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Heat shock proteins (HSPs) are a large family of molecular chaperones, which have shown to be implicated in various hallmarks of cancer such as resistance to apoptosis, invasion, angiogenesis, induction of immune tolerance, and metastasis. Several studies reported aberrant expression of HSPs in liquid biopsies of cancer patients and this has opened new perspectives on the use of HSPs as biomarkers of cancer. However, no specific diagnostic, predictive, or prognostic HSP chaperone-based urine biomarker has been yet discovered. On the other hand, divergent expression of HSPs has also been observed in other pathologies, including neurodegenerative and cardiovascular diseases, suggesting that new approaches should be employed for the discovery of cancer-specific HSP biomarkers. In this study, we propose a new strategy in identifying cancer-specific HSP-based biomarkers, where HSP networks in urine can be used to predict cancer. By analyzing HSPs present in urine, we could predict cancer with approximately 90% precision by machine learning approach. We aim to show that coupling the machine learning approach and the understanding of how HSPs operate, including their functional cycles, collaboration with and within networks, is effective in defining patients with cancer, which may provide the basis for future discoveries of novel HSP-based biomarkers of cancer.
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INTRODUCTION

Heat shock proteins (HSPs) are molecular chaperones that are classified into families such as HSP70, HSP90, HSP40, HSPB, HSP110, and chaperonins (1). Members of HSP families are located in different cellular compartments such as cytosol, nucleus, lysosome, endoplasmic reticulum, and mitochondria (1–3). Several studies reported high levels of HSP70, HSP90, HSP40, HSPB, and chaperonins in plasma, serum, and plasma-/urine-derived exosomes of the patients in different types of cancer compared to healthy individuals (3–15). This has opened new perspectives on the use of HSPs as biomarkers of cancer. However, abnormal expression of HSPs has also been observed in several other pathologies including cardiovascular and neurodegenerative diseases (16–18). For example, Li and his colleagues showed that high expression of HSP70 in plasma positively correlated with heart failure (19). Therefore, new strategies should be used for the identification of cancer-specific HSP biomarkers. Since HSPs are tightly linked to the stress response, level of individual HSP members in the clinical samples may not be enough for precise prediction of cancer. Herein, we used a machine learning approach for the identification of HSP-based urine biomarkers of cancer. We show that coupling machine learning approach and the understanding of how HSPs operate in networks may be effective in diagnosing cancer. To the best of our knowledge, this is the first study that explores HSP secreted in urine for prediction of cancer and the primary study to assess the relationships between different HSP networks and cochaperones for the discovery of clinically useful HSP-based biomarkers of cancer.



METHODS

We used publicly available mass spectrometry dataset that contains samples from 231 donors (20). Urine samples were derived from the patients with gastric cancer (GC) (n = 47), esophageal cancer (EC) (n = 14), lung cancer (LC) (n = 33), bladder cancer (BC) (n = 17), cervical cancer (CCA) (n = 25), colorectal cancer (CRC) (n = 22), and benign lung diseases (LDs) such as chronic obstructive pulmonary disease (COPD) (n = 17) and pneumonia (PM) (n = 23) as well as from the healthy volunteers (Control, CTL) (n = 33) (20). Urine samples were centrifuged at 200,000 g for 70 min and absolute protein amounts were measured by liquid chromatography with tandem mass spectrometry (LC-MS/MS) and presented as intensity-based fraction of total (iFOT; displayed in 105) representing normalized intensity for each protein (20). HSPs such as HSP70, HSP90, HSP40, HSP27, HSP110, chaperonins, and cochaperones were included in the analysis (Supplementary Table 1). Proteins that have > 30% of 0.0099 (missing values) were excluded from the analysis.

The expression level for each protein was measured for CTL and six groups of cancers (LC, BC, CCA, CRC, EC, and GC). Since the data were not normally distributed, nonparametric tests were used. The procedure was divided into two stages such as the Kruskal–Wallis (KW) test for all the proteins followed by a post-hoc Dunn's test using CTL as reference (21). Bonferroni multiple comparison test (MCT) correction in its multistep variant, known as Holm–Bonferroni correction, was also used (22).

The cancer prediction model was trained on HSP and their cochaperones to isolate their effects in cancer prediction. Taking into account that HSPs are located in different cellular compartments as well as exist in different forms (constitutive/stress-inducible) and require cochaperones for their functional cycles, while also working in networks, we introduced into the model various combinations of simple ratios and multiplication strategies. For example, to isolate the effect of HSP90 homologs, we used the relationship between the level of cytosolic HSP90 homolog to the level of mitochondrial HSP90 homolog in a simple ratio of HSP90AA1/TRAP1, constitutive HSP90 isoform to stress-inducible HSP90 in a simple ratio of HSP90AB1/HSP90AA1, cochaperone level to the HSP90α level in a simple ratio of FKBP4/HSP90AA1, etc. (Supplementary Table 2). As a result, a cancer prediction model was created using XGBoost with a tree booster. A binary classification model was built to discriminate the cancer patients (LC, BC, CCA, CRC, EC, and GC) from the non-cancer group (LD and CTL). The performance of the method was evaluated through 10-fold stratified cross-validation. By splitting the data into 10-fold, iteratively training in 9-fold and testing on the remaining fold, we mimic the effect of 10 distinct datasets. This enables us to estimate the generalization error of our model and prevent overfitting, therefore ensuring that the model would generalize well to new data. Bayesian optimization was used to tune hyperparameters. We computed features importance using the gain metric, which measures the loss reduction of adding a split with that feature. Let ξl be the set of features at the lth step tuning:

1. Start the first iteration with all the features (ξ1).

a. Initialize the Bayesian optimization:

i. Randomly, select n1 points {ϕ1, …, ϕn1} located within user defined boundaries:

1. Train with hyperparameter set ϕi and evaluate the model using K-fold cross-validation with log-loss.

b. Perform the Bayesian optimization:

i. Sequentially, select n2 points:

1. ϕj is the point that maximizes the upper confidence bound of the posterior distribution of the Gaussian process by given the data points {ϕ1, …, ϕj − 1} for j > n1.

c. Of the n1 + n2 combinations tried, select the set of hyperparameters that minimize the log-loss such that Θ1 = argmin{ϕ1, …, ϕn1+n2} log loss.

d. For each of the K models with parameters Θ1 trained in the K-fold cross-validation, extract the feature importance and then compute the average for each feature.

e. Remove all the features whose importance is equal to the minimum.

2. For iteration l:

a. Initialize the Bayesian optimization and randomly select n1 new points.

b. Probe all {Θ1, …, Θl − 1} the points.

c. Perform the Bayesian optimization by sequentially selecting n2 points.

d. Select Θl = argmin{ϕ1, …, ϕn1+n2+l − 1}

e. Perform feature selection

f. Stop if there is only one feature left or all the features have the same importance, otherwise, continue

3.Stop when reach zero feature.

4. Select ξk, Θk corresponding to the minimum log loss across all the iterations.



RESULTS

Heat shock proteins and cochaperones including HSP90AB1, TRAP1, FKBP4, HSPA9, HSPB5, CCT1, and CCT5 were identified as differentially expressed proteins (Table 1). CCT1, CCT5, and FKBP4 showed significantly lower expression in the cancer patients compared to the healthy volunteers, whereas HSPA9 and TRAP1 showed a significantly higher expression in patients with cancer compared to the control group for the most cancer types. HSPB5 showed significantly higher expression only in the CCA patients compared to the healthy volunteers (Table 1). HSP90AB1 showed a significantly lower expression in the patients with GC and CRC compared to CTL (Table 1).


Table 1. Differentially expressed HSPs and cochaperones in the urine of the cancer patients compared to healthy volunteers by Dunn's test with Holm–Bonferroni correction.

[image: Table 1]

Remarkably, the cancer prediction model trained on HSPs and cochaperones resulted in 90% precision and a balanced accuracy of 84.61% (accuracy of 87.041%) averaged over the 10 cross-validation test folds (Figure 1A). In order to identify proteins, which positively contributed to the cancer prediction model, we have implemented the Shapely Addictive Explanations (SHAP) approach. Low levels of HSP90AB1/TRAP1, HSPA6/TRAP1, and HSP90AA1/TRAP1 in urine increase the probability of the patient having cancer, whereas low levels of CCT2/HSP90AB1 and HSPB1*HSPA9 in urine are strongly associated with non-cancer groups (Figure 1C). In order to assess the differences in the level of HSPs across different types of cancer, we constructed a heatmap, representing the z-score of HSPs for each patient (Figure 1B). HSP90AA1 and HSPD1 showed to be highly expressed in BC; HSPB1 and HSBP5 in CCA; ST13, DNAJA1, and HSPA8 in LC; FKBP4 and HSPA8 in EC (Figure 1B). HSPA2 and HSPA4 did not seem to be affected in different types of cancer (Figure 1B).


[image: Figure 1]
FIGURE 1. HSPs in urine as biomarkers of cancer. (A) Confusion matrix for the cancer prediction model. (B) Heatmap of z-score normalized HSP expression levels in the urine of the patients with different types of cancer. Values were clipped to the 1st percentile of the z-scores and to the 97th percentile to minimize the effect of outliers. (C) HSPs and cochaperones in cancer and non-cancer patients. Negative values indicate a positive contribution of specific proteins to the probability that a patient has cancer. Positive SHAP values indicate that the corresponding values of the proteins are associated with lower chances of the patient having cancer. For simplicity, we presented HSPA2+HSPA6+HSPA8+HSPA12+HSPA5 as “HSP70” and DNAJA1+DNAJA2+DNAJC11+DNAJB1+DNAJC5+DNAJC13 as “DNAJ”. (D,E) SHAP summary plots for the cancer prediction model. HSPs in urine were used to identify the critical proteins and the protein ratios in patients with benign lung disease (LD) such as PM and COPD (D) and LC patients (E). HSPs, heat shock proteins; PM, pneumonia; COPD, chronic obstructive pulmonary disease; LC, lung cancer; SHAP, Shapely Addictive Explanations.


Higher levels of both constitutive and stress-inducible HSP90 isoforms in relationship to mitochondrial HSP90 isoform TRAP1 are associated with benign lung diseases such as PM and COPD, whereas a higher level of TRAP1 to HSP90AA1 and HSP90AB1 is associated with lung cancer (Figures 1D,E). In contrast to patients with PM, a low level of CCT5 and high levels of HSPA9*TRAP1 and CCTs/HSP90AA1 are associated with LC (Figure 1E; Supplementary Figure 1A). Furthermore, lower expression of HSP90AA1/TRAP1 and HSP90AB1/TRAP1 positively contributed to LC compared to higher expression of HSP90AA1/TRAP1 and HSP90AB1/TRAP1 in the COPD patients (Figure 1E; Supplementary Figure 1B). Overall, urine samples contain cancer-specific HSP signatures. Therefore, these HSP signatures may be used to distinguish cancer from noncancer patients and patients with benign disease as well as they may be further used to identify specific types of cancer; however, this requires further investigation.



DISCUSSION

Heat shock proteins are ubiquitously expressed as molecular chaperones, which support tumor growth and survival (23). Cells possess various families of HSPs with distinct functions, often working in collaboration to perform proper folding and degradation of client proteins (24, 25). Several studies reported altered expression of HSPs in malignant cells compared to their normal cell counterparts (3–15). Furthermore, overexpression of HSPs has been linked with tumor aggressiveness, metastasis, and poor prognosis (2, 24, 26–29). In this study, we aimed at exploring the potential of HSPs in urine as biomarkers of cancer. We showed that HSP chaperone networks can be used to predict cancer with ~90% precision in 10-fold cross-validation. We highlighted that understanding of HSP chaperone system and the notion of how HSPs operate are critical for prediction of cancer.

Our approach started with an identification of differentially expressed HSP proteins in different types of cancer compared to healthy volunteers. We showed that different HSP members are up- and down-regulated in different types of cancer, suggesting that a specific type of cancer has distinct HSP signatures (Table 1). We then developed a cancer prediction model, which reflected the way how HSP chaperone networks work. The model is based on the notion that HSP networks work in collaboration with each other as well as with cochaperones and that there also may be some shift in the proportion of different HSP homologs in the cancer patients compared to the healthy individuals and the benign patients, leading to all of these changes being captured by machine learning approach. Using this approach, we could predict cancer with 90% precision (Figure 1A). Furthermore, our cancer prediction model could discriminate between various types of cancer based on the expression of distinct HSPs in urine samples, which may help in diagnosing specific subtypes of cancer among a heterogeneous group of tumors, such as lymphoma or breast cancer. In this regard, Klimczak et al. (30) used The Cancer Genome Atlas and KM plotter databases to show that expression of six HSPs including HSPA2, DNAJC20, HSP90AA1, CCT1, CCT2, and CCT6A can be used to predict prognosis in patients with breast cancer (30). Furthermore, upregulation of distinct HSPs was associated with either estrogen receptor-positive, progesterone receptor-positive, or human epidermal growth factor receptor 2-positive breast cancers (30). Therefore, the identification of type-specific HSP signatures in a heterogeneous group of tumors warrants further investigation.

It is also interesting to see the changes in HSPs between patients with benign lung disease and lung cancer patients (Figures 1D,E). Patients with lung disease have a higher level of cytoplasmic HSP90 homologs (HSP90AA1 and HSP90AB1) in relationship to mitochondrial HSP90 homolog (TRAP1), whereas patients with lung cancer have a higher level of TRAP1 to the level of cytoplasmic HSP90 (Figures 1D,E). Furthermore, the level of HSP70 to its cochaperone DNAJ/HSP40 does not seem to change between benign lung disease and cancer in contrast with a higher level of ST13 to DNAJ associated with lung cancer (Figures 1D,E). During the HSP70 functional cycle, ST13, also known as Hsc70-interacting protein (Hip), preferentially binds to the ADP-bound state of HSP70–peptide complexes, slowing the release of ADP from HSP70-nucleotide binding domain, thus, promoting degradation of HSP70 clients (24, 31, 32). This may suggest that HSP70 is predominantly “freezed” in its high-affinity ADP state in lung cancer patients and that the role of Hip should be further investigated in the context of cancer. The levels of CCTs also seem to influence the shift from lung disease to lung cancer (Figures 1D,E; Supplementary Figure 1). This provides a good example of the specific HSPs that made a positive contribution to shifting a balance from the benign disease state to cancer. Further understanding of HSP changes between benign disease and cancer may potentially provide clues for the discoveries of novel HSP-based biomarkers and therapeutic targets.

In conclusion, coupling the machine learning approach and understanding of how HSPs operate, including their functional cycles as well as collaboration with and within networks, are certainly effective in identifying specific types of cancer, which may form the basis for future discoveries of novel HSP-based biomarkers of cancer.



CONCLUSION

Heat shock proteins are molecular chaperones that are aberrantly expressed in cancer patients and shown to be implicated in the various stages of cancer development. We hypothesized that HSPs in urine can be used to predict cancer. We show that HSPs can be used to identify cancer patients with nearly 90% precision based on HSP signatures in urine. We highlighted that understanding of HSP networks and how HSP operates in cells are crucial for the identification of HSP-based biomarkers of cancer. Further understanding of the HSP chaperone system may help in the development of effective type-specific biomarkers of cancer.
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The application of artificial intelligence (AI) may revolutionize the healthcare system, leading to enhance efficiency by automatizing routine tasks and decreasing health-related costs, broadening access to healthcare delivery, targeting more precisely patient needs, and assisting clinicians in their decision-making. For these benefits to materialize, governments and health authorities must regulate AI, and conduct appropriate health technology assessment (HTA). Many authors have highlighted that AI health technologies (AIHT) challenge traditional evaluation and regulatory processes. To inform and support HTA organizations and regulators in adapting their processes to AIHTs, we conducted a systematic review of the literature on the challenges posed by AIHTs in HTA and health regulation. Our research question was: What makes artificial intelligence exceptional in HTA? The current body of literature appears to portray AIHTs as being exceptional to HTA. This exceptionalism is expressed along 5 dimensions: 1) AIHT’s distinctive features; 2) their systemic impacts on health care and the health sector; 3) the increased expectations towards AI in health; 4) the new ethical, social and legal challenges that arise from deploying AI in the health sector; and 5) the new evaluative constraints that AI poses to HTA. Thus, AIHTs are perceived as exceptional because of their technological characteristics and potential impacts on society at large. As AI implementation by governments and health organizations carries risks of generating new, and amplifying existing, challenges, there are strong arguments for taking into consideration the exceptional aspects of AIHTs, especially as their impacts on the healthcare system will be far greater than that of drugs and medical devices. As AIHTs begin to be increasingly introduced into the health care sector, there is a window of opportunity for HTA agencies and scholars to consider AIHTs’ exceptionalism and to work towards only deploying clinically, economically, socially acceptable AIHTs in the health care system.
Keywords: artificial intelligence, exceptionalism, ethical, social and legal implications, health technology assessment, health regulation
INTRODUCTION
Health technology assessment (HTA) is key to the introduction of artificial intelligence (AI) applications in health. HTA generally requires a systematic examination of health technologies’ features, effects, and/or impacts allows for the appraisal of clinical, economic, social, organizational and ethical implications (Banta and Jonsson 2009; Kristensen et al., 2017; O’Rourke et al., 2020). While regulatory assessment often is conducted by supranational (e.g., European Medicines Agency, EMA) and national (US FDA, Health Canada) regulators, HTA is mostly conducted at regional, provincial or state-based level and represents the main gateway for a health technology (e.g., drugs, vaccines, medical devices) to be widely administered to patients (Vreman et al., 2020; Wang et al., 2018). A health technology that is positively evaluated by a health regulator or an HTA agency signals significant support for its use, causing clinicians, patients, hospital administrators and third-party payers (such as public or private health insurers) to consider deploying and reimbursing this technology in their health care system or setting (Allen et al., 2017; Wild, Stricka, and Patera 2017). However, AI is not just another health technology, and many commentators view its assessment as complex and particularly challenging (Harwich and Laycock 2018; Mason et al., 2018; Shaw et al., 2019). For instance, AI health technologies (AIHT) implementation within the healthcare system is often done in a fairly short timeframe after their development (months rather than years as for drugs and vaccines), with the result that there is not yet as much evidence of their effectiveness and impacts as would be required by traditional HTA for many other health technologies (Babic et al., 2019). Moreover, AI systems deployed within the healthcare system continue to learn and evolve over time based on the data they process (Reddy 2018); this is in contrast, for example, with drugs whose formulation, dosage and routes of administration are regulated, and to be modified for use in clinical context and service delivery, often require new approval by HTA. In addition, AI systems require to be trained on and use vast amounts of (potentially sensitive) data (about patients, research participants, clinicians, managers, health care systems, etc.) that raise issues of privacy, (cyber)security, informed consent, data stewardship and control over data usages (Wang and Preininger 2019; Dash et al., 2019; Sun and Medaglia 2019; Bartoletti 2019).
The application of AI in health is expected to transform the way we diagnose, prevent and treat as well as the way we interact with technologies (Patel et al., 2009; Hamet and Tremblay 2017; The Lancet 2017). This may advance healthcare by enhancing efficiency by automatizing routine tasks and decreasing health-related costs (Shafqat et al., 2020), broadening access to healthcare delivery (Harwich and Laycock 2018), targeting more precisely patient needs (Jameson and Longo 2015), and assisting clinicians in their decision-making (Lysaght et al., 2019; Smith 2020). For these benefits to materialize, governments and health authorities must efficiently regulate AI, and conduct appropriate health technology assessment (HTA). However, the very definition of AI in health is still the subject of discussion, debate and negotiation among both researchers and government authorities. AI in the health sector can be broadly defined as a field concerned with the development of algorithms and systems seeking to reproduce human cognitive functions, such as learning and problem-solving (Tang et al., 2018) with (current and anticipated) uses that include (without being limited to) supporting medical decision-making (Ahmed et al., 2020), pharmacovigilance (Leyens et al., 2017), and prediction and diagnosis (Noorbakhsh-Sabet et al., 2019). In fact, some AIHTs have already been approved by the FDA, such as AI-powered devices to diagnose eye diseases (Samuel and Gemma Derrick 2020). Risks and harms of AI in healthcare are described at all levels, from the clinical encounter (e.g., adverse effects of an AIHT that can spread to entire patient populations, inexplicability of an AI-based medical decision, issues with assigning responsibility for adverse events, and patients’ loss of trust in their provider) to society as a whole (e.g., furthering inequalities due to algorithm training on biased data) (Sparrow and Hatherley 2019). Interestingly, one indication that current HTA processes are not yet well adapted is the fact that a significant number of AIHTs are benefiting from regulatory fast-track and do not undergo HTA review, a situation that is particularly noticeable in the United States (Benjamens et al., 2020; Gerke et al., 2020; Tadavarthi et al., 2020).
Even though AI solutions offer great potential for improving efficiency, health organizations are confronted with a vast array of AI solutions that have not yet been subject to extensive HTA (Love-Koh et al., 2018). Moreover, many authors have highlighted that these new technologies challenge traditional evaluation processes as well as the assessment of the ethical, legal and social implications (ELSI) that AIHTs may entail (He et al., 2019; Racine et al., 2019; Shaw et al., 2019; Ahmad et al., 2020; Benjamens et al., 2020), thus further impeding the already insufficient evaluative processes of AI health technologies (AIHTs). To inform and support HTA organizations in adapting their evaluation processes to AIHTs, we conducted a systematic review of the literature on the ethical, legal and social challenges posed by AIHTs in HTA. The present article was guided by this question: what makes artificial intelligence exceptional in health technology assessment? To our knowledge, this is the first review on this topic. After describing the methodology of the review, we will provide a comprehensive overview of AI-specific challenges that need to be considered to properly address AIHTs’ intrinsic and contextual peculiarities in the context of HTA. This will lead to point possible explanations of this exceptionalism and solutions for HTA. Overall, this review is intended to build insights and awareness and allow to inform HTA practices.
METHODOLOGY
To map the exceptional challenges posed by AIHTs in HTA, we conducted a literature search for articles indexed in PubMed, Embase, Journals@Ovid, Web of Science and the International HTA database. Our review is part of a larger literature review addressing the full range of ethical, legal, social and policy implications that impact HTA processes for AIHTs. Therefore, the search strategy focused on three concepts: AI, HTA and ELSI. Table 1 presents the search equations by theme for each reviewed database. In terms of definition of AI, we sought to remain agnostic and did not use specific definitions of AI. Instead, we used an inductive approach using a series of keywords (see Table 1) to identify and collect articles that mention using or discussing AIHTs. The construction of the research strategy and the choice of equations was supported by librarians.
TABLE 1 | Search strategy.
[image: Table 1]The initial search (as of December 27, 2020) returned a total of 366 articles, which were uploaded in Covidence. JCBP and VC conducted a careful analysis of the titles and abstracts that lead to excluding 307 articles, and JCBP conducted the subsequent analysis of main texts allowed to select 29 articles for review (see Table 2 for selection criteria). In case of doubt or ambiguity, articles were discussed with MCR to decide on inclusion or exclusion. In addition to this sample, in January 2021, a snowball process helped identify 17 additional papers that fitted the selection criteria. Figure 1 presents our review flowchart following PRISMA’s guidelines (Moher et al., 2009). Documents were thematically analyzed (Braun and Clarke 2006) with the help of NVivo 12. In the present article, we focus on the theme “exceptionalism of AI in HTA”. Additional themes will be published in subsequent papers.
TABLE 2 | Selection criteria.
[image: Table 2][image: Figure 1]FIGURE 1 | PRISMA Flowchart. AI = artificial intelligence; ELSI = ethical, legal, and social implications; HTA = health technology assessment.
RESULTS
What follows is a presentation of the key considerations that have been raised in the reviewed literature regarding AI’s peculiarities, and the challenges they raise, in the context of HTA. Twenty eight articles from the total sample discussed these peculiarities and challenges, which are presented as exceptional features of AI by authors. The “exceptionalism” of AIHTs can be broken down into five main aspects (see Figure 2): 1) AIHT’s distinctive features; 2) their systemic impacts on health care and the health sector; 3) the increased expectations towards AI in health; 4) the new ethical, social and legal challenges that arise from deploying AI in the health sector; and 5) the new evaluative constraints that AI poses to HTA. Table 3 presents a summary of the key considerations for each aspect.
[image: Figure 2]FIGURE 2 | The five main aspects of artificial intelligence health technologies’ exceptionalism.
TABLE 3 | A summary of the five main aspects of AIHT’s exceptionalism.
[image: Table 3]Artificial Intelligence Health Technologies’ Distinctive Features From Traditional Health Technologies
AIHT’s exceptionalism is associated with the technology’s definitional and foundational nature. Distinctive features include AIHTs’ ambiguous definition; the fact that AIHTs may or may not continue to evolve; and the need to keep AIHTs up to date to reap the benefits and avoid the risks of harms.
Ambiguous Definition of Artificial Intelligence Health Technologies
According to Gerke et al. (2020), AIHTs are different from traditional health technologies for three reasons: their capacity to continuously learn, their potential for ubiquity throughout the health care system, and the opaqueness of their recommendations. However, AIHTs suffer from ambiguities with respect to their definition and purpose as there is no agreed-upon definition that may help build an adapted and efficient policy and regulatory infrastructure (Pesapane et al., 2018). The drawback of AI exceptional features and of the high variability that exists among AI systems is that it poses definitional problems that affect AIHTs’ regulation and slow down their deployment in the healthcare sector (Love-Koh et al., 2018; Haverinen et al., 2019). Compared with traditional health technologies (such as drugs, vaccines and medical devices), AIHTs are not static products and have the capability to learn and improve over time (Parikh, Obermeyer, and Navathe 2019; Dzobo et al., 2020). AIHTs are therefore in stark contrast with most technologies in medicine, which are fairly well defined and usually implemented when they are fairly well understood.
Locked and Unlocked Artificial Intelligence Health Technologies
Contributing to the distinctiveness of AIHTs in the health sector, self-learning and self-adaptation propensities clash with current regulatory frameworks and clinical practices (Alami et al., 2020; Fenech et al., 2020). It is easier to evaluate “locked” AIHTs, which are much more comparable to current health technologies (which cannot by themselves evolve). Currently, the majority of FDA-approved AIHTs have their capability to evolve locked (Dzobo et al., 2020; Miller, 2020). A locked algorithm will always yield the same result when it is fed by the same data, therefore it does not change overtime with uses. Locked algorithms are not per se safer. They could be more harmful than “unlocked” or “adaptive” algorithms if they end up yielding erroneous results (based on legacy training data that are outdated), misleading patient care or systematizing biases (Prabhu 2019). Thus, a locked AIHT may require new regulatory approvals if during real-world usage significant and unexpected patterns of results are observed (i.e., stable and expected process produces outcomes unexpected because of incorrect priors about the data fed into an AIHT) or if it is deemed necessary to update the algorithms to match advances in medical knowledge (Gerke et al., 2020; Miller, 2020). There also is the issue of when AIHT is used (or not used) on new populations that differ from the training data, which raises questions about how the training data upon which an AIHT was developed and whether certain populations may be unduly excluded from benefiting from its development and implementation. Therefore the concept of locked may be misleading and should not be conveyed as safer (Babic et al., 2019). Unlocked or adaptive algorithms that improve over time is the future according to some (Prabhu 2019) as they will outperform humans (Dzobo et al., 2020). But some issues are to be expected. Unlocked AIHT may change as they process new data and yield new outcomes without the knowledge or oversight of its users, which demands that their safety and security must be continually re-evaluated (Abràmoff et al., 2020). Also, unlike traditional healthcare technologies and locked algorithms, unlocked AIHTs are more vulnerable to cyber-attacks and misuse that can cause the algorithm to generate problematic and highly damaging outputs (Babic et al., 2019; Miller, 2020).
The Update Problem
Another consideration that helps AIHT qualify for being an anomalous technology in the health sector is that the algorithms will need to be regularly updated (at high or even prohibitive prices) due to advances in medical knowledge and access to new datasets or at the risk of their usage becoming malpractice. To allow a rigorous analysis of the safety, efficiency, and equity of a given AIHT, it is necessary that the locked or unlocked state of the algorithm is always known to regulators and end-users (Char et al., 2020). Such transparency is necessary since due to the very distinct ethical and clinical implications that locked or unlocked AIHTs may generate. The update problem implies that a locked AIHT could quickly become outdated—potentially from the moment it is prevented from evolving (with or without supervision)—and that this could generate important risks as a result of the deployment and use of AIHTs in real-life contexts (Abràmoff et al., 2020). Although not all algorithms may need to evolve or be updated in the short term, at some point in time, updating or replacing an AIHT will involve additional post-acquisition costs. Post-acquisition updates and costs may seem counter-intuitive considering the distinctive characteristics attributed to AI, such as self-learning and continuous improvement. This may lead for certain organizations (in particular, in less affluent contexts or in periods of economic turmoil) not to deploy updates which will result in the uses of outdated algorithms and therefore sub-optimal benefits (if not harms) for some patients or services (Prabhu 2019). Since AIHT are considered as being more pervasive than physical technologies (such as drugs and other health products), some are arguying that managing the consequences of an outdated algorithm outweigh those of traditional health technologies (Babic et al., 2019; Prabhu 2019); even if it is very difficult to withdraw effectively a drug from the market, it is still possible to do so, while it may be much more challenging for AIHTs that are less visible, interpretable and tangible and more likely to be embedded in a hospital’s or health system’s IT systems.
Systemic Impacts on Health
Characteristic of disruptive technologies, AIHTs are said to have significant and systemic impacts on the healthcare sector. From the outset, what emerges is that AI has a capacity for information analysis that surpasses what is currently available from health professionals, healthcare managers or even from learning health systems (LHS) (Cowie 2017; Pesapane et al., 2018; Char and Burgart 2020). AI is geared towards changing healthcare practices by facilitating a better integration of innovations and of best practices that will yield optimal care delivery (Grant et al., 2020). These systemwide impacts may lead to both risks of harms and opportunities to optimize the health care system that must be taken into consideration in HTA.
Disruptive for Both the Healthcare Sector and for Individuals
Contrary to many health technologies, AI may have systemic effects that can be felt across an entire health care system, or even more so across health care systems in several jurisdictions (Dzobo et al., 2020). Gerhards et al. (2020) go as far as stating that AIHTs (especially those using machine learning) can yield significant changes to an entire healthcare system. These changes might not necessarily come from expected technological disruptions, but might come from the adaptation of the healthcare setting to certain methods and processes relying on AIHTs. This adaptation may initiate extensive and lasting transformations that are likely to affect all actors working in, using or financing the health system (Gerhards et al., 2020). The clinical use of some AIHTs may have the effect of transforming local health care administration practices by incorporating exogenous priors embedded within the technology. For instance, if a payer (public or private insurer) decides that a given AIHT recommendation become a precondition for reimbursement (i.e., making other care no longer reimbursable), this may have significant impacts on the way care is delivered, and will reduce patients’, clinicians’ and administrators’ autonomy in making shared and appropriate decisions when the human-recommended care is different than a new gold standard based on AI on data and priors (Vayena, Blasimme, and Cohen 2018). There is therefore a process of importing practices, potentially very different, which can strongly contrast with local habits and norms, requiring both adaptation and an impact assessment of these exogenous practices on the host environment.
AIHTs can have systemic real-world life-and-death consequences for patients (Miller, 2020), especially as AI will span across the life continuum from birth to death (Dzobo et al., 2020). AIHTs, unlike most drugs or medical devices, will also affect non-ill or non-frequent users of the health care system, be they due to AI increasing role in health surveillance, care optimization, prevention and public health, telemedicine (Love-Koh et al., 2018; Pesapane et al., 2018; Char and Burgart 2020). AI can help “democratizing health care” (i.e., in the sense of facilitating access) by extending care into patients’ homes (Reddy et al., 2020), places where more individualized and personalized care can be facilitated. While being increasingly present in patient care, AI will not address everything that has to do with the overall well-being of people. Some aspects less related to illness, such as spirituality and sociality, will most likely not be resolved and supported by AI systems (Dzobo et al., 2020). Therefore, a systematic response to using AI in health care may systemically neglect important aspects of care.
Harms and Tropism
Mistakes due to AIHTs used in clinical care and within the health care system have the potential to widely harm the patient population. Some AI systems, especially in primary care settings, can have impacts on the entire population of a hospital or clinic (such as an AI-powered patient triage). This makes some people say that it is all the more necessary that all algorithms should be submitted to extensive scrutiny, with an increased attention on validation in clinical settings before they can be deployed in medical practice (Dzobo et al., 2020). In addition, a key challenge in implementing AI is that, without a comprehensive understanding of health needs (especially those not covered by AI), there is a risk of fragmenting healthcare delivery by silo use of AI systems. Such silo use may lead to weakening health systems capacity and efficiency in addressing patients needs.
AIHTs can have tropism effects on the healthcare system that may shape and normalize certain practices and expectations that are not necessarily accepted, widespread, cost-effective or standard in new contexts. An example of this would be an AIHT trained on medico-administrative data in a context where physicians have often modified their billing to enter the highest paying codes for clinical procedures, causing the algorithm to infer that these codes represent the usual, standard, or common practice to be recommended (Alami et al., 2020). Thus, the algorithmic inference would be biased because the procedure billed maximizes the clinician’s remuneration, but potentially was not the one performed; this can lead to a cascade of non-cost effective recommendations. Such tropism effects may increase the risk of inappropriate treatment and care, and may result in importing AIHT-fueled standards and practices that are exogenous and non-idiosyncratic to local organizations and that may perpetuate latent biases in training data that are not present in certain health systems or contexts of care (Abràmoff et al., 2020; Alami et al., 2020; Miller, 2020). Therefore, the large-scale systematization of certain behaviors or inclinations may end up resulting in significant costs and harms for organizations and health systems as well for patients and HCPs (Alami et al., 2020; Hu et al., 2019). For example, higher sensitivities to clinical thresholds could lead to overdiagnosis or overprescription, while lower sensitivities could result in undiagnosed and untreated segments of the population; it is in the potential scope of the impacts that exceptionalism lies and must be carefully assessed in HTA (Alami et al., 2020; Topol 2020).
AI as a Transformation Lever for the Health Sector
According to Alami et al. (2020), instead of seeing AIHTs as a collection of distinct technologies, they should be regarded as a “health system transformation lever.” AI can serve as a strategic lever for improving health care and services access, quality and efficiency. Used in such way, AI could have significant society-wide impacts, including technological, clinical, organizational, professional, economic, legal, and ethical.
AI can become a key enabler of learning healthcare systems (LHS) to achieve their full potential (Babic et al., 2019), especially since AIHTs are themselves learning systems (Ho, 2020). AIHTs and LHS can complement each other as both strive when there are porous boundaries between research and development and with clinical and organizational practices. Using data from the health care system, AI can learn and recalibrate both its performance and behaviors, and over time inform and refine the practices of the health care system (Babic et al., 2019). AI can allow for ongoing assessment of accuracy and usage and continuous risk monitoring (Ho, 2020).
AI, as a lever, can also have a systemic impact of putting forward the response to needs for which there are ready-to-use technologies, causing to pay little attention to serious unmet needs (Alami et al., 2020). According to Grant et al. (2020), AI may represent the “next major technologic breakthrough” in health care delivery, offering endless possibilities for improving both patient care and yielding health care system-wide optimizations. However, this blurring of boundaries poses significant problems for adequate regulatory design and should not be taken lightly (Babic et al., 2019).
Increased Expectations Towards Artificial Intelligence
Another key feature of AI exceptionalism is the increased expectations placed on AIHTs compared to other health technologies. According to Vollmer et al. (2020), AI systems often bear a misleading aura of obvious cutting-edge technology, which falsely limits the perceived need for careful validation and verification of their performance, clinical use, and general use once they begin to be used in routine clinical practice. The implications for HTA are three-pronged.
Belief that Since a Result Comes From an Artificial Intelligence It Is Better
A large part of the explanation for AI exceptionalism comes in particular from the belief that an AI-generated outcome is inherently better than a human one (Char and Burgart 2020). This phenomenon, known as the automation bias, describes the fact that slowly but surely, AI is establishing itself as an authority over current practices and error-prone healthcare professionals. Part of this is reflected in the fact that it is now recognized as a problem that a person who disagrees with a result or recommendation generated by an AI must justify their opposition with much more data than those used by the AI to achieve that result (Char and Burgart 2020). The technological imperative—i.e., the mere fact that a sophisticated technological intervention exists creates pressure to use it because it is perceived to be superior to conventional practices, despite the risks—reinforces this belief and AI in medicine is currently having its technological imperative moment (Carter et al., 2020).
Inevitability of Artificial Intelligence in Healthcare
These high expectations toward AIHTs form the basis of the inevitability of AI in health. To the point where AI is seen as inevitably the future of medicine (Dzobo et al., 2020). Self-learning and the ability to perform arduous and repetitive tasks explains the growing interest for a greater place of AI in standard medical care. There are high hopes and, according to many commentators, good reasons to think that in a near future, virtually all physicians will be assisted by AI applications to expedite certain tasks and, in the median term, due to continuous learning, AIHTs might outperform humans in a wide range of areas (Dzobo et al., 2020; Abràmoff et al.2020; Gerke et al., 2020). It is not only for clinical or therapeutic reasons that AI seems to be inexorable; there is also competition within the AI ecosystem. The growing importance of AI and its inevitability also stems from the competition between political decision-makers from different jurisdictions to widely deploy AI in order not to lag behind others (Gerhards et al., 2020). Considering all the interests at stake, the massive investments and accelerated development of AI, the question is no longer whether AI will be part of routine clinical care, but when (Reddy et al., 2020).
Although the technological imperative is strong and that AI in health is very attractive and seems inevitable, caution is called for. In this regard, AI chasm is a powerful concept to rebalance and help manage expectations of overly rapid deployment and ubiquity of AI in health care (McCradden et al., 2020). AI chasm refers to the phenomenon that while AIHTs are very promising, very few will actually be successful once implemented in clinical settings. HTA agencies have an important role to play here to contain this phenomenon and reduce its frequency and spread (McCradden et al., 2020). One of the roles of evaluation and regulation is precisely to finely consider the implications of these technologies to overcome this phenomenon. This requires not only an analysis of technical efficiency and performance, but also an oversight of empirical and ethical validation to ensure the rights and interests of patients. This requires the development of regulatory tools that are well adapted to AIHTs so that there are clear procedures and processes to properly evaluate and screen AIHTs (Alami, Lehoux, Auclair, Guise, et al., 2020; Abràmoff et al., 2020). This is necessary to avoid ethical drifts and unacceptable (economic, health, social) costs that may be caused by technologies that are not adapted to the needs and specificities of a clinical or organizational context, or by milieus feeling pressure to deploy a technology and adapt its practices in a way that ultimately does not benefit patient care or sound health care management (Michie et al., 2017; Abràmoff et al.2020).
Navigating the Hype
AI is currently in an era of promises rather than of fulfillment of what is expected from it (Michie et al., 2017). This new science has yet to move beyond average outcomes on individuals to actual personalized benefits based on their situation, characteristics, and desired outcomes. It is important to remain critical and vigilant with respect to the rush to adopt these new technologies, possibly more so than politicians are at present (Cowie 2017). Especially when thought leaders’ perspectives echo public wonderment and aspirations that AI transforms human life (Miller, 2020). With their development and implementation being largely driven by a highly speculative market and by proprietary interests, AIHTs are largely embedded into biocapital (Carter et al., 2020). That is to say, a vision of medical innovation that is based not on the actual creation of value, but on selling a certain vision of the future. It is through the sale of imaginary evoking unparalleled performance and disproportionate benefits to encourage all AI players to engage in the massive implementation of AI despite its uncertainties and shortcomings (Carter et al., 2020). That being said, in a study reported by Vayena et al. (2018), half of the surveyed American healthcare decision-makers expect that AIHTs will both improve medicine and fail meeting hyped expectations. Miller (2020) sums up the present phenomenon as follows: “No matter how sanguine the gurus touting game-changing AI technologies are, and no matter how much caregivers and patients hope that their benefits to medical practice and outcomes are not hype, all parties must remain vigilant.” AIHTs are in their phase of promises and hype, which is creating inconsequent expectations (Reardon 2019).
The consequences of these unreasonable expectations can be very significant. For instance, patients’ unsound expectations regarding the clinical outcomes of AIHTs can negatively affect their care experience (Alami et al., 2020). Certain areas of care, such as breast cancer, are particularly fertile ground to AI companies’ hype and promises (Carter et al., 2020), because it resonates with patient unfulfilled demands. The counterweight to these expectations is not yet in place as, despite all the hype, the science of AI is still young and possibly not yet mature, including gaps in clinical validation and perhaps imprecise health recommendations (Dzobo et al., 2020). HTA agencies and regulators have an important role to play, particularly in developing a regulatory infrastructure that is as exceptional as technology can be for health and as powerful as the “unfounded hype” can be, to use Mazurowski (2019) expression.
New Ethical Challenges
There seems to be broad agreement that AIHTs present new ethical challenges (Vollmer et al., 2020). According to Michie et al. (2017), AIHTs presents “new challenges and new versions of old challenges” which require new evaluative methods and legislative motivation to address health data and AIHT-specific ethical and regulatory issues.
Health Care Delivery
Reddy et al. (2020) identified three key AIHT-stemmed ethical challenges in care delivery: AI-fostered potential bias, patient privacy protection and trust of clinicians and the general public towards machine-led medicine. AI is also prone to generating new health inequalities; perhaps more potent than its ability to reduce existing ones (Fenech et al., 2020). An important caveat in terms of health care equity comes from the fact that those who compare very well with historic patient data will be the one benefiting the most from AIHTs. A cautious attitude is therefore called for with regards to patient and disease heterogeneity, taking into account that patterns detected by AI are largely deduced from smaller historical data sets (Dzobo et al., 2020). In addition to the current disparities, digital literacy and access to technologies are adding up, so that if nothing is done, large segments of the population may be excluded from enjoying the benefits of AIHTs, resulting in significant issues of justice (Fenech et al., 2020).
Existential Questions
According to Fenech et al., 2020, AI is unlike any other health technology, due to its capability of being a general-purpose technology forcing to question the very essence of humans. This technology is particularly sensitive for the healthcare sector as it raises new existential questions that regulators and public decision-makers must now face. One of such key existential challenge for HTA, according to Haverinen et al. (2019), is that AI is becoming a new decision-maker. This adds an actor with a decision-making role on the fate of patients and the health care system in addition to the role of HCPs and increases the complexity of performing comprehensive HTA. For Ho (2020), a distinctive ethical concern that stems from AIHT is the technology’s unparalleled autonomy, which intensifies ethical and regulatory challenges, especially in terms of patient safety. While this obviously raises questions about liability (who is at fault for harm, and who is responsible for explaining it and being accountable to patients), it also requires thorough thinking about appropriate ways to ensure that care is humane and respects the dignity of persons (Pesapane et al., 2018; Vayena et al., 2018; Fenech et al., 2020).
Challenging Medical Ethics’ Ethos
Exceptionalism also stems from the fact that the field of medicine is structured around the transparency and explainability of clinical decisions, which poses serious problems for the acceptance, regulation and implementation of (too often inexplicable) AI in the health care system (Reddy et al., 2020). As Miller (2020) points out that technology insertion is never neutral, both the success of AI in health care and the integrity and reputation of health care professionals depend on the alignment between the ethos of medical ethics and the ability of AIHTs (notwithstanding its benefits and performance) to respond to the challenges that its very characteristics pose to the health care system (Reddy et al., 2020). It is therefore widely acknowledged that AI will have considerable benefits on health care (optimized process, increased quality, reduced cost, and expanded access) that will come at the price of raising ethical issues specific to the technology (Abràmoff et al., 2020). This moral cost and related ethical considerations partly explain that the field of AI ethics has recently “exploded” as academics, organizations and other stakeholders have been rushing to examine the ethical dimensions of AI development and implementation (Fiske et al., 2020). However, some are skeptical, such as Fenech et al. (2020) who was warning that data ethics is fashionable. While Bærøe et al. (2020) go as far as arguing that “exceptional technologies require exceptional ethics” and that “an intentional search for exceptionalism is required for an ethical framework tasked with assessing this new technology”.
New Evaluative Constraints
According to Dzobo et al. (2020), by being very distinct from more traditional technologies, AI must be regulated differently. Zawati and Lang (2020) argue that the uncertainty regarding AI decisional processes and outcomes make AIHTs particularly challenging to regulate. Regulators, policy-makers and HTA agencies are faced with unprecedented complexity for evaluating and approving AI (Alami et al., 2020). AIHTs raise new evaluative constrains, be they technological, clinical, organizational, that affect how ethical, legal and social dimensions may be tackled (Gerke et al., 2020). Evaluation constraints are related to data, real-world uses and the embryonic nature of the regulatory infrastructure and processes.
Data-Generated Issues
AI uses larger than ever volumes of data generated by individuals, governments, and companies, and according to Fenech et al. (2020), the greater complexity of health data raise new questions about the governance of data use and storage, especially as AI technologies are only effective and relevant with up-to-date, labelled, and cleaned big data. In addition to data, the hardware infrastructure will need to be updated over time, requiring major financial investments to maintain the use of AI in the healthcare system (Dzobo et al., 2020). However, too few technical studies are helping to appreciate and help managing AIHTs’ complexity. In most studies, contextual, clinical and organizational considerations, implementation and uses of the technology are neglected, which complicates regulators’ assessment as they are mostly informed about the significance of AI applications’ technical performance (Alami et al., 2020). Caution should therefore be exercised, particularly since the complex ethical and regulatory issues involved deserve careful consideration before deploying these technologies in routine clinical care (Prabhu 2019).
Real-World Usages and Evidential Issues
AIHTs raise new regulatory challenges in part due to the greater variation in their performance between the test environment and the real-word context than those of drugs and medical devices. According to Gerke et al. (2020), AIHTs have potentially more risks and less certainty associated with their use in real-world contexts, which is central to regulatory concerns. However, most AIHTs have not been objectively validated in and for real-world usages (Alami et al., 2020). In that sense, one important caveat is that the adoption and impact of AIHTs are unlikely to be uniform or to improve performance in all health care contexts (Gerke et al., 2020). This is attributable concurrently to the technology itself (and its distinctive features that renders it disruptive), to the contexts of implementation (the systemic impact of the technology across the health care system, and clash with local practices) and to the human biases associated with the use of these technologies (inability to reason with AI-provided probabilities, small samples and noise induced extrapolation and false patterns identification, and undue risk aversion) (Gerke et al., 2020). For regulatory authorities, these represent great challenges for deciding whether marketing authorization is justified. But it is also puzzling for hospital, clinic and health care system purchasers to determine whether an AIHT will actually add value and increase performance of care and service delivery. There is a lot to be studied and understood on the broad systemic policy implications of AIHTs in real-world context of care and services (Alami, Lehoux, Auclair, de Guise, et al., 2020).
Undeveloped Regulatory Infrastructure and Processes
AIHTs’ exceptional characteristics have significant regulatory implications as regulation is emerging, but at a far slower pace than technological changes, which are virtually infinite (Char and Burgart 2020). Regulative complexity is furthered by the fact that existing standards (e.g., those of the Food and Drug Administration, European Medicines Agency, Health Canada) do not translate well for self-evolving technologies (Dzobo et al., 2020; Shaffer 2020; Topol 2020). This definitional deficit complicates the regulation of this technology and the implementation of appropriate policy infrastructure (Pesapane et al., 2018). Recent approvals of algorithms highlighted some limitations of existing regulatory standards and processes (Haverinen et al., 2019; Parikh et al., 2019). These considerations are threefold and concern the levels of requirements, the speed of AIHT developments and the equilibrium posture that regulators must adopt.
A challenge for existing regulatory regimes lies in the extensive information requirements on both the nature and effects of health technology, as well as clinical data on efficacy and patient safety, and population and societal impacts. However, regulators have yet to develop an infrastructure and processes that are appropriate and optimal for AI, and this requires more knowledge about how algorithms work (Dzobo et al., 2020). This complicates the problem because AI is a less transparent and explainable technology than drugs or medical devices can be (Abràmoff et al., 2020; Reddy et al., 2020). Privacy concerns are also important and there is yet no public agreement regarding data collection and sharing for commercial purposes, nor regarding for-profit data ownership (Michie et al., 2017). This calls for finding collective responses to these considerations, which must accompany the work of structuring HTA practices and infrastructures by regulators (Fenech et al., 2020).
Another dimension putting pressure on regulation is the speed of development. For regulating a fast-changing and unpredictably sector such as AI, time is of the essence to ensure that regulatory standards and practices are relevant (Pesapane et al., 2018). Currently, regulation has to constantly catch up with the private sector which leads to important gaps in terms of ethical examination of AIHTs (Shaffer 2020). Since, most developments are done by the private sector and HTA processes are not yet well designed and optimized, there is a problem of scrutiny (Abràmoff et al., 2020). So to keep up, regulation must be as fast as technological developments in AI, therefore it requires to conduct assessment and oversight at an unprecedented pace (Haverinen et al., 2019). However, this need to proceed quickly, in particular to match the private sector’s pace, must be put into perspective with the very acceptability of a significant presence of commercial interests in the big data and AIHTs sector.
Achieving the right balance is delicate for HTA agencies between accelerating the development of HTA policies and procedures and not falling prey to the sirens of AIHT’s hype (Cowie, 2017; Miller, 2020). Regulators want to see the health care system reap AI’s benefits quickly, but if their assessment is too hasty and the implementation of the first generations of AIHTs encounters difficulties or, worse, generates adverse effects, social and professional acceptability may be shattered and further delay the deployment of AI in healthcare. According to Reddy et al. (2020), it could need a single serious adverse incident caused by an AIHT to undermine the public’s and HCP communities’ confidence. Considering that AI’s acceptance is still fragile, and that AI is expected to have an expanded presence in all aspects of the health care system, HTA agencies will have to be extra careful in considering the ethical and regulatory implications of IA. If not well managed, these considerations will become major barriers that will play against the deployment of AI in healthcare (Pilotto et al., 2018; Vayena et al., 2018; Bærøe et al., 2020).
DISCUSSION
The current body of literature appears to portray AI health technologies as being exceptional to HTA. This exceptionalism is expressed along five dimensions. Firstly, the very nature of the technology seems to be the primary cause of the difficulty in fitting AIHTs into current HTA processes. Thus, the still ambiguous definition and the consequences of its changing and evolving nature pose new challenges for its assessment. Secondly, the scope of its impact far surpasses those of current health technologies. AIHTs will have impacts that extend significantly beyond the targeted patients and professionals. It is therefore in the interest of HTA agencies to consider the disruptive effects on individuals as well as on the entire health care system. Hence, the importance for HTA to consider the potential harms, the systematization of biases and to anticipate the clashes between current practices that are working well and the framing effect that will come with the deployment of AIHTs. But also, AI can act as a transformational lever that, beyond the risks of AI in healthcare, appears to be capable of redressing and reorienting the healthcare system to better respond to the full range of healthcare needs, to create synergies so that the of learning healthcare systems are operational and to take this opportunity to adjust the regulatory design. Third, the advent of AI in healthcare comes with a lot of high expectations. The quality of outcomes generated by AIHTs is expected to be higher than that of current human-driven processes. This positive perception of the added value of AIHTs in the healthcare system makes AI in healthcare appear inevitable. However, while the technology is currently casted as exceptional and highly promising, some caution should be kept towards the current hype, which should prompt regulators to be prudent towards unreasonable expectations. Fourth, AIHTs are challenging HTA from an ethical perspective as AI has a strong potential to generate greater inequity whether arising from algorithmic decisions or in access to AIHTs. The fact that AIHTs are becoming new decision-makers, due to their autonomy, raises important issues of patient safety as well as liability. In fine, medical ethics’ ethos is even shattered since, with AI, ethical dilemmas seem to be amplified, calling potentially for ethical standards revamping that would be as exceptional as the technology. Finally, AI technologies in health are increasing regulatory complexity and are pressuring current HTA structure and processes. The new evaluation constraints relate to data, real-world uses and the rather embryonic nature of AI-ready regulatory infrastructure and processes. Therefore, be they the extensive information requirements on both AIHTs’ features and effects for regulatory review, the speed of AIHTs’ developments, and the need to regulate quickly, but in a way that benefits the entire population.
A key point emerging from the views of the authors reviewed is that exceptionalising views of AIHTs, in the context of HTA, appear to come as much from the technology itself as they do from the broader social, cultural, and political contexts surrounding AI in the health sector. In other words, AIHTs are exceptional because of their technological characteristics and potential impacts on society at large. This is quite consistent with HTA, which seeks to assess the diversity of impacts of a technology. It is therefore quite reasonable that a technology with multi-dimensional impacts on society severely affects a process that is based on these same dimensions. The key takeaway may be that, to adapt and remain relevant, HTA must continue to focus on and strengthen these evaluative processes, which must be capable of a comprehensive assessment of the technical, social, cultural, ethical and health dimensions.
Interestingly, no author in the reviewed sample clearly promoted the idea that AI is an unexceptional technology for HTA. Many reasons could explain this phenomenon. First, the hype is still very strong when it comes to AIHT (Mazurowski 2019; Carter et al., 2020). Thus, it is possible that discussions about AI (un)exceptionalism are not yet ripe to mark the literature. This can be seen in the literature reviewed, which, without focusing on the limits of exceptionalism, currently has its strongest criticisms on AI hype. This leads us to think that hype and exceptionalism may be linked: hype feeds on exceptionalism while the latter needs hype to surface and to strike a chord within the literature and the rhetoric about AI in health. Second, trivially, this may be because there is less incentive to write (and publish) on the advent of a new technology in health by stating that nothing is new under the Sun (Caulfield 2018). Third, AIHTs may be so recent in the HTA pipeline that HTA as not yet addressed all the dimensions of AIHT.
Even if AI’s exceptionalism appears significant in the current body of literature, there is some caveats to promoting AI exceptionalism in HTA. First, two authors noted some limitations to AI exceptionalism. Michie et al., (2017) pointed out that AIHTs are not only raising new challenges, they also bear issues that are common to existing health technologies. This is echoed by Char et al. (2020) who acknowledge the phenomenon, but puts a limit to the enthusiasm for AI exceptionalism in health when it comes to AIHTs sporting some features similar to standard health technologies. Second, currently, the literature discussing AI exceptionalism is still piecemeal, and it would be relevant for future research to address the issue by looking more holistically at the full range of issues posed by AI (i.e., outside the sole realm of HTA). There is still some space to apprehend and analyze the exceptionality of AIHTs’ in HTA and the implications this has for both the evolution of HTA and the development and use of AIHTs. The literature is still quite young, and this can be observed from the fact that some highly discussed considerations in the broader AI ethics and AI in medicine literatures have not been discussed in the body of literature at review. For example, the more structural implications related to data-generated issues—privacy, data stewardship and intellectual property (Bartoletti 2019; Cohen and Mello 2019)—or to issues pertaining to informed consent, patient autonomy and human rights (Sparrow and Hatherley 2019; Cohen 2019; Racine et al., 2019; Ahmed et al., 2020), or to human-machine comparison in medical decision making and diagnosis (London 2019) have not been explored in the studied subset. A comprehensive exploration of the themes generally associated with health technologies will provide a better understanding of and clarity on whether AIHTs are exceptional or not. Third, exceptionalism in the context of health innovation is not a new topic. New health interventions or discoveries often generate a lot of hype, and the sector is hungry for predictions about the next revolution in healthcare (Emanuel and Wachter 2019). Twenty years ago, the health sector was living the “genomic revolution” and was assessing the exceptional implications of genetics in healthcare (Suter 2001). As AIHT’s literature mature, it may continue to be centered on its exceptionality; but it is also plausible to consider that, as with the genetic revolution in the early 2000s and the nanotechnologies in the 2010s, AI exceptionalism will pass what Murray (2019) calls its “sell-by date”. Thus, AI exceptionalism may end up following a rather similar pattern where the hype will slowly wear off as the health sector will become more accustomed to the technology; better understand its actual strengths, limitations, and capabilities.
Therefore, possibly it is a matter of time before a coherent body of literature addresses the limits of an exceptionalist view of AI in health and HTA. At the same time, if the AI revolution really takes off, exceptionalism will no longer be an important consideration. Indeed, as regulatory systems, the healthcare system and human agents (clinicians, patients, regulators, managers, etc.) adapt, exceptionalism will probably pass and habituation will make AI in health the new normal, as after any major disruption that lasts over time. However, it may be of interest to the AI, HTA and health regulation communities and scholars to remain vigilant about AIHTs’ exceptionalism (by means of the manifestation of its five dimensions) in health and HTA.
Another avenue that the literature could explore is whether the exceptionality arises from the technology (i.e., AI) or the sector of application (i.e., health)? In other words, is it AI that is exceptional in health or rather health that is a sector of exception for AI? Healthcare is possibly the most regulated sector that AI has come across so far. Health’s exceptionality may explain the significant regulation in the healthcare sector (i.e., attention given to this sector in terms of regulation, ethics, law, and society) (Daniels 2001; Bird and Lynch 2019), while no other sector has an assessment process that has the breadth and systematism of HTA. Therefore, it would be interesting to reverse the question at the very basis of this review and consider how, for the AI ecosystem, health is per se exceptional and calls for additional and distinct norms, practices and contingencies that need to be considered to develop and implement an AIHT. Thereby, in addition to offering insights and guidance to communities strongly engaged in HTA, our results can also help the AI research and development sector better understand the unique evaluative considerations that exist in the health sector. The five dimensions raised by our paper can help guide those developing AIHTs to better understand and respond to the specific expectations and priors that underlie the use, administration and acceptability of health technologies. This can potentially help better align AIHT developers’ desire to create value with HTA agencies’ value appreciation and thus facilitate the congruence between technology development and healthcare priorities (Chalkidou 2021).
More broadly, the literature review raises key institutional questions, in terms of the exceptional issues posed by AI, such as which body is best placed to incorporate the new and added concerns that AIHTs raise? Is it the (supra)national regulators (e.g., EMA, FDA, Health Canada and the like which are mostly responsible for evaluating safety, efficacy, and quality concerns) or the HTA bodies (who are more concerned with appropriate use, implementation, coverage and reimbursement)? Can certain issues (e.g., the ethical and social ones) be better addressed by one body versus another? A possible limitation of the literature review is that overall the authors do not generally make a clear distinction between the regulatory processes (those of the FDA, EMA, and Health Canada that aim to allow the marketing of AIHTs) and the HTA (which focus on assessing implementation, optimal use, and whether or not to recommend reimbursement by third-party payers), so it was not possible to specify the unique considerations that arise specifically for either or both. One thing is for certain, the exceptional challenges of AIHT further raise the importance, for regulators and health technology assessors, to consider the impacts of AI uses in healthcare in a holistic way. This points to pivoting current rather linear regulatory and HTA process towards a “lifecycle” approach, which would allow for a better consideration of the five exceptional dimensions of AIHT. This may sound demanding, but AIHTs already represent additional evaluative burdens, especially when it comes to long-term real-world usages (e.g., when AIHT are used on new populations or for new purposes that differ from the data on which it was trained, or simply behave differently from what was expected at the time of the regulatory or HTA assessment) and the difficulties of withdrawing AIHT from the market. This calls for more cooperation between regulators and HTA agencies, but also hint towards a global health technology governance reform to allow increased scrutiny capability, and also to help AIHT regulatory and HTA assessment adjust overtime (i.e., by using a lifecycle approach) based on the evolving (clinical, economic, social, ethical) evidence.
In any case, there is a strong argument for taking into consideration the exceptional aspects of AIHTs, especially as their impacts on the healthcare system will be far greater than that of drugs and medical devices (Vayena et al., 2018; Babic et al., 2019). As AI applications begin to be much more readily introduced into the health care sector, there is a window of opportunity for HTA agencies and scholars to consider the broad spectrum of impacts that AIHTs may generate (Bostrom and Yudkowsky 2011; Helbing 2015; Burton et al., 2017; Herschel and Miori 2017; Knoppers and Mark Thorogood 2017). AI implementation by governments and health organizations carries risks of generating new and amplifying existing, challenges due to a shift from the current mostly human-driven systems to new algorithm-driven systems (Vayena et al., 2018; Zafar and Villeneuve 2018; Reddy et al., 2020). Hence the need to address the distinct (without the need for them to be exceptional) characteristics of AIHTs to inform HTA developments in a way to ensure that only clinically, economically, socially acceptable AIHTs are deployed in the health care system.
CONCLUSION
Therefore, is it possible to assert that there is such thing as an AI exceptionalism in HTA? It may be too early to be decisive on this issue, although the literature reviewed seems to point in this direction. Our review of the literature has allowed to identify five dimensions through which AIHTs are exceptional, from an HTA standpoint: nature, scope, increased expectations, new ethical challenges and new evaluative constrains. Most importantly, what underlies the promises of AI, the hype, and the exceptionalism is that we are mostly in an era of speculation; while some applications have begun to work their way into the healthcare system, the much-anticipated revolution is still a ways off. It is the test of time that will determine the veracity and breadth of the exceptionalist perspective. But whether or not exceptionalism proves to be valid, HTA must certainly adapt to the massive arrival of AI in health. This must be done by considering and responding to the five dimensions of exceptionalism and their many implications that can undermine the appropriateness, efficiency, and relevancy of current and future HTA infrastructure and processes. Our results should help inform where HTA stakeholders need to pay special attention and adapt their policy architecture and processes so that they become agile to adopt a regulatory posture capable of appreciating the distinct characteristics and impacts that AIHTs pose in the health sector.
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Background: It is often difficult to diagnose pituitary microadenoma (PM) by MRI alone, due to its relatively small size, variable anatomical structure, complex clinical symptoms, and signs among individuals. We develop and validate a deep learning -based system to diagnose PM from MRI.

Methods: A total of 11,935 infertility participants were initially recruited for this project. After applying the exclusion criteria, 1,520 participants (556 PM patients and 964 controls subjects) were included for further stratified into 3 non-overlapping cohorts. The data used for the training set were derived from a retrospective study, and in the validation dataset, prospective temporal and geographical validation set were adopted. A total of 780 participants were used for training, 195 participants for testing, and 545 participants were used to validate the diagnosis performance. The PM-computer-aided diagnosis (PM-CAD) system consists of two parts: pituitary region detection and PM diagnosis. The diagnosis performance of the PM-CAD system was measured using the receiver operating characteristics (ROC) curve and area under the ROC curve (AUC), calibration curve, accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and F1-score.

Results: Pituitary microadenoma-computer-aided diagnosis system showed 94.36% diagnostic accuracy and 98.13% AUC score in the testing dataset. We confirm the robustness and generalization of our PM-CAD system, the diagnostic accuracy in the internal dataset was 96.50% and in the external dataset was 92.26 and 92.36%, the AUC was 95.5, 94.7, and 93.7%, respectively. In human-computer competition, the diagnosis performance of our PM-CAD system was comparable to radiologists with >10 years of professional expertise (diagnosis accuracy of 94.0% vs. 95.0%, AUC of 95.6% vs. 95.0%). For the misdiagnosis cases from radiologists, our system showed a 100% accurate diagnosis. A browser-based software was designed to assist the PM diagnosis.

Conclusions: This is the first report showing that the PM-CAD system is a viable tool for detecting PM. Our results suggest that the PM-CAD system is applicable to radiology departments, especially in primary health care institutions.

Keywords: pituitary microadenoma, magnetic resonance imaging, deep learning, algorithm, computer-aided diagnosis


INTRODUCTION

A pituitary microadenoma (PM) is a tumor <10 mm in diameter. PMs can occur in either sex. As many as 10% of the population may have a microadenoma, but most do not cause symptoms (1, 2). However, some PMs cause symptoms by secreting hormones that exert harmful consequences, for example, in Cushing's disease, acromegaly, infertility, and hyperprolactinemia (1). Due to its small size and variable anatomical structure among individuals, the diagnosis of PM is not easy by applying the technique of MRI alone (3). Manual analysis of MRI data is usually biased and time-consuming, and the diagnostic accuracy is closely related to the experience of radiologists. A shortage of experienced radiologists may cause a delay in diagnosis and compromise the overall quality of service to patients with PM (4, 5). Deep learning has the potential to revolutionize disease diagnosis and management by improving the diagnostic accuracy of PM while reducing the workload of radiologists. The development of a convolutional neural network (CNN) has significantly improved the performance of image classification and object detection (6). Recent reports showed that a computer-aided diagnosis (CAD) system can accurately diagnose patients with pituitary adenoma from MR images (7–9). In this work, we have developed and validated an image-based deep learning model to aid the detection of PM.



MATERIALS AND METHODS


Ethical Approval

This study is approved by the research ethics committee of the Institute of Basic Research in Clinical Medicine, The Third Affiliated Hospital of Sun Yat-sen University ([2020]02-089-01). This research is registered at the Chinese Clinical Trials Registry (http://www.chictr.org.cn/index.aspx) with the number ChiCTR2000032762.



Data Collection and Pre-procession of MRI Data

The original intention to develop and validate the technique of deep learning algorithms assisting PM diagnosis was prompted by several misdiagnosed PM cases in our hospital (Supplementary Figure 1). We developed and validated an automatic diagnosis model for the detection of PM. The training set was a retrospective study, the data were extracted from January 2012 to September 2019 at The Third Affiliated Hospital of Sun Yat-sen University (TianHe and LuoGang hospital). The validation set 1 was a prospective temporal validation using data from October 2019 to April 2021 at The Third Affiliated Hospital of Sun Yat-sen University. Validation sets 2 and 3 are geographic prospective external validation with data from two additional hospitals (Sun Yat-sen Memorial Hospital of Sun Yat-sen University, and The Second Affiliated Hospital of Harbin Medical University) from March 2020 to April 2021. All data were recruited using the same inclusion and exclusion criteria.

The workflow diagram for the overall experimental design is in Figure 1 and Supplementary Figure 2. Inclusion criteria were participants suffered from infertility (defined as the inability of a sexually active couple to achieve pregnancy within a year or more with regular unprotected intercourse) and at least exhibited one or more of the following clinical symptoms/signs (menstrual irregularity, amenorrhea, galactorrhea, premature ejaculation, erectile dysfunction, or hypogonadism). Exclusion criteria were as follows: lactation, pregnancy, with primary thyroid, adrenal and/or gonadal diseases, malignant tumors, pituitary macroadenoma, sellar/pituitary masses or cyst, congenital disease of the pituitary gland, pituitaries, and MR images without complete pituitary scan or with too many MRI artifacts. Further examination was performed on the participants. We measured serum hormone levels of the participants (such as prolactin, adrenocorticotrophic hormone, follicle-stimulating hormone, luteinizing hormone, serum thyroid-stimulating hormone, and growth hormone) and performed a pituitary MR examination on those participants. Patients with functional and non-functional PM and patients with normal pituitary function were included for further deep learning analysis. The coronal dynamic enhancement T1-weighted imaging (T1WI) sequences of MRI (DICOM) from those participants were downloaded with a standard image format according to the software and instructions of the manufacturer. All pituitary images were read by two junior neuroradiologists (with <10 years of professional experience) and one senior neuroradiologist (with >10 years of professional experience), and the final diagnosis was mutually agreed upon by all three neuroradiologists have then proceeded for further investigation. In the training set, all images present with PM or normal pituitary images were selected by four general radiologists (>5 years of professional experience) and reviewed by two neuroradiologists (with >10 years of professional experience). All images of coronal dynamic enhancement T1WI sequence were used for the validation set without additional human intervention. MRI was performed with a 1.5 or 3.0 T MRI unit (GE, Philips company, Amsterdam, the Netherlands) in the head-first supine position, 380 ms/12.5 ms (repetition time /echo time), and 1 or 3 mm thick sections. Six medical fellows in the division of clinical endocrinology were involved in collecting patient clinical information, and the dataset was reviewed and verified by two endocrinologists.


[image: Figure 1]
FIGURE 1. Workflow diagram for the overall experimental design. The detailed workflow diagram of the validation datasets are in Supplementary Figure 2. PM, pituitary microadenoma; MRI, magnetic resonance imaging. The Third Affiliated Hospital of Sun Yat-sen University as hospital 1. Sun Yat-sen Memorial Hospital of Sun Yat-sen University as hospital 2, and The Second Affiliated Hospital of Harbin Medical University as hospital 3.




Model Structure (Overview of Our PM-CAD System)

The pipeline of our PM-CAD system is shown in Supplementary Figure 3, and it consists of two parts: (1) pituitary region detection and (2) PM diagnosis. All programs are implemented with Python (https://www.python.org/) language on PyTorch (https://pytorch.org/) platform. In pituitary region detection, we develop a pituitary detection model based on Faster R-CNN (10) [with ResNet-50 FPN (11) as its backbone]. The input MR image is processed by this model to generate classification and regression maps, which have been further used to extract the pituitary bounding box in MR images. The pituitary bounding box is used to crop the pituitary region patch from the MR image (Supplementary Method A). In PM diagnosis, we proposed a novel CNN (namely, PM-CAD) to diagnose the PM from the cropped MR images. All the cropped pituitary region images are resized to 256 × 256, normalized into (0,1), and processed with histogram matching normalization (HM) for the enhancement of microadenoma features. In the PM-CAD system, we modify the ResNet architecture to preserve fine-grained features during forward propagation. An attention module is used to further improve the discriminativeness of feature representation. To handle the overfitting problem, HM normalization, intensity shift data augmentation, and label-smoothing loss are used (Supplementary Method B). The training procedure is stopped after 500 epochs (iterations through the entire dataset) due to the absence of further improvement in terms of both the area under receiver operating curve (AUC) and label-smoothing loss (Supplementary Figure 4).



Model Discrimination and Calibration

A total of 1,520 participants were included for the further study. We partitioned the data into three non-overlapping sets, with 780 participants for model development, 195 participants for model testing (developing and testing dataset as 8:2), and 545 participants for model validation. To reduce the time bias, the training set was a retrospective study from January 2012 to September 2019. The validation set was a prospective validation from October 2019 to April 2021. The detailed statistics for each set are summarized in Figure 1 and Supplementary Figure 2.



Evaluation of the Diagnosis Performance of Our PM-CAD System and Statistical Analysis

In the testing set, we used accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and F1-score to evaluate our PM-CAD system. The validation set A had been used to evaluate the generalization ability and stability of our PM-CAD system. The receiver operating characteristics (ROC; showing both true-positive rate and false-positive rate for diagnosis performance) curves and AUC were used in testing, internal and external validation sets (12, 13). We also used binary logistic regression methods to re-fit the prediction probability data rooted in PM-CAD, and calibration curves were used to test the fitting ability of the model (14). Validation set B consists of 100 participants and has been used to compare the performance of the PM-CAD system to general radiologists. A wide range of performance metrics has been adopted, such as diagnosis accuracy, sensitivity, specificity, PPV, NPV, F1-score, weighted error, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and AUC (12). A weighted error was used for further analysis, specifically, a penalty weight of 2 was assigned to false-negative cases and a penalty weight of 1 was assigned to false-positive cases (12). Six radiologists were recruited for this study. Radiologists 1 and 2 have professional experience of <5 years, Radiologists 3 and 4 have professional experience between 5 and 10 years, and Radiologist 5 and 6 have professional experience over 10 years. Each radiologist read MR images of 100 participants independently. The Bland-Altman plot was used to evaluate the interobserver consistency of pituitary MRI finding independently measured by the six radiologists. The diagnostic accuracy of those radiologists was evaluated, and the experience of each radiologist in reading images of the cranial and pituitary MR or CT is shown in Supplementary Table 1. In validation set C, we tested the diagnosis accuracy of our PM-CAD system on three cases misdiagnosed by radiologists. Descriptive statistics included mean (SD) for continuous variables and proportions for categorical variables. All the metrics were calculated using Python-3.9.5 (https://www.python.org/), and R-4.0.3 (15) was used to provide visual analyses.



Browser-Based Software Application

A browser-based software was designed to assist the diagnosis from pituitary MR images. Once pituitary MR images (DICOM files) are uploaded to the software, PM diagnosis outputs can be presented.




RESULTS


Study Participants

A total of 11,935 infertility participants were initially recruited for this project. After applying the exclusion criteria, 1,520 participants (556 PM patients and 964 controls subjects) were included for further study whereby we have partitioned data from 975 participants (340 PM patients and 635 control subjects) for the training set, such as 780 participants (19,573 images) for development set and 195 participants (4,927 images) for the testing set. In the validation set, 545 participants (13,239 images) were recruited for the study. The validation set A consisted of 163 PM patients and 279 control subjects came from three hospitals. The validation set B consisted of 100 participants (50 PM patients, and 50 control subjects). In validation set C, we tested the diagnosis accuracy of our PM-CAD system on three misdiagnosed PM cases. The detailed statistics for each set are summarized in Figure 1 and Supplementary Figure 2. Among patients with PM, there were 397 cases of non-functional PMs and 159 cases of functional PMs. The clinical and baseline characteristics of these participants are shown in Table 1.


Table 1. Description and characteristics of the training and validation datasets.
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Performance of PM-CAD System

The PM-CAD system consists of two parts: pituitary region detection and PM diagnosis. In pituitary region detection, we use the well-known average precision (AP) as the evaluation metric. We achieved an AP of 0.9783 at an intersection-of-union (IOU) threshold of 0.5 (Supplementary Method A). For testing the accuracy of PM diagnosis, 975 participants have been used for the development and testing set (Supplementary Method B). We showed that our PM-CAD system achieved an AUC of 98.13% (Figure 2A), an F1-score of 92.09%, an accuracy of 94.36%, a sensitivity of 96.97%, a PPV of 87.67%, a specificity of 93.02%, and an NPV of 98.36% on the testing set. The calibration curve of the testing set is listed in Figure 3A, the intercept on the testing is −6.098, and the probability weight W is 10.069. We employed PM-CAD for further investigation.


[image: Figure 2]
FIGURE 2. The ROC curves of testing and validation set A1 (Internal dataset), validation set A2 and A3 (external dataset). The model has achieved excellent diagnosis performance in internal and external data sets. (A) The AUC of the testing set was 98.13%. (B) The validation set A1 is a temporal internal dataset, the AUC was 95.46%. (C,D) In the geographical external dataset, the AUC of the validation set A2 and A3 was 94.72 and 93.70%, respectively. AUC, area under the ROC curve; ROC, the receiver operator curve.
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FIGURE 3. The Calibration curves of testing and validation set A1 (Internal dataset), validation set A2 and A3 (external dataset). The calibration curves of the predicted probability from our PM-CAD vs. the observed probability for PM in (A) the testing set, (B) the validation set A1, (C) the validation set A2, and (D) the validation set A3. We used logistic regression to rebuild the prediction probability from our CNN model. The intercepts on the testing and verification set A are −6.098, −4.26, −3.465, and −2.963, respectively. And the probability weight W is 10.069, 9.928, 11.06, and 9.909, respectively. CNN, convolutional neural network; PM-CAD, Pituitary microadenoma-computer-aided diagnosis.




PM-CAD System Application in the Validation Set (Internal and External Datasets)

We used the internal and external datasets to validate the robust generalization performance of our PM-CAD system. The system was further tested in 442 participants from three different hospitals (Validation set A). The PM-CAD system achieved the diagnosis performance of AUC (95.46%) (Figure 2B), F1-score (97.30%), accuracy (96.50%), sensitivity (97.83%), PPV (96.77%), specificity (94.12%), and NPV (96.00%) in hospital 1. In hospital 2, the AUC is 94.72% (Figure 2C), F1-score is 93.62%, accuracy is 92.26%, sensitivity is 90.72%, PPV is 96.70%, specificity is 94.83%, and NPV is 85.94%, respectively. The diagnosis performance is AUC (93.70%) (Figure 2D), F1-score (93.71%), accuracy (92.36%), sensitivity (91.11%), PPV (96.47%), specificity (94.44%), and NPV is (86.44%) in hospital 3 (Table 2). The ROC curve is described in Figures 2B–D. The calibration curve of the validation set A is in Figures 3B–D, the intercept is −4.26, −3.465, and −2.963, respectively. And the probability weight W was 9.928, 11.06, and 9.909, respectively. The classification confusion matrices report the number of true positive, false positive, true negative, and false negative, which are resulted in Supplementary Table 2. We showed that our PM-CAD system achieves excellent diagnostic performance in internal and external datasets.


Table 2. The diagnosis performance of the PM-CAD system in the validation set A (internal and external datasets).
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Performance of the PM-CAD System vs. Radiologists

An independent validation set B (100 participants: 50 PM patients and 50 controls from hospital 1) was used to compare the performance of the PM-CAD system vs. radiologists. For this comparison, six radiologists were recruited. The diagnosis performance of PM-CAD system is F1-score (93.88%), accuracy (94.00%), sensitivity (92.00%), PPV (95.83%), specificity (96.00%), and NPV is (92.31%) (Supplementary Table 3). In contrast, the performance of our best radiologist #6 is F1-score (94.95%), accuracy (95.00%), sensitivity (94.00%), PPV (95.92%), specificity (96.00%), and NPV is (94.12%) (Supplementary Table 3). The ROC curves are shown in Supplementary Figure 5A, the AUC of the PM-CAD system was 95.56% and outperformed our six radiologists (best radiologist #6 as 95.00%), at the same false-positive rate, the true positive rate of the PM-CAD system was higher than six radiologists (Supplementary Figure 5A). Weighted error scoring (10) was incorporated during modeling and evaluation, the PM-CAD system produces a weighted error of 10.00%, which is far below the average weighted error of 21.67% achieved by six radiologists (Supplementary Figure 5B). The difference of NLRs or PLRs (10) between our PM-CAD system and radiologists is shown in Supplementary Figures 5C,D, our model demonstrates excellent diagnostic performance. The classification confusion matrices report the number of true positive, false positive, true negative, and false negative resulted for the PM-CAD system and radiologists in Supplementary Table 4. Thus, we showed that the diagnosis performance of our PM-CAD system is comparable to general radiologists with more than 10 years of professional experience. A Bland-Altman plot was used to analyze the interobserver consistency of the six radiologists' independent measurements of the pituitary MRI finding. The 95% limits of agreement were −0.4500 to 0.4300, −0.2958 to 0.2558, −0.1860 to 0.2060, −0.1860 to 0.2060, −0.1860 to 0.2060, and −0.2060 to 0.1860, respectively, indicating high interobserver consistency.



Further Assessment for the Diagnosis Performance of the PM-CAD System

We sampled three double positive cases of PM (both diagnosed by radiologists and PM-CAD system), which underwent surgical treatment, the double positive cases were confirmed by a subsequent pathological examination (one case of Cushing's disease, one case of Acromegalia, and one case of prolactinoma; Supplementary Figure 6A).

A false-negative diagnosis leads to delay in treatment of PM, PM-CAD system showed 100% diagnosis accuracy of detecting three clinically misdiagnosed PM cases which subsequently underwent surgical treatment (two cases of Cushing's disease and one case of thyroid-stimulating hormone, TSH, secreting PM; Supplementary Figure 6B). The diagnosis of thE misdiagnosed PM was confirmed by histopathology examination and relevant clinical information (Supplementary Figure 6 and Supplementary Table 5).



Browser-Based Software Application

The browser-based software was designed to assist the PM diagnosis of pituitary MR images from different hospitals, which is hosted at http://www.pituitarymicroadenoma.com. Even without graphics processing unit (GPU) acceleration, the application takes only 1–2 s to analyze all MR images from a patient. Once DICOM files (the coronal dynamic enhancement T1-weighted imaging (T1W) sequence) are uploaded to the software, PM diagnosis outputs can be presented. The software interface is presented in Supplementary Figure 7. In a prospective study, we have tested the efficacies of our PM-CAD in the division of endocrinology in our hospital. Our results indicate that the PM-CAD system is an excellent screening test for the presence of PM. Over a period of 1 month, our PM-CAD system was able to detect the presence of 11 PM patients with a 97% accuracy rate (of 48 infertile patients and 25 patients with pituitary MR examination).




DISCUSSION

In this work, we developed a deep learning system (namely, PM-CAD) to diagnose PM from MRI. As we know, it is the first attempt to focus on PM diagnosis by using deep learning, although similar works have been proposed for pituitary adenoma (7–9, 16). Diagnosis of PM is challenging due to its tiny size and various anatomical structure (1–3). We found that our PM-CAD system can accurately diagnose PM from MRI without additional information, the system achieves a 96.5% diagnostic accuracy, which is comparable to radiologists with over 10 years of professional expertise.

Several previous works have attempted to analyze pituitary adenoma using MRI. Ugga et al. (9) used a machine learning method to extract MRI-based radiomics to predict the proliferative index of pituitary macroadenomas. Qian et al. (7) employ a CNN network to diagnose pituitary adenoma from MRI, they evaluated a 149 participants dataset, which includes pituitary macroadenoma and microadenoma. Wang et al. (16) created an automated segmentation method for the sellar region, several tools to extract invasiveness-related features of pituitary adenoma and evaluate their clinical usefulness by predicting the tumor consistency. In this study, we focus on the diagnose of PM from the PM-CAD system with a large dataset. We show that our PM-CAD system outperforms the model developed by Qian et al. (7). Because of our PM-CAD system can specifically extract PM features from pituitary MR images and trained with more data. In addition, our model was validated in three hospitals and showed excellent generalization ability.


Strengths and Limitations

Our work has the following strengths. First, we showed that this PM-CAD system is a rapid, reliable tool to diagnose PM with a high accuracy in both internal and external datasets. Second, PM diagnosis requires experienced radiologists, but the exhausting workload raises the misdiagnose rate. Our PM-CAD system can be used as an assistant tool to reduce the workload of radiologists. Our PM-CAD system achieves comparable diagnostic accuracy to experienced radiologists and can make a decision in 1–2 s. Third, medical resources are not evenly distributed, that is, experienced radiologists mostly worked in economically developed areas hospitals while economically underdeveloped areas are lack experienced radiologists (4, 5). Our online accessible PM-CAD system can provide PM diagnosis to these areas and improve their PM diagnostic capabilities. Last, training a radiologist is costly and time consuming. It usually takes more than 10 years to train a qualified radiologist (4, 5). Our PM-CAD system is trained from annotated data and takes few time (about 30 s per patient) to improve its performance when more data are provided.

Our PM-CAD system remains several problems to be solved. First, although our PM-CAD system achieves a 96.5% diagnostic accuracy, this implies that 3.5% of cases may potentially be misdiagnosed in practice. To further improve the diagnosis performance of the PM-CAD system, more data should be collected and used to train our models. Second, when more new data are available, it would be better than our PM-CAD system can perform model self-update, a continual learning approach can be introduced to keep our system learning. Third, MRI scan data are unique to patients, with privacy concerns, these data are not allowed to distribute out of the hospitals. Therefore, our PM-CAD system cannot be fine-tuned in a specific hospital. In future work, we will use a federated learning framework to fine-tune our models in a privacy-preserving manner.




CONCLUSIONS

In summary, we have developed a deep learning-based system (namely, PM-CAD) to detect PM from MRI. A Total of 1,520 participants datasets have been used to train, validate, and test our system. Our PM-CAD system achieves a diagnostic accuracy comparable to radiologists with over 10 years of professional expertise. In the study, our PM-CAD system shows excellent generalization ability. Results from this work highlight the potential applications of deep learning on the diagnosis of patients with PM. With the rapid development of computing power, deep learning algorithms can surpass the gold diagnosis standard for the detection of PM. Machine learning for the diagnosis of PM will serve as an important component in improving patient care and outcomes.
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Supplementary Method. A detailed description of PM-CAD Model. PM-CAD, Pituitary microadenoma-computer-aided diagnosis.

Supplementary Figure 1. Cases of 4 misdiagnosed pituitary microadenomas. (A) 4 consecutive pituitary MRI scans over a period of 20 months in a misdiagnosed patient with pituitary microadenoma. The radiologists have not detected the pituitary microadenoma during the first 3 MRI examinations. A functional microadenoma has been localized by the subsequent ACTH examination of the inferior petrosal sinus in the region of right pituitary gland. On the 4th MRI scanning, two microadenoma are detected by radiologist. (B) Additional 3 cases of misdiagnosed microadenoma. Patient 1 has a very small microadenoma with a diameter <3 mm. Patient 2 has an irregularly shaped microadenoma. Patient 3 has two microadenoma (with diameters of 2.8 mm and 6.1 mm, respectively) and the smaller one was misdiagnosed. The comprehensive clinical data for patients were listed in Supplementary Table 1. ACTH, Adrenocorticotropic Hormone; MRI, magnetic resonance imaging; T1WI-COR, T1 weighted imaging-coronal. MRI bar = 5 mm. The yellow arrow and the area inside the red circle represent adenomas.

Supplementary Figure 2. Workflow diagram for the validation datasets. PM, pituitary microadenoma; MRI, magnetic resonance imaging.

Supplementary Figure 3. Overview of our PM-CAD system. (A) First the MR images are fed into our PM-CAD system for automatic diagnosis. The proposed PM-CAD system consists of two models: (B) the pituitary detection model localizes the pituitary region in cerebral MRI. The MR images are processed with multiple convolutional layers and two maps (classification map is used to predict the center and the regression map is used to refine the height and width of the rectangle box) are produced to predict a rectangle box enclosing the pituitary region. The pituitary rectangle region is cropped, stacked, and then fed into the PM diagnosis model. (C) It employs the proposed PM-CAD model to extract features. A softmax layer is employed to transform the feature into the presence probability of PM. CAD, computer-aided diagnosis; MRI, magnetic resonance imaging; MR, magnetic resonance; PM, pituitary microadenoma.

Supplementary Figure 4. Performance of the PM-CAD system on the training datasets. (A) Accuracy curves achieved by the PM-CAD system on the development and testing datasets. (B) Cross entropy loss curves achieved by the PM-CAD system on the development and testing datasets. We train the PM-CAD system for 500 epochs.

Supplementary Figure 5. The PM-CAD system outperforms 6 radiologists in AUC of PM diagnosis. (A) ROC and AUC: ROC curve shows the true positive rates (sensitivity) with respect to different false-positive rates (1-specificity). The ROC curve shows that the PM-CAD system outperforms 6 radiologists. The AUC of PM-CAD system is 95.6% better than our best radiologist#6 (AUC 95.0%). (B) Weighted error. A penalty weight of 2 is applied to false-negatives and a penalty weight of 1 is assigned to false-positives. The PM-CAD system produces a weighted error of 10%, whereas the radiologists produce a weighted error of 21.67%. (C,D) The negative likelihood ratio and the positive likelihood ratio: The negative likelihood ratio is defined as the false-negative rate over the true negative rate, so that a decreasing likelihood ratio <1 indicated increasing probability the absence of PM. The positive likelihood ratio is defined as the true positive rate over the false-positive rate, so that an increasing likelihood ratio > 1 indicated increasing probability the diagnosis of PM. The confidence intervals show that the PM-CAD system demonstrates statistically better screening performance in terms of both negative likelihood ratio and positive likelihood ratio than radiologists. Radiologist 1 & 2: with < 5 years professional experience, Radiologist 3 & 4: with 5 - 10 years professional experience, Radiologist 5 & 6: with > 10 years professional experience. PM, pituitary microadenoma; receiver operating characteristics (ROC); the area under ROC curve (AUC).

Supplementary Figure 6. The MRI and histological validation of double positive and false-negative cases. (A,B) 3 double positive and 3 false-negative cases, which were functional PM, as confirmed by subsequent pathological examination. The comprehensive clinical data for these patients are listed in Supplementary Table 5. PM, pituitary microadenoma; MRI, magnetic resonance imaging; AI, Artificial intelligence; HE, hematoxylin and eosin; ACTH, adrenocorticotropic hormone; GH, growth hormone; TSH, thyroid stimulating hormone; PRL, prolactin. MR bar = 5mm. Pathology bar =100 μm. The yellow arrow indicates a pituitary microadenoma.

Supplementary Figure 7. The browser-based software to aid the diagnosis of PM. As long as we upload the pituitary MR images (DICOM), the software will tell you whether the patient suffering from PM disease. This browser based tool can be accessed at http://82.157.181.77/.

Supplementary Table 1. The workload of radiologists with different professional experience in human-computer competition. All participating radiologists are general radiologists (no specialization). Workload analysis was performed on the participating radiologists for 1 year.

Supplementary Table 2. Confusion Matrices for testing and validation of dataset A (internal and external datasets). Data are numbers of images. a, true-positive; b, false-positive; c, false-negative; d, true-negative.

Supplementary Table 3. The diagnostic performance for Human-computer competition according to temporal validation set B (n = 100). Unless otherwise specified, data are percentages, with numbers of images in parentheses and 95% confidence intervals in brackets. F1 score, the harmonic mean of PPV and sensitivity. NPV, negative predictive value; PPV, positive predictive value. Radiologist 1 & 2, < 5 years professional experience; Radiologist 3 & 4, 5 - 10 years professional experience; Radiologist 5 & 6, > 10 years professional experience.

Supplementary Table 4. Confusion Matrices for Human-computer competition according to temporal validation set B (n = 100). Data are numbers of images. a, true-positive; b, false-positive; c, false-negative; d, true-negative.

Supplementary Table 5. The patient clinical data in Supplementary Figures 1, 6. PM, pituitary microadenoma; BMI, Body Mass Index; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; HR, Heart Rate; TSH, Serum Thyroid-stimulating Hormone; FT4, Free T4; FT3, Free T3; TSTO, Testosterone; PRL, Prolactin; PRGE, Progesterone; LH, Luteinizing Hormone; E2, Estradiol; GH, Growth hormone; IGF-1, Insulin-like Growth factor-1; COR, cortisol; ACTH, adrenocorticotrophic hormone; PZC24, 24-hour urine free cortisol; IPSS, inferior petrosal sinus sampling; MRI, Magnetic Resonance Imaging. FT3 (range 3.5–6.5 pmol/L). FT4 (range 11.5–22.7 pmol/L). TSH (range 0.55–4.78 uIU/mL). TSTO (range female 0.5–2.6, male <50 years 4.94–32.01 nmol/L). FSH (range female 2.5–10.2, male 0.95–11.95 mIU/mL). PRL, (range female 59–619, male 72.66–407.4 uIU/mL). PRGE (range female 0.5–4.5, male 0.2–1.040 nmol/L). LH (range female, 1.9–12.5, male 0.57–12.07 mIU/mL). E2 (range female, 71.6–529.2, male 40.4–161.5 pmol/L). GH (range <8 ng/mL). IGF-1 (range 116–358 ng/mL). COR (8 Am range 118.6–618 nmol/L 0.4 Pm range 85.3–459.6 nmol/L). ACTH (8 Am range <10 pmol/L). PZC24 (range 153.2–789.4 nmol/ 24-h)—means the patient did not measured.
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A main goal of Precision Medicine is that of incorporating and integrating the vast corpora on different databases about the molecular and environmental origins of disease, into analytic frameworks, allowing the development of individualized, context-dependent diagnostics, and therapeutic approaches. In this regard, artificial intelligence and machine learning approaches can be used to build analytical models of complex disease aimed at prediction of personalized health conditions and outcomes. Such models must handle the wide heterogeneity of individuals in both their genetic predisposition and their social and environmental determinants. Computational approaches to medicine need to be able to efficiently manage, visualize and integrate, large datasets combining structure, and unstructured formats. This needs to be done while constrained by different levels of confidentiality, ideally doing so within a unified analytical architecture. Efficient data integration and management is key to the successful application of computational intelligence approaches to medicine. A number of challenges arise in the design of successful designs to medical data analytics under currently demanding conditions of performance in personalized medicine, while also subject to time, computational power, and bioethical constraints. Here, we will review some of these constraints and discuss possible avenues to overcome current challenges.
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1. INTRODUCTION

Contemporary biomedical research and medical practices are increasingly turning into data-intensive fields, for which computational intelligence approaches, such as those based on artificial intelligence and machine learning (AI/ML) methods are becoming the norm. Due to the specific nature of these fields, the integration and management of the ever-growing volumes of heterogeneous data involved, often presents a number of challenges. These challenges become even more relevant in the light of the importance that AI/ML are gaining, establishing themselves at the core of the state-of-the-art in biomedical research and clinical medicine (1–3), as well as public health and healthcare policy (4–6).

From the standpoint of biomedical research, a number of large, data-intensive collaborative projects, such as the International Hap Map project (7, 8), The Cancer Genome Atlas (TCGA) (9–12), the 1000 Genomes (1000G) study (13–16), the GTEX consortium (17–19), and the Human Cell Atlas (HCA) (20, 21), and others are establishing novel frameworks for the molecular study of health and disease. Such frameworks are firmly supported by robust database management and integration strategies that are allowing them to develop into central tools for basic and translational biomedical research.

Relevant as genomics and high throughput molecular studies are for biomedicine, there are other relevant players in the medical data arena. Among the more important in the present context are large scale clinical and phenotypic studies. Large clinical cohorts creating data-intensive outputs are of course not new, but the extent of their outreach and the complexity of the resulting data sets are growing exponentially fast. Starting from large scale clinical surveys, such as the Framingham Heart study (22, 23), the Wellcome Trust Case Control Consortium (24) and moving unto efforts like the UK Biobank that combines large scale clinic and phenotypic data with ultra-high-throughput genomic testing (25–28) that for the last 15 years has been generating massive data corpora used for their own means but also encouraging and feeding other data-intensive analytical efforts from genetic disease association (29) to brain imaging (30) to psychology (31) and social determinants of health (32), to name just a few instances. It goes without saying that the impact that these projects have reached on the basic and clinical settings, but also in the epidemiology and public health areas has been enormous.

In the context of AI/ML, however, the focus is shifting into translating the astronomical amounts of data generated ultimately into products and policies able to impact both the patients' and the general public health. This has been, for instance, one of the central goals of the U.S. initiative in Personalized Medicine (33, 34). That is, how to develop analytic strategies—many of them founded on automated learning, essential, given the size of complexities of current health-related data corpora—to pass from large scale, heterogeneous data to useful (even actionable) medical information (35).

Aside from large scale, even multi-national efforts—such as the ones in the consortia just discussed—, another area of intensive interest regarding data-mining in medicine has been the development of analytical strategies to effectively mine the ever growing body of Electronic Health Records (EHR), that has been perceived as a largely forgone and under-utilized data source (6, 36–39).

One main challenge in knowledge discovery from EHRs is that electronic medical records are highly heterogeneous data sources with a complex array of quantitative, qualitative, and transactional data. Disparate data types include ICD codes (mainly used for pricing and charging hospital procedures), biochemical and lab tests, clinical (text-based) notes, historical archives of medical interventions, therapies and even pharmaceutical deliveries. These data sources are often captured by dozens of individuals (sometimes with biased criteria) for each instance. Hence EHR data is quite difficult to analyze, in particular if one is looking (as is often the case if AI/ML techniques are being considered) multi-patient institutional and even multi-centric levels.

In brief, EHRs were not developed to be used as a resource for automated learning so they are not designed with data structures in mind. Since EHRs are first and foremost adapted for clinical and hospital logistics, data modeling and learning will often face challenges related to structural heterogeneity from their early stages, either by adapting existing EHR strategies or by re-designing them (40–44).

In the quest for more efficient healthcare interventions, based on information-optimized clinical practice and policy, AI/ML will certainly play a key role in going from a medicine approach—based mainly in the skills of the well-trained clinician—to one based also in detailed (often automated) analysis of the individualized interplay of molecular interactions and physiological traits with environmental and even social elements, thus, delivering the promise of personalized medicine (1, 2, 45, 46). The development of this analytic approach to personalized medicine (often termed Precision Medicine) involves a number of theoretical frameworks from systems biology to computational biology, biomedical informatics, and computational medicine. This is so, since health and healthcare are multi-dimensional in nature, hence, their study must consider information at the genetic, molecular, clinical and population levels. Health and healthcare analytics, however, must also evaluate and assess how to cope with the complexity and natural biases of the plethora of medical-related databases in which said molecular, clinical, and epidemiological data resides. This, again, points out to the need of customized, scalable computational and analytical tools for pattern discovery and hypothesis generation and testing. AI/ML is turning into a cornerstone of personalized medicine (6, 47–49).

In order to present a panoramic view on how these and other challenges may be overcome toward an optimized application of machine learning and artificial intelligence to analyze biomedical and health-related data in a Precision Medicine context, the rest of this work will proceed as follows: The next section (The role of data in training good AI/ML models) will establish the necessity to have proper data as input to machine learning and AI models useful in Precision Medicine. We will discuss how having very large data corpora (a.k.a Big Data) is great, but often carries with it the so-called curse of dimensionality and the need to perform feature selection, i.e., to select relevant pieces of information among very large and complex databases. We will also elaborate on the challenges created by diverse and heterogeneous data types and sources, bringing problems, such as class imbalance (study groups of sometimes extremely disparate sizes, that are problematic to analyze for many machine learning algorithms).

The following section (Precision medicine: transforming biomedical evidence with data analytics) will outline how the tenets of computational intelligence and machine learning may be used to advance medicine turning it (even more) into a full-evidence based science. We will see that in order to impact biomedical research, clinical practice and public policy, AI/ML approaches could be helpful to extend our capacities to generate biomedical knowledge, contribute to knowledge dissemination, translate personalized medicine into clinical practice and even empowering the patients. In order to develop, large scale data analytics in medicine should be able to become translational, i.e., moving faster from research environments to clinical settings to ultimately benefit the patients. Then, we will move on in the next section, to discuss the main challenges involved in the use of computational learning toward Precision Medicine. These include processing heterogeneous and unstructured data, working on collaborative and cloud-based resources, developing standards for data sharing and collaboration, implementing software solutions to support large scale data analytics under the biomedical and clinical diverse data ecosystems.

Section 5 will deal with one of the main challenges involved in the quest to effectively implement AI/ML in Precision Medicine: Data Integration. Biomedical and clinical knowledge deals with a plethora of phenomena, ranging from the molecular to the socio-political. Currently, we have technologies to massively measure or infer data from most of these domains. How to make sense of these different dimensions to turn them into a coherent, intelligible body of knowledge useful for the researchers, but more importantly, for practising clinicians, the healthcare providers and the patients is an extremely challenging endeavor. Interestingly, a source of information that is becoming key for AI/ML approaches in Precision Medicine is metadata. Metadata, i.e., auxiliary data sources often used to define other data types. Having one's genome sequence is of little use if we do not have a proper annotation file; and knowledge of the zip code or educational level of a patient may provide actual clues for their personalized treatment. Since many data types are actually pre-processed prior to the analysis, it is also relevant to know how has the data been treated prior to its current form. Information of this kind is also considered metadata. Metadata is, hence, becoming more and more relevant. Managing such large amounts of personal data (what can be more personal for us than our healthcare data?), however, does not come without a price. Ethical and legal considerations pose no small problem if one is to provide fair and minimally invasive use of the data, especially if it is of a sensible or private nature. Some of these issues are discussed in section 6. Section 7 is devoted to present the Data Management Plan, a document that will be extremely useful to set the guidelines of any data-intensive project being a research protocol, a clinical trail or a healthcare management design. Finally, in section 8, we present some Conclusions and Perspectives.



2. THE ROLE OF DATA IN TRAINING GOOD AI/ML MODELS

The current development of highly sophisticated and often quite effective AI/ML and the accompanying proliferation of large scale data sources in the biomedical setting, has raised the expectations regarding the many potential benefits that can be derived from the marriage of good methods + good data. However, in order for these large amounts of data to be useful in producing good AI/ML models, size is not the only thing that matters, a question that is often overlooked (50, 51).

Clinical and biomedical data comes in a wide variety of sizes, forms, and formats; it is often complex, heterogeneous, poorly annotated, and often unstructured. Now, each of these issues: size, variety, formatting, complexity, heterogeneity, bad annotation, and lack of structure, pose a challenge to effective AI/ML modeling (see Figure 1 section ①) (52).


[image: Figure 1]
FIGURE 1. A workflow for data integration for AI/ML modeling in precision medicine. ① A wide variety of data sources with diverse features exists. Hence, different approaches to data collection and pre-processing are needed ②. ③ Integrating such diverse and heterogeneous data is one of the grand challenges to the successful application of AI/ML approaches to Precision Medicine. Overcoming such challenges will bring important improvements to Precision Medicine ④.


Regarding size, for instance, even when we often deal with big data—usually considered an advantage—, it is common that these data sources suffer from the so-called curse of dimensionality (CoD), a situation in which the number of variables or features is much larger than the number of experimental samples or realizations. CoD is particularly evident in the case of genomic and transcriptomic analyses for which the number of genes or transcripts is in the order of tens of thousands whereas the number of samples is rarely larger than a few hundreds or a few thousands at most. Even more complex is the scenario when one is measuring, for instance, chemical modifications, such as DNA methylation; the current experimental protocols allow for the simultaneous measures of five thousand hundred or more methylation probes (52).

CoD leads to the p > > n problem in machine learning (53): increased data dimensionality may cause AI/ML methods to suffer from overfitting. Overfitting, in turn, implies that the methods are highly accurate on training data while showing low performance on generalization or handling unseen data. Potentially good methods will fail to deliver in real life applications. One approach to deal with the CoD is performing data dimensionality reduction prior to training the ML methods. The most common means of data dimensionality reduction are feature extraction in which data is projected from a high dimensional space to a lower dimensional space and feature selection that reduces dimensions by identifying a relevant or informative subset of the original set of features (54).

Feature extraction methods, such as principal component analysis (PCA) and other methods based on eigenvalue decompositions, non-negative matrix factorization (NNF), t-distributed stochastic neighbor embedding (t-SNE) and others, allow for easier data visualization, exploration, and compression, as well as latent factor profiling. On the other hand, feature selection methods consists in one or more of the following strategies: data filtering (DF), data wrapping (DW), and data embedding (DE). The purpose the former (DF) is to select a subset of relevant features in a model independent fashion an include methodological approaches, such as ANOVA, Pearson's correlation, information theoretical measures, such as entropy and mutual information, constrained regressions, and maximal relevance minimal redundancy (mRMR) methods. DW methods look for the best combination of features trained by a particular predictive model and include the recursive feature elimination (RFE), jackstraw and the Boruta-Random Forests (BRF). DE are a combination of DF and DW that works by performing feature selection while building a predictive model, perhaps the best known example of DE method is the least absolute shrinkage and selection operator (LASSO) and its extensions, such as the elastic net algorithm (52).

Data variety/diversity and data heterogeneity also result problematic for the implementation of AI/ML modeling in Precision Medicine. Heterogeneity emerges from many situations, such as substantially different types of variables (or different coding) in the various data sets (think of EHRs from different hospitals), mismatched distributions or scaling including disparate dynamic ranges (say we have combined expression data from microarrays and RNASeq technologies), diverse data modalities (continuous signals, counts, intervals, categories, pathways, etc., derived from molecular and imaging experiments) and formats (say European versus American reporting standards) (Figure 1 section ②). Integrating heterogeneous data types may be done naively, by just concatenating features from disparate data sources, but this reduce the number of working to the use of decision tree (DT)—like models that suffer from overfitting. An alternative would be to use penalized regression (e.g., elastic nets) with several regularization strategies, though this may in turn bring challenges regarding interpretability of results (51, 52). Better results may be obtained by resorting to block-scaling (55) or multiple kernel learning methods (56).

Due to the complexity intrinsically associated to biomedical and clinical data, but also due to difficulties in subject/sample procuration and in data acquisition (data generating/sampling technologies may fail) it is common to have problematic circumstances, such as missing data (from instances not measured or measured defectively), class imbalance (widely different sample sizes in different feature groups) and even rarity (an extreme form of class imbalance) (57). There are several learning strategies to cope with missing data and class imbalance, ranging from the so-called listwise deletion (i.e., completely deleting the problematic sample from the study), imputation (i.e., inferring the missing value from expectation methods from the sample-wise profiles or even from feature-wise profiles) suing methods, such as k-nearest neighbor replacement, full conditional specification, stochastic gradient boosted trees, and other ensemble regression frameworks (52).

Class imbalance is another problematic-yet-pervasive situation in large scale data analytics (LSDA) of biomedical and clinical data. This fact becomes quite relevant since the most machine learning methods, such as support vector machines, random forests, and artificial neural networks assume balanced class distributions. Hence, these classifiers tend to overestimate patterns from the majority class, and underestimate those features characteristic of the minority class or classes. To overcome this limitation a class of ML approaches termed class imbalance learning (CIL) methods have been developed. CIL algorithms can be based on data sampling (e.g., random undersampling, bootstrap sampling, etc.); on algorithm modifications incorporating the inherent biases or skewness in the learning steps (e.g., weightedSVM, weigthedELM) or in ensemble learning in which several ML methods are applied and the results are consensed or averaged (52, 58).

Furthermore, even if most of these problematic issues may be solved, at least partially, with the analytic approaches just discussed, two relevant issues remain. First, real life datasets often have not one, but several (even all) of these challenging features. The ML methods useful to tackle some of these limitations may have poor performance due to others. Leveraging alternatives by evaluating the pros and cons may not be trivial. Second, every one of the methods for LSDA in imperfect/real-life datasets has its own set of assumptions and limitations. AI/ML researchers in biomedicine should be very aware of this and very cautious when combining methods and taking conclusions. However, as we will see in the next section, advancing biomedical and clinical research by using AI/ML approaches often worth all the efforts.



3. PRECISION MEDICINE: TRANSFORMING BIOMEDICAL EVIDENCE WITH DATA ANALYTICS

Since the later years of the 20th century, following the pioneering work by Cochrane, Eddy, and others (59–62) efforts have been directed toward building a systematic approach to medical and public health decisions, one founded not on anechdotic or individual expertise, but rather in the light of a full inspection of the existing clinical and biomedical research. This approach, called Evidence-Based Medicine (EBM) (63) aimed at the comprehensive use of all the accumulated scientific and clinical evidence to develop health related interventions and policy. At that time EBM was founded on anecdotal clinical experience, published case reports, meta-analyses and systematic reviews, and randomized controlled trials (64, 65). No high-throughput molecular or individual disaggregated information was considered at the time; even the already existing large-scale epidemiological data was not exploited fully due to data availability constraints (66, 67).

Even if the EBM paradigm has been superseded for various reasons, perhaps its main relevance resided in bringing to attention the fact that, as a rule, healthcare-related decisions should be supported by objective, stringent evidence rather than being left to the subjective opinion of some individual professional, expert as they may be. With the advent of larger, well-curated data corpora and more powerful ways to analyze the data and transforming it into useful information, EBM ideals have been embraced and incorporated into what has been called Precision Medicine (68–71).

Aside from the spectacular changes in information technologies in recent times, another main booster of this transformation was the genomic revolution driven by the human genome project (HGP) (72–74). The promises of the HGP,—many of them still undelivered (75)—pointed out to data-based biomedicine (particularly the identification of genetic variants behind the diseased phenotypes), as a key player to identify targets and customize pharmacological and other therapeutic interventions leading to a dramatic improvement of population and individual health (76, 77).

In view of this emerging paradigm, what is the role that AI/ML may play in its establishment as the standard approach in biomedical research, clinical practice and public policy? It has been argued (2, 6, 78) that there are at least four development avenues in which LSDA may impact healthcare: (i) LSDA may enlarge the capacity to generate new biomedical knowledge, (ii) LSDA may provide a support for healthcare-related knowledge dissemination, (iii) LSDA can become a tool for translating personalized medicine initiatives into clinical practice (for instance, by integrating molecular and EHR data on a single framework), and (iv) LSDA supplemented with simplified user interfaces can become a vehicle for empowering of the patients, helping them play a more active role in their own healthcare decision making.

In order to deliver such benefits, LSDA needs to be able to address questions, such as how to deal with highly unstructured heterogeneous data (say from EHRs) via high-performance computational techniques for quantitative analytics, but also for data mining, literature mining, and natural language processing algorithms over integrated pipelines. Particularly challenging are the scenarios related to clinical practice since they would be ideally processing such enormous amounts of unstructured data in cuasi-real time, if LSDA is intended to be beneficial for the individual patient (79, 80). In the following sections, we will discuss some of the opportunities and limitations of applying AI/ML (often in the form of LSDA) in health-related settings.


3.1. Personalized Medicine: From Data Lakes to Patient Beds

LSDA and AI/ML may also play a role in supporting the clinical practitioners to keep up-to-date with the current scientific literature in their fields, an issue that has been struggling attending physicians for a while. In brief, if a medical doctor wants to treat their patients with the current best available therapeutic options, difficulties arise in trying to define what is currently considered better. As is known, the available scientific literature regarding a single medical speciality has been already overwhelming. The situation becomes much worse when one is dealing with multi-morbid patients since clinical guidelines and algorithms are often aimed at the single condition scenario (81–85).

Embracing the computational learning paradigm, the clinician may be armed with a new set of tools allowing for suggestions/surveys supported by real-time patient data analytics integrating, both the complexity of the patient's genetic background, environmental conditions, and the corresponding comorbidities with the current literature standards of care (Figure 1 section ③) (6, 33, 46, 86–88).

Aside from standard biomedical and clinical data, LSDA allows to further integrate occupational, social, physiological, and even behavioral information of the individual patient (available in social network, wearable devices, and other cloud-based resources) (89–92) to enhance the clinical profiles. To reach this point, however, there are important conundrums to be solved. In particular, novel computing and analytical frameworks should be designed to find patients' similarities and differences, but also to discover patterns highlighting their connections and discrepancies with the aim of calculating, for instance, personalized disease risk profiles, akin to polygenic risk scores, but under a much more general view—engulfing all the already discussed data types—allowing for individualized proactive medicine (93–95).

Hence, by integrating phenotype and disease-history based approaches, LSDA aims to advance personalized disease prediction, improve healthcare management and even contribute to an overall positive impact to individual wellness (Figure 1 section ④) (96–100). In doing so, AI/ML approaches are collaborating to a shift in the emphasis of clinical medicine from a disease-centered view to a patient-based practice (101, 102), a paradigm that has been long known since Hippocratic times and has been resumed a hundred years ago by the Spanish endocrinologist Gregorio Marañón who stated that there are no diseases but patients.

The panorama we have just discussed seem to be quite promising, indeed AI/ML and LSDA have already brought relevant advances toward Personalized Medicine (34, 70, 103). However, a consensus has not been reached as to how to integrate the large scale data of EHR, the many heterogeneous databases on molecular, phenotypical and environmental information derived from large scale experimental, clinical and epidemiologic studies and the individual-wise data gathered from disparate sources, such as social networks and wearable devices to develop a personalized approach to medicine? (46, 48, 104–106).




4. CHALLENGES TO COMPUTATIONAL LEARNING IN PRECISION MEDICINE

Of the many challenges posed to AI/ML by ever-growing health and biomedicine data sources, one of them is paradoxically related to what is often perceived as its main driving force. Having large amounts of data is obviously beneficial for computational learning algorithms, the more data you have, the more robust your classifiers, regressions, and mining strategies will be. However, as the tendencies move toward Precision Medicine, we can see how some major sources of primary biomedical information, such as genomics (in particular next generation sequencing) and imaging are becoming progressively cheaper (107–109), hence allowing their widespread use, nevertheless the computational costs of processing and analyzing the data are, for obvious reasons, growing fast (110–114).

Hence, aside from the already discussed challenges of database structural heterogeneity and data type integration, a number of major limitations for the development of AI/ML in biomedicine belong to the computer systems domain (115). Those challenges are, for instance, in the development of consolidation, characterization, validation, and processing standards for the data; creating ontologies and knowledge relationships for entities, such as genes, drugs, diseases, symptoms, patients, and treatments, as well as their corresponding entity-relationship schemes (116–119).

Along these lines, recent advances in AI, in particular those directed to Natural Language Processing (NLP) have been incorporating tools of semantic web analysis, such as conceptual relational networks (120, 121), semantic-syntactic classification (122), and similarity mapping (123). The problem, again, is a matter of throughput: effective implementation (training, in particular) of such NLP tools is only enabled if one has extremely large data corpora being accessed on a concurrent fashion (124). The vast majority of hospitals, research labs and even pharmaceutical development facilities do not currently have access to the storage and computational power resources needed to perform these analyses. The current alternative to local processing is, of course, cloud computing (125–127). However, as we will see in the next subsection, performing LSDA in medical and biomedical data in the cloud is not a problem-free solution.


4.1. Precision Medicine, Machine Learning and Cloud Computing

The use of cloud computing in the analysis of clinical, biomedical and healthcare data has many advantages: (i) it helps to solve the issue of processing large amounts of data in real time (128, 129), (ii) may provide scalable, cost-efficient data analytics solutions (130). Cloud computing, however, brings some technical difficulties, such as the ones related to high-throughput data transfer infrastructures, distributed computer power over very large non-parallelizable tasks and perhaps the main challenge (that we will discuss more in depth in a forthcoming section) which lies in adapting the current distributed storage and processing paradigms in big data, while simultaneously allowing for full confidentiality of the data (since some of it may be highly sensible in nature) (131).

However, a number of cloud computing resources are becoming a standard for several omic studies, as it can be exemplified by Basespace a cloud-based sequencing analysis environment by Illumina, by the EasyGenomics platform of the Beijing Genomics Institute (BGI) and by European-based Embassy clouds as part of the Elixir Collaboration, by the NGScloud2 over Amazon Web Services (AWS) or by Galaxy-Kubernetes integrated workflows to name but a few instances (132–139).

It is worth noticing that standard cloud computing designs using distributed systems, grid computing, parallel programming, and virtualization on top of multi-layered environments (134, 140) are becoming adopted in LSDA in precision medicine due to their applications in the development of robust and secure distributed analysis (132). Indeed, as we already mentioned, cloud computing in LSDA may be implemented under several paradigms, such as: Platform as a Service (PAAS) (141–143), Infrastructure as a Service (IAAS) (144, 145), and Software as a Service (SAAS) (35, 146, 147).

These different standards for cloud computing have their particular pros and cons when applied to LSDA in Precision Medicine; for instance PAAS designs are suited for in-house software development or to integrate already designed libraries that can be implemented either by the user or by the cloud provider. Here we can mention healthcare, biomedicine, and bioinformatics services by providers, such as Google App Engine, Microsoft Azure MapReduce Hadoop, and others. In contrast, IAAS providers commonly offer high performance computing and massive storage facilities (sometimes called HPC-farms or data centers) including only the minimum operating system/computing environment requirements: this is often the case of general plans offered by companies, such as Amazon Web Services, HP Cloud, Rackspace, and Joyent (148–151).

Of these different paradigms, SAAS results as the more complete, as well as the more costly and less flexible. In SAAS the user is able to perform LSDA via pre-established (sometimes customized) applications sitting on a remote cloud infrastructure. This provides almost immediate access and usability with minimum installation and customization requirements from the user. However, due to these very reasons, the user has less control over the specifics of both, the computing environment and the actual algorithms used to perform analysis. The risk is that some of the more sophisticated methods will develop into black boxes. A somewhat intermediate solution is what can be called Code-as-a-service that is, SAAS with full access to the code (often only by specific requirement of the user). This is the case of the Cloud BioLinux service (152). The Cloud BioLinux suite has a set of pre-installed services, like a Galaxy server (153), access to the BioPerl programming language (154), BLAST (155), R/Bioconductor (156), Glimmer (157), ClustalW (158), and other general purpose (mostly bioinformatic-related) libraries/packages/environments (35, 159, 160).

Aside from molecular biology and genomics oriented applications, SAAS has also been developed in areas, such as medical diagnostics. In this regard, one can mention DXplain, one of the earliest developed decision support systems available. DXplain that was created by scientists, physicians, and software engineers at Massachusetts General Hospital http://www.mghlcs.org/projects/dxplain. DXplain may be used as a search engine (akin to a searchable eBook) providing the concise yet detailed description of more than 2,600 medical conditions, indexed by their main signs and symptoms, as well as their etiology, pathology, and prognosis. More relevant to this discussion is the use of DXplain as a case analytics tool, processing a set of clinical findings (signs, symptoms, laboratory data) as an input to a computational intelligence engine that computes a ranked list of diagnoses related to the given clinical manifestations. Furthermore, DXplain provides supports its suggestions with evidence sources, suggests what further clinical information would be useful to collect for the conditions under consideration, and displays a list of relevant clinical manifestations (161, 162). IBM's Watson Health constitutes another example of a (commercial) SAAS system aimed to support clinical decision making by the use of computational intelligence methods www.ibm.com/watson-health/ (163). However, many researchers and clinicians have become skeptical of the tool due to initial over-promises from the company (164). Many other diagnostic support applications have been developed, most of them aimed at commercial use such is the case of ISABEL https://www.isabelhealthcare.com/ (165, 166) and others. However, due to commercial restrictions, their AI/ML assessment and their use in LSDA has been rather restricted (167, 168).

In the end, each health/biomedical/clinical research team will have to make a choice between these different levels of cloud services depending on its availability of technical staff (computational biologists, data scientists, statisticians, bioinformaticians, software engineers, and so on), the computer literacy and involvement of the biomedical researchers and the clinicians, the scope and extension of the projects and other constraints, including financial issues, local infrastructure, and confidentiality matters (169–173).

It is also needed to take into account that some LSDA applications in health and biomedicine demand usually high computing resources. One alternative that is gaining relevance recently is the design of hybrid servers combining traditional CPUs with Graphical Processing Units (GPUs). The use of GPUs on cloud-based environments is indeed favored, given their massively parallel architechture (MPA). MPA results advantageous not only for actual computations, but also for input/output (I/O) operations (174). An important fraction of GPU-based applications in computational biology and biomedicine are implemented under (175–177). However, it remains a challenging endeavor to develop and implement parallelization algorithms, efficient enough to make sense of heterogeneous data sources, such as the ones coming from omic technologies, from EHRs, population surveys (127, 178).

Aside from the already mentioned cloud-based solutions, most research and clinical institutions will need to build some local infrastructure and algorithmics suited for their particular needs. In the search for semi-automation and reproducibility, some relevant general tasks are better managed by resorting to specialized software and algorithmic suites developed with building workflows and pipelines in mind. We will present some of the more widely used of such suites or packages for LSDA useful in Precision Medicine in the following subsection.



4.2. Software Resources for Computational Medicine

Whether implementing local, cloud-computing, or hybrid solutions, choices need to be made regarding appropriate algorithms and software for data pre-processing, processing, and analytics. A number of general purpose approaches have been developed, such is the case of the suite of R-based algorithms and programs in the Bioconductor repositories (156), the pipeline management tools, such as Snakemake (179, 180) and Taverna (181) or the cloud-based development suites Helastic (182) and BioNimbus (183).

For sequence analytics, a central player for quite some time has been the genome analysis toolkit (GATK) by the Broad Institute (184, 185). The GATK suite has been developed for LSDA of genome sequencing data mainly focused on high-accuracy variant discovery and genotyping useful in the clinical and biomedical research environments (186). Other computational omic analysis tools useful in the context of Precision Medicine include dRanger for the automatic identification of somatic rearrangements in Cancer (187), Athlates for the determination of HLA immuno-genotypes from exome sequencing data (188), the Trinity suite for De Novo RNA-Seq analysis (189), the Hail library for scalable (bio-bank scale) genomic data exploration (190), and the GWAS analysis suite Plink (191), to name but a handful instances.

More broadly applicable suites have been also developed, such as GenePattern (192, 193), the running/development platform Galaxy (153, 194, 195). Biological function databases like Gene Ontology (196, 197) and its generalizations (198, 199), the MONA (multi-level ontology analyses) programs (200), and other medium-to-high level analysis tools, such as the network analysis suite Cytoscape (201) or the structural biology libraries BioDAS (202) to mention but a handful of the many available options.

Aside from genomics and purely molecular/omic studies, other computational tools have been developed and widely used in the biomedical and clinical settings. Such is the case of CellProfiler for image analysis and processing (203) that has been proved to be quite useful for machine learning applications (204, 205). Automating data throughput in biomedical and clinical applications may also be useful even for relatively low demand tasks under certain circumstances; for example, automated RT-PCR data processing as implemented in ARPA (Automated RT-PCR analysis) turned out to be crucial for testing efforts during the COVID-19 pandemic (206). AI/ML modeling based on facilitated access data may indeed become a key tool to tackle with current and future pandemics (207).

Moving on to clinical applications, some of the most popular computational tools for managing clinical data (particularly with clinical trials in view) are OpenClinica (208), the Integrated Data Repository Toolkit IDRT (209) and the VISTA trials suite (210), and the comorbidity risk assessment tool comoR (211). Tools for the management of high-throughput day-to-day clinical records commercial and academic/open source have flourished in recent times. Some of the more widely adopted open source software solutions are OpenEMR (212), OpenMRS (213), WorldVistA (214). Some of these tools are actually enabling capacities to allow for the implementation of data mining and computational learning on their databases (54), however, as previously discussed, caution must be taken when using EHR data for automated discovery since a number of potential biases and confounders may arise (215, 216).

There are also some R-packages useful to manage EHR data. Such is the case of EHR: an Electronic Health Record and Data Processing and Analysis Tool https://cran.r-project.org/web/packages/EHR/index.html (217, 218), as well as rEHRhttps://github.com/rOpenHealth/rEHR (219).

Other software solutions from the R ecosystem useful in the LSDA applications in the clinical practice include babsim.hospital, a hospital resource planner and simulator https://cran.r-project.org/web/packages/babsim.hospital/index.html (220); bp a blood pressure analytics tool https://cran.r-project.org/web/packages/bp/index.html; and card a toolkit to evaluate the autonomic regulation of cardiovascular physiology via integrating electrocardiography, circadian rhythms, and the clinical risk of autonomic dysfunction on cardiovascular health data https://cran.r-project.org/web/packages/card/index.html (221).

Other software packages include radtools a set of utilities to extract and analyze medical image metadata https://cran.r-project.org/src/contrib/Archive/radtools/ (222); psrwe a library useful to incorporate real-world evidence (RWE) into regulatory and health care decision making https://cran.r-project.org/web/packages/psrwe/index.html (223, 224); clinDataReviewhttps://cran.r-project.org/web/packages/clinDataReview/index.html an environment to support exploratory analysis of data in clinical trial settings, patientProfilesVis a tool to create patient profile visualizations for exploration, diagnostic or monitoring purposes during a clinical trial https://cran.r-project.org/web/packages/patientProfilesVis/index.html; and even healthyR a full suite to review common administrative hospital data. Although this latter application does not seem to be related to LSDA in Precision Medicine, it is not uncommon the application of AI/ML methods to administrative data to infer, for instance, social determinants of health.




5. DATA INTEGRATION: CURRENT CHALLENGES

Computational limitations in LSDA for Precision Medicine are gradually being overcome. Deeper challenges, however, arise when we consider the question of how to develop coherent ways to make sense of the data, that is how to build models and analytical frameworks that allow biomedical scientists and clinicians to use all these currently available data types and resources in the best possible way as diagnostic and prognostic tools (225). In the context of genomics (and other omics) in biomedicine, important international efforts along these lines have been developed, such is the case of the ELIXIR-EXCELERATE collaboration (136), the STATegra project (226, 227), the SeqAhead consortium (228), and others (229, 230).

It must be stressed that most of the efforts of these—extremely relevant—endeavors are directed toward the integration of information on the molecular side of the spectrum of biomedical related data. Data integration at this level provides mathematical and relational models able to give a mechanistic description of the interplay between the molecular components of the cells (225, 231). This is of course fundamental to understand the rise of cellular and tissular phenotypes from its biochemical origins, but may result insufficient to account for the rise of disease in organs, individuals, and even populations. Recent advances have been done to extend these efforts to encompass LSDA on biological databases incorporating individual EHR data (232), as well as social and environmental information [the so-called social determinants of health (233)]; perhaps even incorporating constraints representing healthcare policy within a precision medicine framework (93, 234). Advances in AI will surely play a central role in the development of such integrated frameworks (235).

In this context, data integration allows the use of multiple data sources with several different (eve disparate) pieces of evidence to build (hopefully) interpretable models of the systems under study (236). Since these broad array of data sources may have quite different structures, levels of granularity and, in the case of quantitative measurements, different distributions and dynamic ranges, data integration is indeed a demanding endeavor, briefly subsumed in the question how can we put together these data sources to improve knowledge discovery? (237). Hence, being able to perform complex queries, build heterogeneous models and develop hierarchically nested data retrieval operations on multiple databases are core goals for data integration strategies useful for AI/ML models in Precision Medicine (235, 238–241).

LSDA in Precision Medicine is driven by two major sets of goals. On the one hand, we aim to develop high level intuition (HLE) from inductive analyses, via statistical learning and causal inference techniques. HLE may serve to sketch guidelines for current and future experimental and clinical research (242). On the other hand, AI/ML approaches may be useful for automated reasoning (AR), i.e., the non-supervised or semisupervised extraction of non-trivial patterns in dynamic databases (243–245).


5.1. The Need for Guidelines and Standardization to Support Precision Medicine

Machine learning and artificial intelligence approaches able to live up to these envisioned objectives will depend on the underlying data resources to a great extent. We will need, not only high throughput carefully curated databases, but also inter-operable data strategies. By creating integrated/integrable databases related to Precision Medicine we will enhance our data discovery and data exploitation capabilities, refine our algorithms for statistical assessment of data-driven discovery and improve our data standardization. Regarding data standards, there have been some advancements from the early days of the MIAME requirements (246, 247) for genomic data formats, now updated for next generation sequencing data (248) and even for single cell RNASeq experiments (249); to some more recent efforts for meta-data standardization (250, 251).

Focused efforts toward data standardization with AI/ML approaches in mind have been recently advanced. For instance, a multi-institutional group has recently compiled a document establishing guidelines on Minimum information about clinical artificial intelligence modeling by means of the MI-CLAIM checklist (252). MI-CLAIM has been developed as a tool to make reporting of AI/ML algorithms in medicine more transparent. This approach looks to solve issues related to interpretability, opaque documentation and scope of AI/ML methods in medicine. It consists of six parts: (i) Study design, (ii) Separation of data into partitions for model training and testing, (iii) Optimization and final model selection, (iv) Performance evaluation, (v) Model examination and (vi) Reproducible pipeline. Central to this standard is the MI-CLAIM checklist [Table 1 in (252)].

Aside from methods, standards need to be developed for all different aspects involved in biomedical data analytics and computational intelligence. From the patients/subjects to the clinical and analytical research, to academic and industrial approaches and back to the patients and clinicians. The National Patient-Centered Clinical Research Network (PCORNET) initiative https://pcornet.org/ of the US has been developed as a national resource where health data, research expertise, and patient insights are available to deliver fast, trustworthy answers that advance health outcomes (253). PCORNET was designed as a distributed data research network (DRN) built to facilitate multi-site observational and interventional research across the diverse (existent-at-the -time and future) clinical data research networks and other relevant players in the health data ecosystem.

By standardizing procedures, formats and approaches PCORNET looks up to deliver greater sample size and power of the studies, the ability to analyze the effects of the differences in practice and assessing heterogeneity in treatments and populations. It included the creation of a Data Standards Security and Network Infrastructure (DSSNI) task force aimed to identify the minimal data standards and technical specifications for data to be effectively shared and disseminated effectively. These actions will be directed to optimize the evaluation and improving quality assessment of the research projects and to maximize their concurrent impact (254). Other task forces within PCORNET are devoted to issues, such as Governance, Data privacy, Ethics, and regulation, Health system interactions, Patient and consumer engagement, Patient-generated outcomes, Clinical trials, Rare diseases, Biorepositories, and Obesity. These task forces (and other that are being added as they develop) are supervised by PCORNET's Project Management Office operating under a network-like structure rather than as a traditional hierarchical organization. The development and functioning of the approach are subject to continuous assessment and evaluation via the Foundational Data Quality model founded on the premises of optimal data curation (255).

A related initiative put forward by the National Center for Biomedical Computing of the US is the I2B2 (Informatics for Integrating Biology and the Bedside) https://www.i2b2.org/index.html. I2B2 was developed with the aim of enabling effective collaboration for precision medicine, through the sharing, integration, standardization, and analysis of heterogeneous data from healthcare and research; through engagement and mobilization of a life sciences-focused open-source, open-data community.. I2B2 was created as part of the NIH roadmap to advance precision medicine to provide the community of clinical investigators with a toolbox to integrate medical records, clinical data, and genomic technologies all at once (256). One of the foundations of I2B2's approach to data interoperability is data-model harmonization based on ontological representations, particularly those facilitating the involvement of subjects/patients and clinicians aside from biomedical researchers (257). The extent of influence of these actions is designed to further improve the way subjects are enrolled and followed-up in research study protocols, clinical trials and observational cohorts (258).

Ontologies are useful to provide a conceptual framework. In the case of automated and semi-automated data mining methods in biomedicine it is desirable to have a standardized language, easily translated into machine-readable text. This is precisely the aim of the Biological Expression Language (BEL). BEL is presented as a language for representing scientific findings in the life sciences in a computable form. BEL is designed to represent scientific findings by capturing causal and correlative relationships in context, where context can include information about the biological and experimental system in which the relationships were observed, the supporting publications cited and the process of curation https://bel.bio/. The elementary elements of BEL are known as BEL-assertions that are built as intermediate steps connecting natural language (as presented in say, academic writing or medical records) into machine-readable expressions. Such expression will then be computable with applications in tasks, such as logical modeling in database learning, systems biology verification studies or next generation EBM to name a few (259–261). Implementing language standards, such as BEL may prove beneficial, since it has been shown, for instance, that different approaches to process clinical notes using natural language analytics substantially affects the performance of predictive models in intensive care settings (262).

The biomedical data ecosystem is turning so complex that new standards are needed even to define what we call evidence. The large amounts of seemingly anecdotal data that are being produced nowadays have brought to attention issues like the so-called real world evidence (RWE). RWE refers to data regarding the use, or the potential benefits or risks, of a drug derived from sources other than randomized clinical trials (263). Large sampling spaces are behind RWE move from anecdotal to referential. However, not all the real world information should be treated as RWE. In this regard, there is a growing need for methods to assess when are these data sources rigorous and trustworthy enough as to be useful as a guideline or to be considered actual evidence. These issues result particularly relevant toward the definition of clinical pipelines in digital therapeutics (loosely defined as evidence based therapeutics basedon software applications to prevent, manage or treat a disease or medical condition) (264), often related with data obtained from wearables and other subject-based sources.

Data standardization is becoming central not only in the medical research, and personalized clinical practice settings. It has been recently discussed how clinical trial data sharing is essential for reproducibility of the findings, for visibility of the results, to improve subsequent trails or advanced clinical trial stages, to perform digital comparisons of effectiveness (which are much faster and cheaper than their traditional counterparts); but also to speed results reporting, to enable continuous learning and even to support the emergence of startups or enterprise ventures, among other issues (265). In order for shared data to be optimally usable, there is an obvious need for standardization.

Data is, of course, not the only issue that needs to be assessed and validated toward the widespread implementation of AI/ML approaches in Precision Medicine. Eaneff and coworkers have recently argued for the need of algorithmic stewardship for AI/ML technologies in the medical setting. In this regard, an algorithmic steward would be a person or group within a healthcare or biomedical research institution responsible for tasks, such as creating and maintaining an algorithmic inventory of the methods used in the institution, monitoring ongoing clinical use and performance of such computational tools, evaluating the safety efficacy and fairness of the methods and so on (266).

Data and methods constitute the most visible items within the biomedical analytics ecosystem; metadata, is however, progressively gaining a more relevant role for AI/ML in Precision Medicine, as it contains, in many cases, hints for the automated labeling or classification (even if approximate) tasks that will be further improved by the use of computational intelligence and statistical learning approaches (87, 267). We will further discuss this issue in the next subsection.



5.2. An Ocean of Metadata

Metadata has become a central player in contemporary LSDA endeavors in many fields, including biomedicine; particularly relevant for AI/ML approaches. For this reason, aiming for high quality, well-formatted and standardized metadata has become quite relevant (268). Indeed, a number of biomedical data analysis teams and consortia are encouraging the use of standardized metadata guidelines, exemplified, for instance by a checklist of relevant issues to consider when building and publishing companion metadata (250, 269, 270); since such metadata could be instrumental to implement data analytics, as well as AI/ML toward a precision medicine approach (267, 271).

Metadata may result also quite useful to enhance the statistical analysis, probabilistic models and training of learning machines. Using metadata to generate best priors may improve the outcomes of query optimization by resampling and bootstrapping (272–274), regularization of sparse datasets (275), as well as auxiliary source for multi-variate Bayesian analysis (200, 276, 277), multi-dimensional analyses on datasets with disparate dynamic ranges (278–281) among other instances (282–286).

Integrating multiple data and metadata sources takes even further the need to design, develop, and implement analysis algorithms able to handle heterogeneous data in the presence of noise accumulation, spurious correlations and incidental endogeneity, keeping a balance between statistical accuracy, computational efficiency, and interpretability (287–289).

LSDA approaches must be developed having in mind the presence of spurious correlations among unrelated covariates, challenging statistical inference by creating false positive findings (290). Incidental endogeneity occurs when a number of unrelated covariates become correlated via random correlations of their residual noises. A statistical approach to overcome some of these issues is the development of novel regularization methodologies (291–293) but also the use of outside cross-validation via independence screening tests (294, 295) that may be precluded by data unavailability from independent sources.

Taking these issues into account may require new models to implement metadata reporting standards (296, 297). Standardizing the way metadata is reported and retrieved in the biomedical and clinical settings will result critical for the development of generalistic machine learning approaches that make full use of these uniform data structures (298–300). It has been recently discussed that ignoring or bypassing such standards may jeopardize full research projects (301–303).




6. ETHICAL AND LEGAL CHALLENGES FOR COMPUTATIONAL MEDICINE

Aside from the methodologic and logistic issues already discussed, integrating data sources aiming at LSDA in the context of Precison Medicine also brings out concerns related to the ethical and legal problems that may arise, for instance related to privacy and confidentiality. Regarding the purely technological aspects of this problem, most of the members of the community of data analyst in healthcare and biomedicine are actually confident that these can be solved with security and encryption approaches already used to protect personal financial data (6, 46, 304). Aside from privacy concerns, managing sensitive data implies having several layers of access to the data. This is so since some sensitive personal data may be extremely useful for population level studies needed to develop personalized medicine. However, even if it is unlikely that full disclosure of sensitive biomedical and clinical information is needed, there is a fraction—that need to be determined and agreed-upon in advance—of potentially sensitive information that results fundamental for the development of personalized medicine, not just for the individual in particular but also population and sub-population-wise (305).

Then a conundrum arises as how to accommodate smooth clinical and biomedical data widespread with efficient privacy practices. The goal here is to implement stringent rules that maximize data yield while preserving anonymity and data protection. Data specialists have proposed several strategies to accomplish this goal. Currently one of the most favored is centered in mining designs based on the so-called minimally-invasive queries (MIQs) designed ex-profeso to preclude (and in due case disclose/document) any abuse of sensitive data (306). In some sense MIQ approaches mimic and extend the practices that have been long held by the international health insurance community while dealing with privacy in the EHRs via guidelines, such as the Health Insurance Portability and Accountability Act (HIPPA). Aside from its enormous legal and bioethical consequences, HIPPA adoption induced the development of data protocols in biomedical informatics that will result useful—even if as a starting point—for the LSDA under the Precision Medicine paradigm. Full implementation of optimized data usage/protection protocols is still underway, however, important advances have been made (307–310).

Reaching an optimal balance between information protection and efficient data mining outputs presents itself as a complex endeavor: some experts from the biomedical ethics community advocate for a careful case-by-case analysis, though admittedly this will be too complex to be implemented in general purpose LSDA workflows. As an alternative to this it has been suggested that multi-level data encryption (311, 312) can be applied in such a way that only authorized personnel will have the decoding keys to have access of the different levels of information (313).

In order to lessen the burden of encryption, encryption must be selective so that only personal identifiers and other private features (that may help disclose such identifiers) should be encrypted. Quasi-identifiers (QIDs), such as location, ethnic profiling, age and employment information, and highly-specific genomic data may be subject to certain low-level encryption by following differential privacy standards (314, 315). Some caution needs still to be taken since individual QIDs may not be informative enough to disclose identity, but there may be mining-integration procedures that may be able to do so by arranging coupled queries as it has been already discussed in the context of large scale genomic and transcriptomic studies (316–318).

Aside from genomic sources, other data types that may be used as potential QIDs in the context of biomedical informatics include, for instance, photographs: it has been discussed that from image (and imaging) data, AI approaches are able to infer barcodes from cranial and facial morphological features, skin pigmentation, eye color, retina patterns, iris structure, as well as hair type and color (108, 317, 319–322).

These are but a handful examples of how biomedical and clinical data features may turn into QIDs potentially posing ethical dilemmas to LSDA in the context of Precision Medicine. In this context and with the advent of powerful AI/ML approaches, a question arises as to which queries are valid and which ones are not from the standpoint of ethics, privacy and confidentiality. It is expected that as AI/ML methods become more powerful, methodological adjustments should evolve to balance safety and non-triviality of the queries with the impact of the analyses. This call for an organized implementation of such features via standardized query tools compliant with the agreed (potentially also evolving) ethical standards of the community (313). This translates into further challenges for the computational tools for data mining and analysis that may be designed with hierarchical multi-layered data structures in mind from the start.

Protected health information (PHI) is a relevant issue in this regard since it potentially allow for individual identification. Developing methods to effectively de-identify sensible data, such as the one included in free-text clinical notes may become part of the solution to the ethical challenges of high throughput data mining in the clinical and biomedical settings. With this in mind, Norgeot and collaborators developed a customizable open source de-identification software called Philter (323). Philter https://github.com/BCHSI/philter-ucsf has shown to outperform well-known methods, such as the ones in the Physionet https://www.PhysioNet.org/physiotools/deid/ and Scrubber https://scrubber.nlm.nih.gov/files/ suites. Subject de-identification in clinical notes and similar documents since such corpora often contain detailed information about the state of individual patients, the evolution of their disease conditions, specific theraputics and outcomes. That kind of information that will result key for the development of Precision Medicine, but at the same time may pose privacy challenges unless effective de-identified.

In view of the advances in AI/ML and the ethical challenges that come as a consequence of these advances, design changes are needed not only in the analytics. Research protocols, clinical trials and documented medical procedures, for instance, must be revised since the personal decision to share or not personal healthcare information or participating in large scale biomedical research cohorts may change at the light of AI/ML advances. Hence, informed consent procedures may need to be adapted. This implies reframing the current paradigm for the protection of individual privacy and adopting ways to educate patients/participants on how the data collected may affect them and the what extent their data can or cannot be protected, contextualising this in terms of the potential benefits for them and for others (317).

It has been discussed that re-educating about the way they view their own data also implies increasing their involvement with how their data may be used to affect them and others. Indeed, one of the central tenets of Personalized Medicine is making healthcare, personal. In this regard, it is worth discussing the role that data portability will play in individual and collective decisions (324, 325). Integrating data analytics, privacy protection and data portability is, in brief, one of the current open problems in computational medicine and medical informatics (326–328).

Given all the twists and subtleties just discussed in the context of LSDA for Precision Medicine, it has been considered advantageous to document in all detail (or as comprehensively as possible given the particular context) how data is gathered, archived, processed, analyzed, disseminated, and used in each research study, clinical trial, or large-scale clinical follow-up. Guidelines have been currently advised as how to elaborate such a document termed a data management plan (DMP). We will briefly discuss on these matters in the next section.



7. THE IMPORTANCE OF A GOOD DATA MANAGEMENT PLAN

In view of all the complexities associated with projects managing and analyzing large amounts of potentially sensitive data, writing down a comprehensive document with all the associated information, a data management plan document is considered advantageous (329–332). The purpose of the DMP is to establish guidelines about how the data will be treated during the course of the project and even what will happen after the project is finished. The DMP considers what will be done with the data from its collection, throughout the organization, pre-processing, and analysis stages. It considers data quality controls, database preservation, and documentation techniques used, as well as usage restrictions and conditions for the further use, dissemination and sharing, embargoes, and limitations.

The DMP document has been established to be compliant with the legal requirements for all involved institutions and funding agencies. It should specify what types of data are to be collected, the recommended (sometimes preferred, sometimes mandatory) formats to handle and preserve the data. It results relevant to mention the software requirements and computational resources used to store, process, analyze, and visualize the data. The expected volume and structure of the databases, as well as its sources, traceability and metadata information (329). The DMP must also mention the intended data preservation strategies, database organization (e.g., naming conventions, dictionaries, reports' systems, etc.), identification and de-identification procedures. It is also advisable to establish guidelines for database curators—in some cases, even for auditors—(for instance regarding data integrity, quality controls and data standardization). All these entries of the DMP must be compliant with normative and organizational principles detailed in the so-called Project Data Policy (PDP) section of the DMP. The PDP may include information on legal, administrative and even ethical restrictions to be considered when managing the data. In some cases, this has to make it extensive to associated software and metadata (331).

The data dissemination policy section of the DMP states how, when and whom will have access to the data and under what circumstances. It is recommended that a subsection assigning personal roles and responsibilities of the associated personnel is included to ensure good data governance. The DMP is, in brief a dynamic instrument that plays a normative role, but also serves as a registered account on the whole data workflows and procedures throughout the project. Hence, a good DMP contributes to a secure and smooth functioning of the whole LSDA project (333, 334).



8. CONCLUSIONS AND PERSPECTIVES

Artificial Intelligence and Machine Learning (AI/ML) approaches have proven to be extremely relevant tools for the large scale analysis of biomedical and clinical data; central for the development of Personalized Medicine. Useful as they are, implementing AI/ML methods in the highly demanding medical applications, it is not an easy endeavor. A number of caveats, shortcomings and subtle points have to be taken into account (and in many cases, circumvented) in order to provide appropriate solutions for the individual and public health care to fully benefit from these emerging paradigms.

In this work, we have discussed about some of the central challenges, problems, and drawbacks found in the applications of the methods and designs of large scale data analytics within clinical and biomedical environments, in particular under a Precision Medicine perspective.

Some relevant points can be briefly summarized as follows:

• Precision Medicine has been recently presented as an emergent paradigm to approach healthcare in a more predictive, preventative, personalized, participatory way (sometimes also called P4 Medicine). Precision Medicine has strong ties with data intensive approaches, as well as with machine learning and artificial intelligence.

• To deliver the promise of Precision Medicine, computational learning approaches are to be nurtured by well-curated and nifty integrated data ecosystems.

• Data resources in the biomedical research, clinical and healthcare environments are becoming extremely large, and are complex, unstructured and heterogeneous, hence difficult to deal with individually, even more so to be integrated into a coherent framework.

• The universe of diverse data sources needs to be collected, pre-processed, processed, modeled, and integrated to construct such coherent frameworks useful for Precision Medicine (see Figure 1). This is much easier said than done.

• In order for machine learning models to give good results their input needs to be good data. Transforming existing data into optimized forms for AI/ML is essential.

• If medicine is to become personalized, we must embrace diversity, heterogeneity, biases, class imbalance, and other intrinsic features of individuals. There is a need to develop methodologies to rigorously operate under these constraints.

• To develop, implement, optimize, and improve on these methods, a number of challenges needs to be overcome. These include technical limitations, computational aspects (both software and hardware/infrastructure), mathematical and modeling issues, and even ethical, legal, and policy matters.

• We have presented and discussed some of these challenges, aiming at showing the state of the art in these different fields.

• We have introduced the need for data intensive endeavors, from the research arena to the clinical setting and the healthcare institution level to design and implement a data management plan to consider the issues that may arise and planning ahead for their solution.

We are convinced that the development and implementation of tailor-made (or at least well-customized) approaches, in terms of robust statistical and computational algorithms, supported by optimized frameworks for data acquisition, storage, management, and analytics, but also by well-integrated software solutions and guided by solid ethical policies compliant with a deep respect for privacy, confidentiality, and individuality; is an ambitious but attainable goal. Hence, by combining state of the art computational learning methods and techniques with the best data acquisition and management practices the promise of AI/ML in Personalized Medicine may be delivered.
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A quantitative method for the evaluation of facial swelling in rats with middle cerebral artery occlusion (MCAO) was established using a mathematical method for the first time. The rat model of MCAO was established via bilateral common carotid artery ligation. Three groups of rats with the same baseline were selected (model group, positive drug group, and control group) according to their behavioral score and body weight 24 h after surgery. Drug administration was initiated on post-MCAO day 8 and was continued for 28 days. Mobile phones were used to collect facial images at different time points after surgery. In facial image analysis, the outer canthi of both eyes were used as the facial dividing line, and the outer edge of the rat's face was framed using the marking method, and the framed part was regarded as the facial area (S) of the rats. The histogram created with Photoshop CS5 was used to measure the face area in pixels. The distance between the outer canthi of both eyes (Le) and vertical line from the tip of the nose to the line joining the eyes was recorded as H1, and the line from the tip of the nose to the midpoint of the line joining the eyes was recorded as H2. The facial area was calibrated based on the relationship between H1 and H2. The distance between the eyes was inversely proportional to the distance between the rats and mobile phone such that the face area was calibrated by unifying Le. The size of Le between the eyes was inversely proportional to the distance between the rats and mobile phone. This was used to calibrate the face area. When compared with the control group, the facial area of the model group gradually increased from postoperative day 1 to day 7, and there was a significant difference in the facial area of the model group on postoperative day 7. Hence, positive drugs exhibited the effect of improving facial swelling. H1 and H2 can reflect the state of turning the head and raising the head of the rats, respectively. Facial area was calibrated according to the relationship between H1 and H2, which had no obvious effect on the overall conclusion. Furthermore, mobile phone lens was used to capture the picture of rat face, and the distance between the eyes and H1 and H2 was used to calibrate the facial area. Hence, this method is convenient and can be used to evaluate subjective judgment of the human eyes via a quantitative method.

Keywords: ischemic stroke, occlusion of the middle cerebral artery, artificial intelligence, facial swelling, rat models


INTRODUCTION

An important pathogenesis of ischemic stroke, which is a major disease that threatens human health, is the cascade of cerebral artery embolism and consequent inflammatory response (1, 2). The middle cerebral artery occlusion (MCAO) model is a clinically common simulation of ischemic stroke, which is less invasive and exhibits the closest resemblance to human ischemic stroke (3). Specifically, bilateral common carotid artery ligation and reperfusion is often employed in rats or mice to establish MCAO rat models for simulating the clinical features of ischemic stroke and performing pharmacodynamic evaluation. In the course of a routine rat MCAO model establishment and drug evaluation experiment, we determined that facial swelling occured in each group of rats after surgery, and the changes in facial swelling in each group exhibited certain characteristics as the duration of drug intervention increased. To avoid subjective evaluation via gross examination, we attempted to develop a convenient method for quantitatively evaluating facial swelling characteristics of the model rats. Furthermore, we employed some mathematical methods to maximally reduce the bias due to human manipulation to provide a multi-dimensional quantitative index for future pharmacodynamic evaluation (4, 5).



MATERIALS AND METHODS


Materials

Thirty male specific-pathogen free (SPF)-grade 10-week-old Sprague-Dawley rats weighing 220–270 g were purchased from Beijing Vital River Laboratory Animal Technology Co., Ltd. (license number: SCXK (Beijing) 2016-0006) and housed in SPF-grade animal facilities. Donepezil hydrochloride tablets were purchased from Zhejiang Huahai Pharmaceutical Co., Ltd. (NMPA approval no. H20183417, lot number: 1426J20004). The positive drug used in this study was donepezil hydrochloride tablets, which was often used as a positive drug in vascular dementia and cerebral ischemia experiments (6).



Methodology
 
MCAO Procedure and New Findings

The rats were anesthetized with 1 ml/100 g of 4% chloral hydrate via intraperitoneal injection and 1-cm incisions were made on the left and right regions of the neck. Blunt dissection of the superficial fascia was performed wherein the superficial fascia and intermuscular space among the digastric, sternocleidomastoid, and omohyoid muscles were separated. The bilateral common carotid arteries and vagus nerve were exposed. Furthermore, the common carotid artery and vagus nerve were carefully separated and two sutures were passed through the common carotid artery at the proximal and distal ends. The sutures were retained on the lateral side of the wound. The wound was sutured and ligation was maintained for 10 min, followed by 10 min of reperfusion. These steps were repeated three times. After the last reperfusion, the sutures were removed from the wound and the common carotid artery was permanently ligated with double sutures, and the right common carotid artery was ligated in the same manner as the left one. During the period from postoperative day 1 to day 35 at the end of the experiment, the model group showed significant facial swelling compared with the normal group that did not undergo surgery (Figure 1).


[image: Figure 1]
FIGURE 1. Comparative pictures of facial swelling after surgery in rats treated with middle cerebral artery occlusion.




Grouping and Drug Administration

Twenty-four rats that underwent MCAO were bifactorally grouped according to behavioral scores and body weight after postoperative 24 h. After excluding rats with different baseline values, three groups of six rats, each with the same baseline values, were selected and classified into model group and positive drug group, and six rats that did not undergo MCAO were assigned to the control group. In the positive drug group, donepezil hydrochloride tablet was administered by gavage at a dose of 0.5 mg/(kg.d), and the model and control groups were provided equal volumes of distilled water via gavage daily. Administration was commenced on post-MCAO day 8 and was continued for 28 days.



Facial Image Acquisition and Analysis Process

To further analyze the characteristics of facial swelling, we acquired facial images using a camera at different time points after each group of rats recovered autonomous behavior after performing MCAO. The experiment was divided into two stages. The first stage was from MCAO to the period before the administration of drugs. This stage lasted a total of 7 days, and facial images were collected on postoperative days 1, 3, 5, and 7. The second phase was from grouping and administration to the end of the experiment, and facial images were acquired on postoperative days 8, 12, 16, 20, 24, and 28. The drug administration was commenced on day 8 (Figure 2).


[image: Figure 2]
FIGURE 2. Schematic of the flow of facial image acquisition and analysis after cerebral ischemia in rats.


The body and head of the rat were fixed with both hands during acquisition, and attempts were made such that the face of the rat faced the camera during photography. In particular, the head elevation angle and head rotation restriction were maintained as consistent to the maximum extent each time. Three images were acquired for each rat, and the image with the best angle and clarity was selected for calculation during analysis. The acquisition device was HUAWEI YAL-AL10, a mobile phone camera. The resolution of the camera at the time of photography was set as 72 × 72 DPI, and the image size was 3,000 × 4,000 pixels. The acquired images were imported into Photoshop CS5. The facial images were analyzed using the outer canthi of both eyes as the facial segmentation line. Furthermore, the outer edges of the face of the rat were boxed using markers and the boxed portion was considered as the total facial area (facial area, S) of the rats. Finally, the facial area was measured in pixels using the histogram in Photoshop CS5 (Figure 3). The distance between the outer canthi of both eyes (Le) and vertical line from the tip of the nose to the line joining the eyes was recorded as H1, and the line from the tip of the nose to the midpoint of the line joining the eyes was recorded as H2. The length was measured in pixels using the histogram tool in the software (4, 5). Thus, by following this method (4, 5), we acquired facial images of each group of rats at each postoperative time point (Figure 3).


[image: Figure 3]
FIGURE 3. Images of facial recognition at different time points after surgery in the model group of rats.





Facial Image Calibration Methods

We didn't anesthetize the rats or install any assembly equipment to make the whole process as easy as possible. Therefore, in the process of taking photos, there would be uncontrollable factors such as the distance between the lens and the target and the head swing of rats in different directions, but we found that these problems can be corrected by simple mathematical methods. During the facial image acquisition process, we determined that the distance of the camera lens from the target object, the lifting or lowering of the head of the rat, and frontal and head-turned images affected the facial image acquisition and results. To minimize this interference, we utilized a simple mathematical principle (4, 5) for calibration (Figure 4). When the lens is turned away from the face of the rat, the distance Le between the outer canthi of the eyes decreases and point S decreases accordingly. When the face of the rat is lifted, H1 shortens and S decreases, while Le is assumed to be constant. Conversely, when the head of the rat is lowered, H1 and S increase while Le is assumed as constant. When the rat is facing the lens, H1 = H2, and when the rat turns its head, either to the left or to the right, H2 > H1. When this occurs, the facial area S of the rat also appears to increase or decrease with respect to H1 and H2, while Le is assumed as constant.


[image: Figure 4]
FIGURE 4. Schematic of the calibration method using mathematical interpretation of head–facial variables.


As described above, the vertical length H1 from the tip of the nose to the line connecting the two eyes is indicated by the blue line, and the length H2 from the midpoint between the two eyes to the tip of the nose is indicated by the red line as shown in Figure 5.


[image: Figure 5]
FIGURE 5. Schematic of each parameter of rat face. Red denotes the area of the face recognized (S).




Statistical Analysis

Statistical analysis was performed with SPSS (version 22.0). All data were expressed as mean ± SD. The comparisons between multiple groups were analyzed by one-way ANOVA, and group comparisons were analyzed using Student's t test. A P < 0.05 was considered statistically significant.




RESULTS


Calibration of the Distance Between the Lens and Target Object

As the distance between the camera and subject decreases, the subject's face area increases. Conversely, as the distance between the camera and object increases, the face area decreases. To ensure that the technique is adaptable for use in experiments, the operator did not fix the distance between the lens and target when capturing. Hence, Le, H1, and S decreased as the lens moved away from the target. Specifically, in this case, we considered the basic principles of digital and aesthetic anatomy wherein the interocular distance is determined by the brow bone and is fixed for the same types of rats. Therefore, we can determine the distance of the lens from the target object while taking a picture based on the size of the Le of the same type of rats. When the lens is turned away from the face of the rat, the distance Le between the outer canthi of the eyes decreases and point S decreases accordingly. Similarly, we can normalize Le of the same type of rats and use it to convert the area under the same Le to eliminate the changes in the absolute value of facial area due to the varying distance of the lens.

As described in Figure 6, we normalized the interocular Le of the same rats at different time points and converted the facial area of the rats as described above. The results indicated that there was no significant change in trend between the groups at different time points after calibration compared with that before calibration (Figures 6A–D). However, the absolute value of facial area changed, which is also consistent with our description above. After performing MCAO, the model group showed an increase in facial area from postoperative day 3 compared with the control group. Furthermore, a significant difference (p < 0.05) was observed on postoperative day 7 as the postoperative duration increased (Figures 6E,F).


[image: Figure 6]
FIGURE 6. Comparison of parameter S in each group before and after Le calibration in the postoperative to pre-dosing phase. Comparison of S values in each group before and after Le calibration: (A) on day 1 after surgery, (B) on day 3 after surgery, (C) on day 5 after surgery, (D) on day 7 after surgery. Curves of changes in S values at different time points in the two groups: (E) before calibration and (F) after calibration. Model group compared with control group, *p < 0.05. control group: n = 6, model group: n = 11.


The experimental results in Figure 7 indicate that the S values of the different groups during the administration differ before and after Le calibration. On day 1 after dosing (day 8 after performing MCAO), the model group showed a significant increase in facial area compared with the normal group (p < 0.05). On day 5 after administration (day 12 after performing MCAO), the model and positive drug groups exhibited a significant increase in facial area compared with the normal group (p < 0.001). However, the active control group exhibited a lower facial area than the model group. From day 9 (day 16 after MCAO) to day 21 (day 28 after MCAO), the facial area of the model group was higher than that of the normal group. This indicates that bilateral common carotid artery ligation during MCAO can lead to facial swelling in rats. This can be relieved after the administration to the positive drug group.


[image: Figure 7]
FIGURE 7. Comparison of parameter S before and after Le calibration in each group after dosing to the end of the experiment. Comparison of S values before and after Le calibration: (A) on experiment day 8 (day 1 after dosing), (B) on experiment day 12 (day 5 after dosing), (C) on experiment day 16 (day 9 after dosing), (D) on experiment day 20 (day 13 after dosing), (E) on experiment day 24 (day 17 after dosing), (F) on experiment day 28 (day 21 after dosing); S value change curves of different groups, (G) before Le calibration, and (H) after Le calibration. Compared with the normal group, *p < 0.05; **p < 0.01; ***p < 0.001. Model group: n = 5, control group: n = 6, positive drug group: n = 6.




Calibration of Head Rotation

When grasping rats, head rotation often occurs. In this case, we considered the occurrence of head rotation when H1 < H2 according to Figure 4. Figure 8 shows pictures of model group No. 4 rat acquired at different time points. The H1 value of the rat is very close its H2 value. The pictures in first line of Figure 4 indicate that the lower part of the rats is more symmetrical at each time point. Furthermore, we considered that the No. 4 rat's face was facing the camera lens in this case.


[image: Figure 8]
FIGURE 8. Demonstration of the head angle calibration effect. Row 1 shows rat #4 in the model group, H1 and H2 are close at all time points, and the face of the rat faces the front in all cases. Row 2 shows rat #5 from the investigational drug group, H2 is close at various time points, and the head angle is approximate.


We measured H1 and H2 parameters for each rat in the model group after surgery until drug administration. By acquiring pictures at successive time points, we observed that the mean values of H1 and H2 did not differ significantly at each time point (Figure 9A). Therefore, we concluded that the calibration of H1 and H2 was weaker than that of Le described above. To further assess the effect of this parameter on facial recognition, we measured H1 and H2 from the model and active control groups at each time point between the administration of the drug and end of the experiment. A comparison of the results indicate that H1 and H2 were identical (Figures 9B,C).


[image: Figure 9]
FIGURE 9. Comparison of H1 and H2 parameters for each group at different stages of the experiment. H1 and H2 dynamics curves for each rat: (A) in the model group after surgery and before administration; (B) in the model group between the beginning of administration and end of the experiment; (C) in the active control group between the beginning of administration and end of the experiment. Model group: n = 5, positive drug group: n = 6.




Lifted Head vs. Lowered Head Calibration

The distance between the tip of the nose and line between the eyes decreased when the head was tilted upward. Conversely, the distance between the tip of the nose and line between the eyes increased when the head was tilted downward. During this time, the distance between the eyes remained constant (assuming the lens was at the same distance from the target) (Figure 8). As shown in Figure 8, rat #5 in the active control group exhibited similar H2 values at the two different time points, and the angle of head elevation was also very close.

We calibrated the facial area of each rat in the model group from the postoperative to the pre-dosing phase in the order of mirror depth (Le), head rotation (H1 vs. H2), and head lifting (H1). Specifically, first, Le was calibrated based on the uncalibrated facial area (S) to obtain the calibrated area (leftmost bar of each part of Figure 10). Then, S data were calibrated according to the relationship between H1 and H2, and each rat was calibrated such that the area of each rat corresponded to the area when it was facing the camera (middle bar of each figure in Figure 10). Finally, based on S calibrated in the second step, H1 of all rats was normalized to obtain the final calibrated facial area of rats (H1 in each part of Figure 10). The results indicate that the deviation of S for each rat in the group decreased as calibration was progressively performed, thereby indicating that the calibration led to further representation of the objective facial area of the rat.


[image: Figure 10]
FIGURE 10. Effect of different calibration methods on S in the model group in the postoperative to pre-dosing phase. Model group: n = 5.





DISCUSSION

In this study, during the process of MCAO model construction and subsequent drug evaluation, we unintentionally determined that the model rats exhibited facial swelling compared with the control rats. To objectively evaluate the degree of facial swelling in rats, we used the most common photography method (mobile phone photography), which is flexible and can be performed at any time during the experiment. After image acquisition, we used Photoshop, common commercially available image processing software, for parameter measurements.

Anatomy is the basis of medicine and biology. With advances in technology, computer techniques have been increasingly applied to anatomy (7) such as digital pathology, image digitization, and three-dimensional scanning of the head. Furthermore, computer techniques are applied in plastic surgery and treatment of vascular diseases in the maxillofacial region (8). To enhance the representation of facial swelling features, we referred to anatomical and plastic surgery-related concepts to compute and analyze acquired images via custom parameter settings and calibration principles. Regarding the acquired images of the variable rat faces, we utilized the anatomy of the skull to capture the invariant brow bone of the same rats and used the distance between the eyes as one of the calibration methods to eliminate differences due to the distance between the lens and target. Simultaneously, we also adopted basic mathematical principles to determine the deviation due to the head tilting or head rotation of rats to perform a simple quantitative analysis. By performing a series of calibration analyses and comparisons, we concluded that the size of S was most closely related to the depth of the lens. Furthermore, as the distance between the rat and lens decreased, the interocular distance Le between the eyes increased and S increased at that time. Therefore, Le calibration is extremely critical in data analysis. Conversely, the calibration of H1 and H2 slightly affects the change in the size of S.

A literature search was conducted to address the biological explanation of the phenomenon of facial swelling after MCAO (9). However, to the best of our knowledge, there are no reports on the phenomenon of facial swelling in rats after MCAO. Several studies reported that shoulder-hand syndrome occurs after stroke, with one of its typical features corresponding to hand swelling. It has also been reported that stroke patients tend to exhibit deep vein thrombosis (10), and one of its classical clinical signs involves swelling of the affected limb. Based on these results, we hypothesized that facial swelling can occur in patients with cerebral ischemia. After reviewing the literature and based on our previous research experience, we believe that the causes of facial swelling after cerebral ischemia are as follows: (1) a sharp decrease in cerebral blood flow due to bilateral common carotid artery ligation (11), which in turn increases intracranial pressure. Some clinical trials have shown that inadequate venous drainage triggered by bilateral radical neck dissection can cause intracranial hypertension, which leads to facial swelling. It is hypothesized that carotid artery ligation affects venous return. This in turn results in facial swelling. (2) Bilateral common carotid artery ligation can lead to cell swelling and tissue edema (12), and patients with hypoxic–ischemic brain damage are more likely to exhibit cerebral edema (13). Additionally, acute intracranial pressure elevation (14) can cause periventricular leukomalacia. (3) Clinically, the middle cerebral artery (MCA) trunk exhibits a higher chance of stenosis or even occlusion than the anterior and posterior cerebral arteries (15). This is mainly because the MCA trunk has a higher blood flow and is more prone to atherosclerotic plaques and mural thrombi. Hence, this results in luminal narrowing (16). Conversely, occlusion of the superior cortical branch of the MCA can lead to contralateral involvement and impaired circulation (17). (4) The craniofacial and temporal fascia contain rich blood supply (18), which is derived from the common carotid artery, superficial temporal artery, facial artery, and maxillary artery, which are accompanied by veins and intertwined into a network at the terminal branches of the internal carotid artery. Therefore, some patients with severe stenosis of the extracranial segment of the internal carotid artery (more than 70% stenosis) can be treated by mandibular carotid endarterectomy (19, 20). The swelling of the maxillofacial region, which is observed using contrast techniques, is associated with compensatory thickening of the facial arteries (21). (5) Swelling of the maxillofacial region is closely associated with the onset of inflammation. Furthermore, facial swelling is observed in chronic angioneurotic edema (22), which is mainly due to capillary dilation, congestion, and exudation in deep connective tissue, and it is accompanied by inflammatory cell infiltration (23). Conversely, the tissues of the eyelids, upper and lower lips, and cheeks are relatively loose and are easily observed when edema occurs.

The positive drug used in this study was donepezil hydrochloride tablets. They are routinely used in clinical practice and can reversibly inhibit acetylcholine hydrolysis by acetylcholinesterase, thereby increasing the concentration of acetylcholine and exerting therapeutic effects by enhancing the function of cholinergic nerves. During the 28-day period of control administration to MCAO-treated rats, we observed that the drug had some ameliorative effect on facial swelling in the model rats after surgery. However, its effector mechanism is not known.

In addition, we analyzed the ocular characteristics of rats in the acquired images, including the eye area and proportion of the face occupied by the eyes (data not shown in this paper) and observed that the eyes of rats can protrude early and atrophy later after MCAO. This is also related to the fact that the blood supply to the eyes mainly comes from the branches of the internal carotid artery and cases of exophthalmos in stroke patients have been reported. Bilateral common carotid artery ligation leads to an increase in intraocular pressure of the body, which results in protrusion and atrophy of the eyes.

In summary, in this study, we established a simple and easy method to significantly replace the existing subjective scoring methods for edema and provide new ideas for future applications based on the analysis of facial swelling in stroke patients.
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Background: This study aimed to develop and validate machine learning (ML)-based prediction models for lung metastasis (LM) in patients with Ewing sarcoma (ES), and to deploy the best model as an open access web tool.

Methods: We retrospectively analyzed data from the Surveillance Epidemiology and End Results (SEER) Database from 2010 to 2016 and from four medical institutions to develop and validate predictive models for LM in patients with ES. Patient data from the SEER database was used as the training group (n = 929). Using demographic and clinicopathologic variables six ML-based models for predicting LM were developed, and internally validated using 10-fold cross validation. All ML-based models were subsequently externally validated using multiple data from four medical institutions (the validation group, n = 51). The predictive power of the models was evaluated by the area under receiver operating characteristic curve (AUC). The best-performing model was used to produce an online tool for use by clinicians to identify ES patients at risk from lung metastasis, to improve decision making and optimize individual treatment.

Results: The study cohort consisted of 929 patients from the SEER database and 51 patients from multiple medical centers, a total of 980 ES patients. Of these, 175 (18.8%) had lung metastasis. Multivariate logistic regression analysis was performed with survival time, T-stage, N-stage, surgery, and bone metastasis providing the independent predictive factors of LM. The AUC value of six predictive models ranged from 0.585 to 0.705. The Random Forest (RF) model (AUC = 0.705) using 4 variables was identified as the best predictive model of LM in ES patients and was employed to construct an online tool to assist clinicians in optimizing patient treatment. (https://share.streamlit.io/liuwencai123/es_lm/main/es_lm.py).

Conclusions: Machine learning were found to have utility for predicting LM in patients with Ewing sarcoma, and the RF model gave the best performance. The accessibility of the predictive model as a web-based tool offers clear opportunities for improving the personalized treatment of patients with ES.

Keywords: Ewing sarcoma, lung metastasis, machine learning algorithms, multicenter, web calculator


INTRODUCTION

Ewing sarcoma (ES) is an aggressive sarcoma with a high propensity for local recurrence and distant metastasis in children and adolescents (1, 2). ES is the second most common primary bone malignancy, accounting for 5% of all child and adolescent cancers (3). ES frequently involves the diaphysis region of long bones (4). Despite the development of new treatment regimens, ES has a high likelihood of tumor metastasis, leading to a worsening prognosis and resulting in a poor 5-year survival rate of only 20–45% (4, 5). In a retrospective study of 975 patients with ES, 5-year survival and 5-year relapse-free survival rates for patients with localized disease were 70 and 55%, respectively, but only 33 and 21% for those with distant metastasis disease (6).

Although diagnostic imaging techniques have improved dramatically during the past 30 years, metastatic status can only be detected in approximately 20–25% of ES patients (3), with the lung being the most common metastatic site (5, 7, 8). Computed tomography (CT) scans of the chest are usually carried out to detect lung metastasis. However, given the high cost, radiation damage, and low efficiency of detection of metastatic nodules, new strategies are urgently required to accurately predict the development of lung metastasis in patients with ES (9, 10).

Machine learning (ML) has emerged as a powerful computer-based method of data mining and analysis and has been extensively applied as a “prediction tool” in a multitude of different scientific, engineering, and medical scenarios (11–15). ML has been shown to detect more interactions between variables, and to be more accurate than conventional statistical methods (14, 16). ML algorithms have been applied to model clinical outcome and to improve cognition of tumor growth and progression (17). However, although numerous ML-based predictive models of tumor development have been reported, no study has been conducted in predicting lung metastasis associated with Ewing Sarcoma.

The Surveillance Epidemiology and End Results (SEER) database contains data for around 26% of the United States population and is commonly used to study rare diseases since it overcomes the obstacle of inadequate case numbers (18–20). We constructed several ML-based models of LM in patients with ES, using the SEER database. External validation was subsequently performed using data from multiple medical centers to predict the probability of LM with the aim of improving individualized patient management. The best model was uploaded as a web-based tool.



MATERIALS AND METHODS


Study Population and Data Selection

Data were sourced from the SEER database and four medical institutions in China: Liuzhou People's Hospital, Second Affiliated Hospital of Jilin University, Xianyang Central Hospital, and Second Affiliated Hospital of Dalian Medical University, respectively. This retrospective study did not use personal identifying information and thus did not require informed patient consent or Institutional Ethics Committee Board approval.

Patients selected from the SEER database (2010–2016) who were diagnosed with ES originating in bone, as identified by ICD-O-3/WHO 2008 morphology code 9260d, composed the “training” group. Criteria for exclusion were more than one primary tumor and incomplete clinicopathological information. The “validation” group was composed of ES patient data obtained from four hospitals in different regions of China, from 2010 to 2018. All cases featured complete clinicopathological data and follow-up information and no other primary tumors. Demographic and clinicopathological variables included in both groups were: race, age, sex, primary site, laterality, T-stage, N-stage, M-stage, surgery, radiation, chemotherapy, bone metastasis, and survival times. For consistency with SEER database records, “race” in the Chinese medical records was classified as “other”. Detailed treatments, such as surgery, radiation, and chemotherapy were classified as Yes or No, and were not recorded in the SEER database.



Establishment and Evaluation of Prediction Models

Using demographic and clinicopathological data, we explored the effect of variables (p < 0.05) in univariate analysis, in the multifactorial regression model, and in predictive models based on the ML algorithms. Six different ML algorithms were applied independently to develop predictive models of LM in patients with ES, as follows: Random Forest (RF), Logistic regression (LR), Extreme gradient boosting (XGB), Gradient boosting machine (GBM), Multilayer perceptron (MLP), and Decision tree (DT) (21, 22). For the training process of the ML algorithms using python (version 3.8), we employed 10-fold cross-validation to avoid overfitting (23). We also calculated the average value of the area under receiver operating characteristic curve (AUC) to evaluate the predictive power of each model.

The ML algorithms were subsequently applied to the validation group and the AUC was again calculated to evaluate the predictive performance of all models. The higher the AUC value, the better the model. Finally, the best-performing model was designed as a web-based tool for predicting the likelihood of LM in ES patients.

As a model inspection technique, permutation feature importance can be used for any fitted estimator (24–26). Thus, a total of 100 independent training simulation results were applied to assess the most important variables in each predictive model using permutation feature importance analysis. We further assessed the relative contribution of four key clinical variables to LM predictive models using spearman correlation of features analysis and plotted a correlation heat map.



Statistical Analysis

All data were extracted from the SEER database via the SEER * Stat software (version 8.3.6). All analyses were performed using python (version 3.8). The baseline variables between the training group and validation group were compared using Student's t tests and Pearson chi-square test. A two-sided p < 0.05 was deemed to have statistical significance.




RESULTS


Baseline Characteristics

A total of 980 patients with ES were enrolled in this study; 929 patients originating from the SEER database were assigned to the training group; and 51 patients from four medical centers in China were assigned to the validation group (Table 1). There were significant differences between the two groups in terms of race, T-stage, and radiation (p < 0.05). In the validation group, all patients were classified under race as “others”. The proportion of radiation was significantly higher in the validation group than in the training group. In addition, more patients were diagnosed as TX in the training group. The remaining variables were not significantly different in both groups (Table 1). Lung metastasis occurred in 185 (18.9%) cases, the median age of the patients was 22.25 years (SD = 16.3), more than 85% of the patients were Caucasian and 534 (57.5%) patients were male. Comparison of the baseline data between the lung metastasis group and no lung metastasis group, revealed significant differences for the following factors: T-stage, N-stage, M-stage, surgery, bone metastasis, and survival time (p < 0.001). The demographic and clinicopathological variables of all 980 patients are summarized in Table 2.


Table 1. Baseline of patients with SEER database and multicenter data.
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Table 2. Baseline table of patients in the Ewing sarcoma lung metastasis group vs. the no lung metastasis group.
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Univariate and Multifactorial LR Analysis of LM

The following variables were shown to have significant correlation with the development of LM in univariate analysis (p < 0.05): survival time, T-stage, N-stage, surgery, and bone metastasis (p < 0.001) (Table 3). Multifactorial LR analysis based on the variables (p < 0.05) in univariate analysis, demonstrated that T- stage (T2, OR = 2.7018, 95% CI = 1.690–4.317; T3, OR = 4.0378, 95% CI = 1.773–9.194; TX, OR = 3.1468, 95% CI = 1.778–5.566), N1 stage [vs. N0 stage, N1, (OR = 5.102, 95% CI = 3.048–8.540)], and bone metastasis (OR = 1.685, 95% CI = 1.090–2.605) were independent negative predictors of LM while survival time (OR = 0.988, 95% CI = 0.979–0.997) and surgery (OR = 0.451, 95% CI = 0.309–0.658) were positive predictors.


Table 3. Univariate and multifactorial logistic regression analysis of risk factors for lung metastasis in patients with Ewing sarcoma.
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Predictive Performance of Machine Learning (ML) Algorithms

Six ML-based models for predicting LM in ES patients were developed based on the training group data. The average AUC of the six models determined by 10-fold cross-validation is shown in Figure 1, with the RF model achieving the best performance (AUC = 0.775). When the models established in training were subjected to external validation (Figure 2), the RF model still achieved the best performance (AUC = 0.705) in predicting LM and was accordingly selected as the design for a web-based, predictive tool.


[image: Figure 1]
FIGURE 1. Average area under the curve (AUC) values of 10-fold cross-validation. RF, Random forest predictive model; DT, Decision tree; XGB, Extreme gradient boosting; GBM, Gradient boosting machine; MLP, Multilayer perceptron; LR, Logistic regression; AUC used as an indicator of performance, RF model achieved the best predictive performance while the MLP model showed the lowest.



[image: Figure 2]
FIGURE 2. External validation of machine learning algorithms. RF, Random Forest; DT, Decision tree; XGB, Extreme gradient boosting; GBM, Gradient boosting machine; MLP, Multilayer perceptron; LR, Logistic regression; AUC, area under the curve.




Influence of Variables on Prediction Performance

In consideration of clinical utility (Figure 3), we focused on four variables (T-stage, N-stage, surgery, and bone metastasis) to construct ML-based predictive models for LM in ES patients. Although there were slight differences in the importance of variables identified by each model; three factors, such as surgery, T-stage and N-stage, consistently ranked in the top three, and bone metastasis ranked fourth. The relative importance of variables in predicting LM using the RF model decreased in the order: surgery > T-stage > N-stage > bone metastasis. Analysis using spearman correlation of features approach revealed no significant positive correlation between any variable, and a negative correlation between surgery and the other three variables, indicating that all variables were independent (Figure 4).


[image: Figure 3]
FIGURE 3. The relative importance of variables for the prediction of LM using ML algorithms. Surgery, T-stage and N-stage ranked in the top three in all prediction models, with bone metastasis ranked fourth.



[image: Figure 4]
FIGURE 4. Results of Pearson correlation of features analysis between all variables showing no obvious correlation between every two variables.




Design of a Web-Based Tool for Predicting LM in ES Patients

The best-performing RF model was used to design a web-based tool to assist clinicians in predicting lung metastasis in ES patients (https://share.streamlit.io/liuwencai123/es_lm/main/es_lm.py) (Figure 5).


[image: Figure 5]
FIGURE 5. The web-based tool designed for predicting lung metastasis in patients with Ewing sarcoma.





DISCUSSION

Multi-modal therapy of metastatic disease based on chemotherapy, surgery, and radiation would be improved dramatically by the availability of reliable methods for predicting metastasis (27, 28). Many mathematical models of tumor malignancy employ multivariate regression or correlation analysis, which usually require the variables to be independent and linear (29–32). In addition to traditional univariate and multivariate analysis, we used multiple ML algorithms, which are widely applied in healthcare data analysis, to construct predictive models of LM in ES patients. We found that the RF model provided the best performance. RF is a commonly used ML algorithm that has a proven track record in handling large complex nonlinear datasets (33, 34). We subsequently designed a rapid web-based clinical tool, which is based on the RF model, for predicting lung metastasis in patients with ES.

Patient survival time was positively related to LM in univariate analysis. However, when considering clinical practice, survival time has no meaning for patients initially diagnosed with ES, and it is difficult to assess the survival time of a part of the patient population. Thus, survival time was not considered as a variable in ML models.

In the present study, four clinical variables: surgery, T-stage, N-stage, and bone metastasis were found to be the most important factors for predicting LM status by ML algorithms. We identified surgery as a protective factor against LM. To our knowledge, this factor has not been included previously in LM risk prediction models. Surgery is not only a vital form of treatment, but also plays a significant diagnostic role, which enables more accurate TNM staging and prognosis of ES patients. Surgery ranked first in order of importance in most of the predictive models developed in the present study, while T-stage (tumor size) ranked in the top two in all models investigated and was highly predictive of LM, similar to previous reports (35, 36). Large tumor volume indicates a longer growth cycle, resulting in a more proliferative and aggressive state, thus increasing the occurrence of lung metastasis. The correlation heat map showed that the T-stage correlated negatively with surgery since radical surgical treatment is difficult for large tumors, and lung metastasis is more likely.

Extensive investigations have consistently demonstrated that patients with regional node involvement were more prone to develop distant metastasis (37–41). Since the lung is associated with an abundance of lymphatic vessels, a tumor is more likely to metastasize to the lung when lymph nodes are positive. However, due to the scarcity of lymphatic vessels in bone tumor, it is conventionally accepted that dissemination to lymph nodes is uncommon (4, 42). Applebaum et al., for example, found that only 6.3% (91/1,452) of cases featured lymph node involvement (37). In contrast, our study revealed a much higher rate of lymph node metastasis, approximately 18.9% (185/980).

Importantly, our ML-based models revealed that bone metastasis was an important predictor of LM in ES patients, ranking fourth in importance behind surgery, T-stage and N-stage variables. Of the 138 patients in the two combined cohorts (training group and validation group) who had bone metastasis, 40.6% (56/138) also displayed lung metastasis. This figure was significantly higher than the number of patients who showed LM without bone metastasis (15%, 119/791).

Our present study of ML-based models for predicting LM in ES patients contained certain limitations which, nonetheless, serve as a guide for future improvements. Firstly, the information accessed from the SEER database was to a certain degree limited. Clinical information, such as the precise surgical treatment, surgical margin status, tumor marker, vascular invasion, radiation dosage, and chemotherapy modalities were unavailable, which limits the predictive value of the developed models. Secondly, the data from the SEER database was retrospective, which may introduce bias in data selection. However, while cognizant of these limitations, our study affirmed that ML-based prediction models can effectively identify the likelihood of LM in patients with ES by inspection of clinical factors such as surgery, N-stage, T-stage, and bone metastasis. The RF model performed best according to ROC analysis and was subsequently used to produce a web-based tool designed to help clinicians identify ES patients with lung metastasis, improve decision making and optimize individual treatment. Increased case data and multicenter studies are anticipated to lead to improvements in predictive performance.



CONCLUSION

Machine learning algorithms were applied to develop a prognostic tool for predicting the risk of LM in patients with ES. A RF model performed best and was engineered as a web-based tool for use by clinicians to improve patient diagnosis and treatment.
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Coronavirus disease 2019 (COVID-19) is known as a contagious disease and caused an overwhelming of hospital resources worldwide. Therefore, deciding on hospitalizing COVID-19 patients or quarantining them at home becomes a crucial solution to manage an extremely big number of patients in a short time. This paper proposes a model which combines Long-short Term Memory (LSTM) and Deep Neural Network (DNN) to early and accurately classify disease stages of the patients to address the problem at a low cost. In this model, the LSTM component will exploit temporal features while the DNN component extracts attributed features to enhance the model's classification performance. Our experimental results demonstrate that the proposed model achieves substantially better prediction accuracy than existing state-of-art methods. Moreover, we explore the importance of different vital indicators to help patients and doctors identify the critical factors at different COVID-19 stages. Finally, we create case studies demonstrating the differences between severe and mild patients and show the signs of recovery from COVID-19 disease by extracting shape patterns based on temporal features of patients. In summary, by identifying the disease stages, this research will help patients understand their current disease situation. Furthermore, it will also help doctors to provide patients with an immediate treatment plan remotely that addresses their specific disease stages, thus optimizing their usage of limited medical resources.

Keywords: COVID-19, wearable data, neural networks, uncertainty quantification, pattern extraction


1. INTRODUCTION

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), manifests as a wide range of symptoms, including fever, cough, fatigue, breathing difficulties, loss of smell and taste, and pneumonia1. It spreads rapidly from infected people to others through close contact or small exhaled droplets. The pandemic is now causing havoc in countries around the world, with more than 282 million cases and around 5.41 million deaths, as of late December 2021 reported by WHO (2021). This deluge of patients is overwhelming hospitals everywhere, especially in some developing countries where vaccines are not sufficient, and it is difficult to cope with the need to conduct extensive disease testing programs and treat huge numbers of patients in a very short period. It is therefore vital for medical staff to be able to identify patients COVID-19 disease stages before making the decision to hospitalize them. Severe patients need to be hospitalized quickly and receive a higher priority in dedicated treatment, while patients with milder symptoms might only need to self-quarantine at home. Fast and reliable techniques to detect and identify the disease stages are thus the focus of active research by scientists and medical technologists.

Vaira et al. found that anosmia and ageusia associated with fever (>37.5°C) are common onset symptoms that can be an early signal of a COVID-19 infection (discussed by Heerfordt and Heerfordt, 2020; Ortiz-Martínez et al., 2020; Vaira et al., 2020; Walker et al., 2020), therefore, investigated the use of Google Trends to study the loss of smell and smoking cessation and predicted COVID-19 incidence. Wang et al. (2020) built a deep convolutional neural network model to detect COVID-19 from chest X-ray images. Most of the existing work focused on early disease detection, but few works were proposed to identify the disease stages and develop useful insights for patients who must quarantine at home. We therefore propose to explore the problem of disease stage identification, because this will help doctors decide the most appropriate treatment plans for patients at each stage, allowing them to optimize their usage of scarce resources when the hospital is under pressure. Besides, since our work would help create a low-cost, efficient self-monitor solution that can be used by everyone, it is beneficial, especially for people who are quarantined at home.

Interestingly, there have been some huge improvements in wearable technologies over the last few years, with a number of wearable devices being widely introduced that enhance our everyday life. For example, smartwatches such as Fitbit2 are helping us to track our sleep patterns and daily activities, encouraging us to maintain a healthier lifestyle. Smart Shirt is another example of this trend that is beginning to play an important role in our information infrastructure, supporting healthcare systems for monitoring vital signs efficiently and cost-effectively with the universal interface of clothing (Park and Jayaraman, 2003). The possibilities are seemingly unlimited: chip-integrated sensors are being used to monitor a number of physical medicine applications (Bonato, 2005). Sensors have already been developed specifically for COVID-19 applications, including an automatic sanitizer tunnel that detects a human being using an ultrasonic sensor from a distance of 1.5 feet and disinfects him/her using a sanitizer spray (Pandya et al., 2020). Quer et al. (2020) used wearable sensors to differentiate COVID-19 positive vs. negative cases in symptomatic individuals, pointing out that wearable devices are easy to access for most people. The fast development of wearable technologies makes it possible to be utilized to identify COVID-19 disease stages. However, existing studies are all either (i) mainly limited to the detection of COVID-19, with no attempt to identify the stages of the disease; (ii) not designed to analyze variations in the associated factors per COVID-19 stage; or (iii) unable to provide a comprehensive view of the disease for layman readers. Therefore, we seized this opportunity to investigate data-driven approaches to COVID-19 through wearable technologies in an attempt to bridge this gap. This paper introduces a wide-ranging set of data-driven approaches to identify infected patients' stages using wearable technologies. Specifically, this work aims to accurately and early infer from wearable data obtained from sensing devices attached to COVID-19 patients whether the COVID-19 patients are in mild, moderate, severe, or recovery stages in an earlier stage. We achieved this by introducing a model that utilizes a Long-short Term Memory (LSTM) network and a Deep Neural Network (DNN) to aggregate and jointly exploit temporal stream data from wearable devices and attribute stream from characteristics of patients. It is worth mentioning that our comprehensive experimental evaluation shows the improved performance achieved by our model compared to existing machine learning (ML) classification methods, which can only use one of the data streams. By identifying these patients in earlier stages, medical professionals will be able to take swift action if the patient requires early hospitalization or if it is safe for them to continue to self-quarantine at home. In addition, we also compare the lifestyles between severe and mild patients, allowing us to investigate and evaluate factors that impact the recovery of the patients. Specifically, the work aims to address the following three research questions (RQs):

• RQ1: Can we build an accurate ML model to predict COVID-19 stages and identify whether a patient will progress to a more severe stage in an earlier stage?

• RQ2: Which set of factors are associated with the severity of a patients symptoms? What can we learn from these factors in association with COVID-19 stages?

• RQ3: What signs signify recovery or deterioration in COVID-19 patients?

Overall, three novel contributions are made in this research:

1. We develop a classification model with uncertainty quantification to identify the major COVID-19 disease stages. Our model is able to recognize patients' disease stages in a timely manner because we utilize data from the wearable device, which is more responsive to disease stages than the subject's senses.

2. Our work provides useful insights into the progression of COVID-19 disease and vital indicators at each stage. The research input is from a data source (a wearable device like a smartwatch) that everyone can access and use on their own. Our approach is data-driven and can mitigate human bias substantially.

3. We investigate factors associated with COVID-19 severity and recovery. We also create case studies (1) demonstrating the differences between severe and mild patients and (2) showing the signs of recovery from COVID-19 disease using a shape-based pattern extraction model.

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3 discusses our methodology, including an overview of the data preparation, stage identification model, feature importance, and pattern extraction model. Section 4 shows our evaluation and experimental results. Section 5 presents some limitation in our study. Finally, we offer conclusions in Section 6.



2. RELATED WORK

Here, we survey recent related studies on battling the COVID-19 crisis. These studies fall into two broad scientific areas: machine learning (ML) and remote monitoring utilizing the Internet of Things (IoT).

ML Research: Researchers have attempted different methods to battle COVID-19. Assaf et al. developed a model that used white blood cell count, time from symptoms to admission, oxygen saturation, and blood lymphocyte count to predict if a patient is at high risk for COVID-19. Their prediction model can be useful for efficient triage and in-hospital allocation, better prioritization of medical resources, and improving overall management (Assaf et al., 2020). Ahamad et al. (2020) developed a model that applies ML algorithms to reveal potential COVID-19 patients by analyzing their age, gender, fever, and history of travel. By extracting 11 blood indices through a random forest algorithm, Wu et al. (2020) built an assistant discrimination tool that can identify suspected patients using their blood test results. Barstugan et al. (2020) and Elaziz et al. (2020) choose to use image-based diagnosis (CT images) building Support Vector Machine and K-Nearest Neighbors algorithms for predicting suspected COVID-19 infection.

Remote monitoring research: However, these studies' data sources, such as CT images or blood test results, would often need to be collected by trained professionals. With COVID-19 patients number rising, we see a shortage of medical resources worldwide and make clinic visits bear more risk as suspected patients gather for examination. Therefore, many people prefer to use the Internet of Things (IoT) to diagnose COVID-19 to avoid the risk of infection. Singh et al. demonstrated that IoT implementation could help infected patients with COVID-19 identify symptoms rapidly and greatly reduce healthcare costs (Singh et al., 2020). Islam et al. (2020) suggested that wearable devices could provide real-time remote monitoring and contact tracing features, which can be used to improve healthcare systems' current management schemes. For example, Maghdid et al. (2020) designed an artificial intelligence-enabled framework that analyzes signals from a smartphone's sensor signal. It helped to diagnose the severity of pneumonia to predict the COVID-19 infection.

Most prior works were focusing on the early prediction or detection of COVID-19 infection. As the epidemic escalates dramatically every day, we want to further conserve healthcare resources by identifying different stages of COVID-19 patients. For example, diagnosed early and moderate stage patients could adopt self-quarantine treatment in time, saving valuable resources that can then be utilized by patients with severe COVID-19 stage.



3. METHOD


3.1. Data Preparation


3.1.1. Dataset Description

We used an open dataset provided by Welltory 3 The dataset comprises multivariate data records from 186 COVID-19 patients experiencing different stages. The data includes variables such as heart rate, sleeping patterns, daily activities, heart rate variability (HRV), blood pressure, patient demographics (age, gender, country, etc.), environmental information, and other patient facts (smoking, alcohol, other background diseases, etc.). We focus on the HRV information measured using wearable devices. HRV is also popular in many clinical and investigational research such as diabetes (Benichou et al., 2018), brain emotion, stress, anxiety (Goessl et al., 2017; Mather and Thayer, 2018), or cardiology related (Sessa et al., 2018). Table 1 provides detailed descriptions of HRV specific features, where rr_data (intervals in milliseconds between consecutive heartbeats) is a sequence data with a length of 100. In addition, we also selected ordered categorical variables with values from 1 to 6 recording the intensity of seven common COVID-19 symptoms that were in the HRV survey dataset: breath, confusion, cough, fatigue, fever, pain, and bluish. We believe these variables can better assist in the task of prediction, but we only focus on the other HRV variables for the subsequent analysis.


Table 1. List of features specific to heart rate variability (HRV).

[image: Table 1]

Since each patient may be recorded multiple times, the stage of disease may be different from one recording period to the next. For example, some patients who were mild patients at the beginning of the record may become severe patients a week later. So, in the task of predicting the stage of disease, we remove the user code and predict the disease status for each record. All patients have a total of 1,480 complete records. Each record will be associated with a label by a survey from Welltory, identifying the corresponding patient's current stage. Figure 1 summarizes the number of stages per disease stage category.


[image: Figure 1]
FIGURE 1. Distribution of four disease stages. Each patient may span multiple disease stages due to the progression of the disease.




3.1.2. Feature Expansion

To make the most of the information in the data, we enrich our feature set based on temporal and statistical properties. First, for the variable time series, intervals in milliseconds between consecutive heartbeats (represented by rr), we computed a variety of statistics for this sequence, such as its variance (rr_var), skewness (rr_skew), kurtosis (rr_kurt), maximum (rr_max), minimum (rr_min), median (rr_median), mean (rr_mean), interquartile range (rr_iqr), etc. These features are popular and widely used in many research such as heart rate analysis (Bolanos et al., 2006) or brain waves recognition (Campisi and La Rocca, 2014). Besides, we divide each day into four periods and further create four one-hot variables: morning, day, evening, and night. That is, if a row of data for a patient is recorded in the morning, then the variable morning for this record is 1, while the other three variables are all 0. Another variable we created is called day_after_test (days a.t.), and its value depends on the number of days each patient has been infected with COVID-19.

In addition, we obtain two new temporal sequence data using the transformation of rr_data. Suppose the original heartbeat interval is RR = {x1, x2, ..., xT}, we transform this time series by computing lag difference (DI) and the absolute deviation from the mean (DM), in order to remove temporal dependency and to eliminate the trend and seasonality of the time series. Mathematically, the two newly constructed time-series are as follows:

[image: image]

where T = 100 and [image: image] is the mean of the original rr sequence. To make these three sequences (RR, DI, and DM) have the same length 100, we add the average of the last three numbers of the DI sequence at the end of the DI sequence. All the features we expanded are listed in Table 2. Thus, we end up with a total of 32 attribute features and 3 temporal features for the task of predicting disease stages.


Table 2. List of self-generated features (time-based and statistical features).
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3.1.3. Data Pre-processing

There are some missing values in the dataset. It is either due to the network issues when the data is collected or the users choose not to answer some survey questions for any reason. To fill out the missing values, we used MissForest (Stekhoven and Bühlmann, 2012), a non-parametric iterative imputation technique based on the Random Forest algorithm which is proved capable of handling missing values of different data types. Additionally, we normalized the data to avoid scales influencing between features. Let min{Xi, 1:N} and max{Xi, 1:N} are the minimum and maximum values of the attribute feature Xi for all N samples. The min-max normalization values of feature Xi is computed as follows:

[image: image]

Where N = 1, 480 is the sample size.

Similarly, for the temporal sequence features, we use min-max normalization to normalize the data for all samples at each time point. Let min{Xk, t, 1:N} and max{Xk, t, 1:N} are the minimum and maximum values of the temporal feature Xk for all N samples at time t. The min-max normalization values of feature Xk is computed as:

[image: image]

Where N = 1,480 is the sample size and T = 100 is the length of the temporal sequence.




3.2. Model for Disease Stage Identification


3.2.1. Theoretical Model

We formulate the problem of identifying disease stages as a multi-class classification problem. From a feature matrix X of a patient, we need to build a classifier f that classifies whether the patient is in Mild, Moderate, Severe, or Recovery stage.

In this task, our classification model utilizes two data streams described in Section 3.1: temporal stream and attribute stream. A temporal stream has temporal characteristics or sequential order. The temporal streams can be real-time, so if our model is embedded in wearable devices in the future, it will be very helpful for early-stage detection. The attribute stream has no temporal characteristics such as demographic information, patient's background disease, etc. Formally, assume that the dataset [image: image] of size N is defined as [image: image] = {(Xi, Yi), i = 1, ..., N}, where Yi is the class label and [image: image], represents the i-th sample of the combination of the temporal stream (denoted as Xt) and attribute stream (denoted as Xa). The developed classification model f parameterized by θ will classify disease stages based on input streams as the following equation:

[image: image]

where H1 and H2 are latent feature extractors, which are two types of neural networks in our model, Φ is an aggregation function that fuses the latent features from [image: image] with attribute stream data Xa.



3.2.2. Network Design and Data Fusion Strategy

As mentioned earlier, the two input streams of the model are the temporal stream and the attribute stream. The LSTM network is suitable for temporal stream since it is a type of recurrent neural network (RNN) and addresses the problems of vanishing and exploding gradient in general RNNs. Hochreiter (1998). Therefore, in Equation (4), we choose H1 as an LSTM based network to learn latent features from the temporal stream Xt. For the attribute stream Xa, after combining them with the outputs of the LSTM based network, we use H2, a network of multiple fully-connected layers (DNN), to extract their latent features for the final disease stage classification. The DNN is chosen to force the network to explore all the possible relationships of both attribute streams and temporal streams. This is also an approach to combining DNN with LSTM to obtain a novel end-to-end neural network.

Figure 2 shows the overall model which composes of two subnetworks, LSTM and DNN. The two subnetworks are merged to predict the final disease stages. Suppose each patient has D input sequences with a common time length T. An LSTM passes forward over the entire temporal data sequences. We use the hidden size H = 1 in the LSTM, so later we can use an affine layer to map the hidden outputs to one-dimensional data of the same dimensional size as the attribute data. The LSTM unit is composed of a cell state ct, a so-called memory cell, a hidden state ht, an input gate i, a forget gate f, an output gate o, and an input modulation gate g. They are called gates because they control the flow through the LSTM. The four gates will be computed at each time step for cell and hidden state updates. The following is the outline formula of LSTM:

[image: image]

where σ and tanh are the sigmoid function and tanh function, respectively. W is the weight matrix. ct, ht, and xt are the cell state, hidden state, and temporal input at time step t, respectively. ⊙ represents element-wise multiplication.


[image: Figure 2]
FIGURE 2. Overview of COVID-19 stage classification model, where N=1,480 represents the sample size, T=100 represents the common length of temporal sequence, D=3 represents the number of temporal sequences, H=1 represents the size of hidden state output by LSTM, T1=20 represents sampling size of the T hidden states, T0=5 represents the final projected size of temporal features in the time dimension, and V=32 represents the number of attribute features.


After running the forward of the LSTM network, T hidden state outputs, {h1, h2, ..., hT}, are returned and evenly sampled with a 20% probability to enhance generalization capability and avoid overfitting, that is, we uniformly sample T1 hidden states from the T hidden states and T1 = 1/5 T. Next, the combined hidden states are flattened to the temporal latent features thanks to the subsequent Affine layer to concatenate with the attribute stream. The temporal latent features have a final projected size T0 = 5, which is equivalent to putting the temporal latent features into 5 additional latent attribute features. Let's define [image: image] as the final 5 latent features of the temporal stream and xa as the sample values for the original attribute stream Xa. The concatenation of these two streams is defined as follows:

[image: image]

where ⊕ is the concatenation operator. Then, the concatenated stream hc is fed into a deep neuron network H2 which consists of five fully connected layers with number of neurons 1,024, 1,024, 2,048, 1,024, and 1,024, respectively. The output of the model is the predicted probability of being in each disease stage for each sample. Finally, the predicted classification of disease stages y is obtained by the following:

[image: image]

The network uses Leaky ReLU activation function and dropout rate of 30% to enhance the robustness of the model and reduce the computational cost. The learning rate is set to 0.001 and the batch size is set to be the same as the sample size. We use the Adam optimizer, gradient descent algorithm, and softmax cross-entropy loss function to optimize the network.



3.2.3. Uncertainty Quantification of the Model

We perform resampling from our existing samples to quantify the built predictive model's uncertainty. This method is also known as Bootstrap, published by Bradley Efron in Efron (1979). We employ the Bootstrap method because 1) it is invariant under re-parametrization; 2) it does not require the population distribution assumption; 3) it is driven by repeated resampling of data and does not depend on theoretical calculation; 4) it can provide the point estimation and assess the accuracy of the estimation when the traditional statistical method fails.

We present details of the uncertainty quantification algorithm in Algorithm 1. Overall, the intuition of the algorithm is to create new samples, then obtain the prediction output. This process is repeated many times to result in a distribution of output which helps to quantify the model's uncertainty. In order to generate new samples, bootstrapping technique which was introduced by Efron (1979) is utilized. Here, we summarize its workflow in Figure 3:

• Treat the original sample as if it were the population.

• Draw from the sample, at random with replacement, for B times (B is the number of bootstraps).

Given the value of confidence interval (C.I) α%, we will retrain our model from the newly generated samples, perform classification, and obtain a α% confidence interval of the predicted outcomes.


Algorithm 1 Bootstrap method to construct 95% C.I. (Confidence Interval)

[image: Algorithm 1]


[image: Figure 3]
FIGURE 3. Workflow of bootstrap method to construct 95% confidence intervals.




3.2.4. Baseline Models and Comparison Metrics

To verify the effectiveness and advantages of our proposed approach, we compare the classification results on the test dataset with several classical ML and deep learning models using a five-fold cross-validation approach. The baseline models are as follows:

1. Logistic regression (Logit): a multinomial logistic regression model was used to predict the probabilities of different outcomes for our multi-class problem (Kwak and Clayton-Matthews, 2002).

2. Support vector machine (SVM) (Chang and Lin, 2011): various types of kernels were tried and the kernel with the best result was finally chosen.

3. Attribute-based K-nearest neighbors (KNN) (Peterson, 2009): various number of the k nearest neighbors were tried and the k with the best result was finally chosen.

4. Long short-term memory: a popular extension of artificial recurrent neural network (RNN) architecture. It was first introduced by Hochreiter and Schmidhuber (1997).

5. Deep Neural Network: it consists of five fully connected layers with a number of neurons 1,024, 1,024, 2,048, 1,024, and 1,024 respectively, and with the same activation function, dropout rate, learning rate, batch size, optimizer, algorithm, and loss function as our model.

For comparison metrics, we use standard metrics such as accuracy, precision, recall, f1-score, and multi-class AUC (area under ROC curve) to compare the performance of the models. It is worth noting that the inputs to these traditional models above can only be one of the data types and they cannot directly utilize both temporal data and attribute data jointly, so our model is expected to perform better than these models.




3.3. Feature Importance

To measure the importance of features, we perform the permutation feature importance algorithm on all the temporal and attribute features in turn to break the relationship between the feature and the true outcome. The permutation feature importance algorithm is described in Algorithm 2. This algorithm is based on our proposed classification model f. The general idea is that if a feature is essential for a stage, then shuffling or removing its values increases the model error for that stage because in this case, the model relied on the feature for the prediction. On the other hand, a feature is unimportant for a stage if shuffling or removing its values leaves the model error for that stage unchanged because, in this case, the model ignored the feature for the prediction (Fisher et al., 2019). Therefore, we can rank the losses of the built models after removing one variable at a time to select the most influential features. This approach is applied in Section 4.2 to uncover factors associated with different COVID-19 disease stages.


Algorithm 2 Permutation feature importance

[image: Algorithm 2]



3.4. Model in a Case Study: Shape-Based Pattern Extraction Model for Signs of Recovery

In the classification of time series, a subsequence is called Shapelets (Ye and Keogh, 2009) if it maximally represents a class in some sense. Grabocka et al. (2014) introduced an implementable method to learn time-series shapelets. In one of our case studies 4.4, we try to find shapelets from HRV data that can differentiate between unrecovered patients and recovered patients. For signs of recovery, the patterns are two groups of shapelets that can linearly separate the recovered from unrecovered patients. Suppose xi, i = 1, 2, …, N is the i − th original time series data of length T, and sk, k = 1, 2, …, K is one of the proposed shapelets with length l. It is easy to know that in a time series, there are exactly T − l + 1 segments as long as the starting index of the sliding window is incremented by one. The distance between xi and sk is defined as follows:

[image: image]

where xi, t:t+l is the subsequence of xi from time t to time t + l. Since, in our study, the classification task is binary (recovery and unrecovered). Let us define the target variable, i.e., the patient's recovery status Yi, i = 1, 2, …, N:

[image: image]

Then, the predicted status of the i − th patient is as follows:

[image: image]

where Wk, k = 0, 1, …, K, are the weights of learning, representing the classification hyperplane. By minimizing the logistic loss function with weight regularization terms, we can learn both the optimal shapelet and the optimal linear hyperplane. The loss function is shown in Equation (11):

[image: image]

where

[image: image]

and σ is the sigmoid function.

In the optimization process, a stochastic gradient descent (SGD) approach is adopted. Note that because SGD needs all the functions to be differentiable, an approximation of the minimum function (8) is used. This function is called the Soft Minimum function (Grabocka et al., 2014) and is shown in Equation (13).

[image: image]

where

[image: image]

By applying the above method to the patient's HRV time series data, we aim to find a sequence pattern that can show signs of patient recovery to the greatest extent possible. Our results are shown in Section 4.4.




4. EXPERIMENTAL RESULTS


4.1. Infected Stage Classification Performance Evaluation

We randomly split up the data prior to modeling so that all models can use the same data splits. Each time, the models are trained on 4-folds (80% of the data) and tested on 1-fold (20% of the data). These 5-folds take turns being the test dataset to ensure that each sample can be classified. We perform a comprehensive comparison of model classification results. We add up the confusion matrices of the five experiments to obtain the total confusion matrix, which is therefore based on the result of all samples, as shown in Figure 4. For the five evaluation metrics, accuracy, precision, recall, f1-score, and multi-class AUC, we use the average results of the five experiments as the final evaluation results, which are listed in Table 3.


[image: Figure 4]
FIGURE 4. Total confusion matrix for COVID-19 disease stage classification based on 5-fold cross-validation.



Table 3. Infected stage classification results of models based on 5-fold cross-validation.

[image: Table 3]

On the one hand, we can see the improvement in classifications of our proposed model from the confusion matrix. Our model has less misclassification of disease stages compared to other models. On the other hand, the detailed results in Table 3 also show the advantages of our model. To be specific, the three models Logit, KNN, and SVM are comparable, having accuracy scores of about 0.66 to 0.79 and AUC of about 0.74 to 0.84. The LSTM model gives poor results due to the fact that it only uses temporal data. DNN model is the second-best model with an accuracy score of 0.903 and AUC of 0.924. Our proposed method has the highest scores under all five metrics, with an accuracy score of 0.914 and AUC of 0.935.

Figure 5 are box plots that present uncertainty quantification of the disease stage predictions of our proposed model for some randomly selected patients (Patient 151, 110, 29, and 182). The narrow box plot indicates the narrow 95% C.I., which presents low uncertainty in the prediction. We observe that for patient 29, all the C.I.s are quite narrow, while for all other patients, the C.I.s for certain stages are wider, which shows high prediction uncertainty. Even though there is high uncertainty in the prediction of certain disease stages, the 95% CI for each stage classification has shown that the probability of the classified stage (final prediction on each patient) always has a higher probability value than other stages. It means that our predictive model successfully identifies the disease stages with the performance results provided in Table 1.


[image: Figure 5]
FIGURE 5. 95% confidence interval of the prediction probabilities for the current stage of COVID-19 patients.




4.2. Uncovering Factors Associated With COVID-19 Disease Stages

In this section, we focus our analysis on features from wearable data instead of other factors which have been discussed through news channels such as background diseases or body symptoms. We use a random permutation of values shown in Algorithm 2 to calculate feature importance values for each feature based on the ratio of the model's errors between permutations. After obtaining the importance values, these values are rescaled to the range [0–1] to make them comparable. The results are shown in Figure 6. For each stage, the important features are ranked from high to low. The high importance feature means that prediction performance is highly dependent on this feature.


[image: Figure 6]
FIGURE 6. Feature importance for COVID-19 stages. The higher the value is, the more important the feature is.


Figure 6 shows that for mild and moderate stages, the number of days from onset symptoms (days a.t.) is the most important since it ranks top among all variables. It means for mild and moderate patients, HRV variables have not yet shown very obvious characteristics, while the number of sick days can best determine the patients at this stage. This phenomenon is more reliable for mild patients since the number of sick days is far more important than the second-ranked variable. This result can be explained that in the early days of COVID-19 infection, most people have mild symptoms. For severe patients, the number of sick days is no longer important, the average time between each heartbeat, rr_mean, occupies the most important position, even though it is very unimportant in other stages. It indicates that the rr_mean of severe patients is very different from those patients in other stages. In other words, if the condition of a patient gets worse, it will be most clearly reflected by rr_mean. For recovery patients, the total power of waves generated by the heart (total_power) and the number of sick days (days a.t.) are important variables. This shows that, on the one hand, it takes a certain number of days for patients to recover; on the other hand, a significant change in the total power of the waves generated by the heart is most indicative of the recovery phase.

If we focus on different frequency wave power generated by the heart (high-frequency: hf, low-frequency: lf, very-low-frequency: vlf), we can also find something valuable. In the mild stage, no such variables are important. However, in moderate stage, the importance of all the three along with the ratio of low to high frequency waves (lfhf) rank relatively high. Therefore, compared to the patients in the mild stage, the wave power of each frequency of patients in the moderate stage has changed obviously. Besides, for severe patients, the frequency waves that are most different from other stages are low-frequency waves (vlf, lf). While for recovered patients, the frequency wave that is most different from other stages is a high-frequency wave (hf).



4.3. Case Study: Severe Patients vs. Mild Patients

Since heart rate variability (HRV) is popular in many healthcare-related research, we chose to explore it to compare daily patterns of severe patients vs. mild patients. The variables for comparison are the average time between each heartbeat (rr_mean), the percent of RR-intervals that fall outside a 50 ms range of the average (pnn50), and the total power of high-frequency waves, low-frequency waves, and very-low-frequency waves generated by the heart (total_power). All the data is normalized with the min-max technique to make them comparable. In addition, we choose data from 5 days before the onset of symptoms to 16 days after the onset of symptoms to show the difference between different stages in the most critical time. We use polynomial regression to do curve fitting and trending analysis separately. At the same time, 95% confidence intervals of fitted curves are shaded. We can find something interesting in the results shown in Figure 7.


[image: Figure 7]
FIGURE 7. Comparison of mild vs. severe patients based on three variables: Total power, Mean RR, and PNN50.


We noticed that the highest value of the total_power curve and its confidence interval did not exceed 0.3. This range of total_power is relatively narrow since we have scaled all the data to the unit interval. It indicates that for people who have COVID-19 symptoms, whether he or she is in the mild stage or the severe stage, the total power of waves generated by the heart is lower approximately a few days before and 2 weeks after the onset. For these three comparative variables, rr_mean, pnn50, and total_power, their curves have a similar pattern. In general, after the symptom onset date, all three variables of severe patients are higher than those of mild patients. The higher value of average time between each heartbeat of severe patients means that their average heart rate is slower than that of mild patients. Furthermore, severe patients usually have higher pnn50. In other words, for severe patients, the outlier heartbeats, heartbeats whose intervals are farther apart from the average interval, occupy a larger proportion. It reveals that the heart rhythm of severe patients is more irregular than that of mild patients. Besides, compared to mild patients, heart-generated wave power of severe patients is stronger.

Following the time dimension, we can also find the different development of the above variables during the illness of mild and severe patients. Curves of patients in severe stage show a trend of increasing after decreasing. The curve of patients in mild stage also decreases at the beginning, while gradually stabilized after the curve rose and then again has a decreasing trend at about 12 to 14 days. This may be because the immune regulation of mild patients does not allow them to rise endlessly, which may also be a feature of gradual recovery. We can also see that after about 13 days, the 95% CI of the curves of both severe and mild patients are relatively narrow, which gives us more confidence to believe that severe and mild patients have indeed evolved in two directions.



4.4. Case Study: Signs of Recovery

In this case study, we try to find the most discriminate patterns that classify best the recovered stage and other stages. These patterns will signify the sign of recovery instead of the progressing disease. In addition, HRV data for the evening hours is used for analysis to avoid the influences of daytime activities of patients. We use the HRV sequence variables, which are the interval between consecutive heartbeats(RR), its lag difference sequence(DI), and its sequence of absolute deviation from the mean(DM) to extract the patterns. The methods for creating DM and DI can be found in Section 3.1.2. All three time series are normalized and combined to explore the discriminate patterns of recovery signs (See Section 3.4).

Figure 8 presents the extracted patterns that best discriminate the sign of recovery (top two subplots) and sample patterns from the patients (bottom four subplots). First, the heartbeat interval data RR (in red) shows a decreasing trend for recovery cases than an increasing trend for other stages. Second, the heartbeat interval differencing data DI (in yellow) shows a sine-shaped pattern in the recovered group while it is a concave-parabola shape for unrecovered samples. Last, the absolute deviation from the mean data DM (in blue) shows a gradually decreasing trend in the recovered stage compared to a convex parabola shape in unrecovered situations. We can conclude a frequent change from these shapelets and an inconsistency of the COVID-19 patients. On the other hand, it shows an overall decreasing trend of the HRV data for the recovered patients in the evening. The subplots of the four patients show portions highlighted by different colors representing different time series. These portions are the ones that are closely similar (having short Dynamic Time Warping (DTW) (Sakoe and Chiba, 1978) distance in latent space) to the extracted shapelets and contribute to identifying signs of recovery.


[image: Figure 8]
FIGURE 8. Signs of recovery. The left and right columns present time series shapelets that differentiate between unrecovered patients and recovered patients, respectively. The red shapelet (RR) is the original heartbeat interval. The yellow shapelet (DI) is the differencing transformation of the heartbeat interval. The blue shapelet (DM) is the deviation of the heartbeat interval from the mean value.





5. LIMITATION

There are a few limitations in our study coming from the selected dataset. The number of patients in the study is 186, and they are not randomly selected. So, they are not representative of the entire population. However, this situation usually happens in healthcare data science research since it is time-consuming and expensive to obtain full data from a large population for the initial study. In addition, the uncertainty quantification of the model is down with the assumption that the set of observations is from an independent and identically distributed population. Moreover, some of the recorded data like coughing, having diabetic disease, etc., are self-reported, which have their own limitation. Self-reported information may not be accurate, depending on how honest the patients were when they did the survey.



6. CONCLUSION

In this work, we propose a novel predictive model to categorize COVID-19 patients into multiple stages (mild, moderate, severe, and recovered), using a wearable device dataset. Our predictive model exploits temporal stream data and attribute stream data simultaneously for disease stage classification and is able to identify severe patients in an earlier stage even if the symptoms seem to be “mild” or “moderate.” In addition, we apply bootstrap methods to perform uncertainty quantification for the predictive model, and the experimental results demonstrate our predictive model's higher classification accuracy than other existing baseline approaches. Furthermore, we investigate each feature's importance to uncover its association with COVID-19 using a model-agnostic approach. Lastly, we investigate two cases in detail: 1) the first one is used to illustrate the comparisons between mild patients and severe patients. 2) the second one is used to analyze the signs of recovery. We observe that there are fluctuating HRV patterns in severe patients, but a more stable pattern and a clear trend in mild patients or recovering patients.
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Background: Uterine cervical neoplasms is widely concerned due to its high incidence rate. Early diagnosis is extremely important for prognosis. The purpose of this article is evaluating the efficacy of Raman spectroscopy in the diagnosis of suspected uterine cervical neoplasms.

Methods: We searched PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), and Web of science up to September 1, 2021. By analyzing the true positive (TP), false positive (FP), true negative (TN) and false negative (FN) of six included study, we evaluated the pooled and grouping sensitivity, specificity, positive, and negative likelihood ratios (LR), and diagnostic odds ratio (DOR), with 95% confidence intervals (CI), based on random effects models. The overall diagnostic accuracy of Raman spectrum was evaluated by SROC curve analysis and AUC.

Results: After screening with inclusion and exclusion criteria, a total of six study were included in the study. The pooled sensitivity and specificity was 0.98 (95% Cl, 0.93–0.99) and 0.95 (95% Cl, 0.89–0.98). The total PLR and NLR were 21.05 (95% CI, 8.23–53.86) and 0.03 (95% CI, 0.01–0.07), respectively. And the AUC of the SROC curve which show the overall diagnostic accuracy was 0.99 (0.98–1.00).

Conclusion: Through analysis, we confirmed the role of Raman spectroscopy (RS) in the diagnosis of suspected uterine cervical tumors.

Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/], identifier [CRD42021284966].

Keywords: Raman spectroscopy, uterine cervical tumors, diagnostic efficacy, meta-analysis, translational medicine


INTRODUCTION

The incidence rate of uterine cervical tumors is the fourth of female cancer. According to statistics, there were about 570,000 uterine cervical tumors patients and 310,000 deaths worldwide in 2018. Among them, China and India are the hardest hit areas of uterine cervical tumors, accounting for nearly two-thirds of the cases (1). Early diagnosis of cervical cancer and cervical intraepithelial neoplasia and early treatment are effective means to improve the survival rate of cervical cancer patients. Although there are screening tools such as cytological smear (TCT) and human papillomavirus (HPV) detection, the average sensitivity and specificity are not satisfactory (2).

More than 10 years ago, TCT was an effective tool for detecting and preventing uterine cervical tumors. However, the European guidelines for quality assurance of uterine cervical tumors screening (Abstract literature of the Second Edition) released in 2010 pointed out that the false positive rate of cytology is high, which will bring excessive medical treatment and additional economic losses (3). Therefore, HPV DNA detection was recommended due to its high sensitivity. But HPV DNA detection also had the problems of time-consuming and high price. Colposcopy had good sensitivity (>90%), but its specificity was poor (<50%), and the false positive rate was higher, which often lead to unnecessary biopsy. Histopathological examination is the gold standard for the evaluation and diagnosis of cancer, but it includes chemical fixation, dehydration, clearance, infiltration, paraffin embedding, sectioning, and hematoxylin eosin (H&E) staining. It takes about 1 week, which is time-consuming and expensive.

Raman spectroscopy is a new and reliable technology, which can analyze the molecular structure of substances and the chemical composition of human tissues (4). In medical research, Raman imaging has been successfully applied to nasopharyngeal carcinoma (5), gastric cancer (6), lung cancer (7), esophageal cancer (8), renal cell carcinoma (9), brain tumor (10) and so on. Raman technology has been used in the study of uterine cervical tumors for decades. The existing literature has proved that the specificity and accuracy of Raman spectroscopy in the diagnosis of uterine cervical tumors can reach more than 90%, which is no less than the traditional hematoxylin-eosin (HE) staining. Compared with HE staining, Raman technology has the advantages of no staining, no fixation, less demand for professionals, faster and so on, which provides another feasibility for the diagnosis of uterine cervical tumors (11). In conclusion, if Raman spectroscopy can be applied to cervical cancer, we have every reason to believe that it can carry out early diagnosis of cervical cancer and improve the screening rate of cervical cancer and the survival rate of patients. This Meta-analysis reviews the application of Raman spectroscopy in cervical cancer.



METHODS


Literature Research

This meta-analysis searched PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), and Web of science to ensure that all potentially eligible articles are included (last search: September 1, 2021). We combined all the relevant medical subject heading (MeSH) terms of uterine cervical tumors and Raman spectrum: [(Uterine Cervical Neoplasms) OR (Cervical Neoplasm, Uterine) OR (Cervical Neoplasms, Uterine) OR (Neoplasm, Uterine Cervical) OR (Neoplasms, Uterine Cervical) OR (Uterine Cervical Neoplasm) OR (Neoplasms, Cervical) OR (Cervical Neoplasms) OR (Cervical Neoplasm) OR (Neoplasm, Cervical) OR (Neoplasms, Cervix) OR (Cervix Neoplasms) OR (Cervix Neoplasm) OR (Neoplasm, Cervix) OR (Cancer of the Uterine Cervix) OR (Cancer of the Cervix) OR (Cervical Cancer) OR (Uterine Cervical Cancer) OR (Cancer, Uterine Cervical) OR (Cancers, Uterine Cervical) OR (Cervical Cancer, Uterine) OR (Cervical Cancers, Uterine) OR (Uterine Cervical Cancers) OR (Cancer of Cervix) OR (Cervix Cancer) OR (Cancer, Cervix) OR (Cancers, Cervix)] AND [(Spectrum Analysis, Raman) OR (Raman Spectrum Analysis) OR (Raman Spectroscopy) OR (Spectroscopy, Raman) OR (Analysis, Raman Spectrum) OR (Raman Optical Activity Spectroscopy) OR (Raman Scattering) OR (Scattering, Raman)]. All potential studies were included with no other limitation. The meta-analysis has been registered in PROSPERO (CRD42021284966).



Selection Criteria and Exclusion Criteria

Articles like review articles, comments, report, letters will be eliminated from the study. Criteria as follows: (I) without animal tissues in the experiments; (II) reported the use of RS in uterine cervical tumors; (III) used histopathology to confirm the diagnosis; (V) reported the true positive (TP), false positive (FP), true negative (TN) and false negative (FN), based on which the sensitivity and specificity values can be calculated. After screening, a total of six study were included in the study.



Data Extraction

Two independent investigators extracted a range of data from each study using a standardized data-collecting form: article title, first author, publication year, nationality. All relevant data is contained within the 6 included articles (12–17). Then the primary parameters, which mean the diagnostic value, including TP, FP, TN, and FN. And we can use these parameters to calculate the sensitivity and specificity values. The data obtained were summarized in Table 1.


TABLE 1. Characteristics of the included studies.

[image: Table 1]


Statistical Analysis

We calculated the primary data of TP, FP, TN, FN from articles included, then calculated sensitivity, specificity, positive and negative likelihood ratios (LR), based on random effects models. We used Review Man 5.3 and Stata/SE 15.1 to generate the forest plots in order to show sensitivity and specificity.

Meanwhile, Summary Receiver Operator Characteristics (SROC) curves was generated to assess the combination of sensitivity and specificity by Stata/SE 15.1. To assess publication bias, we generated funnel plot using Stata/SE 15.1. In the meantime, we found that articles in uterine cervical tumors include in vivo and in vitro studies. Therefor we conducted a subgroup analysis according to these studies.



Risk of Bias (Quality) Assessment

Two independent investigators used the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) guidelines by Review Manager 5.3 to evaluate the quality of included studies. And the risk of bias of included studies was shown in Figures 1A,B. To assess publication bias, we plotted funnel plots and Egger’s regression test using Stata/SE 15.1. The funnel plots and Egger’s regression test included in the study are shown in Figures 1C,D. As shown in the Figure 1D, P = 0.420, less than 0.05, and Egger’s regression test indicates that there is no publication bias.
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FIGURE 1. The graphical display of the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) of the included studies. (A) Risk of bias and applicability concerns evaluation of included studies in pool. (B) Risk of bias and applicability concerns evaluation of included studies individually. (C) Funnel plot of publication bias in Raman diagnosis of cervical cancer. (D) Egger’s regression test of publication bias in Raman diagnosis of cervical cancer. (E) Sensitivity analysis in Raman diagnosis of cervical cancer.


And we conducted a sensitivity analysis. In Figure 1E, the results showed that none of the studies had an impact on this meta-analysis.




RESULTS


Search Results

The process of included articles screening was presented in Figure 2. 403 potential articles were searched at first (including PubMed, n = 106, Web of science, n = 186, Embase, n = 111), in which included 198 duplicate records. Among the rest of 205 articles, 38 articles excluded due to: they were review, meeting or letters. Go a step further by browsing the 167 potentially relevant studies, 126 records excluded due to they were cytological study (n = 79), serological research (n = 28), medicine efficacy study (n = 11), animals research (n = 8). By reading the rest of 41 articles, 24 reports excluded due to they were biochemical assessment (n = 12), failed to give concrete date (n = 6) and irrelevant to the subject (n = 6). After careful perusing, 5 articles excluded due to failed to mention TN, FN, TP, FP and 6 excluded because of cervical precancer. Ultimately, 6 studies included in this review.


[image: image]

FIGURE 2. PRISMA 2020 flow diagram.




Characteristics of the Included Studies

Table 1 carefully described the particular characteristics of the 6 included articles. Among the 6 articles, 5 were published between 2014 and 2018, the rest of article was published in 2007. There are a total of 242 patients and 167 normal people in the included articles, and the total number of spectra incorporated was 720 (two articles didn’t provide the number of spectra). In terms of the nationalities, four studies were from India, other two studies were from China and Ireland, respectively. As for diagnostic algorithm, one article calculated ORR (NADH/FAD), another article used linear discriminate analysis (LDA), and the other four articles utilized Principal-component linear discriminant analysis (PC-LDA). In term of spectra, two studies applied 785 nm, other two studies applied 784.12 nm, and the other two studies applied 430 and 514.5 nm, respectively. All of six studies utilized tissue to research, two studies were in vivo, therefor their samples were cervix in vivo, and the other four studies were in vitro, so their samples were ex vivo tissues. Three of four studies in vitro obtained fresh tissue slices, the rest of one study obtained Formalin-fixed paraffin preserved tissue.



Pooled Data Analysis

The sensitivity and specificity were calculated to assess diagnostic accuracy of all the six studies. And the forest plot of pooled sensitivity and specificity was shown in Figure 3. The sensitivity which meant the detection of uterine cervical tumors by RS, ranged from 0.91 (95% CI, 0.82–0.97) to 1.00 (95% Cl, 0.95–1.00) and the pooled sensitivity was 0.98 (95% Cl, 0.93–0.99). The sensitivity of all the six studies was more than 0.90, which was mean that the missed diagnosis rate of RS for uterine cervical tumors is very low. The specificity ranged from 0.75 (95% CI, 0.58–0.88) to 0.99 (95% Cl, 0.96–1.00), and the pooled specificity was 0.95 (95% Cl, 0.89–0.98). It should be noted that except for one study with sensitivity of 0.75, specificity of the other five studies were more than 0.90. In a word, the ability of RS to distinguish cancer from normal people was worthy of recognition.
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FIGURE 3. The pooled date analysis of Raman spectroscopy (RS) in uterine cervical tumors. (A) The forest plot of pooled sensitivity and specificity of Raman spectroscopy to diagnose uterine cervical tumors of all the six studies. (B) The pooled PLR and NLR of Raman spectroscopy in diagnosis of uterine cervical tumors. PLR, positive likelihood ratios; NLR, negative likelihood ratios. (C) The SROC curve of Raman spectroscopy in diagnosis of uterine cervical tumors. SROC, summary receiver operator characteristics.


The total PLR and NLR were 21.05 (95% CI, 8.23–53.86) and 0.03 (95% CI, 0.01–0.07), respectively. And the AUC of the SROC curve which show the overall diagnostic accuracy was 0.99 (0.98–1.00). The plots were shown in Figure 3C.



Subgroup Analysis


Vivo Group

Two studies (15, 16) showed the research of RS to uterine cervical tumors in vivo which had a total of 87 samples and 300 tested spectra. The sensitivity of two studies was 1.00 (95% Cl, 0.95–1.00) and 0.91 (95% Cl, 0.82–0.97), respectively, and the specificity was 0.95 (95% Cl, 0.87–0.99) and 0.96 (95% Cl, 0.89–0.99), respectively. Since the number of study included in this group is less than 4, data analysis cannot be done in STATA. All of the data and grouping situation were shown in Figure 4.


[image: image]

FIGURE 4. The subgroup analysis of vivo group and vitro group.




Vitro Group

Four studies (12–14, 17) showed the research of RS to uterine cervical tumors in vitro which had a total of 322 samples and 420 tested spectra (two articles didn’t provide the number of spectra). The sensitivity of four studies ranged from 0.92 (95% Cl, 0.74–0.99) to 1.00 (95% Cl, 0.72–1.00), and the pooled sensitivity was 0.98 (95% Cl, 0.89–1.00). The specificity ranged from 0.75 (95% Cl, 0.58–0.88) to 0.99 (95% Cl, 0.96–1.00), and the pooled specificity was 0.97 (95% Cl, 0.94–0.99). Total PLR and NLR were 33.38 (95% Cl, 15.00–74.28) and 0.02 (95% Cl, 0.00–0.12), respectively. The SROC curve was described and the AUC was 0.99 (0.98–1.00). All of the plots of vitro group were shown in Figure 5.
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FIGURE 5. The pooled date analysis of Raman spectroscopy (RS) in uterine cervical tumors in vitro group. (A) The forest plot of pooled sensitivity and specificity of Raman spectroscopy to diagnose uterine cervical tumors of four studies. (B) The pooled PLR and NLR of Raman spectroscopy in diagnosis of uterine cervical tumors. PLR, positive likelihood ratios; NLR, negative likelihood ratios. (C) The SROC curve of Raman spectroscopy in diagnosis of uterine cervical tumors. SROC, summary receiver operator characteristics.






DISCUSSION

Mahadevan-Jansen et al. first researched uterine cervical tumors in vivo and in vitro by RS in 1998 (18). That means the research of uterine cervical tumors by RS has had more than 20 years history. Related articles research different substances, such as fresh cervical tissues, cervical cells, blood serum and so on. According to searching, this study is the first meta-analysis attempt to analyze the meaning of RS for uterine cervical tumors by researching fresh cervical tissues, and we intend to confirm its diagnostic accuracy by means of this study.

Meta-analysis showed that RS had high diagnostic accuracy for uterine cervical tumors. The sensitivity of all included articles was more than 90%, and the specificity of most included articles (except for one 75%) were also more than 90%. In the subgroup analysis, the sensitivity and specificity also achieved high standard, that meant whether RS analyze uterine cervical tumors tissues in vivo or in vitro both showed high diagnostic accuracy. This is strong evidence to explain the diagnostic effect of RS in uterine cervical tumors. Although there are only two literatures in vivo subgroup analysis, but for new technologies, such high sensitivity and specificity deserve our attention, and we look forward to seeing more research. And from the perspective of the combination of engineering with medicine, such new technologies and new ideas really deserve our attention.

RS also was used in researching uterine cervical tumors by cervical cells and blood serum except fresh cervical tissue. Sitarz et al. (19) studied the cervical cells of 96 women after TCT and HPV testing. They evaluated Glycogen levels in cells of all study groups to prove that RS can also diagnose HPV infected cells. Karunakaran et al. (20) found that the accuracy of RS in diagnosing uterine cervical tumors and normal people using single cells, cell clusters and DNA were 93.84, 74.26, and 92.21%, respectively. Lu et al. (21) studied the serum of 150 women and detected the levels of SCCA and OPN in the serum by RS. This is a convenient and efficient method which maybe a new screening measure for uterine cervical tumors.

With the prevalence of TCT and HPV examination, pathological biopsy is widely used in clinic and is considered as the gold standard of cervical cancer, what are the outstanding advantages of Raman technology? In other words, how should Raman technology position itself in clinical application?

After reading a lot of literature, people generally believe that the outstanding advantage of Raman microscope lies in its timeliness, such as real-time images, convenience and rapidity, reducing the demand and burden of pathologists and so on. According to the current research progress, Raman technology does not seem to be enough to make us think that it can replace postoperative pathology. However, with the rapid development of modern science and technology, there is an emerging technology called handheld Raman spectrometer, which can quickly and quantitatively detect the anti-cancer drug 5-fluorouracil (5-FU) in serum (22). We have every reason to expect that this technology can be innovated and applied to clinic as soon as possible, such as handheld portable Raman device. This device is smaller, imaging is faster, it is more convenient to determine the scope of lesions, reduce the burden of pathologists, and shorten the time waiting for intraoperative freezing during surgery, so as to realize efficient diagnosis in cost and time.

There are some limitations in this article. First and foremost, the heterogeneity was high. In order to explore the reasons for this result, we conducted a sensitivity analysis, and the results have been analyzed in Figure 1E. Excluding the included literature one by one did not have a great impact on heterogeneity. And meta regression, grouped by year, country, analysis tool, and Raman wave number, respectively, P-values are greater than 0.05, it means no great significance (Figure 6). We believe that the most likely reason is that there is too few research included due to the lack of current research. Second, because the vast majority of studies do not strictly abide by the double-blind test rules when conducting Raman test, there are some errors in the screening of patients, which may affect the analysis results. Third, one of the documents was published in 2007, and the rest were studied in recent 8 years. We don’t know whether microscope technology has developed greatly during this period. However, because there are few articles in conformity, we did not rule it out, and we think this meta can better explain the diagnostic effect of Raman technology in cervical cancer in the past 15 years. If someone continues to choose research in the follow-up, they can directly choose the literature from this time. Fourth, there are only two literatures in vivo subgroup analysis. Too few may not directly indicate the effectiveness of Raman technology, which needs more sample size and literature research.


[image: image]

FIGURE 6. Meta-regression analysis on year, country, diagnostic algorithm, spectra.




CONCLUSION

Due to the high cost and expense of RS, there are not many related studies at present. But in the existing research, it is believed that RS does play an important role in the diagnosis of uterine cervical tumors. This is a satisfactory result which predicts the emergence of a new and efficient diagnostic technology.

Through this meta-analysis, we can confidently believe that Raman spectroscopy has high specificity and sensitivity in the diagnosis of uterine cervical tumors, and we have reason to believe that Raman spectroscopy will become an efficient diagnostic method of uterine cervical tumors in the future. However, more research and evidence are needed to fully demonstrate the role of Raman spectroscopy in the diagnosis of uterine cervical tumors before it is used in clinic. We are also looking forward to more samples and more researches.
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Background: The prevalence of NAFLD is increasing annually. The early diagnosis and control are crucial for the disease. Currently, metabolic indicators are always used clinically as an auxiliary diagnosis of NAFLD. However, the prevalence of NAFLD is not only increased in obese/metabolic-disordered populations. NAFLD patients with thin body are also increasing. Only using metabolic indicators to assist in the diagnosis of NAFLD may have some deficiencies. Continue to develop more clinical auxiliary diagnostic indicators is pressing.

Methods: Machine learning methods are applied to capture risk factors for NAFLD in 365 adults from Zhejiang Province. Predictive models are constructed for NAFLD using fibrinolytic indicators and metabolic indicators as predictors respectively. Then the predictive effects are compared; ELISA kits were used to detect the blood indicators of non-NAFLD and NAFLD patients and compare the differences.

Results: The prediction accuracy for NAFLD based on fibrinolytic indicators [Tissue Plasminogen Activator (TPA), Plasminogen Activator Inhibitor-1 (PAI-1)] is higher than that based on metabolic indicators. TPA and PAI-1 are more suitable than metabolic indicators to be selected to predict NAFLD.

Conclusions: The fibrinolytic indicators have a stronger association with NAFLD than metabolic indicators. We should attach more importance to TPA and PAI-1, in addition to TC, HDL-C, LDL-C, and ALT/AST, when conducting blood tests to assess NAFLD.

Keywords: non-alcoholic fatty liver disease (NAFLD), TPA, PAI-1, machine learning, support vector machine (SVM), predictive model


INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) has become one of the most common liver diseases, affecting about 25% of the general population worldwide, in which Asia (27%) has higher prevalence rates comparing with North America (24%) and Europe (24%) (1, 2). As the largest country in Asia, the prevalence of NAFLD in China is also increasing annually (3). NAFLD is closely related to metabolism (4), so metabolic indicators are often used to assist the diagnosis of NAFLD in the clinic. Total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), alanine transaminase/aspartate transaminase (ALT/AST), and body mass index (BMI), and other indicators of metabolism, are all regarded as important factors related to the risk of NAFLD and contribute to the diagnosis (5–7). However, there are still some shortcomings in using only metabolic indicators as predictors of NAFLD. A paper published in “The Lancet” (8) pointed out that even thin people are not immune to fatty liver disease. Of the total incidence of NAFLD, 40% of patients with NAFLD had normal BMIs (18.5–23.9), and 20% of non-obese people had NAFLD. This inspired us to find more evidence in addition to metabolism for the accurate diagnosis of NAFLD. Our research focused on the fibrinolytic indicators.

The physiological balance of TPA/PAI-1 plays an essential role in regulating blood patency and preventing atherosclerosis (9). Also, plasma TPA and PAI-1 are associated with many metabolic diseases including NAFLD, heart disease, and diabetes mellitus (DM) (10–12). Jin found that plasma PAI-1 levels were significantly increased in children with increased severity of steatosis, lobular inflammation, ballooning, and fibrosis (13). Furthermore, PAI-1 was strongly correlated with plasma lipids and insulin resistance indices (13). By analyzing 210 Taiwanese NAFLD patients and 420 gender- and age-matched control groups, Chang found that based on univariate analysis, TG, BMI, LDL, HDL, ALT, AST, TPA, and PAI-1 are all related to NAFLD (14). However, less research provided good predictive accuracy for NAFLD diagnosis based on fibrinolytic or metabolic indicators. And there was little research on comparing the impacts of these indicators on NAFLD diagnosis quantitatively.

In this study, we applied machine learning (ML) which has been increasingly used in the field of liver disease and liver transplantation (15) to construct the predictive models for NAFLD based on those blood indicators, and obtained good predictive accuracy. It also compares the accuracy of prediction, looking for which indicators are more suitable for NAFLD diagnosis, fibrinolytic indicators, or metabolic indicators? We collected the datasets of 365 patients who had blood tests and NAFLD labels from the Traditional Chinese Medicine hospital of Zhejiang Province. The support vector machine (SVM) method was applied to the dataset to construct a predictive model for NAFLD based on the indicators above. SVM has been used to identify molecular markers of hepatocellular carcinoma (HCC) (16), but no one has yet used it to screen NAFLD auxiliary diagnostic indicators. We compared the prediction accuracy for NAFLD diagnosis based on fibrinolytic indicators (TPA and PAI-1) with the prediction accuracy based on metabolic indicators (TC, HDL-C, LDL-C, ALT/AST), screened the more accurate one.



MATERIALS AND METHODS


Screen and Compare Diagnostic Indicators
 
Subjects
 
Ethics Statement

Ethics statement Written informed consent was obtained from each participant, and the study was approved by the Committee for the protection of human subjects of The First Affiliated Hospital, Zhejiang Chinese Medical University. The corresponding ethical approval code (2018-K-061-01).



Inclusion Criteria

This study investigated 365 adult individuals aged 18–65 on whom we had complete data. They are from the health examination center of the Traditional Chinese Medicine hospital of Zhejiang Province. The following subjects were excluded:

(1) pregnant or lactating women;

(2) who has one of the following diseases: heart, brain, blood, lung, kidney, endocrine, mental, viral hepatitis, tuberculosis, AIDS, scarlet fever, drug-induced hepatitis, autoimmune liver disease, Wilson's disease, and liver cancer;

(3) who has taken anticoagulants in the last half month.

365 adult individuals who met the inclusion and exclusion criteria were divided into the Normal group (n = 99) and the NAFLD group (n = 299) according to the B-ultrasound results for follow-up analysis. Detailed clinical data can be found in Supplementary Table 1.




Methods

The following variables are included in our model: gender, age, body mass index (BMI), body height, TPA, PAI-1, TC, HDL-C, LDL-C, ALT/AST. These input variables were linearly scaled to the range [0, 1] and were mapped into a high-dimensional feature space. For details, see Table 1.


Table 1. The characteristic clinical data between the NAFLD and non-NAFLD patients.

[image: Table 1]

Comparisons between the two groups (NAFLD vs. non-NAFLD) were conducted using Student t-tests for continuous variables and Pearson tests for categorical variables.

SVM methods were taken to construct predictive models for NAFLD. SVM is a very popular supervised machine learning classifier widely used in classification or discrimination analysis. For non-linear and complicated relationships in high-dimensional variables, SVM is usually more effective than Logistic and other ordinary statistical methods. In this research, the relationship between NAFLD and blood indicators is complicated and no regular mathematical function can precisely describe the mechanisms between NAFLD and blood indicators. So SVM is suitable for our topic.

We introduce briefly the idea of svm. Let Xi denote the input variables such as TPA, PAI-1, BMI and so on in our case, and yi denote the lable of each sample. The purpose of SVM model is to find a function [image: image] to predict the lable as accurate as possible. It implement the following optimal problem to solve the function.

[image: image]

We attached different weights to the two categories, i.e., the objective function was replaced by

[image: image]

Each ωi for normal cases (NAFLD label yi = 1) had a common value denoted by [image: image], while each ωi for NAFLD cases (NAFLD label yi = −1) had another common value denoted by ω. We adjusted the value of [image: image] and ω based on particular cases. For practical problems, we take [image: image] > ω if we believe the risk induced by misclassifying a label -1 sample as label 1 is larger than that induced by misclassifying a label 1 sample as label 0. Otherwise, we take [image: image] < ω.

We used the LIBSVM package (http://www.csie.ntu.edu.tw/~cjlin/libsvm) to implement the soft margin SVM model. The Gauss kernel function was applied in our study, which gives the highest accuracy for our test. The receiver operating characteristic (ROC) curve was used to assess the predictive performance of our SVM models. We generated the ROC curve by drawing the true-positive rates vs. false-positive rates over a range of thresholds. Each threshold is a cutoff, if an individual's output probability in the SVM is greater than this cutoff, he is judged as NAFLD, otherwise, he is judged as non-NAFLD. For each threshold, we calculated a pair of true-positive rates and false-positive rates. When the thresholds ranged stepwise from 0 to 1 by step size 0.01, we obtained the whole ROC curve. The area under the curve (AUC) was used as a measure of the predictive performance of our SVM models. The following Figure 1 is the technical line of machine learning.


[image: Figure 1]
FIGURE 1. The technical line of our research.






RESULTS


The Results of Screen and Compare Diagnostic Indicators
 
Basic Statistical Analysis Results of TPA and PAI-1

In the dataset of 365 cases, the patients' ages ranged from 25 to 65 years old, 266 patients had NAFLD, and 99 patients were normal. We used a t-test to compare the TPA, PAI-1, and TPA/PAI-1 between the NAFLD group and the non-NAFLD group. TPA, PAI-1, and TPA/PAI-1 exhibited a significant difference (P < 0.05) between the two groups. The mean of TPA and PAI-1 in the NAFLD group was higher than that in the non-NAFLD group. However, the mean of the ratio TPA/PAI-1 in the non-NAFLD group was significantly higher than that in the NAFLD group (P < 0.05). The results are summarized in Table 2. The results showed that no matter whether it was the plasm level of TPA, PAI-1, or TPA/PAI-1, there were significant differences between the NAFLD and the non-NAFLD patients, which suggests that the plasma levels of TPA, PAI-1, or TPA/PAI-1 have the potential to be regarded as indicators for NAFLD diagnosis.


Table 2. Comparison of TPA1, PAI-1 between the NAFLD and non-NAFLD patients.

[image: Table 2]



Predictive Results for NAFLD Using Metabolic Indicators as Predictors

First, we standardized the TC, HDL-C, LDL-C, and BMI data. In order to better assess the performance of the SVM predictive model for NAFLD, we first constructed the Logistic aggression model to predict NAFLD using the standard TC, HDL-C, LDL-C, and BMI data. The Logistic model was implemented in SPSS 25.0 but the predictive accuracy was <30%. Then we used the standard data to construct SVM predictive models for NAFLD. The results of the SVM model were summarized in Table 3. Error_1 was used to denote the misclassification rate of predicting normal samples as NAFLD samples and Error_2 was used to denote the misclassification rate of predicting NAFLD samples as normal samples. The results show that in the experiment, the accuracy of the SVM model is much higher than that of the Logistic model, suggesting the SVM model is more suitable for the predictive study.


Table 3. Prediction performance using BMI, TC, HDL-C, and LDL-C as factors.

[image: Table 3]



Predictive Results for NAFLD Using Fibrinolytic Indicators as Predictors

As above, we first constructed the Logistic model using the standardized TPA and PAI-1 as predictors but found that the predictive accuracy was not more than 40%. Next, we constructed an SVM model using the standardized TPA and PAI-1 as input variables. And we found that the predictive accuracy was much higher than that of the Logistic model. The results are shown in Table 4. These results suggest that, similar to metabolic indicators, the use of the SVM model to predict fibrinolytic indicators is more accurate.


Table 4. Prediction performance using TPA and PAI-1 as factors.

[image: Table 4]



The Comparison of the Prediction of Metabolic and Fibrinolytic Indicators

Interestingly, we found that the predictive accuracy based on TPA and PAI-1 was significantly higher than that based on TC, HDL-C, LDL-C, and BMI. To better see the difference, we drew the two ROC curves (Figure 2). The red curve is the ROC curve using TPA and PAI as predictors and the AUC is 0.91; the blue curve is the ROC curve using TC, HDL-C, LDL-C, and BMI as predictors and the AUC is 0.75. The difference was obvious. From the above results, we inferred that TPA and PAI-1 are more suitable than TC, HDL-C, and LDL-C for predicting NAFLD. TPA and PAI-1 have deeper links with NAFLD than TC, HDL-C, and LDL-C do.


[image: Figure 2]
FIGURE 2. The comparison of ROC curves of SVM based on fibrinolytic indicators and metabolic indicators.


We also want to know whether TC, HDL-C, and LDL-C can be complementary to TPA and PAI-1 to achieve better prediction results (in other words, whether TPA and PAI-1 miss some valuable information contained in the TC, HDL-C, and LDL-C data) when predicting NAFLD. Thus, we combined the TPA and PAI-1 data with the TC, HDL-C, and LDL-C data to construct an SVM model. The predictive results are in Table 5. The results show that compared with the prediction performance using BMI, TC, HDL-C, and LDL-C as factors, after adding TPA and PAI-1, the prediction accuracy of metabolic indicators is greatly improved. However, the prediction accuracy of the SVM model did not increase significantly compared with TPA and PAI-1 alone as a predictor. These indicate that the blood levels of TPA and PAI-1 can be regarded as highly effective indicators to assist the diagnosis of NAFLD, independent of metabolic indicators.


Table 5. Prediction performance using TPA, PAI-1, TC, HDL-C, LDL-C, and BMI as indicators.

[image: Table 5]



The Robustness of Our SVM Model

To check the robustness of our SVM model based on TPA and PAI-1, we took different percentages of training samples in the total 365 cases. The percentage varied from 25 to 75% and we obtained the corresponding accuracy of predicting NAFLD as in Figure 3.


[image: Figure 3]
FIGURE 3. The predictive accuracy for training samples and testing samples vs. the percentage of training samples.


The results show that in different percentages of training samples, the prediction accuracy of training samples and test samples are both high (over 90%), which indicates our SVM model based on TPA and PAI-1 was stable and trustable.





DISCUSSION

NAFLD is characterized by the significant accumulation of lipids, such as TG, TC, HDL- C, LDL-C in hepatocytes and serum, indicating that altered lipid metabolism is crucial in the pathogenesis of NAFLD (17). NAFLD is a broad-spectrum disease, including simple steatosis in the early stage, non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, and even liver cancer in the late stages (18). The pathogenesis of NAFLD has been widely accepted by the “multiple-hit” hypothesis because NAFLD pathogenesis involves many influence factors, such as diet, genetic, environmental, and metabolism that progress through different stages during the occurrence and development of NAFLD (19). Although the number of patients with NAFLD is large and the harm is great, the exact mechanism of NAFLD is still unclear.

TPA and PAI-1 are mainly a pair of biological regulatory factors synthesized and secreted by vascular endothelial cells. Fibrinolytic system balance is affected by many factors, such as blood lipids, blood glucose, stress, gender, and age. And it is associated with obesity, insulin resistance, diabetes, dyslipidemia, and premature aging (13, 20, 21), which all are coexisting conditions of NAFLD. All this suggests that TPA and PAI-1 may be related to the metabolism and hepatic functions of NAFLD patients, but the specific mechanism is currently unknown.

What's more, by reviewing the literature, we found that the imbalance of TPA and PAI-1 activity is of great significance in metabolism, chronic liver disease and has different manifestations in different stages of the disease (22). And Based on our results, the prediction accuracy of NAFLD using TPA and PAI-1 as predictors was higher than that using TC, HDL-C, LDL-C, and ALT/AST as predictors. These discoveries all further suggest that the plasma level of TPA and PAI-1 may be used as new indicators for the diagnosis of NAFLD.

Nowadays, the gold standard for the NAFLD diagnosis is the liver biopsy (23), But liver biopsy cannot be used routinely, since it is an invasive and expensive procedure. In clinical diagnosis, we often use liver B ultrasound combined with clinical symptoms and metabolic indicators to diagnose NAFLD (24). Through the study, we propose that changes to the fatty liver fibrinolytic system are one of the key links in NAFLD progress. The change to the fibrinolytic system was even more significant for NAFLD than the internal metabolic indices such as liver and kidney function. Therefore, we propose that TPA and PAI-1 should be included in normal physical examinations. Further, studies of fibrinolytic activity and drug development may be important for understanding the mechanism and treatment of NAFLD. Based on the perspective of the fibrinolytic system, in-depth discussion on its prediction of NAFLD may play an important role in improving the mechanism of NAFLD.

However, this study also has some shortcomings. In this observation object, our inclusion criteria are B ultrasound diagnosis, so it is difficult to distinguish the stratification of NAFLD disease and Unable to analyze changes in the fibrinolytic system during the disease progression. Therefore, in the following study, we look forward to using H1-MRS, controlled attenuation parameter, through human or animal and cell experiments to analysis of its internal mechanism.



CONCLUSION

In summary, TPA and PAI-1 are also effective indicators for the Chinese to assist in the diagnosis of NAFLD. Its diagnostic accuracy may be higher than metabolic related indicators. We do hope that this study can promote the further development of clinical NAFLD diagnosis and provide valuable guidance for the non-invasive diagnosis of NAFLD.
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Objective: Active abdominal arterial bleeding is an emergency medical condition. Herein, we present our use of this two-stage InterNet model for detection of active abdominal arterial bleeding using emergency DSA imaging.

Methods: Firstly, 450 patients who underwent abdominal DSA procedures were randomly selected for development of the region localization stage (RLS). Secondly, 160 consecutive patients with active abdominal arterial bleeding were included for development of the bleeding site detection stage (BSDS) and InterNet (cascade network of RLS and BSDS). Another 50 patients that ruled out active abdominal arterial bleeding were used as negative samples to evaluate InterNet performance. We evaluated the mode's efficacy using the precision-recall (PR) curve. The classification performance of a doctor with and without InterNet was evaluated using a receiver operating characteristic (ROC) curve analysis.

Results: The AP, precision, and recall of the RLS were 0.99, 0.95, and 0.99 in the validation dataset, respectively. Our InterNet reached a recall of 0.7, the precision for detection of bleeding sites was 53% in the evaluation set. The AUCs of doctors with and without InterNet were 0.803 and 0.759, respectively. In addition, the doctor with InterNet assistant could significantly reduce the elapsed time for the interpretation of each DSA sequence from 84.88 to 43.78 s.

Conclusion: Our InterNet system could assist interventional radiologists in identifying bleeding foci quickly and may improve the workflow of the DSA operation to a more real-time procedure.

Keywords: abdominal arterial bleeding, digital subtraction angiography, deep learning, automatic detection, two-stage model


INTRODUCTION

Active abdominal arterial bleeding is a medical emergency that may lead to haemorrhagic shock or circulatory instability if left untreated (1–5). Clinicians experience difficulty in dealing with this complicated condition (2, 5, 6). Most cases of active abdominal arterial bleeding are medically treated by correcting coagulation abnormalities or through endoscopy (7–9). Nonetheless, these methods can fail in some patients with significant bleeding, in which cases endovascular treatment is desired (3, 10–14). Due to its advantages of reduced morbidity and mortality, endovascular treatment using digital subtraction angiography (DSA) is now preferred over open surgery (5, 11, 15–17).

Rapid and accurate diagnosis of arterial bleeding by an interventional physician via DSA remains challenging (1). Human limitations in a crowded tertiary hospital include staff shortage, excess workload, and, especially, a lack of knowledge among radiologists regarding arterial bleeding. Under these circumstances, an automated system is needed to alleviate the tedious task of screening out incidental findings and allowing physicians more time to interact with patients and other health care providers. Further, such a system would help address the lack of expert radiologists in rural and community hospitals. What's more, the bleeding could be subtle in some cases. It is difficult to identify subtle bleeding by human quickly, and it is more difficult for junior doctor. So, one of the important values of our system is to shorten diagnosis time and to reduce the rate of missed bleeding sites. Deep learning approaches have provided exciting solutions medical image in medical image detection. The diagnosis of bleeding involves a typical computer visual task of classification of radiological images into bleeding and non-bleeding categories and detection of bleeding sites. However, computer-assisted automated detection of active abdominal arterial bleeding from DSA images has not been previously reported.

In current practice, a captured video sequence is reviewed offline by the physician to identify bleeding sites before the intervention is performed. A usable AI (artificial intelligence) system should be able to replace this offline review with automated detection of bleeding sites. Thus, our system was designed and evaluated based on this first goal. However, the current workflow must ultimately be improved to a more real-time system ideally. If the automated system detects bleeding sites correctly in most frames and at the video frame rate, there might be no need for an offline review. The physician could directly view the highlighted bleeding sites in real-time and perform the surgery, which would reduce the surgery time. In this work, we proposed a two-stage deep learning model (named InterNet) for real-time detection of active abdominal arterial bleeding using emergency DSA imaging. We hypothesized that the InterNet can detect active abdominal arterial bleeding at a faster speed and higher sensitivity.



MATERIALS AND METHODS


Data Acquisition

Firstly, 450 patients who underwent abdominal DSA procedures were randomly selected from our PACS system for development of the region localization stage (RLS). Secondly, 160 consecutive patients with active abdominal arterial bleeding who underwent endovascular treatment between January 2013 and January 2020 were retrospectively included for development of the bleeding site detection stage (BSDS) and InterNet (cascade network of RLS and BSDS). These 160 patients had clinical signs of active abdominal arterial bleeding: blood from a postoperative drainage tube, haematuria, haematochezia, hypotension, tachycardia, or a low hemoglobin level. Another 50 patients who underwent abdominal DSA procedures that ruled out active abdominal arterial bleeding were randomly selected and used as negative samples to evaluate InterNet performance.

A standard transfemoral approach was used in all angiographic procedures. A sheath introducer was placed in the right or left common femoral artery using the Seldinger technique. Selective angiography of the abdominal aortic branches was performed using a 5-Fr catheter in all patients. Super selective angiography of the tiny branches was performed using a microcatheter.

DSA images usually contain multiple sequences, and each sequence consisted of 30–50 video frames at six frames per second. All data were stored in Digital Imaging and Communications in Medicine (DICOM) format. All data were manually annotated using LabelImge software (GitHub, Inc., San Francisco, CA, USA). The bleeding sites and angiographic regions were manually segmented and annotated by two radiologists. The segmented images were then reviewed by another experienced radiologist. Any disagreements in segmentation were resolved through consensus among the three radiologists.



Dataset Splitting

A total of 546 sequences from 450 patients were used for RLS development. These patients were randomly split into a training dataset (80%) and a validation dataset (20%). From the 160 patients with active abdominal arterial bleeding, 182 sequences from 90 patients were classified into the BLDS training dataset; 49 sequences from 20 patients were classified as a validation dataset for stability and generalizability of the RLS and BSDS cascade network (InterNet). Sixty-seven sequences from 50 actively bleeding patients and 80 sequences from 50 patients without active bleeding were classified as an independent testing dataset for InterNet.



Deep Learning Model Development

The entire program was performed with Pytorch version 1.2 (Pytorch, Warsaw, Mazowieckie, Poland) as the backend, on a desktop computer equipped with an Intel (R) Xeon(R) Silver 4110 system (Intel Inc., Santa Clara, CA, USA), 64 GB RAM, and a GeForce RTX 2080Ti GPU (Nvidia, Santa Clara, CA, USA). The InterNet detection system was developed to automatically detect bleeding sites on DSA images using a two-stage process, first localizing the angiographic region from the original frame image (RLS), followed by bleeding site detection on the cropped image (BSDS). The framework of our two-stage detection system is schematized in Figure 1. The RLS was based on the sparseness of bleeding sites in a sequence and within a frame image. ResNet50 was used as the backbone for our two-stage deep learning model framework.


[image: Figure 1]
FIGURE 1. Overview diagram of the proposed two-stage deep learning approach (InterNet). The system first detected the angiographic region from the original frame image. The output of the RLS was used as input in the next stage of redundancy reduction. RPN, region proposal network; ROI, region of interest; FC, fully connected layer; Bbox, bounding box.


Multi-scale features were extracted to create feature maps, and the region proposal networks (RPNs) were applied to generate region proposals via classification and regression (18). The proposed regions underwent non-maximum suppression to filter the highly overlapping regions. Region pooling unified the various-sized regions to the same size. The resulting region candidates were put through the Region Based Convolutional Neural Networks (R-CNN). The targets were classified, and the bounding boxes underwent a second regression to achieve the final target detection. Moreover, we applied the feature pyramid networks (FPN) on the framework of our two-stage detection system (19). The cost and benefit of using the FPN compared to the approach without FPN was also evaluated. The detailed network structure of multi-scale features extraction is schematized in Figure 2.


[image: Figure 2]
FIGURE 2. Detailed network structure diagram of feature pyramid network (FPN). We adopted FPN with a ResNet-50 backbone for InterNet. FPN is an outstanding detector for many visual tasks and can identify objects at multi-scales. RPN, region proposal network; ROI, region of interest; FC, fully connected layer; bbox, bounding box; RCNN, Region Based Convolutional Neural Networks.


To tune the detection system, we adjusted the size of the input image. According to the detection performance, we chose the optimal value of the key parameter of “resize.” To avoid overfitting, we used common techniques to augment the data. Contrast-limited adaptive histogram equalization (CLAHE) was applied to reduce the intensity range, followed by random shift and rotation to augment the orientation and position of the bleeding site samples (20). Perturbation of intensities and contrast and a random median filter were applied to improve the distribution of the samples.



Performance Assessment Between Doctors With and Without InterNet Assistant

To evaluate the benefit of InterNet, we compared the classification efficiency between doctors in terms of patients with InterNet assistant using the independent testing dataset. The classification performance and elapsed time were recorded.



Statistical Analyzes

We evaluated the model's efficacy using the precision-recall (PR) curve, which is commonly used to show the compromise between precision and recall. By moving along the curve, various compromises between precision and recall can be acquired, enabling us to choose between the two. A high recall indicates a higher rate of detection (fewer false negatives), and a high precision indicates a lower rate of false positives. The average precision (AP) was used to evaluate the detection precision of the deep learning algorithms. A prediction is considered to be true positive if Intersection over Union (IoU) > 0.5, and false positive if IoU < 0.5. The frame-per-second (FPS) rate of each test was calculated to evaluate whether the bleeding sites could be tracked in real-time. The classification performance of a doctor with and without InterNet was evaluated using a receiver operating characteristic (ROC) curve analysis. The area under the curve (AUC), sensitivity, and specificity were calculated. The differences in elapsed time for a doctor with and without InterNet were compared using the Mann-Whitney U-test. Statistical analyses were performed using R (version 3.3.4, http://www.Rproject.org). The threshold for statistical significance was set at a two-sided p < 0.05.




RESULTS

We used the area calculated from the segmented mask of each positive DSA image to represents the amount of bleeding. The mean bleeding site area of the 67 sequences from 50 actively bleeding patients in the independent testing dataset is 938.4 ± 1,707.1 square millimeter. Among the 50 patients, the bleeding locations of 24 cases are in kidney; 19 cases are in digestive tract; three cases are in spleen; two cases are in uterus; and two cases are in other organs.

The AP, precision, and recall of the RLS were 0.99, 0.95, and 0.99, respectively. This means that the angiographic region could be correctly recognized in 99 out of 100 testing images. The P-R curve of the RLS on the validation dataset is shown in Supplementary Figure 1.

The baseline system showed an AP of 58.1% and FPS rate of 4.2, while the network with FPN showed improved AP of 60.3% and FPS rate of 5.0. The detection results for the system on the validation dataset with and without FPN are shown in Table 1. The key parameter of “resize” was found to be optimal at 1,333 × 800. The AP reached 64.5% with this input image size, while the FRS showed a slight decrease from 5.0 to 3.9. The model including Baseline + FPN and resize 1,333 × 800 was selected as the final structure for our InterNet system. The effect of changing the resize parameters of the detection system is shown in Table 2. The InterNet P-R curve for the evaluation dataset is shown in Figure 3. For the task of detection, a high recall was more desirable than a high precision. Therefore, we picked a spot with a recall of 0.7 and precision of 0.53.


Table 1. Effect of feature pyramid networks of the detection system.
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Table 2. Effects of changing resize parameters of the detection system.
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FIGURE 3. The precision–recall curve of the InterNet. The average precision of the InterNet was 64.5 on the evaluation dataset. We selected a spot with a recall of 0.7 and a precision of 0.53.


Table 3 and Figure 4 summarize the classification performance of a doctor with and without InterNet. The doctor with InterNet showed a superior performance to that of the doctor without InterNet. The AUCs of doctors with and without InterNet were 0.803 and 0.759, respectively. In particular, the doctor with InterNet assistant showed a substantially increased sensitivity, from 73.17 to 88.06%. In addition, the doctor with InterNet assistant could significantly reduce the elapsed time for the interpretation of each DSA sequence from 84.88 to 43.78 s per sequence (p < 0.01; Figure 5). Examples of the prediction results obtained by our proposed InterNet are shown in Figure 6.


Table 3. Classification performance of a doctor with and without InterNet.
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[image: Figure 4]
FIGURE 4. Receiver operating characteristic (ROC) curve for doctor without and doctor with InterNet assistant. Doctor with InterNet assistant showed a superior performance to that of doctor without InterNet assistant. The AUCs of doctor with and doctor without InterNet were 0.803 and 0.759, respectively.
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FIGURE 5. Elapsed time of doctor without and doctor with InterNet assistant. Doctor with InterNet assistant significantly reduced the elapsed time for the interpretation of each DSA sequence from 84.88 to 43.78 s per sequence.



[image: Figure 6]
FIGURE 6. Three sample results from InterNet. (A–C) Are images from a patient with subrectal arterial branch bleeding; (D–F) are images from a patient with bleeding from a right colonic artery branch; (G–I) are images from a patient with a bleeding branch of the inferior artery of the right kidney. The red boxes represent the ground truth bleeding bounding boxes; the green box represents the detected bleeding bounding box.




DISCUSSION

Given the efficacy and safety of transcatheter arterial embolization compared with open surgery for the treatment of active abdominal arterial bleeding (5, 11, 15–17), accurate and rapid detection of bleeding sites is the key to success of transcatheter arterial embolization. In this study, we built an automated system based on a deep neural network model to detect active abdominal arterial bleeding on DSA images. Our InterNet system could help doctors in making a faster and more accurate interpretation. To our knowledge, this is the first system to automatically detect active arterial bleeding sites in DSA images.

In this study, we adopted two-stage deep learning for detection of active abdominal bleeding sites. In RLS, the angiographic region is proposed for detecting potential bleeding sites. In this stage, our detection system located a specific region to reduce the interference from other regions. The output of the RLS was used as input in the next stage of redundancy reduction. A practical benefit of RLS is that any data sequence, whether positive or negative, can be used for training the network for angiographic region extraction. This along with the ease of ROI labeling creates ample data to train a robust algorithm to extract the angiographic regions from the original frame images.

In the current study, we adopted FPN with a ResNet-50 backbone for the InterNet, because FPN is an outstanding detector for many visual tasks. FPN is capable of multi-scale feature extraction, which fits well with the task of detecting bleeding sites that have large variations in their sizes and shapes. FPN has a top-to-bottom pathway in addition to the bottom-to-top pathway of a regular neural network; hence, the semantic information from the top levels helps enhance the detailed information in the lower layers, leading to a powerful multi-scale capacity (19). In our study, the baseline system with FPN showed a relatively higher compared without FPN (60.3 vs. 58.1%).

Embolization requires the localization of bleeding sites, which can be easily missed by a physician. For our abdominal bleeding detection task, a low false negative rate is more desirable than a low false positive rate, since for a physician, it is easy to miss both, a bleeding spot and to rule out one. For this task of detection, a high recall was more desirable than a high precision. Therefore, we picked a spot with a recall of 0.7. At a recall of 0.7, the precision for detection of bleeding sites was 53% in the evaluation set. A recall of 70% means that the bleeding spot will be revealed to the physician in two of the three frames. A precision of 53% means that, on an average, for every correctly detected bleeding site, there will be <1 false detection. This false positive rate should be acceptable and not divert much of the physician's attention. The doctor with InterNet performed superiorly to the doctor without InterNet. In addition, the doctor with InterNet assistant could significantly reduce the elapsed time for the interpretation of each DSA sequence.

In present-day DSA surgery, after the DSA sequences are acquired, the physician reviews the sequence offline to detect the bleeding sites before performing the intervention. This workflow does not require our system to have real-time performance to replace the physician's effort of detecting bleeding sites. A more advanced use of the system would be to improve the workflow of the DSA operation to a more real-time procedure, thus eliminating the need for offline review and discussion. Ideally, the physician would look at the overhead monitor and observe the DSA images with overlaid marks of automatically detected bleeding sites (Supplementary Figure 2). To achieve this, it is best for the system to reach six frames per second—the frame rate of the captured imaging sequence. The frame rate achieved with Python in this study is close to 4 frames per second, and it is conceivable that a product based on optimized C++ code should reach six frames per second without much difficulty. In such a system, the physician could watch the video sequence in real-time. The system will produce some false positives, with an average of one false positive every two frames due to a precision of 53%. The bleeding sites in ~1 of 3 frames will not be marked due to a recall rate of 70%. Despite these imperfections, at an FRS of 4, the physician should be able to mentally make up the gap frames and eliminate the false marks with ease.

In recent years, many deep learning approaches have been developed for medical imaging analysis (21–23). A few studies have applied deep learning in DSA imaging. Alexander et al. trained a CNN system to automatically segment saccular aneurysms (pre- or post-coiling) and surrounding vasculature from DSA images (24). Yufen used residual density to generate a DSA image from a single live image without mask data acquisition, thus avoiding the appearance of motion artifacts in the image (25). To date, no study has applied the deep learning system for the detection of bleeding in DSA. We suspect that the difficulty in obtaining sufficient data is an important factor limiting its application to DSA. In this study, we applied deep learning for the detection of bleeding on DSA for the first time. Further applications of deep learning in DSA should be proposed and evaluated in future work. Deep learning may play an important role in surgery.

The main clinical applications of the proposed method are as followings. First, with the help of the current system, the physician would reduce the rate of missed bleeding sites, especially when the bleeding is subtle. Missed bleeding sites could lead to poor outcomes, and some patients may need a second procedure. Therefore, our system has the potential to improve the prognosis of patients. Second, the deep learning system developed in this study has the potential to shorten operation time, which may also reduce the radiation dosage to doctors and patients during the operation (26). Third, the automated system in our study would help address the lack of expert radiologists in rural and community hospitals. The CT Angiography (CTA) is also a common method for diagnosing active bleeding abdomen bleeding. Compared to CTA, DSA play import roles not only in diagnosis but also in appropriate management of abdomen bleeding. Most of the cases included in current study were performed emergency DSA surgery, therefor very few patients underwent CTA before DSA due to limited time. For the 50 actively bleeding patients in the independent testing dataset for InterNet, only seven patients underwent CTA before DSA surgery. The two radiologists did not view their CTA results when identify the bleeding sites. Thus, the CTA examination would not influence the research results in this retrospective study.

This study has several limitations. Firstly, this was a retrospective study design at a single institute. The number of images with bleeding sites included in the test set was also not very large. Secondly, only DSA imaging of one manufacture was included. Based on current results, we could not sure whether the method could be generalized to various DSA sequences from various manufactures. Therefore, our system should be validated in multicentre studies of a larger scale. Thirdly, only abdominal bleeding was included. Other types of bleeding (neck or thoracic bleeding) were not included because of their low incidences.

In this study, we presented a two-stage model InterNet for active abdominal bleeding detection using deep learning with DSA data. This work has created a usable system to automatically detect bleeding sites in DSA sequences. Our developed InterNet system could help doctors in achieving a faster and more accurate interpretation. A prospective clinical trial is necessary to determine the effectiveness of this system and whether it will ultimately improve patient care and outcomes.
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Objective: We created predictive models using machine learning algorithms for return-to-work (RTW) in patients with traumatic upper extremity injuries.

Methods: Data were obtained immediately before patient discharge and patients were followed up for 1 year. K-nearest neighbor, logistic regression, support vector machine, and decision tree algorithms were used to create our predictive models for RTW.

Results: In total, 163 patients with traumatic upper extremity injury were enrolled, and 107/163 (65.6%) had successfully returned to work at 1-year of follow-up. The decision tree model had a lower F1-score than any of the other models (t values: 7.93–8.67, p < 0.001), while the others had comparable F1-scores. Furthermore, the logistic regression and support vector machine models were significantly superior to the k-nearest neighbors and decision tree models in the area under the receiver operating characteristic curve (t values: 6.64–13.71, p < 0.001). Compared with the support vector machine, logistical regression selected only two essential factors, namely, the patient's expectation of RTW and carrying strength at the waist, suggesting its superior efficiency in the prediction of RTW.

Conclusion: Our study demonstrated that high predictability for RTW can be achieved through use of machine learning models, which is helpful development of individualized vocational rehabilitation strategies and relevant policymaking.

Keywords: upper extremity injury, return-to-work, vocational rehabilitation, support vector machine, machine learning, occupational health


INTRODUCTION

Occupational accidents are the most common causes of arm and hand injuries in China. A previous dataset, collected in Chinese cities with concentrated industrial development, showed that 85.4% of patients acquired their injuries in manufacturing industries; severe injuries commonly resulted from working with food, furniture, non-metallic minerals, and wood products (1).

A return-to-work (RTW) is the goal of rehabilitation for patients with work-related injuries. There have been numerous factors for successful RTW in patients with traumatic upper extremity (UE) injury in other countries (2, 3), including sociodemographic factors (e.g., age, educational level, and income), severity/location of injury (e.g., type of injury, joint injury, amputation), and function of the involved UE (e.g., strength, finger dexterity, and participation in purposeful tasks). Although these factors have enriched our understanding of what may influence patient employment after injury, there are two major limitations that should be addressed. First, it is impractical for rehabilitation service providers to collect extensive data from every patient to predict RTW in clinical settings. Therefore, it is important to create predictive models with higher prediction performance using a smaller number of factors. Second, RTW is not a purely biomedical process; on the contrary, many relevant cultural factors may be involved. Over the past decades, although some epidemic studies have reported the prevalence of hand injury and its prognostic factors in China (1), few authors have investigated which factors may contribute to patients' successful RTW or long-term absence from work after a standard rehabilitation program. It may also limit stakeholders in formation of appropriate policies, such as which patients should be endorsed for sick leave extension.

Conventional statistical methods, such as parametric tests of group means, logistical regression, the Kaplan-Meier method and Cox regression analysis, were used to explore and find predictors for RTW. However, the performance of RTW prediction based on predictor thresholds has not been examined in most studies; this could bring into question how the factors can correctly predict RTW in a specific time frame. Machine learning makes classifications and predictions based on probabilistic modeling and has been widely employed to solve industrial problems, such as prediction of project safety performance at construction sites (4). Recently, this approach has attracted researchers' attention in the biomedical and healthcare fields (5), in hopes of predicting brain disorders using neuroimaging data (6) or classifying the risk of developing a sudden illness, such as stroke (7). Lee and Kim (8) created machine learning models to predict RTW for vocational rehabilitation patients injured in an industrial accident; a high prediction performance was found, as indicated by high areas under the receiver operating characteristic (ROC) curves. Machine learning is still a novel approach for vocational rehabilitation, and more research is warranted in additional patients after an occupational accident.

We conducted a prospective cohort study in Shanghai, enrolling patients after traumatic UE injury due to occupational accidents, and all patients were followed up for 1 year. Four commonly examined algorithms, namely, k-nearest neighbors (kNN), logistic regression, support vector machine (SVM), and decision tree, were used to select the factors of importance for RTW. The predictability of the four models was then evaluated.



MATERIALS AND METHODS


Study Design and Participants

This was a prospective cohort study from January 2016 to December 2017, which enrolled patients after traumatic UE injury, admitted to Shanghai YangZhi Rehabilitation Hospital for treatment.

Patients were enrolled in the cohort if they met the following criteria: patients with traumatic UE injury, such as bone fracture and tendon injury; work-related injury identified by the Shanghai Municipal Human Resources and Social Security Bureau; age ≥18 years; first-ever rehabilitation experience after injury. We excluded patients if they met any of the following criteria: comorbid injuries in any other body region or did not complete the rehabilitation. This study was approved by the Research Committee of the Shanghai YangZhi Rehabilitation Hospital (No. YZ2016-097). Written informed consent was obtained from all patients.



Data Description

Patient demographics, injury information, RTW expectation, physical work demands, functional assessments, and a self-rating scale for the severity of post-traumatic stress disorder (PTSD) were assessed by two occupational therapists before patient discharge. These data, with a total of 27 variables, were further used for machine learning modeling.

Patient demographics included age, sex, marital status, and educational level. For injury information, time since injury in number of days, injured hand dominance (i.e., dominant, non-dominant, or bilateral), and injury location (i.e., finger, wrist, forearm, elbow, upper arm, shoulder, or multiple locations) were collected. The intensity of chronic pain due to injuries was measured using a visual analog scale ranging from zero to ten. Zero indicated no pain at all, while 10 signified pain as bad as possible.

Patients were asked about their expectation of RTW using a 5-point Likert scale ranging from zero to four. One and four represented no expectation and complete expectation, respectively. Likewise, patients' family members were asked to rate the extent to which they expected patients to return to work. If the patients' family members were not reachable, the patients answered this question. We also surveyed employers' attitudes toward RTW because they are crucial. However, employers are not usually reachable, and patients were asked to rate the extent to which their employers expected RTW, based on previous communications.

Physical work demands were classified as sedentary, light, medium, heavy, or very heavy, according to work intensity and frequency. Grip and pinch strength were measured using a Jamar hand dynamometer (9). The EvalTech system (BTE, Hanover, Germany) was used to measure the lifting strength of the bilateral UEs and the carrying strength at the waist and shoulder level. Hand dexterity was quantified by the Purdue Pegboard Test, which involved counting the number of objects inserted during the five subtests (10). The capacity of injured UEs to engage in purposeful and skillful tasks was evaluated using the Chinese version of the Disabilities of the Arm, Shoulder, and Hand (DASH) score (11). The DASH is a self-rated questionnaire that measures the severity of disability and symptomology when performing a given task. The DASH score ranges from 0 to 100, with a higher score indicating a more severe UE disability. The severity of PTSD symptoms was evaluated using the Chinese version of the PTSD Checklist–civilian version (PCL-c), with a higher score indicating more severe symptoms of PTSD (12). All patients were followed-up for 1 year by a social worker via telephone. A successful RTW case was defined as a patient who returned to work for at least one month in the first year after discharge.



Machine Learning Modeling

In this study, kNN, logistic regression, SVM, and decision tree algorithms were used to train predictive models for the dependent outcome (i.e., RTW at 1-year follow-up), which was defined as binary. Univariant logistic regression tests indicated that 17/27 variables (Table 1) were significantly predictive of RTW; these were then selected as input variables for model training. In view of the small sample size (n = 163), overfitting could be easily induced, regardless of the algorithm, if a large number of variables were input. Therefore, we further selected the best subsets of variables for kNN, logistic regression, and SVM using an exhaustive feature search. Specifically, the variable number of subsets started from one and all possible subsets with one variable were created. Then, the models were trained with all subsets, and the one with the most optimal performance was selected. Finally, the variable number of subsets was increased, and the optimal subset updated. The search was stopped if the performance of the models did not improve, even as more variables were input. The aforementioned search was not applied for decision tree model training because this algorithm can select the most relevant variables automatically, according to their importance, and discard irrelevant variables.


Table 1. Univariant logistic regression result comparison between RTW and non-RTW patients.
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In the validation method, data were separated into two datasets for model training (70%) and validation (30%). Because of the limited sample size, random separation could produce substantially varied and unreliable model performance. Therefore, each model was trained 100 times to obtain its performance distribution, which was then compared among the models. The F1-score, which is the harmonic mean of precision and recall, was used to evaluate the performance of models on validation datasets. This was done even with the imbalance of outcome classes, due to 65.6% of our included patients successfully RTW. Optimal hyperparameter combinations were selected using a grid search method. The scikit-learn toolkit (version 0.24.0) was used for model training and validation (13).



Statistical Analysis

Statistical analysis was performed using SPSS22 (IBM, NY, and USA) with a level of significance of 0.05. Initially, the baseline differences between RTW and non-RTW patients were compared using independent t-tests, Mann-Whitney tests, or chi-square tests when appropriate. Second, univariate logistic regression was used to determine whether individual variables were predictive of RTW. Third, to evaluate performance of the four models, F1-scores and areas under the ROC were compared using one-way repeated measures analysis of variance (ANOVA), and post-hoc analyses were conducted using paired t-tests with the Bonferroni correction (corrected alpha threshold = 0.05/6). One-way ANOVA was used to examine whether the F1 score from 100 training sessions was significantly different from sets with larger numbers of training sessions.




RESULTS

A total of 179 adult inpatients with traumatic UE injury were enrolled. Ultimately, 163 patients were successfully followed up, of which 107 (65.6%) successfully returned to work by 1-year. Comparisons between RTW and non-RTW patients indicated significant differences in many variables that were also predictive of RTW (Table 1). A one-way repeated measures ANOVA indicated a significant difference in the F1-score among the four models (F = 47.61, p < 0.001), as shown in Figure 1. Post-hoc analysis by paired t-tests found that the decision tree model had a lower F1-score than any of the others (t values ranging from 7.93 to 8.67, all p < 0.001, survived Bonferroni correction), and the rest of the comparisons were not significant (t values ranging from 0.92 to 1.73, p-values ranging from 0.087 to 0.361). In terms of the factors selected for modeling, time since injury, carrying strength at the waist, carrying strength at the shoulder, Purdue pegboard test score (injured hand), and Purdue pegboard test score (both hands) were five optimal variables for kNN, two variables (patient's expectation of RTW and carrying strength at the waist) for logistic regression, and four [injury located at fingers, patient's expectation to RTW, carrying strength to shoulder, and Purdue pegboard test score (both hands)] for SVM.


[image: Figure 1]
FIGURE 1. Comparison on F1-scores of the four models. The left histograms show the distribution of the F1-score, and the right bar chart shows a direct comparison on the F1-scores of kNN (0.816 ± 0.041), Log (0.820 ± 0.044), SVM (0.823 ± 0.044) and DT (0.774 ± 0.059). The error bars represent one standard deviation of uncertainty. kNN, k-nearest neighbors; Log, logistic regression; SVM, support vector machine; DT, decision tree.


The ROC analysis results are shown in Figure 2. One-way repeated measures ANOVA indicated significant differences among the four models (F = 95.48, p < 0.001). Post-hoc analysis indicated that the logistic regression and SVM models had comparable areas under the ROC (t = 0.13, p = 0.896) and were significantly superior to the kNN and decision tree models (t values ranging from 6.64–13.71, all p < 0.001, survived Bonferroni correction). In addition, the area under the ROC curve of the kNN model was also significantly larger than that of the decision tree model (t = 6.70, p < 0.001, surviving Bonferroni correction).
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FIGURE 2. Comparison on the areas under the ROC of the kNN (0.723 ± 0.064), Log (0.766 ± 0.054), SVM (0.766 ± 0.053) and DT (0.665 ± 0.070) and the effects of the number of trainings on F1-scores. The error bars in (A) represent one standard deviation of uncertainty. The shaded regions in (A,B) represent one standard error of the mean. kNN, k-nearest neighbors; Log, logistic regression; SVM, support vector machine; DT, decision tree; ROC, receiver operating characteristic curve.


In view of limited computational resources, each model was trained 100 times. To evaluate the effect of the number of training sessions on performance estimation, number of training sessions was manipulated from 5 to 10,000. As shown in Figure 2B, the F1-score was relatively precise when larger numbers of training (e.g., 500, 2,000, and 10,000) were applied, regardless of the algorithms. In contrast, small numbers of training sessions (e.g., 5, 10, and 30) yielded substantially variable and much lower F1-socres than larger training sets. One-way ANOVA suggested that F1-scores resulting from 100 training sessions were not significantly different from 500, 2,000 or 10,000 training sessions for the kNN (F = 0.110, p = 0.954), logistical regression (F = 1.88, p = 0.131), SVM (F = 1.95, p = 0.119), and decision tree (F = 0.285, p = 0.836) models, indicating that 100 times was sufficient for model training (Figure 2).



DISCUSSION

We demonstrate that machine learning models can be used for RTW prediction in Chinese patients after traumatic UE injuries, indicating high predictive performance. Although both logistical regression and SVM displayed better performance than the others, logistical regression required a smaller number of factors, suggesting its high efficiency. We also discovered a large number of factors which were in line with previous studies associated with RTW (2, 14). Our machine learning models selected several important factors, such as carrying strength at the waist, patient's expectation of RTW, and Purdue pegboard test score (both hands).

RTW factors following various work-related injuries have been analyzed using traditional statistical methods (2, 3, 15). Our study is the first to use machine learning models to predict RTW in patients after a traumatic UE injury. Logistical regression and SVM were the two best algorithms for predicting RTW. Recently, prediction of risk level classification, differential diagnoses, and prognoses of various diseases have been investigated using machine learning models with excellent performance (6, 7, 16). In particular, SVM has shown superior performance (6, 8), which is in line with our findings. While the black-box problem of SVM is a complex mathematical formulation, it is difficult to interpret the model. Most recently, Rudin (17) argued that when addressing practical problems, designing inherently interpretable models is the way forward, rather than trying to explain black box models. By contrast, logistical regression classifies samples based on probability which is easily interpreted. Although comparable performance was obtained with SVM and logistic regression, logistic regression required only two factors, namely, the patient's expectation of RTW and carrying strength at the waist, suggesting its superior efficiency.

Shi et al. (2) reported that the severity of injury as well as pre-injury income were consistent factors for RTW. Recently, Marom et al. reported additional factors contributing to RTW, such as compensation, educational level, self-efficacy, work demands, pain, and physical capacity (3). In our study, pre-injury income was not included because most patients refused to disclose their financial status. Instead of assessing the severity of the injury, a series of functional assessments were conducted for three reasons. First, the initial severity of hand injury is only partially correlated with functional performance, which is more relevant to the probability of RTW after injury (18). Second, our patients had different single or multiple locations of injury, and it was difficult to evaluate the severity using a uniform score. Third, this study was conducted in a rehabilitation hospital and functional assessments were of practical convenience. Among these functional assessments, carrying strength using both hands was an important factor for RTW. A possible explanation might be that most of our patients were manual workers from manufacturing industries, for whom carrying strength is an essential demand to return to previous work (19). In addition, the patient's expectation of RTW was a critical factor selected by both logical regression and SVM. These findings were in line with those by Heijbel et al. (20) that individuals with expectations of RTW had an approximately eight times higher possibility of RTW than those without that expectation.

The main goal of rehabilitation for occupational injuries is to improve overall functional capacity and ultimately facilitate RTW. Accurate prediction of RTW is helpful for individualized vocational rehabilitation treatment plans. For instance, work-hardening training is crucial for patients who have a high probability of returning to previous work; in contrast, patients who are not likely to return to work, due to severe functional impairments, have to seek supported employment, duty modification, or job transition assistance (21, 22). Most recently, Lee and Kim (8) used similar algorithms to predict whether patients could RTW successfully after an industrial accident. Specific assessments of body function were missing in their study. We focused only on patients with traumatic UE injuries; in particular, a series of functional assessments for UEs were included for modeling, making our findings more specific to the targeted population.

We provide a novel direction for stakeholders when formulating policies relevant to occupational RTW. An RTW policy is designed to help injured workers to return to work in a safe and timely manner, which is beneficial for both employers and the workers themselves. Our machine learning models can obtain a patients' probability of RTW based on this previous dataset. Therefore, stakeholders can assign more individualized policies to workers after an injury. Currently, all occupational injury workers identified by the Shanghai Municipal Human Resources and Social Security Bureau can be approved for one-year sick leave with compensation. However, this policy may not be appropriate without consideration of individual body function. For instance, those with worse body function usually have a lower probability of RTW and should be endorsed for sick leave extensions. However, a shorter period was adequate for those with a higher probability of RTW.

This study has some limitations. First, our sample size was small, which may lead to overfitting, even though some modeling strategies have been employed to compensate for this disadvantage. Second, expectations of RTW were assessed using a 5-point Likert scale, which may not be adequate to represent the full construct of expectation. More standardized assessments with better construct validity are recommended for use in future studies, such as the questionnaire used by Sampere et al. (23). Third, only four commonly used machine learning algorithms were investigated, and higher predictability may have been yielded by others.



CONCLUSION

RTW can be highly predicted by machine learning models, of which both logistic regression and SVM demonstrated high predictability. In particular, logistical regression selected for only two essential factors: a patient's expectation of RTW and carrying strength at the waist. The selected factors can be considered the most relevant factors for prediction of RTW after traumatic UE injury. Predictive models could contribute to the development of tailor-made vocational rehabilitation programs. Furthermore, machine-learning-based predictive models provide a novel direction for stakeholders while formulating policies relevant to occupational RTW.
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Causal inference is a broad field that seeks to build and apply models that learn the effect of interventions on outcomes using many data types. While the field has existed for decades, its potential to impact healthcare outcomes has increased dramatically recently due to both advancements in machine learning and the unprecedented amounts of observational data resulting from electronic capture of patient claims data by medical insurance companies and widespread adoption of electronic health records (EHR) worldwide. However, there are many different schools of learning causality coming from different fields of statistics, some of them strongly conflicting. While the recent advances in machine learning greatly enhanced causal inference from a modeling perspective, it further exacerbated the fractured state in this field. This fractured state has limited research at the intersection of causal inference, modern machine learning, and EHRs that could potentially transform healthcare. In this paper we unify the classical causal inference approaches with new machine learning developments into a straightforward framework based on whether the researcher is most interested in finding the best intervention for an individual, a group of similar people, or an entire population. Through this lens, we then provide a timely review of the applications of causal inference in healthcare from the literature. As expected, we found that applications of causal inference in medicine were mostly limited to just a few technique types and lag behind other domains. In light of this gap, we offer a helpful schematic to guide data scientists and healthcare stakeholders in selecting appropriate causal methods and reviewing the findings generated by them.
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INTRODUCTION

In healthcare, it is important to distinguish between association and causation when we study treatment effects on patient outcomes. Association between two variables is non-directional and implies that the two variables are correlated. In contrast, causation is directional and indicates that one variable causes the other. In clinical studies, we are more interested in causal analysis to reveal whether a treatment causes a desired outcome.

Using observational data to infer causal treatment effects has become popular in the past decade due to two pivotal advances: the increasingly available patient data captured in Electronic Health Records (EHRs) and machine learning techniques that can efficiently and intelligently analyze large-scale data. On the data side, health care providers worldwide have widely adopted EHRs (1, 2), which capture patients' clinical and demographic information during interactions with health systems. In addition to EHRs, patient claims data are increasingly available to improve models in the healthcare domain (3). On the algorithm side, machine learning models such as artificial neural networks are powering online search engines, shopping websites, and recommender systems (4). These machine learning models are increasingly used to improve causal inference algorithms.

In the past, many different schools of learning causality coming from different fields of statistics resulted a fractured state of causal inference, creating confusion about which algorithm to use in a study. Recently, the intersection of causal inference, machine learning, and patient data has formed a new front in clinical research. Accordingly, many traditional causal inference models have been improved and many new models have been proposed. While this has enhanced the number of model options to select from in causal inference studies, it has also led to even greater confusion about which type of algorithm is appropriate for a given application. Lack of systematic knowledge of which approaches are promising in theory vs. the approaches that have been validated through real world applications further complicates the debate.

There are different stakeholders in healthcare, including healthcare providers, administrators, clinical researchers, data scientists, and many others. While data scientists, computer engineers, and biomedical statisticians may be less prone to such confusion, the fractured state in this field makes it difficult for other participants to understand the many different types of models and intuitively interpret the model results. We believe it is imperative to address this confusion for all healthcare participants to unlock the massive potential to improve patient outcomes that could be obtained by studying the causal effects of interventions from large-scale, representative, observational patient data that is now available.

In this review, we start by explaining the broad and heterogenous fields of causal inference. We then distill all of these techniques down into a simple unified framework of three algorithm families, based on size of the target patient population that the causal effect estimation will be applied to. This simple unified frame based on the size of the target patient population is important: while statisticians in medical informatics may not necessarily group the algorithms this way, it is beneficial for frontline healthcare professionals such as doctors and nurses to understand the drug effect in the context of its target population, and the effect's variance and bias characteristics when the drug is applied to the treated patient. From the perspective of this unified framework, we then review all existing applications of causal inference in healthcare in the literature, and identify key components of causal inference that are, as of now, lacking in the healthcare domain. Finally, we use these insights to create an intuitive schematic to guide researchers and stakeholders through the process of selecting an appropriate causal inference technique based on their study objectives.

This review is an extension of several works in previous literature on observational causal inference. For example, the authors in Yao et al. (5), Guo et al. (6), and Ding and Li (7) reviewed causal inference in general but without a focus on clinical settings. The authors in Landsittel et al. (8) offered a narrative review of basic concepts of causal inference but did not consider new developments in this field. Prior reviews (9–11) have narrowly focused on the matching method of causal inference, while in this paper we expand to include a much broader algorithm types.

We conclude this section by providing below a summary of all the approaches we review, with respect to their variance-bias trade-off, advantages, disadvantages, and how widely they are applied in clinical studies.



CAUSAL INFERENCE ASSUMPTIONS, FRAMEWORKS, AND TARGET-POPULATION INTERVENTION SIZES


Confounding Variables

Causal inference differs from associative studies due to the modeling of confounding variables (covariates), defined as variables that affect both the treatment and the outcome. In associative studies which focus on patient outcome estimates, confounding variables are modeled in an inclusive manner because the inclusion of these variables in the model improves estimate accuracy. In contrast, causal inference which reveals the causal relationship between treatments and patient outcomes models the confounding variables in an exclusive manner in that their effects are removed through various approaches we review in this paper.



Assumptions

In the literature, several assumptions are widely adopted in causal inference (12). The unconfoundedness assumption, also known as ignorability, states that all confounding variables are observed in the data. In practice, domain experts often examine as many patient variables as possible, including their demographic and clinical characteristics, so that this assumption can be met. The common support or positivity assumption states that any patient has a non-zero probability of being present in any of the treatment groups. The validity of this assumption can be checked by calculating the patients' propensity scores (12). The Stable Unit Treatment Value assumption (SUTVA) states that a patient's outcome only depends on the treatment this patient receives, and not affected by the outcome or treatment of any other patients. The consistency assumption links the potential outcomes to the observed data and implies that the potential outcome under an observed exposure is precisely the outcome that is observed (13).



Bias-Variance Tradeoffs Based on Target-Population Intervention Sizes

Researchers, clinicians, and other healthcare stakeholders may wish to know the treatment effects at different population levels for different purposes. For example, they may want to evaluate the overall effectiveness of the treatment on the whole population. They may want to understand treatment effect differences in different subpopulations to identify the subpopulation where the treatment is the most effective or least effective. When they treat an individual patient, they may want to know the individual-level treatment effects considering the patient's unique medical benefits and risks.

Driven by such needs, researchers conduct causal inference at different target-population intervention sizes: at one end of the spectrum is the Average Treatment Effect (ATE) that captures the treatment effect for a population at large; at the other end is the Individual Treatment Effect (ITE) that captures the treatment effect heterogeneity across individuals; in between is the conditional average treatment effect (CATE) that captures the treatment effect for subpopulations.

In clinical practices, at the receiving end of any treatment are individual patients. Correspondingly, different treatment effects (ATE, CATE, and ITE) are eventually applied to individual patients. Therefore, it is important to understand the variance-bias tradeoff of the estimate at different target-population intervention sizes: if we use ATE as the treatment effect for an individual patient, the bias will be high due to effect heterogeneity across patients in the population, but the variance will be low due to more data being used in the inference; in contrast, if we use ITE for a patient, the bias will be low, but the variance will be high.

As the rest of the paper shows, ATE provides the best option and fosters estimate efficiency for the whole population, but may not provide the most accurate estimate for any individual patient. ITE maximally leverages the data, but risks being uninterpretable to clinical practitioners. CATE represents a balance between bias and variance and tracks the clinical definition of patient subgroups.



Two Frameworks

There are two widely accepted frameworks in the literature for causal inference: the structural causal model (SCM) (14–16) and the potential outcome framework (POF) (12, 17, 18). SCM consists of two components, the causal graph and the structural equations. A causal graph is a directed acyclic graph (DAG) where the edges represent causal relationships, and the nodes represent variables including treatments, outcomes, and covariates that may or may not be observed. Causal effects can be quantitatively specified through a set of structural equations.

The DAG and structural equations together provide a comprehensive theory of causality and seamlessly tie essential concepts and methodologies in causal inference (14, 19, 20). In addition, it can possibly deal with cases where confounders cannot be measured. For example, in Barter (21), the author used the blood type as an instrument variable—defined as a variable that affects the outcome only through the treatment variable—to estimate the average survival benefit from receiving a liver transplant.

The other framework, called the potential outcome framework, centers on the concept of potential outcomes. In the simplest term, potential outcomes are all the possible outcomes for a patient under all possible treatments, with each outcome corresponding to a treatment. Note that only one potential outcome can be observed for a given patient at a given time. We call the potential outcome that would have been observed had the treatment been different the counterfactual or the missing outcome. In the simplest case, there is only one treatment to consider. A patient can be either given the treatment, i.e., assigned to the treated group, or given no treatment, i.e., assigned to the control group. Under the potential outcome framework, the treatment effect is the difference between the potential outcome if the patient is treated and that if the patient is not treated.

CSM and POF are not competing frameworks but can be unified (22). Despite this fact, the two frameworks have differences in what causal questions they are best suited to handle. Given its strong theoretical grounding, CSM is ideally suited to identifying unknown causal and confounding variables, as well as facilitating explanation. While it is useful to identify all the variables in the causal graph and their causal connections, the primary objective in healthcare is often to estimate the actual effect of a given treatment. POF is best suited for generating these estimates, because comparing potential outcomes eases the removal of confounding effects and enables a natural connection to traditional statistical analyses. For this reason, POF is more widely adopted for healthcare research and will be the focus of this review.




CAUSAL INFERENCE METHODS BY TARGET-POPULATION INTERVENTION SIZES

In this section we review causal inference approaches in the literature under the potential outcome framework and the assumptions stated in Section Causal Inference Assumptions, Frameworks, and Target-Population Intervention Sizes. We organize our review by the approaches' target-population intervention size: from ATE for the whole population to CATE for subpopulations and ITE for individual patients.

We first explain some key notations. Suppose we are interested in the causal effect of a treatment A on outcome Y. The potential outcome denoted by Ya is the outcome that we would observe under a possible treatment A = a. In a binary treatment case, a can possibly take on two values a∈{0, 1}, where 0 indicates the patient is not treated and 1 indicates the patient is treated. We denote the confounding variables by X. For simplicity, we only focus on the binary treatment case in this paper.


Estimate ATE for the Whole Population

In the binary treatment case, the ATE estimate for the population can be calculated as

[image: image]

It is the difference between the expected potential outcomes of the population if everyone is treated (A = 1) and if no one is treated (A = 0).

Note that ATE cannot be directly calculated from equation (1) because only one of the potential outcomes, either [image: image]or [image: image], can be directly observed for patient i, nor can it be directly calculated from the expected outcomes of the treated and control groups,

[image: image]

due to the existence of confounding variables X. In general, the distribution of confounding variables is different in the treated and control group. If their expected outcomes are directly compared to calculate treatment effects without adjusting for confounding variables, the calculated treatment effects would be biased.


Propensity Score-Based Approaches

Propensity score of a patient is the conditional probability that this patient with X = x is assigned to the treated group. It is expressed as

[image: image]

and can be estimated using models such as logistic regression (12). We can use the propensity score in three different ways to balance the covariate distribution between the treated and control group and thus make the two groups comparable.

The first way is to create new control and treated groups using propensity score matching (12, 23). The most straightforward approach is greedy one-to-one matching: one patient from the control group is matched to one patient from the treated group based on their propensity scores. Data of unmatched patients gets thrown away. The covariate distribution of the matched control and treated group is balanced. Then we can calculate the difference of the expected outcomes of the two new groups as the average treatment effect (ATE). In contrast to equation (2), the equation below is now correct due to balanced covariate distributions,

[image: image]

In addition to one-to-one matching, propensity score is used in other similar algorithms to create matched groups. These algorithms differ from each other in whether patients are chosen with or without replacement (24), whether matching is optimal, greedy (24), one-to-one, or one-to-many (25), and what metric is used to measure similarity between two patients (11, 23, 26, 27).

The second way of using propensity scores, known as Inverse Probability of Treatment Weighting (IPTW) (28), is to assign different patients with different weights in the calculation of ATE. For patient i, the weight is calculated as

[image: image]

From this equation, we can see that if patient i is in the treated group (Ai = 1), the weight assigned to this patient is [image: image]. If the patient i is in the control group (Ai = 0), the weight then becomes [image: image]. The weight of a patient in a group is just the inverse probability of this patient being assigned to this group. The ATE of the population can then be calculated as

[image: image]

where [image: image] ([image: image]) is the observed outcome for patient i if this patient is treated (untreated), n1 and n0 are the number of patients in the treated and control group, respectively. Intuitively, the IPTW approach balances covariate distributions between the two groups by giving the patients underrepresented (overrepresented) in a group higher weight (lower weight).

The third way of using propensity score in ATE estimate is to stratify the population into subpopulations based on the propensity scores of the patients (29). The treatment effect from each subpopulation is then calculated and combined to estimate the ATE of the whole population.

Propensity score-based approaches are intuitive, easy to understand, and capable of producing an unbiased ATE estimates if the propensity score is correctly estimated. If the propensity models are misspecified (for example, the function form in the logistic regression is wrong), the propensity score estimates and subsequent ATE estimates would be biased.



Outcome Regression-Based Approaches

One fundamental challenge in causal inference is the missing data problem: only one of the potential outcomes is observable for a given treatment and patient. Regression models can be used to estimate the missing outcomes, thus solve the missing data problem (17, 30).

Here we outline how outcome regression models are used in ATE estimates but leave the detailed review of these models to Section Estimate ITE for Individual Patients. Suppose the outcome regression function for the control and treated group is m0(X) and m1(X), respectively. Once the two functions are fitted, the missing potential outcomes can be predicted as [image: image] and [image: image]. The average treatment effect for the population can be estimated as,

[image: image]

which first calculates the difference between the two predicted outcomes of each patient, then averages these differences over all the patients in both groups. Note that m0(X) and m1(X) can either take on the same function form, in which case the treatment assignment variable A must be explicitly included in the model as one of the independent variables, or take on different function forms, in which case A is excluded in the model.

Outcome regression models do not require an estimate of propensity scores. However, misspecification of the regression model (for example, the regression function form is wrong) can lead to biased treatment effect estimates.



Doubly Robust Estimator

Both the outcome regression and the propensity model can be misspecified. A combination of the two models, known as a Doubly Robust Estimator (DRE), is proposed in Robins et al. (31) and Funk et al. (32). It calculates the expected outcome for the treated and control group as

[image: image]

and

[image: image]

respectively. Then the ATE can be estimated as E(Y1)−E(Y0). Essentially, this DRE is an IPTW estimator augmented by term [image: image] in Equation (4) and term [image: image] in equation (5). For this reason, it is also called an augmented IPTW estimator.

Another type of DRE is the Targeted Maximum Likelihood Estimator (TMLE), initially proposed in Laan and Rubin (33) and further studied in Schuler and Rose (34). In this approach, an outcome regression model is first used to estimate E(Y|A, X), which is then updated using estimated propensity score π(X) in the so called “targeting” step, yielding a better estimate E*(Y|A, X). Average treatment effect can be calculated as E*(Y1)−E*(Y0).

As implied in the name, DREs have a nice doubly robust property that ensures the ATE estimate is unbiased if only the outcome regression model or only the propensity model is correct. These models also tend to be more efficient than just the IPTW estimators.




Estimate CATE for Subpopulations

In some cases, researchers may be interested in treatment effects for subpopulations, which can be calculated through CATE estimates. These subpopulations can be learned directly from the data or defined by several criteria, ranging from demographic strata or existing clinical heuristics with the goal of creating groups for which the treatment effect and goals are expected to be similar.


Direct and Indirect Stratification

CATE can be calculated via population stratification. The idea is to first stratify the population on f(X), i.e., a function of patient covariates X, into subpopulations. Then CATE for each subpopulation is calculated as the difference between the two expected potential outcomes within that subpopulation. As in Morgan and Winship (35), it is mathematically expressed as

[image: image]

Function f(X) can take on different forms. In the basic form f(X) = X, the population is stratified directly on covariate X as described in Imbens and Rubin (36), which we call direct stratification. With this approach, the covariates within each stratum (subpopulation) are similar in values across different patients. Suited for scenarios where subpopulations are predefined, this approach provides simple and transparent interpretation of the subpopulation but may lead to data sparsity in some stratum or violation of the positivity assumption. Function f(X) can take on a more complex function form, which we call indirect stratification. If f(X) = π(X), the population is stratified on propensity scores (12, 29). This approach alleviates the data sparsity problem, but the interpretation of subpopulations is less intuitive.



Data Driven Determination of Subpopulations

A subpopulation can be viewed as a subspace in the multi-dimensional covariate space. A data driven approach to calculate CATE partitions the covariate space into subspaces in a way that the treatment effect heterogeneity across subspaces is maximized. The resulting subspaces (or subpopulations) reflect the heterogeneity of the underlying data. Some subspaces may be wider or narrower in certain dimensions than others depending on how quickly the treatment effect changes along these dimensions, which is a desired property.

Machine learning models, due to their flexibility, are well-suited for this approach. One of such estimators is proposed in Athey and Imbens (37) based on the classification and regression tree (CART) (38). While a CART model minimizes a predefined loss function in associative studies, it maximizes heterogeneous treatment effect across leaves when used in causal inference. Different sets of samples are used for constructing the tree and for estimating the treatment effect for each subpopulation. Because of this, the approach is called an honest estimation.

In contrast to the approach in Athey and Imbens (37) where only one decision tree is used, the approach proposed by Breiman (39) estimates treatment effects based on the random forest model consisting of multiple decision trees (40).

These machine learning-based models are non-parametric and thus robust to model misspecification. They can capture the heterogeneity structure in the underlying data and reduce the variance of effect estimates in a subpopulation. However, the complexity of such models makes the results less explainable compared to simpler ones, creating obstacles for the medical community to widely adopt these models in clinical applications.




Estimate ITE for Individual Patients

Treatment effects can be different not only across subpopulations, but across different patients as well. Due to the existence of such heterogeneity at individual patient level, ITE estimates are important for personalized medicine and have been increasingly gaining attention in healthcare (41). In the strictest sense, the ITE estimate is conditioning on an individual's characteristics so can be regarded as CATE. However, in this work, we review ITE as a distinct algorithm category separated from CATE. This decision emphasizes the fact that ITE targets individual patients, while CATE targets subgroups of patients.

Intuitively, ITE can be calculated as the difference between the two potential outcomes for a patient. One of the potential outcomes is missing but can be estimated with an outcome regression model, where the potential outcome is the dependent variable and the covariates are the independent variables. In essence, such an outcome regression model fits a function to estimate the regression surface (or outcome surface) in the covariate space using observed patient outcome samples. Note that the function used in outcome regression can be linear, non-linear, or even non-parametric, depending on the underlying data structure. There are two approaches to fit the model, based on whether the samples from the treated and control group are pooled together in the training step.


One Regression Function

To estimate ITE, we can fit one regression function using pooled samples from both the treated and the control group and regard the treatment assignment A as one of the independent variables, as shown in the equation below,

[image: image]

where m(X, A) estimates the potential outcome conditioned on X and A. Then the ITE estimate for patient i is calculated as m(Xi, 1)− m(Xi, 0). One example of such a model is the Bayesian Additive Regression Trees (BART) introduced in Hill (42), Chipman et al. (43), and Chipman et al. (44), where the authors constructed a set of trees using ensemble learning, and imposed a prior regularization to constrain each tree to be a weak learner. Another example is proposed in Foster et al. (45), where the authors used a random forest to fit m(X, A) to estimate ITE. The approach proposed in Nie and Wager (46) fits a single outcome surface first to isolate the impact of the treatment on the outcome, then fits a regression model where the ITE is the only independent variable.

The models fitting one outcome surface are well-suited for scenarios where the treatment effect is small. The analysis in Wendling et al. (47) validates the performance of the BART model using synthetic data based on two major healthcare databases in the United States and concludes that the smaller the ITE is (i.e., the closer the outcome surfaces are between the two treatment groups), the better such models perform. These models perform poorly if there are complex interactions between the treatment assignment and covariates, which makes the outcome surface f(·) very different for the treated and control groups. Such model drawbacks are studied in detail in Alaa and Schaar (48) and Hahn et al. (49).



Two Regression Functions

Instead of fitting one regression function, one can fit two separate functions for the treated and control groups to calculate ITE. In this case, the treatment variable does not need to be included as one of the independent variables in the model because the outcome difference between the two groups is captured with different model parameters. The two regression functions can be expressed as

[image: image]

and

[image: image]

for the treated (A = 1) and control (A = 0) group, respectively. The ITE estimate for patient i is then calculated as m1(Xi)− m0(Xi). Different base learners can be used for m0(X) and m1(X), as proposed in Athey and Imbens (37), Lu et al. (50), Powers et al. (51), and Künzel et al. (52).

The approach fitting two outcome surfaces separately is suited for the scenarios where the outcome surface is very different for different treatment groups. The downside of this approach is that some common patterns between the two groups get lost during model fitting. A multitask-learning estimator introduced in Alaa and Schaar (48) and Alaa and Schaar (53) fits two outcome surfaces separately but attempts to recover common underlying patterns between the treated and control group through a joint optimization for the two groups.



Estimate Error Bound

Several theories proposed in the literature study the error of the ITE estimate. The authors in Shalit et al. (54) derived a theoretical upper bound for the error, which is a sum of the standard generalization-error in the representation space and the error resulted from the distance between the two treatment group covariate distributions induced by the representation. An extension of this work (named context-aware importance sampling re-weighing) is proposed in Hassanpour and Greiner (55) to theoretically address the selection bias in observational datasets, leading to a solution that weights the samples in such a way that the covariate distribution imbalance between the treated and control group is reduced. Related to the theoretical works above, practical solutions based on deep learning were proposed to incorporate in the loss function the dissimilarity of the learned representations for the treated and control groups so that the error induced by such dissimilarity can be reduced (56–58).





CLINICAL APPLICATIONS OF CAUSAL INFERENCE

Although there are a large number of causal inference techniques in the literature as we reviewed above, these techniques are not applied equally to solve real-world clinical problems. In this section, we review the patterns of how the various causal inference approaches are used in published clinical studies.


Reporting Methods

In searching for published application papers of causal inference models, we follow the applicable guidelines in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (59). The modified PRISMA flow charts for each category of causal inference models are in the Supplementary Material. Note that although we follow the PRISMA guidelines whenever deemed applicable to make our search systematic, the review in this section is not a systematic review in the strictest sense, as our goal is not to answer a well-defined and narrowly focused clinical question, but to gain general understanding of the application landscape of causal inference.



Results

Below we list the most relevant published clinical applications for each of the causal models we have identified. If the application list is too long (more than 15 publications), we just list below the top 15 most cited ones according to Google Scholar due to space limitations. The total number of applications identified with the inclusion and exclusion criteria is given in the Supplementary Material.


Applications of ATE Estimators for the Whole Population

Propensity score-based models have been applied to study the effect of interruption of sedation on the death of the patient in Requena et al. (60), the effect of corticosteroids on mortality for patients with influenza A (H1N1pdm09) in Delaney et al. (61), the cardiovascular, bleeding, and mortality risks in elderly Medicare patients treated with certain drugs in Graham et al. (62), the association of animal and plant protein intake with all-cause and cause-specific mortality in Song et al. (63), the effect of nasal cannula therapy failure on mortality in Kang et al. (64), the prevalence of sarcopenia in COPD and its impact on health in Jones et al. (65), the safety and efficacy of digoxin in Ziff et al. (66), clinical outcomes after transapical or transfemoral transcatheter aortic valve replacement in Blackstone et al. (67) and many other health related issues in Chang et al. (68), Bangalore et al. (69), Kost and Lindberg (70), Grool et al. (71), Snowden et al. (72), Han et al. (73), and Prati et al. (74).

Applications of outcome regression-based models in clinical studies have been rare. In fact, we did not find any applications of this approach that meet our search criteria.

Doubly robust estimators have been widely applied in real-world clinical studies to determine the effect of sepsis on late mortality in Prescott et al. (75), the effect of proton pump inhibitors use on risk of death in Xie et al. (76), cardiovascular risks of testosterone replacement therapy in men with androgen deficiency in Cheetham et al. (77), the effectiveness of influenza vaccines among elderly people in Izurieta et al. (78), whether antifungal de-escalation leads to adverse outcome in Bailly et al. (79), the association of the use of transthoracic echocardiography with 28-day mortality in Feng et al. (80), the effect of risk assessment on clinical outcomes in Chaffee et al. (81), comparison of children currently and previously diagnosed with autism in Blumberg et al. (82), whether there is a causal link between the Magnet status of a hospital and the central-line-associated bloodstream infections in Barnes et al. (83), as well as a range of health-related issues from association of aspirin with hepatocellular carcinoma and liver-related mortality to effect of angiotensin on hemoglobin levels in Breslau et al. (84), Simon et al. (85), Ajmal et al. (86), Millett et al. (87), Reed et al. (88), and Kawasaki et al. (89).



Application of CATE Estimators

CATE estimators using stratification have been widely applied in clinical studies, for example, to analyze the adverse outcomes of underuse of β-Blockers in elderly patients in Soumerai et al. (90), the rate of mortality in patients receiving drug-eluting stents and undergoing coronary-artery bypass grafting in Hannan et al. (91), the effect of Hydroxychloroquine and tocilizumab therapy on mortality in COVID-19 patients in Ip et al. (92), medical therapy on long-term outcome in patients with myocardial infarction (93), the impact of female sex on clinical outcomes for Atrial Fibrillation in Kuck et al. (94), and a range of other clinical issues (95–104).

There are very few applications of the data driven approach in clinical studies. The recursive partitioning approach (37) is used to study the effect of fluoxetine in patients with a recent stroke in Graham et al. (105), the effect modification in a study of surgical mortality in Lee et al. (106).



Application of ITE Estimators

The applications of ITE estimators are very rare in the literature. The BART model is used to predict the papillary thyroid carcinoma in Guo et al. (107) and to study the consequences of contact with the criminal justice system for health in Esposito et al. (108).




Methods
 
Search Strategy

Here we describe the search strategy we use to find the published clinical applications of a causal approach. First, we identify the paper in which the model is proposed. If multiple models hence multiple papers exist—there might be model variations, extensions, or improvements—we pick a paper that generated the most citations in Google scholar. We then search in Google Scholar for all the publications citing the identified paper, which we call the anchoring paper, and apply the inclusion and exclusion criteria described below to determine what papers should be included in the application list of the causal approach.

Note that this search strategy is not exhaustive and is not intended to be a scoping review. Using the anchoring paper, we can only identify a subset of the application papers in a causal inference category. Our goal is not to precisely count the number of all applications, but to understand the extent to which different causal models are applied clinically. Accordingly, our strategy is to sample a limited number of publications, but in a systematic way, so that our search is manageable but still reflective of the application landscape in this field.



Inclusion and Exclusion Criteria

For each category of the causal inference approach, we search for publications that cite the anchoring paper in Google Scholar. In the returned result, we exclude any records not in the healthcare domain, which are those that do not contain any of these keywords: medicine, hospital, patient, clinics, healthcare, physician, and disease. We then screen the titles and abstracts of the remaining papers and exclude those not pertaining to applications. Most of the papers eliminated in this step are about models and algorithms related to the causal inference model described in the anchoring paper. The papers remaining after this step are clinical applications that cite the anchoring paper. However, the anchoring paper can be cited in many ways: it can be mentioned in the related work section; it can be cited in the discussion section; or it can be used to derive findings and insights. We proceed to read the papers that are cited more than 10 times, focusing on the section where the anchoring paper is cited. We include the paper in the final application list if the model in the anchoring paper is used as the method (or one of the methods) to draw conclusions, derive findings, or gain insights.




Observations

A pattern emerged from surveying and analyzing the applications of causal models in healthcare: although state-of-the-art machine learning-based approaches have been consistently used to improve causal inference techniques algorithmically and generated excitement in the medical research community, these approaches have not been widely adopted in clinical studies. In contrast, simpler approaches based on propensity scores have been widely applied to solve real-world clinical problems. This conclusion is evident from the citation numbers in the Supplementary Material: while the number of machine learning applications, such as those based on models in Rubin (30) and Athey and Imbens (37), is in single digit at most, the number of applications based on propensity scores (12) is in hundreds.

We suggest several potential explanations for the wider adoption of propensity score-based approaches. First, the gold standard for causal inference in healthcare has long been the Randomized Controlled Trial (RCT). Propensity score-based approaches provide methods that mimic RCTs while using large-scale, observational data. Secondly, as we mapped out in Table 1, propensity score-based approaches offer relatively low variance at the risk of higher bias, which is consistent with medical applications where the goal to minimize patient harm outweighs the potential to increase benefits for a few. Third, there is an issue of timing, newer methods have simply been in existence for a shorter period of time and therefore have had less chance for adoption. However, this answer is least satisfying because many of the newer machine learning approaches have been successfully applied in many other fields such as gaming, online shopping, and advertising (4). Additionally, many machine learning-based causal models have been around for a long time. For example, as of the time this paper is written, the BART model (44) has existed for over a decade, and yet we have not seen many clinical applications of it. A fourth potential reason for lower adoption of purely machine learning based approaches is method explainability. In healthcare, where lives are frequently at stake, the requirement for methods that are explainable to a wide audience are significantly higher than other fields, where effectiveness alone may be sufficient.


Table 1. Summary of causal inference approaches in healthcare.

[image: Table 1]

We believe that lower historical adoption of more modern observational causal inference approaches is sensible, but that it also represents a gap in the field, especially given the potential promise of more personalized medicine using ITE-type estimators. This gap could potentially be closed in the near future by collaborative pairing of biostatisticians and machine learning scientists with clinicians.




FLOWCHART FOR ALGORITHM SELECTION

In this section we provide a guide in Figure 1 to help the healthcare community choose which algorithm to use in estimating treatment effects based on the target-population intervention sizes, domain knowledge about the treatment, and track record of healthcare applications of the algorithm. While every problem is unique, and individual judgement must always be exercised, this flowchart can act as a starting point to determine which algorithmic approach may be most appropriate.


[image: Figure 1]
FIGURE 1. Treatment effect estimator selection guide based on target-population intervention size and prior knowledge. Colors in the figure indicate bias-variance tradeoff. Light blue: high bias and low variance; blue: medium bias and variance; dark blue: low bias and high variance. Person icons under each estimator illustrate the composition of the targeted population.




DISCUSSION

In this paper we reviewed the literature on causal inference with a focus on clinical settings, in light of recent advances in machine learning and large scale EHR adoption. With this review, the algorithm selection guide, and the summary table, we hope to help researchers and healthcare stakeholders gain better understanding of causal inference and make informed decisions on what estimator to use in their daily practices when many choices are on the table.

We have observed that sophisticated causal models based on state-of-the-art machine learning have not been widely applied in clinical studies for a myriad of reasons such as lack of similarity to RCTs and explainability (Section Clinical Applications of Causal Inference), computational intractability of these models, and the healthcare participants being highly conservative when adopting new models. To address the same issue and improve model transparency, a MI-CLAIM check list in Norgeot et al. (109) was proposed regarding the study design of projects, preparation and usage of data, model selection, performance evaluation, model validation, and data pipelines. Our review stresses the importance to follow these guidelines to promote trust on sophisticated models among clinical practitioners.

There are some limitations of the review. First, it may not be exhaustive and include every approach. Causal inference is a very broad topic. While we can limit our review to a specific topic to be exhaustive, it is also important to survey the entire field of causal inference, thus sacrificing the completeness to some degree. Second, causal inference approaches are grouped into ATE, CATE, and ITE categories in this review. These categories might not be mutually exclusive. Such classification, however, does provide an intuitive way for medical professionals to understand causal inference from patient perspectives. Third, there are certain limitations of using citations to rank the applications. For instance, an algorithm applied in clinics might not have been published. Additionally, for a recent work, the citation number might be low, and might not accurately reflect the application potential of the work. Fourth, Table 1 and Figure 1 do not cover all the details of choosing an algorithm, nor do they lead a user to a specific algorithm. They were designed to provide all healthcare participants with an initial but intuitive guide on what family of algorithms to choose for their studies. Finally, our search to find published applications of causal models may not be exhaustive. The search results show that the application disparity of different models is so huge that a different (and potentially more comprehensive) search strategy will unlikely change our conclusions and insights in any significant way.

There is a view in the literature that causal inference is just plain statistical inference, especially after the causal assumptions and parameters are identified (110). The role of causal inference with respect to statistical analysis remains a debate. This debate is out of scope for this paper. We refer to the reviewed models as causal inference models without endorsing any particular view on this matter, but simply use this name to refer to the statistical inference models that reveal causal relationships.

In summary, we reviewed a diverse and complex field of causal inference applied in health care. We distilled the many approaches into three algorithmic families based on the target-population intervention size. We explained the approach type, population size, and bias-variance tradeoff. We then investigated the clinical application of each of the approaches. We finally consolidate all the information into an algorithm selection guide for both researchers and other healthcare stakeholders to decide on which algorithm is applicable to their studies.
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Online AI symptom checkers and diagnostic assistants (DAs) have tremendous potential to reduce misdiagnosis and cost, while increasing the quality, convenience, and availability of healthcare, but only if they can perform with high accuracy. We introduce a novel Bayesian DA designed to improve diagnostic accuracy by addressing key weaknesses of Bayesian Network implementations for clinical diagnosis. We compare the performance of our prototype DA (MidasMed) to that of physicians and six other publicly accessible DAs (Ada, Babylon, Buoy, Isabel, Symptomate, and WebMD) using a set of 30 publicly available case vignettes, and using only sparse history (no exam findings or tests). Our results demonstrate superior performance of the MidasMed DA, with the correct diagnosis being the top ranked disorder in 93% of cases, and in the top 3 in 96% of cases.

Keywords: Bayesian medical diagnosis, symptom checkers, general medical diagnostic assistant, diagnostic performance, Bayesian network, comparison of physicians with AI decision support, AI medical diagnosis, diagnostic decision support system


INTRODUCTION

Online AI symptom checkers and diagnostic assistants (DAs) have tremendous potential to reduce misdiagnosis and cost, while increasing the quality, convenience, and availability of healthcare, but only if they can perform with high accuracy (Millenson et al., 2018; Van Veen et al., 2019; Rowland et al., 2020). Machine Learning (ML) and Bayesian Networks (BNs) are promising technologies in healthcare, but both have limitations for general medical diagnosis. Despite major advances in the application of ML to narrow biomedical applications (Beede et al., 2020; Liu et al., 2020; McKinney et al., 2020), challenges remain for its application to general medical diagnosis, including the inability to model causal inference (Velikova et al., 2014; Richens et al., 2020), semantic relationships including subtypes (“is-a” and “part-of”), logic, and heuristics; and lack of interpretability. Furthermore, challenges remain in training or educating DAs with electronic medical record (EMR) data, including proper interpretation of incomplete or missing data (Nikovski, 2000), unreliable labels and label leakage, bias (Ghassemi et al., 2020), and the fact that EMRs are designed to document and support care and reimbursement and to minimize legal risks, rather than to describe disorders.

The use of Bayesian approaches for medical diagnosis is well-documented, from early expert systems (Yu et al., 1988; Shwe et al., 1990; Barnett et al., 1998) to today's chatbot triage and symptom checkers (Zagorecki et al., 2013; Baker et al., 2020). But thus far they have fallen short of the desired accuracy despite incremental improvements (Lemmer and Gossink, 2004; Antonucci, 2011; Richens et al., 2020). In previous studies such DAs have underperformed physicians in diagnostic accuracy (Semigran et al., 2015, 2016; Millenson et al., 2018; Chambers et al., 2019; Yu et al., 2019). For example, Semigran et al. (2015) evaluated the performance of 23 symptom checkers using case vignettes, and found they ranked the correct diagnosis first 34% of the time, and in the top 3 in 51% of cases. In a subsequent paper (Semigran et al., 2016) compared symptom checkers to physicians, and showed much better performance for physicians, who ranked the target diagnosis #1 in 72.1% of cases, vs. only 34% for the symptom checkers. A more recent paper (Baker et al., 2020), using 30 of the case vignettes tested in Semigran et al. (2015) and Semigran et al. (2016), reported performance comparable to physicians: the Babylon system ranked the target diagnosis #1 for 70% of the vignettes and in the top 3 for 96.7%, compared to 75.3 and 90.3%, respectively, for physicians. But even the benchmark of obtaining physician diagnostic accuracy leaves much to be desired, with reported physician diagnostic error rates of 10–24% or greater (Graber, 2012; Meyer et al., 2013; Baker et al., 2020). Diagnostic errors are the leading cause of paid malpractice claims (28.6%), and are responsible for the highest proportion of total payments (35.2%) (Tehrani et al., 2013). Diagnostic errors were almost twice as likely to be associated with patient death as other types of errors (e.g., treatment, surgery, medication, or obstetrics errors). Almost 70% of diagnostic errors occurred in the outpatient setting (Tehrani et al., 2013).

BNs model causal inference using Bayes' theorem. They offer a formal method for representing an evolving process of refining the posterior probabilities of outcomes based on the likelihood of relevant data. This approach is particularly suitable for diagnosis, where clinicians formulate an initial differential diagnosis based on the patient chief complaint, and then proceed to refine the diagnosis based on additional data obtained from the patient interview, exams, tests, and treatment outcomes. In this iterative process, each differential diagnosis ranks the likelihood of each contending disorder, and provides priorities for the next data items to ascertain.

Given a joint random variable X = X1, …, XN, a Bayesian Network (BN) offers a compact representation of its local conditional probability distributions (Koller and Friedman, 2009). Formally, a Bayesian Network is defined as a pair BN = (G, P), where G is a directed acyclic graph (DAG) and P is the joint probability distribution of X as specified by the conditional probability tables (CPTs) of the graph nodes. The graph G = (V, E), is comprised of nodes or vertices V and directed arcs or edges E ⊆ V × V. Each node in V represents a distinct random variable in X, and each arc in E represents the conditional probability of the child node given its parent. Every node is conditionally independent of its non-parent non-descendants, given its parents. It follows that the joint probability distribution P(X) reduces to the product of the conditional probability distributions at each node (local Markov property), and can be written as:

[image: image]

where πi is the state of the joint variable defined by the elements of X that are the parents of Xi (Fagiuoli and Zaffalon, 1998; Antonucci, 2011).

The size of the CPT describing the joint probability distribution at a node grows exponentially with the number of inputs (parents). For problems involving a large number of variables and/or dense graphs, computational complexity and/or lack of sufficient data can make this approach impractical. The leaky noisy-OR function (Henrion, 1987; Antonucci, 2011) is a popular technique for reducing the input parameter requirements from exponential to linear (for binary variables). It does so by assuming the parent nodes are conditionally independent given their joint child. With this assumption, the joint probability distribution of the child node simplifies to:

[image: image]

where P(xi|xj) is the conditional probability of the child node given parent Xj, and δj = 1 if xj = true and 0 if it is false. Equation (2) can be interpreted as meaning that Xj only affects change when it is present. Ignoring the (1 − ni) term for a moment, we see this is simply the probability formula for the union of independent events, i.e., P(⋃iAi) = 1 − ∏i((1 − P(Ai)). The variable ni is a noise term, which is optionally a function of Xi, and represents unmodeled causes of Xi assumed to be present.

A classifier can be defined in conjunction with a BN by assigning each node to 1 of 3 types: (1) input, data, features, or evidence; (2) outputs or class labels; and optionally (3) intermediate or hidden nodes. Given K possible outputs, y1, …, yK, and L inputs, x1, …, xL, the classifier selects the output node ŷ such that

[image: image]

where argmax selects the maximum argument, i.e., the output node that maximizes P(yi|x1, …, xL). Using Bayes Theorem and assuming the output nodes are mutually independent, Equation (3) reduces to

[image: image]

where P(yi) is the a priori probability of yi. In the special case where the variables Xi are independent, we obtain the naïve Bayes classifier (Koller and Friedman, 2009)

[image: image]

It is important to keep in mind the assumptions that lead to the simplifications of Equations (4) and (5). Medical diagnosis is one domain in which these assumptions are not always valid, resulting in excessively degraded classification.

In a medical diagnostic BN (Figure 1) the input nodes represent all known risk factors and findings (i.e., symptoms, examination results, and test results), while the output nodes are all possible diagnoses. There may also be intermediate nodes representing pathophysiological states or mechanisms. As indicated by the causal arrows, risk factors increase the likelihood of diseases; diseases cause other diseases, pathophysiological states, and findings; physiological states cause findings (and sometimes other physiological states); and findings may cause other findings. For a given set of patient inputs we want to determine the most probable diagnoses using both forward and backward inference.


[image: Figure 1]
FIGURE 1. Diagnostic BN hierarchy (A) Generic fragment where each node represents a risk factor (R) disease (D), pathophysiological state (P), or findings (F); (B) BN fragment for liver cirrhosis.


The characterization of nodes as risk factors, findings, pathophysiological states, and disorders can be governed by somewhat arbitrary nosological distinctions. For example, dehydration is a pathophysiological state with multiple findings (e.g., decreased urine output, dry mucus membranes, dizziness, hypotension), and can be caused by multiple disorders such as acute gastroenteritis and uncontrolled diabetes. But dehydration is also used as a diagnosis when other causal disorders are ruled out, and it can be attributed to, e.g., prolonged exertion in heat without sufficient hydration (a risk factor). The findings of dehydration can be attributed to its causal disorders, but they tend to cluster as a distinct subpopulation in patients with the causal disorders that develop dehydration. The distinction between risk factors and findings can also be ambiguous. For example, obesity is both a risk factor for developing type II diabetes and also a finding of diabetes and other metabolic disorders. And while some findings can cause other findings, it's important not to confuse temporal progression with causality. For example, in an infectious disorder, fever may precede a rash, but doesn't cause it.

Figure 2 shows typical diagnostic BN configurations. In Figure 2A a disorder causes 2 findings (F1, F2). These findings may be considered conditionally independent, as in pulmonary embolus (PE) causes cough and syncope (the 2 symptoms result from distinct pathophysiologic pathways); or they may be conditionally dependent, as in pulmonary embolus causes cyanosis and syncope (both result from a common pathophysiologic pathway of a PE subset, massive embolism causing circulatory obstruction). In Figure 2B two marginally independent disorders cause a single finding, e.g., pneumonia and acute bronchitis both cause cough. In Figure 2C, two causally related disorders each cause the same finding, e.g., chronic hepatitis causes cirrhosis and both disorders cause hyperbilirubinemia and jaundice; or acute bronchitis precipitates a COPD flare and both cause cough. In Figure 2D, two causally related disorders each explain a distinct subset of the patient findings, e.g., deep vein thrombosis causes pulmonary embolus, with patient findings leg edema (caused by DVT) and dyspnea (caused by PE).


[image: Figure 2]
FIGURE 2. Typical diagnostic BN configurations. (A) A disorder causes 2 findings; (B) Independent disorders both cause a finding; (C) Causally related disorders cause the same finding; (D) Causally related disorders each explain a subset of the patient findings.


BNs have been a popular choice for medical diagnosis because of their ability to model complex domains and to provide a sound basis for their inference. Compared to pure ML solutions, BNs can incorporate derived medical knowledge (e.g., published studies, textbooks, expert opinion), and do not require huge raw datasets. Fundamental problems with traditional Bayesian implementations include:

• Severe scalability problems due to the large number of nodes required for a diagnostic network with a large number of diagnoses and/or findings (Cheng and Druzdzel, 2000; Heckerman, 2013). A general medical diagnosis BN (e.g., for primary care) may have thousands of diagnoses and tens of thousands of findings. The richer the model, the larger and more complex the DAG becomes, and the more data is required to populate the CPTs. Furthermore, high accuracy requires that many of the findings be modeled as continuous or categorical random variables which can make the CPTs very large.

• Inability to model large-scale knowledge representations (Koller and Pfeffer, 1997). The BN DAG represents a single semantic dimension (causality), but other relationships are required to represent the diagnostic process. Of specific interest in diagnosis is the ability to model inheritance hierarchies. For example, to diagnose “brain tumor or neoplasm” or one of its many subtypes, a conventional BN would require the parent disorder and all of its descendants to each independently be represented in the DAG. This presents not only complexity issues but also defies basic diagnostic heuristics, e.g., that “brain tumor” shouldn't “compete” in the differential diagnosis with its child, “dominant temporal lobe tumor”.

• Failure to capture the semantic overlap or partial synonymy among findings. Semantic overlap is an inevitable byproduct of a complex ontology. When semantic overlap occurs, findings cannot be considered independent, and they jointly fail to deliver the same diagnostic power that is implied by the assumption of independence. For example, if a chest x-ray shows left atrial enlargement (LAE), then an echocardiogram showing LAE may provide slightly more information since it has a higher specificity, but not as much as if the x-ray had not been discerned. Similarly, if we first discerned that the echocardiogram shows LAE, then the x-ray has little to no additional diagnostic value. The effect of semantic overlap in a system that assumes findings are independent can cause overconfidence or premature closure, leading the system to conclude that a specific disease is the correct diagnosis when in fact there is insufficient evidence for that claim. One approach that has been proposed to partially address this problem is to introduce an intermediate node that represents the collective effect of a set of correlated findings (Yu et al., 1988; Nikovski, 2000; Velikova et al., 2014).

• Failure to capture higher order statistics among finding nodes of a given disorder, e.g., how findings vary with duration of symptoms, age, gender, and other risk factors. For example, gender per se has little effect on the likelihood of psoriatic arthritis (PA), but males with PA are significantly more likely to present with involvement of a single joint.

• Failure to capture causal relationships among disorder nodes (Richens et al., 2020). The assumption that a patient's findings must be explained by a single disorder rather than the simultaneous occurrence of multiple causally linked disorders can cause underconfidence (diffidence), leading the system to fail to rank the correct diagnosis or diagnoses as the top disorder(s) even after sufficient information was presented for that claim. For an in-depth discussion of diffidence and over-confidence detection in diagnostic systems, see (Hilden et al., 1978).



MATERIALS AND METHODS

This paper describes the MidasMed DA, a prototype system based on a novel BN with improved diagnostic modeling. A comprehensive description of the diagnostic engine that powers the MidasMed DA is outside of the scope of this paper. However, we provide highlights of the solution architecture and key innovations that address the fundamental limitations of traditional implementations listed above, and advance the state-of-the-art in AI diagnosis.

The solution architecture consists of the following key components:

• A rich semantic model that captures entity data and relationships among entities of the medical ontology that is largely independent of implementation constraints. The semantic model is instantiated as an object-oriented model for efficient diagnostic computations.

• A diagnostic engine that for each diagnostic request dynamically generates a sparse BN, and then applies a Bayesian classifier to generate a differential diagnosis. The classifier implements disorder subtype hierarchies to recursively and efficiently generate a differential diagnosis with the maximum disorder specificity supported by the data. For example, if warranted by the data, the system will report “anteroseptal acute myocardial infarction” instead of the less specific “acute myocardial infarction.” Note that for many disorders, optimum treatment depends on knowing the specific subtype.

• A “Best Next Finding” module that generates a set of additional findings to discern (from the patient or clinician) in order to most quickly and economically refine the diagnosis.

The semantic model describes the medical ontology and the relationships among its concepts using statistical, logical, and heuristic data. The model can be edited and viewed using a web-based content management system (CMS), and is stored in a semantic SQL database. A constructor algorithm generates an object-oriented model from the semantic assertions in the database, resulting in a Data Transfer Object (DTO). The DTO may be serialized for storage and transport to the server running the diagnostic engine. The DTO represents an in-memory object-oriented image of the semantic model that enables rapid and efficient diagnostic computation in real-time. The DTO abstractly represents the global BN, although other (more efficient) data structures are used to hold the node objects. Each node encapsulates all the information it needs to discover its graph neighbors via pointers to other nodes.

Our diagnostic model focuses primarily on the following aspects: (1) dependencies among disorders, (2) subtype relations within a disorder family, (3) the characterization of each disorder in terms of its relevant findings and risk factors, (4) statistical correlation and semantic overlap among findings, and (5) finding contingency hierarchies stemming from the relative semantic scope of each finding and the linear progression of the diagnostic interview. Each of these topics in described in the following sections.


Inter-disorder Dependency

Disorder dependency is important to model because a patient may present with symptoms of both a causal disease and its complication(s). For example, a patient might present with deep venous thrombosis (DVT) in a leg, combined with symptoms of pulmonary embolus, a life-threatening complication of DVT. In cases where the initial cause is insidious or insufficiently bothersome, or when the cause and its complication(s) occur in rapid succession, the causal disorder may not have been previously diagnosed. We do not want the classifier to “punish” a disorder for not explaining findings of its co-presenting dependent disorder(s); rather, such combinations of findings often provide high confidence for the diagnosis of a combination of causally linked disorders. Therefore, our classifier is designed to identify single disorders or clusters of dependent disorders that best explain the patient findings. Of course two independent disorders may also jointly explain the patient findings; however, the probability of such an event is generally much lower.

We used the term Multi-Disease Model (MDM) to describe a classifier that detects and accounts for clusters of dependent disorders in the differential diagnosis. One of the consequences of MDM is that co-occurring dependent disorders may each explain some of the same finding(s). We therefor need a mechanism for describing how the joint interaction among disorders affects the presentation of their common findings. We use the term equivalent sensitivity to describe the sensitivity of a finding that is relevant to multiple dependent disorders that are all assumed to be present (with appropriate extensions for categorical and continuous findings). To illustrate this case, suppose D1 causes D2, and both share common a finding F1 with sensitivities s1,1 = P(F1|D1) and s1,2 = P(F1|D2). The cluster consisting of D1 and D2 has 3 configuration: {[image: image], [image: image]}, {[image: image], [image: image]}, and {[image: image], [image: image]}, where the +/– indicate whether the disorder is present or absent. When both disorders are present, F1 will have an equivalent sensitivity for the configuration that depends on (a) the nature of F1, (b) the sensitivities s1,1 and s1,2, and (c) whether or not F1 arises in D1 and D2 due to shared or distinct pathophysiological mechanisms. For example, if F1 is body temperature, D1 causes hypothermia and D2 causes fever (an admittedly unusual case), then we would expect the patient temperature (given that she has both D1 and D2) to be [image: image]. On the other hand, if D1 and D2 both cause fever, and due to the same underlying mechanism, then we expect [image: image]. But if D1 and D2 both cause fever due to different mechanisms, we might expect [image: image]. Now suppose F1 is time to diagnosis, with the corresponding question “How long ago did your symptom(s) begin?”. If D1 has a gradual onset with a distribution centered on “months to years”, while D2 has a shorter onset, say “days to weeks” then the equivalent sensitivity will satisfy [image: image], because the patient will most likely associate the beginning of the problem with the onset of D1, which started first.

To formally describe MDM, consider a cluster of dependent disorders. To qualify, each cluster member must have at least one link to another cluster member, and must explain at least one abnormal patient finding. A disorder may belong to at most one cluster, for if it belonged to multiple clusters those would be merged into a single cluster. A disorder with no dependencies is called a singleton (cluster of size 1). Let D1, …, DN be members of cluster C, and F1, …, FM be the known patient findings. The configurations of C are all permutations of the cluster disorders in which some are present and others are absent. For the net probability of C (all configurations) we have:

[image: image]

where [image: image] is the joint incidence (prior probability) of the disorders in [image: image] co-occurring, and [image: image] is the equivalent sensitivity for finding Fi in [image: image]. The probability of cluster disorder Dk is the sum of the probabilities of all configurations in which it is present, i.e.,

[image: image]

where [image: image] and 0 otherwise. While the total number of configurations may be very large (since C may be large) this does not present a computational problem, since the vast majority of configurations can be discarded using pruning heuristics with negligible effect on the accuracy of the cluster probability computation. Note that given the set of all contending diagnoses across all clusters, the cluster probabilities sum up to 1.0 but the disorder probabilities do not, due to co-occurrence among the disorders.



Disorder Subtype Hierarchies

The ability to model disorder subtypes is important in diagnosis, because disorder subtypes may have different prognoses and/or require different treatments (e.g., viral vs. bacterial meningitis). We use the term subtypy to define a framework for describing the disorder inheritance hierarchy. Note that inheritance hierarchies in diagnosis are statistical and not directly analogous to the programming concept of object-oriented inheritance. In diagnosis, the ancestor represents a statistical aggregate of its descendants or variants, and while it may be convenient to think of a subset of findings as manifest in the parent and passed on to the children, there are usually variations in how these findings are expressed (or not) in each child. For example, conjunctival injection is always present in infectious conjunctivitis, and inherited to both subtypes gonococcal (bacterial) conjunctivitis and viral conjunctivitis. However, conjunctival hemorrhages are more common in the viral variant, while eyelid edema and purulent discharge are more common the bacterial variant. Furthermore, a Gram stain of the gonococcal conjunctivitis discharge may identify Gram-negative diplococci, but it is irrelevant to the viral variant. So the Gram stain test finding is relevant to the parent (infectious conjunctivitis), but not to its viral child. In summary, a child attribute is always represented by the parent, but not necessarily vice versa, and the manifestation in the parent is a statistical aggregate of its children.

Because each parent represents the statistical aggregate of its children, and the probability of each child varies based on the patient findings, we must compute all sensitivities dynamically for each new set of patient findings, and we must do so by starting at the very bottom of the hierarchy tree (the “leaves” or childless disorders). To see why this is the case, consider a simple example with parent disorder meningitis and its children viral and bacterial meningitis. The prior probability (incidence) of meningitis in the U.S. is ~9.25e-5. Approximately 82% of cases are viral and 18% bacterial. Consider the finding “CSF culture positive for bacteria.” This finding is relevant to bacterial meningitis with sbm ≈0.95 and is not relevant to viral meningitis, so we assign a noise sensitivity, e.g., svm=0.02, and compute the sensitivity in the parent as the weighted sum: sm = (Ivm · svm + Ibm · sbm)/Im = 0.82 · 0.02 + 0.18 · 0.95 = 0.187. Now suppose this finding was determined to be positive in the patient. The posterior relative probability of the children is now Pvm = Ivm · svm = 0.82 · 9.25e-5 · 0.02 = 1.152e-6 and Pbm = Ibm · sbm = 0.18 · 9.25e-5 · 0.95 = 1.58e-5. The relative probability of the children has changed from 0.82/0.18 to 0.07/0.93, and sm = 0.07 · 0.02 + 0.93 · 0.95 = 0.88. Similarly, if the finding was negative in the patient then Pvm = Ivm · (1 − svm) = 0.82 · 9.25e-5 · 0.98 = 7.43e-5, Pbm = Ibm · (1 − sbm) = 0.18 · 9.25e-5 · 0.05 = 8.32e-7, the relative probability ratio is 0.99/0.01 and sm = 0.99 · 0.02 + 0.01 · 0.95 = 0.03.

From the end user perspective it is desirable for the diagnostic process to proceed from the general to the specific (e.g., from “stoke or TIA” to “cortical posterior cerebral artery stroke, dominant”) progressively as more of the relevant patient findings are discerned. To do so, we use a heuristic called Child Better than Next that replaces a parent disorder by all its direct children provided that the relative probability of at least one of the children exceeds that of the next disorder in the differential diagnosis stack. This requires the disorders to be ranked by descending relative probability, and for the stack to be resorted after each replacement.



Disorder Findings Dependencies

Each finding is modeled as binary, discrete multi-valued (categorical), or a continuous random variable. We use the term “finding” broadly to include risk factors, and distinguish between them by selecting the appropriate interaction model (e.g., reflecting direction of causality) when computing their impact on disorder probabilities.

While some findings may justifiably be modeled as conditionally independent for a given disorder (Naïve Bayes), this is not the case in general. Frequently, findings vary with other findings that are not directly relevant to the index disorder. In such cases we can write:

[image: image]

where F1 is relevant to D and P(f1|D) can be described by a multidimensional probability distribution, with factor findings F2, …, FL that are not necessarily directly relevant to D, but act as factors in the computation of its finding probabilities. Common factor findings are age, gender, and time-to-diagnosis; however, many findings have their unique factor findings. For example, Figure 3 depicts the distribution of serum glucose for diabetic ketoacidosis (DKA) as a function of factor findings “current pregnancy” and “recent heavy alcohol consumption”.


[image: Figure 3]
FIGURE 3. This figure (image captured from our CMS) shows random serum glucose modeled as a log normal distribution for (peak distributions left-to-right): normal (healthy), chronic diabetes mellitus, and DKA. The overlay table in the top left shows multifactorial distributions of serum glucose for DKA as a function of factor findings “current pregnancy” and “recent heavy alcohol consumption”.




Inter-findings Dependencies

Failure to capture semantic overlap or disjunction can cause significant distortion unless inter-finding dependencies are properly managed. At the root of the problem is the basic concept of finding diagnostic power. The diagnostic power of a finding represents how much information it contributes to the likelihood of a disorder relative to contending disorders. That is, given what we already know about the likelihood of a disorder from its prior probability (incidence) and previously ascertained findings, how much additional information does a new finding provide? We define diagnostic power using a measure called the probability factor (PF), which is the ratio of the probability of the finding in the disorder relative to its prevalence in the general population. Table 4 in Supplementary Materials shows how this measure relates to other popular measures that quantify the discriminating power of a finding.

To illustrate the problem of semantic overlap, consider a patient complaining of pain, edema (swelling), and erythema (redness) at the knee. These findings collectively represent aspects of knee joint inflammation in rheumatoid, traumatic, or reactive arthritis. Note however that these findings are not correlated or even jointly relevant for all disorders that cause knee pain. For example, L4 lumbar disc herniation can cause knee pain, but not edema or erythema.

We address semantic overlap by defining an intermediate node called an xopathy (a generalization of terms such as neuropathy, dermopathy, or arthropathy). The xopathy framework enables us to represent a set of findings that are conditionally dependent with respect to an index disorder using an interim aggregate node. The xopathy sensitivity represents the incidence of the xopathy in the population of patients with the disorder. The xopathy sensitivity can also be interpreted as the conditional probability that one or more of the xopathy findings is present given the index disorder.

Let D represent a disorder with conditionally dependent findings F1, …, FL. We construct an xopathy Xop with the findings as its members, and each having a sensitivity si = P(fi|xop). We are also given the xopathy sensitivity, sXop = P(xop|D). Our goal is to compute dynamic sensitivities [image: image], K ≤ L for each known finding that satisfy

[image: image]

The actual algorithms for computing [image: image] are beyond the scope of this paper. However, we provide a brief outline of the process with key equations.

Step 1: Compute the independent xopathy diagnostic power (probability factor), PFindep, as the product of the finding PFs. This represents the diagnostic power we would introduce into the disorder probability computation if we assumed the findings were independent. As noted earlier, PFindep will generally be greater than the desired diagnostic power when the findings are correlated.

[image: image]

where (fi|Xop) = si/ni, ni is the prevalence of Fi in the general population, and si is the finding sensitivity relative to the xopathy. Note that the findings are independent relative to the xopathy (but not the disorder), which allows us to use the Naïve Bayes assumption in Equation (10).

Step 2: Determine the maximum allowed PF for this xopathy, PFmax(Xop). If PFindep exceeds PFmax then apply compression to decrease finding sensitivities. We denote the compressed sensitivities [image: image]. The compression algorithm must satisfy several constraints, such as preserving the relative magnitude of the original sensitivities [image: image], and ensuring that positive findings remain so [image: image].

Step 3: Reflect the xopathy sensitivities to the disorder. The sensitivities [image: image] represent the conditional probability of the findings on the xopathy, but what we really want is sensitivities conditioned on the disorder per Equation (9). Let x0 = sXop = P(xop|D), [image: image], and [image: image], where ŝ and [image: image] represent the geometric means of [image: image] and {ni}, respectively. For simplicity, in this derivation we're interpreting si as the probability of the finding Fi in its known state. If the finding is negative then si = 1 − P(Fi is positive).

We initialize the algorithm as follows:

[image: image]

Note that [image: image] is the expected sensitivity over the two mutually exclusive disorder subpopulations: the xopathy population with prior probability x0, and the complementary population with prior probability (1 − x0). With each discerned finding, the probability that the patient belongs to the xopathy subpopulation changes. If the finding was positive the xopathy probability increases and if it was negative it decreases.

Similarly, for the remaining iterations, j = 2, .., K we have:

[image: image]

Similar to ŝ, we define [image: image] as the geometric mean of the raw disorder sensitivities computed in Equation (12). Finally, we normalize the [image: image] using the scaling factor [image: image] in order to preserve the xopathy diagnostic power achieved in Step 2. The final sensitivities [image: image] for Equation (9) are:

[image: image]

The second form of [image: image] in Equation (13) uses the function [image: image] to guarantee that the sensitivity never exceeds 1.0. While previous work has described the use of intermediate nodes to express the aggregate sensitivity of correlated findings (Yu et al., 1988; Nikovski, 2000; Velikova et al., 2014), we are unaware of other successful attempts to express the diagnostic power and sensitivity of the intermediate node as independent finding sensitivities for the disorder per Equation (9). This process is critical to avoid semantic disjunction in MDM computations. To see why this is the case, consider dependent disorders D1 and D2. Suppose findings F1 and F2 are relevant to both disorders, but are only conditionally dependent with respect to D1. If we were to replace F1 and F2 by an xopathy node Xop(F1, F2) as a finding of D1, then the disorder cluster {D1, D2} would have 3 findings instead of 2, thus creating semantic disjunction and rendering the equivalent sensitivities incorrect.



Finding Contingency Hierarchies

The finding contingency hierarchy represents a formalization of the “drill-down” conventions of the medical interview. The top finding (e.g., “chest pain”) is usually followed by more specific findings like quality or character of the pain (e.g., sharp, dull, stabbing, burning, pressing), exacerbating factors (e.g., cough or exercise), relieving factors (e.g., drinking water or sitting up), etc. For many “top level” findings like chest pain or skin rash there may be tens of additional secondary or contingent findings that need to be discerned to obtain a clear picture of the disease state.

We say that finding Fc is contingent on Fp (and Fp is a prerequisite of Fc) if Fc has no meaning unless Fp has been discerned. Usually, Fc won't have any meaning unless Fc takes on specific state(s). For binary findings, this condition is always that the prerequisite finding must be positive. For example, we can't ask about chest pain quality if the patient has denied chest pain. Note that a prerequisite finding may have multiple contingents, and that a contingent finding may also have multiple prerequisites. Furthermore, contingencies may be chained or nested to multiple levels.

In some cases the contingency chain must be queried in a specific order to create a coherent interview that makes sense to the patient. For example, if the patient complains of a skin lesion, we cannot ask “How deep is the ulcer?” unless we first determine that the lesion is, indeed, an ulcer. Similarly, if the patient complains of abdominal pain, there is no point asking “Is the pain relieved by antacids?” (suggests a peptic ulcer) unless we first discern that the pain is located in the upper abdomen. Similarly, we cannot ask “Which came first, the abdominal pain or the nausea & vomiting?” until we have discerned that both findings were reported.

Finding contingency chains present an interesting dilemma, namely, what probability to assign to contingent findings whose prerequisites are irrelevant to an index disorder. To illustrate this scenario, suppose the patient presents with 2 positive findings, F1 and F2 and that there are 3 contending disorders, D1, D2, and D3. Suppose F1 is relevant to all 3 disorders and F2 is relevant only to D1 and D2. For simplicity assume all disorders have the same incidence, all findings have a sensitivity of 0.3 to all relevant disorders, and that all findings have a noise sensitivity of 0.02. The relative probabilities of the disorders at this point are [image: image]. The relative probability of D3 has decreased by approximately an order of magnitude. Now suppose F2 has contingent finding F21that is positive in the patient, and only relevant to D1. The updated relative probabilities are [image: image]. The decrease of P(D2) relative to P(D1) seems justified, because given F2, D1 matches the finding pattern better than D2. However, D3 has essentially been punished twice for not explaining the prerequisite finding. Each time we query another finding in the F2 contingency chain the relative probability of D3 will decrease by the probability factor 0.3/0.02, and very quickly D3 will be discarded from consideration. We use the term “don't care” finding to mean a positive contingent finding for a prerequisite that is irrelevant to the index disorder. In our example, F21 is a “don't care” condition for D3. We further stipulate that the relative probability of a disorder should be minimally impacted by its “don't care” findings. The solution we implemented was to derive a weak positive sensitivity to “don't care” findings.



The MidasMed Diagnostic Engine and Web App

The diagnostic engine is implemented as a web server that receives stateless diagnostic requests from a client, and returns a response consisting of a probability ranked differential diagnosis and a ranked list of the best next findings to discern. The first step is to generate a list of all valid diagnoses that explain at least one abnormal patient finding. The disorder list is used to create a dynamic sparse BN. It is sparse, because it contains only valid diagnoses for the given request. As described earlier, the conditional probabilities for each parent disorder are represented as statistical aggregates of the children. Note that there is no need to compute the entire finding conditional probability distribution, only the probability of the patient value. A recursive computation is then initialized with the ancestor disorders of each subtype family. MDM computations are applied, and the disorders are placed in a stack and ranked by descending relative probability. The Child Better than Next heuristic is then applied recursively (starting at the top of the disorder stack), by replacing the next qualified parent and all its siblings by all their children, updating the relative probabilities, and resorting the stack. Note that only the MDM cluster containing the parent(s) needs to be recomputed with each replacement. The resulting final differential diagnosis offers the user the appropriate diagnostic subtype specificity for the known findings.

Figure 4 illustrates a fragment of a single iteration in this recursive process. Figure 4A shows a cluster fragment for patient findings F1 and F3. Note that F3 is relevant to both D2 and D3, so it will require an equivalent sensitivity for configurations in which both disorders are present. In the next iteration (if the Child Better than Next criterion is satisfied) D3 will be replaced by children D31 and D32. In the following iteration D31 and D32 (siblings) will be replaced by all their children (D311, D312, D321, and D322). Note that the network in Figure 4A depicts causality (e.g., D1 causes D2 and D3), while the network in Figure 4B depicts disorder subtypes (e.g., D3 is a supertype of D31 and D32). Subtypes of a single parent (siblings) are considered mutually exclusive, so P(D31) is computed using the configurations of the cluster in Figure 4C. However, the probabilities of the dependent disorders (D1 and D2) are computed from the configurations of both Figures 4C,D, by summing the probabilities of all configurations in which they appear. Similarly, in the next recursion, configurations will be computed with D311, D312, D321, and D322.


[image: Figure 4]
FIGURE 4. Illustration of recursive BN computations for disorder cluster and subtype fragments. (A) Cluster fragment for patient findings F1 and F3 and disorder subtype ancestors. (B) Subtypy tree for disorder D3. (C,D) D3 in original network has been replaced by its children D31 and D32 to compute the cluster probabilities with the two children.


The innovations described above combine to produce a nuanced approach to diagnosis that we assert results in substantially greater accuracy than existing solutions in that the differential diagnosis probabilities are more consistent with the evidence available to support them. We further assert that with diagnostic guidance based on Bayesian probabilities, heuristics, and estimated costs, the differential diagnosis converges to the correct diagnosis more efficiently, potentially translating into time and cost savings.

Our prototype system (MidasMed) currently recognizes a limited subset of 200 common adult primary care disorder subtype families (760 total diagnoses) spanning a variety of systems (respiratory, dermatology, neurology, musculoskeletal, etc.), and 4,000 findings (We estimate these encompass approximately half of the disorders a competent primary care physician should be able to recognize.). The semantic network is defined using statistical and logical analysis of epidemiological data, case series, journal articles, textbooks, and other online resources.

MidasMed includes a user-friendly web app for both patients and clinicians using dual vocabularies and default application settings for the two distinct user groups. For example, by default patients and lay caregivers are presented only with history questions in lay terminology, while professional users are asked all finding types (including exam and test results) using professional terminology. The user interface is interactive, and is designed to give the user maximum flexibility and control. Throughout the encounter, patient findings can be augmented, edited or deleted. The user can choose from 3 ways of entering new findings to refine the initial differential:

1. Search: The user selects her own findings from a global findings list.

2. Guide Me: MidasMed asks a short series of the best next questions to discern.

3. Drill Down: The user selects a disorder from the differential diagnosis to view, rank, and select undiscerned findings for that disorder. This allows the user to focus on a condition of particular concern due to urgency or severity, and answer the questions that will most efficiently rule it in or out.



Experimental Paradigm

In this research we compare the performance of MidasMed to that of physicians and six other publicly accessible online diagnostic aids: Ada, Babylon, Buoy, Isabel, Symptomate, and WebMD. To facilitate a comparison with previous studies, we used a set of publicly available case vignettes (Semigran et al., 2015) that were tested on 23 symptom checkers in 2015, physicians (Semigran et al., 2016) and on three physicians and the Babylon DA in 2020 (Baker et al., 2020). The vignettes are available online in the format of Table 1. (See Table 5 in the Supplementary Materials for a complete list of vignettes and also a link to the vignettes file).


Table 1. Sample vignette.

[image: Table 1]

As in the previous studies (Semigran et al., 2015; Baker et al., 2020), we used only the information from the “Simplified (added symptoms)” column of the vignette file, and excluded vignettes based on conditions on which MidasMed had not yet been educated (in conformance with the methodology of Baker et al., 2020). This resulted in a test set of 30 vignettes, the same number used in Baker et al. (2020). We note that none of the vignettes had been used in the training, education or parameterization of MidasMed.

We regarded the diagnosis presented in the “Diagnosis” column of the vignette file as the true or “target” diagnosis, except in 2 cases where no final diagnosis was provided but was clearly implied (the implied diagnosis was used), and 2 cases where multiple causally linked disorders were implied by the vignette history (either implied diagnosis was accepted). We did not find descriptions of how these problematic vignettes were treated in the previous articles. These exceptional cases are clearly identified in Table 5 in the Supplementary Materials.

In two cases the diagnosis provided for the vignette seemed inadequately substantiated by the simplified vignette history in our clinical opinion. For presumed consistency with the previously reported research, we nonetheless regarded it as the target diagnosis. These cases are also identified in the Supplementary Materials (Table 5).

MidasMed is an incomplete prototype, and therefore has not been publicized or promoted, but is publicly accessible (for a limited time) for evaluation and feedback at midasmed.com, and the vignette cases created for this article are publicly accessible via the application for anyone to view and experiment with (see instructions in the Supplementary Materials). At this writing, MidasMed recognizes only 200 adult disorder families. A complete list of supported diagnoses can be found in the app at midasmed.com from the Options (hamburger) menu.

For this study we used all of the adult vignette cases from the source file on which MidasMed has been educated, plus three pediatric cases for which the presentation is very similar to that in adults. Since MidasMed only accepts patient ages ≥ 18, the ages of the three pediatric patients were transposed to 18 years.

All the other DAs evaluated are publicly promoted as diagnostic aids for the general public. (One limits the age to ≥ 16, for which the age of the two younger patients was also transposed to that minimum age). Since none of the vignettes are based on rare disorders, we assumed the other DAs to be capable of recognizing all the target diagnoses.

The data for physicians and the Babylon DA were taken from Baker et al. (2020), and were not independently replicated in this study. For each of the other diagnostic assistants one of us (D. Jones, MD, board certified in emergency medicine with 25 years' primary care experience) entered only the “Simplified (added symptoms)” findings for each vignette into the online DAs (See the Supplementary Materials for links to all the DAs). Note that these simplified vignettes were designed to reflect only the history findings and observations that a patient could enter. For each DA we recorded (a) the fraction of cases for which the target diagnosis was #1 in the list of diagnoses provided; and (b) the fraction for which the target diagnosis was in the top 3 disorders of the list.




RESULTS

The results of our research are presented in Table 2.


Table 2. Performance comparison summary results for 7 DAs and physicians.
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Limitations Regarding Our Results

Although MidasMed aspires to be a complete diagnostic aid for both patients and clinicians, and therefore includes the physical examination and test findings required to definitively diagnose the disorders on which it has been educated, only history findings were entered in this study. The objective here was to quantify the ability to identify the correct diagnosis based on sparse patient histories, as are readily available directly from patients online.

With only 30 cases, the statistical reliability of the results is low, as reflected in the broad confidence intervals. The original study for which the vignettes were created (Semigran et al., 2015) included 45 vignettes, but only the 27 adult plus 3 pediatric disorders on which MidasMed has been educated were tested in this study, and only 30 in the study (Baker et al., 2020) that produced the physician and Babylon data reported here.

It is possible that as the breadth of disorders covered by MidasMed is increased, and the correct diagnosis must compete with a greater number of similar disorders, accuracy will decline. However, since (a) the disorders presently covered by MidasMed were selected because they are among the most common, and (b) the vignette diagnoses are mostly common disorders, adding the less common disorders is unlikely to hinder the recognition of the vignette disorders. Rather, it will be difficult (probably impossible) to correctly identify an uncommon disorder (e.g., bronchiectasis or idiopathic pulmonary fibrosis) as the most likely diagnosis based on only sparse vignette histories such as were used here, some of which contain only 3 or 4 common findings.

It was difficult to make perfectly fair comparisons of the different DAs due to differences in their user interface (UI) approaches. For example, some apps (e.g., MidasMed, Ada) offer an “unknown” option for (virtually) every follow-up question queried, making it easy to limit the information entered strictly to the items provided in the simplified vignettes. However, other DAs (e.g., Buoy, Symptomate), presented follow-up questions that required an affirmative or negative answer to proceed. In those cases (i.e., when forced to provide information not in the vignette), we attempted to err in the direction of aiding the DA under test, by answering as a typical patient with the target disorder would most likely answer. In a few cases, it was not possible to enter all history items for a specific vignette because an item was both (a) not accessible in the DAs search facility (despite trying multiple synonyms), and (b) not queried via follow-up questions presented by the DA.




DISCUSSION

Canadian physician Sir William Osler (1849–1919), “the father of modern medicine,” is known for saying, “Listen to your patient, he is telling you the diagnosis.” This message repeats in the medical school maxim, “90% of the diagnosis comes from the history, 9% from your examination, and 1% from tests” (Gruppen et al., 1988; Peterson et al., 1992). This maxim has been forgotten in today's over-stressed healthcare system. Too rushed to take a comprehensive history, doctors often compensate by ordering test panels, referring to specialists, and scheduling more follow-up visits; “Next patient, please.” Patients on the receiving end are justifiably frustrated and open to alternatives. But with the growing role of telehealth, where the ability to perform exams or order stat tests is limited, patient history should regain its role as the primary factor in the diagnostic equation. There is also a broader trend toward democratizing access to medical information, or “eHealth” via phone apps, wearables, and inexpensive measurement devices, giving patients more control over care options.

In this study we performed a prospective validation of a novel Bayesian diagnostic assistant (MidasMed), and compared it to five online DAs (Ada, Buoy, Isabel, Symptomate, and WebMD) and to the accuracy previously reported for the Babylon DA and physicians. MidasMed was able to identify the correct diagnosis as most likely with 93% accuracy, significantly outperforming physicians (75%) on the same vignettes (Baker et al., 2020).

We attribute the superior performance of MidasMed to a diagnostic model that moves beyond the “leaky noisy OR gate” assumption of conditional independence among the BN nodes (Henrion, 1987), and to reducing semantic overlap and disjunction that are common in the medical literature and can lead to significant distortion in estimated probabilities of the outcomes. These simple vignettes and our scoring technique did not give MidasMed credit for diagnosing co-present causally related disorders. In particular, it is noteworthy that for the two vignettes that imply the causal co-occurrence of multiple disorders, MidasMed produced estimated relative probabilities for these disorders whose sum approaches 200%, implying a high likelihood of co-occurrence (See the Supplementary Materials, for instructions to access the cases online).

It appears from our results that the accuracy of online DAs has improved significantly in the 6-year interim since the original paper (Semigran et al., 2015) evaluated the study vignettes. In that paper, the best-performing symptom checker listed the target diagnosis first only 50% of the time, and in the top three only 67% of the time; and the average performance of 19 symptom checkers in that study for the top 1 and top 3 was only 34 and 51%, respectively. Whereas in this study, the best performance was 93% (top 1) and 97% (top 3); and the average DA performance was 68 and 86%, respectively, showing significant improvement. Furthermore, in this study the performance of the top three DAs combined was 78.9% (top 1) and 91.1% (top 3), comparing very favorably with physicians (75.3 and 90.3%, respectively). Note that in the later comparison we use the 90 vignette aggregates, with similar narrower confidence intervals.

We note several differences in test methodology that may have contributed to the apparent accuracy improvements relative to Semigran et al. (2015) for previously tested DAs. First, in Semigran et al. (2015), all data was entered by non-clinicians, who may not have been as facile at matching symptoms to their various DA synonyms as the physician-testers in this study and in Baker et al. (2020). However, that method may give a better estimate of “read world” performance with real patients seeking diagnosis. Second, responses to “mandatory” questions (without which the interview does not proceed, but are not answered by the vignette) may have been entered inadvertently in a way that “punished” the target diagnosis, whereas in this study we explicitly answered such questions to favor the target diagnosis. Third, in Semigran et al. (2015) all 45 vignettes in the source file were used to test all DAs without verifying support for the target diagnosis. These factors may have contributed to the lower scores in the earlier study.


Future Work

At this time MidasMed recognizes a limited set of disorders spanning all organ systems, but lacks comprehensive coverage for any specific system. To complete our technology validation, we plan next to expand its education to in-depth coverage of a major organ system (e.g., gastrointestinal and hepatobiliary disorders), and verify that (a) it continues to recognize most disorders as the likely diagnosis based on history alone, (b) it recognizes all disorders with high accuracy when exam findings and tests are included, and (c) it guides the user efficiently from the initial differential to the definitive diagnosis by optimizing a preset criterion (e.g., diagnostic utility-to-cost ratio). When sufficient data has been acquired, we will apply statistical reliability measures (e.g., Hilden et al., 1978) to assess the confidence and diffidence of the DA's probability estimates.

Although the goal of this paper was limited to the comparison of the diagnostic accuracy of currently available online diagnostic assistants using standardized vignettes, we hope in future work to present our diagnostic innovations in greater detail, and to explicitly measure and compare the accuracy contribution of individual algorithmic innovations (e.g., our modeling of dependencies among findings, modeling of subtypy relationships among disorders, use of continuous probability distributions, etc.).

In this work, to facilitate an apples-to-apples comparison with prior results, we tested on a small set of case vignettes previously tested in Semigran et al. (2015, 2016); Baker et al. (2020). We hope in future work to test across multiple DAs using larger sets of test cases.
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Background: Cystic lesions are frequently observed in knee joint diseases and are usually associated with joint pain, degenerative disorders, or acute injury. Magnetic resonance imaging-based, artificial intelligence-assisted cyst detection is an effective method to improve the whole knee joint analysis. However, few studies have investigated this method. This study is the first attempt at auto-detection of knee cysts based on deep learning methods.

Methods: This retrospective study collected data from 282 subjects with knee cysts confirmed at our institution from January to October 2021. A Squeeze-and-Excitation (SE) inception attention-based You only look once version 5 (SE-YOLOv5) model was developed based on a self-attention mechanism for knee cyst-like lesion detection and differentiation from knee effusions, both characterized by high T2-weighted signals in magnetic resonance imaging (MRI) scans. Model performance was evaluated via metrics including accuracy, precision, recall, mean average precision (mAP), F1 score, and frames per second (fps).

Results: The deep learning model could accurately identify knee MRI scans and auto-detect both obvious cyst lesions and small ones with inconspicuous contrasts. The SE-YOLO V5 model constructed in this study yielded superior performance (F1 = 0.879, precision = 0.887, recall = 0.872, all class mAP0.5 = 0.944, effusion mAP = 0.945, cyst mAP = 0.942) and improved detection speed compared to a traditional YOLO model.

Conclusion: This proof-of-concept study examined whether deep learning models could detect knee cysts and distinguish them from knee effusions. The results demonstrated that the classical Yolo V5 and proposed SE-Yolo V5 models could accurately identify cysts.

KEYWORDS
knee joint, cyst, effusion, magnetic resonance imaging, deep learning


Introduction

Benign cysts are frequently encountered during body examinations or advanced knee imaging. Cysts can be categorized into various types, including Baker’s cysts, proximal tibiofibular joint cysts, meniscal cysts, and intraosseous cysts at the insertion of the cruciate ligaments (1). Intra- and periarticular cyst-like lesions are secondary phenomena likely to be observed in painful or osteoarthritis (OA) affected knees (2). They are strongly associated with intra-articular pathologies or complications of various disorders, such as trauma, meniscus injury, infection, inflammatory arthritis, and malignant lesions (3). Cysts and joint effusion are also key features in two semi-quantitative assessments of knee OA, the Whole-Organ Magnetic Resonance Imaging Score (WORMS) and the MRI Osteoarthritis Knee Score (MOAKS) (4, 5). Such fluid accumulation may range from benign to minimally symptomatic and poses a diagnostic dilemma if one is unaware of the potential diagnoses and pitfalls (3). Therefore, it is crucial to develop an appropriate differential diagnosis of knee cystic lesions to guide further evaluation and treatment of OA.

Magnetic resonance imaging is commonly used to confirm whether lesions are cystic due to its superior soft-tissue contrast and multi-planar imaging capabilities compared to other imaging modalities (1). MRI can help delineate the location of lesions concerning anatomic structures and, with the application of contrast, determine if lesions are cystic or solid (6). Typically, cysts located around the knee are encapsulated fluid collections with low T1-weighted signals and high T2-weighted signals on MR scans, similar to benign intra-articular fluid collections, effusions, or certain types of soft-tissue tumors (7–10). Radiologists and clinicians must familiarize themselves with the MRI features of the cyst and cyst-like lesions to accurately diagnose the disease, develop treatment plans, and manage patients more effectively.

Artificial intelligence and deep learning are increasingly utilized in the medical field both in medical imaging and biomedical analysis (11, 12). The role of AI in medical imaging of knee joints has been described in many primary publications (13), with an emphasis on OA-related research, such as auto-segmentation of knee joint tissue (14, 15), and auto-detection of cartilage lesions, meniscus injuries, and anterior cruciate ligament tears (16–19). The deep learning models for such detection demonstrated relatively superb accuracy, ranging between 70 and 100% across various studies, suggesting that such methods exhibit the potential to rival human-level performance in decision-making tasks related to the MRI-based diagnosis of knee injuries. These methods promote the growth of medical enterprises and help create more intelligent medical services.

Most of the current deep learning research on the knee joint focuses on knee OA and acute knee injuries, but few studies have examined knee joint cysts, cyst-like lesions, or joint effusion. In 2018, a deep convolutional neural network (CNN) was applied to the segmentation of knee joint anatomy, achieving dice coefficients between 0.7 and 0.8 for both joint effusion and Baker’s cyst for each joint (20). A more recent study constructed a dense neural network (CNN) for detecting effusions, defined as nonzero MOAKS-ES scores, from limited MRI scans (21). It was demonstrated that NNs could classify knee effusions from low-resolution images with similar accuracy to human radiologists, suggesting that automated evaluation of scans from low-cost, low-field scanners could help assess knee effusions. Other than these two publications, there is no other literature on applying deep learning to cyst detection. It remains unclear whether deep learning techniques can detect cysts and distinguish them from effusions.

Most of the current deep learning research about knee joints focuses on knee osteoarthritis and acute knee injuries, and very few studies examine knee joint cysts, cyst-like lesions, or joint effusion. In 2018, a deep convolutional neural network was applied to the segmentation of knee joint anatomy in a study published by Liu et al. (20). Using the deep learning model, 20 subjects in sagittal frequencies selected fat-suppressed 3D fast spin echo sequences were segmented using 12 different joint structures, and a Dice coefficient between 0.7 and 0.8 was achieved for both joint effusion and Baker’s cyst for each joint. This is the first attempt at deep learning used on joint effusions and cysts. In 2022, Harvard University Bragi Sveinsson carried out a study that created a dense NN (CNN) for detecting effusions, defined as nonzero MOAKS-ES scores, from limited MRI scans (21). Additionally, it was proved that neural networks can classify knee effusions with similar accuracy to that offered by human radiologists utilizing low-resolution images, suggesting that automated assessment of images from low-cost, low-field scanners may be useful for assessing knee effusions. Other than the two publications mentioned above, there are no other literature reports on the application of deep learning to cyst detection. It is not clear whether deep learning technology can be used to detect cysts and the performance of identifying them from effusions.

The present study introduced a deep learning model for the auto-detection of knee cystic lesions to address this knowledge gap. It evaluated the model’s performance in differentiating knee cysts from knee effusions, which could facilitate the early diagnosis and prevention of knee cysts in mass detection by clinicians. To our knowledge, this is the first attempt at automatically detecting knee cysts and distinguishing them from knee effusions using deep learning methods. Because of the limited amount of data, Mosaic augmentation was used in data preprocessing to increase the volume of training data. To enhance the ability to detect cysts of various sizes, Yolo-V5 was used as a backbone network alongside a featured pyramid architecture for detection. An attention mechanism, the SE module, was added to the model to enhance the contribution of information-rich features in the feature extraction process.



Materials and methods

The Institutional Review Board of the Second Hospital of Jilin University approved this retrospective study (No. SB2021-012).


Patient data selection

All knee MRIs were acquired at the Second Hospital of Jilin University between January 2021 and October 2021. An in-house RIS/PACS search engine was used to identify candidates who met the following inclusion and exclusion criteria. The inclusion criteria were: (I) MRI scan of the knee for space-occupying lesions or swelling, or pain in a knee joint; (II) patient is over 18 years old; and (III) a formal description of a cystic lesion or uncertain space-occupying lesion in the written radiology report. The exclusion criteria were: (I) patient not consenting to usage of their data; (II) patient is under 18 years old; (III) patient with fracture of a knee joint; (IV) images with excessive movement or beam hardening artifacts as described in the report; and (V) images with knee surgery implants. For patients with more than one MRI examination, only the most recent MR scan was selected.

Data were retrieved for subjects diagnosed with knee cysts or effusions on the imaging report. If there was uncertainty about including a case, a decision was made after reviewing the original image. A total of 282 cases were included in the final analysis. Patient demographics are listed in Table 1. A detailed data selection flowchart is outlined in Figure 1.


TABLE 1    Patient demographics (mean ± s.d.).
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FIGURE 1
Flowchart of subject inclusion/exclusion and data selection.




Data process

Magnetic resonance imaging was performed on a GE Discovery MR750 3.0T scanner using a sagittal proton density-weighted fat suppression sequence (PD-FS) [Field of view (FOV) = 160 mm × 160 mm; matrix = 512 × 512; number of slices = 20; voxel resolution = 0.35 × 0.35 × 4.5 mm; slice thickness = 3.5 mm; interslice gap = 4.5 mm; repetition time (TR) = 2,600 ms; echo time (TE) = 34.0 ms; flip angle = 90°]. A total of 5,640 sagittal PD-FS images from all subjects were included in this dataset.

Digital Imaging and Communications in Medicine (DICOM) images were converted to one-channel grayscale PNG images to standardize the format of the image files before training. Images were then rescaled to 256 × 256 pixels, and pixel values were normalized between 0 and 1. Two physicians verified that no information related to knee cyst enlargement and effusion was lost in the PNG format images.

Subsequently, regions of interest (ROIs) of cyst lesions and effusions were annotated using the LabelImg image data annotation software by two resident physicians under the supervision of the chief physician. If the annotation was questionable, the final determination was decided by negotiation with the review panel. Background information surrounding the ROIs was removed whenever possible. Annotation files were stored in Pascal-VOC format during the process. Subsequently, the images and their associated annotation files were divided into a training set, a validation set, and a test set in a ratio of 6:2:2 in the enhanced data set through a Python script. The data distribution of each lesion category and characteristic is shown in Figure 2.
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FIGURE 2
(A) Distribution of cyst category. (B) Distribution of centroids of cysts and effusions. (C) Size distribution of cysts and effusions.




Deep learning model structure

A Squeeze-and-Excitation (SE) inception attention-based YOLO v5 algorithm (Yolo V5-SE) was adopted to detect knee cyst targets. Similar to the general Yolo v5 algorithm, the architecture of our model was composed of four parts, input, backbone, neck, and prediction, with adjustments in the input and neck parts. In the input preprocessing stage, the images were resized to 640 × 640 × 3, and mosaic data augmentation was applied to increase the number of training samples. Through operations such as flipping, zooming, and color gamut modification, this strategy allowed smaller cyst elements to be detected in a smaller field of sensation, thus enhancing the likelihood of detecting small targets. A couple of SE-inception modules were added after the Concat module in the neck structure (22). The architecture of the model is shown in Figure 3.
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FIGURE 3
SE-YOLOv5 model architecture for cyst detection.




Model training and evaluation

During model training, the learning rate was set to 0.0001 to accelerate model convergence. Stochastic gradient descent (SGD) was used for hyperparameter tuning, and the learning rate momentum was set to 0.90, considering the small number of samples in the cystic lesion dataset. A cosine annealing decay strategy was used for a learning rate change. Cross-entropy was used as the loss function for the model, with batch size set to 8 and training epochs set to 300. The training process was controlled by the early stop method. The training was stopped to prevent over-fitting when the loss value of the validation set did not decrease within 15 epochs. The environment configuration used in the experiment is shown in Table 2.


TABLE 2    The environment configuration used in the experiment.
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Validation metrics, including accuracy, precision, recall, mean average precision (mAP), and F1 score, were calculated and visualized in Python to evaluate model performance in cyst and effusion detection (Figure 4). The formulas for the metrics are described below.
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FIGURE 4
Validation metrics for SE-YOLO V5. The horizontal axis denotes the number of iterations.


True positives (TP) denote correctly identified cysts, false positives (FP) denote incorrectly identified cysts, and false negatives (FN) denote missed cysts. AP describes average precision; P(R), which denotes the precision P of different recall rates R, corresponds to the P–R curve’s area under the curve. The constant C in Eq. 5 has a value of 2, representing cysts and effusions as two separate lesions. The number of average precisions (AP) in each category, which is the number of APs in each category when intersection over union (IoU) is 0.5, is denoted as the mean average precision (mAP). Among these metrics, mAP is the most comprehensive index for evaluating model performance, with higher mAP values corresponding to better model performance.

Furthermore, we compared the performance of our Yolo V5-SE model with that of a general Yolo V5 model by comparing the validation metrics. All statistical tests were performed with SPSS Statistics 26.0 (IBM Corp, Armonk, NY, United States).




Results

Figure 2A shows that the proportion of effusions and cysts was relatively balanced, suggesting that model performance was unlikely to be biased by an imbalanced class distribution. Few lesion centroids were concentrated near the image center, and the distribution of lesion targets was fairly uniform (Figure 2B). Small target lesions accounted for many lesions (Figure 2C).

Validation metrics demonstrated that the model’s performance gradually steadied with the training process, indicating that the model converged quickly and yielded good performance. To assess model performance, our proposed SE model was compared against a classical model, YOLOv5, on a series of performance metrics (Table 3). The SE-YOLO V5 model we presented was superior in all performance metrics (F1 = 0.879, precision = 0.887, recall = 0.872, all class mAP0.5 = 0.944, effusion mAP = 0.945, cyst mAP = 0.942). The fps for SE-Yolo v5 was 90.9, suggesting that it could handle more images per unit time. The P–R curves and confusion matrices for these two models are shown in Figures 5, 6. Figure 7 shows example model prediction results compared to the ground truth, indicating that cyst lesions were correctly detected and distinguished from effusions.


TABLE 3    Performance metrics of the SE model and the traditional model.
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FIGURE 5
P-R curves of YOLO V5 and YOLO V5-SE.
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FIGURE 6
Confusion matrices of YOLO V5 and YOLO V5-SE.
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FIGURE 7
Example prediction outcomes of YOLO V5 and YOLO V5-SE compared with the ground truth.




Discussion

This proof-of-concept study aimed to demonstrate the feasibility of a deep learning system for the auto-detection and classification of knee cysts. The SE-YoloV5 attention model was constructed, trained, and evaluated on clinical MR images. Analysis of model performance indicated that this approach promises to improving diagnostic accuracy.

Deep learning offers excellent performance for segmenting multi-tissue knee joints and detecting ACL, cartilage, or meniscus injuries (15–17). However, few papers have addressed cysts and effusions of the knee joint, which are associated with high morbidity and could also serve as biomarkers for degenerative disorders or acute injuries, like knee osteoarthritis and meniscus injuries. Considering the importance and the potential pitfalls of knee cyst diagnosis, it is beneficial to develop an auto-diagnostic system for cyst detection, which may be used as a primary or supplementary tool to speed up diagnosis and enhance accuracy. Two papers have explored the application of deep learning in cyst segmentation and effusion estimation (20, 21); Zhou et al. (20) demonstrated the application of deep learning in Baker’s cyst and joint effusion auto-segmentation and achieved a dice coefficient of 0.736. Raman reported the feasibility of classifying knee effusion based on neural networks, which could achieve an average accuracy of 62%, comparable to a radiologist in a small test dataset (21). Other than the two publications mentioned above, there are no other literature reports on the application of deep learning to cyst detection. To our knowledge, this paper is the first to use deep learning in knee cyst detection.

Cyst detection is an object detection task in nature. Object detection is a primary computer vision task that entails determining where particular objects are in an image and classifying them. YOLO, a new algorithm deployed in 2015 (23), redefined object recognition as a regression problem that can be performed in a single neural network. Yolo has been updated to version five and is regarded as the state-of-the-art algorithm for object detection (24). It has been applied in many daily life aspects, such as the detection of surface knots (25) and real-time vehicles (26), as well as in various medical fields, including face mask recognition (27), breast tumor detection and classification (28), and chest abnormality detection (29). This study showed that the basic deep learning model Yolo V5 could handle the cyst-detection task, attaining F1, precision, and mAP scores of 0.832, 0.843, and 0.821, respectively. After the attention SE module was added to the Yolo V5 model, the resulting attention-based model SE-Yolo V5 achieved better accuracy and higher speed of 0.879, 0.87, and 0.944 for F1 score, precision, and mAP, respectively. Small target lesions accounted for a significant proportion of our dataset, but the proposed model was also capable of detecting them accurately, as illustrated in Figure 7.

This paper aimed to demonstrate the feasibility of utilizing deep learning in general knee cyst detection. Despite its promise, there are several limitations to the presented model. First, there are many cyst types, such as Baker’s cysts, meniscal cysts, and intraosseous cysts at the insertion of the cruciate ligaments, but these different cyst sub-types were not explicitly classified in this study. Neither did we verify whether deep learning performed equally well in these sub-groups. We may enroll more kinds of knee cysts in the future and evaluate the model’s performance on different cyst types. Second, our data was relatively limited, and model performance was not compared with human diagnosis. Nevertheless, the model prediction proved efficient and reliable, suggesting that the model may become a valuable tool for radiologists and clinicians, subject to further study and multi-center validation. Third, the cysts were easily classified based on the reports or images, but there was no general standard for diagnosing inherent effusions, which might be a caveat for the model, radiologist opinions, and the ground truth labels. Last but not least, the uncertainties and interpretability of the model should be mentioned, and we will explore them in further studies. To explore the model in the external datasets or public datasets.



Conclusion

This proof-of-concept study examined whether deep learning models could detect knee cysts and distinguish them from knee effusions and demonstrated that the classical Yolo V5 and proposed SE-Yolo V5 models could identify cysts with high accuracy. This study suggested that cutting-edge deep learning methods constitute a promising avenue of research to develop AI-assisted auto-detection systems to facilitate radiological and clinical diagnosis of knee pathologies.
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Recent years have seen an increase in the application of machine learning to the analysis of physical and biological systems, including cancer progression. A fundamental downside to these tools is that their complexity and nonlinearity makes it almost impossible to establish a deterministic, a priori relationship between their input and output, and thus their predictions are not wholly accountable. We begin with a series of proofs establishing that this holds even for the simplest possible model of a neural network; the effects of specific loss functions are explored more fully in Appendices. We return to first principles and consider how to construct a physics-inspired model of tumor growth without resorting to stochastic gradient descent or artificial nonlinearities. We derive an algorithm which explores the space of possible parameters in a model of tumor growth and identifies candidate equations much faster than a simulated annealing approach. We test this algorithm on synthetic tumor-growth trajectories and show that it can efficiently and reliably narrow down the area of parameter space where the correct values are located. This approach has the potential to greatly improve the speed and reliability with which patient-specific models of cancer growth can be identified in a clinical setting.
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1. Introduction

The application of neural networks to the modeling of cancer has seen a flood of interest in recent years (Sanoob et al., 2016; Hsu et al., 2018; Ghazani et al., 2021; Kwak et al., 2021; Kumar et al., 2022). The hope is to be able to use patient-specific data to generate accurate predictions of tumor growth and treatment response, in order to guide the clinician in their prognosis and choice of treatment regime (Rockne et al., 2019; Kumar et al., 2022). From a modeling perspective, a tumor is a system of interacting objects (tumor cells, fibroblasts, etc.) which influence each other's behavior according to certain rules. It should therefore be possible to use tumor-growth data to derive a system of equations to describe the trajectory of cancer, which can then be extrapolated into the future to predict the course of a particular disease. Over the last few years, neural networks have become the natural first choice of most scientists when tasked with extracting such equations from large datasets (Benzekry, 2020; Kurz et al., 2021). However, when we resort to machine learning to build models and predict the behavior of any system, we sacrifice a crucial attribute: explainability. The sheer vastness of a neural network, which may contain many tens of thousands of continually-adjusted interacting weights, makes the effort of deducing the impact of any single component on a network's output almost impossible. In addition, we must consider the neural network's various nonlinearities, which interfere with any attempt to construct an analytically solvable description of its processes (and thus to account for its decision-making). One example is the common Rectified Linear Unit (ReLU), and its many cousins [the parameterized ReLU (Xu et al., 2015), the “leaky” ReLU (Maas et al., 2013), etc.], which may or may not act on an input as it makes its way through the system. Any attempt to construct a gradient of the output with respect to the input will have to contend with the resulting discontinuities. Less analytically troublesome, but still exhausting, are backpropagation algorithms: ADAM (Kingma and Ba, 2014), for instance, adjusts each weight not simply in response to its current effect on the output but to all of its past effects, which will create a new set of complex nonlinearities in any differential equation aimed at describing a the workings of a network.

The best that can be hoped for, then, is to gain a “general idea” of the effect of each network attribute, using hyperparameter tuning (Yuan et al., 2021). This is an obviously risky approach: sampling a few points in the hyperspace of all possible hyperparameter values does not give us a complete picture of the dependence of the output on our choice of values. Without a complete picture of this dependence, we can never be sure that the relationships predicted by a network reflect physical reality or are simply a product of its own internal calibration. This is the crucial issue, and why, as long as a neural network remains a “black box,” its output can never be fully understood or trusted, especially in a clinical setting where the results of a model may guide cancer treatment and thus affect a patient's length and quality of life. A lack of explainability is a significant impediment to the adoption of machine learning and other computational approaches in a clinical setting. It also hinders the clinician's ability to fully interact with and analyse ML-derived predictions: not knowing where they come from, it is very difficult to rigorously deduce what any set of values assigned to a tumor “mean,” or to “sanity-check” them against clinical expertize. To reliably incorporate computational methods into cancer treatment, we must either develop some picture of the workings of a neural network, or move away from stochastic gradient descent altogether, to an algorithmic approach whose decision-making processes are transparent and accountable. A great deal of interesting work has been done in recent years to achieve this first goal, attempting to render explainable the workings of black-box neural networks (Rudin, 2019; Kazhdan et al., 2020; Dujon et al., 2021; Magister et al., 2021). The general approach of such papers is either to deduce the emergent rules of the neural network from its behavior, or to induce such strong biases in its workings that it is naturally directs to the correct area of parameter hyperspace (as with the physics-inspired neural networks discussed in Karniadakis et al., 2021). Such a posteriori attempts to harness or constrain the chaotic nonlinear workings of a neural network, however, are no replacement for an a priori understanding of its rules and aims. Without this, no result derived from such a network can be considered mathematically rigorous, which becomes an increasingly serious problem as the area of application approaches the hard sciences. The aim of this paper is to explore the difficulties inherent in this promising research, and to place some mathematical limits on the degree to which black-boxes can be truly, a priori explained. We also develop a computational method of fitting a model to cancer-growth data which is built around explainability first and foremost, excising nonlinearity and stochasticity where possible, and find that such a method can usefully direct and improve the efficiency of standard machine-learning techniques.

This paper is laid out as follows. We demonstrate first that it is impossible to truly account for the workings of even the simplest imaginable neural network, and then introduce an alternative “white-box” algorithm which can be used to quickly and reliably identify candidate equations for tumor growth. By using this algorithm, we can explainability identify the region of “parameter space”—and thus, in a sense, the “type” of tumor growth—appropriate to a particular disease. After this step has been applied, we are no longer “fighting blind,” and may leave more detailed fitting to neural networks. With this algorithm, we can both significantly reduce the time taken to fit patient-specific models of tumor growth and provide meaning to their parameters. The goal of explainability, then, does not have to slow down machine learning techniques, but can aid them in their search for appropriate models.



2. Materials and methods


2.1. Theory: The barriers to an analytically explainable neural network

In the following section we consider a idealized mathematical model of the graph neural network during its training process, without activation functions and with inductive biases sufficient to describe a physical system of N interacting objects. Each object within the system is represented by a node with two properties: the input “representation” value xi (which may represent size, position, age, etc.), and the target property, whose true value is [image: image]. By considering many values of xi and [image: image], we aim to learn the relationship yi(x1, x2, … xN) between them; the goal is to produce a value of yi as close as possible to [image: image] on the training data. All properties in this model are one-dimensional for simplicity, but the mathematics behind it may easily be extended to multidimensional systems. Since we are describing observable quantities, we assume all properties are real.

A real graph neural network will use several layers of interconnected weights and activation functions to represent the relationship between any two objects; a separate computational layer will then learn how each object aggregates the information it receives from the rest of the system. In our model, we condense this operation into a single relationship, which we assume is of the form

[image: image]

where 1 ≤ j ≤ N and k, s in principle range over all integers, so that we are considering the product of two Taylor expansions. In practice, because we cannot store infinite sums, we choose some combinations of j, k, s to describe our system. wijks are coefficients which we will adjust according to a loss function. This form encodes a number of physical assumptions: firstly, that the relationship yi is continuous and differentiable; secondly, that it consists of a number of sub-relationships yij, which combine additively; and thirdly, that the relationship yij, which describes the effect of object j on object i, is dependent only on the properties of those nodes (i.e., on xi and xj) and on no others, i.e., that each object interacts with every other object independently. Less obvious is that we are assuming the relationship is also local. Though we presumably have many values of xi from different time-points, the relationship yi depends on the value of the representations {xi} only at a single time-point. The system does not know about its previous states, and is assumed to have time-translational symmetry.

Having given the weights wijks some initial values, we now adjust them continuously according to their contribution to our loss function L, which describes the total “wrongness” of our current guesses:

[image: image]

We say the system has converged when no further adjustments remain to be made, i.e., when

[image: image]

for all weights.

What is the impact of our choice of loss function on the value of the relationships {yi} at convergence? We will use a slightly modified and generalized version of the loss function used by Cranmer et al. (2020), and include one “error” term designed to penalize divergence from target values, and another term, commonly referred to as the “regularization” term (Xu et al., 2015), designed to penalize the overall complexity of the system. The general form of our loss function is

[image: image]

Clearly, there are three adjustable hyperparameters here: the positive integers m, n, and the real and positive β. For the loss function closest to that used by Cranmer et al., m = 1 and n = 2, it can be shown that there are two possible values for convergence, depending on the value of the parameter β and the target value [image: image]. The proof is as follows and is based on a self-consistency argument.

We have at convergence

[image: image]

and [image: image] if [image: image] and −1 otherwise, i.e., [image: image], and [image: image], so we have convergence when

[image: image]

i.e., if [image: image] we have [image: image], and if [image: image] we have [image: image]. So convergence at [image: image] is possible for any value of wijks.

For [image: image] we also have a solution for convergence at [image: image]. Now we can use our self-consistency argument, because yi is defined by its contributing weights: thus this solution is possible if

[image: image]

which is to say we can have a different kind of convergence—what we will call “information-free” convergence—at [image: image] provided that [image: image] for all j, k, s combinations used to describe our system. An identical argument for the [image: image] case allows such information-free convergence at [image: image] if [image: image].

In summary, then, if [image: image], then convergence is only reached at [image: image] for all i, with no restriction placed upon the weights wijks. We refer to this as “absolute convergence.” If any target value falls outside of those restrictions (i.e., [image: image] for any i), then in addition to absolute convergence, we have a second possibility: that relationship yi may converge at [image: image]. This is, of course, a completely meaningless value, independent of [image: image] and indeed of any individual property of the node i. This is why we refer to this possibility as “information-free” (I-F) convergence. It, too, places no restriction on the value of the weights; the system is not guaranteed to be made any simpler, which of course would be little reassurance, given that the relationship it describes is essentially “random.”

From this, we see that we can mitigate the possibility of I-F convergence by setting

[image: image]

thus widening the range of values of [image: image] within which only absolute convergence is possible; and I-F convergence is avoided entirely by setting β = 0. What, then, is the point of having a regularization term in this model at all, if not for its original intended purpose of making the result ‘simpler’? The answer is that it makes convergence faster. The speed of convergence of this loss function is determined by

[image: image]

as the weights are adjusted according to [image: image] within our model. In the limit β → 0, [image: image], i.e., decline is constant and at a rate proportional to α and to the number of objects in the system. Conversely, in the limit β → ∞, [image: image] and [image: image], so [image: image], and convergence is exponential with time.

This example is simple but illustrative: even within this toy model, the loss function does not have an intuitive effect on convergence values. For the general even-power case m = n, it can be shown similarly (proof in Appendix, Section 1) that at convergence,

[image: image]

with a corresponding equation for weights. We see now the scale on which the value of β should be considered: what governs the final output guess is the ratio [image: image]. In the limit of large n, since n is even, the denominator tends to [image: image], which we may think of as the “sum of the total information in the subsystem i.” In that limit, the effect of increasing β is blunted by the fact that the relevant quantity is its n − 1-th root. In the limit [image: image], we recover absolute convergence, [image: image]; in the limit [image: image], all weights in the subsystem i and the output guess yi tend to zero. There is no possibility of information-free convergence to a non-zero value. This would seem, then, to be a much more appropriate choice of loss function. In Appendix (Section 1), we briefly discuss the general even-power m, n case, the case m = n = 2, and in Appendix (Section 3) we note the behavior of the more niche subcase of elastic regularization (Li et al., 2020).

Until now, we have discussed the effect of loss function hyperparameters on convergence values within an idealized linear model of a neural network. We will now attempt to incorporate the structure of a real neural network into our model—i.e., that of layers of nodes mediated by activation functions.

We model a simple two-layer network. We have two inputs, xi and xj, which are fed into a hidden layer of nodes. The node indexed by k within this layer has output

[image: image]

and our final guess y (we will drop the subscript i for the moment) is made by combining the outputs of the hidden layer, each fed through an activation function:

[image: image]

for the activation function used in the rectified linear unit, ϕ(x) = max(x, 0). We will use the loss function (4) with m = n = 2 which has bounded error, no information free-convergence, and whose error decays exponentially with time (proof in Appendix, Section 1). Here, it becomes:

[image: image]

At convergence we obtain a self-consistency equation for the node outputs vk:

[image: image]

This imposes either vk = 0 or, for vk > 0, [image: image], i.e. a minimum error at convergence that tends to infinity with β. Further, constructing the guess y directly from our convergence equations for ck, we obtain the result (full proof in Appendix, Section 2) that for target guesses within the range

[image: image]

convergence is impossible. Even taking the limit β → 0 cannot eliminate this effect entirely, and the range to which it applies widens without bound as β → ∞. This is worth restating: in the simplest realistic model of a neural network that incorporates activation functions, there are ranges of representations and target values—unalterable input data—for which convergence becomes mathematically impossible, and the learning process will never terminate. In practice, of course, real networks do not converge only when the gradient of the loss function with respect for each weight is precisely zero: we will consider the network converged when the magnitude of the gradient of each weight has reached some small value ε. From the standpoint of the white-box modeler, unfortunately, this is hardly any better. If there is some large number Nw of weights in the system, then all we can say with certainty is that convergence occurs somewhere within a high-dimensional hyperspace of volume [image: image], which leaves us with a very large number of possible configurations of the system, of which the “correct” one will be chosen stochastically. The system has become unexplainable once again.

How do we build an algorithm which does not run into these analytical difficulties, and has explainability as its central goal? If our aim is to construct a procedure that can correctly analyze a physical system, whose workings are completely mathematically transparent, and which is guaranteed to converge, our analysis above suggests we should move away from the realm of gradient descent and nonlinear units entirely, and begin from first principles. We follow this approach in the section below.



2.2. A white-box algorithm for characterizing tumor growth

Suppose that we have chosen some i, j, k, s combinations to describe our system, so that we assume relationships are of the form

[image: image]

where we have condensed the weights wijks and terms [image: image] corresponding to the combinations {(i, j, k, s)} into Mi weights and terms fim, zim corresponding to the object i. We will assume that we have samples of {xi} and [image: image] for all objects, and for several configurations of the system. In all methods discussed above, we considered each timepoint independently; here we will combine them, and attempt to find the coefficients {fim} which produce the most accurate guesses across all timepoints and objects.

This raises two immediate concerns. One is a degrees-of-freedom issue: if we have Mi coefficients, then we can only guarantee accuracy at Mi time-points. However, if we actually have deduced the physical laws obeyed by our system, this should not matter; the correct relationships will hold at all time-points and not just the ones they were determined from. If we have chosen the wrong terms zim, our guess yi(t) will diverge from the target values [image: image] at times far away from those used to deduce the coefficients.

The second problem is one of “interpretability.” In theory, if we have Mi time-points, we have as many equations as variables, and we can determine our coefficients by simple linear algebra: if we define a vector [image: image] of target values such that [image: image] and a matrix [image: image] given by [image: image], such that each row describes the value of a single term at each time-point, then our coefficients are straightforwardly given by solving the equation

[image: image]

for a vector [image: image] whose entries are the coefficients fim. However, this would involve the calculation of the matrix inverse of [image: image], which is both computationally fraught and analytically problematic. There is no easy general formula for the inverse of an N-by-N matrix, and so it is all but impossible to discern how the values of our chosen terms influence our final coefficients. Once we introduce the matrix inverse into our algorithm, it becomes a black box once again; it is impossible to construct, say, a useful differential equation in a single datapoint zij(tk), if that term is incorporated into a matrix which is then inverted.

Instead we use Cramer's rule, first written down in 1,752 and of which there are many proofs widely available (including that in Brunetti, 2014). The coefficients are given by

[image: image]

where square brackets indicate determinants and the matrix [image: image] is defined by

[image: image]

This produces coefficients which exactly solve, for all chosen timepoints tk (which we assume are randomly chosen from a dataset of possible observations),

[image: image]

The great benefit of this technique is that a determinant is linear in all values it involves. By avoiding the matrix inverse, we have ensured that the coefficient is differentiable in every element of data that contributes to it, and thus the effect of each piece of data on our conclusions is exactly quantifiable. This part of the algorithm is a completely “white box.”

The above procedure predicts the coefficients {fim} that best describe the system when presented with a set of terms {zim}; we must still develop a process for choosing between sets of terms. The simplest and best procedure is simply to try each possible set of terms sequentially and choose the set of terms {zim} which has the lowest error according to the loss function

[image: image]

where the sum is over all timepoints in the dataset, not simply the randomly-chosen timepoints used to deduce the coefficients. This is a straightforward way of determining the “goodness of fit” of our model, and has no hyperparameters, because we have eliminated the regularization term. Here, there is a much easier, more intuitive way of measuring the complexity of our system: the number of terms in our polynomial description, Mi, which we control directly. We could make our loss function Ln instead of L2 for n ≥ 2 and even; clearly, this would have the effect of valuing a polynomial description with a large number of small errors over one with a small number of large errors, which may be desirable or not depending on the needs of the clinician.

We must, therefore, try each set of terms sequentially, however naive an approach that may initially seem. Any attempt to navigate the space of possible terms {zim} through stochastic gradient descent using the loss function L is doomed to failure, since we cannot move in infinitesimal increments through zim, but must jump between discrete sets of input data combinations, which may involve changes in value so large as to render gradients useless. Further, in order to determine the gradient of the loss function with respect to an input term zim, we must also consider its effect on the entire set of deduced coefficients {fim}, which will require two matrix determinant evaluations for every coefficient. At this point, the calculation of the gradient at each point becomes much more computationally expensive than simply calculating the loss for each set of terms, which is guaranteed to terminate, since the space it is exploring is finite. A brief analysis of cost, and an additional generalizability metric assessing the suitability of a particular description-length Mi, is included in Appendix (Section 4).



2.3. Experiment: Fitting models of tumor growth

We now investigate the advantages of this algorithm when applied to real-world cancer data. For the remainder of this paper we will be following the work of Kühleitner et al. (2019). In this paper, the authors considered longitudinal time-series data of the growth of a tumor. Human breast cancer cells were injected into nude mice, and the resulting tumor volume v(t) was observed over 114 days, in a study by Worschech et al. (2009) (shown in Figure 1). Kühleitner et al. (2019) aimed to find the best parameter fit for a Bertalanffy-Pütter model from the observed tumor data; that is to fit the non-negative parameters p, q, a, b in the first-order differential equation

[image: image]

The Bertalanffy-Pütter model (Ohnishi et al., 2014) is a general class of tumor-growth model which encompasses other, more specific tumor models, including the Verhulst model (Verhulst, 1838) (a = 1.0, b = 2.0) and the Gompertz model (a = 1.0, b > 1.0) (Gompertz, 1833). Per Kühleitner, it has been experimentally observed that tumors tend to shrink when they become very large; to ensure this behavior, only exponent-pairs a < b are considered. They were examined at intervals of 0.01, so that (a = 0.01n, b = a + 0.01m) for all valid non-negative integers n, m that placed (a, b) within the highlighted range. For every exponent-pair, the authors fitted the best coefficient-pair (p, q) through a painstaking process of stochastic gradient descent and simulation (simulated annealing), using the same L2 loss function (2), otherwise known as the sum of squared error (SSE), defined in our algorithm. Having chosen a trial pair (p, q), they solve the equation numerically over 144 days, sum the square of the errors, make a partially-stochastic adjustment to (p, q), and simulate again. Their final best fit was (p = 5 · 10−4, q = 5.6 · 10−7, a = 1.62, b = 2.44), obtained at a cost of roughly 1 week of CPU time. Our objective is to repeat this study by applying our algorithm to fit coefficients of the Bertalannfy-Pfutter model to this data using SSE as our loss function. We make these choices for ease of comparison, but the algorithm could in theory work with any differential-equation model and any loss function. If we were to use a stochastic differential equation (SDE), for example, we could generate a maximum likelihood function for a model defined by a given set of parameters, which would allow us to use likelihood-dependent loss functions, such as the Akaike and Bayesian Information Criteria.


[image: Figure 1]
FIGURE 1
 Experimental data showing the growth of tumor volume with time, in a mouse model of human breast cancer, taken from Kühleitner et al. (2019).





3. Results


3.1. Identifying regions of good fit with real-world data

We have a single output guess, [image: image], obtained using numpy.gradient's (Cranmer et al., 2020) first-order approximations at each timepoint instead of by precise and repeated simulation; we have a single input representation, xi(t) = x(t) = v(t), the observed tumor volume. Because we are fitting to a known model here instead of unknown dynamics, we do not need to involve the generalizability metric or decide between numbers of terms; instead we can simply try each (a, b) pair sequentially, deduce our coefficients (p, q) using Cramer's rule, and output an error L using the sum of the squares of the errors of the gradient at each timepoint according to that prediction. As we are only deducing two coefficients, we choose two timepoints at random; to make sure our predictions are an accurate reflection of the entire dataset, we repeat the procedure above 20 times for each (a, b) pair (to ensure that each datapoint has a 95% chance of being selected at least once), and choose the deduced coefficient pair (p, q) with the lowest error. We consider all exponent-pairs at 0.01 intervals where a < b ≤ 3.0, the highest value considered by Kühleitner et al. (2019). Our algorithm runs very quickly on a standard laptop (requiring just under seven minutes to terminate), and efficiently explores the space of possible parameters for the roughly 45,000 possible exponent pairs, returning the accuracy surface. Because we only have two coefficients to fit per exponent pair, this surface can be visualized in three dimensions (see Figure 2); this is an advantage of the Bertalanffy-Pütter model.


[image: Figure 2]
FIGURE 2
 Sum of squared error from extrapolation from fitted (p, q) values for each exponent-pair value; color simply corresponds to height for highlighting purposes.


Because our target values are imprecise approximations to the true growth rate, the algorithm cannot perfectly identify the actual accuracy minimum. However, this surface shows us intuitively how the model behaves in various regions of the (a, b) space. We can see, for example, that the model behaves asymptotically badly as the exponents increase past 2.5, and that no effort should be expended trying to identify (p, q) pairs there. We can also see a “valley” of low error in the center, which might be understood as a “region of good fit,” where exponent pairs generally describe the system well. We can also use this algorithm to identify regions of overfit, by plotting the best values of p and q obtained at each point in (a, b) space (see Figure 3).


[image: Figure 3]
FIGURE 3
 Fitted p (above) and q (below) values for each exponent-pair value. The colorbar corresponds to SSE—purple datapoints have lower error, yellow ones higher. The varying limits come from the fact that, to generate each plot, we randomly choose 2,500 points out of 45,000 to display.


We see that all regions where a, b < 1.0 should be ignored, as the coefficients “hit a wall” as soon as that threshold is passed: they become rapidly unstable (and, in the case of q, unphysically negative) with respect to small changes in exponent pairs, which suggests that region provides a poor model of the system, since any good mathematical model of a biological system should not be so acutely sensitive to small changes in its terms. This allows us to narrow down the promising region of (a, b) in space to the section of the valley where a, b > 1.0, and we can explore that region further using precise simulation to identify the best coefficient-pair (p, q). Further, we have a good idea of where those coefficients should lie: for the authors' final best exponent pair (a = 1.62, b = 2.44) we obtain (p = 3 · 10−4, q = 3 · 10−7) to their (p = 5 · 10−4, q = 5.6 · 10−7), which is remarkably close given that their gradients are derived from careful simulation and ours from crude first-order approximation. We have narrowed down the space of possible hyperparameters by several orders of magnitude in a matter of minutes; what remains can then be explored more precisely.



3.2. Recovering parameters from synthetic data

We can test the algorithm's accuracy further by using this surface to identify trial parameters, generate synthetic data using those parameters, and using the algorithm to retrieve them. We assume that every set of (a, b, p, q) parameters with SSE smaller than that of the “official” Kühleitner solution is biologically realistic, as it fits the tumor growth trajectory at least as closely. We limit ourselves to the region a, b > 1.0 and obtain about 5,000 possible sets of parameters, from which we select 1,000 at random. Using the initial tumor volume as our starting point, for every chosen (a, b, p, q) we extrapolate forward according to equation (20).

We then take the tumor volumes at the same timepoints as the original data, to mimic its sparsity. We generate an accuracy surface for each trajectory according to the procedure above (This process took roughly 36 h using the University College London DPS machines). For each “synthetic tumor,” we denote the exponent-pair used to generate it as (a∗, b∗), and calculate the fraction of the parameter space 1.0 < = a, b =< 3.0 with an assigned SSE lower than that calculated for (a∗, b∗). This gives us a neat metric for the degree to which the algorithm “narrows down” the parameter space, depending on how confident the modeler wishes to be that the “correct” parameter values—insofar as any biological system can be said to have a single correct set of underlying parameters—lies within the identified region. Our results are shown in Figure 4. For 999 out of 1,000 trajectories, (a∗, b∗) has an SSE higher than 57% of the parameter space; for 990 trajectories, we can narrow down to 46% of the space, for 950, to 37%; for 900, to 32%; and for 800 to 27%. We see a “threshold effect,” demonstrated below: in the vast majority of cases the space can be narrowed down to roughly two-fifths of its original area.


[image: Figure 4]
FIGURE 4
 For 1,000 synthetically generated test cases, we calculate whether the correct exponent-pair occurs within the lowest-SSE “x” percent of the space. In most cases the algorithm can isolate roughly two-fifths of the original space which may then be explored in more detail for a closer-fitting solution.




3.3. The effect of noise on algorithmic efficacy

We can also explore the effect of noise on this accuracy, by separating our 1,000 trajectories into five groups of 200 and injecting random noise at each timepoint. For a noise level of 0.01, for example, at each timepoint a random fraction of the tumor volume between 1 and −1% is drawn from a normal distribution and added to the tumor volume. Gradients are then computed and the algorithm is run as previously; we again calculate the proportion of the parameter space with an SSE lower than that assigned to the correct exponents (a∗, b∗). Our results are shown in Figure 5. We see that the “thresholding” effect, by which the correct parameters can be narrowed down to a certain proportion of the space with near-certainty, holds up to a noise level of roughly 0.02.


[image: Figure 5]
FIGURE 5
 The effect of randomly-generated noise on algorithm accuracy.





4. Discussion

By attempting to build an algorithm that can interpretably explain the unknown dynamics of an interacting system, we have found an approach that can quickly and easily explore the space of parameters of a differential equation which incorporates a variety of models of tumor growth. On synthetic tumor-growth data, the algorithm can reliably (with a probability of 95%) more than halve the region of parameter space that requires finer searching using less rigorous, more computationally expensive machine learning methods. There is good reason to think the algorithm can be usefully applied to more general models of cancer growth, so long as there are enough datapoints that the compromise of first-order gradient estimation can be safely made. In fact, above approach does not require the underlying equation to be first-order, or indeed to be a differential equation at all; it works for any form, any number of terms, and any number of objects. It provides a first-approximation to the behavior of the system, without the expense of simulation, and it does so without nonlinearity or the use of hyperparameters. It can therefore be applied to a variety of contexts, medical and otherwise.

An important aspect of the above procedure, at least as it applies to cancer modeling, is that it identifies not simply one good fit to the equation—as stochastic gradient descent does—but instead identifies several thousand candidate equations and ranks them by “goodness of fit.” This is particularly useful to us because a tumor is not a purely deterministic or mathematical object: it does not obey a single equation for all time, and its behavior is likely best modeled as a combination of, or a movement through, the candidate equations suggested by the algorithm. The ability to narrow down the space of model parameters to describe a particular tumor—perhaps successively, through more and more granular exploration—will be of use to clinicians trying to classify and predict the behavior of cancers. Even leaving aside explainability considerations, our algorithm can more than halve the space which must be explored to fit parameters to the tumor using stochastic gradient descent, which is a vital efficiency gain when trying to provide personalized predictions at scale. There are a wide range of complex interacting-differential-equation models of cancer growth to which this algorithm might usefully be applied (for instance, Nave, 2020; Hori et al., 2021; Mascheroni et al., 2021; Nave and Elbaz, 2021), although the algorithm could, again, in principle be used to describe any dynamical system.

In addition to this, across patients, the accuracy surface may provide a useful tool for characterizing particular kinds of cancer, or the effects of certain treatments. It may be that further study reveals that there is a link between the best regions of (a, b) space to describe a tumor and some aspect of its growth or behavior. The ability to associate a set of best-fit (p, q, a, b) parameters to a particular tumor also suggests the possibility of new set of survival metrics, which may correlate directly the prognosis of human patients. This merits further investigation. A full diagram of the procedure is included in Figure 6.


[image: Figure 6]
FIGURE 6
 Diagram of the algorithmic procedure for the preliminary investigation of physical systems. In this example, we are using an N-term polynomial with M trials each.


A technical aspect of the algorithm worth drawing attention to is its susceptibility to underflow errors, which arises from its calculation of the ratio of two determinants. This is not an issue in any of the cases discussed above, but rapidly compromises any current attempt to apply the algorithm to large systems or to use many terms. If we have M terms in our description, for example, each of the order 10−n, then the coefficients will be ratios of two numbers of order 10−nM. Given that standard Python floating-point precision cannot accurately represent numbers smaller than about 10−39 (Rajaraman, 2016), neither n nor M have to become very large before we run into accuracy issues. Further work could implement the algorithm using an arbitrary-precision arithmetic program designed specifically to compute matrix determinants, such as Arb (Johansson, 2017). The algorithm also requires its input data to be sufficiently detailed that the compromise of first-order gradient approximation is worth making. On datasets such as that attached to Laleh et al. (2022), where most trajectories are composed of six or fewer datapoints, attempts to fit exponents result in flat, highly noisy surfaces with no significant curvature. Mouse or in vitro models, which can be monitored more or less continuously without the need for painful and invasive scans on human subjects, are our likeliest sources of useful data. However, as scanning methods become more advanced over the next decade (Rockne et al., 2019)—less invasive, less painful, and cheaper to perform regularly on human patients—tumor-volume trajectories will become denser and more amenable to mathematical analysis, and the context in which this algorithm is useful will move from the experimental to the clinical.



5. Conclusion

This paper describes an interpretable method for quickly surveying the parameter space of various differential-equation models. It is precisely the complexity and nonlinearity of neural networks which make them so useful in problems of classification or recognition, but when human lives are at stake, it is important to develop methods of generating predictions and informing treatments that are built around explainability and a priori justification. Clinicians and patients must understand as much as possible where their information is coming from, and mathematical models derived from computational methods must be rigorous. Moreover, as our work on Kühleitner et al. (2019) shows, it is not even clear that immediately resorting to machine learning makes anything faster. Slow brute-force adjustment is an inefficient approach when a straightforward algorithm can narrow down the space of possible parameters, and suggest thousands of candidate equations, in a matter of minutes. In addition to the detailed machine learning work currently being done in the field of mathematical oncology (see for instance Bekisz and Geris, 2020), a different approach is needed—the unification of mathematics and machine learning to create a rigorous, explainable justification for the directions in which neural networks should be sent. We suggest the use of this first-order “exploration algorithm” as a first line of defense when modeling the behavior of cancer, to provide an initial understanding of the behavior of a model across its parameter space and significantly reduce the time taken to fit predictive equations. A return to first principles in cancer modeling may yield significant optimization.
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Background: Ultrasound (US) is a valuable technique to detect degenerative findings and intrasubstance tears in lateral elbow tendinopathy (LET). Machine learning methods allow supporting this radiological diagnosis.

Aim: To assess multilabel classification models using machine learning models to detect degenerative findings and intrasubstance tears in US images with LET diagnosis.

Materials and methods: A retrospective study was performed. US images and medical records from patients with LET diagnosis from January 1st, 2017, to December 30th, 2018, were selected. Datasets were built for training and testing models. For image analysis, features extraction, texture characteristics, intensity distribution, pixel-pixel co-occurrence patterns, and scales granularity were implemented. Six different supervised learning models were implemented for binary and multilabel classification. All models were trained to classify four tendon findings (hypoechogenicity, neovascularity, enthesopathy, and intrasubstance tear). Accuracy indicators and their confidence intervals (CI) were obtained for all models following a K-fold-repeated-cross-validation method. To measure multilabel prediction, multilabel accuracy, sensitivity, specificity, and receiver operating characteristic (ROC) with 95% CI were used.

Results: A total of 30,007 US images (4,324 exams, 2,917 patients) were included in the analysis. The RF model presented the highest mean values in the area under the curve (AUC), sensitivity, and also specificity by each degenerative finding in the binary classification. The AUC and sensitivity showed the best performance in intrasubstance tear with 0.991 [95% CI, 099, 0.99], and 0.775 [95% CI, 0.77, 0.77], respectively. Instead, specificity showed upper values in hypoechogenicity with 0.821 [95% CI, 0.82, −0.82]. In the multilabel classifier, RF also presented the highest performance. The accuracy was 0.772 [95% CI, 0.771, 0.773], a great macro of 0.948 [95% CI, 0.94, 0.94], and a micro of 0.962 [95% CI, 0.96, 0.96] AUC scores were detected. Diagnostic accuracy, sensitivity, and specificity with 95% CI were calculated.

Conclusion: Machine learning algorithms based on US images with LET presented high diagnosis accuracy. Mainly the random forest model shows the best performance in binary and multilabel classifiers, particularly for intrasubstance tears.

KEYWORDS
AUC curve, diagnosis, random forest, tennis elbow, ultrasound


Introduction

Lateral elbow tendinopathy (LET) (1), also known as tennis elbow (2), is one of the most frequent musculoskeletal disorders (3). The common extensor tendon, specifically the extensor carpi radialis brevis, is directly involved in the development of this condition (4). LET is a potentially debilitating condition causing significant pain and disability for periods of 12 months or more (5), and in some cases, also generates disruptive sleep (6). This condition is estimated to affect 3.3–3.5 per 1,000 by year (7), affecting individuals during their most productive period (8) and increasing in tennis players with a prevalence of over 40–50% (9). Effective treatment for this tendinopathy is uncertain, with controversial scientific evidence that provides more than 40 modalities (10) in 200 clinical trials and several systematic reviews (11).

Although LET remains primarily a clinical diagnosis (12), the ultrasound (US) findings in common extensor tendon have been well documented in asymptomatic persons (13–17) and LET individuals with tendon structural changes (18–22). However, the degree of these tendon structural changes is highly diverse, with different levels of accuracy (19, 23), making the interpretation of the US imaging a real radiological challenge. For example, a met analysis reported that the US sensitivity and specificity in the detection of common extensor tendon ranged between 64 and 100% and 36 and 100%, respectively (24). Furthermore, this high variability can increase even more if different types of degenerative findings are considered, such as hypoechogenicity, bone changes, neovascularity, calcifications, cortical irregularities (25), and tear (thickness) (26), increasing the lack of precision in the diagnosis by US images. To date, there is still no consensus about what parameters should be considered for the evaluation of changes in the tendon matrix (27).

Recently, artificial intelligence has shown the potential to revolutionize the accuracy of diagnosis by developing a series of classification models (28) and by reducing medical diagnosis variability (29–31). The algorithms based on machine learning and convolutional neural network have been successfully used in pattern recognition in different clinical contexts and specialties, such as neurology (32–34), pulmonary (35–37), cardiovascular (38–42), and oncology (43–51), improving diagnosis accuracy, weighted errors, false-positive rate, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) (52). In radiology, machine learning and convolutional neural network algorithms have been used to detect and classify injury patterns in fractures, cartilage defects, meniscal and anterior cruciate ligament tears, and spinal metastases (53, 54) with excellent performance indices.

Most of the studies mentioned above have used computed tomography scan, magnetic resonance imaging, and X-rays as an image-generating source. For example, fracture detection using a computed tomography scan has been used by Tomita et al. (55) with deep neural networks for automatic detection of osteoporotic vertebral fractures, obtaining an accuracy of 89.2%. Another author (56) that also studied automated detection of posterior-element fractures with deep convolutional networks obtained an AUC of 85.7%. There is also some experience using automatic classification and detection of calcaneus fracture with an accuracy of 98% (57). Couteaux et al. (58), Bien et al. (59), and Roblot et al. (60) developed algorithms to automatically detect knee meniscal tears using convolutional neural networks and deep learning assisted with magnetic resonance imaging, obtaining AUC scores of 90.6, 84.7, and 92%, respectively. A similar performance was obtained by authors in (61), where cartilage lesion detection algorithms were developed, reaching accuracy levels of 91%. In radiography, different applications are considered, such as deep learning classification algorithms for the detection of ossification areas of the hand to estimate skeletal maturity (62), obtaining accuracy results similar to an expert radiologist (63). Another publication evaluated knee osteoarthritis in 3,000 subjects (5,960 knees) from the Osteoarthritis Initiative dataset using deep learning techniques. They achieved an AUC of 93%, although the diagnosis is highly dependent on the practitioner’s subjectivity, just like US methods (64). As noted earlier, however, US imaging has not been frequently used as an image-generating source.

Machine learning for the medical US continues to be an opportunity (65), especially in musculoskeletal disorders since the US is highly operator-dependent (66) and the applications are dictated by adequate front-end beamforming, compression, signal extraction, and velocity (67), requiring significant training to acquire a level of competence in clinical diagnosis (68) because the images contain multiplicative noise (69). Baka et al. (70) proposed a model to learn the appearance of the bone interface using US images and random forest methods, obtaining a precision of 86%. Another group proposed an algorithm to segment vertebral US images into three regions with a classification rate of 84.7% (71). In tendon, literature is uncommon yet. In 2017, the University of Salford from the United Kingdom reported in an international conference an automatic method to detect and classify Achilles tendon injuries using decision trees, non-linear support vector machines, and ensemble classifiers (69). Kapinski in 2018 (72) reported a novel method for continuous evaluation of reconstructed Achilles tendon healing based on the responses of intermediate convolutional neural network layers. Note that the task of detecting and classifying different conditions as described above can be considered simple since they are based on binary results (an anomaly can only be present or not) (54). This study differs from others that use deep learning or convolutional neural networks because it uses a multilabel, fast, and simplified classifier to find different degenerative patterns simultaneously, such as hypoechogenicity, neovascularity, bony irregularities, and fibrillar disruptions. Currently, no scientific publications have identified ultrasonographic findings using artificial intelligence algorithms.

This article aims to assess multilabel classification models using machine learning algorithms to detect degenerative findings and intrasubstance tear in US images with LET diagnosis.



Materials and methods


Study design

This study was designed as a retrospective and multicentric study. It was written following the Strengthening the Reporting of Observation studies in Epidemiology (STROBE) guideline (73). All patients records with an elbow US exam at MEDS Clinic in Santiago, Región Metropolitana, Chile. This study started on March 1st, 2019.



Subjects

Only images of the common extensor tendon were considered. We selected US images and medical records from patients with a LET diagnosis from January 1st, 2017, to December 30th, 2018. The inclusion criteria were: (1) clinical diagnosis of LET established by orthopedists, sports medicine physicians, or any musculoskeletal specialists, (2) US exam made in the medical center of interest, (3) US exam reported by any musculoskeletal radiologist with more than 10 years of experience, and (4) no race or age restriction. Consecutively, exclusion criteria were: (1) US-guided procedures, such as corticoid, stem cell, and platelet-rich plasma injections, (2) previous LET surgery, and (3) duplicate or not distinguishable images, were removed from the dataset. Figure 1 provides the flowchart to select the subjects.
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FIGURE 1
Flowchart of data selection and subjects used in the study. Abbreviations: MRI, magnetic resonance imaging; CT, computed tomography scan; LET, lateral elbow tendinopathy; US, ultrasound.




Ultrasound assessment of common extensor tendon

All common extensor tendons were assessed using an Aplio 500 US system (Toshiba America Medical Systems, Inc, Tustin, CA, USA) equipped with a multifrequency linear transducer was used. A frequency of 18 MHz was chosen. The images were stored as Digital Imaging and Communications in Medicine (DICOM) files and reviewed on a picture archiving and communication system (PACS).

All patients with LET diagnosis were examined in a seated position with flexion elbow in 90 grades with the wrist pronated, and the arm was resting on a table (14).

Greyscale and color Doppler US imaging are standard methods used for assessing tendon structural changes (74). Following the literature recommendations, four common prevalent degenerative findings were selected from US exams, such as hypoechogenicity, neovascularity, enthesopathy, and intrasubstance tear (75). A focal hypoechoic region was defined as being rounded and not associated with tendon disruption. Neovascularity was assessed as the presence of blood flow on color Doppler. Enthesopathy was evaluated as bony abnormalities at the tendon insertion. A linear intrasubstance tear was defined as a linear hypoechoic focus associated with discontinuity of tendon fibers (76–80). Every finding was evaluated with a binary score as present or absent. We recorded when an exam presents more than one degenerative finding. Figure 2A shows the evaluation position, and Figure 2B represents US finding, in this case, an intrasubstance tear.
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FIGURE 2
Patient evaluation position and an ultrasound (US) finding, respectively. (A) Probe positioning in the elbow in the US exploration of the extensor tendon complex. (B) US imaging shows intrasubstance tear in extensor tendon complex.




Datasets: Ultrasound image and database

Several recommendations were followed for data (images) pre-processing, object detection, and feature extraction (81–83). Two datasets (A and B) were built for training and testing models. The pre-processing step considers eliminating any elements that generated noise in the images, such as uneven lighting, different sizes, or image portions without information (84). Object detection is a specific injury area of interest for the analysis. However, in this case, we considered the common extensor tendon image. Feature extraction is an important step in the construction of any pattern classification and aims at the extraction of the relevant information that characterizes each class (85). According to the 7th International Conference on System Engineering and Technology 2017, texture analysis and classification in US medical images can use feature extraction and texture characteristics for determining echo pattern characteristics (86). One of the most used are intensities distribution (mean intensity and standard deviation), pixel-pixel co-occurrence patterns, and scales granularity. Then the shape contour was extracted where the texture of the pixels was quantified. The US images were labeled manually with four degenerative findings classification outputs findings (hypoechogenicity, neovascularity, enthesopathy, and intrasubstance tear) (65) and complementary patient data such as sex, age, and side of the injury (right or left). The final process consists of a combination between the patient’s information and image analysis. Dataset A was image prediction and contained data extraction from 95 morphology characteristics, shapes, and texture variables, where one image corresponding to one diagnostic (30.007 rows). Dataset B was the patient prediction and included 380 variables from data extraction, such as median, standard deviation, minimal, and maximal, where one exam corresponds to one diagnostic (4.321 rows). Figure 3 represents the study workflow process.
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FIGURE 3
Study workflow. Abbreviations: BR, binary relevance model; CC, classifier chains model; DBR, dependent binary relevance model; NST, nested stacking model; RF, random forest; STA, staking generalization; AUC, area under the curve.




Machine learning and statistical analysis

Supervised learning was used because most machine learning applications for US involve them. Both datasets were implemented into binary and multilabel classification algorithms in six machine learning methods: Binary relevance model, classifier chains model, nested stacking model, dependent binary relevance model, staking generalization, and random forest.

All models were trained to classify four tendon findings (hypoechogenicity, neovascularity, enthesopathy, and intrasubstance tear) in images with LET diagnosis. First, each pattern was recognized individually and then the four finding simultaneously. Different metrics were conducted to assess the classification of machine learning models. A K-fold-repeated-cross-validation (KFRCV) with ten as the number of folds was used. After this process, means and confidence intervals (CI) values were obtained.

Data were analyzed using R version 3.6.2 (R Foundation for Statistical Computing). The following packages were used: “EBImage” for characteristics extraction, “mlr” for each machine learning algorithm, and “randomForest” for the random forest (87–89). Additionally, to measure multilabel prediction (classification) were used multilabel accuracy, sensitivity, specificity, and receiver operating characteristic (ROC) (90). Also, we included a positive predictive value. Differences in US findings between women and men were assessed for significance using the T-test and chi-squared test. The significance level was considered p < (0.05) and 95% CI for all metrics.




Results


Common extensor tendinopathy

A total of 30,007 US images, 6.9 on average in 4,324 exams, and medical records from 2,917 patients with a LET diagnosis were included in the data analysis in this study. Patients’ age was presented with a minimum value of 7 and a maximum of 91 years. Women are older than men in 1 year 47.18 ± 11.00 (p < 0.001) and also, they presented statistical differences in hypoechogenicity finding in comparison with men (p = 0.01). The total of exams presented at least one degenerative finding. US features are summarized in Table 1.


TABLE 1    Ultrasound findings comparison between sexes.
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Machine learning models for a binary classifier

Table 2 shows the binary classification performance (AUC, sensitivity, and specificity) for both datasets (A and B) in each of the six machine learning algorithms. Main degenerative findings in LET (hypoechogenicity, neovascularity, enthesopathy, and intrasubstance tear) were considered under analysis. Focusing on AUC sensitivity and specificity, most models performed with variability among them. Results were described in most cases with a minimal range of 95% CI, demonstrating a robust performance for all models. Notably, the RF model obtained the best results. For example, Table 2 shows dataset A, where random forest presented the highest mean values in AUC, sensitivity, and also specificity by each degenerative finding. The AUC and sensitivity showed the best performance in IST with 0.991 [95% CI, 0.99, −0.99], and 0.775 [95% CI, 0.77, −0.77], respectively. Instead, specificity showed upper values in hypoechogenicity with 0.821 [95% CI, 0.82, −0.82].


TABLE 2    The area under the curve (AUC), sensitivity, and specificity [95% CI] values of six machine learning classifiers based on degenerative findings in datasets A and B.

[image: Table 2]

A similar situation occurred for dataset B, which showed slightly lower values for the same findings and models. The RF model also demonstrated the best performance for all measures and degenerative features. Table 2 showed the highest AUC and sensitivity values for ISR 0.937 [95% CI, 0.93–0.94] and 0.82 [95% CI, 0.82, −0.82]. Hypoechogenicity also presented better specificity than other degenerative findings with 0.763 [95% CI, 0.72, −0.72].



Machine learning models for a multilabel classifier

In the previous results section, the machine learning models assessed a binary classification for each degenerative finding. Now, these methods used a multilabel classifier to identify the four types of tendon findings simultaneously in both datasets. In this scenario, the diagnosis presented different accuracy levels in all machine learning models. When the diagnosis was based on the combination of degenerative findings, the random forest algorithm again presented the best performances among the selected models. Table 3 shows that the random forest in dataset A presented the highest multilabel accuracy value of 0.772 [95% CI, 0.771, 0.773]. Similarly, in the condition represented in dataset B, these results show that the model performs well in testing environments without presenting overfitting issues. Multilabel accuracy value was 0.723 [95% CI, 0.721, 0.726]. Additionally, high macro and micro-AUC scores are observed in RF models in both datasets. These results could be explained due to the balance between sensitivity and specificity shown in RF models. Particularly, micro-AUC observed in dataset A of 0.962 [95% CI, 0.962–0.963] and 0.942 [95% CI, 0.941–0.943] in dataset B results are essential because aggregating the contributions of all classes to compute the average metric.


TABLE 3    Multilabel accuracy values of six machine learning classifiers based on degenerative findings in both datasets.
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Diagnosis performance

Figure 4 represents dataset A, and the results show the relation between sensitivity vs. 1-specificity across each degenerative finding using the random forest model. In this figure, the plot shows the higher discriminant capacity of diagnosis detection. Most of the lines are located progressively closer to the upper left-hand corner in ROC space. The intrasubstance tear shows the most significant discriminate capacity in comparison with the other tendon injuries. However, the enthesopathy finding presented the lowest discriminate capacity in this model.
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FIGURE 4
The receiver operating characteristic (ROC) curves for RF model for dataset A. Abbreviations: RF, random forest; HE, hypoechogenicity; NV, neovascularity; IST, intrasubstance tear; E, enthesopathy; Macro, macro-AUC; Micro, micro-AUC.





Discussion

This study is one of the first to present multilabel classification models using machine learning algorithms to detect degenerative findings and intrasubstance tear in US images with LET diagnosis. This retrospective analysis explicitly considered one of the most extensive series of extensor carpi radialis brevis US images, and our machine learning-based tool for diagnosis of LET was trained using the largest dataset so far. The most notable outcomes in this study were obtained by incorporating several machine learning models based on diagnosis know condition. Excellent results and highest values for all degenerative findings were detected in the binary classification performance. Moreover, when the US diagnosis was based on the combination of degenerative findings using a multilabel classifier, the accuracy values presented strong performance too. Our results showed that the random forest algorithm presented the best diagnosis performance, in both binary and multilabel models. These results demonstrate that the implementation of tools derived from artificial intelligence can be used to support the imaging for tendinopathies. Collaborative work between the radiologist and the algorithm could improve the precision of the results, especially if the institution does not have a radiologist specializing in the musculoskeletal area.

Traditionally, US has been demonstrated as a cost-effective tool for detecting abnormalities patterns in tendon structures. Additionally, there is evidence to support the use of US in the detection of LET. A meta-analysis published in 2014 determined that diagnostic test accuracy appears to be highly dependent on numerous variables, such as operator experience, equipment, and stage of pathology. However, US has variable sensitivity and specificity (sensitivity: 64–100%; specificity: 36–100%), decreasing the clinical diagnosis precision (24). Another article published in the same year reported specifically the sensitivity and specificity for each abnormal US finding using traditional detection method. The hypoechogenicity presented the best combination of diagnostic sensitivity and specificity. It is moderately sensitive sensitivity: 0.64 [95% CI, 0.56, 0.72] and highly specific specificity 0.82 [95% CI, 0.72, 0.90]. Additionally, neovascularity specificity 1.00 [95% CI, 0.97, 1.00)], calcifications specificity 0.97 [95% CI, 0.94, 0.99], and cortical irregularities specificity 0.96 [95% CI, 0.88, 0.99] have strong specificity for chronic lateral epicondylalgia (25). Our results, particularly for intrasubstance tear detection using the binary algorithm classification in both datasets, demonstrated a superior performance to the traditional US diagnosis methods. In the case of multilabel accuracy, the performance for both indicators was lowest results of specificity and sensitivity than the binary method. This situation could be explained because it is difficult to find a function that minimized the error for more classes. In other words, it increases the variability of the response variable.

For example, in the binary classification, the enthesopathy presented the lowest performance of the six machine learning classifiers. Notably, in the dependent binary relevance model from dataset B, our analysis showed that AUC was 0.647 [95% CI, 0.64, 0.65]. This result is quite similar to other reports with a sensitivity of 0.65 and specificity of 0.86 for this finding (77). However, our best result in the binary classification was detecting intrasubstance tear injuries using random forest algorithms. The performance showed an AUC of almost 1.0 (0.99) [95% CI, 0.99, 0.99] in contrast with the traditional US methods diagnosis for detecting common extensor tendon tear in the lateral with lower performances in sensitivity, specificity, and accuracy with 64.52, 85.19, and 72.73%, respectively (26).

However, one of our research strengths is the execution of machine learning models using multilabel detection for tendon injury findings. To date, few experiences had been published in the musculoskeletal area using artificial intelligence for tendon pattern detection. Some previous experiences have used Automatic ROI Detection and Classification of the Achilles Tendon ultrasound Images (69), and deep learning models for automatic tracking of the muscle-tendon junction or even measuring muscle atrophy (91). Other disciplines have also used other classification techniques such as neural networks or deep learning convolutional neural networks for image detection, demonstrating excellent results. However, CNN and DL have some drawbacks that should be analyzed when developing predictive models. First, it has been shown that DL requires large datasets to obtain better performance. To handle this, transfer learning is commonly used. However, DL architectures should also be re-trained and model parameters should be optimized, looking out for possible overfitting patterns. Second, DL architectures rely on the high computational performance, and it takes longer to prove results. In this sense, they are more complex to implement, especially in a clinical environment with a high demand for care, so improving diagnostic speed without compromising diagnostic accuracy is crucial for patients and the health system. Therefore, machine learning algorithms are advantageous when speed is of interest. In this case, the execution times of the proposed method were very low, allowing it to be easily implemented in a hospital scenario and re-trained with new data that is daily generated. Finally, the multilabel classification model differs from other algorithms most commonly used in image diagnosis due to the simplicity of its implementation.

This study also has some limitations. Firstly, our images come from the same institution, and patients presented similar socioeconomic conditions. Secondly, we included all static US images from common extensor tendon US per patient, not considering real-time and other structures or tissues. Thirdly, we included tendons with a definitive LET diagnosis, and we did not compare inter and intraobserver variability between radiologists. Fourthly, we considered all images without a region of interest, such as most of the publications. Nevertheless, in a short time, it could be a potential advantage. Finally, we did not repeat the US diagnosis to reduce retrospective bias. However, our radiologist presented more than 10 years of experience.

In conclusion, the random forest model presented the highest sensitivity and specificity in binary and multilabel classifiers for degenerative findings in the common extensor tendon. In particular, intrasubstance tear detections obtained the best performance. Machine learning models could be used to support the US diagnosis of LET.
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Background: Adenomyosis is a common gynecological disease in women. A relevant literature search found that approximately 82% of patients with adenomyosis chose to undergo hysterectomy. However, women of childbearing age are more likely to undergo surgery to preserve the uterus. Because it is difficult to determine the extent of adenomyosis, it is almost impossible to resect adenomyotic tissue and retain the uterus at the same time.

Materials and methods: Following ethics approval and patient consent, tissue samples were resected and prepared to create frozen slices for analysis. One slice was subjected to H&E staining while the remaining slices were photographed with Coherent Anti-Stokes Raman Scattering (CARS), Second-Harmonic Generation (SHG) microscopy, and Raman spectroscopy. Comparative observations and analyses at the same positions were carried out to explore the diagnostic ability of CARS, SHG, and Raman spectroscopy for adenomyosis.

Results: In adenomyotic tissue, we found two characteristic peaks at 1,155 and 1,519 cm–1 in the Raman spectrum, which were significantly different from normal tissue. The substances shown in the CARS spectrum were represented by peaks of 1,519 cm–1. SHG microscopy showed a distribution of collagen at the focus of the adenomyosis.

Conclusion: This study represents a novel analysis of Raman microscopy, CARS, and SHG in the analysis of adenomyotic lesions. We found the diffraction spectrum useful in determining the focal boundary and the diagnosis of adenomyosis in the tested samples.

KEYWORDS
adenomyosis of uterus, disease diagnosis, Raman spectra, CARS, SHG


Introduction

Adenomyosis refers to the invasion of endometrial glands and stroma into the myometrium and the maintenance of functional changes such as periodic hyperplasia, exfoliation, and bleeding. The cause of the disease is unknown (1). It can lead to symptoms such as increased menstruation, prolonged menstruation, and progressive aggravated dysmenorrhea (2). A prior study by Di Donato and co-authors found that 21.8% of patients with endometriosis have adenomyosis. Patients with concurrent adenomyosis have been found to be older, and have a greater pain intensity and depth of infiltration of endometriosis (3). Furthermore, a diagnosis of adenomyosis in these patients has been shown to negatively impact postoperative pain following surgical treatment (4). Adenomyosis can be divided into two types: focal and diffuse. The uterus is uniformly enlarged in diffuse adenomyosis. Focal lesions, known as adenomyosis, grow locally and have no obvious boundary with surrounding tissue, which makes them difficult to resect during surgery. A population sample paper found that about 82% of patients with adenomyosis choose to undergo hysterectomy (5). However, total hysterectomy is obviously not feasible for women with reproductive needs. Uterine-sparing surgery is an alternative surgical treatment, but it is difficult to determine the scope and focus of adenomyosis as it is often mixed with the surrounding normal myometrium; it is therefore almost impossible to completely remove adenomyotic tissue while preserving the uterus (6). At present, the main methods of diagnosing adenomyosis are clinical symptoms and ultrasonography, and the gold standard of diagnosis is postoperative pathology, that is, H&E staining. However, H&E staining takes time and requires a pathologist. Identifying the lesion boundary to aid successful removal therefore represents a significant challenge for surgeons during uterine-sparing surgery (7).

Currently, utilizing engineering technology alongside medicine has proven popular. Among them, the application of optical microscopy in medicine is emerging. Coherent Anti-Stokes Raman scattering (CARS) is a third-order non-linear optical process based on the coherent excitation of molecular vibrations (8), which can obtain the molecular composition and distribution information of the sample to be tested according to the vibrational characteristics of the material molecules. Second-harmonic generation (SHG) microscopy has emerged as a powerful modality for imaging fibrillar collagen in a diverse range of tissues because it is highly sensitive to the collagen fibril/fiber structure (9).

Optical microscopy has been successfully applied to gastric cancer (8), colorectal cancer (9), human meningioma (10, 11), liver cancer (12), lung cancer (13), and other diseases. There have been a large number of studies on cervical cancer (14), ovarian cancer (15), endometrial carcinoma (16), and reproduction (17) in obstetrics and gynecology. Compared with the time-consuming traditional H&E staining method, the biggest advantage of optical microscopy lies in its convenience and efficiency. Notably, the prior application of Raman Microscopy in determining the lesion range in a cohort undergoing surgical treatment for brain cancer provided possible parallels to the identification and resection of tissue boundaries in adenomyosis patients (18). Our hypothesis therefore became: can the focus and scope of adenomyosis be determined through optical microscopy to meet the needs of women of childbearing age and to perform adenomyosis surgery with uterine preservation?

This study describes the first use of a Raman microscope, CARS, and SHG to study adenomyotic lesions.



Materials and methods


Sample preparation

This is a prospective study from February 2021 to March 2022. We randomly selected 10 patients (five normal and five with adenomyosis) who underwent surgery in the First Affiliated Hospital of Dalian Medical University. The adenomyosis patients were determined by preoperative ultrasound examination. After cutting off the uterus during the operation, we retain several pieces of tissue (in case of adenomyosis, parts of the adenomyosis lesion and the rest of normal muscle tissue will be retained) and place them in liquid nitrogen tanks for cold storage, in order to preserve the cell activity for the convenience of subsequent experiments. Patients with adenomyosis provided both adenomyotic and normal tissue samples while non-adenomyosis patients provided normal tissue samples. Finally, a total of 20 adenomyotic tissue samples and 20 normal samples (including five adenomyosis patients’ normal samples) were included in this study. Adenomyosis samples were from patients who underwent total hysterectomy due to adenomyosis, and normal in vitro samples of the control group were from normal uterine muscle tissues of patients who underwent total hysterectomy owing to non-malignant diseases (to prevent tumor tissues from affecting the results), such as hysteromyoma and uterine prolapse. All patients signed the informed consent form under the informed consent of the research process after surgery, allowing us to conduct experiments on their in vitro tissues. This experiment was certified by the ethics Association of the First Affiliated Hospital of Dalian Medical University (IRB number: PJ-KS-KY-2022-257).

After sample preparation, we took 40 fresh tissues (20 normal tissues and 20 adenomyosis tissues) about 1 × 1 cm in size from 10 uteruses (five normal tissues and five adenomyosis tissues), and made continuous frozen sections for each tissue. From each tissue, three 10 μm sections (slices) were cut. The three slices of the same tissue were numbered 1, 2, and 3. All “Slices 1” underwent H&E staining, and Slices 2 and 3 were directly observed under a non-linear optics microscope without any staining treatment.



H&E

Two experienced pathologists observed all H&E-stained slices to provide a diagnosis of either adenomyosis or normal tissue; their corresponding Slices 2 and 3 were imaged by CARS and Raman microscope, respectively.



Raman spectra

Raman spectra were obtained using a commercial Raman micro-spectrometer (Renishaw, InVia system) at 532 nm excitation wave number, which was focused onto the muscles using a 50× (NA = 0.75) objective for an integration time of 10 s. Cosmic ray was removed after acquiring each spectrum using the Renishaw WiRE 4.4 software. The experimental setup and its schematic illustration are shown in Figure 1.


[image: image]

FIGURE 1
Layout of the optical system of the Raman micro-spectrometer.


Because the Raman microscope displays spectrum images of substances in a limited range, different substances display different Raman signals, so the carrier glass carrying tissue slices will inevitably display their own Raman signals. At this time, the glass is measured separately to display the Raman signal of the glass itself as a reference (red in Figure 2), so that the peak value of the glass and the characteristic peak value of adenomyosis can be distinguished.


[image: image]

FIGURE 2
900–1,600 cm– 1 Raman spectra of normal, adenomyosis, and glass (normal, adenomyosis, and glass from top to bottom).


We first identified the characteristic wave number range in the range of 500–3,000 cm–1. As shown in Figure 2, the characteristic wave number is about 1,200 and 1,500 cm–1, so we set the wave number range at 900–1,600 cm–1 to facilitate the experiment.



Anti-stokes Raman scattering and second-harmonic generation

Figure 3 shows a schematic of the CARS system for non-linear optical imaging. Briefly, a mode-locked 80 fs Ti:sapphire laser (MaiTai, Spectra Physics, Santa Clara, USA) is tuned to 800 nm with pulse width at an 80 MHz repetition rate and divided into two parts by a polarization beam splitter. One beam works as the pump beam; the other beam is used to pump a photonic crystal fiber to produce the Stokes beam for CARS imaging. Two beams are combined at the dichroic mirror. The combined beams are sent into a multiphoton scanning microscope (Olympus, FV1200) and focused on the sample by an objective (10×, NA 0.4; UplanApo, Olympus, Tokyo, Japan). The average power of 75 mW is used for the pump and the probe beam. The CARS and SHG signals pass through a bandpass filter, respectively, before being detected by the PMT.


[image: image]

FIGURE 3
Optical path of the CARS system (M, mirror; DM, Dichroic Mirrors; F, Filter; FM, Flip Mirror; PMT, photomultiplier tube).





Results

All Slice 1 samples were viewed under the microscope before imaging for records (Figure 4A). Since Slices Nos. 1, 2, and 3 were cut continuously by a slicer, any differences can be ignored. We observed images with CARS and SHG at the same position of Slices 2. Examples of images are adenomyosis lesions imaged by CARS and SHG (Figure 4).
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FIGURE 4
Shows the images of adenomyosis lesions under different microscopes (→: Ectopic uterine gland). (A) An H&E staining section. (B) DIC (differential interference contrast microscope) imaging. (C) SHG imaging. (D) CARS imaging (*: fibro-collagen proliferation).


Figure 4A shows the contrast diagram of H&E staining. The lesions shown in the figure are the subject of this study. The “Y” structure pointed by the white arrow in the figure is the ectopic endometrial structure in the myometrium, namely, the uterine gland. As shown in Figure 4A, the uterine gland is a single tube gland with branches at its end, mainly composed of secretory cells.

Figure 4B shows the differential interference contrast microscope (DIC imaging). DIC imaging is an image directly observed by the naked eye without staining. From the DIC imaging, we can see the sense of uneven layers in the image, vaguely seeing the ectopic uterine gland (the position indicated by the white arrow), but the peripheral structure is not clear.

In the Figure 4C CARS microscope presents the outline of the ectopic uterine gland perfectly. It can be seen that under the CARS microscope, the glandular part of the uterine gland is not imaged (the position indicated by the white arrow), and the image intensity of the surrounding interstitial part is relatively light, while the intensity of the surrounding muscle layer is relatively high. We used a 720 nm filter in CARS. The Raman wave number range corresponding to the 720 nm filter just includes our second characteristic peak of 1,519 cm–1. Therefore, we determined that the imaging substance of CARS was consistent with the representative substance of the second characteristic peak in Raman imaging.

Figure 4D shows the SHG image. Interestingly, SHG, unlike CARS imaging, showed stronger intensity in the uterine gland and its surrounding fibro-collagen proliferation section. The SHG microscope is widely used to image various fibrous collagens. 3D also clearly shows the distribution of collagen around the lesion. It can be seen that fibro-collagen proliferation exists around the uterine gland (*Marking section).

In the range of 900–1,600 cm–1, the characteristic wave number of adenomyosis is more obvious and allows a clear distinction between the Raman spectrum curve of normal tissue and adenomyosis (Figure 2). In the following experiment, we used adenomyosis tissues from different patients, and the characteristic peaks appeared at 1,155 and 1,519 cm–1.



Discussion

In this report, we used Raman, DIC, CARS, and SHG microscopes to directly image tissue sections without staining, and took HE staining images at the same location for comparison.

CARS microscopy, probing vibrations of molecular bonds for image contrast, and the high vibrational Raman cross sections of many hydrogen carbon bonds make the technique suitable for imaging polymers (19). CARS microscopy derives its contrast from intrinsic molecular vibrations in a sample; the CH group of membrane and cortical cytoskeleton proteins are the basis of CARS imaging (20). In the absence of staining (Figure 4C), CARS can clearly show the outline of the ectopic uterine gland and its boundary with surrounding tissue structure compare with Figure 4A, which has been stained with H&E. SHG visualizes highly ordered tissue structures, which are non-centrosymmetric like type I collagen fibers (21). As shown in Figure 4D, there is obvious fibro-collagen proliferation around the uterine gland, which is caused by bleeding of adenomyosis (22).

According to previous experiments, the characteristic curve of cervical cancer is concentrated at 720, 785, 1,095, 1,258, and 1,579 cm–1 (23–25). This is different from the representative peaks of adenomyosis (1,155 and 1,519 cm–1) found in our study. Most studies regarding Raman microscopy in adenomyosis focus on the serological aspects of patients (26). During our literature search, only one such direct histological study was found. In this article (27), Wang et al. identified a peak different from that of normal tissue at 1,173 cm–1 in adenomyosis, believing the peak is induced by delta (C—O) shifts. Our initial peak was found to be 1,155 cm–1. Considering Wang and co-authors used a light source of 785 nm compared to our own source at 532 nm, we consider that this finding is broadly consistent. However, our finding of the additional peak at 1,519 cm–1 in adenomyosis samples represents a novel finding. To understand our novel finding, we reviewed the existing literature to identify biological macromolecules and concurrent Raman wave numbers (Table 1). First, after an extensive literature search and integration, we created a corresponding table between Raman wave numbers and biological macromolecules (14, 16, 28–30). From Table 1, we can see that most representative substances with similar wave numbers are the same (however, there may be errors caused by different measurements). The corresponding substance of 1,516 cm–1 is amide II, considering some errors caused by different experimental conditions (temperature, tissue freshness, etc.) and instrument measurements, so our first hypothesis about the characteristic peak at 1,519 cm–1 was amide II. Of particular interest to our findings, two prior lung cancer studies using Raman microscopy found characteristic carotenoid Raman peaks at 1,152 and 1,518 cm–1 with the Raman peaks in lung cancer patients lower than those in normal subjects. The authors suggested these findings reflected C–C and conjugated C=C bond stretch (24, 31). In our study, characteristic peaks were found at 1,155 and 1,519 cm–1 in adenomyosis tissue, which is very similar to the characteristic peaks of carotenoids at 1,152 and 1,518 cm–1 in the previous two studies. Carotenoids represent the main source of Vitamin A in the body and provide anti-oxidation, immune regulation, anti-cancer, and anti-aging effects. Our findings representing similar peaks may support a possible relationship between carotenoids and adenomyosis; however, this remains speculative and requires additional investigation.


TABLE 1    Wave number of biomacromolecules.
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The outstanding advantages of Raman spectroscopy lie in its label-free nature and timeliness, which reduce the waiting time of intraoperative pathology and the burden upon pathologists at the surgery. Currently, Hand-Held Raman technology has been successfully applied to detect air components and diagnose plant diseases (32–34). There are also a large number of intraoperative boundary studies of brain tumors in medicine (18). Currently, there is no research regarding Hand-Held Raman technology on disease or surgery in obstetrics and gynecology. Our results suggest a possible further role for Hand-Held Raman microscopy in assisting the intraoperative diagnosis of adenomyosis and the localization of lesion boundaries to improve potential surgical outcomes in patients. Similarly, handheld SHG technology are also areas that have not been studied and discussed. The results of this study also found the potential utility in determining the location of adenomyosis lesions. SHG also confirmed the proliferation of fibro-collagen caused by bleeding around adenomyosis lesions. The application of these two microscopes in surgery will further help to determine and diagnose the location of adenomyosis lesions.



Conclusion

In this experiment, a Raman microscope, CARS, and SHG were used to study adenomyosis, which demonstrated the role of non-linear optics in diagnosing adenomyosis and distinguishing lesion boundaries. Moreover, the combination of CARS and SHG microscopes produces more extensive and complementary information.
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Background: Interstitial lung disease (ILD) defines a group of parenchymal lung disorders, characterized by fibrosis as their common final pathophysiological stage. To improve diagnosis and treatment of ILD, there is a need for repetitive non-invasive characterization of lung tissue by quantitative parameters. In this study, we investigated whether CT image patterns found in mice with bleomycin induced lung fibrosis can be translated as prognostic factors to human patients diagnosed with ILD.

Methods: Bleomycin was used to induce lung fibrosis in mice (n_control = 36, n_experimental = 55). The patient cohort consisted of 98 systemic sclerosis (SSc) patients (n_ILD = 65). Radiomic features (n_histogram = 17, n_texture = 137) were extracted from microCT (mice) and HRCT (patients) images. Predictive performance of the models was evaluated with the area under the receiver-operating characteristic curve (AUC). First, predictive performance of individual features was examined and compared between murine and patient data sets. Second, multivariate models predicting ILD were trained on murine data and tested on patient data. Additionally, the models were reoptimized on patient data to reduce the influence of the domain shift on the performance scores.

Results: Predictive power of individual features in terms of AUC was highly correlated between mice and patients (r = 0.86). A model based only on mean image intensity in the lung scored AUC = 0.921 ± 0.048 in mice and AUC = 0.774 (CI95% 0.677-0.859) in patients. The best radiomic model based on three radiomic features scored AUC = 0.994 ± 0.013 in mice and validated with AUC = 0.832 (CI95% 0.745-0.907) in patients. However, reoptimization of the model weights in the patient cohort allowed to increase the model’s performance to AUC = 0.912 ± 0.058.

Conclusion: Radiomic signatures of experimental ILD derived from microCT scans translated to HRCT of humans with SSc-ILD. We showed that the experimental model of BLM-induced ILD is a promising system to test radiomic models for later application and validation in human cohorts.
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radiomics, preclinical imaging, interstitial lung disease, lung fibrosis, systemic sclerosis, bleomycin


Introduction

Interstitial lung disease (ILD) defines a group of chronic, etiologically different parenchymal lung disorders, characterized by fibrosis as their common final pathophysiological stage. The prognosis of the most prevalent and severe subtypes, idiopathic pulmonary fibrosis (IPF) and ILD associated with the autoimmune disease systemic sclerosis (SSc), is as poor as that of untreated oncologic diseases (1, 2). Globally, non-malignant lung diseases including ILD rank third on the mortality scale (3).

Experimental models of fibrosing ILD are paramount for the identification of cellular and molecular key drivers of disease and as preclinical test systems for novel targeted drugs (4). The preferred and best characterized preclinical model of ILD is the murine model of bleomycin-induced lung fibrosis, which reflects important features of human ILD such as apoptosis of epithelial cells, influx of inflammatory cells into the interstitium, followed by activation of fibroblasts with increased deposition of extracellular matrix (ECM) proteins (5, 6).

Conventional endpoint measures of lung fibrosis involve histological and biochemical analyses, which, however, have certain disadvantages. To recapitulate the dynamic process of fibrosing ILD at multiple time points and to account for the high interindividual variability, large numbers of animals are required to reach significant statistical power (7). Additionally, lung biopsies are only rarely performed in human ILD (8, 9) and biopsy may not be representative for the whole lung pathology. Upcoming alternative outcome measures for translational ILD research include imaging methodologies. An integral part of the routine clinical management is medical imaging, particularly high-resolution computed tomography (HRCT), which allows non-invasive, highly sensitive, time- and spatially resolved visualization of the entire lung changes (10) and a correlative estimation of lung function (11). Similarly, in preclinical models of ILD, small animal microCT is increasingly recognized as a valuable assessment tool (4, 7). In the model of bleomycin-induced experimental ILD, the relative comparability of both imaging and molecular changes with human ILD (5, 12–15) support its suitability for translational ILD research.

The need for innovative, directly transferable, and readily applicable readouts in ILD have prompted the herein presented translational study on the potential value of the model of bleomycin-induced lung fibrosis as experimental “radiomic toolbox” for human ILD. Radiomics is a powerful strategy for in-depth analysis of pathologic tissue phenotypes by computational extraction of quantitative imaging features from medical images (16, 17). Radiomic features provide objective information on tissue shape, intensity, and texture on a molecular scale as demonstrated by studies on tumor biology showing correlation with tissue-based genomics and proteomics data (18–21). As image-derived tissue surrogates, their potential use as virtual biopsies could make radiomics analyzes an ideal tool for clinical decision support in ILD especially since radiomic features have also been shown to predict disease outcome and response to therapy (18, 19, 22–25). However, compared with oncology (18, 20–22), research into the potential of radiomics in non-malignant lung diseases is limited (26–30).

Nevertheless, the available literature on human lung pathologies, including chronic obstructive pulmonary disease, radiation-induced pneumonitis and connective tissue disease-related ILD showed that texture-based analysis of CT images can be superior compared to the visual or histogram-based measures for diagnosis (28, 31, 32). Few studies investigated the use of radiomics in experimental settings. Eresen et al. used MRI radiomics for prediction of response to vaccine therapy in a mouse model of pancreatic ductal adenocarcinoma (33, 34). Nunez et al. analyzed suitability of MRI radiomics for diagnosis of preclinical GL261 glioblastoma (35). Other researchers focused on radiomic-based prediction of liver metastases or liver fibrosis in mice (36, 37).

To date no study has shown the value of animal models in radiomics research. We are not aware of any studies reporting transferability of radiomic patterns from experimental model to clinical setting. Establishing a link between preclinical and clinical radiomic patterns could enormously facilitate testing a vast range of hypotheses in an experimental setting. Such a link is currently missing. In this analysis, we evaluate if radiomic features and models can be translated from experimental to human ILD.



Materials and methods


Study design and data sets

Details of the study design and data sets are shown in Figure 1. In short, we investigated whether radiomic patterns indicative of ILD in mice were also present in human disease.
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FIGURE 1
Study design. The mice data set (n = 91) was used to discover radiomic patterns predictive of ILD. The discovered patterns were tested in the human validation data set (n = 98). 55 mice were given Bleomycin to induce ILD, whereas 36 mice were given NaCl and served as the control group. The mice were euthanized at day 3, 7, 14, 21, 28, and 35 and scanned with a microCT scanner. Afterward, classification models were trained to predict occurrence of ILD based on images acquired from the scanner. The 98 patients from the validation data set were retrospectively collected. All patients were scanned with HRCT and graded according to the Goh scale of pulmonary fibrosis. The radiomic models built using mice data were tested in patients.


The preclinical model of bleomycin (BLM)-induced lung fibrosis was used to mimic human ILD. The experimental cohort consisted of 91 8-week-old female mice (C57BL/6J-rj, Janvier Labs). ILD was induced in 55 mice via intratracheal instillation of bleomycin (2 U/kg; Baxter 15,000 I.U.) as described in (6, 14, 38). The 36 control animals received equivalent volumes of 0.9% NaCl solution. Mice were randomized into the different experimental groups and instillation was performed blinded. Pulmonary micoCT scans were performed at different days (days 3, 7, 14, 21, 28, and 35) after bleomycin instillation to reflect different disease stages. Different mice were scanned at every time point as the animals were euthanized after image acquisition. Scanning mice at different time points after fibrosis induction did not serve a particular purpose in this work. Such design was chosen because this experimental data was also used in other studies which examined temporal aspect of fibrotic development.

A cohort of 98 SSc patients being followed at the Department of Rheumatology, University Hospital Zurich represented the validation data set. All included patients met the following criteria: diagnosis of SSc according to the Very Early Diagnosis of Systemic Sclerosis (VEDOSS) (39) or the 2013 American College of Rheumatology//European League against Rheumatism (ACR/EULAR) classification criteria (40), and availability of an HRCT scan. Patient characteristics are provided in Table 1.


TABLE 1    Summary of patient’s demographics and clinical baseline characteristics.
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The extent of lung fibrosis was defined as presence of reticular changes or honeycombing within whole lung volume (Figure 2). All visual analyses were performed by a senior radiologist (TF) using a standard picture archiving and communication system workstation (Impax, Version 6.5.5.1033; Agfa-Gevaert) and a high-definition liquid crystal display monitor (BARCO; Medical Imaging Systems).


[image: image]

FIGURE 2
Example CT scans of healthy lungs and lungs affected with lung fibrosis. (A) microCT image of a healthy mice lung, (B) microCT image of a mice lung with lung fibrosis, (C) HRCT image of a healthy human lung, (D) HRCT image of a human lung with lung fibrosis. Lung contours marked in different colors show the extent of intra- and interobserver variability in lung segmentations for these two cases.




Imaging and extraction of radiomic features

Pulmonary microCT scans were acquired in free-breathing mice with prospective respiratory gating using Bruker SkyScan 1176. The following scan parameters were used: tube voltage 50 kV, tube current 500 μA, filter Al 0.5 mm, averaging (frames) 3, rotation step 0.7 degrees, sync with event 50 ms, X-ray tube rotation 360 degrees, resolution 35 μm, and slice thickness 35 μm. Images were reconstructed with NRecon reconstruction software (v.1.7.4.6; Bruker) using the built-in filtered back projection Feldkamp algorithm and applying misalignment compensation, ring artifact reduction, and a beam hardening correction of 10% to the images.

HRCT scans were acquired using Siemens scanners (SOMATOM Definition AS, SOMATOM Definition Flash, SOMATOM Force, SOMATOM Sensation 64, SOMATOM Sensation 16, Biograph 64, LightSpeed Pro 16, LightSpeed VCT). The scans were acquired in an inspiration (breath hold) mode. The median slice thickness was 1 mm (range 0.6-2 mm) and the median tube voltage was 120 kVp (range 80-150 kVp). The reconstruction kernels included B60f, B70f, and Bl64.

The contouring of whole lungs was performed manually in mice and semi-automatically in patients (region growing algorithm followed by manual correction) by two experienced examiners (JS and MB). Left and right lungs were contoured independently and then both contours were merged to generate a single contour including both lungs.

Feature extraction from CT images was performed with Z-Rad, an IBSI-compliant (41), in-house developed Python software. CT scans of mice and patients were interpolated to an isotropic resolution of 0.15 mm and 2.75 mm, respectively. The interpolation resolutions were chosen to achieve similar ratio of voxel size to average lung volume in mice and patients. The region of interest (ROI) for feature extraction was defined as the right and the left lung considered as a single organ. Only intensity values within the range from −1,000 HU to 200 HU were considered. We used a fixed bin size of 50 HU. The radiomic features describing image intensity (histogram, n = 17) and texture (n = 137) were extracted for each mouse and patient. The texture features were based on gray level co-occurrence matrix (GLCM, n = 26), gray level run length matrix (GLRLM, n = 16), gray level distance zone matrix (GLDZM, n = 16), gray level size zone matrix (GLSZM, n = 16), neighboring gray level dependence matrix (NGLDM, n = 16), and neighborhood gray tone difference matrix (NGTDM, n = 5) to capture wide variety of intensity patterns. Additionally, GLCM and GLRLM features were extracted with two different feature aggregation methods - with and without merging. In total, 154 features were extracted. The list of radiomic features is provided in the supplement.



Statistical analysis

For every radiomic feature, robustness against intra- and interobserver variability was examined. This was realized with estimation of the corresponding intraclass correlation coefficients (ICC). Specifically, we used consistency of ICC (1, 3) according to the Shorut and Fleiss naming convention (42). Features with ICC ≥0.75 for intra- and interobserver settings in both mice and humans were considered stable and were retained. The rest of the features were excluded from further analysis.

Univariate predictive power of the radiomic features was evaluated by estimation of the area under the receiver operating characteristic curve (AUC). To facilitate comparison of the AUC values between mice and patient data sets, we adopted a convention that AUC is equal to the probability that a radiomic feature value of a randomly chosen patient from the positive group is greater than the value of a randomly chosen patient from the negative group. This allowed us to distinguish between features that were characterized by comparable predictive power but a different direction of the effect, for example, AUC = 0.3 in mice and AUC = 0.7 in patients. The linear association of the AUC scores between mice and patient groups has been evaluated with Pearson correlation coefficient.

Three model architectures were considered for evaluation of model transferability from mice to patients: (1) a model based on mean image intensity (MEAN), (2) a model based on first four moments of intensity distribution (mean, standard deviation, skewness, and kurtosis; MSSK), and (3) a machine learning model based on logistic regression (ML). While the first two models are based on predefined radiomic features, the machine learning model employed embedded feature selection methods. All models were built on the mice data and were validated in the patient data.

Feature selection and model tuning was realized within 4-times repeated 5-fold cross-validation. The first step of the feature selection procedure was dimensionality reduction by removing features that were highly linearly correlated (Pearson’s r). The correlation threshold was one of tunable hyperparameters. The second step of feature selection was fitting a model and selection of most important features from this model which were then fed to the final classifier. In the case of a logistic regression model, the feature selection was realized with another logistic regression. In the case of, extra-trees model, most important features were extracted from a gradient tree-boosting model. The number of extracted features in both cases was one of tunable hyperparameters. For model tuning, we used 500 randomized hyperparameter samples. The optimized models were validated in patients. Additionally, the models were re-optimized in patients to evaluate transferability and predictive power of the discovered radiomic signatures rather than the models themselves. Furthermore, this allowed to reduce the influence of covariate shift between the data sets.

For visualization, statistical analysis, model building, and model testing, the following open-source Python packages were used: Matplotlib (43), NumPy & SciPy (44), Pandas (45), and scikit-learn (46).




Results


Influence of intra- and interobserver delineation variability on radiomic features

Intra- and interobserver delineation variability were evaluated separately in mice and patient data sets using 15 randomly selected cases per data set. Intraobserver variability was assessed based on delineations done by JS. Interobserver variability was assessed based on delineations provided by JS, CB, and MBr. Figure 3 shows the proportion of the unstable features per feature class. In mice, 7 features from the initial set of 154 were considered unstable (ICC < 0.75) and were excluded from the further analysis. In patients, all features were stable (ICC ≥ 0.75) so no further features were excluded.
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FIGURE 3
Influence of intra- and interobserver delineation variability on radiomic features stability. Proportion of unstable features stratified by feature type.




Discriminative power of radiomic features is highly correlated between mice and patient data

The next steps in our analysis were the investigation of univariate discriminative power of radiomic features and the correlation of AUC scores between mice and patients. ICC analysis was performed to compare two feature aggregation methods of GLCM and GLRLM features. As both feature aggregation methods rendered highly correlated results (ICCGLCM = 0.99, ICCGLRLM = 0.83), only one feature aggregation per feature class method was kept for further analysis to reduce feature redundancy.

Univariate predictive power of radiomic features in terms of AUC is presented in Figure 4A. On average, features describing image intensity tended to perform better than texture-based features. Radiomic features were on average more predictive in mice than in patients. Most predictive features in mice achieved AUC = 0.988, whereas in patients AUC = 0.896. The complete list of feature predictive performance is provided in the supplement.
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FIGURE 4
Relationship between predictive power of radiomic features in mice and patient data sets. (A) AUC distribution stratified by feature type (histogram, gray level co-occurrence matrix (GLCM, n = 26), gray level run length matrix (GLRLM, n = 16), gray level distance zone matrix (GLDZM, n = 16), gray level size zone matrix (GLSZM, n = 16), and neighboring gray level dependence matrix (NGLDM, n = 16). (B–H) Correlation of the AUC between mice and patient groups.


Univariate predictive power of the features was highly correlated between murine and patient groups (Figure 4B) with Pearson’s r = 0.86. Very high correlation was observed for histogram-, GLCM-, GLRLM-, and NGLDM-based features (Figures 4C–E,H). GLSZM- and GLDZM-based features exhibited more variability (Pearson’s r < 0.6; Figures 4F,G).



Radiomic patterns predictive of interstitial lung disease translate from experimental interstitial lung disease to patients

To analyze transferability of radiomic patterns and models from mice to patients we built and validated four classes of models: (1) a model based on mean image intensity (MEAN), (2) a model based on first four moments of intensity distribution (mean, standard deviation, skewness, and kurtosis; MSSK), and (3) a machine learning model based on logistic regression (ML). The models were trained on mice data and tested in patients. Additionally, the models were reoptimized in patients, that is, retrained using the features from the mouse models. The results and comparison of model performance is shown in Table 2.


TABLE 2    Predictive performance in model tuning, testing, and re-optimization.

[image: Table 2]

All models achieved high diagnostic performance in mice. The baseline MEAN model scored AUC = 0.921 which left little room for improvement. Nevertheless, the MSSK and the ML models exceeded AUC = 0.990 resulting in almost perfect classification performance. Testing model performance in patients resulted in AUC scores varying from 0.754 (MEAN) to 0.832 (ML). Model re-optimization in patients allowed to improve the predictive performance of all models. ROC curves associated with model tuning, testing, and re-optimization together with the underlying features are presented in Figure 5. ROC curves show that re-optimization gave little improvement for the MEAN and the MSSK models as testing and re-optimization curves followed similar characteristics. On the other hand, machine learning models improved significantly in this process. The corresponding re-optimization ROC curves detached from the testing curves to position between tuning and testing curves.
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FIGURE 5
Model performance and underlying radiomic features. ROC curves and bar plots of the underlying features. V1 - mean (histogram), V2 - standard deviation (histogram), V4 - skewness (histogram), V5 - kurtosis (histogram), V16 - root mean square (histogram), V108 - gray level non-uniformity normalized (GLSZM), V141 - dependence count non-uniformity (NGLDM).


Substantial differences in distribution of radiomic features included in the models in terms of location and dispersion are presented in Figure 6. Most of the features exhibit patterns of the same direction in both mice and patient data sets, that is, either rising or falling trend from healthy to ILD.
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FIGURE 6
Comparison of feature distribution between mice and patient groups stratified by the ILD stage. V1 - mean (histogram), V2 - standard deviation (histogram), V4 - skewness (histogram), V5 - kurtosis (histogram), V16 - root mean square (histogram), V108 - gray level non-uniformity normalized (GLSZM), V141 - dependence count non-uniformity (NGLDM).





Discussion

In this analysis, we report that radiomic features and models can be translated from experimental to human ILD. Collectively, our data suggest that well characterized and representative animal models could represent valuable systems for defined hypothesis testing in radiomics research, particularly for evaluating links with pathophysiology or studying responses to targeted therapies in rare diseases with low number of patients and limited access to tissue samples.

Radiomic features proved to be highly indicative of experimental- and SSc-ILD. Furthermore, we observed strong linear correlation in terms of discriminative power between features extracted from mice microCT scans and patient HRCT. We also showed that multivariate models of ILD translated well from mice to patient data sets. Nevertheless, we observed the differences between the data sets in terms of feature classes that were predictive. In mice, most of the feature groups contained features that reached similar maximum AUC scores. On the other hand, in patients we observed that even though histogram-based features achieved high discriminative power, some texture features were more predictive. This difference could be caused by inferior quality of microCT compared to HRCT. For this reason, the assessment of microCT done by our radiologist might have also been mainly led by first order characteristics rather than texture. Furthermore, the ILD manifestations can differ depending on the etiology. As a result, the observed differences may be caused by the limitation of the bleomycin-induced ILD being an imperfect model of SSc-ILD. In any case, our results are in line with the available literature on human lung pathologies including chronic obstructive pulmonary disease, radiation-induced pneumonitis or connective tissue disease-related ILD, which showed that texture-based analysis of CT data can be superior compared to the visual or histogram-based measures for diagnosis (28, 31, 32).

Analysis of feature weights in the MEAN and the MSSK models showed that higher values of the mean and standard deviation of the image intensity and lower values of skewness and kurtosis correspond to larger risk of ILD. Effectively, this means that presence of ILD shifts the intensity distribution from a typical “healthy” positively skewed intensity distribution toward higher intensity values with a more symmetric distribution and thin tails. The best performing model (ML) relied on three radiomic features: the root mean square (histogram), gray level non-uniformity normalized (GLSZM), and dependence count non-uniformity (NGLDM). Significant improvement of machine learning models by re-optimization may suggest the existence of similar predictive radiomic patterns in training (mice) and test (patients) data sets in presence of domain shift between both groups.

The presented study has a few limitations. First, the differences in scanning parameters between microCT and HRCT cause a significant domain shift between experimental and patient data sets. Although, we were able to recover the predictive power of the analyzed multivariate models by re-optimization in the patient cohort, and by that confirm transferability of the underlying radiomic signatures, better calibration of the microCT scanner and selection of scanning parameters could potentially improve the transferability. Second, our study focused on CT-derived radiomics approaches, since HRCT scans are part of the routine work-up of ILD patients. Other imaging modalities such as nuclear imaging or MRI, although currently rarely performed in ILD (10), could be evaluated for radiomic analyses to assess whether they might provide additional or complementary information.



Conclusion

Radiomic signatures of experimental ILD derived from microCT scans translated as prognostic factors to HRCT of SSc-ILD. By this we showed that the well-established experimental model of BLM-induced ILD is a valuable system to test defined hypotheses in radiomics research for later validation in human cohorts.
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Background: The estimation of post-mortem interval (PMI) is one of the most important problems in forensic pathology all the time. Although many classical methods can be used to estimate time since death, accurate and rapid estimation of PMI is still a difficult task in forensic practice, so the estimation of PMI requires a faster, more accurate, and more convenient method.

Materials and methods: In this study, an experimental method, lab-on-chip, is used to analyze the characterizations of polypeptide fragments of the lung, liver, kidney, and skeletal muscle of rats at defined time points after death (0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 21, 24, 27, and 30 days). Then, machine learning algorithms (base model: LR, SVM, RF, GBDT, and MLPC; ensemble model: stacking, soft voting, and soft-weighted voting) are applied to predict PMI with single organ. Multi-organ fusion strategy is designed to predict PMI based on multiple organs. Then, the ensemble pruning algorithm determines the best combination of multi-organ.

Results: The kidney is the best single organ for predicting the time of death, and its internal and external accuracy is 0.808 and 0.714, respectively. Multi-organ fusion strategy dramatically improves the performance of PMI estimation, and its internal and external accuracy is 0.962 and 0.893, respectively. Finally, the best organ combination determined by the ensemble pruning algorithm is all organs, such as lung, liver, kidney, and skeletal muscle.

Conclusion: Lab-on-chip is feasible to detect polypeptide fragments and multi-organ fusion is more accurate than single organ for PMI estimation.

KEYWORDS
forensic pathology, machine learning, multi-organ fusion, lab-on-chip, post-mortem interval


1. Introduction

Post-mortem interval (PMI), also called time since death, is the elapsed time between the death of an organism and the initiation of an official investigation (1). It is very important for the investigation of death in civil and criminal cases to accurately infer the time of death, such as civil investigation of life insurance fraud, identifying the victim and suspect, and accepting or rejecting the suspect’s alibi (2). Traditional inference methods of PMI are usually based on corpse temperature (3) and early corpse phenomena such as livor mortis (4), rigor mortis (5), and post-mortem turbidity of cornea (6); it is difficult to precisely confirm the time since death, because these methods are rough, subjective, and empirical, as well as are greatly affected by environmental factors (7).

With the development of biomolecular technology, detection methods based on nucleic acid (1, 8, 9), metabolites (10, 11), and microorganisms (2, 12, 13) have been widely used in the past few decades. Some studies suggested that the genes, such as GAPDH2, ACTB2, 18S rRNA, miR-1, and miR-133a, are suitable indicators for estimating PMI (14–16). The level of the metabolite, which was detected by nuclear magnetism, mass spectrometry, and spectrograph, also provided a new direction for PMI inference at the tissues level (17–20). A further investigation into microorganisms of human and animal remains to study microbial community succession after death (21–24). In addition, with the development of imaging technology, post-mortem computed tomography (25), microCT (26), and visible and thermal 3D imaging (27) have also been used to infer the time since death. These technologies provide valuable ideas and methods for PMI estimation in forensic practice.

Protein is one of the biological macromolecules, an essential component of the organism, and participates in every cellular process. In recent years, proteins, in particular, have been evaluated for their potential to aid PMI delimitation. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)/western blotting (28, 29), immunohistochemistry (30, 31), and mass spectrometry (32, 33) were widely used to estimate the time since death. Although these approaches have shown some success and promise, there are certain limitations with these existing approaches, e.g., tedious operations, money-wasting, and slow. More importantly, there is no mature method to predict PMI accurately.

In the present study, a new experimental method, called lab-on-chip, is used to analyze protein and its degradation fragments, i.e., polypeptides. This method utilizes the Agilent 2,100 Bioanalyzer in combination with the protein LabChip kit, which simplifies the process of bioanalytical investigation and provides a system with standardized analysis handling and data processing (34). Although lab-on-chip cannot identify a polypeptide as a particular protein, the technology has been proven to be available for examining snake venom composition (35) and soybean cultivars in previous studies (36). It can perform molecular mass, migration time, peak height, peak area, relative concentration, and percentage of overall protein content and generate complete multi-peak spectrums of a sample. In addition, lab-on-chip is fast with minimal sample consumption, high throughput, and automatic quantitation (37), which means it is more appropriate for estimating PMI in practical work. At the same time, the abovementioned advantages also contribute to the united use of lab-on-chip and machine learning.

In the past decades, most studies have applied a single organ, such as the degradation of rat muscle proteins, used to estimate PMI by Zissler et al. (38). Although the two organs were used to estimate the time since death in the study by Mona Mohamed Abo El-Noor, the results of the heart and kidney were not analyzed jointly (39). In recent years, researchers from other fields have discovered that multi-organ fusion based on machine learning is more helpful to cancer diagnosis (40) and preclinical drugs than single organ (41). Hence, it is a beneficial trial that exploits multi-organ fusion and machine learning in estimating PMI. In the current study, lab-on-chip will analyze the polypeptide fragments in the lung, liver, kidney, and skeletal muscle of rat after death. We compare the performance of machine learning based on single and multiple organs to estimate the time since death and obtain the best prediction model based on multiple organs, which provides a new idea for forensic death time estimation.



2. Materials and methods

This study’s workflow mainly involves the following (Figure 1). (1) Lab-on-chip analysis of the post-mortem degradation of polypeptides from the lung, liver, kidney, and skeletal muscle of rat at defined time points; (2) Base models (LR, SVM, RF, GBDT, and MLPC) and ensemble models (stacking, soft voting, and soft-weighted voting) evaluate the single organ’s performances to predict PMI; and (3) The ensemble model based on a multi-organ fusion strategy evaluates multi-organ performances to predict PMI.
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FIGURE 1
The workflow of this study.



2.1. Equipment, reagents, and supplies

A two-place balance (AX223ZH/E, OHAUS, China), vortex finder (VXMNFS, OHAUS, China), thermocell mixing block (MSC-100, Aosheng, China), heraeus sepatech (2-16PK, Sartorius, Germany), climate chamber (RX2-260B, Ningbo, China), and Agilent 2,100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany) were used.

Deionized water for protein extraction, a Agilent Protein 230 LabChip® kit (Agilent Technologies, CA, USA), and dithiothreitol (DTT, 1 M; Solarbio, Beijing, China) were used for the preparation of denaturant.



2.2. Animal sample

This study was approved by the Institutional Animal Care and Use Committee of Shanxi Medical University. Animals received humane care in conformity with the principles in the Guide for the Care and Use of Laboratory Animals protocol, published by the Ministry of the People’s Republic of China. This study was carried out in compliance with the ARRIVE guideline and evaluated and approved by the Institutional Animal Care and Use Committee of the Shanxi Medical University of China.

A total of 84 healthy male Sprague–Dawley rats, 10–12 weeks, weighing 200–230 g (provided by Animal Center of Shanxi Medical University) were housed in a cage with rat chow and water under a 12-h light–dark cycle at 22–25°C at a relative humidity of 40–60%. After 2 days, rats were sacrificed after pentobarbital anesthetization via cervical dislocation. The lung, liver, kidney, and right hind limb gastrocnemius muscle of each rat were harvested (200 mg ± 2 mg) at the fixed time points of 0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 21, 24, 27, and 30 days (n = 6 rats) after sacrifice, and a total of 336 samples were placed in liquid nitrogen for quick freezing and stored at –80°C until analysis.

For external validation, 28 rats were taken according to the methods of the abovementioned experimental process. Each time point took two rats.



2.3. Water-soluble protein extraction and samples preparation

Analysis was performed according to the protocol provided by the manufacturer. A volume of 200 mg of the lung, liver, kidney, and skeletal muscle tissues were ground, added to deionized water containing 1% phenylmethylsulfonyl fluoride (PMSF) according to the ratio of 1:3.5 (w/v), then incubated on ice for 60 min, and centrifuged at 12,000 × g (15 min, 4°C). A volume of 4 μl solution per sample was diluted by mixing with 2 μl of the sample buffer with a reducing agent (DTT). The diluted solution and ladder (Agilent) were heated for 5 min at 95°C and then diluted with 84 μl H2O. Samples and ladder were loaded on the protein chip and measured immediately. To confirm the protein extraction process or the protein analysis process by lab-on-chip had avoided errors as much as possible, quality control samples were prepared.



2.4. Microfluidic LoaC electrophoresis

The protein profile of rat skeletal muscle using microfluidic capillary gel electrophoresis with laser-induced fluorescence (LIF) detection was carried out on the Bioanalyzer Agilent 2,100 using the Protein 230 Kit (Agilent Technologies, Waldbronn, Germany), which allows the separation of proteins from 14 to 230 kDa. According to the protocol, 4 μl of each tissue sample was mixed with 2 μl denaturing solution (35 mM dithiothreitol) in 0.5-ml tubes and denatured at 100°C for 5 min, incubated in ice for 2 min, and centrifuged for 15 s. Pure water was added to 100 μl, and samples were vortexed. Then, 6 μl of samples were added to each well of the chip. For the analysis, three biological replicates were used for each sample.

All reagents were provided with each LabChip kit, including the standard protein ladder containing different proteins with known concentrations and molecular weights that can be used for semi-quantitative analysis. The Agilent 2,100 Bioanalyzer separates and calculates the protein fragments based on the microfluidic capillary gel electrophoresis with LIF detection, where fluorescence intensities of proteins are measured. The migration times of polypeptide fragments were used to estimate the respective protein bands’ molecular weights, and the height was calculated to semi-quantify each protein fragment’s concentration. Data analysis performed with the Agilent 2,100 Expert software automatically determines molecular weight, concentration, and percentage of the sample’s total individual proteins.



2.5. Confirmation of polypeptide fragments and data preprocessing

All protein electrophoresis chromatography analyses were performed by “comparison” and “overlap” operations in the software to calibrate, identify, and adjust peaks according to the lower and upper markers. The same polypeptide fragments of each organ can be marked as the same number according to the molecular mass of these peptides, from minor to major. Numerical data such as protein molecular mass, peak height, and migration time are outputted for subsequent analysis.

It is essential to confirm the polypeptide fragments, which could be used as an indicator to estimate the PMI. The present study acquired the raw data through Agilent 2,100 Expert software, and all CSV data were imported into MS Excel. Then, the polypeptide fragments detected in five out of six biological replicate samples were identified as meaningful indicators for estimating PMI. The deviation of migration times less than 2% was considered the same polypeptide fragment in different samples.

Then, the datasets of each organ with 84 rats have been randomly divided into two, namely, the training dataset, which was made up of 70% of the dataset, and the testing dataset, also named internal validation, which comprised the remaining 30%, and standardized. For the external validation of 28 rats, the same data preprocessing was applied as mentioned earlier.



2.6. Machine learning


2.6.1. Feature importance evaluated for machine learning

Feature selection, or feature ranking, reduces data processing time and memory requirements for machine-learning algorithms to deal with the essential predictors. In the present study, feature importance was evaluated through the least absolute shrinkage and selection operator (LASSO) (42), recursive feature elimination (RFE) (43), sequential forward selection (SFS), and sequential back selection (SBS) (44, 45).



2.6.2. Sub-model training and evaluation for PMI using different organs

Five machine learning algorithms, including Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (2), Gradient Boosting Decision Tree (GBDT), and Multilayer Perceptron Classier (MLPC), were implemented to predict PMI in the present study. The robustness and efficiency of 20 sub-models according to the four feature selection methods cross-match five machine learning algorithms are analyzed for each organ. The performance comparison analysis was performed by sequencing accuracy, precision, recall, and area under the ROC curve (AUC) of internal and external validation according to the order from good to wrong. And then, the ranking scores of all metrics were summed for each sub-model. Finally, the optimal classification model was determined by comparing the scores of 20 sub-models of each organ. It should be noted that the principle of this scoring method is to combine internal and external verification and comprehensive consideration of multiple evaluation indicators. Therefore, we believe that the model with the highest score has the highest comprehensive efficiency, which means that the model may not be the best in all indicators.



2.6.3. Ensemble model development and evaluation for PMI based on single organ

Ensemble learning can improve the classifier’s performance by combining the trained sub-models contribution to solving the same classification problem in some studies (46). In the present study, there are three ensemble models, namely, stacking (47), soft voting (48), and soft-weighted voting (49), used to estimate the PMI based on the single organ. The accuracy, precision, recall, and AUC were calculated separately.



2.6.4. Multi-organ fusion strategy and ensemble pruning algorithm

A framework that is suitable for multi-organ fusion analysis is proposed in this study. First, each organ’s best combinations of feature selection methods and sub-models were combined into a pipe. Four pipelines are used as four sub-models to complete each organ’s feature selection and PMI prediction. Then, four parallel pipelines were performed to predict PMI by the abovementioned three ensemble models. In this step, the four organs are fused to predict PMI. Finally, the ensemble models based on multi-organ fusion were compared with the optimal sub-models and ensemble models based on single organ.

After getting the best model, the ensemble pruning algorithm was applied to ensure the best combination of an organ. The ensemble pruning algorithm is a technique where the model starts with all possible members being considered and removes members from the ensemble until no further improvement is observed. This could be performed in a greedy manner where members are removed one at a time and only if their removal results in a lift in the performance of the overall ensemble.





3. Results


3.1. Characterization of polypeptide fragments after death

A total of 45 polypeptide fragments were identified with different migration times in the lung, liver, kidney, and skeletal muscle samples (Table 1). These polypeptide fragments may be highly correlated with the PMI, and 21, 22, 19, and 23 polypeptide fragments were found in the lung, liver, kidney, and skeletal muscle tissues, respectively (Figure 2A). Among these polypeptide fragments, 4 polypeptide fragments were detected in four organs, 7 polypeptide fragments were present in three organs, and 14 polypeptide fragments were present in two organs (Figure 2B). There were three polypeptide fragments specific to the kidney and lung but seven to the liver and skeletal muscle.


TABLE 1    The polypeptide fragments in the lung, liver, kidney, and skeletal muscle samples.
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FIGURE 2
The characteristics of polypeptide fragments in different organs at different times after death. (A) The numbers of polypeptide fragments in different organs. (B) Co-expression analysis of polypeptide fragments in different organs. (C) The gel-like image of polypeptide fragments in skeletal muscle at the same time points after death. This figure is the simulated gel electrophoresis figure automatically given by Agilent 2,100 Bioanalyzer according to the molecular weight. Lanes 1–8 represent the gel diagram of eight skeletal muscle samples in 0 day after death. The migration time (s) is set on the side of the gel image. The purple bands at the top and the green bands at the bottom are the upper/lower ladder, which is the standard, respectively. The remaining blue bands are the detected protein fragments. The shade of the blue band represents the content of each protein fragment. (D) The electropherogram of skeletal muscle at the same time points after death in the microfluidic chip electrophoresis (LoaC) system. Multi-peak spectrums overlaid of different rats at the same time points after death, and there was no significant difference in peak height and number of peaks in the superposition of multi-peak spectra at the same time point after death of different rats. It is worth noting that there is a peptide peak around 24.5s in all samples at the same time point after death. (E) The gel-like image of polypeptide fragments in skeletal muscle at different time points after death. This figure is the simulated gel electrophoresis figure automatically given by Agilent 2,100 Bioanalyzer according to the molecular weight. Lanes 1–14 represent the gel diagram of 14 time points of skeletal muscle samples within 0–30 days after death. The migration time (s) is set on the side of the gel image. The purple bands at the top and the green bands at the bottom are the upper/lower ladder, which is the standard, respectively. The remaining blue bands are the detected protein fragments. The shade of the blue band represents the content of each protein fragment. (F) The electropherogram of skeletal muscle at different time points after death in the microfluidic chip electrophoresis (LoaC) system. The peak heights showed significant differences and a new peptide peak appears near 24.5 s by comparing multi-peak spectrums at different time points after death.


After further analysis of the data, we found that the content of the abovementioned polypeptide fragments was highly homogeneous in the samples with the same PMI (Figures 2C, D). The results showed no significant difference among the biological replicates, providing that the experimental operation was stable and reliable. In addition, the polypeptide fragments showed different peak heights at different PMIs (Figures 2E, F), which highly correlated with PMI.

To further clarify the correlation between peptide fragment content and PMI, the earlier data were clustered using TB tools. It can be found from the clustering heat map that the death time of this experiment could be divided into five different stages according to the content of polypeptide fragments in the lung. Specifically, 0 and 3 days, 1 and 2 days, 5, 18, and 21 days, 7, 12, and 15 days, and 9, 24, 27, and 30 days were divided together (Figure 3A). Similarly, the samples can be distinguished into 5, 4, and 5 different periods according to the content of polypeptide fragments in the liver, kidney, and skeletal muscle (Figures 3B–D).
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FIGURE 3
The clustering heat map based on the peak heights of polypeptide fragments in different organs. (A) Lung samples could be divided into five different stages, 0 and 3 days, 1 and 2 days, 5, 18, and 21 days, 7, 12, and 15 days, and 9, 24, 27, and 30 days were divided together, respectively. (B) Liver samples could be divided into five different stages, 1 and 2, 3, and 5 days, 7 and 21 days, 12 days, and 0, 9, 15, 18, 24, 27, and 30 days were divided together, respectively. (C) Kidney samples could be divided into four different stages, 0 to –3 days, 5, 7, and 9 days, 12, 15, 18, 21, and 24 days, and 27 and 30 days were divided together, respectively. (D) Skeletal muscle samples could be divided into five different stages, 0–2 days, 3, 5, and 7 days, 9, 12, 15, and 21 days, 18 and 27 days, and 24 and 30 days were divided together, respectively.




3.2. Performance of sub-models based on different organs


3.2.1. Evaluating the sub-models by accuracy, precision, recall, and AUC

To compare the predictive accuracy of four different organs in inferring the PMI, a total of 80 combined results were generated by cross-combining of four feature selection methods (e.g., LASSO, RFE, SBS, and SFS) and five machine learning algorithms (e.g., LR, SVM, RF, GBDT, and MLPC) (Figure 4A).
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FIGURE 4
The performance of sub-models generated by cross-combination of four feature selection methods and five machine learning algorithms based on single organ. (A) Workflow of cross-combination of four feature selection methods and five machine learning algorithms to establish sub-models to predict PMI based on the lung, liver, kidney, and skeletal muscle. (B) The heat map on the left show accuracy of internal validation of sub-models based on lung, liver, kidney and skeletal muscle, and the heat map on the right shows the accuracy of external validation. (C) The heat map on the left show precision of internal validation of sub-models based on the lung, liver, kidney, and skeletal muscle, and the heat map on the right shows the precision of external validation. (D) The heat map on the left show recall of internal validation of sub-models based on the lung, liver, kidney, and skeletal muscle, and the heat map on the right shows the recall of external validation. (E) The heat map on the left shows AUC of internal validation of sub-models based on the lung, liver, kidney, and skeletal muscle, and the heat map on the right shows AUC of external validation.


The accuracy, precision, recall, and AUC of sub-models with four organs are summarized in Figures 4B–E. As is shown in Figure 4B, the internal validation accuracy ranges of the lung, liver, kidney, and skeletal muscle were 0.462 (RFE + GBDT and SFS + GBDT)–0.769 (SBS + RF and SFS + RF), 0.231 (LASSO + SVM)–0.692 (SFS + RF), 0.577 (SFS + GBDT)–0.808 (LASSO + RF and SFS + RF), and 0.346 (RFE + GBDT)–0.769 (RFE + RF, SFS + SVM, and SFS + RF), respectively. Their external verification accuracies were 0.286 (SFS + GBDT)–0.679 (LASSO + RF and LASSO + MLPC), 0.179 (LASSO + MLPC)–0.536 (SFS + RF), 0.429 (SFS + GBDT)–0.714 (LASSO + RF and SFS + RF), and 0.321 (SFS + GBDT)–0.679 (RFE + RF, SBS + RF, and SFS + RF), respectively. Similarly, the analysis of Figures 4C–E shows that the model with the kidney as the detection sample performs best in precision, recall, and AUC evaluation indexes.

The abovementioned results indicated that the liver is the worst, and the kidney is the best to predict PMI among the four organs. As for the feature selection methods, the four feature selection methods cannot clearly distinguish the advantages and disadvantages. These results further show that LASSO, RFE, and SFS help determine feature subsets, which means that feature selection methods are necessary for different organs. It is particularly interesting that RF, the best machine learning algorithm in all organs, has advantages over other machine learning algorithms in predicting PMI, as mentioned earlier, while GBDT performed worst in the lung, kidney, and skeletal muscle. The four organs’ remaining indicators were similar results (Figures 4B–E).



3.2.2. Screening optimal model by the ranking principle

The ranking scores principle described in the “Sub-models training and evaluation for PMI using different organs” section was used to compare the sub-models of each organ comprehensively. As is shown in Table 2, the best model combination in the lung and liver is SFS + RF, with scores of 146 and 149, respectively. The optimal sub-model of the kidney is LASSO + RF, which has a score of 149. The best sub-model of skeletal muscle is RFE + RF, which has a score of 139.


TABLE 2    The scores of sub-models generated by cross-combination of four feature selection methods and five machine learning algorithms.
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We found that the kidney is more suitable than other organs to predict PMI, comparing the performance of the best models for each organ. In optimal sub-models of four organs, 0.808 and 0.714 are the highest internal and external validation accuracies based on LASSO-RF of the kidney (Figure 5E), respectively. In Figure 5F, the confusion matrix of external verification of the kidney showed that eight samples were misjudged, and many miscalculations in the prediction results of the kidney were found at 0–2 days and 12–18 days after death. Next, the internal validation of the lung and skeletal muscle is 0.769 based on SFS-RF. The former’s accuracy of external validation is 0.607 lower than the latter, which is 0.679 (Figures 5A, G). The liver is the worst organ to predict PMI; the accuracy is 0.692 and 0.536 in internal and external validation using SFS-RF, which is the best classification model for the liver (Figure 5C). As shown in Figures 5B, D, H, there are 11, 13, and 9 samples of the lung, liver, and skeletal muscle, respectively, which were wrongly judged in their external verification.
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FIGURE 5
The performance and confusion matrix of the optimal sub-models with the lung, liver, kidney, and skeletal muscle. (A) The optimal sub-model of the lung is SFS + RF. The accuracy, precision, recall, and AUC of internal validation are 0.769, 0.810, 0.798, and 0.948, respectively. The accuracy, precision, recall, and AUC of external verification of this model are 0.607, 0.690, 0.607, and 0.919, respectively. (B) The confusion matrix of SFS + RF for the lung shows that the external validation samples were completely predicted correctly only at 1, 3, 9, and 24 days. The external validation predictions were wrong at 15 days after death. There was a misjudgment in the samples at other PMI. (C) The optimal sub-model of the liver is SFS + RF. The accuracy, precision, recall, and AUC are 0.692, 0.732, 0.750, and 0.900, respectively. The accuracy, precision, recall, and AUC of external verification are 0.536, 0.574, 0.536, and 0.865, respectively. (D) The confusion matrix of SFS + RF for the liver shows that the external validation samples of Liver were completely predicted correctly at 1, 3, 12, and 21 days. The external validation predictions were wrong at 0, 24, and 30 days after death. There was a misjudgment in the samples at other PMI. (E) The optimal sub-model of the kidney is LASSO + RF. The accuracy, precision, recall, and AUC are 0.808, 0.760, 0.786, and 0.962, respectively. The accuracy, precision, recall, and AUC of external verification are 0.714, 0.798, 0.714, and 0.939, respectively. (F) The confusion matrix of LASSO + RF for the kidney shows that the external validation samples of Kidney were completely predicted correctly at 3, 5, 9, 21, 24, and 30 days, and there was a misjudgment in the samples at other PMI. (G) The optimal sub-model of skeletal muscle is RFE + RF. The accuracy, precision, recall, and AUC are 0.769, 0.762, 0.786, and 0.951, respectively. The accuracy, precision, recall, and AUC of external verification of this model are 0.679, 0.649, 0.679, and 0.912, respectively. (H) The confusion matrix of RFE + RF for skeletal muscle shows that the external validation samples of skeletal muscle were completely predicted correctly at 0, 2, 3, 5, 12, 21, and 24 days, The external validation predictions were wrong at 9 and 27 days after death. There was a misjudgment in the samples at other PMI.





3.3. Performance of the single organ based on ensemble models

Considering that different prediction models have different prediction performances in four organs, this experiment will cross-combine the four feature selection methods and three ensemble models mentioned earlier to establish an ensemble model to improve the performance of PMI estimation in a single organ.

The performance of the ensemble models of four organs is shown in Figure 6A. In the validation of the lung, LASSO + soft-weighted voting generated the highest accuracy of 0.808 in the internal validation, while LASSO + soft voting generated the highest accuracy of 0.643 in the external validation. The best accuracy of internal validation based on the liver is 0.654, which was obtained by RFE + soft voting and RFE + soft-weighted voting. The accuracy of RFE + soft-weighted voting for external validation of the liver had reached 0.464. For kidneys, the accuracy for internal validation of LASSO + soft voting, LASSO + soft-weighted voting, SFS + soft voting, and SFS + soft-weighted voting was 0.808, while the optimal accuracy for external validation of LASSO + soft voting and RFE + stacking was 0.679. The highest accuracy for internal validation of skeletal muscle was 0.769, and the combined strategies were RFE + soft voting and RFE + soft-weighted voting, respectively. Furthermore, the external validation accuracy of SFS + soft voting and SFS + soft-weighted voting for skeletal muscle is 0.643. The details of the precision, recall, and AUC have similar results, as shown in Figure 6A.
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FIGURE 6
The prediction performance of ensemble model and best sub-model based on single organ. (A) Histogram performance of internal and external validation of four organs cross-combining of four feature selection methods and three ensemble models. (B) Radar map of SFS-RF and LSAAO-soft-weighted voting based on internal validation of lung. (C) Radar map of SFS-RF and LSAAO-soft-weighted voting based on external validation of lung. (D) Radar map of SFS-RF and RFE-soft-weighted voting based on internal validation of liver. (E) Radar map of SFS-RF and RFE-soft-weighted voting based on external validation of liver. (F) Radar map of LSAAO-RF and LSAAO-soft voting based on internal validation of kidney. (G) Radar map of LSAAO-RF and LSAAO-soft voting based on external validation of kidney. (H) Radar map of RFE-RF and SFS-soft-weighted voting based on internal validation of skeletal muscle. (I) Radar map of RFE-RF and SFS-soft-weighted voting based on external validation of skeletal muscle.


According to the ranking principle described in the “Sub-models training and evaluation for PMI using different organs” section, the optimal ensemble model of each organ was screened in this experiment. The best ensemble model in the lung is LASSO + soft-weighted voting with ranking scores of 89, and the internal and external validation accuracies were 0.808 and 0.571, respectively (Table 3). Specifically, the optimal ensemble model of RFE + soft-weighted voting based on the liver was 89.5, and the internal and external validation accuracies were 0.654 and 0.464, respectively. The internal and external verification accuracies for the kidney are 0.808 and 0.679, respectively, based on LASSO + soft voting, which has the highest score of 76. The best ensemble model of skeletal muscle is SFS + soft-weighted voting, which scored 81, and the internal and external accuracy were 0.731 and 0.643, respectively.


TABLE 3    The scores of ensemble models based on four organs.
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In the present study, each organ’s ensemble model was compared with the best sub-model of the same organ to determine whether the integrated model can improve the PMI prediction performance. Compared with SFS-RF, the best sub-model of the lung, although all metrics of internal validation are slightly improved, its external validation metrics significantly decreased according to LASSO + soft-weighted voting (Figures 6B, C). The RFE + soft-weighted voting model based on the liver predicts PMI with the most indicators lower than the best sub-model except for the AUC of internal and external validation (Figures 6D, E). Compared with the optimal kidney sub-model, the LASSO + soft voting model weakly improves the precision and AUC of internal validation (Figures 6F, G). By comparing SFS-soft-weighted voting with SFS-RF of skeletal muscle, the former only has feeble improvement in AUC of internal validation and precision of external validation (Figures 6H, I).

The abovementioned results indicated that the SFS + RF was the optimal model for predicting PMI based on the kidney. However, the single organ ensemble model could not effectively improve the PMI prediction performance. Therefore, in the multi-organ fusion based on ensemble model construction, the optimal sub-model performance will be compared with other models’ performance in predicting PMI.



3.4. Performance of multi-organ fusion based on ensemble models

Since the single-organ ensemble strategy cannot improve the prediction efficiency of PMI, we further focus on the multi-organ integration strategy. Figure 7A shows the appropriate multi-organ fusion model establishment steps for estimating PMI. In brief, the best combinations of feature selection methods and sub-models in the lung, liver, kidney, and skeletal muscle were piped based on a multi-organ fusion strategy. Then, the ensemble model with the highest scores was selected by comparison. Finally, the ensemble pruning algorithm integrates multi-organ data based on the optimal model for PMI estimation.
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FIGURE 7
Performance of multi-organ fusion strategy to predict PMI. (A) Framework of multi-organ fusion strategy to predict PMI. (B) Accuracy, precision, recall, and AUC of internal validation for stacking are 0.692, 0.740, 0.774, and 0.979, respectively. Accuracy, precision, recall, and AUC of internal validation for soft voting are 0.962, 0.964, 0.964, and 0.991, respectively. Accuracy, precision, recall, and AUC of internal validation for soft-weighted voting are 0.923, 0.94, 0.929, and 0.993, respectively. (C) Accuracy, precision, recall, and AUC of external validation for stacking are 0.679, 0.668, 0.679, and 0.978, respectively. Accuracy, precision, recall and AUC of external validation for soft voting are 0.893, 0.94, 0.893, and 0.99, respectively. Accuracy, precision, recall, and AUC of external validation for soft-weighted voting are 0.893, 0.94, 0.893, and 0.992, respectively. (D) The ROC curve of internal and external validation for the stacking model based on multi-organ fusion strategy. (E) The confusion matrix of external validation for the stacking model, the mispredictions occurred 7 to 12 days and 18 to 24 days after death. (F) The ROC curve of internal and external validation for the soft voting model based on multi-organ fusion strategy. (G) The confusion matrix of external validation for the soft voting model. The external validation samples were predicted incorrectly at 7, 9, and 24 days of PMI. (H) The ROC curve of internal and external validation for the soft-weighted voting model based on multi-organ fusion strategy. (I) The confusion matrix of external validation for the soft-weighted voting model. The samples were mispredicted at 7, 9, and 24 days.


By comparing the multi-organ integration model’s internal and external verification accuracies, the soft voting fusion strategy has an absolute advantage with the internal and external verification accuracies of 0.962 and 0.893, respectively. In contrast, the staking model had the worst performance, and its internal and external validation accuracy is even lower than the single-organ optimal model based on the kidney, with only 0.692 and 0.679. The performance of soft-weighted voting was similar to that of soft voting, with internal and external validation accuracies of 0.923 and 0.893 (Figures 7B, C).

Although the AUC values of the internal and external validation of the three fusion strategies are all higher than 0.97, the confusion matrix results show that some samples are still misjudged according to the external validation (Figures 7D–I). The sample prediction error is mainly more than 15 days after death, indicating that if the prediction results show that the PMI exceeds 15 days, the prediction accuracy decreases and the credibility decreases.

The ensemble pruning algorithm showed that the optimal combination of multiple organs was four organs, i.e., lung, liver, kidney, and skeletal muscle, used in the present study to infer the PMI. Furthermore, soft voting and soft-weighted voting can significantly improve the prediction performance of PMI based on the multi-organ fusion strategy (Table 4).


TABLE 4    The summary of all the optimal models is based on single organ sub-models, single organ ensemble models, and multi-organ fusion strategy.
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3.5. Comparison of lab-on-chip and traditional protein detection methods

To further clarify the superiority of the analysis method and its application value in forensic practice, we summarize the main improvements of the proposed approach compared to the traditional methods. And the terms include whether the required instruments are expensive, whether the detection methods are cumbersome, and the length of analysis time. The results show that the present study’s detection method and analysis strategy have good application prospects for estimating PMI (Table 5).


TABLE 5    Comparison of lab-on-chip and traditional protein detection methods.
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4. Discussion

Protein is one of the important components of an organism, so forensic pathologists have always used the analysis of protein degradation after death as an auspicious tool to determine PMI. Previous studies have shown that some specific proteins and their degradation products (e.g., desmin, cTnT, and calpain 1) could be used as markers for specific time intervals of post-mortem decomposition (50). In contrast, many protein detection methods have tested their applicability for predicting PMI. However, these technologies are complex, time-consuming, and expensive, but more importantly, the accuracy is not enough to infer PMI (51).

In the present study, the lab-on-chip combines Agilent 2,100 biological analyzer and the Protein 230 Plus LabChip kits, enabling the separation of polypeptides in the 14–230 kDa range. This technique allows the analysis of 10 samples in 30 min and avoids all the cumbersome post-electrophoresis procedures required for SDS-PAGE analysis, including staining, destaining, and storage, and does not need additional image analysis equipment. It is worth noting that the technology can directly display the results as gel-like images and electrophoretograms. It also can output the characteristics of each polypeptide peak as numerical data, such as molecular mass, peak height, and migration time. More importantly, the technology can simultaneously analyze multiple polypeptides or their degradation fragments of a sample. With this high-throughput advantage, this technology will help establish a human sample database and then realize the prediction of human samples with unknown PMI in the future.

The results of this study showed that the prediction accuracy of the kidney was the highest, followed by the lung and skeletal muscle, and that of the liver was the lowest when applying sub-models based on a single organ to predict PMI. The reason may be that the kidney, as a deep organ in the organism, is less affected by the outside world and less protease. The lung and skeletal muscles are greatly affected by the external environment because of gas exchange and relative superficial organs. The result of the liver was the lowest mainly because the detoxification organ of the organism contains many proteolytic enzymes.

According to the results mentioned in the “Performance of the single organ based on ensemble models” section, we found that the performance of ensemble models based on single organ is worse than that of the sub-model. When generating ensemble models, some fundamental principles should be considered. The first is diversity, which means the machine learning algorithm participating in ensemble learning should have enough diversity to obtain ideal prediction performance. The second is prediction performance, which means the individual machine learning algorithm should be as high as possible (52, 53). In the present research, we have used multiple models to ensure the diversity of algorithms. However, the disadvantage is that we have not deleted the worst-performing sub-models, such as GBDT, which may lead to the low accuracy of the integrated model.

In the current study, we designed a multi-organ fusion strategy combining multiple organs to predict PMI. The soft-voting and soft-weighted voting model based on multi-organ fusion strategy improved the predictive performance of internal and external verification. The results show that the soft-voting model drastically improved the accuracy of internal verification from 0.808 to 0.962 and the accuracy of external verification from 0.714 to 0.893. The reason may be that the essence of a multi-organ fusion strategy is to fuse and analyze multiple training datasets to fit different base models. It helps to integrate the characteristics of different organs better and increases the amount of data (53). Another possible reason is that we choose the optimal sub-model of the four organs in the multi-organ fusion strategy to have enough diversity to obtain ideal prediction performance (54).

Through this study, we also found significant differences in the predictive power of different ensemble models, which means it is necessary to compare and screen them. Compared with the Lu et al.’s study, they used the same four organs combined with mass spectrometry and multi-organ fusion to predict PMI, with an accuracy of 0.93 based on a stacking ensemble (55). However, the performance of the stacking ensemble was not satisfactory in our research. On the contrary, the accuracy of soft voting reached 0.96, which may be related to the different analytical techniques.

Ensemble pruning methods, called ensemble selection methods, aim to reduce ensemble models’ complexity. These methods search for a subset of ensemble members that performs to some extent as well as the original ensemble (56). This method can reduce the size of the ensemble model, save training time, and improve accuracy and robustness (57). Hence, in our study, we also used the ensemble pruning algorithm to select the optimal subsets of base models for multi-organ fusion, which also means that we can determine the optimal multi-organ combination for the estimation of PMI. Finally, we obtained that the optimal organ combination is the lung, liver, kidney, and skeletal muscle for predicting time since death. This result after pruning also suggests that we should try to use more organs to find the best organ combination to infer future PMI.

In forensic medicine, estimating the PMI is influenced by many internal and external factors such as temperature and humidity, body weight, and disease. The limitations should be avoided in future studies, such as considering more influencing factors and increasing the number of human samples. Although the current experiment involves an idealized condition, we have proven a new analysis method, lab-on-chip combined with a machine learning algorithm, could use to predict the PMI. Furthermore, the multi-organ fusion strategy can significantly improve the performance of PMI prediction.
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Background: Triple-negative breast cancer (TNBC) is proposed at the beginning of this century, which is still the most challenging breast cancer subtype due to its aggressive behavior, including early relapse, metastatic spread, and poor survival. This study uses machine learning methods to explore the current research status and deficiencies from a macro perspective on TNBC publications.

Methods: PubMed publications under “triple-negative breast cancer” were searched and downloaded between January 2005 and 2022. R and Python extracted MeSH terms, geographic information, and other abstracts from metadata. The Latent Dirichlet Allocation (LDA) algorithm was applied to identify specific research topics. The Louvain algorithm established a topic network, identifying the topic’s relationship.

Results: A total of 16,826 publications were identified, with an average annual growth rate of 74.7%. Ninety-eight countries and regions in the world participated in TNBC research. Molecular pathogenesis and medication are most studied in TNBC research. The publications mainly focused on three aspects: Therapeutic target research, Prognostic research, and Mechanism research. The algorithm and citation suggested that TNBC research is based on technology that advances TNBC subtyping, new drug development, and clinical trials.

Conclusion: This study quantitatively analyzes the current status of TNBC research from a macro perspective and will aid in redirecting basic and clinical research toward a better outcome for TNBC. Therapeutic target research and Nanoparticle research are the present research focus. There may be a lack of research on TNBC from a patient perspective, health economics, and end-of-life care perspectives. The research direction of TNBC may require the intervention of new technologies.

KEYWORDS
machine learning, bibliometric analysis, Latent Dirichlet Allocation, triple-negative breast cancer, Nanoparticle research


Highlights


-All Triple-negative breast cancer (TNBC) publications in the PubMed database from 2005 to 2021 were included in the analysis.

-Triple-negative breast cancer research mainly focused on three aspects: Therapeutic target research, Prognostic research, and Mechanism research.

-Therapeutic target research and Nanoparticle research are the present research focus.

-The Latent Dirichlet Allocation (LDA) algorithm we built is a convenient tool that can help researchers discover changes in research focus from medical text big data.





1. Background

Breast cancer currently accounts for 30% of newly diagnosed malignant tumors in women and causes 15% of women to die from cancer (1). For the first time, Perou described the intrinsic molecular subtypes of breast cancer and described Triple-negative breast cancer (TNBC) in 2000 using complementary DNA microarray technology (2). Furthermore, TNBC is the most aggressive subtype of breast cancer, accounting for about 10–20% of breast cancer cases (3, 4). TNBC is still unsatisfactory in diagnosis and treatment.

Bibliometrics is a quantitative analysis method of academic publications, which can discover the progress of discipline research from a macro perspective and provide support for future research directions (5). TNBC-related literature information analysis is scarce. Teles et al. (6) conducted a bibliometric study of 1,932 publications in 2018 to study nanomedicine research’s global trend on TNBC. However, the inclusion criteria of this study are too broad, and the analysis methods are insufficient to analyze the status quo of the TNBC study. Unfortunately, bibliometric studies on TNBC remain insufficient due to the lack of practical language analysis tools to integrate metatext data.

Natural Language Processing (NLP) is a computing technology used to analyze human language, a part of machine learning (7). Various algorithms have been successfully applied to deal with medical information (8). Latent Dirichlet Allocation (LDA) is bibliometrics’s most classical topic modeling method to present many unstructured texts and information (9, 10). LDA can perform topic analysis on texts (5). We recently constructed LDA and NLP methods to analyze more than 23,000 rectal cancer-related publications between 1994 and 2018. We have found the research deficiencies in the last 25 years and predicted the future research focus (11). Therefore, through the use of mature LDA methods and machine learning techniques to discover the current research from a macro perspective, at the same time discover the missing research topics in the past, and predict potential research breakthroughs in the future.

We analyzed all past TNBC publications indexed by PubMed under Triple-negative breast cancer in the present study. We improved our algorithm based on previous research and conducted a more detailed analysis of all TNBC publications with more visual expression to highlight current research focus in TNBC, research deficiencies, and specific areas with future opportunities.



2. Materials and methods


2.1. Research design

The study design was based on the basic rules of bibliometrics, as shown in Figure 1 for a flowchart (12, 13). The study used a two-stage structured approach to bibliometric analysis and visual assessment of published scientific literature. Provide an understanding based on the data and the researcher’s professional background. The PubMed database1 is a biomedical specialty database that provides multiple search strategies and is a free, publicly available database. For this research, the PubMed database, which contains an application programming interface (API) that can export abstracts, was used, and publications containing abstracts were downloaded for analysis.


[image: image]

FIGURE 1
The number of publications on triple-negative breast cancer (TNBC) has increased rapidly in recent 17 years. (A) Using the search terms “triple-negative breast cancer” in the PubMed database, download publications through the R pubquery package. Missing data or when the publication was a meeting abstract, proceedings paper, a correction, a book review, or a news item were manually excluded, and finally, 17,338 publications were included in the general analysis. Latent Dirichlet Allocation (LDA) analyzed 16,826 publications. (B) Publications analyzed by LDA, Python. Data were visualized using Excel. The number of publications is shown yearly, and y = 3.8931x2.3677 (R2 = 0.9906) is the fitted function.




2.2. Inclusive and exclusive criteria

Table 1 shows the steps to obtain full TNBC-related publications in the PubMed database. All publications under Triple Negative Breast Cancer were downloaded between January 1, 2005, and January 1, 2022. There are 17,562 publications. Missing data, conference abstracts, conference proceedings, book reviews, and news items were excluded, and 17,338 publications were ultimately included in the bibliometric analysis (Figure 1A). Details of inclusion and exclusion are shown in Table 2. After excluding non-English publications and incomplete abstracts, the final 16,826 publications were analyzed by the LDA algorithm to obtain the focus changes and their relevance of research topics in publications in this field. The whole record of search results is downloaded in XML format via R’s easyPubMed package. Data extracted from R2 and Python3, including publication year, abstract, study types, geographic information, and Medical Subject Headings (MeSH) terms, were obtained.


TABLE 1    Triple-negative breast cancer (TNBC) publications assortment steps.
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TABLE 2    Inclusive and exclusive criteria.
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2.3. LDA and algorithms and analytical methods

Latent Dirichlet Allocation was used to identify more specific research topics in each article. Python was used to model the topics by analyzing the abstracts of all indexed articles in the record. Topics were set at 50. The criteria for selecting the number of topics were perplexity, redundancy, and legibility. Based on the algorithmic calculation of topic probability, we finally determined the topic to which each article belongs. Next, we manually checked the names of each glossary based on the abstract. Finally, we used the Louvain algorithm and Gephi to perform cluster analysis to establish a topic network to determine the relationship between topics (14). We identified the two topics with the highest attribution probability in each publication, counted the number of simultaneous occurrences in each document, and established links between topics.

All the original data were uploaded and publicly available, including all retrieval methods, algorithm codes, and raw literature data in this article (Figure 1A). The literature search and download code can be obtained on R by easyPubMed package4. The R code is publicly available on GitHub5. We have uploaded relevant Python code on GitHub6, Zenodo7 and LDA code (Supplementary LDA coding-updated). The network visualization in this article is carried out using the software package Gephi8. This study used publicly published data and did not need approval by the relevant institutional review board or ethics committee. A step-by-step instruction is provided in the Supplementary material to facilitate the reader to understand further the research details (Supplementary information 1).




3. Results


3.1. The number of publications in TNBC research increases every year

We identified and analyzed 16,826 publications from January 2005 to 2022 (Figure 1B). The annual growth trend aligns with the fitting curve y = 3.8931x2.3677 (R2 = 0.9906). An average of 1,019 publications are published each year, with an average annual growth rate of 74.7%. It is expected that 3,650 publications will be published in 2022. Among all publications, 1,646 journals have publications on TNBC. We identified the ten most popular journals that published 3,118 publications, accounting for 18.0% of all publications (Supplementary Table 1). Therefore, emphasizing posts from these key journals helps us keep up with the latest trends. Breast Cancer Research and Treatment, PLoS One, and Scientific Reports are the top three journals with 690, 427, and 331 publications.



3.2. The proportion of clinical trials in TNBC publications has increased every year

To explore the research fields of TNBC, we first divided the publications into nine categories according to the fields provided by the database from 2010 in cancer research and set them as 100 per cent (Figure 2). We found that clinical trials and multicenter studies accounted for 25% of publications. The proportions of reviews and meta-analyses increased from 35% in 2011 to 50% in 2021. Since high-quality meta-analysis is generally considered a clinically guiding study, it is reasonable to expect that the publication of TNBC meta-analysis will increase. Many clinical trials of TNBC have been improved and will continue to improve its clinical practice.
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FIGURE 2
Clinical trials and multicenter studies have a large proportion of research. We divide publications into eight categories according to the types provided in the database. Data were shown by percentage.




3.3. The United States and China have the highest number of publications in the field of TNBC

To further understand the global TNBC research situation, we analyzed the geographic information by research institutions. We found that 98 countries or regions worldwide have publications on TNBC (Figure 3A). The top 10 countries’ publications accounted for 78.2%, indicating a pronounced head effect. Moreover, more than half of the publications were derived from the United States, China, Korea, and Italy, accounting for 25.0%, 21.8%, 5.4%, and 4.9% of all publications, respectively (Figure 3B). This phenomenon reminds us that the vast majority of the global population has participated in TNBC research, especially in the northern hemisphere.
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FIGURE 3
Global triple-negative breast cancer (TNBC) research differs significantly between regions. (A) The global distribution of TNBC publications in the recent 17 years is shown. We extracted the country information based on the first publication’s affiliation. (B) Top 10 countries with the highest publication numbers in TNBC research.




3.4. Molecular pathogenesis and medication are most studied in TNBC research

MeSH terms can represent the research content of the publications. A total of 6,288 MeSH terms appeared 248,250 times in all 16,826 publications, indicating that the studies covered multiple aspects (Supplementary Table 2). The top 10 cited MeSH terms are listed in Figure 4. Both pathology and metabolism have appeared more than 7,000 times, suggesting that the research on TNBC focused on exploring its molecular pathogenesis. In addition, 5 of the top 10 cited MeSH terms are directly related to medication research. Therefore, we infer that pathogenic mechanism and medication research will continue to focus on TNBC research in the foreseeable future.
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FIGURE 4
Molecular pathogenesis and medication are most studied in triple-negative breast cancer (TNBC) research. Each publication contains several Medical Subject Headings terms to describe the research content roughly. R was used to analyze the themes of the publications through Medical Subject Headings terms. The figure shows the most researched topics in the last 16 years.




3.5. LDA results: TNBC research focus on therapeutic target research, prognostic research, and mechanism research

The topic network analyzed by LDA and Louvain algorithm highlights the areas where interrelated topic clusters appear simultaneously and provides remarkable insights into the relationships between the essential topics of interest. We divided publications into 50 topics. The results of the LDA analysis suggest that all TNBC-related studies are mainly focused on three clusters, i.e., Therapeutic target research, Prognostic research, and Mechanism research (Figure 5). However, few studies on hospice care, patient perspective, surgical treatment of metastasis, and economics are available.
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FIGURE 5
Latent Dirichlet Allocation (LDA) identified that the triple-negative breast cancer (TNBC) research is focused on three areas Therapeutic target research, Prognostic research, and Mechanism research. Topic cluster network studied by Latent Dirichlet Allocation: inter-and intra-relationships. Therapeutic target research (green), Prognostic research (orange), and Mechanism research (purple) are three major clusters in TNBC research. The circle size represents the number of publications on each topic; the line’s thickness represents the weight of the connection between each topic.


The Therapeutic target research cluster contains 3,465 publications. The research focuses on Therapeutic target research, Protein expression, and Chemotherapy research. This cluster is particularly close to the other two clusters, indicating that the relationship between essential clinical integration and TNBC basic research is very close. We also found that clinical trials can quickly transform basic research into clinical practice to improve patient prognosis.

In the Prognostic research cluster, Survival related research and Demography research are the most studied topics. There are 1,275 publications on Prognostic research, which account for the most significant proportion and are closely related to the other two topics, indicating that prognostic research is the research focus. Interestingly, we found that Demography research and Methylation research are highly connected, weighing 359. We further analyzed and found that TNBC methylation differs significantly among races with different genetic backgrounds, and long-term survival studies are lacking.

In the Mechanism research cluster, we found that Apoptosis research, Growth factors study, and Nanoparticle research are the three most researched topics. In addition, The research cluster contains 21 topics, accounting for up to 42%, covering everything from basic medical research to clinical research.



3.6. LDA results: Therapeutic target research and Nanoparticle research are the research focus

To understand the changes in research focus, we visualized the LDA results and generated a heat map showing the changes in all 50 research topics of TNBC obtained by the LDA algorithm (Figure 6). The number of publications on therapeutic target research and nanoparticle research has increased dramatically, with 15.4% and 15.7%. These results indicate these two are research focus in the future.
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FIGURE 6
Therapeutic target research and Nanoparticles research are research focus. Heatmap presents the change of 50 research topics of triple-negative breast cancer (TNBC). Latent Dirichlet Allocation (LDA) generated all data. The topics marked in red are the research focus. The lighter the color in the figure, the more publications.




3.7. LDA and citation analysis results: TNBC research is based on technology that advances TNBC subtyping, new drug development, and clinical trials

Highly cited publications often represent the emergence of outstanding contributions, leading knowledge, or examples in the field. Attention was paid to the citations of publications within the TNBC field. All publications with a total of 490,599 citations, among which the top ten publications with the highest internal citations are listed in Table 3, the publication with the highest internal citations, 1,293, and the total citations of these 10 publications are 21,550. These publications focus on three categories, clinical characteristics of extensive population studies (15–17), clinical trials of new medications (18–21), and subtyping studies of TNBC (22–24). They represent researchers focused on discovering new molecular targets and developing multiple therapies such as Atezolizumab and Nab-Paclitaxel for treatment. Therefore, under the guidance of this research model, similar studies in the future can get more citations. On the other hand, combined with the steady increase of MeSH terms year by year, the lack of drastic changes suggests that TNBC research presents a stable and mature research model, that is, new drug development based on TNBC typing, target drug development, and clinical trials.


TABLE 3    Top 10 publications of triple-negative breast cancer (TNBC) based on internal citations and Latent Dirichlet Allocation (LDA) results.

[image: Table 3]




4. Discussion

We analyzed 16,826 publications in the field of TNBC from 2005 to 2022 using machine learning and NLP. Furthermore, we visualize and analyze the results from a macro perspective. Over the past 17 years, we found that TNBC-related publications have increased from none to 16,826 in 2021, with more extensive research content. TNBC research focuses on Therapeutic target research, Prognostic research, and Mechanism research. Research topics have changed over the years, and the current research focus is expected to be Therapeutic target research and Nanoparticle research, according to our LDA results.

Bibliometrics is a compelling analysis method to obtain information from massive texts quantitatively, and there are very few bibliometrics analyses on TNBC such as VOSviewer, Bibliographic Items Co-occurrence Matrix Builder (BICOMB), and CiteSpace. However, with the development of the publishing industry, these tools have difficulty applying to massive publication analysis due to their architecture, insufficient computer memory, and sharing protocols. Therefore, our research uses the LDA algorithm based on Python, an unsupervised topic model. Furthermore, our topic model is based on the publication’s abstract, not on the keywords. It is easy to use with negligible memory consumption and can analyze massive publications.

We found that Therapeutic target research has always been research-focused because TNBC lacks effective therapeutic targets and has high heterogeneity (24, 25). Our research found that this part contains a variety of attempts, DNA repair research, immune checkpoint research, and protein expression. We only found 137 publications related to immune checkpoint research, and immunotherapy research is not closely related to the prognosis and mechanism research of TNBC. Several clinical studies are being carried out, including IMpassion130, KEYNOTE-355, and Impassion 131 (26–28). Some positive results can reduce the risk of death by up to 35%. However, more important is the research on the underlying mechanism and the exploration of various influencing factors, especially the extracellular matrix, hypoxia, and immune cell infiltration (29). In addition, immune checkpoint research has just started for five years, according to our results, and several medications have already been applied in the clinic. This research trend will continue, and immunotherapy will become a safe and effective treatment option.

The research scope of the TNBC mechanism is pervasive, covering the immune microenvironment and subtypes of TNBC. The successful subtyping provides a solid theoretical basis for the precision therapy of TNBC (30). Gene sequencing technology allows us to fully understand the mutation rate of TNBC, which is about 1.68 bp/Mb (31). Mutations occur in genes in multiple key signaling pathways such as PI3K/Akt/mTOR pathway, RAS/RAF/MEK pathway, JAK/STAT pathway, DNA repair pathway, and cell cycle checkpoint (32–34). Therefore, various treatments targeting the signal pathways are currently undergoing clinical trials. Some inhibitors have been used as potential medications for TNBC treatment, including PI3K, MEK, PARP, EGFR, VEGF, and AR inhibitors (32).

Triple-negative breast cancer subtyping has always been the focus of research. There is no unified standard based on the TNBC genome and cell heterogeneity. The first classification was based on Lehmann’s gene expression analysis of breast cancer and constructed a “triple negative classification” and six subclassifications (24). In 2016, Lehmann’s further research found that immunomodulatory (IM) patients are more likely to benefit from checkpoint inhibitor therapy (35). With the advancement of technology, such as the emergence of single-cell RNA sequencing, spatial transcriptomics, and radionics, and the further expansion of data volume, new technologies have provided new insights into the typing of TNBC and proposed guidance for treatment. Xie’s research established a new prognostic model through the comprehensive analysis of multiple cell death patterns on more than 1,000 breast cancer patients, which can predict the clinical prognosis and drug sensitivity after TNBC surgery (36). In addition to technological progress, an in-depth understanding of the oncological course, mechanism of occurrence and development, and algorithm advances will provide a more detailed classification of TNBC.

On the other hand, studies on operations and radiotherapy were rarely reported, especially for re-operations related to local-regional recurrence risk or distant metastasis. Many studies suggest that surgery is essential in treating distant metastases of cancers, such as colorectal cancer (37). In addition, many studies on other cancers, including pancreatic and colorectal cancer, demonstrated that the tumor microenvironment, especially the extracellular matrix, has been found to play an essential role in cancer metastasis, local recurrence, and chemotherapeutic drug resistance (38, 39). Many potential drugs are used due to their ability to target the extracellular matrix, such as PEGPH20 (an enzyme that targets matrix hyaluronic acid), pegilodecakin (a PEGylated IL-10) (40, 41). However, the study on extracellular matrix in TNBC is insufficient so far.

Although the research on TNBC has made significant progress in many aspects, the present research also found some research deficiencies on TNBC. There is a lack of research on TNBC from patients’ perspectives, health economics, and hospice care. Although, at present, the 5 years overall survival rate of most tumors has been dramatically improved, helping tumor patients with psychological issues re-enter society will become a new important research topic (42). TNBC patients are more likely to relapse and metastasize than other breast cancer subtypes, resulting in more significant mental and economic pressure on patients and their families. Studies on patients with more prolonged survival can better understand TNBC and even other long-term survival tumors (43). In the future, we will face more challenges for patients with a long survival period of 5–10 years (44).

There are some limitations in the present study. Besides PubMed, several other databases, including Scopus, Web of Science, and Embase, could be used for bibliometric research. Although PubMed contains the highest quality peer-reviewed research and excludes irrelevant, non-peer-reviewed publications, the literature will provide detailed and comprehensive knowledge if other databases are explored simultaneously. Secondly, we considered that all publications publish more positive research results. Negative results and clinical participants’ perspectives are naturally more difficult to be published. With the development of complete medical record texts, publication databases, and improved algorithms, it is reasonable for machine learning to play a more active auxiliary role in future clinical practice. The data presented in this study will hopefully help scientists understand the current status of TNBC research and design more relevant basic and clinical research projects.



5. Conclusion

We analyzed 16,826 TNBC publications through the NLP Method. TNBC research shows insufficiencies, especially in long-term survival-related research, and a lack of research from patients’ perspectives. The publications mainly focused on three aspects: Therapeutic target research, Prognostic research, and Mechanism research. The research direction of TNBC may require the intervention of new technologies.
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Background: The supraspinatus muscle fatty infiltration (SMFI) is a crucial MRI shoulder finding to determine the patient’s prognosis. Clinicians have used the Goutallier classification to diagnose it. Deep learning algorithms have been demonstrated to have higher accuracy than traditional methods.

Aim: To train convolutional neural network models to categorize the SMFI as a binary diagnosis based on Goutallier’s classification using shoulder MRIs.

Methods: A retrospective study was performed. MRI and medical records from patients with SMFI diagnosis from January 1st, 2019, to September 20th, 2020, were selected. 900 T2-weighted, Y-view shoulder MRIs were evaluated. The supraspinatus fossa was automatically cropped using segmentation masks. A balancing technique was implemented. Five binary classification classes were developed into two as follows, A: 0, 1 v/s 3, 4; B: 0, 1 v/s 2, 3, 4; C: 0, 1 v/s 2; D: 0, 1, 2, v/s 3, 4; E: 2 v/s 3, 4. The VGG-19, ResNet-50, and Inception-v3 architectures were trained as backbone classifiers. An average of three 10-fold cross-validation processes were developed to evaluate model performance. AU-ROC, sensitivity, and specificity with 95% confidence intervals were used.

Results: Overall, 606 shoulders MRIs were analyzed. The Goutallier distribution was presented as follows: 0 = 403; 1 = 114; 2 = 51; 3 = 24; 4 = 14. Case A, VGG-19 model demonstrated an AU-ROC of 0.991 ± 0.003 (accuracy, 0.973 ± 0.006; sensitivity, 0.947 ± 0.039; specificity, 0.975 ± 0.006). B, VGG-19, 0.961 ± 0.013 (0.925 ± 0.010; 0.847 ± 0.041; 0.939 ± 0.011). C, VGG-19, 0.935 ± 0.022 (0.900 ± 0.015; 0.750 ± 0.078; 0.914 ± 0.014). D, VGG-19, 0.977 ± 0.007 (0.942 ± 0.012; 0.925 ± 0.056; 0.942 ± 0.013). E, VGG-19, 0.861 ± 0.050 (0.779 ± 0.054; 0.706 ± 0.088; 0.831 ± 0.061).

Conclusion: Convolutional neural network models demonstrated high accuracy in MRIs SMFI diagnosis.
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Introduction

Rotator cuff tears (RCTs) are among the most critical musculoskeletal conditions of the shoulder (1). This prevalence affects worldwide (2), resulting in direct and indirect economic burdens for patients and healthcare systems (3). Furthermore, this progressive degenerative condition (4) affects both sexes, and its incidence in the general population increases with age (5).

Image medical analysis plays a significant role in diagnosis and the optimal detection of the tear magnitude, allowing therapeutic planning resolutions, including physical therapy and surgical repair (6). Many imaging techniques have been developed for the detection of RCTs. Magnetic resonance imaging (MRI) presents the highest diagnostic value (sensitivity and specificity) for detecting any lesion (7, 8), especially for evaluating the integrity of the rotator cuff in tear size. Another essential radiological aspect of assessing the MRI shoulder is atrophy and fatty infiltration. Patients with a low stage of fatty infiltration have significantly better outcomes than those with a severe condition, since patients who present a re-tear are the most affected (9, 10).

For this reason, to determine the magnitude the SMFI, Goutallier et al. proposed a classification with five stages ranging from 0 to 4 (11). However, the original proposal has been adapted with MRI by Fuchs et al. (12) using three stages, combining stages zero and one as normal, two as moderate, and three with four as severe fatty infiltration. In the MRI adaptation of the classification, there has been controversy regarding the ideal technique for grading (13).

One of the most significant challenges in image diagnosis is reducing the variability between observers in assessing rotator cuff muscle quality on MRI (14). Recent studies have implemented the use of Artificial Intelligence (AI), Machine Learning (ML), and particularly Deep Learning (DL) techniques to improve the accuracy of diagnosis, helping radiologists with the interpretation of imaging data (15). This process has been facilitated by developing AI and ML tools and incorporating these into the diagnostic support of medical images (16). Also, as it is common to have small datasets in medical imaging, transfer learning using well-trained non-medical ImageNet datasets has shown promising results for medical image analysis in recent years. Some of the most used DL architectures in medical imaging analysis (17) include Inception-v3 (18), ResNet-50 (19), and VGG-19 (20).

Random forest (RF) and DL techniques, such as convolutional neural network (CNN), have been used to identify the segmentation of rotator cuff muscles on MRI (21). Also, automatic algorithms have been implemented to detect supraspinatus muscle atrophy (22), and detection of supraspinatus tears on MRI (23). However, such algorithms have not yet been implemented to detect this structure’s fatty infiltration level. Incorporating these artificial intelligence tools would improve diagnostic precision and patient prognosis. Kim (22) demonstrated CNNs’ ability to segment the supraspinatus muscle and supraspinatus fossa to calculate their ratio in an MRI dataset. Similarly, Ro and collaborators (24) developed a model that analyzes the muscle proportion in the supraspinatus fossa and quantifies fatty infiltration in MRI through Otsu thresholding (25). The Otsu thresholding is used to create pixel clusters from grayscale images and optimizes the pixel intensity value to establish foreground and background. In this case, the foreground would be fat, and the background would be muscle. This method is highly influenced by the difference in pixel intensity due to fatty infiltration level. This was addressed by computing a standard deviation for every Goutallier level. Using this method, Otsu thresholding showed 0.06; 4.68; 20.10; 42.86; and 55.76 for grades 0, 1, 2, 3, and 4, respectively. Finally, in the context of RCT and fatty infiltration imaging analysis, Taghizadeh (26) developed a convolutional neural network model to automatically quantify and characterize the degeneration of rotator cuff muscles from CT images. The backbone of this model is the U-Net architecture, which can segment muscle fossa into a pre-morbid state. Most convolutional neural network models have been used to segment regions of interest, including supraspinatus, infraspinatus, and subscapular muscles. Since Goutallier’s grade scale is a qualitative method and diagnoses are highly influenced by clinicians’ and experts’ intuitive judgment, literature has claimed that classification of Goutallier’s grade via DL methods is not an easy task (24).

To assess this hypothesis, this study aims to build a DL architecture to classify patients as “risky” or “not risky” based on the Goutallier’s supraspinatus fatty infiltration classification from shoulder MRI to help clinicians and medical staff in decision-making. Results demonstrate that DL models provide high accuracy and classification accuracy (discriminatory capacity) for Goutallier’s supraspinatus fatty infiltration levels.



Materials and methods


Study design

This study was designed as a retrospective and one site study. It was written following the Strengthening the Reporting of Observation studies in Epidemiology (STROBE) guideline. All patients record were obtained from a MRI exam at MEDS Clinic in Santiago, Región Metropolitana, Chile. This study started on September 25th, 2020.



Datasets characteristics

The dataset used in this work comprises MRI and medical records from patients with an SMFI diagnosis who underwent examinations from January 1st, 2019, to September 20th, 2020. MRI images were saved in DICOM format, a widely used file format in medical imaging contexts. This format can save images, patient information, and study characteristics in one file. Each MRI image in the data set is obtained from a shoulder T2-weighted Y-view. The patient data were anonymized before being analyzed descriptively.

The initial dataset contained 900 MRI studies. But 669 images had valid annotations. Then, a musculoskeletal radiologist labeled the images based on Goutallier’s fatty infiltration level. Two labeled images were excluded due to missing label records, and one was excluded because it was not conclusive for fatty infiltration analysis. After this process, 666 images were selected to perform manual segmentation. Sixty images had pixel configuration errors, and thus no segmentation could be done. The final dataset consists of 606 images, Figure 1.

[image: Figure 1]

FIGURE 1
 Flowchart for dataset selection.


To perform the labeling process, we developed a simple Python software, Figure 2, that reads a folder with all the images to be annotated and then shows the MRI image one at a time. The radiologist selects the diagnosis for that MRI image. The program creates a two-field JSON file with the decision made for the professional for each image. One field is the image ID, and the other is the label record selected by the radiologist. These labels are our study’s ground truth.

[image: Figure 2]

FIGURE 2
 Custom software interface.




Statistical analysis

Dataset was analyzed and statistical tests were computed. For the analysis, python (with libraries such scipy) were used. Normality tests were performed. Statistical differences between groups were computed using the Mann–Whitney U test or t-test. A value of p of 0.05 was used to measure statistical significance. Descriptive analysis over the age of the patients was also performed and presented as mean and standard deviation (m ± sd). Percentages and frequencies are presented as statistical description for categorical.

Models’ performances were computed and compared using accuracy, sensitivity, specificity, and AU-ROC. A binary classifier outputs one of two possible values for a given input, 0 or 1. For every input there is an actual expected output, which is also 0 or 1. Table 1, also known as confusion matrix, shows the four possible outcome situations.



TABLE 1 Confusion matrix.
[image: Table1]

We computed accuracy, sensitivity, specificity as follows:

Accuracy: (TN + TP)/(TN + FP + FN + TP)

Sensitivity (True positive rate): TP/(TP + FN)

Specificity: TN/(TN + FP).

Area under the receiver operator curve or (AU-ROC) is a measure of the performance of the classifier regardless the threshold defined to translate probability scores to class decision. The horizontal axis corresponds to recall, or sensitivity, and the vertical axis corresponds to the precision, computed as TP/(TP + FP). As both axes are limited to 1, the maximum value of the area under the curve inside the square is 1, therefore, the closer to 1 the better the classifier. A random classifier will have an AU-ROC equal to 0.5.

In the case of the model performance, 95% confidence interval over the mean for the metrics, such as accuracy, sensitivity, specificity, and AU-ROC.



Data preparation

The data preparation consisted of two main steps. First, the correct labeling of each image and the manual segmentation of the region of interest (ROI). All data in DICOM file format was processed with the MicroDICOM software to export images to PNG format. This allowed us to use fewer computational resources, as extracting images on the fly was unnecessary. Also, some Python libraries, such as PySimpleGUI, used to create the custom labeling software, only accept PNG format as input. We set the exported image resolution to the same as the original to avoid further mismatches between the image and its segmentation mask.

Regarding the segmentation of the ROI, the original DICOM files were used to create manual segmentation (identify the ROI in each image). The segmented areas were the supraspinatus fossa and the supraspinatus muscle. Figure 3 shows a sample segmentation. Panel (a) displays the original image, panel (b) the manually created segmentation masks, and panel (c) the segmented area masks. Each MRI image was segmented using the ITK-Snap software (27). At the end of the data preparation process, we obtained the original MRI images in PNG format, the segmentation masks, and label information for every image. The data preparation workflow is shown in Figure 4.

[image: Figure 3]

FIGURE 3
 Manual segmentation process. Original, manual segmentation from ITK-Snap, and mask result, in figures (A–C), respectively.


[image: Figure 4]

FIGURE 4
 Data preparation.




The definition and fatty infiltration criteria

We based our criteria on Goutallier’s fatty infiltration definitions. The original paper proposed five levels of fatty infiltration (zero to four) about the qualitative presence of fat in the muscle. A level of zero means there is no fat in the muscle. As fatty infiltration increases, Goutallier’s scale assigns a greater value. A level four means that there is more fat than muscle present. Figure 5 shows a representative MRI for every Goutallier’s fatty infiltration level.

[image: Figure 5]

FIGURE 5
 Representative MRI for each Goutallier’s fatty infiltration scale. Level 0,1, 2, 3, and 4, are shown in sub-image (A–E), respectively.


As shown in Table 2, we studied DL techniques’ discriminatory (binary classification) power using five cases. In each case, we defined a positive and negative class composed of different Goutallier levels. Samples that belonged to the positive class were labeled as 1. Samples that belonged to the negative class were labeled as 0. The base case (case A) was used to assess the classification accuracy of no or low fatty infiltration (Goutallier 0 and 1) against high fatty infiltration (Goutallier 3 and 4). Goutallier level 2 is not considered in this case. This allowed us to assess whether the DL techniques can differentiate between no-fatty and high-fatty infiltration cases. Cases B to E is used as a sensitivity analysis of the classification capacity of the DL techniques.



TABLE 2 Class designation in every case for fatty infiltration levels.
[image: Table2]

Based on the above definition of cases, a sample that belonged to class 1 (positive) was considered “risky.” A sample that belonged to class 0 (negative) was considered “no risky.” A few random samples from class 0 and class 1 are shown in Figure 6 for the case A. This classification is used since we aimed to help clinicians make decisions about proper treatment for patients based on the quality of the supraspinatus muscle. In every case, the positive and negative classes were different.

[image: Figure 6]

FIGURE 6
 Random samples from class 0 and class 1 for the case A.




Model development and training

Three models based on well-known architectures were trained: VGG-19, Inception-v3, and ResNet-50, and compared their performance in terms of classification accuracy. For every model, the learning rate and average time were processed. Figure 7 shows the general training workflow. In terms of the architecture, the convolutional layers for every model remained the same as in the original, and only the classifier was modified. We replaced the last layer of every model with a 1,000-unit wide and SoftMax activation function with a single neuron with a sigmoid activation function because our problem was binary classification. In the case of VGG-19, we also reduced the size of the most outer fully connected layer from 4,096 neurons to 2048, which helped to avoid overfitting, Figure 8. We used transfer learning from ImageNet weights to train the models. The backbone of the original architecture was used as a feature extractor, and its layers were frozen. Then, only the fully connected layer parameters were optimized. In addition, every model architecture was created to admit three-channel images (RGB) as input. We simulate an RGB image from a gray-scale MRI by copying the same channel two times. Then, the three versions of the same single channel were stacked into a three-channel image.

[image: Figure 7]

FIGURE 7
 Training workflow.


[image: Figure 8]

FIGURE 8
 Diagram of the VGG/19 architecture.




Stratified k-fold cross validation

As we had a small dataset, stratified k-fold cross-validation was performed (28, 29). This method allowed us to use most of the data for training and reduce the impact of the data selection in the results as would happen in a 20/80 random split, for example. We choose k equals to 10 and thus, 10 subgroups from the original data were created. That the cross-validation process is stratified means that every subgroup maintains the same class distribution of the original dataset. In each of the 10 training runs nine groups were used for training and one group for validation. We repeat three times the complete process of creating the 10 subgroups and running the training process. The performance of the model is calculated as the average of 30 training runs, and the confidence intervals for each were also found. The training and validation process based on stratified k-fold cross-validation follows the methodology described in (28, 29) when models are trained using small datasets.



Random data split

Additional to the assessment of the DL models using stratified K-fold cross validation, we evaluate the DL architectures using a new data set which has not been used during the training process. To do so, we trained the DL architectures using a random train/validation/test (70%/20%/10%, respectively) split. Downsampling of the majority class is performed over the training data only. The learning rate was set to 1e-06, 1e-04 and 1e-03 for VGG-19, Resnet50, and Inception V3, respectively. We train the model for 30 epochs and compute its accuracy, specificity, and sensitivity using the external new test data set (10% of the existing data) not used in training.



Augmentation and data balancing techniques

The data was highly imbalanced. This could lead the model to learn better from the most represented class than the minority class or lead to a highly overfitted model. We performed a balancing technique on the minority class to avoid or minimize these problems. In every 10 cross-validation processes, we over-sample the minority class on the training set until both classes have approximately the same number of samples. The validation set in the K-fold cross validation process remains imbalanced to validate the model similar to the real-world collection of images. Data augmentation was also performed on every image from the training set that was fed to the model. Augmentation is accomplished by rotating any grade value in ±35° and horizontally flipping with a probability of 0.5.



Training and optimization of hyper-parameters

All the DL models were trained using the Adam optimizer in standard configuration (weight decay = 0.9; beta = 0.999) for 50 epochs. The training process was stopped if there were no improvements in the last 10 epochs, and the best performance was saved. We only optimized the learning rate.

Before we fed the DL model with data, the region of interest was obtained from the segmentation mask for every image. This process is carried out automatically by the algorithm. It took the original image and the corresponding mask and cropped the region of interest. Then, only the ROI was fed to the DL models. The size of the input image was determined by the model’s architecture requirements, which are 224 [px] squared images for the VGG-19 and the ResNet-50 architectures, and 299 [px] squared images for the InceptionV3. The cropped image was resized to meet those requirements.




Results


Statistical analysis results

A total of 606 patients (55% were males) with 606 MRI with RCTs were included in our analysis. The patient’s average age was 55.1 ± 13.2 years. Data demonstrated the presence of all different Goutallier levels in imagological exams. An asymmetrical Goutallier distribution was found. More than 82% of the images belong to the 0 and 1 grades, showing an imbalance toward low fatty infiltration, as follows: Goutallier 0 (66.50%); Goutallier 1 (18.81%), Goutallier 2 (8.42%), Goutallier 3 (3.96%), and Goutallier 4 (2.31%). Also, the female group has more samples in higher grades than the male without statistical significance. The distribution of patient data is shown in Table 3.



TABLE 3 Quantity and proportions of sex by Goutallier’s level.
[image: Table3]



Model performance

The learning rate used in every case and model and the average processing time were identified in Table 4. The shortest time was registered in the E case, using the Inception-v3 model with 0.34 ± 0.14 h. These results depend on the maximum number of epochs that the model runs until reaching its best validation loss, and thus, the training process is stopped and the training ends. In some cases, it is less than 50 epochs. In addition, the smaller the total size of the training set, the less time it takes to complete the training process. The E case has only 89 samples in total. On the other hand, the longest recorded time was registered in the VGG-19 model in the C case with 3.87 ± 0.35 h.



TABLE 4 Learning rate and average processing time (C.I. 95%) for every case and model.
[image: Table4]

The DL architectures demonstrated outstanding performance using a shoulder MRI dataset. With a 10-fold cross-validation process, data was randomly divided into 10 non-overlapping folds. Nine folds were used as training sets and one as a validation set. The process was repeated three times; thus, three runs were obtained. This led to an average of 30 training loops.

Figure 9 shows the validation loss and AU-ROC curves for every model at every run. The three architectures show a decreasing validation loss at every epoch. At the beginning of the training process, the VGG-19 loss validation starts at 0.739 ± 0.006, 0.632 ± 0.007, and 0.631 ± 0.005 in the first, second, and third runs, respectively. Then, in the end, the validation loss was reduced to 0.225 ± 0.0053. In the case of Inception-v3, there is noticeably different behavior in one of the runs. This up-and-down loss value for the validation set could probably be explained due to the randomness in the process and the fact that the model could find a local minimum near the end. In any case, the last epoch showed an improvement in the validation loss value, and thus, it was recorded. Table 5 shows the starting value for the validation loss for every model. The model was run for a maximum of 50 epochs. We track the evolution of the loss function value. If the loss function did not decrease during 10 epochs, then the training process was terminated, and the results were computed.

[image: Figure 9]

FIGURE 9
 Loss and receiver operator curve plots for VGG-19, ResNet-50, and Inception-v3 models for base case (A). The results for the first, second, and third run are in color green, orange and blue, respectively.




TABLE 5 Confidence intervals (95%) for the starting validation loss in each run.
[image: Table5]

The results confirm an optimized loss function. The loss function converges to zero as the learning progresses in the validation processes.

The model returns a value between 0 and 1, corresponding to the likelihood that the image belongs to the positive class. The value is then converted to binary based on a threshold. As the threshold value in our study, we utilized 0.5. The class will be considered positive if the model outputs a value greater than that. In contrast, if the model outputs a value lower than that threshold, the decision will be categorized as negative. One can compute the false positive and true positive rates under thresholds. The ROC curves in Figure 9 demonstrate the high performance of the models for various threshold values. The closer the curve is to (0.0, 1.0), the better the performance. To quantify curves, the area under the ROC curve was used. For our case A, VGG-19, ResNet-50, and Inception-v3 achieved 0.991 ± 0.003, 0.992 ± 0.003, and 0.991 ± 0.004, respectively for the area under the ROC curve (AU-ROC). Also, as shown in Figure 10, VGG-19 and ResNet-50 models showed the better performance when comparing precision-recall curves. When analyzing the per class prediction, the three models showed better performance in the negative class than in the positive class, which has fewer samples. Table 6 shows the confusion matrix for each model.

[image: Figure 10]

FIGURE 10
 Mean Precision-recall curves for VGG-19, ResNet-50, and Inception-V3 models for the base case (A).




TABLE 6 Confusion matrix of VGG-19, Resnet-50, and Inception-V3 models for the case A validation set.
[image: Table6]



Subgroup analysis

A subgroup analysis was developed to determine the best combination of binary classes for Goutallier fatty infiltration level detection. Accuracy, sensitivity, specificity, AU-ROC, and loss performance for every single convolutional neural network model after three runs of 10 training cycles each are shown in Table 7. The reported metrics values shown are based on the results obtained from the repeated cross validation process. The process allowed us to have several validation groups and hence estimate the mean and the confidence level of each model in every experiment. Since DL models tend to learn the training data well, we do not report the training accuracy. Instead, we provide the evolution of the Loss Function, which depicts how the training error (learning process of the model) evolves. We also clarify this in the revised manuscript.



TABLE 7 Mean train loss, validation loss, accuracy, sensitivity, specificity, and AU-ROC for every case and model (C.I. 95%).
[image: Table7]

Excellent performance for the three architectures in every case was demonstrated. In three out of four cases, all model configurations had AU-ROC values higher than 0.91 on average and thus performed well when classifying fatty infiltration levels. In the base case, the models got an AU-ROC mean value of over 0.99, the highest among the cases. Here, models had to separate lower to no fatty infiltration images from high to extreme fatty infiltration levels, which were very dissimilar. In addition, sensitivity and specificity for this case are more homogeneous among models. This means that the models perform well when classifying negative and positive samples as the false positive rate and true positive rate are over 0.92, except for Inception-v3, which has a lower value for sensitivity. On the other hand, the same architecture showed a higher specificity, with a mean value of 0.981.



Random split performance

We also trained the model using a random train/validation/test split (training size: 413, validation size: 104, testing size: 58). Only the training data was down-sampled in order to account for unbalanced labels. As shown in Table 8, all models showed similar performance in the final testing data split (10% of the data) as the observed in the stratified k-fold cross-validation method, reaching, for instance for the VGG-19 model, 0.931, 1.0, and 0.925 for the accuracy, sensitivity, and specificity, respectively. This demonstrates the usability of DL techniques and that the models are not likely to be overfitted as demonstrated in the stratified k-fold process and in the 10% final random data split process. During the process of reviewing this paper, we were able to collect 20 more images. We added those images to the previous dataset and performed a random split experiment. We computed the performance of every model using this new dataset.



TABLE 8 Accuracy, sensitivity, and specificity for case A and all DL models using a random training/validation/test data split.
[image: Table8]




Discussion

This research is one of the first to demonstrate the capabilities of the DL models to classify SMFI in patients with RC conditions. The imagenological analysis considered an extensive novel shoulder T2-weighted MRI (30). This retrospective analysis applied various DL models, including the VGG-19, ResNet-50, and Inception-v3 architectures.

All diagnostics metrics demonstrated excellent results, achieving a high binary classification performance in every class of the Goutallier level. Distinctly high accuracy, sensitivity, and specificity among different architectures belonging to neural networks were found, specifically when the diagnosis was based on case A, that is, the negative class (Goutallier 0 or 1) and the positive class (Goutallier 3 or 4).

Traditionally, the scapular Y-view of the MRI, particularly the lateral-most T1 sagittal, is the most reliable indicator of the supraspinatus muscle status and is used for identifying FI (31). However, current standard shoulder protocols include sagittal oblique T2-weighted sequences to evaluate these findings (32). Despite that, recent data support ML methods’ crucial function in identifying various structures in medical images (33). For this reason, we proposed evaluating the most extensive collections of T2 MRI sequences.

The approach we described allows a practical solution when the grading system of FI is presented, reducing diagnostic uncertainty. Other experiences using artificial intelligence have been published. We highlight the exciting work Ro et al. (24) carried out. They implemented a novel model using only 250 patients (all of whom were diagnosed with atrophy and fatty infiltration of the supraspinatus muscle) to analyze the occupation ratio using a DL framework. They calculated the amount of FI in the supraspinatus muscle using an automated region-based Otsu thresholding technique. Their method allows segmenting the supraspinatus muscle and fossa, which lets them figure out the occupation ratio without automatically classifying the Goutallier level.

In our case, results demonstrated that artificial intelligence tools, particularly the VGG-19 architecture, can be used to support shoulder MRI diagnosis. Few studies in the musculoskeletal radiology literature have addressed the evaluation of RC muscles using these methods (34). Even though supervised deep learning with CNNs has been highly successful in medical imaging, particularly in MRI (35). However, based on the CNN tool, different studies have determined the need to count with more analysis to detect the supraspinatus muscle’s fatty infiltration (22).

Also, we identified some limitations. Firstly, our results used a binary classification method, even though the classification proposed by Goutallier presents five types of fatty infiltration. However, the binary performance showed great classification results, with an AUC of 0.991 [95% CI, ± 0.003] for the low to nonfatty infiltration against severe to extreme fatty infiltration (VGG-19 model). Therefore, a Fuch-type classification (12) could be more accessible to learn than a Goutallier-type classification. For this reason, it is necessary to have future studies that use multilabel classification methods. In addition, since the number of samples (images) in the data set was small, a training and validation set were created for the cross-validation process, however. The training and validation process used in this study follows related papers which faced similar data limitations (22, 24). To further assess the model performance, we used a training/validation/test random data split using 70%/20%/10% (train size: 413 validation size: 104, testing size: 58) for training, testing and validation, respectively. This allowed us to further confirm the good model performance in predicting class 0 and 1. In the future, more data is needed to further test the proposed models.

On the other hand, when we included category two (Goutallier type 2), the analysis reduced the capability to classify correctly. However, better performance was achieved when the type two class was added to the negative class. As in other publications, the present study was an image analysis; clinical factors and the patient’s history were not considered (24). Another essential point is that using these AI tools requires teamwork between clinical practitioners and engineering. Interdisciplinary work is necessary to improve people’s health.

In conclusion, CNN models, particularly VGG-19, showed outstanding performance in classifying SMFI using shoulder T2-weighted MRI in patients with RC conditions. AI models could be used to support the radiological diagnosis.
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Error_1 Error2 Total accuracy

Training set 37% 5% 85.35%
Testing set 39% 8% 85.87%

BMI, body mass index; TC, total cholesterol; HDL-C, high-density lipoprotein cholestero;
LDL-C, low-density lipoprotein cholesterol.
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Error_1 Error_2 Total accuracy

Training set 15% 4% 92.58%
Testing set 10% 8% 91.48%

TPA, plasma plasminogen activator.
PAI-1, plasminogen activator inhibitor-1.
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References Country N1 N2 N3 TP FP FN TN Sensitivity Specificity Diagnostic algorithm Sample Spectra

Daniel et al. (12) India Vitro 26 36 U 23 9 2 27 92% 75% LDA Fresh tissue 784.12 nm
slices (20 um)

Daniel et al. (13) India Vitro 145 64 U 143 2 2 62 99% 97% PC-LDA Fresh tissue 784.12 nm
slices (20 um)

Lyng et al. (14) Ireland  Vitro 10 20 398 195 2 3 198 98% 99% PC-LDA FFPP(10 pm) 514.5nm

Shaikh et al. (15) India Vivo 31 30 154 80 4 0 70 100% 95% PC-LDA Cervix in vivo 785 nm

Shaikh et al. (16) India  Vivo 20 6 146 61 3 6 76 91% 96% PC-LDA Cervix in vivo 785 nm

Jingetal. (17) China  Vitro 11 11 22 11 1 0 10 100% 91% ORR (NADH/FAD) Fresh tissue 430 nm
slices (4 pm)

U, unknown; N1, number of patients; N2, number of healthy; N3, number of tested spectra; FFPR, Formalin-fixed paraffin preserved, PCA, principal component analysis;
LDA, linear discriminate analysis; PC-LDA, Principal-component linear discriminant analysis.
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Characteristics

Development set

Patients
Full cohort 274
Sex [No. (%))

Male 56 (20.4)

Female 218 (79.6)
Age (Mean + SD) 30.92 +6.56
BMI (Mean  SD) 2307 +2.50
Blood biochemical indices (Mean & SD)
PRL, ulU/mL 1,184.92 £

1,353.99

ACTH, pmol/L 5.60+2.46
FSH, miU/mL 473 £232
LH, miU/mL 424202
TSH, ull/mL 207093

MRI examination and PM Functional diagnosis [No. (%)]

Normal pituitary of MRI scan -

PM of MRI scan 274
Non-functional PM 194 (70.8)
Functional PM 80(20.2)
PRL-PM 76
ACTH-PM 3
GH-PM 1
TSH-PM 0

Data are mean (S.D.) or a number of individuals (%). BMI, Body Mass Index; PRL, Prolactin; ACTH, adrenocorticotrophic hormone; FSH, Follicle-Stimulating Hormone; LH, Luteinizing Hormone; TSH, Serum Thyroid-stimulating Hormone;

Training set
Testing set
Controls Patients. Controls
506 66 129
98 (19.4) 13 (19.7) 30(23.3)
408(80.6) 53 (80.3) 99(76.7)
3126+7.36 8082+602 8058+ 604
23004252 22854238 2391248
2144+ 114282+ 80221 %
144,32 1,382.77 15047
561+180 548+857 534+182
4724204  502+227 453201
4304193 430+£232 432+182
248121 210£089 2.19+1.08
506 - 129
- 66 -
- 47(71.2) -
- 19 (288) -
- 17 -
- 2 -
= 0 =
= 0 e

Temporal validation

(hospital 1)
Patients Controls
104 142
19(183) 25(17.6)
85(81.7) 117 (82.4)
30.79+6:86 30.66+ 550
2320£240 2267 +231
112106+ 80131+
1,362.23 152.69
591406 529+203
517+ 194 447 £226
497 £222 412 +£1.98
202081 192084

- 142
104 -
75 (72.1) -
29(27.9) -
24 -
3 -
2 =
o =

GH, Growth hormone; MRI, Magnetic Resonance Imaging; PM, pituitary microadenoma. —means the participants did not calculate.

Validation set

Geographical validation

(hospital 2)
Patients Controls
58 o7
12/(20.7) 22(22.7)
46 (79.3) 75(77.3)
3143761 30.86+5.46
23.42£279 2321+257
105370+ 32089+
1,346.33 149.50
540171 5.17+1.69
553+£210  4.58+207
580£2.13 434175
1994147  1.96+085
- o7
58 -

42 (72.4) -
16 (27.6) -
15 -
0 -
) =

1

Geographical validation

(hospital 3)
Patients. Controls
54 %
10(18.5) 17 (18.9)
44(815) 7381.1)
2981 +£478 80.14+535
2327 £250 23.48:+266
115080+ 30469+
1,280.17 162.74
535+154 5.12+1.70
514£226 449200
479+ 184 438+ 1.79
1.90£079  208+087
- %

54 -

39(722) -
15 (27.8) -

15 -
o -
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Evaluation metrics

AUC (95% C)
Sensitivity
Specificity
Accuracy
PPV

NPV

F1 score

Validation set A
(set At: internal dataset,
hospital 1)

0.9546 (0.9028-0.9923)
0.9783 (0.9237-0.9974)
0.9412 (0.8376-0.9877)
0.9650 (0.9203-0.9885)
0.9677 (0.9086-0.9933)
0.9600 (0.8529-0.9951)

Validation set A
(set A2: external dataset,
hospital 2)

09472 (0.8978-0.9858)
0.9072 (0.8312-0.9567)
09483 (0.8562-0.9892)
0.9226 (0.8687-0.9594)
0.9670 (0.9067-0.9931)
0.8594 (0.7498-0.9336)
0.9362 (0.8912-0.9666)

AUC, the area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value.

Validation set A
(set A3: external dataset,
hospital 3)

0.9370 (0.8821-0.9802)
09111 (0.8324-0.9608)
0.9444 (0.8461-0.9834)
0.9236 (0.8674-0.9613)
0.9647 (0.9003-0.9927)
0.8644 (0.7602-0.9896)
0.9371 (0.8903-0.9682)
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1. AIHT's Distinctive Features from
Traditional Health Technologies

2. Systemic Impacts on Health

3. Increased Expectations

4. New Ethical, Legal and Social
Challenges

5. New Evaluative Constraints

Key considerations
(In italic
key sub-considerations)

AIHTS are diferent from tradifional health technologies because
of their capacity to continuously leam, their potential for ubiqity
throughout the health care system, the opaqueness of their
recommendations and the ambiguity of their definition
(Ambiguous Defnition of AIHTS)

Locked algorithms will always yield the same result when itis fed
by the same data. They are not per se safer and may require new
regulatory approvals, though they are easier to assess than
unlocked algorithms. Unlocked or adaptive algorithms improve
over time, which demands that their safety and security must be
continually re-evaluated. ‘Lifecycle’ regulation seems to be key in
addressing these concens, but for the most part burden lies on
the regulators to adjusted their assessment of an AIHT in light of
the evolving evidence, which is very resource intensive and for
which HTA agencies are not yet equipped to conduct. (Locked
and Unlocked AIHTs)

Algorithms will need to be regularly updted (at high or even
prohbitive prices) due to advances in medical knowledge and
accessto new datasets or at the risk of ther usage becoming
malpractice. Updating or replacing an AIHT will involve additional
post-acquisition costs to the clinics and hospials that purchased
them. The diffculty of managing the consequences of an outdated
algorthm outweighs those of a drug or other health product that
must be withdrawn from the market (The Update Problem)

Al may have systemic effects that can be felt across an
entire health care system, or across health care systems in
several jurisdictions, initiating extensive and lasting
transformations that are likely to affect all actors working in,
using or financing the health system. In addition, AIHTs can
have systemic real-world consequences for patients and
non-il or non-frequent users of the health care system.
However, Al will not address everything that has to do with
the overall well-being of people (Disruptive for Both the
Healthcare Sector and for Individuals)

Mistakes due to AIHTs used in clinical care and within the heaith
care system have the potential to widely affect the patient
population, suggesting that it is i the more necessary that all
algorithms should subrmitted to extensive scrutiny. In addition,
“tropic effects” (.., code embedded propensity towards certain
behaviors or effects) may increase the risk of inappropriate
treatment and care, and may result in importing AIHT-fueled
standards and practices that are exogenous and non-
idiosyncratic to local organizations. Furthermore, the large-scale
systematization of certain behaviors may end up resulting in
significant costs and harms (Harms, Tropism and Framing Effect)

Some authors suggest AIHTS should be regarded as a *health
system transformation lever” for improving health care and a key
enabler of learning healthcare systems (LHS) (A/ as a
Transformation Lever for the Health Sector)

The “automation bias” describes the belief that an Al-generated
outcome is inherently better than a human one. This is reinforced
by the technological imperative, i.e., the pressure to se a new
technology just because it exists (Belief that Since a Result
Comes from Al it is Better)

These high expectations toward AIHTS form the bass of the
inevitability of Al in health. However, the concept of Al chasm
refers to the phenomenon that while AIHTS are very promising,
very few will actually be successful once implemented in clinical
settings and can help rebalance the expectations. HTA agencies
have an important role to play here to contain this phenomenon
(Inevitabilty of Al in Healthcare)

Al is currently in an era of promises rather than of fulfillment of
whatis expected fromit. Possible consequences of this hype can
be very significant but HTA agencies and regulators have an
important role to play (Navigating the Hype)

AHTS present new ethical, legal and social challenges in the
context of health care delivery; by calling into question the roles of
patients, HCPs and decision-makers; and by conflcting with
medicine’s ethos of transparency

Key AIHT-stemmed ethical challenges in care delivery are: Al-
fostered potential bias; patient privacy protection; trust of
clinicians and the general public towards machine-led medicine;
new health inequalities (Health Care Delivery)

Al being unike most other health technologies, it forces the
questioning of the very essence of humans. It also raises new
existential questions regarding the role of regulators and public
decision-makers AIHTS unparalleled autonomy intensifies ethical
and regulatory challenges (Existential Questions)

AIHTS are often opaque, which poses serious problems for their
acceptance, regulation and implementation in the health care
system. Al's benefits for health care will come at the price of
raising ethical issues specific 1o the technology (Challenging
Medical Ethics’ Ethos)

AHTs raise new evaluative constrains at the technological level
due to the data and infrastructure required (Data-Generated
Issues)

New constraints also appear at the diinical level because of the
greater variation in AIHTs performance between the test
environment and the real-word context than those of drugs and
medical devices (Real-World Usages and Evicential Issues)

This high level of complexity requires a special regulation of AIHT,
specifically adapted to its complexity (Undeveloped Regulatory
Infrastructure and Processes)

Examples from the
reviewed sample

Locked AIHTS couid become outdated potentially from the
moment they are prevented from evolving. Thus, locking AIHT
may cause it to become outdated and increase chance of
contextual bias in real-lfe contexts

Al's role in health surveilance, care optimization, prevention,
public health, and telemedicine will cause AIHTS to affect non-il
or non-frequent users of the health care system

An AHT trained on medico-administrative data in a context
where physicians have often modified their biling to enter the
highest paying codes for clinical procedures would cause the
algorithmtoinfer that these codes represent the usual, standard,
or common practice to be recommended, thus introducing a
bias in the algorithm and leading to a cascade of non-cost
effective recommendations

The adoption and impact of AIHTS are uniikely to be uniform or to
improve performance in all health care contexts because of the
technology's distinctive features, its systemic effects on health
care organizations and the human biases associated with the
use of these technologies. AIHTs can significantly affect and
highiight particularities of workflow and design of individual
hospital systems, causing them not to respond in an intended
way. Therefore, AIHTs represent great challenges for deciding
whether marketing authorization is justified

Patients who compare very well with historic patient data will be
the ones benefiting the most from AIHTs, calling for caution with
regards to patient and disease heterogeneity

Practical and procedural ethical guidance for supporting HTA for
AHTS has ot yet been thoroughly defined. For instance,
distributive justice role in HTA for AIHT is not well specified

Al-stemmed existential questionning includes the reflection that
more and more clinicians are having abouit the proper role of
healthcare professionals and what it means to be a doctor, a
nurse, etc. And from the patients' perspective, what it means to
be cared for by machines and to feel more and more like a
number in a vast system run by algorithms

The adoption and impact of AIHTS are niikely to be uniform or to
improve performance in all health care contexts because of the
technology's distinctive features, its systemic effects on health
care organizations and the human biases associated with the
use of these technologies. Therefore, AIHTS represent great
challenges for deciding whether marketing authorization is
justified, and it forces to question whether marketing
authorization at the 10,000 foot level for the product is
appropriate and efficient as opposed to for more specific uses
closer to the impacted communities and the point of delivery
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Concepts Terms

Al PB = [(Artifiial Inteligence) OR (Machine Leaming) OR (Deep Learning) OR (Natural Language Processing) OR (Chatbot’)
OR (Carebot’) OR (Big Data)]
OR

[Artificial inteligence OR Big Data (MeSH Terms))

EM; OJ; WoS = (Articial Inteligence) OR (Machine Learning) OR (Deep Learning) OR (Natural Language Processing) OR
(Chatbot’) OR (Carebot) OR (Big Data)
iHTAd = (Artficial Inteligence)
AND
HTA PB = (Health Technology Assessment) OR (HTA) OR (Technology Assessment)
OR
[Technology Assessment, Biomedical (MeSH Terms)]
EM; OJ; WoS = (Health Technology Assessment) OR (HTA) OR (Technology Assessment)
HTAd = [Empty]
AND
ELSI PB = (ESL) OR (Ethic’) OR (Bioethic) OR (Moral') OR (Legal") OR (Law) OR (Societ) OR (Polic') OR (Governance) OR (Trust)
OR (Mistrust) OR (Jurisprudence) OR (Pubiic Policy)
OR
(Bioethics OR Ethics OR Jurisprudence OR “Public Policy” [MeSH Terms])
EM; 0J; WoS = (ESLI) OR (Ethic’) OR (Bioethic’) OR (Moral') OR (Legal*) OR (Law) OR (Societ’) OR (Poiic*) OR (Governance)
OR (Trust) OR (Mistrust) OR (Jurisprudence) OR (Public Poiicy)
HTAd = [Empty]

Legend. PB = PubMed: EM = Embase; OJ

Journals@Ovid Full Text: Databasel: WoS = Web of Science; iHTAd

ternational HTA.
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Feature name

bpm

mxdmn

sdnn
rmssd

vif
i
total_power

_data (time-based)

Meaning

Heart rate

Difference between highest and lowest cardio interval
values

Standard deviation of normal heartbeat intervals

Root mean square of successive differences for
cconsecutive intervals

Percent of RR-intervals that fall outside a 50 ms range of
the average

Most common cardio interval length
Mode amplitude

Pouer of low frequency waves
Power of high frequency waves
Power of very low frequency waves
Ratio of low to high frequency waves

Total power of HF, LF, and VLF waves generated by the
heart

Intervals in milliseconds between consecutive heart beats
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Domain Feature name Source

Time-based DI Lag difference of rr sequence

oM Absolute deviation from the mean of rr sequence
Statistical  r7_var Variance of rr sequence

1m_skew Skewness of rr sequence

r_kurt Kurtosis of r sequence

r_max Maximum of rr sequence

ir_min Minimum of rr sequence

1r_median Median of r sequence

1m_mean Mean of rr sequence

r_iar Interquartile range of rr sequence

morning One-hot variables naing

day One-hot variables gy

evening One-hot variables levening

night One-hot variables g

daysa.t. Number of days of COVID-19 infection
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Model Accuracy

LSTM Only 0397
Logit 0.661
KNN 0763
SWM 0792
DNN Only 0903
Our Model (LSTM+DNN) 0914

The bold values indicate the best result for each metric.

Precision

0.410
0.666
0.761
0.791
0.905
0917

Recall

0.397
0.661
0.763
0.792
0.903
0914

Fi-score

0.355
0.650
0.759
0.787
0.903
0.914

Auc

0.556
0.741
0816
0.839
0.924
0.935
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function compute_boot_CI ()
Input: Input Train dataset X, label y, Test dataset X*, model f
Output: 95% C.I. (I, uc),c = 1,2,3,4 and c is the class index.

1. For Bootstrapj = 1,...,B

« Generate bootstrap sample Xj, y; from dataset X and label y
with replacement.

« Train model f with bootstrap sample Xj, ;.

o Feed test dataset X* to the above trained model and
calculate the prediction outputs
Pioc=1,23,4

2. Let I and u, be the 0.025 and 0.975 percentile of (pyc, ..., pac)

return (l;, uc),c = 1,2,3,4
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function compute_feature_importance ()
Input: Feature X, label y, model f
Output: Output Feature importance FI

1. Estimate the original model error e” = L(y,f)
2. For featurej = 1,..,p

+ Generate feature matrix XP*" by removing feature j in the
data X. This breaks the association between feature j and
true outcome y.

o Estimate error e”™ = L(y,f(XP™)) based on the
predictions of the permuted data.

e Calculate permutation feature importance FI; =
eberm ] o0rig

3. Sort features by descending FI.

return FI
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Race (%)

Age [mean (SD)

Sex (%)

Primary. Site (%)

Laterality (%)

T (%)

N (%)

M (%)

surgery (%)

Radiation (%)

Chemotherapy (%)

Bone.metastases (%)

Lung.metastases (%)

times [mean (SD)]

level

Black
Other
White
NA
Fernale
Male
Axis bone
Limb bone
other
left
Not a paired site
right
T
2
]
™
NO
N1
NX
Mo
M1
No
Yes
No
Yes
No/Unknown
Yes
No
Yes
No
Yes
NA

Overall (N = 980)

39(4.0)
126 (12.9)
815(83.2)
2239 (16.45)
418 (42.7)
562 (67.9)
431 (44.0)
317 (32.3)
282 (23.7)
374.(38.2)
296 (30.2)
310 (31.6)
351 (35.8)
420 (43.8)
39(4.0)
161 (16.4)
841(85.8)
80(8.2)
59(6.0)
662 (67.6)
318 (32.4)
413 (42.1)
567 (67.9)
757 (77.2)
223 (22.8)
58(5.9)
922 (94.1)
831(84.8)
149 (15.2)
795 (81.1)
185 (18.9)
30.56 (22.65)

Multicenter (validation group, N = 51)

0(0.0)
51(100.0)
0(0.0)
24.96 (18.97)
23(45.1)
28(54.9)
27 (52.9)
13 (25.5)
11(21.6)
21(41.2)
15 (29.4)
15 (29.4)
20(39.2)
25 (49.0)
5(9.8)
1(20)
44.86.3)
6(11.8)
1(2.0)
30(58.8)
21(41.2)
25 (49.0)
26(51.0)
20(56.9)
22(43.1)
0(0.0)
51(100.0)
40 (78.4)
11(21.6)
41(80.4)
10 (19.6)
29.71 (22.40)

SEER (training group, N = 929)

39(4.2)
75(8.1)
815(87.7)
22.25(16.30)
395 (42.5)
534 (57.5)
404 (43.5)
304 (32.7)
221 (23.8)
353 (38.0)
281(30.2)
295 (31.8)
331 (35.6)
404 (43.5)
348.7)
160(17.2)
797 (85.8)
74(8.0)
58(6.2)
632 (68.0)
297 (32.0)
388 (41.8)
541(58.2)
728 (78.4)
201 (21.6)
58(6.2)
871(93.8)
791 (85.1)
138 (14.9)
75481.2)
175 (18.8)
30.61 (22.67)

P

<0.001

0.252

0.828

0.394

0.894

0.008

0312

0.226

0.381

0.001

0.126

0.271

0.782
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Level Overall (N = 929) No (N = 754) Yes (N = 175) P
Race (%) Black 39(4.2) 27 (3.6) 1269 0.105
Other 758.1) 64(85) 11(63)
White 815 (87.7) 663 (87.9) 152 (86.9)
Age [mean (SD) NA 22.25(16.30) 2210 (16.35) 22.83(16.10) 0569
Sex (%) Female 395 (42.5) 329 (43.6) 66(37.7) 0.18
Male 534 (57.5) 425 (56.4) 109 (62.3)
Primary.Site (%) Axis bone 404 (435) 316 (41.9) 83(503) 0.13
Limb bone 304 (32.7) 253 (33.6) 51(20.1)
other 221 (23.8) 185 (24.5) 36 (20.6)
Race (%) Black 39(4.2) 27 (3.6) 12(69) 0.105
Other 75 8.1) 64 (8.5) 11(6.3
White 815 (87.7) 663 (87.9) 152 (86.9)
T(%) T 331 (35.6) 304 (40.3) 27 (15.4) <0.001
i 404 (43.5) 312 (41.4) 92(52.6)
T3 343.7) 202.7) 148.0)
™ 160 (17.2) 118 (15.6) 42(24.0)
N (%) NO 797 (85.8) 676 (89.7) 121 (69.1) <0.001
N1 7480) 37(4.9) 37(21.1)
NX 58 (6.2) 41(5.4) 179.7)
M (%) Mo 632 (68.0) 632 (83.8) 0(0.0) <0.001
M 207 (32.0) 122 (16.2) 175 (100.0)
surgery (%) No 388 (41.8) 271 (35.9) 117 (66.9) <0.001
Yes 541 (68.2) 483 (64.1) 58(33.1)
Radiation (%) No 728 (78.4) 503 (78.6) 135 (77.1) 0739
Yes 201 21.6) 161 (21.4) 40 (22.9)
Chemotherapy (%) No/Unknown 58(6.2) 45 (6.0) 13(7.4) 0585
Yes 871 (93.8) 709 (94.0) 162 (92.6)
Bone.metastases (%) No 791 85.1) 672 (89.1) 119(68.0) <0001
Yes 138 (14.9) 82(10.9) 56(32.0)
times [mean (SD)] NA 3061 (22.67) 32.40 (22.89) 2289 (2031) <0001
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Variables

Age (years)
Survival time (month)
Race

White

Black

Other

Sex

Male

Female

Primary site

Limb bones

Axis of a bone

other

Laterality

Left

Right

Other

zggds 2+

Radiation

No

Yes
Chemotherapy
No

Yes

Bone metastases.
No

Yes

Univariate OR (95% CI)

1.000 (0.991-1.010)
0.980 (0.973-0.988)

Ref
1.939 (0.960-3.914)
0872 (0.529-1.439)

Ref
0.804 (0.579-1.116)

Ref
1.359 (0.937-1.970)
0.924 (0.585-1.460)

Ref
1.148 (0.784-1.681)
1.004 (0.676-1.491)

Ref
3.461 (2.214-5.410)
8005 (3.8074-16.917)
4,071 (2.415-6.864)

Ref
5570 (0.3457-8.975)
2.255 (1.245-4.084)

Ref
0.278 (0.196-0.394)

Ref
1.241 (0.858-1.795)

Ref
0.794 (0.419-1.504)

Ref
3.403 (2.326-4.977)

p value

0.968
<0.001

Ref
0.065
0.593

Ref
0.192

Ref
0.106
0.7356

Ref
0.479
0984

Ref
<0.001
<0.001
<0.001

Ref
<0.001
<0.01

Ref
<0.001

Ref
0.251

Ref
0.479

Ref
<0.001

Multivariate OR (95% CI)

'
0.988(0.979-0.997)

Ref

Ref

Ref

Ref
2701 (1.690-4.317)
4.087 (1.773-9.194)
3.146 (1.778-5.566)

Ref
$5.102 (3.048-8.540)
1.411(0.734-2.715)

Ref
0.451 (0.309-0.658)

Ref
/

Ref
/

Ref
1.685 (1.090-2.605)

p value

<0.01

Ref

Ref

Ref

Ref
<0.001
<0.01
<0.001

Ref
<0.001
0.302

Ref
<0.001
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Model AUC tuning (SD) AUC testing (95% CI) AUCre-opt. (SD) TPR (95%CI) TNR(95%CI) PPV (95%CI) NPV (95%CI) LR+ (95%CI) LR-(95% CI)

MEAN 0.921 = 0.048 0.774 (0.677, 0.859) 0.780 £ 0.110 0.54 (0.37, 0.71) 0.99 (0.97, 1.00) 0.96 (0.88, 1.00) 0.82 (0.73, 0.90) 53.69 (4.82,597.44)  0.46 (0.32, 0.67)
MSSK 0.990 = 0.017 0.815 (0.728, 0.890) 0.818 = 0.092 0.65 (0.48, 0.82) 0.99 (0.97, 1.00) 0.97 (0.90, 1.00) 0.85 (0.7, 0.93) 6435 (5.83,710.65)  0.35(0.22, 0.57)
ML 0.994 £ 0.013 0.832 (0.745, 0.907) 0.912 = 0.058 0.78 (0.63, 0.92) 0.99 (0.97, 1.00) 0.97 (0.91, 1.00) 0.90 (0.83,0.97) 7692 (7.01,844.09)  0.23 (0.12, 0.43

The uncertainty of the AUC estimates is provided as standard deviation of the cross-validation scores for model tuning and re-optimization and 95% confidence intervals for model testing. Additionally, true positive rate (TPR), true negative rate (TNR),

positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR +), and negative likelihood ratio (LR-) were estimated based on the cutoff point maximizing Youden’s ] statistic (TPR + TNR-1). All 95% confidence intervals
were estimated with bootstrap.
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Characteristics

Age (year)

Sex

Male

Female

Disease duration (year)*
SSc subset (LeRoy 1988)
Limited cutaneous SSc
Diffuse cutaneous SSc
No skin involvement
Skin involvement
Limited cutaneous

Diffuse cutaneous

No skin involvement

Only sclerodactyly
Autoantibodies
Anti-centromere positive
Anti-topoisomerase I positive

Anti-RNA polymerase III positive

Anti-PMSdl positive
FVC (% predicted)
DLCO (% predicted)
FEV1 (% predicted)
Pulmonary hypertensionf
PAPsys (MmHg)

6 min walk distance (m)
SpO; before 6-MWT (%)
SpO; after 6-MWT (%)
Borg scale (unit)

Extent of lung fibrosis on CT
None

Present

Ground glass opacification

R

[

icular changes
Tractions
Honeycombing

Bullae

Radiological subtype”
NSIP

UIP
DIP

Immunomodulatory therapy®

Zurich Cohort (n = 98)

60.0 £ 19.0

21 (21.4%)
77 (78.6%)
50+ 8.6

41 (41.8%)
37 (37.8%)
20 (20.4%)

4 (34.7%)
6 (36.7%)
3 (23.5%)
5(5.1%)

26 (26.5%)
35 (35.7%)
(8 2%)
5 (15.3%)
91.0 +37.0
70.0 % 35.0
92.0 + 27.0
18 (18.4%)
245498
530.0 + 172.5
97.0% 1.0

950+ 6.8
3.0£2.0

3(33.7%
5 (66.3%
25.5%
4 (65.3%

)
)
)
)
8 (38.8%)
)

Continuous variables are described as median =+ interquartile range and categorical

variables are present as absolute numbers with relative frequencies (percent).

*Disease duration of SSc was calculated as the difference between the date of baseline CT

and the date of manifestation of the first non-Raynaud’s symptom.

fPulmonary hypertension was assessed
catheterization.

by echocardiography or right heart

#Radiological subtypes were only determined for SSc patients with ILD.

SImmunomodulatory therapy included

rednisone, methotrexate, rituximab,

cyclophosphamide, mycophenolate mofetil, hydroxychloroquine, tocilizumab, imatinib,

azathioprine, adalimumab, leflunomid, cyclosporine.

PAPsys, systolic pulmonary artery pressure;

FVC, forced vital capacity; FEV1, forced

expiratory volume in 1 second; DLCO, diffusing capacity for carbon monoxide; 6-MWT,

6-min walk test; UIP, usual interstitial pneumonia; NSIP, non-specific interstitial

pneumonia; DIP, diffuse interstitial pneumonia.
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Exploration steps

Query on PubMed

Description

1 Triple negative breast cancer (“triple negative breast neoplasms”[MeSH Terms] OR (“triple’[All Fields] AND “negative”[All Fields] AND
“breast”[All Fields] AND “neoplasms”[All Fields]) OR “triple negative breast neoplasms”[All Fields])
2 Data duration (2005:2021[pdat])
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Metrics

All class F1 score
All class Precision
All class Recall
All class mAP 0.5
Cyst F1 score
Cyst Precision
Cyst Recall
CystmAP 0.5
Effusion F1 score
Effusion Precision
Effusion Recall
Effusion mAP 0.5

SE-Yolo V5s

0.879 £ 0.002
0.887 +0.011
0.872 +£0.014
0.944 + 0.002
0.875 % 0.004
0.873 +£0.012
0.878 £ 0.006
0.942 £+ 0.005
0.883 £ 0.006
0.902 +0.011
0.865 %+ 0.022
0.945 £+ 0.001

*P < 0.05; **P < 0.01; ***P < 0.001.

Yolo V5s

0.832 £ 0.010
0.843 £+ 0.012
0.821 £0.018
0.898 £ 0.011
0.819 £ 0.016
0.822 +0.017
0.818 £ 0.027
0.893 £ 0.019
0.843 £ 0.005
0.864 £ 0.008
0.822 £ 0.009
0.901 =+ 0.004

P-value

0.002**
0.011*
0.018*

0.002**

0.005**
0.014*
0.021*
0.011*

0.001**
0.014*
0.037*

<0.001***
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Environment

Central Processing Unit(CPU)
Opertating system
Graphic Processing Unit(GPU)

Pytorch version

Detail

Intel i7-8700k

‘Window 10

NVIDIA Geforce GTX1080i 11G
Pytorch1.8.1 Opencv 4.5.0
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Basic information

Age(years)
Height(cm)
Weight(kg)
BMI(kg/m2)
Left/Right

Total subjects (n = 282)

52.87 +£13.22
164.60 & 7.63
68.75 + 11.87
25.30 £ 3.55
143/139

Female (n = 192)

52.95+13.18
164.19 £7.63
68.75 + 11.90
25.30 +3.55
101/91

Male (n = 90)

52.95+ 13.24
164.61 & 7.64
68.81 & 11.90
25.36 £ 3.73
42/48

P-value

0.085
0.239
0.720
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Parameter of selection | Inclusion criterion | Exclusion criterion Rationale for inclusion—exclusion

of a publication

Language English Other languages The working language of the LDA algorithm is English. Other
languages are not recognized

Publication date 2005-2021 Publications before 2005 and after | Not included in the 2022 publication as it has not been fully
2021 published

Publication type Al Missing data, meeting abstract, As the LDA algorithm is unsupervised machine learning, the
proceeding paper, book review, analysis must include abstract as the text editor. In addition to
news item incomplete content, try to include research articles and reviews.

Funding sponsor Al No exclusion This parameter does not affect the selection criterion

Affiliation/organization Al No exclusion This parameter does not affect the selection criterion

Funding Al No exclusion This parameter does not affect the selection criterion

Country Al No exclusion Publication from each country has its significance
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Best model Internal validation External validation

ACcC? PREP  REC® AUC ACC PRE REC AUC

Lung SES + RF 0.769 0.81 0.798 0.948 0.607 0.690 0.607 0.919
LASSO + soft weighted voting 0.808 0.827 0.833 0.949 0.571 0.536 0.571 0.941
Liver SES + RF 0.692 0.732 0.75 0.9 0.536 0.574 0.536 0.865
REE + soft weighted voting 0.654 0.56 0.595 0.924 0.464 0.474 0.464 0.901
Kidney LASSO + RF 0.808 0.76 0.786 0.962 0.714 0.798 0.714 0.939
LASSO + soft weighted voting 0.808 0.767 0.786 0.974 0.643 0.683 0.643 0.94
Skeletal muscle RFE + RF 0.769 0.762 0.786 0.951 0.679 0.649 0.679 0912
SES + soft weighted voting 0.731 0.738 0.786 0.966 0.643 0.735 0.643 091
Multi-organ fusion Stacking 0.692 0.74 0.774 0.979 0.679 0.668 0.679 0.978
Soft voting 0.962 0.964 0.964 0.991 0.893 0.94 0.893 0.99
Soft weighted voting 0.923 0.94 0.929 0.993 0.893 0.94 0.893 0.992

2ACC represents accuracy.
YPRE represents precision.
“REC represents recall.
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Liver | Kidney Skeletal
muscle

LASSO + stacking 39.5 15.5 54.5 17
LASSO + soft 78.5 17 76 26
voting
LASSO + soft 89 30 71.5 21:5
weighted voting
RFE + stacking 24 56.5 60.5 45.5
REE + soft voting 38.5 70 46 69.5
RFE + soft 41 89.5 45 80.5
weighted voting
SBS + stacking 28 52 41.5 36.5
SBS + soft voting 42.5 51 49.5 68.5
SBS + soft 45.5 54.5 49.5 67
weighted voting
SES + stacking 50.5 65 23 46.5
SFES + soft voting 64 61.5 41.5 64.5
SFS + soft 83 61.5 65.5 81

weighted voting
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NEEE]
muscle

Model Lung | Liver | Kidney

LASSO + LR 107.5 128 50.5

LASSO + SVM

LASSO + RF

LASSO + GBDT 59.5 57.5 27 19.5
LASSO + MLPC 137 29 93.5 64.5
RFE + LR 104.5 1135 110 107
RFE + SVM 48 70.5 92:5 93.5
RFE + RF 132 1355 112 139
RFE + GBDT 185 485 46 14
RFE + MLPC 53 125 51.5 96
SBS + LR 64.5 109.5 65 115.5
SBS + SVM 60.5 71 62 111.5

SBS + RF

SBS + GBDT

SBS + MLPC

SFS + LR

SES + SVM

SFS + RF

SES + GBDT 19.5 37 11 22

SES + MLPC 116 94 545 106.5
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Polypeptide | Molecular = Migration = Organs?

mass time
(=X +£SD) @ (=X=+SD)

1 14.25 £ 0.45 20.68 £ 0.08 Lu®, Li¢, K9,
Me

2 15.53 +0.30 20.95 £ 0.05 M

3 17.61 +0.34 21.34 £ 0.06 M

4 19.65 £ 0.62 21.81 £0.13 K

5 25.58 £0.73 21.94 £0.15 Li

6 22.62£0.83 22.36 £0.16 Li, K

7 23.84+0.38 22.56 £ 0.07 M

8 24.54 +£0.37 22.66 £ 0.06 Lu, Li

9 25.63 £0.69 2293 £0.15 KM

10 26.83 £0.35 23.12+£0.08 Lu, Li, M

11 29.43 £0.50 23.57 £0.14 Lu, K

12 31.68 £ 0.64 2391 £0.10 K,M

13 3292 +0.75 24.08 £0.12 Lu, Li, K

14 35.47 £091 24.40 £0.10 Lu, Li, M

15 39.65 £0.94 25.02£0.18 Lu, Li, K, M

16 43.68 £ 0.82 25.59 £0.11 Lu, Li, K, M

17 45.15£1.21 25.86 £0.17 Li

18 47.34 £ 091 26.19 £0.12 K

19 50.20 £ 1.11 26.46 £0.13 Lu, Li

20 51.97 £0.47 26.69 £ 0.09 K, M

21 53.06 £ 0.65 26.86 = 0.08 Li

22 55.43 £0.43 27.15 £ 0.04 Li

23 57.44 £ 1.10 27.32£0.16 Lu, K, M

24 5843 £ 1.11 27.54 £0.18 Li, K, M

25 62.89 £0.70 28.08 £0.08 M

26 71.58 £1.57 28.80 £0.27 Lu, Li, K

27 74.83 £ 1.49 28.99 £0.16 Lu,M

28 7823 £ 1.25 29.29 £ 0.07 M

29 82.13 £1.08 29.68 £0.09 Li

30 84.57 £0.77 29.88 £0.07 K

31 85.91 £0.98 29.90 £ 0.09 Lu,M

32 91.34 £ 1.04 30.30 £ 0.09 Lu

33 9395+ 191 30.59 £0.16 Lu, Li, K, M

34 104.86 = 1.01 31.59 £ 0.08 Li

35 111.46 +5.41 32.09 £0.52 M

36 121.23 £1.82 3298 £0.17 M

37 123.73 £2.40 33.23£0.20 K,M

38 131.39 +1.01 33.90 £ 0.09 Li

39 135.25 +2.04 34.20 £0.17 Lu, Li

40 141.40 £ 1.35 3471 £0.15 Lu, M

41 144.59 £ 2.03 35.04 £0.18 Li,M

42 154.94 £+ 1.46 35.78 £0.11 Lu, K

43 179.02 &£ 1.05 37.28 £0.07 Lu, Li, K

44 217.22 £ 0.98 39.60 £ 0.07 Lu

45 225.04 £ 3.44 40.08 £+ 0.21 Lu

*Organs with polypeptide fragments.

bLu represents lung.

“Li represents liver.

4K represents kidney.

¢M represents skeletal muscle.
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Lab-on-chip Traditional methods
Western-blotting ELISA Protein mass spectrometry

Operations Simplify Complex Complex Complex
Sample consumption Minimal Major Major Minimal
Expenditure Cheap Cheap Cheap Expensive
Speed Less than 30 min Slow Fast Slow
Equipment Only 2,100 Bioanalyzer Variety Few Variety
Identify particular protein No Yes Yes Yes
Quantitation Automatic Semiquantitative Semiquantitative Automatic
High throughput Yes No No Yes
Data processing Use machine learning Manual analysis Manual analysis Use machine learning
Predict performance Excellent Poor Poor Good
Witnessed inspections Yes No Yes No
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Accuracy

VGG-19 (Case A) 0931 10 0925
ResNETS0 (Case A) 0.948 08 0.962

Inception V3 (Case A) 0.965 08 0981
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Variables RTW (n = 107) Non-RTW (n = 56) 1, Mann-Whitney, x2 Univariant logistic regression
Statistic P oR P

Age (years) 37.4£07 303£10.9 112 0265 0982 0263
Sex

Male 79 38 065 0.421 0.748 0.422

Female 28 18
Marital status

Married % a7 <001 1,000 0986 0976

Single 17 9
Educational level

lliteracy 1 3 -258 0010 1713 0007

Primary school 10 8

Junior midde school 47 20

High middle school 35 14

College diploma or higher 14 2
Time since injury (days) 142.1 £ 76.4 1729914 228 0024 0996 0029
Injured hand dorminance

Dominant 53 27 160 0512 0845 0553

Non-dominant 51 2

Bilateral 3 4
Injury location

Finger 67 21 11.50 0057 0813 0025

wiist 18 14

Forearm 5 7

Elbow 5 4

Upper arm 2 2

Shoulder 8 5

Mult-location 2 3
Pain intensity 3020 3222 070 0.486 0946 0.484
Patients expectation of RTW 2610 20%1.1 -817 0002 1661 0.001
Famiy's expectation of RTW 2610 2012 284 0005 1647 0002
Employer's expectation of RTW 2509 2009 -326 0001 1900 0.001
Physical work demands

Sedentary 1 o -035 0724 0947 0.741

Light 21 12

Medium 40 17

Heavy 27 18

Very heavy 18 9
Grip strength of the injured UE (k) 102489 17.84120 -4.56 <0.001 1072 <0.001
Grip strength of the healthy UE (kg) 362+ 105 332105 —172 0087 1027 0088
Pinch strength of the injured UE (kg) 5732 3728 -379 <0.001 1236 <0.001
Pinch strength of the healthy UE (kg) 10147 9344 ~108 0.161 1047 0289
Lifing strength of the injured! UE (kg) 273+168 17.0+126 -4.06 <0.001 1085 <0.001
Lifing strength of the healthy UE (kg) 478+189 4214 %176 ~188 0062 1017 0065
Carrying strength at waist (kg) 27.0£12.7 1634 12.0 -520 <0.001 1075 <0.001
Carrying strength at shouider (kg) 218+ 113 125+92 -530 <0.001 1004 <0.001
Purdue pegboard test

Injured hand 122+42 9554 -336 0001 1.128 0.001

Healthy hand 16218 15,7 £2.1 —157 0119 1.150 0.120

Both hands 12442 8347 -398 <0.001 1.169 <0.001

Injured + healthy + both 396486 335+109 -367 <0.001 1.069 <0001

Assembly 282103 225%12.7 -290 0005 1045 0003
DASH 345+193 438+17.3 300 0003 0974 0004
PCL-c 35.4%12.7 39.8+13.9 203 0044 0975 0047

Al variables were compared between patients who returned to work and those who dld not. Independent sample t-tests (t) were used for continuous data, while Mann-Whitney tests
were used for ordinal data. The differences on categorical dta were checked by using Chi-square tests (x?). In addition, univariant logistic regression tests were employed to investigate
whether variables were indivicuall predictive for RTW. Only those variables which showed significant predictability were included for machine leeming modeling. I this table, continuous
data are expressed as mean < SD, ordinal and nominal data are expressed as a number. RTW, retum to work; OR, odds ratio; UE, upper extremity; DASH, Disabilty of the Arm, Shoulder

and Hand: PCL-c, Post-traumatic Stress Disorder ChecKlist-civilian version.
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Model

VGG-19
ResNet-50
Inception-v3
VGG-19
ResNet-50
Inception-v3
VGG-19
ResNet-50
Inception-v3
VGG-19
ResNet-50
Inception-v3
VGG-19
ResNet-50

Inception-v3

Train loss

0.225+0.053
0,394+ 0,099
0474 +0.154
0.345+0.045
0.563 40,184
0332+ 0,094
0453 £ 0,057
0.605 + 0,037
0.587 +0.048
0299 +0.056
0.631 40,040
0494+ 0,168
051940242
0.664 +0.016

0.696 + 0,028

Validation
loss

0.096 +0.010
01230011
0102 £0.009
0246 +0.014
0.187+0.022
02140012
03100016
0,507 +0.008
03720013
0.153£0.018
0405+ 0,010
0.150+0.011
0505+ 0.138
063140012

0,665 +0.008

Accuracy

0.973 £ 0.006
0,976+ 0.006
0.974:+0.007
0.925+0.010
0,936+ 0,012
0.933+0.010
0.900 £ 0.015
0.896+0.015
0.914:£0011
0.942:£0.012
0.92840.013
0.941:40011
0.779+0.054
0.700 + 0.038

0.678:+0.057

Sensitivity

0.947£0.039
0,925+ 0,053
0.869 + 0.085
0.847 £ 0,041
0.779+0.057
0.802 +0.039
0.750 £ 0,078
0.756 40,079
0.659 + 0,056
0.925 +0.056
0.872+0.066
0.808+ 0,078
0.706 + 0,088
0.61140.102

0.550+0.103

Specificity

0,975 +0.006
0.980 + 0,006
0.981 +0.006
0.939+0.011
0.963 + 0,009
0,956 + 0,008
0.914+0.014
0.909+0.015
0939+ 0,012
0.942£0.013
093240012
0,950+ 0,010
0.831+0.061
0.756 +0.056

0.766 + 0,088

0,991 +0.003
0,992 +0.003
0.991 +0.004
0.961+0.013
0948 +0.017
0.951+0.013
0.935+0.022
0913+0.025
09120019
0,977 £0.007
0.964+0.012
0,975+ 0,007
0.861 0,050
0.785+0.053

07220072
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Model Run 1 Run 2 Run 3
VGG-19 0.739 £ 0.006 0.632:£0.007 063120005
ResNet-50 037920024 0.403 + 0,031 0.400 £ 0.047

Inception-v3 0239+ 0050 0,265+ 0.037 0.243 40,068
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Model Learning  Processing Max.

rate time epochs

A VGG-19 10 3.51£020 316%3
ResNet-50 107 235£022 207+33
Inception-v3 10" 155£0.14 18525

B VGG-19 10 3.83£027 33.1%25
ResNet-50 10 112034 68522
Inception-v3 107 140.£0.19 93523

c VGG-19 10 3872035 333429
ResNet-50 10°% 2914022 269428
Inception-v3 10 2984053 2329

D VGG-19 10 3204025 27432
ResNet-50 10°% 3094046 259429
Inception-v3 107 140 £ 0.01 88+20

E VGG-19 107 0.42£0.03 116+ 3.0
ResNet-50 107 0.86 £ 0.20 225+36

Inception-v3 10 0344014 9440
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Doctor with Doctor without

InterNet assistant InterNet assistant

AUC 0803 0759
Sensitiity (%) 83.08 78.13
Specifcity (%) 7250 7875
Accuracy (%) 80 76

PPV (%) 73.00 74.00
NPV (%) 88.00 78.00
Time (second/sequence) 43.78 84.83

AUC, area under the receiver operating characteristic curve; PPV, positive predict value;
NPV, negative predict value.
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Female Value of p

Goutallier Level

wipy AR N
0 403 (66.50) 140 (35) 53.06 (10.55) 263 (65) 49.24(13.13) 0477 haid
1 114 (18.81) 74 (65) 61.50 (10.37) 40 (35) 63.58 (8.17) 0.465 0371
2 51(8.42) 31(61) 66.65 (9.53) 20(39) 66.40 (10.13) 0.447 0992
3 24(3.96) 16 (67) 68.88 (7.74) 8(33) 64.25 (7.59) 0.424 0.230
4 14(231) 13(93) 67.31(7.33) 1(7) NA. 0.354 0.8
Total 606 (100) 274 (45) 58.47 (11.67) 332(55) 52.42(13.81) 0.483

Mann-Whitney or f-test were used to compute the significance (alpha 0.05). **%, statistically significant
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Baseline + FPN
(Resize 1,024 x 512)

AP (%) 603
Precision 0514
Recall 0,683
FPS 50

FPN, Feature Pyramid Network; AP Average Precision; FPS,

Baseline + FPN
(Resize 1,333 x 800)

64.5
0531
0.703

39

frames per second.
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Baseline Baseline + FPN

AP (%) 584 603
FPS 42 50

AP, Average Precision; FPS, frames per second.
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Validation loss Validation loss
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Target- Estimator Models and algorithms Advantages Disadvantages Variance  Bias Clinical
Population types application
intervention patterns and
sizes references
Propensity scores-based, Simple, transparent, Model can be Widely used
propensity score matching mimic clinical trials misspecified (60, 68)
and IPTW
Whole population  ATE Outcome regression, No need to estimate Model can be Low High Few
variations of G-computation  propensity score misspecified applications
Doubly robust estimator, Efficient, doubly robust  Yield biased estimate if Widely used
targeted maximum property both models are (75, 84)
likelihood estimator misspecified
Direct stratification Easy to interpret Data sparsity proble Widely used
(90, 95)
Sub population CATE Indirect stratification, Robust, easyto satisfy ~ Subpopulation hardto  Medium ~ Medium
propensity score-based positiity assumption interpret
approach
Data driven, tree based Low variance within Subpopulation hardto  Medium  Medium  Few
algorithms subpopulation interpret applications
(105, 106)
Fit one outcome surface, Capture common Not flexible, especially Few
BART model etc underlying data when the outcome applications
structure surfaces are very (107, 108)
Individuals Ime different in distinct High Low
groups

Fit two outcome surfaces

Flexible, allow for
different data structure
in groups

Does not capture
common data pattern
in two groups
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Physician or DA

Physicians®
Ada

Babylon®
Buoy

Isabel
MidasMed
Symptomate?
WebMD?

All DAs

Top 3 DAS'

Vignettes tested

90°
30
30
21°
30
30
30
30
201
£

Fraction

68/90°
22/30
21/30
11721
15/30
28/30
21/30
20/30

138/201
71/90

Target diagnosis ranked #1

Percent (%)

75.3
733
700
52.4
50.0
93B3
700
66.7
67.7
789

95% CI°®

65.4-84.0
54.1-87.7
50.6-85.3
29.8-74.3
31.3-68.7
77.9-99.2
50.6-85.3
47.2-82.7
61.8-75.0
69.0-86.8

Fraction

81/90°
27/30
29/30
15/21
21/30
29/30
26/30
28/30

176/201
82/90

Target diagnosis in the top 3

Percent (%)

90.3
90.0
96.7
714
70.0
96.7
86.7
933
87.1
911

%The Babylon and physician tests were not replicatedin this study, but were transcribed from Baker et al. (2020), which used the same methodology.
®In the Babylon study three physicians were tested, but only percent data were reported; therefore 95% Cl's were computed assuming a total of 90 vignettes (30 per doctor).
For 9 of the 30 disordiers presented, Buoy gave no proposed diagnoses; only triage recommendations (e.g., *Contact a medical professional” or *Call 9111,

Yisabel, Symptomate, and WebMD are the only DAs tested both in the originel paper (Semigran et al, 2015) and this study.
°Cl intervals were computed using Clopper-Pearson exact method for binomial probabilty distributions.

fFor a larger sample size to compare with physicians, we combined the top 3 DAs we tested (Ada, MidasMed, and Symptomate).

95% CI®

81.9-95.3
73.5-97.9
82.8-99.9
47.8-88.7
50.6-85.3
82.8-99.9
69.3-96.2
77.9-99.2
81.6-91.4
83.2-96.1
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Diagnosis

Requires emergent care (n = 15)
Appendicitis

Vignette

A12-year-old girl presents with sudden-onset severe generalized abdorminal pain
associated with nausea, vomiting, and diarrhea. On exam she appears ill and has a
temperature of 104°F (40°C). Her abdomen s tense with generalized abdominal pain,
nausea, tenderness and guarding. No bowel sounds are present.

Simplified (added
symptoms)

12 y/o 1, sudden onset
severe abdominal pain,
nausea, vomiting,
darrhea, T = 104
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AUC, area under the curve; SE, sensitviy; SP.specifcity; PPV, positive predictive value; BR, binary relevance model; CC, cassifie chains model; NST, nested stacking model; DB, dependent binary relevance model; STA, staking generalization;

RE random forest.
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Dataset Measure Model HE [95% CI] NV [95% CI] E[95% CI] IST [95% CI]

A AUC BR 0.806 (0.81,081) 0.901 (0.900,0.902) 0.7482 (0747, 0.749) 0.963 (0.963,0.964)
cc 0810 (0.81,081) 0.897 (0.896, 0.898) 06954 (0.689,0.701) 0.961 (0960, 0.963)

DBR 0.804 (08,081) 0.892 (0.891,0.893) 0.6488 (0647, 0.650) 0.956 (0.954,0.958)

NST 0.806 (0.81,081) 0901 (0.900,0.902) 0.7463 (0.745,0.747) 0963 (0.963,0.964)

RE 0928 (0.93,093) 0974 (0.973,0.974) 0.8993 (0.898,0.9) 0991 (0.990,0.991)

STA 0.806 (0.81,081) 0.847 (0.846, 0.848) 0688 (0686, 0.689) 0935 (0.934,0.936)

SE BR 0577 (0.58,0.58) 0704 (0.703,0.704) 0.6568 (0656, 0.657) 0.760 (0.759,0.760)
cc 0578 (0.58,0.58) 0702 (0701, 0.703) 06234 (0.619,0.627) 0.759 (0.758,0.76)

DBR 0576 (0.58,0.58) 0699 (0.698,07) 0594 (0593, 0.595) 0.756 (0.754,0.757)

NST 0577 (0.58,0.58) 0704 (0.703,0.704) 0.6556 (0654, 0.656) 0.760 (0.759,0.760)

RE 0.607 (0.61,061) 0741 (0740, 0.741) 07522 (0.751,0.752) 0775 (0.774,0.776)

STA 0577 (0.58,0.58) 0676 (0.676,0.677) 0.6187 (0617, 0.619) 0.744 (0.743,0.744)

sp BR 0.729 (0.73,073) 0697 (0.696,0.697) 05913 (0590, 0.591) 0.703 (0.702,0.70)
cc 0732 (0.73,0.73) 0.695 (0.694, 0.696) 05719 (0569, 0.574) 0.702 (0.701,0.703)

DBR 0728 (0.73,0.73) 0.692 (0.691,0.693) 0.5548 (0554, 0.555) 0.700 (0.699,0.701)

NST 0729 (0.73,073) 0.697 (0.696,0.697) 0.5906 (0590, 0.591) 0703 (0.702,0.704)

RE 0.820 (0.82,082) 0732 (0.732,0.733) 0.6469 (0.646,0.647) 0715 (0.714,0716)

STA 0729 (0.73,073) 0670 (0670, 0.671) 0.5692 (0.568, 0.569) 0.691 (0690, 0.691)

B AUC BR 0.830 (0.83,083) 0925 (0.923,0.927) 07811 (0778, 0.784) 0.960 (0.957,0.963)
cc 0.830 (0.83,083) 0.906 (0.901,0.911) 07228 (0.714,0.731) 0.964 (0.961,0.966)

DBR 0.788 (0.79,0.79) 0.846 (0.842,0.85) 0.6477 (0643, 0.652) 0.965 (0.963,0.967)

NST 0.830 (0.83,083) 0926 (0.925,0.928) 0781 (0.777,0.784) 0.960 (0.957,0.963)

RE 0.888 (0.89,0.89) 0965 (0.964, 0.966) 08517 (0849, 0.854) 0986 (0.985,0.987)

STA 0.829 (0.83,083) 0870 (0.866, 0.873) 07222 (0.717,0.726) 0937 (0.935,0.940)

SE BR 0.606 (0.61,061) 0764 (0762, 0.765) 06821 (0679, 0.684) 0.804 (0.801,0.806)
cc 0.606 (0.61,061) 0752 (0.749,0.755) 0.6444 (0638, 0.650) 0.807 (0.804,0.809)

DBR 0.592 (0.59,0.59) 0714 0712,0.717) 0.5957 (0592, 0.598) 0.807 (0.805,0.809)

NST 0.606 (0.61,061) 0765 (0763, 0.766) 0.6821 (0679, 0.684) 0.804 (0.801,0.806)

RE 0.624 (0.62,063) 0.789 (0.787,0.790) 07279 (0725,0.73) 0.821 (0.820,0.823)

STA 0.605 (0.6,0.61) 0729 (0727,0.732) 0.6441 (0640, 0.647) 0.789 (0.787,0.791)

sp BR 0723 (0.72,073) 0.660 (0658, 0.661) 0.5983 (0597, 0.599) 0654 (0.653,0.656)
cc 0723 (0.72,073) 0653 (0.651,0.655) 05779 (0574, 0.580) 0.656 (0.654,0.657)

DBR 0.695 (0.69,0.7) 0.630 (0628, 0.632) 05516 (0550, 0.553) 0.656 (0.655,0.658)

NST 0723 (0.72,073) 0.660 (0659, 0.662) 05983 (0597, 0.599) 0.654 (0.653,0.656)

RE 0.763 (0.76,0.76) 0675 (0.673,0.676) 0623 (0.621,0.624) 0663 (0662, 0.665)

STA 0723 (0.72,073) 0639 (0.637,0.641) 05776 (0.576,0.579) 0.647 (0.645,0.648)

AUC, area under the curve; SE, sensitivity; SP, specificity; HE, hypoechogenicity; NV, neovascularity; IST, intrasubstance tear; E, enthesopathy; BR, binary relevance model; CC, classifier
chains model; NST, nested stacking model; DBR, dependent binary relevance model; STA, staking generalization; RF, random forest.
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Demographic characteristics/ Female (N =1717) Male (N =2607) p-value Total (N = 4324)

degenerative findings Mean = SD; 1 (%) Mean = SD; 1 (%) Mean = SD; 1 (%)
Age 47.18 % 11.00 4599+ 11.03 <0001 46.46 £ 11.03
Right side of the injury 1179 (68.88) 1790 (68.66) 0.98 2969 (68.66)
HE 1201 (69.94) 1730 (66.35) 00119° 2931 (67.75)
NV 636 (37.04) 999 (3831) 04093 1635 (37.79)
E 599 (34.88) 915 (35.09) 09411 1514 (35.00)
IST 582 (33.89) 880 (33.75) 09521 1462 (33.80)

HE, hypoechogenicity; NV, neovascularity; E, enthesopathy; IST, intrasubstance tear. “p-value < 0.001. *p-value < 0.01
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Assignment Raman shift (cm™")

DNA 481, 784,788, 826

DNA/RNA 1,231, 1,320

Saccharides 1,370

Monosaccharide 898

Disaccharide 898

Polysaccharide 477

Glycogen 933, 1,003, 1,025, 1,150

Amylaceum 540

Collagens 859, 1,032, 1,303, 1,309, 1,325, 1,332, 1,339, 1,445
Phosphatidylinositol 415,519, 576

Phospholipid 1,085, 1,032, 1,078, 1,445, 1,745

Cholesterol 548

Cholesteryl ester 538,614

Lipid 877,968, 1,125, 1,057, 1,060, 1,095, 1,124, 1,275, 1,309, 1,369, 1,437, 1,447, 1,450, 1,452
Glycerol 630

Nuclein 1,299, 1,340, 1,578

Tyrosine 640, 642, 643, 821, 823, 830, 835, 849, 853, 855, 859, 1,170, 1,616
Methionine 695

Aspartate 1,700

Glutamate 1,700

Tryptophan 745, 752,758, 880, 1,208, 1,365, 1,374, 1,376, 1,552, 1,560, 1,561, 1,616, 1,618, 1,618
Proline 814, 821, 853, 855, 880, 918, 928, 933, 935, 936, 1,043, 1,066, 1,447
Hydroxyproline 821, 853, 876, 1,588

Valine 928, 933, 935, 936, 1,066

Phenylalanine 1,000, 1,002, 1,003, 1,004, 1,030, 1,104, 1,582, 1,583, 1,588, 1,602
Cysteine 495-516

Protein 933, 951, 1,158, 1,369

Phosphorylated protein 968, 970

Pyrimidine ring 766

Uracil 780, 784

Cytosine 784, 1,175, 1,290, 1,506

Thymine 784

Guanine 1,175, 1,369

Adenine 721, 1,335

Porphyrin ,369

C-C skeleton 928, 938, 1,130, 1,561

C-C stretching (collagen) 817

C-C stretching (phenylalanine) ,339

C-H stretching (protein) ,295

C-N stretching (protein) 1,053, 1,128

C-O stretching (protein) ,053

C-O stretching (lipid) 1,723, 1,738, 1,792

Ribose vibration 867,915

Antisymmetric vibration of phosphoric acid 1,185-300

Antisymmetric phosphate stretching vibration ,230

Amide I 1,600, 1,601, 1,624, 1,637, 1,640, 1,645, 1,654, 1,655, 1,658, 1,660, 1,664, 1,670, 1,685, 1,697
Amide II 1,516, 1,570

Amide III 1,234, 1,236, 1,243, 1,246, 1,255, 1,275, 1,285, 1,302

p-Carotenoids 1,152, 1,518, 1,520
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