanic plots (Figure 2B), we found that hypoxia exposure
interfered with plasma metabolism in dairy cows. Through
MS2 spectral matching, 96 potential biomarkers were identified
(Supplementary Table 1; Supplementary Material) in plasma,
including amino acids, peptides, nucleosides, nucleotides, and
phospholipids. In addition, metaboanalyst (4.0) based on KEGG
database was used to analyze the most relevant metabolic
pathways of hypoxia exposure changes (Figure 2C). From the
results, the up-regulated pathways were arginine and proline
metabolism, glycine, serine and threonine metabolism, and
glycerophospholipid metabolism, while the down regulated
pathways were fatty acid metabolism (Figure 2C), which were
involved in metabolic disturbance.

Hypoxia Contributes to Lipid Synthesis in
BMECs
The results of lipid synthesis induced by hypoxia are shown in
Figure 3. The results of ORO and BODIPY staining indicated
that hypoxia could promote the formation of lipid droplets in
BMECs (Figures 3A,B). The level of TAG in hypoxia group
was significantly higher (P < 0.05) than that of control group

(Figure 3C). In addition, compared with the control group,
the mRNA expressions of ACACA, FABP3, LPL, PPARG, and
SREBP1 increased significantly (P < 0.05), while the levels
of CD36, FASN and SCD1 decreased (P < 0.05) significantly
(Figure 3D). The protein abundance of PPARG and SREBP1, the
key protein of hypoxia cell lipid synthesis, was also increased
(P < 0.05) significantly (Figure 3D).

Cell Metabolomics Analysis
As shown in Figure 4, we could observe the metabolic changes
induced by hypoxia exposure in BMECs. In positive ionization
mode, 3,361 metabolic characteristics of BMECs were extracted
to establish PLS-DA model (Figure 4A). The R2Y and Q2

values of the PLS-DA models are both >0.9, which shows
that hypoxia exposure can interfere with BMECs metabolism.
The results in volcanic plots (Figure 4B) also showed the
same condition as shown in Figure 4A. Through MS2 spectral
matching, 302 potential biomarkers such as amino acids,
peptides, nucleosides, nucleotides, and phospholipids were
identified (Supplementary Table 2; Supplementary Material).
In addition, the up-regulated pathways including arginine
and proline metabolism, glycine, serine and threonine
metabolism, and glycerophospholipid metabolism and
down-regulated pathways such as fatty acid metabolism
(Figure 4C) were screened out by metaboanalyst (4.0) based on
KEGG database.

Cell Lipidomics Analysis
In the current research, non-targeted HPLC-QTOF-MS
was used to investigate the differential expression of lipid
metabolites in hypoxic and normoxic BMECs with high
sensitivity, specificity and peak resolution (Figure 5).
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FIGURE 2 | Metabolic changes altered by hypoxia exposure in plasma of dairy cows. (A) PLS-DA score plot of the two groups in plasma of dairy cows using the

identified metabolites in positive ionization mode. “GH and CH” represent control, hypoxia group, respectively; (B) Volcanic plots of the two groups in plasma of dairy

cows using the identified metabolites in positive ionization mode; (C) Pathway analysis of the identified metabolites in plasma; (D) The fold changes of the significantly

changed metabolites of plasma in metabolic pathways in hypoxia exposure group relative to the control group. Arg, Arginine; Pro, proline; Gly, Glycine; Ser, serine; Thr,

threonine; Val, Valine; Leu, leucine; Ile, isoleucine; FFA, Free Fatty acid. n = 6, *p < 0.05, **p < 0.01.

After signal standardization, lipids identified from positive
and negative ionization modes were introduced into
SIMCA-P to establish the PLSDA model (Figure 5A;
Supplementary Figure 1; Supplementary Material). The
R2Y and Q2 values of the two PLS-DA models were both
>0.8, which indicated that the model had good fitting
and strong prediction ability. We have demonstrated
that the differential regulation of glycerophospholipid
metabolites (Figures 5B,C) had a strong correlation with
the diagnosis and prognosis of hypoxia, and a total of 541
lipids (Supplementary Figure 2; Supplementary Material)
were screened, in which 27 phosphatidylethanolamines (PEs),
9 phosphatidylserines (PSs), 31 phosphatidylcholine (PCs), and
3 phosphatidylglycerols (PGs) were up-regulated. Oppositely,
the levels of 3 PCs decreased (Figure 5D). The details of the
differential lipids were shown in Supplementary Table 3;
Supplementary Material.

Cell Apoptosis Detection
The changes of cell apoptosis after hypoxia exposure are shown
in Figure 6. Compared with normoxic BMECs, the apoptosis rate
of hypoxic BMECs increased (P < 0.05) significantly.

Verification the Role of
Glycerophospholipids Metabolism
The effects of glycerophospholipids metabolism on the lipid
synthesis induced by hypoxia in BMECs are shown in Figure 7.
The results of ORO and BODIPY staining showed significantly
reduced (P < 0.05) lipid droplet formation in shAGPAT2 group
compared with that of hypoxia group, while no significant
difference (P > 0.05) was shown between control and shAGPAT2
group (Figures 7A,B). The level of TAG in shAGPAT2 group was
significantly decreased (P < 0.05) than that in hypoxia group,
while no significant difference (P > 0.05) was found between
control and shAGPAT2 group (Figure 7C).
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FIGURE 3 | Lipid synthesis by hypoxia exposure in BMECs. (A) ORO staining of BMECs under hypoxia. NX, normoxia; HX, hyoxia; (B) BODIPY staining of BMECs

under hypoxia; (C) Level of TAG in BMECs under hypoxia; (D) Expression of genes and proteins related to lipid synthesis under hypoxia. n = 3, *p < 0.05, **p < 0.01.

FASN, fatty acid synthase; ACACA, acetyl-CoA carboxylases alpha; SCD1, stearoyl coenzyme A1; CD36, Fatty acid synthase subunit beta; FABP3, fatty acid binding

protein 3; LPL, lipoproteinlipase; SREBP1, sterol regulatory element binding protein1; PPARG, peroxisome proliferator-activated receptor gamma.

DISCUSSION

In our previous study on the adaptive mechanism of Holstein

dairy cows to hypoxia, we found that the milk fat rate increased

obviously. At present, the research on its mechanism is not

clear, so we intend to explore it in this paper. The most striking

finding of our trial was that milk fat rate levels increased
significantly in hypoxia condition. Interestingly, we measured
several biochemical indexes related to lipid metabolism, such
as cholesterol, high density lipoprotein, ApoA1, and ApoB
(32), and found that hypoxia could affect the changes of these
indexes in varying degrees, indicating that hypoxia promotes

the accumulation of serum lipids, which was consistent with the
previous description that TGmobilization and lipid peroxidation
could be increased by hypoxia exposure (33).

In this study, a non-target metabolomics approach
was used to study the metabolic disorders and adaptive
mechanisms associated with hypoxia exposure in dairy
cows. The results of metabolomics of plasma showed that
glycerophospholipids metabolism was significantly up-regulated
(34). As an inflammatory mediator, LysoPC regulated the
proliferation and apoptosis of endothelial cells (35). In
hypoxic dairy cows, the body adapted to hypoxic stress by
regulating inflammation (32), which explained why the level
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FIGURE 4 | Metabolic changes altered by hypoxia exposure in BMECs of dairy cows. (A) Two groups of PLS-DA scores were performed on BMECs using the

identified metabolites under positive ionization mode. “NX” and “HX” represent normoxia and hypoxia groups, respectively; (B) Volcanic plots of the two groups in

BMECs using identified metabolites under positive ionization modes; (C) Pathway analysis of identified metabolites in BMECs; (D) Fold changes in metabolites

significantly altered in the metabolic pathway of BMECs in the HX group compared to the NX group. Arg, Arginine; Pro, proline; Gly, Glycine; Ser, serine; Thr, threonine;

Val, Valine; Leu, leucine; Ile, isoleucine; FFA, Fatty acid. n = 6, *p < 0.05, **p < 0.01.

of lysophosphatidic acid (LPA) increased significantly in
this experiment.

It was found that the level of free fatty acids (FFA) in plasma
was down regulated. Former studies indicate that the level of l-
palmitoylcarnitine in plasma can be used as a marker of body FA
metabolism. In the present work, we found that the level of l-
palmitoylcarnitine was down regulated in plasma metabolomics,
which may be due to hypoxia regulating HMG CoA reductase
activity to up regulate FA metabolism in hypoxic cows (36).

Phenotypic and metabolomic results of plasma indicate
that glycerophospholipid metabolism contributes to hypoxia
adaptation. To further investigate whether glycerophospholipid
metabolism play an equally important role in mammary
epithelial cells, we used metabolomics and lipidomics to
verify this.

The results of RT-PCR indicated that hypoxia increased
significantly the level of ACACA, FABP3, LPL, PPARG, and

SREBP1, which may be due to the up regulation of genes
related to FASN and SREBP1 under hypoxia stimulation. SREBP1
regulates FASN, SCD1, and intracellular FABP3 (37, 38). In
addition, LPL gene was the key to the uptake and secretion
of long-chain fatty acids in milk, and its increased mRNA
expression could promote the uptake and transport of long-
chain fatty acids, thus promoting milk fat synthesis (39).
However, the mRNA levels of CD36 and FASN were significantly
decreased, which might be due to that milk fat synthesis was
not through the regulation of these genes (40, 41). The results
from western blotting indicated that the protein expression of
SREBP1 and PPARG increased significantly by hypoxia exposure,
which might due to that SREBP1 and PPARG genes were two
important factors in regulating mammary milk fat synthesis
(42). When migrated from endoplasmic reticulum to Golgi,
SREBP1 precursor was hydrolyzed by protease, and then mature
SREBP1 with transcriptional activity was released into nucleus
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FIGURE 5 | Lipidomic changes altered by hypoixa exposure in BMECs. (A) PLS-DA score plot of the two groups of BMECs using the differential metabolites under

positive ionization mode. “NX and HX” represent normoxia and hypoxia group, respectively; (B) Pathway analysis of the differential metabolites; (C) KEGG enrichment

analysis of diffential metabolites; (D) Fold changes of the significantly changed metabolites in glycerophospholipid metabolic pathways in HX group relative to NX

group. n = 6, *p < 0.05.

FIGURE 6 | Changes of cell apoptosis after hypoxia exposure (n = 3). Apoptosis rate under hypoxia detected by flow cytometry, “HX and NX” represent hypoxia,

normoxia group; The data are expressed as mean ± SD. Compared with the control, *p < 0.05 show that the difference is statistically significant.
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FIGURE 7 | Effect of silencing of AGPAT2 gene on lipid synthesis in BMECs. (A) ORO staining of BMECs under silencing of AGPAT2 gene. NX, normoxia; HX,

hypoxia; (B) BODIPY staining of BMECs under silencing of AGPAT2 gene; (C) Level of TAG in BMECs under silencing of AGPAT2 gene; n = 3, **p < 0.01.

by Golgi (43). In conclusion, these results indicated that hypoxia
promoted the synthesis of milk fat in BMECs.

In the metabolomics of BMECs, palmitic acid was found to be
the marker of fatty acid metabolism, which was consistent with
the previous research results (44). The level of palmitic acid was
down regulated (FC = 0.73), probably because most of palmitic
acid synthesized in mammary gland was used to synthesize
triglycerides, leading to the increased level of triglycerides in
mammary epithelial cells in this experiment.

Additionally, glycerophospholipids metabolism was up-
regulated (34) in BMECs. As an important intermediate in the
phospholipid biosynthesis pathway of cell membrane, citicoline

was mainly synthesized in vivo and is a choline donor (45).
Citicoline was mainly composed of two main components,
cytidine and choline. In the results of BMECs in this experiment,
the level of choline was down regulated, which was consistent
with the change of citicoline level. A significant increase in
milk fat level was found in the milk of hypoxic cows in
this experiment, which may be caused by the increase in the
level of glycerol-3-phosphate in BMECs. Studies found that
triglycerides were produced by continuous fatty acylation of
glycerol-3-phosphate in eukaryotic cells (46), which confirmed
the above conjecture. Glycerophosphate ethanolamine was a
direct substrate for the synthesis of phosphatidylethanolamine
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and phosphatidylcholine (47). This experiment found that
the increased level of glycerophosphate ethanolamine may be
due to the increased synthesis of phosphatidylethanolamine
and phosphatidylcholine under hypoxic conditions, thus more
glycerophosphate ethanolamine was needed to reshape the body’s
lipid membrane damage (48).

Lipidomics is a new technology to analyze the final products
of lipid metabolism and reveal the internal changes of the whole
organism. PCs is the main scaffold of biofilm. A total of 31 PCs
increased significantly, including 7 containing polyunsaturated
fatty acids (PUFA), 10 containing unsaturated fatty acids, and
13 containing saturated fatty acids. Previous study showed that
the fluidity of the membrane was determined by the degree
of saturation of the fatty acid chain (49). The increase of
PCs containing polyunsaturated fatty acids indicated that the
fluidity of cell membrane changes with hypoxia treatment,
which promoted the release of lipid produced by mammary
epithelial cells into milk (50). PSs was a component of cell
membrane. Under normal circumstances, it was maintained in
the inner lobule through a family of aminophosphatidylcholine
translocase and flipping enzyme (51). In apoptotic cells, PS
translocated to the outer lobule, resulting in increased expression.
In this experiment, the increase of PS caused the increase
of PE, because PS and PE were regulated by the same
transport enzyme (52). Exposure of one species to the outer
lobule inevitably led to exposure of the other. PG was a
precursor of cardiolipin, which was an important component
of mitochondrial inner membrane (53). The significant increase
of PGs indicated that the structure of mitochondrial membrane
was destroyed by hypoxia. TAG was the main component of
milk fat. High TAG content might reflect high synthesis rate
and low turnover rate (54). The increase of TAGs indicated
that hypoxia induced the accumulation of TAG in normal
mammary epithelial cells, which reflected the effect of hypoxia
on TAG anabolism. In addition, SM is a kind of sphingolipid
in cell membrane, and its hydrolysis can produce CER, which
is involved in apoptosis signaling pathway (55). SM hydrolysis
and CER signaling are essential in the process of apoptosis,
which leads to the apoptosis increase. In general, the disorder
of lipid level is an important evidence of apoptosis after
hypoxia exposure.

Glycerophospholipids metabolismmediated by 1-acylglycero-
3-phosphate acyltransferase (AGPAT) plays an important role
in the synthesis pathway of TAG (56), which is consistent with
our findings in this study. In hypoxic mammary epithelial cells,
the silencing of AGPAT2 gene caused reduced intracellular TAG
synthesis, possibly because the role of AGPAT2 appeared to be
to provide a substrate for the synthesis of glycerophospholipids
and TAG in the cell culture model. Overexpression of
AGPAT2 in adipocytes increased TAG content (57), which
was similar to the results of this study. In addition, gene
silencing resulted in down-regulation of the expression of
a key protein for TAG synthesis, which was similar to the
results of development tests in AGPAT2–/– mice, suggesting
that AGPAT2 was critical for glycerophospholipids synthesis in
adipose tissue (58). In addition, AGPAT2-induced upregulation

of glycerophospholipids metabolism was necessary for LDS
enrichment and survival under hypoxia (34).

CONCLUSION

In summary, untargetedmetabonomics and lipidomics were used
in this experiment to study lipid synthesis induced by hypoxia
at the metabolic level. The results of metabolomics showed that
the metabolism of arginine and proline, glycine, serine and
threonine, glycerophospholipids were up-regulated, while the
metabolism of fatty acid was down regulated. The results of
lipidomics showed that the metabolism of glycerophospholipids
was up-regulated by regulating cell apoptosis during hypoxia. In
conclusion, we can speculate that Holstein cows adapt to hypoxia
exposure mainly by up regulating the glycerophospholipids
metabolism. The results of this study are helpful to further
understand the mechanism of lipid synthesis related to hypoxia
in bovine mammary gland at molecular level.
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Hypoglycemia resulting from a negative energy balance (NEB) in periparturient cattle

is the major reason for a reduced glycogen content in polymorphonuclear neutrophils

(PMNs). The lack of glycogen induces PMNs dysfunction and is responsible for the

high incidence of perinatal diseases. The perinatal period is accompanied by dramatic

changes in sex hormones levels of which estrogen (17β-estradiol, E2) has been shown to

be closely associated with PMNs function. However, the precise regulatory mechanism

of E2 on glucose metabolism in cattle PMNs has not been elucidated. Cattle PMNs

were cultured in RPMI 1640 with 2.5 (LG), 5.5 (NG) and 25 (HG) mM glucose and

E2 at 20 (EL), 200 (EM) and 450 (EH) pg/mL. We found that E2 maintained PMNs

viability in different glucose conditions, and promoted glycogen synthesis by inhibiting

PFK1, G6PDH and GSK-3β activity in LG while enhancing PFK1 and G6PDH activity

and inhibiting GSK-3β activity in HG. E2 increased the ATP content in LG but decreased

it in HG. This indicated that the E2-induced increase/decrease of ATP content may be

independent of glycolysis and the pentose phosphate pathway (PPP). Further analysis

showed that E2 promoted the activity of hexokinase (HK) and GLUT1, GLUT4 and SGLT1

expression in LG, while inhibiting GLUT1, GLUT4 and SGLT1 expression in HG. Finally,

we found that E2 increased LC3, ATG5 and Beclin1 expression, inhibited p62 expression,

promoting AMPK-dependent autophagy in LG, but with the opposite effect in HG.

Moreover, E2 increased the Bcl-2/Bax ratio and decreased the apoptosis rate of PMNs

in LG but had the opposite effect in HG. These results showed that E2 could promote

AMPK-dependent autophagy and inhibit apoptosis in response to glucose-deficient

environments. This study elucidated the detailed mechanism by which E2 promotes

glycogen storage through enhancing glucose uptake and retarding glycolysis and the

PPP in LG. Autophagy is essential for providing ATP to maintain the survival and immune

potential of PMNs. These results provided significant evidence for further understanding

the effects of E2 on PMNs immune potential during the hypoglycemia accompanying

perinatal NEB in cattle.
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INTRODUCTION

Negative energy balance (NEB) during the perinatal period
in cattle increases the incidence of mammary gland and
uterine infectious diseases, such as mastitis, uteritis, retained
fetal membranes (RFM), and endometritis. These diseases

are associated with polymorphonuclear neutrophils (PMNs)

dysfunction induced by the dramatic changes in steroid hormone
levels. Studies have found that changes in estrogen (17β-estradiol,
E2), a steroid hormone, may be responsible for the reduced
immune response of PMNs before and after parturition (1).
E2 in periparturient cows is known to increase in the 2 weeks
immediately before parturition, rising from a basal level of 20
pg/mL to a peak of 450 pg/mL, then rapidly declining to the
basal level (2). Many studies have confirmed that abnormal E2
levels may lead to perinatal diseases. For example, the level of
E2 in cows that suffered from RFM was higher than that of
normal cows 6 days before parturition (3, 4). Cows suffering
from subclinical mastitis showed low circulating E2 levels (5).
These results suggest that normal levels of E2 could relieve
immunosuppression in periparturient cattle.

Previous studies have shown that ATP in PMNs is mainly
produced by glucose metabolism, and elevated ATP levels
are conducive to normal PMNs function during parturition
(6). Regarding glucose metabolism in PMNs, glucose is first
phosphorylated by hexokinase (HK) to produce glucose 6-
phosphate (G6P), after which G6P is used for ATP and NADPH
production via glycolysis and the pentose phosphate pathway
(PPP) and glycogen synthesis (7). Hypoglycemia after parturition
affects the maintenance of optimal intracellular glycogen levels
and PMNs function, especially in cows suffering from uterine
or mammary disease as described above. E2 has been shown
to promote glycogen synthesis in various tissues and cells by
regulating glycogen synthase kinase-3β (GSK-3β), for example,
in the uterus (8), astrocytes (9), and neurons (10). However,
to the best of our knowledge, there is no research on E2
regulation of glycogen synthesis in cattle PMNs. Reports have
shown that glycolysis is the major pathway for ATP generation
in PMNs, while the PPP is involved in NADPH generation
(11). Both these pathways, together with the glycogen synthesis
pathway, play important roles in glucose metabolism (12). As
one of the most important regulatory enzymes in glycolysis,
phosphofructosekinase-1 (PFK1) catalyzes the conversion of
fructose-6-phosphate to fructose-1,6-diphosphate in response
to cellular energy requirements, while glucose-6-phosphate
dehydrogenase (G6PDH), the key enzyme in the PPP, fuels
NADPH to produce superoxide. Numerous studies have shown
that E2 plays an important regulatory role in glycolysis, the PPP,
and other pathways of glucose metabolism in various types of
cells, including MCF-7 breast cancer (13), uterine (14), and HeLa
cervical cancer cells (15). Unfortunately, the specific mechanism
of E2 action on glucose metabolism in PMNs is still unclear.
It is, thus, worthwhile to improve our understanding of the
role of glucose deficiency and E2 level on the immune potential
of PMNs.

It is well-known that low extracellular glucose levels result in
a deficiency in glucose uptake and utilization, and the glucose

transport system of PMNs is responsible for the uptake of
circulating glucose (16). To date, two glucose transporter families
have been identified, including the main GLUT superfamily
(GLUTs) and the sodium-glucose co-transporter SGLT family
(SGLTs) (17). As the members of the GLUTs, the expression of
GLUT1 and GLUT4 varies with PMNs biological conditions with
glucose mainly transported across cell membranes by GLUT1
under physiological conditions (18). Meanwhile, SGLTs transport
glucose through a secondary active transport mechanism, which
promotes glucose uptake by using the sodium concentration
gradient established by the Na+/K+-ATPase pump (19). As a
member of SGLTs, the SGLT1 is mainly expressed in the kidney,
heart and trachea. SGLT1 expression and its relationship to
GLUT1/4 in cattle PMNs under changed glucose environments
is completely unknown.

AMP-activated protein kinase (AMPK) senses available
energy in cells by binding directly to ATP. Activated AMPK
increases the translocation of glucose transporters and promotes
ATP preservation and production. Once ATP production
pathways such as glycolysis, fatty acid oxidation (FAO) and
oxidative phosphorylation (OXPHOS) are activated, pathways
involving ATP consumption, such as protein synthesis, fatty
acid synthesis, gluconeogenesis and glycogen synthesis pathways,
are reduced. However, reports on the role of AMPK in
glucose metabolism are contradictory. Some studies have shown
that activated AMPK phosphorylates key proteins of multiple
pathways such as glycolysis, leading to enhanced catabolism
and reduced anabolism (20, 21). Other studies have shown
that AMPK activation is associated with glycogen accumulation
rather than glycogen consumption (22, 23). Therefore, this study
aimed to clarify the role of AMPK in the glucose metabolism of
cattle PMNs.

The Bcl-2 superfamily both promotes and inhibits apoptosis,
and the balance pro-apoptotic and anti-apoptotic proteins, such
as Bax and Bcl-2, respectively, is critical for determining the
survival time of mature PMNs. Previous study have found that
the spontaneous apoptosis of human PMNs in the absence
of sufficient nutrients could be inhibited by increased glucose
in vitro (24). As is well-known, autophagy can supplement
anabolic substrates and energy under low energy conditions
by degrading internal cellular components (25) and autophagy
markers including ATG5, Beclin1, LC3 and p62 play key
roles in autophagy initiation in various cells (26). Studies
have shown that E2 can promote autophagy, delay senescence
(27) and inhibit apoptosis (28). Although increasing evidence
shows that E2 can regulate cellular glucose metabolism, there
are few studies on the mechanism of E2 regulation of
PMNs autophagy.

The effects of E2 on the immune potential of cattle PMNs
and its association with glucose levels have not been studied.
Here, we investigated the effect and mechanism of E2 on
glucose metabolism through regulation glucose uptake and
utilization, to determine whether E2 enhances PMNs immune
potential by activating autophagy under low-glucose conditions.
This study provided valuable new perspectives on how E2
controls the immune potential of PMNs in cattle suffering from
perinatal NEB.
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MATERIALS AND METHODS

Animals
All experiments were conducted in accordance with relevant
guidelines and regulations. The current study was conducted
at the Inner Mongolia University for Nationalities in Tongliao,
China. Jugular venipuncture blood samples were collected
from the ovariectomized Chinese Simmental cattle aged about
2 years.

Isolation and Culture of PMNs
The blood was collected by jugular vein puncture in cattle into
50mL centrifuge tubes containing 0.1mL heparin (Gentihold)
as an anticoagulant. Heparinized blood was diluted with equal
amounts of 1 × PBS, placed on the Percoll (GE Healthcare)
separation solution, and centrifuged at 800 × g for 15min. After
removal of the plasma, red blood cell and PMNs were collected,
washed once with PBS, then the red blood cell lysates were added
and centrifuged at 800 × g for 8min. PMNs were washed once
again with 1× PBS and once with RPMI 1,640 medium (Procell),
and then were resuspended in RPMI 1,640 medium (2.0 × 106

cells/mL). The PMNs were incubated in RPMI 1,640 containing
10% fetal cattle serum (Hyclone, Logan, UT, USA) at 37◦C and
5% CO2 for 45min. After 45min, the PMNs were cultured in
fresh medium.

PMNs were incubated with different concentrations of 17β-
estradiol (Sigma) and glucose (Sigma) for specified times. The
concentrations of E2 were 20 pg/mL (EL), 200 pg/mL (EM) and
450 pg/mL (EH). The glucose concentrations were 2.5mM (LG),
5.5mM (NG) and 25mM (HG). PMNs were incubated with EH
for 6 h under LG, NG and HG conditions. The PMNs were then
collected for subsequent tests.

Cell Counting Kit-8 Assay
The viability of PMNs cells was determined with a Cell Counting
Kit-8 detection kit (CCK-8; Biosharp, China) in accordance with
themanufacturer’s protocol. Briefly, the cells were seeded into 96-
well plates at the density of 5× 103 cells per well. At the indicated
time point, 10 µL of CCK-8 solution was added, and PMNs were
incubated at 37◦C in a 5% CO2 incubator for 0, 2, 4, 6, 8, and 12 h
at different concentrations of E2 and glucose. The absorbance
was measured at 450 nm under an automatic microplate reader
(Multiskan Spectrum; Thermo Scientific, USA).

Biochemical Analyses
Biochemical analysis was used to detect activities of different
enzymes in PMNs cultured with different concentrations of E2
and glucose for 6 h. All biochemical tests, HK and G6PDH
activity, and ATP and glycogen content, were performed using
commercial test kits (Solarbio, Beijing, China) at 37◦C in
an automatic microplate reader (Multiskan Spectrum; Thermo
Scientific). Biochemical analyses were conducted in strict
accordance with the instructions of the kits.

ELISA Analysis
PMNs cultured with different concentrations of E2 and glucose
for 6 h were collected and the activity of PFK1 and GSK-3β in

cells was detected by ELISA kit (SolarBio). ELISA analysis was
conducted in strict accordance with the instructions of the kit.

Western Blotting Analysis
The PMNs were treated for 6 h with 2.5, 5.5 and 25mM glucose
and EH. Total protein was extracted from PMNs with lysis buffer
(Solarbio). The protein concentration was quantified using a
BCA protein assay kit (Applygen). Then, the protein samples
were separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred onto polyvinylidene
fluoride (PVDF) membranes (Immobilon). After blocking with
5% BSA for 2 h, the membranes were blotted with 1:700
diluted primary antibodies against GLUT1 (Abcam, MA, USA),
GLUT4 (Abcam), SGLT1 (Cell Signaling Technology, MA, USA),
Beclin1 (Abcam), ATG5 (Abcam), p62 (Abcam), LC3 (Cell
Signaling Technology), β-actin (Absin), AMPK (Abcam), p-
AMPK (PL Laboratories, USA), Bax (Abcam), or Bcl-2 (Abcam)
at 4◦C overnight. The membrane was washed with Tris-buffered
saline containing 0.1% Tween-20 (TBST), and the secondary
antibodies (Cell Signaling Technology) conjugated to horseradish
peroxidase were incubated for 1 h at room temperature. The
bands were visualized using the enhanced chemiluminescence
(ECL) system and the gray densities were quantified with
ImageJ software.

Flow Cytometry
The apoptotic rate was measured by flow cytometry using an
Annexin V-FITC/PI apoptosis assay kit (Beyotime, Shanghai,
China). After PMNs culture for 6 h, the cells were resuspended
in 500mL binding buffer containing 5mL Annexin V FITC and
10mL PI, and incubated at room temperature in the dark for
20min. The presence of apoptotic cells was analyzed by flow
cytometry on a Beckman flow cytometer (CA, USA) within no
more than 1 h.

Statistical Analysis
The gray values of the protein electrophoresis bands were
analyzed by ImageJ software (National Institutes of Health,
Bethesda, MD, USA). The results are presented as the mean ±

standard error of themean and analyzed using SPSS 19.0 software
(IBM Corp, Armonk, NY, USA). GraphPad Prism 8.0 was used
for graphical analysis. Analysis of variance was performed to
evaluate the differences among the groups while the t-test was
used for between-group analysis. A P-value lower than 0.05 was
considered statistically significant and a P-value lower than 0.01
was considered highly significant (∗P < 0.05, ∗∗P < 0.01).

RESULTS

E2 Enhances PMNs Viability
To investigate the effect of E2 on PMNs viability, the CCK-
8 viability assay was used. The results showed that compared
with NG, PMNs viability did not change significantly at 0–2 h
in LG and HG; PMNs viability decreased significantly in LG
group and increased significantly at 4–6 h in HG; PMNs viability
decreased significantly at 8–12 h in both LG andHG (Figure 1A).
E2, including low E2 (EL), moderate E2 (EM) and high E2
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FIGURE 1 | E2 enhances PMNs viability. PMNs were treated with NG (5.5mM), LG (2.5mM), HG (25mM), NG+EL (20 pg/mL), NG+EM (200 pg/mL), NG+EH (450

pg/mL), LG+EL, LG+EM, LG+EH, HG+EL, HG+EM and HG+EH, for 0, 2, 4, 6, 8, and 12 h. (A–D) PMNs viability detected by CCK-8. The results are shown as the

mean ± SD (n = 3). The t-test was used to analyze differences. *P < 0.05, **P < 0.01. The asterisk indicates a significant difference between the treatment group and

the control group (con).

(EH) doses, significantly increased PMNs viability, especially
enhancing viability after 6 h at low glucose (LG), normal glucose
(NG) levels and high glucose (HG) levels (Figures 1B–D). These
data indicated that E2 influences and maintains the viability of
PMNs in vitro.

E2 Promotes PMNs Glycogen Synthesis by

Inhibiting GSK-3β Activity
To understand the glucose metabolism of PMNs in different
glucose conditions and the possible regulatory role of different
concentrations of E2, we first measured the glycogen content
of the cells by biochemical methods and GSK-3β activity by
ELISA. The results showed that the glycogen content was
significantly increased, whereas the GSK-3β activity decreased
in a concentration-dependent manner with the glucose levels
(Figures 2A,E). E2 significantly increased the glycogen content,
and this increase was related to the E2 concentration in LG,
NG and HG in a dose-dependent manner (Figures 2B–D)
while GSK-3β activity decreased significantly with increasing E2
concentration at LG, NG and HG (Figures 2F–H). These results
suggested that EH strongly promotes glycogen synthesis through
the inhibition of GSK-3β activity.

E2 Regulates the Activity of PFK1 and

G6PDH and Maintains ATP Homeostasis in

PMNs
To determine the action of E2 on increased glycogen content
in PMNs, we focused on glycolysis and the PPP in glucose
metabolism pathways which provide ATP to meet the
requirements of glycogen synthesis and energy expenditure
in PMNs. The results showed that PFK1 activity was significantly
increased in a glucose-dependent manner (Figure 3A). Under
LG and NG conditions, EL, EM and EH significantly decreased
PFK1 activity in a time-dependent manner, while under HG
conditions, only EH significantly increased PFK1 activity
(Figures 3B–D). The activity of G6PDH decreased in a dose-
dependent manner with increasing glucose concentration
(Figure 3E), specifically, decreasing with increasing E2
concentration at both NG and LG (Figures 3F,G) while showing
the opposite effect at HG (Figure 3H). The results showed that
EH was able to promote or inhibit PFK1 and G6PDH, the key
catabolic enzymes of cellular glucose in PMNs under different
glucose conditions. In addition, the results showed that the ATP
content increased significantly in a glucose-dependent manner
(Figure 3I), increasing with increased E2 concentrations at LG
and NG (Figures 3J,K), while decreasing in response to E2 at
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FIGURE 2 | E2 promotes PMNs glycogen synthesis by inhibiting GSK-3β activity. PMNs was treated with LG, NG, HG, LG+EL, LG+EM, LG+EH, NG+EL, NG+EM,

NG+EH, HG+EL, HG+EM and HG+EH for 6 h. (A–D) Glycogen content was determined by the biochemical method. (E–H) GSK-3β activity was determined by

ELISA. The results are shown as the mean ± SD (n = 3). Differences were analyzed using the t-test. *P < 0.05, **P < 0.01. The significant difference between the two

groups is indicated by a line and an asterisk.

HG and with the lowest level at EH (Figure 3L). These results
indicated that EH had significant effects on cellular glucose
catabolism by regulation of the activity of PFK1 and G6PDH,
and on ATP production. Therefore, the EH concentration was
used for the following experiments.

E2 Regulates Glucose Uptake and

Utilization by Regulating Glucose

Transporters Expression and HK Activity
HK is a key enzyme of glucose catabolism: once glucose has been
taken up by transporters from the extracellular environment, HK
transforms the absorbed glucose into G6P to provide substrates
for glycogen synthesis, glycolysis or the PPP. To identify the
specific role of E2 on glucose uptake and utilization, we analyzed
the expression of GLUT1, GLUT4 and SGLT1 by WB and
HK activity by biochemical measurement. The results showed
that HK activity increased in response to glucose in a dose-
dependent manner (Figure 4A). EL and EM did not increase
HK activity while EH significantly enhanced HK activity at
LG (Figure 4B). Although E2 had no significant effect on HK
activity at NG (Figure 4C), HK activity was decreased in an E2
concentration-dependent manner at HG (Figure 4D). The WB

results showed that compared with NG, the expression of GLUT1
and SGLT1 were significantly increased and GLUT4 expression
was significantly decreased at LG and HG levels (Figures 4E–H).
E2 thus promoted the expression of GLUT1, GLUT4 and SGLT1
at LG while, in contrast, inhibiting expression at HG. At NG
levels, E2 promoted the expression of both GLUT1 and SGLT1
while inhibiting GLUT4 expression. These results suggested that
the regulation of glucose uptake and utilization by E2 depends on
up-regulating or down-regulating the expression of transporters
and HK activity, and that this is a crucial mechanism by which
PMNs handle energy stress.

E2 Regulates AMPK-Dependent

Autophagy in PMNs
To determine whether the variation in ATP content under
different glucose conditions is the result of pathways other than
glycolysis and the PPP, we further investigated the effect of E2
on the autophagy pathway of AMPK and the expression of
autophagy-related proteins LC3, ATG5, Beclin1 and p62 by WB.
The results indicated that the p-AMPK/AMPK ratio at both LG
andHGwas significantly higher than at NG, and was significantly
higher at HG than that at LG (Figures 5A,B). E2 significantly
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FIGURE 3 | E2 regulates the activity of PFK1 and G6PDH and maintains ATP homeostasis in PMNs. PMNs were treated with LG, NG, HG, LG+EL, LG+EM, LG+EH,

NG+EL, NG+EM, NG+EH, HG+EL, HG+EM and HG+EH for 6 h. (A–D) PFK1 activity was determined by ELISA. (E–H) G6PDH activity was determined by

biochemical methods. (I–L) ATP contents were determined by biochemical methods. The results are shown as the mean ± SD (n = 3). The significance of the

difference was analyzed by the t- test. *P < 0.05, **P < 0.01.

increased the level of AMPK phosphorylation at LG and NG but
decreased it at HG. The expression of LC3, ATG5 and Beclin1
was increased while that of p62 was reduced at LG and HG rather
than at NG, especially this expression was most significant at HG
(Figures 5A,C–F). E2 significantly increased the expression of
LC3, ATG5 and Beclin1, and significantly decreased p62 at LG
and NG, but showed the opposite results at HG. These results
suggested that E2 canmaintain the optimal concentration of ATP
by regulating autophagy according to glucose environment and
intracellular ATP level, which may provide a material guarantee

for maintaining cell survival and the development of immune
potential in PMNs.

E2 Inhibits PMNs Apoptosis
Low ATP levels in apoptotic PMNs indicate the importance of
the relationship between spontaneous apoptosis and autophagy
for cell survival. We, therefore, verified the effect of E2 on
PMNs apoptosis under different glucose conditions by WB and
flow cytometry. The results showed that at LG, there was a
significantly higher Bax expression, lower Bcl-2 expression and
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FIGURE 4 | E2 regulates glucose uptake and utilization by regulating the activities of HK and glucose transporters. PMNs were treated with LG, NG, HG, LG+EL,

LG+EM, LG+EH, NG+EL, NG+EM, NG+EH, HG+EL, HG+EM and HG+EH for 6 h. (A–D) HK activity was measured by the biochemical method. (E–H) The

expression of GLUT1, GLUT4 and SGLT1 were detected by WB, and β-actin was used as an internal control. The results are shown as the mean ± SD (n = 3). The

significance of the difference was analyzed using the t-test. *P < 0.05, **P < 0.01.

FIGURE 5 | E2 regulates AMPK-dependent autophagy in PMNs. PMNs were treated with NG, NG+EH, LG, LG+EH, HG and HG+EH for 6 h. (A–F) Expressions of

LC3, ATG5, Beclin1, p62, p-AMPK and AMPK were analyzed by WB with β-actin used as an internal control. The results are shown as the mean ± SD (n = 3).

Differences were analyzed using the t-test.*P < 0.05, **P < 0.01.
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Bcl-2/Bax ratio (Figures 6A–D) and an increased apoptosis rate
compared to NG (Figure 6E), but there was an opposite effect at
HG. However, E2 significantly increased the Bcl-2/Bax ratio and
decreased the apoptosis rate at LG and HG. Our results suggested
that E2 can protect PMNs by inhibiting apoptosis resulting from
the environmental stress of lack or excess of glucose. In other
words, the inhibition of apoptosis by E2 requires the change of
autophagy level to maintain cell survival, and the occurrence
of autophagy and apoptosis is based on the changes in glucose
intake and metabolism.

DISCUSSION

We found that E2 promotes glycogen storage by promoting
glycogen synthesis andmaintains ATP homeostasis by enhancing
glucose uptake and regulating autophagy in the context of
changing extracellular glucose levels. These results suggested

that E2 exerts a significant effect on both glucose uptake and
utilization and, in particular, plays an important role in sustaining
cell viability and promoting the glycogen storage and ATP
content in situations of glucose deficiency in cattle PMNs in vitro.
Therefore, E2 may be a key factor in maintaining the viability and
enhancing the immune potential of PMNs for fulfilling immune
function in periparturient cattle suffering from NEB.

Vazquez-Anon et al. (29) observed that hypoglycemia in
periparturient cattle affects chemotaxis, phagocytosis, and killing
capacity in PMNs due to reduced glycogen storage. Similarly,
hyperglycemia during calving also impairs PMNs function and
increases the risk of postpartum infection (30). Our results
showed that PMNs viability was significantly affected by both low
and high glucose, and the higher glucose condition significantly
increased the PMNs glycogen content. Galvao et al. (31) found
that treatment with glucose narrowed the difference in PMNs
viability between cows suffering from uteritis and healthy cows,

FIGURE 6 | E2 inhibits PMNs apoptosis. PMNs were treated with NG, NG+EH, LG, LG+EH, HG and HG+EH for 6 h. (A–D) The expression of the apoptosis-related

proteins Bax and Bcl-2 and the Bcl-2/Bax ratio were analyzed by WB. (E) Apoptosis rates in PMNs were assayed by flow cytometry. The results are shown as the

mean ± SD (n = 3). Differences were analyzed using the t-test. *P < 0.05, **P < 0.01.
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suggesting that hypoglycemia during the perinatal period is
highly correlated with PMNs dysfunction and leads to disease
susceptibility. It is well known that the E2 concentrations in
perinatal cattle typically change from basal to peak and back to
basal again. Our findings showed that different E2 concentrations
significantly enhanced the viability of PMNs in low or high
glucose environments in vitro, and we speculate that E2 exerts
an active action on maintaining PMNs viability by regulating
cellular glucose metabolism.

To further understand the E2 regulatorymechanism on PMNs
glucose metabolism, we first evaluated the effect of E2 on PMNs
glycogen synthesis. As the main energy source in PMNs, the
glycogen content mostly depends on extracellular glucose uptake,
and glucose deficiency leads to glycogen reduction in PMNs (31).
Although previous studies have confirmed that E2 can promote
utero glycogen synthesis in rats and rabbits (8, 32), the effect of E2
on glycogen synthesis in PMNs has been less studied. Our study
showed that E2 promotes glycogen synthesis in cattle PMNs
under different glucose concentrations in vitro, therefore, may
benefit PMNs function in periparturient cattle suffering from
NEB. ERα is the specific receptor for E2 and is a substrate of GSK-
3β. E2 inhibits GSK-3β activity depending on the detachment of
ERα from the ERα/GSK-3β complex (33). Reports have shown
that E2 activates uterine epithelial cell proliferation by inhibiting
GSK-3β-induced PI3K pathway activation (34). Our results
showed that glycogen content depends on increased glucose
concentration, and that E2 enhanced glycogen synthesis and
inhibited GSK-3β activity in PMNs. Recent studies have shown
that in mouse PMNs, the glycogen cycle can be used to produce
energy at inflammatory sites where nutrients are limited (35).
This suggested that moderate and well-timed amounts of E2 may
contribute to the maintenance of the immune potential of PMNs
in periparturient cattle by increasing the glycogen storage.

In terms of the glucose absorbed from the environment
in PMNs, one part is stored in the form of glycogen while
the other is competitively utilized between the PFK1-mediated
glycolysis pathway and the G6PDH-mediated PPP. In mouse
PMNs incubated with 25mM glucose, there was a 50% dose-
dependent reduction in G6PDH and oxygen production (36),
and G6PDH deficiency in PMNs from diabetic mice resulted
in reduced germicidal capacity and peroxide production (37).
Therefore, we examined the activities of PFK1 and G6PDH
in cattle PMNs and found that G6PDH activity decreased in
response to increased glucose concentration. Addition of E2
to low- or normal-glucose medium attenuated G6PDH activity
while E2 addition to high-glucose medium enhanced G6PDH
activity, indicating that the impact of E2 on the PPP is involved in
the extracellular glucose level. Newsholme et al. (38) found that
the addition of glucose increased enzyme activity in glycolysis
and ATP production in PMNs. Similarly, this study found that
increased extracellular glucose enhanced PFK1 activity and ATP
production. However, E2 significantly inhibited PFK1 activity
and increased ATP content under low- or normal-glucose
conditions, and enhanced PFK1 activity, and decreased ATP
content under high-glucose conditions. These results raise an
interesting question: E2 has been found to promote glycogen
synthesis by inhibition of PFK1, G6PDH, and GSK-3β activity

under low- or normal-glucose conditions, which ought to reduce
the ATP content, however, our results showed an increase in
ATP content. To answer this question, we next evaluated HK
activity, glucose transporter expression, and autophagy levels in
cattle PMNs.

Evidence has suggested that glucose uptake by cells is
the result of functional coupling between GLUTs and HK
(39). GLUT1 is expressed and up-regulated in a glucose-
rich environment and mediates extracellular glucose uptake
in mouse (40) and human (41) PMNs, and GLUT1, but not
GLUT4, is regarded as the key link between numerous factors
regulating glucose uptake in PMNs. However, we have not
seen the report regarding the E2-mediated GLUT1 in PMNs,
although E2 could up-regulate GLUT1 expression in breast
cancer cells (42). Our study demonstrated that GLUT1, GLUT4,
and SGLT1 protein are expressed in cattle PMNs. Low- and high-
glucose promoted the expression of GLUT1 and SGLT1 and
inhibited GLUT4 expression. We observed that the enhanced
glucose uptake depends mainly on GLUT1 and SGLT1 in
low-glucose environments, and which only relies on SGLT1
in the high-glucose environment. E2 enhanced the expression
of GLUT1/4 and SGLT1 at low glucose levels, and inhibited
GLUT4 expression at normal and high glucose levels, whereas E2
promoted SGLT1 expression at low- and normal-glucose levels
and inhibited SGLT1 at high glucose levels. This demonstrates
that E2 enhanced glucose uptake by promoting the expression
of SGLT1 and GLUT1/4 in low glucose environments and
preventing excessive glucose uptake by inhibiting SGLT1 and
GLUT1/4 in high glucose environments. Thus, our results
obviously defined that the promoting or inhibiting glucose
uptake by E2 depends on glucose transporters function relating
with the extracellular glucose level. Meanwhile, we found
that HK activity was positively correlated with the level of
environmental glucose and that HK activity was promoted by
E2 under low glucose conditions while remaining unchanged
under normal glucose conditions and being inhibited under high
glucose conditions. This further provided the direct evidence
for revealing glycogen increase in the perspective of intracellular
glucose metabolism. Clearly, E2 enhanced the PMNs glycogen
storage by upregulating glucose uptake, which lies in HK activity
and the level of GLUT1/4 and SGLT1 expression in different
glucose environments. Considering the process of glycogen
synthesis, by its nature, needs to consume a large amount of ATP,
here raises an interesting question of where the increased ATP
come from when the activity of PFK1, G6PDH, and GSK-3β are
inhibited by E2 in low- or normal-glucose environments in this
study. Previous studies showed that activated AMPK enhance the
plasma membrane localization of GLUT1 and GLUT4 in skeletal
muscle (43) and leads to SGLT1 upregulation and glucose uptake
promotion in cardiomyocytes (44). These finding remind us to
evaluate AMPK activation may help to uncover the underlying
relevance of E2 to cellular ATP content.

We observed that activated AMPK is synchronized with the
increased glucose uptake, E2 promoted AMPK phosphorylation
in the low- and normal-glucose environment, but inhibited
AMPK activation under high-glucose conditions. This indicates
that E2 can regulate ATP levels. Some studies have found that
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inhibiting glycolysis-dependent ATP production could activate
AMPK (45) and activation of AMPK could increase the ATP
level in ovarian cancer cells (46). Correspondingly, our results
showed that E2 increased the ATP content by inhibiting PFK1
and activating AMPK at low and normal glucose levels, and
yet E2 reduced the ATP content by enhancing PFK1 activity
and inhibiting AMPK at high glucose levels. Therefore, it is
reasonable to speculate that the change in ATP level resulting
from addition of E2 at different glucose levels may depend on
AMPK activity, and the increased ATP may be derived from an
AMPK-dependent pathway, such as the autophagy pathway. We,
therefore, next investigated autophagy-related proteins to answer
this question.

Activation of autophagy at low glucose levels helps tomaintain
cellular energy homeostasis, whereas several identified signaling
pathways also activate autophagy at high glucose levels (47).
Ma et al. found that high glucose (20mM) induced podocyte
autophagy and damage by enhancing the expression of LC3
and Beclin1 proteins (48). Similarly, our study showed that
autophagy was promoted in PMNs under low- and high-
glucose conditions. The evidence showed that E2 could protect
the vascular endothelium by promoting autophagy (49), but
E2 protects cardiomyocytes from LPS damage by inhibiting
autophagy (50). The controversial results may lies in the different
conditions or cells. Our results suggested that E2 enhanced
autophagy in low- or normal-glucose conditions and inhibited
autophagy under high glucose conditions by regulating AMPK
activity in PMNs in vitro. It may indicate that E2 promotes
autophagy during energy deficiency or prevent damage to the
cells by inhibiting autophagy in nutrient-rich environments.
Therefore, the glucose environment is likely to be an essential
prerequisite for E2-regulated autophagy for cattle PMNs. As
known that glycolysis is the main pathway of ATP production
in PMNs, whereas in the case of limited glucose supply, PMNs
also can obtain the required energy through fatty acid oxidation
(36). In human PMNs, autophagy provides sufficient free fatty
acids through the decomposition of lipid droplets and supports
the FAO-OXPHOS pathway to produce more ATP (51). This
verifies our results from another aspect, that is, E2 may promote
lipophagy to maintain a steady-state ATP content in cattle PMNs
under deficient glucose conditions.

Both apoptosis and autophagy are necessary for PMNs
survival, and the ATP content is lower in apoptotic PMNs
(52), while E2 can protect mouse pancreatic β cells from
apoptosis through the ERα mechanism (53). To further
understand how E2 protects PMNs from spontaneous apoptosis,
we analyzed the expression of autophagy- and apoptosis-
related proteins Bcl-2 and Bax and the apoptosis rate. The
results showed that low glucose promoted apoptosis and high
glucose inhibited apoptosis. This indicated that autophagy is
not sufficient to counteract spontaneous apoptosis under low-
glucose conditions. The lower apoptosis rate in high-glucose, not
in low-glucose conditions, could be attributed to enough ATP
production resulting from increased autophagy and glycolysis
being sufficient to inhibit spontaneous apoptosis. Moreover, our
study also found that E2 inhibited apoptosis accompanied by

inhibition of GSK-3β activity in PMNs under different glucose
conditions, suggesting that E2-induced GSK-3β inactivation is
the initial point of regulating glucose metabolism and the root
cause of triggering or inhibiting lipophagy.

CONCLUSION

In conclusion, we demonstrated that E2 promotes glycogen
synthesis and increases the ATP content of cattle PMNs by
enhancing the activity of HK, expression of GLUT1/4 and
SGLT1, and the level of autophagy, as well as by inhibiting
the activity of PFK1, G6PDH and GSK-3β under conditions of
glucose restriction. This finding suggested that the molecular
mechanisms by which E2 controls cellular energy levels is
essential for protecting the cells from apoptosis and reinforcing
the immune potential of PMNs. More research is required to
further elucidate the mechanism by which E2 regulates glucose
metabolism. This study provided a meaningful understanding
of the effects of E2 on PMNs function in periparturient cattle
suffering from NEB.
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GLOSSARY

NEB, Negative energy balance; PMNs, Polymorphonuclear
neutrophils; E2, 17β-estradiol, estrogen; GLU, Glucose; NG,
Normal concentration of glucose; LG, Low concentration
of glucose; HG, High concentration of glucose; EL, Low
concentration of estrogen; EM, Medium concentration of
estrogen; EH, High concentration of estrogen; CCK-8, Cell
counting kit-8; HK, Hexokinase; G6P, glucose 6-phosphate;
PFK1, Phosphofructokinase-1; PPP, Pentose phosphate
pathway; G6PDH, Glucose-6-phosphate dehydrogenase;
GSK-3β, Glycogen synthase kinase-3β; ATP, Adenosine
triphosphate; SGLT, Sodium-glucose co-transporter; GLUTs,
Glucose transporters system; AMPK, AMP-activated protein
kinase; ATG5, Autophagy-related gene 5; LC3, light chain
3; p62, Sequestosome-1; Bcl-2, B-cell lymphoma-2; Bax,
Bcl-2-associated x; WB, Western blotting.
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Vitamin E (VE) is an essential fat-soluble nutrient for dairy cows. Vitamin E deficiency leads

to immune suppression and oxidative stress and increases the susceptibility of cows

to reproductive disorders in the early post-partum period. However, studies on plasma

proteomics of VE deficiency have not been reported so far. Therefore, the purpose

of this study was to understand the changes of blood protein profile in cows with

subclinical VE deficiency in the early post-partum period. In this study, plasma protein

levels of 14 healthy cows (>4µg/ml α-tocopherol) and 13 subclinical VE-deficient cows

(2–3µg/ml α-tocopherol) were analyzed by tandem mass tag (TMT). The results showed

that there were 26 differentially expressed proteins (DEPs) in the plasma of cows with

subclinical VE deficiency compared with healthy controls. Twenty-one kinds of proteins

were downregulated, and five kinds were upregulated, among which eight proteins

in protein–protein interactions (PPI) network had direct interaction. These proteins are

mainly involved in the MAPK signaling pathway, pantothenic acid and coenzyme A (CoA)

biosynthesis, PPAR signaling pathway, and glycosylphosphatidylinositol (GPI)-anchor

biosynthesis. The top four DEPs in PPI (APOC3, APOC4, SAA4, PHLD) and one

important protein (VNN1) by literature review were further verified by ELISA and Western

blot. The expression levels of APOC3, VNN1, and SAA4 were significantly lower than

those of healthy controls by ELISA. VNN1 was significantly lower than those of healthy

controls by Western blot. VNN1 is closely related to dairy cow subclinical VE deficiency

and can be a potential biomarker. It lays a foundation for further research on the lack of

pathological mechanism and antioxidative stress of VE.

Keywords: subclinical VE deficiency, TMT, differentially expressed proteins, biomarkers, plasma

INTRODUCTION

The development of the dairy industry is closely related to the regulation of vitamin nutrition,
which is the key problem in dairy cows’ healthy breeding (1). Vitamin E (VE) is one of the most
important components of cellular antioxidant systems and involved in maintaining the oxidative
stability (2). The main function of VE is to protect lipid peroxidation, scavenge free radicals in vivo,
so as to maintain the integrity of cell membrane function (3). Dietary vitamin additives, forage,
and legume silage are the main sources of VE for dairy cows (4, 5). A large number of studies on
dairy cows show that the plasma VE concentration decreased gradually before and after delivery
and reached the minimum value before and after calving (6–8).
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Although with the continuous progress of dairy cows’
feeding and management, serious VE deficiency in dairy cows
rarely occurs. However, during the transition period, in order
to enhance the antioxidant capacity of cow cells, excessive
consumption of vitamin E will be caused to achieve the purpose
of scavenging the oxidative free radicals of excess cells (6, 9). This
process makes early post-partum cows prone to subclinical VE
deficiency and systemic oxidative stress. Plasma concentrations
of α-tocopherol in cows at 2–3µg/ml can be identified as
subclinical VE deficiency (10–12). Vitamin E deficiency and
oxidative stress are important causes of perinatal dairy cows’
susceptibility to productive diseases (13). Studies have found that
VE deficiency can increase the risk of diseases such as retention
of placenta, hysteritis, and mastitis in cows (13, 14). Because
there were no practical early monitoring methods to measure
the level of VE, subclinical VE deficiency is difficult to be found
in due time, which brings serious economic losses to the dairy
industry. Therefore, the search for new characteristic biomarkers
of subclinical VE deficiency is a key technical problem to be
solved in the early monitoring and rapid diagnosis of subclinical
VE deficiency for high-yield dairy cows.

Mass spectrometry (MS) has become the preferred method
for large-scale protein identification and characterization due to
its sensitivity and specificity (15, 16). The MS analysis has been
found to reveal changes in protein expression. These proteins can
be identified as intermediate biomarkers of early disease effects
(17). Tandem mass tag (TMT) is a kind of chemical label used
for molecular recognition and quantification based on MS. The
TMT has been established as an effective method for proteome
quantification (18). The body fluid often detected in the clinic is
blood, which is easy to obtain and contains abundant biological
information of physiological and pathological processes (19).
In this study, proteomics techniques were used to identify the
differentially expressed proteins (DEPs) in the plasma between
subclinical VE deficiency and healthy cows in the early post-
partum period. To the best of our knowledge, no data have been
published on plasma proteins in early lactation with subclinical
VE deficiency in dairy cows. Thus, this is a comprehensive study
to explore the potential biological significance of DEPs between
subclinical VE deficiency and healthy cows, providing valuable
insights into subclinical VE deficiency plasma proteins that
may be applied for developing diagnostic markers in subclinical
VE deficiency.

MATERIALS AND METHODS

Animals and Experimental Design
All animals involved in this study were cared for according to the
principles of Heilongjiang Bayi Agricultural University Animal
Care and Use Committee (Daqing, China). The experiment
was conducted at a large intensive cattle farm in Heilongjiang
Province (Suihua, China). All Holstein cows were fed the same
total mixed ratio diets (in accordance with NRC 2001 standard)
with similar age, parity, body condition score, and milk yield.
The cows were fed a total mixed ratio diet during early lactation,
which mainly consisted of 39.58% of corn, 19.61% of corn
silage, 26.99% of Leymus chinensis, 8.48% of soybean meal,
and 4.21% of concentrated feed at the early stage of lactation

(ingredient, % of DM). The basal diet was formulated to meet
the nutrient requirements according to the Feeding Standards
of Dairy Cattle in China. Detailed feed composition is shown in
Supplementary Table 1.

According to the concentration of α-tocopherol in plasma,
the subclinical VE deficiency group (2–3µg/ml α-tocopherol)
and the healthy control group (>4µg/ml α-tocopherol) were
determined (10–12). Finally, after excluding all other cases of
perinatal disease, 67 cows were selected as test animals. Thirteen
cows were used as the subclinical VE deficiency group (QF),
and 14 cows were used as the healthy control group (BQF) for
proteomics study. In addition, 40 cows were used for ELISA
verification of the screened and identified differential proteins.

Blood Sample Collection
For this study, blood samples were obtained from the coccygeal
veins of 80 transition dairy cows from 0 to 30 days after
calving. The blood samples of each cow were collected on
an empty stomach in the morning. Plasma was obtained by
centrifugation of blood collected in a 10ml lithium-heparin
tube. After centrifugation at 4◦C for 10min (3,000 rpm), the
supernatant was collected for secondary centrifugation by high
speed (12,000 rpm) for 5min. The supernatant was placed
in a 1.5ml centrifuge tube and cryopreserved at −80◦C until
analyzed. All samples used for repetitive analysis were frozen in
aliquots, and only vials needed for each assay run were used, to
avoid the repetitive thawing and freezing effect.

Plasma Sample Processing and TMT
Labeling
To determine the biomarkers of subclinical VE deficiency, 27
plasma samples were analyzed by protein quality inspection,
trypsin digestion, and TMT differential labeling. Total protein
concentration determination was assessed using a Bradford
method (20) (Enzyme labeled instrument, Thermo: Multiskan
MK3, USA). Firstly, the sample was diluted with lysis buffer to
make its final concentration fall within the range of standard
curve. The diluted sample and standard sample (bovine serum
albumin, BSA: Sigma-Aldrich, A2058, AUS; BSA was dissolved
into a series of standard protein by lysis buffer) were diluted with
5 and 250 µl protein quantitative dye, respectively, and the light
absorption value of standard substance and sample at 595 nmwas
determined by enzyme label instrument. The standard curve was
drawn, and the sample concentration was calculated. Then, the
protein concentration of each sample was calculated according to
the curve formula, and the protein concentration of each sample
could meet the requirements of the next experiment.

After protein quantification, 100 µg of protein per sample
solution was put into a centrifuge tube, and the final volume
was 100 µl with Dissolution Buffer (Thermo Scientific, PN:
1861436). Then, 25 µl of 100mM reducing reagent (Thermo
Scientific, PN:1861438) was added and incubated at 55◦C for 1 h,
and 5 µl of 375mM iodoacetamide solution (Thermo Scientific,
PN: 1861445) was added and incubated for 30min in a dark
room. The processed samples were transferred to a 10 kDa
ultrafiltration tube (Sartorius, PN: VN01H02), and 200 µl of
100mM dissolution buffer was added, centrifuged at 12,000 g for
20min, discarded the solution at the bottom of the collecting
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tube, and repeated four times (pH value should be measured
at 8.0). Trypsin (Thermo Scientific, PN: 1862748) was added to
the sample (2.5 µl/per sample, 37◦C for 14 h). On the next day,
the samples were washed with ultrapure water three times, and
the bottom of the enrichment tube was lyophilized and then
redissolved with 100mM dissolution buffer.

TandemMassTagTM (TMTTM) technology is an in vitro peptide
labeling technology developed by Thermo Scientific. In this
experiment, 27 serum samples were divided into three groups
by labeling with 10 isotopes. The amino groups of peptides
were specifically labeled and then analyzed by tandem MS.
The relative protein content of 10 different samples in each
group could be compared simultaneously. After thawing at
room temperature, the TMT reagent (10 standard TMT Kit,
Thermo Scientific, PN: 90111) was opened, and 0.8mg of
TMT reagent and 41 µl of absolute ethanol were added into
each tube and vibrated for 5min. Then, 100 µl of enzyme
digested sample was added (100 µl/sample) and reacted for 1 h
at room temperature. Next, 8 µl of 5% of quenching reagent
(Thermo Scientific, PN: 1861439) was added and incubated
for 15min to terminate the reaction. After the labeled samples
were mixed, vortex oscillation was performed and centrifuged
to the bottom of the tube. The sample after vacuum freeze
centrifugation is frozen and stored for use (Vacuum freeze dryer,
Thermo: SPD2010-230).

Pre-separation of Enzymatic Peptides and
LC–MS/MS Analysis
Rigoll-3000 high performance liquid chromatography system
was used to separate the samples at high pH (Beijing Puyuan
Jingdian Technology Co., Ltd). The experimental methods

in this part refer to the proteomic studies published by
Zhao et al. (21). The mixed labeled samples were dissolved
in 100 µl mobile phase A (98% ddH2O, 2% acetonitrile,
pH 10) and centrifuged at 14,000g for 20min, and the
supernatant was taken for use. Firstly, the system condition
was detected, and 400 µl BSA was used for separation (column
temperature 45◦C, detection wavelength 214 nm). Then, 100
µl of the prepared sample was separated in mobile phase B
(98% acetonitrile, 2% ddH2O, pH 10) with a linear gradient
of 5–95% over 72min at the flow rate of 0.7 ml/min, in
detail Supplementary Table 2.

Each fraction was injected for nanoLC–MS/MS analysis
(high performance liquid chromatography: Thermo Scientific
EASY-nLC 1000 System, Nano HPLC; MS system: Thermo,
Orbitrap Fusion Lumos). The components obtained by reverse
phase separation at high pH were redissolved with 20 µl of
2% methanol and 0.1% formic acid (centrifuged at 12,000
rpm for 10min), 10 µl of supernatant was aspirated, and
the sample was loaded by sandwich method (loading pump
flow rate to 350 nl/min for 15min) and mobile phase B
(100% acetonitrile, 0.1% formic acid) with a linear gradient
of 6–95% over 75min at the flow rate of 600 nl/min, in
detail Supplementary Table 3.

Protein Identification and Quantification
The obtained data were processed by UniProt_Bovin (2019.07.16
Download) database for MS. Maxquant, the commercial software
supporting Thermo Company, was used to process the original
MS file to obtain the quantitative value of the sample. The
detailed parameters are retrieved in Supplementary Table 4.

FIGURE 1 | Experimental workflow for proteome analysis.
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Bioinformatics Analysis of DEPs
Clusters of Orthologous Groups (COG) analysis is realized by
Blast to kyva sequence, and then statistical analysis is carried
out to draw the corresponding graph. Gene Ontology (GO) is
a standard vocabulary describing the function, location, and
activity of genes. It has a tree structure and is themost widely used
ontology in molecular biology. KEGG is a Kyoto Encyclopedia of
Genes and Genomes (http://www.genome.jp/kegg).

Enzyme-Linked Immunosorbent Assay
According to the α-tocopherol concentration in plasma, 40
cows were divided into the subclinical VE deficiency group
and healthy control group (the same as the Animals and
Experimental Design section). Plasma levels of apolipoprotein C3
(APOC3), apolipoprotein A4 (APOC4), serum amyloid protein
A4 (SAA4), phosphatidylinositol-glycan-specific phospholipase
D (PHLD), and pantetheinase-1 (VNN1) were determined
by enzyme-linked immunosorbent assays according to the

manufacturer’s instructions (ELISA kits, Shanghai Sinovac
Biotechnology Co., Ltd., China). Optical density was measured
at 450 nm using a microplate reader (Thermo Multiskan FC
microplate reader).

Western Blotting Analysis
Lysates from plasma samples from normal or subclinical VE
deficiency were separated on a 10% SDS-PAGE gel, and the
proteins were then transferred to a nitrocellulose membrane.
The membrane was blocked in TBST containing 5% non-fat
milk powder for 1 h and then incubated overnight with primary
antibodies against VNN1 protein; the primary antibody used was
anti-VNN-1 (dilution 1:1,000, rabbit, LSBio, USA, LS-C374585)
and washed three times with TBST (5min each), and then
the membrane was incubated for 1 h at room temperature
with horseradish peroxidase conjugated rabbit IgG. Antibody
binding was detected using enhanced chemiluminescence ECL
Plus Western blotting detection reagents (GE).

TABLE 1 | Proteins showing significant differences in abundance between plasma from cows with subclinical vitamin E deficiency and healthy control.

IDa Gene name Protein nameb FDR- corrected

p-value

Fold_changec Changed

C4T8B4_BOVIN CRP Pentraxin 0.000055 −2.030082929 ↓

G3X6K8_BOVIN HP Haptoglobin 0.046888 −1.826079462 ↓

APOC3_BOVIN APOC3 Apolipoprotein C-III 0.000048 −1.418673822 ↓

Q1RMN9_BOVIN – C4b-binding protein alpha-like 0.001169 −0.912143442 ↓

APOC4_BOVIN APOC4 Apolipoprotein C-IV 0.000173 −0.808904848 ↓

VNN1_BOVIN VNN1 Pantetheinase 0.001734 −0.743950694 ↓

F1MJK3_BOVIN – Uncharacterized protein 0.000734 −0.711301256 ↓

F1N0H3_BOVIN CA2 Carbonic anhydrase 2 0.002981 −0.698077617 ↓

SAA4_BOVIN SAA4 Serum amyloid A-4 protein 0.007418 −0.683821812 ↓

Q32PA1_BOVIN CD59 CD59 molecule 0.000926 −0.522529897 ↓

Q2KIW1_BOVIN PON1 Paraoxonase 1 0.00612 −0.476851592 ↓

F1MRD0_BOVIN ACTB Actin, cytoplasmic 1 0.006124 −0.463760059 ↓

LBP_BOVIN LBP Lipopolysaccharide-binding protein 0.037565 −0.453306513 ↓

PHLD_BOVIN GPLD1 Phosphatidylinositol-glycan-specific

phospholipase D

0.000006 −0.447579644 ↓

E1B805_BOVIN – Uncharacterized protein 0.007075 −0.422350268 ↓

A0A3B0IZF8_BOVIN C1QC Adiponectin B 0.035116 −0.403812868 ↓

A0A3Q1LU84_BOVIN Uncharacterized protein 0.01683 −0.400493668 ↓

A0A3Q1LL04_BOVIN YIPF1 Protein YIPF 0.017006 −0.387877785 ↓

A0A3Q1LS74_BOVIN CFH Complement factor H 0.029566 −0.305647518 ↓

F6PSK5_BOVIN IL1RAP Interleukin 1 receptor accessory protein 0.003925 −0.285444103 ↓

F1MMP5_BOVIN ITIH1 Inter-alpha-trypsin inhibitor heavy chain H1 0.030626 −0.27646765 ↓

FA10_BOVIN F10 Coagulation factor X 0.036694 0.280035783 ↑

HABP2_BOVIN HABP2 Hyaluronan-binding protein 2 0.002546 0.306909645 ↑

COMP_BOVIN COMP Cartilage oligomeric matrix protein 0.029325 0.350653389 ↑

REG1_BOVIN – Regakine-1 0.01005 0.546086942 ↑

CD14_BOVIN CD14 Monocyte differentiation antigen CD14 0.000123 0.756306843 ↑

a ID from NCBI protein database for BOVIN.
bDisplays the protein name of the comment in the Fasta header column.
cFold changes calculated as: –log2 (mean disease/mean control), mean value of peak area obtained from the QF group/mean value of peak area obtained from the BQF group. Choose

p-value 0.05 and fold change 1.2 times as significant difference (21).
d “↑”, upregulated plasma proteins; “↓”, downregulated plasma proteins.
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FIGURE 2 | Principal component analysis. The abscissa is the PC1 result, and the ordinate is the PC2 result. Red represents the healthy controls (BQF group), and

blue represents the subclinical VE deficiency cows (QF group). It can be seen that there is a certain separation trend between the two groups of samples.

Statistical Analysis
The basic information analyses were performed using SPSS
statistical software (V18.0), which was considered significant
when the p-value was below 0.05. MS data analyses used the
Uniprot_BOVIN (2019.07.16 download) database. The original
MS of TMT file is processed byMaxquant, a commercial software
of Thermo Company. When the p-value is 0.05 and fold change
1.2 times, the difference protein is determined to have significant
difference (21).

RESULTS

Proteomics of TMT Method to Determine
Protein Expression
The experimental workflow of proteomic analysis is
shown in Figure 1. The clinical characteristics of the
subclinical VE deficiency group (QF) and normal control
group (BQF) samples for proteomic analysis are shown in
Supplementary Figure 1. According to the Uniprot_BOVIN
database, 3,614 peptides (Supplementary Table 5) and 270
proteins (Supplementary Table 6) were identified in the
protein qualitative results, which revealed 26 DEPs. The
specific information concerning the DEPs is shown in
Table 1. Compared with the healthy control group, the
DEPs in the plasma of the subclinical VE deficiency group

were 21 downregulated proteins and 5 upregulated proteins
(Figures 2, 3).

Functional Annotation and Analysis
Clusters of Orthologous Groups analysis was based on the
homologous classification of gene products based on the COG
database. The analysis identified protein ortholog classifications
via the COG database, allowing us to predict the possible
functions of these proteins and potentially uncover further
functional classifications. The highest protein functional
classifications were defense mechanisms with 28 proteins,
general function prediction with 20 proteins, post-translational
modification, protein turnover, and chaperones with 15 proteins,
amino acid transport and metabolism with 10 proteins, and
signal transduction mechanisms with 15 proteins (Figure 4).

To understand the cellular and molecular functions (MF)
of subclinical VE deficiency-related proteins, GO analysis of
these related proteins was performed based on biological
processes (BP), cellular components (CC), and MF. In this
analysis, the protein number was used to assess the importance
of subclinical VE deficiency-related proteins in regulating
cellular and molecular functions (Figure 5). Based on BP, these
subclinical VE deficiency-related proteins were mainly involved
in innate immune response, triglyceride homeostasis, negative
regulation of triglyceride, G protein-coupled receptor signaling,
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inflammatory response, and phosphatidylcholine metabolic
process. The higher enrichment of CC was the plasmamembrane
and high-density lipoprotein (HDL) particle, and the functions
of higher MF enrichment were calcium ion binding and
phospholipid binding.

For KEGG signaling pathway analysis, these subclinical
VE deficiency-related proteins are mainly involved in the
MAPK signaling pathway, and these subclinical VE deficiency
downregulated differential-related proteins are mainly involved
in pantothenate and CoA biosynthesis, PPAR signaling pathway,
and glycosylphosphatidylinositol (GPI)-anchor biosynthesis
(Figure 6).

Interaction Network Between Proteins
In this study, 26 differential proteins were obtained through
high-throughput screening. Based on the STRING PPI (protein–
protein interaction) database and Cytoscape tools, we established
a PPI network and found that 10 of these proteins have direct
interactions. In the network, the number of proteins that directly
interact with a certain protein A is called the connection degree
of protein A. Generally speaking, the greater the connection
degree of a protein, the greater the disturbance to the entire
system when the protein changes; this protein may be the key
to maintaining the balance and stability of the system. The
Cytoscape was used as a tool to set the size of the node to reflect
the degree of the node. A larger node indicates a higher degree
of the node. The top four proteins were selected in the degree
of the node in this network as candidate proteins for subsequent
experimental verification, namely, APOC3, APOC4, SAA4, and
PHLD (Figure 7).

Reduced Plasma Levels of VNN1, SAA4,
APOC3, APOC4, and PHLD in Cows With
Subclinical VE Deficiency
To validate differentially expressed candidate proteins between
the subclinical VE deficiency group and the healthy control
group, 40 plasma samples were verified (20 subclinical VE
deficiency and 20 healthy plasma) by ELISA. The top four DEPs
in PPI (APOC3, APOC4, SAA4, PHLD) and one important
protein (VNN1) by literature review were further verified by
ELISA. The results showed that VNN1, SAA4, and APOC4 were
significantly downregulated in subclinical VE deficiency plasma
samples (p< 0.05; Figure 8), while the expression levels of PHLD
and APOC3, protein were not significantly changed (p > 0.05).

Confirmation of Differentially Regulated
Proteins by Western Blot
Four samples (the subclinical VE deficiency group and the
healthy control group) were selected from the collected plasma
samples, and Western blot analysis was performed on one
important protein, VNN-1 to verify the results of LC–MS/MS.
Figure 9 shows a Western blot image that can quantify proteins.
The results of Western blot provide reliable evidence for
TMT proteomics.

FIGURE 3 | Volcano plot of subclinical vitamin E deficiency vs. healthy control.

The volcanic map was drawn using two factors, the fold change (Log2)

between the two groups of samples and the p-value (–Log10) obtained by the

t-test, to show the significant difference in the data of the two groups of

samples. Red and green dots in the figure are proteins that are significantly

differently expressed (1.2 times of fold change and 0.05 of p-value). Green

dots are downregulated proteins, red dots are upregulated proteins, and blue

dots are proteins that have no significant difference.

DISCUSSION

The aim of this study was to report a comprehensive analysis of
DEPs in the plasma of early subclinical VE deficiency and healthy
cows using TMT-labeled quantitative proteomics. Twenty-six
plasma proteins were changed in the subclinical VE deficiency
group, of which 21 proteins were downregulated, and 5 proteins
were upregulated. This is a comprehensive study to explore the
potential biological significance of DEPs between subclinical VE
deficiency and healthy cows, providing valuable insights into
subclinical VE deficiency plasma proteins that may be applied for
developing diagnostic markers in subclinical VE deficiency.

Those DEPs are mainly involved in innate immune response,
triglyceride homeostasis, and negative triglyceride regulation
according to GO analysis. The changes of regakine-1, coagulation
factor X (F10), CD59, haptoglobin (HP), lipopolysaccharide-
binding protein (LBP), and serum amyloid A-4 protein (SAA4)
involved in congenital immune response are noteworthy in the
DEPs. Synergistic effects of regakine-1 with other neutrophil
chemokines suggest that it also enhances inflammatory
responses to infection (22). F10 regulates inflammatory signaling
by inducing the expression of interleukin (IL)-6, IL-8, monocyte
chemotactic protein-1, and intracellular adhesion molecules
(23, 24). CD59 is a key regulator of the complement system,
which inhibits the formation of the MAC terminal pathway by
binding to C9 or C5B-8 to prevent complement attack (25).
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FIGURE 4 | Statistics of COG function classification. The abscissa shows the COG function classification, and the ordinate shows the number of proteins by

functional classification.

Haptoglobin is an acute phase protein released by hepatocytes
in response to the production of pro-inflammatory cytokines
in an inflammatory state (26). Lipopolysaccharide-binding
protein is an acute phase protein synthesized in the liver that
is involved in the host response to both Gram-negative and
Gram-positive pathogens (27); it also promotes the presentation
of lipopolysaccharide LPS to CD14 and induces the release of
pro-inflammatory cytokines (28). Serum amyloid A-4 protein is
a secondary apolipoprotein on HDL in plasma (29). Studies have
shown that the concentration of SAA4 decreases when the body
is under inflammation (30, 31). The expression of regakine-1 and
F10 was upregulated. It indicates that subclinical VE deficiency
may aggravate the inflammatory response of the body and
increase the risk of infection with other diseases. The expression
of CD59, CRP, HP, LBP, and SAA4 was downregulated in the
subclinical deficiency group, suggesting that the subclinical
deficiency of VE may impair the innate immune response of the
body, leading to inflammation and immunosuppression.
However, its molecular mechanism needs to be
further studied.

The involvement of hyaluronan-binding protein 2 (HABP2),
apolipoprotein C4 (APOC4), paraoxonase 1 (PON1),
complement factor H (CFH), inter-alpha-trypsin inhibitor
heavy chain H1 (ITIH1), and APOC3 in triglyceride homeostasis
and negative triglyceride regulation is significant in DEPs.
Hyaluronan-binding protein 2 is a calcium-dependent serine
protease that provides structural and functional integrity for

cells and plays an important role in blood coagulation and
fibrinolysis (32). Apolipoprotein C-IV expression is regulated
by the oxisome proliferation-activated receptor complex and
is associated with hepatic steatosis (33). Paraoxonase 1 is a
mammalian antioxidant/anti-inflammatory enzyme synthesized
in the liver and secreted into the blood (34). Complement factor
H is a major MDA binding protein that can induce the pro-
inflammatory effects of MDA (35). Inter-alpha-trypsin inhibitor
heavy chain H1 is one of the heavy chains of serine protease
inhibitors that carry hyaluronic acid in plasma and play a role
in inflammation and carcinogenesis (36). APOC3 is recognized
as one of the most important regulators of plasma triglyceride
(37). APOC3 of bovine is a low molecular weight protein mainly
synthesized by the liver and mainly distributed in HDL (38, 39).
Under normal conditions, APOC3 concentration in bovine
plasma was the lowest in the non-lactation period and gradually
increased in the early lactation stage. In the early lactation
period, the plasma APOC3 concentration of cows with fatty liver
and ketosis was lower than that of healthy cows (40, 41). In the
subclinical VE deficiency group, HABP2 was upregulated, while
CFH, ITIH1, and APOC3 were downregulated, indicating that
subclinical VE deficiency can aggravate lipid peroxidation, cause
oxidative stress induced by inflammatory response, and may
cause hyaluronic acid synthesis and transport disorders at the
cellular level, thus affecting extracellular matrix synthesis and
changing cell structural integrity (42). Paraoxonase 1 is involved
in the hydrolysis of lipid hydroperoxides and phospholipids
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FIGURE 5 | GO (Gene Ontology) analysis of subclinical VE deficiency-related proteins. Green represents biological process, orange represents cellular process, and

blue represents molecular process. Classification of 26 DEPs based on biological process, molecular function, and subcellular localization. The abscissa represents

the number of differential proteins in each functional category. Based on BP, these subclinical VE deficiency-related proteins were mainly involved in innate immune

response and triglyceride homeostasis. The higher enrichment of CC was the plasma membrane and high-density lipoprotein particle, and the functions of higher MF

enrichment were calcium ion binding and phospholipid binding.

produced during oxidative stress (43), which may be the main
reason for the downregulation of VE in subclinical deficiency.

Themain typical pathways were identified between subclinical
VE deficient and control cows by KEGG. For KEGG signaling
pathway analysis, these subclinical VE deficiency-related proteins
are mainly involved in the MAPK signaling pathway, and

these subclinical VE deficiency downregulated differential-
related proteins are mainly involved in pantothenate and CoA
biosynthesis, PPAR signaling pathway, GPI-anchor biosynthesis.
Mitogen-activated protein kinases (MAPKs) are a kind of protein
kinases that regulate cell proliferation, differentiation, apoptosis,
and migration (44). Mitogen-activated protein kinase activation
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FIGURE 6 | KEGG pathway of subclinical VE deficiency-related proteins enrichment results. Abscissa is ratio, ordinate is each KEGG pathway entry, color represents

enrichment [–log10 (p-value)], and circle size represents protein number. (A) The enrichment results of all differential proteins. (B) The enrichment results of

downregulated differential proteins.

FIGURE 7 | Protein–protein directive interaction network. Ten among 26 DEPs

were predicted to have directive protein–protein interactions. The interactions

were based on “evidence” mode and of medium confidence. Nodes represent

proteins, and edges represent protein–protein interactions. Degree determines

the node size, and combined_score determines the edge size.

interacts with protein lipase to change cell behavior rapidly
in response to environmental changes (45). The upregulated
protein monocyte differentiation antigen CD14 (CD14) and

downregulated protein interleukin 1 receptor accessory protein
(IL-1RAP) were related to the MAPK signaling pathway. CD14
is a pattern recognition receptor (PRR) of the innate immune
system. After recognizing pathogen associated molecular pattern
(PAMP), CD14 transmits signals to cells to activate transcription
factors and initiate inflammatory reaction (46). Interleukin 1
receptor accessory protein is a kind of auxiliary protein IL-1
signaling pathways, involved in the IL-1 functional receptors
(IL-1R I) that both belong to the immunoglobulin superfamily
member (47). Interleukin 1 receptor accessory protein increases
the supply of cysteine through uptake and biogeneration
and controls cysteine metabolism to participate in regulating
oxidative stress (48). The downregulation of plasma IL1RAP
in dairy cows with subclinical VE deficiency may be due
to its involvement in the regulation of cysteine metabolism.
Cysteine metabolism is a key substrate and determinant of
antioxidant glutathione (GSH) synthesis (48). Plasma CD14
protein expression was up-regulated and IL-1RAP protein
expression was down-regulated, suggesting that stress and
inflammation were more serious in cows with subclinical
VE deficiency.

Glycosylphosphatidylinositol-anchored modification is
one of the most common post-translational modifications
of eukaryotic cell membrane proteins (49, 50).
Glycosylphosphatidylinositol-anchored biosynthesis pathway
related protein phosphatidylinositol glycosyl specific
phospholipase D (GPLD) was downregulated in post-partum
VE-deficient dairy cows. Glycosylated phosphatidylinositol
specific phospholipase D (GPI-PLD) in plasma can specifically
act on the GPI-anchored substrate in the presence of detergents,
thus releasing anchored proteins and phospholipid acids (51).
Liver is an important source of plasma GPI-PLD in both human
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FIGURE 8 | Five plasma protein levels in subclinical VE deficiency cows (QF) and healthy controls (BQF) were selected for verification using enzyme-linked

immunosorbent assay in subclinical VE deficiency cows (n = 20) and healthy controls (n = 20). Plasma levels of VNN-1, SAA4, and APOC4 were significantly lower in

subclinical VE deficiency cows than those of the control group (*p < 0.05, **p < 0.01), while no significant differences were detected in the expression of APOC3 and

PHDL (p > 0.05).

FIGURE 9 | Validation of VNN-1 by immunoblot analysis. (A) Representative immunoblotting of DEPs between subclinical VE deficiency cows (QF) and controls (BQF).

(B) Quantification of relative gray values of VNN-1 compared with actin (**p < 0.01). (C) The TMT quantitative data of VNN1 between QF group and BQF (**p < 0.01).

and bovine (52, 53). The lysosomes of hepatocytes are rich in
GPI-PLD, which plays an important role in the degradation of
GPI and GPI-anchored proteins in hepatocytes. It is speculated
that GPI-PLD in hepatocytes may enter plasma with HDL

secreted by hepatocytes (54). Therefore, liver diseases may affect
the activity of GPI-PLD in plasma. Downregulation of plasma
GPLD1 in dairy cows with subclinical VE deficiency indicated
that oxidative stress aggravates abnormal liver metabolism and

Frontiers in Veterinary Science | www.frontiersin.org 10 December 2021 | Volume 8 | Article 72389870

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Qian et al. Plasma Proteomics of Dairy Cows

abnormal degradation of GPI and GPI-anchored protein of dairy
cows with subclinical VE deficiency.

Pantothenic acid (PA) and its salts, as a component of
coenzyme A (CoA) or acyl carrier protein (ACP), play an
important role in many metabolic reactions (55). Coenzyme A-
bound PA is involved in the energy release of carbohydrates,
fatty acids, and amino acids. The PA binding to ACP is
related to the synthesis of fatty acids (56). In the post-partum
subclinical VE deficiency group, PA and CoA biosynthesis
pathway-related protein pantothenyl thioglycolaminase (VNN1)
were downregulated. VNN1 is a kind of oxidative stress sensor
rich in the liver, which is a GPI-anchored pantothenase. It is
involved in the regulation of multiple metabolic pathways and is
highly expressed in the liver, intestine, and kidney (57, 58). Its
pantothenase activity hydrolyzes PA into PA (vitamin B5) and
cysteamine (59). Some studies have shown that VNN1 deficiency
can increase liver GSH levels (60, 61). In this study, VNN1
was downregulated in subclinical VE-deficient dairy cows after
middle production, which may be due to the increase of liver
GSH level to resist oxidative stress.

Subclinical VE deficiency in cows in the early post-partum
period can aggravate oxidative stress and inflammation and
aggravate abnormal lipid metabolism in cows (11, 62, 63).
Vitamin E is a major protective agent for circulation and
intracellular lipid peroxidation, which can reduce the level of
cellular oxidative stress and improve the functional environment
of intracellular signaling pathways. It has anti-inflammatory and
antioxidant effects (64). The five candidate proteins (APOC3,
APOC4, SAA4, PHLD, and VNN1) were identified by interaction
network analysis and literature review. The DEPs were further
verified by enzyme-linked immunosorbent assay and Western
blot. APOC3, VNN1, and SAA4 all had significantly lower
expression levels than the healthy control group. APOC3 plays
a role in PPARα metabolism by controlling lipolysis of PPARα

ligands (65). VNN1 is an important target gene of PPARα, which
participates in regulating its activity (66–68). VNN1 is involved
in oxidative stress and inflammation by regulating the synthesis
of cysteamine and GSH (69, 70). Under physiological conditions,
SAA4 accounts for more than 90% of the total SAA (29).
However, its concentration did not increase in the inflammatory
state, but showed a downward trend (30, 31). As a new molecule
of concern, SAA4 may be one of the diagnostic markers of post-
partum cow subclinical VE deficiency.More research is needed to
explore the regulatory mechanisms of APOC3, VNN1, and SAA4
proteins against the dairy cow subclinical VE deficiency and how
the three proteins interact.

CONCLUSIONS

In this study, proteomic TMT methods were used to reveal
the subclinical deficiency of cow VE in the early post-partum
period and changes in plasma protein abundance in healthy

control. Subclinical VE-deficient cows aggravate oxidative stress,
abnormal lipid metabolism, and immunosuppression. The top
canonical pathways and biological functions identified by KEGG
and GO indicate this. Based on the different abundance of
proteins in these pathways, fat mobilization, ROS production,
and inflammatory immune response of subclinical VE-deficient
dairy cows increased, which would cause the body to be
susceptible to infection. These changes of oxidative stress and
inflammation-related proteins may be related to early lactation
diseases and slow recovery of reproductive performance. These
findings contribute to further research to better understand the
molecular mechanism of protein changes that may promote
inflammation and oxidative stress.
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This study aimed to monitor the effect of including rumen-protected L-carnitine (Carneon

20 Rumin-Pro, Kaesler Nutrition GmbH, Cuxhaven, Germany) in the transition diet on

the productive and metabolic responses of multiparous high-producing Holstein dairy

cows. Thirty-two multiparous cows were allocated in a completely randomized design to

receive the same diet plus 60 g fat prill containing 85% palmitic acid (control, n = 16) or

100 g rumen-protected L-carnitine (RLC, n = 16); at 28 days before expected calving

until 28 days in milk (DIM). Fat prill was included in the control diet to balance the

palmitic acid content of both experimental diets. Milk production over the 28 DIM

for the control and RLC groups was 46.5 and 47.7 kg, respectively. Milk fat content

tended to increase upon rumen-protected L-carnitine inclusion (p = 0.1). Cows fed

rumen-protected L-carnitine had higher fat- and energy-corrected milk compared with

the control group. Pre- and post-partum administration of L-carnitine decreased both

high- and low-density lipoprotein concentrations in peripheral blood of post-partum

cows. The results of this study indicated that the concentration of triglycerides and

beta-hydroxybutyrate was not significantly different between the groups, whereas

the blood non-esterified fatty acid concentration was markedly decreased in cows

supplemented with L-carnitine. Animals in the RLC group had a significant (p < 0.05)

lower blood haptoglobin concentration at 7 and 14 DIM than the control. Animals in

the RLC group had a lower concentration of blood enzymes than those of the control

group. The mRNA abundance of Toll-like receptors 4, cluster of differentiation 14, and

myeloid differential protein 2 did not significantly change upon the supplementation of

L-carnitine in the transition diet. In summary, the dietary inclusion of RLC improved dairy

cow’s performance during the early lactation period. Greater production, at least in part, is

driven by improved energy utilization efficiency and enhanced metabolic status in animals

during the periparturient period.
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INTRODUCTION

In dairy cows, the transition from gestation to lactation is
challenged by energy requirement for milk production and
secretion, inadequate feed intake, and metabolic disorders (1, 2).
Therefore, this period is critical for determining the productive
responses, metabolic health (3), and profitability of the dairy
cows (4). As parturition approaches, concentrations of various
hormones and metabolites begin to alter in order to support
the milk yield (2). This would eventually lead to higher milk
production while there is a lag in the dry matter intake (DMI)
to provide nutrient demands of the animals post-partum. This
phenomenon triggers the animals to mobilize the body fat
reservoirs, which enters them in a state of negative energy balance
and could last for a long period (i.e., several months) in various
cases (5). A severe negative lag between DMI and milk yield
is a risk factor for metabolic imbalancing as well as infectious
and reproductive disorders (6). Besides, metabolic imbalancing

initiates a cluster of risk factors in dairy cows which leads to
an increased susceptibility to certain health disorders (2, 7).
For example, fresh cows, which cannot meet energy demands
through DMI, are associated with higher blood biomarkers of
fat mobilization, such as non-esterified fatty acids (NEFA) (7, 8).
Excessive fat mobilization may result in overproduction of the
ketones, e.g., beta-hydroxybutyrate (BHB) (9, 10). This can be
further elaborated by a higher degree of mobilization of energy
reserves due to the severe negative energy balance and lower
rumen fill index because of decreased DMI. Hence, the body
condition score (BCS) may be considered as an indicator for

the mobilization of adipose tissue. In particular, the post-partum
decrease in BCS is associated with metabolic imbalancing and
infectious disorders (11). Cows with a metabolic challenge have
a more pronounced decrease in BCS from days 14 to 35 after
calving, indicative of a higher degree of body fat mobilization.

Previous works have clearly pinpointed the state of immune
dysregulation in dairy cows during the transition period (12,
13). The presence of any metabolic imbalancing resulted
from aberrant nutrient metabolism, causing metabolic stress
and inflammatory responses in the early lactating cows (1).
Higher concentrations of NEFA and BHB may influence
early lactation disease and alter immune competence (14, 15).
Pathological levels of both NEFA and BHB have been negatively
associated with polymorphonuclear leukocytes and peripheral
blood mononuclear cell functionality (16–18). In particular,
increasing levels of NEFA during the periparturient period
manipulate the inflammatory response of dairy cows via its
impact on Toll-like receptors (TLR) and their signaling pathways
(19). TLR are among the pathogen recognition receptors within
the immune system. Toll-like receptors 4 (TLR4) are able to
recognize lipopolysaccharides (LPS), i.e., endotoxins of gram-
negative bacteria, which are located in various cell types (20).
Cluster of differentiation 14 (CD14) are accessory proteins, which
facilitate the interaction between LPS and TLR4. Subsequently,
CD14 transfers LPS to myeloid differential protein 2 (MD2),
a protein complexed with TLR4 on the cell surface, which
initiates themyeloid differentiation factor 88 pathway and in turn
transcription of the inflammatory cytokines.

Carnitine is a water-soluble quaternary amine, which
influences the function of all living cells. In dairy cows, L-
carnitine is a necessary molecule for the normal activity of the
tissues encompassing mitochondria. This molecule is involved
in the shuttle of activated long-chain fatty acids from cytosol
to the mitochondria. Besides, this molecule has a potential to
influence, although indirectly, the rate of energy production
from glucose (21, 22). In addition, previous experiments
in monogastrics have demonstrated that L-carnitine has an
antioxidative potential, which is quite vital for scavenging the
excess reactive oxygen species and maintaining the health of
livestock (23). L-Carnitine has been shown to modulate the
liver inflammation as well as circulating pro-inflammatory
markers via specific signaling pathways (24). However, in a
recent study in mid-lactating dairy cows challenged with LPS,
authors were not able to reveal significant effects of L-carnitine
supplementation before and 2 weeks after the challenge (25).
The aforementioned functions indicate that L-carnitine may
play a unique function in the transition period. Therefore,
the present work aimed to investigate the influence of dietary
inclusion of L-carnitine, through a rumen-protected L-carnitine
(Carneon 20 Rumin-Pro containing 20% L-carnitine, Kaesler
Nutrition GmbH, Cuxhaven, Germany) product, during the
transition period on (a) milk yield, chemical composition,
and fatty acid profile; (b) plasma concentrations of glucose,
urea, albumin, cholesterol, high-density lipoprotein (HDL), low-
density lipoprotein (LDL), triglyceride, haptoglobin, calcium,
blood enzymes, i.e., alanine aminotransferase (SGPT) and
aspartate aminotransferase (SGOT), NEFA, and BHB; (c) mRNA
expression of CD14, TLR4, and MD2; and (d) distinct animal
behavioral indices such as rumen fill index, manure score,
rumination activity, and BCS. Determining the aforementioned
parameters would enable to observe the impact of rumen-
protected L-carnitine on the productivity of the animal as well
as their inflammatory status at the molecular level.

MATERIALS AND METHODS

Animals, Feeding, and Management
Thirty-two multiparous Holstein cows (average 305-day milk
yield of 12,000 kg in the previous lactation) were paired by
expected calving date and randomly assigned to receive a similar
basal diet plus 60 g fat prill containing 85% palmitic acid (control
group, n = 16) or 100 g of the rumen-protected L-carnitine
(RLC group, n = 16), beginning at 28 days before the expected
calving through 28 days in milk (DIM). The rumen-protected
L-carnitine top-dressed on the basal diet was Carneon 20 Rumin-
Pro (Kaesler Nutrition GmbH, Cuxhaven, Germany), which is a
commercial source of L-carnitine (20% L-carnitine coated with
rumen bypass fat rich in palmitic acid). As described previously
(21), the specific inclusion rate of a protected fat, i.e., fat prill,
was included in the control group in order to balance the coated
fat of the protected L-carnitine source. Hence, the experimental
diets were either without or with extra supplemented L-carnitine
through the rumen-protected L-carnitine source. The specific
inclusion rate of protected L-carnitine source was decided based
on the previous research observing the impact of L-carnitine
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around parturition and during the high lactation period (21, 26).
During pre- and post-partum, the cows were housed in two
separated free stall barns, while they had free access to feed and
water in a commercial dairy farm with 820 milking cows. Diets
were fed as a total mixed ration (TMR) two times per day at 0730
to 1830 h in amounts that ensured ad libitum consumption and
∼4–8% feed refusals. The ingredients and chemical composition
of the pre- and post-partum diets are presented in Table 1. Daily
samples of TMR and feed refusal and weekly samples of the
diet ingredients were collected, dried in a forced air oven for
72 h at 55◦C, and ground using a Wiley mill to pass a 1-mm
screen, then analyzed for DM and the chemical composition (27).
Dry matter was determined after 24 h at 95◦C (ISO 6496). Ash
was determined after 3 h at 550◦C (ISO 5984). Nitrogen was
assessed using the Kjeldahl method (Kjeltec 2300 Autoanalyzer,
Foss Tecator AB, Hoganas, Sweden) with crude protein (CP) as
N × 6.25. Starch content was evaluated by an anthrone/sulfuric
acid method using glucose as standard and estimated as 0.9 ×

glucose content after liberating the starch by heating in a boiling
water bath in the presence of 2N HCl (28). For NDF and ADF,
the method of Goering and Van Soest (29) was used.

Cows were milked three times daily at ∼0400, 1200, and
2000 h. The incidence of health problems was accurately recorded
for each cow throughout the experiment.

Sample Collection and Processing
Feed refusals of each group were measured daily, and feed
intake for each group was determined by difference assuming a
different DM content of feed offered and the ort. Milk yield was
recorded daily but reported from 3 days after calving. Weekly
milk samples, for 4 weeks after the calving, from individual cows
were obtained at 3 consecutive milking, preserved with 2-bromo-
2-nitropropane-1,3-diol, and analyzed for protein, fat, lactose,
milk urea nitrogen (MUN), somatic cell scores (SCC), solid
non-fat (SNF), and total solid content using Fourier-transform
infrared spectroscopy (FT-IR; CombiScope FTIR 600 HP, Delta
Instruments, Drachten, The Netherlands) in a commercial
laboratory (Sazan Rojan Alvand Co., Alborz, Iran). In addition,
themilk fat samples obtained from cows at 21 DIMwere analyzed
for fatty acid composition. This particular sampling day for milk
fatty acid composition analysis was chosen as feed intake in
animals around 21–28 days in lactation would be higher (30);
hence, the milk fatty composition would be more heavily relied
from the diet rather than mobilized fat depot (31). For this, fatty
acid methyl esters were prepared by transmethylation and were
then quantified by using a gas chromatograph (Shimadzu GC-
2010, Kyoto, Japan) equipped with a flame-ionization detector
and a CP-7489 fused-silica capillary column (100m × 0.25mm
i.d. with 0.2-µmfilm thickness; Varian,Walnut Creek, CA, USA).
The initial oven temperature (50◦C) was held for 1min then
ramped at 5◦C/min to 160◦C, where it was held for 42min and
then ramped at 5◦C/min to 190◦C and held for 22min. Inlet and
detector temperatures were maintained at 250◦C, and the split
ratio was 100:1. The hydrogen carrier gas flow rate through the
column was 1 ml/min. The hydrogen flow to the detector was 30
ml/min, airflow was 400 ml/min, and the nitrogen make-up gas

TABLE 1 | Ingredient, chemical composition, and calculated energy content of

pre-partum (from −28 to parturition) and post-partum (from 1 to 28 DIM).

Items Pre-partum Post-partum

Ingredient, % of DM

Corn silage 35.0 17.6

Alfalfa hay 17.2 21.8

Wheat straw 4.8 0.6

Corn grain 8.6 12.3

Barley grain 7.9 14.1

Wheat grain 7.3 -

Sugar beet pulp 1.2 2.6

Extuded soybean meal 4.8 10.9

Wheat bran 1.3 6.3

Cottonseed whole 2.6 3.9

DDGS 1.3 2.7

Rape seed meal 1.3 3.2

Supplementa,b 6.6 3.9

Metabolizable energy (MJ/kg

DM)

Chemical composition (% DM)

and

10.3 11.2

CP 11.8 15.8

NDF 39.5 36.3

ADF 21.9 18.0

ASH 7.8 7.3

Starch + soluble sugar 25.3 27.3

EE 3.1 4.0

aPre-partum: contained 400 g anionic salts (www.javanehkhorasan.com), 200 g VitalG

(rumen protected glucose, www.groupsana.comena), 100 g OptiMate (essential omega-

3 from salmon oil, rumen protected with vitamins, www.agritech.ie), 15 g encapsulated

choline chloride (www.Kemin.com), 25 g Lutrell® Pure [conjugated linoleic acid (CLA),

BASF], 60 g vitamin D3 (5,000,000 iu/kg), 80 g vitamin E and Se (11,000 iu and 300

mg/kg, respectively), 200 g mineral/vitamin premix/kg (vitamins including A: 1,500,000

iu, D3: 400,000 IU, E:3,000 IU, biotin: 120mg; minerals including Ca, P, Mg Na, K, Mn

Zn, Cu, Se, I, Fe, Co, and S with the quantity of 44, 20, 2.3, 20, 1.6, 3.4, 6, 5, 0.14, 0.25,

4 0.043, and 17.6 g, respectively, www.javanehkhorasan.com), and 15 g toxin bonder

(Toxytrap, Iran).
bPost-partum: contained 160 g sodium bicarbonate (Petro Tarh, Iran), 60 g di-

calcium phosphate (www.javanehkhorasan.com), 200 g VitalG (Rumen protected

glucose, www.groupsana.comena), 150 g Optimate (essential omega-3 from salmon oil,

rumen protected with vitamins, www.agritech.ie), 30 g encapsulated choline chloride

(www.Kemin.com), 25 g Lutrell® Pure [conjugated linoleic acid (CLA), BASF], 60 g vitamin

D3 (5,000,000 iu/kg), 80 g vitamin E and Se (11,000 iu and 300mg/kg, respectively), 200 g

mineral/vitamin premix/kg (vitamins including A: 1,500,000 iu, D3: 400,000 IU, E:3,000 IU,

biotin: 120mg; minerals including Ca, P, Mg Na, K, Mn Zn, Cu, Se, I, Fe, Co, and S with

the quantity of 44, 20, 2.3, 20, 1.6, 3.4, 6, 5, 0.14, 0.25, 40.043, and 17.6 g, respectively,

www.javanehkhorasan.com), and 15 g Toxin bonder (Toxytrap, Iran).

flow was 25 ml/min. Peaks in the chromatogram were identified
and quantified using pure methyl ester standards.

Fat-correctedmilk standardized to 4% fat was calculated using
the equation of Gaines (32), FCM= [0.4×milk yield (kg)]+ [15
×milk fat (kg)], and ECMwas calculated as presented by Muñoz
et al. (33).

Bleeding was conducted from 10 cows per each group at
0800 h via puncture of the coccygeal vessels on days −14,
−7, +7, +14, and +21 relative to calving as proposed by
Greenfield et al. (34). The aforementioned sampling dates were

Frontiers in Veterinary Science | www.frontiersin.org 3 December 2021 | Volume 8 | Article 76983776

http://www.javanehkhorasan.com
http://www.groupsana.comena
http://www.agritech.ie
http://www.Kemin.com
http://www.javanehkhorasan.com
http://www.javanehkhorasan.com
http://www.groupsana.comena
http://www.agritech.ie
http://www.Kemin.com
http://www.javanehkhorasan.com
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Danesh Mesgaran et al. L-Carnitine Improves Transition Cow Metabolism

chosen, as previous studies have shown extensive metabolic
changes from 2 weeks pre- until 2 weeks post-partum, which
could be associated with overall health alteration in dairy
cows and higher culling rates (35). Samples on day 21
after calving was also taken to ensure a better depiction of
dynamics of the selected metabolic and health parameters.
The samples were kept at room temperature, and the serum
was separated within 0.5 h, then stored frozen at −20◦C
until analyses for glucose (GOD-PAP, https://parsazmun.de/
GLUCOSE/), triglycerides (GPO-POD, www.Bionik.web.com),
NEFA (colorimetric method, Randox, County Antrim, UK),
BHB (kinetic enzymatic method, Randox, County Antrim,
UK), urea (http://paadco.co), cholesterol (CHOD_POG, http://
paadco.co), HDL (direct enzymatic colorimetric method, http://
paadco.co), LDL (direct enzymatic colorimetric method, http://
paadco.co), SGOT (kinetic UV method based on IFCC
recommendations, http://paadco.co), SGPT (kinetic UV method
based on IFCC recommendations, http://paadco.co), calcium
(Arsenazo III Colorimetric method, http://paadco.co), albumin
(BGC method, https://parsazmun.de), and haptoglobin (an
immunoturbidimetric assay).

RNA Isolation, Reverse Transcription, and

Quantitative Real-Time PCR
Samples of blood were obtained at 0800 h via puncture of the
coccygeal vessels on −7, +7, and +14 days related to calving.
These sampling points were chosen, as previous studies revealed
that unresolved subacute inflammations as early as 7 days
post-calving would damage the productivity of dairy cows in
the subsequent lactation (36). These samples were immediately
frozen at −80◦C and used for the analysis of mRNA expression.
Total RNAwas extracted by the AccuZolTM Total RNAExtraction
Solution (Bioneer, Daejeon, South Korea) according to the
manufacturer’s instruction. The purity and integrity of RNAwere
assessed using the Epochmicroplate spectrophotometer (BioTek,
Winooski, USA) and agarose gel electrophoresis, respectively.
One µg of RNA was treated with DNase and reverse transcribed
to cDNA using AccuPower R© RT PreMix (Bioneer, Daejeon,
South Korea) according to the supplier’s instruction.

The cDNA was then subjected to real-time quantitative
PCR (qPCR) for amplification. Oligonucleotide primers specific
for studied and reference genes were used (Table 2). All
qPCR reaction conditions were in compliance with MIQE
[minimum information for publication of qPCR experiments,
(39)]. Quantitative PCR was performed in duplicate, using the
RealQ Plus 2X master mix (Ampliqon, Odense, Denmark) in
a LightCycler R© 96 instrument (Life Technologies Roche Life
Science, Basel, Switzerland). Amplification was performed in 0.1-
ml 8-strip tubes (Gunster Biotech, Viluppuram, Taiwan) as the
reactionmixture containing 2µl of cDNA, 5 pmol of each primer,
and 10 µl of 2× master mix in a total volume of 20 µl. The
following PCR program was used: the initial step of 95◦C for
10min and the amplification step of 40 cycles which started with
15 s at 95◦C followed by 30 s at 60◦C and 20 s at 72◦C. This
program was followed by analyzing the melting curve performed
with linear heating from 60 to 90◦C. Reaction efficiency was

TABLE 2 | Species-specific primers for the quantification of selected as well as

reference genes using a real-time qPCR assay.

Name Sequence References Product size

(bp)

TLR4-Fa CCTTGCGTACAGGTTGTTCC (37) 129

TLR4-Rb GCCTAAATGTCTCAGGTAGTTAAAGC

CD14-F CACCACATTGCACACCTGTT (37) 124

CD14-R CACCACATTGCACACCTGTT

MD2-F GGAGAATCGTTGGGTCTGCT (37) 92

MD2-R GCTCAGAACGTATTGAAACAGGA

GAPDH-F TCATTGAAGCCTTCACTACATGGTCT (37) 147

GAPDH-R TGATGTTGGCAGGATCTCG

RPS9-F TAGGCGCAGACGGGCAAACA (38) 136

RPS9-R CCCATACTCGCCGATCAGCTTCA

aF: forward primer.
bR: reverse primer.

calculated based on the slope of the standard curve (equation:
efficiency = (10 (−1/slope) – 1) × 100). Correlation coefficients
(R2 ≥ 0.99) were considered. The relative copy number of CD14,
TLR4, and MD2 transcripts was normalized to the geometric
means of both RPS9 and GAPDH reference genes.

Animal Behavior
The weekly animal behavior including the time spent ruminating
was recorded every 10min per 24 h and calculated by multiplying
the total number of observed activities in each duration (40). The
body condition score, manure score, and rumen fill score were
assessed weekly from 21 days before the expected parturition to
4 weeks after calving. The body condition score was recorded by
the same operator using a 1–5 scale with 0.1 intervals as proposed
by Ferguson et al. (41) and Roche et al. (11). Both the manure
score (42) and rumen fill score (43) were assessed 6 times per
day which started 2 h before the morning feeding by the same
operator using a 1–5 scale.

Statistical Analysis
Data obtained weekly were statistically analyzed using the Proc
Mixed procedure of SAS (44) for a completely randomized design
with repeated measures. The model included the effects of group,
day relative to calving, and the interaction between group and
day. Days relative to calving was used as a repeatedmeasurement,
with cow within experimental groups as the subject. Daily
DMI of the groups was analyzed as previously described (45);
however, the interaction between group and day was taken out
from the model. A gamma-type function model (Y = a∗EXP –
cd) was generated to describe the relation between daily milk
production (Y) and time (d), while (c) is the slope. Data of
milk fatty acid composition were analyzed using a completely
randomized design. Data of gene expression were analyzed in
JMP R© 4.0 (SAS Institute, Cary, NC, USA) using the analysis
of variance method (ANOVA) by least-square fit. Differences
were considered significant at p < 0.05, whereas tendency was
determined at 0.05 < p < 0.1. Data are expressed as the mean
± SEM.
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TABLE 3 | Milk production and composition of lactating Holstein dairy cows fed a post-partum diet plus fat prill containing 85% palmitic acid (control group) or Carneon

20 Rumin-pro (RLC group).

Items Experimental groups SEM p-value

Control RLC Group Time Group*time

+7 days +14 days +21 days +28 days +7 days +14 days +21 days +28 days

DMI (kg) 15.9 20.2 24.1 26.9 16.1 20.9 24.4 27.2 1.71 ns * -

Milk yield (kg) 36.2 44.7 50.1 52.3 36.0 45.0 52.1 54.5 1.01 ns * ns

Fat (%) 4.16 3.28 3.07 3.26 4.12 3.59 3.90 3.65 0.22 0.10 * ns

Protein (%) 3.80 3.20 3.10 3.00 3.80 3.20 3.10 3.00 0.06 ns * ns

Lactose (%) 4.10 4.50 4.50 4.50 4.20 4.40 4.50 4.50 0.03 ns ns ns

Solids (%) 13.2 12.1 11.8 11.9 13.1 12.3 12.5 12.2 0.24 * * ns

SNF (%) 9.00 8.80 8.70 8.60 9.00 8.70 8.60 8.50 0.08 * * ns

4% FCM (kg) 37.1 39.8 43.1 46.5 36.7 42.2 51.4 51.6 0.91 * * ns

ECM (kg) 41.3 43.9 47.5 50.5 40.9 46.0 55.0 55.3 1.05 * * ns

Fat (g/day) 1.51 1.47 1.54 1.70 1.48 1.62 2.03 1.99 0.05 * * ns

Protein (g/day) 1.38 1.43 1.55 1.57 1.37 1.44 1.62 1.63 0.01 * * ns

MUN (g/dL) 12.1 14.0 14.0 13.5 13.3 13.5 12.8 13.2 0.43 ns ns ns

SCC (×1,000) 305 397 117 146 85.3 108 113 137 42.0 * * ns

d: day relative to calving; *p < 0.05; ns: p > 0.05; when the difference between means is >2 times the SEM, it is considered as significant (p < 0.05).

RESULTS

Milk Production and Composition
Dry matter intake and the productive responses of the cows
within the experimental groups are depicted in Table 3. There
was no significant difference in feed intake between groups
during this study (21.77 vs. 22.15 kg for the control and RLC
group, respectively). The mean milk production over the 28 DIM
for the control and LC group was 46.5 and 47.7 kg, respectively.
The mathematical model indicated that the rate of increase in
the milk production of the animals in the RLC group, compared
with the control, was maximum after 10–15 days post-calving
(Figure 1). The milk component content and production of the
cows over the 4-week study period are presented in Table 3.
Overall, milk fat content showed a tendency to increase by
10% upon rumen-protected L-carnitine supplementation in the
transition diets (p = 0.1). There was no group or group-by-
day interaction effect on the content of milk protein or lactose
concentration. However, there was a significant effect of group
and day (p < 0.05) on milk protein yield (1.48 vs. 1.51 g/day for
the control and RLC group, respectively). Both 4% fat-corrected
milk and energy-corrected milk were significantly (p < 0.05)
influenced by the experimental group and DIM. Cows in the
RLC group had roughly 4 kg higher fat- and energy-corrected
milk compared with those of the control group. Milk urea-N
content did not show any significant differences between the
experimental groups. Milk SCC clearly decreased (p < 0.05) in
the cows fed the transition diet supplemented with the rumen-
protected L-carnitine.

Table 4 depicts the effect of the experimental groups on milk
fatty acid profiles. In the current study, cows in both groups had
generally similar milk fatty acid concentrations. Nevertheless,
cows in the RLC group had significant lower concentrations of
C14:1 cis-9, C15:0, C16:1 cis-9, and C18:2 and higher C18:1

FIGURE 1 | Effects of supplementing multiparous Holstein cows during the

transition period with rumen-protected L-carnitine (Carneon 20 Rumin-pro,

Kaesler Nutrition GmbH, Cuxhaven, Germany) on lactation curve of

early-lactating Holstein dairy cows. A gamma-type function model (Y = a*EXP

–cd) was generated in order to describe the relation between daily milk

production (Y) and time (d), while (c) is the slope in Holstein dairy cows during

the transition period. The group fed rumen-protected L-carnitine depicted as

RLC.

trans-9, trans-11 content in comparison with the control (p <

0.05).

Blood Metabolites
Pre- and post-partum blood serum metabolites are presented in
Table 5. Results of the current study showed that the effect of
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TABLE 4 | Milk fatty acid profile of lactating Holstein dairy fed a post-partum diet

plus fat prill containing 85% palmitic acid (control group) or plus Carneon 20

Rumin-pro (RLC group).

Fatty acids Experimental groups SEM p-value

Control RLC

C4:0 6.62 7.55 1.016 ns

C6:0 3.52 4.40 0.642 ns

C8:0 1.83 2.18 0.327 ns

C10:0 3.07 3.33 0.484 ns

C12:0 2.75 2.53 0.273 ns

C14:0 7.70 7.07 0.384 ns

C14:1 cis-9 1.22 1.07 0.076 *

C15:0 0.85 0.70 0.043 *

15:1 0.20 0.26 0.027 ns

C16:0 23.64 23.75 0.685 ns

C16:1 cis-9 2.68 2.35 0.122 *

C17:0 0.65 0.66 0.031 ns

C17:1 0.32 0.33 0.027 ns

C18:0 12.38 12.09 0.637 ns

C18:1 trans-9, trans-11 0.94 1.40 0.133 *

C18:1 cis-9 24.92 24.67 1.324 ns

C18:2 0.90 0.60 0.138 *

C18:2 cis-9 4.38 3.59 0.487 ns

C20:0 0.70 0.73 0.151 ns

C18:3n-3 0.45 0.48 0.059 ns

C20: >1; n3,n6 0.31 0.24 0.042 ns

Saturated fatty acids 63.70 65.01 1.878 ns

Monounsaturated fatty acids 30.28 30.08 1.565 ns

Polyunsaturated fatty acids 6.02 4.90 0.542 ns

C18:2 cis-9/C15 27.34 26.01 2.21 ns

*p < 0.05; ns: p > 0.05.

the experimental group on cholesterol (mg/dL), HDL (mg/dL),
LDL (mg/dL), haptoglobin (mg/dL), SGPT (U/l), SGOT (U/l),
and NEFA (mmol/l) was significant (p < 0.05). Animals in
the RLC group had a lower blood cholesterol concentration
compared with those of the control group (99.4 and 82.6
mg/dl for the control and RLC groups, respectively). Pre-
and post-partum dietary inclusion of the rumen-protected L-
carnitine source decreased both LDL and HDL concentrations
in peripheral blood of post-partum cows in the present study.
The concentrations of cholesterol, HDL, and LDL decreased at
7 days before calving and eventually increased from 2 weeks after
calving. In the present experiment, rumen-protected L-carnitine
supplementation hardly influenced the albumin concentration
during the transition period (p > 0.05). The serum albumin
level in cows of both experimental groups increased by 8% after
calving, whereas the urea concentration in the animals hardly
changed compared with the pre-partum period. Results from this
work showed that cows in the RLC group had significantly (p <

0.05) lower blood haptoglobin concentrations at 7 and 14 days
after calving than the control group (22.8 and 11.1 mg/dl for
the control and RLC groups, respectively). Both serum glucose
and calcium concentrations declined as parturition approached

and started to increase from 21 days post-calving. There was no
significant effect (p > 0.05) of the experimental group or group
and day interactions on blood calcium or glucose concentration.
Data regarding the concentration of blood triglycerides indicated
that there were no significant differences between the groups.
The blood NEFA concentration was evidently decreased in
cows supplemented with rumen-protected L-carnitine during
the periparturient period (p < 0.05). Animals in the control
group had a 20% higher NEFA concentration compared with
those levels in the RLC group. Nevertheless, dietary rumen-
protected L-carnitine hardly changed the BHB level in animals
in comparison with control (p > 0.05). Generally, both blood
NEFA and BHB concentrations were increased before calving
(50 and 30% for NEFA and BHB, respectively) and decreased
from 14 DIM onward. Circulating concentrations of both
blood enzymes, i.e., SGPT and SGOT, increased from 1 week
before calving. Moreover, animals in the RLC group had lower
concentrations of both enzymes than the control group (p
< 0.05).

mRNA Expression
Effects of the dietary inclusion of rumen-protected L-carnitine on
mRNA abundance of CD14, TLR4, and MD2 of early lactating
Holstein dairy cows is shown in Figures 2A–C, respectively.
Results of the current work indicated that supplementing the
transition diet with rumen-protected L-carnitine hardly showed
any significant impact on the mRNA abundance of TLR4, CD14,
and MD2 (p > 0.05).

Animal Behavior
The experimental group effect on BCS of the animals throughout
the study is presented in Figure 3. L-Carnitine supplementation
did not evidently affect the BCS of the animals. The initial BCSs
of animals in both groups were similar; however, it decreased
with the increase in days post-calving. The data of manure score
and rumen fill score are shown in Figures 4A,B, respectively.
The manure score was unaffected by the experimental groups.
The rumen fill score was significantly (p < 0.05) influenced by
the experimental group and days relative to calving. Animals
in the RLC group had a higher rumen fill score in comparison
with the control. The rumination activity for each experimental
group is presented in Figure 5. There was a significant difference
(p < 0.05) among the cows allocated in the experimental
groups, in which animals in the RLC group demonstrated 11%
higher rumination time compared with their counterparts in the
control group.

DISCUSSION

Results from the present experiment underline the ability of
L-carnitine, in a protected form, to support the production
responses, enhancing the liver metabolism and modulating
the health biomarkers of high-producing dairy cows during
the periparturient period. This study was able to show
significant changes in particular cow behavior indices,
which can be used for identifying cows with risk of illness
(46). Taken together, data generated from this experiment
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TABLE 5 | Concentration of blood metabolites in Holstein dairy cows during the transition period fed diets plus fat prill (control group) or Carneon 20 Rumin-Pro (RLC

group).

Items Experimental groups SEM p-value

Control RLC Group Time Group*Time

−14 days −7 days +7 days +14 days +21 days −14 days −7 days +7 days +14 days +21 days

Glucose (mg/dL) 56.8 52.1 48.8 42.2 50.7 54.1 49.4 47.2 45.7 49.2 0.77 ns * ns

Urea (mg/dL) 38.0 35.3 40.5 39.8 43.2 39.0 32.0 40.5 40.2 39.7 0.62 ns ns ns

Albumin (g/dL) 3.94 3.95 3.92 4.00 4.14 3.80 3.81 3.82 3.82 3.99 0.04 ns * ns

Cholesterol (mg/dL) 104 102 77.6 89.9 125 92.3 79.0 65.8 76.6 99.6 2.40 * * ns

HDL (mg/dL) 81.8 82.4 68.7 73.7 90.6 74.5 67.1 57.5 61.0 78.5 1.57 * * ns

LDL (mg/dL) 12.6 9.60 7.60 11.5 15.9 9.80 8.30 5.50 8.60 12.7 0.50 * * ns

Triglyceride (mg/dL) 25.1 27.9 12.0 10.4 12.3 27.2 27.0 12.7 10.2 8.2 1.11 ns * ns

Haptoglobin (mg/dL) - - 19.5 26.1 - - - 10.9 11.3 - 2.10 * ns ns

Calcium (mg/dL) 8.75 8.69 7.98 8.67 9.27 8.56 8.43 7.90 8.49 9.11 0.15 ns * ns

SGPT (U/l) 18.5 16.8 16.6 17.1 20.1 14.9 13.4 12.5 14.9 18.5 0.56 * * ns

SGOT (U/L) 75.3 80.5 103 103 107 79.2 72.9 90.6 99.8 105 2.50 * * ns

NEFA (mmol/L) - 0.43 1.15 1.05 0.75 - 0.33 0.83 0.89 0.77 0.05 * * ns

BHBA (mmol/L) - 0.53 0.67 1.01 0.65 - 0.53 0.77 0.85 0.75 0.04 ns * ns

d: day relative to calving; *p < 0.05; ns: p > 0.05; when the difference between means is >2 times the SEM., it is considered as significant (p < 0.05).

FIGURE 2 | Effects of supplementing multiparous Holstein cows during the transition period with rumen-protected L-carnitine (RLC; Carneon 20 Rumin-Pro, Kaesler

Nutrition GmbH, Cuxhaven, Germany) on the relative mRNA expression of CD14 (A), TLR4 (B), and MD2 (C) genes. Values are means, with standard errors of means

(n = 10/group) represented by vertical bars. The group fed rumen-protected L-carnitine depicted as RLC.

could help develop more detailed feeding management, i.e.,
including particular feed additives, to ensure dairy cattle to
overcome the transition from parturition to lactation with
less noticeable damage to their entire lactation performance
and longevity.

Productive Performance of the Animals
Our results showed that the animals in the RLC group had
better productive responses. It has been demonstrated that
energy intake during early lactation is insufficient to meet
the animal needs for milk synthesis. Indeed, cows very often
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enter into a negative energy balance where their successful
lactation would be effectively disturbed (47). Therefore, dairy
cattle during the transition from gestation to lactation requires
substantial nutrients to shift their situation (48). Previous
studies claimed that increasing the energy availability of the
transition diet through L-carnitine supplementation may have
some benefits (26, 49), allowing the animals to adapt and
decrease fatty acid mobilization from adipose tissue, eventually
being less prone to lipid-related metabolic disorders (50). Hence,
following parturition, this resulted in cows showing a better
milk production and composition responses as those observed
in the present work. Moreover, the findings of the current
study suggest that upon dietary inclusion of an L-carnitine
source, resisting ruminal degradation, to both pre- and post-
partum diets, cows produce more milk components. It seems
that a more favorable metabolic situation by including rumen-
protected L-carnitine in the transition diet may decrease the
negative physiological situation of this period (48). Therefore,
effects of the rumen-protected L-carnitine supplementation to
the transition diets cause an increase to the uptake of energy
and nutrients for milk yield components. The outcome from
our investigation indicated an obvious lower milk SCC in dairy
cattle fed with L-carnitine. These results are not in line with
previous studies, in which dietary supplementation of L-carnitine
did not show any significant changes in SCC parameter (26).
Scholz et al. (51) merely observed numerical lower SCC in
dairy cows fed rumen-protected L-carnitine in comparison with
control. Regular SCC observation has been globally recognized
as an optimal index for measuring inter-mammary infection
and milk quality (52). This parameter along with udder health
monitoring programs has been quite advantageous on individual
cows as well as the entire herd (53). Current data indicated
that cows receiving rumen-protected L-carnitine, i.e., increasing
the post-ruminal L-carnitine availability, could be less prone to
develop mammary disorders in early lactation period. This is
quite important for the productivity and longevity of the animals
in the subsequent lactation.

Data from our experiment indicated that dietary
supplementation with rumen-protected L-carnitine was
able to merely regulate few milk fatty acid concentrations
during the early lactation period. In dairy cows, the short-
and medium-chain fatty acids (C4:0–C14:0) are synthesized in
the mammary gland. Overall, short- and medium-chain fatty
acids were numerically higher in animals in the RLC group.
The only difference between the C14:1 cis-9 concentrations
was significant. Buitenhuis et al. (54) evaluated the effect of
microbiome on milk fatty acid composition and reported the
heritability and microbiability for each trait. They showed that,
in general, the heritability was relatively high for all milk fatty
acids [ranging from 0.69 (C14:1 cis-9) to 0.11 (C18:1 trans-11;
C18:1 cis-9)]. Therefore, the difference in C14:1 cis-9 obtained
in the present study might be explained by the different rumen
microbiomes. During the negative energy balance period,
by increasing the energy demand for milk production, body
fat is mobilized and transported as NEFA to several organs,
particularly to the liver (15, 55). Excessive amounts of NEFA
[particularly rich in long-chain fatty acids, e.g., C18:1 cis-9 and

FIGURE 3 | Effects of supplementing multiparous Holstein cows during the

transition period with rumen-protected L-carnitine (Carneon 20 Rumin-Pro,

Kaesler Nutrition GmbH, Cuxhaven, Germany) on the body condition score of

the animals. Values are means, with standard errors of means represented

(n = 16/group) by vertical bars. The group fed rumen-protected L-carnitine

depicted as RLC.

FIGURE 4 | Effects of supplementing multiparous Holstein cows during the

transition period with rumen-protected L-carnitine (Carneon 20 Rumin-Pro,

Kaesler Nutrition GmbH, Cuxhaven, Germany) on manure score (A) and

rumen fill score (B). Values are means, with standard errors of means

(n = 16/group) represented by vertical bars. The group fed rumen-protected

L-carnitine depicted as RLC.

C18:0 (56)], which is released during body fat mobilization,
have a potential to transfer to the milk, resulting in their
elevated concentrations in the milk fat. It has been proposed
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FIGURE 5 | Effects of supplementing multiparous Holstein cows during the

transition period with rumen-protected L-carnitine (Carneon 20 Rumin-Pro,

Kaesler Nutrition GmbH, Cuxhaven, Germany) on rumination activity. Values

are means, with standard errors of means (n = 16/group) represented by

vertical bars. The group fed rumen-protected L-carnitine depicted as RLC.

that these fatty acids in milk fat were identified as valuable
early warning biomarkers for health status during transition
period (57). Jorjong et al. (58) assessed the potential of milk
fatty acids as biomarkers to predict the health status of the
early-lactating dairy cows. The authors claimed that the milk fat
C18:1 cis-9/C15:0 ratio may be a useful factor for the diagnosis of
hyperketonemia in early-lactating dairy cows. Therefore, based
on the data reported by Jorjong et al. (58), the ratio of C18:1
cis-9/C15 between 34 and 45 seems to be a valuable threshold
in the early-lactating dairy cows. In the current study, the ratio
of C18:1 cis-9/C15:0 for each experimental group was below 40
(Table 4). This shows that the animals enrolled in the current
study were not generally in a critical health status.

In the current study, we used similar fat concentrations (with
the same sources) in the experimental diets. We even used very
similar concentrations of palmitic acid in the diet. Dietary fat
enhances the supply of fatty acids to the mammary gland, which
results in a lower proportion of de novo synthesized, saturated
short- and medium-chain fatty acids in milk fat and a higher
proportion of long-chain fatty acids (59). On the other hand,
any differences in the supply of fermentable carbohydrate lead
to altered production of acetate in the rumen, as a precursor of
mammary de novo fatty acid production. Therefore, it has been
proposed that fatty acids with <16C originated from de novo
synthesis and those >16C were preformed fatty acids taken up
by the mammary gland, and 16:0 and 16:1 fatty acids come from
both de novo and preformed sources (59, 60). However, Dewhurst
et al. (61) showed that actual milk yields of C15:0 and C17:0
exceeded the duodenal flow of these fatty acids. They suggested
that there is a possibility of some de novo synthesis within animal
tissue or transfer of these fatty acids (mobilized from adipose
tissue) to the mammary gland. All of the above information

clearly stated that when we used similar dietary carbohydrates
(i.e., similar fermentation pattern) and fat supplements, as well
as when observing similar BCS (i.e., same fat mobilization), it
should be expected to observe relatively similar milk fatty acid
profiles between the experimental groups.

Metabolic and Health State of the Animals
Data from the current study revealed that dietary inclusion
of L-carnitine resulted in lower circulating concentrations
of cholesterol, HDL, and LDL. Typically, the cholesterol
concentration in dairy cows declines close to parturition and
starts to gradually increase post-parturition (62), following the
pattern of changes in animals’ feed intake during this period
(63). Previous studies have pinpointed higher risk of post-partum
diseases associated with higher cholesterol concentrations pre-
partum (62). The total cholesterol level in the blood has been also
attributed to the changes in serum lipoprotein concentrations
during lactation (64). Therefore, lower concentrations of LDL
and HDL in dairy cows in the RLC group were expected.
Stefanska et al. (37) reported higher concentrations of HDL
in non-healthy cows compared with the healthy group (78.16
vs. 68.32 mg/dl). They proposed that higher concentrations
of blood HDL in non-healthy cows may be a protective
mechanism against endotoxemia. Our data regarding the blood
HDL concentration confirmed those findings. More recently,
Jukema et al. (65) indicated that disorders in lipid metabolism
initiate an inflammatory and immune-mediated response, in
which the concentration of blood LDL was increased. Hence,
they suggested that blood LDL cholesterol has strong potential
to induce inflammation in animals. The lower blood LDL
concentration in cows fed the rumen-protected L-carnitine may
explain a much better health status in these animals as observed
in the current experiment.

In the present work, we have determined the circulating
concentrations of two acute phase proteins (APP), i.e., albumin
and haptoglobin. The liver is vital for an optimal immune
response as it will redirect the priority from metabolism to
defense during an incidence of inflammation in animals. This
change is known as APP response, which depicts the reduced
synthesis of necessary proteins for normal liver metabolism, e.g.,
albumin, retinol-binding protein, paraoxonase, and increased
synthesis of proteins, which are involved in immune and
detoxification response (66). Positive APP play an important
role in pathogen elimination, removal of toxic substances,
and maintenance of a balanced inflammatory response (67).
Haptoglobins are among the positive APP, in which their
blood levels increase as a result of an inflammation stage in
animals (68). Stefanska et al. (37) reported a lower blood
concentration of haptoglobin in healthy vs. acidotic cows
(470.19 vs. 516.85 ng/ml). A previous experiment revealed that
elevated concentrations of blood haptoglobin from 2 to 8 days
post-partum were associated with enhanced innate immune
responses (69). These findings provide evidence that the blood
haptoglobin concentration is associated with both systemic
inflammatory responses and liver inflammation. Post-partum
blood concentrations of haptoglobin >1.1 g/l were associated
with a 947-kg decrease in 305-day mature equivalent milk yield
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(70). Inflammatory response during the periparturient period
has been characterized with an increase in the production of
positive APP and a concomitant decrease in the production of
negative APP, e.g., albumin (71). The lower serum haptoglobin
concentration in cows in the RLC group may indicate a better
health status of the animals. This in part could be the reason
that animals in this group produce higher fat- and energy-
corrected milk during 4 weeks after calving. Nevertheless, we
did not observe any significant difference in the serum albumin
level between the groups. Others also did not find a clear
difference in blood albumin concentration of animals treated
with anti-inflammatory drugs from −7 until +35 days relative
to calving, while haptoglobin levels were clearly decreased upon
treatment (72).

Although the blood concentrations of triglyceride and BHB
did not significantly differ between the groups, dietary L-
carnitine supplementation showed an evident effect to decrease
the circulatory NEFA concentration. In dairy cows when there is
an energy deficiency, a mobilization of body fat reserves occurs
and, thus, the concentration of NEFA increases in blood (21).
On the other hand, an efficient utilization of NEFA depends
on an adequate L-carnitine availability for fatty acid transfer
into the mitochondrial matrix as the site of their oxidation
(73). Insufficient L-carnitine availability at times of an increased
energy requirement, such as early lactating status, could alter
the liver metabolism of lipids. Carlson et al. (74) demonstrated
that carnitine modulates nutrient metabolism in dairy cows.
They indicated that carnitine supplementation of 50 and 100
g/day had more potent effects on lipid metabolism as a result of
enhanced capacity for hepatic long-chain fatty acid β-oxidation.
In their experiment, the marked increases in hepatic carnitine
concentrations confirm that exogenous carnitine is readily taken
up by the liver. This idea has also been previously demonstrated
in mid-lactation dairy cows (73). Therefore, an insufficient L-
carnitine supply to the liver was proposed as a limiting factor for
fatty acid metabolism (75). Besides, it has been shown in dairy
cows that many LPS-induced metabolic challenges are related to
the energy metabolism, in which L-carnitine is involved (76). The
authors showed that an intravenous LPS injection followed by an
increase in blood tumor necrosis factor-α was accompanied with
a rise in blood NEFA concentration.

Metabolic alterations in the liver during the transition period
are one of the key points in dairy cow performance (21). As
seen in our results, an evident decline of the liver enzymes
during the periparturient period in rumen-protected L-carnitine-
supplemented animals seems to improve their productive
responses in the subsequent lactation. Recently, a number of
blood metabolites were used to monitor clinical or subclinical
signs of metabolic disorders in high-yielding cows around
parturition (1). The blood elevation of SGPT and SGOT may
indicate an accumulation of NEFA transported from blood to
hepatocytes (77). Higher concentrations of blood SGOT can also
imply damages in organs other than the liver, as SGOT exists in
the muscle, kidney, intestine, and brain. West (78) proposed that
a rise in blood SGOT shortly after calvingmight indicate amuscle
damage in the animals. Therefore, metabolic alterations in liver
function may be an important point in early lactating cows.

Olagaray et al. (49) reported that fatty liver is a metabolic disease
that occurs during the first few weeks of lactation and affects up
to 50% of dairy cows. Higher incidence of fatty liver accompanies
with a decline in the concentration of free carnitine. Dietary
administration of L-carnitine during the transition period was
effective at increasing hepatic carnitine concentrations, with a
subsequent decrease in total liver lipid content (79). This will in
turn help the liver to reduce the hepatocyte damages, moderate its
metabolic function, and enhance the health status and productive
performance of the animal.

mRNA Abundance of TLR4, CD14, and MD2
Results from the current work indicated that the expression of
genes involved in bacterial LPS recognition was not evidently
regulated upon L-carnitine supplementation. During states of
inflammation and inflammatory disease, the expression of TLR4
and associated signaling proteins could increase and facilitate
receptor-mediated endocytosis of LPS (80, 81). Results of the
current study are not in agreement with previous works, where
higher transcription levels of TLR4 and CD14 were noticed
in early-lactating dairy cow with puerperal diseases (82, 83).
Interaction of TLR4/CD14/MD-2 with the bacterial endotoxin
triggers the expression of inflammatory biomarkers such as
cytokines, antimicrobial peptides, and chemokines. A plausible
reason for the current outcome would be that animals during
the course of this experiment were not suffering from clinical
inflammatory diseases associated with the periparturient period.

Behavioral Parameters of the Animals
We did not observe any evident differences of manure scores, yet
the rumen fill scores were significantly affected by the addition
of L-carnitine (Figures 4A,B). The rumen fill score is related
to the DMI, especially the proportion of fiber in the diet (43).
Kawashima et al. (84) showed that the rumen fill score is also
associated with energy status in dairy cows. They concluded that
the rumen fill score during the transition period might indicate
the real-time feed intake based on its correlation with serum total
cholesterol levels. Consequently, it might be used as a practical
indicator to describe the metabolic health status in dairy cows.
In the present study, all cows had very good rumen fill scores
during the pre- and post-partum periods. Nevertheless, addition
of rumen-protected L-carnitine in transition diets was able to
enhance this parameter in the animals.

It has been previously reported that early-lactation cows
would produce much more milk per unit of dry matter
consumed and per minute of rumination resultant from that
feed consumed (85). In ruminants, rumination is a natural
behavior and mostly influenced by the physically effective fiber
(86), which would increase the surface area of the feed particle.
In addition, rumination stimulates saliva production to help
buffer the rumen and facilitates the passage of dry matter
from the rumen to the intestine. Therefore, as the passage
rate increases, DMI increases in dairy cows (85), eventually
improving the productive responses of the animals. The time that
cows spend chewing might be a valuable management tool for
detecting health problems and optimizing the herd heath status
(40), as monitoring rumination time is easier than monitoring
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feed intake. Kaufman et al. (85) monitored the relationship
between health status of dairy cows with rumination time,
milk yield, milk fat, and protein content. They concluded that
rumination time was positively associated with health status
and milk yield in early-lactation dairy cows across all parities.
It was concluded that healthy animals had better productive
responses compared with unhealthy cows across all lactations.
Besides, early-lactating cows are more challenging in the view
of metabolic stress and are more susceptible to health disorders
that cause significant production losses. Stangaferro et al. (87)
evaluate the rumination time to score the health of cows from
21 days before expected calving until 80 days post-partum.
The rumination time of cows was lower in clinical diagnosis,
depending on the disorder, compared with the healthy cows.
Taken together, higher rumination time in cows of the RLC group
in the present work would be an indicator of the better health
situation of the animals.

CONCLUSION

Altogether, results of the present experiment provide evidence
that dietary inclusion of rumen-protected L-carnitine during
the transition period could improve the productivity of high-
producing dairy cows early post-partum. This can be to some
extent explained by the ability of L-carnitine to modulate
metabolic indicators as indexed in the energy metabolism and
liver functionality. This experiment proves that eating and
ruminating of transition dairy cows will be positively affected by
the dietary inclusion of L-carnitine. Although the overall health
of the animals enrolled in the current study was relatively good,
addition of L-carnitine seems to even enhance the health status
of the animals. However, further research is warranted to gain
a deeper understanding on the impact of pre- and post-partum
dietary L-carnitine on various pro- and anti-inflammatory as well
as oxidative status biomarkers in dairy cows. Another compelling
idea would be to investigate the in-utero effect of feeding L-
carnitine during the periparturient period, thereby determining
the potent impact of this natural molecule on the offspring
performance and health.
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Deoxynivalenol (DON) reduces growth performance and damage intestinal function, and

resveratrol (RES) has positive effects on growth performance and intestinal function.

The purpose of this study was to investigate the protective mechanism of RES in vitro

and vivo challenged with DON. The results showed that dietary supplementation with

DON significantly increase the mRNA expression levels of mitophagy- related genes,

and protein level for PINK1, Parkin, Beclin-1, Lamp, Atg5, Map1lc, Bnip3, Fundc1,

Bcl2l1 and SQSTMS1 (P < 0.05), while supplementation with both RES and DON

decreased those indexes in the ileum. Besides DON significantly decreased protein level

for Pyruvate Dehydrogenase, Cytochrome c, MFN1, OPA1, and PHB1 (P < 0.05), while

supplementation with both RES and DON increased protein level for PHB1, SDHA,

and VDAC in the ileum. Moreover, in vitro, we found that DON significantly decreased

mitochondrial respiration (P < 0.05), while RES + DON increased the rate of spare

respiratory capacity. Also, DON significantly decreased total NAD and ATP (P < 0.05),

while RES+ DON increased the total NAD and ATP. These results indicate that RES may

ameliorates the intestinal damage challenged with deoxynivalenol through mitophagy in

weaning piglets.

Keywords: piglets, resveratrol, deoxynivalenol, mitophagy, intestinal function

INTRODUCTION

Deoxynivalenol (DON) or vomiting toxin, is the most common trichothecenes toxin produced
by Fusarium, which mainly contaminates cereal crops (1). DON could reduce animal feed intake,
vomiting, fever, diarrhea, and anorexia, even death. However, different animals have different
sensitivity to DON. Pigs are the most sensitive animals among monogastric animals and ruminants
(2–5). Recent study has shown that DON could reduce the growth performance of pigs, affect
immune system, antioxidant system, cell signal transduction, gene expression and protein synthesis
of livestock (6). Our previous studies have found that DON decreased the growth performance
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weaned piglets, destroyed intestinal function and structural
integrity, weakened antioxidant capacity and protein synthesis
levels of weaning piglets (2, 3). The mechanism by which
DON exerts its toxicological effects is through binding to the
phthaloyltransferase on the 60 s subunit of eukaryotic ribosomes,
causing MAPK phosphorylation, inducing inflammatory
process in the organism, and leading to lipid peroxidation
damage in cell membranes, which in turn inhibition of protein
and genetic material synthesis. However, the traditional
chemical detoxification of DON pollution is unable to meet
the low-energy, high-efficiency, and green environmental
protection in modern farming. In recent years, the control
of piglet stress damage through nutrition has received ever
greater attention. Therefore, it is one of the hot spots in
animal nutrition research to effectively mitigate DON damage
to piglets through nutritional regulation to improve piglet
growth performance.

Studies have shown that the addition of arginine, glutamic
acid and antibacterial peptides to feed can effectively mitigate
the toxic effect of DON on the intestinal damage in weaned
piglets (4). RES is a bioactive material, naturally occurring
polyphenolic plant antitoxin with anti-inflammatory, anti-aging,
anti-cancer and cardioprotective properties. Found mainly in
wine, blueberries, peanuts and other nuts, it is a potential
additive to mitigate the toxic effects of DON (7). RES was
shown to improve mitochondrial respiratory metabolism and
lipid oxidation through Sirt1, and to target mitochondria to
ameliorate stress damage (8). Mitochondria are the main target
organelles for oxidative damage. Excessive ROS produced by
damaged mitochondria will activate proteins such as p53 and
Caspase to initiate apoptosis. Effective identification and removal
of damaged mitochondria from the cells is therefore essential
to ameliorate stress damage. Study shows RES attenuates the
oxidative damage via mitochondrial autophagy in Parkinson’s
patients (9), and mitigate mitochondrial damage, and improve
the intestinal function in diquat-challenge piglets (10). Thus,
RES could mitigate organismal damage through mitochondrial
autophagy, however, its mitigating effect on DON-induced
intestinal damage are not well understood.

Therefore, in this study, by using DON-induced model in
vitro and vivo, we want to know the protective regulatory role
of resveratrol on intestinal function challenged with DON. This
study provides a theoretical basis for the nutritional regulation of
early weaned piglets.

MATERIALS AND METHODS

Animals and Diets
All animal procedures used in the present study were approved
by the Animal Care and Use Committee of Guangdong Academy
of Agricultural Sciences and followed the Guidelines for the Care
and Use of Animals for Research and Teaching. A total of 64
weaned piglets [Duroc × (Landrace × Yorkshire), 21 days old,
barrow] with an initial weaning weight of 6.97 ± 0.10 kg were
randomly allocated to four dietary treatments. The piglets fed
a basal diet were considered the control group (CON), and the
other groups were fed the basal diet supplemented with 300mg

RES/kg diet (RES), 3.8mg DON/kg diet (DON) or 3.8mg DON
plus 300mg RES per kg diet (DON+RES group) for a 28-days
feeding trial. RES (> 99.0%) was obtained commercially from
Shaanxi Ciyuan Biotechnology Co., Ltd. (Xian, China). Each
treatment consisted of eight replicate pens, with two piglets per
pen (n= 16 piglets per treatment). The basal diet was formulated
to meet the nutrient recommendations of the National Research
Council (NRC) 2012.

Sample Collection and Processing
At the end of the experiment, eight piglets from each group
were anesthetized and bled, the abdominal cavity was quickly
dissected and the viscera removed. The intestinal segments were
ligated and 1 cm sections of intestine were taken from the middle
of the whole jejunum and ileum respectively, washed with pre-
cooled PBS, collected in centrifuge tubes and snap frozen in liquid
nitrogen, then stored at−80◦C for further study.

Cell Culture and Treatment
The cell culture refers to our previous study (11). High-
glucose (25mM) Dulbecco’s modified Eagle’s (DMEM-H),
fetal bovine serum (FBS), and antibiotics were procured
from Invitrogen (Grand Island, NY, USA). Plastic culture
plates were manufactured by Corning Inc. (Corning,
NY, USA). Unless indicated, all other chemicals were
purchased from Sigma-Aldrich (St. Louis, MO, USA).
IPEC-J2 cells were seeded and cultured with DMEM-H
medium containing 10% FBS, 5mM l-glutamine, 100 U/mL
penicillin, and 100 µg/ml streptomycin at 37◦C in a 5%
CO2 incubator. After an overnight incubation, the cells were
changed to culture in 15 µmol/L RES for 24 h and then
exposed to 0.5 µmol/L DON for another 24 h. Cells were
treated or collected for the analysis of extracellular flux,
and GC-MS.

Real-Time PCR
The protocol of total RNA extraction, quantification, cDNA
synthesis and real-time PCR was adapted from the method of
(12). Briefly, total RNA was isolated from intestinal samples
by using the Trizol method. Real time PCR was carried out
by using forward and reverse primers (Supplementary Table 1)
to amplify the target genes. For quantification, amplification
efficiencies curves were constructed from serial 1:2 dilutions,
and the 2−11CT method was used to calculate the mRNA
expression of the target genes relative to housekeeping gene (β-
actin).

Western Blotting Analysis
Frozen intestinal samples were collected as described
by Tan et al. (13). Protein concentrations of tissue
homogenates were measured by using the BCA method
and bovine serum albumin as standard. All samples
were adjusted to an equal concentration (50 µg
protein). The western blotting was conducted based
on previous description. The primary antibodies are
LC-3B (1: 1,000; Cell Signaling Technology), P62 (1:
1,000; Cell Signaling Technology), Parkin (1: 1,000;
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Cell Signaling Technology), BNIP3/Nix (1: 1,000; Cell
Signaling Technology), BNIP3 (1: 1,000; Cell Signaling
Technology), Pyruvate Dehydrogen (1: 1,000; Cell Signaling
Technology), COX IV(1: 1,000; Cell Signaling Technology),
Cytochrome c(1: 1,000; Cell Signaling Technology),
HSP 60(1: 1,000; Cell Signaling Technology), Mitofusin

1(1: 1,000; Cell Signaling Technology), Mitofusin 2(1:
1,000; Cell Signaling Technology), OPA1(1: 1,000; Cell
Signaling Technology), PHB1(1: 1,000; Cell Signaling
Technology), SDHA(1: 1,000; Cell Signaling Technology),
SOD1(1: 1,000; Cell Signaling Technology), TOM20(1:
1,000; Cell Signaling Technology), VDAC(1: 1,000;

FIGURE 1 | Dietary supplementation with RES alleviated the negative effects on mRNA expression levels of mitophagy-related genes challenged with DON. Data were

expressed as means ± SEM of at least three independent experiments. (A,B) Values with different letters are significantly different (P < 0.05).
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FIGURE 2 | Dietary supplementation with RES increases the expression of mitophagy-related genes. Cells were treated with 0 (NC) or 0.5 µmol/L DON and 0 or

15µM RES, respectively. Data were expressed as means ± SEM of at least three independent experiments. (A,B) Values with different letters are significantly different

(P < 0.05).
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FIGURE 3 | Dietary supplementation with RES affects the expression of mitochondrial related genes. Cells were treated with 0 (NC) or 0.5 µmol/L DON and 0 or

15µM RES, respectively. Data were expressed as means ± SEM of at least three independent experiments. (A,B) Values with different letters are significantly different

(P < 0.05).

Frontiers in Veterinary Science | www.frontiersin.org 5 January 2022 | Volume 8 | Article 80730192

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Huang et al. Resveratrol Ameliorates Damage by Deoxynivalenol

Cell Signaling Technology) or β-actin(1: 1,000; Cell
Signaling Technology). All protein measurements were
normalized to β-actin.

Extracellular Flux Assays
The XF-24 Extracellular Flux Analyzer and Cell Mito Stress
Test Kit from Seahorse Biosciences were used to examine
the effects of addition of different treated with 0 (NC)
or 0.5 µmol/L or 1 µmol/L DON and 0 or 15µM RES,
respectively on mitochondrial respiration in IPEC-J2 cells.
Cells in four replicates per group. Owing to the effects of
DON on IPEC-J2 cell proliferation, total cellular protein
was determined and used to normalize mitochondrial
respiration rates.

Gene Knockout With CRISPR-Cas9
Thanks to Yulong Yin lab for providing ATG5 plasmid
(13). Guide RNAs were designed using the online
CRISPR design tool (http://crispr.mit.edu/) and then

cloned into the BbsI-digested plasmids (pSpCas9n)
containing the entire guide RNA scaffold. The genomic
region flanking the ATG5 target site was amplified
using polymerase chain reaction (PCR). The products
underwent a reannealing process to facilitate heteroduplex
formation. After re-annealing, the products were
treated with T7 Endonuclease I (NEB) following the
manufacturer’s recommended protocol. Then used
lentiviral transfection, the viral solution was added
to the cell culture medium and co-incubated with
the cells.

Statistical Analysis
Results are expressed as Mean ± SEM. The statistical
analysis was performed by one-way ANOVA using SPSS
17.0 (SPSS Inc., Chicago, IL, USA). Probability values <

0.05 and <0.01 were considered statistically significant.
P-values were calculated using a two-tailed paired
Student’s t-test.

FIGURE 4 | RES improved the negative effect on mitochondrial respiration by DON in vitro. (A) Schematic and (B) oxygen consumption rate (OCR) assessed by

extracellular flux analysis. OCR was measured under basal conditions followed by the sequential addition of oligomycin (0.5 µM), FCCP (1 µM), rotenone (1 µM), or

antimycin A (1 µM). Each data point represents an OCR measurement. (C) Individual parameters for basal respiration, proton leak, maximal respiration, spare

respiratory capacity, nonmitochondrial respiration, and ATP production were determined. Cells were treated with 0 (NC) or 0.5µmol/L or 1µmol/L DON and 0 or 15µM

RES, respectively. Data were expressed as means ± SEM of at least three independent experiments. (A–C) Values with different letters are significantly different (P <

0.05).
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RESULTS

Dietary Supplementation With RES

Alleviated the Negative Effects on mRNA

Expression Levels of Mitophagy-Related

Genes Challenged With DON
To determine the molecular mechanism of RES on DON-fed
piglets, we analyzed the mRNA expressions of mitophagy-related
genes in the ileum and jejunum of weaning piglets (Figure 1).
Dietary supplementation with DON increased (P < 0.05) the
mRNA expressions of PINK1, Parkin, Beclin-1, Lamp, Atg5,
Map1lc, Bnip3, Fundc1, Bcl2l1 and SQSTM1 in the ileum, while
there were no differences (P > 0.05) in those indexes among the
Control, RES, and RES+DON treatments in the ileum. However,
there were no differences (P > 0.05) in the mRNA expressions
of PINK1, Parkin, Beclin-1, Lamp, Atg5, Map1lc, Bnip3, Fundc1,
Bcl2l1 and SQSTM1 expressions among the four treatments in
the jejunum.

Dietary Supplementation With RES

Increases the Expression of

Mitophagy-Related Genes
Since we know that there are significant differences inmitophagy-
related genes in the ileum, and then we analyzed the protein
expressions of autophagy genes in ileum. The relative expression
levels of LC3B, p62, Parkin, Binp3/Nix, and BINP3 are shown
in Figure 2. Dietary supplementation with 3.8mg DON/kg
diet (DON) increased (P < 0.05) protein levels for BNIP3,
while there were no differences (P > 0.05) in those indexes
among the Control, RES, and RES+ DON treatments in
the ileum.

Dietary Supplementation With RES Affects

the Expression of Mitochondrial Related

Genes
In order to know whether the mitochondrial is related to this
study, we analyzed the protein expressions of mitochondrial
related genes in ileum. The relative expression levels of C54G1,
COX IV, Cyt c, HSP60, Mitofusin1, Mitofusin2, OPA1, PHB1,
SDHA, SOD1, TOM20, and VDAC are shown in Figure 3.
Dietary supplementation with 3.8mg DON/kg diet (DON)
decreased (P < 0.05) protein levels for Pyruvate Dehydrogenase,
Cytochrome c, MFN1, OPA1, and PHB1 (P < 0.05), while
supplementation with 300mg RES increased (P < 0.05) protein
levels for PHB1, SDHA, and VDAC. Supplementation with
RES decreased (P < 0.05) protein levels for MFN2 and OPA1,
compared with control group.

RES Improved the Negative Effect on

Mitochondrial Respiration by DON in vitro
Our results have shown that RES ameliorates the damage
challenged with DON through mitophagy, then we want to
find out whether RES and DON affect the mitochondrial
respiration in vitro. We found that supplementation with
0.5 µmol/L or 1 µmol/L DON gradually decreased (P
< 0.05) individual parameters for basal respiration, proton

leak, maximal respiration, spare respiratory capacity, non-
mitochondrial respiration, and ATP production in cells. While
supplementation with 15µM RES elevated the rate of spare
respiratory capacity in 0.5 µmol/L DON-treated cells (P < 0.05)
but not normal cells (Figure 4).

The results of total NAD and ATP in IPEC-J2 cells are shown
in Figure 5. supplementation with 0.5 µmol/L DON and 15µM
RES increased (P < 0.05) for total NAD, while supplementation
with DON or RES alone decreased (P < 0.05) for ATP. However,
addition of both 0.5 µmol/L DON and 20µM RES increased (P
< 0.05) the content of ATP.

RES Did Not Relieve Injury on

Mitochondrial Respiration Caused by DON

When Knockout Atg5
The results of mitochondrial respiration in IPEC-J2 cells are
shown in Figure 6. Supplementation with 0.5 µmol/L and
1 µmol/L DON gradually decreased (P < 0.05) individual
parameters for basal respiration, proton leak, maximal
respiration, spare respiratory capacity, non-mitochondrial
respiration, and ATP production in cells. While supplementation

FIGURE 5 | (A,B) Effect of DON and RES on Total NAD and ATP. Cells were

treated with 0 (NC) or 0.5 µmol/L or 1 µmol/L DON and 0 or 15µM or 20µM

RES, respectively. Data were expressed as means ± SEM of at least three

independent experiments. *Values with different letters are significantly different

(P < 0.05), *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 6 | RES did not relieve injury on mitochondrial respiration caused by DON when knockout Atg5. (A) Schematic and (B) oxygen consumption rate (OCR)

assessed by extracellular flux analysis. OCR was measured under basal conditions followed by the sequential addition of oligomycin (0.5 µM), FCCP (1 µM), rotenone

(1 µM), or antimycin A (1 µM). Each data point represents an OCR measurement. (C) Individual parameters for basal respiration, proton leak, maximal respiration,

spare respiratory capacity, nonmitochondrial respiration, and ATP production were determined. Cells were treated with 0 (NC) or 0.5 µmol/L or 1 µmol/L DON and 0

or 15µM RES, respectively. Data were expressed as means ± SEM of at least three independent experiments. (A–C) Values with different letters are significantly

different (P < 0.05).

with 15µM RES there is no significant difference between the
mitochondrial respiration.

DISCUSSION

DON is a common source of grain pollution, and has a
negative impact on intestinal function and reduce growth
performance for animals (14). Supplementation with 1mg
kg/DON damaged the intestinal morphology and impaired
intestinal mucosa and permeability, accompanied by an
inflammation response (15). 0.5µg/ml DON cultured for
6 h in IPEC-J2 cells induced oxidative stress, inflammation
and apoptosis. It has been reported that RES, as an effective
antioxidant, can significantly increase cellular antioxidant
enzyme activity, reduce intracellular ROS content, and
decrease oxidative stress in intestinal epithelial cells,

indicating that RES can be used as an effective feed additive
to prevent intestinal damage in livestock production (16).
Consistent with their research, the results of our study
suggests that RES could improve the intestinal damage by
DON. It shows RES plays an important role in protecting
animal health.

RES regulates biological functions, such as anti-oxidative
stress, anti-inflammatory, and antibacterial through
molecular regulatory mechanisms (SIRT1, Nrf2, and NF-
κB, etc). Moreover, RES is effective in preventing diseases
like cardiovascular disease, diabetes, neurodegeneration,
and cancer (17). In addition, RES can be used as an
alternative to antibacterial feed additives to regulate piglets’
intestinal flora, enhance antioxidant capacity in piglets’
serum, reduce oxidative stress on piglets at weaning, and
significantly improve growth performance of weaned
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piglets (18, 19). Recent study has shown that RES could
be able to mitigate diquat-induced intestinal oxidative
stress in piglets through mitochondrial autophagy (10).
Interestingly, RES also enhances the transcription of BNIP3,
a mitochondrial autophagy-related gene, through HIF1α and
AMPK, thereby maintaining mitochondrial homeostasis
and alleviating high-fat-induced endothelial function
impairment (20).

VDAC is a class of pore-protein ion channels located
in the outer mitochondrial membrane and plays a key role
in regulating metabolism and energy fluxes across the outer
mitochondrial membrane: it is involved in the transport
of ATP, ADP, pyruvate, malate and other metabolites (21).
VDAC expression was decreased in the DON group in our
experiments, and there was an imbalance in the functions
regulating mitochondrial outer membrane metabolism and
energy. This situation was alleviated by the addition of RES.
Cytochrome c plays a role in the electron transport chain
and apoptosis, and also acts as an antioxidant enzyme in
mitochondria to remove superoxide and hydrogen peroxide
from mitochondria (22). Our results are consistent with
previous studies, in that the expression of Cytochrome c
protein was significantly reduced in the DON group, suggesting
that the addition of DON caused oxidative damage to the
cells. The damage was alleviated by the addition of RES.
PHB1 has an important role in mitochondrial function
and morphology and promotes cell proliferation in mice
(23, 24). Consistent with the results in this experiment,
PHB1 protein expression was decreased and cell proliferation
was impaired in the DON group, and the addition of
RES was associated with a recovery in PHB1 expression.
All these proteins are closely associated with autophagy,
and because the previous RT-PCR results showed that RES
alleviates intestinal damage in relation to autophagy genes,
we further validated the role of RES by testing the levels of
these proteins. To sum up, our results have suggested that RES
might alleviate DON-induced intestinal damage by improving
mitochondrial autophagy.

Cellular respiration results in the conversion of nutrients
into, for example, ATP, and then the release of a series of
metabolic reaction products. In eukaryotic cells, mitochondria
are important organelles for cellular respiration and are involved
in the process of aerobic respiration. The nutrients protein,
fat and carbohydrates in aerobic respiration are degraded
by pyruvate to enter the tricarboxylic acid cycle to produce
energy. In this paper, we examined the changes in the oxygen
consumption rate of cells under RES treatment by Seahorse and
found that 15µM RES elevated the rate of spare respiratory
capacity in 0.5 µmol/L DON-treated cells (P < 0.05) but
not normal cells, however there is no significant change
in basal respiration, proton leak, maximal respiration, non-
mitochondrial respiration. When the autophagy-related gene
ATG-5 was knocked out, there were no significant changes in
the indicators of mitochondrial respiratory metabolism. In this
experiment, the total intracellular ATP and NAD were also

tested, and it was found that the addition of 0.5 µmol/L DON
and 20µM RES significantly increase for ATP, while addition
of DON or RES alone significantly decrease. This indicates
that RES could relieve DON-induced mitochondrial damage
through mitophagy.

CONCLUSIONS

RES alleviated the negative effects on mRNA and protein
expression levels of mitophagy-related genes challenged with
DON in piglets, elevated the rate of spare respiratory capacity,
increased for ATP, and improved DON-induced mitochondrial
damage in vitro. In conclusion, we have suggested that
resveratrol would ameliorate the intestinal damage challenged
with deoxynivalenol may through mitophagy in weaning piglets.
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This study examined the effects of dietary Eucommia ulmoides leaf extract (ELE)

supplements on carcass traits and lipid metabolism in growing–finishing pigs. A total

of 144 crossbred (Duroc × Landrace × Yorkshire) piglets with an average initial weight

of 10.11 ± 0.03 kg were randomly allotted to four treatment groups, each with six

replicates and six piglets per replicate. Each group of pigs was fed a basal diet or a

diet supplemented with increasing levels of ELE (0.1, 0.2, or 0.3%). The results showed

that adding ELE had no negative effect on the growth performance of pigs. Dietary

supplements of 0.1% ELE significantly increased carcass weight (p < 0.01), dressing

percentage (p < 0.01), carcass length (p < 0.05), and eye muscle area (p < 0.05).

Compared with the control group, a 0.2% ELE supplement significantly increased (p

< 0.01) the levels of adiponectin, insulin-like growth factor 1, and hormone-sensitive

lipase and lipoprotein lipase activity in the serum. Histological examination showed that

ELE inhibited fat deposition in the backfat tissue. Lipid metabolism-related biochemical

indices and mRNA expression levels were improved after supplementing diets with ELE.

Moreover, all three levels of ELE dramatically upregulated (p < 0.05) the protein levels

of p-AMPK-α and p-ACC. In summary, adding ELE to pig diets could improve the

carcass traits of growing–finishing pigs and exert a lipid-lowering effect by activating the

AMPK-ACC pathway and regulating mRNA expression levels related to lipid metabolism.

Supplementing the diet with 0.1–0.2% ELE is the optimal range to reduce fat deposition

in pig backfat tissue.

Keywords: Eucommia ulmoides leaf extract, DLY growing-finishing pigs, growth performance, carcass trait, lipid

metabolism, AMPK-ACC signal pathway
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INTRODUCTION

Obesity is becoming one of the most important health problems
in several countries, affecting scores of people, as it increases
the risk of various diseases, such as fatty liver, diabetes, and
coronary heart disease (1). In recent years, an antiobesity effect of
Eucommia ulmoides has been supported by an increasing number
of studies. Two prevenient studies have reported that Eucommia
ulmoides improved hyperglycemia in diabetic rats (2) and type
2 diabetes patients (3). Moreover, Eucommia ulmoides promoted
the recovery of lipid metabolism disorders caused by a high-fat
diet in rats (4).

Eucommia ulmoides (Chinese: Duzhong), also known as
Gutta-percha tree, Sixian, and Sizhong, is a perennial deciduous
tree of the Eucommiaceae family (5). Eucommia ulmoides is
widely distributed in China, with a high annual yield (6). Its
medicinal history can be traced back thousands of years and
is now widely used in clinics (5). Eucommia ulmoides is rich
in lignans, iridoid terpenoids, flavonoids, polysaccharides, and
other active components, with antihypertensive, hypoglycemic,
anti-inflammatory, liver protection, antitumor, and other
pharmacological effects (5, 7, 8). Studies into the potential of
Eucommia ulmoides as a feed supplement in Chinese herbal
medicine have been gradually developed. Previous studies
focused on the effects of Eucommia ulmoides leaf and its extracts
on growth performance and antioxidant activity in pigs (9–11).
However, at present, there are few studies on the effect of
Eucommia ulmoides leaf extracts (ELE) on lipid metabolism in
growing–finishing pigs, and the optimal supplement level is also
unknown. Since there are many similarities between pigs and
humans in terms of structure and function, the effect of ELE as a
dietary supplement in pigs can be used as a model for the study
of human nutrition and metabolism (12).

Following from previous research, we added dietary
supplements of 0, 0.1, 0.2, or 0.3% ELE to growing–finishing
pig diets and recorded the effects on growth performance,
carcass traits, and lipid metabolism. This provides a basis for the
wider application of ELE in animal husbandry and reducing the
incidence of human obesity.

MATERIALS AND METHODS

Preparation of ELE
ELE were purchased from Zhangjiajie Hengxing Biotechnology
Co., Ltd. (Zhangjiajie, China). Data provided by the company
show that the main active ingredients include 5% chlorogenes,
8% EL flavonoids, and 20% EL polysaccharides.

Animals and Diets
The animal experiments were approved by the Committee on
Animal Care of the Institute of Subtropical Agriculture, Chinese
Academy of Sciences. A total of 144 crossbred barrows (Duroc
× Landrace × Yorkshire, DLY, 10.11 ± 0.03 kg) were randomly
divided into four treatments, six replicates in each treatment, and
six pigs in each replicate. The experimental diets were as follows:
(1) control diet; (2) control diet + 0.1% ELE; (3) control diet +
0.2% ELE; (4) control diet+ 0.3% ELE. All the growing–finishing

TABLE 1 | Ingredients and nutritional composition of basic diets.

Ingredients (%) Dietary treatment

10–30 kg 30–70 kg 70–115 kg

Corn 63.70 58.60 67.00

Soybean meal 19.80 29.00 23.76

Dried whey 4.30 – –

Wheat bran – 7.80 6.00

Fish meal 9.00 – –

Soybean oil 0.80 1.55 0.88

Lys 0.38 0.18 0.01

Met 0.10 0.00 0.00

Thr 0.09 0.01 0.00

Trp 0.01 0.00 0.00

CaHPO4 0.00 0.69 0.50

Limestone 0.52 0.87 0.55

Salt 0.30 0.30 0.30

Premixa 1.00 1.00 1.00

Total 100.00 100.00 100.00

Nutrient content (%)

DEb (MJ/kg) 14.60 14.20 14.20

CP 20.27 18.27 16.30

Total Lys 1.52 1.15 0.88

Total (Met + Cys) 0.79 0.61 0.55

Total Thr 0.94 0.77 0.68

Total Trp 0.26 0.25 0.21

Total Ca 0.69 0.60 0.52

Total P 0.57 0.51 0.45

aSupplied per kg of diet (10–30 kg): vitamin A, 18,000 IU; vitamin D3, 5,000 IU; vitamin E,

40 IU; vitamin K3, 4mg; vitamin B1, 6mg; vitamin B2, 12mg; vitamin B6, 6mg; vitamin

B12, 0.05mg; biotin, 0.2mg; folic acid, 2mg; niacin, 50mg; D-calcium pantothenate,

25mg; Cu (as copper sulfate), 20mg; Fe (as ferrous sulfate), 90mg; Mn (as manganese

oxide), 15mg; Zn (as zinc oxide), 80mg; I (as potassium iodide), 0.3mg; and Se (as

sodium selenite), 0.3 mg. Supplied per kg of diet (30–115 kg): vitamin A, 15,000 IU; vitamin

D3, 3,000 IU; vitamin E, 40 IU; vitamin K3, 4mg; vitamin B1, 3mg; vitamin B2, 10mg;

vitamin B6, 4mg; vitamin B12, 0.03mg; biotin, 0.2mg; folic acid, 2mg; niacin, 35mg;

D-calcium pantothenate, 20mg; Cu (as copper sulfate), 15mg; Fe (as ferrous sulfate),

80mg; Mn (as manganese oxide), 15mg; Zn (as zinc oxide), 70mg; I (as potassium

iodide), 0.5mg; and Se (as sodium selenite), 0.3 mg.
bCalculated value for DE.

pigs were raised in pens and had ad libitum access to diets and
clean drinking water. All pigs were weighed when the pigs in the
control group weigh 10, 30, 70, and 115 kg, and feed intake was
recorded every week to calculate the average daily gain (ADG),
average daily feed intake (ADFI), and the ratio of feed to gain
(F/G). The experiment used a corn–soybean meal diet referred to
NRC (1998, 2012). The ingredients and nutritional composition
of basal diet are shown in Table 1.

Sample Collection
At the end of the trial, all the pigs were fasted overnight
(12 h), and one or two pigs of each replicate with average final
body weight was selected (8 pigs/treatment) to slaughter by
electrical stunning in a commercial abattoir. Before slaughter,
blood samples were collected into a plain tube and placed
at room temperature for 30min, then centrifuged at 3,000
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× g for 10min at 4◦C. Serum was collected and stored at
−80◦C for further analysis (13). The backfat samples were
immediately excised and stored at −20◦C for determination
of the chemical composition or placed in liquid N2 and
then stored at −80◦C for the analysis of quantitative real-
time PCR. Fresh samples of backfat (1 cm3) were fixed in
paraformaldehyde fixative for paraffin sections and hematoxylin
and eosin staining.

Carcass Trait Analysis
At slaughter, the carcass and the left side of carcass were weighted
so that slaughter rate could be calculated. Other carcass traits
including carcass length (carcass straight length and carcass slant
length), average backfat thickness (the 3rd−4th lumbar spine,
the 10th−11th lumbar spine, and the last rib), and loin–eye
area were measured from the left side of the carcass. The left
side of the carcass was split up into skeletal muscle and fat as
previously described (14). The fat mass rate percentage and lean
mass percentage were weighed and calculated.

Serum Biochemical Index Measurements
Total protein (TP), albumin (ALB), urea nitrogen (BUN),
blood glucose (GLU), total cholesterol (TC), triglyceride
(TG), high-density lipoprotein cholesterol (HDL-C), low-
density lipoprotein cholesterol (LDL-C), and very low-density
lipoprotein cholesterol (VLDL-C) in serum were measured with
cobas C311 Analyzer (Roche Diagnostics, Basel, Switzerland) and
commercial kits (Leadman Biotech Limited, Beijing, China) as
specified by the manufacturer.

Measurement of Serum Cytokine Levels
The concentrations of leptin (LEP), adiponectin (ADPN), insulin
(INS), and insulin-like growth factor 1 (IGF-1) were performed
by using ELISA kits (Changsha Aoji Biotechnology Co., Ltd.,
Changsha, China).

Measurement of Serum Enzyme Activity
The activity of acetyl-coa carboxylase (ACC), hormone sensitive
lipase (HSL), lipoprotein lipase (LPL), adipose triacylglyceride
lipase (ATGL), and acyl CoA cholesterol acyltransferase
(ACAT) in serum was detected by ELISA kits (Changsha Aoji
Biotechnology Co., Ltd., Changsha, China).

Backfat Tissue Histological Analysis
The mean cross-sectional area and quantity of adipocyte in
backfat tissue were measured by classic hematoxylin and
eosin staining. Serial tissue sections of 4µm were sliced
using a paraffin slicer (RM 2016, Shanghai Leica Instrument
Co., Ltd., Shanghai, China). The slices were dyed with
hematoxylin dye solution for 3–5min, washed with tap
water and dehydrated with 85 and 95% gradient alcohol for
5min, respectively, then dyed with eosin dye solution for
5min, dehydrated with absolute ethanol, and finally sealed
with neutral gum. The stained slides are scanned with a
panoramic slice scanner of Pannoramic DESK/MIDI/250/1000
(3DHISTECH, Budapest, Hungary), the scanned slices are
opened with CaseViewer 2.4 software (3DHISTECH, Hungary),
the field of view is intercepted, and Image-Pro Plus 6.0

(Media Cybernetics, Rockville, MD, USA) is used for calculation
and analysis.

Total RNA Isolation and Quantitative
Real-Time PCR Analysis
Total RNA isolation and real-time quantitative PCR were
conducted as previously described (15). In brief, total RNA
was extracted from backfat tissue samples using TRIzol Reagent
(Hunan Aikerui Bioengineering Co., Ltd., Changsha, China).
The purity of the total RNA was verified using a NanoDrop
ND2000 (NanoDrop Technologies Inc., Wilmington, DE, USA)
at 260 and 280 nm, and the OD260/OD280 ratios of the
RNA samples were all between 1.8 and 2.0. The total RNA
was treated with DNase I (Hunan Aikerui Bioengineering
Co., Ltd., Changsha, China) to remove DNA and reverse
transcribed to complementary deoxyribonucleic acid (cDNA)
using Evo M-MLV RT Kits with gDNA clean for qPCR
(Hunan Aikerui Bioengineering Co., Ltd., Changsha, China)
following the manufacturer’s protocol. Quantitative real-time
PCR was performed using an ABI 7900HT Real-Time PCR
system (Applied Biosystems, Branchburg, NJ, USA) with SYBR
Green Premix Pro Taq HS qPCR Kits (Hunan Aikerui
Bioengineering Co., Ltd., Changsha, China). The PCR system
consisted of 5 µl SYBR Green Pro Taq HS Premix, 2 µl
cDNA, 2.2 µl RNase-free water, and 0.4 µl primer pairs
(forward and reverse) in a total volume of 10 µl. The PCR
protocols included one cycle at 95◦C for 30 s, 40 cycles at
95◦C for 5 s, and 60◦C for 30 s. Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was used as the endogenous control
gene to normalize the expression of target genes according to
the comparative Ct method as follows: 2 −11Ct (11Ct =

1Ct gene of interest−1CtGAPDH) (16). Primer sequences are shown
in the Table 2.

Western Blot Analysis
An appropriate amount of backfat tissue sample was weighed
and added to RIPA lysate for ice lysis, and then BCA protein
assay kits (Beyotime Biotechnology, Shanghai, China) were
used to measure the protein concentration. Next, SDS-PAGE
electrophoresis was carried out. Firstly, the glass plate was
cleaned, and then the glue with an appropriate concentration was
prepared according to the protein concentration of the sample.
The loading amount was calculated, and β-mercaptoethanol
was added to the equal-volume buffer and 1/10-volume buffer,
mixed well, put into the Mastercycler nexus PCR instrument
(Eppendorf, Hamburg, Germany), and mixed well. After
adding samples, electrophoresis was carried out, and then the
membrane was transferred. After sealing the membrane, the
primary antibody and secondary antibody were incubated for
color development.

Statistical Analysis
All experimental data were analyzed using one-way analysis of
variance (ANOVA) of SPSS (version 26.0, SPSS Inc., Chicago,
IL, USA), and then the Duncan multiple-comparison test was
performed. Results were expressed as mean and SEM, p < 0.05
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TABLE 2 | Primers used for quantitative real-time PCR.

Genesa Primers Sequences (5
′

to 3
′

) Product size, bp

ACC Forward AGCAAGGTCGAGACCGAAAG 169

Reverse TAAGACCACCGGCGGATAGA

FAS Forward CTACCTTGTGGATCACTGCATAG 114

Reverse GGCGTCTCCTCCAAGTTCTG

SREBP-1c Forward GCGACGGTGCCTCTGGTAGT 218

Reverse CGCAAGACGGCGGATTTA

HSL Forward CACAAGGGCTGCTTCTACGG 167

Reverse AAGCGGCCACTGGTGAAGAG

LPL Forward CTCGTGCTCAGATGCCCTAC 148

Reverse GGCAGGGTGAAAGGGATGTT

ATGL Forward TCACCAACACCAGCATCCA 95

Reverse GCACATCTCTCGAAGCACCA

CPT1B Forward GACAAGTCCTTCACCCTCATCGC 170

Reverse GGGTTTGGTTTGCCCAGACAG

PPAR γ Forward CCAGCATTTCCACTCCACACTA 124

Reverse GACACAGGCTCCACTTTGATG

AMPK α Forward GCATAGTTGGGTGAGCCACA 105

Reverse CCTGCTTGATGCACACATGA

FATP1 Forward ACCACTCCTACCGCATGCAG 78

Reverse CCACGATGTTCCCTGCCGAGT

FAT/CD36 Forward CTGGTGCTGTCATTGGAGCAG 160

Reverse CTGTCTGTAAACTTCCGTGCCTGTT

FABP4 Forward CAGGAAAGTCAAGAGCACCA 227

Reverse TCGGGACAATACATCCAACA

GAPDH Forward CAAAGTGGACATTGTCGCCATCA 123

Reverse AGCTTCCCATTCTCAGCCTTGACT

aACC, acetyl CoA carboxylase; FAS, fatty acid synthase; HSL, hormone-sensitive lipase;

LPL, lipoprotein lipase; ATGL, adipose triacylglyceride lipase; CPT1B, carnitine palmitoyl

transferase 1B; FATP1, fatty acid transport protein 1; FAT/CD36, fatty acid translocase;

FABP4, fatty acid-binding protein 4; SREBP1c, sterol regulatory element-binding protein-

1c; PPAR γ, translocase peroxisome proliferator-activated receptor γ; AMPK α, adenosine

monophosphate-activated protein kinase α.

was considered significant, and 0.05 ≤ p < 0.10 was considered
as trend.

RESULTS

Growth Performance
Table 3 shows that from 10 to 30 kg, there was no significant
difference (p > 0.05) in ADG, ADFI, or F/G with increasing
levels of ELE supplements. At the 10–70-kg stage, ADG was
higher in the group supplemented with 0.1% ELE (p < 0.05)
than in the other groups. F/G was lower in the 0.1% ELE group
(p < 0.05) than in the other groups, but there was no dramatic
discrepancy (p> 0.05) compared with the control group. Adding
0.2 or 0.3% ELE to the diet could markedly improve ADFI (p
< 0.05). Over the whole period of the experiment, ADFI was
higher (p < 0.05) in the 0.1% ELE group than in the 0.3% group,
but there were no observable change in ADG or F/G among the
different treatments.

TABLE 3 | Growth performance of growing and growing–finishing pigs fed the

diets with various levels of ELE.

Item1 ELE2 levels, % SEM p-value

0 0.1 0.2 0.3

10–30 kg

Initial weight, kg 10.08 10.11 10.12 10.11 0.03 0.76

Final weight, kg 29.23 28.76 29.18 28.77 0.27 0.46

ADG, kg·day−1 0.54 0.54 0.55 0.54 0.01 0.83

ADFI, kg·day−1 0.90 0.93 0.93 0.91 0.01 0.07

F/G 1.68 1.72 1.71 1.71 0.02 0.37

10–70 kg

Final weight, kg 69.65 71.60 68.24 68.83 1.13 0.20

ADG, kg·day−1 0.63ab 0.65a 0.62b 0.61b 0.01 0.04

ADFI, kg·day−1 1.41b 1.45a 1.46a 1.42b 0.01 0.02

F/G 2.26ab 2.22b 2.32a 2.32a 0.02 0.02

10–115 kg

Final weight, kg 114.33 116.18 115.33 114.95 1.51 0.39

ADG, kg·day−1 0.69 0.71 0.70 0.68 0.01 0.44

ADFI, kg·day−1 1.96ab 1.99a 1.96ab 1.95b 0.01 0.06

F/G 2.85 2.82 2.82 2.88 0.03 0.39

abDifferent superscript letters on the same line are significant differences (p< 0.05) (n= 6).
1ADG, average daily weight gain; ADFI, average daily feed intake; F/G, the ratio of feed

intake to body weight gain.
2ELE, Eucommia ulmoides leaf extract.

Carcass Trait
Table 4 shows that carcass weight (p < 0.05), slaughter rate
(p < 0.01), and carcass straight length (p < 0.05) in the 0.1%
ELE group were markedly higher than those in the other three
groups. Meanwhile, compared with the control group, dietary
supplemented with 0.1% ELE observably aggrandized the loin–
eye area (p < 0.05) of growing–finishing pigs. In addition,
adding 0.3% ELE notably increased the lean meat rate (p <

0.01) of growing–finishing pigs compared with the other three
groups.

Serum Biochemical Indexes
Table 5 shows that adding ELE in the diet memorably descended
the content of TP (p < 0.05), TG (p < 0.05), and VLDL-C
levels (p < 0.01) compared with the control group; meanwhile,
it increased serum ALB (p < 0.01) and HDL-C levels (p < 0.01).

Serum Cytokine Levels
Table 6 shows that dietary supplementation with 0.2% ELE could
signally elevate the levels of ADPN (p < 0.01) and IGF-1 (p <

0.01) in serum. Serum leptin and insulin levels were not changed
dramatically (p > 0.05) among the groups.

Activity of Enzymes Related to Lipid
Metabolism
The activities of HSL, LPL, and ACAT first increased and
then decreased as the level of ELE increased in the diet
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TABLE 4 | Carcass trait of growing–finishing pigs fed the diets with various levels

of ELE.

Item ELE1 levels, % SEM p-value

0 0.1 0.2 0.3

Carcass

weight, kg

82.63b 87.00a 84.27b 83.73b 0.93 0.02

Slaughter

rate, %

73.37b 75.39a 73.46b 72.85b 0.39 <0.01

Carcass

straight

length, cm

95.91b 98.64a 95.64b 95.74b 0.79 0.03

Carcass slant

length, cm

82.29 83.45 82.14 82.64 0.62 0.50

Average

backfat

thickness,

mm

25.63 24.94 24.46 23.74 1.11 0.55

Loin–eye

area, cm2

27.17b 31.60a 29.70ab 30.96a 0.94 0.01

Lean mass

percentage,

%

55.00b 55.54b 55.46b 58.40a 0.75 <0.01

Fat mass

percentage,

%

16.19 15.37 15.65 16.00 0.56 0.85

abDifferent superscript letters on the same line are significant differences (p< 0.05) (n= 8).
1ELE, Eucommia ulmoides leaf extract.

TABLE 5 | Effects of dietary ELE on serum biochemical indexes of

growing–finishing pigs.

Item1 ELE2 levels, % SEM p-value

0 0.1 0.2 0.3

TP, g·L−1 74.39a 72.90ab 72.54ab 70.61b 0.84 0.03

ALB, g·L−1 52.67a 55.39a 53.41a 46.64b 1.05 <0.01

BUN, mmol·L−1 5.20ab 5.44ab 6.03a 4.63b 0.28 0.01

GLU, mmol·L−1 6.36 6.45 6.30 6.27 0.21 0.93

TG, mmol·L−1 0.58a 0.46b 0.49ab 0.43b 0.04 0.03

TC, mmol·L−1 2.73 3.05 2.78 2.99 0.14 0.30

LDL-C, mmol·L−1 1.86 1.92 1.79 2.05 0.09 0.25

VLDL-C, mmol·L−1 15.11a 14.11ab 11.81c 12.60bc 0.57 <0.01

HDL-C, mmol·L−1 0.56b 0.84a 0.71a 0.55b 0.05 <0.01

a−cDifferent superscript letters on the same line are significant differences (p < 0.05)

(n = 8).
1TP, total protein; ALB, albumin; BUN, urea nitrogen; Glu, blood glucose; TC, total

cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-

density lipoprotein cholesterol; VLDL-C, very low-density lipoprotein cholesterol.
2ELE, Eucommia ulmoides leaf extract.

(Table 7). ACC activity was lower (p < 0.01) at 0.1% ELE
than at other levels. Compared with the control group, diet
supplemented with 0.1% and 0.2% ELE notably enhanced
(p < 0.01) HSL and LPL activities. Besides, the ATGL
activity of the 0.1% ELE group exceeded (p < 0.05) that
of the other two treatment groups, but there was no
marked difference compared with the control group. In

TABLE 6 | Effects of dietary ELE on serum cytokine levels of growing–finishing

pigs.

Item1 ELE2 levels, % SEM p-value

0 0.1 0.2 0.3

LEP, ng·mL−1 11.60 10.68 10.06 11.90 0.62 0.16

ADPN, µg·mL−1 25.45b 26.75b 35.35a 24.54b 1.62 <0.01

INS, mIU·L−1 26.80 26.08 24.40 25.82 1.91 0.85

IGF-1, ng·mL−1 371.34b 449.79b 604.92a 543.78a 31.40 <0.01

abDifferent superscript letters on the same line are significant differences (p< 0.05) (n= 8).
1LEP, leptin; ADPN, adiponectin; INS, insulin; IGF-1, insulin-like growth factor 1.
2ELE, Eucommia ulmoides leaf extract.

TABLE 7 | Effects of different levels of ELE on key enzyme activity-related lipid

metabolism in backfat tissue of growing–finishing pigs.

Item1 ELE2 levels, % SEM p-value

0 0.1 0.2 0.3

ACC, U·L−1 27.57b 22.21c 26.40b 33.16a 1.27 <0.01

HSL, U·L−1 843.40b 1189.28a 1287.42a 975.86b 57.32 <0.01

LPL, U·L−1 454.19c 603.63ab 682.70a 556.42b 28.38 <0.01

ATGL, mIU·mL−1 315.63ab 345.28a 290.35ab 263.12b 23.06 0.01

ACAT, U·L−1 85.94 86.71 94.64 87.97 5.03 0.60

a−cDifferent superscript letters on the same line are significant differences (p < 0.05)

(n = 8).
1ACC, acetyl CoA carboxylase; HSL, hormone-sensitive lipase; LPL, lipoprotein lipase;

ATGL, adipose triacylglyceride lipase; ACAT, acyl CoA cholesterol acyltransferase.
2ELE, Eucommia ulmoides leaf extract.

addition, ACAT activity was no marked discrepancy among the
four groups.

Mean Cross-Sectional Area and Quantity
of Adipocyte in Backfat Tissue
Figure 1 shows that all the supplementary levels of ELE
significantly decreased (p < 0.05) the mean cross-sectional area
of adipocytes and increased (p < 0.05) the total number of
adipocytes in backfat tissue.

Relative MRNA Expression Levels of the
Key Genes Related to Lipid Metabolism in
Backfat Tissue
Figure 2 shows that dietary supplementation with 0.1% and
0.2% ELE could downregulate (p < 0.05) the mRNA expression
levels of adipogenic genes such as ACC, FAS and SREBPS1c
(Figure 2A) and upregulate (p < 0.05) the mRNA expression
levels of lipid-lowering genes, such as HSL, ATGL and SREBP1c,
but there was no dramatic variation (p > 0.05) in LPL in
this study (Figures 2A–C). In the 0.2% ELE group, the mRNA
expression levels of CPT1 and AMPK-α increased significantly
(p < 0.05), but that of PPARγ did not change dramatically (p
> 0.05) (Figures 2B,C). In addition, compared with the control
group, supplementing with ELE markedly increased (p < 0.05)
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FIGURE 1 | Histological analysis of the mean cross-sectional area and quantity of adipocyte of growing–finishing pigs fed the diets of different levels of Eucommia

ulmoides leaf extract (ELE). (A) Representative cross-sectional HE staining photos of adipocytes in backfat tissue (magnification ×100, bar = 50µm). (B) Quantitative

analysis of adipocyte number in backfat tissue. Data are expressed as means ± SEM. a−cValues with different letters are significantly different among dietary ELE

treatments (p < 0.05) (n = 4).

the mRNA expression levels of FAT/CD36 and FABP4, and 0.2%
ELE decreased themRNA expression level of FATP1 (Figure 2D).

Western Blotting Analysis
Relative protein expression levels for AMPK-α, p-AMPK-α,
ACC, and p-ACC were determined by using Western blotting.
The results showed that all three different levels of ELE
upregulated (p < 0.05) the relative protein expression levels of
p-AMPK-α and p-ACC (Figures 3A,B).

DISCUSSION

Previous studies have shown that ELE is rich in amino acids,
minerals, and other nutrients. The essential amino acid content
in ELE is high, of which leucine is the highest, followed by valine
(5). In addition, iridoids, phenols, and flavonoids are abundant in
ELE, which reduces blood lipids (17, 18) and improves diabetes

(19) and antioxidation (7). In recent years, Eucommia ulmoides
is considered to be a very useful feed additive in healthy livestock
and poultry breeding.

This study compared the effects of different supplementary
levels of ELE in the diet on growth performance, carcass traits,
and lipid metabolism in pigs. Growth performance directly
affects the meat growth performance of growing–finishing pigs,
thus affecting the economic return. These results showed that
supplementing pig diets with different levels of ELE had no
significant effect on ADG, ADFI, or F/G in piglets, which was
consistent with a previous study (9). This might have been due to
the strong aromatic compounds in E. ulmoides leaf, which might
have affected the palatability of the feed. However, our results
differ from some previous studies (10, 11), which might have
been due to different processing technologies and amounts of
ELE supplements used, while ELE supplements had no negative
effects on growth performance.
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FIGURE 2 | (A) The relative mRNA expression levels of the key genes related to lipogenesis including acetyl-CoA carboxylase α (ACC), fatty acid synthase (FAS), and

sterol regulatory element-binding protein-1c (SREBP1c), n = 8. (B) The relative mRNA expression levels of the key genes related to lipolysis including HSL, LPL, and

ATGL, n = 8. (C) The relative mRNA expression levels of the key genes related to fatty acid oxidation including CPT1B, translocase peroxisome proliferator-activated

receptor γ (PPARγ), and adenine monophosphate-activated protein kinase α (AMPK-α), n = 8. (D) The relative mRNA expression levels of the key genes related to

fatty acid transport including FATP1, FAT/CD36, and FABP4, n = 8. Data are expressed as means ± SEM (n = 8). a−dValues with different letters are significantly

different among dietary ELE treatments (p < 0.05).

Human consumption of meat products containing a large
amount of fat may pose a threat to health; long-term
consumption may induce cardiovascular diseases and obesity
(20). Compared with the control group, the average backfat
thickness of the three treatment groups decreased by 2.7,

4.6, and 7.4%, respectively. Meanwhile, fat mass percentage in
the three treatment groups decreased by 5.1, 3.2, and 1.2%,
respectively. Unfortunately, none of them reached a significant
level. However, the histomorphological analysis of backfat tissue
showed that ELE significantly reduced the average cross-sectional
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FIGURE 3 | (A) Representative immunoblots of protein levels and phosphorylation degrees of AMPK-α, p-AMPK-α, ACC, and p-ACC, in backfat tissue of

growing–finishing pigs. (B) Relative protein expression levels of p-AMPK-α/AMPK-α and p-ACC/ACC. Data are expressed as means ± SEM. a−cValues with different

letters are significantly different among dietary ELE treatments (p ≤ 0.05) (n = 4).

area of adipocyte; the more mature a fat cell is, the larger
it is (21), indicating that ELE effectively inhibited the growth
and maturation of adipose cells. In conclusion, ELE had a
potential inhibitory effect on fat accumulation in back fat tissue;
this might be related to chlorogenic acid, the most important
active ingredient in ELE. Dietary supplementation with 0.5%
and 1% chlorogenic acid was previously reported to reduce
the accumulation of visceral fat and lipid content in rats (22).
Moreover, dietary supplementation with 0.2% ELE significantly
increased carcass weight, slaughter rate, carcass straight length,
and loin–eye area, which was consistent with our expectations,
indicating that low-dose ELE could improve the carcass traits of
growing–finishing pigs.

The changes in serum biochemical indexes can affect the
metabolism and nutrient deposition of animals and are affected
by the growth stage, endocrine status, and dietary nutrient level
(23). We examined the indexes related to lipid and nitrogen
metabolism in serum of growing–finishing pigs. Our results
showed that adding ELE to the diet increased the serum ALB
content and decreased the TP content in growing–finishing
pigs, indicating that ELE was beneficial to the overall health of
pigs. HDL, a “vascular scavenger,” has an anti-atherosclerosis
function (24) and can prevent coronary heart disease (25).
VLDL is known as an atherogenic factor. It is reported that
Eucommia ulmoides reduce the levels of triglycerides and total
cholesterol in the plasma of finishing pigs (9). In this study, ELE
markedly improved HDL content and decreased the levels of
VLDL and TC, which indicated that ELE effectively improved
lipid metabolism and cardiovascular health in growing–finishing
pigs and that the chlorogenic acid and geniposidic acid contained
in ELE could play a vital role in antiobesity. Studies have shown
that both chlorogenic acid and geniposidic acid from ELE reduce
serum TG and TC in obese mice (17, 18).

Adiponectin is secreted by adipocytes and has insulin-
sensitizing, anti-atherosclerotic, and anti-inflammatory effects
(26). Previous studies have shown that adiponectin promotes
the oxidation of fatty acids in muscle and adipose tissue (27).
Adiponectin can increase HDL levels and decrease TG levels
(28). IGF-1 is a hormone that is closely related to metabolic

syndrome and is mainly secreted by the liver cells. This is related
to carbohydrate and lipid metabolism (29). Recombinant IGF-
1 enhances the lipolysis of adipose tissue, increases the rate of
lipid oxidation (30), and promotes the use of free fatty acids in
muscle (29). In this study, supplementation with ELE boosted the
concentrations of adiponectin and IGF-1 in circulation, which
indicates that it plays a lipid-lowering role by regulating hormone
levels in growing–finishing pigs.

To explore whether ELE had a similar effect on enzymes
related to lipid metabolism, we measured the activities of
enzymes related to lipid metabolism in the serum of fattening
pigs. AAC is a well-known rate-limiting enzyme (31–33). HSL
and ATGL are two important lipases in the animal body. HSL
can hydrolyze TG, diglyceride, monoglyceride, cholesterol ester,
retinol ester, and other lipids and produce glycerol and free fatty
acids (34, 35). ATGL is highly expressed in adipose tissue and
is highly specific for TG (36). Moreover, LPL is a rate-limiting
enzyme for the degradation of blood triglycerides to glycerol and
free fatty acids (37). In addition, ACAT is the only enzyme in the
body that can catalyze cholesterol to produce cholesterol esters.
Excessive cholesterol esters may lead to atherosclerosis (38). In
the present study, although ELE did not dramatically change
ACAT activity, dietary supplementation with 0.1% ELE increased
HSL, LPL, and ATGL activities while decreasing ACC activity,
enlightening the effect of ELE on reducing serum TG which
could be achieved by regulating the activities of these enzymes. In
addition, we also analyzed the histomorphology of backfat, and
the results showed that the addition of ELE markedly reduced
the mean cross-sectional area of adipocyte and increased the
number of backfat adipocytes. It is proved that ELE can inhibit
fat deposition.

We further examined the mRNA expression levels of enzymes
and cytokines related to lipogenesis (ACC and FAS), lipolysis
(HSL, LPL, and ATGL), fatty acid oxidation (CPT1B, AMPK
α), fatty acid transportation (FATP1, FAT/CD36, and FABP4),
and lipid deposition (SREBP-1c, PPARγ) to determine the
molecular mechanism by which ELE regulates lipid metabolism
in growing–finishing pigs. In this study, all three levels of
ELE downregulated the mRNA expression of ACC and FAS,
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and 0.2% ELE significantly downregulated the expressions of
SREBP1c and FATP1. The level of PPARγ mRNA showed a
downward trend but did not reach a memorable level. These
results showed that 0.1 and 0.2% ELE could effectively reduce
the mRNA expression levels of adipogenesis genes. In addition,
supplementing with 0.1 and 0.2% ELE upregulated the mRNA
level expressions of HSL, ATGL, CPT1B, AMPK, FAT/CD36,
and FABP4. Compared with the control group, the 0.3% ELE
supplement also significantly upregulated the expressions of
FAT/CD36 and FABP4 mRNA. Additionally, the 0.3% ELE
supplement downregulated the mRNA expression level of HSL,
suggesting that the lipid-lowering effect of ELE may decrease
when the dosage exceeds 0.2%. The mRNA expression levels of
HSL and ATGL were consistent with the observations that ELE
increased HSL and ATGL enzyme activities in growing–finishing
pigs. These results also reveal that ELE can exert a lipid-lowering
effect by downregulating the mRNA expression levels of lipid-
producing genes and upregulating the mRNA expression levels
of lipid-lowering genes.

AMPK and ACC are not only the key links in their metabolic
regulation but also closely related to each other, which can
form upstream and downstream signal pathways in cells. The
AMPK-ACC signaling pathway formed by AMPK and its
downstream target ACC has important physiological significance
in the process of fat synthesis and oxidation (39). When
activated by adiponectin, AMPK phosphorylation inactivates
ACC phosphorylation, which catalyzes the formation of malonyl-
CoA. Malonyl-CoA is the substrate for fatty acid biosynthesis,
which inhibits fatty acid oxidation (40). Therefore, we speculate
that ELE has a lipid-lowering effect through the AMPK-ACC
pathway. We measured the protein expression level of AMPK-
α and ACC and the expression level of phosphorylated proteins.
As expected, all the three levels of ELE remarkably improved the
protein levels of p-AMPK-α and p-ACC and showed a downward
trend with the increase in dosage.

CONCLUSIONS

The addition of ELE < 0.3% in growing–finishing pigs could
partially improve the carcass traits of growing–finishing pigs
and had no adverse effect on growth performance. The 0.1%
ELE supplement improved carcass traits, and the 0.1 and
0.2% ELE supplement can reduce the level of TG in serum
and increase the level of hormones and enzyme activity that
promote fat catabolism. The mRNA and protein expression
levels of the key genes related to lipid metabolism showed
that the lipid-lowering mechanism of ELE may be through the

activation of the AMPK-ACC pathway to inhibit fat deposition
in backfat tissue, and the lipid-lowering effect of the 0.1
and 0.2% ELE supplement was the best. However, when the
supplemental level was 0.3%, there was no significant effect on
carcass traits and lipid metabolism of growing–finishing pigs,
and some indexes even had negative effects. In conclusion,
the supplemental range of 0.1 to 0.2% ELE is the optimal
addition. ELE contains a variety of bioactive components; which

component plays a leading role needs our further study using the
cell culture model.
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The present study determined the effects of different probiotic mixture supplementation

to sows from late pregnancy to day 21 postpartum on reproductive performance,

colostrum composition, plasma biochemical parameters, and fecal microbiota and

metabolites. A total of 80 pregnant sows were randomly assigned to one of four groups

(20 sows per group). The sows in the control group (CON group) were fed a basal

diet, and those in the BS-A+B, BS-A+BL, and BS-B+BL groups were fed basal diets

supplemented with 250 g/t of different probiotic mixture containing either 125 g/t of

Bacillus subtilis A (BS-A), Bacillus subtilis B (BS-B), and/or Bacillus licheniformis (BL),

respectively. The trial period was from day 85 of pregnancy to day 21 postpartum.

The results showed that different dietary probiotic mixture supplementation increased

(P < 0.05) the average weaning weight and average daily gain of piglets, while dietary

BS-A+BL supplementation increased the number of weaned piglets (P < 0.05), litter

weight (P = 0.06), litter weight gain (P = 0.06), and litter daily gain (P = 0.06) at weaning

compared with the CON group. Different dietary probiotic mixture supplementation

improved (P < 0.05) the colostrum quality by increasing the fat and dry matter

concentrations, as well as the protein and urea nitrogen concentrations in the BS-A+BL

group. Dietary probiotic mixture BS-B+BL increased the plasma total protein on days

1 and 21 postpartum while decreased the plasma albumin on day 1 postpartum (P

< 0.05). In addition, the plasma high-density lipoprotein-cholesterol was increased in

the BS-A+B and BS-B+BL groups on day 21 postpartum, while plasma ammonia was

decreased in the BS-A+B and BS-A+BL groups on day 1 and in the three probiotic

mixtures groups on day 21 postpartum (P< 0.05). Dietary supplementation with different
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probiotic mixture also modified the fecal microbiota composition and metabolic activity in

sows during pregnancy and postpartum stages. Collectively, these findings suggest that

maternal supplementation with Bacillus subtilis in combination with Bacillus licheniformis

are promising strategies for improving the reproductive performance and the overall

health indicators in sows, as well as the growth of their offspring.

Keywords: fecal microbiota, litter size, metabolites, pregnant sows, probiotics

INTRODUCTION

Reproductive performance can be influenced by the health
status of sows during pregnancy, and such a parameter is
closely associated with the economic efficiency of pig farms (1).
However, sows are susceptible to various stress factors (including
factors associated with service staff, environment, physiological
stages, etc.) during pregnancy and lactation. Such situation of
stress may cause imbalance of intestinal microbiota composition
and metabolic activity, lower nutrient utilization, and lead to
sows body weight loss (2). The gut microbiota composition of
sows during pregnancy and lactation can impact the enteric
nutrient absorption and immunity (3), which consequently
influences the body weight (BW) of piglets at birth and weaning,
the number of piglets born alive, and the number of living
piglets at weaning (4). Moreover, the BW loss of sows during
lactation can influence the lactation performance, as well as the
subsequent weaning-to-service interval and reproductive cycle
(5). Therefore, in order to maximize the reproductive potential
and the body health of sows, such objectives might be achieved
by different dietary strategies, including supplementation with
antibiotics, probiotics, prebiotics, and enzymes in sow diets
(6). Recent concerns regarding antibiotic resistance in animals
and humans has led to the use of antibiotic alternatives such
as probiotic strains in livestock production. Such alternative
has attracted increased attention to improve the reproductive
performance and overall health of animals.

The most commonly used probiotics in livestock production
include the Bifidobacterium, Lactobacillus, Bacillus spp.,
Enterococcus spp., and Saccharomyces cerevisiae (7). Among
these probiotics, Bacillus spp. is differentiated by its ability to
survive in the intestinal tract, form spores, secrete bacteriostatic
substances, withstand adverse conditions of feed processing, and
maintain stability. Moreover, Bacillus spp. produces different
kinds of digestive enzymes and stimulates peristalsis of the host
intestine, thereby enhancing nutrient digestion (8, 9). Therefore,
it is deemed to be a beneficial feed additive for animal intestinal
health (10). Bacillus spp. are also widely used as probiotics
in humans, as they may bring a health benefit to the host
gastrointestinal physiology (11). Concurrently, Cai et al. (12)
have also shown that dietary Bacillus spp. supplementation has
positive effects on pigs, such as improving growth performance
and feed conversion ratio, reducing the incidence of diarrhea and
mortality, as well as increasing the BW and number of piglets
born alive and kept alive up to weaning time. Moreover, previous
studies also revealed that a probiotic mixture of Bacillus subtilis
and Bacillus licheniformis in growing-finishing pigs increased

the digestibility and fecal Lactobacillus counts while decreased
fecal NH3 and total mercaptan emissions (13). The decreased
NH3 concentration is also considered beneficial for colonocyte
mitochondrial energy metabolism, as this bacterial metabolite
inhibits oxygen consumption in colonocytes when present in
excess (14).

Although various Bacillus spp. are used as probiotics for
animals and humans, the mixture of different Bacillus strains
(such as B. subtilis and B. licheniformis) has been little studied in
pigs, and the mechanisms involved in the effects observed are not
yet fully understood. In addition, most studies and applications
of Bacillus spp. are mostly concentrated on the stages of piglets
at nursery, weaned piglets, and growing pigs. However, the
studies are relatively limited on the effects of Bacillus spp. used
during pregnancy and lactation, regarding the impact on the sow
reproductive performance and the profiles of the sow’s intestinal
microbiota. In addition, the effects of maternal supplements
on their offspring piglets have been little documented. Our
previous study found that dietary supplementation with a
probiotic mixture of B. subtilis and B. licheniformis to piglets
at weaning could improve several indicators of intestinal
health through improving intestinal morphology and altering
intestinal microbiota and metabolite concentrations (15). In
addition, dietary supplementation with B. subtilis increased the
amounts of intestinal microbes with presumed beneficial effects,
and the fecal concentrations of several bioamines and short-
chain fatty acids (SCFA) of perinatal sows (15, 16). In this
context, we hypothesized that dietary probiotic mixture (B.
subtilis A, BS-A; B. subtilis B, BS-B; and/or B. licheniformis)
supplementation from late pregnancy to day 21 postpartum
would be beneficial for sow health and thus influence their
reproductive performance. The BS-A is a product containing a
single B. subtilis strain and has a strong capability of Clostridium
perfingens inhibition. The BS-B is a product containing a
single pure Bacillus strain with strong Escherichia coli F18
inhibition ability. Both strains show significant pathogens
inhibition through multiple secondary metabolites production.
Moreover, B. licheniformis is a product containing a single pure B.
licheniformis strain, which has the potential to improve intestinal
morphology in broilers. Therefore, the combination of these
strainsmight have synergic beneficial effects in animals. Thus, the
present study was conducted to determine the effect of dietary
supplementation with probiotic mixture containing B. subtilis
and/or B. licheniformis from late pregnancy to day 21 postpartum
on reproductive performance, biochemical parameters in blood
and colostrum, and intestinal microbiota composition and
their metabolites.
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MATERIALS AND METHODS

Animals, Housing, and Treatments
A total of 80 Large White sows close to day 85 of pregnancy
with 2–4 parities were used and randomly assigned to one
of four groups (20 sows per group). The sows in the control
group were fed the basal diet (CON group), and those in the
experimental groups received the basal diet supplemented with
250 g/t complex probiotics (4.0 × 109 CFU/kg). The diets of the
BS-A+B, BS-A+BL, and BS-B+BL groups contained 125 g/t B.
subtilis A (BS-A) + 125 g/t B. subtilis B (BS-B), 125 g/t BS-A
+ 125 g/t B. licheniformis (BL), and 125 g/t BS-B + 125 g/t BL,
respectively. The complex probiotics were prepared by Evonik
(China) Co., Ltd. The trial lasted from day 85 of pregnancy to
day 21 postpartum.

The pregnant sows were housed in individual pens (2.50 ×

0.85m) during late pregnancy (days 85–110), and were moved to
the farrowing facilities (2.50 × 2.70m) on day 110 of pregnancy,
where they were housed individually with a hard plastic slatted
bedding, together with their litters until weaning. The room
temperature was maintained at 21–24◦C with 60% relative
humidity. In addition, heating lights were used to maintain the
temperature of the piglets. The sows were fed a pregnancy diet
between days 85 to 107 of pregnancy and a lactation diet from
day 108 of pregnancy to day 21 postpartum. The sows were fed
twice daily (8:00 a.m. and 5:00 p.m.) with ∼2.0–3.0 kg of diets
and changed according to their body condition. Sows and piglets
had available ad libitum access to water throughout the trial via
the individual nipple. The composition and nutrient levels of the
basal diets for pregnant and lactating sows are shown in Table 1.

Sample Collection and Preparation
On day 1 postpartum, the litter size, number of born alive, and
litter weight were recorded, as well as the number and weight of
weaned piglets per litter on day 21 postpartum, to calculate the
daily gain of litters at weaning and average daily gain of piglets.
The backfat thickness was measured at the level of the last rib
at 5–8 cm from the midline of each sow using ultrasonography
(Renco Lean-Meater R©, Minneapolis, MN, USA) on days 85
and 112 of pregnancy, and again on day 21 postpartum. The
colostrum samples (∼10mL) of eight sows per group were
collected within 12 h after farrowing and stored at−80◦C for the
analysis of colostrum composition. The fresh fecal samples were
randomly collected in 50mL sterile centrifuge tubes from eight
sows per group on days 100 and 112 of pregnancy and on days 7,
14, and 21 postpartum, and then stored at −20◦C for analysis
of the microbiota composition and metabolite concentrations.
On days 1 and 21 postpartum, the blood samples were randomly
collected from the precaval vein into 10mL heparin coated-tubes,
and plasma was separated by centrifuging at 3,500× g for 10min
at 4◦C and immediately stored at −20◦C for the analysis of
biochemical parameters.

Analysis of Plasma Biochemical

Parameters
The plasma biochemical parameters, including total protein (TP),
albumin (ALB), urea nitrogen (UN), ammonia (AMM), alkaline

TABLE 1 | Ingredients and nutrient levels of basal diets of sows during late

pregnancy and lactation (as-fed basis).

Items Pregnancy diet Lactation diet

Ingredients (%)

Corn 60.30 58.65

Wheat bran 23.50 5.00

Wheat flour 2.00

Soybean oil 4.00

Soybean meal 12.00 20.50

Enzymic protein powder 3.00

Fish meal 2.50

L-Lysine·HCl 0.12 0.15

L-Threonine 0.03 0.05

L-Valine 0.10

Anti-mildew agent 0.05 0.05

Pregnancy compound premixa 4.00

Lactation compound Premixb 4.00

Total 100.00 100.00

Nutrient levels (%)c

Digestible energy (MJ/kg) 15.23 15.56

Dry matter 98.00 97.74

Crude fiber 3.60 3.54

Crude protein 14.17 19.78

Lysine 0.98 1.53

Methionine 0.12 0.16

Threonine 0.68 0.99

aProvided the following for one kilogram diet: VA 10,000 IU, VD 2,500 IU, VE 100 IU, VK

2.0mg, VB2 10mg, VB6 1.0mg, VB12 50 µg, choline chloride 1,500mg, Fe 80mg, Cu

20mg, Zn 100mg, Mn 45mg, I 0.7mg, and Se 0.25 mg.
bProvided the following for one kilogram diet: VA 15,000 IU, VD 3,200 IU, VE 50 IU, VK

4.0mg, VB1 4.0mg, VB2 10mg, VB6 3.0mg, VB12 20 µg, choline chloride 800mg, Fe

120mg, Cu 20mg, Zn 112mg, Mn 24mg, I 0.5mg, and Se 0.4 mg.
cDigestible energy is a calculated value, and others are analyzed values.

phosphatase (ALP), triglyceride (TG), total cholesterol (TC),
high-density lipoprotein-cholesterol (HDL-C), and low-density
lipoprotein-cholesterol (LDL-C) were measured using a Roche
Automatic Biochemical Analyzer (Cobas c311, F. Hoffmann-La
Roche Ltd, Basel, Switzerland) and commercially available kits (F.
Hoffmann-La Roche Ltd, Basel, Switzerland).

Analysis of Colostrum Composition
The colostrum composition, including somatic cells, milk fat,
milk protein, lactose, urea nitrogen, defatted dry matter, and
total drymatter, were determined usingMilkoScan FT+200 Type
76150 (FOSS electric, Hilleroed, Denmark).

DNA Extraction and Analysis of Fecal

Microbiota Quantity
Total microbial DNA was extracted and purified according to
the manufacturer’s instructions of QIAamp DNA Stool Mini Kit
(QIAgen, Hilden, Germany). The concentration of each extracted
DNA was measured using a NanoDrop ND-1000 instrument
(NanoDrop Technologies Inc., Wilmington, DE, USA) and
stored at−80◦C. An absorption ratio (260/280 nm) of all samples
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TABLE 2 | Group-specific primer sequences for bacteria.

Bacteria Sequence (5′-3′) Product size (bp)

Bifidobacterium F: TCGCGTCYGGTGTGAAAG 128

R: GGTGTTCTTCCCGATATCTACA

Clostridium cluster IV F: GCACAAGCAGTGGAGT 240

R: CTTCCTCCGTTTTGTCAA

Escherichia coli F: CATGCCGCGTGTATGAAGAA 95

R: CGGGTAACGTCAATGAGCAAA

Firmicutes F: GGAGYATGTGGTTTAATTCGAAGCA 126

R: AGCTGACGACAACCATGCAC

Lactobacillus F: AGCAGTAGGGAATCTTCCA 345

R: ATTCCACCGCTACACATG

Total bacteria F: GTGSTGCAYGGYYGTCGTCA 123

R: ACGTCRTCCMCNCCTTCCTC

within 1.8–2.0 was deemed to be of sufficient purity to be
used for subsequent analyses. The 16S rRNA gene sequences
of Bifidobacterium spp., Clostridium cluster IV, Escherichia coli,
Firmicutes, Lactobacillus, and total bacteria were cloned into the
pMD19-T vector (17). Gene sequences by references (18) were
amplified from total DNA using the primers listed in Table 2. A
total of six clones with 16S rRNA gene sequences belonging to
different taxa were used as templates to test primer specificity.
Standard curves were constructed with DNA from representative
species of a concentration range of 102-1010 DNA copies per
mL using 384-well plates in the Lightcycler R© 480 instrument
II (Applied Biosystems, Carlsbad, CA, USA). The microbial
DNA extracted from the fecal samples and specific DNA from
recombinant microbiota were quantified by RT-PCR. Reaction
conditions were at 50◦C for 2min, an initial denaturation step at
95◦C for 5min, and then 20 s denaturation at 94◦C for 40 cycles,
primer annealing at a species-specific temperature for 30 s, and
primer extension at 60◦C for 1min (19). The specific primers
for RT-PCR were synthesized by Sangon Biotech (Shanghai) Co.,
Ltd. Data were analyzed using the Roche Lightcycler 480 software
1.5.0. Microbiota quantities were expressed as a logarithm of
the number of microbe copies contained per gram of samples
[lg (copies/g)].

Analysis of Fecal Bacterial Metabolites
The concentrations of fecal SCFA, including acetate, propionate,
butyrate, isobutyrate, valerate, and isovalerate, were measured
as described previously by Zhou et al. (20). The fresh fecal
samples (0.900–1.000 g) were homogenized and centrifuged
in sealed tubes at 10,000 × g for 10min at 4◦C. A
mixture of the supernatant fluid and 25% metaphosphoric acid
solution (1mL: 0.25mL) were then filtered through a 0.45-µm
polysulfone microporous membrane filter and analyzed using
Agilent 6890 gas chromatography (Agilent Technologies, Inc,
Palo Alto, CA, USA) (21). The concentrations of bioamines,
including tryptamine, putrescine, cadaverine, 1,7-heptyl diamine,
tyramine, spermidine, and spermine, were measured as described
previously by Kong et al. (22).

Statistical Analyses
Statistical data analysis was performed with one-way ANOVA
using SPSS 18.0 software (SPSS, Inc, Chicago, IL, USA). Levene’s
test for homogeneity of variance was used, followed by Duncan’s
multiple-range test (in the case of variance homogeneity). Values
are expressed as means ± standard error (SE). P-values < 0.05
were taken to indicate statistical significance, with a trend toward
significance at 0.05 ≤ P < 0.10.

RESULTS

Reproductive Performance
The effects of different dietary probiotic mixture
supplementation on the reproductive performance of sows
are presented in Table 3. The average weaning weight and
average daily gain of weaned piglets were increased (P < 0.05)
by supplementing the sows’ diet with different probiotic mixture.
However, dietary supplementation with different probiotic
mixture did not affect neither the litter size nor the number
of piglets born alive. Also, the litter weight at birth remains
unchanged compared with the CON group. The number of
weaned piglets was higher (P < 0.05) in the BS-A+BL group
compared with the CON and BS-A+B groups. In addition, the
BS-A+B group displayed a trend for an increased (P = 0.06)
average piglets’ birth weight. Moreover, the BS-A+BL group
also displayed a trend for an increased litter weight (P = 0.07),
litter weight gain (P = 0.06), and litter daily gain (P = 0.06)
at weaning.

Backfat Thickness and Colostrum

Composition
The effects of different dietary probiotic mixture
supplementation on the backfat thickness of sows are presented
in Table 4. The backfat thickness of the BS-A+BL group was
increased (P < 0.05) from day 85 to day 112 of pregnancy
compared with the CON and BS-B+BL groups. However, there
were no significant changes in the backfat thickness of sows from
day 112 of pregnancy to day 21 postpartum among the different
dietary treatment groups.

The effects of different dietary probiotic mixture
supplementation on nutrient compositions of colostrum
are summarized in Table 5. Compared with the CON group,
the concentrations of milk fat and total dry matter in colostrum
were increased (P < 0.05) when sows were supplemented with
different probiotic mixture. The concentrations of protein and
UN of colostrum were higher (P < 0.05) in the BS-A+BL group
compared with the CON group.

Plasma Biochemical Parameters
The effects of different dietary probiotic mixture
supplementation on plasma biochemical parameters of sows
are presented in Table 6. On day 1 postpartum, the plasma
ALB concentration was decreased (P < 0.05) in the BS-B+BL
group compared with the other three groups, while the plasma
TP concentration was increased (P < 0.05) in the BS-B+BL
group compared with the CON group. In addition, the plasma
ALP activity was decreased (P < 0.05) in the BS-A+B group
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TABLE 3 | Effects of dietary probiotic mixture supplementation on reproductive performance of sows.

Items CON group BS-A+B group BS-A+BL group BS-B+BL group P-values

Litter size (n) 11.84 ± 0.68 10.32 ± 0.54 12.42 ± 0.86 11.42 ± 0.66 0.19

Born alive (n) 11.53 ± 0.73 10.26 ± 0.52 12.05 ± 0.79 11.26 ± 0.63 0.30

Weaned piglets (n) 10.00 ± 0.26b 9.85 ± 0.25b 10.90 ± 0.28a 10.40 ± 0.26ab 0.02

Litter weight at birth (kg) 17.07 ± 0.95 17.25 ± 0.74 18.56 ± 1.03 17.99 ± 0.72 0.60

Average birth weight (kg) 1.50 ± 0.04 1.70 ± 0.05 1.57 ± 0.05 1.64 ± 0.06 0.06

Litter weight at weaning (kg) 61.72 ± 3.02 68.24 ± 2.69 72.02 ± 2.47 69.10 ± 2.52 0.06

Litter weight gain at weaning (kg) 46.65 ± 2.47 52.66 ± 2.36 55.20 ± 2.07 52.20 ± 2.11 0.06

Litter daily gain at weaning (kg/d) 2.22 ± 0.12 2.51 ± 0.11 2.63 ± 0.10 2.49 ± 0.10 0.06

Average weaning weight (kg) 6.15 ± 0.16b 7.09 ± 0.17a 6.75 ± 0.18a 6.72 ± 0.16a <0.01

Average daily gain (kg) 0.22 ± 0.01b 0.26 ± 0.01a 0.25 ± 0.01a 0.24 ± 0.01a <0.01

Data are presented as means with SE (n = 20). a,bMean values in the same row with different superscripts were significantly different (P < 0.05). The BS-A+B, BS-A+BL, and BS-B+BL

groups contained 125 g/t Bacillus subtilis A (BS-A), 125 g/t Bacillus subtilis B (BS-B), and/or 125 g/t Bacillus licheniformis (BL), respectively.

TABLE 4 | Effects of dietary probiotic mixture supplementation on backfat thickness of sows.

Items CON group BS-A+B group BS-A+BL group BS-B+BL group P-values

Backfat thickness (mm)

Day 85 of pregnancy 18.75 ± 1.02 19.85 ± 1.15 18.50 ± 0.88 19.30 ± 0.95 0.79

Day 112 of pregnancy 19.55 ± 0.87 21.25 ± 1.07 21.45 ± 0.94 21.00 ± 1.01 0.51

Day 21 postpartum 16.55 ± 0.80 17.35 ± 0.96 19.20 ± 0.82 18.00 ± 0.90 0.19

Backfat thickness changes (mm)

Day 85 to day 112 of pregnancy 1.71 ± 0.22b 2.64 ± 0.46ab 3.39 ± 0.39a 2.00 ± 0.40b 0.01

Day 112 of pregnancy to day 21 postpartum −3.33 ± 0.61 −4.39 ± 0.50 −3.31 ± 0.50 −3.76 ± 0.58 0.47

Data are presented as means with SE (n = 20). a,bMean values in the same row with different superscripts were significantly different (P < 0.05). The BS-A+B, BS-A+BL, and BS-B+BL

groups contained 125 g/t Bacillus subtilis A (BS-A), 125 g/t Bacillus subtilis B (BS-B), and/or 125 g/t Bacillus licheniformis (BL), respectively.

TABLE 5 | Effects of dietary probiotic mixture supplementation on nutrient composition of colostrum in sows.

Items CON group BS-A+B group BS-A+BL group BS-B+BL group P-values

Somatic cells (×103 piece/mL) 1,399 ± 373.8 1,591 ± 369.1 1,324 ± 472.5 2,337 ± 1,134.3 0.70

Fat (%) 2.66 ± 0.23b 3.89 ± 0.38a 3.92 ± 0.21a 3.66 ± 0.46a 0.04

Protein (%) 14.76 ± 0.42b 15.59 ± 0.64ab 17.19 ± 0.37a 16.23 ± 0.68ab 0.03

Lactose (%) 3.96 ± 0.13 3.86 ± 0.18 3.72 ± 0.07 3.62 ± 0.12 0.30

Urea nitrogen (mg/dL) 50.13 ± 2.08b 56.13 ± 2.41ab 62.25 ± 2.91a 56.75 ± 2.3ab 0.02

Defatted dry matter (%) 22.73 ± 0.34 23.48 ± 0.5 24.41 ± 0.46 23.87 ± 0.57 0.11

Total dry matter (%) 28.62 ± 0.51b 30.76 ± 0.69a 31.65 ± 0.41a 30.91 ± 0.92a 0.02

Data are presented as means with SE (n = 8). a,bMean values in the same row with different superscripts were significantly different (P < 0.05). The BS-A+B, BS-A+BL, and BS-B+BL

groups contained 125 g/t Bacillus subtilis A (BS-A), 125 g/t Bacillus subtilis B (BS-B), and/or 125 g/t Bacillus licheniformis (BL), respectively.

compared with the CON and BS-B+BL groups, and the plasma
AMM concentration was decreased (P < 0.05) in the BS-A+B
and BS-A+BL groups compared with the other two groups on
day 1 postpartum. Moreover, the plasma UN concentration was
higher (P = 0.06) in the BS-A+BL group on day 1 postpartum.
On day 21 postpartum, the plasma AMM concentration was
decreased (P < 0.05) in the three probiotic mixture groups
compared with the CON group, while the plasma HDL-C
concentration was increased (P < 0.05) in the BS-A+B and BS-
B+BL groups compared with the other two groups. Moreover,
the plasma TC concentration (P = 0.06) in the BS-A+B group

and TP concentration (P = 0.06) in the BS-B+BL group tended
to increase on day 21 postpartum.

Amount and Composition of Fecal

Microbiota
The effects of different dietary probiotic mixture
supplementation on fecal microbiota composition in sows
are summarized in Table 7. No significant differences (P >

0.05) were observed in the amounts of Bifidobacterium spp., E.
coli, and total bacteria in the fecal samples from the different
treatment groups. The ratio of fecal Lactobacillus to E. coli on day
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TABLE 6 | Effects of dietary probiotic mixture supplementation on plasma biochemical parameters of sows.

Items Day postpartum CON group BS-A+B group BS-A+BL group BS-B+BL group P-values

ALB (g/L) 1 41.76 ± 0.63a 42.39 ± 0.83a 43.68 ± 0.43a 39.05 ± 1.26b 0.01

21 41.05 ± 0.72 41.16 ± 0.82 41.14 ± 0.88 41.23 ± 1.19 0.99

ALP (U/L) 1 49.88 ± 2.39a 38.50 ± 1.92b 42.38 ± 2.19ab 47.75 ± 4.55a 0.04

21 37.88 ± 2.66 44.88 ± 6.26 38.63 ± 2.67 44.63 ± 3.58 0.47

AMM (µmol/L) 1 123.34 ± 4.40a 74.89 ± 6.69b 62.10 ± 6.66b 107.64 ± 3.35a <0.01

21 93.73 ± 1.45a 52.00 ± 2.06b 58.53 ± 3.84b 59.26 ± 7.20b <0.01

HDL-C (mmol/L) 1 0.64 ± 0.03 0.63 ± 0.03 0.62 ± 0.03 0.71 ± 0.03 0.16

21 0.72 ± 0.04b 0.91 ± 0.06a 0.72 ± 0.04b 0.95 ± 0.04a <0.01

LDL-C (mmol/L) 1 0.80 ± 0.06 0.86 ± 0.07 0.81 ± 0.04 0.80 ± 0.03 0.83

21 1.10 ± 0.13 1.19 ± 0.05 0.96 ± 0.08 1.08 ± 0.05 0.31

TC (mmol/L) 1 1.41 ± 0.07 1.40 ± 0.09 1.35 ± 0.04 1.47 ± 0.05 0.67

21 1.82 ± 0.11 2.02 ± 0.09 1.63 ± 0.11 1.91 ± 0.07 0.06

TG (mmol/L) 1 0.28 ± 0.03 0.23 ± 0.02 0.25 ± 0.02 0.24 ± 0.04 0.74

21 0.19 ± 0.03 0.21 ± 0.03 0.17 ± 0.01 0.15 ± 0.02 0.27

TP (g/L) 1 67.85 ± 1.00b 70.15 ± 0.99ab 70.45 ± 0.63ab 73.40 ± 1.65a 0.02

21 75.66 ± 1.42 78.83 ± 1.61 76.79 ± 2.02 82.33 ± 1.82 0.06

UN (mmol/L) 1 4.19 ± 0.30 4.54 ± 0.16 5.35 ± 0.30 4.69 ± 0.35 0.06

21 4.83 ± 0.19 5.88 ± 0.54 5.65 ± 0.65 5.79 ± 0.32 0.37

Data are presented as means with SE (n = 8). a,bMean values in the same row with different superscripts were significantly different (P < 0.05). The BS-A+B, BS-A+BL, and BS-B+BL

groups contained 125 g/t Bacillus subtilis A (BS-A), 125 g/t Bacillus subtilis B (BS-B), and/or 125 g/t Bacillus licheniformis (BL), respectively.

ALB, albumin; ALP, alkaline phosphatase; AMM, ammonia; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; TC, total cholesterol; TG, triglyceride;

TP, total protein; UN, urea nitrogen.

7 postpartum was increased (P < 0.05) in the BS-A+BL group,
and the amount of Lactobacillus tended to increase (P = 0.07),
when compared with the CON and BS-B+BL groups. The fecal
amount of Firmicutes was decreased (P < 0.05) in the BS-B+BL
group compared with the CON and BS-A+BL groups on day 7
postpartum and tended to increase (P = 0.07) in the probiotic
mixture supplemented groups on day 21 postpartum. The fecal
amount of Clostridium cluster IV in the BS-B+BL group tended
to increase (P = 0.05) on day 112 of pregnancy compared with
the CON group.

Fecal Concentrations of Bacterial

Metabolites
The effects of different dietary probiotic mixture
supplementation on fecal SCFA concentrations in sows are
presented in Table 8. On day 100 of pregnancy, the fecal
valerate concentration was higher (P < 0.05) in the BS-
A+BL and BS-B+BL groups compared with the CON group.
The fecal isobutyrate and branched-chain fatty acid (BCFA)
concentrations were higher (P < 0.05) in the three probiotic
mixture supplemented groups compared with the CON group.
Moreover, the fecal isobutyrate concentration in the BS-B+BL
group and the BCFA concentration in the BS-A+BL and
BS-B+BL groups were higher (P < 0.05) compared with the BS-
A+B group. However, the fecal acetate (P = 0.08) concentration
tended to increase in the probiotic mixture supplemented groups
compared with the CON group. On day 112 of pregnancy,
a higher (P < 0.05) propionate concentration was observed

in the BS-A+B group compared with the CON group. The
fecal straight-chain fatty acids, isovalerate, and total SCFA
concentrations in the BS-A+BL and BS-B+BL groups and the
valerate and BCFA concentrations in the BS-A+BL group were
lower (P < 0.05) when compared with the BS-A+B group.
Moreover, the acetate concentration tended to increase in the
BS-A+B group (P= 0.09) compared with the other three groups.
On day 7 postpartum, the fecal acetate, isovalerate, and BCFA
concentrations were higher (P < 0.05) in the BS-A+B and
BS-A+BL groups compared with the CON group. Moreover, the
straight-chain fatty acid concentration in the BS-A+B and the
total SCFA concentration in the probiotic mixture supplemented
groups were higher (P < 0.05) when compared with the CON
group. However, no significant differences (P > 0.05) were
observed in the fecal bacterial metabolites on days 14 and 21
postpartum among the different treatment groups.

The effects of different dietary probiotic mixture
supplementation on fecal bioamine concentrations in sows
are presented in Table 9. There were no significant differences
in the bioamine concentrations among the different treatment
groups on day 100 of pregnancy except that the tryptamine
concentration tended to increase (P = 0.06) in the BS-A+B
and BS-A+BL groups. On day 112 of pregnancy, the spermine
concentration was higher (P < 0.05) in the BS-B+BL group
compared with the other three groups. On day 7 postpartum, the
fecal 1,7-heptanediamine (P < 0.05) and spermidine (P = 0.07)
concentrations were higher in the BS-A+BL group compared
with the other three groups. The fecal tryptamine (P = 0.08)
concentration in the BS-B+BL group and the spermine (P <
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TABLE 7 | Effects of dietary probiotic mixture supplementation on fecal microbiota quantity in sows.

Items (Lg copies/g) CON group BS-A+B group BS-A+BL group BS-B+BL group P-values

Bifidobacterium

Day 100 of pregnancy 5.63 ± 0.38 5.93 ± 0.39 6.10 ± 0.30 6.03 ± 0.34 0.80

Day 112 of pregnancy 4.93 ± 0.27 5.37 ± 0.40 4.60 ± 0.48 5.00 ± 0.33 0.56

Day 7 postpartum 4.60 ± 0.41 4.57 ± 0.42 4.76 ± 0.41 4.03 ± 0.31 0.59

Day 14 postpartum 4.30 ± 0.27 4.43 ± 0.30 4.71 ± 0.25 3.97 ± 0.30 0.32

Day 21 postpartum 4.37 ± 0.44 4.47 ± 0.27 4.89 ± 0.37 4.46 ± 0.27 0.72

Lactobacillus

Day 100 of pregnancy 7.12 ± 0.28 7.58 ± 0.31 7.09 ± 0.45 7.04 ± 0.48 0.75

Day 112 of pregnancy 6.28 ± 0.32 6.70 ± 0.27 5.99 ± 0.47 6.40 ± 0.31 0.56

Day 7 postpartum 5.54 ± 0.41 6.13 ± 0.41 6.75 ± 0.31 5.56 ± 0.24 0.07

Day 14 postpartum 6.90 ± 0.32 6.66 ± 0.23 6.80 ± 0.23 6.78 ± 0.33 0.95

Day 21 postpartum 6.61 ± 0.41 6.39 ± 0.33 5.59 ± 0.53 7.08 ± 0.25 0.08

Escherichia coli

Day 100 of pregnancy 6.49 ± 0.36 6.27 ± 0.32 6.17 ± 0.35 6.01 ± 0.28 0.77

Day 112 of pregnancy 7.37 ± 0.18 7.17 ± 0.18 7.65 ± 0.15 7.52 ± 0.18 0.25

Day 7 postpartum 7.95 ± 0.24 7.65 ± 0.18 7.43 ± 0.14 7.70 ± 0.12 0.45

Day 14 postpartum 7.46 ± 0.24 7.33 ± 0.18 7.03 ± 0.19 7.27 ± 0.22 0.52

Day 21 postpartum 6.89 ± 0.24 6.52 ± 0.22 6.36 ± 0.28 6.90 ± 0.32 0.41

Lactobacillus/E. coli

Day 100 of pregnancy 1.13 ± 0.09 1.23 ± 0.09 1.15 ± 0.06 1.20 ± 0.12 0.85

Day 112 of pregnancy 0.86 ± 0.05 0.94 ± 0.06 0.78 ± 0.06 0.86 ± 0.06 0.31

Day 7 postpartum 0.70 ± 0.06b 0.80 ± 0.05ab 0.91 ± 0.05a 0.73 ± 0.04b 0.02

Day 14 postpartum 0.94 ± 0.07 0.92 ± 0.06 0.97 ± 0.05 0.94 ± 0.06 0.92

Day 21 postpartum 0.97 ± 0.07 1.00 ± 0.07 0.91 ± 0.11 1.04 ± 0.07 0.69

Clostridium cluster IV

Day 100 of pregnancy 7.50 ± 0.14 7.83 ± 0.08 7.70 ± 0.10 7.75 ± 0.08 0.16

Day 112 of pregnancy 6.69 ± 0.14 6.90 ± 0.13 6.94 ± 0.17 7.24 ± 0.09 0.05

Day 7 postpartum 7.10 ± 0.19 6.93 ± 0.08 6.86 ± 0.12 6.90 ± 0.10 0.58

Day 14 postpartum 6.95 ± 0.10 7.01 ± 0.11 6.91 ± 0.19 6.72 ± 0.16 0.54

Day 21 postpartum 6.79 ± 0.16 6.85 ± 0.15 6.84 ± 0.12 7.04 ± 0.10 0.59

Firmicutes

Day 100 of pregnancy 9.20 ± 0.23 9.70 ± 0.09 9.70 ± 0.10 9.25 ± 0.42 0.32

Day 112 of pregnancy 8.46 ± 0.23 8.75 ± 0.15 8.74 ± 0.06 8.60 ± 0.21 0.62

Day 7 postpartum 8.85 ± 0.16a 8.60 ± 0.14ab 8.91 ± 0.17a 8.26 ± 0.14b 0.02

Day 14 postpartum 8.98 ± 0.09 9.11 ± 0.07 8.68 ± 0.24 8.72 ± 0.09 0.12

Day 21 postpartum 7.40 ± 0.43 8.30 ± 0.20 8.36 ± 0.51 8.78 ± 0.17 0.07

Total bacteria

Day 100 of pregnancy 9.09 ± 0.22 9.39 ± 0.11 8.88 ± 0.42 8.97 ± 0.41 0.69

Day 112 of pregnancy 9.01 ± 0.14 9.12 ± 0.07 9.05 ± 0.14 9.28 ± 0.07 0.35

Day 7 postpartum 9.30 ± 0.07 9.02 ± 0.08 9.10 ± 0.15 9.02 ± 0.05 0.16

Day 14 postpartum 9.29 ± 0.06 9.33 ± 0.06 9.30 ± 0.11 8.74 ± 0.32 0.10

Day 21 postpartum 9.31 ± 0.10 9.13 ± 0.09 9.34 ± 0.08 9.30 ± 0.10 0.36

Data are presented as means with SE (n = 8). a,bMean values in the same row with different superscripts were significantly different (P < 0.05). The BS-A+B, BS-A+BL, and BS-B+BL

groups contained 125 g/t Bacillus subtilis A (BS-A), 125 g/t Bacillus subtilis B (BS-B), and/or 125 g/t Bacillus licheniformis (BL), respectively.

0.05) concentration in the BS-A+BL and BS-B+BL groups were
higher compared with the CON and BS-A+B groups on day 14
postpartum. Moreover, the 1,7-heptanediamine concentration
was higher (P < 0.05) in the BS-A+BL group compared with
the CON and BS-B+BL groups on day 21 postpartum. However,
the spermine concentration tended to increase (P = 0.07) in the
BS-B+BL group on day 21 postpartum.

DISCUSSION

Dietary probiotics supplementation can maintain or even
improve indicators of gut health, leading to an overall
better performance and health status in animal production.
Therefore, this area of research has become more and more
active in the field of animal nutrition (23). The present
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TABLE 8 | Effects of dietary probiotic mixture supplementation on fecal short-chain fatty acids (SCFA) concentrations in sows.

Items (mg/g) CON group BS-A+B group BS-A+BL group BS-B+BL group P-values

Acetate

Day 100 of pregnancy 3.87 ± 0.35 4.61 ± 0.21 4.81 ± 0.50 5.15 ± 0.22 0.08

Day 112 of pregnancy 5.59 ± 0.43 6.20 ± 0.12 5.07 ± 0.32 4.87 ± 0.56 0.09

Day 7 postpartum 5.36 ± 0.36b 6.33 ± 0.18a 6.56 ± 0.29a 6.10 ± 0.24ab 0.03

Day 14 postpartum 7.16 ± 0.78 7.74 ± 0.42 7.30 ± 0.50 7.06 ± 0.50 0.84

Day 21 postpartum 5.29 ± 0.29 5.57 ± 0.26 5.30 ± 0.17 5.27 ± 0.21 0.78

Propionate

Day 100 of pregnancy 1.96 ± 0.14 2.34 ± 0.13 2.18 ± 0.11 2.23 ± 0.12 0.20

Day 112 of pregnancy 2.30 ± 0.24b 3.00 ± 0.15a 2.07 ± 0.10b 2.31 ± 0.14b <0.01

Day 7 postpartum 2.32 ± 0.21 3.12 ± 0.32 2.50 ± 0.16 2.41 ± 0.26 0.11

Day 14 postpartum 3.24 ± 0.60 3.81 ± 0.26 3.59 ± 0.42 3.10 ± 0.23 0.58

Day 21 postpartum 2.28 ± 0.13 2.56 ± 0.17 2.36 ± 0.13 2.42 ± 0.12 0.54

Butyrate

Day 100 of pregnancy 0.41 ± 0.13 0.47 ± 0.20 0.07 ± 0.01 0.48 ± 0.27 0.36

Day 112 of pregnancy 0.19 ± 0.10 0.10 ± 0.01 0.11 ± 0.01 0.32 ± 0.13 0.23

Day 7 postpartum 0.34 ± 0.12 0.44 ± 0.22 0.11 ± 0.01 0.17 ± 0.06 0.29

Day 14 postpartum 1.60 ± 0.38 1.70 ± 0.10 1.75 ± 0.32 1.76 ± 0.36 0.98

Day 21 postpartum 1.25 ± 0.11 1.45 ± 0.06 1.16 ± 0.09 1.41 ± 0.09 0.10

Valerate

Day 100 of pregnancy 0.22 ± 0.02b 0.25 ± 0.02ab 0.30 ± 0.04a 0.33 ± 0.02a 0.04

Day 112 of pregnancy 0.32 ± 0.04ab 0.38 ± 0.04a 0.25 ± 0.01b 0.29 ± 0.02ab 0.03

Day 7 postpartum 0.26 ± 0.02 0.41 ± 0.03 0.44 ± 0.11 0.33 ± 0.02 0.19

Day 14 postpartum 0.45 ± 0.05 0.49 ± 0.02 0.44 ± 0.07 0.42 ± 0.04 0.83

Day 21 postpartum 0.33 ± 0.02 0.37 ± 0.03 0.30 ± 0.01 0.37 ± 0.02 0.12

Straight-chain fatty acids

Day 100 of pregnancy 5.60 ± 0.51 6.24 ± 0.63 6.06 ± 1.09 5.70 ± 0.28 0.91

Day 112 of pregnancy 8.40 ± 0.64ab 9.68 ± 0.23a 7.51 ± 0.40b 7.22 ± 0.75b 0.02

Day 7 postpartum 8.29 ± 0.39b 10.30 ± 0.46a 9.61 ± 0.47ab 9.01 ± 0.45ab 0.02

Day 14 postpartum 12.44 ± 1.51 13.72 ± 0.71 13.07 ± 1.27 12.34 ± 1.07 0.83

Day 21 postpartum 9.16 ± 0.48 9.94 ± 0.46 9.12 ± 0.33 9.46 ± 0.36 0.48

Isobutyrate

Day 100 of pregnancy 0.73 ± 0.19c 1.32 ± 0.17b 1.69 ± 0.15ab 2.09 ± 0.08a <0.01

Day 112 of pregnancy 0.31 ± 0.02 0.34 ± 0.01 0.25 ± 0.01 0.41 ± 0.11 0.24

Day 7 postpartum 0.27 ± 0.01 0.37 ± 0.03 0.35 ± 0.05 0.29 ± 0.02 0.06

Day 14 postpartum 0.43 ± 0.05 0.48 ± 0.03 0.40 ± 0.05 0.39 ± 0.03 0.41

Day 21 postpartum 0.32 ± 0.02 0.36 ± 0.03 0.31 ± 0.01 0.36 ± 0.02 0.23

Isovalerate

Day 100 of pregnancy 0.40 ± 0.04 0.46 ± 0.03 0.57 ± 0.08 0.57 ± 0.04 0.06

Day 112 of pregnancy 0.57 ± 0.05ab 0.66 ± 0.02a 0.46 ± 0.02b 0.49 ± 0.04b <0.01

Day 7 postpartum 0.51 ± 0.04b 0.75 ± 0.04a 0.73 ± 0.11a 0.58 ± 0.04ab 0.04

Day 14 postpartum 0.85 ± 0.10 0.93 ± 0.06 0.80 ± 0.12 0.77 ± 0.06 0.59

Day 21 postpartum 0.61 ± 0.05 0.70 ± 0.07 0.58 ± 0.02 0.71 ± 0.04 0.21

Branched-chain fatty acids (BCFA)

Day 100 of pregnancy 1.13 ± 0.19c 1.78 ± 0.17b 2.26 ± 0.16a 2.66 ± 0.10a <0.01

Day 112 of pregnancy 0.87 ± 0.07ab 1.00 ± 0.03a 0.71 ± 0.03b 0.90 ± 0.08a 0.02

Day 7 postpartum 0.78 ± 0.05b 1.13 ± 0.07a 1.09 ± 0.16a 0.88 ± 0.05ab 0.03

Day 14 postpartum 1.28 ± 0.14 1.41 ± 0.09 1.20 ± 0.17 1.16 ± 0.09 0.54

Day 21 postpartum 0.93 ± 0.07 1.06 ± 0.10 0.89 ± 0.03 1.07 ± 0.06 0.19

Total SCFA

Day 100 of pregnancy 6.74 ± 0.44 8.02 ± 0.55 8.31 ± 1.07 8.36 ± 0.27 0.28

Day 112 of pregnancy 9.27 ± 0.68ab 10.68 ± 0.26a 8.22 ± 0.41b 8.12 ± 0.69b <0.01

(Continued)
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TABLE 8 | Continued

Items (mg/g) CON group BS-A+B group BS-A+BL group BS-B+BL group P-values

Day 7 postpartum 9.07 ± 0.40c 11.43 ± 0.51a 10.70 ± 0.58ab 9.89 ± 0.46bc 0.04

Day 14 postpartum 13.71 ± 1.62 15.13 ± 0.77 14.27 ± 1.42 13.50 ± 1.15 0.81

Day 21 postpartum 10.08 ± 0.54 11.01 ± 0.49 10.01 ± 0.34 10.52 ± 0.39 0.38

Data are presented as means with SE (n = 8). a–cMean values in the same row with different superscripts were significantly different (P < 0.05). The BS-A+B, BS-A+BL, and BS-B+BL

groups contained 125 g/t Bacillus subtilis A (BS-A), 125 g/t Bacillus subtilis B (BS-B), and/or 125 g/t Bacillus licheniformis (BL), respectively.

TABLE 9 | Effects of dietary probiotic mixture supplementation on fecal bioamine concentrations in sows.

Items (µg/g) CON group BS-A+B group BS-A+BL group BS-B+BL group P-values

Tryptamine

Day 100 of pregnancy 2.92 ± 0.24 3.27 ± 0.38 4.39 ± 1.27 1.88 ± 0.29 0.06

Day 112 of pregnancy 3.84 ± 0.59 5.51 ± 0.95 4.35 ± 0.51 3.26 ± 0.47 0.12

Day 7 postpartum 2.16 ± 0.40 2.33 ± 0.48 2.05 ± 0.21 2.40 ± 0.30 0.90

Day 14 postpartum 1.47 ± 0.53 1.52 ± 0.29 1.86 ± 0.39 3.17 ± 0.71 0.08

Day 21 postpartum 1.55 ± 0.45 1.69 ± 0.44 1.78 ± 0.32 1.42 ± 0.08 0.93

1,7-Heptanediamine

Day 100 of pregnancy 0.44 ± 0.03 0.38 ± 0.04 0.38 ± 0.07 0.33 ± 0.06 0.42

Day 112 of pregnancy 0.48 ± 0.07 0.57 ± 0.09 0.75 ± 0.18 0.64 ± 0.13 0.48

Day 7 postpartum 0.37 ± 0.05b 0.38 ± 0.04b 0.57 ± 0.05a 0.34 ± 0.06b <0.01

Day 14 postpartum 0.29 ± 0.05 0.29 ± 0.02 0.28 ± 0.01 0.34 ± 0.04 0.34

Day 21 postpartum 0.30 ± 0.04b 0.37 ± 0.02ab 0.47 ± 0.07a 0.26 ± 0.03b <0.01

Spermidine

Day 100 of pregnancy 10.44 ± 1.71 7.13 ± 1.69 9.60 ± 2.47 13.62 ± 2.73 0.27

Day 112 of pregnancy 12.00 ± 1.28 11.51 ± 1.30 14.61 ± 2.14 15..93 ± 1.41 0.17

Day 7 postpartum 6.08 ± 0.68 6.66 ± 0.43 8.98 ± 0.78 6.82 ± 1.11 0.07

Day 14 postpartum 10.06 ± 0.98b 8.60 ± 0.69b 16.82 ± 1.78a 10.56 ± 1.00b <0.01

Day 21 postpartum 15.27 ± 1.84 15.97 ± 1.64 16.17 ± 2.37 17.60 ± 1.81 0.86

Spermine

Day 100 of pregnancy 0.72 ± 0.11 0.30 ± 0.06 0.61 ± 0.16 0.69 ± 0.18 0.13

Day 112 of pregnancy 0.67 ± 0.10b 0.93 ± 0.11b 0.95 ± 0.19b 1.78 ± 0.24a <0.01

Day 7 postpartum 0.62 ± 0.11 0.69 ± 0.08 0.88 ± 0.10 0.55 ± 0.08 0.11

Day 14 postpartum 0.70 ± 0.06c 0.54 ± 0.08c 1.61 ± 0.26a 1.17 ± 0.13b <0.01

Day 21 postpartum 1.18 ± 0.16 1.50 ± 0.23 1.20 ± 0.23 1.92 ± 0.21 0.07

Data are presented as means with SE (n = 8). a–cMean values in the same row with different superscripts were significantly different (P < 0.05). The BS-A+B, BS-A+BL, and BS-B+BL

groups contained 125 g/t Bacillus subtilis A (BS-A), 125 g/t Bacillus subtilis B (BS-B), and/or 125 g/t Bacillus licheniformis (BL), respectively.

study showed that maternal supplementation with different
probiotics mixture from late pregnancy to day 21 postpartum
increased the average body weight and average daily gain
of weaned piglets, and BS-A+BL supplementation increased
the number of weaned piglets. Similarly, Alexopoulos et al.
(24) also demonstrated that 400 g/t B. licheniformis and B.
subtilis supplementation from 14 days prior to the expected
farrowing to weaning periods increased the number of
weaned piglets per litter and the BW of piglet at weaning.
In addition, maternal intestinal microflora can affect the
colonization and development of gut microbiota of offspring,
which is associated with the weight gain of offspring (25).
Therefore, these findings indicated that different probiotic
mixture supplementation to sows during late pregnancy to
day 21 postpartum are able to improve the reproductive

performance of sows, and thus influence the growth performance
of piglets.

The nutrient composition of sows’ milk is closely related to
the survival rate and the growth and development of piglets
(4). Several studies have reported that Bacillus spp. such as B.
subtilis and B. licheniformis inclusion in sow diets during late
gestation and lactation are able to influence the colostrum or
milk composition (24, 26). The present study shows that dietary
supplementation with different probiotic mixture increased the
concentrations of fat and dry matter in the colostrum, as well as
the concentrations of protein and UN in the BS-A+BL group.
Consumption of milk with better quality has also been reported
to increase the piglets’ weaning weight when sows were fed
B. subtilis during lactation (24, 26). Therefore, these findings
suggest that the improvement in the reproductive performance
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of sows might be related to the dietary probiotic supplementation
(27), which improves the sows’ milk quality and quantity and
promotes fat deposition and growth of suckling piglets up to a
certain extent.

Plasma biochemical parameters can partly reflect the
nutritional status, tissue and organ functions, and metabolic
status of animals. In addition, the plasma AMM concentration
may reflect the liver function of animals (28). The present
study showed that dietary supplementation with different
probiotic mixture decreased plasma AMM concentration on
day 21 postpartum, suggesting that the nitrogen metabolism of
sows was elevated. The HDL-C is responsible for transporting
TC to liver cells for oxidation, the plasma concentration of
which is markedly related to lipoprotein metabolism (29).
The present study showed that dietary supplementation with
probiotic mixture BS-A+B and BS-B+BL increased the plasma
HDL-C concentration on day 21 postpartum, indicating
that these probiotic mixtures improved the lipoprotein
metabolism of sows. Moreover, lactating sows need higher
energy reserves and nutrients to maintain body tissues and
support milk production (30). Research evidence showed that
dietary probiotic supplementation can improve the intestinal
environment and nutrient metabolism (31), as well as backfat
thickness at birth and weaning (32, 33). The present study
showed that dietary BS-A+BL supplementation increased the
backfat thickness with changes recorded from days 85 to 112 of
pregnancy. This suggests that in sows, the recovery of physical
condition postpartum is promoted up to a certain extent by the
supplementation used.

The intestinal microbiota composition plays a key role in
maintaining health and regulating pathogenesis in the host (34).
Studies have found that the quantity of intestinal Firmicutes has
the potential to increase the energy intake from the diet and
the body weight in humans (35). Moreover, Clostridium clusters
IV, Lactobacillus, and Bifidobacterium can participate in nutrient
metabolism and energy recycling and play important roles in
the trophic, metabolic, and protective functions of the host (36).
Dietary probiotic supplementation could regulate the balance
and activity of gut microbes and thereby affect the metabolism
and utilization of nutrients (37), the physiology and immune
processes, the protection against pathogens, and the resistance
to disease (38). In the present study, dietary supplementation
with probiotic BS-A+BL increased the Lactobacillus to E. coli
ratio, which might have a beneficial effect on the reproductive
performance of sows and the intestinal health of offspring.
Moreover, dietary supplementation with probiotic mixture of BS-
A+BL on day 7 postpartum and BS-B+BL on day 21 postpartum
trended to increase the abundance of Lactobacillus in sows.
This is in agreement with the previous study by Kaewtapee
et al. (39), which reported that Bacillus spp. (B. subtilis and
B. licheniformis) supplementation in diets with low- and high-
protein content increased the abundances of Bifidobacterium
spp. and Lactobacillus spp. However, these findings are not
in line with those of Bohmer et al. (40), who found that the
fecal bacterial counts of sows were not affected by probiotics
supplementation. This discrepancy might be explained by the
differences in genetic background, breeds, and ages of the sows,

as well as the dose and periods of prebiotic supplementation in
the different studies.

The gut microbial metabolites influence nutrient metabolism,
immunity, and health of the host through various regulatory
mechanisms (41, 42). Some of anaerobic bacteria in the
colon ferment the complex carbohydrates, indigestible fibers,
or amino acids released from proteins, producing the SCFA,
such as acetate, butyrate, and propionate (43). Among these
metabolites, acetate can be metabolized by peripheral tissues
(44) and provide energy for the host. Propionate is primarily
used by the liver and can regulate cholesterol synthesis (45).
Our results showed that dietary BS-A+B supplementation
increased the fecal concentrations of propionate and valerate
on day 112 of pregnancy and acetate and straight-chain fatty
acids on day 7 postpartum. Moreover, the concentrations
of acetate on day 7 postpartum and valerate on day 100
pregnancy were higher in the BS-A+BL group, as well as
the concentration of valerate on day 100 pregnancy in the
BS-B+BL group. These findings suggest that dietary probiotic
mixture supplementation may modulate the SCFA production
in the colon of sows. A previous study reported that obesity
has been found to be associated with the increase in fecal
total SCFA concentration (46). However, it is unknown
if a causative link exists between these two parameters.
Therefore, it has been postulated that the probiotic strains
may provide the additional energy for the host to promote
weight gain in sows (47). In another study, Ohigashi et al. (48)
reported that the increase in SCFA production is accompanied
by a decrease in the luminal pH, which resulted in the
suppression of intestinal pathogens and increased nutrient
absorption. Thus, these findings indicate that the intestinal
microflora balance could be improved by dietary probiotic
mixture supplementation.

The BCFA, including isobutyrate and isovalerate, are the
products of L-leucine, L-isoleucine, and L-valine obtained
from protein breakdown. The BCFA concentrations are
the markers of protein catabolism in the intestinal cavity
(49). The present study showed that dietary probiotics BS-
A+B and BS-A+BL supplementation increased the fecal
BCFA concentrations on day 7 postpartum, suggesting that
there are more indigestible proteins in the small intestine
which entered the colon, and that the catabolism of L-
leucine, L-isoleucine, or L-valine was increased in the
colon (22). However, the underlying mechanisms need to
be further clarified.

Bioamines are mainly produced through the decarboxylation
of different amino acid precursors (including methionine,
tryptophan, arginine, and ornithine) by bacterial metabolism
(50, 51). These metabolites have some known physiological
functions in different tissues of the body, including regulation
of gene expression, nucleic acid and protein synthesis, cell
signaling, cell proliferation and differentiation, and placental
growth and embryonic development in animals (52). Tryptophan
is linked to tryptamine via tryptophan decarboxylase, and
putrescine is synthesized indirectly from arginine or directly
from ornithine, which can occur simultaneously inmany bacteria
(53). Polyamines synthesized by the intestinal microbiota are
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known to be involved in intestinal epithelium renewal (54).
The present study showed that the fecal concentrations of
tryptamine, 1,7-heptanediamine, spermidine, and spermine were
increased in the BS-A+BL group, as well as tryptamine and
spermine in the BS-B+BL group. These changes may be due
to an increased metabolic capacity of the intestinal microbiota
for amino acid decarboxylation. Previous studies demonstrated
that higher levels of bioamines may contribute to decreased
colonic chronic inflammation by inhibiting inflammatory
cytokine synthesis in macrophages (55, 56). Further studies are
necessary to determine whether the parameters of intestinal
mucosal inflammation were modified by B. subtilis or B.
licheniformis supplementation.

CONCLUSION

Collectively, dietary supplementation with different probiotic
mixture of Bacillus spp. in sows from late pregnancy to
day 21 postpartum can increase the BW and average
daily gain of offspring piglets, while only B. subtilis A in
combination with B. licheniformis can increase the number
of piglets. The colostrum composition was also found to
be improved following dietary probiotic supplementation,
an improvement that may be linked to the positive effect
of piglet’s growth and development. Furthermore, dietary
supplementation with B. subtilis A in combination with B.
licheniformis altered the intestinal microbiota and different
bacterial metabolite concentrations. Further future studies
will help to understand better the causal links between
these different biological and biochemical parameters.
Finally, it is worth noting that dietary supplementation
with B. subtilis A in combination with B. licheniformis
from day 85 of pregnancy to day 21 of postpartum was
the optimum probiotic mixture beneficial for both sows
and piglets.
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This review provides a state-of-the-art overview on recent advances in systems biology

in canine cardiac disease, with a focus on our current understanding of bioenergetics

and amino acid metabolism in myxomatous mitral valve disease (MMVD). Cross-species

comparison is drawn to highlight the similarities between human and canine heart

diseases. The adult mammalian heart exhibits a remarkable metabolic flexibility and

shifts its energy substrate preference according to different physiological and pathological

conditions. The failing heart suffers up to 40% ATP deficit and is compared to an engine

running out of fuel. Bioenergetics and metabolic readaptations are among the major

research topics in cardiac research today. Myocardial energy metabolism consists of

three interconnected components: substrate utilization, oxidative phosphorylation, and

ATP transport and utilization. Any disruption or uncoupling of these processes can result

in deranged energy metabolism leading to heart failure (HF). The review describes the

changes occurring in each of the three components of energy metabolism in MMVD and

HF. It also provides an overview on the changes in circulating and myocardial glutathione,

taurine, carnitines, branched-chain amino acid catabolism and tryptophan metabolic

pathways. In addition, the review summarizes the potential role of the gut microbiome in

MMVD and HF. As our knowledge and understanding in these molecular and metabolic

processes increase, it becomes possible to use nutrition to address these changes and

to slow the progression of the common heart diseases in dogs.

Keywords: mitral valve disease (MVD), energy metabolism, amino acids, nutrition, disease, heart failure,

microbiome, cardiac metabolism

INTRODUCTION

The adult mammalian heart has a very high demand for energy in order to sustain its constant
contractile activities and meet its basal metabolic needs (1). More than 70% of ATPs in the normal
adult heart are produced by fatty acid oxidation (FAO) in the complex mitochondrial machinery
while the remaining balance comes from the oxidation of other substrates including glucose (1).
The heart is metabolically flexible and shifts its preference in energy substrates in accordance with
different developmental stages, physiological, or pathological conditions (2). The concept of the
failing heart as an energy starved engine that runs out of fuel was initially proposed by Herrmann
and Decherd almost one century ago and continues to attract considerable research interests today
(1–7). The failing heart can exhibit an energy deficit of up to 40% less ATP than a healthy heart
(5, 8), increasing its reliance on glucose and other energy substrates as fuel in the context of reduced
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Li Metabolic Reprogramming in Canine Heart Disease

capacity of FAO (1, 2, 9). Inside the cardiac myocytes, glucose
is either converted to sorbitol by the polyol pathway or
phosphorylated by hexokinase to glucose 6-phosphate, which
subsequently goes through several metabolic pathways including
glycolysis (10). Recently, a growing body of evidence indicates
ketone bodies as a significant fuel source in the failing and
diseased heart (7, 11–14). Pathological alternations of these
energy metabolic pathways are associated with impaired signal
transductions and altered energy and redox homeostasis leading
to contractile dysfunction. Although the pathophysiology of
heart failure (HF) is complex and multifactorial (15), strategies
that aim to improve cardiac energy metabolism, as an example,
by switching to amore efficient myocardial energy substrate, have
begun to show promise (7, 13, 16–19).

The concentrations of myocardial and circulating amino
acids change in the failing heart in humans and animal
models (20–22). Total free amino acids were increased in the
humans failing right ventricles (23). Branched-chain amino
acid (BCAA) catabolic deficiency is associated with the failing
heart in humans and animal models (24–27). Several uremic
toxins, many of which are amino acid metabolic products, are
associated with heart disease (22, 28). However, the contribution
of amino acid metabolic reprogramming to cardiac health
and disease has been understudied and underappreciated. In
addition, several gut microbiota-produced metabolites have been
associated with the cardiovascular disease although no causal
relationship has been established (29–31). Myxomatous mitral
valve disease (MMVD), the most common naturally occurring
heart disease in dogs, is characterized as a slow progressive MV
degeneration, which causes mitral regurgitation and, in some
cases, can lead to congestive heart failure (CHF) (13, 32, 33).
Canine MMVD is very similar to the primary MV prolapse in
humans at the morphological, pathophysiological, and molecular
levels, and is considered as a model for MV prolapse (34–
37). The TGF-β and serotonin (5-HT) signaling pathways have
been implicated in the physiopathogenesis of MMVD in both
humans and dogs. The observations included increased valvular
expressions in genes and proteins in both pathways, increased
5-HT concentrations in circulation, myocardial and valvular
tissues in dogs with MMVD. The comparative pathophysiology
and the underlying signaling mechanisms by TGF-β and 5-
HT have been extensively reported and reviewed (36–42).
This review will summarize current advances in cardiac
energy and amino acid metabolic reprogramming, associations
between gut dysbiosis and heart disease, and opportunities for
nutritional intervention.

CARDIAC ENERGY METABOLISM

The failing heart undergoes extensive metabolic remodeling
(43, 44). Cardiac energy metabolism is composed of three
interconnected components: substrate utilization and transfer,
ATP production by oxidative phosphorylation (OXPHOS),
and ATP transfer and utilization by myofibrils (Figure 1).
Disruptions or uncoupling of these components may cause
derangements in cardiac energy metabolism. This review will

describe changes in each of the three components in the failing
heart and MMVD in dogs.

Energy Substrate Utilization
Fatty Acid Utilization
In a normal mammalian heart, 70–90% of energy requirement
comes from FAO, while the remaining balance comes from
glycolysis and oxidation of lactate, and to a small degree, from
ketolysis and amino acid oxidation (44, 45). However, the
relative contribution of each substrate to the cardiac energy
production can vary greatly depending on substrate availability,
metabolic demand, and cardiac health condition (44). In the
early phase of HF, minor reductions in fatty acid uptake and
oxidation are observed, while significant decreases in FAO are
detected in advanced HF (6, 45–47). Circulating free fatty
acids (FAs) cross the sarcolemmal membrane either through
passive diffusion or a carrier protein-assisted pathway (Figure 2).
These protein carriers include FA binding protein (FABP), FA
transporter protein (FATP), and FA translocase (CD36/FAT).
Cytosolic FAs are esterified to become fatty acyl CoA, from which
its acyl group is transferred to carnitine to form acylcarnitine
by carnitine palmitoyltransferase 1 (CPT1). The acylcarnitine
enters the mitochondrial inner matrix via the carnitine shuttle
and is converted to fatty acyl CoA by CPT2. The fatty acyl
CoA goes through several cycles of β-oxidation producing
the reduced forms of both nicotinamide adenine dinucleotide
(NADH) and flavin adenine dinucleotide (FADH2), and acetyl
CoA, which enters the TCA cycle for ATP production. The
complex regulation of FAO pathway occurs at essentially every
step, including the availabilities of circulating free fatty acids,
fatty acid uptake and transport across cardiac sarcolemma, fatty
acid esterification to become fatty acyl-CoA esters, mitochondrial
update via the carnitine shuttle, and sequential β-oxidations of
long-chain acyl-CoA into acetyl-CoA, and biochemical reactions
in the TCA cycle and electron transport chain (ETC) (1).

In dogs with MMVD, fatty acid uptake and transport to
cytoplasm and fatty acid conversion to fatty acyl-CoA esters are
altered (48). In an RNA-seq transcriptomics study, fatty acid
binding protein was downregulated in the MV of preclinical
MMVD dogs compared with non-MMVD dogs (48). In addition,
long-chain acyl-CoA synthetase, the enzyme that converts long-
chain fatty acids to acyl CoA esters, was downregulated in both
the left ventricle (LV) and MV (48). These changes suggest
impairments in the fatty acid transport and utilization pathway
that may lead to deranged bioenergetics.

Glucose Utilization
In cardiac hypertrophy, there is a significant metabolic shift
from FAO to glucose (10, 43). Glucose oxidation is more oxygen
efficient than FAO, but produces less ATP per molecule. The
complete oxidation of 1 palmitate (C16:0) molecule generates
105 ATP molecules, and consumes 46 oxygen atoms, whereas
the complete oxidation of 1 glucose molecule generates 31
ATP molecules and consumes only 12 oxygen atoms. The
fluxes of glucose and fatty acids are regulated by a feedback
mechanism known as the Randle cycle or the glucose-fatty
acid cycle (49), which involves the competition between glucose
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FIGURE 1 | Cardiac energy metabolism. There are three interconnected components of cardiac energy metabolism: substrate transport and utilization (red box),

mitochondrial oxidative phosphorylation (OXPHOS) for energy production (blue box), and ATP transport and utilization by cardiac myofibrils (green box). Adapted from

Neubauer (6).

FIGURE 2 | Fatty acid uptake and oxidation. Free fatty acids in circulation enter the cardiomyocytes through either passive diffusion or a carrier protein-facilitated

pathway, which involves fatty acid binding protein (FABP), fatty acid translocase (CD36/FAT), or fatty acid transporter protein (FATP). Cytosolic fatty acids are esterified

to become fatty acyl CoA by fatty acyl CoA synthase (FACS). The acyl group of fatty acyl-CoA is transferred to carnitine to form acylcarnitine by carnitine

palmitoyltransferase 1 (CPT1). The acylcarnitine enters the mitochondrial inner matrix via the carnitine shuttle and is converted to fatty acyl CoA by CPT2. The fatty acyl

CoA goes through several cycles of β-oxidation producing NADH, FADH2, and acetyl CoA, which enters the TCA cycle for ATP production. CAT, carnitine translocase.

and fatty acids for oxidation. In cardiomyocytes, the majority
of glucose is metabolized through glycolysis, which produces
pyruvate and ATP. Pyruvate can be reduced to lactate by lactate

dehydrogenase in cytosol or oxidized to acetyl-CoA by pyruvate
dehydrogenase to fuel the TCA cycle in mitochondria (10)
(Figure 3). During hypertrophied growth and remodeling, FAO
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FIGURE 3 | Glucose uptake and oxidation. Glycolysis plays an important role in cardiac bioenergetics. In cardiomyocytes, glucose is transported via glucose

transporters (GLUTs). Some glucose is converted to fructose and then fructose 6-phosphate for glycolysis via polyol pathway. The majority of glucose goes through a

series of enzymatic reactions of glycolysis to be converted to pyruvate. These enzymes include hexokinase (HK) for glucose 6-phosphate, phosphofructokinase 2

(PFK2) for fructose 6-phosphate, and PFK1 for fructose 1,6-biphosphate. Pyruvate can be reduced to lactate by lactate dehydrogenase (LDH) in cytosol or oxidized to

acetyl-CoA by pyruvate dehydrogenase (PDH) in the mitochondria. A small amount of pyruvate can be converted into alanine by alanine transaminase (ALT).

is decreased with a concomitant increase in glucose utilization
(6, 10). However, decreased glucose oxidation was also reported
in the development of HF (50). Glucose enters mammalian cells
via facilitated diffusion, a process regulated by transmembrane
glucose transporters (GLUTs) (51). Both GLUT1 and GLUT4
have a well-established role in myocardium. GLUT1 is abundant
in the fetal heart whereas GLUT4 is the predominant isoform
in the adult heart (10). In dogs with preclinical MMVD,
transcriptional changes in GLUT3 and GLUT6 were reported:
increased expression of GLUT3 was observed in both the LV and
MV, while GLUT6 expression was upregulated in the MV (48).
No change was found in either GLUT1 or GLUT4. One possibility
is that dogs use different GLUT isoforms than humans or rodents.
Interspecies expression difference in GLUT was reported. For
example, human β-cells predominantly express GLUT1 while its
expression of GLUT2 is 100-fold lower than in rat β-cells (52).
Nevertheless, the study did not rule out the possible involvement
of other GLUT isoforms in myocardial glucose utilization in
dogs. GLUT3, a high-affinity GLUT isoform and a major glucose
transporter for the brain, is also present in human adult and fetal
myocardium (53, 54). GLUT6 knockout mutant mice show little
metabolic effect (55), suggesting a redundant role of GLUT6 in
the murine heart. In an untargeted serum metabolomics study,
circulating glucose concentration was lower while lactate level
was higher in preclinical MMVD dogs vs. non-MMVD dogs

(48). The data supported the hypothesis of increased glucose
utilization in dogs with MMVD.

Ketone Utilization
Acetoacetate and β-hydroxybutyrate (BHB) are the two main
forms of ketone bodies. Under normal, non-fasting conditions,
ketones contribute little to myocardium energy metabolism.
Recently, emerging evidence demonstrates the importance of
ketones as an alternate fuel source for the failing heart (7, 11, 12,
14). Ketone bodies are mainly produced in the liver cells from
circulating fatty acids (Figure 4) (56). After a series of enzymatic
reactions, two molecules of acetyl-CoA are converted to one
molecule of acetoacetate, which is further reduced to BHB by β-
hydroxybutyrate dehydrogenase 1 (BDH1) in the mitochondria.
These ketone bodies reach other tissues via circulation and
are taken up by other organs by monocarboxylate transporters.
In cardiomyocytes, BHB is oxidized to be reconverted into
acetoacetate by BDH1, a key enzyme for ketone utilization.
Acetoacetate is activated by succinyl-CoA:3 ketoacid-CoA
transferase (SCOT), the rate-limiting enzyme of ketolysis, to
become acetoacetyl-CoA, which undergoes a final round of
thiolysis to produce 2 molecules of acetyl-CoA. Acetyl-CoA
enters the TCA cycle to fuel energy production.

In humans, blood ketone bodies are elevated in patients with
CHF, and are inversely correlated with LV ejection fraction
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FIGURE 4 | Hepatic ketogenesis and cardiac ketolysis. Free fatty acids in circulation are transported into the liver via a carrier protein-assisted transport pathway.

These fatty acids undergo fatty acid oxidation in the hepatic mitochondria to produce acetyl-CoA, which after a series of enzymatic reactions produces ketone bodies,

acetoacetate and β-hydroxybutyrate. Ketones are transported to the heart and other extrahepatic organs via blood portal by the monocarboxylate transporters 1 and

1 (MCT1/2). β-hydroxybutyrate is converted to acetoacetate by β-hydroxybutyrate dehydrogenase 1 (BDH1), one of the key enzymes for ketone utilization.

Acetoacetate is activated to acetoacetyl-CoA by succinyl-CoA:3 ketoacid-CoA transferase (SCOT), the rate-limiting enzyme for ketolysis. Acetoacetyl-CoA undergoes

a final thiolysis reaction to be separated into 2 molecules of acetyl-CoA. Adapted from Selvaraj et al. (7).

(57, 58). The gene expressions of myocardial BHD1 and SCOT
were upregulated in human HF patients compared with non-
HF controls (12). In a well-defined mouse model of HF, the
expression of BHD1 protein was increased in the hypertrophied
and failing heart, and ketone oxidation was increased in the
context of reduced FAO (11). More recently, Horton and
colleagues demonstrated that the shift to ketone utilization in the
failing heart is adaptive, and that BHD1-deficient mice unable to
utilize ketones in the heart resulted in worsened HF in response
to insults (14). Additionally, mice with increased delivery of
ketone bodies by a ketogenic diet or direct ketone infusion
to the heart ameliorated pathological cardiac remodeling and
dysfunction. These authors further demonstrated ketone bodies
as a metabolic stress defense, rendering protective effects
on pathologic cardiac remodeling and dysfunction in dogs.
Although still in its early development (59), therapeutic ketosis
to treat HF starts to gain considerable attention (7, 60).

Similar to human HF patients, the levels of circulating BHB
and acetoacetate are also increased in dogs with preclinical
MMVD as well as those with CHF compared with healthy dogs
(22). Increases in circulating ketone bodies may be the result
of a compensatory increase in ketone production in the liver
or a decrease in myocardium ketone utilization or both. To
date, numerous myocardial and heart valve gene expression
studies have been reported in dogs with MMVD (48, 61–63).
The gene expression of SCOT was downregulated in the MV in

dogs with preclinical MMVD (48). No myocardial expressional
change in BDH1 or SCOT gene or protein has been reported.
One possibility is that the myocardium and heart valve adapt
to different energy substrates in the early phase of MMVD
pathogenesis: while themyocardium canmetabolize both glucose
and ketones for fuel, the heart valve relies primarily on glucose.
It would be interesting to test the hypothesis on more MV and
myocardial samples.

OXPHOS in Mitochondria
Mitochondria, the “powerhouse” of the cell, supplies 95% of
energy to cardiomyocytes (16, 45). The catabolic products of
fatty acids, glucose, ketone bodies, and amino acids are used
to fuel the TCA cycle to generate energy substrates, which
enter the electron transport chain (ETC) for OXPHOS. Electron
transport induces proton pumping from the inner mitochondrial
matrix to the mitochondrial intermembrane space, a process
that generates the membrane potential for ATP production
(64, 65). The levels of circulating citrate and aconitate, both
of which are TCA cycle intermediates, are increased in canine
MMVD (22). Accumulation of these intermediates in circulation
may signify impaired or inefficient TCA cycle. In addition,
the concentration of inorganic phosphate (Pi) is elevated in
circulation in proportion to the severity of MMVD in dogs
(22). Pi is an important regulator of cytosolic ATP production
(66, 67). An in vitro study demonstrated that Pi plays a
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complex regulatory role in multiple sites of OXPHOS, including
electron flow, generation of reduced forms of nicotinamide
adenine dinucleotide (NAD+), distribution of energy flow in the
cytochrome chain, as well as serving as the primary substrate for
the ATPase to produce ATP in the cardiac mitochondria (68). It
is likely that the increased Pi level in MMVD dogs is a part of
the cytosolic feedback signaling to preserve energy metabolism
homeostasis in the energy-deprived failing heart.

Creatine Kinase Shuttle and Energy
Transfer to Myofibrils
The high-energy phosphate bond in ATP is transferred to
creatine by the mitochondrial creatine kinase to generate
phosphocreatine (PCr) and ADP. PCr, a molecule smaller than
ATP, can rapidly diffuse from mitochondria to myofibrils, where
myocardial creatine kinase catalyzes the reconversion from PCr
to ATP and release free creatine. Free creatine is recycled in
the mitochondria. In mammals, the majority of creatine is
obtained from the diet or biosynthesized in the liver and kidneys
and is taken up by the heart from circulation against a large
concentration gradient using the specific creatine transporter
(Figure 1) (69, 70).

In HF, the total myocardial creatine pool size is consistently
decreased regardless of species or etiology, possibly due to
reduced sarcolemmal creatine uptake (71, 72). Total creatine
kinase as well as mitochondrial creatine kinase activity are
also reduced in human HF patients and animal models of HF
(43). However, the causal relationship between the impaired
creatine kinase shuttle pathway and reduced myocardial ATP
levels has not yet been established. In dogs with MMVD, the
concentrations of circulating creatine are increased as the disease
advances (22). Notably, the level of circulating creatine in dogs
with stage B1 MMVD is higher than that of healthy dogs.
Because the degradation of creatine to creatinine is a slow
unregulated process, creatine levels are determined by creatine
transporter activity (43). One hypothesis is that increased serum
creatine levels are likely the result of reduced sarcolemmal
creatine transporter activities, and that myocardial creatine level
is decreased at the very early stage of MMVD. This observation
is consistent with the hypothesis that cardiac energy deficiency
has already begun in the early preclinical stage of canine MMVD.
Moderate augmentation of creatine kinase activity to increase
creatine and PCr levels in myocardium through pharmaceutical
or nutritional intervention has been considered as an attractive
strategy (73, 74). However, caution should be taken because
massive increases in the creatine transporter function can have
detrimental effects (75).

AMINO ACID METABOLISMS

Glutathione
Oxidative stress is an imbalanced state between generation
and elimination of reactive oxygen species (ROS). Increased
production and decreased removal of ROS play a causal role
in the pathophysiology of HF (76). In the heart, mitochondria
function as a redox hub (77). Superoxide (O−

2 ) is generated
in the ETC but is quickly converted to oxygen (O2) and

hydrogen peroxide (H2O2) by superoxide dismutase. Free H2O2

is further reduced to water by glutathione peroxidase, consuming
two molecules of reduced glutathione (GSH) and generating 1
molecule of oxidized glutathione (GSSG): 2GSH + H2O2 →

GSSG + 2H2O. Glutathione peroxidase activity is inversely
correlated to the risk of coronary artery disease (78).

Glutathione, a tripeptide of glutamine, cysteine, and glycine,
determines intracellular redox state (79). Systemic glutathione
relates to HF progression and cardiac remodeling. Myocardial
and circulating glutathione levels are depleted in cardiac patients
compared with healthy controls (80, 81). In dogs with CHF, the
plasma ratio of reduced to oxidized glutathione (GSH:GSSG) is
significantly lower than that of healthy controls (82). Circulating
GSSG is also higher in dogs with preclinical MMVD compared
with healthy dogs (48). For many mammals including humans
and dogs, methionine is an essential amino acid that must
be supplied through diets, while glycine is a conditionally
essential amino acid that cannot not be sufficiently synthesized
endogenously and has to be supplemented via diets. Methionine
serves as the precursor for cysteine, taurine, and carnitine
biosynthesis. The concentration of circulating methionine is
lower in dogs with preclinical MMVD and CHF compared
with healthy dogs (22, 48). Seral concentrations of glycine and
glutamine are also reduced in MMVD vs. healthy dogs (22).
The key determinants of GSH synthesis are the availability of
cysteine and the activity of the rate-limiting enzyme, glutamate
cysteine ligase. Decreased methionine, glycine, and glutamine in
circulation may signify reduced myocardial GSH biosynthesis in
dogs with MMVD.

Carnitine, Deoxycarnitine, and
Acylcarnitines
L-carnitine plays an important role in fatty acid metabolism and
oxidation and is concentrated in the skeletal and cardiac muscles.
Myocardium can synthesize deoxycarnitine, an immediate
precursor of L-carnitine, but lacks the hydroxylase that catalyzes
the final conversion from deoxycarnitine to carnitine (83, 84). In
mammals, L-carnitine is synthesized from lysine and methionine
in the liver, brain, and in human kidneys. There is a bidirectional
exchange between carnitine and deoxycarnitine across cardiac
sarcolemma: the heart uses its deoxycarnitine to exchange for
L-carnitine from the blood stream (83). In human patients
with dilated cardiomyopathy (DCM) and CHF, total and free
myocardial carnitine levels, and carnitine palmitoyl-transferase
(CPT) activities are significantly lower, while plasma total
and free carnitine concentrations are higher when compared
with healthy controls (85–87). In dogs, myocardial carnitine
deficiency was first associated with a family of dogs with
DCM (88). Reduced myocardial carnitine and increased plasma
carnitine concentration were reported in pacing-induced CHF
in adult mongrel dogs (89). Circulating deoxycarnitine is lower
in dogs with preclinical MMVD than healthy dogs (48), while
total and free carnitine levels are increased in proportion to the
severity of MMVD (22, 28). It is possible that the myocardium’s
ability to synthesize deoxycarnitine is impaired in dogs with
MMVD and that its ability to exchange carnitine from the
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blood stream is compromised, resulting in reduced myocardial
carnitine uptake and increased levels of circulating carnitine.
Nevertheless, the causal relationship between carnitine deficiency
and cardiac disease in dogs has not been established. The benefit
of carnitine supplementation in canine heart disease remains
observational (90, 91).

Acylcarnitines are intermediates of FAO. Accumulation in
acylcarnitines in the blood signifies disorders in mitochondrial or
peroxisomal FAO (92, 93). Elevated levels of plasma long-chain
(C14–C21), median-chain (C6–C13), and short-chain (C2–C5)
acylcarnitines were documented in human HF patients (94–
96). Accumulation of long-chain acylcarnitines in circulation is
thought to contribute to the pathogenesis of HF by stimulating
ROS production and releasing inflammatory mediators (95).
Chen et al. showed that human patients with acute HF had higher
plasma levels of acylcarnitines of all types, compared with normal
controls (96). Improved FAO was associated with improved
cardiac function along with substantial decreases in plasma
long-chain and short-chain acylcarnitines (96). In dogs with
MMVD, twenty-two long-chain, medium-chain, and short-chain
acylcarnitines are accumulated in circulation in MMVD dogs vs.
healthy dogs (22). Short-chain acylcarnitines are the degradation
products of BCAAs, derived from muscular breakdown or gut
microbiota metabolism. Accumulation of adipoylcarnitine (C6-
DC), a dicarboxylcarnitine and several hydroxyl-acylcarnitines
suggests activation of ω-FAO in peroxisome, which is a rescue
pathway in response to impaired mitochondrial β-oxidation
(97). Carnitine and acylcarnitines are positively correlated
with one another, and with left atrial dimension in dogs
(22). Remarkably, in a 6-month diet intervention study where
improvements in left atrial enlargement and mitral regurgitation
were observed in dogs with preclinical MMVD (18), three
circulating acylcarnitines, oleoylcarnitine (C18), adipoylcarnitine
(C6-DC), and margaroylcarnitine (C17), were decreased in dogs
fed the intervention diet, while little change was observed in
dogs fed the control diet (98). In the same study, the seral
level of deoxycarnitine was increased in response to the diet
intervention (98). The utility of free carnitine or carnitine
esters as diagnostic or prognostic biomarkers for canine MMVD
warrants further investigation.

Tryptophan Metabolism
Tryptophan (Trp) is another essential amino acid that must
be acquired through diet in both humans and dogs (99, 100).
In addition to protein synthesis, dietary Trp is metabolized by
three pathways. The main kynurenine pathway via indoleamine
2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO)
leads to the production of important metabolites, such as
kynurenine (Kyn), kynurenic acid (KA), quinolinic acid (QA),
and eventually nicotinamide adenine dinucleotide (NAD+), and
picolinic acid; the minor serotonin (5-HT) pathway via Trp
hydroxylase (TPH), and the third the microbiota-dependent
pathways to produce several key metabolites including ligands
for the aryl hydrocarbon receptor (AhR)-mediated signaling,
indole and its derivatives (Figure 5) (101–103). Human patients
with cardiovascular disease and CHF often have accelerated Trp
catabolism leading to lower circulating Trp levels and higher

Kyn/Trp ratios compared with healthy individuals (104–108).
In dogs with MMVD, although no change in Trp or Kyn is
observed, the concentrations of QA are increased inMMVDdogs
compared with healthy dogs, suggesting an upregulation in the
Trp-Kyn pathway (22).

Upregulation of the Trp-Kyn pathway may also lead to
increased production of NAD+, an essential cofactor for
bioenergetics and an important coenzyme for FAO, glycolysis,
TCA cycle, and ETC. In mammalian cells, the majority of
NAD+ is produced by the salvage pathway that recycles
nicotinamide and nicotinamide riboside to NAD+, while the
remaining balance comes from de novo biosynthesis via the Trp-
Kyn pathway, and the Preiss-Handler pathway using nicotinic
acid (109). Seral concentration of nicotinamide, precursor for
the salvage pathway, is decreased, while that of QA, a key
intermediate of the de novo pathway, is increased in dogs with
MMVD compared with healthy dogs (22). These results suggest
that the main salvage pathway for NAD+ production may
be compromised, while the de novo biosynthesis via the Trp-
Kyn pathway is activated to rescue (22). However, QA and 3-
hydroxykynurenine, both of which are Kyn metabolites with
cytotoxicity, may directly interfere with mitochondrial function
by AhR activation, and intensify the ROS production leading to
mitochondrial impairment (110–112).

Trp is a substrate for TPH, a rate-limiting enzyme that
hydroxylates Trp to form 5-HT, which enters the cells
through serotonin transporter (SERT) (113). Serotonin has been
associated with pathological remodeling in mature human heart
valves (114–116). In particular, serotonergic 5-HT2 receptors
are implicated in heart disease (117, 118). The 5-HT signaling
pathway has been linked to the pathogenesis of MMVD in
dogs (39). Circulating 5-HT is increased in early stage MMVD
but decreased as the disease progresses to end stage (38,
41). However, in the untargeted serum metabolomics studies
comparing healthy dogs and dogs with different stages of
MMVD, no difference in 5-HT was observed (22, 48). More than
95% of 5-HT in the body is produced in the gut. Turicibacter
sanguinis, a spore-forming bacteria in the gut, signals intestinal
enterochromaffin cells to produce 5-HT (102, 119). In a recent
fecal microbiome study using the 16S rRNA gene sequencing,
at the genus level the abundances of Turicibacter are reduced in
dogs with MMVD compared with healthy dogs (120). However,
the sequencing method did not provide enough resolution to
identify the species of Turicibacter. The nature of the association
requires further investigation.

BCAA in Heart Failure
Energy substrate readaptation is one of the hallmarks of the
failing heart. While much attention has been focused on the
regulatory mechanism and functional impacts of fatty acids and
carbohydrates, the contribution of amino acid metabolism in
the development of HF is largely understudied (25). In an early
study, Peterson et al. demonstrated that myocardial free amino
acids were increased in human HF (23). Several amino acids
including BCAAs, were increased in circulation in a rat model
of hypertension (121). Metabolomics and transcriptomics studies
also revealed changes in BCAAs and key amino acid metabolic
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FIGURE 5 | Tryptophan metabolic pathways. Tryptophan is metabolized by three pathways. More than 90% of dietary tryptophan is metabolized via the main

kynurenine pathway mediated by the indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-deoxygenase (TDO) leading to the production of important metabolites,

such as kynurenine, kynurenic acid, quinolinic acid, and eventually nicotinamide adenine dinucleotide (NAD+), and picolinic acid; the minor serotonin (5-HT) pathway

via tryptophan hydroxylase (TPH), and the third the microbiota-dependent pathways to produce several key metabolites including ligands for the aryl hydrocarbon

receptor (AhR)-mediated signaling, indole and its derivative.

pathways in murine models of HF (21, 122). Sun and colleagues
reported that catabolic deficiency of BCAA, including leucine,
isoleucine, and valine, is a metabolic hallmark for murine failing
heart and human DCM (24). It was postulated that BCAA
catabolic deficiency leads to accumulation of branched-chain
alpha-keto acids, induces ROS, and activates mTOR (25). In
dogs, a recent untargeted serum metabolomics study reported
accumulations of numerous intermediates of BCAA metabolism
in MMVD (22). The quantitative Metabolite Set Enrichment
Analysis indicated enrichment of oxidation of BCAAs in
MMVD dogs with CHF vs. healthy dogs (22). Circulating valine
concentration was slightly lower in preclinical dogs with MMVD
compared to healthy controls (48). The nature of the association
between BCAA metabolism and canine heart disease, if any,
warrants further investigation.

Taurine
Taurine is one of the sulfur-containing amino acids that is not
incorporated into proteins but found to be in high concentrations
in the heart and skeletal muscles (123). In mammals, the
susceptibility to taurine deficiency varies by species: while taurine
can be synthesized endogenously and is considered non-essential
or conditionally-essential in humans, rodents, and dogs, it is
essential for cats (91, 124–127). Taurine has been implicated
in the maintenance of normal contractile function, modulation
of myocardial calcium homeostasis, and potentially acts as an
antioxidant and anti-inflammatory agent (123, 128). Schaffer et
al. demonstrated that the taurine-deficient heart is associated
with reduced ATP generation and is energy starved, possibly due
to impaired mitochondrial respiratory chain activity, and NADH
utilization (129). Although taurine deficiency causes reversible
cardiomyopathy in cats (130), it does not play a significant role

in the development of cardiomyopathy in dogs (91). Freeman et
al. found no correlation between dietary and circulating taurine
concentrations (131). A retrospective study on DCM in dogs
suggested that taurine supplementation was not associated with
survival or echocardiographic changes although the study did not
rule out the possibility of a breed-specific role of taurine (132). In
untargeted serum metabolomics studies, no difference in taurine
concentration was found between healthy dogs and dogs with
various stages of MMVD (22, 48).

GUT DYSBIOSIS AND MMVD

The human gastrointestinal tract is colonized with 10–
100 trillions of typically non-pathogenic commensal
microorganisms, collectively known as microbiota (133).
These microorganisms encode >4 million non-redundant
genes, which is more than 100 times of human genomes
(134, 135). The additional pool of microbial genes aid in food
digestion and absorption, xenobiotic metabolism, development
of immune system (136), and contribute to the pathogenesis
of metabolic disorders, including cardiovascular disease
(29, 30). Since the establishment of an initial link between gut
microbiota and cardiovascular disease (CVD), numerous gut
microbiota-dependent metabolites and pathways, including the
trimethylamine N-oxide (TMAO) pathway, short-chain fatty
acid pathways, and bile acid pathways, have been implicated in
the pathogenesis of CVD and HF (29, 30, 137–139). The gut
hypothesis of HF postulates that impaired intestinal mucosal
integrity in HF patients allows gut bacteria and their endotoxins
to leak into circulation, and resultant chronic and low-grade
systemic inflammation characteristic of HF (31, 138, 139).
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TMAO, a diet-derived metabolite that is coproduced by
microbiota and host, has been associated with cardiovascular
diseases including HF (29, 30, 139). Dietary precursors,
including L-carnitine, choline/phosphatidylcholine, and to a
less degree, betaine, are converted to trimethylamine (TMA)
by gut microbiota. TMA enters the portal circulation to be
further oxidized to form TMAO by host hepatic enzymes
known as flavin-containing monooxygenases (FMOs) (30, 139).
Trimethyllysine, a methylated derived of amino acid lysine, is
another source for the endogenous TMAO synthesis although
less efficient than TMA (140). In dogs with preclinical MMVD
and CHF, circulating TMAO as well as its nutritional precursors,
L-carnitine, phosphatidylcholines and betaines, are increased
compared with healthy controls (22, 28). A recent study
analyzing fecal microbiome in healthy dogs and dogs with
MMVD shows that gut microbial diversities are significantly
different between healthy dogs and dogs with CHF (120). The
dysbiosis index, which is measured using quantitative PCR on
a panel of eight fecal bacterial groups, shows increases at the
pre-clinical stages and becomes significantly higher in dogs with
CHF when compared with healthy dogs. The study suggests
that gut microbiota change has begun at the early preclinical
MMVD. Significant differences in the abundance of E. coli, were
found between dogs with MMVD vs. healthy dogs (120, 141).
The E. coli genome shares 99% sequence identity with carnitine
oxygenase (cntA), the key gene for TMA biosynthesis (142). It
is possible that E. coli contributes to the increase in TMAO in
MMVD dogs. However, the causal link between cardiovascular
diseases and TMAO or its dietary precursors has yet to be
determined. The abundance of C. hiranonis, a gut bacterium
capable of converting primary bile acid to secondary bile acid, is
inversely associated with dysbiosis index. Strikingly, the bile acid
conversion was complete in dogs with high levels C. hiranonis,
but incomplete in those without (120). The preliminary data
indicate an interplay among host, gut microbiota, and signaling
pathways mediated by the gut microbe-dependent metabolites in
MMVD in dogs.

NUTRITION INTERVENTION TO ADDRESS
METABOLIC CHANGES

Nutrition plays an important role in heart health (143). Sodium
restriction has been recommended to human patients with
HF due to its ability to lower blood pressure and prevent
hypertension (144). However, multiple randomized controlled
studies in humans demonstrated that sodium restrictions activate
renin-angiotensin-aldosterone system (RAAS) and increase
insulin resistance. The existing evidence does not support a
universal reduction in sodium intake in CVD patients (145,
146). Roles of caloric restriction, omega-3 PUFAs, taurine,
carnitine, B vitamins, magnesium, potassium, coenzyme Q10,
and antioxidants in human and canine CVD have also been
extensively discussed (90, 131, 143, 147–150), but most of the
benefits remain observational or from case reports. Rigorous
randomized controlled studies are warranted. The use of low-
sodium diets in dogs with HF is a common practice for

veterinarians, but the advantages and disadvantages of sodium
restriction on canine patients with CHF warrants further
investigations (151). One concern is that the RAAS signaling
has vasoconstrictor properties and is thought to contribute to
renal injury. In one study, low salt diet induces RAAS, increases
oxidative stress and attenuates nitric oxide bioavailability in
the canine heart (152). In a double-blinded, crossover study,
18 dogs with HF were randomized into either a low-sodium
diet or a moderate-sodium diet for 4 weeks. Among the
dogs that completed the study, maximal left ventricular size
showed a marginal decrease on the low-sodium diet (P =

0.05) (151). The same research group followed up with a 4-
week randomized placebo-controlled study to test the efficacy
of a moderately reduced sodium diet enriched with omega-3
PUFAs, carnitine, taurine, arginine, and several antioxidants in
29 dogs with asymptomatic preclinical MMVD (153). The report
didn’t state whether the study was blinded or not. Dogs fed
the test diet had significant reductions in maximal left atrial
diameter (both weight-based and non-weight-based) and left
ventricular internal dimension in diastole (non-weight-based)
compared with the placebo controls (153). In recent years, the
systems biology approach has been increasingly used to probe
the molecular andmetabolic pathways underlying cardiovascular
diseases and to generate testable hypotheses to address those
changes (48, 154). A cardiac protection blend of nutrients
(CPB), including medium-chain triglycerides, fish oil, amino
acids taurine, methionine, lysine, magnesium, and vitamin E, was
designed based on the results of a multi-omics study on canine
MMVD (18, 48). In a 6-month, single-blinded, randomized,
placebo-controlled dietary intervention study, Li et al. tested
the clinical efficacy of CPB on preclinical dogs with MMVD
(18). Dogs supplemented with CPB had significant reductions
in left atrial diameter, left atrial to aortic root ratio, and the
severity of mitral regurgitation when compared with dogs fed the
placebo diet. Notably, several dogs in the placebo group advanced
from B1 stage to B2 stage at 6 months, while no dog in the
CPB group progressed from B1 to B2 (P < 0.05). Untargeted
metabolomics study using the serum samples from these dogs
supported the hypothesis that CPB improves energy metabolism
and reduces inflammation and oxidative stress (98). Large studies
with more dogs from different breeds should be conducted
to confirm the results. Several micronutrients are essential for
mitochondrial health, energy metabolism and production. In
the TCA cycle, vitamin B1 (thiamine) is part of pyruvate
dehydrogenase complex for the conversion from pyruvate to
acetyl-CoA, vitamin B5 (pantothenic acid) is a precursor for
coenzyme A biosynthesis, and vitamin B12 (cobalamin) is a
cofactor for succinyl-CoA formation. Some nutrients are also
crucial for the activities of the ETC complex: vitamin B3 (niacin)
is a precursor of NAD+ biosynthesis, vitamin B2 (riboflavin) is
a building block for ETC complex I and II, and coenzyme Q10
and taurine are associated with the activities of ETC complex.
Amino acid metabolic readaptation in the failing heart provides
additional opportunities for nutrition intervention. The level
of methionine, an essential amino acid, is lower in dogs with
MMVD than control dogs. The catabolism of glucogenic and
ketogenic amino acids can generate glucose, ketones and other
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energy substrates important for energy homeostasis. Finally,
supplementation of certain prebiotic fibers can be used to reduce
uremic toxins including TMAO and restore gut symbiosis,
and provides an alternative therapeutic option for canine
heart patients.

Many nutrition intervention studies were designed to test
combinations of nutrients, which can perform better than
individual supplements (155, 156). In vitro or in vivo models
may be used to understand the roles each nutrient plays or
how they interact. These models can also be used to screen
for nutrients or combination of nutrients for synergistic effects
before clinical testing.

CONCLUDING REMARKS

Recent advances in systems biology and high-throughput multi-
omics technologies make it possible to explore molecular and

metabolic changes at the systems level in canine MMVD and

HF. Some of the cellular and metabolic pathways are excellent
targets for nutritional or pharmaceutical interventions. As our
knowledge in systems biology and nutrition science continues
to grow and with the new technologies and diagnostics available,
there will exist significant opportunities to deliver breakthrough
nutritional interventions to support dogs with MMVD and other
cardiac diseases.
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Obesity is a common problem in dogs and overconsumption of energy-rich foods is a

key factor. This study compared the inflammatory response and fecal metabolome of

dogs fed a high-fat vs. a high-starch diet. Ten healthy lean adult beagles were equally

allocated into two groups in a cross-over design. Each group received two diets in which

fat (horse fat) and starch (pregelatinized corn starch) were exchanged in an isocaloric

way to compare high fat vs. high starch. There was a tendency to increase the glucose

and glycine concentrations and the glucose/insulin ratio in the blood in dogs fed with the

high-fat diet, whereas there was a decrease in the level of Non-esterified fatty acids and a

tendency to decrease the alanine level in dogs fed with the high-starch diet. Untargeted

analysis of the fecal metabolome revealed 10 annotated metabolites of interest, including

L-methionine, which showed a higher abundance in dogs fed the high-starch diet.

Five other metabolites were upregulated in dogs fed the high-fat diet, but could not

be annotated. The obtained results indicate that a high-starch diet, compared to a

high-fat diet, may promote lipid metabolism, anti-oxidative effects, protein biosynthesis

and catabolism, mucosal barrier function, and immunomodulation in healthy lean dogs.

Keywords: starch, fat, fecal metabolome, obesity, dogs

INTRODUCTION

Obesity is one of the largest health challenges nowadays in dogs. Studies report a prevalence of
canine overweight and obesity ranging from 34 to 60% (1–3). Obesity in dogs has been linked to
not only a decreased vitality, emotional wellbeing, and longevity but also an increased risk of certain
health issues such as insulin resistance, hypertension, cardiovascular disease, and osteoarthritis
(4, 5). While multiple molecular mechanisms might link obesity to its complications, inflammation
is a common feature that has been implicated in the pathophysiology of many obesity-associated
disorders (6). Similarly to these findings in humans, it has been revealed that obese and overweight
dogs showed a higher inflammatory state (7), as indicated by increased concentrations of serum
interleukin-6 (IL-6) (7), C-reactive protein (CRP), and tumor necrosis factor alpha (TNF-α) (8).
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The increase in adiposity is often attributed to high dietary
fat intake (9). Many studies have shown that high-fat diets
(>30% of energy from fat) can easily induce obesity in
humans (10, 11), mice (12, 13), and dogs (14, 15). When the
average amount of fat in the diet increases, the incidence of
obesity also rises (11, 12). Furthermore, in mice and humans,
consumption of high-fat diets leads to alterations in the
composition and function of the gut microbiota, promoting
metabolic endotoxemia and triggering an inflammatory response
(13, 16). In dogs, feeding a high-fat diet is associated with
insulin resistance (17), reduced brain insulin transport (14),
decreased microbiota α-diversity (15), and reduced abundance
of Prevotella, Solobacterium, and Coprobacillus (18). However,
the majority of studies on the intake and possible adverse
health effects of a high-fat diet in dogs focused on increased
inflammation and alterations in the gut microbiome, but no
study so far has investigated the effect of a high-fat diet on the
gut metabolome.

Starch is the most abundant dietary nutrient globally, and
provides energy to a rapidly growing human population (19),
and is also a main nutritional source for pet dogs (20).
However, this highly digestible energy source could also lead
to nutrition-related health problems. Studies have suggested
that typical starch-rich diets can also contribute to obesity
(19, 21), hyperglycaemia (21), pathogenesis and difficulty of
managing type 2 diabetes mellitus (22), as well as cardiovascular
disease (23). In dogs, nutritional research on dietary starch
mainly concerns its digestibility and fermentation, but not
the effect of high-starch diets on metabolic changes and
inflammatory responses.

Metabolomics is the study of all small molecules detectable
in a biological sample. It provides information on subclinical
metabolic alterations associated with (patho)physiological
changes and disease outcomes (24). Metabolome analysis has
revealed previously unknown alterations in amino acid, lipid,
and carbohydrate metabolism across species, with underlying
links to several conditions like obesity, inflammation, and
oxidative stress (25). Metabolomics is rather emerging in canine
nutrition, with current research being limited to study the
metabolomic profile in the healthy vs. obese or overweight
dogs (26), and in dogs fed with different protein levels (27),
with far more pending to be explored. The present study aimed
to compare the inflammatory status and fecal metabolome of
lean dogs fed a high-fat vs. a high-starch diet, providing new
insights and basis for a theoretical framework for high-fat vs.
high-starch induced metabolic and inflammatory effects in
relation to obesity.

MATERIALS AND METHODS

Animals and Experimental Design
Ten healthy adult research beagles of ideal body weight (BW)
and condition (4 intact females, 3 intact males and 3 neutered
males; 4.2 ± 2.6 y; 10.5 ± 1.2 kg; body condition score (BCS)
4–5/9) were equally allocated into two groups in a cross-over
study design with two periods of 6 weeks each. All dogs were
housed individually and under a 12-h light and 12-dark cycle with

TABLE 1 | Formulation of the diets (g/kg).

Item High Starch diet (HS) High Fat diet (HF)

Horse hearts 701.5 827.6

Corn starch (pregelatinized) 287.6 0.0

Corn oil 3.9 4.6

Horse fat 1.4 161.4

Premix 5.6 6.4

KJ/100g Dry matter 1,811 2,579

a room temperature of 17◦C. Prior to the study, a commercial
standard diet (Hill’s Science Plan Advanced Fitness; Hill’s Pet
Nutrition, Inc., Topeka, KS, USA) mixed with experimental diets
was fed to the dogs for 1 week adaption−75% standard with 25%
experimental diets for 3 days, 50% of each for 2 days, and 75%
experimental with 25% standard diets for 2 days. During the first
period of the study (P1), five dogs in group A were fed a high-
starch (HS; pregelatinized corn starch;∼63.5% carbohydrate and
9.4% fat) diet and five dogs in group B were fed a high-fat (HF;
horse fat; ∼12.9% carbohydrate and 46.9% fat) diet. After P1, a
mixture of two experimental diets was fed to the dogs for one-
week transition–group A: 75% HS with 25% HF diet for 3 days,
50% of each for 2 days, and 25% HS with 75% HF for 2 days;
same proportion but reverse diets for group B. Experimental diets
were then completely switched during the second period of the
study (P2).

Diets were formulated to be isonitrogenous on energy basis, so
that for a given energy allocation the protein intake was similar
regardless of the diet. The formulation of both diets is presented
in Table 1. The HF and HS diet contained 18.2 g crude fat, 13.9 g
crude protein, and 5.0 g nitrogen-free extract per MJ, and 5.2 g
crude fat, 13.1 g crude protein, and 35.0 g nitrogen-free extract
per MJ, respectively. Dogs were fed once a day at 10:00 a.m., and
had free access to water. Body weight and BCS were assessed
weekly. Food intake was recorded daily, and the amount was
adjusted weekly to maintain a stable body weight, if needed.

All samples were collected at the end of each study period.
Fasting blood samples (∼30mL) were drawn from the jugular
vein. An aliquot of ∼4mL was collected in PAXgene Blood RNA
tubes (PreAnalytiX GmbH, Erembodegem, Belgium) to analyse
mRNA expression of TLR-4, CD14, IL-10, IL-18, IL-1B, IL-
1RA, IL-8, and TNF-α. Serum and plasma for assessing mRNA
expression, acylcarnitine and amino acid profiles were obtained
by centrifuging blood at 2000 x g for 15min at 4◦C, which
was stored at −20◦C until analysis. Fresh fecal samples (∼10 g)
were collected within 10min after spontaneous defaecation. The
samples were scored for fecal consistency (1 = watery liquid
feces that can be poured; 2 = soft, unformed stool that assumes
the shape of the recipient; 3 = soft, formed, moist stool; 4 =

hard, formed, dry stool; 5 = hard, dry stool), and fecal pH was
measured with a portable pH meter (Hanna Instruments Ltd.,
Temse, Belgium). An aliquot of ± 2 g was placed into a sterile
plastic tube, frozen immediately on dry ice, lyophilized as soon
as possible, and stored at −80◦C in preparation of metabolomic
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analysis. The remainder of the fecal sample was stored at −20◦C
for chemical analyses.

Analytical Methods
Body composition was determined by the deuterium dilution
method using Fourier-transform infrared spectroscopy as
described by (28).

Proximate analysis was performed on the diets using standard
methods, ISO 1442:1997 for dry matter, ISO 936:1998 for crude
ash, Kjeldahl nitrogen (6.25 × N, ISO 5983–1, 2005) for dietary
crude protein, and ISO 5498:1981 for crude fiber. Nitrogen-free
extract was calculated by subtracting crude ash, crude protein,
crude fat, and crude fiber from the dry matter content. A Total
Dietary Fiber Assay Kit (Sigma–Aldrich Co., Overijse, Belgium)
was used to determine total dietary fiber and insoluble dietary
fiber using procedures based on a combination of enzymatic and
gravimetric methods (29). Soluble dietary fiber was calculated by
subtracting insoluble dietary fiber from total dietary fiber.

Serum concentrations of glucose, triglyceride, cholesterol,
and total protein were determined using the Architect C16000
analyser (Abbott Max-Planck-Ring, Wiesbaden, Germany).
Fibrinogen concentration was determined using the Sysmex CS-
5100 analyser (Siemens Healthcare Diagnostics Products GmbH,
Marburg, Germany), insulin concentration was determined by a
commercially available kit (INS-Irma, DIAsource ImmunoAssays
S.A., Louvain-la-Neuve, Belgium), and the insulin-to-glucose
ratio was calculated as described in German et al., (30)
to assess insulin sensitivity. Serum leptin concentration was
measured using a validated, commercially available canine
ELISA kit (Millipore Corp., Billerica, MA, USA) following the
manufacturer’s instructions. Serum Non-esterified fatty acids
(NEFA) concentrations were analyzed by spectrophotometry
(EZ Read 400 Microplate Reader, Biochrom Ltd., Cambridge,
United Kingdom). Free carnitine, acylcarnitine and amino
acid profiles were determined on lithium-heparin plasma
by quantitative electrospray tandem mass spectrometry as
previously described (31, 32). Blood lipopolysaccharides (LPS)
concentrations were determined using a kinetic turbidimetric
Limulus amoebocyte lysate (LAL) assay.

S100A12 concentration in serum and feces was determined by
a species-specific ELISA (33). Fecal short-chain fatty acid [SCFA;
i.e., acetate, propionate, butyrate, iso-butyrate, iso-valerate], and
NH3 concentrations were determined first by extracting samples
with 10% formic acid, containing 1 mg/ml 2-ethyl butyric
acid as internal standard (3 g sample + 15ml extraction fluid;
shake for 5min, centrifugate, and filtrate). The determination of
respectively the volatile fatty acids and ammonia was carried out
using gas chromatography as previously described (34, 35).

mRNA Expression
Total RNA was isolated from the PAXgene tubes using
the PAXgene blood RNA kit (Qiagen, Manchester,
UK) according to the manufacturer’s instructions. RNA
concentration was measured using the Qubit RNA
Assay Kit (Invitrogen, Paisley, Scotland). Primers and
probes for the assay were designed using Primer 3
(www.genome.wi.mit.edu/cgibin/primer/primer3_www.cgi.) and

M-Fold using the canine specific GenBank sequence for IL-1β
(EU249360) and IL-1α (AF216526) as described previously (36).
The assays for the 3 housekeeper genes (succinate dehydrogenase
complex, subunit A [SDHA], TATA box binding protein [TBP],
and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
activation protein zeta polypeptide [YWAZ]) and the remaining
genes (Supplementary Table 1) were the same as those used
previously (37).

Synthesis of cDNA was carried out using the ImProm II
Reverse Transcription System (Promega Corporation) with 500
ng of total RNA in a final volume of 20 µL. Quantitative
PCR (qPCR) was performed using GoTaq Colorless Master
Mix (Promega). Gene specific amplification was performed
using 0.2µM of each primer, 0.1µM of the probe, ROX
(1:5000, Invitrogen) and 5 µl of diluted cDNA in a final
volume of 25 µl. Sample incubations were performed in an
MxPro 3005P (Agilent) at 95◦C for 2min and then 45 cycles
of 95◦C for 10 sec and 60◦C for 30 sec during which the
fluorescence data were collected. Threshold values (Ct) for the
samples were calculated using the MxPro qPCR software 4.1
(Agilent Technologies Co., Santa Clara, CA, USA). Relative copy
number expression values were calculated for each sample and
normalized against the housekeeper gene results using the qBase
applet for Microsoft Excel (http://medgen.ugent.be/qbase/) as
described by Vandesompele et al. (38).

Untargeted Metabolomics Analysis
Freeze-dried fecal samples were subjected to generic extraction
as optimized and described previously (39). Analysis of extracted
fecal samples was performed using a Dionex UltiMate 3000
XRS UHPLC system (Thermo Fisher Scientific, San José, CA,
USA) coupled to aQ-ExactiveTM bench topQuadrupole-Orbitrap
HRMS (Thermo Fisher Scientific, San José, CA, USA) (39, 40).
Calibration of the Q-Exactive HRMS system was performed
according to the instructions of the manufacturer. Internal (each
10 samples) and external QC (quality control) samples (pool of
samples made from aliquots of the study samples) were analyzed
prior to and after analysis of the samples to stabilize the system
and monitor (and if needed, correct for) instrumental drift.
Samples were analyzed in 1 batch, in a randomized order.

Raw data was Pre-processed using SieveTM 2.1 (Thermo
Fisher Scientific, San José, USA), as described by De Paepe
et al., (40). SimcaTM 13 (Umetrics AB, Umeå, Sweden) was
used for multivariate statistical data processing. PCA-X and
OPLS-DA modeling were performed following logarithmic data
transformation and Pareto scaling, with further validation
assessed by assessment of R2 and Q2 goodness (>0.5),
permutation testing (n = 100) and cross-validated analysis
of variance (CV-ANOVA, p < 0.05). Discriminative/predictive
ions were selected based on their eccentric position in the
S-plot [p (corrected) > |0.5|] and a Variable Importance in
Projection-score (VIP score) >2. Prediction of chemical formula
was based on accurate mass and the full scan spectrum using
XcaliburTM; i.e., obtained through calculation and evaluation of
isotopic signature (carbon and sulfur) and allowing a max mass
deviation of 5 ppm. Putative identification was achieved using the
Human Metabolome Database (HMDB), PubChem and Kyoto
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Encyclopedia of Genes and Genomes (KEGG) databases (freely
available online). A heatmap with dendrogram was generated
using TBtools software (https://github.com/CJ-Chen/TBtools) to
illustrate metabolite abundances and sample clustering.

Statistical Analyses
The metabolomic data were processed as described above. The
effect of diets, periods and their interaction were analyzed by
two-way ANOVA using MetaboAnalyst 3.0 software (McGill
University, Canada).

To evaluate the effect of both the diet and the two-period
dietary exchange, the remainder of the data was analyzed by
Wilcoxon-Mann–Whitney test with diet, period and diet∗period
as factors and dog as random effect. These analyses were
processed by R version 3.1.0 (The R Foundation for Statistical
Computing) using the Coin package (version 1.0–23). Summary
statistics were expressed as mean values ± SD. A p-value of <

0.05 was considered statistically significant and a p-value < 0.10
was considered as a significant trend. All p-values were corrected
by the false discovery rate.

RESULTS

Food Intake and Body Composition
All dogs remained healthy throughout the study. All diets
were well tolerated and did not affect the dogs’ food intake.
Daily energy intakes did not differ between diets. There was
no significant diet and period effect on BW and BCS at the
end of each study period. Furthermore, neither diet nor period
significantly affected the dogs’ absolute and relative body fatmass.

Fecal Parameters
There was no significant effect of diet and period on the
fecal concentration of NH3, acetate, propionate, butyrate, iso-
butyrate, and iso-valerate. The diets also did not affect the fecal
S100A12 concentrations, and no significant effect was observed
on the fecal score and pH. These results are summarized in
Supplementary Table 2.

Blood Parameters
Significant findings in blood parameters are presented in Table 2,
while blood parameters which did not significantly differ between
diets or periods are available in Supplementary Table 3. A
significant diet effect (p = 0.041) was observed for the Pre-
prandial NEFA concentration, with dogs being fed the high-
starch diet showing a higher level of NEFA than dogs being
fed the high-fat diet. Diet × period trends were observed for
the plasma concentration of glycine (p = 0.077) and tyrosine
(p = 0.058). Additionally, significant trends according to diet
were observed for the plasma concentration of glucose (GLU;
p = 0.054), glycine (Gly; p = 0.094), alanine (Ala; p =

0.089), and the ratio of glucose to insulin (GLU/INS; p =

0.063). More specifically, dogs on the high-fat diet displayed a
trend for a decreased Ala concentration and an increased GLU

concentration and GLU/INS ratio compared to dogs on the high-
starch diet. Significant effects of period were also observed for the
GLU/INS ratio (p= 0.036) and NEFA concentration (p= 0.042).

No significant dietary effect or trend was observed for LPS
concentration, acylcarnitine profiles andmRNA expression levels
in the blood (Supplementary Table 3).

Fecal Metabolome
A total of 4391 and 1934 ions were obtained in the
positive and negative ionization mode, respectively. PCA-
X score plots revealed good clustering of fecal samples
according to diet in both positive and negative ionization
mode (Supplementary Figure 1), as well as good clustering
of QC samples. The characteristics of the OPLS-DA model
(Supplementary Figure 2) were good to excellent: R2Y = 0.884
and Q2

= 0.661 for the “positive” model and R2Y = 0.861
and Q2

= 0.670 for the “negative” model, also obtaining
successful cross-validation (CV-ANOVA with p < 0.01), as well
as a valid permutation test. A total of 15 fat/starch associated
metabolites could be retained (Supplementary Figure 3), with 5
unidentified metabolites and 9 putatively annotated metabolites.
The identity of one metabolite marker; i.e., L-methionine, was
confirmed by means of an analytical standard. An overview of
the (characteristics of the) retrieved discriminative metabolites is
presented in Table 3.

The results obtained for investigating the interaction
among diet, period and their interaction are summarized in
Supplementary Table 4. All 15 metabolites were significantly
influenced by the two diets, while none of them was significantly
influenced by the study periods. One unidentified metabolite
(Unidentified_1) was subject to the interaction between diet
and period.

Normalized abundances of metabolites discriminating for
the high-fat vs. high-starch diet are presented in a heatmap in
Figure 1. Clear clustering of the samples according to diets was
observed (except for one sample HF(P1)3). Moreover, dogs fed
the high-fat diet displayed a significantly higher abundance of
5 Non-annotated molecules, whereas dogs fed the high-starch
diet displayed a significantly higher abundance of L-methionine,
6 molecules tentatively identified as (iso)leucyl-threoninyl-
valine; (iso)leucyl-(iso)valine or (iso)valyl-(iso)leucine;
L-lysopine or (iso)leucyl-serine/seryl-(iso)leucine or valyl-
threonine or threoninyl-valine; glycyl-valine or valyl-glycine
or gly-norvaline or L-theanine or N-acetylornithine; valyl-
valine; and (iso)leucyl-(iso)leucine, as well as 3 molecules
putatively identified as spermic acid 2 or (iso)leucyl-threonine
or threoninyl-(iso)leucine.

DISCUSSION

Most nutritional studies on the inflammatory response and
metabolism in dogs have focused on the effects of protein (27,
42, 43). However, there is less information concerning dietary
fat and nonfibrous carbohydrates, which are the main energy-
delivering nutrients in traditional dog food (44). Health issues,
particularly obesity-related problems, associated with diets rich
in fat and starch, have received increasing attention in recent
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TABLE 2 | Blood parameters (significant findings; n = 5).

Item HS HF Period 1 Period 2 p value

Diet Period Diet*Period

GLU (µM) 78.40 ± 6.28 85.70 ± 5.21 83.10 ± 5.99 81.00 ± 7.60 0.054 0.324 0.134

GLU/INS 16.25 ± 5.54 46.46 ± 59.15 45.24 ± 59.59 17.48 ± 7.53 0.063 0.036 0.145

Gly (µM) 190.1 ± 24.12 186.9 ± 37.32 201.0 ± 33.47 176.0 ± 22.61 0.094 0.220 0.077

Ala (µM) 358.6 ± 118.5 239.5 ± 44.27 335.4 ± 129.1 262.8 ± 65.54 0.089 0.159 0.347

NEFA (µM) 1.13 ± 0.25 0.94 ± 0.23 1.13 ± 0.31 0.95 ± 0.15 0.041 0.042 0.108

Phe (µM) 85.11 ± 18.94 84.04 ± 16.98 80.64 ± 11.61 88.51 ± 21.88 0.139 0.077 0.120

Tyr (µM) 54.87 ± 8.93 51.45 ± 10.59 53.82 ± 8.63 52.49 ± 11.09 0.113 0.085 0.058

GLU, glucose; INS, insulin; Gly, glycine; Ala, alanine; NEFA, Non-esterified fatty acid; Phe, phenylalanine; Tyr, tyrosine.

TABLE 3 | Overview of characteristics of L-methionine, putatively annotated and unidentified metabolite markers.

Compound n◦ Putative identification* ID level Formula m/z ppm RT Ionization

mode

VIP

score

Reference

1 Unidentified_1 – – 223.1234 / 0.91 H+ 2.485 –

2 Unidentified_2 – – 415.2172 / 0.97 H+ 2.373 –

3 L-Methionine 1 C5H11NO2S 150.0580 2.04 1.57 H+ 2.996 HMDB

4 Glycyl-Valine/Glycyl-Norvaline/Valyl-Glycine/L-Theanine/N-

acetylornithine

4 C7H14N2O3 173.0931 0.44 1.65 H− 3.816 HMDB

5 Unidentified_3 – – 356.1478 / 1.75 H− 2.481 –

6 Spermic acid 2/(Iso)leucyl-threonine/ Threoninyl-(Iso)leucine 4 C10H20N2O4 231.1357 2.72 2.22 H− 2.321 HMDB

7 L-Lysopine/(Iso)leucyl-serine/seryl-(Iso)leucine/Valyl-

Threonine/Threoninyl-Valine

4 C9H18N2O4 219.1333 2.89 2.32 H+ 3.379 HMDB

8 Valyl-valine 4 C10H20N2O3 217.1542 2.34 4.24 H+ 3.160 HMDB

9 Spermic acid 2/(Iso)leucyl-threonine/ Threoninyl-(Iso)leucine 4 C10H20N2O4 231.1358 3.33 4.88 H− 3.526 HMDB

10 Spermic acid 2/(Iso)leucyl-threonine/ Threoninyl-(Iso)leucine 4 C10H20N2O4 231.1357 3.03 5.16 H− 4.124 HMDB

11 (Iso)leucyl-valine/Valyl-(Iso)leucine 4 C11H22N2O3 229.1566 3.47 5.54 H− 3.426 HMDB

12 (Iso)leucyl-Threoninyl-Valine 4 C15H29N3O5 332.2173 2.01 6.88 H+ 3.430 PubChem

13 (Iso)leucyl-(Iso)leucine 4 C12H24N2O3 243.1722 3.39 6.98 H− 3.553 HMDB

14 Unidentified_4 – – 283.1200 / 7.12 H− 3.096 –

15 Unidentified_5 – – 263.0809 / 9.17 H+ 2.466 –

ID level, metabolite identification level according to Sumner et al. (41); ppm, absolute difference theoretical vs. detected m/z; RT, retention time (min.); VIP, variable importance

in projection-score.

*IUPAC names are provided in Supplementary Table 5.

canine studies (14, 18, 45). For the first time, the present study
investigated the inflammatory response and fecal metabolome in
healthy lean dogs fed a high-fat or a high-starch diet.

No Effect on Inflammatory Related mRNA
Expression
Obesity is characterized as a state of low-grade systemic
inflammation, in which many inflammatory cytokines appear to
play a role. They might also be linked to co-morbidities of obesity
(46). Recent evidence suggests that a high-fat diet (60% fat) can
induce obesity and exacerbate obesity-related inflammation and
metabolic disorders inmice (47, 48). Moreover, gut inflammation
is more severe in obesity-prone rats compared to obesity-
resistant rats when both were fed a high-fat diet (45.3% fat) (49).
Inflammation was also selectively more marked in the short-
term high-fat-fed mice (60% fat) (50), which might depend on

the level of weight gain. However, no significant changes were
noted in the inflammatory related mRNA expression in this
study. Overall, this result is not surprising as the dogs were fed
to keep an ideal body condition and body weight. In fact, in our
study, the two diets were isoenergetically exchanged, with the
high-fat diet not exceeding the safe upper limit for dogs (70%
for adult maintenance) (51). Next to this, except for the species

differences and susceptibility to obesity, as genetically modified

mice are more prone to developing morbid obesity (52), the

discrepancy may be ascribed to the study’s limited experimental
duration, tested parameters or sample types. The study was
not designed to investigate potential long-term effects. Tissue
samples could not be collected, or more invasive parameters
tested (e.g., inflammatory markers in fat or intestinal mucosal) in
the dogs due to ethical reasons. Also, differences in the fat source
and different levels of dietary fat intake between dogs and mice
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FIGURE 1 | Heatmap with cluster dendrogram of retrieved discriminative metabolites. Colors represent log-transformed peak intensity of metabolites. HF = high-fat

diet, HS = high-starch diet, P1 = study period 1 and P2 = study period 2 for 5 dogs per group.

studies might also influence the experimental results. Therefore,
future research investigations need to evaluate an extended set
of inflammatory parameters under a variety of experimental
conditions to unravel the inflammatory response of dogs fed a
high-fat vs. a high-starch diet.

Observed Metabolic Effects in Blood
Vast differences were found in the metabolic profiles in blood
our study. When dogs were fed with the high-fat diet, there
is a tendency to increase glucose concentration and the ratio
of glucose to insulin in the blood. This result suggests that
the high-fat diet can affect glucose metabolism in healthy dogs.
Previously, a high-starch diet (43% energy from starch and 26%
from fat) has also been shown to increase glucose and insulin
concentrations in healthy dogs compared to isoenergetic low-
(12% energy from starch and 40% from fat) and moderate-starch
diets (30% energy from starch and 34% from fat) (53). However,
both fat and protein contents were adjusted to formulate the
low- and moderate-starch diets, making it difficult to evaluate
the effect of only fat in this study (53). Another study did not
find any significantly changes in plasma glucose and insulin
concentrations in dogs fed with a high-fat diet (63% energy from
fat and 12% from starch) at two energetic intake levels (100%
and 150% of maintenance energy requirements [MER]). Insulin
sensitivity, however, was lower in the dogs of 150% MER group,
which also had higher BW and BCS (15). The present study
was not designed to analyse the effect on insulin sensitivity as
only Pre-prandial samples were drawn. Thus, future research
is needed to explore the possibility of such an effect. In the
present study, the high-starch diet was associated with different
metabolic effects compared to the high-fat diet in healthy lean
dogs, as indicated by the increased NEFA concentration and a
trend for increased Ala concentrations in the blood. Previous
studies have reported that the increased Ala and NEFA levels are
associated with increased glucose and lipid metabolism. Alanine

is the key protein-derived gluconeogenic precursor, and plasma
NEFA arise mainly from hydrolysis of triacylglycerol within the
adipocyte (54, 55). This result suggests that compared to a high-
fat diet, a high-starch intake could influence host glucose and
lipid metabolism in healthy dogs. Future studies are needed
to further investigate the metabolic effects of high-starch in
exchange for high-fat diets.

Observed Metabolic Effects in Feces
Metabolomic research in dogs is still at a preliminary stage, with
a limited number of published studies. Most of those studies
focus on studying the metabolome in the context of disease
or following dietary supplementation (56–59). However, the
current study investigated shifts in the fecal metabolome of
dogs on a high-starch vs. high-fat diet for the very first time.
Polar metabolomics revealed a distinctively different fecal
metabolomic profile in dogs fed a high starch vs. high fat diet.
Specifically, the high-starch diet increased the abundance of
L-methionine, and several molecules that were tentatively
annotated as (iso)leucyl-threoninyl-valine, (Iso)leucyl-
(Iso)valine/(Iso)valyl-(Iso)leucine, L-lysopine/(iso)leucyl-
serine/seryl-(iso)leucine/ valyl-threonine/threoninyl-valine,
valyl-valine, (iso)leucyl-(iso)leucine, glycyl-valine/valyl-
glycine/gly-norvaline/L-theanine/N-acetylornithine, and
spermic acid 2/(iso)leucyl-threonine/threoninyl-(iso)leucine.

Of the (putatively) annotated fecal metabolites, several are
known to exert anti-oxidative and immunomodulatory effects.
Methionine for example plays a critical role in the metabolism
and health of many species, including dogs (60), as it is an
essential amino acid involved in protein as well as aminoacyl-
tRNA biosynthesis. Interestingly, there is accumulating evidence
for aminoacyl-tRNA synthetases being involved in a wide range
of physiological and pathological processes, including different
types of immune responses (61). Recent research has furthermore
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demonstrated that methionine intervenes in lipid metabolism
and anti-oxidation (61, 62).

Based on accurate mass, we assume compound n◦4 may
either be a dipeptide, L-theanine or N-acetylornithine, although
confident identification could not be achieved. L-theanine is an
L-glutamate and L-glutamine analog. Interestingly, glutamine
analogs are known to improve intestinal mucosal repair
function (63), whilst recent studies furthermore reported that
L-theanine supplement affects intestinal mucosal immunity by
regulating SCFA metabolism in rats (64) and broilers (65).
These studies implied that increased abundance of L-theanine
in this study may have beneficial effects on intestinal reparation
and immune. N-Acetylornithine is an intermediate in the
enzymatic biosynthesis of the amino acid L-arginine from L-
glutamate (66), which involves protein synthesis, anti-oxidative
and immunomodulatory effects as well as e.g., improved mucosal
barrier function (67).

Besides compound n◦ 4, eight other marker molecules (n◦

6–13) were also putatively identified as di- or tripeptides. Di-
or tripeptides are incomplete breakdown products of protein
digestion or intermediates in protein catabolism (68).

For compounds n◦ 6, 9 and 10, alternative tentative
annotations include spermic acid 2, and for compound n◦ 7,
putative identification as L-lysopine is a possibility besides being
a dipeptide. Spermic acid 2 is an metabolite of putrescine
and spermine (https://contaminantdb.ca/contaminants/
CHEM041097, ContaminantDB, McGill University, Canada),
which are produced by the collectivemicrobiome (69). Putrescine
and spermine are required for several physiological functions
including protein synthesis, cell growth and differentiation (70),
and spermine is furthermore known to supress inflammation
(71). Increased spermic acid levels in this study thus implied the
improvement of these roles by the high-starch diet. Regarding
L-lysopine, a marker molecule with the same accurate mass
was previously detected and putatively annotated in healthy
suckling piglets (72). More specifically, the tentatively annotated
L-lysopine was downregulated (p > 0.05) in piglet plasma
following supplementation with an additional 0.12% methionine
in the basal diet of sows during late gestation and lactation.
Methionine supplementation showed a positive effect on
piglet growth performance, which was hypothesized to be
due to an increased antioxidant capacity of the piglets. This
does not align with the proposed anti-oxidative effects of the
high-starch vs. high-fat diet in this study since the putatively
annotated L-lysopine molecule was higher following the intake
of the high-starch vs. high-fat diet. According to HMDB,
L-lysopine originates from food (or feed) (73), but there is very
limited knowledge on spermic acid 2 and L-lysopine either
dogs or any other species. Therefore, these findings warrant
further investigation.

Fivemetabolitemarkers were upregulated following feeding of
the high-fat diet compared to the high-starch diet. For compound
n◦ 14 (“Unidentified_4”), a potential match with karalicin was
retrieved in the PubChem database. There is however no existing
prior knowledge about this compound either in any species,
although it has been observed that it can produced by certain
bacteria (74). Another potential HMDB match for compound n◦

14 is 2-Phenylethyl beta-D-glucopyranoside (C14H20O6). This
compound has previously been detected in caraway and citrus
(73), but it is unclear whether this compound could therefore also
present in the dog feed. Due to these uncertainties, compound
n◦ 14 was not annotated as either karalicin or 2-Phenylethyl
beta-D-glucopyranoside. Overall, metabolite identification is a
major bottleneck in metabolomics research (75), and even
more so for studies in dogs since there is no existing dog
metabolome database.

General Discussion
In summary, no difference was found in the inflammatory
response in dogs fed with a high-starch vs. a high-fat diet, whereas
different metabolic profiles were observed for the two diets. The
high-starch diet in this study might be associated with several
effects that indicated by the altered metabolic profiles, including
protein biosynthesis, lipid metabolism, as well as exert anti-
oxidation and/or immunomodulation. Future studies should
encompass investigation of both short and long-term effects of
high-starch in exchange for high-fat diets furthermore taking into
account the source and level of fat intake. Moreover, in order to
better understand the link between fecal metabolome and host
metabolism, the analysis of microbiome is warranted in future
studies, as well asmultiple-omics analyses such as proteomics and
lipidomics, which would enable studying the formation and/or
degradation of proteins and the more a polar fraction of the
metabolome. Lastly, it should be noted that Beagles in breeds
are more prone to developing obesity (76) and therefore, follow-
up studies should furthermore explore the effect of a high-fat vs.
high-starch diet in relation to obesity and related problems, not
only in Beagles, but also in other dog breeds, and in different
age stages.

CONCLUSION

Inflammatory and metabolic responses of dogs fed a high-fat
and high-starch diet were evaluated in the present study. The
inflammatory response did not differ between the two diets. The
high-starch diet was associated with increased blood NEFA level,
a tendance for increased blood Ala level and showed a profound
impact on the fecal metabolomic profile with alterations of the
abundance of 15 fecal metabolites including methionine, the
high-fat dietary intake was associated with a trend to for increase
the glucose concentration, and the glucose/insulin ratio in the
blood and significantly increase in the abundance of 5 other
metabolites. These alterations might be linked to promotion of
lipid metabolism, anti-oxidative effects, protein biosynthesis and
catabolism, mucosal barrier function and immunomodulation in
healthy dogs.
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Effects of Phragmites australis Shoot
Remainder Silage on Growth
Performance, Blood Biochemical
Parameters, and Rumen Microbiota
of Beef Cattle
Qiye Wang 1,2, Xianglin Zeng 1, Yutong Zeng 1, Xiaoruowei Liu 1, Yancan Wang 1, Xin Wang 1,

Jianzhong Li 1, Yiqiang Wang 3, Zhi Feng 3, Pengfei Huang 1, Jia Yin 1, Jing Huang 1,

Mingzhi Zhu 4* and Huansheng Yang 1,2*

1Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of

Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan

Normal University, Changsha, China, 2Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic

Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center

of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central,

Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China, 3 Key Lab of

Non-wood Forest Nurturing and Protection of National Ministry of Education, Hunan Provincial Key Laboratory for Forestry

Biotechnology, Central South University of Forestry and Technology, Changsha, China, 4 Key Laboratory of Tea Science of

Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients From

Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China

The objective of the present study was to assess the effects of replacing corn silage

with Phragmites australis shoot remainder (PSR) silage on intake, growth performance,

serum biochemical parameters, and rumen microbial diversity of growing-finishing beef.

Fifteen Angus beef cattle with an average body weight of 253 ± 2.94 kg were randomly

divided into three groups (five replicas vs. each group vs. Angus beef cattle). The three

treatments were group A fed 60% PSR silage + 40% concentrate, group B fed 30%

PSR silage + 30% corn silage + 40% concentrate, and group C fed 60% corn silage +

40% concentrate. The adaptation period was 15 days, and the trial period lasted for 45

days. Results showed that the ADG was significantly higher, and FCR was significantly

lower both in groups A and B compared with group C. The results of serum biochemical

parameters showed that the concentration of GLU was significantly lower in group B

than both groups A and C. Microbial diversity results showed that the OTUs, Shannon,

Chao1, and ACE indices were significantly lower in group A compared with groups B

and C. At the phyla level, the relative abundances of Tenericutes and Melainabacteria

had significant differences among the three groups, and the relative abundances of

Papillibacter, Anaeroplasma, and Anaerovorax had significant differences among the

three groups at the genus level. Additionally, Rikenellaceae was the unique biomarker

among the three groups. Furthermore, the results of function prediction showed that the

gene families associated with metabolism of cofactors and vitamins, cellular processes

and signaling, metabolism, biosynthesis of other secondary metabolites, infectious

diseases, signaling molecules and interaction, nervous system, and digestive system
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were significantly decreased, while lipid metabolism was dramatically increased from

groups A to C at KEGG level 2. At KEGG level 3, 11metabolic pathways were significantly

influenced among the three groups. In summary, these findings indicated that PSR silage

substituted the corn silage totally or partially improved the growth performance, and

altered the rumen microbial composition and diversity and the corresponding change in

prediction function of rumen bacteria in Angus beef cattle.

Keywords: Phragmites australis feed, growth performance, rumen microbiota, rumen bacterial function, beef

cattle

INTRODUCTION

Phragmites australis is a kind of native perennial grass, which
is a very good non-competitive feed resource. P. australis has
excellent nutritional value and a broad ecological distribution
and adaptation in the world, and other characteristics (1).
Therefore, rational utilization of P. australis resources is one of
the effective methods to enlarge the feed source and relieve the
shortage of roughage when ensuring that P. australis has rich
nutrient content and high yield. According to statistics, China is
rich in P. australis resources, and the distribution area is about
800,000 ha, among which Hunan has about 80,000 ha and with
an annual output of up to 400,000 tons, mainly distributed in
Dongting Lake and along the Yangtze River (2). P. australis feed
has good palatability, which contains high crude protein and
comprehensive mineral nutrition, and also contains a variety of
amino acids and vitamins. In particular, the organic matter of
starch, protein, and cellulose in P. australis feed degrades into
monosaccharide, disaccharide, amino acid, and trace elements
after fermentation, which makes the feed become soft, fragrant,
and more palatable (1). Therefore, P. australis has the potential
to be an important roughage for livestock. According to the
determination (data from the American Feed Regulation Society
NRC2-01-113), the drymatter of the stem and leaves of the young
P. australis contained metabolizable energy 9.20 MJ/kg, crude
protein 12.2%, crude fiber 26.8%, calcium 0.4%, and phosphorus
0.3%, which was higher than that of the common forage (3, 4).
Existing studies have found that adding a certain amount of
dried reed to the diet can accelerate the growth of livestock and
improve the feed utilization rate (4).

Kadi et al. (5) reported that P. australis feed contained
high N content, neutral detergent fiber (NDF), potassium,
and magnesium. Tanaka et al. (1) investigated the timing of
harvest and nutritive value of P. australis for ruminants in Lake
Dianchi of China, which found that P. australis harvested in
the early growing stage had relatively high concentrations of
total digestible nutrients and demonstrated that P. australis can
use a high-quality roughage for ruminants. Generally, there are
three feed types of P. australis feed used in livestock: fresh,
sun-dried, and ensiled. P. australis shoot remainder (PSR) is
a by-product of processing P. australis shoots. By analyzing
the nutrient composition of PSR, we detected that the crude
protein and crude fiber contents reached 14.93 and 19.27%,
respectively, which have high nutritional value, but barely have
been utilized (unpublished data). While fresh PSR cannot be

preserved for a long time, ensiled PSR is considered to be an
effective long-term preservation method for beef cattle breeding.
Different roughage may influence production performance and
rumen microbial structure and function in ruminants (6–8).
However, little research has indicated whether PSR can replace
traditional feed ingredients in ruminants, especially affecting the
rumen microbiota of beef cattle. Furthermore, effects of PSR
silage on growth performance, blood biochemical indices, and
rumen microbiota of beef cattle have no reports. Thus, the aim
of this study was to explore the effect of PSR silage substitution
for corn silage, totally or partially, on growth, serum biochemical
indices, rumen microbial diversity, and predicted function in
beef cattle.

MATERIALS AND METHODS

Animals, Treatments, and Experimental
Procedures
Fifteen Angus beef cattle with an average initial body weight
(IBW) of 253 ± 2.94 kg were chosen and randomly allotted
to three experimental treatments consisting of three dietary
levels of PSR silage (DM basis): 60% (group A), 30% (group
B), and 0 (group C) as a substitute of corn silage, respectively.
Experimental diets were composed of 60% of silage and 40% of
concentrate (DM basis) and were formulated to meet nutritional
requirements (9) of beef cattle, and feed ingredients, and the
nutritional composition are shown in Table 1. Each bull was
fed in individual pens with automatic drinking and free feeding
intake, five pens per group. Before the trial, all bulls were weighed,
dewormed, and vaccinated (foot and mouth disease vaccine and
anthrax vaccine). Cattle were adapted to the diets for 15 days, and
the experimental period lasted for 45 days.

Bulls were fed three times daily at 07:00, 12:00, and 17:00 h
with total mixed diets. Residual feed was evaluated at 06:00 h each
day to quantify and adjust daily feed allowance to a maximum of
5% residues. Feed samples were collected from each pen every
15 days and then composited, and were frozen at −20◦C for
nutritional ingredients analysis.

Growth Performance and Blood
Biochemical Parameters
Each bull was weighed individually in the morning on an empty
stomach at the beginning and end of the experiment. The ADG
(average daily gain) was calculated by the weight gain per bull
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TABLE 1 | Diet ingredients and nutrition levels.

Item Groups

A B C

Ingredient, %

PSR silage 60 30 0

Corn silage 0 30 60

Corn 16.00 16.00 16.00

Wheat bran 14.30 14.30 14.30

Soybean meal 7.20 7.20 7.20

NaCl 0.50 0.50 0.50

Premixa 2.00 2.00 2.00

Total 100 100 100

Nutrient levelsb

NEmf, MJ /kg 7.99 8.04 8.07

Crude protein, % 14.39 13.30 12.22

Crude fat, % 2.89 2.84 2.79

Neutral-detergent fiber, % 33.85 34.76 35.66

Acid-detergent fiber, % 23.56 25.40 27.24

Ca, % 0.37 0.36 0.35

P, % 0.30 0.29 0.27

aPremix provides the following per kg: vitamin A 160,000 IU, vitamin D3 22,000 IU, vitamin

E 1,200mg, Cu 380mg, Fe 1,100mg, Zn 1,900mg, Mn 1,600mg, I 20mg, Se 5.8mg,

Co 2.5 mg.
bExcept for NEmf , which was the predicted value referring to the related formulas of

Feeding Standard of Beef Cattle (NY/T 815-2004), the rest was measured value.

divided by the trial days. The ADFI (average daily feed intake)
was calculated by the amount of diet offered minus the residues
per pen and then divided by the total trial days. The FCR (feed
conversion ratio) was calculated as ADFI per ADG (10). At the
end of the experiment, blood samples were collected in a 5-ml
vacuum tube without anticoagulant (Changsha Yiqun Medical
Equipment) from the caudal vein of each bull in the morning
on an empty stomach. After standing for 2–3 h, blood samples
were centrifuged by the model TG16-WS H1650 centrifuges
(Hunan Xiangyi Laboratory Instrument Development Co. Ltd.)
at 3,000 r/min for 10min, and then the supernatant was
separated and stored at −20◦C for further analysis. A TBA-
120FR automatic biochemistry analyzer (Toshiba Corporation)
was used to measure the concentrations of serum biochemical
parameters (11–13).

DNA Extraction and Amplification of 16S
rRNA Genes
The total microbial genomic DNA was extracted using the
CTAB/SDS method. The V3–V4 regions of 16S rRNA

genes were amplified with forward primer V515F (5
′

-

GTGYCAGCMGCCGCGGTAA-3
′

) and reverse primer V806R
(5

′

-GGACTACHVGGGTWTCTAAT-3
′

). The PCR reactions
were performed in 30-µl systems. For specific PCR amplified
procedures, refer toWang et al. (14, 15). The sequencing libraries
were constructed by Ion Plus Fragment Library Kit 48 rxns
(Thermo Scientific). The Ion S5TM XL platform to sequence
was further used, and 407- to 412-bp single-end reads were
generated (14, 15).

Sequencing and Bioinformatics Analysis
The raw reads were cleaned by the Cutadapt quality control
process (16). The UCHIME algorithm (17) was used to detect
and remove the chimera sequences and finally to obtain the
clean reads. Sequence analysis was performed by Uparse software
(Uparse v7.0.1001) (18) to cluster the operational taxonomic
units (OTUs) with ≥97% similarity. The Silva Database (19)
was used to annotate taxonomic information and normalize
the OTU abundant information. The alpha diversity and beta
diversity were analyzed subsequently by QIIME (Version 1.7.0)
and displayed by R Software (Version 2.15.3). Phylogenetic
Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt) was utilized to predict the metabolic function
of the microbiota. The raw sequencing data of this study were
submitted to the Sequence Read Archive (SRA) with accession
numbers SRR15662882–SRR15662896.

Statistical Analysis
The experimental data were analyzed on SPSS 22.0 software
packages (SPSS, Chicago, IL, USA). Using the one-way ANOVA
and t-tests to test the significance of growth performances
and serum biochemical parameters, and the non-parameter
test was performed to analyze the rumen microbial diversities,
relative abundance, and function prediction. Final results were
presented with meaning values. Differences were considered to
have a tendency at 0.05 < p < 0.10 and statistically significant
at p ≤ 0.05.

RESULTS

Growth Performance
The results of growth performance are shown in Table 2. There
was no significant difference in IBW (initial body weight) and
ADFI among treatments, although the FBW (final body weight)
did not differ among treatments and was higher in groups A and
B than in group C. The ADGwas significantly greater (linear, p=
0.032) in groups A and B than in group C. Similarly, the FCR was
significantly lower (linear, p = 0.006) in groups A and B than in
group C. Notably, the ADG and FCR were not different between
A and B treatments.

Serum Biochemical Parameters
The concentrations of serum TP, ALT, AST, TG, CHOL,
HDL, LDLC, and NH3 did not differ among treatments.
The concentration of serum GLU was quadratically affected
(quadratic, p = 0.004) among treatments, and the concentration
of BUN showed a linearly downward trend (linear, p = 0.096)
among treatments (Table 3).

Rumen Bacterial Communities
The results of sequencing analysis are presented in Figure 1. The
difference in bacterial composition among the three groups was
analyzed by the PCoA, and the PCoA plots showed that the
group A data had a tendency to be separated from both the B
and C groups (Figure 1A). Similarly, there were no significant
differences in diversity and uniformity by the level of species
richness existing between B and C based on the observed species
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TABLE 2 | Effects of PSR silage on growth performance of Angus beef cattle (N = 5).

Item2 Groups1 SEM3 p-value

A B C Linear Quadratic

Initial weight, kg 250.00 252.00 257.00 8.78 0.767 0.942

Final weight, kg 313.00 315.00 304.00 9.10 0.719 0.764

ADG, kg/day 1.40a 1.40a 1.04b 0.07 0.032 0.186

ADFI, kg/day 6.58 7.11 6.77 0.29 0.800 0.517

FCR 4.71b 5.09b 6.63a 0.33 0.006 0.269

Values within a row with different superscripts (a, b) differ significantly at p < 0.05.
1A, fed 60% PSR silage; B, fed 30% PSR silage + 30% corn silage; C, fed 60% corn silage.
2ADG, average daily gain; ADMI, average daily feed intake; FCR, feed conversion rate.
3SEM, standard error of the mean; PSR, phragmites australis shoots remainder.

TABLE 3 | Effects of PSR silage on serum biochemical parameters of Angus beef

cattle (N = 5).

Item2 Groups1 SEM3 p-value

A B C Linear Quadratic

TP, g/L 70.28 69.10 73.02 1.05 0.300 0.267

GLU, mmol/L 3.76a 3.14b 4.06a 0.14 0.246 0.004

BUN, mmol/L 6.04 5.82 5.18 0.20 0.096 0.619

ALT, U/L 31.28 30.94 29.38 1.36 0.604 0.847

AST, U/L 82.40 82.40 67.20 5.19 0.256 0.505

TG, mmol/L 0.24 0.26 0.30 0.02 0.239 0.776

CHOL, mmol/L 2.26 2.46 2.15 0.11 0.672 0.297

HDL, mmol/L 2.11 2.25 1.93 0.10 0.486 0.313

HDLC, mmol/L 0.65 0.72 0.54 0.04 0.344 0.200

NH3, mmol/L 177.70 162.04 162.24 4.67 0.193 0.430

Values within a row with different superscripts (a, b) differ significantly at p < 0.05.
1A, fed 60% PSR silage; B, fed 30% PSR silage + 30% corn silage; C, fed 60% corn

silage.
2TP, total protein; GLU, glucose; BUN, blood urea nitrogen; ALT, alanine aminotransferase;

AST, aspartate aminotransferase; TG, triglyceride; CHOL, cholesterol; HDL, high-density

lipoprotein; LDLC, low-density lipoprotein–cholesterol; NH3, ammonia.
3SEM, standard error of the mean.

(OTUs), Shannon, Chao1, and Ace index analyses (Figure 1B).
Compared with both groups B and C, the A group had less OTUs
(p < 0.001), Chao1 (p < 0.001), ACE (p < 0.001), and Shannon
(p < 0.01) unexpectedly (Figure 1B).

A total of 22 bacterial phyla were identified by taxonomic
analysis in the rumen samples. The relative abundance of more
than 1% were Bacteroidetes, Firmicutes, Proteobacteria, and
Fibrobacteres (Figures 1C,D). Notably, the relative abundance of
Bacteroidetes and Firmicutes was the richest in the three trial
groups (Figures 1C,D). Additionally, the relative abundance of
Tenericutes (p = 0.015) and Melainabacteria (p = 0.025) was
significantly lower in group A than that in group B and group
C, respectively, at the phyla level (Figure 1D).

A total of 122 bacterial genera were detected at the genus
level. Twenty representative genera were elucidated in all
the rumen samples (Figure 1E). Among these genera, the
relatively high abundance (>1%) unidentified_Bacteroidales

belonged to Bacteroidetes in the phylum, Fibrobacter is
one of Fibrobacteres, unidentified_Ruminococcaceae, and
unidentified_Lachnospiraceae belong to Clostridia in members of
Firmicutes. Unidentified_Prevotellaceae belongs to Bacteroidetes,
Succiniclasticum is also a member of Firmicutes. The relative
abundances of Papillibacter (p = 0.008), Anaeroplasma (p =

0.017), and Anaerovorax (p = 0.043) had significant differences
among the three groups, and the relative abundance of
unidentified_Rikenellaceae (p = 0.088) also had a notable change
in group B in the genus level (Figure 1F). Additionally, LEfSe
analysis results showed the dominant bacteria species for each
group by LDA score, the Prevotellaceae and Rikenellaceae
showed statistical differences and were considered as biomarkers
between groups A and B, the Prevotellaceae, Ruminococcaceae,
and Rikenellaceae were the biomarkers between groups A and C,
and the Rikenellaceae was the unique biomarker among the three
groups (Figure 1G). Furthermore, the phylogenetic tree of the
top 100 genera was obtained through multisequence alignment,
as shown in Figure 2, in which the phylogenetic relationship
of rumen bacteria species at the genus level could be presented
more intuitively among the three groups.

Predicted Metabolic Pathways and
Functions of Rumen Bacterial
Communities
Metabolic functions of rumen bacteria were predicted by
PICRUSt in the present study (Figure 2). The result showed that
“metabolism” was in the highest relative abundance with more
than 49% of all sequence reads among three groups at KEGG level
1 (Figure 3A). At KEGG level 2, the most relatively abundant
gene families (relative abundance > 0.10%) from all rumen
samples are present in Figure 3B. Genes belonging to amino acid
metabolism, carbohydrate metabolism, replication and repair,
membrane transport, translation, and energy metabolism were
the most relative abundant among the three groups (Figure 3B).
Among these gene families, the genes associated with metabolism
of cofactors and vitamins (p = 0.028), cellular processes and
signaling (p = 0.049), metabolism (p = 0.001), biosynthesis
of other secondary metabolites (p = 0.024), infectious diseases
(p = 0.006), signaling molecules and interaction (p = 0.013),
nervous system (p = 0.041), and digestive system (p = 0.014)
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FIGURE 1 | Phragmites australis shoot remainder (PSR) silage totally or partially substituting the corn silage alters rumen microbiota composition in Angus beef cattle

(N = 5). Group A, fed 60% PSR silage; Group B, fed 30% PSR silage + 30% corn silage; and Group C, fed 60% corn silage. (A) PCoA analysis of rumen microbiota

based on operational taxonomic unit (OTU) abundance. (B) Assessment of alpha diversity. (C) Rumen microbiota taxonomic profiling at the phylum level. (D) Relative

abundances of Bacteroidetes, Firmicutes, Proteobacteria, Tenericutes, and Melainabacteria. Bars with different letters (a, b) indicate significant differences (p < 0.05)

among different groups (the same below). (E) Rumen microbiota taxonomic profiling at the genus level. (F) Relative abundances of representative and significant

difference genera. (G) LDA score of rumen microbiota composition according to LEfSe analysis by three treatments.
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FIGURE 2 | Phylogenetic tree of genus level species among PSR silage totally or partially substituted the corn silage groups in Angus beef cattle (N = 5). Group A, fed

60% PSR silage; Group B, fed 30% PSR silage + 30% corn silage; and Group C, fed 60% corn silage. Branches and fan colors represent its corresponding phyla, the

accumulation histogram outside the fan ring shows the relative abundance distribution information of the genus in different groups.

were significantly decreased from groups A to C, amino acid
metabolism (p = 0.066) and nucleotide metabolism (p = 0.057)
showed the descent tendency, while lipid metabolism (p =

0.039) was dramatically increased, and signal transduction had
an increasing tendency (p = 0.092) from groups A to C
(Figure 3C). At KEGG level 3, the majority of relatively abundant
pathways were transporters, general function prediction only,
DNA repair and recombination proteins, ribosome, purine
metabolism, and ABC transporters (Figure 3D). Notably, the
relative abundance of 11 pathways showed significant variation
among the three groups (Figure 3E). The pathways involved
in the pyrimidine metabolism (p = 0.023), DNA replication
proteins (p = 0.038), glycine, serine, and threonine metabolism
(p = 0.019), arginine and proline metabolism (p = 0.015), other
ion coupled transporters (p = 0.005), alanine, aspartate, and

glutamate metabolism (p = 0.019), cysteine and methionine
metabolism (p = 0.003), transcription machinery (p = 0.029),
energy metabolism (p = 0.010), and general function prediction
only (p = 0.042) were significantly increased, and DNA repair
and recombination proteins (p = 0.094) and peptidases (p =

0.074) had increased trend in group A compared with the
other two groups. Inversely, secretion system (p = 0.030) was
significantly decreased, and pyruvate metabolism (p= 0.079) had
a decreased trend in group A than in the other two groups B
and C.

DISCUSSION

Depending on the results of animal feeding trial, PSR silage group
(group A), mixed group (group B), and corn silage (group C)
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FIGURE 3 | Effects of PSR silage totally or partially substituted the corn silage on the predicted functional composition of rumen bacterial community in Angus beef

cattle (N = 5). Group A, fed 60% PSR silage; Group B, fed 30% PSR silage 30% corn silage; and Group C, fed 60% corn silage. (A) The majority of the gene

sequences annotated to KEGG level 1. (B) The majority of the gene sequences annotated to KEGG level 2. (C) The gene families of significant differences at KEGG

level 2. (D) The majority of the gene sequences annotated to KEGG level 3. (E) The relative abundant pathways with significant differences at KEGG level 3. Bars with

different letters (a,b) indicate significant differences (p < 0.05) among different groups.
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affected the growth performance of Angus beef cattle. The ADG
was significantly affected by PSR silage, which in PSR silage
group was the highest, followed by the mixed group, equally
34.62% higher than corn silage group. Inversely, the FCR in the
PSR silage group and mixed group was obviously lower than
in the corn silage, 31.52 and 23.23% lower, respectively, while
the ADFI had no significant difference among the three groups.
These results indicated that PSR silage substitution for corn silage
totally or partially could improve the growth performance of
beef cattle, mainly by improving feed utilization efficiency to
increase the ADG in the growing–fattening of Angus beef cattle.
Thus, it can be observed that PSR silage might completely replace
corn silage for beef cattle breeding. Therefore, the effective use
of P. australis and other unconventional feed materials may
not only expand feed sources and reduce feeding costs but
also further improve the weight gain rate and meat production
performance of beef cattle, and finally increase the economic
benefits of breeding.

Nutrients are digested and absorbed by the body and carried
through the bloodstream to tissues, organs, and cells. Therefore,
blood biochemical indicators can be a good response to the intake
of nutrition levels of the body. GLU concentration can reflect
the energy metabolism of animals (20). In the current study,
the concentration of GLU in the mixed group was significantly
lower than in the PSR silage and corn silage treatments, while the
higher ADGwas observed in the mixed group. These results were
inconsistent with previous studies, and this might be related to
species and feed composition (11–15). The concentration of BUN
is perceived as an effective indicator to measure the metabolism
of protein and amino acid, low BUN level indicates high nitrogen
metabolism capacity (21). Diets supplemented with PSR silage
increased the concentrations of BUN in the present study, which
might be related to the high protein content of P. australis
shoots remainder.

Rumen is the most powerful digestive organ, in which
complex microbial communities are closely related to degrade
and convert plant materials in ruminants (22). More than 70%
of the energy was provided by rumen bacteria fermentation to
ensure the host growth and reproduction performance (23), and
the compositions of rumen microorganism are influenced by
diets (24). In the present study, the core microbiome accounts
for more than 78% of total OTUs among the three groups, and
this result was similar with other researches (11–13). The core
microbiome plays crucial roles in maintaining the “functional
redundancy” of rumen ecosystem, and this redundancy further
guarantees its major functional properties (25). The present study
showed that the observed species (OTUs), Shannon, Chao1, and
ACE indices were significantly decreased in the PSR silage diet,
indicating that the rumen microbiome was altered by PSR silage.

The present study systematically revealed the composition
and structure of rumen microbiome in Angus beef cattle fed
PSR silage. Bacteroidetes and Firmicutes were the most two
relatively abundant phyla in the current study, which was referred
to the degradation of protein and carbohydrates (26), and
these findings were consistent with previous studies (27). de
Menezes et al. (28) have also found that the dairy cows fed
pasture or TMR diets did not have obvious differences on the

rumen microbiome at the phylum level, with the sequences of
Bacteroidetes and Firmicutes representing approximately 80%
of the total rumen microbiome. Consistently, the relative
abundance of Bacteroidetes and Firmicutes were over 80% in all
three diets in the current study. Proteobacteria was detected as
the third most relatively abundant phylum in this study, which
was similar to previous studies (29). In general, the composition
and structure of rumen microbial community might be related
to the feed efficiency and animal breed. Studies have found that
several members belonged to the phylum Tenericutes related to
being animal pathogens and parasites, and the greater abundance
of Tenericutes was associated with the reduced intramuscular
fat deposition of longissimus in Angus steers (30, 31). The
relative abundance of Tenericutes was the lowest in the PSR
silage diet in the present study, indicating that PSR silage
might improve gastrointestinal health and further promotes
intramuscular fat deposition. Actually, the growth performance
was the greatest by feeding PSR silage diet. Melainabacteria
is a newly identified gut bacteria, whose relative abundance
in the rectal contents of diabetic model rats was significantly
increased (32). The relative abundance of Melainabacteria was
significantly decreased (especially in group A) after adding PSR
silage to the diets in the present study, which indicated that PSR
silage-substituted corn silage might improve host sugar, fat, and
protein metabolism.

At the genus level, the effects of PSR silage on the
rumen bacterial population were further identified in this
study. The relative abundance of Papillibacter in the PSR
silage group was significantly lower than that in the corn
silage and mixed groups. Papillibacter is known as a butyrate
producer (33). The decreased abundance of Papillibacter in
PSR silage indicated that the butyrate production was relatively
decreased by rumen microbiota. The relative abundance of
Anaeroplasma in the mixed group was significantly higher
than the groups of corn silage and PSR silage. Anaeroplasma
is a genus characterized by its anaerobic fermentation, which
produces fatty acids as propionate (34). All of these taxa
were previously reported as members of the regular and
efficient microbiota from rumen, and their increased abundance
may indicate an improved ability of digestion or, at least,
a need for more specialized fermentation in rumen due
to, for example, more food intake. Besides, Anaeroplasma
was highly correlated with high weight gain, and may be
important for cattle nutrition either individually or in a
consortium (35).

Some studies indicate that Anaerovorax can generate more
SCFAs to provide additional energy sources and maintain
feed efficiency (36). Unexpectedly, the relative abundance of
Anaerovorax in the PSR silage group is significantly lower than
that in the corn silage and mixed groups in the present study.
The relative abundance of unidentified_Rikenellaceae in the corn
silage group was obviously lower than that in the PSR silage
and mixed groups. To date, all cultured members of the family
Rikenellaceae are described as anaerobic, mesophilic, and rod-
shaped bacteria that usually ferment carbohydrates or proteins.
Su et al. (37) isolated a carbohydrate-fermenting and hydrogen-
producing Rikenellaceae from a reed swamp in China (37). It
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remains to identify and examine the functions of the unidentified
Rikenellaceae to understand the roles in the present study.
Additionally, the PSR silage diet increased the relative proportion
of Rikenellaceae at the family level, and Rikenellaceae might be
one of the biomarkers between PSR silage feed and corn silage
feed using LEfSe.

The composition of rumen microorganisms affects host
metabolic function and physiological health. The relative
abundance of the dominant microbial phyla is stable in
ruminants. The dominant three microbial phyla were
Bacteroidetes, Firmicutes, and Proteobacteria in the rumen
among the three groups, indicating that the rumen microbiota
in cattle was also relatively stable at the phyla level. These
results were in agreement with previous studies (38, 39), and
the most dominant phyla Firmicutes and Bacteroidetes were
closely related to carbohydrate and protein metabolism
(40, 41). At the genus level, the dominant four genera
were unidentified Bacteroidales, Fibrobacter, unidentified
Ruminococcaceae, and unidentified Prevotellaceae, and their
relative abundance all did not have significant difference
among different diets in the present study, which was
similar to previous studies (41, 42). Menni et al. (43)
found that the abundance of Ruminococcaceae might play a
significant role in energy and lipid metabolism, and which
was negatively associated with vascular sclerosis. These results
indicated that the PSR silage diet might not affect host health
in cattle.

The PICRUSt prediction results showed that amino acid
metabolism, carbohydrate metabolism, replication and repair,
membrane transport, translation, and energy metabolism
were the dominant gene families at KEGG level 2, all of
which are essential for survival, growth, and reproduction of
gastrointestinal microbes (44). These results were similar to our
previous studies in sheep (11–15). Among these gene families,
unexpectedly, the genes associated with metabolism of cofactors
and vitamins, cellular processes and signaling, metabolism,
biosynthesis of other secondary metabolites, infectious diseases,
signaling molecules and interaction, nervous system, and
digestive system were significantly higher in the PSR silage diet
than in the mixed and corn silage diets, while lipid metabolism
was dramatically lower in the PSR silage diet than in the corn
silage diet. Furthermore, the majority of gene families were
transporters, general function prediction only, DNA repair,
and recombination proteins, ribosome, purine metabolism,
and ABC transporters at KEGG level 3. Notably, the relative
abundance of 11 pathways showed significant variation among
the three groups. The pathways involved in the pyrimidine
metabolism, DNA replication proteins, glycine, serine, and
threonine metabolism, arginine and proline metabolism, other
ion coupled transporters, alanine, aspartate, and glutamate
metabolism, cysteine and methionine metabolism, transcription
machinery, energy metabolism, and general function prediction
only were significantly higher, and secretion system was
significantly lower in the PSR silage diet than in the mixed
and corn silage diets. These results indicated an enhanced
fermentation activity performed by rumen microorganisms

in the PSR silage diet. The current study also implied that
feeding only a roughage of PSR silage diet altered the ruminal
microbial functions.

In conclusion, the present study mainly investigated that
the growth performance, blood biochemical parameters, and
the composition and function of rumen microbiota of PSR
silage feed totally or partially substituted the corn silage in
Angus beef. The results suggest that the PSR silage diet and
mixed diet increase ADG and decrease FCR, reduce serum
glucose levels, and alter the rumen microbiota and inferred
metabolic functions. These findings indicated that PSR silage
could partially substitute corn silage for beef cattle breeding,
replacing 30% of corn silage in the diet has good feeding effect
in cattle.

CONCLUSIONS

Feeding different PSR silage level diets improved growth
performance, changed the contents of serum glucose and urea
nitrogen and, furthermore, might affect the energy and protein
metabolic efficiency of Angus beef.Moreover, the rumen bacterial
diversity indices decreased significantly by feeding PSR silage,
the relative abundances of Tenericutes andMelainabacteria were
significantly reduced by feeding PSR silage, and Papillibacter,
Anaeroplasma, and Anaerovorax had significantly decreased by
feeding PSR silage at the genus level, and furthermore, the
metabolic pathways were significantly influenced by related
bacteria for PSR silage. The results indicated that feeding PSR
silage could improve the growth performance and alter the
rumen bacteria diversity and the corresponding function, and
PSR silage could partially substitute (30%) corn silage for beef
cattle breeding.
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The purpose of the current study was to explore the supplementing effects of

Moringa oleifera leaf powder (MOLP) on plasma and milk biochemical indices and

productive/reproductive performance of goats. A total of 30 healthy pregnant goats were

randomly distributed (n = 10) into three experimental groups: control (M0) group (basal

diet without MOLP), M2% group (basal diet + 2% MOLP), and M3.5% group (basal diet +

3.5% MOLP). The experiment started 2 months before parturition and continued till the

first month of lactation. The plasma flavonoids were significantly increased in the M3.5%

group during the entire experiment, whereas the total phenolic contents were enhanced

only during the lactation period depending on the supplementation percentage. The

amount of vitamin C increased significantly in M2% and M3.5% groups as compared

to the M0 group. Supplementation of MOLP improved the plasma total antioxidant

capacity by declining malondialdehyde concentration and total oxidant status values.

The activities of superoxide dismutase and peroxidase enzymes were modified in M2%

and M3.5% supplemented groups throughout the experiment, while the catalase activity

was significantly influenced only during the lactation stage. The protein and lycopene

contents in plasma were significantly improved in the M3.5% group, whereas the total

sugars and carotenoid level was increased in both M2% and M3.5% groups. Dietary

supplementation with 3.5% MOLP more effectively enhanced protease and amylase

activities as compared to 2% supplementation. MOLP also improved the biochemical

indices and antioxidant status of colostrum and milk. The milk yield, weight gain of the

kids, and reproductive performance were high in M2% and M3.5% groups in comparison

to the M0 group. These findings disclose that supplementing the diet with 3.5% MOLP

improves antioxidant status, milk yield, and reproductive performance in goats.

Keywords:Moringa oleifera, plasma biochemistry, antioxidant status, milk composition, productive performance,

goat
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INTRODUCTION

Reproductive performance is a key factor in goat production
and is directly related to maternal nutrition. The pariparturient

period (late gestation and early lactation) is characterized
by depressed feed intake, endocrine, and metabolic changes
that interrupt energy balance and anti-oxidant status of the

body (1, 2). Nutritional requirements are high during this
period due to accelerated digestion rate, tissue mobilization
for mammary development, and fetus growth (3). However,
maternal malnutrition is common in small ruminants in most

parts of the world due to scarcity and high cost of feed stuffs. The
farmers, in these regions, mostly depend on conventional grazing
and crop residues to meet the requirements of their animals.

The natural grazing pastures and crop residues have fluctuating
nutritional status, and their feeding alone is not sufficient to

satisfy the energy needs of pregnant and lactating animals (4).
The energy deficit feed makes the pregnant animals more prone
to oxidative stress with enormous production of reactive oxygen
species (ROS) that results in a disturbance of the balance between
oxidant and antioxidant defense systems of the body (5). All
biomolecules including lipids, carbohydrates, and proteins are
adversely affected by oxidative stress, which ultimately leads
to a decline in reproductive and productive performance (6).
Furthermore, the newborn kids may suffer from a variety of
diseases that will negatively influence their survival and growth
rate (7).

Colostrum is the first secretion produced soon after
parturition and is a source of immunity for newborns.
Immunoglobulins, minerals, and many other biologically active
substances are transferred passively through the colostrum to
the kids of sheep, goat, cattle, and horse as they do not
get into the embryo’s bloodstream (8). The composition and
quality of colostrum and milk predominantly depend on the
nutrition of the mother (9, 10). The feed should fulfill the
nutritional requirements of pregnant animals to get good
quality of colostrum and milk from them after parturition. The
inadequate supply of nutrients will adversely affect the synthesis
and composition of colostrum and milk.

The diet manipulation with phytobiotics (plant-derived feed
additives) has been proposed to be an effective approach
in managing nutrition-induced oxidative stress during
pregnancy and lactation in both small and large ruminants
(11–14). Some herbal plants have medicinal values and are
nutritionally important to enhance the health status and
reproductive performance of goats. Their supplementation with
a basal diet can minimize nutrition-related problems in goat
production (15).

Moringa oleifera (MO) is an evergreen tree fodder, also known
as a “miracle tree,” and is one of the most useful, multi-purpose,
fast-growing, and drought-resistant trees. It is well-known for its
medicinal importance and nutritional characteristics. Moringa
leaves contain a sufficient quantity of vitamins, minerals, and
proteins according to the nutritional demands of pregnant and
lactating animals (16, 17). Moreover, MO leaves are also a rich
source of different bioactive compounds, especially abundant in
antioxidants including flavonoids (kaempferol, myricetin, and

quercetin), phenolic acids (gallic, ellagic, and chlorogenic acid),
Vit C, Vit E, β-carotene, Se, and Zn (18). These substances have
been detected separately in various plants, but MO is distinct in
having them all in substantial amounts (19).

The MO leaves are readily adapted and easily digested by
animals. The favorable impacts of MO have been observed on the
anti-oxidant status and reproductive performance in mice and
sows (20, 21). However, there is little information about dietary
supplementation effects ofMoringa oleifera leaf powder (MOLP)
during the nutritionally critical stages (late pregnancy and early
lactation) in goats. Therefore, the study was designed to evaluate
the effects of MOLP as a nutritional supplement on productive
and reproductive performance, plasma, and milk biochemical
indices in Beetal goats. The results of this study will enlighten
the knowledge about the development of different bioactive
compounds fromMO leaf in the field of goat reproduction.

MATERIALS AND METHODS

Ethical Statement
The procedures used for study and ethical clearance were
approved and granted by Animal Use and Care Research
Committee at Nuclear Institute for Agriculture and Biology
(NIAB), Faisalabad, Pakistan.

Experimental Design and Animal
Husbandry
The experiment was conducted at the goat research farm of
Nuclear Institute for Agriculture and Biology (NIAB), situated
∼7 km from the nucleus of the city Faisalabad, Pakistan
(longitude 73.0791◦ E and latitude 31.4287◦ N) at an altitude of
184m from sea level. The average rainfall and temperature were
15.50mm and 41◦C during the months (April to July 2020) of
the experiment.

A total of 30 pregnant Beetal goats of 2–3 years age and
weighing about 40 kg± 2.3 were selected exactly 2 months before
their predicted delivery. The ultrasonographic examination of
goats was performed by the Department of Theriogenology,
University of Agriculture, Faisalabad for confirmation of
pregnancy. All the goats were randomly divided (n= 10) into the
control (M0) group (250 g basal diet withoutMOLP/animal/day),
M2% group (250 g basal diet with 5 g MOLP/animal/day), and
M3.5% group (250 g basal diet with 8.75 g MOLP/animal/day).
The basal diet was composed of wheat, corn, rice bran, sugarcane
molasses, minerals, and soybean meal formulated according to
the nutritional requirements of pregnant goats (Table 1) (23).
The experiment was initiated 2 months before the estimated due
date of kidding and continued till the first month of lactation.
All the animals were acclimatized 1 week for the basal diet.
Before the start of the experiment, deworming was performed
with Albendazole (Zoben, Prix, Lahore, Pakistan) at a dose rate
of 2.5 mg/5 kg/BW. The goats were kept in well-ventilated semi-
open sheds and offered two times free pasture grazing (Chloris
gayana, Leptochloa fusca, Carduus nutans, Chenopodium album,
and Cirsium arvense) during morning and evening schedule with
free access to clean drinking water.

Frontiers in Veterinary Science | www.frontiersin.org 2 March 2022 | Volume 8 | Article 787719158

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Afzal et al. Moringa Impacts on Goats Performance

TABLE 1 | Formulation of basal diet (% DM).

Ingredients Amount (%)

Wheat grains 30

Corn 20

Wheat bran 15

Rice bran 15

Wheat straw 10

Soyabean meal 5

Molasses 3

Dicalcium phosphate 1.8

Vitamin and mineral premixa 0.2

Total 100

aVitamin and mineral premix per kg containing: Vit E 300 IU, Vit A 50,000 IU, Vit D3 80,000

IU, Ca 18.5%, Mg 8.2%, P 3.5%, Na 3%, Zn 3,200mg, Mn 3,333mg, Cu 800mg, Se

24mg, Iodate 68mg, Co 16 mg (22).

TABLE 2 | Chemical composition of basal diet and MOLP (DM basis).

Constituents Basal diet MOLP

Mean (%) ± SE Mean (%) ± SE

Dry matter 94.8 ± 0.43 92.5 ± 0.52

Crude protein 13.5 ± 0.16 18.2 ± 0.06

Crude fat 4.4 ± 0.23 5.5 ± 0.05

Ash 16.7 ± 0.37 11.3 ± 0.03

Nitrogen free extract 47.3 ± 0.33 38.4 ± 0.29

Neutral detergent fiber 53.2 ± 0.26 32.4 ± 0.12

Acid detergent fiber 18.06 ± 0.13 19.1 ± 0.08

MOLP, Moringa oleifera dried leaf powder (22).

Plant Material
The fresh green leaves of MO (PKM1) were collected from a
breeder’s farm (Lahore, Pakistan) during the month of November
2019, and their authenticity was assured by an experienced
botanist at NIAB. A representative sample of leaves was sent to
the institute’s herbarium for reference in the future. The leaves
were cleaned properly by washing and dried under shade at
room temperature for 4 days. The dried leaves were processed
to make powder and then stored in airtight containers for use in
the experiment.

Compositional Analysis of Diet
The MOLP and basal diet were subjected to proximate
chemical compositional analysis by using standardized methods
of analytical chemists (24) as also used in our previous
study (22). The MOLP was also analyzed for its different
biochemical elements spectrophotometrically (UV-VIS U2800,
Hitachi, Japan). The compositional analysis of MOLP and basal
diet are presented in Tables 2, 3.

Collection of Blood and Milk Samples
Blood samples (5ml) were collected in sterile EDTA tubes
(Vacutainer, Xinle) from the jugular vein with 20-day intervals

TABLE 3 | Nutritional constituent analysis of MOLP.

Biochemical constituents Mean ± SE

Total phenolic contents (µM/g) 36,000 ± 3.21

Total Flavonoids (µg/g) 258.58 ± 2.28

Vitamin C (µg/g) 546.16 ± 3.06

Lycopene (mg/g) 9.95 ± 0.17

Total carotenoids (mg/g) 13.87 ± 0.33

Total sugars (mg/g) 27.51 ± 1.52

Methionine (% of DM) 0.42 ± 0.012

Cysteine (% of DM) 0.52 ± 0.014

Sodium (mg/g) 2.13 ± 0.075

Calcium (mg/g) 180 ± 1.154

Potassium (mg/g) 8.99 ± 0.571

Selenium (mg/g) 0.31 ± 0.057

Iron (mg/g) 0.16 ± 0.034

MOLP, Moringa oleifera leaf powder (22).

after the start of the experimental diet from day 90 of gestation.
Plasma was separated from blood samples by centrifugation
at 3,000 rpm/4◦C and stored at −20◦C till further analysis.
Colostrum samples were obtained within 2 h after parturition.
Milk samples were collected with 1-week interval for 4
consecutive weeks and stored at −20◦C for further biochemical
analyses. Blood and milk samples were collected at 7–8 a.m.
during the whole experiment. The defatting of colostrum and
milk samples was done by centrifugation at 2,500 × g for 15min
for enzymatic and non-enzymatic antioxidant estimation.

Analysis of Blood Plasma
Non-enzymatic Antioxidants

Total Flavonoids
Total flavonoids (TF) in plasma samples were estimated by
AlCl3 colorimetric assay and rutin was used as standard (25).
The samples were mixed with 100 µl of 10% AlCl3, 100 µl
of 1M potassium acetate, and 275 µl of deionized water. The
contents were incubated for 40min at room temperature and
then absorbance was measured at 415 nm by using a double beam
spectrophotometer (UV-VIS U2800, Hitachi, Japan). The TFs
were computed with the help of a standard curve and expressed
as µg RE (retinol equivalents) per milliliter of sample.

Total Phenolic Content
Total phenolic contents (TPC) were assessed using a modified
Folin-Ciocalteu procedure (26). The 100-µl blood plasma sample
was vortexed with 100 µl of Folin-Ciocalteu reagent for 15 s and
then incubated for 1 h at room temperature after adding 700mM
Na2CO3 (800µl). The absorbance of reaction was read at 765 nm
and TPCs were calculated from a linear regression equation.

Vitamin C
Vitamin C was determined by using a standardized protocol of
Moeslinger et al. (27). Briefly, vitamin C causes reduction of a
colored compound 2,6 Dichlorophenolindophenol (DCPIP) into
DCPIPH2 (colorless compound). This reaction was monitored
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by fall-off absorbance at 520 nm. The concentration of vitamin
C in plasma samples was measured by using a standard
calibration curve.

Malondialdehyde
Malondialdehyde (MDA) concentration in blood plasma samples
was assessed colorimetrically by using MDA as standard (28).
Plasma sample (25 µl) was homogenized in 0.1% trichloroacetic
acid and centrifuged exactly for 5min at 14,000 × g. Then,
trichloroacetic acid (20%) containing thiobarbituric acid (0.05%)
was added in 1ml aliquot of the supernatants and heated for
30min by placing in boiling water bath. The reactionmixture was
cooled after removing from the water bath and centrifuged for
10min at 14,000 × g. The absorbance of clear supernatants was
read at 535 nm and the value of non-specific absorbance (600 nm)
was subtracted from it. The MDA contents were measured by a
coefficient of extinction 155 per mM per cm.

Total Antioxidant Capacity
Total antioxidant capacity (TAC) of plasma samples was
measured by an assay based on the reduction of a blue
radical cation (ABTS•+) to its original ABTS colorless form
by antioxidants (29). The assay solution to measure TAC is
composed of reagent R1 (CH3COONa buffer and glacial acetic
acid), R2 (H2O2, Na3PO4 buffer, glacial acetic acid, and ABTS),
and sample. The contents of the reaction solution were incubated
for about 6min at room temperature and then absorbance was
read at 660 nm. The TAC value was computed from a standard
ascorbic acid calibration curve and represented as ascorbic acid
(µM) equivalent per milliliter of sample.

Total Oxidant Status
The method for the determination of total oxidant status (TOS)
values of plasma samples is based on the oxidation of Fe2+ into
Fe3+ by oxidants present in the sample (29). A specific color
appeared when Fe3+ ions react with xylenol and themagnitude of
color is directly related to the quantity of oxidant molecules that
were measured spectrophotometrically. The reaction solution
for the determination of TOS value is composed of R1, xylenol
solution (0.38 g in 500 µl of 25mM H2SO4), R2 [ferrous
ammonium sulfate (II) 0.0196 g, o-dianisidine 0.0317 g, glycerol
500 µl, and NaCl 0.4 g], and sample. The absorbance value was
read after 5min of adding R2. Hydrogen peroxide (H2O2) was
used to calculate the final value of TOS that was expressed in µM
H2O2 equivalent per milliliter.

Enzymatic Antioxidants

Superoxide Dismutase Activity
The plasma samples were assayed for superoxide dismutase
(SOD) activity by an inhibition assay that works on the base of
SOD ability to inhibit the photochemical reduction of nitroblue
tetrazolium (NBT) into formazan (30). The reaction solution for
the study of inhibition assay is composed of 50mM potassium
phosphate buffer (pH 7.8), 13mM L-methionine, 57µM NBT,
Triton X-100 (0.025%), riboflavin (0.004%), and 50 µl of blood
plasma sample in a total volume of 3ml. The photoreaction was
performed in a box lined with aluminum (Al) foil and having a

15-W lamp as a light source. The absorbance of the reduction
reaction of NBT to formazan was taken at 560 nm and a unit of
SOD activity was defined as the amount of enzyme required to
cause 50% inhibition of NBT.

Peroxidase Activity
Plasma peroxidase (POD) activity was estimated by using the
method of Agostini et al. (31) with some necessary modifications
and using guaiacol as substrate. The assay solution to measure
POD activity contained guaiacol (200mM), H2O2 (400mM),
545 µl of distilled water, 200mM potassium phosphate buffer
(pH 7.0), and 15 µl of blood plasma sample. The reaction was
initiated immediately after the addition of the plasma sample, and
the absorbance of the reaction solution was measured after every
20 s for 1min at 470 nm. One unit of POD activity was narrated
as the quantity of enzyme that catalyzed the oxidation of guaiacol.

Catalase Activity
Catalase (CAT) activity of blood plasma samples was measured
by mixing the samples with 50mM potassium phosphate buffer
(pH 7.0) and dithiothreitol (1mM) as described by Beers and
Sizer (32). The reaction mixture to study CAT activity contained
59mM H2O2, 50mM phosphate buffer (pH 7), and a 100-µl
plasma sample. The decreasing pattern of absorbance was
measured after every 20 s for 1min at 240 nm and a unit of CAT
activity was described as a change in absorbance in 0.01 min.

Biochemical Parameters

Total Soluble Protein
The quantitative protein estimation of plasma samples was
performed by dye-bindingmethod as described by Bradford (33).
The plasma sample (5 µl) was mixed and homogenized with
0.1N NaCl. The reaction solution was incubated for 5min at
room temperature after adding 1ml Bradford dye to form a
protein–dye complex. Thereafter, absorbance was measured at
420 nm.

Total Sugar
The total sugar level of plasma samples was enacted by Folin’s
(34) protocol with few desired modifications. Briefly, the samples
were mixed with sulfuric acid (H2SO4) and neutralized by using
sodium carbonate (Na2CO3). The contents were then filtered
and absorbance was read spectrophotometrically at 415 nm for
estimation of sugar contents.

Lycopene and Carotenoids
Lycopene and carotenoids in blood plasma samples were
assayed according to the standardized procedure of Nagata and
Yamashita (35). For estimation of lycopene and carotenoids, 1ml
of blood plasma sample was thoroughly homogenized with 10ml
of hexane and acetone solution (6:4). The assay solution was
incubated for 5min at 37◦C and then filtered. The absorbance
was measured at 453, 505, and 663 nm, and finally the quantities
of lycopene and carotenoids were calculated with the help of the
following formulae:

Lycopene=−0.0458A663 + 0.372A505

Carotenoids= 0.216A663 – 0.304A505 + 0.452A453
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Hydrolytic Enzymes

Protease
The protease activity was measured by the casein digestion
method (36). Protease enzyme releases an amino acid “tyrosine”
after digestion of casein. The reaction of tyrosine Folin’s reagent
results in the formation of a blue color product that is quantified
at 660 nm. A standard calibration curve of tyrosine was used to
compute the protease activity in plasma samples. One unit of
enzyme activity was defined as the amount of enzyme that causes
the release of soluble acid fragments equivalent to 0.001A 280 nm
in 1min at pH 7.8.

Esterase
The esterase (alpha and beta) enzyme activity was estimated by
utilizing naphthyl acetate (α and β) as substrate as described by
Van Asperen (37). The reaction mixture consisting of plasma
(enzyme extract), phosphate buffer (0.04M, pH 7), 30mM
naphthyl acetate (α and β), and 1% acetone was incubated in
the dark at 37◦C for 15min. Then, 1ml of staining solution
composed of fast blue BB (1%) and sodium dodecyl sulfate (5%)
was added in both blank control (phosphate buffer and substrate
solution) and reaction mixture and again incubated for 15min in
the dark at room temperature. The absorbance of the assay was
recorded at 590 nm, and the enzyme activity was calculated in
µMmin−1 ml−1 of a sample using a standard curve.

Amylase
The activity of the amylase enzyme in plasma samples
was assessed by using 0.2M tris-malate (pH 7.2) buffer as
an extraction cum assay medium (38). For estimation of
enzyme activity, 1ml of substrate solution (0.15% starch) was
homogenized with 1ml of plasma and incubated at 37◦C for
10min. The OD of the reaction mixture was measured at
620 nm after adding quenching reagent and enzyme activity was
represented in milligrams of starch degraded per minute per
milliliter of blood plasma sample.

Analysis of Milk
Milk samples were analyzed for chemical composition by a milk
analyzer (Julie Z7, Scope Electric, Regensburg, Germany). The
defatted milk samples were used for estimation of non-enzymatic
(TPC, TAC, and vitamin C) and enzymatic (SOD, POD, and
CAT) antioxidants by a spectrophotometer (UV-VIS U2800,
Hitachi, Japan) as described above for plasma samples.

Reproductive and Productive Performance
The reproductive and productive performance was evaluated in
terms of birth weight, weight gain per week, survival rate of newly
born kids, shedding time of placenta, the onset of first postpartum
estrus, and milk yield in goats.

Statistical Analysis
All the statistical analyses were carried out by using SPSS
version 20. The experimental procedures were performed in
triplicate, and data obtained were analyzed by one-way analysis
of variance (ANOVA) with repeated measures under the shade of
LSD to access the differences among different treatment means
on specific days. The results were expressed in the tables as

mean ± SE, and the values with p < 0.05 were considered
statistically significant.

RESULTS

Non-enzymatic Antioxidant Parameters
The response of plasma non-enzymatic antioxidant parameters
to MOLP supplementation during pregnancy and early lactation
period is shown in Table 4. Plasma TFs were increased
significantly from day 110 of pregnancy to day 20 of lactation
in the M3.5% group (p < 0.05). The impact of supplementation
was non-significant on M2% group plasma TFs as compared to
the control (M0) group (p > 0.05). The values of plasma TPC of
theM3.5% andM2% groups were non-significant in the pregnancy
stage, while they became significant during the early lactation
period of the experiment (p < 0.05). The increase in plasma
Vit C contents was significant (p < 0.05) from the 130th day
of pregnancy till day 20 of lactation in both M3.5% and M2%

supplemented groups. The MOLP supplementation significantly
improved the plasma TAC by declining MDA concentration and
TOS values near parturition and early lactation stage of the
experiment in contrast to the control (M0) group (p < 0.05).

Enzymatic Antioxidants
The MOLP supplementation impacts on plasma enzymatic
antioxidants are presented in Table 5. The SOD activity of
M3.5% and M2% groups increased significantly throughout the
experiment in response to supplementation (p < 0.05) and
reached its peak on day 20 of lactation in the M3.5% group. The
effect of supplementation levels (3.5 and 2%) was non-significant
on POD activity (p > 0.05). However, there was a significant
difference between the POD activities of supplemented (M3.5%

and M2%) and control (M0) groups during the entire experiment
(p < 0.05). A non-significant increase in the plasma CAT activity
was noticed till day 150 of gestation (p > 0.05), but soon after
kidding, the CAT activity was enhanced significantly during
the lactation period according to the supplementation levels
in M3.5% and M2% groups as compared to the control (M0)
group (p < 0.05).

Biochemical Indices
The change in plasma biochemical indicators in response
to MOLP supplementation is given in Table 6. The
supplementation initially showed no pronounced effect on
plasma TSP contents till the 130th day of pregnancy. Thereafter,
the plasma TSP contents increased significantly on day 150 of
pregnancy and day 20 of lactation in M3.5% group in comparison
to M2% andM0 groups (p< 0.05). The plasma sugar level of both
M3.5% and M2% supplemented groups increased significantly
from the beginning of the experiment till day 20 of lactation (p
< 0.05). A drastic increase in plasma sugar level was observed
soon after kidding in supplemented groups in contrast to the
control group. The concentration of carotenoids in plasma
was significantly enhanced throughout the experiment in the
M3.5% group as compared to the control (M0) group (p < 0.05),
whereas the lycopene contents were improved from day 130 of
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TABLE 4 | Plasma non-enzymatic antioxidant indices of Beetal goats.

Non-enzymatic antioxidants Levels of Moringa oleifera leaf powder supplementation SEM p-value

M0 M2% M3.5%

Gestation day 110

Total flavonoids (µg/ml) 239.93 ± 0.91b 241.06 ± 0.74b 253.91 ± 0.72a 0.43 0.030

Total phenolic contents (µM/ml) 5,821.75 ± 0.85b 5,832.61 ± 1.60a 5840 ± 2.45a 1.19 0.028

Vitamin C (µg/ml) 803.75 ± 1.55 805.50 ± 1.04 810.25 ± 1.44 0.84 0.221

Malondialdehyde (µM/ml) 5.90 ± 0.33 5.76 ± 0.37 5.59 ± 0.26 0.17 0.627

Total anti-oxidant capacity (µM/ml) 1.41 ± 0.02c 1.55 ± 0.01b 1.67 ± 0.01a 0.01 0.002

Total oxidant status (µM/ml) 1,566.25 ± 1.11 1,559.75 ± 0.63 1,555.50 ± 2.10 1.04 0.065

Gestation day 130

Total flavonoids (µg/ml) 251.31 ± 0.59b 256.14 ± 0.76b 272.79 ± 1.07a 0.29 0.013

Total phenolic contents (µM/ml) 5,819 ± 0.82b 5,844.75 ± 1.31a 5,848.25 ± 0.95a 0.65 0.007

Vitamin C (µg/ml) 795 ± 1.08c 811.25 ± 1.32b 819.50 ± 0.96a 0.42 0.008

Malondialdehyde (µM/ml) 7.26 ± 0.09b 5.28 ± 0.23a 5.06 ± 0.27a 0.18 0.024

Total anti-oxidant capacity (µM/ml) 1.49 ± 0.01c 1.73 ± 0.02b 1.86 ± 0.02a 0.01 0.002

Total oxidant status (µM/ml) 1,585.25 ± 0.63c 1,533 ± 0.71b 1,502.5 ± 0.96a 0.39 <0.001

Gestation day 150

Total flavonoids (µg/ml) 258.93 ± 1.13b 264.66 ± 0.68b 278.84 ± 0.58a 0.67 0.001

Total phenolic contents (µM/ml) 5,796.50 ± 0.86b 5,853 ± 0.57a 5,859.25 ± 2.05a 1.14 <0.001

Vitamin C (µg/ml) 780 ± 0.41c 816.75 ± 0.85b 827.75 ± 0.48a 0.39 <0.001

Malondialdehyde (µM/ml) 8.31 ± 0.12b 4.55 ± 0.22a 4.19 ± 0.18a 0.06 0.004

Total anti-oxidant capacity (µM/ml) 1.37 ± 0.02c 1.81 ± 0.01b 1.96 ± 0.04a 0.02 0.007

Total oxidant status (µM/ml) 1,605 ± 1.08c 1,515.75 ± 0.85b 1,481 ± 0.82a 0.86 <0.001

Lactation day 20

Total flavonoids (µg/ml) 265.28 ± 1.23b 273.19 ± 2.46b 291.44 ± 0.63a 1.06 0.013

Total phenolic contents (µM/ml) 5,811.50 ± 0.64c 5,866 ± 0.71b 5,884 ± 1.08a 0.68 <0.001

Vitamin C (µg/ml) 783 ± 0.39c 825.51 ± 0.48b 838.69 ± 1.25a 0.44 <0.001

Malondialdehyde (µM/ml) 7.94 ± 0.25c 4.01 ± 0.04b 2.74 ± 0.29a 0.11 0.013

Total anti-oxidant capacity (µM/ml) 1.53 ± 0.01c 1.94 ± 0.01b 2.16 ± 0.04a 0.02 0.001

Total oxidant status (µM/ml) 1,598.50 ± 0.65c 1,492.50 ± 1.04b 1,459.75 ± 0.48a 0.42 <0.001

Means with superscript letters (a, b, c) within the same row differ significantly at p ≤ 0.05.

pregnancy to day 20 of lactation in the M3.5% as well as M2%

group (p < 0.05).

Hydrolytic Enzymes
The activities of plasma hydrolytic enzymes in supplemented
(M3.5% and M2%) and control (M0) groups are illustrated
in Table 7. The protease enzyme activity was modified more
effectively from day 130 to 150 of gestation in the M3.5% group
in comparison to the M2% group. However, the supplementation
of MOLP significantly influenced plasma protease activity in the
M2% group during the lactation period (p < 0.05). However,
the supplementation did not show any significant impact on
esterase activity during the experiment (p > 0.05). The amylase
activity was slightly improved in the M3.5% group from day 150
of gestation in comparison to the control (M0) group (p < 0.05).

Milk Biochemical Composition
The alterations in milk biochemical composition as a result of
MOLP supplementation are expressed in Table 8. The colostrum
and milk protein contents were increased significantly in

M3.5% group. However, the supplementation in the M2% group
exhibited a significant impact on days 21 and 28 milk protein
contents (p < 0.05). The milk fat percentage was not affected
by supplementation in either the M3.5% or M2% group up to
day 14 of lactation (p > 0.05), but on days 21 and 28, the milk
fat was significantly increased in the M3.5% group as compared
to the control (M0) group (p < 0.05). There was no influence
of supplementation on the lactose contents of colostrum and
mature milk samples of M3.5% and M2% groups (p > 0.05). Total
carotenoids were significantly high in the milk samples of the
M3.5% group as compared to M2% and M0 groups from day 0 to
day 28 of lactation (p < 0.05).

Milk Enzymatic and Non-enzymatic
Antioxidants
The enzymatic and non-enzymatic antioxidant parameters of the
colostrum and milk samples are presented in Table 9. The TPCs
in the colostrum and milk samples of the M3.5% group were
significantly increased in response to supplementation. There
was no effect of supplementation on the TPCs of colostrum from
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TABLE 5 | Plasma enzymatic antioxidant indices of Beetal goats.

Enzymatic antioxidants (Units/ml) Levels of Moringa oleifera leaf powder supplementation SEM p-value

M0 M2% M3.5%

Gestation day 110

SOD 21.29 ± 0.52c 25.82 ± 0.28b 32.08 ± 0.39a 0.23 0.011

POD 195.82 ± 0.61b 207.16 ± 0.79a 212.24 ± 1.30a 0.45 0.002

CAT 40 ± 0.82 41 ± 1.29 44.75 ± 0.48 0.52 0.062

Gestation day 130

SOD 19.88 ± 0.63c 28.20 ± 0.57b 37.77 ± 0.73a 0.29 0.015

POD 209.65 ± 0.88b 231.79 ± 1.16a 238.17 ± 1.06a 0.34 0.001

CAT 42 ± 0.41 44.75 ± 0.85 45.25 ± 0.25 0.24 0.100

Gestation day 150

SOD 13.76 ± 0.38c 28.88 ± 0.64b 39.54 ± 0.89a 0.47 0.001

POD 215.21 ± 0.74b 244.11 ± 0.89a 247.07 ± 0.98a 0.51 0.005

CAT 45.50 ± 0.96 47 ± 0.71 49.50 ± 0.94 0.49 0.154

Lactation day 20

SOD 17.97 ± 0.43c 36.17 ± 1.05b 42.76 ± 0.36a 0.30 0.001

POD 226.91 ± 0.69b 261.79 ± 1.55a 268.11 ± 0.72a 0.67 0.001

CAT 50.48 ± 0.87c 55.50 ± 0.29b 63.39 ± 0.86a 0.38 0.023

Means with superscript letters (a, b, c) within the same row differ significantly at p ≤ 0.05. SOD, superoxide dismutase; POD, peroxidase; CAT, catalase.

TABLE 6 | Plasma biochemical parameters of Beetal goats.

Biochemicals Levels of Moringa oleifera leaf powder supplementation SEM p-value

M0 M2% M3.5%

Gestation day 110

Total soluble proteins (mg/ml) 60.98 ± 0.73 63.87 ± 0.34 65.09 ± 1.12 0.59 0.118

Total sugars (mg/ml) 4.58 ± 0.05c 5.40 ± 0.04b 6.18 ± 0.03a 0.03 0.003

Carotenoids (µg/ml) 165.77 ± 0.79b 169.09 ± 1.07b 176.56 ± 0.62a 0.25 0.013

Lycopene (µg/ml) 98.75 ± 2.66 103 ± 1.15 108 ± 3.02 0.53 0.207

Gestation day 130

Total soluble proteins (mg/ml) 59.56 ± 3.17 66.23 ± 0.57 69.16 ± 1.78 1.63 0.066

Total sugars (mg/ml) 4.43 ± 0.05c 5.80 ± 0.04b 6.63 ± 0.06a 0.02 0.004

Carotenoids (µg/ml) 170.79 ± 0.96b 177.45 ± 0.83b 185.41 ± 0.61a 0.49 0.001

Lycopene (µg/ml) 95 ± 1.08c 111 ± 0.57b 119.75 ± 0.85a 0.51 0.010

Gestation day 150

Total soluble proteins (mg/ml) 55.96 ± 3.04b 61.19 ± 1.49b 71.02 ± 0.69a 1.56 0.042

Total sugars (mg/ml) 3.88 ± 0.13c 5.90 ± 0.04b 6.93 ± 0.05a 0.03 0.005

Carotenoids (µg/ml) 168 ± 2.19b 175.93 ± 0.68b 187.13 ± 1.30a 0.85 0.032

Lycopene (µg/ml) 89.75 ± 0.47c 116.78 ± 1.03b 125.69 ± 0.75a 0.47 0.001

Lactation day 20

Total soluble proteins (mg/ml) 63.50 ± 1.56b 67.18 ± 0.35b 75.40 ± 0.73a 0.78 0.016

Total sugars (mg/ml) 4.03 ± 0.04c 6.30 ± 0.05b 7.35 ± 0.07a 0.04 0.002

Carotenoids (µg/ml) 172.42 ± 1.02b 178.74 ± 1.32b 193.55 ± 0.89a 0.73 <0.001

Lycopene (µg/ml) 93 ± 0.91c 118.25 ± 0.85b 129.5 ± 0.95a 0.69 <0.001

Means with superscript letters (a, b, c) within the same row differ significantly at p ≤ 0.05.

the M2% group, while these TPCs were improved significantly
in the milk samples of the M2% group from day 14 to 28 of
lactation (p < 0.05). The TAC of the milk from M3.5% and M2%

groups was significantly increased from the beginning to day 28

of lactation in comparison to the control (M0) group (p < 0.05).
The significant impact of MOLP on colostrum and milk Vit C
level was noticed only in the M3.5% group (p < 0.05). Both the
supplementation levels (3.5 and 2%) showed a significant impact
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TABLE 7 | Plasma hydrolytic enzymes activities of Beetal goats.

Enzymes Levels of Moringa oleifera leaf powder supplementation SEM p-value

M0 M2% M3.5%

Gestation day 110

Protease (U/ml) 233.25 ± 0.95 235.50 ± 0.64 239.25 ± 1.18 0.79 0.065

Esterase (µM/min/ml) 643.75 ± 0.85 641 ± 1.08 645.75 ± 0.63 0.37 0.084

Amylase (mg/min/ml) 1.31 ± 0.02 1.34 ± 0.01 1.39 ± 0.02 0.01 0.369

Gestation day 130

Protease (U/ml) 235 ± 1.08b 238.50 ± 0.29b 243 ± 0.41a 0.38 0.009

Esterase (µM/min/ml) 638.25 ± 0.95 639.50 ± 0.96 641.75 ± 0.48 0.41 0.252

Amylase (mg/min/ml) 1.35 ± 0.02 1.39 ± 0.03 1.42 ± 0.01 0.02 0.110

Gestation day 150

Protease (U/ml) 238.50 ± 0.51b 240.75 ± 0.75b 247 ± 0.82a 0.44 0.036

Esterase (µM/min/ml) 634.50 ± 0.87 636.50 ± 0.64 637 ± 0.91 0.25 0.486

Amylase (mg/min/ml) 1.36 ± 0.03b 1.43 ± 0.01b 1.51 ± 0.01a 0.01 0.036

Lactation day 20

Protease (U/ml) 242.75 ± 0.85c 249.75 ± 0.63b 254.50 ± 0.29a 0.47 0.008

Esterase (µM/min/ml) 639.25 ± 0.63 642 ± 0.82 644 ± 0.56 0.33 0.059

Amylase (mg/min/ml) 1.41 ± 0.01b 1.44 ± 0.01b 1.57 ± 0.02a 0.04 0.016

Means with superscript letters (a, b, c) within the same row differ significantly at p ≤ 0.05.

TABLE 8 | Effect of Moringa oleifera leaf powder supplementation on milk composition.

Biochemical Levels of Moringa oleifera leaf powder supplementation SEM p-value

M0 M2% M3.5%

Day 0 (Colostrum)

Protein (%) 8.93 ± 0.37b 10.18 ± 0.28b 13.53 ± 0.53a 0.24 0.043

Fat (%) 8.95 ± 0.40 9.18 ± 0.48 9.53 ± 0.34 0.37 0.092

Lactose (%) 2.93 ± 0.29 3.09 ± 0.31 3.27 ± 0.13 0.21 0.663

Carotenoids (µg/ml) 15.22 ± 0.83b 16.71 ± 0.40b 18.53 ± 0.39a 0.49 0.031

Day 7

Protein (%) 6.84 ± 0.09b 7.11 ± 0.31b 8.51 ± 0.25a 0.16 0.015

Fat (%) 7.38 ± 0.86 7.94 ± 0.62 8.72 ± 0.30 0.61 0.233

Lactose (%) 3.43 ± 0.07 3.62 ± 0.21 3.71 ± 0.16 0.05 0.514

Carotenoids (µg/ml) 6.91 ± 0.19b 7.36 ± 0.07b 9.82 ± 0.36a 0.15 0.041

Day 14

Protein (%) 5.08 ± 0.36b 5.40 ± 0.25b 7.94 ± 0.46a 0.28 0.045

Fat (%) 6.56 ± 0.35 6.87 ± 0.39 7.19 ± 0.52 0.28 0.645

Lactose (%) 3.97 ± 0.14 4.01 ± 0.23 4.14 ± 0.20 0.09 0.273

Carotenoids (µg/ml) 4.68 ± 0.41b 4.94 ± 0.16b 6.37 ± 0.08a 0.2 0.022

Day 21

Protein (%) 4.03 ± 0.13c 5.15 ± 0.08b 6.56 ± 0.20a 0.08 0.012

Fat (%) 4.94 ± 0.34b 5.32 ± 0.11b 6.29 ± 0.16a 0.17 0.024

Lactose (%) 4.37 ± 0.51 4.51 ± 0.58 4.89 ± 0.78 0.1 0.748

Carotenoids (µg/ml) 2.73 ± 0.21b 3.02 ± 0.13b 4.36 ± 0.11a 0.09 0.007

Day 28

Protein (%) 3.43 ± 0.19c 4.27 ± 0.11b 5.82 ± 0.40a 0.22 0.027

Fat (%) 4.87 ± 0.13b 3.76 ± 0.15b 3.41 ± 0.02a 0.09 0.003

Lactose (%) 4.95 ± 0.80 5.08 ± 0.19 5.35 ± 0.49 0.15 0.917

Carotenoids (µg/ml) 1.38 ± 0.36b 1.61 ± 0.25b 3.04 ± 0.08a 0.17 0.025

Means with superscript letters (a, b, c) within the same row differ significantly at p ≤ 0.05.
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TABLE 9 | Effect of Moringa oleifera leaf powder supplementation on milk antioxidant parameters.

Non-enzymatic antioxidants Levels of Moringa oleifera leaf powder supplementation SEM p-value

M0 M2% M3.5%

Day 0 (Colostrum)

Total phenolic contents (µM/ml) 2,826.75 ± 3.49b 2,838.50 ± 0.64b 2,875.50 ± 1.55a 1.06 0.002

Total anti-oxidant capacity (µM/ml) 0.92 ± 0.02c 1.42 ± 0.08b 1.78 ± 0.13a 0.07 0.005

Vitamin C (µg/ml) 457.75 ± 1.65b 464.75 ± 1.79b 483 ± 0.82a 0.97 0.005

SOD (Units/ml) 69.86 ± 0.46c 88.65 ± 0.69b 96.53 ± 0.32a 0.18 0.001

POD (Units/ml) 291.25 ± 0.63b 309.22 ± 0.85a 314.02 ± 1.04a 0.37 0.003

CAT (Units/ml) 71.75 ± 0.85 76.75 ± 1.11 84 ± 1.78 1.01 0.060

Day 7

Total phenolic contents (µM/ml) 2,608.85 ± 2.38b 2,622 ± 0.71b 2,669.25 ± 1.88a 0.21 0.005

Total anti-oxidant capacity (µM/ml) 0.81 ± 0.05c 1.39 ± 0.12b 1.73 ± 0.11a 0.09 0.016

Vitamin C (µg/ml) 421.75 ± 1.97b 427.25 ± 1.32b 436.75 ± 0.75a 0.78 0.035

SOD (Units/ml) 75.75 ± 0.63c 81.52 ± 0.26b 94.4 ± 0.39a 0.16 0.001

POD (Units/ml) 263.45 ± 0.87b 277.56 ± 1.32a 285 ± 1.65a 0.28 0.015

CAT (Units/ml) 66.75 ± 1.37 69.75 ± 1.18 74 ± 0.41 0.35 0.103

Day 14

Total phenolic contents (µM/ml) 2,471.50 ± 1.32c 2,493.25 ± 1.03b 2,547 ± 2.55a 1.03 <0.001

Total anti-oxidant capacity (µM/ml) 0.74 ± 0.10c 1.29 ± 0.13b 1.64 ± 0.12a 0.12 0.017

Vitamin C (µg/ml) 412.70 ± 1.31b 416.40 ± 1.28b 429.60 ± 0.93a 0.71 0.016

SOD (Units/ml) 61.52 ± 0.31c 74.40 ± 0.41b 83.45 ± 0.55a 0.33 <0.001

POD (Units/ml) 251.67 ± 0.79b 270.92 ± 1.37a 276.05 ± 0.96a 0.19 0.008

CAT (Units/ml) 50.61 ± 1.51 56.75 ± 1.43 62 ± 1.92 0.69 0.072

Day 21

Total phenolic contents (µM/ml) 2,289 ± 1.47c 2,326 ± 0.91b 2,391.50 ± 0.65a 0.32 0.001

Total anti-oxidant capacity (µM/ml) 0.65 ± 0.04c 1.24 ± 0.11b 1.53 ± 0.09a 0.08 0.013

Vitamin C (µg/ml) 385.75 ± 2.46b 391.50 ± 1.50b 408.25 ± 0.75a 0.57 0.021

SOD (Units/ml) 58.65 ± 0.69c 63.45 ± 0.91b 75.04 ± 0.48a 0.51 0.003

POD (Units/ml) 227.02 ± 1.08c 243.01 ± 0.56b 259.66 ± 0.73a 0.25 0.008

CAT (Units/ml) 37.95 ± 1.31b 41.98 ± 0.32b 53.30 ± 0.61a 0.21 0.007

Day 28

Total phenolic contents (µM/ml) 2,133 ± 0.82c 2,173.25 ± 1.70b 2,205.75 ± 1.25a 0.59 <0.001

Total anti-oxidant capacity (µM/ml) 0.61 ± 0.13c 1.11 ± 0.04b 1.37 ± 0.07a 0.07 0.007

Vitamin C (µg/ml) 374.45 ± 1.04b 378.70 ± 0.85b 395.25 ± 0.69a 0.52 0.001

SOD (Units/ml) 51.70 ± 0.77c 59.65 ± 1.05b 66 ± 0.41a 0.57 0.003

POD (Units/ml) 202.66 ± 0.68 216.02 ± 1.12 231.01 ± 1.31 0.55 0.006

CAT (Units/ml) 29.75 ± 0.43b 31.36 ± 0.59b 46 ± 0.42a 0.26 0.002

Means with superscript letters (a, b, c) within the same row differ significantly at p ≤ 0.05. SOD, superoxide dismutase; POD, peroxidase; CAT, catalase.

on the SOD activity of colostrum and milk samples as compared
to the non-supplemented (M0) group (p < 0.05). Initially, the
POD activity was increased significantly irrespective of the level
of supplementation. However, from day 21 to 28 of lactation, a
significant difference was observed in the improvement of POD
activity depending on levels of supplementation. The increase
in the activity of CAT enzyme was non-significant up to day
14 of lactation in both M3.5% and M2% groups (p > 0.05).
However, on days 21 and 28, the supplementation resulted in
a significant enhancement in the CAT activity of milk samples
from the M3.5% group in comparison to the control (M0)
group (p < 0.05).

Productive and Reproductive Performance
The supplementation of MOLP increased the milk production in
M3.5% and M2% groups as compared to the control (M0) group
from day 7 to 28 of lactation (p< 0.05) as is presented inTable 10.
Similarly, the weight gain of kids in supplemented groups
was significantly high (Table 11). The results of reproductive
parameters (Figures 1, 2) showed that the shedding time of the
placenta and the time of onset of first postpartum estrus was less
in the goats of M3.5% andM2% groups as compared to the goats of
the (M0) control group. The survival rate and initial birth weight
of the kids of M3.5%- and M2%-supplemented goats were higher
than M0 group goats (Figures 3, 4).
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TABLE 10 | Effect of Moringa oleifera leaf powder supplementation on milk production (liters) in Beetal goats.

Days Levels of Moringa oleifera leaf powder supplementation SEM p-value

M0 M2% M3.5%

07 1.01 ± 0.03c 1.27 ± 0.05b 1.41 ± 0.04a 0.04 0.007

14 1.32 ± 0.14c 1.48 ± 0.11b 1.65 ± 0.09a 0.11 0.033

21 1.54 ± 0.07c 1.73 ± 0.06b 2.01 ± 0.07a 0.06 0.031

28 1.87 ± 0.16c 2.11 ± 0.13b 2.72 ± 0.15a 0.14 0.04

Means with superscript letters (a, b, c) within the same row differ significantly at p ≤ 0.05.

TABLE 11 | Effect of feeding Moringa oleifera leaf powder supplemented goat milk on body weight (kg) of their kids.

Days Levels of Moringa oleifera leaf powder supplementation SEM p-value

M0 M2% M3.5%

0 2.14 ± 0.49c 2.81 ± 0.52b 3.53 ± 0.36a 0.45 0.037

7 2.91 ± 0.17c 3.77 ± 0.32b 4.71 ± 0.28a 0.25 0.016

14 3.64 ± 0.22c 4.51 ± 0.29b 5.88 ± 0.12a 0.2 0.001

21 4.49 ± 0.42c 5.72 ± 0.18b 6.96 ± 0.14a 0.24 0.021

28 5.03 ± 0.16c 6.61 ± 0.24b 8.36 ± 0.35a 0.16 0.044

Means with superscript letters (a, b, c) within the same row differ significantly at p ≤ 0.05.

DISCUSSION

The animals are more prone to oxidative stress during the
transition period because an increase in energy requirements
to support developing fetuses and subsequent lactation coincide
with depressed feed intake. The nutritional quality of feedstuffs

is very important to regulate the pregnancy and lactation
performance of goats. The MO leaves are well-known for their

nutritional and therapeutic properties that have been attributed

to their various phytochemical constituents (39, 40).
The pregnancy and lactation stress results in the excessive

production of hydroxyl (OH) and nitric oxide (NO) radicals.
The animal body is well-equipped with different protective
mechanisms to neutralize the harmful effects of OH and
NO radicals. The antioxidant protective system is naturally
suppressed near parturition due to certain physiological changes
in the body (41). The MOLP supplementation to pregnant goats
resulted in an increase in their plasma TFs and TPCs that
control the immense production of OH and NO radicals via
Haber-Weiss and Fenton reactions to minimize the detrimental
effects of oxidative stress during pregnancy and lactation (42).
The regulation of antioxidant defense system of the body
under different stress conditions through MO leaf extract
supplementation was also reported in rats (43).

Vitamin C is generally regarded as the first line of defense to
provide protection from the damaging effects of oxidative stress
in pregnancy especially near parturition (44). A constant decline
in plasma vit C level near parturition aggravates the situation
that makes the animals more vulnerable to oxidative damage
(45). A significant improvement in plasma vit C level during this
study in supplemented goats showed that MOLP as a rich source
of vit C has the ability to protect the pregnant goats from the
deleterious effects of oxidative stress by suppressing the action

of free radicals. The increase in plasma vit C concentration in
response to MOLP supplementation is in accordance with the
findings of a study on Aardi goats (14).

Lipids act as substrate for reactive nitrogen and oxygen species
(RNS and ROS) to start the process of lipid peroxidation (LPO)
(46, 47). The balance between the production and elimination of
ROS and RNS from the body is sustained by antioxidant defense
system in healthy animals. Any untoward disturbance in this
balance may enhance the plasma TOS and MDA concentration.
The high values of TOS and MDA represent the state of
oxidative stress (48). It is evident from the results of this
study that the supplementation of MOLP increased the plasma
TAC in treated goats by suppressing the process of LPO. This
consequently reduces the values of plasma TOS and MDA. The
enzymatic (SOD, POD, and CAT) antioxidants also have a key
role in limiting LPO, as both enzymatic and non-enzymatic
components of antioxidant defense system work in collaboration
to maintain the conditions suitable for mother and developing
fetus by minimizing the parturition and early lactation
stress (49).

The physiological changes in maternal body during the
transition period especially near parturition result in excessive
production of ROS (50). These ROS are converted into H2O2

by SOD enzyme, while POD and CAT enzymes further degrade
the H2O2 into water and molecular oxygen (51, 52). The
successful completion of parturition stage and start of healthy
lactation depend on the activities of SOD, POD, and CAT
enzymes (53). High antioxidant (SOD, POD, and CAT) enzyme
activities indicate that the supplementation of MOLP in late
pregnancy improved the plasma enzymatic antioxidants that was
also reported in some other studies conducted with different
supplementation levels of MO in rabbits, poultry, and dairy
cows (54–56).
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FIGURE 1 | Effect of Moringa oleifera leaf powder supplementation on

shedding time (hours) of placenta in Beetal goats.

FIGURE 2 | Effect of Moringa oleifera leaf powder supplementation on onset

time (days) of first postpartum estrus after kidding in Beetal goats.

Blood biochemical parameters are the established indicators
to provide information about the health status of pregnant
animals for their successful transfer from gestation to lactation
stage (57). Late pregnancy is characterized by severe metabolic
changes and a rapid decrease in plasma protein level was also
noticed in different other animal species during this period
(58–60). The plasma protein level drops promptly in the last
trimester due to high amino acid requirements for developing
fetus and preparation of the mammary system for subsequent
lactation stage (61). However, after parturition, the plasma
protein level starts to increase due to immense production of
immunoglobulins (62). It is evident from the findings of this
study that the plasma protein level was high in supplemented
groups as compared to the control group of the experiment
during the peripartum period. The supplementation of MOLP
increased the plasma protein contents to satisfy the high protein
requirements of pregnancy and lactation. These results support
the findings of other studies in Jersey cattle and sows (21, 63).
The presence of high amount of protein in MOLP enhances the
synthesis of selenocysteine-based selenoproteins. These proteins
have been reported to play a role in the modification of
antioxidant defense system and improvement of reproductive
functions (64).

The decrease in plasma sugar level near parturition is typical
for goats and ewes. A reduction in feed intake occurs during
late pregnancy due to the squeezing of the rumen by rapid

FIGURE 3 | Survival rate (%) of kids in response to milk feeding of goats

supplemented with Moringa oleifera leaf powder.

FIGURE 4 | Effect of Moringa oleifera leaf powder supplementation on birth

weight (kg) of kids in Beetal goats.

fetal growth (65). The mobilization of the body fats starts if the
energy requirements of the animals are not fulfilled with the
advancement in pregnancy through provision of appropriate feed
supplement (66). The negative energy balance in this stage may
lead to the development of ketosis and some other metabolic
diseases. The feeding of MOLP increased the plasma sugar level
of supplemented groups to provide sufficient amount of energy
for parturition and early lactation. The revival of gluconeogenesis
process after parturition in response to certain endocrine changes
rapidly increase the plasma sugar level (67, 68). Furthermore,
the supplementation also improved the plasma lycopene and
carotenoids status to regulate the synthesis of inflammatory
cytokines that reduces the chances of complications at the time
of parturition (69, 70).

A proteolytic enzyme system in the body helps in the removal
of worthless and damaged biomolecules to maintain hemostasis
during pregnancy and lactation (71). The significant increase in
the activity of protease enzyme in MOLP-supplemented groups
depicted its defensive effects at the cellular level. The proteolytic
enzyme system is of great importance because it also has the
ability to act as a secondary antioxidant defense system when the
primary antioxidant system is unable to protect the body from
oxidative stress (72). The supplementation ofMOLP also resulted
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in an improvement in the amylase activity. This enzyme enhances
the conversion of carbohydrates into glucose to produce energy
according to the requirements of body during pregnancy and
lactation (66, 73).

The major outcome of the study was that supplementing the
goats’ ration with MOLP markedly influenced their colostrum
and milk composition. The preparations for colostrum synthesis
start in the last month of pregnancy (74). Colostrum provides
energy and maternal immunity along with different other growth
factors to maintain health status and development of newly born
kids. The findings of this study showed that supplementation of
MOLP increased the protein contents of colostrum and milk in
supplemented groups. The concentration of protein is generally
high in colostrum than normal milk due to the presence of
Igs in huge amount (75). The consumption of Igs protects the
newly born kids from different diseases and thereby enhances
their survival rate. The supplementation also improved the fat
percentage of mature milk, which is in accordance with the
findings of Kholif et al. (76). MOLP stimulates the production
of acetate that acts as a major precursor for the biosynthesis
of fat (77). Similarly, a significant increase in carotenoids of
colostrum and milk was also noticed with 3.5% supplementation.
The concentration of carotenoids in milk mostly depends on
the type of feed and MOLP being a rich source of carotenoids
has positive effects on the carotenoid contents of colostrum and
milk in both supplemented groups. The carotenoids have been
reported to play an important role in the improvement of milk
quality by preventing the process of auto-oxidation (78).

The presence of antioxidants in appropriate amount prolongs
the shelf life of milk and reduces its chances of microbial spoilage.
The antioxidants in milk also protect the suckling kids from
various health hazards by strengthening their immune system
(79). The supplementation of diet with MOLP increased the
colostrum and milk TAC as was also reported previously in
cows by Kekana et al. (63). This could be due to the synergistic
effects of flavonoids, phenolics, Se, and vit C present in MOLP.
Generally, milk is not considered a good source of vit C. However,
the results of this study showed the presence of an appreciable
amount of vit C in the milk of goats supplemented with MOLP.
Thus, feeding the goats with MOLP-supplemented diet positively
influenced the vit C contents in their milk. The presence of
functional antioxidants in MOLP also improved the enzymatic
(SOD, POD, and CAT) antioxidant status of the milk to fulfill
the demands of both milk producers and consumers for healthier
dairy products. The favorable impacts of MO supplementation
on milk composition were also reported in some other studies
performed on dairy animals (80, 81).

The beneficial effects of MOLP supplementation on
reproductive performance parameters observed in this study
were due to its high nutritional profile. The birth weight of
kids in supplemented groups was high as compared to the
control group. The supplementation of MOLP in advance stage
of pregnancy increases the provision of protein to developing
fetus for its further growth and also improves the protein
contents of colostrum and milk (82). The high level of protein
contents in the milk of supplemented goats promoted the weight
gain in their kids. The presence of therapeutic compounds in
MOLP increased the survival rate of the kids of supplemented

goats by protecting them from various diseases (83). Similar
findings were reported by Qwele et al. (84), who disclosed that
feeding of MO-supplemented diet is beneficial for the animals to
protect them from oxidative stress-induced diseases. High milk
production in early lactation stage often results in negative energy
balance (NEB), if the nutrient supply is inadequate to lactating
animals. The NEB is the major cause of delay in shedding of
placental membranes and resumption of postpartum estrus
after parturition (85). MOLP supplementation improved the
energy status of the body to ensure the revival of ovarian activity
and reduces postpartum anestrus interval. The shortening of
postpartum anestrus duration by dietary modifications has also
been reported previously in cows (86). The high proportion of
protein and Se contents in MO strengthened the uterine muscle
contractions for timely shedding of placenta and thus protects
the reproductive tract from different infections.

CONCLUSION

The results of the current study revealed that supplementing 3.5%
MOLP improved maternal health and milk quality in terms of
antioxidant status and biochemical composition. Furthermore,
this supplementation level also increased the milk yield, kids’
growth rate, and reproductive performance of goats. These
findings propose that MOLP has the potential to improve the
productive/reproductive performance of goats. However, further
studies are required with different feeding levels of MOLP to
explore the molecular aspects of improving productive and
reproductive performance in large herds of animals.
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and antioxidant status in dairy cows during prepartal and postpartal periods.

Acta Veterinaria Brno. (2015) 84:133–40. doi: 10.2754/avb201584020133

49. Gong J, Xiao M. Effect of organic selenium supplementation on selenium

status, oxidative stress, and antioxidant status in selenium-adequate dairy

cows during the periparturient period. Biol Trace Elem Res. (2018) 186:430–

40. doi: 10.1007/s12011-018-1323-0

50. Radin L, Šimpraga M, Vince S, Kostelić A, Milinković-Tur S. Metabolic and
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