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Editorial on the Research Topic

Insights in precision medicine: 2021

Precision medicine has been a hot topic in recent years as I have the privilege of seeing

these changes in all fields especially in oncology. It offers the potential to revolutionize

healthcare by tailoring treatment to a specific target. This approach, which considers genetic,

environmental, and lifestyle factors, as well as more recently metabolomic and proteomic

approaches has the potential to improve patient outcomes and reduce the risk of negative

side effects. The recent Research Topic, “Insights in precision medicine: 2021,” shed light into

the diverse research even on the eve of COVID-19 and provide future challenges in the field

of precision medicine. The nine articles published showcase the growth of the area and the

increasing unanswered questions that each discovery brings. These articles are wide range

from using AI to implement treatment to education and covers cancer to chronic conditions

such as epilepsy and diabetes.

One key area of focus in precision medicine is the use of genomic information to guide

treatment decisions. This is particularly relevant in the context of diseases such as renal cell

carcinoma, hepatocellular carcinoma, and liver diseases, where specific genomic factors can

be used to predict patient outcomes and guide treatment choices.

Four articles highlight the potential use of precision medicine in improving patient

outcomes for chronic disorder outside of oncology. “Long non-coding RNA MALAT1: A

key player in liver diseases” by Lu et al. discuss the multiple roles of MALAT1 which as

often in nature can be beneficial or harmful. It is beneficial when regeneration of liver is

needed but overexpression could lead to proliferation and metastasis. “Low-dose everolimus

maintenance therapy for renal angiomyolipoma associated with tuberous sclerosis complex”

by Luo et al. albeit a small study showed the long-term treatment of everolimus in renal

angiomyolipoma. “EEG-driven prediction model of oxcarbazepine treatment outcomes in

patients with newly-diagnosed focal epilepsy” by Wang et al. presents a prediction model

based on electroencephalography data that is able to accurately predict treatment outcomes

in patients with focal epilepsy being treated with oxcarbazepine. “Genome-wide association

study of hyperthyroidism based on electronic medical record from Taiwan” by Liu et al.

identifies genetic risk factors for hyperthyroidism, which can be used to guide treatment.

Schaibley et al.’s and Field’s articles highlight the challenges and opportunities involved

in implementing genomics-based precision medicine in clinical practice. “Limited genomics

training among physicians remains a barrier to genomics-based implementation of precision

medicine” raise the awareness that genomics training for healthcare professionals needs to

start at the medical school level to teach physicians how to use genomic data in patient

care. “Bioinformatic challenges detecting genetic variation in precision medicine programs”

discusses the challenges involved in using bioinformatics techniques to analyze and interpret
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genomic data in precision medicine programs, including the need

to develop robust data management systems and to address issues

of data privacy and security. The use of artificial intelligence (AI) in

training and use for precision medicine can help to address these

challenges by providing tools and algorithms that can automate

the analysis of genomic data and support the development of

personalized treatment plans. However, it is important to ensure

that these AI-based approaches are validated and that they are

used in a responsible manner that considers the unique needs and

circumstances of individual patients.

The rest of the articles emphasize precision medicine in

oncology; all highlight the potential of precision medicine in

improving patient outcomes and tailoring treatment to the

specific needs of individual patients in oncology. “A somatic

mutation signature predicts the best overall response to anti-

programmed cell death protein-1 treatment in epidermal growth

factor receptor/anaplastic lymphoma kinase-negative non-squamous

non-small cell lung cancer” by Peng et al. demonstrates the

potential of using a somatic mutation signature, a profile of

genetic changes present in a tumor, to predict the best overall

response to anti-PD-1 treatment in non-small cell lung cancer.

“Precision medicine: An optimal approach to patient care in renal

cell carcinoma” by Sharma et al. discusses the genomic changes

that are associated with renal cell carcinoma and how these

changes can be used to guide treatment decisions. “Development

and validation of a prognostic signature associated with tumor

microenvironment based on autophagy-related lncRNA analysis in

hepatocellular carcinoma” by Deng et al. presents a prognostic

signature based on the analysis of long non-coding RNAs

associated with the tumor microenvironment that is able to

accurately predict patient outcomes in hepatocellular carcinoma.

These studies show that precision medicine has the potential to

revolutionize the management of cancer by providing personalized

treatment strategies based on the unique characteristics of each

patient’s disease.

In conclusion, precisionmedicine is changing the waymedicine

is implemented and continues to improve patient outcomes.

As significant as the advances are in this field, there are still

challenges to be addressed including education of physicians

in this area and new technologies to drive the science toward

precision, the benefits of precision medicine are clear, and it is

essential that we continue to invest in and support research in

this field.
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Low-Dose Everolimus Maintenance
Therapy for Renal Angiomyolipoma
Associated With Tuberous Sclerosis
Complex
Cong Luo 1†, Wen-Rui Ye 2†, Xiong-Bin Zu 1, Min-Feng Chen 1, Lin Qi 1, Yang-Le Li 1* and

Yi Cai 1*

1Department of Urology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University,

Changsha City, China, 2Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha City, China

Objective: To assess the safety and efficacy of low-dose everolimus maintenance

therapy for tuberous sclerosis complex-related renal angiomyolipoma (TSC-RAML)

patients that had previously undergone standard-dose treatment for a minimum of

6 months.

Materials and Methods: In total, 24 patients with a definitive TSC diagnosis were

enrolled from April 2018 – April 2019 at Xiangya Hospital, Central South University. All

patients underwent low-dose everolimus maintenance therapy following standard-dose

everolimus induction therapy for a minimum of 6 months. Patients additionally underwent

TSC1/TSC2 genetic testing, And they were followed-up at 3, 6, 12, 18, and 24 months.

The Response Evaluation Criteria in Solid Tumors (RECIST, version 1.1) criteria were used

to monitor patient RAML responses, while adverse events (AEs) were assessed as per

the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE,

version 4.0). P < 0.05 was the significance level for all analyses, which were performed

using SPSS 19.0.

Results: TSC1/TSC2 gene mutations were present in all 24 patients, all of whom

achieved a significant reduction in TSC-RAML volume within the initial 6-month induction

therapy period, and exhibited volume stabilization during the low-dose maintenance

therapy treatment period without any instances of TSC-RAML regrowth. Adverse events

(AEs) were significantly less severe and less frequent over the course of maintenance

therapy relative to standard therapy.

Conclusions: Low-dose everolimus maintenance therapy represents an effective

approach to achieving TSC-RAML control following a minimum of 6 months of full-dose

induction therapy, and may be associated with decreases in everolimus-related AE

frequency and severity.

Keywords: tuberous sclerosis complex, renal angiomyolipoma, everolimus, low-dose maintenance therapy, safety
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INTRODUCTION

Tuberous sclerosis complex (TSC) is an autosomaldominant
syndrome that impacts between 1 in 6,000 and 1 in 10,000
individuals, resulting in characteristic neurodevelopmental
features and the development of multiple tumors in organs
including the skin, heart, lungs, brain, and kidneys (1).
Upwards of 80% of TSC patients are affected by renal
angiomyolipoma (RAML) (2), which is characterized by multiple
bilateral lesions in the smooth muscles, adipose tissue, and
vasculature (3). As these tumors typically grow over time,
TSC-RAML can result in arterial hypertension and imposes
a risk of life-threatening hemorrhage, which is the leading
cause of TSC-associated mortality among adults with this
condition (4).

Most TSC patients present with mutations in the TSC1
or TSC2 genes, which encode proteins that form the TSC1-
TSC2 complex that serves to antagonize the signaling pathway
downstream of mammalian target of rapamycin (mTOR) by

FIGURE 1 | Low-dose maintenance treatment schematic diagram.

promoting the activation of the small GTPase Rheb and
thereby inhibiting cellular growth and proliferation. Pathogenic
TSC1/TSC2 variants result in constitutive mTOR pathway
hyperactivation, thereby contributing to the growth of benign
tumors or hamartomas in multiple systems (5).

Everolimus is an mTOR inhibitor that has shown
promise for the treatment of complications associated with
TSC including RAML, seizures, facial angiofibromas, and
subependymal giant cell astrocytomas (SEGAs) (6–9). Indeed,
everolimus treatment can result in an initial rapid decrease
in TSC-RAML volume, followed by a secondary phase
during which these tumors slowly shrink or stabilize (7).
The International Tuberous Sclerosis Complex Consensus
Conference held in 2012 recommended the first-line use
of mTOR inhibitors for the treatment of RAML ≥ 3 cm
in diameter, even when not associated with any clinical
symptoms (10).

Prior work suggests that TSC-RAML regrowth may occur
following the cessation of mTOR inhibitor therapy, and the
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ideal duration for this therapeutic strategy remains to be
defined optimal duration of mTOR inhibitor treatment has yet
to be determined (11, 12). With respect to safety, the short-
term adverse effects associated with everolimus are typically
acceptable, although in a few instances more severe events
have been reported (13). Long-term treatment-related safety
outcomes, however, remain to be established. Wheless and Klim
(14) proposed a dose reduction algorithm designed to minimize
the negative impact of mTOR inhibitor treatment for patients
with SEGAs that are shrinking or stable in size. We were thus
interested in whether the everolimus dose could similarly be
reduced to control the frequency and severity of adverse events
(AEs) in patients with controlled TSC-RAML. This study was
therefore designed to examine the safety and efficacy of low-dose
everolimusmaintenance therapy in TSC-RAML patients that had
previously undergone treatment with a standard everolimus dose
for a minimum of 6 months.

METHODS

Study Group
This was a single-center, open-label, single-arm, prospective
interventional study performed between April 2018 and April
2019 at Xiangya Hospital, Central South University. The Human
Ethics Committee of Xiangya Hospital, Central South University
approved this study prior to patient enrollment, and all protocols
were performed in accordance with the Declaration of Helsinki
(15). Patients provided written informed consent prior to
voluntary study participation. Patients eligible for inclusion
were: 1) individuals with a definitive TSC diagnosis as defined
by meeting 2 major criteria or 1 major criterion and ≥ 2
minor criteria recommended by the 2012 International Tuberous
Sclerosis Complex Consensus Conference (10); 2) individuals
≥ 18 years old; 3) individuals with a minimum of one RAML
≥ 30mm in diameter.

All patients underwent oral everolimus induction therapy (10
mg/day) for 6 months, after which they underwent radiographic
follow-up and a safety evaluation. All patients that achieved
a ≥ 50% decrease in the total volume of the target AML
(relative to baseline) were assigned to the low-dose oral
everolimus maintenance group (5 mg/day), while patients not
meeting these criteria underwent induction therapy for an
additional 6 months. Follow-up was then repeated at 12 months,
at which time patients were assigned to undergo low-dose
maintenance therapy regardless of the observed reduction in
AML size. Combination treatment options were considered for
individuals exhibiting a poor response to everolimus. Patient
follow-up was performed at 3, 6, 12, 18, and 24 months
(Figure 1).

Patient Evaluation and Follow-Up
Abdominal magnetic resonance imaging (MRI) was used to
visualize RAML tumors at baseline, with up to four RAMLs with
a maximum diameter ≥ 3.0 cm being identified as target lesions
in each patient. The sum of the diameters of these target lesions
was calculated. Over the course of follow-up, patients underwent

TABLE 1 | Baseline patient demographic and disease characteristics.

Everolimus (N = 24)

Age in years, median (range) 27 (19–33)

<30 18 (75%)

≥30 6 (25%)

Sex

Male 8 (33.3%)

Female 16 (66.7%)

Gene mutation

TSC1 4 (16.7%)

TSC2 20 (83.3%)

Epilepsy 3 (12.5%)

Diagnosis of LAMs 5 (20.8%)

Skin lesions (≥1) 24 (100%)

Presence of SEGAs 1 (4.1%)

Renal impairment (GFR < 60 mL/min) 1 (4.1%)

Diameter of the largest RAML lesions

6–8 cm 11 (45.8%)

4–6 cm 11 (45.8%)

3–4 cm 2 (8.3%)

Sum of volumes of target renal

angiomyolipoma lesions, cm3

Mean (SD, cm3 ) 155.7 (100.4)

Median (range, cm3 ) 121.6 (29.6∼348)

Bilateral angiomyolipoma 20 (88.3%)

Number of target RAML lesions

1∼2 14 (58.3%)

3∼4 10 (41.7%)

Previous angiomyolipoma therapy

Surgery/invasive procedure 9 (37.5%)

Renal embolization 3 (12.5%)

Partial nephrectomy 2 (8.3%)

Nephrectomy 4 (16.7%)

Medication 0 (0)

LAMs, lymphangioleiomyomatosis; SEGAs, subependymal giant cell astrocytomas;

RAML, renal angiomyolipoma.

routine urine, blood, physical, and radiographic analyses. The
Response Evaluation Criteria in Solid Tumors (RECIST, version
1.1) criteria were used to monitor patient RAML responses,
while adverse events (AEs) were assessed as per the National
Cancer Institute Common Terminology Criteria for Adverse
Events (CTCAE, version 4.0).

Genetic Analysis
TSC1/TSC2 mutational status was assessed via a next-generation
sequencing (NGS) approach at the NHC Key Laboratory of
Cancer Proteomics (Hunan Province, China). Pathogenic
mutations were confirmed through reference to the LOVD
databases (www.lovd.nl/TSC1; www.lovd.nl/TSC2). The
potential impact of newly identified mutations resulting in
amino acid substitutions on protein function was assessed with
the online SIFT and PolyPhen2 tools.

Frontiers in Medicine | www.frontiersin.org 3 November 2021 | Volume 8 | Article 7440508

http://www.lovd.nl/TSC1
http://www.lovd.nl/TSC2
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Luo et al. Low-Dose Everolimus Therapy for TSC

TABLE 2 | Mutations detected by next-generation sequencing.

No Sex Age Mutant gene Nucleotide change Protein change Mutation Type

1 Female 19 TSC2 c.1922G>T Ser641Ile Missense mutations

2 Female 22 TSC2 c.2407C>T Gln803* Nonsense mutations

3 Female 23 TSC2 c.2407C>T Gln803* Nonsense mutations

4 Female 24 TSC2 c.3838G>T Gln1280* Nonsense mutations

5 Male 24 TSC2 c.5161del Met1721Trpfs*105 Frameshift mutations

6 Male 27 TSC2 c.1001T>G Val334Gly Missense mutations

7 Female 28 TSC1 c.1431_1434del Glu478Lysfs*53 Frameshift mutations

8 Female 29 TSC2 c.2098-2A>G p? Intron mutation

9 Male 32 TSC2 c.3707T>C Met1236Thr Missense mutations

10 Female 24 TSC1 c.1960C>T Gln654* Nonsense mutations

11 Male 26 TSC2 c.2785G>T Glu929* Nonsense mutations

12 Female 26 TSC2 c.1348G>T Glu450* Nonsense mutations

13 Female 25 TSC1 c.1960C>T Gln654* Nonsense mutations

14 Male 26 TSC2 c.5024C>T Pro1675Leu Missense mutations

15 Male 26 TSC2 c.820T>A Tyr274Asn Missense mutations

16 Female 27 TSC1 309G>A Trp103* Nonsense mutations

17 Female 28 TSC2 c.2251C>T Arg751* Nonsense mutations

18 Male 29 TSC2 c.2988del Ser997Valfs*19 Frameshift mutations

19 Female 29 TSC2 c.4604A>T Asp1535Val Missense mutations

20 Male 30 TSC2 c.3180G>A Trp1060* Nonsense mutations

21 Female 31 TSC2 c.3412C>T Arg1138* Nonsense mutations

22 Female 31 TSC2 c.4708A>T Arg1570Trp Missense mutations

23 Female 33 TSC2 c.1547_1559delinsGTGCTGCC Ala516Glyfs*71 Frameshift mutations

24 Female 33 TSC2 EX25_36 DEL – Large rearrangements

TABLE 3 | Response of AML volume to everolimus therapy.

3 months 6 months 12 months 18 months 24 months

Patients (n) 24 24 24 24 22

No. of response (n, %) 12 (50) 12 (50) 13 (54) 13 (54) 12 (55)

*% of baseline value (Mean ± SD, %) 48 ± 18 52 ± 19 53 ± 20 53 ± 19 52 ± 19

*The average percentage change of baseline in the total volume of all target AML lesions.

Statistical Analysis
Continuous variables are given as mean ± standard deviation
(M ± SD), while categorical variables are given in the form
of frequencies (n) and percentages (%). Categorical variables
were compared using the chi-square test. SPSS 19.0 (SPSS, IL,
USA) was used for all statistical testing, with P < 0.05 as the
significance threshold.

RESULTS

Patient Characteristics
In total, 24 patients (8 male, 16 female) were enrolled
in this study, with a median age of 27 years. Patient
demographics are compiled in Table 1. Of these patients, 20
and 4 were found to harbor TSC2 and TSC1 mutations,
respectively, via NGS (Table 2). Three of these patients had
a history of epilepsy, two were treated with antiepileptic
monotherapy (oxcarbazepine, lamotrigine), while the remaining

one with antiepileptic combination therapy (oxcarbazepine
+ topiramate). Five of these patients were diagnosed with
lymphangioleiomyomatosis (LAM), all suffered from skin
lesions, and one presented with SEGAs. One patient had
a renal impairment of GFR < 60 mL/min. With respect
to the baseline RAML characteristics in these patients, 11
exhibited RAMLs with a maximum diameter ≥ 6 cm, 20
exhibited bilateral RAMLs, and 10 presented with 3-4 target
RAML lesions.

Before enrollment in this study, 3, 2, and 4 of these
patients had respectively undergone renal embolization, partial
nephrectomy, and nephrectomy. No patients had undergone
prior medication therapy. Over the follow-up period, two
patients withdrew from the study at 24 months, leaving 22
patients for the assessment of RAML status. One gave up
medication for economic reason, and the other withdrew from
the study due to the unavailability of everolimus resulted from
COVID-19 pandemic.
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FIGURE 2 | Changes in TSC-RAML volume from baseline during the induction

therapy and the maintenance therapy. Each line represents TSC-RAML

volume change in one patient.

Treatment Efficacy
The patients’ response of AML volume to everolimus during
treatment is detailed in Table 3. The number of patients who
achieved ≥ 50% reduction in RAML volume was 12 (50%) at 6
months and 13 (54%) at 12 months, respectively. The change in
RAML volume for each patient over the study period is displayed
in Figure 2, with the most significant decrease in tumor volume
having been observed within the initial 6 months of standard-
dose everolimus therapy. In total, 12 patients achieved ≥ 50%
reduction in total target AML volume at 6 months, whereupon
they initiated low-dose everolimusmaintenance therapy. Just one
of the remaining 12 patients achieved ≥ 50% reduction in target
AML volume after an additional round of full-dose everolimus
treatment. Target RAML volumes were well-controlled in all
patients during the maintenance therapy period.

The pulmonary function in 5 female patients with LAM
during everolimus therapy are detailed in Table 4. At baseline,
four patients showed moderate airflow obstruction (forced
expiratory volume in 1 second (FEV1): 50–70% of the predicted
value), while one patient showed severe airflow obstruction
(FEV1 < 50% of the predicted value). During the medication
period, an increase was observed in FEV1, forced vital capacity
(FVC), total lung capacity, and diffusion capacity for carbon
monoxide (DLCO) among all the five patients, while the residual
volume decreased. The changes in FEV1, FVC, and residual
volume for each patient are shown in Figure 3. It further
displayed the improved pulmonary function in patients with
LAM. These results indicated that both full-dose and low-dose
everolimus treatment have a protective effect on pulmonary
function in patients with TSC.

Adverse Events
All AEs recorded during the induction and maintenance phases
of everolimus treatment are compiled in Table 5. While six
grade 3–4 AEs occurred during full-dose induction therapy,
none occurred during low-dose maintenance therapy. The most
common AEs during full-dose induction therapy included oral

TABLE 4 | Pulmonary functional characteristics of patients with LAM.

Value Baseline 12 months 24 months

(n = 5) (n = 4) (n = 4)

FEV1

Least-square

mean (liters)

1.30 ± 0.15 1.63 ± 0.27 1.69 ± 0.29

Percent of

predicted value

55.08 ± 9.26 62.06 ± 10.09 73.02 ± 14.93

FVC

Least-square

mean (liters)

2.52 ± 0.54 3.02 ± 0.62 3.67 ± 0.72

Percent of

predicted value

73.29 ± 12.37 85.52 ± 12.13 100.39 ± 11.37

Total lung capacity

Least-square

mean (liters)

4.80 ± 0.52 5.18 ± 0.29 5.91 ± 0.53

Percent of

predicted value

92.09 ± 6.64 100.23 ± 4.22 112.92 ± 9.13

Residual volume

Least-square

mean (liters)

2.28 ± 0.07 1.97 ± 0.14 1.90 ± 0.18

Percent of

predicted value

120.40 ± 5.35 111.72 ± 6.69 112.30 ± 7.06

DLCO

Least-square

mean

(ml/mmHg/min)

12.03 ± 2.52 12.70 ± 2.62 15.34 ± 2.10

Percent of

predicted value

49.43 ± 9.53 52.13 ± 8.01 62.08 ± 9.35

FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; DLCO, diffusion capacity

for carbon monoxide.

mucositis (22/24), abdominal pain (10/24), hypertriglyceridemia
(10/24), and headache (9/24), while the most common AEs
during low-dose maintenance treatment were oral mucositis
(10/24) and hypertriglyceridemia (9/24). AEs with significant
incidence reductions during low-dose maintenance therapy
included oral mucositis (P < 0.001), irregular menstruation
(P = 0.04), upper respiratory infections (P = 0.02), and fever
(P = 0.04). No unexpected AEs or mortality were reported,
and no patients declined treatment or withdrew from the study
due to AEs.

DISCUSSION

This study is the first to our knowledge to have assessed the
efficacy and safety of low-dose everolimus maintenance therapy
for the treatment of TSC-RAML patients after a minimum 6-
month full-dose induction therapy period.

Owing to the potential for rebound after withdrawal, sustained
everolimus therapy is necessary to effectively control TSC-
RAML. However, continuous everolimus treatment is associated
with a number of issues. First, prolonged standard everolimus
treatment is expensive and can impose a major economic burden
on patients that decreases their compliance. Second, lifelong
mTOR inhibitor treatment is often required for TSC patients,
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FIGURE 3 | Changes of pulmonary function in the five patients with LAM. (A) The changes of FEV1 from baseline during treatment. Each line represents FEV1 change

in one patient. (B) The changes of FVC from baseline during treatment. Each line represents FVC change in one patient. (C) The changes of residual volume from

baseline during treatment. Each line represents residual volume change in one patient.

TABLE 5 | Adverse events associated with everolimus in the study group during induction and maintenance therapy.

Adverse events Induction therapy Maintenance therapy P-value

All grade Grade 3/4 All grade Grade 3/4

Mucositis oral 22/24 0 10/24 0 <0.001

Irregular menstruation 8/16 4/16 1/16 0 0.04

Abdominal pain 10/24 0 5/24 0 0.12

Hypertriglyceridemia 10/24 0 9/24 0 0.77

Headache 9/24 0 6/24 0 0.35

Diarrhea 8/24 0 7/24 0 0.76

Upper respiratory infection 7/24 0 1/24 0 0.02

Proteinuria 6/24 1/24 5/24 0 0.73

Malaise 6/24 0 5/24 0 0.73

Rash acneiform 5/24 1/24 2/24 0 0.22

Cholesterol high 5/24 0 3/24 0 0.44

Fever 4/24 0 0 0 0.04

Urinary tract infection 4/24 0 2/24 0 0.38

Hematuria 3/24 0 0 0 0.07

Alkaline phosphatase increased 3/24 0 4/24 0 0.68

Constipation 3/24 0 1/24 0 0.30

GGT increased 3/24 0 2/24 0 0.64

Hypophosphatemia 3/24 0 1/24 0 0.30

Seizures 2/24 0 0 0 0.15

Pneumonitis 2/24 0 0 0 0.15

Vomiting 2/24 0 0 0 0.15

Lymphocyte count decreased 2/24 0 1/24 0 0.55

Anemia 2/24 0 2/24 0 1

Neutrophil count decreased 1/24 0 0 0 0.31

Hyperuricemia 1/24 0 0 0 0.31

Creatinine increased 1/24 0 1/24 0 1

The bold values refers to p < 0.05 with statistic significance.

particularly for individuals < 40 years of age, emphasizing
the need to explore more feasible or cost-effective solutions.
Third, sustained standard everolimus treatment can result in
potentially severe AEs. Lastly, the most prominent tumor
growth reduction generally occurs within the initial 3–6 months
of treatment in patients, whereafter tumor volumes tend to

stabilize or decrease gradually (16). We therefore designed
the present study to assess the ability of low-dose everolimus
maintenance to control RAML volumes and to reduce AE
incidence, given that such an approach has previously been
reported to be successful in the treatment of TSC-related
SEGAs (17).
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Herein, the everolimus dose utilized for low-dose
maintenance therapy was reduced to 5 mg/day from 10
mg/day. All patients achieved a significant reduction in TSC-
RAML volume over the first 6 months of induction treatment,
and maintained a stable TSC-RAML volume during the low-dose
maintenance period without any evidence of target AML lesion
growth or progression. This suggests that low-dose everolimus
maintenance therapy is an effective therapeutic option for
TSC-AML patients. Moreover, pulmonary functions, including
FEV1, FVC, total lung capacity, DLCO, and residual volume,
were improved in five patients with LAM during both full- and
low-dose everlimus therapy, which further confirmed the efficacy
of low-dose everlimus therapy.

Everolimus therapy is commonly associated with a range
of AEs that can affect treatment efficacy and compliance
in some patients. We found that these everolimus therapy-
related AEs were significantly less frequent and less severe
during the low-dose maintenance therapy compared with
the standard treatment period, consistent with a previous
study (17). Reducing the incidence of oral mucositis is
critical to improving patient compliance. Most importantly,
no grade 3-4 AEs were observed in the context of low-dose
maintenance therapy, in contrast to the incidence of such
complications during full-dose everolimus treatment. These
results thus suggest that low-dose everolimus maintenance
therapy is a feasible and well-tolerated option for patients
with TSC-RAML.

While these results are promising, this study is nonetheless
limited by the fact that it is a single-center analysis of a
relatively small patient population. Even so, we hope that this
study can provide a reference for the everolimus treatment
of TSC-RAML patients, particularly those patients that exhibit
poor tolerance for full-dose everolimus therapy. We plan
to recruit more patients for treatment with this low-dose
maintenance therapy regimen, and as such, our available
efficacy and safety data will continue to expand in the future.
Another noteworthy limitation of this study is that we were
unable to assess drug concentrations in patient blood owing
to technical limitations. However, we believe that consistent
dosing will largely mitigate the potential bias associated with
this limitation.

CONCLUSIONS

Low-dose everolimus maintenance therapy is an effective
therapeutic approach to controlling TSC-RAML following full-
dose induction therapy, and may reduce the frequency and
severity of AEs associated with everolimus.
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Objective: The present study aimed to establish a prognostic signature based on

the autophagy-related long non-coding RNAs (lncRNAs) analysis in patients with

hepatocellular carcinoma (HCC).

Methods: Patients with HCC from The Cancer Genome Atlas (TCGA) were taken as the

training cohort, and patients from the International Cancer Genome Consortium (ICGC)

were treated as the validation cohort. Autophagy-related lncRNAs were obtained via

a co-expression network analysis. According to univariate and multivariate analyses, a

multigene prognostic signature was constructed in the training cohort. The predictive

power of the signature was confirmed in both cohorts. The detailed functions were

investigated using functional analysis. The single-sample gene set enrichment analysis

(ssGSEA) score was used to evaluate the tumor microenvironment. The expression

levels of immunotherapy and targeted therapy targets between the two risk groups

were compared. Finally, a nomogram was constructed by integrating clinicopathological

parameters with independently predictive value and the risk score.

Results: Four autophagy-related lncRNAs were identified to establish a prognostic

signature, which separated patients into high- and low-risk groups. Survival analysis

showed that patients in the high-risk group had a shorter survival time in both cohorts. A

time-independent receiver-operating characteristic (ROC) curve and principal component

analysis (PCA) confirmed that the prognostic signature had a robust predictive power and

reliability in both cohorts. Functional analysis indicated that the expressed genes in the

high-risk group are mainly enriched in autophagy- and cancer-related pathways. ssGSEA

revealed that the different risk groups were associated with the tumor microenvironment.

Moreover, the different risk groups had positive correlations with the expressions of

specific mutant genes. Multivariate analysis showed that the risk score also exhibited

excellent predictive power irrespective of clinicopathological characteristics in both

cohorts. A nomogram was established. The nomogram showed good discrimination,

with Harrell’s concordance index (C-index) of 0.739 and good calibration.
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Conclusion: The four autophagy-related lncRNAs could be used as biological

biomarkers and therapeutic targets. The prognostic signature and nomogram might aid

clinicians in individual treatment optimization and clinical decision-making for patients

with HCC.

Keywords: hepatocellular carcinoma, long non-coding RNA, autophagy, prognostic signature, TCGA, ICGC

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the fatal tumors
occurring worldwide due to its aggressive biological behavior,
rapidly increasing frequency, and high mortality (1, 2).
Undoubtedly, the most difficult challenges that most clinicians
face are early diagnosis and surgical intervention (3). Despite
significant improvements in diagnosis and multimodal
therapies, the survival benefit remains limited, owning to
high heterogeneity (4–6). Hence, reliable predictive and
prognostic biomarkers should be discovered to improve risk
prediction ability and guide individualized therapy.

Autophagy is a multistep lysosomal degradation system that
facilitates metabolic adaptability and nutrition cycling. These
are biological processes that keep cell functioning properly
(7–9). Autophagy has also been implicated in a variety of
diseases, including cancer (10). However, the roles of autophagy
in cancer are bilateral. On one hand, autophagy could offer
the essential circulating metabolic substrates and enzymes to
respond to various adverse circumstances; on the other hand,
inappropriate autophagy enables malignant cells to proliferate
rapidly, especially in advanced cancer (11, 12). Many studies
have looked into a novel possible target therapy by investigating
autophagy mechanisms (13, 14).

Long non-coding RNA (lncRNA) is a class of newly found
RNA transcripts that cannot code for proteins. It usually has
more than 200 nucleotides (15). By controlling transcriptionally
or post-transcriptionally biological processes such as autophagy,
an increasing number of lncRNAs have been linked to
various physiological and physiological progress, including gene
expression regulation, RNA decay, microRNA regulation, and
protein folding (16, 17). Accumulating evidence suggested that
lncRNAs could inhibit or activate the autophagy process through
altering autophagy-related genes or pathways (18, 19).

With rapid advances in the RNA-sequencing technology, the
potential for utilizing a lncRNA as a biomarker to aid the cancer
detection, treatment, or prognosis has been gradually revealed
(20). Using a comprehensive analysis of microarray data from
The Cancer Genome Atlas (TCGA) and International Cancer
Genome Consortium (ICGC) databases, the current study aimed
to establish an autophagy-related lncRNA prognostic signature

Abbreviations: lncRNAs, long non-coding RNAs; TCGA, The Cancer Genome

Atlas; ICGC, International Cancer Genome Consortium; HCC, hepatocellular

carcinoma; HADb, Human Autophagy Database; KM, Kaplan–Meier; AIC, Akaike

information criterion; ROC, receiver-operating characteristic; AUC, area under the

ROC curve; C-index, Harrell’s concordance index; GO, Gene Ontology; KEGG,

Kyoto Gene and Genomic Encyclopedia; GSEA, Gene set enrichment analysis; OS,

overall survival.

and a prognostic nomogram to predict the clinical outcome of
patients with HCC.

MATERIALS AND METHODS

Patient Data Acquisition
RNA-sequencing of patients with HCC and accompanying
clinical data were downloaded from the TCGA (https://portal.
gdc.cancer.gov/) and ICGC (https://icgc.org/). Patients with a
follow-up duration of <1 month were excluded for survival
analysis. The training group consisted of 343 patients with HCC
from the TCGA database, and the clinical data were shown in
Supplementary Excel S1. At the same time, the validation group
consisted of 230 patients with HCC from the ICGC database. The
clinical information is shown in Supplementary Excel S2.

Due to the collection of all the data directly from public
databases, no protocol was required from the ethical committee.

Autophagy-Related lncRNAs Screening
A total of 232 autophagy-related genes were obtained from
the Human Autophagy Database (HADb, http://autophagy.lu/
clustering/index.html). Then, the expression levels of these
autophagy-related genes were retrieved from the TCGA and
ICGC data sets.

The co-expression network between the expression of
lncRNAs and autophagy-associated genes was investigated.
LncRNAs with a correlation coefficient |R| > 0.5 and p < 0.050
were considered to be autophagy-related lncRNAs.

The lncRNA–mRNA co-expression network was constructed
to explore the relationships between the autophagy-related
lncRNAs and their mRNA counterparts. Cytoscape software
(version 3.7.2) was used to visualize the co-expression network.
Sankey plot was utilized to reveal the detailed relationships by
the R studio software using the “ggalluvial” R package.

Construction of an Autophagy-Related
lncRNA Signature
The “survival” R package performed the Kaplan–Meier (KM)
method and univariate Cox regression analysis to screen out
prognostic autophagy-related lncRNAs with both significant
values of p < 0.050 in the training cohort. Then, among these
nominated autophagy-related lncRNAs, the multivariate Cox
regression analysis was employed by the “survival” R package
to assess their contributions as prognostic factors. The lowest
Akaike information criterion (AIC) value was used to find the
best autophagy-related lncRNAs. Subsequently, the risk score was
established by the multiplication of the sum of the coefficients
using autophagy-related lncRNAs expressions.
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Evaluation and Validation of the Prognostic
Signature
A risk score was assigned to each patient with HCC. Based on the
median value of their risk scores, all patients were classified into
high- (high-risk score) and low-risk (low-risk score) groups. The
prognosis of the two groups was compared using the KM survival
curve, and the difference was assessed using a two-sided log-rank
test. Time-dependent receiver-operating characteristic (ROC)
curve analysis was performed using the “survival,” “survminer,”
and “timeROC” R packages to evaluate the specificity and
sensitivity of the prognostic signature. The prognosis accuracy
was measured by the area under the ROC curve (AUC), a
measure of discrimination. AUC ranges from 0.5 (little predictive
power) to 1 (perfect prediction). Principal component analysis
(PCA) was performed using the “ggplot2” R package to explore
distinguishability. Following that, the distribution of patient’s risk
scores and scatter dots plot were depicted to visualize the detailed
correlations of dead states with risk scores.

The subgroup survival analysis stratified by
clinicopathological variables was conducted to evaluate the
prognostic signature’s accuracy across multiple cohorts.

Functional Analysis
The Gene Ontology (GO) and the Kyoto Gene and Genomic
Encyclopedia (KEGG) were used to enhance the potential
functional pathways and categories based on co-expressed genes
of autophagy-related lncRNAs. Significant values of p and q were
defined as <0.050. GO and KEGG analyses were conducted
by applying the “org.Hs.eg.db,” “colorspace,” “stringi,” “ggplot2,”
“dose,” “clusterProfiler,” and “enrichplot” R packages.

The gene set enrichment analysis (GSEA) was utilized to
interpret the functional enrichment of gene expression data. This
method derives its function by analyzing gene sets to determine
whether the gene set shows a statistically significant difference
between the two biological states. Within the “Molecular
Signatures Database” of c2.cp.kegg. v6.2. Symbols by GSEAwith a
Java software, underlying mechanisms were studied. The random
sample permutation number was set as 1,000, and the significance
threshold p < 0.050.

Evaluation of Immune Cell Infiltration
Level, Tumor Purity, and Stromal Content
ESTIMATE was performed to investigate the immune cell
infiltration level (immune score), tumor purity, and stromal
content for each sample (21). The single-sample GSEA (ssGSEA)
score was used to quantify the activity and enrichment level
of immune cell types, functions, and pathways applying the
“limma,” “GSVA,” and “GSEABase” R packages to all samples. The
“pheatmap” R package exhibited heatmap results. The Spearman
correlation was utilized to identify the correlations between risk
score and tumor purity as well as stromal score. The Wilcoxon
rank-sum test was performed to assess the difference between
high- and low-risk groups, and the result was exhibited by the
“ggpubr” R package.

Correlation of the Prognostic Signature
With Targets of Targeted Therapy and
Immunotherapy
For the treatment of malignant tumors, targeted therapy
and immunotherapy have become practical approaches.

FIGURE 1 | Construction and validation of an autophagy-related long non-coding RNA (lncRNA) prognostic signature in the training cohort. The forest map showed

that 9 autophagy-related lncRNAs might be correlated with overall survival based on the Kaplan–Meier (KM) method and univariate Cox regression analysis (A). The

KM survival analysis showed that patients in the high-risk group had a shorter overall survival time (B). Principal component analysis (PCA) showed that the high- and

low-risk patients were located in two distinct distribution clusters; the red dots represented high-risk patients, whereas the blue dots represented low-risk patients (C).

The time-dependent receiver-operating characteristic (ROC) curve showed that the area under the ROC curve (AUC) value for the prognostic signature was 0.728 (D).

The distribution of risk scores between low- and high-risk groups; The red dots represented high-risk patients, whereas the green dots represented low-risk patients

(E). The scatter plot showed the relationship between the risk score and survival time; the red dots represented high-risk patients, whereas the green dots

represented low-risk patients (F).
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Now, the expression levels of immunotherapy and targeted
therapy target genes between high- and low-risk groups were
compared. We sought to predict therapeutic effectiveness
using our risk score. The therapy targets were given as follows:
programmed cell death 1 (PD-1, also known as PDCD1),
vascular Endothelial Growth Factor Receptor (VEGFR1,
also known as FLT1), Fms-like tyrosine kinase 3 (FLT3),
VEGFR 3 (VEGFR3, also known as FLT4), platelet-derived
growth factor receptor alpha (PDGFRA), platelet-derived
growth factor receptor beta (PDGFRB), KIT proto-oncogene
(KIT), ret proto-oncogene (RET), and MET proto-oncogene
(MET), programmed cell death ligand 1 (PD-L1, also known
as CD274), and mammalian target of rapamycin (mTOR).
These correlations were drawn using the “ggpubr” R

package, and the difference was evaluated by a Wilcoxon
rank-sum test.

LncRNA Expression Analysis
First, the raw data of the GSE101728 and GSE62232D data sets
were freely downloaded from the Gene Expression Omnibus
(GEO) database. GSE101728 data set contained seven pairs of
tumor and normal tissues. There were 81 tumor and 10 normal
tissues in the GSE62232D data set. Differential analysis between
the targeted lncRNAs expressions was further investigated in
the tumor and normal tissues. The different expressions of
these lncRNAs were further explored in the TCGA and ICGC
databases. Differential analysis was visualized using the “ggpubr”
R package. Finally, these targeted lncRNA expression levels were

FIGURE 2 | KM survival curves showed the four autophagy-related lncRNA risk factors for hepatocellular carcinoma (HCC). BACE1-AS (A), SNHG3 (B), MIR210HG

(C), and ZEB1-AS1 (D).
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compared based on previous original studies’ quantitative real-
time PCR results (22–31).

Independence of the Prognostic Signature
From Clinicopathological Parameters
Univariate and multivariate Cox proportional hazard
regression analyses were performed by the “survival” R
package to see if the predictive power of the prognostic
signature was independent of clinicopathological parameters in
both cohorts.

Establishment and Evaluation of a
Nomogram for Survival Prediction
To accurately predict the 1-, 3-, and 5-year overall survival
(OS) probability, a prognostic nomogram was constructed by
integrating clinicopathological parameters with independently
predictive value and the risk score. Harrell’s concordance
index (C-index) was performed to evaluate the predictive
accuracy. C-index ranges from 0.5 (no predictive power) to 1
(perfect prediction). Calibration plots were used to assess the
nomogram’s performance characteristics. Each patient would
get the total points from the nomogram, namely Nomo-
score, and patients were classified into three risk groups
using the tertiles of Nomo-scores as the cut-off values. The
performance of the nomogram was further investigated via a KM
curve analysis.

Statistical Analysis
All statistical analyses and figure generations were performed by
the Perl programming language (version 5.30.2, http://www.perl.
org) or R software (version 4.0.2, https://www.r-project.org/). A
co-expression network was constructed using Cytoscape 3.6.1. A
two-sided value of p < 0.050 was deemed statistically significant.

RESULTS

Identification of Autophagy-Related
lncRNAs in Tissue Samples of a Patient
With HCC
The expression levels of 232 autophagy-related genes were
extracted from the TCGA and ICGC database. Subsequently,
the co-expression network analysis identified autophagy-related
lncRNAs with |R| > 0.5 and p < 0.050 as the selection criteria.
Finally, autophagy-related lncRNAs from the two cohorts were
intersected, yielding 19 autophagy-related lncRNAs.

Construction and Validation of an
Autophagy-Related lncRNAs Prognostic
Signature in the Training Cohort
Survival analysis showed that nine autophagy-related lncRNAs
significantly correlated with OS (Figure 1A). Subsequently, a
multivariate analysis revealed that four of nine autophagy-related
lncRNAs were excellent candidates for constructing a prognostic
signature. The candidates were BACE1-AS, SNHG3,MIR210HG,

FIGURE 3 | Validation of the autophagy-related lncRNA prognostic signature in the validation cohort. KM survival curves showed that patients in the high-risk group

had significantly poorer overall survival (A). Principal component analysis showed that patients with different risks were significantly divided into two clusters; the red

dots represented high-risk patients, whereas the blue dots represented low-risk patients (B). The time-dependent ROC curve showed that the AUC value for the

prognostic signature was 0.685 (C). The distribution of risk scores between low- and high-risk groups; The red dots represented high-risk patients, whereas the green

dots represented low-risk patients (D). The scatter plot showed the relationship between the risk score and survival time; The red dots represented high-risk patients,

whereas the green dots represented low-risk patients (E).
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and ZEB1-AS1. The four lncRNAs have been confirmed to be
risk factors (Figure 2). Following that, these autophagy-related
lncRNAs were utilized to construct the following prognostic
signature: risk score = (0.142 × the expression level of BACE1-
AS) + (0.032 × the expression level of SNHG3) + (0.067 × the
expression level of MIR210HG) + (0.112 × the expression level
of ZEB1-AS1).

A risk score was assigned to each subject. The median risk
score was the cut-off point to separate patients into high- or
low-risk groups. The KM survival analysis revealed that the
high-risk group had a shorter OS than the low-risk group (p

< 0.050) (Figure 1B). Patients in the high-risk group had 1-
, 3-, and 5-year survival rates of 75.60, 49.90, and 41.50%,
whereas patients in the low-risk group had 1-, 3-, and 5-year
survival rates of 93.40, 76.30, and 57.00%. The PCA analysis
revealed that the high- and low-risk patients were located in the
two distinct distribution clusters (Figure 1C). Time-dependent
ROC curve analysis further showed that the AUC value for the
prognostic signature was 0.728 (Figure 1D). The distribution
ranking of patients’ risk scores in different groups was shown
in Figure 1E. The correlations of dead status with the risk score
was shown using the scatter dots plot (Figure 1F). These results

FIGURE 4 | Construction of the autophagy-associated lncRNA–mRNA co-expression network and functional enrichment analysis. A network of the four lncRNAs with

co-expressed autophagy-related genes. Red nodes represented lncRNAs, blue nodes represented mRNA, and each edge represented a co-expression relationship

(A). Sankey plot showed the detailed relationships of the four lncRNAs with autophagy-related genes and risk types (B). Gene Ontology (GO) (C) and Kyoto

Encyclopedia of Genes and Genomes (D) pathway analyses showed that these co-expressed genes were mainly correlated with autophagy and enriched in

cancer-related pathways.
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FIGURE 5 | Gene set enrichment analysis (GSEA) between high- and low-risk groups. The altered gene sets in the high-risk group were mainly enriched in

tumorigenesis (A), cancer- and autophagy-related signaling pathways (B), and physical actions of autophagy (C). The protective pathways involved in metabolism

were significantly enriched in the low-risk group (D).

demonstrated that patients with a higher risk score suffered from
a shorter survival duration and a poorer survival rate.

Validation of the Prognostic Signature in
the Validation Cohort
Subsequently, we further investigate the predictive value of the
prognostic signature in the validation cohort. The same formula
calculated the risk score and separated patients into low- or
high-risk groups. As expected, the KM curve demonstrated that
patients in the high-risk group had a shorter survival time
(Figure 3A). PCA showed that patients of different risk groups
were significantly split into two clusters (Figure 3B). Moreover,
a time-dependent ROC curve was generated to validate the
prognosis accuracy (AUC = 0.685), confirming the robust
prediction of the signature (Figure 3C). Figures 3D,E depict the
distribution of risk scores with survival status. These findings
supported the hypothesis that the prognostic signature could
reliably predict the prognosis of patients with HCC.

Construction of the Autophagy-Associated
lncRNA–mRNA Co-expression Network
and Functional Enrichment Analysis
The lncRNA–mRNA co-expression network was constructed to
probe potential functions. As shown in Figure 4A, the network
contains 4 lncRNAs, 91 mRNAs, and 141 lncRNA–mRNA pairs.
The detailed correlations of these lncRNAs with genes and risk
types are also shown on the Sankey plot (Figure 4B). The GO and
KEGG pathway analyses demonstrated that the genes encoded
by these mRNAs were mainly correlated with autophagy and
enriched in pathways in cancer (Figures 4C,D).

Gene Set Enrichment Analysis
The GSEA performed a functional annotation. The GSEA results
revealed that the altered gene sets in the high-risk group were
directly involved in carcinogenesis and progression (Figure 5A).
Besides, differentially expressed genes between the two risk
groups were mainly enriched in the autophagy-associated and
tumor-related pathways, including ERBB signaling pathway,
MAPK signaling pathway, mTOR signaling pathway, VEGF
signaling pathway, WNT signaling pathway, and P53 signaling
pathway (Figure 5B). In addition, the altered expression genes in
the high-risk group were discovered to be involved in autophagy’s
physical effects (Figure 5C). In contrast, the protective metabolic
pathways were significantly enriched in the low-risk group
(Figure 5D).

Comparison of the Immune Activity and
Tumor Microenvironment Between High-
and Low-Risk Groups
We looked at 29 immune-associated gene sets that represented
various immune cell types, functions, and pathways. The activity
and enrichment levels of immune cell types, functions, and
pathways in each sample were measured using the ssGSEA
score. Then, the enrichment scores were compared between low-
and high-risk groups. Figure 6 showed that the low-risk group
exhibitedmore significant immune cell infiltration than the high-
risk group. Furthermore, the 13 immunological pathways in the
low-risk group were more active than those in the high-risk
group. When comparing the tumor purity and stromal scores
between the two risk groups, we discovered that the stromal
score was significantly higher in the low-risk group. In contrast,
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FIGURE 6 | Comparison of the immune activity and tumor microenvironment between high- and low-risk groups. Hierarchical clustering showed that the low-risk

group exhibited more immune cell infiltration than the high-risk group (A). Comparison of stromal scores between the high- and low-risk groups (B). Comparison of

the tumor purity between high- and low-risk groups (C). ***p < 0.001.

the tumor purity trended in the opposite direction, with tumor
purity increasing from low risk to high risk (Kruskal–Wallis test,
p < 0.001).

Effectiveness Prediction of Immunotherapy
and Targeted Therapy With the Prognostic
Signature
As shown in Figure 7, the expression levels of immunotherapy
and targeted therapy target genes were compared between

high- and low-risk categories. The expression levels of
PDGFRB, PDCD1, KIT, FLT3, and FLT4 between the two

risk groups were significantly different. The PDGFRB, PDCD1,
and KIT expression levels were higher in the high-risk

group, while FLT3 and FLT4 expressions were higher in

the low-risk group. Therefore, immunotherapy and targeted
therapy medicines targeting PDGFRB, PDCD1, and KIT

may be more effective in patients with HCC with higher

risk scores.
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FIGURE 7 | Comparisons of the expression levels of immunotherapy and targeted therapy target genes between high- and low-risk subgroups. The platelet-derived

growth factor receptor beta (PDGFRB), programmed cell death 1 (PDCD1), and KIT proto-oncogene (KIT) expression levels were higher in the high-risk group, while

the FLT3 and FLT4 expressions were higher in the low-risk group. *p < 0.050, **p < 0.010, and ***p < 0.001; ns, no significance.

Expression Analysis of lncRNAs
Subsequently, a difference in the expression of the four targeted
lncRNAs was investigated between the tumor tissues and normal
tissues. In the GSE101728 data set, the SNHG3 and ZEB1-
AS1expression levels were higher in the tumor tissues, while
the expression levels of BACE1-AS and MIR210HG showed no
difference (Figure 8A). In the analysis results of the GSE62232
data set, ZEB1-AS1 was highly expressed in tumor tissues
(Figure 8B). The analysis of HCC samples from the TCGA
and ICGC databases both exhibited that BACE1-AS, SNHG3,
and ZEB1-AS1 were highly expressed in the tumor tissue, and
there was no significant difference in MIR210HG expression
(Figures 8C,D). What is more, we have found ten original
studies involving the differential expressions of the four targeted
lncRNAs between normal and tumor tissues. Interestingly,
the lncRNAs expression levels in HCC tumor tissues were
significantly higher than those in the normal control group in
each study (Supplementary Figure S1).

Correlation Analysis of the
Autophagy-Related lncRNA Prognostic
Signature With Clinicopathological
Features
Correlation analysis was done to investigate the clinical value
of the prognostic signature in different subgroups stratified

by the clinicopathological characteristics of the patients. As
shown in Table 1, patients with high-risk scores were prone
to be found in those with greater creatinine or Alpha-
fetoprotein (AFP). The increasing risk score appeared to be
highly connected with advanced T and TNM stages, suggesting
that the prognostic signaturemay be considerably associated with
HCC progression.

Prognostic Value of the Autophagy-Related
lncRNAs Signature Among Different
Subgroups
Subgroup analysis was conducted to investigate the prognostic
value of the autophagy-related lncRNA signature among different
subgroups stratified by clinicopathological variables. As indicated
in Table 2, the prognostic signature performs better in male
patients without liver cirrhosis and family history, whereas obese
individuals in poor physical condition may benefit more from
the prognostic signature. The prognostic signature seemed to
be more applicable to patients with relatively lower serum AFP,
albumin, and creatinine levels in terms of laboratory index.
Besides, the prognostic signature showed excellent predictive
power independent of various clinicopathological features such
as gender, age, alcohol consumption history, tumor stage, and
histological grade.
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FIGURE 8 | The expression levels of the four autophagy-related lncRNAs in HCC tissues and adjacent normal tissues. The expressions of the four lncRNAs in seven

paired HCC and adjacent normal tissues from the GSE10728 data set (A). Comparison of the MIR210HG and ZEB1-AS1 expressions between 10 normal tissues and

81 tumor tissues in the GSE62232 data set (B). Comparison of the four autophagy-related lncRNAs expressions in normal and tumor tissues from the Cancer

Genome Atlas (TCGA) (C) and International Cancer Genome Consortium (ICGC) (D) cohorts. *p < 0.050 and ***p < 0.001.

Independence of the Prognostic Signature
From Clinicopathological Parameters
Univariate and multivariate Cox regression analyses were
performed to assess whether the prognostic signature was a
prognostic factor independent of clinicopathological features
in both cohorts. As shown in Figure 9A, univariate analysis
indicated that ECOG [HR: 2.390; 95% CI: 1.894–3.016; p <

0.001], TNM stage [HR: 1.784; 95% CI: 1.446–2.202; p < 0.001],
liver cirrhosis [HR: 2.426; 95% CI: 1.516–3,881.; p < 0.001],
and the risk score [HR: 1.539; 95% CI: 1.339–1.769; p < 0.001]
were significantly correlated with OS in the training cohort. T
stage was not enrolled in multivariate Cox regression modeling
because the TNM stage was derived based on the T, N, and M
stages. ECOG [HR: 1.680; 95% CI: 1.168–2.417; p = 0.005], liver
cirrhosis [HR: 1.972; 95% CI: 1.060–3.669; p = 0.032], and the
risk score [HR: 1.385; 95% CI: 1.121–1.710; p = 0.002] were
ruled out as independently prognostic factors in multivariate
analysis (Figure 9B). Besides, the risk score was also proven to
be an independently prognostic factor in the validation cohort
(Figures 9C,D).

Establishment of a Nomogram for OS
Prediction
An OS nomogram was formulated based on three independently
prognostic factors in the training cohort. Furthermore, the 1-, 3-,

and 5-year OS rate was displayed in the nomogram (Figure 10A).
The C-index value for OS prediction was 0.739. Calibration plots
further identified that the nomogram performedwell in predicted
1-, 3-, and 5-year survival probabilities with an ideal model,
indicating that the nomogram was perfectly calibrated to predict
OS at assessing the performance characteristics (Figures 10B–D).
Each patient with complete clinical information on the ECOG
score and liver cirrhosis (or not) would get the Nomo-score,
and patients were classified into three risk categories based on
the tertiles of Nomo-scores. The KM curve revealed significant
variations across high-, intermediate-, and low-risk groups (p <

0.001) (Figure 10E).

DISCUSSION

Hepatocellular carcinoma is one of the most lethal and prevalent
primary hepatic malignant neoplasms worldwide. Despite great
improvements in diagnosis and multimodal therapies, the
survival benefit remains limited due to high heterogeneity
(32). Clinically, histological grade, tumor stage, molecular
subtype, and serum indicator prognostic effects were evaluated
(33). However, such clinicopathological characteristics were
unable to provide predictive value, resulting in inaccurate
prognosis judgment. According to the situation, certain high-
risk patients may encounter tumor cell uncontrollable growth
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TABLE 1 | Clinical value of the autophagy-related lncRNA prognostic signature for

HCC.

Characteristics Group Risk score

N Mean P value

Age (years) <60 157 1.154 0.787

≥60 186 1.183

Gender Male 233 1.114 0.120

Female 110 1.289

Alcohol consumption Present 109 1.106 0.482

Absent 218 1.185

Liver cirrhosis Present 131 1.254 0.353

Absent 65 1.112

Family history Present 104 1.063 0.165

Absent 194 1.216

Histological grade G1+G2 211 1.159 0.699

G3+G4 138 1.202

Albumin (g/dl) <4.0 128 1.055 0.633

≥4.0 153 1.105

Creatinine (mg/dl) <1.1 189 0.926 0.005

≥1.1 92 1.169

BMI (kg/cm2) <25 143 1.163 0.776

≥25 152 1.196

AFP (ng/ml) ≤200 187 0.977 0.006

>200 73 1.408

ECOG =0 156 1.094 0.196

>0 117 1.253

T stage I+II 252 1.042 0.002

III+IV 88 1.551

TNM stage I+II 238 1.025 0.001

III+IV 83 1.576

Bold font represents P < 0.05 and the relevant variables are statistically significant.

HCC, hepatocellular carcinoma; HBV, hepatitis B virus; HCV, hepatitis C virus; AFP, alpha-

fetoprotein; BMI, body mass index; ECOG, eastern cooperative oncology group; TNM,

tumor node metastasis; SD, standard deviation.

due to insufficient treatment, while low-risk patients may
receive excessive treatment, resulting in long-term toxicity and
morbidity. Therefore, reliable genetic signatures or biomarkers
as prognostic predictors or therapeutic targets are of significance
for HCC.

The overutilization of amino acids such as tryptophan, aerobic
glycolysis, tricarboxylic acid (TCA) cycle, glutamine, arginine,
defective mitochondrial bioenergetics, and oxidative stress
phosphorylation are all involved in malignant cell progression
and extinction (34, 35). Moreover, these energy metabolisms
are dramatically associated with autophagy progress. Hence,
knowing the specifics and direct links between autophagy
and tumor progression could provide a solid foundation for
creating drugs targeting these pathways and ultimately curing
malignancies. Following decades of researches on prognostic
gene biomarkers of tumor-related events such as microRNAs and
mRNAs, lncRNAs have recently aroused much attention. The
roles of lncRNA in carcinogenesis and malignant tumor growth
have been gradually revealed. The prognostic value of lncRNA

TABLE 2 | Prognostic value of the autophagy-related lncRNA prognostic

signature in different subgroups stratified by clinicopathological variables.

Characteristics Group Low/High HR (95% CI) P value

Overall 172/171 2.249 (1.559–3.256) <0.001

Age <60 76/81 2.832 (1.586–5.056) <0.001

≥60 95/91 1.754 (1.079–2.853) 0.023

Gender Male 124/109 3.125 (1.925–5.072) <0.001

Female 47/63 1.290 (0.7285–2.285) 0.383

Alcohol consumption Present 60/49 3.718 (1.921–7.194) <0.001

Absent 106/112 1.794 (1.136–2.833) 0.012

Liver cirrhosis Present 26/39 2.108 (1.010–4.396) 0.047

Absent 70/67 1.922 (0.962–3.836) 0.064

Family history Present 63/41 1.828 (1.019–3.277) 0.043

Absent 83/111 2.944 (1.688–5.133) <0.001

Histological grade G1+G2 102/109 2.154 (1.338–3.466) 0.002

G3+G4 66/61 2.549 (1.411–4.607) 0.002

Albumin (g/dl) <4.0 76/52 1.908 (1.040–3.501) 0.037

≥4.0 75/78 1.644 (1.893–3.025) 0.110

Creatinine (mg/dl) <1.1 98/91 1.721 (1.034–2.862) 0.037

≥1.1 53/39 1.736 (0.825–3.656) 0.147

BMI (kg/cm2) <25 70/73 1.670 (0.917–3.040) 0.093

≥25 77/75 3.805 (2.105–6.787) <0.001

AFP (ng/ml) ≤200 116/171 1.985 (1.156–3.408) 0.013

>200 21/52 2.041 (0.757–5.506) 0.159

ECOG =0 91/65 1.878 (0.924–3.817) 0.081

>0 53/64 3.016 (1.679–5.416) <0.001

T stage I+II 140/112 2.064 (1.280–3.329) 0.003

III+IV 29/59 1.926 (1.054–3.520) 0.033

TNM stage I+II 135/103 1.915 (1.155–3.174) 0.012

III+IV 26/57 2.025 (1.046–3.921) 0.036

Bold font represents P < 0.050 and the relevant variables are statistically significant.

HBV, hepatitis B virus; HCV, hepatitis C virus; AFP, alpha-fetoprotein; BMI, body mass

index; ECOG, eastern cooperative oncology group; TNM, tumor node metastasis; HR,

hazard ratio.

also has been extensively explored. However, there has yet to
be a systematic method for identifying the autophagy-related
lncRNAs signature that might be used to predict the prognosis
of patients with HCC. Hence, developing an autophagy-related
lncRNAs signature to predict the clinical outcome is critical for
patients with HCC.

In the study, we used the expression profile of HCC
patients’ tumor tissue from the TCGA and ICGC databases
to investigate the prognostic usefulness of autophagy-related
lncRNAs and develop a prognostic signature. We first identified
19 autophagy-related lncRNAs based on the lncRNAs and
autophagy-related gene co-expression network. After univariate
and multivariate Cox regression analyses, four autophagy-related
lncRNAs, including BACE1-AS, SNHG3,MIR210HG, and ZEB1-
AS1, were selected to establish a prognostic signature. Each
patient obtained a risk score. All patients were divided into
high or low risks based on the median value of risk scores. We
also discovered that patients with varied risks were considerably
split into two groups, with the high-risk group having a shorter
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FIGURE 9 | Univariate and multivariate Cox regression analyses for the risk score combined with the clinical characteristics. Univariate analysis for the TCGA (A) and

ICGC (C) cohorts. These parameters with a prognostic value were enrolled into the multivariate Cox regression analysis. The result showed that the risk score was an

independently prognostic indicator in TCGA (B) and ICGC (D) cohorts.

survival time. The ROC curve analysis further confirmed the
prognostic accuracy of the signature. When the predictive
value of the prognostic signature was investigated in the ICGC
validation cohort, similar results were achieved. Univariate and
multivariate regressionmodels showed that the risk score showed
excellent predictive power independent of all clinicopathological
characteristics in both cohorts. Hence, the autophagy-related
lncRNA prognostic signature showed powerful potential for
clinical applications.

When associations of the risk score and clinicopathological
characteristics were investigated, we found that the risk
score was significantly related to advanced tumor and a
higher level of serum AFP. The explanation supported the
findings that improper autophagy contributed to a poor tumor
microenvironment, allowing the malignant cell to proliferate,
invade, and migrate quickly as the tumor advanced. These
alterations might lead to a poor prognosis for patients
with advanced cancers (14, 36). Subgroups analyses stratified
by clinicopathological variables further verified the steadied
predictive value of the prognostic signature.

The role of autophagy in cancer is debatable. As the
understanding of autophagy continues to deepen, the role
has been increasingly revealed. On one hand, autophagy
could provide the essential circulating metabolic substrates and
enzymes to respond to various poor circumstances such as tumor
microenvironment; on the other hand, inappropriate autophagy
also promotes malignant cell rapid growth, particularly in the
advanced tumor. LncRNAs’ roles have recently been discovered
to mediate tumorigenesis, progression, metastasis, and treatment

resistance by regulating genes or microRNAs. The present
study identified four autophagy-related lncRNAs to establish a
prognostic signature. Previous studies confirmed that BACE1-
AS was significantly associated with the prognosis of patients
with cancer (22, 23). BACE1-AS could also enhance autophagy-
related neuronal damage via the miR-214-3p/ATG5 signaling
axis in Alzheimer’s disease (37). Additionally, the functions of
SNHG3 in cancer have been steadily revealed. A growing body
of evidence showed that SNHG3 appeared to influence tumor
formation and progression by modulating autophagy-related
microRNAs, genes, or pathways (24–26). MIR210HG (27, 38–
40) and ZEB1-AS1 (28–31, 41, 42) have also been found to
alter tumorigenesis, progression, and tumor metastasis, resulting
in a poor prognosis for patients with cancer. Unquestionably,
the established prognostic signature based on the four robust
autophagy-related lncRNAs had a more excellent predictive
value. Subsequently, we also identified the genes governed by
the four autophagy-related lncRNAs and established a lncRNA–
mRNA co-expression network. GO and KEGG functional
enrichment analyses showed that these genes were mainly
enriched in autophagy- and tumor-related signaling pathways.

The GSEA functional enrichment analysis showed that
autophagy- and cancer-related pathways were overrepresented
in the high-risk group. The altered gene sets in the high-
risk group were discovered to be engaged in the autophagy-
associated and tumor-related pathways as well as the autophagy’s
physical effects. At the same time, the protective pathways
involved in various metabolisms were significantly enriched
in the low-risk group. As a result, our findings added to
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FIGURE 10 | Establishment of a nomogram for overall survival (OS) prediction. A nomogram for predicting 1-, 3-, and 5-year OS was constructed based on three

independent prognostic factors: the risk score, ECOG, and liver cirrhosis. The detailed 1-, 3-, and 5-year OS rates were displayed in the nomogram (A). Calibration

plots showed that the nomogram performed well in the predicted 1- (B), 3- (C), and 5-year (D) survival probabilities with an ideal model. The black line represents the

“ideal” line of a perfect match between the predicted and observed survival. The blue line indicates the performance of the proposed nomogram. X-axis is the

nomogram predicted probability of survival, and Y-axis is actual survival. Blue dots are subcohorts of the data set; red vertical bars represent a 95% CI. KM curves of

three risk subgroups stratified by the tertiles of Nomo-scores showed the healthy performance of the nomogram (E).
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the growing body of evidence showing that autophagy is a
crucial regulator of oncogenesis and development. We also
concluded that the four autophagy-related lncRNAs could
be therapeutic targets. Moreover, we looked at immune cell
infiltration and antitumor immunological activity between high-
and low-risk groups. The results revealed that patients with low-
risk scores had more immune cell infiltrations and antitumor
immune activities, showing that the high-risk group’s immune
functions were overall impaired. The increasing antitumor
immune activity could explain why patients with low risk had
well clinical outcomes. Moreover, we found that the stromal
score was greater in the low-risk group, whereas the tumor
purity increased from the low- to the high-risk subgroup.
The results further demonstrated that the poor prognosis
might be due to an unbenefited tumor microenvironment.
Currently, immunotherapy and targeted therapy are hot fields
of investigation. The prognostic signature also revealed that
the risk score was significantly associated with the effectiveness
of immunotherapy and targeted therapies, thus validating the
signature’s prediction accuracy.

Nomogram is an effective and reliable clinical tool that
can generate a probabilistic forecast for an individual patient.
To improve prognosis prediction for patients with HCC,
we constructed an OS nomogram based on independently
prognostic factors. Calibration plots showed that the predicted
1-, 3-, and 5-year survival rates were comparable with the actual
observation. A high C-index indicated robust discrimination,
implying that it might function as a predive tool. However,
more research is needed to confirm the prognostic signature in
a larger number of patients and to reveal the potential molecular
mechanisms of the four autophagy-related lncRNAs in HCC.

CONCLUSION

In conclusion, although the autophagy-related lncRNAs
prognostic signature was a promising tool for predicting the
prognosis of patients with HCC, there is a need for further studies
to evaluate the device. The prognostic signature might aid in
better understanding the role of autophagy in carcinogenesis
and progression. The four autophagy-related lncRNAs might be
used as potential biomarkers and therapeutic targets for patients
with HCC. The prognostic signature and nomogram could be

used to stratify patients at risk, aiding clinicians in treatment
optimization and clinical decision-making.
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Objective: Antiseizure medicine (ASM) is the first choice for patients with epilepsy. The

choice of ASM is determined by the type of epilepsy or epileptic syndrome, which may

not be suitable for certain patients. This initial choice of a particular drug affects the

long-term prognosis of patients, so it is critical to select the appropriate ASMs based on

the individual characteristics of a patient at the early stage of the disease. The purpose

of this study is to develop a personalized prediction model to predict the probability of

achieving seizure control in patients with focal epilepsy, which will help in providing a

more precise initial medication to patients.

Methods: Based on response to oxcarbazepine (OXC), enrolled patients were divided

into two groups: seizure-free (52 patients), not seizure-free (NSF) (22 patients). We

created models to predict patients’ response to OXC monotherapy by combining

Electroencephalogram (EEG) complexities and 15 clinical features. The predictionmodels

were gradient boosting decision tree-Kolmogorov complexity (GBDT-KC) and gradient

boosting decision tree-Lempel-Ziv complexity (GBDT-LZC). We also constructed two

additional prediction models, support vector machine-Kolmogorov complexity (SVM-KC)

and SVM-LZC, and these two models were compared with the GBDT models. The

performance of the models was evaluated by calculating the accuracy, precision, recall,

F1-score, sensitivity, specificity, and area under the curve (AUC) of these models.

Results: The mean accuracy, precision, recall, F1-score, sensitivity, specificity, AUC

of GBDT-LZC model after five-fold cross-validation were 81%, 84%, 91%, 87%, 91%,

64%, 81%, respectively. The average accuracy, precision, recall, F1-score, sensitivity,

specificity, AUC of GBDT-KC model with five-fold cross-validation were 82%, 84%, 92%,

88%, 83%, 92%, 83%, respectively. We used the rank of absolute weights to separately

calculate the features that have the most significant impact on the classification of the

two models.

Conclusion: (1) The GBDT-KC model has the potential to be used in the clinic to predict

seizure-free with OXC monotherapy. (2). Electroencephalogram complexity, especially
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Kolmogorov complexity (KC) may be a potential biomarker in predicting the treatment

efficacy of OXC in newly diagnosed patients with focal epilepsy.

Keywords: precisionmedicine, machine learning, predictionmodel, gradient boosting decision tree (GBDT)model,

EEG complexity

INTRODUCTION

Epilepsy is a chronic disease affecting more than 70 million
people worldwide, it is characterized by recurrent, paroxysmal,
rigid, and unpredictable alterations of sensory and motor
systems, and abnormal electrical activity of neurons (1, 2).
Epilepsy is classified into four types: focal, generalized, combined
generalized and focal, and unknown onset (3). Focal epilepsy,
accounting for 60% of all epilepsies, is the most frequent type
of epilepsy and occurs in patients of all ages (4). Comparative
monotherapy trials in patients with newly diagnosed focal
epilepsy have shown that oxcarbazepine (OXC) is equal in
efficacy to phenytoin and immediate-release carbamazepine but
may have superior tolerability (5–7). Pharmacotherapy is the
primary treatment modality for epilepsy, however, in some
patients, seizures cannot be controlled with antiseizure medicine
(ASM) and lead to significant risks of neuronal damage and
cognitive decline (8). This highlights a need for the prediction
of drug response at the drug initiation phase.

However, ASM response is complex and is modulated by
multiple factors, including environmental, anthropometric, and
genetic factors, and biological subsystems affected by the disease
(9). The current standard of care relies on trial and error with
sequential therapy. Although there are drug selection guidelines
based on seizure types (focal or generalized onset), many drugs
have similar efficacy (10). So, drug selection becomes extremely
difficult as it is impossible to predict which drugs will be
the most effective in a particular patient. There are also no
biomarkers that can reliably predict treatment response during
conventional treatment.

Since the 1980s, precision medicine has emerged as a
new paradigm for improving and promoting patient-specific
medicine. Its key goal is to provide personalized treatment
for every patient where medical decisions are based on
the individual characteristics of the patient, rather than the
average characteristics of the entire patient population. Precision
medicine requires the analysis of different types of multivariate
data from the same individual. It has been used in the early
diagnosis and prevention of diseases, reduction of the risk
of side effects and adverse events of medications, and in the
design of clinical trials (11, 12). The development of precision
medicine is inseparable from artificial intelligence. Machine
learning, as a branch of artificial intelligence, has the ability to
build integrated and multi-scale models by integrating different

Abbreviations: ASM, antiseizure medicine; CI, confidence interval; GBDT,

gradient boosting decision tree; GBM, gradient boosting machine; KC,

Kolmogorov complexity; LZC, Lempel-Ziv complexity; NSF, not seizure-

free; OXC, oxcarbazepine; RFE, recursive feature elimination; SF, seizure-free;

SVM, support vector machine; TLE, temporal lobe epilepsy; WGS, whole

genome sequencing.

types of features at different levels. Recently, De Jong et al.
(13) integrated pharmacogenetics and clinical data to achieve
an accurate prediction of brivaracetam treatment response, but
this method is not cost-effective to be integrated in the clinical
practice (14).

Studies have shown that the Electroencephalogram (EEG)
signal is an internal “fingerprint” of individuals (15). Although
with the increase of age, EEG frequency, amplitude, and
other aspects will change to a certain extent, the oscillation
network of brain waves in each adult brain is relatively stable,
and many genetic, structural, and functional abnormalities
related to diseases are more or less directly involved in the
generation and/or synchronization of brain wave oscillations.
Electroencephalogram can be used as a biomarker for the
treatment of brain diseases such as epilepsy (16). Other studies
and our previous work have shown that it is possible to predict
ASM response using EEG-based artificial intelligence (17–20).
So, here we test whether the integration of EEG and clinical data
can be used to construct a prediction model of OXC treatment
outcomes, that can facilitate the correct selection of ASM in
newly-diagnosed patients with focal epilepsy patients.

MATERIALS AND METHODS

Participants and Data Acquisition
Participants
The retrospective study was approved by the Henan Provincial
People’s Hospital ethics committees, and informed consent was
obtained from all participants. Six thousand three hundred
seventy patients with epilepsy were registered between January
2014 and April 2021 at the Epilepsy Center of Henan Provincial
People’s Hospital. Focal epilepsy is defined as seizures originating
within networks limited to one hemisphere and the seizures may
be discretely localized or widely distributed (21). Patients who
meet the following criteria were included: newly diagnosed focal
epilepsy with drug-naïve; OXC is the only ASM after diagnosis;
long-term scalp EEG recordings were conducted before drug
initiation; more than 1 year of follow-up. Exclusion criteria were
the following: generalized epilepsy and epileptic syndrome; other
ASM were taken before OXC; the combination of other ASMs;
lack of EEG data; follow-up data of <1 year and poor adherence;
pregnant or lactating women.

Seventy-four individuals with newly diagnosed patients with
focal epilepsy patients, initially treated with OXC, were enrolled
at our center. After 1 year of follow-up, according to Engel class
(22), SF was defined as patients with epilepsy who met Class I
while not seizure-free (NSF) was defined as patients who met
Engel Class II, III, and IV. Finally, 52 patients were enrolled in
the SF group and 22 in the NSF group (Figure 1).
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FIGURE 1 | Flow chart. EEG, electroencephalogram; AEDs, antiepileptic

drugs; OXC, oxcarbazepine; fPWEs, patients with focal epilepsy; SF,

seizure-free; NSF, not seizure-free.

Clinical Data
We included 15 clinical features: sex, age, age at the onset
of the disease, follow-up time, seizure frequency before OXC,
seizure circadian rhythm, comorbidities, inducement, history of
perinatal injury, physical development, family history of epilepsy,
MRI, temporal lobe epilepsy (TLE), history of central nervous
system infection, and history of head injuries (23–26) (Table 1).

EEG Data
EEG Acquisition
Long-term scalp EEG was carried out by EEG-1200C
electroencephalograph (Nihon Kohden, Tokyo, Japan), the
sampling rate was 256Hz, the amplifier was 1,000x. Electrodes
were placed according to the international 10–20 system.
There were 19 scalp electrodes and 2 reference electrodes.
The discharges of EEG were marked independently by two
experienced electroencephalographers. If there were any
disputes, another clinical neurologist was consulted. We
intercepted a continuous 1-h EEG including the waking period
and the sleeping period. The waking period and the sleeping
period accounted for 30 min each.

EEG Preprocessing
Matlab software (Mathworks Inc., USA) equipped with the
EEGLAB toolbox was used for EEG preprocessing (27).
Electroencephalogram preprocess was as follows: firstly, 0.5–
30Hz EEG fragments were retained using bandpass filter. Then
independent component analysis was used to remove artifacts.
Next, EEG data without epileptic charges or artifacts, were taken
while the patient was awake, and their eyes were open. The EEG

data were divided into 15 s periods and recalculated based on a
reference average. Finally, 15 time periods for each subject were
randomly selected for subsequent analysis.

EEG Complexity Estimators

Lempel–Ziv Complexity
Lempel–Ziv complexity (LZC) is a simple non-parametric
measure to calculate the randomness of a one-dimensional finite-
length sequence. It was related to the number of different
substrings and their occurrence rate along the sequence. The
larger the value is, the more complex the corresponding data is
(28, 29). The following procedure was done with MathWorks in
MATLAB. Before calculating EEG complexity, the binarization
was performed according to the median value of the EEG time
series. For binary sequences S (S1, S2,..., Sn), the sequence length
is n, and c(n) is defined as the LZC value of the EEG time
series. When a new subsequence appears in the time series, c(n)
increases by one unit, and the pattern search continues until
the last string is scanned. For a sufficiently long random 0–1
sequence, the following formula holds if 0 and 1 are equally likely
to occur:

lim
n→∞

c (n) = b (n) = n/ log 2n (1)

The b(n) is used to normalize c(n) to obtain a value independent
of the sequence length n, so LZC is:

LZC = c (n) /b (n) (2)

Kolmogorov Complexity
Kolmogorov complexity (KC), known as algorithmic complexity,
is defined as a new algorithmic measure of randomness
for generating quantitative definitions of information (30).
Kolmogorov complexity describes the randomness of an object,
which is a string based on the length of a computer program; the
complexity of a string, consisting of 0 and 1, is estimated by the
number of bits of the shortest computer program that produces
the string. The KC is described as follows:

ku (x) = min p : u
(

p
)

= xl(p) (3)

Where p is the computer program and l(p) is the length of
x output strings of u general Turing machine (computer).
Kolmogorov complexity is the minimum length of the output
of a computer program. To calculate the KC of an EEG, the
data were first converted into discrete binary sequences. Then,
KC estimation methods could be used to analyze the bits of
the shortest computer program associated with the discrete
sequence. Based on previous reports, the KC estimation was
carried out by the difference method. When the difference
between two sequential samples was positive, the method
assigned 1, and when the difference was negative, it assigned 0.
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TABLE 1 | Demographical and clinical status of the participants.

SF (n = 52) NSF (n = 22) x2/Z/t-value P-value

Sex (Male/female) 33/19 11/11 1.162a 0.281

Age, year 14.5 ± 11.50 16.50 ± 12.00 −0.681b 0.496

Age at onset, year 13.5 ± 12.25 15.50 ± 13.38 −0.361b 0.718

Follow-up time, months 32.58 ± 9.83 36.18 ± 8.91 −1.481c 0.143

Seizure frequency before OXC, times/month 0.65 ± 0.70 15.50 ± 13.37 −1.983b 0.045*

Seizure circadian rhythm (day/night/both) 19/16/17 8/7/7 0.009a 0.995

Comorbidity (Y/N) 27/25 16/6 2.749a 0.097

Inducement (Y/N) 29/23 17/5 3.039a 0.081

History of perinatal injury (Y/N) 12/40 12/10 6.986a 0.008*

Physical development (N/AN) 9/43 3/19 4.469a 0.035*

Family history (Y/N) 2/50 2/20 0.832a 0.362

MRI(P/N) 17/35 13/9 4.469a 0.035*

TLE(Y/N) 16/36 8/14 0.221a 0.638

History of CNS infection (Y/N) 7/45 2/20 0.261a 0.599

History of head injury (Y/N) 5/47 2/20 0.005a 0.944

SF, seizure-free; NSF, not seizure-free; OXC, oxcarbazepine; Y/N, yes/no; N/AN, normal/abnormal; P/N, positive/negative; MRI, magnetic resonance imaging; TLE, temporal lobe epilepsy;

CNS, central nervous system.
aFor qualitative data, Chi-square tests were used.
bFor quantitative data, after Shapiro-Wilk normality test, the Mann-Whitney U-test was applied for data with abnormal distributions, data that did not conform to normal distributions

were presented as the median ± interquartile range.
cData with a normal distribution were compared by the independent sample t-tests, mean ± standard deviation was used to describe. p < 0.05 is considered as statistically significant.

*Defined as features that have statistically significant between SF group and NSF group.

Bold values are statistically significant.

Model Process
For imbalance in a sample, SMOTE was used to strike an
equilibrium during the training process (31). Toolkits: Python’s
sklearn toolkits (32). To avoid overfitting, default parameters
were used unless otherwise specified. The parameters were set
as follows: The number of nearest neighbors is 5 (K = 5);
Degree of over-sampling: making the number of positive and
negative samples consistent. SMOTE in this paper was done
independently within each training set, not used before cross-
validation. The SMOTE consists of two functions, SMOTE (T, N,
K) and Populate (N, i, nnarray). The SMOTE code idea is very
simple: scan every sample point, calculate K nearest neighbor of
every sample point, record the index of each nearest neighbor
point in nnarray, then pass it into Populate (N, i, nnarray), and
complete a sample point. Populate is responsible for randomly
generating N samples similar to the observed sample i based
on the index in the nnarray. The function calculates the gap
dif between random neighboring point nn and each feature of
observed sample point i, multiplying the gap by a [0,1] random
factor gap, and then combining the value of dif ∗ gap plus the
observation point i (33, 34).

SVM Model
The support vector machine (SVM) is a classical classifier with
good performance in dichotomies (35). It has good performance
for small samples (36). Lib-SVM was used for the classification
process. The core of SVM is to establish an optimized hyperplane.
A linear SVM classifier was constructed based on kernel
parameter and regularization C parameter. In this study, the C
parameter was set to 1.

The five-fold cross-validation was used for the classification
process, four-fold pats as the training sets, and one-fold part as
the validation sets. This process was repeated five times until all
subjects went through it once. The recursive feature elimination
(RFE) was used for feature selection. In cross-validation, the
RFE occurs in the training sets but not the validation sets, with
the results of the RFE feature screening from the training sets
to guide the feature selection in the validation sets. Absolute
weight value was applied to the feature selection procedure; the
greater the absolute weight of features, the greater the influence
on classification. We used EEG complexity features such as KC
and LZC combined with clinical features to establish two SVM-
RFEmodels for predicting SF with OXCmonotherapy in patients
with newly diagnosed focal epilepsy.

GBDT Model
Based on the theory of Gradient boosting machine (GBM),
Gradient Boosting Decision Tree (GBDT) is a typical
representative of ensemble learning, which is a lifting algorithm
(37). Gradient Boosting Decision Tree can effectively avoid
overfitting by combining decision trees with gradient algorithms.
It is considered that all machine learning algorithms can be
used as the basic learning machine of gradient lifting by GBM.
Because decision trees are easier to understand and calculate
compared with other algorithms, GBDT chooses decision tree as
the base learning machine. Decision tree can combine multiple
features, and has good processing ability for non-parameterized
features. Therefore, when there are outliers or non-linearly
separable data in the data, decision tree can be used to process
these data. However, the decision tree suffers from the drawback
of overfitting. So, combining the decision tree (formed by the
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combination of multiple gradient lifting methods) with the
gradient lifting algorithm can reduce the overfitting of the
decision tree (38, 39).

Two predictive models were established by GBDT using KC-
clinical, LZC-clinical characteristics. Five-fold cross-validation
was also used for this process. In this process, absolute weights
were used to rank the features that influence classification, as well.

Descriptive Statistics
Statistical analysis was calculated with SPSS. The Shapiro-Wilk
normality test was used to assess the normality distribution of
data. For quantitative data, the independent sample t-tests were
used to compare the data with a normal distribution (Mean
± standard deviation); the Mann-Whitney U-test was applied
for data with abnormal distributions (median ± interquartile
range). A strict false discovery rate based on the Benjamini–
Hochberg correction was applied to p-values to correct for
multiple comparisons. While, for qualitative data, Chi-square
tests were used. P < 0.05 was considered statistically significant
in this study.

RESULTS

The study included 44 males and 30 females. The age range was
5–70, the overall follow-up time ranged from 12 to 60 months.

The average follow-up time was 21.97 months in 74 individuals-
−24.17 months in the SF group and 25.13 in the NSF group.
There were no significant differences in gender, age, and follow-
up time between the two groups. However, significant differences
were found in seizure frequency before OXC (p= 0.045), history
of perinatal injury (p = 0.008), physical development (p=0.035),
and MRI (p= 0.035) (Table 1).

GBDT-LZC
The NSF group showed higher LZC than the SF group. The top
10 features that influenced classification were δ band from F8
channel, θ band from T3 channel (p < 0.05), α band form Cz
channel (p < 0.05), θ band from F3 channel (p < 0.05), α band
form Fz channel (p< 0.05), θ band from T6 channel, TLE, β band
from T3 and Pz channel (p< 0.05), α band form T6 channel (p<

0.05) (Table 2A; Figure 2). The mean accuracy, precision, recall,
F1-score, sensitivity, specificity, and AUC of the GBDT model
after five-fold cross-validation were 81%, 84%, 91%, 87%, 91%,
64%, 81%, respectively (Table 3A; Figure 3). The mean accuracy,
precision, recall, F1-score, sensitivity, specificity, and AUC of the
SVM-RFE model after five-fold cross-validation were 62%, 77%,
91%, 87%, 91%, 64%, 81%, respectively (Table 3B; Figure 3).

GBDT-KC
Like LZC, it was apparent that the NSF group has higher KC
than the SF group. The top ten features that have the highest

TABLE 2 | The top 10 features that impacting the GBDT classifier mostly.

SF NSF Z/t value P-value P
′

-value

(A) GBDT-LZC

δ-F8 0.0240 ± 0.0214 0.0298 ± 0.0132 −1.656 0.098 0.098

θ-T3 0.0518 ± 0.0356 0.0566 ± 0.0558 −2.010 0.044 0.060

α-Cz 0.0631 ± 0.0383 0.0745 ± 0.0500 −2.472 0.013 0.032*

θ-F3 0.0510 ± 0.0352 0.0561 ± 0.0526 −2.032 0.042 0.057

α-Fz 0.0649 ± 0.0384 0.0757 ± 0.0582 −2.424 0.015 0.036*

θ-T6 0.0531 ± 0.0394 0.0587 ± 0.0528 −1.880 0.060 0.068

TLE

β-T3 0.1119 ± 0.0742 0.1261 ± 0.1133 −2.081 0.037 0.050

β-Pz 0.1100 ± 0.7230 0.1227 ± 0.1024 −2.081 0.037 0.050

α-T6 0.0624 ± 0.0334 0.0742 ± 0.0569 −2.389 0.017 0.038*

(B) GBDT-KC

δ-T3 0.2245 ± 0.0068 0.2531 ± 0.2333 −1.809 0.070 0.070

θ-F7 0.0503 ± 0.0204 0.0575 ± 0.0555 −1.904 0.057 0.065

Seizure frequency before OXC

θ-FP1 0.0521 ± 0.038 0.0573 ± 0.0566 −1.928 0.054 0.061

θ-T6 0.0537 ± 0.0398 0.0594 ± 0.0535 −1.904 0.057 0.065

θ-Fz 0.0505 ± 0.0371 0.0564 ± 0.0540 −2.105 0.035 0.044*

β-T6 0.1116 ± 0.0728 0.1250 ± 0.1084 −2.105 0.035 0.044*

β-O2 0.1109 ± 0.0704 0.1244 ± 0.1148 −2.200 0.028 0.031*

Seizure circadian rhythm

α-Pz 0.0645 ± 0.037 0.0753 ± 0.0542 −2.306 0.021 0.028*

GBDT, gradient boosting decision tree; LZC, Lempel-Ziv complexity; KC, Kolmogorov complexity; SF, seizure-free; NSF, not seizure-free; TLE, temporal lobe epilepsy; δ-F8, δ band from

F8 channel; OXC, oxcarbazepine; P
′

-value refers to P-value that is corrected by false discovery rate correction.

*The features that have statistically significance. Although the selected features may not be statistically significant, they did have a classification value in the model.

Bold values are statistically significant.
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FIGURE 2 | EEG features that have the most significant impact on classification. θ-T3: θ band from T3 channel, p < 0.05 is considered statistically significant.

absolute weights were δ band from T3 channel, θ band from
F7 channel, seizure frequency before OXC, θ band from FP1
channel, T6 and Fz (p < 0.05) channel, β band from T6 and
O2 channel (p < 0.05), seizure circadian rhythm, and α band
form Pz channel (p < 0.05) (Table 2B; Figure 2). Although the
selected features may not be statistically significant, they did have
a classification value in the model. The model yielded average
accuracy of 82%, precision of 84%, recall of 92%, F1-score of
88%, sensitivity of 83%, specificity of 92%, and AUC of 83%
after five-fold cross-validation, respectively (Table 3C; Figure 3).
Compared with the GBDT model, SVM-RFE model yielded
mean accuracy, precision, recall, F1-score, sensitivity, specificity,
AUC of five-fold cross-validation were 62%, 77%, 67%, 71%, 67%,
55%, 63%, respectively (Table 3D; Figure 3). The results of each
fold were presented in Figure 4.

DISCUSSION

We constructed amodel for predictingOXC treatment outcomes.
Our GBDT-KC model (EEG complexity and clinical data)
performed better in terms of the performance merits compared

with De Jong’s study (pharmacogenetics and clinical data) (13).
Our research has a more clinical application because it is cost-
efficient. To our knowledge, this is the first study that applied
EEG complexity to predict OXC response in patients with focal
epilepsy, and achieved good performance.

EEG Complexity as a Biomarker for
Epilepsy
Electroencephalogram plays an important role in the
diagnosis, treatment, and prognosis of epilepsy (40–42).
Electroencephalogram signals have non-linear structures in
the time dimension. Recently, new methods for studying
EEG signals have been developed from non-linear systems
theory since non-linear measurements are more suitable to
reflect the complex, irregular, and non-stationary behavior
of neural processes. The non-linear analysis quantifies the
complexity of EEG and reflects the state of brain neural
networks. Electroencephalogram complexity correlates with
synchronization (43); highly synchronized signals (e.g., epileptic
seizures) give rise to low complexity values (44). Complexity
is related to the degree of entropy, so some of these estimators
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TABLE 3 | The performance of the four classifier models.

Fold1 Fold2 Fold3 Fold4 Fold5 Mean-Value

(A) GBDT-LZC

Accuracy (%) 67 87 80 93 79 81

Precision (%) 69 80 81 100 90 84

Recall (%) 90 100 90 92 82 91

F1-score (%) 78 89 86 96 86 87

AUC (%) 64 89 82 100 70 81

Sensitivity (%) 90 100 90 92 82 91

Specificity (%) 20 71 60 100 67 64

(B) SVM-LZC

Accuracy (%) 60 53 67 67 64 62

Precision (%) 70 56 78 100 80 77

Recall (%) 70 63 70 62 73 67

F1-score (%) 70 59 74 76 76 71

AUC (%) 54 64 64 100 33 63

Sensitivity (%) 70 63 70 62 73 67

Specificity (%) 40 43 60 100 33 55

(C) GBDT-KC

Accuracy (%) 67 87 80 100 79 82

Precision (%) 69 80 82 100 90 84

Recall (%) 90 100 90 100 82 92

F1-score (%) 78 89 86 100 86 88

AUC (%) 66 89 88 100 73 83

Sensitivity (%) 66 89 88 100 73 83

Specificity (%) 90 100 90 100 82 92

(D) SVM-KC

Accuracy (%) 60 53 67 67 64 62

Precision (%) 70 56 78 100 80 77

Recall (%) 70 63 70 62 73 67

F1-score (%) 70 59 74 76 76 71

AUC (%) 54 63 64 100 33 63

Sensitivity (%) 70 63 70 62 73 67

Specificity (%) 40 43 60 100 33 55

LZC, Lempel-Ziv complexity; GBDT, gradient boosting decision tree; AUC, the area

under the curve; SVM, support vector machine; RFE, recursive feature elimination; KC,

Kolmogorov complexity.

are called entropy estimators. Based on the complexity of
the algorithm, LZC does not rely on large amounts of EEG
data and is suitable for short and non-stationary time series
(45). Kolmogorov complexity is defined as the complexity
of a sequence and is based on the length of the shortest
program that could generate the sequence (46). Kolmogorov
complexity was found to be more sensitive to the detection
in patients with schizophrenia compared with other measures
(47). However, the application of EEG complexity in epilepsy
remains limited.

In our study, the LZC and KC showed a complexity decrease
in the SF group compared with the NSF group. Though the
relationship between EEG complexity and epilepsy is not clear,
EEG complexity is related to the severity and prognosis of the
disease. Cerquera et al. (48) analyzed the difference between

cognitive deficit schizophrenia (DS) and non-cognitive deficit
schizophrenia (NDS), and found that the DS group showed less
LZC in the frontal lobe than the NSD group. Another study
found a significant reduction in EEG complexity, 2min before the
seizure, compared with the inter-seizure period (about 6–8min
before the seizure) (49). Valproic acid treatment also decreased
the overall complexity of 19 EEG channels in patients with
idiopathic epilepsy (50).

The Prediction Models of Drug Response
Antiseizure medicines are still the mainstream treatment for
patients with epilepsy. Non-standard treatment in the early stage
has been shown to contribute to poor prognosis (51). Therefore,
it is necessary to choose appropriate ASMs for epileptic patients.
Although there are many ASMs for focal epilepsy, the differences
between these ASMs are unclear and many ASMs are cross-
referenced for both focal and generalized epilepsy. Further, there
are different adverse effects and different treatment responses of
these ASMs. Therefore, ASMs suitable for patient A, may not be
the right choice for other patients (B, C,. . . ). Previous studies
of drug response were based mostly on clinical characteristics,
without an in-depth analysis of individual patients (52, 53).

Recently, precision medicine has made significant
development where the goal is to make personalized medical
decisions based on the individual characteristics of the patient.
Precision medicine is closely related to pharmacogenetics,
but mostly in oncology, and has considerable impact on drug
prescription (54). Outside oncology, genetic information has not
yet played a major role in drug selection. However, the field is an
active area of research. Precision medicine is usually associated
with gene manipulation or gene targeting. De Jong et al. (13)
designed a phase III clinical trial in which 235 participants were
randomly assigned to brivaracetam or placebo groups. Only
the genomes of brivaracetam treated patients were sequenced.
Clinical characteristics and whole genome sequencing (WGS)
pharmacogenetics data were combined to predict brivaracetam
drug response in patients with focal epilepsy. The GBDT classifier
was confirmed as the best performing model with an AUC of
0.76 in the discovery datasets and 0.75 in the validation datasets;
the asymptotic 95% confidence interval (CI) was wide (0.6–0.9).
However, the study had several limitations which are as follows:
the dimensions of WGS data are huge, concerns over overfitting,
WGS data were generated only for patients with brivaracetam
therapy, the 95% CI in validation datasets as wide and it was
too expensive to be clinically applicable. Our GBDT model,
based on clinical and EEG complexity features, achieved better
prediction performance than De Jong’s study, with an average
AUC of 0.832. At present, using EEG to predict drug response
has high clinical value, the price is more affordable, and the
prediction performance is not bad. Although, pharmacogenetics
is not cost-effective currently, if the cost of genetic sequencing
decreases and/or the demonstrated benefit of genetically-guided
ASM selection is increased, then it may be cost-effective. It
cannot be denied that EEG combined with pharmacogenetics
would be more clinically beneficial.

Lin et al. (18) used 24 univariate EEG features extracted
from EEG fragments from 11 drug-refractory epilepsy patients
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FIGURE 3 | The mean evaluation indexes after five-fold cross-validation.

FIGURE 4 | The performance of four models. GBDT, gradient boosting decision tree; LZC, Lempel-Ziv complexity; AUC, area under the curve; ROC, receiver

operating-characteristic curve; std. dev, standard deviation; SVM, support vector machine, RFE, recursive feature elimination, CV, cross-validation; KC,

Kolmogorov complexity.
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and 16 control epilepsy patients to predict drug-resistant
epilepsy; the study yielded a precision rate of 0.942, ROC
area 0.938. We have devised an integrated model combining
clinical features and EEG functional connectivity. Our study
used the phase lag index functional connectivity to predict
drug-refractory epilepsy for newly diagnosed epilepsy patients
and achieved good performance with AUC of 0.98, an
accuracy of 0.94, sensitivity of 0.95, and specificity of 0.93(17).
We show that EEG has good prediction performance in
drug response.

Zhang et al. (20) used clinical and EEG sample entropy
features to predict drug response with levetiracetam therapy via
SVM achieved good performance. Our SVM-RFE model was
inferior to Zhang’s, while, the GBDT model achieved better
performance than theirs’. In this study, we established a GBDT-
KCmodel to predict SF for patients with focal epilepsy with OXC
monotherapy. Our study yielded an average accuracy of 82%,
a precision of 84%, recall of 92%, F1-score of 88%, sensitivity
of 83%, specificity of 92%, and AUC of 83% after five-fold
cross-validation, respectively. Focal-onset epilepsy accounts for
the majority of all epilepsy cases. The selection of ASMs for
focal epilepsy is of great clinical significance. However, there
is still no referenced study for personalized drug selection
for focal epilepsy. Our study may facilitate future studies in
this field.

Limitations and Prospects
There are limitations to our study. The study was retrospective,
and selection bias is inevitable. Prospective studies need to be
conducted in the future. The sample size in our study was
small, and the model was only suitable for Asians. Multi-center
studies with large sample sizes and diverse populations are
required. Currently, the clinical problem is the choice between
multiple potential ASMs. For example, there are many ASMs
for focal epilepsy, such as carbamazepine, OXC, lamotrigine,
valproate, clobazam, topiramate, phenytoin, phenobarbital, and
zonisamide. Although this study was focused on the drug
response of OXC, our final purpose was to make personalized
and optimal treatment with less adverse effects for newly
diagnosed epilepsy patients. We demonstrated that it is feasible
to predict ASMs’ response in combination with clinical and
EEG complexity features, EEG complexity could be used as
a biomarker to predict drug response, the concept is still in

its theoretical stage. Our study proposed the possibility of this
research in this area, there is still a long way to go in the future.

CONCLUSION

We established a GBDT-KC prediction model for seizure
outcome of patients with focal epilepsy with OXC monotherapy.
EEG complexity, especially KC can be used as a biomarker for
predicting outcomes of ASMs treatment.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

XH and NW obtained funding. BW designed the study,
acquired the data, analyzed EEG recordings, worked on EEG
preprocessing and machine learning process, drafted, and
revised the manuscript. XH designed the study and revised the
manuscript. ZZ aided assistant in machine learning process. PZ
andML analyzed EEG recordings. NW, TZ, and YC analyzed and
interpreted the data. YZ, ZR, and YH conducted the statistical
analysis. All authors revised this draft, read, and approved the
final manuscript.

FUNDING

This study was sponsored by Henan Province’s Gong Jian
Program (Authorization number: SB201901074), 23456
Talent Engineering (Authorization number: ZC20200371),
and the National Natural Youth Fund (Authorization
number: 81801291).

ACKNOWLEDGMENTS

We would like to thank the staff members at the Department
of Neurology at the Henan Provincial People’s Hospital for their
assistance with this research study and we would like to express
our most profound gratitude to our patients and their families.

REFERENCES

1. Jacobs MP, Fischbach GD, Davis MR, Dichter MA, Dingledine R, Lowenstein

DH, et al. Future directions for epilepsy research. Neurology. (2001) 57:1536–

42. doi: 10.1212/wnl.57.9.1536

2. Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet (London,

England). (2019) 393:689–701. doi: 10.1016/s0140-6736(18)32596-0

3. Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto

L, et al. ILAE classification of the epilepsies: position paper of the ILAE

Commission for Classification and Terminology. Epilepsia. (2017) 58:512–

21. doi: 10.1111/epi.13709

4. Wiebe S. Epilepsy: a comprehensive textbook on CD-ROM. BMJ (Clinical

research ed). (2000) 320:810.

5. Abou-Khalil BW. Update on antiepileptic drugs 2019. Continuum

(Minneapolis, Minn). (2019) 25:508–36. doi: 10.1212/con.00000000000

00715

6. Koch MW, Polman SK. Oxcarbazepine versus carbamazepine monotherapy

for partial onset seizures. Cochrane Database Syst Rev. (2009)

4:Cd006453. doi: 10.1002/14651858.CD006453.pub2

7. Nolan SJ, Muller M, Tudur Smith C, Marson AG. Oxcarbazepine versus

phenytoin monotherapy for epilepsy. Cochrane Database Syst Rev. (2013)

5:Cd003615. doi: 10.1002/14651858.CD003615.pub3

8. Oostrom KJ, van Teeseling H, Smeets-Schouten A, Peters AC, Jennekens-

Schinkel A. Three to four years after diagnosis: cognition and behaviour in

children with ’epilepsy only’. A prospective, controlled study. Brain. (2005)

128:1546–55. doi: 10.1093/brain/awh494

Frontiers in Medicine | www.frontiersin.org 9 January 2022 | Volume 8 | Article 78193737

https://doi.org/10.1212/wnl.57.9.1536
https://doi.org/10.1016/s0140-6736(18)32596-0
https://doi.org/10.1111/epi.13709
https://doi.org/10.1212/con.0000000000000715
https://doi.org/10.1002/14651858.CD006453.pub2
https://doi.org/10.1002/14651858.CD003615.pub3
https://doi.org/10.1093/brain/awh494
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wang et al. EEG-Driven Prediction Model of Drug Response

9. Armstrong M. The genetics of adverse drug reactions: promises

and problems. Methods Pharmacol. Toxicol. (2008) 2008:121–

47. doi: 10.1007/978-1-59745-439-1-7

10. Perucca E, Brodie MJ, Kwan P, Tomson T. 30 years of second-generation

antiseizuremedications: impact and future perspectives. Lancet Neurol. (2020)

19:544–56. doi: 10.1016/s1474-4422(20)30035-1

11. Fröhlich H, Balling R, Beerenwinkel N, Kohlbacher O, Kumar S, Lengauer T,

et al. From hype to reality: data science enabling personalized medicine. BMC

Med. (2018) 16:150. doi: 10.1186/s12916-018-1122-7

12. Vogenberg FR, Isaacson Barash C, Pursel M. Personalized medicine: part 1:

evolution and development into theranostics. P T. (2010) 35:560–76.

13. de Jong J, Cutcutache I, Page M, Elmoufti S, Dilley C, Fröhlich

H, et al. Towards realizing the vision of precision medicine:

AI based prediction of clinical drug response. Brain. (2021)

144:1738–50. doi: 10.1093/brain/awab108

14. Chen Z, Anderson A, Ge Z, Kwan P. One step closer towards personalized

epilepsy management. Brain. (2021) 144:1624–6. doi: 10.1093/brain/awab199

15. Buzsáki G, Logothetis N, Singer W. Scaling brain size, keeping timing:

evolutionary preservation of brain rhythms. Neuron. (2013) 80:751–

64. doi: 10.1016/j.neuron.2013.10.002

16. Finelli LA, Achermann P, Borbély AA. Individual ‘fingerprints’ in human

sleep EEG topography. Neuropsychopharmacology. (2001) 25(5 Suppl):S57–

62. doi: 10.1016/s0893-133x(01)00320-7

17. Colic S, Wither RG, Lang M, Zhang L, Eubanks JH, Bardakjian BL. Prediction

of antiepileptic drug treatment outcomes using machine learning. J Neural

Eng. (2017) 14:016002. doi: 10.1088/1741-2560/14/1/016002

18. Lin LC, Ouyang CS, Chiang CT, Yang RC, Wu RC, Wu HC. Early

prediction of medication refractoriness in children with idiopathic

epilepsy based on scalp EEG analysis. Int J Neural Syst. (2014)

24:1450023. doi: 10.1142/s0129065714500233

19. Wang B, Han X, Yang S, Zhao P, Li M, Zhao Z, et al. An

integrative prediction algorithm of drug-refractory epilepsy based

on combined clinical-EEG functional connectivity features. J Neurol.

(2021). doi: 10.1007/s00415-021-10718-z. [Epub ahead of print].

20. Zhang JH, Han X, Zhao HW, Zhao D, Wang N, Zhao T, et al. Personalized

prediction model for seizure-free epilepsy with levetiracetam therapy: a

retrospective data analysis using support vector machine. Br J Clin Pharmacol.

(2018) 84:2615–24. doi: 10.1111/bcp.13720

21. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde

Boas W, et al. Revised terminology and concepts for organization

of seizures and epilepsies: report of the ILAE Commission on

Classification and Terminology, 2005–2009. Epilepsia. (2010)

51:676–85. doi: 10.1111/j.1528-1167.2010.02522.x

22. Engel J Jr, Wiebe S, French J, Sperling M, Williamson P, Spencer D, et al.

Practice parameter: temporal lobe and localized neocortical resections for

epilepsy: report of the Quality Standards Subcommittee of the American

Academy of Neurology, in association with the American Epilepsy Society

and the American Association of Neurological Surgeons. Neurology. (2003)

60:538–47. doi: 10.1212/01.wnl.0000055086.35806.2d

23. Kalilani L, Sun X, Pelgrims B, Noack-RinkM, Villanueva V. The epidemiology

of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia.

(2018) 59:2179–93. doi: 10.1111/epi.14596

24. Sander JW. Comorbidity and premature mortality in epilepsy. Lancet

(London, England). (2013) 382:1618–9. doi: 10.1016/s0140-6736(13)61136-8

25. van Campen JS, Valentijn FA, Jansen FE, Joëls M, Braun KP. Seizure

occurrence and the circadian rhythm of cortisol: a systematic review. Epilepsy

Behav. (2015) 47:132–7. doi: 10.1016/j.yebeh.2015.04.071

26. Wu T, Chen CC, Chen TC, Tseng YF, Chiang CB, Hung CC, et al. Clinical

efficacy and cognitive and neuropsychological effects of levetiracetam in

epilepsy: an open-label multicenter study. Epilepsy Behav. (2009) 16:468–

74. doi: 10.1016/j.yebeh.2009.08.026

27. Delorme A, Makeig S, EEGLAB. an open source toolbox for analysis of single-

trial EEG dynamics including independent component analysis. J Neurosci

Methods. (2004) 134:9–21. doi: 10.1016/j.jneumeth.2003.10.009

28. Estevez-Rams E, Lora Serrano R, Aragón Fernández B, Brito Reyes I. On the

non-randomness of maximum Lempel Ziv complexity sequences of finite size.

Chaos (Woodbury, NY). (2013) 23:023118. doi: 10.1063/1.4808251

29. Jiménez-Montaño MA, Ebeling W, Pohl T, Rapp PE. Entropy and complexity

of finite sequences as fluctuating quantities. Biosystems. (2002) 64:23–

32. doi: 10.1016/s0303-2647(01)00171-x

30. Liau BY, Yeh SJ, Chiu CC, Tsai YC. Dynamic cerebral autoregulation

assessment using chaotic analysis in diabetic autonomic neuropathy.Med Biol

Eng Comput. (2008) 46:1–9. doi: 10.1007/s11517-007-0243-5

31. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic

minority over-sampling technique. J Artif Intell Res. (2002) 16:321–

57. doi: 10.1613/jair.953

32. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.

Scikit-learn: Machine Learning in Python. ArXiv. (2012) arXiv:1201.0490.

33. Nakamura M, Kajiwara Y, Otsuka A, Kimura H, LVQ-SMOTE. - learning

vector quantization based synthetic minority over-sampling technique for

biomedical data. BioData Min. (2013) 6:16. doi: 10.1186/1756-0381-6-16

34. Japkowicz N. Stephen SJ. The class imbalance problem: a systematic study.

Intell Data Anal. (2002) 6:429–49. doi: 10.3233/ida-2002-6504

35. Luts J, Ojeda F, Van de Plas R, De Moor B, Van Huffel S, Suykens

JA, et al. tutorial on support vector machine-based methods for

classification problems in chemometrics. Anal Chim Acta. (2010)

665:129–45. doi: 10.1016/j.aca.2010.03.030

36. Way TW, Sahiner B, Hadjiiski LM, Chan HP. Effect of finite sample size

on feature selection and classification: a simulation study. Med Phys. (2010)

37:907–20. doi: 10.1118/1.3284974

37. Friedman JH. Greedy function approximation: a gradient boosting machine.

Ann Stat. (2001) 29:1198–232. doi: 10.1214/aos/1013203451

38. Lv ZB. Escherichia coli DNA N-4-methycytosine site prediction accuracy

improved by light gradient boosting machine feature selection technology.

IEEE Access. (2020) 8:14851–9. doi: 10.1109/ACCESS.2020.2966576

39. Sahin EK. Assessing the predictive capability of ensemble tree

methods for landslide susceptibility mapping using XGBoost,

gradient boosting machine, and random forest. SN Appl Sci. (2020)

2:1308. doi: 10.1007/s42452-020-3060-1

40. Altenmüller DM, Hebel JM, Deniz C, Volz S, Zentner J, Feuerstein TJ,

et al. Electrocorticographic and neurochemical findings after local cortical

valproate application in patients with pharmacoresistant focal epilepsy.

Epilepsia. (2020) 61:e60–5. doi: 10.1111/epi.16523

41. Betting LE, Mory SB, Lopes-Cendes I, Li LM, Guerreiro MM, Guerreiro

CA, et al. EEG features in idiopathic generalized epilepsy: clues to diagnosis.

Epilepsia. (2006) 47:523–8. doi: 10.1111/j.1528-1167.2006.00462.x

42. Dlugos D, Shinnar S, Cnaan A, Hu F, Moshé S, Mizrahi E, et al. Pretreatment

EEG in childhood absence epilepsy: associations with attention and treatment

outcome. Neurology. (2013) 81:150–6. doi: 10.1212/WNL.0b013e31829a3373

43. Escudero J, Ibanez-Molina A, Iglesias-Parro S. Effect of the average delay

and mean connectivity of the Kuramoto model on the complexity of the

output electroencephalograms. In: Annual International Conference of the

IEEE Engineering in Medicine and Biology Society. (Milan) (2015) 7873–

6. doi: 10.1109/embc.2015.7320217

44. Radhakrishnan N, Gangadhar BN. Estimating regularity in epileptic seizure

time-series data. A complexity-measure approach. IEEE Eng Med Biol Magaz.

(1998) 17:89–94. doi: 10.1109/51.677174

45. Abásolo D, James CJ, Hornero R. Non-linear analysis of intracranial

electroencephalogram recordings with approximate entropy and Lempel-Ziv

complexity for epileptic seizure detection. In:Annual International Conference

of the IEEE Engineering in Medicine and Biology Society. Lyon (2007) 1953–

6. doi: 10.1109/iembs.2007.4352700

46. Fernández A, López-Ibor MI, Turrero A, Santos JM, Morón MD, Hornero

R, et al. Lempel-Ziv complexity in schizophrenia: a MEG study. Clin

Neurophysiol. (2011) 122:2227–35. doi: 10.1016/j.clinph.2011.04.011

47. Akar SA, Kara S, Latifoglu F, Bilgiç V. Analysis of the complexity

measures in the EEG of schizophrenia patients. Int J Neural Syst. (2016)

26:1650008. doi: 10.1142/s0129065716500088

48. Cerquera A, Gjini K, Bowyer SM, Boutros N. Comparing EEG nonlinearity

in deficit and nondeficit schizophrenia patients: preliminary data. Clin EEG

Neurosci. (2017) 48:376–82. doi: 10.1177/1550059417715388

49. Bob P, Roman R, Svetlak M, Kukleta M, Chladek J, Brazdil M. Preictal

dynamics of EEG complexity in intracranially recorded epileptic seizure: a

case report.Medicine. (2014) 93:e151. doi: 10.1097/md.0000000000000151

Frontiers in Medicine | www.frontiersin.org 10 January 2022 | Volume 8 | Article 78193738

https://doi.org/10.1007/978-1-59745-439-1-7
https://doi.org/10.1016/s1474-4422(20)30035-1
https://doi.org/10.1186/s12916-018-1122-7
https://doi.org/10.1093/brain/awab108
https://doi.org/10.1093/brain/awab199
https://doi.org/10.1016/j.neuron.2013.10.002
https://doi.org/10.1016/s0893-133x(01)00320-7
https://doi.org/10.1088/1741-2560/14/1/016002
https://doi.org/10.1142/s0129065714500233
https://doi.org/10.1007/s00415-021-10718-z
https://doi.org/10.1111/bcp.13720
https://doi.org/10.1111/j.1528-1167.2010.02522.x
https://doi.org/10.1212/01.wnl.0000055086.35806.2d
https://doi.org/10.1111/epi.14596
https://doi.org/10.1016/s0140-6736(13)61136-8
https://doi.org/10.1016/j.yebeh.2015.04.071
https://doi.org/10.1016/j.yebeh.2009.08.026
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1063/1.4808251
https://doi.org/10.1016/s0303-2647(01)00171-x
https://doi.org/10.1007/s11517-007-0243-5
https://doi.org/10.1613/jair.953
https://doi.org/10.1186/1756-0381-6-16
https://doi.org/10.3233/ida-2002-6504
https://doi.org/10.1016/j.aca.2010.03.030
https://doi.org/10.1118/1.3284974
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1109/ACCESS.2020.2966576
https://doi.org/10.1007/s42452-020-3060-1
https://doi.org/10.1111/epi.16523
https://doi.org/10.1111/j.1528-1167.2006.00462.x
https://doi.org/10.1212/WNL.0b013e31829a3373
https://doi.org/10.1109/embc.2015.7320217
https://doi.org/10.1109/51.677174
https://doi.org/10.1109/iembs.2007.4352700
https://doi.org/10.1016/j.clinph.2011.04.011
https://doi.org/10.1142/s0129065716500088
https://doi.org/10.1177/1550059417715388
https://doi.org/10.1097/md.0000000000000151
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wang et al. EEG-Driven Prediction Model of Drug Response

50. Kondakor I, Toth M, Wackermann J, Gyimesi C, Czopf J,

Clemens B. Distribution of spatial complexity of EEG in idiopathic

generalized epilepsy and its change after chronic valproate

therapy. Brain Topogr. (2005) 18:115–23. doi: 10.1007/s10548-005-

0280-z

51. Kwan P, Brodie MJ. Early identification of refractory epilepsy.

N Engl J Med. (2000) 342:314–9. doi: 10.1056/nejm2000020334

20503

52. Arya R, Glauser TA. Pharmacotherapy of focal epilepsy in children:

a systematic review of approved agents. CNS Drugs. (2013) 27:273–

86. doi: 10.1007/s40263-013-0048-z

53. Leppik IE. Three new drugs for epilepsy: levetiracetam,

oxcarbazepine, and zonisamide. J Child Neurol. (2002)

17(Suppl 1):S53–7. doi: 10.1177/088307380201700

10701

54. FDA. Table of Pharmacogenomic Biomarkers in Drug Labeling. (2020).

Available online at: https://www.fda.gov/drugs/science-and-research-drugs/

table-pharmacogenomic-biomarkers-drug-labeling

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Wang, Han, Zhao, Wang, Zhao, Li, Zhang, Zhao, Chen, Ren

and Hong. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Medicine | www.frontiersin.org 11 January 2022 | Volume 8 | Article 78193739

https://doi.org/10.1007/s10548-005-0280-z
https://doi.org/10.1056/nejm200002033420503
https://doi.org/10.1007/s40263-013-0048-z
https://doi.org/10.1177/08830738020170010701
https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling
https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


REVIEW
published: 25 January 2022

doi: 10.3389/fmed.2021.734643

Frontiers in Medicine | www.frontiersin.org 1 January 2022 | Volume 8 | Article 734643

Edited by:

Alice Chen,

National Cancer Institute (NCI),

United States

Reviewed by:

En-Qiang Chen,

Sichuan University, China

Prasanth Puthanveetil,

Midwestern University, United States

*Correspondence:

Kaijin Xu

zdyxyxkj@zju.edu.cn

†These authors share first authorship

Specialty section:

This article was submitted to

Precision Medicine,

a section of the journal

Frontiers in Medicine

Received: 01 July 2021

Accepted: 13 December 2021

Published: 25 January 2022

Citation:

Lu J, Guo J, Liu J, Mao X and Xu K

(2022) Long Non-coding RNA

MALAT1: A Key Player in Liver

Diseases. Front. Med. 8:734643.

doi: 10.3389/fmed.2021.734643

Long Non-coding RNA MALAT1: A
Key Player in Liver Diseases
Juan Lu 1†, Jing Guo 1†, Jun Liu 1, Xiaomin Mao 2 and Kaijin Xu 1*

1 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious

Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First

Affiliated Hospital, Zhejiang University, Hangzhou, China, 2Haining People’ Hospital, Haining Branch, The First Affiliated

Hospital, College of Medicine, Zhejiang University, Haining, China

Long non-coding RNAs (lncRNAs) exceed 200 nucleotides in length are considered to

be involved in both developmental processes and various diseases. Here, we focus on

lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), which was

one of the most important lncRNAs in proliferation, apoptosis, and migration. MALAT1

plays a regulatory role in liver diseases, including hepatic fibrosis, liver regeneration, liver

cancer, and fatty liver diseases. In the current review, we summarize the latest literature

about the function roles of MALAT1 in liver disorders. Probing the regulatory mechanism

and cross talk of MALAT1 with other signaling pathways of pathological processes would

improve the prognosis, diagnosis of liver diseases, and offer a promising candidate target

for therapeutic interventions.

Keywords: lncRNAs, MALAT1, mechanism, signaling pathways, liver diseases

Seventy-five percent of the human genome generates transcripts, yet only about two percent
of the genome encodes proteins. The majority of transcripts, including microRNAs (miRNAs)
and long non-coding RNAs (lncRNAs), do not encode proteins (1). Small non-coding RNAs of
∼22 nucleotides regulate the translation and stability of mRNA at the post-transcriptional level.
Several biological processes are regulated by lncRNAs (more than 200 nucleotides), including
carcinogenesis, development, and differentiation (2, 3). lncRNAs modulate various cellular
processes, including nuclear organization and transcriptional and post-transcriptional modulation
of gene expression (4, 5). lncRNAs serve as competitive endogenous RNAs (ceRNAs) in a regulatory
network by “sponging” target miRNAs to regulate mRNA expression. This regulatory network is
implicated in cancer development, apoptosis, and drug resistance (6–8).

To date, over 50,000 human lncRNAs have been identified (9). One of the most extensively
studied of lncRNAs is Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1,
ENSG00000251562), located in human chromosome 11q13.1 (mouse chromosome 19qA);
MALAT1 is also known as nuclear-enriched abundant transcript first described to be associated
with non-small cell lung cancer (10–12). Elevated MALAT1 expression is implicated in
hyperproliferation, cellular and molecular functions, metastasis, and poor prognosis (13, 14).
MALAT1 is overexpressed in a variety of human diseases in the form of a ceRNA network, which is
important for gene expression, proliferation, andmetastasis (15). The pathological processes would
be activated once the level of MALAT1 expression changes to abnormal condition due to various
endogenous or exogenous inducers. Here, we summarize the roles of MALAT1 in liver diseases
including hepatic fibrosis, hepatic carcinoma, liver regeneration, and fatty liver diseases.
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MOLECULAR FUNCTION OF MALAT1

MALAT1 is preferentially associated with transcriptionally active
genes in the nucleus (16). MALAT1 plays a very critical cellular
function for normal physiology. Given the nuclear localization of
nuclear speckles, MALAT1 could be implicated in the regulation
of alternative splicing in terms of binding splicing factors (17).
The interaction between MALAT1 and the splicing factors of
serine/arginine-rich (SR) proteins regulates selective splicing by
modulating phosphorylation and distribution in the nuclear
macular region. MALAT1 also regulates SR proteins by affecting
the localization and activities of shear factor kinases such
as serine/arginine protein kinases 1 (SRPK1) (18, 19). As a
result of MALAT1 transcripts located in the nucleus, MALAT1
combinedwith release of pre-mRNA splicing factors via antisense
oligonucleotides triggers could induce overexpression of the
related factors. Therefore, MALAT1 might serve as an “anchor
point” for localization of certain genes near nuclear speckles
and induce transcriptional activation to affect the processing of
their RNAs, implicating MALAT1 in transcriptional regulation
(20). The major mechanisms of post-transcriptional regulation
of MALAT1 include alternative splicing, protein activities, and
competitive ceRNAs (15). MALAT1 is also expressed in vascular
endothelial cells and plays important roles in regulating vascular
growth. The cell cycle inhibitory proteins were also significantly
increased accompanied by the depletion of MALAT1 (21).

MicroRNAs bind to the 3’UTR of their target genes
and negatively regulate gene expression through depressing
translation or promoting mRNA attenuation. This strategy
was proposed initially by Poliseno to explain how mRNAs
communicate with lncRNAs through miRNA response elements
(MREs) as “language” (22). In the process of RNA-miRNA
regulation, MREs act as binding sites for ceRNAs, which
positively adjust miRNAs availability to bind their target
mRNAs (23). MALAT1 also followed the ceRNA regulatory
system through the negatively regulation between MALAT1 and
micRNAs (Figure 1).

MALAT1 binds to chromatin of activated transcribing
genes, transcription factors and transcriptional co-activators and
regulates their expression at the transcriptional level to promote
cell proliferation and inhibit cell apoptosis. MALAT1 was also
triggered to upregulate transcriptional activators of proteosome
genes (24).

MALAT1 –AN INDUCER IN HEPATIC
FIBROSIS

Hepatic fibrosis is characterized by chronic abnormal hyperplasia
and accumulation of large amounts of extracellularmatrix (ECM)
[including smooth muscle actin (SMA) and type I collagen],
and the release of proinflammatory and profibrotic factors.
Fibrosis can result from a variety of chronic liver diseases such
as viral hepatitis, alcoholism, drug abuse, metabolic syndrome,
genetic metabolic diseases, and autoimmune hepatitis (25). The
regulatory mechanism of liver fibrosis is not entirely clear.
The activation of hepatic stellate cells (HSCs), the resident

perisinusoidal cell type, is critical in the development of liver
fibrosis (26). Activated HSCs are considered proliferative cells
that secrete profibrogenic mediators and express ECM; they may
also be involved in fibrosis progression (27). Yu et al. (28) found
that MALAT1 was significantly upregulated in activated HSCs
and negatively correlated with the expression of miR-101b in in
the mouse liver fibrosis model induced by carbon tetrachloride
(CCl4). MALAT1 and ras-related C3 botulinum toxin substrate
1 (Rac1) are targets of miR-101b, and the former acts as a
ceRNA to enhance the expression of Rac1, thus promoting HSC
proliferation and activation. Dai et al. (29) found that MALAT1
extracted from arsenite-treated human hepatocytes promoted
the activation of LX-2 HSCs (an immortalized HSC cell lines)
by binding miRNA-26b. Wu et al. (30) reported that MALAT1
influenced the progression of hepatic fibrosis by repressing
the expression and function of silent information regulator
1 (SIRT1), a nicotinamide adenine nicotinamide (NAD+)-
dependent III class of histone deacetylases in the Sirtuin family
(16). SIRT1 suppressed the ability of the promoters of fibrogenic
genes, such as collagen type I, to bind Smad3, a downstream
mediator of the TGF-β signaling pathway (31, 32). In short,
MALAT1 promotes HSC activation by blocking SIRT1-mediated
inhibition of the TGF-β signaling pathway in hepatic fibrosis.

MALAT1—A REGULATING ROLE IN LIVER
REGENERATION

The normal liver has a strong regenerative ability and can
maintain the original liver volume by inducing mitosis of its own
cells, or tissue repair through rapid division and proliferation
from endogenous liver stem cells (such as liver oval cells) to
mature liver cells (33). Because of the limited regenerative ability
of endogenous liver stem cells, exogenous measures are needed
to promote liver regeneration and maintain the liver function
of patients with severe liver injury or liver failure (34). Liver
cells begin proliferate and divide in the initial period. The
proliferation of liver is not only completed by parenchyma
cells, but by a variety of cells which also participate in the
coordination and completion at the stage of proliferation (35).
The timely and automatic termination of hepatocyte proliferation
is distinct from the unlimited proliferation of liver tumors
in the termination stage, which are are important for the
liver regulation of growth, development, and differentiation
(36). The interaction and regulatory factors were activated
rested during the biological processes of liver development,
liver regeneration and hepatic carcinoma. Tripathi et al. (37)
showed that MALAT1 promotes the proliferation of normal cells.
MALAT1 also promotes the expression of cell cycle genes (such
as the transcription factor B-myb) and progression from G1 to
S phase, thus inducing mitosis. Knockout of MALAT1 activated
p53 and its reporter gene, a downstream gene of MALAT1. Maxy
et al. (38, 39) studied the expression of MALAT1 in various
tissues and organs of mice and found that MALAT1 expression
in mice was highest in the liver followed by the kidney, lowest
in skeletal muscle. MALAT1 expression was elevated, and its
inhibition or knockoutmay promote the proliferation,migration,
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FIGURE 1 | Molecular Function of MALAT1. (A) The transcriptional regulation of MALAT1 by interaction between MALAT1 and SR splicing factors. (B) The

post-transcriptional regulation of MALAT1 via competitive ceRNAs.

and tubulation, and suppress apoptosis, of endothelial cells by
activating the PI3K/Akt signaling pathway (40).

Liver regeneration is initiated immediately after liver
resection, and upregulation of hepatocyte growth factor (HGF)
induces the expression of MALAT1, damaging the stability of
the p-catenin degradation complex (41). The resulting increased
total p-catenin activates the Wnt/β-catenin signaling pathway
and upregulates cyclinD1, promoting progression from G1
to S phase and shortening the cell cycle, thereby accelerating
liver cell proliferation and liver regeneration (42). Deficiency of
MALAT1 inhibits VEGFR2 expression, reduces angiogenesis,
perfusion, and functional recovery of ischemic hind limbs in
mice, and inhibits blood flow recovery and capillary density
in gastrocnemeal muscle tissue after ischemia, suggesting that
MALAT1 affects angiogenesis via multiple mechanisms (21).
MALAT1 regulates angiogenesis and immune responses (43).
MiR-3064-5p inhibits the FOXA1/CD24/Src pathway to exert an
antiangiogenic effect, whereas MALAT1 adsorbs miR-3064-5p,
thereby alleviating the inhibition of FOXA1 and promoting
hepatic hemangiogenesis (44). Hou et al. (45, 46) confirmed that
MALAT1 is an important upstream target of miR-140, which
inhibits VEGF-A expression and M2 macrophage polarization,
thereby inhibiting angiogenesis and immunosuppression.

MALAT1—A NEW THERAPEUTIC TARGET
IN HEPATIC CARCINOMA

The expression of MALAT1 is significantly increased in HCC
tissues and cell lines, which promotes HCC proliferation
and metastasis and inhibits HCC cell apoptosis by acting
as an oncogene (47–49). Silencing of MALAT1 reduces the
proliferation, invasion, andmigration of cancer cells, and induces
their apoptosis (50). The upstream of MALAT1 contains 5
specific protein 1/3(SP1/3) binding sites, and the combined
regulation of SP1 and SP3 in cancer cells promote the
expression of MALAT1. Yes-related protein (YAP) upregulates
the expression of MALAT1 at the transcriptional and post-
transcriptional levels, whereas serine/arginine splicing factor
1 (SRSF1) rich in serine/arginine had the opposite effect.
Overexpression of YAP reduces SRSF1 nuclear retention (51).

MALAT1 plays a role in HCC cell proliferation and apoptosis
by multiple pathways. Upregulation of MALAT1 promotes
cancer cell proliferation, and its downregulation promotes cancer
cell death and autophagy. Malakar et al. (52) found that high
expression of MALAT1 in HCC cells upregulates oncogenic
shear factor SRSF1 and activates the mTOR pathway, thereby
promoting the proliferation and survival of HCC cells. Peng et al.
(50) found that MALAT1 expression regulates the proliferation,
apoptosis, and autophagy of HCC cells by adsorption of miR-
146a, whereas downregulation of miR-146a upregulates PI3K,
modulating the phosphorylation of downstream Akt and mTOR.
Therefore, apoptosis and autophagy of HCC cells can be inhibited
by targeting the PI3K/Akt/mTOR signaling axis. Liu et al.
(53) showed that MALAT1 acted as a molecular sponge to
absorb miR-195, which inhibited its downstream target EGFR,
inducing the activation of PI3K/Akt and JAK/STAT pathways
by overexpression of EGFR, thus promote the growth activity
of HCC cells. Chen et al. (54) reported that MALAT1 regulates
the expression of zinc finger E-box binding homeobox (ZEB1) by
sponging miR-143-3p. In conclusion, the up- or downregulation
of MALAT1 is related to the proliferation and apoptosis of HCC
cells. MALAT1 acts as a molecular sponge to regulate miRNA
signaling pathways affecting downstream factors and promotes
HCC cell proliferation and inhibits their apoptosis.

HCC invasion and metastasis are aggravated via signaling
pathways and MALAT1. YAP1 in vascular endothelial cells
reduces vascular proliferation (55). Exosomes containing
MALAT1 are released into the tumor microenvironment,
inhibiting and depleting YAP1, activating ERK1/2 signal
transduction, and enhancing the expression of MMP2 and
MMP9, thereby promoting tumor invasion and metastasis.
The tumor transcription factor FOXM1 is the target of miR-
125a-3p, targeting of which by MALAT1 upregulates FOXM1
expression and promotes HCC invasion and migration (51, 56).
SNAI1, a key transcription factor in the epithelial–mesenchymal
transition, is also a direct target of miR-22, which could be
absorbed by MALAT1, promoting the enrichment of enhancer of
zeste homolog 2 (EZH2) to inhibit miR-22 transcription, thereby
upregulating SNAI1 expression and facilitating HCC invasion
and distant metastasis. Li et al. (57) reported that MALAT1 acted
as a molecular sponge for miR-146b-5p, inhibiting HCC growth
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and metastasis by targeting Akt phosphorylation mediated
by TNF receptor-related factor 6. Hou et al. (58) found that
MALAT1 reduced the inhibition of SIRT1 by miR-204 by
competitively binding miR-204. Chen et al. (54) showed that
MALAT1 regulates ZEB1 expression by sponging miR-143-3p,
promoting HCC invasion and metastasis.

MALAT1 also promotes glycolysis in HCC. Aerobic glycolysis
(Warburg effect) is a marker of tumor cells’ ability to escape
apoptosis to promote proliferation and migration. It could
provide material basis for tumor cells and create an acidic
microenvironment (59, 60). Malakar et al. (61) found that
MALAT1 enhances the translation of metabolic transcription
factor TCF7L2 by upregulating shear factor SRSF1 and
activating the mTORC1-4EBP1 axis to upregulate glycolysis
genes and inhibit gluconeogenesis, promoting the development
of HCC (62). Additionally, it has been shown that MALAT1
enhances glycolysis in liver, and inhibits gluconeogenesis, via
elevated translation of the transcription factor TCF7L2 and
as such also plays a crucial role in metabolic stress (63).
MALAT1 promotes the progression of inflammation-associated
HCC. Huang et al. (64) reported that MALAT1 induces the
secretion of inflammatory cytokines, promoting the progression
of inflammation-related HCC by mobilizing chromatin and
remodeling subunit brahma-related gene 1 (BRG1) to the
promoter region of the inflammatory cytokines IL-6 and C-X-C
motif chemokine ligand 8 (CXCL8).

Cancer stem cells (CSCs) are characterized by self-renewal and
differentiation and are considered the seeds of tumor genesis,
development, and metastasis. MALAT1 promotes HCC stem
cell properties. The higher the proportion of CSCs, the more
aggressive the tumor (65). He et al. (4) reported that HBx protein
induced CSC production in HCC via the PI3K/Akt signaling
pathway (66). MALAT1 emerged as the function of competing
endogenous RNA, preventing miR-124-mediated inhibition of

PI3K/Akt signaling. This induced CSC characteristics and
ultimately promoted HBV-associated HCC. Chen et al. (67)
reported that circ-MALAT1 generated by reverse shear of
lncRNA MALAT1 acts as a “brake” in the ribosome, and
forms a complex with the ribosome and mRNA, preventing
the transcription factor PAX5 mRNA translation and promoting
CSC self-renewal. However, circ-MALAT1 also acts as a sponge
for miR-6887-3p to enhance the phosphorylation of JAK2,
activating the JAK2/STAT3 signaling pathway and promoting
CSC self-renewal (68). Thus, MALAT1 represents both a
promising cancer bio-marker as well as a potential therapeutic
target for limiting metastatic growth.

MALAT1 IN OTHER LIVER DISEASES

MALAT1 significantly inhibits palmitic acid-induced lipid
accumulation and increases expression of SREBP-1c, an
important regulator of cholesterol and fatty acid synthesis in
abnormal lipid metabolism and fatty liver disease (69, 70).

TABLE 1 | Different roles of MALAT1 under different liver diseases.

Hepatic fibrosis Promoting proliferation by ceRNA of miR-101b

Liver regeneration Promoting proliferation by ceRNA of miR-3064-5p140

Hepatic carcinoma Promoting proliferation by ceRNA of

miR-146a/195/143-3p/ 22/204/146b/125a-3p

Promoting proliferation by upregulating

SP1/3/YAP/SRSF1

Promoting proliferation by Warburg effect

Promoting proliferation by ceRNA of miR-124/6887-3p

Fatty liver disease Promoting proliferation by upregulating

SREBP-1c/CXCL5/ transaminase

FIGURE 2 | Schematic representation of MALAT1 in liver diseases.

Frontiers in Medicine | www.frontiersin.org 4 January 2022 | Volume 8 | Article 73464343

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Lu et al. LncRNA MALAT1 in Liver Diseases

MALAT1 abundance in liver tissue is closely related to the
pathological changes in non-alcoholic fatty liver disease
(NAFLD), a clinicopathologic syndrome characterized by
diffuse bullae steatosis (abnormal accumulation of lipids in
liver tissues) not caused by alcohol or other hepatotoxic factors.
MALAT1 may mediate chemokines by regulating C-X-C motif
chemokine ligand 5 (CXCL5) in hepatic stellate cells in the
occurrence of non-alcoholic steatohepatitis (NASH) and fibrosis
in patients with NAFLD (71, 72). MALAT1 abundance increases
significantly in NASH with hepatocyte ballooning degeneration
and lobular inflammation, and in hepatocyte dysfunction with
elevated alanine aminotransferase, aspartate aminotransferase,
and alkaline phosphatase. The schematic representation of
MALAT1 in liver diseases was Figure 2. A form was also
presented to explain different roles of MALAT1 under different
liver diseases and how MALAT1 influences pathophysiology
in Table 1.

CONCLUSION

LncRNA is a hot research topic in the field of liver disease in
recent years. As a member of the lncRNA family, MALAT1
is a multi-functional lncRNA and an important regulator in
hepatic fibrosis, liver regeneration, cancer, and fatty liver diseases.
The molecular mechanisms mediated by one lncRNA would
be complicated. Compared to most lncRNAs, MALAT1 is

expressed at relatively high level in almost all human tissues in
a variety of regulating pathways, thus makes it intricate to be
targeted by simply silencing or overexpressing in pathological
conditions. Further challenge to therapeutically measures would
include small molecules specifically designed to intervene the
gene-protein interaction for MALAT1 functions (73). A deeper
understanding of the functions of MALAT1 and its interaction
network will lay the foundation for the development of lncRNAs
as therapeutic targets and as diagnostic or prognostic biomarkers
for liver diseases.
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GLOSSARY

Abbreviations
The following abbreviations are used in this manuscript:

General Abbreviation full name

4EBP1 phosphorylated 4E-binding protein 1

AKP alkaline phosphorus

ALT Aminotransferase

AST aspartate aminotransferase

BRG1 brahma-related gene 1

CCl4 carbon tetrachloride

ceRNAs competitive endogenous RNAs

CSC cancer stem cells

CXCL5 C-X-C motif chemokine ligand 5

CXCL8 C-X-C motif chemokine ligand 8

ECM extracellular matrix

EZH2 enhancer of zeste homolog 2

FOXA1 forkhead box A1

HCC hepatic carcinoma

HGF hepatocyte growth factor

HSCs hepatic stellate cells

lncRNA long noncoding RNA

MALAT1 metastasis-associated lung adenocarcinoma transcript 1

miRNA microRNA

MREs microRNA response elements

mTORC1 mechanistic target of rapamycin complex 1

NAD+ nicotinamide adenine dinucleotide

NAFLD non-alcoholic fatty liver disease

NASH nonalcoholic steatohepatitis

NEAT2 uuclear-enriched abundant transcript 2

Rac1 ras-related C3 botulinum toxin substrate 1

SIRT1 silent information regulator 1

SMA smooth muscle actin

SMA smooth muscle actin

SNAI1 snail family transcriptional repressor 1

SP1/3 specific protein 1/3

SR proteins serine/arginine-rich proteins

SRPK1 serine/arginine protein kinases 1

SRSF1 serine/arginine splicing factor 1

STAT signal transducer and activator of transcription

TCF7L2 transcription factor 7-like 2

TNF tumor necrosis factor

YAP Yes-related protein

ZEB1 zinc finger E-box binding homeobox 1

Signaling Pathways

Signaling pathway KEGG ID

AKT/mTOR signaling pathway hsa04150

CXCL5 signaling pathway hsa04060

CXCL8 signaling pathway hsa04061

cyclinD1 signaling pathway hsa05200

EFGR signaling pathway hsa01521

ERK1/2 signaling pathway hsa04933

FOXM1 signaling pathway hsa04218

IL-6 signaling pathway hsa05200

JAK/STAT signaling pathway hsa04630

JAK/STAT signaling pathway hsa04630

MAPK1 signaling pathway hsa05166

MMP2/9 signaling pathway hsa05219

mTOR1-4EBP1signaling pathway hsa04218

P53 signaling pathway hsa04115

PAX5 signaling pathway hsa05202

PI3K/AKT signaling pathway hsa04151

SIRT1 signaling pathway hsa04211

SNAI1 signaling pathway hsa04520

Src signaling pathway hsa04510

TCF7L2 signaling pathway hsa05200

TGF-β signaling pathway hsa04068

VEGF signaling pathway hsa04210

Wnt/b-catenin signaling pathway hsa04310

YAP/SRSF signaling pathway hsa04390

ZEB1 signaling pathway hsa05206

MicroRNAs

Mirbase ID HGNC symbol Mirbase accession

has-miR-124 MIR124 MI0000443

has-miR-143-3p MIR143 MI0000459

has-miR-146a MIR146A MI0000477

has-miR-146b MIR146B MI0003129

has-miR-22 MIR22 MI0000078

has-miR-3064-5p MIR3064 MI0017375

hsa-miR-125a MIR125A MI0000469

hsa-miR-140 MIR140 MI0000456

hsa-miR-195 MIR195 MI0000489

hsa-miR-204 MIR204 MI0000284
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Genes

HGNC symbol Full name accession Accession ID

4EBP1 phosphorylated 4E-binding protein 1 ENSG00000258870

AKT serine/threonine kinase 1 ENSG00000142208

β-catenin β-catenin ENSG00000168036

BRG1 brahma-related gene 1 ENST00000644760

CXCL5 C-X-C motif chemokine ligand 5 ENSG00000163735

CXCL8 C-X-C motif chemokine ligand 8 ENSG00000169429

EGFR growth factor receptor ENSG00000146648

ERK1 extracellular signal-regulated kinase 1 ENSCING00000007067

EZH2 enhancer of zeste homolog 2 ENSG00000106462

FOXA1 forkhead box A1 ENSG00000129514

IL6 interleukin 6 ENSG00000136244

JAK2 janus kinase 2 ENSG00000096968

MALAT1 metastasis-associated lung

adenocarcinoma transcript 1

ENSG00000251562

MAPK mitogen-activated protein kinase ENSG00000100030

MMP2 matrix metallopeptidase 2 ENSG00000087245

MMP-9 matrix metallopeptidase 9 ENSG00000100985

MTOR mechanistic target of rapamycin

kinase

ENSG00000198793

PI3K phosphatidylinositol-4,5-

bisphosphate

3-kinase

ENSG00000121879

SIRT1 silent information regulator 1 ENSG00000096717

SNAI1 snail family transcriptional repressor 1 ENSG00000124216

SRPK1 serine/arginine protein kinases 1 ENSG00000096063

TCF7L2 transcription factor 7-like 2 ENSG00000148737

TGF-β transforming growth factor β ENSG00000105329

VEGFR2 vascular endothelial growth factor

receptor 2

ENSG00000112715

WET2 wnt family member 2 ENSG00000105989

ZEB1 zinc finger E-box binding homeobox 1 ENSG00000148516

Frontiers in Medicine | www.frontiersin.org 9 January 2022 | Volume 8 | Article 73464348

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


fmed-09-757212 March 14, 2022 Time: 14:43 # 1

ORIGINAL RESEARCH
published: 18 March 2022

doi: 10.3389/fmed.2022.757212

Edited by:
Alice Chen,

National Cancer Institute (NCI),
United States

Reviewed by:
Darrel Waggoner,

University of Chicago, United States
Maurice Godfrey,

University of Nebraska Medical
Center, United States

*Correspondence:
Kenneth S. Ramos
kramos@tamu.edu

Specialty section:
This article was submitted to

Precision Medicine,
a section of the journal

Frontiers in Medicine

Received: 11 August 2021
Accepted: 18 February 2022

Published: 18 March 2022

Citation:
Schaibley VM, Ramos IN,

Woosley RL, Curry S, Hays S and
Ramos KS (2022) Limited Genomics
Training Among Physicians Remains

a Barrier to Genomics-Based
Implementation of Precision Medicine.

Front. Med. 9:757212.
doi: 10.3389/fmed.2022.757212

Limited Genomics Training Among
Physicians Remains a Barrier to
Genomics-Based Implementation of
Precision Medicine
Valerie M. Schaibley1,2,3, Irma N. Ramos1,4, Raymond L. Woosley5, Steven Curry5,
Sean Hays6 and Kenneth S. Ramos1,5,7*

1 Center for Applied Genetics and Genomic Medicine, The University of Arizona Health Sciences, Tucson, AZ, United States,
2 Genetic Counseling Graduate Program, University of Arizona College of Medicine – Tucson, Tucson, AZ, United States,
3 Department of Cellular and Molecular Medicine, University of Arizona College of Medicine – Tucson, Tucson, AZ,
United States, 4 Department of Health Promotion Sciences, University of Arizona Mel and Enid Zuckerman College of Public
Health, Tucson, AZ, United States, 5 Division of Clinical Data Analytics and Decision Support, Department of Medicine,
University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States, 6 SciPinion, Bozeman, MT, United States,
7 Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States

The field of precision medicine has undergone significant growth over the past
10 years. Despite increasing applications of clinical genetic and genomic testing, studies
consistently report limited knowledge of genetics and genomics among healthcare
providers. This study explored barriers to the implementation of precision medicine by
surveying physicians working in a large academic medical center. We assessed prior
training in genetics, use of genetic testing in the clinic, desire for additional resources
in genetics and genomic medicine and perceived barriers to successful integration of
precision medicine. Only 20% of respondents reported moderate or extensive training
in genetics. Physicians with limited or no training in genetics were less likely to have
ordered a genetic test for any purpose. Furthermore, 41% of physicians responded that
their lack of training identifying appropriate genetic tests and how to interpret genetic
testing results was the most significant barrier to ordering genetic testing for their
patients. These findings suggest that future efforts to realize the promise of precision
medicine should focus on the integration of training programs for non-genetics trained
healthcare providers.

Keywords: precision medicine, genetics, genomics, clinical care, training

INTRODUCTION

Precision medicine is quickly expanding into mainstream clinical care. With the projected growth
of precision medicine in the coming years, genetics and genomics will become an increasingly
mainstream component of routine clinical care (1). As the taxonomy of disease is redefined on
the basis of genetic and genomic insights, providers and healthcare systems will increasingly need
to integrate genetic testing into patient care (2). Already, the rise in genetic testing has increased
demand for clinical genetics services in the United States (3). This has collided with workforce
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shortages in clinical genetics, with many practices unable to take
new patients and significant job vacancies for medical geneticists
and genetic counselor positions across the country (3).

With increasing recognition of the link between chronic
diseases and genomics and an inadequate number of healthcare
providers (HCP) trained in genetics, the care of patients and
families will fall to non-genetics trained providers. However,
research has shown that many HCPs are not familiar with genetic
testing procedures and test interpretation, and lack confidence
in providing genetics-informed care and discussing genomics
and genetics topics with their patients (4). Limited physician
knowledge of genomics and genetic testing is repeatedly cited
as a barrier for the implementation of precision medicine
(5–8). Furthermore, lack of HCP knowledge of technological
advances in the area of genetics has the potential to exacerbate
health disparities in access to genetic testing among traditionally
underserved populations (6).

In order to assess HCP knowledge and opinions on precision
medicine and the integration of genomic medicine into their
clinical practice, we surveyed HCPs working in a large academic
medical center in central Arizona. The survey focused on the
use of genetic testing in clinical practice, comfort using this type
of data, and perceived barriers to expanding the use of clinical
genetic testing.

MATERIALS AND METHODS

Survey questions were developed to evaluate physicians’
knowledge and opinions of precision medicine. Participants were
asked 12 questions to assess their use of genetic testing and ability
to capitalize on this data in the clinic (Table 1). The complete
survey is provided as Supplementary Material. Participants
were not required to complete all questions in the survey.

A letter requesting participation in the survey was distributed
to the entire physician staff at Banner - University Medical Center
in Phoenix, Arizona (BUMCP). BUMCP is the primary academic
medical center located in downtown Phoenix and is affiliated with
the University of Arizona College of Medicine – Phoenix.

In compliance with institutional policy for human subjects
research, the protocol was reviewed by the Banner Office for
Human Research and The University of Arizona Institutional
Review Board and deemed exempt from full review. All survey
responses were anonymous. Sixty-four individuals completed the
survey between October 30, 2017 and November 7, 2017 and
the survey was closed on November 10, 2017. The survey was
distributed, and responses were collected using a proprietary
platform developed by SciPinion1.

Survey results were analyzed using the Pearson’s chi-squared
test for independence or a Chi-square goodness of fit test. Yates
correction was used for all Chi-squared analyses to correct for the
low sample size. The 95% confidence intervals shown in Figure 1
were calculated using the Wilson method. Statistical analysis was
conducted in R version 3.5.1 and RStudio version 1.2.1335.

1https://scipinion.com/

Responses to the single open-ended question in the survey
(“What is your definition of precision medicine?”) were coded
into five categories: (1) tailoring medical care to an individual,
(2) using genetics to guide medical care (diagnosis, therapy,
etc.), (3) understanding the combination of factors that influence
health, like genetics, environment, and lifestyle, (4) basis for
precision medicine is only based on genetic information, and
(5) don’t know/no response. Reponses could fall into more
than one category.

Responses to the question “What is your level of training in
genomics?” that fell into the “Moderate” or “Extensive” categories
were combined into a “Moderate or Extensive” category due to
only a single respondent indicating they had extensive training
in genomics. The response categories were not defined for this
question, as we wanted respondents to self-assess their level
of training and experience in genomics as “None,” “Limited,”
“Moderate,” or “Extensive.”

RESULTS

Study Summary and Description of Data
A 12-question survey was offered to providers working at a large
academic medical center with practices in Phoenix, Arizona. The
study was designed to assess the level of knowledge of precision
medicine. An email invitation to the survey was distributed to
physician providers at BUMCP using an internal listserv, with
one reminder sent mid-way between October 30 and November
7, 2017. Sixty-four physicians completed the survey.

The majority of participants (86%) responded to all survey
questions and most respondents were male (77%). Respondents
completed medical training between 1971 and 2010. There was
no significant difference between year of completion of medical
training among respondents (Pearson’s χ2 = 4.75, p = 0.31).
About half of respondents indicated that they had previously
ordered a genetic test for a patient, with 52% of respondents
reporting use of a genetic test for diagnosis in the past (Table 1).
The survey showed that 86% of providers would welcome
assistance with the interpretation of genetic testing results and
that they would consult an expert in genomic medicine if the
option was available (Table 1). Most providers (78%) indicated
that they would attend training, if available, and that 85%
believed precision medicine will define standards of care in the
future (Table 1).

Physician Definitions of Precision
Medicine
Survey participants were asked to define precision medicine
in their own words. A total of 59 responses to this question
were provided. Three of the responses were specific, including
a description of precision medicine as incorporating not just
genetics, but other aspects of a patient’s health as well:

“A treatment in medicine designed to take in account the patient’s
illness in terms of variability in their lifestyle, genetic genome and
environment. The treatment is aimed at defining particular group
of patients with particular genetic genome that therapy maybe
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TABLE 1 | Summary statistics for binary response questions.

Question N “Yes” responses Percentage “Yes” responses

Have you ever ordered a genetic-based test for diagnostic purposes? 33 52%

Have you ever ordered a genetic test for one of your patients? 36 56%

Do you feel you need help interpreting clinical genomic data if these data was made available to you? 55 86%

Do you think precision medicine will help define standards of care in medicine? 53 85%

Would you place a consult to a physician with expertise in genomic medicine if available at your institution? 55 86%

Would you like to attend trainings on precision medicine and genomics based testing for diagnostic purposes? 50 78%

FIGURE 1 | Level of genomics training influences use of genetics testing in clinical settings. Proportion of providers who responded Yes to the questions, “Have you
ever ordered a genetic test for one of your patients?,” “Have you ever ordered a genetic-based test for diagnostic purposes?,” “Do you feel you need help
interpreting clinical genomic data if these data was made available to you?,” and “Would you place a consult to a physician with expertise in genomic medicine if
available at your institution” arranged from left to right stratified by self-reported level of training in genomics.

targeted for that group or prevention of illnesses associated that
genome.”

In contrast, about 10% of respondents replied to this
question with, “I don’t know,” or “No idea,” suggesting
that providers’ understanding of precision medicine
varies widely (Table 2). Most respondents included a

description of tailoring medical care to an individual,
typically indicating that genetics was a primary driver of
precision medicine (Table 2). Only 5% of respondents
indicated that precision medicine encompasses more than
just genetics (Table 2), suggesting that for these providers,
genomics is the most significant element of precision-medicine
based healthcare.
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TABLE 2 | Categorized responses to open ended question*.

Category N Percentage

Tailoring medical care to an individual 45 76.3%

Using genetics to guide medical care (diagnosis,
therapy, etc.)

42 71.2%

Combination of factors that influence health (genetics,
environment, and/or lifestyle)

3 5.1%

Basis for precision medicine is only genetic information 31 52.5%

Don’t know/no response 6 10.2%

*Responses to the question, “What is your definition of precision medicine?” were
coded into five categories. Responses could fall into more than one category.

Level of Training in Genomics Influences
Use of Genomics in Clinical Settings
Chi-square goodness of fit analysis showed a significant
difference between the level of training in genomics among
respondents (χ2 = 30.125, p = 1.299e-6), with 80% of respondents
reporting limited to no training in genomics. We found a
statistically significant relationship between provider level of
training in genetics and whether or not providers would order a
genetic test (Pearson’s χ2 = 10.17, p = 0.006) or use a genetic test
for diagnosis purposes (Pearson’s χ2 = 7.2, p = 0.027). Providers
with Moderate or Extensive training in genetics more frequently
ordered genetic tests than providers with limited training in
genetics (Figure 1). Furthermore, providers with moderate or
extensive training in genomics more frequently used genetic
testing for diagnostic purposes than providers with limited or
no advanced training in genomics (Figure 1). There was no
significant relationship between respondents’ level of genetics
training and year of completing medical training (Pearson’s
χ2 = 8.5, p = 0.7483).

In addition to utilizing genetic testing in the clinic, level
of training in genomics also influenced how providers would
use that data in the clinic. There was a significant relationship
between level of training in genomics and desire for assistance
with interpretation of genetic test results (Figure 1, Pearson’s
χ2 = 8.26, p = 0.016), with providers reporting less genomics
training indicating that they would like help with genetic test
interpretation. In contrast, no significant relationship was found
between the level of training in genomics and the desire to
consult an expert in genomic medicine (Figure 1, p = 0.3974),
suggesting that providers generally agree that they would benefit
from consulting with an expert in the field, regardless of level of
training in genomics.

Barriers to Implementation of Genetic
Testing in the Clinic
Providers were asked to choose the most significant barrier for
them when considering the option of ordering a genetic test
for any given patient. The responses could be (1) availability
of genetic tests, (2) personal training or knowledge of which
genetic tests to order and how to integrate results from specific
genetic tests, (3) medical guidelines, (4) cost, (5) lack of available
therapies that are specific to genetic profiles, or (6) lack of
confidence in therapy(ies) when they are available for specific
genetic profiles.

Chi-square goodness of fit analysis comparing the reported
barriers to implementing genetic testing in clinic found a
significant difference from a uniform distribution (Figure 2A,
χ2 = 33.476, p = 3.027e-6). In our survey, 26 providers (41%)
indicated that personal training on which genetic tests to order
and how to interpret results from specific genetic tests was the
most significant barrier to ordering a genetic test for a patient.
As expected, we identified a relationship between the level of
training in genetics and perceived barriers to testing (Figure 2B,
Pearson’s χ2 = 6.9959, p = 0.03). For individuals with no training
in genomics, lack of personal training was the most common
response (Figure 2B), with over 60% of respondents who had
no training in genomics indicating that this lack of training was
the major barrier to ordering genetic tests for their patients. As
respondents’ level of training in genomics increased from limited
to moderate or extensive, lack of personal training in genomics
was still a common barrier to genetic testing. However, these
groups also reported that lack of tailored therapies or availability
of testing were additional barriers that restricted the use of
clinical genetic testing (Figure 2B).

DISCUSSION

Lack of provider knowledge in genetics has long been recognized
as a barrier to the large-scale adoption of genetic testing into
mainstream clinical care (5–8). However, despite a growing trend
of increasing educational programs in genetics and genomics
oriented toward non-genetics HCPs (9), recent studies suggest
that many primary care physicians continue to be lacking in
knowledge and confidence in clinical genetics and genomics (10,
11). In our study, participants cited that a lack of personal training
was the most significant barrier to the use of genomics data in
the clinic. Furthermore, we found that providers with higher
levels of training were more likely to have ordered a genetic
test, suggesting that additional training in genomics made them
more comfortable with integration of genetics and genomics data
into their practice. Together, these data support the claim that
lack of training in genetics remains a significant obstacle in the
expansion of genetics and genomics into clinical care. As such,
training programs that teach fundamental concepts in genetic
testing utilization may help non-genetics healthcare providers
become more comfortable using this type of testing.

While our study found that roughly 50% of respondents have
used some form of genetic testing in the clinic, 86% would like
to have help interpreting these data. Furthermore, respondents
in all groups wanted a genetics consulting service, even the single
provider reporting “Extensive” training in genetics and genomics.
Of note, the category with the most respondents who answered
“No” to the question about genetics consultation was the group
who indicated they had no advanced training in genetics (n = 5).
This suggests that this group may not use genetic testing enough
to warrant a consulting service, are unaware of the potential
benefit of a genetics consult to help order and interpret genetic
tests and genomics data, or feel that there is insufficient data to
support the costs of genetic testing.

As genetics and genomics knowledge becomes commonplace,
primary care practice will be heavily impacted by a massive
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FIGURE 2 | Lack of personal training in genomics is a barrier to clinical genetic testing. Physician’s responses to the question, “What is the major barrier for you to
order a genetic test for a given patient?” among (A) all respondents and (B) stratified by level of training in genomics.

inflow of genetic and genomic data. This will be especially
exacerbated in medically underserved populations (6) and will
only grow as consumer-initiated genetic testing expands (12),
and return of genetic testing results in research programs
grows (13, 14). Our findings suggest that creation of referral
clinics within large healthcare settings may be an accelerator
to the adoption of genetics and genomics data into clinical
practice. However, genetics specialists are limited. While there
has been recent growth in the genetic counseling profession,
with the expansion of genetic counseling training programs in
the United States (15), there will likely continue to be high
demand for medical geneticists until gaps in training programs
are addressed (3). Novel approaches to referral clinics, such as
leveraging genetic counselors’ skills in providing information
and interpretation of genetic testing to both patients and
providers, while allowing medical geneticists to focus on complex
diagnoses and management, could be a model to help address

access to genetics specialty care while demand for medical
geneticists continues.

Our study expands on existing literature showing that
non-genetics trained healthcare providers are not comfortable
implementing genetics into their clinical practice (4, 10, 11).
Our study was unselected for physician specialty in order to
broadly capture providers comfort and experience with genetic
testing, outside of formal training and this may have led to
discrepancies between individual responses. As such, future
studies that examine the knowledge and comfort of using genetic
testing among specialists and primary care providers would
further clarify how well-equipped physicians in different areas
of medicine are to incorporate genetic testing into their clinical
practice. This could be further expanded by examining providers
working in more diverse healthcare settings and geographic
regions, where access to genetics specialists may be severely
limited.
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In our survey, most respondents indicated that precision
medicine will define standards of care, with genetics having an
increasingly prominent role in clinical practice. This calls for
organized efforts by health care organizations to expand genetics
and genomics education for both genetics and non-genetics
providers to meet the future growth and demand for these
types of services. Such expansion should include standardized
interpretation resources, continuing education programs for
providers and genomics consultation services.
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Precision medicine programs to identify clinically relevant genetic variation have

been revolutionized by access to increasingly affordable high-throughput sequencing

technologies. A decade of continual drops in per-base sequencing costs means it is

now feasible to sequence an individual patient genome and interrogate all classes of

genetic variation for <$1,000 USD. However, while advances in these technologies have

greatly simplified the ability to obtain patient sequence information, the timely analysis

and interpretation of variant information remains a challenge for the rollout of large-

scale precision medicine programs. This review will examine the challenges and potential

solutions that exist in identifying predictive genetic biomarkers and pharmacogenetic

variants in a patient and discuss the larger bioinformatic challenges likely to emerge in

the future. It will examine how both software and hardware development are aiming to

overcome issues in short read mapping, variant detection and variant interpretation. It

will discuss the current state of the art for genetic disease and the remaining challenges

to overcome for complex disease. Success across all types of disease will require novel

statistical models and software in order to ensure precision medicine programs realize

their full potential now and into the future.

Keywords: precision medicine, variant detection, high-throughput sequencing, pathogenic variant, variant

prioritization, FPGA—field-programmable gate array, GPU-accelerated

INTRODUCTION

Precision medicine programs are increasingly being implemented worldwide with a goal of
improving patient care for an individual (1). Largely enabled by access to increasingly affordable
high quality sequence data, great strides have been made in the diagnosis and management of
genetic disease. By considering a patients unique genetic, environmental and lifestyle factors
precision medicine aims to develop customized patient-specific treatments. Increasingly important
in precision medicine programs is the ability to utilize genetic information to stratify patients with
regard to treatment options and outcomes. Such patient information can be broadly classified into
predicative and prognostic biomarkers with prognostic biomarkers informing on patient outcome
in contrast to predictive biomarkers which directly guides treatment (the focus of this review).
Currently, diagnosis and treatment of cancer and rare diseases are the largest beneficiaries of
precision medicine programs. In cancer, huge numbers of druggable molecular alterations have
been described and cataloged in growing public repositories like Clinical Interpretation of Variants
in Cancer (CIViC) (2). As of February 2022, CIViC contain an incredible 3,041 actionable variants
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in 464 genes supported by 8,576 evidence items. Beyond cancer,
the genetic cause of more than 80% of the roughly 6,000
known rare diseases has been elucidated in the last decade alone
(3). While impressive, currently only ∼5% of these diseases
have an accepted targeted treatment indicative of the work still
required (3).

Despite progress in diagnosing and treating genetic diseases,
a bottleneck persists in variant interpretation. The increase
in sequencing capacity has identified huge numbers of new
suspected pathogenic variants however there is often sparse or
inconclusive supporting functional evidence. For example, cystic
fibrosis (CF) is caused by up to ∼300 pathogenic variants in
the CTFR gene however their impact is often heterogenous
amongst individuals (4). Functional inference prediction tools
are often run instead to access the likelihood of a mutation
ablating protein function however such tools are known to have
high false positive rates (5). Overall, substantial progress has been
made in genetic disease however numerous challenges need to be
addressed before precision medicine programs can be delivered
at scale and for complex, polygenic disease.

Reliably identifying disease causing variants remains a
challenge within the field particularly for complex disease. While
great strides have been made for cancer and rare diseases, the
diagnosis rates for complex diseases remain much lower (6).
Despite these challenges, there are many examples of genetic
traits in polygenic disease contributing to clinical manifestations
[e.g., blood disease (7), autoimmune disease (8)]. To increase
the diagnosis rates for complex diseases, previous approaches
have employed a wide variety of strategies. For example,
careful sample selection improve diagnosis rates by focusing on
families with multiple affected individuals who exhibit extreme
phenotypes and early onset of disease (9). Additionally, particular
variant classes can be prioritized in different scenarios such
as homozygous mutations for consanguineous pedigrees (10)
and de novo mutations for trios with an affected child and
unaffected parents (11). While these strategies are feasible in
particular scenarios, in many cases only a single patient is
available meaning prioritization strategies must consider all
genetic variation detected in a patient.

An additional challenge in variant detection is the increased
recognition of the importance of larger copy number and repeat
variation in driving disease. These variant classes are harder
to reliably detect than single nucleotide variants (SNVs) and
small insertion/deletions (indels) particularly with short read
sequencing technologies (12). Even for SNVs and small indels
there are limitations with most precision medicine programs
prioritizing variants disrupting gene function yet increasingly
portions of the “missing heritability” in disease is being explained
by small variants that either generate unexpected splicing
errors or disrupt poorly annotated regulatory elements (13).
These challenges are compounded within populations of non-
European ancestry due the over representation of individuals
of European ancestry within public variant databases. While
this trend is improving, a 2016 study found 81% of all GWAS
study samples were of European ancestry with only 4% of
all samples being of African or Latin American ancestry or
Indigenous (14).

Inherent to any successful precision medicine program is
the timely and accurate detection of genetic variation and
the prioritization of the variants most likely to be relevant
to the patient’s condition. Advances in software and hardware
are playing an increasingly innovative role in delivering
on these goals particularly for accurate variant detection
and prioritization. Software-based approaches are varied and
include developing new algorithms, increasing efficiencies of
existing algorithms, increasing parallelization and improved
standardization of common file formats (15). Hardware-based
approaches are increasingly important and include increased
availability of cluster and cloud based compute environments
(16), field-programmable gate arrays (FPGA) devices (17)
and graphical processing units (GPU) enabled bioinformatics
algorithms (18).

Pharmacogenetic variants are also important in precision
medicine with individual variability in drug response increasingly
being attributed to genetic variation. An average individual is
estimated to carry three clinically actionable pharmacogenetic
variants with 97% of individuals carrying at least one such
variant (19). Increasingly large repositories that aggregate and
annotate pharmacogenetic variants [e.g., PharmGKB (20)] are
being used in drug dosage decision making. While encouraging,
the majority of known pharmacogenetic variants remain
underutilized in precision medicine. This is largely due to a poor
understanding of the underlying mechanisms and challenges in
accurately identifying and annotating pharmacogenetic variants.
For example, a recent study showed pharmacogenetic variants
causing missense mutations and associated with off-target effects
are incorrectly classified as benign by functional inference
prediction software (21). Further software development is needed
to account for this special class of variation (22).

Large-scale translation of research results into the
clinic remain a significant bottleneck for the wide-spread
implementation of precision medicine programs. While
increasingly detailed annotation and prioritization workflows
are being described and shared (23), most still remain siloed
within individual institutions or are bound to specific hardware
configurations. Improved containerization of workflows is
helping to facilitate sharing of analysis pipelines (24) with
initiatives like the Global Alliance for Genomics and Health
(GA4GH) facilitating the timely sharing of large genetic data sets.
While improving standardization and sharing of resources is
critical, a larger challenge is the availability of accurate databases
of clinically actionable variants. While many such repositories
exist, studies have identified inaccuracies throughout (25). To
illustrate, a recent study followed up 239 variants in the Human
Gene Mutation Database (HGMD) classified as disease-causing
and found only 7.5% of these variants met the criteria required to
be called disease-causing (26). For precision medicine to succeed
at scale, more accurate and detailed databases of clinically
actionable variants are required.

Despite substantial progress, reliably detecting genetic
variants within precision medicine programs has many
challenges remaining. While solutions are actively being
developed it is clear more improvements are needed if we are to
realize the full potential of population-wide precision medicine
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programs. In this review, I will describe the current and future
challenges for identifying clinically relevant genetic variants in
precision medicine programs with resources summarized in
Table 1.

CURRENT CHALLENGES AND SOLUTIONS

A wide variety of strategies are being employed to detect
clinically relevant genetic variation at scale. These approaches
can be broadly classified as software-based or hardware-based
(Figure 1).

Software Based
Software development and optimization play an important
role in improving precision medicine programs by improving
algorithm performance and reducing run time and memory
requirements. This is occurring via a variety of mechanisms
including the development of new algorithms, optimization
of existing algorithms, increasing parallelization via job
partitioning, and standardized file formats (Table 2).

New algorithms are being developed for a variety of analysis
steps in variant detection workflows, particularly for variant
prioritization.While the generation of either germline or somatic
raw variant calls is increasingly routine [e.g., BWA for short
read alignment (42) followed by GATK best practices (43)],
development of algorithms to identify clinically relevant variants
from raw variant calls remains an active area of software
development. The increasing availability of variant annotation
data has led to the development of annotation aggregator
packages such as ENSEMBL Variant Effect Predictor (VEP)
(31) or ANNOVAR (33). With external annotation sets and
gene models rapidly updating, such tools are indispensable for
applying the latest annotations to raw variant lists. Another
area of active software development is predicting the functional

impact of variant classes such as missense mutations. Heavily
used tools such as PolyPhen2 (36) have been shown to exhibit
high false positive rates (5) and newer tools are increasingly
utilizing machine learning (38) and a consensus-based approach
(44) to try to overcome these limitations however more work
is needed to improve their accuracy. The most active area
of development currently is disease-specific solutions with
the increasing recognition that any disease requires tailored
annotation / prioritization and may even require different types
of sequence data. For example, with autoimmune disease T-cell
receptor (TCR) and B-cell receptor (BCR) repertoires are often
sequenced requiring custom software to identify the relevant
clonotypes (45). Additionally, incorporating disease specific
annotations [e.g., Immgen for autoimmune disease (46)] requires
custom handling as disease-specific databases are generally not
available within the annotation aggregation tools.

Ongoing development of many commonly used
bioinformatics algorithms is reducing run time and memory
requirements. For example, an update to the popular amplicon
cluster software Swarm reduced memory usage by 50% and
run time by 7X (47). These improvements are often driven by
increasingly large data sets with many long-running software
packages having been created when sequence data sets were
smaller. Increasingly, individuals not involved in the original
development of the software are finding ways to speed up and
reduce memory usage of many commonly used algorithms. For
example, an external group modified the popular Minimap2
(48) long read aligner by incorporating multi-index merging
which reduced memory usage by an order of magnitude (49).
While gains have been significant in many instances, further
reductions in run time and memory usage will greatly facilitate
the wide-spread uptake of precision medicine programs.

A common approach to reduce run time is increasing
parallelization via programming models like MapReduce (50).

TABLE 1 | Resources for variant detection in precision medicine programs.

Database Function Web link

dbSNP (27) Population level variation http://www.ncbi.nlm.nih.gov/snp

gnomAD (28) Population level variation https://gnomad.broadinstitute.org

1000 Genomes Phase 3

(29)

Population level variation http://phase3browser.1000genomes.org

Database of Genomic

Variants (30)

Population level variation http://dgv.tcag.ca/dgv/app/home

Variant Effect Predictor (31) Variant annotation https://ensembl.org/info/docs/tools/vep/index.html

dbNFSP (32) Variant annotation https://sites.google.com/site/jpopgen/dbNSFP

AnnoVar (33) Variant annotation http://annovar.openbioinformatics.org/en/latest/

ClinVar (34) Clinical annotation https://www.ncbi.nlm.nih.gov/clinvar

LOVD (35) Clinical annotation http://www.lovd.nl

PolyPhen2 (36) Functional impact http://genetics.bwh.harvard.edu/pph2/

SIFT (37) Functional impact https://sift.bii.a-star.edu.sg/

CADD (38) Functional impact https://cadd.gs.washington.edu/

GTEx (39) Gene expression https://gtexportal.org

Multi-symbol checker (40) Gene naming https://www.genenames.org/tools/multi-symbol-checker

OMIM (41) Gene / disease annotation https://www.omim.org
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FIGURE 1 | Software and hardware-based strategies being employed to address bioinformatic bottlenecks in large scale precision medicine programs.

TABLE 2 | Software based solutions.

Strategy Advantages Disadvantages

Algorithm development – Develop novel approaches – Requires community uptake

– Existing suite of tools available for benchmarking – Challenging to significantly change existing workflows

Algorithm optimization – Quicker to improve existing algorithms – Gains are often minimal if software well-designed initially

– Simple to benchmark versus previous releases – Any changes in expected output requires verification

Job partitioning – Increases parallelization and reduces serial run time – Splitting and combining results adds software complexity

Standardized file formats – Standardized formats allows easy algorithm benchmarking – No flexibility for new data types or information

MapReduce is a general purpose model designed to run
efficiently over large datasets on commodity compute clusters.
The incorporation of MapReduce by Apache Hadoop has led
to its incorporation throughout the bioinformatics landscape,
now found in software such as GATK (43) and BLAST (51).
In addition to using models like MapReduce, custom solutions
are often employed such as partitioning long-running whole
genome jobs into smaller genomic chunks, often at the level of
chromosome (52). Using this approach, we can expect at least an
order of magnitude reduction in run time as the largest single
chromosome represents <10% of the total human reference
genome size. It should be noted that while this approach is
suitable for algorithms where each chromosome is analyzed
independently, this approach won’t work when information
from multiple chromosomes is required for an analysis (e.g.,
genome wide stats, detecting inter-chromosomal translocations).
Another issue with this approach is the increased complexity
required to manage the jobs and merge the per-chromosome
output files.

File formats are increasingly being standardized to improve
reproducibility and data sharing. For example, virtually all short
read aligners now generate SAM alignment files while most
variant detection software outputs variant call format (vcf) files.
Standardizing file types can reduce ongoing storage requirements
via improved compression which allows algorithms to work
entirely with compressed data such as gzipped FASTQ files
or compressed SAM files (BAM/CRAM). For example, read
alignment generates an extremely large SAM file containing
one row per read pair. Given whole genome datasets routinely
contain >1 billion read pairs SAM files quickly become large and
unmanageable formanipulation. To address this, a lossless binary
version of the SAM file was created that reduces the file size by
up to 75%. The resultant BAM file is significantly smaller and
can be effortlessly queried and manipulated via bioinformatic
packages such as SAMTools (53). Despite the improvements
with BAM files, a more compressed format called CRAM was
subsequently developed, resulting in a further reduction of 40–
70% in size relative to BAM (54). While promising, a limitation
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of the CRAM format is that compression is not a lossless
conversion whereas BAM compression is lossless. Overall file
standardization has made significant improvements to variant
detection workflow efficiency and portability however challenges
do exist with frequent version changes often failing to maintain
backwards compatibility.

Hardware Based
Hardware developments are making significant contributions
to precision medicine programs via increasingly large and
accessible compute infrastructure and hardware accelerated
solutions designed to address software bottlenecks. The increase
in available computational resources is primarily driven by
increasingly large and accessible cluster and cloud compute
resources while the hardware accelerated solutions consist largely
of new FPGA devices and GPU-enabled algorithms. Collectively
the increasing uptake of these hardware-based solutions is easing
existing computational bottlenecks within precision medicine
programs (55). However while these hardware solutions are often
designed to address the same bottlenecks, they differ with regard
to ease of use, cost, performance and scalability (Table 3).

Most high throughput genome analysis workflows were
originally designed to run on commodity clusters due to
their affordability, scalability and relative ease of use. From
small clusters running on local infrastructure to enterprise-level
systems with thousands of readily-available cores, their design
follows the same model with scheduler software responsible for
managing jobs and resources across a distributed system of linked
computers. This setup enables efficient parallelization of jobs
using commodity hardware with minimal overhead. As such
systems grow with more users and resources however, increasing
levels of expertise are required for seamless operation. With
such expertise, clusters are able to process huge numbers of jobs
in parallel making this infrastructure critical to many project
requiring efficient and timely data processing.

In addition to increasingly large compute clusters, accessible
and expandable cloud-based compute resources are driving an
increasing number of precision medicine programs (56). In
contrast to cluster based solutions, cloud solutions perform
all analyses on remote systems across a network connection.
In a cloud based model, storage and compute resources are
commodities that can either be borrowed or rented from a

provider such as Amazon Web Services or Microsoft Azure.
The greatest advantage of cloud compute is its flexibility; users
can access exactly the resources required for virtually any
job. This flexibility enables users of any size to utilize cloud
resources providing the appropriate compute environment is
available. Setting up custom cloud-ready workflows requires
a significant effort initially although increasingly the most
common genomics workflows are being made available [e.g., nf-
core (57)]. Potential issues with public cloud resources include
issues handling sensitive patient information and challenges
moving large genomic data sets. To address these, some groups
are opting for a hybrid solution by creating private cloud
infrastructure potentially getting the benefits of both cluster and
cloud approaches. Regardless of the approach, it is clear cloud
compute infrastructure will play an increasingly large role in
precision medicine programs (16).

Beyond increasingly large and flexible compute infrastructure,
hardware accelerated solutions such as GPU-enabled algorithms
and FPGA devices are now being used to reduce run time in
precision medicine programs (15). While GPU-enabled versions
of many popular bioinformatics algorithms have existed for a
long time [e.g., GPU-BLAST is 10 years old (58)], it is only
recently that we are beginning to see wide-spread uptake of these
algorithms. Algorithms able to utilize GPUs can significantly
increase parallelization by taking advantage of the large number
of specialized cores on a single graphics card. In contrast with
sequential CPU processing, GPUs offer superior scalability and
reduced costs per unit however the biggest challenge is creating
the specialized code required to utilize GPUs. Further, portability
is a challenge as any GPU code developed is vendor-specific
meaning it cannot run on another vendors GPUs. In reality, most
GPU-enabled bioinformatics algorithms are currently written
using NVIDIA’s Compute Unified Device Architecture (CUDA)
with examples from variant detection workflows focused on the
short read alignment step [e.g., SOAP3 (59)]. However, with
the increasing availability of GPU-enabled algorithms across the
whole research spectrum more options relevant to precision
medicine are likely forthcoming.

In addition to the potential of GPU-enabled algorithms, an
increasing number of FPGA devices are available for precision
medicine variant detection (60). FPGAs are integrated circuits
designed to be configured for specific software applications.
FPGAs offer many advantages in that they are flexible, inherently

TABLE 3 | Hardware based solutions.

Resource Advantages Disadvantages

Compute cluster – Low cost entry – Controller is single point of failure

– Uses commodity hardware – Technical expertise required

Cloud compute – Highly scalable – Data transfer and cost

– No local installation – Privacy concerns for sensitive data

FPGA – Direct hardware / software link – Challenging to program/re-program

– Relatively low cost – Integration requires technical expertise

GPU – Cheaper than CPUs – Chipset specific coding required

– High parallelization possible – Higher power usage than FPGAs
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parallel, re-programable and relatively low cost. The greatest
limitation of FPGA is they are very difficult to program compared
to GPUs (15) however devices exist for both short read alignment
[Bowtie (61)] and even entire precision medicine workflows
(DRAGEN). Developed by Edico Genome and now owned
by Illumina, DRAGEN can reduce already parallelized variant
detection workflows by up to an order of magnitude (62).
DRAGEN has also been deployed at scale in partnership with
Genomics England for their rare disease analysis platform.
It is clear FPGA devices have a significant role to play in
precision medicine.

While all the software and hardware solutions are described in
isolation, in reality various hardware and software combinations
are being tested in new precision medicine workflows.

Variant Detection
Detecting small genetic variants within sequenced human
genomes is a relatively mature high-through sequencing
application. Despite this progress, challenges remain to
comprehensively characterize all variation. Variant detection
challenges include an incomplete human reference genome, a
limited number of robust validated variant truth sets and no
clear best performing algorithm; challenges which are amplified
for less well characterized variant classes such as repeat and copy
number variation which are increasingly being implicated in
human disease (63).

Since the initial human genome assembly in 2001,
improvements in both software and long read sequencing
technology have improved the genome assembly to the point
where we now have the first telomere-to-telomere genome
assembly for most chromosomes (64). While promising for
the future, most precision medicine programs currently utilize
the GRCh38 assembly and will likely continue to do so for the
near future largely due to the abundance of well characterized
annotations data reported relative to these genomic coordinates.
For example, one of the most important annotation sets
GNOMAD (28) only converted to GRCh38 in October 2019,
almost five full years after the initial GRCh38 assembly was
released in December 2013. A similar period of time will likely
be required to convert existing workflows and annotations to the
improved telomere-to-telomere assembly following wide-spread
acceptance within the community. For context, the GRCh38
assembly still contains 850 sequence gaps with numerous
mis-assembled regions reported over the years.

Improving variant detection workflows requires robust
validated variant truth sets for benchmarking both new
algorithms and updated versions of existing algorithms. Until
quite recently a single reference dataset (NA12878) was available
for benchmarking which was limited by ∼30% of the reported
variants being classified as low confidence due to either low
coverage, local alignment problems, or systematic sequencing
errors (65). The wide-spread availability of high quality long read
sequence data and the increased number of samples available
within consortiums like Genome in a Bottle mean an increasing
number of relatively complete high quality variant truth sets are
available for benchmarking.

While the algorithms for detecting SNVs and small indels are
increasingly accurate and reliable, the algorithms for detecting
other types of variation such as repeat, copy number and
structural variation remain an active area of development. To
illustrate, a recent review reported SNV and small indel F-scores
of >0.975 and >0.85, respectively, (12) while a review of copy
number and structural variant detection algorithms reported
precision values of between 0.40 and 0.91 and recall values from
0.07 to 0.28 depending on the type of variant being detected
(66). Limited data is available reporting the true accuracy of
repeat variation detection algorithms due to lack of a gold
standard reference validation set with most tools instead relying
on analyses using in silico data. It should be noted that despite the
highly precision and recall reporting for SNV calling, studies have
shown that recurrent false positive variants are routinely called
and exist within variant repositories (67).

Central to any analysis step is the selection of the algorithm(s)
to run. While for many analysis steps a single algorithm is
determined to perform sufficiently, for many variant detection
applications leading algorithms generate highly discordant
results with no single algorithm performing optimally under
all conditions (52). To address this, an increasingly popular
approach is to run multiple algorithms and apply a consensus
approach in order to minimize the effect of any potential
biases within a single algorithm [e.g., DNA (52)/RNA (68)].
This approach has been shown to generate the highest quality
variant data sets for either specificity or sensitivity depending
on whether the intersection or the union of the variant calls is
taken, respectively.

Variant Interpretation
Whole genome sequencing (WGS) generates millions of raw
variant calls, the large majority of which are not relevant to
disease. While targeted sequencing experiments such as exome
or gene panel sequencing reduce the number of raw variant calls,
the challenge of variant filtering and interpretation to identify
clinically relevant variants remains. Beginning with raw variant
calls, the most common filtering strategy is to apply a series
of successive annotation and prioritization steps in order to
reduce the genomic search space for clinically relevant variants.
Such strategies include stratifying variants by impact on genes,
running functional inference prediction software for missense
mutations, overlapping to both ethnically matched population-
level and disease-specific variant repositories, and sequencing
pedigrees for germline disease and paired tumor/normal samples
for cancer (Table 4). Overall, each step reduces the genomic
search space with an overarching goal of reducing the final
list of candidate variants down to a size suitable for in-depth
manual interrogation.

Often the first annotation step is to stratify variants based
on their impact on genes. For example, SNVs causing non-
synonomous/nonsense mutations or small indels situated within
exons causing a frameshift are prioritized. Determining this
impact can be challenging however due to factors such as
differences in gene models or multiple isoforms reported within
a single gene model. For example, a recent study aligned RNA-
Seq data to three popular gene models (ENSEMBL, RefSeq,
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TABLE 4 | Strategies for variant prioritization.

Strategy Strengths Limitations

Consensus-approach running – Minimize algorithm biases – Adds computational complexity

multiple algorithms – Reduce specificity or sensitivity by taking intersection or union – Longer run time

Stratify by impact on genes – Prioritize disease enriched variant – Changes reported relevant to specific version of gene model

sets (e.g., missense or splice-site variants) – Multiple isoforms often available

Functional inference prediction – Prioritize mutations likely to disrupt protein – Tools have known high false positive rates

software

Overlap population-level – Allows filtering of common population-level variation – Contains errors and incomplete records due to lack of curation

variant databases

Overlap disease-specific – Identify variants or genes previously implicated in disease – Large numbers of non-causal variants often included

databases

Pedigree sequencing – Generate pedigree-wide annotation (disease inheritance, – Obtaining samples for larger family

compound heterozygosity, etc)

Paired cancer sequencing – Matched tumor/normal samples can detect somatic variation – Sample purity

– Tumor heterogeneity

and UCSC) and found 95% of non-junction read alignments
were identical across the three gene sets however only 53% of
junction spanning read alignments were identical (69). Such
studies illustrate the importance of careful gene model selection.
Even within a single gene model multiple isoforms are often
reported, meaning the choice of isoform can alter the expected
impact on the gene. Many workflows opt to compare the impact
across all isoforms and report the most severe outcome while
others report the impact relative to the annotated “canonical”
transcript as reported by gene models such as ENSEMBL, RefSeq,
and UCSC.

Another challenge in variant interpretation is the
identification of missense mutations most likely to disrupt
protein function. With hundreds or thousands of missense
mutation calls per patient, a large number of computational
tools have been developed to prioritize these variants. Such
tools are generally trained on validated disease mutations as a
positive set and common polymorphisms as a negative set and
consider three main types of evidence; sequence conservation,
protein structure, and protein annotations. These tools however
are untested against the full spectrum of random de novo
mutations and validation studies have reported consistently high
false positive rates for both candidate disease-causing (5) and
pharmacogenetic variants (21). Increasing gains in performance
are reported by tools that apply a consensus approach by
incorporating scores from other algorithms into their own
scoring (e.g., CADD (38). Additional gains have recently been
reported in algorithms applying machine learning approaches
trained on increasing large data sets (70) however wide spread
validation studies are required to validate these claims.

Databases of population-level variation are extremely valuable
for reducing the search space via the removal of common variants
as candidates. Databases like dbSNP (27) and GNOMAD (71)
contain increasingly detailed population-level variant frequency
information which allows both the de-prioritization of common
variants as well as the prioritization of rare or de novo
variants. It is critical when applying such filters to use ethnically
matched allele frequencies using the increasingly granular variant

information available within the variant repositories. Without
ethnic matching, many variants are incorrectly characterized as
novel or rare due to under-sampling in the repository of the
patient’s ethnic group. Despite efforts in recent year to increase
numbers of under-represented ethnicities in such databases,
much work is needed to include all groups such as Indigenous
populations (72).

Equally important to population-level databases are human
disease databases which allow previously implicated variants
and/or genes to be prioritized. Databases of clinically relevant
variants are numerous and growing rapidly in size (e.g., ClinVar
(34) for germline and CIVIC (2) for cancer). Importantly, these
databases follow standardized Human Genome Variation Society
(HGVS) approved nomenclature for DNA and RNA variants
allowing direct comparison across disparate data sets. In addition
to comprehensive generic disease databases, increasingly disease-
specific databases are being developed such as Infevers (73)
for auto-inflammatory disorders or IARC TP53 (74) for TP53
specific mutations. While disease databases are an extremely
valuable resource, most have been shown to contain high
numbers of false positive due to manual curations being made
with incomplete functional data. For example, one study found
27% of reported recessive disease-causing variants were false
positives and were actually either common polymorphisms
or mis-annotated (25). Such studies highlight the need to
improve such databases via increasingly rigorous functional
validation studies.

A powerful approach for reducing the search space for
disease-causing variants in rare disease is the sequencing of
families or pedigrees. Using this approach there are two
main applications; sequencing trios with an affected child and
two unaffected parents or sequencing multiple members of
larger pedigrees containing multiple affected members. In both
instances custom software is required to identify the variants
most likely to be causal; namely de novo mutations in the
trios and variants shared between affected and missing in
unaffected members in the larger pedigrees. With pedigrees,
specialized software is required to concurrently consider all
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variation and provide pedigree-specific annotation such as
disease inheritance patterns, phasing information, and potential
compound heterozygosity (75). While such tools are increasingly
mature, more is needed to incorporate their results into precision
medicine workflows.

For detecting somatic mutations in cancer, the most effective
strategy is sequencing paired tumor and normal samples and
analyzing them simultaneously with cancer-specific software to
identify candidate driver mutations (76). The presence of a
matched control sample facilitates the identification of somatic
variants however issues such as sample cross-contamination and
tumor heterogeneity ensure cancer-specific software is required
for reliable somatic variant detection. In this space, single cell
sequencing has the potential to mitigate some of the issues
around sample heterogeneity (77).

While currently most precision medicine programs run some
combination of the above annotation steps in series, increasingly
machine-learning based approaches are being developed to
identify clinically relevant variants directly from raw variant
lists (78). While much work is required to achieve this lofty
goal, machine-learning based approaches are already being
used successfully for more specific applications within the
larger workflows such as detecting variant pairs causing disease
(79), prioritizing non-coding variants (80) and identifying new
pharmacogenetic variants (22). While these applications show
promise, to date there are limited examples of large machine
learning approaches being utilized at scale in precision medicine
programs (81). In fact, a recent review could identify only a
few examples of machine learning methods impacting clinical
practice; an observation they largely attributing to the poor
performance of the predictive models, difficulties interpreting
complex model predictions and lack of validation in clinical trials
sufficiently demonstrating improvements to current standard of
care (82).

DISCUSSION

Precision medicine programs continue to mature and expand
around the world (1). One of the most common application in
such programs is detecting genetic variation relevant to a patient’s
condition. Significant improvements in both software and
hardware over the last few years have made the detection of small
genetic variation from patient sequence data an increasingly
routine process. To improve the success of existing programs,
work is required both with regard to detecting large and repetitive
genetic variation routinely and with improving the automation
of variant prioritization. In the near-future, it will also be critical
to synthesize patient clinical data with a variety of sequence
data types.

Repeat variation is broadly classified as mobile elements
and tandem repeats which are further divided by size in short
tandem repeats and satellites. Due to challenges detecting repeat
variation using short read sequencing their frequency is largely
unknown but current estimates are ∼10,000 tandem repeats and
∼2,000mobile elements per human genome (83). Repeat variants
are important as they are increasingly being implicated in

driving human disease, particularly neuropathological disorders
like autism (84). Similarly larger structural and copy number
variation (generally defined as deletions, insertions, duplications,
inversions and translocations >50bp) are increasingly being
cataloged and implicated in driving disease, particularly in
cancer (85). Despite the importance of these variant classes to
human disease, they are largely not being interrogated in current
precision medicine programs due to challenges detecting them.
To address this, substantial work is needed in several areas
including improved detection algorithms, better validation truth
sets and repositories of both population-level and clinically-
relevant variation. Long read sequencing will play a critical role
in generating these improved repositories and truth sets.

While variant interpretation and prioritization workflows
continue to improve, greater automation of the process is
required to alleviate this current bottleneck. While annotation
aggregators like VEP are continually incorporating additional
external data sets, custom workflows are typically still required
to collate and rank variants most likely to be clinically
relevant. The desired output of such a workflow is a small
list of candidate variants suitable for manual interrogation
which will undergo an in-depth investigation for potential
inclusion in the final clinical report. This manual process
is extremely time-consuming however and requires further
automation. While challenging to automate, software is urgently
needed which inputs a raw vcf file and the relevant clinical
information and outputs a small lists of likely causal variants
suitably annotated for a clinical report. While an increasing
number of groups are tackling these problems, more work
is needed.

While currently most programs focus on detecting genetic
variants using short-read DNA-based sequencing (e.g., targeted
gene panels, exomes orWGS) increasingly other patient sequence
data is being generated including transcriptome, long read,
microbiome and single cell sequencing. For example, sequencing
the transcriptome from a patient can be used to identify
transcriptional changes likely caused by genetic mutations. A
recent study used this strategy to improve diagnosis rates by
35% over genome sequencing alone by identifying deep intronic
variants which altered splicing (13). Long read sequencing is
increasingly being employed to detect complex variation unable
to be easily detected with short read technologies (86). If
the cost and quality of long read sequencing continues to
improve it is feasible that long reads can be used routinely in
precision medicine programs in the future. Microbiome is likely
to be important in future programs as well. Dysbiosis of the
microbiome is increasingly linked to human disease and the
ability to examine differential abundance of metagenomic data
(87) before and after treatment represents a new avenue for
exploration (88). Finally, single cell sequencing technologies will
have an increasingly large role to play given their ability to detect
disease causing variants at single cell resolution over time (77).
While such possibilities are exciting, it is clear current workflows
are unable to work with complex multi-omics patient data sets
and that substantial developments in software and hardware are
required to support this in the future.

Frontiers in Medicine | www.frontiersin.org 8 April 2022 | Volume 9 | Article 80669662

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Field Precision Medicine Variant Detection

FUTURE CHALLENGES

The ongoing success of precision medicine programs for
genetic disease has led to increasingly large and diverse
sequence information being generated per patient. Programs
are expanding in terms of number of patients sequenced, the
sequencing technology employed and the type of diseases
being examined. Scaling up and standardizing existing
programs to population level numbers requires significant
improvements in the throughput and interoperability of the
systems. The other significant challenge will be the incorporation
of information from additional sequencing applications
including transcriptome, long read, microbiome, and single cell
sequencing. The next generation of supporting software and
hardware needs to be flexible and robust to manage the coming
deluge of data.

CONCLUSION

Identifying clinically relevant genetic variation is one of the
hallmarks of successful precisionmedicine programs. This review
discusses the wide variety of strategies being employed to
both speed up and improve the detection of clinically relevant

variants. While challenging today, increasingly complex patient
data sets will be generated in the near future which will require
sophisticated hardware and software solutions. To support this,
substantial new methodologies able to synthesize large volumes
of disparate data types will be needed. These new tools will allow
precision medicine programs to realize their full potential both
now and into the future.
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Background: We aimed to exploit a somatic mutation signature (SMS) to predict the
best overall response to anti-programmed cell death protein-1 (PD-1) therapy in non-
small cell lung cancer (NSCLC).

Methods: Tumor samples of 248 patients with epidermal growth factor receptor
(EGFR)/anaplastic lymphoma kinase (ALK)-negative non-squamous NSCLC treated with
anti-PD-1 were molecularly tested by targeted next-generation sequencing or whole
exome sequencing. On the basis of machine learning, we developed and validated a
predictive model named SMS using the training (n = 83) and validation (n = 165) cohorts.

Results: The SMS model comprising a panel of 15 genes (TP53, PTPRD, SMARCA4,
FAT1, MGA, NOTCH1, NTRK3, INPP4B, KMT2A, PAK1, ATRX, BCOR, KDM5C, DDR2,
and ARID1B) was built to predict best overall response in the training cohort. The
areas under the curves of the training and validation cohorts were higher than those of
tumor mutational burden and PD-L1 expression. Patients with SMS-high in the training
and validation cohorts had poorer progression-free survival [hazard ratio (HR) = 6.01,
P < 0.001; HR = 3.89, P < 0.001] and overall survival (HR = 7.60, P < 0.001;
HR = 2.82, P < 0.001) than patients with SMS-low. SMS was an independent factor
in multivariate analyses of progression-free survival and overall survival (HR = 4.32,
P < 0.001; HR = 3.07, P < 0.001, respectively).

Conclusion: This study revealed the predictive value of SMS for immunotherapy best
overall response and prognosis in EGFR/ALK-negative non-squamous NSCLC as a
potential biomarker in anti-PD-1 therapy.

Keywords: non-small cell lung cancer, anti-PD-1, best overall response, somatic mutations, EGFR/ALK negative
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INTRODUCTION

Although immune checkpoint inhibitors (ICIs) have shown
considerable success in patients with non-small cell lung cancer
(NSCLC) in recent years, unsatisfactory response rates are
still a limitation (1, 2). In previous studies, several predictive
biomarkers for successful immunotherapy including tumor
mutational burden (TMB) (3, 4), gene expression profile (5), PD-
L1 expression (6), tumor-infiltrating lymphocytes (7), and high
microsatellite instability (8) have been reported. However, there
were some prevalent limitations to these biomarkers. First, the
different cut-off values for TMB or PD-L1 expression remain
controversial. Second, tumor heterogeneity and unsatisfactory
predictive accuracy have restricted the real-world clinical practice
of current signatures, suggesting value in finding more useful and
precise biomarkers.

An increasing number of studies have revealed that
specific somatic variants are significantly associated with the
immunotherapy response or resistance. For example, epidermal
growth factor receptor (EGFR) mutation or MDM2 amplification
have been reported to be related to hyper-progressive disease
(9). Furthermore, STK11 and B2M are negatively associated
with programmed cell death protein-1 (PD-1)/PD-L1 inhibitor
resistance, resulting in poor responsiveness (10). Additionally,
TP53, KRAS, and POLE mutations can predict the PD-1/PD-L1
blockade response in advanced NSCLC (11). Moreover, different
commutations, including KL (KRAS and STK11) and KP (KRAS
and TP53) molecular subtypes, showed diverse responses to
ICIs in NSCLC (12, 13). Finally, multiple mutations in DDR
or Notch1/2/3 pathways indicate favorable clinical prognosis
and response in NSCLC patients receiving ICI therapy (14, 15).
Thus, we speculated that a panel of somatic mutations could
be exploited to build a robust predictive model for identifying
patients who would acquire a favorable or poor response to
immunotherapy in advanced NSCLC.

Considering the data mining of next-generation sequencing
(NGS) and whole exome sequencing (WES) in EGFR/anaplastic
lymphoma kinase (ALK) non-squamous NSCLC patients treated
with ICIs, we used a routine machine learning model based on
somatic mutation profiling to develop a genomic signature for
predicting the best overall response (BOR) and the prognosis of
immunotherapy. Such a classification pattern of genomic panels
could serve as a useful and robust tool for selecting patients who
would benefit from ICIs.

MATERIALS AND METHODS

Immunotherapeutic Patients
Our databases were derived from three cohorts of patients with
advanced NSCLC receiving ICI therapy. From the first cohort, 75
patients with stage IV NSCLC were treated with a combination
of nivolumab and ipilimumab in the clinical trial CheckMate-
012 (NCT01454102) between February 2013 and March 2015
(16). Sixteen patients with squamous cell lung cancer and 12 with
EGFR/ALK-positive mutations were excluded. In total, 47 eligible
patients were included in the current study from cohort 1. For

the second cohort, there were 56 patients from the Dana-Farber
Cancer Institute (DFCI) with metastatic NSCLC treated with
anti-PD-1 treatment (8). Seven patients with squamous cell lung
cancer and thirteen with EGFR/ALK-positive mutations were
excluded. As a result, a total of 36 eligible patients from cohort
2 were included in the current study. From the third cohort,
240 patients receiving only anti-PD-1 or a combination of anti-
CTLA-4 and anti-PD-1 treatments were retrospectively collected
from the Memorial Sloan Kettering Cancer Center (MSKCC)
between April 2011 and January 2017 (10). From this cohort, 38
patients with squamous cell lung cancer and 37 with EGFR/ALK-
positive mutations were excluded. A total of 165 eligible patients
were selected from the MSKCC. Finally, a total of 83 patients from
the first and second cohorts were included in the training cohort,
and the remaining 165 from the third cohort were included in the
validation cohort. The institutional review board of the Second
Affiliated Hospital of Guizhou Medical University approved our
clinical research design. We have been conducted in accordance
with the World Medical Association’s Declaration of Helsinki.

Study Design
In this study, a three-step approach was used to develop and
validate the somatic mutation signature (SMS) in advanced
NSCLC patients undergoing immunotherapy. First, on the basis
of the least absolute shrinkage and selection operator (LASSO)
method, we used the somatic mutation profiles of the WES
database to select the optimal gene panel for predicting BOR.
Second, we used the pattern classification of the support vector
machine (SVM) algorithm to build a predictive model of the
SMS according to clinical treatment response and genomic
mutation profiling in the training cohort. The somatic mutations
could be computationally evaluated using the various mutational
databases and the severity of the disease could also be predicted
using the SVM algorithms. The SMS model was validated in the
independent MSKCC cohort. All patients were divided into two
groups (SMS-low and SMS-high) on the basis of the optimal cut-
off of the receiver operating characteristic (ROC) and analyzed
to predict progression-free survival (PFS) and overall survival
(OS). Furthermore, the SMS model was analyzed in multivariate
analyses of PFS and OS and the application of different clinical
variables in the combination set.

Best Overall Response,
Progression-Free Survival, and Overall
Survival
This research study aimed to examine the BOR, PFS, and OS.
BOR was defined as a record of the best outcomes from the
beginning of the study to the end of the treatment, which was
confirmed after considering a variety of factors. Furthermore,
it was evaluated using Response Evaluation Criteria in Solid
Tumors (RECIST) version 1.1, including complete response
(CR), partial response (PR), stable disease (SD), and progressive
disease (PD). PFS was defined as the time from the start of ICI
treatment to the first confirmation of PD with RECIST version 1.1
or death. OS is defined as the time from the start of ICI treatment
until death or the last contact.
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Whole Exome Sequencing and Targeted
Next-Generation Sequencing
Tumor and blood samples from WES and targeted NGS profiles
were collected before immunotherapy. DNA was extracted
from formalin-fixed paraffin-embedded tumor masses and blood
samples from patients. The 83 samples from the CheckMate-
012 study (n = 36) and DFCI (n = 47) were tested using WES
profiling and the 165 from the MSKCC using targeted NGS
profiling as follows.

WES: Illumina Rapid Capture Exome Target Bait Kit (38 MB),
Agilent Sure-Select Human All Exon v2.0 (44 MB)/v4.0 (51 MB)
created a complete library for capturing exons. To do so,
the HiSeq 2000, 2500, or 4000 platform (Illumina, San Diego,
California) was used to provide 150 times the average target
coverage, extensive exon library, and paired reads (2 × 76 bp).
For each sample, the Burrows-Wheeler Aligner was used to
generate a normal BAM file, and the tumor sequence was
compared to the human hg19 genome construct. The Genome
Analysis Toolkit was used to analyze basic quality factor
recalibration, indel recombination, and duplicate deletion. Indel
calls were generated using Indelocator software.1 The TMB in
each sample was defined as the total number of non-synonymous
mutations, including SNVs and indels.

Targeted NGS (MSK-IMPACT): Targeted NGS analysis
was performed as described in a previous study (10). After
amplification and sequencing, the barcode library targeted exons
and chose introns of 468 (13 patients, version 3), 410 (116

1http://archive.broadinstitute.org/

TABLE 1 | Characteristics of patients in the training and validation cohorts.

Variable Training cohort
(n = 83)

Validation cohort
(n = 165)

P-value

Age (years) 0.230

≤ 60 36 (43.37%) 59 (35.75%)

> 60 47 (56.63%) 106 (64.25%)

Sex 0.560

Female 48 (57.83%) 89 (53.93%)

Male 35 (42.17%) 76 (46.07%)

Smoking status 0.828

Never 15 (18.07%) 28 (16.97%)

Ever 68 (81.93%) 137 (83.03%)

PD-L1 expression (%) <0.001*

NA 0 104 (63.03%)

≤ 50 49 (59.03%) 45 (27.27)

> 50 34 (40.97%) 16 (9.7%)

TMB 0.240

High 35 (42.17%) 57 (34.55%)

Low 48 (57.83%) 108 (65.45%)

Best overall response 0.014*

CR/PR 32 (38.55%) 39 (23.64%)

SD/PD 51 (61.45%) 126 (76.36%)

P-value is derived from the difference between the training and validation cohorts
in either of the clinical characteristics.
NA, not available; CR, complete response; PR, partial response; SD, stable
disease; PD, progressive disease; TMB, tumor mutation burden.
*P-value < 0.05.

patients; version 2), or 341 (36 patients; version 1) genes. In
all tumor samples, the average sequence index was 7,443, and
the minimum coverage depth was 913. A custom pipeline was
used to identify the somatic alterations in the tumor samples. To
normalize somatic non-synonymous TMB on panels of different
sizes, we divided the detected coding regions in each panel by the
total number of mutations, which covered 0.98 megabases (Mb)
of the 341, 1.06 Mb of the 410, and 1.22 Mb of the 468 gene panels.

Tumor Mutational Burden and
Programmed Cell Death-Ligand 1
Testing Analysis
On the basis of the results of WES and targeted NGS profiling,
we defined a high TMB as > 10/Mb or total somatic non-
synonymous as ≥ 200 and low TMB as ≤ 10/Mb or total somatic
non-synonymous < 200. The 22C3 (DAKO), 28-8 (DAKO), and
E1L3N (Cell Signaling, Danvers, MA) were performed according
to the manufacturer’s instructions of three antibodies. We used
the percentage of membranous staining in the tumor cells
to evaluate the PD-L1 expression. In this study, high PD-L1
expression was defined as > 50% of tumor staining.

Statistical Analyses
LASSO is used to select the optimal gene panel and build a
predictive model by choosing the most important variables from
high-dimensional features (17, 18). The purpose of LASSO is
to construct a first-order penalty function to obtain a refined
model via the final determination of some variable coefficient
0 for feature screening. In this study, a LASSO method based
on fivefold cross-validation was used to select 15 non-zero
coefficients. Then, the SMS based on an SVM algorithm was built
to predict the immunotherapy response. The performance of the
SMS model was then evaluated in the training and validation
cohorts by using ROC analysis. The optimal cut-off value for
predicting BOR was defined using the maximum Youden index.

A X2-test was used to compare the SMS score with the BOR
in MSK cohorts. The “pROC” package was used to plot the ROC
curves and evaluate the accuracy. A confidence interval (CI) of
95% for the area under the curve (AUC) was computed for the
training and validation cohorts. The Kaplan–Meier curves of PFS
and OS were analyzed and plotted using the “survminer” package.
Additionally, multivariate Cox regression analysis was performed
on five variables: SMS, age, sex, smoker status, PD-L1, and TMB
using the “rms” package. The “Forestplot” software package was
used to analyze and visualize hazard ratios (HRs) for PFS and
OS in the SMS-low and SMS-high subgroups. All statistical
analyses were performed using GraphPad Prism (version 7.01)
and R software (version 3.5.1). Statistical significance was set at
P < 0.05.

RESULTS

Characteristics of Patients
The basic characteristics of the patients in the training and
validation cohorts are shown in Table 1. Of the patients,
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FIGURE 1 | Summary of clinical and molecular features associated with response of ICI-based therapy in the training cohort with patients with EGFR/ALK-negative
non-squamous NSCLC. Individual patients are represented in each column. Age is stratified as ≤ 60 years or > 6 years; sex as female and male; smoking status as
ever and never; PD-L1 expression as 0–49% or ≥ 50%; and BOR as CR, PR, SD, and PD. Mutations include 7 mutational subtypes, and the TMB of each patient is
calculated. The occurrences of top 20 genes in each case are represented in the OncoPrint. PD-L1, programmed cell death-ligand 1; NSCLC, non-small cell lung
cancer; BOR, best overall response; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; TMB, tumor mutation burden.

47 (56.63%) in the training cohort and 106 (64.25%) in the
validation cohort were more than 60 years old. A total of 48
(57.83%) patients in the training cohort and 89 (53.93%) in the
validation cohort were female. Most patients in the training and
validation cohorts (81.93 and 83.03%, respectively) had a history
of smoking. Thirty-four (40.97%) patients in the training cohort
and sixteen (9.7%) in the validation cohort had high PD-L1
expression (>50%). The samples of 104 (63.03%) patients were
not tested for PD-L1 expression in the validation cohort. Patients
with high TMB (>10/Mb or ≥ 200) accounted for 42.17% of the
training and 34.55% of the validation cohorts. In the evaluation
of BOR, 32 (38.55%) patients in the training and 39 (23.64%)
in the validation cohorts achieved CR/PR. We found that the
frequencies of PD-L1 expression and BOR were inconsistent
between the training and validation cohorts (P < 0.001 and
P = 0.014), but there were no significant differences in the other
clinical characteristics between the two cohorts. Figure 1 shows a
summary of the clinical and molecular features associated with

the response of ICI-based therapy in the training cohort with
EGFR/ALK-negative non-squamous NSCLC. Mutations include
7 mutational subtypes, and the occurrences of top 20 genes in
each case are represented in OncoPrint.

Development and Validation of Somatic
Mutation Signature for Best Overall
Response
On the basis of 5-fold cross-validation of LASSO, 15 genes with
somatic mutations were selected and used to build a model of
the SMS (Figures 2A,B). We used a gene panel of 15 somatic
mutations to train the model by using the SVM method, and
the SMS was built to predict the BOR after fine tuning. The SMS
was compared with the TP53/KRAS/KEAP1/STK11 driver genes,
TMB, and PD-L1 expression in both cohorts (Figures 2C,D).
We found that the SMS showed high AUC in the training
and validation cohorts (AUC = 0.859, 95% CI: 0.767–0.951,
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FIGURE 2 | Selection of somatic mutation genes using the LASSO method and building the SMS model for BOR. (A) Fifteen non-zero coefficients are selected, and
the coefficients are plotted against the log (λ) sequence. (B) LASSO coefficient analysis of the somatic mutation genes is shown by 10-fold cross-validation. The
minimum value of log (λ) is −1.44 based on the 1-SE criteria. (C,D) Based on AUCs plotting, performances of SMS, PD-L1, TMB, TP53, KRAS, STK11, KEAP1, and
SMSPT in the training and validation cohorts are presented. LASSO, least absolute shrinkage and selection operator; SMS, somatic mutation signature; BOR, best
overall response; PD-L1, programmed cell death-ligand 1; TMB, tumor mutation burden; SMSPT, integrating SMS, PD-L1, and TMB; AUC, area under the curve.

sensitivity = 96.08%, 95% CI: 86.54–99.52%, specificity = 75.00%,
95% CI: 56.60–88.54%, P < 0.001; AUC = 0.841, 95% CI:
0.761–0.922, sensitivity = 91.27%, 95% CI: 84.92–95.56%,
specificity = 61.67%, 95% CI: 49.78–80.91%, P < 0.001,
respectively) (Supplementary Table 1). TP53 mutation positively
correlated with BOR in the training and validation cohorts
(P = 0.075 and P < 0.001, respectively), and we did not
find an association between KRAS/KEAP1/STK11 mutations and

BOR (P > 0.05 each). PD-L1 expression and TMB were also
significantly associated with BOR in the training (AUC = 0.751,
95% CI: 0.639–0.863, sensitivity = 78.43%, 95% CI: 64.68–
88.71%, specificity = 71.88%, 95% CI: 53.25–86.25%, P < 0.001;
AUC = 0.817, 95% CI: 0.721–0.913, sensitivity = 78.43%,
95% CI: 64.68–88.71%, specificity = 78.13%, 95% CI: 60.03–
90.72%, P < 0.001) and validation cohorts (AUC = 0.747, 95%
CI: 0.585–0.908, sensitivity = 85.11%, 95% CI: 71.69–93.80%,
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FIGURE 3 | The SMS predicts PFS and OS in patients with immunotherapy. (A,B) Kaplan–Meier survival curves showing PFS between the SMS-low and -high
groups in patients from the training and validation cohorts treated with anti-PD-1 therapy. (C,D) Kaplan–Meier survival curves showing OS between the SMS-low
and -high groups in patients from the training and validation cohorts treated with anti-PD-1 therapy. SMS, somatic mutation signature; PFS, progression-free
survival; OS, overall survival; NR, not reached; PD-1, programmed cell death 1.

specificity = 64.29%, 95% CI: 35.14–87.24%, P < 0.001;
AUC = 0.657, 95% CI: 0.558–0.757, sensitivity = 67.46%, 95%
CI: 58.54–75.54%, specificity = 64.10%, 95% CI: 47.18–78.8%,
P = 0.002). Furthermore, we used a logistic model integrating
the SMS, PD-L1, and TMB to build a combination model named
SMSPT, which showed high AUCs in the training and validation

cohorts (AUC = 0.937, 95% CI: 0.886–0.988, sensitivity = 94.12%,
95% CI: 83.76–98.77%, specificity = 81.25%, 95% CI: 63.56–
92.79%, P < 0.001; AUC = 0.933, 95% CI: 0.833–1.000,
sensitivity = 91.49%, 95% CI: 79.62–97.63%, specificity = 92.86%,
95% CI: 66.13–99.82%, P < 0.001, respectively) (Figures 2C,D
and Supplementary Table 1).
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Somatic Mutation Signature Predicts
Progression-Free Survival and Overall
Survival in Patients With Immunotherapy
According to the cut-off value (SMS scores = 1.95), our patients
were stratified into SMS-high (>1.95) or SMS-low (≤ 1.95)
groups. Compared with the SMS-low group in the training cohort
with anti-PD-1 therapy, the SMS-high group showed a poorer
median PFS (mPFS: 4.11 vs. 32.86 months) and OS [mOS:
7.81 months vs. not reached (NR)] [HR = 6.01 (3.54–10.20),
P < 0.001; HR = 7.60 (4.12–14.03), P < 0.001, respectively]
(Figures 3A,B). We then tested the SMS model in the validation
cohort and found that the SMS-high group also presented a
poorer median PFS (mPFS: 2.70 vs. 22.63 months) and OS
(mOS: 11.00 months vs. NR) [HR = 3.89 (2.72–5.54), P < 0.001;
HR = 2.82 (1.80–4.41), P < 0.001, respectively] than did the SMS-
low group (Figures 3C,D). Considering 104 patients without
PD-L1 expression tested in the validation cohort, we combined
83 from the training cohort and 61 from the validation cohort
to build a combination cohort (n = 144) and performed a
multivariate analysis of PFS and OS. We found that PD-L1, TMB,
and the SMS were independent predictors of PFS in anti-PD-1
therapy (Table 2). Moreover, smoking status, PD-L1, TMB, and
the SMS were also independent predictors of OS in this study.

Applicability of Somatic Mutation
Signature in Epidermal Growth Factor
Receptor/Anaplastic Lymphoma
Kinase-Negative Non-small Cell Lung
Cancer Patients With Different Clinical
Variables
We further analyzed whether the SMS predictive model was
feasible in specific groups of all EGFR/ALK-negative NSCLC
patients. According to the basic clinical characteristics in the
combination cohort, a univariate subgroup of PFS and OS was
analyzed using the SMS (Figures 4A,B). The patients with SMS-
high had significantly shorter PFS and OS regardless of age
(≤ 60 vs. > 60 years) and sex (male vs. female). However,
the SMS showed differentiated predictive values for anti-PD-L1
therapy in smokers. The SMS predicted the PFS and OS better
in patients who are ever smoker than in patients who are never
smokers. But the number of patients who never smoked was

small (n = 27). Interestingly, we found that the SMS had good
predictive ability in the subgroups of TMB and PD-L1 expression
(Figures 4A,B). The SMS in the high TMB subgroup had better
predictive ability for PFS and OS than that in the low TMB
subgroup. In addition, the SMS had better predictive ability for
PFS and OS in the low PD-L1 expression subgroup than in the
high PD-L1 expression subgroup.

DISCUSSION

In this study, we found that the SVM classification of somatic
mutations could predict BOR in patients with EGFR/ALK-
negative NSCLC treated with anti-PD-1. In two independent
cohorts, we found that the accuracy of the SVM model was
greater than that of PD-L1 or TMB expression. In the two
groups, patients treated with ICIs in the SMS-low group had
better OS and PFS than those in the SMS-high group. We also
found that the SMS model could predict prognosis in several
clinical subgroups.

Previous studies have used sequencing techniques, including
WES, WGS, and NGS, to analyze the association between
genomic variants and prognosis (19–21). In most studies of
immunotherapy (22, 23), specific genes were studied, and we
found that it made it difficult to realize the precise predictive value
for benefits from anti-PD-1 therapy in patients. In the current
study, TP53, but not KRAS, mutations were positively associated
with immunotherapy BOR in driver mutations, and STK11 or
KEAP1 mutations were not significantly related to BOR. These
results revealed that the single genomic mutation had weak
predictive abilities for different molecular statuses, potentially
resulting from tumor heterogeneity. Currently, WES and NGS
testing of tumor tissue and blood samples have been used to
quantify TMB in various solid tumors (24, 25). TMB is frequently
calculated from the accumulation number of non-synonymous
mutations, and high TMB has been reported to be correlated
with a good response to anti-PD-1 therapy (3, 4, 26). However,
the predictive value of TMB is controversial, and the accuracy is
not satisfactory. Thus, we used the SMS model based on somatic
mutations derived from targeted WES and NGS to determine
BOR for anti-PD-1 therapy in patients with EGFR/ALK-negative
NSCLC. The SMS classifications could precisely predict BOR and
No-BOR in patients. We found that the SMS had a more accurate

TABLE 2 | Multivariate analyses of PFS and OS in combination cohort (n = 144).

Variable PFS OS

HR (95% CI) P-value HR (95% CI) P-value

Age (≤ 60 vs. > 60) 0.80 (0.52–1.21) 0.291 1.02 (0.68–1.54) 0.096

Sex (female vs. male) 0.84 (0.56–1.26) 0.417 0.70 (0.46–1.06) 0.910

Smoker status (never vs. ever) 1.24 (0.74–2.06) 0.397 1.958 (1.14–3.35) 0.014*

TMB (high vs. low) 0.44 (0.26–0.74) 0.002* 0.57 (0.35–0.92) 0.023*

PD-L1 (high vs. low) 0.28 (0.17–0.46) <0.001* 0.36 (0.22–0.59) <0.001*

SMS (high vs. low) 4.32 (2.32–8.06) <0.001∗ 3.07 (1.71–5.49) <0.001∗

PFS, progression free survival; OS, overall survival; HR, hazard ratio; CI, confidence interval; TMB, tumor mutation burden; SMS, somatic mutation signature.
*P-value < 0.05.

Frontiers in Medicine | www.frontiersin.org 7 May 2022 | Volume 9 | Article 80837872

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-808378 May 3, 2022 Time: 10:33 # 8

Peng et al. Mutation Predicts Treatment in NSCLC

FIGURE 4 | Subgroup analysis of the SMS for PFS and OS from the combination cohort according to basic clinical variables. (A) Forestplot of the SMS for PFS is
presented in the combination cohort. (B) Forestplot of the SMS for OS is presented in the combination cohort. Each subgroup HR is computed from univariate
analysis. Fixed-effects model is used to calculate pooled HRs for each subgroup. The bars indicate 95% CI. SMS, somatic mutation signature; PFS, progression-free
survival; OS, overall survival; NR, not reached; PD-L1, programmed cell death-ligand 1; HR, hazard ratio; CI, confidence interval.

prediction than TMB and PD-L1 expression. Interestingly, the
comprehensive model integrating the SMS, TMB, and PD-L1
expression had high predictive accuracy in both the training and
validation cohorts. This indicates that not only TMB and PD-L1
expression testing but also fully mining mutation features based
on machine learning is helpful in improving prediction ability.
To help clinical practice, our model can be freely used online on
a computer or mobile phone.2 Thus, the novel method is easy to
use and could potentially screen patients with NSCLC for benefits
from immunotherapy.

Previous studies show that through the use of immunotherapy
for various cancers, patients who attained CR/PR frequently have
better prognosis (27–29). We further analyzed the association
between the SMS and prognosis and found that patients with
SMS-low showed significantly longer PFS and OS than patients
with SMS-high in both cohorts. This result suggests that the SMS
model based on predicting BOR could effectively evaluate the
clinical outcome of immunotherapy in the molecular subgroup
of EGFR/ALK-negative NSCLC. In multivariate analyses of PFS
and OS in the combination cohort, we found that the SMS, PD-
L1 expression, and TMB were independent predictive factors,
suggesting that the SMS model based on somatic mutations
could be considered a novel biomarker for predicting prognosis.
We also found that smoking status was an independent factor
for OS. Patients who have smoked might have more mutant
antigens causing lung cancer, which has been revealed in
previous studies of immunotherapy (30, 31). Subgroup analysis
of immunotherapy in patients with EGFR/ALK-negative NSCLC
with SMS-low showed significantly better PFS than those with
SMS-high. We found that the SMS model showed better
prediction of OS in subgroups of smoking status (never), TMB-
high, and PD-L1 low expression than in those of smoking
status (ever), TMB-low, and PD-L1 high expression. Of note, the

2https://pengjie.shinyapps.io/Somatic/

number of patients with smoking status “never” was relatively
small. Additionally, all patients with SMS-low showed longer
medium-OS time than those with SMS-high did. This indicated
that our SMS model could serve as a well-stratified tool and
improve the value of TMB or PD-L1 expression for predicting the
prognosis in patients with EGFR/ALK-negative NSCLC receiving
anti-PD-1/PD-L1 therapy.

Our study has three limitations. First, the sample size was
relatively small, and the three cohorts were from American
Medical Centers. Although the result of predicting response to
immunotherapy was performed well, a large prospective study
based on this SMS model should be tested across an international
multicenter population in a clinical trial. Second, our study
focused on mutational genes, and tumor heterogeneity might
affect the results of genomic variants in WES or NGS. Thus, a
multi-omics model, including tumor genomics, radiology, and
pathology, should be considered to predict the response. Third,
the sequencing tumor tissues were obtained from biopsy or
surgery, and this was an invasive procedure. An SMS model based
on the ctDNA of peripheral blood would be a non-invasive model
that should be further investigated in the future.

Overall, our research supports the 15-gene SMS classification
as a reliable prediction tool for identifying patients who may
benefit from anti-PD-1 treatment in patients with EGFR/ALK-
negative NSCLC. The new findings described in this study may
help us develop a sequence database to explore new strategies for
cancer immunotherapy. In the future, comprehensive pan-cancer
research is needed to make better use of multigene SMS panels as
predictive biomarkers for immunotherapy.
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Renal cell cancer (RCC) is a heterogeneous tumor that shows both intra- and

inter-heterogeneity. Heterogeneity is displayed not only in different patients but also

among RCC cells in the same tumor, which makes treatment difficult because of varying

degrees of responses generated in RCC heterogeneous tumor cells even with targeted

treatment. In that context, precision medicine (PM), in terms of individualized treatment

catered for a specific patient or groups of patients, can shift the paradigm of treatment

in the clinical management of RCC. Recent progress in the biochemical, molecular,

and histological characteristics of RCC has thrown light on many deregulated pathways

involved in the pathogenesis of RCC. As PM-based therapies are rapidly evolving and

few are already in current clinical practice in oncology, one can expect that PM will

expand its way toward the robust treatment of patients with RCC. This article provides a

comprehensive background on recent strategies and breakthroughs of PM in oncology

and provides an overview of the potential applicability of PM in RCC. The article also

highlights the drawbacks of PM and provides a holistic approach that goes beyond the

involvement of clinicians and encompasses appropriate legislative and administrative

care imparted by the healthcare system and insurance providers. It is anticipated that

combined efforts from all sectors involved will make PM accessible to RCC and other

patients with cancer, making a tremendous positive leap on individualized treatment

strategies. This will subsequently enhance the quality of life of patients.

Keywords: renal cell carcinoma, gut microbiome, artificial intelligence, precision medicine, nanomedicine

INTRODUCTION

Renal cell carcinoma (RCC), an inherently heterogeneous group of cancers, is one of the 10 most
common cancers worldwide and accounts for 2% of global cancer cases (1, 2). The incidence
of RCC is more common in developed countries, with Belarus having the highest incidence in
the world, which has doubled in the last 50 years (2). The incidence of RCC varies considerably
among various population and geographical regions. The geographic distribution of RCC shows
mainly higher age standardized rate of incidences in Eastern Europe and North America followed
by Africa (3). RCC is also known to be influenced by genetic factors, for instance, the risk of
RCC is elevated by two-fold for people who have first-degree relative with a history of RCC (4).
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Genome wide association studies of RCC have shown multiple
susceptible loci on the chromosomal regions of 2p21, 2q22.3,
8q24.21,11q13.3, 12p11.23 and 12q24.31 predisposing those
harboring these SNPs to RCC (5). RCC accounts for more
than 100,000 deaths worldwide each year (6). Most RCC arises
from accumulated cell mutation, leading to uncontrolled cell
growth in the proximal convoluted tubule located in the cortex
of the kidney. It is an insidious and highly heterogeneous cancer,
which in most cases is dominated by mutation in the VHL gene
function (2, 7). However, RCC is not considered a single entity
as it comprises multiple subtypes, each having characteristic
histopathological features along with unique genetic traits and
clinical outcomes.

RCC, which arises from the nephron tubules is a
heterogeneous group of neoplasm having diverse histological
subtypes with varying clinical courses and responses to therapy.
The histopathological classification of RCC recently has gone
through some major changes owing to the key advances in
morphological, genetical and epidemiological understanding of
RCC subtypes. The 2016 World health organization (WHO)
classification of renal tumors is based on the combination of
these RCC features and consists of 16 different subtypes and 4
provisional or emerging entities of RCC (8). The 2016 WHO
classification includes subtypes that have been classified largely
based on their (i) cytoplasmic features; clear cell RCC that
arises from proximal tubules and chromophobe RCCs which
arises from intercalated cells of distal tubules; (ii) architectural
features; papillary RCC arising from distal tubular and mucinous
tubular epithelium; (iii) spindle cell carcinoma arising from
the cells of the loop of Henle or the collecting duct epithelium;
and (iv) anatomical position of the tumors; collecting duct
carcinoma arising from the collecting ducts of the kidney
and renal medullary carcinoma that develop in the medullar
region of the kidneys. The most common subtypes are clear
cell RCC (ccRCC), accounting for 70–75% of the RCC cases
followed by papillary RCC (pRCC), which is found in 10–15%
of cases and chromophobe RCC accounting for 5% of the RCC
cases. Oncocytomas comprising of benign tumors accounts
for 4–7% of all kidney tumors. Around 4% of the RCCs are
unclassified based on the currently available histopathological
or molecular parameters. Amongst the new 7 subtypes that
were added were based on molecular alterations such as MiT
family translocation renal carcinomas, TRCC (originating from
the translocation of transcription factor genes TFE3 and TFEB)
and succinate dehydrogenase or SDH deficient RCC caused
by a biallelic mutation of one of the four subunits of SDH
complex; familial predisposition syndrome associated hereditary
leiomyomatosis and RCC syndrome associated specific renal
disease acquired cystic disease associated RCC. The others that
were included as new RCC entities were tubulocystic RCC;
small-intermediate size tubules and cystically dilated larger
tubules, multilocular cystic renal neoplasm of low malignant
potential composed of cysts without expansive growth and clear
cell papillary RCC, which shares morphological similarity with
both ccRCC and pRCC. The provisional entities of RCC in the
2016 WHO classification include Oncocytic RCC occurring
after neuroblastoma (increased risk of RCC after prior blastoma

appearance similar to MiT family TRCC), thyroid-like follicular
RCC (morphologically similar to the follicular carcinoma of the
thyroid), Anaplastic Lymphoma Kinase (ALK) rearrangements-
associated RCC (resembles medullary carcinomas and associated
with sickle cell trait) and RCC with angioleiomyomatous stroma
(sporadic or associated with tuberous sclerosis) (9). Around 4%
of the RCCs are unclassified based on the currently available
histopathological or molecular parameters (10).

Historically, RCCs are resistant to traditional cancer
treatments like chemotherapy and radiotherapy (11). Treatment
of RCC depends on the location of the tumor, stage of the
disease, and overall health of the patient. Partial or radical
nephrectomy (curative surgery) has been the gold standard for
treating localized RCC from stages T1b-T4 (12). Ablation and
active monitoring by ultrasonography are other popular choices
for management of the localized disease. Despite the curative
nature of surgery, approximately 30% of patients with localized
ccRCC eventually develop recurrence or metastatic disease (13).
More importantly, at the time of diagnosis, approximately 30%
of patients present with locally advanced or metastatic disease
(14). In the late 1980s, cytokines like interferon α (IFN-α)
and interleukin-2 (IL-2) were the mainstays of treatment for
metastatic RCCs (mRCCs) (15). However, these treatments were
ineffective in terms of overall survival (OS), significantly toxic,
and linked with high morbidity in patients (16). The subsequent
advent of targeted therapies, mainly tyrosine kinase inhibitors
(TKIs) such as sunitinib and pazopanib, has revolutionized the
management of inoperable and mRCC. Sunitinib, pazopanib,
and cabozantinib are TKIs approved as first-line treatments,
while axitinib and sorafenib are second-line treatments available
for patients with RCC. However, 30% of patients are innately
resistant to these treatments, and 70% of the initial responders
acquire resistance in 2 years (17, 18).

In addition, a better understanding of the immune system and
a recent finding that tumors can exploit immune checkpoints
to favor their survival and growth have led to the development
of immunotherapeutic agents (ICIs). Immunotherapies in
RCC oriented toward programmed cell death protein (PD-1),
programmed cell death protein-ligand (PD-L1), and cytotoxic
T lymphocyte antigen-4 (CTLA-4) target tumor and immune
cells. Recent data from clinics have shown that a combination of
targeted therapeutics and immunotherapy agents has increased
the median survival for patients with RCC from 15 to 30
months (19).

Despite the progress made in the treatment of mRCC with
TKIs and ICIs, most patients (∼85%) do not benefit from
the current therapeutics and eventually succumb to the disease
affecting the overall survival and quality of life (20). The
effectiveness of the treatment depends on several factors related
to patients, such as geography, socioeconomic condition, type
and stage of cancer, patient’s age, immune status, and overall
general health. The mechanism of action of the drugs used and
its interaction with the patient’s immune system also contribute
to the effectiveness of the drugs used (21). Hence, a more effective
way of treating patients with mRCC relies on the development of
specific individualized treatments tailored to the patient’s explicit
needs. The approach commonly termed precisionmedicine (PM)
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is gaining momentum in the current arena of cancer treatment.
For example, somatic inactivation of the VHL gene is genetically
associated with patients with RCC and is one of the major
factors regulating RCC pathophysiology. The major effect of an
inactivated VHL gene is overexpression of vascular endothelial
growth factor A (VEGFA), a key molecule accountable for
pathological and physiological angiogenesis-related progression
in patients with RCC (22). Agents approved to treat mRCC
like sunitinib, which is a standard of treatment in the clinic,
have been proven significantly effective as a first-line therapy in
patients with RCC harboring VHL gene mutation, as they target
VHL gene-associated hypoxia and related angiogenesis regulated
mainly by VEGF and its receptors (23). Sunitinib specifically
targets the downstream consequences of genetic mutation and,
thereby, maximizes the efficacy and minimizes side effects in
patients. Despite that, sunitinib resistance occurs in the majority
of patients through complementary angiogenic pathways (24).
Hence, developing approaches that will not only harness specific
genotypes but also other molecular and lifestyle traits of patients
are essential to integrating PM into the standard care of patients.
This review describes some of the recent progress made in the
field of precision medicine (PM)-based approaches in RCC.

In addition, extensive crosstalk between VHL/HIF and
PI3K/AKT pathways results in the aberrant activation of
PI3/AKT pathway, which contributes to the pathogenesis of
RCC (25). In that context, genetic alteration of the PI3K
pathway was identified in RCC using a largescale integrated
analysis (26). Loss of VHL activation/function with concomitant
upregulation of HIF activation facilitates the expression of
several growth factors, including VEGF, epidermal growth factor
(EGF) and platelet-derived growth factor (PDGF) which activate
the downstream PI3K/AKT pathway through their respective
membrane bound growth factor receptor. Consistent with that,
constitutive activation of PI3K and its downstream components,
have been observed in ccRCC (27, 28). This also aligns with the
observed activation of downstream AKT, as specified by high
phosphorylation levels of AKT and AKT substrates in ccRCC
(27, 28). In addition, high frequencies of gene mutations or
deletions of PBRM1 (36%), SETD2 (15%), BAP1 (13%), and
KDM5C (7%) have also been identified in the ccRCC (29). These
genes are essential for chromatin remodeling leading to genomic
chaos commonly known as ‘chromosomal instability’ (CIN), a
hall mark of RCC and other cancers (30, 31). In that context,
PI3K inhibitor TGX221 has been shown to inhibit the growth of
RCC cell lines containing VHL and SETD2 mutations suggesting
that VHL/HIF and PI3K/AKT pathways may have a role in the
deregulation of chromatin remodeling and CIN, involved with
the pathogenesis of ccRCC (32). Considering that small-molecule
inhibitors such as sorafenib, sunitinib, pazopanib, and axitinib
that target VEGFR, and a new generation of inhibitors (such as
brivanib, cabozantinib, cediranib, dovitinib, foretinib, lenvatinib,
linifanib, nintedanib, regorafenib, tivozanib, vandetanib, and
aflibercept) that not only target the signaling through activated
VEGFR but additional targets such as platelet derived growth
receptor (PDGFR), fibroblast growth factor receptor (FGFR),
hepatocyte growth factor (HGF), and its receptor cMET (33),
which are currently being tested in clinical trials for ccRCC

patients, which can be contemplated to target the PI3K/AKT
pathway in RCC, with the goal to inhibit RCC progression.
Hence, developing approaches that will target multiple genotypes
in a specific group of patients is essential to integrate PM into
standard care of patients. This review describes some of the
recent progress made in the field of precision medicine (PM)-
based approaches in RCC.

Diagrammatic representation of loss of VHL
activation/function resulting in constitutive activation of
the downstream PI3K/AKT and other pathways is shown in
Figure 1.

WHAT IS PRECISION MEDICINE (PM)?

Precision medicine is driven by patient data and refers to the
identification of unique patient characteristics, whether genetic,
molecular, pathological, or lifestyle, that are recorded and can
be selected and used to tailor a targeted treatment protocol
for a patient or a group of patients (34). The concept of PM
has been used for nearly a century where transfusion patients
and their donors were matched for blood or tissue type for
transfusion or transplant based on their health records. With
the advent of the Human Genome Sequencing Project (HGSP)
in 2001, genome sequencing was first made available to clinical
practice for the treatment of rare diseases (35). This led to the
approval of several gene therapies commonly designed for a
group of patients susceptible to a specific genetic disposition.
A notable example of this category of patients undergoing
treatment currently is the one identified with BRCA mutations
for breast and ovarian cancer, human epidermal growth factor
receptor 2 (HER2), and progesterone receptor (PR) for breast
cancer. These discoveries single-handedly have led to increase
in the overall survival and reduced the risk of death by 20%
in these patient cohorts (36). In the area of chronic myeloid
leukemia (CML), the knowledge that BCR-ABL is the genetic
mutation that drives the disease in most patients with CML,
which led to the development of a targeted agent that improved
survival outcomes in patients (37). In addition, the identification
of somatic mutation in the gene encoding the serine–threonine
protein kinase B-RAF(B-RAF) in the majority of melanoma
cases has provided an opportunity to treat these patients
successfully with B-RAF inhibitors (38). Similarly, identification
of inherited familial colorectal cancer (CRC) syndromes, such
as familial adenomatous polyposis (FAP) and Lynch syndrome
[hereditary non-polyposis colorectal cancer (HNPCC)], has
led to significant understanding of the molecular pathogenesis
underlying sporadic CRC spread and designing of appropriate
treatment protocols (39). These discoveries indicate that the
PM-oriented development of targeted treatment strategies can
realistically benefit many patient groups.

Recent advancements in multi-omics technologies have
further accelerated PM-based treatment protocols. Several HGS-
like projects are currently in progress across the world by various
laboratories and consortiums that may help to strengthen the
field of PM (35). A new set of diagnostic assays known as in
vitro diagnostic companion and/or complementary diagnostics
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FIGURE 1 | Major dysregulated pathways in RCC: RCC shows a diverse range of genetic mutations. Loss of chromosome 3p tumor suppressor genes play a major

role in the pathogenesis of RCC. Genes mostly affected are VHL, the gene responsible for sensing oxygen levels within a cell, chromatin remodeling genes such as

PBRM1, BAP1 and SETD2. The other signaling pathways that are associated with RCC progression are PI3K-AKT-mTOR and the pathways regulated by FGF, HGF

and its receptor c-MET.

(CDx) is gaining more popularity in recent times. As per the
United States FDA, European Regulation (EU) 2017/2016, and
Australian Department of Therapeutic Goods Administration
(TGA), PM is defined as a test that measures the level of
genes, proteins, or mutations that aids in the benefit-risk
decision-making about the use of a therapeutic drug, where
the difference in benefit-risk is clinically meaningful (40, 41).
There are already FDA-approved CDx assays available in the
United States, especially for breast cancer, non-small cell lung
cancer, melanoma, and CRC. Few examples of CDx assays are
the THXID BRAF Kit which qualitatively detects the presence
of BRAF mutations in patients with metastatic melanoma
by polymerase chain reaction (PCR) (https://www.biomerieux-
diagnostics.com/thxidr-braf), Herceptin, HER2 PharmDx Kit
based on immunohistochemistry (IHC) and fluorescence in
situ hybridization (FISH) platforms, which determine the
overexpression of the HER2 protein and gene in patients with
breast cancer (42).

Over the past few years, the paradigm of mRCC treatment
and care has changed drastically. Recently, a lot of effort was
spent in integrating molecular targets with histopathology and
cancer biology into RCC classification. In 2016, MiT family
translocation/Xp11 translocation, fumarate hydratase deficiency,
and succinate dehydrogenase deficiency were updated by the
WHO after molecular and histopathological reclassification of
RCC (9, 43), suggesting that the traditional morphological tumor
typing is being replaced by evolving molecular tumor subtyping
in RCC. To date, no molecular biomarker with prognostic or
predictive value has been approved or is in practice in clinics
for RCC; the prognostic stratification of patients with mRCC is
still based on clinical factors like low levels of hemoglobin, high
serum calcium, increased neutrophil and platelet count, and time
from diagnosis to treatment (44). The development of multiple
therapeutic approaches focused on different molecular targets in
the tumor caters to patients with different subtypes of mRCC and
requires the identification of robust predictive biomarkers that
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will help to classify patients in a way that clinicians can stratify
for the right treatment.

IDENTIFICATION OF PREDICTIVE
BIOMARKERS IN THE ERA OF PM

The partial success of VEGF-TKI-based targeted therapies
in RCC has proved the importance of understanding tumor
biology at the molecular level for targeted treatment (45).
The introduction of immune checkpoint inhibitor (ICI) has
resulted in a paradigm shift in the treatment of RCC patients.
In 2015, two different large phase III trials Checkmate 025
(nivolumab vs. everolimus) and Checkmate 214 (ipilimumab
plus nivolumab vs. sunitinib) have pushed mRCC into the
ICI era (46, 47). Thereafter, a substantial number of trials
combining ICIs and angiogenic inhibitors have revolutionized
the clinical practice in mRCC (48, 49). As encouraging as it
sounds, a significant subset of patients has shown to remain non-
responsive (inherent resistance) or stop responding (acquired
resistance) to these life-changing treatment options either as
single or in combination therapy. As RCC is a heterogeneous
cancer both histologically and clinically, where the tumor ranges
from a benign to clinically indolent to a most aggressive
phenotype with a vast potential to metastasize, identification of
predictive and prognostic biomarkers may provide a platform to
stratify patients.

Histopathological Evaluation
Tumor morphology in RCC can be easily underestimated
because of the presence of intratumor heterogeneity. This can
hinder PM approaches and lead to therapy failure. RCC has
been known to show histological heterogeneity across its breadth
and the diversity that can be seen in architectural patterns
and cytological features. The diversity of clinical behaviors in
RCC may occur partly because of pathological and histological
variations. A cohort study evaluating the association of ccRCC
and nccRCC like papillary and chromophobe RCC with survival
showed that, depending on histological subtypes in mRCC,
the sites of metastasis differed. The sites of metastasis were
also associated with the survival of patients in all histological
subtypes (50). Similarly, a significant variation exists within the
subtypes of RCC. The phase III trial of sunitinib compared with
interferon which pushed sunitinib on to the horizon of systemic
therapies available for RCC patients showed that approximately
25% of patients did not respond to sunitinib despite the presence
of the clear cell tumor histology. A European clinical trial
concluded that the phenotypic heterogeneity seen during the
treatment resembles the genotypic and transcriptomic diversity
in RCC. Another group identified variation in the treatment
responses between subsets of metastases within same patients
(51, 52). RCC also exhibits distinct cytological variations, like
sarcomatoid and rhabdoid features that are associated with high
grade RCCs. Rhabdoid and sarcomatoid features in ccRCC are
associated with worse prognosis and poor survival (53, 54). A
recent study identified 9 distinct RCC tumor patterns including
compact small nests, large nests, bleeding follicles, alveolar,

papillary and pseudopapillary, thick trabecular/insular, solid
sheet, microcystic, tubular/acinar (55). The RCC subtypes differ
in terms of their immune microenvironment for e.g., ccRCC are
immune cell rich tumors that respond well to immunotherapy;
whereas chRCC and pRCC are immune cold (poor immune cell
infiltration), tumors that respond poorly to immunotherapy.

Many studies have shown that the histological pattern in
a tumor closely resonates with the molecular features within
the tumor (56). For example, ccRCC tumor cells are filled
with lipids and glycogen that represents the faulty metabolism
associated with fatty acid and glucose breakdown in these tumors.
The pathways are altered due to the uncontrolled function of
HIF gene that results in the mitochondrial dysfunction that
subsequently redirects glucose and glutamine towards glycogen
and lipid metabolism (57). For a successful administration of
PM to patients an integration of genetical, morphological and
molecular data is needed. The role of pathologists has evolved
in this era of PM from just identifying and classifying tumors to
playing an increasingly involved role in the clinical management
of patients. Due to rapid development of technologies and range
of different tests undertaken by the pathologists they are able to
provide personalized and integrated information to the clinicians
who can then provide tailored therapies to their patients (58).

Histological Biomarkers
Several histological biomarkers (pathological stage, nuclear
grade, histology variant, etc.) have been studied across different
pathological spectra of RCC. Morphologically, ccRCC is the
most common subtype of RCC. However, not all cases of
ccRCC have conventional clear cell features with a nest of large
uniform cells having clear cytoplasm. High-grade ccRCC tumors
do not retain the conventional ccRCC morphology and may
contain eosinophilic cytoplasm and papillary or pseudopapillary
formation (59). Non-clear cell RCC like papillary RCC contains
tumor cells forming finger-like projections called papillae and
tubules. Chromophobe RCC consists of cells with atypical nuclei
along with granular cells in a solid growth pattern. The remaining
uncommon types of RCC show aggressive clinical behavior
and a poor prognosis. They are classified according to their
unique features; for example, medullary RCC is associated with
sickle cell trait, but low-grade oncocytic RCC affects pediatric
neuroblastoma survivors (60). In addition, Xp11 translocation
renal cell carcinoma, in which the transcription factor gene
(TFE3) located on chromosome Xp11.2 is fused by translocation
to proline-rich mitotic checkpoint control factor (PRCC) or
disheveled segment polarity protein 2 (DVL2), is common in
pediatric patients with RCC (61). Most importantly, rhabdoid
and sarcomatoid differentiations are features more commonly
associated with ccRCC and are associated with worst prognosis
(62–64); the higher the clear cell component of a patient’s tumor,
the greater the chances of the patient benefitting from anti-
VEGF therapy (65). Hypoxia-related HIF1α is implicated in
the development of RCC (66). In an immunohistochemistry
study, complete or partial response to sunitinib was correlated
with the expression of HIF1α. Longer progression-free survival
(PFS) was associated with lower levels of HIF1α levels (67).
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Enhanced expression of carbonic anhydrase IX (CA9) and C-
X-C chemokine receptor type 4 (CXCR4) has shown promise
as biomarkers that can predict the response in patients treated
with angiogenic inhibitors. While higher CA9 expression
predicted longer PFS in patients with sorafenib treatment,
higher CXCR4 predicted poor outcomes in patients treated with
sunitinib (68, 69).

Genomic Biomarkers
Themost studied genetic event in RCC is the loss of chromosome
3p that leads to mutations in VHL, polybromo1 (PBRM1),
BRCA1-associated protein 1 (BAP1), and set domain containing
2 (SETD2) affecting 90% of ccRCC cases (70). Most biomarker
studies have been conducted on VHL, making it the most studied
biomarker (71). Although it is themost widely studied biomarker,
there is no stable relationship derived between aberrant VHL
gene expression and patient outcomes (72). Studies on the
predictive and prognostic relationships of VHL mutations in
patients treated with anti-VEGF therapy have shown that there
is no correlation between abnormal VHL gene expression and
the patient’s PFS or OS (73). Similar attempts to find a positive
correlation between VHL gene expression and patient responses
to anti-VEGF treatments showed that, for mutations of VHL,
loss of function to be an independent prognostic marker linked
to improved response rate, no positive correlation with PFS
and OS were reported (74, 75). The presence of PBRM1 or
BAF180 tumor suppressor genes encoded at a gene locus near
VHL was associated with patients who could be treated for a
longer duration with anti-VEGF therapy (76). PBRM1 truncating
mutation has been studied much more extensively as a potential
biomarker in ICI treatment and has been positively associated
with aggressive clinical behavior (77). A pan-cancer study on
PBRM1 mutations revealed an association of PBRM1 mutation
with OS (HR: 1.24, p = 0.47) in 189 patients with mRCC treated
with ICI (78). In another independent cohort of the randomized
CheckMate 025 trial, the investigators found PBRM1 mutation
to be associated with clinical benefits in patients treated with
nivolumab (79). Multiple studies found that patients harboring
a functional somatic mutation in the BAP1 gene that binds to
the BRCA1 and acts as a tumor suppressor gene did not respond
well to everolimus and sunitinib treatments as compared to
patients with wild-type BAP1 (80, 81). SETD2, which codes for
a methyl transferase and is a tumor suppressor protein, has not
been associated with significant differences in PFS in patients
treated with anti-VEGF therapy (82). However, mutations in the
telomerase reverse transcriptase (TERT) promoter region were
associated with no clinical benefit in patients (83).

As discussed above, a tremendous amount of effort was spent
in identifying putative RCC-specific biomarkers, which can be
used as a podium to monitor drug responses. However, there
is a serious lack of validated biomarkers for response to mRCC
treatments in clinical trials as well as in clinical practice. Proper
identification and validation of a robust biomarker panel in
addition to the currently used IMDC (International Metastatic
RCC Database Consortium) clinical scores are needed to further
the goal of PM in RCC (84).

INTEGRATED OMICS EMPOWERS
PRECISION HEALTHCARE

RCC is a heterogeneous group of diseases, with each subtype
having unique and complex biology. To study, analyze, and infer
useful insights from tumor biology, it is important to combine
and integrate powerful high-throughput tools and available
techniques. One such tool is “OMICS,” a multidisciplinary
platform that analyzes the interaction and function of biological
information obtained from various sets of molecules in an
organism such as DNA, protein, lipid, and metabolite. OMICS
approaches that integrate and combine data across multiple
platforms in a sequential manner to study the interplay
of biomolecules in a cancer, in combination with clinical
information, can endow clinicians with valuable data to stratify
a treatment strategy for an individual patient at a personalized
level. This concept is particularly important for non-responsive
patients where standard treatments are ineffective, and some
extra help in the form of combination therapies are needed to
design “patient-specific” protocols that may enable success in
better management of those patients.

Genome Sequencing Technology
The first step in understanding any cancer is to investigate the
genetic code and underlying DNA sequence. Hence, as described
earlier, differentially and/or unique gene analysis of the patient’s
samples have been used as an established platform as a genome-
based PM in designing suitable therapy for these patients
(85). The well-established landmark achievement in genome
sequencing technology is the Human Genome Sequencing
Project (HGSP). The discovery of 20,500 genes in the normal
human genome has paved the way for the development of PM in
diseased patients (86). Sanger sequencing and bacterial artificial
chromosome techniques were one of the earliest available
sequencing techniques (87, 88). However, the more user-friendly
next-generation sequencing (NGS) technique that provided a
cheaper and effective platform of high-throughput sequencing
was later introduced (89). The earliest sequencing data that
came out for RCC in 2009 established a higher frequency of
mutations in chromatin remodeling genes like lysine demethylase
6A (KDM6A) and SETD2, KDM5C or lysine demethylase 5C and
KMT2D or MLL2, and lysine methyltransferase 2D (90). In the
following years, PBRM1 and BAP1, genes involved in chromatin
remodeling, were discovered to be important drivers of ccRCC
by whole genome exome sequencing (WGES) (91, 92). Similarly,
in nccRCC, NGS allowed the discovery of unique mutations
and somatic copy number alterations (SCNA) in MET proto-
oncogene (MET), SETD2, and Neurofibromin 2 (NF2) in pRCC
and tumor suppressor genes TP53 and PTEN in chRCC (93, 94).

Intermediate OMIC Levels:
Transcriptomics, Proteomics, and
Metabolomics
Although studying the genomics of a disease is an important
step in understanding the pathogenesis and progression of the
disease, the instruction contained in the gene is transcribed
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as a functional protein. Gene readouts are commonly known
as gene transcripts (messenger RNA/mRNA), and the study of
total mRNA is known as transcriptomics. RNA sequencing and
microarray are two important tools that allow researchers to
know which gene is active and to determine the amount of gene
expression in cancer cells. Knowledge of the presence of a gene
and its activity aids in understanding the active and inactive
pathways in cancer types. Both tools have high-throughput
capabilities; however, microarray has proven to be a cost-effective
method (95).

Transcriptomic tools have been able to profile RCC subtypes
in the past 3 decades. A microarray is a powerful tool that
is used to distinguish between clinical subtypes using a very
small amount of sample, like in the case of core biopsies
(96). Very recently, microarray profiling carried out on liquid
biopsies (circulating molecules) is fast becoming an attractive
and non-invasive approach for RCC diagnosis and progression
of the disease (97). RNA sequencing is conducted to understand
signature patterns that provide important data on response to
treatments and survival of tumor cells in the heterogeneous
RCC tumor microenvironment (TME). Recently, transcriptomic
signatures of peritumoral adipose tissues showed that the RCC
TME varies depending on the body mass index. This study
indicates that the survival impact of obese patients with ccRCC
may differ compared to normal-weight patients (98).

Proteomics facilitates the global study of protein profiles
across organisms, tissues, or cellular organizations (99). Genomic
and transcriptomic profiling provide an understanding of an
altered gene sequence or mutation that may be present in
tumor cells, but integrating proteomics is crucial as it provides
vital information about the functional effect of a particular
mutated gene sequence. More importantly, proteins undergo
post-translational modification (PTM) after they are translated
by ribosomes from the messenger RNA (mRNA) to form mature
proteins. However, transcriptomics do not offer comprehensive
insights into PTMs that affect the functions and interactions with
the cell surrounding (100). The field of proteomics can help in
unraveling the alterations in the proteome that are more likely to
mirror tumorigenesis and the TME, which is important in PM
in order to diagnose and predict diseases. The majority of targets
in mRCC therapy are proteins, and conducting protein analysis
will result in finding therapeutic targets that have the potential of
direct clinical translational capabilities (101).

Two-dimensional electrophoresis was one of the earliest tools
used for protein profiling. Multiple studies in the past have
leveraged this technique to identify several dysregulated proteins
in RCC (102, 103). However, there are several disadvantages
of this technique, including the issue of reproducibility. It
is also important to mention the low-throughput nature of
this technique, which made it less favorable for use as a tool
for protein profiling (104). Techniques like flow cytometry
or immunohistochemistry have also been used to detect the
expression of dysregulated proteins, but over the past two
decades, mass spectrometry (MS) has been employed to
assess the proteome in RCC (105). The glycolytic enzyme
phosphoenolpyruvate carboxykinase 1 (PCK1) and small nuclear
ribonucleoprotein polypeptide F (SNRPF) were shown to be

significantly dysregulated in ccRCC by liquid chromatography-
tandem mass spectrometry (LC-MS/MS). The reliability of LC-
MS/MS was validated in ccRCC samples by western blotting
(106). The world of proteomics uses two crucial strategies to
produce proteomic data, bottom-up proteomics, also called
shotgun proteomics (useful for analyzing a mixture of protein)
and top-down proteomics (total protein as a start sample)
(107, 108). The shotgun method enables to generate a protein
fingerprint of individual patients and is an approach suitable
for PM, enabling the identification of key biomarkers in
patients with RCC (107). A large-scale study identified 596
proteins that were variably expressed in ccRCC in comparison
with a normal adjacent kidney tissue. They were also able to
validate two proteins, Coronin-1A (CORO1A) and Perilipin
(ADFP), that were found to be differentially expressed in
ccRCC tissues using immunohistochemistry. Interestingly, while
validating, they found that CORO1A was overexpressed in
infiltrating lymphocytes and not in tumor cells (109). Middle-
down proteomics, which takes advantage of both the shotgun
and top-down techniques and uses partial protein digestion to
characterize coexisting PTMs, is slowly starting to gain popularity
in the field of proteomics. It is emerging as a promising tool for
PM as it can explore potential biomarkers by quantifying the
expression of a larger number of proteins along with the analysis
of individual protein modifications (110). To date, to the best of
the authors’ knowledge, no study has been conducted on RCC
using this new approach.

Studying genetic makeup is an entry point in omics,
and the phenotype is the final physical makeup of an
organism. Metabolites, along with genetic constitution and
cellular microenvironment, constitute the closest reflection of a
phenotype of a tumor (111). The metabolome represents all low
molecular intermediates or compounds that are products of a
metabolic reaction in a cell and, hence, the closest representation
of the microenvironment. Studying the metabolome will help
in acquiring a better understanding of the cellular process.
Metabolomics is a new omics platform when compared to the
other omics disciplines (112). It can strengthen PM by being
able to predict drug response and safety in a patient (113).
Metabolomics is one of the fastest growing platforms and has
an upper hand over all the other omics because metabolites are
small lowmolecular-weight substances that can easily be secreted
in bio fluids like blood or urine and, hence, can be measured
non-invasively (114). Not long ago, nuclear magnetic resonance
(NMR) spectroscopy was conducted to analyzemetabolites (115).
A single RCC study investigated the urinary metabolome profile
of patients with ccRCC before and after nephrectomy by NMR. It
showed that the levels of creatine, lactate, alanine, and pyruvate
were increased, and that the levels of citrate, hippurate, and
betaine were decreased in patients with ccRCC in comparison
to healthy subjects (116). Another study used the NMR platform
and showed that the serum from patients with RCC had elevated
levels of very low-density lipids, isoleucine, leucine alanine, N-
acetyl glycoproteins, pyruvate, glycerol, and unsaturated lipids
along with lower levels of glucose, glutamine, and acetoacetate
before nephrectomy and that, interestingly, the pattern was
reversed after nephrectomy (117). Recently, a study used a
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biomarker-based cluster using NMR-based serum metabolomics
and self-organizing maps to create an artificial neural network
to predict early RCC diagnosis. The study proposed a cluster
of 7 metabolites namely alanine, creatinine, choline, isoleucine,
leucine, lactate, and valine to validate the metabolomics changes
in patients with RCC before and after nephrectomy (118).
MS is another data acquisition platform widely utilized to
generate metabolomics patterns from biological samples (119).
Although an increasingly large number of studies that have used
metabolomics to find potential biomarkers are available, there is
a high number of studies that have shown an excessive number of
false-positive rates as being the greatest challenge in the world
of metabolomics (120). However, metabolomics can become a
powerful tool in PM when used in conjunction with another
available omics platform.

A multi-omics approach integrating various platforms is
essential to bridge the wide gap in understanding RCC
tumorigenesis that is driven by oncogenes, rewired metabolic
pathways, and altered signaling cascades, all leading to a dynamic
and, at the same time, defective phenotype. Many studies have
highlighted the importance of taking an integrative approach
to explore the intertwined association of various biomolecules
and its effect on cancer biology, which is the key link in
bringing PM approaches to the clinic (121, 122). There are
many computational tools now available to integrate different
branches of omics, e.g., Metabox (an R-based web application),
O-miner, and Galaxy (123–125). From a PM perspective,
integrative approaches will help to understand the biology of
RCC holistically, thereby improving the ability to predict an early
diagnosis as well as drug response in patients.

LIFESTYLE-BASED DATA

Hereditary RCC constitutes approximately 2–5% of all RCCs
(126). The remaining RCCs are influenced mainly by lifestyle
and environmental factors (127). Cigarette smoking, obesity,
and hypertension are established risk factors that are associated
with RCC. On the other hand, physical activity and alcohol
consumption are known protective factors against RCC (128).
Combining lifestyle data with integrated omics data along with
clinical and diagnostic information will help scientists generate
patterns identifying the risk of developing RCC and predict the
disease earlier and will help in determining the most effective
intervention against RCC.

MANAGEMENT AND APPLICATION OF
COMPLEX OMICS DATA

Acquisition of omics data using high-throughput technologies
has allowed the generation of huge amounts of data often
in terabytes and petabytes. Notably, The Cancer Genome
Atlas (TCGA) contains petabytes of genomics, epigenomics,
transcriptomics, and proteomics data (129). To put that into
perspective, 1 petabyte is equivalent 223,000 DVDs, each storing
4.7 Gb together. It is estimated that, by 2025, 60 million genomes
will be sequenced (130). With huge amounts of data collection

come the massive challenge of sorting and storing appropriately.
The gigantic amount of data must be stored appropriately so that
it is easily accessible by scientists and clinicians for it to be utilized
efficiently for clinical diagnosis and treatment. Like the TCGA,
there are other publicly available oncology data sets pertaining
to patient-based multi-omics data sets (Table 1). The TCGA
contains information on 941 renal cancer patient samples (126).
The TCGA and other public domain databases aid investigators
in combing the vast and diversified omics information into a
well-annotated structured data set that may contribute toward
stratifying PM for patient groups. There is a range of publications
available on RCC that have used these databases to analyze the
clinical and biological parameters of patients with the aim of
prioritizing structured treatment (131–133).

The key challenge in using these multi-omics approaches is to
understand, interpret, apply, and translate the knowledge
generated from the huge omics data. According to the
International Medical Informatics Association (IMIA),
bioinformatics techniques and algorithms are used to analyze
and extract the hidden knowledge in the diverse and complex
“Big Data” (134). Although harnessing Big Data related to
patients is essential in making the PM approach in oncology
a success, it can come with its share of adversities in patients.
Collection of Big Data about patients from different sources
and networks may, in certain cases, result in data theft and
misuse, leading to uncertainty, social discrimination, and biases
for patients, which again can result in undesirable health effects
for patients.

NANOTECHNOLOGY-BASED
APPROACHES IN PM FOR RCC

One of the challenges in cancer therapy and more so in RCC is
the broad non-specific target-based treatment approach, which
not only causes severe side effects in patients but also in most
cases enhances drug resistance by enhancing the survival of
chemotherapy-treated residual tumor cells into an aggressive
phenotype. The advantage in the application of nanotechnology
is the use of “nanocarriers” as drug delivery vehicles that
mediate targeted delivery of drugs to tumor sites without causing
much harm to normal tissues (135). However, the technology
is still in infancy and, currently, there are a few clinical
applications of this technology in cancer treatment [127, 130–
133]. Nonetheless, several in vitro and in vivo mouse model
studies have demonstrated that the technology has the potential
to have a significant impact on clinics.

Nanocarriers, usually having a size of less than 100 nm in
one dimension, are organic/inorganic or hybrid particles shaped
in the form of micelles, dendrimers, liposomes, or virus-like
particles and are used to encapsulate/covalently conjugate or
absorb cancer drugs. These nanocarriers have shown significantly
greater efficacy in different cancer models compared to drugs
on its own (136). Nanoparticle formulated (nanocarriers) drugs
allow for specific targeting of tumor cells by providing superior
solubility and stability of drugs in the tumor microenvironment,
resulting in improved internalization of the drugs in the tumor
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TABLE 1 | Description of multi-omics data repositories related to cancer.

Data repository Short form Data links Description

International cancer genomics

Whole genome analysis

ICGC ICGC DATA PORTAL The repository is a global initiative that provides

user- friendly platform for visualizing, querying,

and downloading cancer data

The cancer genome atlas

RNA sequencing, DNA sequencing, single

nucleotide variant, copy number variation

TCGA TCGA DATA PORTAL A cancer genomics program spanning 33

cancer types and >20,000 primary cancer and

matched normal samples

Clinical proteomic tumor analysis consortium

Mass spectrometry-based proteomics

data

CPTAC CPTAC DATA PORTAL A proteogenomic Cancer Atlas of

comprehensive sequence of proteomic

datasets

Cancer cell line encyclopedia

Gene expression, mRNA expression SNP

genotyping, pharmacological profiles of 24

anticancer drugs

CCLE CCLE DATA PORTAL The project validates >1000 human cancer cell

line models by detailed genetic and

pharmacological characterization

Therapeutically applicable research to generate

effective treatments

Gene expressions, copy number, miRNA

expressions

TARGET TARGET DATA LINK

TARGET DATA MATRIX

TARGET applies a comprehensive genomic

approach to determine molecular changes that

drive childhood cancer

Cancer genome characterization initiative

Gene expressions, copy number,

sequencing data

CGCI CGC1DATA PORTAL

CGC1DATA MATRIX

CGCI uses molecular characterization to

uncover distinct features of rare cancer

Omics discovery index

Genomics, transcriptomics, proteomics,

and metabolomics

OmicsDI OMICSDI The tool provides a framework across

heterogenous omics datasets

Molecular taxonomy of breast cancer

international consortium

Single nucleotide polymorphisms, Gene

expressions, computational biology

METABRIC MOBCCRC Breast cancer PM and Computational Cancer

Biology programs incorporates multidisciplinary

techniques to develop statistical models to

understand genomic abnormalities

without much loss in the circulation, circumventing harmful
side effects in patients. One great advantage of nanoparticle-
formulated drugs is that they cannot pass the tight junctions
of the normal vascular lining but can easily pass through the
leaky vascular lining of tumors to enhance their concentration
at the tumor site (137). This phenomenon known as “enhanced
permeability and retention effect (EPR)” is the fundamental
principle of nanoparticle-conjugated drug treatment of tumors
(138). However, in that scenario, the surface area and size
of nanocarriers play an important role in active tumor
targeting and are adjusted for EPR effects to occur without
unwanted uptake of nanodrugs by the normal endothelial system
(138). Common examples of these formulations are Abraxane
(albumin conjugated paclitaxel), PEGylated (polyethylene glycol
formulated), doxorubicin (DOX), and DOXIL recently approved
by FDA for cancer treatments (139, 140). These nanodrugs
have shown enhanced efficacy in patients with less cardiotoxicity
compared to conventional drugs. In addition, active targeting
of tumors by nanoparticle-conjugated drugs also occurs by
physically attaching the surface of nanocarriers to certain
overexpressed antigens on the surface of tumor cells. Tumor-
specific cell surface overexpressed antigens with nanoparticle-
formulated antibody conjugation have recently been shown
to target folate receptor overexpressing prostate, breast, and
lung cancer cells in vitro (141). Moreover, the application
of nanoparticle-conjugated epidermal growth factor receptor
(EGFR) and HER2 receptors on different cancers leading

to increased efficacy of different cancer drugs have recently
been demonstrated (142, 143). Besides these, the cluster of
differentiation (CD), estrogen, integrin, and other growth factor
receptor-based targeting using different nanoparticles have
successfully been shown to enhance the efficacy of current cancer
drugs in vitro and in vivo mouse models (144–146). In cases
where there is poor penetration of antibodies inside cells, antigen
fragments (Fab) or single fragments (scFv) are also used to
overcome these deficiencies.

As such, nanomedicine has the potential to empower PM
in oncology, as the key step is to select the right drug
delivery platform for a patient cohort that can target specifically
overexpressed tumor-specific protein sets aberrantly regulated
by cancer. Human kidneys are an ultrafiltration unit and are
responsible for filtering the circulating blood. In that case,
the shape, size, and charge of nanoparticles are important
factors when designing nanocarriers for RCC. In that scenario,
cationic spherical nanoparticles with diameters between 6 and
8 nm have been shown to have better renal clearance (147,
148). Pre-clinical studies focusing on RCC have concentrated
on selectively targeting kidney tumors (149, 150). Tumor
hypoxia is a leading cause of drug resistance in RCC (151).
Recently, it has been shown that certain nanoparticles can be
activated under hypoxia-induced oxygen stress. Among those,
hypoxia receptive electron acceptor nitroimidazole conjugated
with carboxymethyl dextran and loaded with DOX showed
accelerated release of DOX to hypoxic tissues via the EPR
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effect (151, 152). In addition, iron oxide conjugated DOX
linked with azobenzene-4, 4-dicarboxylic acid released 80% of
DOX in hypoxia compared to only 10% release in normoxic
tissues (153). There are nanocarriers that have demonstrated the
application for targeting hypoxia in tumors, which may have
clinical application for RCC (154–156). In addition, few gold,
silver, silica, and iron-based nanoparticles including liposomes
have shown applicability in targeting angiogenesis, which is a
major decisive factor in RCC progression and resistance (157).
In that context, tumor necrosis factor (TNF)-mediated secretion
of vascular endothelial growth factor (VEGF) was decreased by
curcumin-loaded PLGA nanoparticles (158). In a hepatocellular
cancer model, chitosan nanoparticles suppressed the expression
of VEGFR2 with subsequent suppression of VEGF synthesis,
leading to an anti-tumor effect in the mouse model (159).
These and other nanoparticle-based studies targeting hypoxia
and angiogenesis hold a great promise in increasing the efficacy
of current drugs used for RCC treatment. However, significant
challenges exist in modulating these anti-hypoxia and anti-
angiogenesis nanomedicine-based approaches successfully in
vitro and in mouse model studies with consequent application
to patients with RCC.

Recently, nanoparticles have been used in RCC with
an intention to reverse sunitinib resistance. Cuprous oxide
nanoparticles (CONPs) can downregulate the expression of AXL,
MET, AKT, and ERK to improve responsiveness to sunitinib
in resistant RCC cells and may be a less toxic way to treat
patients with acquired sunitinib resistance (160). Although few
nanomedicines such as liposome-based Onivyde and Vyxeos
have been approved to treat certain solid cancers (pancreatic,
esophageal, and colorectal) (161), there are no FDA-approved
nanoparticle-based drugs for RCC. Zinostatin stimalamer, a
lipophilic analog of the antitumor antibiotic zinostatin, is the
only approved nanomedicine-based drug available in Japan for
RCC treatment (162, 163). CRLX101, a novel nanoparticle-
drug conjugate containing camptothecin and inhibitor of
topoisomerase I, HIF1, and HIF 2α was tested recently in
a randomized phase II trial along with the anti-angiogenic
drug bevacizumab vs. the standard of care for mRCC like
bevacizumab, axitinib, everolimus, pazopanib, sorafenib, and
sunitinib. Unfortunately, the combination failed to demonstrate
any improvements in the PFS of patients with mRCC when
compared to standard treatments (164).

ARTIFICIAL INTELLIGENCE IN PM

Artificial intelligence (AI) is an arm of computer science
that makes use of computer-generated data to mimic human
intelligence. RCC is a multi-faceted disease with many genetic
and epigenetic variations, and AI algorithms can push forward
personalized RCC detection and diagnosis in leaps and bounds
toward the autonomous disease diagnosis field with the help of
big data sets. Machine learning (ML) and deep learning (DL) are
driving today’s AI advancements. ML is an important type of AI
that can learn from a whole heap of data and make predictions.
DL is a subset of ML that uses an artificial neural network that
mimics the human brain’s information processing approach. A

well-planned DL can diagnose and classify diseases and make
predictions with high accuracy.

AI together with ML and DL can improve RCC diagnosis
and treatment in digital healthcare. Most patients with RCC
are diagnosed incidentally when scanning for other diseases.
However, there is no sure way of predicting that renal masses
are cancer by imaging alone. Tissue biopsy is a gold standard
in many cancers; however, renal mass biopsy has significantly
higher non-diagnostic rates and fails to aid in diagnosis (165,
166). Approximately 20% of small renal masses (<4 cm) are
non-malignant and do not need surgeries but still end up
undergoing partial or full nephrectomy (167). Differentiation
between small renal masses and RCC is an important aspect of
patient management, and this is where AI can play an important
part in PM. AI algorithms can be used to accurately predict
whether the renal mass shown in patient scans is cancer or
not (168, 169). Many research studies have developed complex
neural networking programs that can process digitized renal
histopathology slides and learn patterns to identify tumors
(170). AI has touched every aspect of the prognosis of patients
with RCC right from diagnosing RCC to predicting prognosis
and recurrence in patients (171–173). To accurately tailor-
make treatments for patients with RCC, an important step
is to accurately predict drug response in individual patients.
Therapeutic resistance, both innate and acquired, is a financial
burden in any disease. Thirty percent of patients with RCC
are known to be innately resistant to the targeted therapy, and
another 30% respond initially, develop resistance later, and show
up with increased tumor burden (174). RCC researchers have
very recently designed deep neural networks to predict tumor
drug response (175). ML algorithms have perfectly predicted the
chemoresistance of cancer cell lines (176). AI is already gaining
momentum in clinical medicine, specifically in medical imaging.
In early 2021, the FDA released the agency’s first action plan
named the “AI/ML-based software,” which outlined the FDA’s
next steps toward the oversight of AI/ML-based medical action
(177). Very recently, the FDA approved GI Genius, the first
device that uses AI/ML to assist clinicians in real-time detection
of polyps or tumors in the colon (178). Few AI algorithms like
WRDensity, HealthMammo, Profound AI, and Transpara have
already been approved in breast cancer that help radiologists and
clinicians in identifying suspicious mammograms (179, 180).

The advantage of AI/ML-based programs is that they are
continuously evolving with new data sets. Harnessing its true
potential is important to achieve the goal of PM where it can help
healthcare systems to automate tasks that are time-consuming
and overwhelmingly difficult for physicians.

THE ROLE OF THE GUT MICROBIOME IN
RCC PM

Over the past decade, considerable advances have occurred
in understanding the implication of the gut microbiome in
normal biology and how it changes with tumor initiation
and progression through manipulation of the immune system
(181). In the human body, extensive interaction exists between
host cells and millions of symbiotically blossoming microbes.
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These symbiotic microbes colonize in different organs of human
bodies and undergo constant changes triggered by endogenous
and exogenous stimuli. However, substantial portions of
these “healthy microbes” remain unidentified by current
microbiological techniques. Nonetheless, distinct “dysbiotic”
microbiome signatures have been associated with cancer and
other diseases (182). Changes in the dysbiotic gut microbiome
occur with initiation of cancer in patients in response to
surgery and chemotherapy treatments and are associated with
cancer recurrence and contribute substantially to the efficacy
of cancer therapies (183, 184). A plethora of integrated omics
studies have emphasized the role of gut commensals in
tumorigenesis and cancer treatment (185–187). Recent studies
also suggest that host-microbiome signature can even correlate
with survival parameters in patients with cancer, suggesting that
the modulation of gut microbiome signature can potentially
dictate the success of cancer therapy (188, 189). Hence, the
gut microbiome signature is rapidly becoming a target for new
treatments and diagnostic models.

In RCC, gut microflora are definitely an important non-
genetic contributing factor to the progression of the disease,
as microbial populations in the gut of patients with RCC
have been found to be distinct from their adjacent normal
tissues (190, 191). Gut microbiota can also modulate the tumor
microenvironment (TME) by influencing the levels of various
metabolites such as dietary amino acids and short-chain fatty
acids, for example, butyrate, acetate, and propionate, which
have an anti-inflammatory property (192). Immunotherapy
treatment founded on ICI-based PD-L1 and PD-1 antibodies
has changed the landscape of RCC treatment (193). However,
primary resistance occurs in the majority of patients with RCC.
Recently, studies on mice xenografts and on patients with
cancer have shown that abnormal gut microbiome profiles can
influence primary resistance to ICI treatment (194). Particularly,
an antibiotic therapy prior to ICI treatment in patients with RCC
significantly reduced the overall and progression-free survival
compared to a cohort of patients who were not treated with
the antibiotic (195). In univariate and multivariate analyses,
antibiotic treatment was a single prognosticator of ICI treatment
failure in these patients. Using quantitative metagenomics, the
composition of the gut microbiome of patients participating in
the study was analyzed. Positive clinical outcome in responding
patients with RCC was associated with the enrichment of the
Akkermansia muciniphila (A. muciniphila) microbe in the gut
microbiome (177). Further studies are in progress in which
fecal bacteria from patients responding to ICI treatment will be
transferred to non-responding patients. Such treatments have
been performed with success in other groups of patients with
cancer (196). In addition, the microbiota of non-responding
patients can be controlled by diet and use of prebiotics for
a favorable outcome in patients in response to therapies.
Hypothetically, if the prevalence of microbial population in non-
responders can be changed toward the microbiome profile in
responders, that would enable the non-responders to respond to
ICI therapy (197).

In the same context, a shotgun DNA sequencing technique
was used to screen the gut microbial composition of patients

with advanced RCC (198). It was found that TKIs given to
patients prior to ICI treatment shifted the gut microbiome
profile of patients positively and enhanced the growth of
immunostimulatory microbes like Alistipes senegalensis and
Akkermansia muciniphila. Hence, harnessing the positive effect
of gut microbiota in patients with RCC can enhance the clinical
efficacy of ICI therapy (198). Few other studies have also
emphasized the importance of modulating gut microflora to
achieve successful outcomes while using ICIs on patients with
mRCC (199, 200).

With respect to PM, microbiome-based treatment approaches
are gaining momentum where individual host-microbiome
patterns can be integrated with other personal health-related
information of a patient for evaluation if the microbiome-based
PM approach will be a suitable treatment option. As analyzing
and storing of individual patient’s microbiome profile will be
challenging, AI in that scenario may play an important role
in finding essential clinical evaluations, thereby promoting the
field of PM to evolve. In that context, the application of AI
in predicting chemotherapy resistance in patients with ovarian
cancer based on gut microbiota profiles has recently been
reported (201).

Although evaluation of the microbiome-cancer axis has
started, a lot of heavy lifting is needed for translational
possibilities. There is an extensive diversity of gut microbiomes in
individuals depending on their genetic makeup, diet, and diverse
lifestyle. Adding to that complexity, microbes interact with the
host and the tumor in a diverse and context-specific manner.
Hence, elucidation of microbiome composition and unique
mechanisms by which the gut microbiome interact with the host
and tumorsmay prove challenging for PM.However, a significant
breakthrough in microbiome-based diagnostics and therapeutics
is underway based on the identification of unique tumor-specific
gut microbiome and/or metabolic signatures combined with
existing immune cell types. This could potentially stratify patients
into different risk groups and may facilitate the prediction of
models for early-stage screening (202–204). In these scenarios,
big data analysis using AI/ML algorithms may play significant
roles in developing precise and reliable prediction, diagnostic,
and therapeutic tools for cancer treatment.

CANCER VACCINES AND CELLULAR
THERAPIES: PROMISING PM STRATEGIES
IN RCC

Vaccines have been, for a very long time, thought to be a viable
treatment for cancer. The first published literature on oncology
vaccines dates to 1893 when an inoperable soft tissue sarcoma
was targeted by injecting streptococcal toxins that enhanced a
non-specific immune response in a patient (205). Many cancer
vaccines are in clinical trials with the aim to enhance patient’s
immune response against tumor cells. Vaccine therapy can
be implemented if a tumor is immunogenic, and RCC is a
proven immunogenic tumor, as there is significant infiltration
of lymphocytes in the tumors (206). A recent phase 1 clinical
trial studied the safety and efficacy of autologous dendritic
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cells transduced with AdGMCA9 (GM-granulocyte macrophage
colony-stimulating factor + CAIX delivered by an adenoviral
vector) and was found to be well tolerated without any significant
safety concerns in patients with mRCC (207). Neoantigens or
mutation-generated novel epitopes of self-antigens in tumor cells
have recently been proven to have greater potential than tumor-
associated antigens like CAIX. PM tools like NGS have made
it possible to identify several neoepitopes in individual patient
tumors that are potential targets to develop treatments. GEN-
009 is a personalized neoantigen vaccine that is in the phase 1/2a
trial (NCT0363310) for RCC and other solid tumors. Patients
who received PD-1 based immunotherapies were selected for the
NCT0363310 vaccine trial. GEN-009 was able to enhance T cell
responses in 100% of evaluated patients. The trial emphasized
that the approach of combining vaccines with ICI has a good
therapeutic potential. GEN-009 consists of neoantigens that
were identified based on a cell-based bioassay platform that
uses patient’s own monocyte-derived dendritic cells to identify
neoepitopes (208). Although GEN-009 is still far from clinical
use, the excellent results of phase 1/2a is a perfect example
that vaccine-based PM strategies can be tailored toward specific
patient groups or individuals.

Chimer antigen receptor (CAR)-T cells are genetically
engineered autologous T cells to express CAR that can
specifically recognize tumor cells. CAR-T cells, after their success
with hematologic malignancies, have been proven to be an
illustrative example highlighting the use of the PM platform
to improve patient outcome. CAR-T cells are tailor-made for
patients using their own white blood cells and, so far, are
approved for treating leukemia and lymphoma. KymriahTM
(relapsed or refractory acute lymphoblastic leukemia and large
B-cell lymphoma), YescartaTM (lymphoma), and TecartusTM
(relapsed or refractory mantle cell lymphoma) are the only three
autologous CAR-T cell treatments that are currently approved
by the FDA and have reached the market (209, 210). CAR-T cell
therapy in the case of hematologic cancers has been particularly
successful because it harnesses CD19, a unique protein only
found in hematological malignancies and is not expressed by
solid tumors. As RCC tumors express proteins that are also
expressed by healthy kidneys, the potential application of CART-
cell therapy may not be an option for patients with RCC
until RCC-specific proteins are discovered that can be targeted
by CART-cells.

Recently, human endogenous retrovirus E (HERV-E) derived
antigen was found to be expressed in majority of ccRCC
cells with no expression in normal healthy tissues. A phase
I clinical trial based on this finding is currently actively
recruiting patients to study the safety and efficacy of HLA-A11:01
restricted HERV-E specific CART-cells in patients with mRCC
(NCT03354390). Another clinical trial currently recruiting
patients is a phase 1/1b open-label multi-center study that will
analyze the safety and efficacy of TRQ-1501 in patients with
relapsed or refractory solid tumors like RCC (NCT03815682).
TRQ-1501 is an immunotherapy developed from patient’s own
T-cells capable of targeting heterogeneous tumor antigens in
addition to overcoming immunosuppression in TME. TRQ-
1501 is also loaded with 1L-15, 1L-12, and TLR agonists whose

prime function will be to activate the immune system. Another
clinical trial that is worth mentioning is NCT03393936, an
umbrella trial that is a phase 1 and 2 trial studying the safety
and efficacy of two CART-cells, CCT301-38 and CCT301-59, in
relapsed and refractory patients with stage IV mRCC. CCT301-
38 will target AXL on tumor cells while CCT301-59 will target
receptor tyrosine kinase-like orphan receptor 2 (ROR2) antigens
in tumors. Patients in these trials are selected based on the
expression of tumor antigens they express. Although all the above
trials are in their infantry, they sure are a step ahead toward the
PM era in RCC.

CIRCULATING TUMOR CELLS AND
PATIENT-DERIVED TUMOR ORGANOIDS:
THEIR RELEVANCE TO PM IN RCC

The trans-circulatory pathway is one of the most important
pathways in RCC metastasis (211). A metastatic disease is the
result of circulating tumor cells (CTCs), a rare subset of tumor-
disseminated cells that are shed in the patient’s blood. CTCs
maintain the inherent primary tumor properties and can be
detected very early as cancer progresses, making them a powerful
clinical biomarker. RCC, being a highly invasive cancer, can
benefit from the early detection of RCC-specific CTCs. The
CellSearch circulating tumor cell test is the only FDA-approved
CTC detection test used in clinics. Baseline CTC detection has
been proven to be an important prognostic marker of PFS
and is a significant predictor of poor response to tyrosine
kinase inhibitors in patients with mRCC (212). CTCs can be a
good candidate for a preclinical model because they retain the
heterogeneity and properties of primary tumors. These models
can then be tested for drug screening and disease modeling (213).

The potential PM application for RCC drug and biomarker
screening could be generating patient-specific pre-clinical 3D-
organoid models. Patient-derived 3D organoids have been
developed from primary tumors and CTCs in various cancer
types (214, 215). Primary tumor and CTC-derived explants have
recently been studied in in vivo drug-resistant models. Analysis
of the genetic makeup from resistant models and relapsed
patients can provide a clearer picture about the development of
resistance in cancer (216). A clinical study on treatment guided
by patient-derived xenografts (PDXs) could identify an effective
treatment regimen for 11 out of 12 patients with advanced
cancer types (1 patient died before receiving treatment) (217).
Thus, 3D organoids and PDXs have immense potential for a
guided treatment regimen. Although the studies require further
development, CTC, patient-derived 3D organoids and PDX are
in use for the development of PM-based cancer therapies.

CURRENT PM-BASED TARGET
THERAPIES AND IMMUNE CHECKPOINT
INHIBITOR STRATEGIES IN RCC

Renal cell carcinoma, in terms of available treatment, has
come a long way from being a therapeutic orphan to one
with multiple treatment options. RCCs are innately resistant
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to chemotherapy and radiotherapy. The exponential growth of
research on RCC has led to the clinical knowledge that RCC has
mutated pathways like the VHL pathway that sustains RCC cell
growth by supporting angiogenesis, and the PI3K-Akt-mTOR
pathway that supports the progression of the disease (24). Not
surprisingly, targeting angiogenesis as well as the mTOR pathway
with angiogenic inhibitors and mTOR inhibitors have shown
tremendous improvement in the overall response of patients
with RCC. However, as mentioned before, only selected patients
can reap the benefits of these treatments. Another PM-based
approach in RCC has been the use of monoclonal antibodies that
block the immune checkpoints. RCC is an immunogenic tumor;
tumor cells evade the immune system by overexpressing the
immune regulators that keep autoimmunity and self-tolerance
in check (218). PD-1 and PD-L1 are transmembrane immune
and tumor cell regulatory proteins that modulate activation or
inhibition of immune cells (219). PD-L1 tumor expression is a
poor prognostic factor but a good response predictor for the
use of both PD-1 and PD-L1 inhibitors in RCC (220). A recent
meta-analysis study on the expression of PD-L1 has shown that
patients with RCC harboring high expression of PD-L1 in tumors
responded significantly better to both PD-1 and PD-L1 antibody
therapies compared to patients with low or negative PD-L1
expression in tumor cells (221). Each PD-1/PD-L1 drug approved
by the FDA takes into consideration PD-L1 expression based on
an immunohistochemistry (IHC)-based tissue assay. Only a small
fraction of patients with a negative PD-L1 expression by IHC
assay showed any response to PD-1/PD-L1 antibody therapy.
This suggests that the identification and utilization of PD-L1
expression in tumors is of great significance for a better selection
of patients who may respond to PD-1/PD-L1 therapy.

More than dozens of immune checkpoints have been
identified over the past decade, nivolumab, anti PD-1, was the
first immune checkpoint inhibitor (ICI) that was approved by
the FDA as a monotherapy for treating advanced RCC in 2015.
Thereafter, in April 2018, a CTLA-4 inhibitor, ipilimumab, in
combination with nivolumab, was approved by the FDA for
intermediate and poor risk in previously untreated patients.
Soon, anti-VEGF/ICI combination treatments appeared to
produce favorable outcomes in patients with RCC. As a result,
in 2019, two combinations, pembrolizumab (anti-PD-1) plus
axitinib (tyrosine kinase inhibitor) and avelumab (anti-PD-L1)
plus axitinib, made their way as FDA-approved drugs in mRCC
treatment plans (193). As with any other treatment, the success
of ICI is also very vague, so effective use of ICIs with respect to
PM needs robust predictive biomarkers that can predict response
to tumors. Biomarkers that have claimed to predict ICI responses
include PD-L1 expression, tumormutational/neoantigen burden,
microenvironment signatures, and occurrence of immune-
related adverse events (222). Recently, a study showed that the
frequency of PD-1+CD8+ T cells relative to PD-1+ regulatory
T cells or Tregs in the TME is a far superior biomarker
that can predict the efficacy of anti-PD-1 treatments than
PD-L1 expression and tumor mutation burden (223). Other
studies that are gaining increased momentum in recent years
have highlighted the success of re-challenging patients treated
with ICI to explore its safety and efficacy (224). If ICI

re-challenging studies translate to clinical settings, research
on exploring the identification of potential biomarkers will
be in high demand for the selection of the right group
of patients.

REGULATIONS FOR THE
IMPLEMENTATION OF PM

PM is an opportunity to treat individual patients with cancer
at a greater targeted therapeutic resolution. With the rapid
shift of cancer therapeutics toward the use of PM in patient
care, there is a greater need of refined regulatory guidelines
to ensure the best and safe PM-based patient care. Many
countries like Australia have very recently introduced regulatory
laws revolving around the use of PM, while countries like the
United States and European countries modified their regulatory
landscape to include regulatory laws pertaining to PM. Most
regulatory approvals are recognized by the FDA and Centers
for Medicare and Medicaid Services (CMS) in the United States
and the European Medicines Agency in the European Union
(225). Different centers under the FDA and CMS regulate the
approval of PM as per their jurisdiction and regulations. For
example, laboratory diagnostic tests are regulated by CMS.
Similarly, in the European Union, the EU regulatory framework
for pharmaceuticals offers several different legislations that
regulate the development of PM. In vitro diagnostics and medical
device legislations aim at adapting the EU legislation to the
technological and scientific progress in the PM sector and
provide a better consultation process for companion diagnostics,
similar to clinical trial regulations that aim to simplify the
conduct of clinical trials and research in therapies using PM
(226, 227).

The regulatory scenario for PM is changing worldwide to
accommodate its fast-changing landscape. In 2018, 42% of all
new drug approvals by the FDA were personalized therapies
(228). However, PM has multiple moving parts, and that not
only involves PM-based drugs but different services, devices, and
associated technologies that currently are regulated by multiple
agencies, with no clear regulatory framework associated with
PM treatment in patients. With the PM era pacing rapidly in
the direction of modern medicine, there is an urgent need for
associated regulatory boards to continually update and adapt to
maintain the high quality and safety of PM-based treatments and
associated products and technologies.

THE DOWNSIDE OF PM

PM is a young and rapidly growing field and, like any new
scientific/therapeutic field, personnel involved are in uncharted
territories. Although PM has the potential of touching a patient’s
life and be able to make a positive change to their health, it still
must make a huge amount of progress in order to fill the gaps
between the research, clinical trials, and clinics for successful
therapeutic application in patients.
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Privacy Concerns and Ethical Issues
One of the foremost issues is the amount of patient data
required, generated, and stored for the proper implementation
of PM. This can lead to privacy issues related to handling
and storing the massive data sets. The use of technologically
big data-generating tools like the NGS and OMICS platforms
may worsen this issue further. To apply PM successfully,
integration of NGS- or OMICS-generated data along with
patient’s other health records including diagnosis, laboratory
works, and demographic information is needed. Patient data
may differ depending on how they are handled, collected, and
stored (229). Generation of error-free clinical data and their
recording and interpretation are of prime importance. Digital
health records and networks are used increasingly to ease the
daunting task of storage of large volumes of patient information
(230). Generation of large amounts of data like whole-genome
sequencing (WES) of a patient may raise concerns related to
privacy acts and discrimination. In addition, the big data sets
generated by the NGS,WES, and OMICS platforms need treating
physicians to have special interpretation skills. In that context,
treating physicians will need adequate genomic knowledge and
training for data interpretation, as these data sets will formulate
prescribed treatments for patients. The issue may be exacerbated
further by genomic findings related to “variants of unknown
significance” or “false positives/negatives” that may make the
interpretation difficult and flawed. In addition, redundancy in
major biological pathways adds a further layer of complication
in the interpretation of the bioinformatics of big data sets.
These exercises may involve increased time management and,
at times, may require multidisciplinary clinical/bioinformatics
efforts to make a decisive treatment plan. According to a
recent survey, the collection of huge data sets from patients
potentially caused stress in clinicians, as it required a substantial
amount of time for data interpretation and explanation to
patients (231). In addition, patient information is sensitive and
private and requires confidentiality and secured recording and
storage. There are additional risks for patients to suffer from
stigma and discrimination by insurance providers or employers
if health records/data are made accessible or inappropriately
disclosed. These can lead to serious ethical issues surrounding
patients. For example, incidental detection of the presence
of a life-threatening disease in an individual while genetic
screening for one disease can have damaging impacts on the
patient’s physical and mental health, especially if there is no
cure for the disease. To further complicate the issue, the
rights of the patient’s immediate family members or related
members must also be considered in such situations. A genetic
disease can be managed better with early intervention, and
family members have the right to know if they are at any
risk. However, it will mean encroaching patient’s privacy and
his/her right to disclose information to family members. Such
an ethical dilemma is a huge concern for clinicians and
patients practicing PM. In that context, the American Medical
Association has formulated guidelines for physicians who require
counseling patients about sharing the results of genetic tests
with family members (232). The American Society of Human
Genetics provides legislature to physicians to share the results

of genetic tests that can pose health risks to family members
if patients refuse to do so (233). However, this declared
right given to treating physicians might result in unintentional
aftereffects on families. For example, in cases of testing to
determine potential birth effects in an unborn child, both parents
undergo genetic testing. This, at times, can lead to paternity
issues, which can have serious consequences for concerned
families. All the above issues highlight the importance of
legislative and confidentiality issues related to patients’ health
information and require due consideration while developing
PM-oriented laws.

Economic Impact of PM
The principal barrier to implementing PM in clinics is meeting
the cost required for its execution. Economic evaluations
of PM interventions for making policy decisions pertaining
to investment in research and development (R and D) and
reimbursement in healthcare systems have been suggested (234).
PM has the potential to reduce the cost of healthcare as it can
predict the right treatment for the right patient, thereby reducing
any unnecessary and multiple trial-and-error attempts to achieve
healthy patient outcomes. However, to reach this stage, huge
investment in multiple directions is required, right from the
secured and massive infrastructure to hold and collect patient
data to the development of a precision drug. The R and D of
PM can be costlier than traditional medicine because it requires
the use of expensive techniques to test, like sequencing a large
amount of DNA or RNA and other genetic testing. Hence, despite
its potential to decrease the treatment time and unnecessary side
effects due to the use of broad-spectrum drugs currently used
in cancer therapy, the overall cost of healthcare may prove to
be a burden for not-so-affluent patients and insurance payers.
To put that in perspective, the US invested $ 215 million in
funding toward PM out of $35 billion in health research and
development in 2016 (235). The development of a drug is the
costliest aspect of any healthcare system. It currently exceeds $2.7
billion for cancer drugs, which is regularly used as a justification
for higher cancer drug prices (236). Reimbursement from health
insurance companies will get tougher with the rise in patients’
out-of-pocket costs. All these factors will have an indirect and a
direct effect on patients and can mean higher costs for patients
to avail PM. This will only lead to economic discrimination, with
only the affluent sector of the public being able to afford the PM
treatments. Strategic approaches need to be in place like changing
regulations governing health insurance as well as pharmaceutical
companies to overcome the cost challenges involved in bringing
PM to deliver improved health outcomes to a broader sector
of patients. A recent study showed that stratifying patients
according to PM-based approaches could save approximately $7
million in overall healthcare costs per 1,000 patients (237). In that
context, detection of HER2, a validated biomarker in a specific
cohort of patients with breast cancer overexpressing HER2 in
tumors, reduced the clinical trial risk by 50 and 27% reduction
in cost (238). There are studies that convincingly prove that
using precise-protocoled PM therapeutics with well-designed
analytic strategies can reduce clinical trial risks in patients with
cancer (239–241).
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FIGURE 2 | Role of precision medicine (PM) in RCC. (A) Hematoxylin and Eosin (H & E) staining of human kidney with RCC, (B) H & E of primary RCC showing typical

epithelial nests of RCC cells with clear cytoplasm (Magnification: 100X), (C) adjacent normal kidney tissue, (D) metastatic RCC invading the pancreas of a patient

tissue, (E) adjacent normal spleen in a patient tissue (Magnification: 100X). (F) heterogeneity in RCC patients due to diverse clinical and environmental factors, (G)

current practice of treating patients – every patient treated with same standard drugs resulting in treatment failure and secondary resistance, (H) precision medicine

approach utilizing data obtained from various platforms and stratifying patients with personalized treatments, (I) individualized treatment (PM) resulting in better clinical

outcomes for patients.

TABLE 2 | Summary of applications of precision medicine (PM) to facilitate treatment of patients with renal cell cancer (RCC).

Tools for personalized data collection

Lifestyle data Genomics Proteomics Transcriptomics Metabolomics

New approaches to precision introduced in precision medicine

Artificial Intelligence Gut Microbiology Nanotechnology

Strategies of delivering PM in RCC

Vaccines Cellular therapies & organoids Monoclonal antibodies

CONCLUSIONS

The number of PM-based pharmaceutical drugs used in clinics
has increased more than double from 2016 [132] to 2020 [286]
(242). In that context, 31 genome-targeted anti-cancer drugs were
used in 2018 [159]. The conventional cancer therapeutics reduce
tumor burden and treas cancer-related symptoms, but relapse is
common in most cancer cases. However, with the aid of genetic

testing and the identification of specific protein biomarkers, more
predictable patient health outcomes are possible.

RCC is a heterogeneous tumor at both the clinical and
molecular levels. At the same time, RCC is a vascular,
immunogenic, and metabolic tumor. The extensive variability in
RCC tumor subtypes makes it a perfect candidate for PM, as the
requirement for a patient-centered approach is high. Although
much is known about RCC, the current treatment regimen
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relies highly on prognostic stratification of patients based on the
assessment of clinical factors (243). Although several attempts
were made to find accurate biomarkers to evaluate response to
target therapies and immunotherapy, none of them have been
successfully adopted for mass patients with RCC. Hence, finding
validated genetic or molecular biomarkers to assist in clinical
decision-making is of clinical priority and an important step in
taking RCC toward the PM arena. The use of patient-derived
organoids and PDX and the development of cancer vaccines
and CAR-T cells are slowly but steadily changing the arena of
current PM. This is pushing the boundaries of current treatments
more toward individually focused treatment in RCC. With
skyrocketing costs of healthcare, PM has a scope of providing
personalized healthcare at affordable costs by cutting repeated
trial-and-error treatment strategies, which not only take a heavy
toll on patients’ health but also affect the immediate families.
While celebrating the accomplishments of PM is necessary, its
failures should be addressed as well. Tight regulations should
govern PM products and services to provide essential and
cost-effective positive patient-oriented health outcomes. While
conventional medicine is considered as a shotgun that shoots
pellets in a wide range with the hope to hit the target in the
line of fire, PM may mitigate its way as a laser with focus only
on the precise targets. It has the potential to reduce the cancer-
associated economic and social burden. While there is still a

lot to be achieved in the struggle for PM in RCC treatment,
which is far from reaching clinics, PM is the way that offers
more specific and individualized treatments for patients. Figure 2
and Table 2 depicts the importance of PM in the treatment of
RCC patients.
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Excess thyroid hormones have complex metabolic e�ects, particularly

hyperthyroidism, and are associated with various cardiovascular risk factors.

Previous candidate gene studies have indicated that genetic variants may

contribute to this variable response. Electronic medical record (EMR) biobanks

containing clinical and genomic data on large numbers of individuals have

great potential to inform the disease comorbidity development. In this study,

we combined electronic medical record (EMR) -derived phenotypes and

genotype information to conduct a genome-wide analysis of hyperthyroidism

in a 35,009-patient cohort in Taiwan. Diagnostic codes were used to identify

2,767 patients with hyperthyroidism. Our genome-wide association study

(GWAS) identified 44 novel genomic risk markers in 10 loci on chromosomes

2, 6, and 14 (P < 5 × 10–14), including CTLA4, HCP5, HLA-B, POU5F1,

CCHCR1, HLA-DRA, HLA-DRB9, TSHR, RPL17P3, and CEP128. We further

conducted a comorbidity analysis of our results, and the data revealed a strong

correlation between hyperthyroidism patients with thyroid storm and stroke.

In this study, we demonstrated application of the PheWAS using large EMR

biobanks to inform the comorbidity development in hyperthyroidism patients.

Our data suggest significant common genetic risk factors in patients with

hyperthyroidism. Additionally, our results show that sex, bodymass index (BMI),

and thyroid storm are associated with an increased risk of stroke in subjects

with hyperthyroidism.

KEYWORDS

genome-wide association study (GWAS), phenome-wide association studies

(PheWAS), hyperthyroidism, electronic medical record (EMR), stroke
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Introduction

Hyperthyroidism is a common endocrine disorder with

a prevalence of ∼0.3–0.5% in an iodine-replete area (1, 2).

Excessive amounts of thyroid hormones have profound effects

on the cardiovascular system (3). Hyperthyroidism can cause

increased heart rate, contractility, wide pulse pressure, systolic

hypertension, changes in peripheral vascular resistance, and

predisposition to dysrhythmias (3, 4).

In Taiwan, the prevalence of hyperthyroidism is ∼2%

(5). Autoimmune thyroid diseases account for 40–70%

of hyperthyroidism sufferers, including Graves’ disease

and Hashimoto’s thyroiditis. The remainder includes

hyperfunctioning thyroid adenomas, subacute thyroiditis,

thyroid cancer, and pituitary tumors (6, 7).

Although hyperthyroidism may involve both short- and

long-term cardiovascular consequences (8), data concerning

the association between hyperthyroidism and cardiovascular

outcomes are inconsistent (9). Thyroid dysfunction, which

leads to effects on the cardiovascular system and increases an

individual’s risk of death, is currently under debate. In particular,

there is few data to demonstrate that hyperthyrodism increase

the risk of stroke in young adults.

It is well-known that genetic factors play an important

role in disease etiology and pathogenesis (10). Genetic diseases

result from the accumulation of genetic alterations. Therefore,

genetic alterations could serve as effective biomarkers for the

early detection, monitoring, and prognosis of genetic diseases.

In the present study, we summarize the accumulation and

achievements of big genomic data and show how they could

contribute to precision medicine by using hyperthyrodism as a

genetic disease model.

Methods

Data sources and informed consent

The China Medical University Hospital Precision Medicine

Project was initiated in 2018 and remains operational. This

project was approved by the ethical committees of CMUH

(CMUH107-REC3-058 and CMUH110-REC3-005). Thus, far,

more than 170,000 people have contributed. In this study, all

clinical information was collected from the electronic medical

records (EMRs) of CMUH and approved by the respective

ethical committees of CMUH (CMUH110-REC1-095). The

EMR data were collected between 1992 and 2019.

SNP array data quality control

We used the TPMv1 customized SNP array (Thermo Fisher

Scientific, Inc., Santa Clara, CA, USA), which was designed from

the Academia Sinica and Taiwan Precision Medicine Initiative

(TPMI) teams. The SNP array contained approximately 714,457

SNPs. PLINK1.9 (11) was used for the analysis. We excluded

subjects and SNPs with missing rates (subjects excluded:

missingness per marker –geno 0.1 > 10% for SNPs and

missingness per individual –mind 0.1 >10% for subjects). We

filtered out variants with a Hardy–Weinberg equilibrium p <

10−6 (–hwe 10−6) and minor allele frequency (MAF) of <10−4

(–maf 0.0001). Therefore, 508,004 variants and 173,135 subjects

passed the filters and the quality control process; then, we

used Beagle 5.2 to impute. The imputed data were filtered out

using an alternate allele dose of <0.3 and a genotype posterior

probability of <0.9 as the criteria (12). After the quality control

and imputation process, we analyzed 13,034,044 variants and

173,135 subjects (13) (Figure 1).

Genome-wide association study

We used PLINK 1.9 for the summary statistics. Subjects who

had been diagnosed with hyperthyroidism three times in the

EMR were defined as cases. These patients also included those

taking medications for hyperthyroidism. Data included values

from thyroid-related tests (free T4 and TSH). Subjects who had

never been diagnosed with thyroid-related disease in the EMR

were defined as controls. There were no abnormal values in

the thyroid-related tests. We kept only one person from the

same family in the control and case groups. We determined the

members of the same family based on the results of Identical-

by-state (IBS)/Identical-by-descent (IBD) (IBS/IBD > 0.25: is

the coefficient used to calculate kinship, which we used to

exclude people from the same family to ensure independence

between samples) computation using PLINK 1.9 (–logistic, –

covar sex and PC1∼PC4). Finally, we randomly divided the

subjects into two cohorts (70% for discovery cohort, 30% for

replication cohort), divided the subjects into two groups (cases

and controls) based on clinical annotation. There were 1,850

cases and 21,499 controls in the discovery cohort. There were

917 cases and 10,743 controls in the replication cohort. Logistic

regression with multiple covariates was used to analyze the

data. The covariates used in the logistic regression were sex and

PC1–PC4. PC1 to PC4 were the results of principal component

analysis (PCA) analysis using PLINK 1.9. We also adjusted

for statistical significance. We plotted the Manhattan plot and

quantile-quantile (QQ) plot with the p-value using R studio.

Statistical analysis

Statistical analysis was performed according to our previous

study (14). Comparisons between two groups was performed

using the Student’s t-test. Statistical comparisons of more

than two groups were performed using one-way analysis of
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FIGURE 1

Flow chart of electronic medical record (EMR) data mining and the genome-wide association studies (GWAS) (GWAS) pipeline. We enrolled two

cohorts: one with 1,850 hyperthyroidism patients and 21,499 age and sex matched individuals and a replication cohort with 917

hyperthyroidism patients and 10,743 age and sex matched individuals.

variance (ANOVA). In all cases, p < 0.05, was considered to be

statistically significant.

Result

We followed a flowchart for EMR data mining and the

GWAS pipeline (Figure 1) and anAbstract Graph representation

for research concept is shown in Figure 2. GWAS analyses with

hyperthyroidism were performed on the discovery batch of

23,349 individuals included from 1992. The replication batch

consisted of 11,660 individuals recruited from 1992 (Table 1).

The same exclusion criteria were applied to both batches.

The total genotyping rate of the remaining samples was

0.992366. A total of 3,034,044 variants and 35,009 people

passed the filters and quality control among the remaining

phenotypes. There were 23,349 people, including 1,850 cases

and 21,499 controls in the discovery cohort, and 11,660 people,

including 917 cases and 10,743 controls in the replication

cohort. Manhattan plot is used to visualize GWAS analysis. The

genome-wide significance level was set at p = 5 × 10−8 in the

discovery batch (upper red line, Figure 3A) and p = 1.75 ×

10−5 in the replication batch (upper red line, Figure 3C). The

association of these single nucleotide polymorphisms (SNPs)

that passed quality control are plotted on the X-axis according

to their chromosomal positions against Y-axis (- log10 p-

value). We also used QQ plots for genome-wide association

analysis to investigate the correlation between hyperthyroidism

patients and controls in the discovery and replication cohorts

(Figures 3B,D). As new loci within the hyperthyroidism patients

were identified by GWAS, we proved the associations with

allelic variants of these new loci in linkage disequilibrium were

shown to be stronger than previously observed associations

(Supplemental material 1, SP1).

In this present study, we identified more than 1,500 SNPs

associate with hyperthyroidism (SP2). For reducing the numbers

and focused on the most significantly top 10 genes. Our GWAS

data identified 44 novel genomic risk markers in 10 loci on
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FIGURE 2

Genome-wide association studies (GWAS) and phenome-wide association studies (PheWAS). (A) A GWAS begins with a phenotype of interest

and systematically analyzes variants across the entire genome (i.e., “genome-wide”) for association to the phenotype. GWAS can identify

multiple genetic associations to a phenotype in complex or polygenic traits. (B) A PheWAS begins with a genetic variant of interest and

systematically analyzes many phenotypes (i.e., “phenome-wide”) for association to the genotype. PheWAS has the ability to identify pleiotropy or

multiple independent phenotypes associated with a single genetic variant.

TABLE 1 Descriptive information on the discovery and replication

batches.

Sample characteristics

Batch name Discovery

(n= 23,349)

Replication

(n= 11,660)

Sex (M/F) (%) 10,289 (44.1) / 13,060 (55.9) 5,199 (44.6)/6,461 (55.4)

Age (SD) 50.0 (19.497) 49.87 (19.372)

BMI (SD) 25.95 (5.991) 25.91 (5.905)

Hyperthyroidism 1,850 (7.9) 917 (7.9)

Genome-wide association studies (GWAS) analyses with hyperthyroidism were

performed on a discovery batch comprising 23,349 individuals included from 1992 to

2019. The replication batch consisted of 11,660 individuals recruited from 1992 to 2019.

The same exclusion criteria were applied to both batches.

chromosomes 2, 6, and 14 with the threshold of p < 5 × 10−14

in discovery analysis and p< 1.75× 10−5 in replication analysis,

including genes CTLA4, HCP5, HLA-B, POU5F1, CCHCR1,

HLA-DRA, HLA-DRB9, TSHR, RPL17P3, and CEP128. The

genes that showed a significant difference in our study have

all been considered in the involvement of disease in previous

studies (Table 2).

Briefly, CTLA4: Function of gene: Inhibitory receptor

acting as a major negative regulator of T-cell responses (15, 16).

Involvement in disease: Systemic lupus erythematosus

(SLE) (17), diabetes mellitus, insulin-dependency, 12

(IDDM12) (18), celiac disease 3 (CELIAC3) (19), autoimmune

lymphoproliferative syndrome 5 (ALPS5) (20).HCP5: Function

of gene: HCP5 (HLA Complex P5) is an RNA gene and is

affiliated with the lncRNA class. Involvement in disease:

acquired immunodeficiency syndrome (21), thyroid glandular

carcinoma (22). HLA-B: Function of gene: HLA-B (major

histocompatibility complex, class I, B) is a protein-coding gene.

Involvement in disease: Stevens-Johnson syndrome (SJS) (23)

and Spondyloarthropathy 1 (SPDA1) (24). POU5F1: Function

of gene: Critical for early embryogenesis and embryonic stem

cell pluripotency (25). Involvement in disease: Embryonal

carcinoma (26), Teratoma (27). CCHCR1: Function of gene:

Critical for early embryogenesis and embryonic stem cell

pluripotency. Involvement in disease: Psoriasis (28), Psoriasis

1 (PSORS1) (29). HLA-DRA: Function of gene: HLA-DRA

(major histocompatibility complex, class II, DR alpha) is

a protein-coding gene. Involvement in disease: Graham-

Little-Piccardi-Lassueur Syndrome (30), Penicillin Allergy

(31). HLA-DRB9: Function of gene: HLA-DRB9 [major

histocompatibility complex, class II, DR beta 9 (pseudogene)]
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FIGURE 3

Association of genome-wide variants with hyperthyroidism diagnosed in discovery batch (A,B) and replication (C,D) batch using Manhattan plot

(A,C) and QQ plot (B,D) analysis. In Manhattan plot analysis, single nucleotide polymorphism (SNP) that passed quality control are plotted on the

X-axis according to their chromosomal positions against Y-axis (- log10 p-value). The upper and lower dotted lines indicate the genome-wide

significance threshold (p = 5.0×10−8) and the cut-o� level for selecting SNPs for replication study (p = 1.75×10−5), respectively.

is a pseudogene. Involvement in disease: rheumatoid arthritis

(32), Vogt-Koyanagi-Harada disease (33), multiple sclerosis

(34). TSHR: Function of gene: plays a central role in controlling

thyroid cell metabolism (by similarity) (35). Involvement

in disease: Hypothyroidism, congenital, non-goitrous, 1

(CHNG1) (36), familial gestational hyperthyroidism (HTFG)

(37), hyperthyroidism, non-autoimmune (HTNA) (38).

RPL17P3: Function of gene: RPL17P3 (ribosomal protein

L17 pseudogene 3) is a pseudogene. Involvement in disease:

thyroid (39). CEP128: Function of gene: CEP128 (Centrosomal

Protein 128) is a protein-coding gene. Involvement in disease:

Hypothyroidism, Congenital, Nongoitrous, 1 (CHNG1) (40),

Hyperthyroidism, Non-autoimmune (HTNA) (41).

Based on the prevalence of comorbidities among our

study population, we further conducted a comorbidity analysis

of our results using EMR data. A total of 2,767 subjects

with a hyperthyroidism diagnosis (International Classification

of Diseases, 9th Revision, Clinical Modification [ICD-9-CM]

242.90, 242.00, 242.900 or ICD10-code E05.0), with at least

one TSH and free T4 or total T4 value, and with genotyping

information were identified as subjects with hyperthyroidism

(the case group). The gender were grouped by the available data

in the study. Obesity in this study was defined as body mass

index (BMI) ≥ 27 kg/m2, according to the Ministry of Health

and Welfare of Taiwan. As shown as Supplementary material 3

(SP3), the extracted comorbidities were defined by the studies

with disease diagnosis (ICD code). We observed that the

incidence of thyroid storm in hyperthyroidism individuals was

1.3% (36/2767). We also observed that the risk of stroke in

male individuals with hyperthyroidism was significantly higher

than that female individuals with hyperthyroidism (p < 0.05,

Table 3). Similar results were observed for stroke, heart disease,

diabetes, and hypertension with statistical significance (p <

0.05, Table 4). Compared with normal body weight, individuals
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TABLE 2 Lead SNPs from the discovery- and replication-analysis.

CHR SNP A1/A2 p-Value (GWAS

results)

p-Value

(Replication)

Gene Function of gene Involvement in

disease

2 rs1427680 G/A 2.07E-14 8.15E-06 CTLA4 Inhibitory receptor acting

as a major negative

regulator of T-cell

responses (15, 16).

Systemic lupus

erythematosus (SLE) (17)

rs736611 C/T 2.19E-14 9.96E-06 Diabetes mellitus,

insulin-dependent, 12

(IDDM12) (18)

rs11571315 T/C 2.19E-14 9.43E-06 Celiac disease 3

(CELIAC3) (19)

rs231723 A/G 3.24E-14 9.25E-06 Autoimmune

lymphoproliferative

syndrome 5 (ALPS5) (20)

6 rs117116160 C/T 7.73E-33 1.23E-12 HCP5 HCP5 (HLA Complex P5)

is an RNA Gene, and is

affiliated with the lncRNA

class.

Acquired

immunodeficiency

syndrome (21)

rs117884751 T/A 2.56E-32 1.76E-12 Thyroid gland follicular

carcinoma (22)

rs3763287 C/A 5.25E-25 1.41E-11

rs114202986 T/A 4.60E-24 3.45E-10

rs3763288 G/A 5.04E-24 3.88E-10

rs141618471 A/G 1.01E-31 2.31E-13 HLA-B HLA-B (Major

Histocompatibility

Complex, Class I, B) is a

Protein Coding gene.

Stevens-Johnson syndrome

(SJS) (23)

rs9378228 G/T 1.70E-31 4.48E-12 Spondyloarthropathy 1

(SPDA1) (24)

rs12524692 T/A 7.74E-29 1.76E-12

rs72860306 C/T 5.84E-28 2.16E-11

rs9357121 T/G 9.24E-22 4.98E-12

rs117588763 C/T 2.88E-30 3.55E-11 POU5F1 Critical for early

embryogenesis and for

embryonic stem cell

pluripotency (25).

Embryonal carcinoma (26)

rs9357112 A/G 2.88E-30 3.55E-11 Teratoma (27)

rs9357114 T/G 2.88E-30 3.55E-11

rs9348855 A/C 2.88E-30 3.55E-11

rs4713439 A/G 3.47E-30 4.10E-11

rs28652698 G/A 3.57E-28 2.06E-11 CCHCR1 Critical for early

embryogenesis and for

embryonic stem cell

pluripotency.

Psoriasis (28)

rs28383832 (-/CGCC) 1.70E-20 6.47E-10 Psoriasis 1 (PSORS1) (29)

rs1265082 G/A 1.84E-20 4.21E-10

rs1265113 C/G 1.84E-20 4.21E-10

(Continued)
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TABLE 2 Continued

CHR SNP A1/A2 p-Value (GWAS

results)

p-Value

(Replication)

Gene Function of gene Involvement in disease

rs9469112 C/T 3.30E-26 1.71E-10 HLA-DRA HLA-DRA (Major

Histocompatibility

Complex, Class II, DR

Alpha) is a Protein Coding

gene.

Graham-little-piccardi-

lassueur syndrome

(30)

rs16822660 T/C 1.36E-22 1.94E-08 Penicillin allergy (31)

rs9469113 G/A 2.50E-21 1.55E-07

rs7770920 T/A 3.51E-24 1.70E-10 HLA-DRB9 HLA-DRB9 [Major

Histocompatibility

Complex, Class II, DR Beta

9 (Pseudogene)] is a

Pseudogene.

Rheumatoid arthritis (32)

rs6457596 C/T 3.51E-24 1.70E-10 Vogt-koyanagi-harada

disease (33)

rs111573974 (-/G) 3.51E-24 1.70E-10 Multiple sclerosis (34)

rs6924760 A/G 3.52E-24 1.71E-10

rs9286789 T/G 3.52E-24 1.71E-10

14 rs2160215 T/A 4.45E-20 8.99E-09 TSHR Plays a central role in

controlling thyroid cell

metabolism (By similarity)

(35).

Hypothyroidism,

congenital, non-goitrous, 1

(CHNG1) (36)

rs1023586 T/C 4.45E-20 8.99E-09 Familial gestational

hyperthyroidism (HTFG)

(37)

rs28414437 A/C 1.05E-19 1.25E-08 Hyperthyroidism,

non-autoimmune (HTNA)

(38)

rs11159479 C/T 1.68E-18 2.98E-08

rs56389234 G/A 1.68E-18 2.98E-08

rs4903962 A/G 6.08E-19 1.63E-08 RPL17P3 RPL17P3 (Ribosomal

Protein L17 Pseudogene 3)

is a Pseudogene.

Thyroid (39)

rs2268459 A/G 6.61E-19 4.76E-08

rs12323356 A/C 1.05E-18 1.72E-08

rs228127 G/A 9.84E-15 3.16E-06 CEP128 CEP128 (Centrosomal

Protein 128) is a Protein

Coding gene.

Hypothyroidism,

Congenital, Non-goitrous,

1 (CHNG1) (40)

rs7154132 C/T 1.05E-14 6.05E-06 Hyperthyroidism,

Non-autoimmune

(HTNA) (41)

rs35176982 (-/AA) 1.40E-14 4.79E-06

rs1025253 G/A 1.46E-14 4.25E-06

rs8022411 G/T 1.46E-14 4.25E-06

with a body mass index (BMI) of >28 (609/2556, 23.83%)

also increased the risk of stroke, heart disease, diabetes, and

hypertension in patients with hyperthyroidism, and the data

were statistically significant (p < 0.05, Table 5). Moreover,

a higher incidence of stroke (4/36, 11.1%) was observed in

hyperthyroidism individuals with thyroid storm. Our data yield
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TABLE 3 Comorbidity analysis in patients with hyperthyroidism using

electronic medical record (EMR) data by gender.

Patients with hyperthyroidism

(n= 2,767)

p-Value

Male (n= 637) Female (n= 2, 130)

Thyroid storm 5 (0.8) 31 (1.5) 0.234

Cancer 22 (3.5) 78 (3.7) 0.904

Heart disease 33 (5.2) 58 (2.7) 0.003a

Osteoporosis 0 (0) 8 (0.4) 0.211

Infertility 3 (0.5) 26 (1.2) 0.122

Stroke 32 (5.0) 61 (2.9) 0.012a

Diabetes 93 (14.6) 168 (7.9) 0.000a

Hypertension 49 (7.7) 99 (4.6) 0.005a

Hyperlipidemia 10(1.6) 27(1.3) 0.557

gallstone 12(1.9) 26(1.2) 0.242

aSignificant difference at p < 0.05.

TABLE 4 Comorbidity analysis in hyperthyroidism patients with

thyroid storm using electronic medical record (EMR) data.

Hyperthyroidism

patient with

thyroid storm

(n= 36)

Hyperthyroidism

patient without

thyroid storm

(n= 2,731)

p-Value

Cancer 2 (5.6) 98 (3.6) 0.376

Heart disease 1 (2.8) 90 (3.3) 1.000

Osteoporosis 1 (2.8) 7 (0.3) 0.100

Infertility 1 (2.8) 28 (1.0) 0.317

Stroke 4 (11.1) 89 (3.3) 0.031a

Diabetes 3 (8.3) 258 (9.4) 1.000

Hypertension 3 (8.3) 145 (5.3) 0.439

Hyperlipidemia 0 (0) 37 (1.4) 1.000

Gallstone 1 (2.8) 37 (1.4) 0.394

aSignificant difference at p < 0.05.

a strong correlation between hyperthyroidism patients with

thyroid storm and stroke; the data were statistically significant

(p < 0.05, Table 4).

Discussion

In the present study, we identified 44 novel variants in

10 loci associated with hyperthyroidism, including CTLA4,

HCP5, HLA-B, POU5F1, CCHCR1, HLA-DRA, HLA-DRB9,

TSHR, RPL17P3, and CEP128. To consider differences in

racial backgrounds, and proved that these SNPs is really

significant associate with the disease. We further compared

the Taiwan Biobank data. Such as Supplementary material 4

(SP4), the SNPs data from Taiwan Biobank indicated that

TABLE 5 Comorbidity analysis in patients with hyperthyroidism using

electronic health record (EHR) data of BMI.

Patient with hyperthyroidism

(n= 2,556)b
p-Value

BMI≧ 27

(n= 773)

BMI < 27

(n= 1,783)

Thyroid storm 11 (1.4) 24 (1.3) 0.8546

Cancer 38 (4.9) 57 (3.2) 0.0402

Heart disease 45 (5.8) 40 (2.2) 0.0000a

Osteoporosis 3 (0.4) 5 (0.3) 0.7046

Infertility 9 (1.2) 20 (1.1) 1.0000

Stroke 39 (5.0) 51 (2.9) 0.0072a

Diabetes 127 (16.4) 116 (6.5) 0.0000a

Hypertension 81 (10.5) 54 (3.0) 0.0000a

Hyperlipidemia 14 (1.8) 21 (1.2) 0.2006

Gallstone 19 (2.5) 16 (0.9) 0.0028a

aWith significant differences and P < 0.05.
b211 Patients without HER data of BMI.

these candidate SNPs in our study were indeed significant

difference from those in Taiwan without hyperthyroidism. First,

Principal components (PC1-10) were added into GWAS to

exclude the effect of racial backgrounds. Second, the subjects

enrolled from Taiwan Biobank are Han Chinese in Taiwan and

used as general controls. Therefore, the significantly difference

of genotype distributions for those selected SNPs between

Taiwan Biobank population (as general control) and subjects

with hyperthyroidism in our study population could provide

evidences that these SNPs are associated with hypertension. To

our knowledge, five novel genes that have never before been

discussed were found to be associated with hyperthyroidism:

POU5F1, CCHCR1, HLA-DRB9, RPL17P3, and CEP128. Here,

we show the biological function and involvement of disease in

these genes, which have been discussed previously (Table 2). The

related pathways of these candidate genes were then analyzed

by DAVID with the recently updated Kyoto Encyclopedia of

Genes and Genomes (KEGG) database (https://www.genome.

jp/kegg/pathway.html). Our data showed that these genes were

significantly associated in pathways related to autoimmune

thyroid disease (SP5).

Comorbidity analysis in patients with hyperthyroidism and

thyroid storm is shown in Table 4. There were no differences

in cancer, heart disease, osteoporosis, infertility, diabetes,

hypertension, hyperlipidemia, or gallstones. We observed that

the percentage of stroke in hyperthyroidism patients with

thyroid storm was much higher than that in hyperthyroidism

patients without thyroid storm (p < 0.05). Briefly, our data

indicate that hyperthyroidism patients with thyroid storm may

have a higher risk of developing stroke (Table 4).
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TABLE 6 Genotypic frequencies of CTLA4 genetic polymorphisms in the patients with hyperthyroidism and controls.

dbSNP ID Genotype Control

(N = 32,242)

hyperthyroidism

Patient

(N = 2,767)

OR (95% CI) p-Value# Hyperthyroidism

male patient with

BMI≧ 27

(N = 253)

OR (95% CI) p-Value#

rs1427680 (N = 13,357) (N = 1,822) (N = 165)

GG 6,083 (45.5) 989 (54.3) 1.90 (1.56–2.3) 0.000* 90 (54.6) 5.35 (1.96–14.59) 0.001*

GA 5,828 (43.6) 709 (38.9) 1.42 (1.16–1.73) 71 (43.0) 4.40 (1.61–12.08)

AA 1,446 (10.9) 124 (6.8) Ref 4 (2.4) Ref

rs736611 (N = 13,360) (N = 1,824) (N = 165)

CC 6,086 (45.6) 989 (54.2) 1.90 (1.56–2.30) 0.000* 90 (54.6) 5.35 (1.96–14.58) 0.001*

CT 5,828 (43.6) 711 (39.0) 1.42 (1.17–1.74) 71(43.0) 4.40 (1.61–12.08)

TT 1,446 (10.8) 124 (6.8) Ref 4 (2.4) Ref

rs11571315 (N = 13,374) (N = 1,826) (N = 166)

TT 6,092 (45.6) 991 (54.3) 1.89 (1.55–2.29) 0.000* 91 (54.8) 5.42 (1.99–14.77) 0.001*

CT 5,831 (43.6) 710 (38.9) 1.41 (1.16–1.72) 71 (42.8) 4.42 (1.61–12.11)

CC 1,451 (10.8) 125 (6.8) Ref 4 (2.4) Ref

rs231723 (N = 13,373) (N = 1,826) (N = 166)

AA 1,450 (10.8) 126 (6.9) Ref 0.000* 4 (2.4) Ref 0.001*

AG 5,829 (43.6) 710 (38.9) 1.40 (1.15–1.71) 71 (42.8) 4.42 (1.61–12.11)

GG 6,094 (45.6) 990 (54.2) 1.87 (1.54–2.27) 91 (54.8) 5.41 (1.99–14.76)

CI, confidence interval; OR, odds ratio; # p-value compared with control group; * p < 0.005.

Hormones and the cardiovascular system are strongly

associated, and disorders of hormonal secretion may lead to

increased cardiovascular risk (42, 43). In addition to these well-

known effects, there is increasing evidence that hyperthyroidism

may accelerate atherosclerosis (44, 45). Endothelial dysfunction,

hypercoagulability, and thyroid autoimmunity have been

suggested as potential contributors (45–48). Thyroid hormones

exert important effects on the cardiovascular system, as

demonstrated by the adverse clinical effects that can occur

in states of hyperthyroidism and hypothyroidism. Thyroid

disorders can impair cardiovascular risk factors, such as those

included in the definition of metabolic syndrome (49, 50).

Indeed, excess as well as lack of thyroid hormone has been

linked to alterations in cardiovascular hemodynamics (51),

modifications of heart rhythm (52, 53), and arterial wall

structure (54–56). While the effects of thyroid hormone excess

on cardiovascular risk factors are clear for some of them, others

are still debatable (57, 58). In the United States, stroke is the

third leading cause of death, and ∼795,000 people suffer from

a new or recurrent stroke annually (59). The prevalence of

stroke in Taiwan is reported to be 14.27–19.3 per 1,000 person-

years; stroke is the most common cause of complex disability in

Taiwan (60, 61). In a TaiwanNational Health Insurance Research

Database (NHIRD) study, Sheu et al. reported an increased risk

of ischemic stroke in young patients with hyperthyroidism (1%)

compared with a comparable population without thyroid disease

(0.7%) after adjusting for AF (62). In this present study, we

defined the significant common genetic risk factors in patients

with hyperthyroidism. It might be contributed to the disease

early diagnosis with precision medicine.

There was a significant difference in HLA gene loci in

our results (Table 2). The human leukocyte antigen (HLA)

system, located in the major histocompatibility complex (MHC)

on chromosome 6, is highly polymorphic. This region has

been shown to be important in human diseases, adverse

drug reactions, and organ transplantation. For instance, HLA-

B∗46:01 is associated with Graves’ disease in Taiwan (63).

However, the HLA subtype cannot be predicted using a

single-nucleotide polymorphism (SNP)-based tagging approach.

To understand the relationship between HLA subtypes and

diseases, machine learning methods such as HIBAG can

be used to better predict HLA subtypes (64). The detailed

relationship between these HLA subtypes should be studied in

the future.

In order to connect the data between GWAS and PheWAS

and further demonstrate the SNPs we identified could predict

the risk of comorbidities associated with hyperthyroidism.

We analysis the genotypic frequencies of CTLA4 genetic

polymorphisms in hyperthyroidism patients and controls

(Table 6). Compared with controls, the statistically significant

difference was observed in the genotype frequency distribution

of CTLA4 rs231779, rs1427680, rs736611, rs11571315, and
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rs231723 SNPs. We observed the Odds ratio (OR) were from

1.40 to 1.90. We further included the data of gender and BMI≧

27 for analysis, the similar results was observed with statistically

significant difference in the genotype frequency distribution of

CTLA4 SNPs. However, there was a surprising finding in the

section of Odds ratio (OR). Our data showed that the Odds ratio

all increased in these five SNPs and the OR value was observed

from 4.40 to 5.42 (Table 6).

In conclusion, our findings strongly suggest an association

between 44 genetic variants in ten loci and hyperthyroidism

susceptibility, and that these genes contribute to the genetic

background of hyperthyroidism pathogenesis. Moreover, our

data indicate that hyperthyroidism patients with thyroid

storm may have a higher risk of developing stroke. We

also connected the data between GWAS and PheWAS and

demonstrated the SNPs we identified could predict the risk of

comorbidities associated with hyperthyroidism. These findings

should prompt specific considerations for the diagnosis and

treatment of patients with hyperthyroidism, especially in

preventing stroke.
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