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advances in genome sequencing techniques have facilitated 
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for a wide variety of organisms from microbes to human 
cells. These models have been successfully used in multiple 
biotechnological applications.

Despite these advancements, modeling cellular metabolism 
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representation of metabolic models and simulation results.
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Metabolism is a core process of every cell providing the energy and building blocks for all other
biological processes. Mathematical models and computational tools have become essential for
unraveling the complexity of cellular metabolism (Heinemann and Sauer, 2010). Models integrate
current knowledge on a biological system in an unambiguous manner and allow simulating cel-
lular responses to genetic and environmental perturbations. Advances in genome sequencing and
annotation have facilitated the reconstruction of genome-scale metabolic models for hundreds of
organisms, which are currently used in various applications ranging fromhuman health to industrial
biotechnology (Bordbar et al., 2014).

Despite these advancements, there are still major challenges in modeling cellular metabolism at
the genome scale. These include the reconciliation of different modeling approaches, the integration
of metabolic models with models of other biological processes, the interpretation of heterogeneous
data sources using models, and the adoption of suitable standards for model sharing. The aim of
this Research Topic is to present state-of-the-art methods that aim to overcome these challenges and
push this frontier to a new edge.

Starting from the most fundamental aspect of biochemical reactions, Cannon (2014) reviews the
historical perspective of thermodynamics as amajor driving force in the evolution of life and presents
a primer on statistical thermodynamics. The author then provides examples of thermodynamic anal-
ysis of small metabolic pathways, highlighting future directions for integration of thermodynamics
and large-scale modeling.

The most common approach to build a metabolic model is bottom-up reconstruction, where
individual reactions for a given organism are identified (through genome annotation and literature
data) and retrieved from biochemical databases. This approach is mostly limited by the current
knowledge on enzymes with annotated functions. The alternative (termed top-down) approach is
to infer the underlying network structure by reverse engineering of metabolome data. Çakir and
Khatibipour (2014) compare these two approaches, reviewing available methods for both cases and
providing pointers toward the reconciliation of these strategies.

Once a model is built, it can be used to simulate the metabolic phenotype under different
conditions and subsequently comparedwith in vivo results for validation and refinement. Phenotype
microarrays currently allow high-throughput assessment of metabolic responses to multiple exper-
imental conditions. Chaiboonchoe et al. (2014) present an optimization of the Biolog phenotyping
protocol for metabolic profiling of microalgae. The experimental results are used to expand and
refine a genome-scale model of the alga Chlamydomonas reinhardtii to include the utilization of
carbon and nitrogen sources not present in the original model.

Choosing a modeling formalism requires a compromise between model size and detail (Machado
et al., 2011). Constraint-based models have gained popularity for their scalability to the genome
scale. However, when insight of intracellular dynamics is required, kinetic models become the
obvious choice. Petri nets, with their varied extensions, offer an intermediate level of compromise,
allowing structural network analysis and, to some extent, dynamic analysis. Hartmann and Schreiber
(2015) present a unified graph formalism and implement transformation operations to convert from
the unified model to any specific formalism. The authors provide an example of integrated analysis
using different formalisms in a unified model of sucrose breakdown in the potato tuber.
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Current omics technologies allowunprecedented quantification
of different types of cellular components including RNA tran-
script, protein, and metabolite levels. Machado et al. (2015) use a
multi-omics dataset of Escherichia coli to analyze the contribution
of allosteric regulation in controlling central carbon metabolism.
Given the role of this type of control in response to different
perturbations, the authors present a new simulation method to
account for allosteric interactions in the determination of steady-
state flux distributions. This is the first constraint-based method
to account for allosteric regulation.

Next-generation sequencing is another example of technol-
ogy pushing the limits of biological discovery. Understanding
how genetic variants affect metabolic phenotype is fundamental
in diverse areas, such as the study of disease mechanisms and
the engineering of microbial cell factories. Cardoso et al. (2015)
review available methods to predict the effect of genetic variations
in protein function and expression. Integrating these methods
with genome-scale metabolic modeling creates the potential for
mechanistically predicting the consequences of genetic variation
in the cellular phenotype, which is currently not possible with the
statistical approaches used in genome-wide association studies.

Microbial strain design is a common application of genome-
scale models as the combinatorial explosion of possible genetic
manipulations demands efficient optimization methods. Stanford
et al. (2015) address the problem of butanol production in E.
coli using a new strain design method, RobOKoD, that combines
gene over/underexpression with gene knockouts, showing good
agreement with experimental data. Khodayari et al. (2015) analyze
the case of succinate overproduction in E. coli using k-OptForce,
the first strain design method that accounts for integrated simu-
lation of kinetic and constraint-based models. This enables strain
design at the genome scale while accounting for regulation mech-
anisms in central carbon pathways, such as feedback inhibition.

The authors observe decreased prediction accuracy when the
kinetic model is applied in experimental conditions that differ
from those used for parameter estimation, highlighting the impor-
tance of reparameterization of kinetic models for the conditions
used in the production setting.

Last but not least, modeling the complexity of cellular
metabolism is an iterative refinement process that cannot be
accomplished without a community effort. The ability to share
models using suitable standards is of paramount importance
(Ebrahim et al., 2015). Dräger and Palsson (2014) present a com-
prehensive review of standardization efforts in Systems Biology,
including standards for model representation, model visualiza-
tion, minimum information requirements, and suitable ontolo-
gies. This review also covers public model databases, conversion
tools, simulation software, and standards for publication of sim-
ulation results. Adoption of these standards is essential to ensure
reusability of models and reproducibility of results.

The work presented in this Research Topic addresses many of
the current gaps in the field with innovative solutions. Closing
these gaps provides a stepping stone for the challenges to come.
The future of metabolic modeling already holds exciting oppor-
tunities with a new generation of models that include protein
structures, gene expression pathways, and even whole-cell models
(King et al., 2015).
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The modeling of the chemical reactions involved in metabolism is a daunting task. Ideally,
the modeling of metabolism would use kinetic simulations, but these simulations require
knowledge of the thousands of rate constants involved in the reactions.The measurement
of rate constants is very labor intensive, and hence rate constants for most enzymatic
reactions are not available. Consequently, constraint-based flux modeling has been the
method of choice because it does not require the use of the rate constants of the law
of mass action. However, this convenience also limits the predictive power of constraint-
based approaches in that the law of mass action is used only as a constraint, making it
difficult to predict metabolite levels or energy requirements of pathways. An alternative to
both of these approaches is to model metabolism using simulations of states rather than
simulations of reactions, in which the state is defined as the set of all metabolite counts
or concentrations. While kinetic simulations model reactions based on the likelihood of
the reaction derived from the law of mass action, states are modeled based on likelihood
ratios of mass action. Both approaches provide information on the energy requirements of
metabolic reactions and pathways. However, modeling states rather than reactions has the
advantage that the parameters needed to model states (chemical potentials) are much eas-
ier to determine than the parameters needed to model reactions (rate constants). Herein,
we discuss recent results, assumptions, and issues in using simulations of state to model
metabolism.

Keywords: statistical thermodynamics, metabolism, simulations, fluctuation theory, molecular motors,
tricarboxylic acid cycle, adaptation, biological

INTRODUCTION
Since the time of Boltzmann, it was recognized that living organ-
isms are thermodynamic entities. Lotka (1922a) paraphrased
Boltzmann’s thinking, “that the fundamental object of contention
in the life-struggle, in the evolution of the organic world, is avail-
able energy.” Lotka went on, “in accord with this observation is
the principle that, in the struggle for existence, the advantage
must go to those organisms whose energy-capturing devices are
most efficient in directing available energy into channels favorable
to the preservation of the species.” Lotka (1922b) proposed that
natural selection is at its most fundamental level a physical princi-
ple. Schrödinger (1945) famously expanded on this concept with
What is Life?, and used the concept of entropy to describe how
order, in the form of high energy compounds in the environment,
drives organization within organisms. Organisms dissipate that
energy into lower forms. The concept of life as a non-equilibrium
process has resonated with others as well, including Prigogine
who described living organisms as dissipative structures that self-
organize in response to large non-equilibrium driving forces (Pri-
gogine, 1978). Abiotic examples of dissipative structures include
tornadoes, hurricanes, and convection cells. The non-equilibrium
driving forces“pay” for the self-organization that allows the result-
ing structures to dissipate energy rapidly. In biological systems,
energy comes into the system in the form of sunlight or high
energy compounds, typically highly reduced carbon compounds,

and this energy is dissipated into the environment according to the
second law of thermodynamics. In biological systems, some of the
energy is harvested to pay for the creation of additional dissipative
structures (growth and reproduction), or to create large amounts
of stored energy in the form of lower energy byproducts.

The ecologist H. T. Odum was certainly convinced of the role
of statistical thermodynamics in systems ecology. Writing in the
American Scientist (Odum and Pinkerton, 1955), Odum sought
to understand the diverse scale of rates of natural processes, and
proposed that each biological system works at an efficiency that
allows the maximum efficiency and power, similar to Lotka’s con-
cept that the advantage goes to organisms whose metabolism is
most efficient at channeling energy for the purpose of reproduc-
tion. Odum took natural selection to mean “the persistence of
those forms, which can command the greatest useful energy per
unit time.”

Morowitz also proposed that the far from equilibrium natural
environment was responsible for self-organization of biological
systems. As a consequence, Morowitz proposed that life was not
only a consequence of energy flow in natural systems, but also that
it is highly probable. From this perspective, natural selection is a
random process, and in the words of Dewar (2005), species “are
selected because they are characteristic of each of the overwhelm-
ing majority of ways in which energy and matter could flow under
the constraints imposed by local energy and mass conservation”.
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Such concepts have led to the metabolism first hypothesis of the
emergence of life on earth (Smith and Morowitz, 2004).

While an excellent collection of discussions of entropy produc-
tion and self-organization of natural systems has been presented
in the literature (Kleidon et al., 2010), for the most part the recog-
nition by physical scientists of the role of thermodynamics as a
causal factor in the operation of biological systems stands in stark
contrast to the lack of discussion of thermodynamics in the exper-
imental life sciences literature. A major reason for this may be
because of the abstract nature of statistical thermodynamics and
the lack of tools to model and evaluate the thermodynamic aspects
of living systems. After all, since its conceptualization develop-
ments in thermodynamics have had mostly to do with equilibrium
processes, and biological systems are highly non-equilibrium.

However, in the last 20 years, statistical thermodynamics and
fluctuation theorems have allowed for significant progress in
understanding non-equilibrium systems. Fluctuation theorems
are starting to be used to model biological systems, allowing us
to begin to understand how cellular machinery operates. These
theorems tell us that there is an important difference between
thermodynamic models of macroscopic process and the statistical
thermodynamic models of the microscopic processes such as those
that make up cells. The second law of thermodynamics describes
macroscopic processes and states that the entropy of a spontaneous
process never decreases. The second law is silent, however, about
the microscopic events that make up the macroscopic process.
These microscopic events may be, for instance, sets of coupled
reactions that lead to some observable change of state – a dif-
ferent phenotype in the parlance of biology. These microscopic
events involve enzyme complexes and coupled reaction pathways
in cells, which are not just scaled down versions of beaker-sized
laboratory systems. Components of small systems can in fact run
in reverse at times. A number of excellent reviews of fluctuation
theorems exist in the literature (Harris and Schutz, 2007; Sevick
et al., 2008; Seifert, 2012) and we will only give an in-a-nutshell
perspective here.

In this report, we will focus on issues and challenges in ther-
modynamically modeling biological systems of coupled reactions,
such as those that occur in metabolism. We will first discuss prob-
ability density functions based on Boltzmann probabilities and the
relationship to free energy. Closely related to free energy is the con-
cept of entropy. We will discuss different formulations of entropy
and their meanings in order to provide a clear overview of entropy
production. Finally, fluctuation theorems will be briefly discussed
using this conceptual framework. While fluctuation theorems have
not yet been used to extensively simulate metabolism, they have
great promise, and have been used to examine single molecule
dynamics and the dynamics of coupled biochemical reactions on
multiple scales. Finally, the application of statistical thermody-
namics to model biological reactions that are far from equilibrium
is discussed.

THEORETICAL BACKGROUND
Understanding the foundational concepts of modeling thermo-
dynamics is essential for understanding the challenges that the
field faces. The mathematical concepts presented in the literature
are often too abstract to be readily accessible to those outside the

specialty field of statistical thermodynamics. A case in point is
that it may seem like the literature contains a zoo of seemingly
unrelated statistics all going by the name of entropy. Understand-
ing which entropy is being used is critical for understanding and
applying thermodynamic modeling and fluctuation theorems, as
will become evident below.

However, a tremendous amount of physical insight into fluc-
tuation theorems and thermodynamic modeling can be obtained
if one understands the multinomial distribution function, which
is simply a generalization of the common binomial distribu-
tion function when more than two outcomes are possible. With
regard to reaction kinetics, more than two outcomes are possible
when we have more than two interconverting species present. The
mathematical form of a multinomial distribution is,

Pr (n1, . . . , nm|Ntotal, θ1, . . . , θm) = Ntotal!

m∏
objectsj

1

nj!
θ

nj

j .

The multinomial probability density above is the probability
that nj objects of type j will be present when there are N total=Σnj

objects present. In the equation above, θj is the probability of
object j independent of the other objects. According to frequentist
statistics, this probability is simply the long term proportion of
the number of object j ’s that are present, θj= nj/N total. The prob-

ability density is not simply Pr = Πjθ
nj

j because each individual

object of type j is indistinguishable from all the other objects of
type j. Thus, the probability density has to be corrected for the
number of permutations and combinations of each object type,
which is accounted for by the factorial terms in the multinomial
distribution function.

Now consider a system consisting of three chemical species
A, B, and C in aqueous solution in a container of fixed volume.
Each of the three species can interconvert to one of the other
two species, but the total number of particles is fixed such that
nA+ nB+ nC=N total. The Boltzmann probability θi of species i
is related to the Helmholtz free energy of solvation ∆ 0

i by,

θi =
e−∆

0
i /kBT

m∑
species j

e−∆
0
j /kBT

. (1)

where kB is Boltzmann’s constant and T is the temperature. For
simplicity, we will disregard the internal degrees of freedom for

each species. In this case, the numerator e−∆
0
i /kT is referred to

as the molecular partition function, qi. The denominator is simply
a normalization function, usually denoted as q=Σqi, the log of
which is the Boltzmann average energy of the system,−〈E〉B/kBT.
Statistically, the distribution of the particles is characterized by the
multinomial Boltzmann probability density function,

Pr (n1, . . . , nm|Ntotal, θ1, . . . , θm) = Ntotal!

m∏
species j

1

nj!
θ

nj

j

where nj is the number of particles of species j, and there are
N total particles. In analogy to the macroscopic, the free energy from
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statistical thermodynamics, an unnormalized mass density for a
microscopic state can be defined that is a function of the molecular
partition functions qi instead of the Boltzmann probabilities,

−A
(
n1, . . . , nm|NT, q1, . . . , qm

)
kBT

= log

Ntotal!

m∏
j

1

nj!
q

nj

j


(2)

For brevity, we will write A(n1, . . ., nm | N r, q1, . . ., qm) as
A(n̄|NT, q̄) or simply A. The value A in Eq. 2 is not a free energy
because it is not an average over all possible values for each of the
nj. The relationship between A and the probability density of that
microscopic state is,

−A/kBT = log Pr(n1, . . . , nm|Ntotal, θ1, . . . , θm)+Ntotal · log q

or equivalently,

log Pr (n1, . . . , nm|Ntotal, θ1, . . . , θm) = A/kBT + Ntotal · log q

Since log q=−〈E〉B/kBT, we have the relationship

−Sg = A/kBT − NT〈E〉B/kBT

Sg = − log Pr (n1, . . . , nm|NT, θ1, . . . , θm) (3)

This function on the right hand side is strictly a log likelihood,
not an entropy. However, the average log likelihood is an entropy,
and in fact is the Gibbs entropy for a system with a fixed number
of total particles,

SG =
∑

microstates J
Pr (J ) log Pr (J )

=
〈
A(n̄|NT, q̄)

〉
− Ntotal〈E〉B

(4)

where Pr(J ) is shorthand for Pr(n1= n1(J ), . . ., nm(J )|N total, θ1,
. . ., θm) and

〈
A(n̄|NT, q̄)

〉
= is the free energy of the macro-

scopic state with parameter NT. Because the Gibbs entropy is an
average over microstates, it is the entropy related to macroscopic
observations (Jaynes, 1965).

Adding confusion to the definition of entropy is the related
microstate relationship,

SB = A/kBT − Ntotal〈E/kBT 〉U (5)

where now 〈E/kBT 〉U is the average energy of the microstate under
the uniform distribution instead of the Boltzmann distribution.
The entropy term is also given by S=−Σpj log pj where again
the probabilities pj= nj/N total are from the uniform distribution
(Davidson, 1962; Cannon, 2014). The subscript indicates that
this is the Boltzmann entropy because it is derived from logW
where W is the multinomial coefficient. This entropy is also some-
times referred to as the configurational entropy (Davidson, 1962).
The difference between the Gibbs and Boltzmann entropies of
course has to do with intermolecular potentials and microscopic
vs. macroscopic perspectives (Jaynes, 1965).

When the total number of particles is not fixed, adjustments
need to be made to the equations above. Typically, the adjustment

is to remove the normalization of the Boltzmann probabilities in
Eq. 1, such that the resulting quantity e−A/kBT is an unnormal-
ized probability mass function, or an odds of e−A/kBT : 1. The
multinomial probability distribution now becomes a multinomial
odds distribution, the main difference being that a probability
mass function over all of state space sums to 1, while the new
multinomial distribution sums to a value >1.

If the total number of particles is allowed to vary due to the
system being open, then Eq. 4 gives

SG =
〈
A − Ntotal (J ) log q

〉
Notice that this definition is different from one common ther-

modynamic definition of entropy, which defines entropy as the
difference between the free energy and the average energy,

S = 〈A〉 − 〈E〉

= 〈A〉 −
〈
Ntotal (J ) log q

〉
Since we know from the triangle inequality, ||log x− log

y ||≥ ||log x||− ||log y ||, it follows that SG≥ S.
For a set of coupled reactions such as,

A � B � C

a change of the microscopic state from K to J is described by the
likelihood ratio,

−∆Sg,JK = log

(
Pr (J )

Pr (K )

)
, (6)

or equivalently,

Pr (J )

Pr (K )
= e−∆Sg,JK (7)

which has the basic mathematical form of a fluctuation theorem,
but in this case is an identity due to the definition of Sg in Eq. 3. If
we average over all states J and K and the system is at equilibrium,〈

Pr (J )

Pr (K )

〉
=
〈
e−∆Sg,JK

〉
= 1

(8)

where the angular brackets denote an equilibrium average. The
average value is unity since the log likelihood of Eq. 6 is zero, on
average. Relation 8 simply says, that on average, the system returns
to equilibrium. While Eq. 7 is exact for microscopic processes, the
challenge in employing it to model time-dependent processes is
that the core probabilities available for use in Eq. 1 are stationary
Boltzmann probabilities, yet if the individual rates of the reactions
vary enough in a system of coupled reactions, the core probabili-
ties will not be Boltzmann probabilities, which are based solely on
energy levels of the reactants and products. At equilibrium, Eq. 7
can be used for time-dependent probabilities because of detailed
balance – Eq. 8. However, away from equilibrium, Eq. 7 no longer
holds because detailed balance no longer exists. Instead, the true
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probabilities will be a function of the entire energy surface of
the system, including the reaction barriers. Fluctuation theorems
relate the ratio of these time-dependent probabilities to a func-
tion that is related to the time-dependent ∆Sg(t ), or if ensemble
averages are used, the time-dependent ∆SG(t ).

For example, at a non-equilibrium steady state the average fluc-
tuations of a system can still be characterized at times without
knowing the actual probabilities of each state. Consider the fluc-
tuation away from a steady state J to the new state K with some
transition probability. We know that the system will eventually
return to the steady state J, we just do not know specifically how.
For the most part, a fluctuation away from the steady state will be
along the direction of the non-equilibrium driving force. When
the system returns to the steady state, an amount of energy will
have been dissipated from the system. Note that if the system were
to return to the steady state along the same path, no energy would
have been dissipated; that is, the average likelihood of returning
along the same path is not 1 as in the case for equilibrium (Eq. 8).
Thus, fluctuation theorems for non-equilibrium steady state take
the form,

Ω =

〈
log

(
πKJ (t )

πKJ (t )

)〉
J,K

(9)

where πKJ is the probability of trajectory J→K, and Ω is related
to the dissipation of energy due to the non-equilibrium steady
state. For instance, the Evans–Searles fluctuation theory relates
the time-dependent probabilities to a trajectory-specific dissipa-
tion function, Ω(t ), which is a measure of how far the system is
away from detailed balance,

πKJ
(
Ω (t ) = −qD/kBT

)
πJK

(
Ω (t ) = qD/kBT

) = e−qD/kBT (10)

If qD represents the dissipated energy due to the lack of detailed
balance, then the odds of regaining that energy through a reversal
of the trajectory are exponentially small. One could even think
of the RHS of Eq. 10 as representing the energy of a hypothetical
particle (a “dissipation”) that has a Boltzmann factor of e−qD/kBT .
Recent developments in fluctuation theories (reviewed by Sevick
et al., 2008; Seifert, 2012) in the last two decades have pushed the
envelope into the far from equilibrium domain. Many biochemical
reactions are in this domain.

ENTROPY PRODUCTION
When the time-dependent flux of material through reactions can
be determined, the entropy production rate can be defined in sev-
eral related ways (Oster et al., 1973; Ge et al., 2006; Ge and Qian,
2010). Using Eq. 6, the microscopic entropy production can be
defined for a reaction i in the+direction as,

microscopic entropy production rate = Ji+∆Sg,i

and the net entropy production through the reaction is J i,net∆Sg,i,
where J i,net= Ji+− Ji−. Taking the ratio of the entropy production

due to the forward and the reverse reaction, the odds of entropy
being produced at reaction i are,

O
(
∆Sg,i

)
=

Ji+ ·∆Sg,i

Ji− ·∆Sg,i

=
Ji+

Ji−

(11)

Although the ratio of the forward and reverse flux gives us the
odds of thermodynamic entropy production, the ratio itself can-
not tell us the value of the thermodynamic entropy change or even
if the entropy change is positive or negative; in coupled systems the
flux through any specific reaction is not deterministically related to
the entropy or free energy change of that reaction. The second law
of thermodynamics only tells us that for macroscopic processes,
the entropy must always increase; the second law does not address
what might be happening on the microscopic level in individual
reactions. This is an important aspect of stochastic systems: even
though a reaction has a free energy change above zero or equiva-
lently an odds below one, it can still occur given enough time. For
example, if a set of coupled reactions has a large enough overall
favorable change in free energy, an individual reaction can have
a net positive flux even if the reaction free energy is unfavorable.
Flux is an emergent property of the entire system. However, as
indicated by the fluctuation theorems, the less likely the reaction,
the less likely it will have a net flux in the direction of decreasing
entropy change.

Several studies have asserted that the relationship between flux
and free energy is ∆G=−RT log(J+/J−). This relationship was
originally proposed in discussions of reversible systems and dis-
cussed in the context of deterministic kinetics (Beard and Qian,
2007). For coupled, stochastic non-equilibrium reactions, the rela-
tionship is strictly speaking an assumption. However, it is rea-
sonable to expect in the vast majority of situations that ∆G and
−RT log(J+/J−) are concordant. The relationship can be used to
gain insight if used carefully. For instance, Noor et al. (2014) have
used the assumption as a framework for evaluating flux statistics
at individual reactions. They correctly pointed out that reactions
near equilibrium act as kinetic bottlenecks in pathways that are
overall far from equilibrium. This is a valid use of the assumption
in that reactions at equilibrium in an otherwise nonequilibrium
system are those for which the relation is approximately correct
even for stochastic systems.

So far the question of how to find the steady states has been left
open. A steady state could be determined by the textbook approach
of solving the set of differential rate equations. However, for bio-
logical systems the required rate parameters are rarely available.
In principle, a steady state can be defined based on experimental
measurement of all relevant chemical species, which can be used
to define the chemical potential of each species. While this task is
much easier than determining all the appropriate rate constants, it
is still formidable. Yet, significant progress is being made (Bennett
et al., 2009).

Alternatively, one can assume that the steady state is one
that corresponds to an optimal thermodynamic process. A
thermodynamically optimal process is one in which a maximal
amount of energy can be extracted from the environment with
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a minimal amount of dissipation of heat (Sivak and Crooks,
2012). Equivalently, a thermodynamically optimal path is one that
requires the least work to maintain the steady state. In either case,
the thermodynamically optimal steady state can be found by max-
imizing a steady state version of Eq. 4 in which the Gibbs entropy
SG in a state space neighborhood Γ measures the probability den-
sity of states reachable from an initial state S due to a series of Z
reactions involving a change of state δSi (Cannon, 2014),

Sg (Γ (S)) = −

Z∑
Rxn i=1

Pr (Si−1 + δSi) log Pr (Si−1 + δSi) (12)

In a system moving toward equilibrium through a trajectory
of Z reactions, the state entropy increases as the system stabilizes,
and reaches a maximum at equilibrium since equilibrium requires
that each respective reaction is equally likely. In a non-equilibrium
system, the neighborhood Γ is a reaction path and Eq. 12 is the
path entropy described by Dewar, from which the fluctuation the-
orem, the selection principle of maximum entropy production,
and self-organized criticality can be derived (Dewar, 2003). An
analogous Gibbs entropy can be defined by averaging Sg[Γ(S)]
over many trajectories such that SG[Γ(S)]=〈Sg[Γ(S)]〉. If the
entropy change from equilibrium is ∆SG(Γ(S))S0

G − SG(Γ(S)),
then the rate of production of thermodynamic entropy can then
be defined as,

thermodynamic entropy production rate = Jnet (Γ) ∆SG (Γ (S))

While its likely that no individual organism is at the apex of
thermodynamic optimality, it is also likely, as discussed in the
section “Introduction,” that natural selection is at some funda-
mental level based on filtering out individuals that are thermody-
namically inefficient such that too little energy is extracted from
the environment or too much of the extracted energy is simply
dissipated back to the environment; such a system would not be
able to channel sufficient energy into growth to compete against
more efficient individuals. In this scenario of natural selection,
thermodynamically optimal steady states would serve as useful
models.

Applications
Beyond atomistic simulations, the application of statistical ther-
modynamics and fluctuation theory to biological systems is truly
a frontier. To date, applications are mostly in the physics literature
and include (but are not limited to) the study of molecular motors,
mostly ATP synthase (Andrieux and Gaspard, 2006; Hayashi et al.,
2010; Zimmermann and Seifert, 2012), small metabolic networks
(Cannon, 2014), bifurcation dynamics of reaction pathways (Xiao
et al., 2009), and models of the response of bacteria to changes
in the environment (Barato et al., 2014). These examples were
chosen to represent a hierarchy of scales in which statistical ther-
modynamic simulations have been applied to biology. Because the
dynamics of each system is represented using different equations,
it is not possible to describe in detail the form of the fluctuation
theorem used other than to say that all are in some way repre-
sented by Eq. 9, except where noted. Details on the theorems

are best obtained from the original literature. Below, we briefly
summarize the findings for this representative selection from the
literature.

SINGLE MOLECULE DYNAMICS OF ATPase F1 ROTARY MOTOR
The F0F1–ATP synthase complex is an example of a highly non-
equilibrium nanomotor. The rotary motor of F0F1–ATP synthase
is powered by proton flow across a gradient producing a free energy
difference of 10–20 kJ/mol of protons. This free energy difference
is significantly greater than the ambient energy at room tempera-
ture of about 2.45 kJ/mol. The motor operates over a large range
of scales; rate constants for the various processes making up the
motor vary over 12 orders of magnitude. Andrieux and Gaspard
used fluctuation theory and generating functions to evaluate statis-
tical distributions of mean rotation of the F1 rotor, the dissipated
work, and the probability flux across the system (Andrieux and
Gaspard, 2006). The analysis showed that the ATPase motor has
a highly non-linear response to chemical fuel: the mean veloc-
ity of the F1 rotor as a function of the thermodynamic driving
force is a sigmoid-like curve. Despite the microscopic nature of
the motor, the operation of the motor is highly robust in this non-
linear regime: successive rotations are statistically correlated and
remain essentially unaffected by the fluctuations. Nevertheless, it
was shown that the fluctuation theorem held even in the highly
non-linear regime.

MULTIPLE MOLECULES: PATHWAY BIFURCATION DYNAMICS OF A
CIRCADIAN CLOCK
When multiple reactions are coupled, non-intuitive behavior can
result. The Lotka–Voltera oscillator and the Brusselator are famous
early examples where feedback or feed-forward interactions con-
trol the oscillatory behavior. At the cell level, an important oscilla-
tory phenomenon is the circadian clock of organisms as diverse as
fruit flies and fungi. In the circadian clock negative feedback con-
trols, the rate of transcription and translation of specific proteins
that in turn dictate the cellular circadian oscillation cycle (Dunlap,
1999).

Using a stochastic thermodynamics approach pioneered by
Seifert and colleagues, Xiao et al. (2009) used a chemical Langevin
equation to evaluate dynamic bifurcations that occur in the circa-
dian clock. An explicit expression for the mean entropy production
in the stationary state was formulated based on available kinetic
data. On either side of the bifurcation in the circadian dynamics,
the shape of the distribution of the entropy production was similar
and highly skewed such that the probability of observing dynamics
with negative entropy production was quite small. Thus, like the
F1 motor of ATP synthase, the operation of the molecular circa-
dian clock studied by Xiao et al. is robust despite the stochastic
nature of small systems.

Although the time dependence of the entropy production in the
fluctuation theorem used in this study ultimately came from rate
constants, the approach demonstrated that statistical thermody-
namic simulations are capable of producing similar bifurcation
dynamics as stochastic kinetic simulations. Understanding the
entropy production rates of metabolism is important for quan-
titating the capacity for organisms to adapt to their changing
environment, which is discussed next.
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CELLULAR INFORMATION PROCESSING AND ADAPTATION
Philosophically, one can adopt either of two opposing perspectives
about the relationship between simple biological systems such as
bacteria and their environment. One can take the perspective that
cells make decisions based on their external environment, which
is the most discussed perspective in the literature, or one can take
the perspective that the external environment determines cellu-
lar response. While the former perspective imbues autonomy to
the cell, the latter perspective takes the view that regulation is
ultimately a function of the external environment. Who is dri-
ving – the cell or the environment? While the former perspective
is correct on short time periods such as the diurnal cycles, the latter
perspective is more correct on longer time periods over which the
cell has adapted and evolved.

Barato et al. (2014), evaluated models of how much informa-
tion cells can extract from their environment based on their ther-
modynamic efficiency. Although Barato et al. use the metaphor of
learning for the ability to extract information, one is equally justi-
fied in using the concept of self-organization. The study found
that the degree to which a cell can self-organize in response
to the environment is bounded by the thermodynamic entropy
production rate. A bacterium in a slowly changing environ-
ment dissipates much more energy than it harnesses for the
purpose of self-organization. That is, the bacterium, once orga-
nized to respond to a particular environment, has a limited abil-
ity to further harness energy from the environment for further
adaptation.

Although Barato et al. (2014) used quite simple physical mod-
els to generate hypotheses, clearly coupling this framework with
more extensive thermodynamic models of metabolism has the
potential to provide insight into how cells respond internally to
changes in environmental driving forces on both short time scales
and longer evolutionary time scales. However, modeling efforts
will require more sophisticated models of metabolism in order
to understand the multitude of paths that cell behavior can take.
Next, early efforts that have been taken to expand the application
of statistical thermodynamics to more detailed metabolic models
are discussed.

DETAILED METABOLIC MODELS
The models and systems discussed above are small systems com-
pared to the metabolism of even the smallest bacterium. Can sta-
tistical thermodynamics and fluctuation theories also be applied
to more extensive biological systems such as genome-scale mod-
els of metabolism? The issue mostly pertains to whether sufficient
parameters can be estimated. Large-scale estimates of thermo-
dynamic parameters are available from sources such as the Bio-
chemical Reactions Thermodynamics Database at University of
Michigan (Li et al., 2011), the Thermodynamics of Enzyme-
Catalyzed Reactions Database at NIST (Goldberg et al., 2004), and
the eQuilibrator web server (Flamholz et al., 2012).

We have been developing such an approach and to-date have
applied it to relatively small metabolic pathways of various bacte-
ria (Cannon, 2014). In these initial studies, the reactions rates are
assumed to be proportional to the thermodynamic driving force
of the reaction, which is quantified by a probability of a reaction
in a Markov model based on Eq. 7.

Initial studies have focused on the tricarboxylic acid (TCA)
cycles of bacteria. These cycles are central to the metabolism of
most organisms and may be as close to a universal pathway as
there is (Smith and Morowitz, 2004). TCA cycles are capable of
consuming acetyl-CoA to either produce high energy compounds
necessary for cell function (e.g., ATP, NADPH) or carbon back-
bones that serve as synthetic precursors for many reactions of
secondary metabolism and amino acid and nucleic acid synthesis.

Shown in Figure 1 is the TCA cycle of E. coli and in Figure 2 is
the free energy, energy, and entropy profiles under metabolic con-
ditions observed for exponential growth on glucose (Bennett et al.,
2009). The cycle was simulated using statistical thermodynam-
ics formulation of a Markov model based on a local equilibrium
assumption (Cannon, 2014). As one proceeds from acetyl-CoA
clockwise around the cycle to oxaloacetic acid, the free energy
change across the reactions (Figure 2) varies smoothly, as one
would expect from a maximum entropy perspective (Eq. 12).
However, the change for the conversion of oxaloacetate and acetyl-
CoA to citrate catalyzed by citrate synthase and the change for
the conversion of 2-oxoglutarate to succinyl CoA catalyzed by 2-
oxoglutarate dehydrogenase are somewhat abrupt compared to
changes at the other reactions of the cycle. The reason for this is
that the cofactor concentrations, which serve as boundary condi-
tions, are held fixed at values that prevent the system from relaxing
further. As a result, the system is not quite thermodynamically
optimal – the entropy defined by Eq. 12 is not quite maximal
compared to the value that would be obtained if each reaction was
equally likely.

Clearly, information about the thermodynamics of biosynthetic
pathways is important for engineering metabolism to overproduce

FIGURE 1 |The tricarboxylic acid cycle (TCA) from E. coli. The enzymes
catalyzing the reactions are shown in italics, the co-factors are shown
tangentially to each respective reaction, and the reaction intermediates are
shown in line with the cyclic reaction arrows indicating direction of the
cycle for E. coli. Q and QH2 are electron acceptor/donator pairs and are
entry points to the electron transfer chain.
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FIGURE 2 |Thermodynamic profile of theTCA cycle from E. coli
(Cannon, 2014). Eq. 4 was used to calculate the change in entropy ∆S,
energy ∆E, and the log of the (unnormalized) mass density ∆ . Because
the probability mass density consists of a combinatorial coefficient that is
represented by the entropy term and an energy-based (Boltzmann)
probability, there is energy–entropy compensation throughout the cycle.
∆ changes smoothly across the reaction pathway indicating that the
concentrations of the metabolites are close to optimal, likely because the
concentrations were taken from an experimental measurement of E. coli
metabolite levels.

target compounds such as reduced carbon compounds for biofu-
els. While much attention has been directed at redirecting carbon
flow by knocking out pathways competing for precursors, less
attention has been directed at engineering redox pairs such as
NADH:NAD+ levels that would thermodynamically drive these
reactions. Likewise, much attention has focused on the use of
riboswitches to up-regulate the production of enzymes involved in
the biosynthesis of target compounds (Wittmann and Suess,2012),
but switching on the catalytic machinery to synthesize a com-
pound is not useful unless the thermodynamics of the pathway are
favorable. Modeling metabolic systems thermodynamically would
be of enormous value for metabolic engineering.

As an example of the potential use of statistical thermodynam-
ics for both engineering and understand organisms in the context
of their natural habitats, we compared three different versions of
the TCA cycle used in three very different ecological niches: a typ-
ical heterotrophic TCA cycle from E. coli involved in extracting
energy and biosynthetic precursors from glucose; the cyanobacte-
rial TCA cycle of Synechococcus sp. PCC 7002, which is required to
produce biosynthetic precursors despite already high levels of ATP
from photosynthesis; and the TCA cycle of Chlorobium tepidum,
a green sulfur bacteria that also must produce biosynthetic pre-
cursors in the presence of photosynthesis and simultaneously fix
CO2, which it does by running the TCA cycle in the reductive
direction. As above, each TCA cycle was simulated using a Markov
model based on a local equilibrium assumption. The free energy
profiles for these organisms are shown in Figure 3. Clearly, each
pathway is very different thermodynamically. The cycles for E. coli

FIGURE 3 | Comparison of the thermodynamic profiles of theTCA
cycles of E. coli, Synechococcus sp. PCC 7002 and Chlorobium
tepidum. The free energy profile of the TCA cycle for each organism
reflects its environmental niche (see Discussion).

and Synechococcus have similar profiles except for the conversion
of 2-oxoglutarate to succinate. In the E. coli TCA cycle, this reac-
tion has ATP as a product. Synechococcus and other cyanobacteria
cannot use the same reaction for converting 2-oxoglutarate to suc-
cinate cycle because their cycles must operate in an environment
in which ATP concentrations are quite high due to concomitant
photosynthesis. Instead, the cyanobacteria use a TCA cycle that
employs a ferredoxin coenzyme for this conversion, and thus high
levels of ATP do not retard the production of succinate and other
carbon compounds that are necessary for growth. The free energy
profile of the TCA cycle for Chlorobium is very different from
both the E. coli and Synechococcus cycles. Instead of having a
highly favorable free energy profile for operation in the oxida-
tive direction (citrate→ oxaloacetate), the free energy changes are
highly unfavorable. The TCA cycle of Chlorobium and other green
sulfur bacteria, in fact, runs in the opposite direction (oxaloacte-
tate→ citrate), and these organisms use the cycle to fix CO2 and
produce acetyl-CoA. Not only does a thermodynamic model allow
us to understand each organism in its environment, but clearly
designing an optimal pathway for metabolic engineering using
statistical thermodynamics would be very useful.

In comparing the free energy profiles for E. coli in Figures 2 and
3, it is clear that they differ significantly. In Figure 2, the free energy
profile changes relatively smoothly as one traverses the cycle, while
in Figure 3 the free energy profile changes abruptly at times. The
reason for these differences has to do with the conditions used
in the respective simulations. In Figure 2, the simulations used
the published experimentally measured values for E. coli (Bennett
et al., 2009). In the latter case, the count of each intermediate in the
cycle was initially set to ~20 µm each instead of using the exper-
imental published values for E. coli (Bennett et al., 2009), which
otherwise might bias the comparison between the three organisms.
Although each cycle is materially open in that two carbons come in
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as acetyl-CoA and carbons leave as CO2, the total of the number of
intermediates is fixed by the stoichiometry of the overall reaction
for completion of the cycle. For E. coli, the overall stoichiometry is,

Acetyl − CoA+ ADP+ 3NAD+ + Pi +Q+ 2H2O


 CoA+ ATP+ 3NADH+ 2CO2 +QH2,

where Q and QH2 represent an oxidized and reduced electron car-
riers, respectively. Although the cycles are open, the sum of the
count of all intermediates will only vary by±1.

The free energy profiles of the E. coli TCA cycle as a function of
the total concentration of the intermediates are shown at the top
of Figure 4. The total concentration values are 1.0-fold, 0.1-fold,
0.01-fold, and 0.001-fold of the values reported by Bennett et al.
(2009). If there are only a few total intermediates, then these will be
transformed into the metabolites with lowest chemical potentials,
which in the case of the E. coli TCA cycle are citrate and succinyl
CoA. At very low levels of intermediates, the cycle will not operate
and citrate and succinyl CoA will simply pool. For the lowest level
of intermediates, there will be flux through the entire cycle only
over relatively long time periods.

As the total number of metabolic intermediates is raised, the
number of citrate and succinyl CoA molecules increase, as shown
in Figure 4 (bottom). Eventually, product builds up as well with
a concomitant increase in the free energies of reactions produc-
ing citrate and succinyl CoA. Meanwhile, the increase in citrate
decreases the free energy for the citrate to isocitrate reaction, and
likewise, the increase in succinyl CoA decreases the free energy for
the succinyl CoA to succinate reaction.

Eventually, metabolite levels build up to the point where all
reactions become equally likely in agreement with Eq. 12. This
is thermodynamically the most optimal since the state entropy
(Eq. 12) has been maximized with respect to the non-equilibrium
boundary conditions.

However, for the cell there is also a thermodynamic penalty to
obtain this configuration. In order to handle a greater number of
reactants, the enzymatic load on the cell must likewise increase.
The self-organized structures needed to dissipate energy rapidly
(or store the harvested energy for growth) must be paid for by the
non-equilibrium driving forces.

Enzymes catalyzing reactions far from equilibrium will need
to increase the least since material flow is unidirectional. This is
clearly the case for the enzyme-catalyzed reactions for transfor-
mation of oxaloacetate to citrate and 2-oxoglutarate to succinate:
as the total metabolite pool increases, the concentrations of the
reactants oxaloacetate and 2-oxoglutarate do not change markedly.

If enzymes near equilibrium are expressed at a level just suf-
ficient to catalyze its current load, then increasing the total pool
of metabolites may require increased expression of these enzymes.
However, these reactions are not likely to remain at equilibrium.
This is apparent in Figure 4 (top) in which the last four enzyme-
catalyzed reactions of the TCA cycle transforming succinyl CoA
to oxaloacetate, are close to equilibrium when the total pool of
metabolites is 0.001-fold of the values reported by Bennett et al.
(2009). As the total metabolite pool grows, the reactions do not
remain at equilibrium.

FIGURE 4 | (Top)The cumulative free energy profile of the E. coli TCA
cycle as a function of the total concentration of the reaction
intermediates. Although carbon can enter the cycle as acetyl-coa and leave
as CO2, the total number of intermediates is constrained by the overall
reaction (see text). The concentrations used are 1-fold, 0.1-fold, 0.01-fold,
and 0.001-fold of those reported by Bennett et al. (2009) for exponential
growth on glucose. (Bottom) The distribution of reaction intermediates as a
function of total concentration.

When metabolite levels are greater than the respective Michaelis
constant (K M), then enzyme levels need to increase in order to
maintain a steady state. This is the situation described by Flamholz
et al. (2013). That enzymes catalyzing reactions far from equi-
librium do not increase significantly has been experimentally
observed; the degree to which enzyme expression will need to
increase for reactions near equilibrium will be situation dependent
but generally will need to increase with increased flux (Hochachka
et al., 1998).

Moreover, if the turnover rates for the enzymes in the pathway
differ dramatically, then there must also be a differential level of
expression of the enzymes in the pathways. It would make sense
for the organism to have high intrinsic enzyme turnover rates for
costly enzymes, either those that have many amino acids or require
high energy co-factors, such that the thermodynamic cost to the
cell can be minimized (Flamholz et al., 2013).

Considering Figure 4 (top), the data reported by Bennett et al.
(2009), implies that the TCA cycle of the laboratory strain of E. coli
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is operating near optimal efficiency with regard to Eq. 12 during
exponential growth on glucose. In Lotka’s words, “the struggle for
existence, the advantage must go to those organisms whose energy-
capturing devices are most efficient in directing available energy
into channels favorable to the preservation of the species.”

How close are biological systems to optimal efficiency? There
appear to be situations when this ideal is not achieved. For
example, if glycolysis were left unchecked such that each reac-
tion were equally likely thermodynamically, then the large free
energy change for conversion of fructose 6-phosphate to fructose
1,6-bisphosphate would result in cellular concentrations of fruc-
tose 1,6-bisphosphate several orders of magnitude higher than is
observed, which would most likely have detrimental affects on the
cell. In fact, the enzyme catalyzing this step is highly regulated to
prevent overproduction of fructose 1,6-bisphosphate. The regu-
lation can be regarded as a self-organized and emergent property
of the pathway, and one that is necessary for the organism to
remain viable. Considering the framework for adaption laid out
by Barato et al. (2014), this would imply that for E. coli species
that are adapted to growth on high levels of glucose, there are very
little opportunities for learning alternative ways of regulating this
enzyme, or conversely, that the regulatory circuit is evolutionarily
stable in this regard.

Future Directions
Determining a rate constant for an enzyme of interest is a straight-
forward task if the reactant or product has a distinct spectroscopic
signature. However, scaling the process up to obtain all of the rate
constants necessary for large-scale simulations of metabolism of
any specific organism is simply not feasible. Mixing and matching
rate constants from orthologous enzymes from different species
can result in incorrect energetics, unless one constrains the rate
constants to match the equilibrium constant for the same reac-
tion. Moreover, ad hoc adjustment of a rate constant to obtain
the correct equilibrium constant is likely not better than assum-
ing rates are proportional to the thermodynamic driving force. As
a result of the difficulty in obtaining rate constants, constraint-
based flux models have been the method of choice for large-scale
modeling of biological processes such as metabolism. However,
constraint-based methods at best use the thermodynamic con-
straints to narrow down the solution space. Unfortunately, this
limits the predictive power of these approaches.

Several promising and fundamentally sound approaches that
include proper thermodynamics have been proposed to move
beyond constraint-based flux modeling. One approach is to model
systems using mass action kinetics for those reactions for which
rate parameters are available, and to use constraint-based flux
modeling of other reactions (Chowdhury et al., 2014). In this
case, the fluxes modeled using mass action kinetics limit the
range of fluxes that are possible for those reactions modeled with
constraint-based flux modeling.

A second approach is to use available kinetic parameters where
one can, and then infer the remaining parameters based on prior
knowledge, including balancing rate parameters to ensure that the
correct thermodynamics are obtained (Stanford et al., 2013). An
alternative is to reduce the kinetic complexity of the rate equa-
tion of each reaction-based analysis of the reaction likelihood as a

function of the net flux of the reaction (Canelas et al., 2011). For
some reactions, the rate parameters can be eliminated altogether
and replaced by the thermodynamic likelihood of the reaction
without compromising the fidelity of the model.

Finally, if one knows the reaction directionality, such as from an
experimentally based metabolic flux analysis, then a set of feasible
metabolite concentrations and reaction free energies can be deter-
mined using optimization methods (De Martino et al., 2012). The
ability to map out the energy landscape of metabolism could be
very powerful and could inform us on whether the conjectures by
Lotka, Odum, and others about natural selection discussed in the
section “Introduction” are correct. The criteria used by De Mar-
tino et al. may actually be too stringent in that the optimization
constraints required that the entropy production for each reaction
be positive. As indicated in the section “Discussion” around Eq.
11, the second law only requires that the entropy production for
the overall macroscopic process be positive. An individual reaction
may have a positive flux and also a positive free energy change, but
the chance of such an event decreases exponentially with increases
in the free energy (Evans and Searles, 1994). The analysis requires
the input of flux configurations or reaction directionality. How-
ever, this is where fluctuation theories can play a role if they can
provide flux values as well.

The use of detailed fluctuation theorems will depend on
whether theorems can be developed for non-equilibrium steady
states that do not use rate constants and are instead based on chem-
ical potentials and thermodynamic driving forces. If so, then one
can set the chemical potentials based (ideally) on metabolomics
measurements and carry out large-scale simulations of metabo-
lism that would be identical to kinetic simulations based on rate
constants. Experimentally measuring metabolite concentrations
is an emerging area of great interest. Key to making the mea-
surements useful for interpretation and modeling is reducing the
uncertainty that the measured values reflect in vivo concentrations
(Noack and Wiechert, 2014).

An alternative statistical thermodynamic approach is to model
the process as thermodynamically optimal in which the rates are
proportional to the thermodynamic driving force. In a thermo-
dynamically optimal process, the maximum amount of energy is
extracted from the environment with a minimal amount of dissi-
pation of heat (Sivak and Crooks, 2012). A model based on this
assumption would be roughly consistent with the historical per-
spectives of the physical basis of biological systems. An analogous
approach has been used to analyze metabolomics data, in which
the free energies of reactions are minimized with respect to avail-
able metabolomics data in order to infer sites of enzyme regulation
(Kummel et al., 2006).

As mentioned above, a challenge to using simulations based on
statistical thermodynamics is determining accurate standard free
energies of reaction or formation of each metabolite. Standard
free energies based on group contribution methods are available
en masse (Jankowski et al., 2008; Noor et al., 2013), but group con-
tribution methods can be inaccurate at times. One must be careful
when estimating a standard reaction free energy from group con-
tribution estimates of standard formation free energies in that the
errors in estimates are additive; one must ensure when taking the
difference between two chemical species that any approximations
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used for group energies cancel out. The use of electronic structure
calculations with an appropriate solvent model is an attractive
alternative for determining standard free energies and chemical
potentials. Such calculations have been done on a large scale for
chlorinated hydrocarbons (Bylaska, 2006) and it is feasible to carry
these out for many metabolites. Larger molecules from secondary
metabolism, such as those from plants, may present a challenge in
that they may have multiple minima that contribute to their free
energy of solvation.
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The primary focus in the network-centric analysis of cellular metabolism by systems biol-
ogy approaches is to identify the active metabolic network for the condition of interest.
Two major approaches are available for the discovery of the condition-specific metabolic
networks. One approach starts from genome-scale metabolic networks, which cover all
possible reactions known to occur in the related organism in a condition-independent man-
ner, and applies methods such as the optimization-based Flux-Balance Analysis to elucidate
the active network.The other approach starts from the condition-specific metabolome data,
and processes the data with statistical or optimization-based methods to extract informa-
tion content of the data such that the active network is inferred.These approaches, termed
bottom-up and top-down, respectively, are currently employed independently. However,
considering that both approaches have the same goal, they can both benefit from each
other paving the way for the novel integrative analysis methods of metabolome data-
and flux-analysis approaches in the post-genomic era. This study reviews the strengths of
constraint-based analysis and network inference methods reported in the metabolic sys-
tems biology field; then elaborates on the potential paths to reconcile the two approaches
to shed better light on how the metabolism functions.

Keywords: constraint-based models, metabolic network inference, active metabolic state, metabolome, network
biology, reverse engineering, flux-balance analysis

INTRODUCTION
Metabolic network is the outmost layer of cellular activity from
the genome. The genome of a cell is a comprehensive and con-
densed information base, defining a boundary for the biochemical
capacity of the cell. The processing of genetic information passes
through several layers of fabrication and regulation before reach-
ing their end products. This is from information to the function,
from genotype to phenotype. Metabolic enzymes count for a sig-
nificant percentage of the end products of genes, and their activity
sets the physiology of the cell. Since metabolic network activ-
ity is the major representative of cell functionality, it is of great
importance to gain as much knowledge as possible on the active
metabolic network at a specific cellular state.

Systems-based approach to molecular biology has contributed
to an increased knowledge of metabolic pathways for an increasing
number of organisms, and led to almost complete metabolic net-
works for a number of major organisms, from yeast to human.
Such static networks are available in a condition-independent
manner through web-based databases such as KEGG or Meta-
Cyc (Altman et al., 2013), or reconstructed in a format suitable
for simulation by several researchers at genome scale (Oberhardt
et al., 2009; Kim et al., 2012). There are several mathematical
approaches to process such networks to come up with condition-
specific networks, the most common one being the Flux-Balance
Analysis (FBA) framework (Orth et al., 2010). This is a bottom-up
direction toward the active network since already-known “parts,”

interactions, are used as inputs (Bruggeman and Westerhoff, 2007;
Petranovic and Nielsen, 2008).

In parallel to the developments on the knowledge of meta-
bolic networks, techniques to measure metabolite levels at high
throughput, termed metabolomics, have arisen (Kell, 2004; Dunn
et al., 2005). Quantitative or semi-quantitative metabolome data,
although one of the most challenging compared to other omic
sciences, have come a long way in a decade, from the detec-
tion and quantification of about 50 metabolites (Devantier et al.,
2005) to more than 1000 metabolites (Psychogios et al., 2011).
Metabolome data are a snapshot of the condition-specific status of
the investigated organisms. Reverse-engineering metabolome data
to discover the underlying network structure is the goal behind
metabolic network inference approaches (Srividhya et al., 2007;
Çakır et al., 2009). The information content of metabolome data
is revealed by processing it with correlation or optimization-based
methods (Weckwerth et al., 2004; Hendrickx et al., 2011; Öksüz
et al., 2013). Such an approach to discover metabolic network
structure is termed top-down approach since the parts, inter-
actions, are not known a priori, and predicted from the whole
set of available biomolecules (Bruggeman and Westerhoff, 2007;
Petranovic and Nielsen, 2008).

In this review, we will cover the basic developments in
bottom-up and top-down approaches to discover active meta-
bolic network, and then ponder over the possible ways of rec-
onciling these two approaches for a better prediction of active
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Çakır and Khatibipour Metabolic network discovery methods

FIGURE 1 | Comparative demonstration of bottom-up and top-down approaches to discover active metabolic network. The white box in the figure
defines different levels of network structure information.

network structure. Figure 1 illustrates the two alternative network
discovery approaches.

BOTTOM-UP APPROACHES TO DISCOVER
CONDITION-SPECIFIC METABOLIC NETWORKS
Different methods and algorithms have been used for the discov-
ery and characterization of active metabolic networks at differ-
ent states of cells and culture environments. In the bottom-up
approach, everything starts from an already available network of
biochemical transformations that cover all possible scenarios in
the distribution of metabolic fluxes, and sets an upper bound for
the existence of reactions in the active metabolic network. Such
a network is termed a static metabolic network. A static meta-
bolic network can be provided either by a previously reconstructed
genome-scale stoichiometric model or by a collection of all reac-
tions whose existence in the organism of interest has been certified
in literature and databases. Most popular among such databases
are KEGG (Kanehisa et al., 2014), MetaCyc (Caspi et al., 2014), and
Reactome (Croft et al., 2014). Other efforts with more curated

databases such as Rhea (Alcántara et al., 2012) and MetRxn
(Kumar et al., 2012) are also available. A genome-scale stoichio-
metric model is reconstructed based on the annotation of all
genes in the genome of one organism to their end products and
then to the corresponding reactions, leading to a list of gene-
protein-reaction rules (Thiele and Palsson, 2010). In this way, the
minimum information content of a genome-scale model is (i) a
list of reactions, and (ii) a list of gene-protein-reaction rules. The
presence of gene-protein-reaction rules in stoichiometric models
has enabled the opportunity for transcriptome and proteome data
to be incorporated into the discovery methods of active metabolic
networks (Blazier and Papin, 2012).

Given a genome-scale reaction network, the aim is to find the
active reaction network at a specific condition or for a specific cell
type in a multicellular organism (Box 1). The core of all such dis-
covery approaches is a stoichiometric matrix. Each row of the stoi-
chiometric matrix represents a metabolite and each column stands
for a reaction, the corresponding element being the stoichiometric
coefficient of that metabolite in that reaction. The relationship
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Box 1 Different levels of Metabolic Network Structure Infor-
mation.

Our understanding of an active metabolic network can be sorted
into several stages of information.

(i) At the lowest level of information, we want to know what the
structure of the network is, representing it with an undirected
(or directed, if the reversibility information is available) graph
in which each node stands for a metabolite and each edge
stands for a biochemical transformation. Alternative to the
retrieval from the metabolic reaction databases, the structure
of the network – both directed and undirected – can also be
estimated to some extent by analyzing and reverse engineer-
ing the metabolome data without the use of a priori database
information on the reactions.

(ii) At a higher level, the information on the stoichiometry of reac-
tions can be incorporated, leading to a directed stoichiometric
biochemical network.

(iii) Having the stoichiometric structure of the network, we can
characterize the metabolic state in more detail by quantify-
ing the metabolic fluxes. In most cases, rather than a unique
flux distribution, constraints are set on flux values to shrink
the solution space. Such modeling approaches are known
as Constraint-Based Modeling. This level of understanding
the active metabolic network (structure+flux distribution) has
been the area of focus in the research community for more
than a decade. In most cases, the information provided at
this level has been satisfactory for engineering research to
design more efficient cell factories, and also, recently, for med-
ical research to distinguish significant differences between
healthy and disease states.

(iv) There are, however, certain limitations at the above level
although it provides a network activity structure weighted
with fluxes. The dynamic behavior of the system cannot be
captured, and the predictability power of such models is ham-
pered mainly because they are not considering the role of
regulatory mechanisms in controlling the rate of biochemi-
cal reactions. In some cases, the regulation of reaction rates
plays such a dominant role that it would be hard to make any
prediction by just considering the flux-based network activ-
ity structure. Here come the kinetic models into the picture,
which take enzymatic regulations and metabolite concentra-
tions into account for a dynamic and better prediction of
network structure.

between the reaction rates in the network and the dynamic
change in the concentration of metabolites is represented as given
below:

dC

dt
= S× v (1)

where S is the stoichiometric matrix, C is the vector of intracellular
metabolite concentrations, and v is a column vector of metabolic
reaction rates (fluxes) to be determined. Under the assumption of
steady state, the concentration of each intracellular metabolite is
not going to change with time, meaning the sum of rate of reac-
tions producing that metabolite is equivalent to the sum of rate
of reactions consuming that metabolite (metabolic fluxes around
each metabolite are balanced). This is represented mathematically

as follows:

S× v = 0 (2)

This is an algebraic system of linear equations with all fluxes
being zero as a trivial solution. In order to escape from the trivial
solution, the value of at least one of the fluxes must be set to a non-
zero value, that flux usually being an exchange flux between the
intracellular and extracellular environment since the experimental
measurement of exchange fluxes is relatively easier. The system is
almost always underdetermined with a large solution space, mainly
because of the existence of branch points in the metabolic network.
There are both experimental and computational approaches to
estimate a condition-specific network for such a system.

The experimental approach is based on stable-isotope (mostly
13C carbon) labeling of the major carbon source, and then tracing
the propagation of the labeled carbon atoms down to protein-
bound amino acids at isotopic steady state by using mass spec-
trometry or NMR spectroscopy (Wiechert et al., 2001; Sauer, 2006;
Mueller and Heinzle, 2013). The qualitative isotopic labeling infor-
mation is then used as an input to two alternative methods. In one
method, termed isotopomer modeling, a total flux distribution
is estimated based on the experimental labeling results through
a computationally demanding non-linear optimization formula-
tion, which employs global iterative fitting and statistical analysis
(Wiechert et al., 2001; Antoniewicz et al., 2007). The other 13C-
labeling assisted method is based on the estimation of the local
ratios of fluxes emerging from a branch point (Sauer, 2006; Zam-
boni et al., 2009) rather than the absolute quantification of all
fluxes. These experimental flux split ratios can be used to shrink
the solution space of Eq. 2 in a complementary flux calculation,
leading to the discovery of a condition-specific network (Schuetz
et al., 2007; Tarlak et al., 2014). Softwares are available for the
rather sophisticated calculation of experimental fluxes (or flux
ratios) from carbon labeling data for both methods (Zamboni
et al., 2005; Quek et al., 2009; Weitzel et al., 2013). A new trend in
this area is to collect data at the non-stationary phase of isotopic
labeling rather than at the isotopic steady state, which was shown
to be more informative in terms of predicting the flux-weighted
active metabolic network structure (Schaub et al., 2008; Young
et al., 2008; Wiechert and Nöh, 2013). Works on the tracing of
intracellular metabolites rather than only 10–15 protein-bound
amino acids have also appeared due to the higher coverage of
metabolic pathways despite the inherent experimental difficulties
in terms of higher turnover rates as well as stability issues (Van
Winden et al., 2005; Toya et al., 2007; Millard et al., 2014).

The computational approach for the discovery of condition-
specific metabolic network based on Eq. 2 is known as constraint-
based modeling. Constraint-based modeling methods aim to
shrink the solution space of the equation as much as possible
by putting relevant constraints on the system. The most common
method, FBA, treats the problem in Eq. 2 as an optimization prob-
lem and linear programing is applied to solve it. The stoichiometry
of metabolic reactions (stoichiometric matrix), reaction direction-
ality information, a physiologically relevant objective function,
and the value of at least one of the exchange fluxes are all that
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are required for FBA to return a condition-specific flux distrib-
ution. The flux distribution returned by FBA is not necessarily
unique, and there may be a variety of flux distributions all leading
to the same optimum value of the objective function. Therefore,
Flux Variability Analysis (FVA) must be used together with FBA, to
determine the variability, if any, on each metabolic flux in regard to
the condition of interest (Mahadevan and Schilling, 2003; Müller
and Bockmayr, 2013). The maximization of biomass produc-
tion has been successfully applied as a reliable objective function
for FBA to predict flux distributions in a variety of microor-
ganisms (Varma and Palsson, 1994; Feist and Palsson, 2010). In
some studies, it has been hypothesized that one objective function
alone may not capture the metabolic behavior of the cell compre-
hensively. Therefore, multi-objective optimization platforms have
been designed and utilized to come up with more specific flux
distributions. Several modified versions of FBA including parsi-
monious FBA, pFBA (Lewis et al., 2010), and flexible-optimality
FBA, flexoFBA (Tarlak et al., 2014), have been developed in this
manner. On the other hand, some research groups have devel-
oped methods based on the availability of additional omics data,
which are discussed below. For a thorough review of a number of
FBA-derived flux calculation methods, the readers are referred to
Lewis et al. (2012).

CONSTRAINTS BASED ON TRANSCRIPTOME OR PROTEOME DATA
The rate of an enzymatic reaction inside the cell is a function of sev-
eral different factors, such as the concentration of substrates, prod-
ucts, and regulators of the enzyme and also the amount of available
active enzyme for that reaction. Among these factors, the concen-
tration of active enzymes can be related to the activity of genes
through layers of transcription, translation, and post-translational
modifications. Transcriptome data are much more accessible and
comprehensive compared to the other omics data. Several different
research groups have developed different strategies to incorpo-
rate transcriptome data into constraint-based models. The idea
behind this is that the amount of mRNAs (gene activities) may
be correlated with the concentration of active enzymes, and hence
this can be utilized to provide additional constraints on meta-
bolic fluxes. At the bottom line, if an enzyme coding gene is not
transcribed at steady state, the corresponding reaction should be
inactive at that steady state, if there is no other enzyme catalyz-
ing that reaction. This idea was first used by Akesson et al. to set
the flux values to zero for those reactions whose corresponding
genes were expressed at low levels (Åkesson et al., 2004). More
sophisticated and structured versions of this approach appeared
later, under the names of GIMME (Becker and Palsson, 2008)
and iMAT (Shlomi et al., 2008). These approaches classify some
reactions as inactive reactions based on the low expression lev-
els of their associated genes. Then, they employ a computational
framework which minimizes the contradiction between the clas-
sification and an active physiological flux distribution since some
of these classifications may render the flux state unrealistic (such
as zero growth rate). Several other alternative methods appeared
recently to incorporate transcriptome data into the prediction of
active metabolic network and flux distribution. In an interesting
study, for example, mRNA levels from transcriptome data were
used as weights for the corresponding reactions to predict a flux

distribution without using a conventional objective function such
as the maximization of biomass growth (Lee et al., 2012). A recent
study (Machado and Herrgård, 2014) evaluated these methods sys-
tematically for the prediction of flux distributions, and the results
were compared to that of parsimonious FBA as a reference method
that does not consider the transcriptome data. In general, none of
the methods could significantly improve the results of pFBA and
none of them outperformed the others for the tested cases (S. cere-
visiae and E. coli). Instead of the prediction of flux distributions,
these methods, however, may significantly help in the discovery
of active metabolic networks in context/tissue-specific cells and
in the conditions where a relevant objective function cannot be
hypothesized.

Transcriptome data are not necessarily correlated with the rate
of corresponding reactions. Inconsistency between mRNA levels
and reaction rates is a result of influence of several other factors
in the regulation of enzymatic reactions. Therefore, if proteome
data are available, it can be used instead of transcriptome data
as a better representative for the concentration of active enzymes
since proteome is hierarchically closer to the enzyme states than
transcriptome data. The methods that are developed to integrate
transcriptome data with the FBA method can all be used for
the purpose of integrating proteome data. For example, GIM-
MEp (Bordbar et al., 2012) is the proteome equivalent version of
GIMME. Some of such integrative methods were primarily tested
with proteome data. INIT (Agren et al., 2012), for example, was
developed by using proteome abundance data from Human Pro-
tein Atlas database. However, it was shown that utilizing proteome
data instead of transcriptome data could not improve the pre-
diction of flux distributions for the tested cases (S. cerevisiae and
E. coli) (Machado and Herrgård, 2014). In a study which used
metabolome and proteome data in the flux calculation method,
on the other hand, even the use of only proteome data were shown
to improve the results compared to the traditional FBA (see the
next section for more details) (Yizhak et al., 2010).

Substrate concentrations, the concentration of enzyme regu-
lators, the turn over number of the catalyzing enzyme, and the
concentration of the active enzyme are all playing significant roles
in the determination of reaction rates, and among them only
the concentration of the active enzyme may be represented by
the corresponding protein or mRNA concentration. Translated
proteins are not necessarily active enzymes, and they may need
to undergo post-translational modifications (e.g., phosphoryla-
tion/acetylation) to become capable of catalyzing the reactions.
This is one of the main reasons behind inconsistency between
protein levels and reaction rates. On the other hand, the turn
over number (catalytic power) of one enzyme may differ by sev-
eral orders of magnitude from the turn over number of another
enzyme (Hoppe, 2012). It means that although the concentration
of one enzyme may be much less than the others in the network,
the reaction catalyzed by that enzyme can proceed much faster
than others. According to this fact, the use of the absolute concen-
trations of proteins or mRNAs to constrain reaction rates does not
seem promising. However, the turn over number of one enzyme in
an individual is an intrinsic parameter of the enzyme that does not
change from one condition to another except by effective muta-
tions that rarely occur. Because of this, the relative levels of proteins
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or mRNAs can be utilized to overcome the problem of big differ-
ences in turn over numbers. One steady state with available data on
flux values and protein/mRNA levels can be taken as the reference
state, and then the relative/differential levels of proteins/mRNAs
to the reference state can be used to predict the flux distributions at
the new conditions. Based on this approach, algorithms have been
developed to incorporate relative/differential transcriptome data
into metabolic-flux analysis, among which are MADE (Jensen and
Papin, 2011) and GX-FBA (Navid and Almaas, 2012). One other
main reason for the inconsistency between protein levels and reac-
tion rates is the distribution of flux control among different layers
from genotype to phenotype. Metabolic fluxes can be regulated
hierarchically (through gene expression levels) or metabolically
(through metabolic interactions) (Daran-Lapujade et al., 2007;
Postmus et al., 2008; Nikerel et al., 2012; Chubukov et al., 2013).
Use of transcriptome or proteome data will not be helpful if the
metabolic fluxes are controlled at the metabolic level.

CONSTRAINTS BASED ON METABOLOME DATA
One approach to find more specific and physiologically relevant
flux distributions is to provide additional constraints by speci-
fying the directionality of reversible reactions. This can be done
by taking Gibbs free energies of metabolites into consideration.
The Gibbs free energy change of a reversible biochemical trans-
formation (one reaction or a series of reactions) determines the
direction of that transformation and its departure from reversibil-
ity. The earlier studies assumed standard conditions (all metabolite
concentrations were assumed to be 1 M), and did not explicitly
consider metabolite concentrations in the calculation of Gibbs
energy changes of reactions due to the scarcity of metabolome
data (Henry et al., 2006). Recent studies, however, take the con-
centration of metabolites into account, when available, to perform
thermodynamic-based metabolic-flux analysis, leading to more
reliable predictions (Hoppe et al., 2007; Bennett et al., 2009; Soh
and Hatzimanikatis, 2010; Hamilton et al., 2013).

Extracellular metabolome data can be used to constrain
genome-scale metabolic models for the calculation of intracel-
lular flux distributions by simply constraining the secretion and
uptake rates of extracellular metabolites based on such data (Çakır
et al., 2007; Mo et al., 2009). In a different approach, Michaelis–
Menten-based kinetics was used for the estimation of reaction rates
for the reactions for which appropriate intracellular metabolome
(and proteome) data are available (Yizhak et al., 2010). The FBA
framework was designed in such a way that the calculated fluxes
are as consistent as possible with the kinetically derived reaction
rates, if available. The simultaneous use of metabolome and pro-
teome data for this purpose significantly improved the results. The
use of metabolome data alone also resulted in better predictions
than the traditional FBA. In a recent study, a kinetic platform was
established based on Michaelis–Menten equation to bridge gene
expression levels, metabolite concentrations and metabolic fluxes
without requiring the knowledge of kinetic parameters (Zelezniak
et al., 2014). They could show that changes in metabolite con-
centrations relative to a reference steady state can be predicted by
their formulation that includes information on network connec-
tivity in addition to differential mRNA expression levels. All those
works utilizing kinetic information demonstrate the necessity of

dynamic models for a more comprehensive analysis of metabolic
networks.

Kinetic models of biochemical reactions not only provide a
rational platform for omics data – especially metabolomics – to be
incorporated in the estimation of metabolic fluxes but also they
enable the prediction and study of the dynamics of metabolic net-
works far beyond the steady state (Box 1). Such models were only
possible for small-scale metabolic networks until recently (Teusink
et al., 2000; Chassagnole et al., 2002), since, they require detailed
information on the enzyme kinetics of each individual reaction.
Estimation of kinetic parameters is a major obstacle in the applica-
bility of dynamic modeling of metabolic networks. New platforms
and algorithms were established to circumvent this problem so that
the estimation of explicit kinetic parameters is not a prerequisite
to study the dynamic capacity and behavior of the system (Link
et al., 2014). Approximative kinetic models (lin-log, power-law,
mass-action) on the other hand, try to fit a standard rate expression
formula to all reactions of the network to increase the range of their
applicability to larger networks (Visser et al., 2004; Sorribas et al.,
2007). Thanks to approximative kinetics, attempts to reconstruct
large-scale kinetic metabolic models with more than 100 reactions
were recently presented (Smallbone et al., 2010; Chakrabarti et al.,
2013; Stanford et al., 2013), but their prediction power is limited to
the conditions adequately close to the corresponding steady state.

As a better alternative to approximative kinetics, an approach
was established and utilized based on the concept of parametric
Jacobian, which covers the behavior of all possible kinetic mod-
els that are consistent with an experimentally observed operating
point (Steuer et al., 2006). This approach provides an oppor-
tunity to detect and analyze bifurcation characteristics of the
metabolic network without the need for explicit determination
of kinetic parameters. Ensemble modeling of metabolic networks
(Tran et al., 2008) is an elegant idea for large-scale kinetic modeling
of biochemical reaction networks. In this method, each enzymatic
reaction is broken down to its elementary reactions that all follow
mass-action kinetics. An ensemble of thermodynamically con-
sistent kinetic models with different dynamic behavior that all
converge to a reference steady state is collected with the help of
intracellular metabolome data. This ensemble is then filtered by
the results of perturbation experiments to filter out inconsistent
models from the ensemble and to increase the predictability of
remaining models. The approach was successfully applied, among
others, to construct kinetic models of E. coli (Khodayari et al.,
2014) and cancer metabolisms (Khazaei et al., 2012), leading to
promising flux predictions.

TOP-DOWN APPROACHES TO DISCOVER
CONDITION-SPECIFIC METABOLIC NETWORKS
Time series of metabolite concentrations in response to a per-
turbation, and also replicates of metabolome data at a specific
steady state, both implicitly contain information on the structure
of active metabolic network. Reverse engineering of these data to
infer the condition-specific metabolic network without necessar-
ily prior knowledge on the genome of the organism and its static
metabolic network is an alternative to all bottom-up approaches
that are based on the availability of a large-scale stoichiometric
model of the organism. Although promising, less attention has
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been paid to these top-down approaches compared to bottom-
ups mainly because of the technical obstacles in gathering reliable
metabolome data in large scale. This limitation will be removed
with future advancements in the detection and quantification of
intracellular metabolites such as higher coverage and temporal
resolution. At this stage, however, several research groups have
established algorithms and methods for reverse engineering of
metabolic networks by using either time series or steady-state
replicates of metabolite concentrations (Crampin et al., 2004;
Chou and Voit, 2009; Hendrickx et al., 2011; Lecca and Priami,
2013).

NETWORK DISCOVERY BASED ON TIME-SERIES DATA
The use of time-series metabolite concentration data to predict the
underlying network connectivity information first appeared in the
literature about two decades ago. Time-lagged correlations com-
bined with a projection technique called multidimensional scaling
were shown to construct the structure of generic biochemical net-
works with few nodes (Arkin and Ross, 1995). Correlation between
time-series profiles of metabolites, with the consideration of the
delay in the influence of one metabolite on the next, is the basis of
the time-lagged correlation method for the inference of metabolic
networks. The approach, called correlation metric construction,
was later experimentally verified in vitro by inferring the first
steps of glycolytic pathway in a 14-metabolite system (Arkin et al.,
1997). Modified versions of the approach appeared later (Samoilov
et al., 2001; Lecca et al., 2012). In the latter, metabolic pathway of
an anticancer drug was deduced from the time-lagged correla-
tions of corresponding metabolite concentration measurements.
The modification introduced by the former work was recently
improved by using mutual information similarity score rather
than simple linear correlation (Villaverde et al., 2014). The authors
compared their method, called MIDER, with several other meth-
ods by applying it to different types of cellular networks, including
in vitro glycolytic pathway data. The approach outperformed the
other methods.

Another method to reconstitute a network using time-series
data is based on perturbation experiments around steady state.
The initial curve of concentration changes of metabolites in
response to a pulse change on the concentration of a metabo-
lite is processed with the method of zero initial slopes (Vance
et al., 2002). The method successfully inferred the structure of
glycolysis based on in vitro experimental data (Torralba et al.,
2003). Performance comparison of the method with the corre-
lation metric construction approach was later provided based on
in silico data of S. cerevisiae and E. coli central metabolic networks
(Hendrickx et al., 2011). An approach based also on perturbation
experiments, but with a different formulation aiming to calculate
Jacobian matrix from time derivatives of concentration data, was
first applied to gene networks (Schmidt et al., 2005). A modified
version of the approach recently used in vivo metabolite concentra-
tion measurements from tomato seedlings to reconstruct quercetin
glycosylation pathway (Astola et al., 2011).

Apart from such model-free structure identification methods,
model-based methods use time-series metabolite concentration
data not only to identify network structure but also to esti-
mate proper model parameters such as rate constants of kinetic

expressions (Chou and Voit, 2009). Majority of these approaches
use power-law (also called S-system) formulation (Savageau and
Voit, 1987) to approximate reaction kinetics. An approach, for
example, used S-system modeling with a multi-objective optimiza-
tion by simultaneously minimizing the number of interactions and
the error in the fitting (Liu and Wang, 2008). They applied their
method to major metabolites involved in ethanol fermentation. An
earlier work analyzed a small three-metabolite network of phos-
pholipid metabolism by combining S-system modeling and an
evolutionary modeling method, genetic programing (Ando et al.,
2002). Later, a new representation of S-system approach, called S-
trees, was combined with genetic programing to reverse-engineer
yeast fermentation pathway in a more efficient manner by using
in silico time-series concentration data of five metabolites (Cho
et al., 2006). In a sophisticated approach, others used symbolic
regression based on genetic programing to infer both the struc-
ture and the model of yeast glycolytic oscillations from in silico
data (Schmidt et al., 2011). Their use of acylic graph encoding
rather than tree-based encoding together with symbolic regres-
sion approach ensured the identification of parsimonious (sparse)
models. Rather than S-system formulation, mass-action kinet-
ics can also be used to infer pathway connectivity and reaction
mechanism (Srividhya et al., 2007). This minimizes the compu-
tational burden on the algorithm since only rate constants are to
be estimated as parameters in the mass-action formulation. The
authors tested their method with real time course experimental
metabolome data of Lactococcus lactis glycolysis. A graphical user
interface was later made available by the same group to ease the
inference of kinetics and network architecture from dynamic data
of biochemical pathways (Mourão et al., 2011). Genetic program-
ing was also combined with mass-action kinetics in an algorithm,
which ensures the estimation of biochemically more plausible
models (Gormley et al., 2013). The small phospholipid network
of (Ando et al., 2002) was inferred in a more compact way by this
algorithm.

NETWORK DISCOVERY BASED ON STEADY-STATE DATA
The use of steady-state metabolome data to infer metabolic net-
work structure has also drawn attention in the last decade. The
biological variability in the metabolism of the organisms at around
steady state is a known phenomenon due to slight variations
in the enzyme levels or due to slight natural or environment-
induced fluctuations within cellular processes. Slight variations in
the steady-state measurements of metabolite levels can be infor-
mative on the network structure (Steuer et al., 2003; Camacho
et al., 2005; Çakır et al., 2009). The most common approach
here is to use the similarity measures such as Pearson correla-
tion to assign edges between metabolites. One should note that
such correlations are not necessarily strong among neighboring
metabolites whereas there could be strong correlations among
distant metabolites in the network (Camacho et al., 2005). In
a comprehensive study, different alternative similarity measures
(linear vs. non-linear, and full vs. partial) were applied to in silico
metabolome data belonging to two microorganisms to systemati-
cally analyze method performances (Çakır et al., 2009). The results
revealed no clear superiority between linear (Pearson correlation)
and non-linear (mutual information) similarity measures. The
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best performing method was identified as nth order partial Pearson
correlation, known also as graphical Gaussian modeling. Graphi-
cal Gaussian modeling was also applied to metabolome data from
blood serum samples to reconstruct human fatty acid metabo-
lism (Krumsiek et al., 2011). Others (Nemenman et al., 2007)
analyzed in silico metabolome data of red blood cell metabolism
by ARACNE approach (Margolin et al., 2006), which is based on
pruning mutual information scores. An elegant improvement on
ARACNE based reverse engineering of metabolic profiling data
was suggested later (Bandaru et al., 2011). The approach puts a
constraint on the possible metabolic transformations to satisfy the
mass conservation between the connected metabolites. Synthetic
data covering up to about 200 metabolites were generated to test
the approach. One issue in such similarity-based approaches is
that only pairwise interactions are aimed to be found. However, a
metabolic reaction can involve more than two metabolites. Based
on this reasoning, an attempt to also deduce triple interactions
by using ternary mutual information was suggested (Diê.p et al.,
2011). Analysis of synthetic yeast glycolysis data and red blood cell
data showed the success of this approach in capturing higher order
interactions.

A different approach to discover active metabolic networks
from steady-state data is based on Lyapunov equation. In Eq. 1, the
rate vector, v, is a complex non-linear function of concentrations,
C. For systems around steady state, the equation can be expressed
in terms of Jacobian matrix, J, by the help of linear approximation:

dX

dt
≈ JX (3)

with X=C−Cs, and Cs shows the steady-state metabolite con-
centrations. Jacobian matrix stores detailed information on the
structure of the underlying network; such as the directionality
of interaction, strength of interaction, and regulation type of
interaction. For small fluctuations around steady state, the right-
hand side of Eq. 3 becomes zero, and the left-hand side can be
expressed in such a way that a link between the covariance matrix
of metabolome data, Γ, and Jacobian matrix is provided. The
details of the derivation are given elsewhere (Van Kampen, 1992;
Steuer et al., 2003).

JΓ+ ΓJT
= −2D (4)

D in the equation shows the extent of fluctuations. Eq. 4, known as
Lyapunov equation, can be used to infer metabolic network struc-
ture since it provides a link between the data-based covariance
matrix and network connectivity stored in J. Reverse-engineering
metabolome data by using the Lyapunov equation was first dis-
cussed via a hypothetical three-metabolite system (Steuer et al.,
2003). A recent work provided a theoretical analysis on the use
of the Lyapunov equation to infer network structure from steady-
state metabolome data (Öksüz et al., 2013). The authors used a
rearranged version of the Lyapunov equation:

Aj = 2d (5)

Here, j and d are vectorized versions of J and D matrices. A is a
matrix based on the covariance of data. In that work, directed net-
works were inferred from in silico metabolome data of S. cerevisiae

glycolysis, E. coli central carbon metabolism, and brain glycolysis
by solving Eq. 5 for j using a genetic-algorithm based formula-
tion. In the optimization formulation, the dual objective function
was simultaneous maximization of the sparse structure and min-
imization of the residual norm of the equation. When compared
to the inference results based on nth order partial Pearson correla-
tion, a much higher prediction accuracy was reported. One other
advantage of the optimization-based approach is the fact that Eq.
5 infers a directed network whereas correlation-based approaches
cannot predict directions of interactions. The Lyapunov equation
was recently used to infer differential changes in Jacobian matrix
rather than the inference of network structure by predicting Jaco-
bian matrix itself (Sun and Weckwerth, 2012; Kügler and Yang,
2014; Nägele et al., 2014).

PATHS TO RECONCILE BOTTOM-UP AND TOP-DOWN
METABOLIC NETWORK DISCOVERY APPROACHES
Previous sections reviewed bottom-up and top-down meta-
bolic network discovery approaches from literature. Top-down
approaches are dependent on intracellular metabolome data, and
there are bottom-up approaches, which aim to use omics data as
additional constraints. The simultaneous use of both approaches
to discover better condition-specific networks has not been a focus
in the scientific community. Here, we will elaborate on the ways
to reconcile these two approaches when intracellular metabolome
data of a condition in question are available.

All model-based top-down approaches using time-series data
also infer a Jacobian matrix of the model. Many other top-down
approaches are based on correlations between metabolites. There is
a significant relationship between the correlation strengths and the
strengths of interactions implied by Jacobian entries (Çakır et al.,
2009). Therefore, correlation strengths or Jacobian-interaction
strengths of the inferred edges can be used as edge scores in the
bottom-up constraint-based modeling approaches as additional
constraints for a better identification of the active metabolic net-
work as follows: all inferred edges in a top-down approach based
on metabolome data are ranked with respect to their edge scores.
Afterward, cut-off values for high- and low-scores are determined.
If a high-score edge also appears in the corresponding static
genome-scale stoichiometric model, that reaction is assigned a
high weight. If a high edge-score does not have a correspond-
ing connection in the genome-scale model, this could imply a
novel or a regulatory interaction. As it is known, genome-scale
metabolic models do not account for regulatory interactions of
metabolites with enzymes, however, top-down approaches do
not have this limitation since they are purely data-based. If the
edge-score is low, the corresponding reaction in the stoichiomet-
ric model is assigned a low weight. Similarly, if the top-down
approach assigns no edge between two metabolites, which are
linked with a reaction in the stoichiometric model, such reac-
tions are also assigned low weight. All other reactions can be
assigned with a medium-weight. Then, a mixed-integer program-
ing based optimization framework can be used with Eq. 2 such
that the resulting condition-specific flux distribution is as consis-
tent as possible with the edge scores, including maximum possible
number of high-weight reactions and minimum possible num-
ber of low-weight reactions as active. Thereby, the strength of
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top-down predictions can be used for better bottom-up flux
predictions.

Use of transcriptome or proteome data as constraints in
metabolic-flux calculations resulted in several alternative meth-
ods such as GIMME, iMAT, and INIT. These approaches remove
reactions from the static metabolic reaction set if the controlling
gene or protein is not active. However, a recent work compar-
ing all these methods could not identify a method with clear
superiority over the parsimonious FBA (Machado and Herrgård,
2014). This approach can be combined with edge scores (inferred
Jacobian-interaction strength or calculated correlation strength)
information to yield better network identification. GIMME-like
approaches remove reactions from the model, this means also
removal of metabolites. Two different approaches can be used:
(i) removed reactions whose main substrates and products show
high edge scores must be retained in the reaction set, implying
an active edge (ii) reactions whose main substrates and products
show very low and insignificant correlations must be candidates
to be removed from the reaction set, implying an inactive edge if
their removal does not hamper the objective function. Such a flux
calculation powered by the top-down inference of network edges
can lead to a more refined network.

One reconciliation approach will be the integrative use of
flux-balance equation (Eq. 2) and rearranged Lyapunov equation
(Eq. 5). Flux-balance equation was widely used in the last two
decades because of its simplicity, requiring only the stoichiomet-
ric coefficients of reactions, and few measurement constraints. The
rearranged Lyapunov equation bears a similar simplicity since it
is only based on the covariances of metabolome measurements.
The only major issue, as it is the case in flux-balance equation, is
a proper choice of objective function to solve the equation. Since
both J and v, the unknowns in both equations, represent the active
network structure, the coupled use of these two equations can be
beneficial from two different aspects: (i) a better flux distribution
can be found thanks to the metabolome-based constraint provided
by Eq. 5, (ii) the information stored in stoichiometric matrix, since
it will reveal all possible non-interacting pairs, will provide a con-
straint to get a better estimate of Jacobian matrix by setting edge
scores of some pairs to zero.

An approach getting popular to construct genome-scale kinetic
models is ensemble modeling. This modeling approach constructs
kinetic models from an ensemble of models, and filters the incon-
sistent models out by using the results of perturbation experiments
(Tran et al., 2008; Khodayari et al., 2014). On the other hand, a
number of methods infer networks from time-series data by using
a model-based approach. The output of such methods is both the
network structure and the dynamic kinetic model with estimated
parameters (Srividhya et al., 2007; Liu and Wang, 2008). A num-
ber of alternative models are scanned in these methods to infer the
most suitable one. Therefore, the strengths of model-based net-
work inference and ensemble-based kinetic model reconstruction
can be combined to yield better frameworks.

In summary, both bottom-up and top-down discovery of meta-
bolic networks have come a long way in the last 20 years, providing
the scientific community with a number of computational meth-
ods, as reviewed in this review. Considering the improvements
that are being experienced both on the coverage and precision of

metabolome data, the coming decade will witness an exponential
increase in the number of metabolome datasets, similar to what
was experienced with transcriptome data in the last decade. This
review aimed at drawing attention to this point, as ways to recon-
cile the two major metabolic network discovery approaches will
gain increasing importance.
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Metabolic modeling provides the means to define metabolic processes at a systems level;
however, genome-scale metabolic models often remain incomplete in their description
of metabolic networks and may include reactions that are experimentally unverified. This
shortcoming is exacerbated in reconstructed models of newly isolated algal species, as
there may be little to no biochemical evidence available for the metabolism of such iso-
lates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides
an efficient, high-throughput method to functionally define cellular metabolic activities in
response to a large array of entry metabolites.The platform can experimentally verify many
of the unverified reactions in a network model as well as identify missing or new reactions
in the reconstructed metabolic model. The PM technology has been used for metabolic
phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for
the phenotyping of microalgae. Here, we introduce the use of PM assays in a system-
atic way to the study of microalgae, applying it specifically to the green microalgal model
species Chlamydomonas reinhardtii. The results obtained in this study validate a number
of existing annotated metabolic reactions and identify a number of novel and unexpected
metabolites.The obtained information was used to expand and refine the existing COBRA-
based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to
the network, and the effects of these additions on flux distribution within the network are
described. The novel reactions include the support of metabolism by a number of D-amino
acids, L-dipeptides, and L-tripeptides as nitrogen sources, as well as support of cellular
respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed
here can be used as a foundation to functionally profile other microalgae such as known
microalgae mutants and novel isolates.

Keywords: microalgae, Chlamydomonas reinhardtii, flux balance analysis, phenotype microarray, metabolic
network refinement

INTRODUCTION
Optimization of algal metabolism toward improved bioprod-
uct production while maintaining strain robustness remains a
challenge that requires experimental strategies informed through
systems-level analyses of metabolism. The use of metabolic net-
work models can guide the development of optimization strategies
that would be otherwise difficult through rational designs (Ober-
hardt et al., 2009; Schmidt et al., 2010; Koskimaki et al., 2013;
Koussa et al., 2014). While an increasing number of algal species
are being isolated and sequenced for biofuel or other applications,
to date, there are only a handful of reconstructed algal networks
available (Koussa et al., 2014). A major obstacle in the reconstruc-
tion of high-quality network models for algae remains hinged
on the inability to obtain rapid and high-throughput metabolic
phenotypic data to guide and validate reconstruction efforts.

One potential high-throughput phenotypic analysis technol-
ogy is the Biolog OmniLog® phenotype microarray (PM) (Biolog,
Hayward, CA, USA) (Bochner et al., 2001; Bochner, 2003, 2009).

By assaying cellular metabolism in response to thousands of
metabolites, signaling molecules, and effector molecules (as well as
osmolites), the Biolog PM assays have greatly boosted functional
metabolic profiling by providing insight into function, metabo-
lism, and environmental sensitivity (Bochner et al., 2001; Bochner,
2003, 2009). Biolog PM assays rely on the measurement of metabo-
lite utilization of cells in 96-well microplates. Each well contains
different nutrients, metabolites, and pH and osmolarity solutes.
Other bioactive molecules such as antibiotics and hormones may
also be assayed. This utilization is assessed and measured in the
form of cell respiration determined by the amount of color devel-
opment produced by the NADH reduction of a tetrazolium-based
redox dye (Bochner et al., 2001; Bochner, 2003, 2009). Plates can be
monitored automatically over time with the OmniLog platform.
A common set of 20 96-well microplates are designed to measure
carbon, nitrogen, sulfur, phosphorus utilization phenotypes, along
with osmotic/ion, and pH effects. This high-throughput and stan-
dardized approach has the ability to provide a quick method for
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the phenotypic comparison of different strains and organisms in
a convenient manner leading to insights into the metabolic state
of the cell. While the PM technology has been used for metabolic
phenotyping of various microbial species including bacteria and
fungi, it has not been reported for the phenotyping of microalgae.
Likewise, the technology has been successfully used for verification
and expansion of a number of existing microbial metabolic net-
work models (Bochner et al., 2001; Bochner, 2003, 2009; Bartell
et al., 2014), yet its use for improvement of microalgal models
remains unreported.

The goal of the present study is to establish a reliable method
for characterizing metabolic phenotypes of microalgae that can
be used to expand existing network models or guide the recon-
struction of new algal metabolic models. We present the imple-
mentation of the PM platform for metabolic phenotyping of
microalgae using Chlamydomonas reinhardtii as a model organism
then expand a well-curated existing metabolic network model of
C. reinhardtii accordingly.

MATERIALS AND METHODS
PHENOTYPE MICROARRAY EXPERIMENTS
Phenotyping was done using standard Biolog assay plates and
using the OmniLog instrument. In total 190 substrate utilization
assays for carbon sources (PM01 and PM02), 95 substrate utiliza-
tion assays for nitrogen sources (PM03), 59 nutrient utilization
assays for phosphorus sources, and 35 nutrient utilization assays
for sulfur sources (PM04), along with peptide nitrogen sources
(PM06–08) were utilized. A defined tris-acetate-phosphate (TAP)
medium (Gorman and Levine, 1965) containing 0.1% tetrazolium
violet dye “D” (Biolog, Hayward, CA, USA) was used for the PM
tests. The carbon, nitrogen, phosphorus, or sulfur component of
the media was omitted from the defined medium when applied to
the respective PM microplates that tested for each of those sources.

Chlamydomonas reinhardtii strain CC-503 was obtained from
the Chlamydomonas Resource Center at the University of Min-
nesota, USA. Cells were grown in fresh TAP media to mid-log
phase, then spun down at 2,000× g for 10 min, and then resus-
pended in fresh media to a final concentration of 1× 106 cells
before inoculation into Biolog’s 96-well plates. A 100 µL aliquot
of cell-containing media was inoculated into each well before the
plates were inserted into the OmniLog system. A final concentra-
tion of 400 µL/mL timentin® (GlaxoSmithKline, New Zealand)
was used to inhibit bacterial growth in all plates. In addition,
ampicillin and kanamycin were used at 50–100 µg/ml occasion-
ally. Bacterial contamination was monitored by streaking cells on
yeast extract/peptone plates and performing gram stains before
and after Biolog assays. All microplates were incubated at 30°C for
up to 7 days and the dye color change (in the form of absorbance)
was read with the OmniLog system every 15 min. As the OmniLog
instrument does not provide a source of continuous light during
incubation, the algae is assumed to be carrying out heterotrophic
respiration.

DATA ANALYSIS
The Biolog PM data analysis was carried out using an OmniLog
phenotype microarray (OPM) software package (Vaas et al., 2012,
2013) that runs within the R software environment. The raw

kinetic data were exported as CSV files to the OPM package and
then the biological information was added as metadata (e.g., strain
designation, growth media, temperature, etc.). Kinetic curves were
plotted from the raw data in the form of xy and level plots, and a
statistical analysis was carried out to visualize the metabolic prop-
erties and generate OmniLog values. An OmniLog value or the
curve parameter“A”simply lists the maximum height of the growth
curve.

Duplicate assays were carried out for all the plates that were
tested to assess reproducibility of the data. An assay was consid-
ered positive when the absorbance (OmniLog value) was positive
after subtraction from the negative control well and the respec-
tive blank well. This summation is a representation of the abiotic
reaction of the dye with the media in the presence of the tested
compound.

IDENTIFICATION OF REACTIONS AND GENES ASSOCIATED WITH NEW
METABOLITES
Gene to reaction associations for compounds were established as
follows: assignment of a compound’s enzyme commission number
(EC) and relevant reactions were performed by searching KEGG1

and MetaCyc2. The genomic evidence for each reaction was then
recovered by using the identified EC numbers as a search basis in
multiple available annotation resources from available algal anno-
tation databases, such as the Joint Genome Institute (JGI), Phyto-
zome3, and peer-reviewed publications. When the query returned
no genomic evidence for a given EC number, the relevant asso-
ciated proteins in other organisms were identified then a profile-
based search was carried out using the NCBI PSI-BLAST server
with default settings and using non-redundant protein sequences
(nr) in C. reinhardtii (taxid: 3055). PSI-BLAST hits with E values
of ≤0.05 were manually curated for relevance to the searched EC
number through either the evaluation of their described enzymatic
activity, or by querying those BLAST hits through EMBL-EBI
Pfam4, or InterPro5 protein domain prediction servers.

MODEL REFINEMENT AND EVALUATION
Identified reactions with their associated genes were added to
iRC1080 using the COBRA Toolbox functions add Reaction and
Change Gene Association. In addition, transport reactions for the
new metabolites were incorporated into the model as transport by
passive diffusion from the extracellular medium into the cytosol.
The behavior of the new resultant model, iBD1106, was tested by
carrying out flux balance analyses under light and dark condi-
tions for the maximization of biomass as the objective function.
The comparison of the two models was based on reported shadow
prices (sensitivity of the objective function to changes in system
variables) of the metabolites. The Biomass function was defined
previously (Chang et al., 2011) for growth under dark and light
conditions. The revised model can be found in the supplementary
file iBD1106.xml in an SBML file format.

1http://www.genome.jp/kegg/
2http://metacyc.org/
3http://www.phytozome.net
4http://pfam.xfam.org/search
5http://www.ebi.ac.uk/interpro/
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RESULTS
PHENOTYPE MICROARRAY SCREENING OF MODEL ALGA
CHLAMYDOMONAS REINHARDTII
To implement the use of the PM platform for algal metabolic
phenotyping, we used C. reinhardtii as a model. The single-cell
green alga C. reinhardtii is a model organism that has been widely
used for basic and applied biological research. Its genome was
sequenced and publically released by JGI in 2007 (Merchant et al.,
2007) and genome-scale models of its metabolism have been

reconstructed (May et al., 2009; Chang et al., 2011; Dal’Molin et al.,
2011). The ability to grow phototrophically or heterotrophically,
along with rapid growth and scalability, are features that make this
alga an attractive model system for algal-based biofuel studies.

Our pipeline (Figure 1) integrates the high-throughput PM
assays, applied to the alga of interest, with genomic searches to
provide experimental evidence that can lead to the refinement
of an existing metabolic network model. The pipeline may also
be applied for a new reconstruction if an existing model is not

FIGURE 1 |The pipeline for genome-scale metabolic network
refinement using PM data. After a new compound tests positive in a PM
assay, its enzyme commission number (EC), reaction, and pathway are
identified from available databases, e.g., KEGG and MetaCyc. Genomic
evidence is then extracted directly from genomic and annotation
resources when available and constitutes a link between genotype and

phenotype. When direct genomic evidence is unavailable, the protein
sequence is identified from the EC numbers and through the protein
sequence, genetic evidence is identified via PSI-BLAST. The reconstructed
metabolic network is then refined based on newly identified compounds,
but only after a quality control step. The quality control step entails
querying the protein domains using relevant databases.
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available. The PM assays test the ability of the alga to utilize vari-
ous carbon, nitrogen, sulfur, and phosphorus sources in a minimal
medium. When a new compound tests positive for utilization, the
compound’s relevant reaction profiles are defined using metabolic
knowledge bases such as KEGG (see text footnote 1) or MetaCyc
(see text footnote 2). This step defines all potential reactions and
pathways that can be associated with a metabolite to provide EC
numbers. The next step is to find supporting genetic evidence from
genetic databases specific to the alga, such as databases from the
JGI, Phytozome (see text footnote 3), or peer-reviewed publica-
tions. If genetic evidence is available, the reactions and metabolites
are added to the model to expand and refine the model. If, on the
other hand, genomic evidence is not found in support of the EC
number, a profile-based search, such as PSI-BLAST, can be per-
formed to identify candidate genes associated with the reaction.
The results of such searches are then manually evaluated; those
passing this QC step are added to the network model. In excep-
tional cases, if genes are not identified for reactions but compelling
biochemical evidence exists, reactions may be provisionally added
to the network pending future investigations.

IMPLEMENTATION AND VALIDATION
We optimized the PM assays for metabolic profiling of C. rein-
hardtii by modifying the standard Biolog protocol with respect to
inoculum concentration, type of dye, and pre-inoculation growth
conditions (Materials and Methods). We used plates 1–4 and 6–8
of the PM platform, which provide a range of test compounds
including utilization of carbon, nitrogen, sulfur, phosphorus, and
a variety of di- and tripeptides. The summary kinetics of selected
plates (PM01 and PM03) are shown in Figure 2. Splined-based
curve fitting was implemented to extract the curve parameters
[the lag phase (λ), the respiration (or growth rate µ or the steep-
ness of the slope), the maximum cell respiration “A,” and the area
under the curve (AUC)]. The maximum cell respiration “A” of the
blank and negative controls of each microwell plate (which rep-
resents abiotic reactivity of the dye with the medium and the test
metabolite) were used as background subtraction values to identify
positive metabolites. The“xy-plots”show the respiration measure-
ments over time mapped to the assay 96-well plates, in terms of the
raw measurements values (y-axis) and time (x-axis). In addition,
the data was transformed to a heat map format to allow for a quick
comparative overview of the multitude of the kinetic data. The
heat map presents the kinetic values with different colors (varied
from light yellow to dark orange or brownish; Figures 2B,D).

To assess the level of combined experimental and biological
noise and systematic errors and biases from Biolog’s PM measure-
ments, the data from two independent replicate experiments were
plotted against one another (Figure 3). This figure visually assesses
the reproducibility of the PM data obtained from PM01–04 and
PM10 plates. Figure 3 shows that the majority of the data were
identical as they fall on the 45° line with only a few outliers. This
plot confirms the quality and reproducibility of the experiments
for this alga.

IDENTIFICATION OF NEW METABOLITES
We compared the number of metabolites that can be identi-
fied by Biolog’s PM (662 chemical compounds from seven plates

{PM01–PM04, and PM06–PM08}) with the iRC1080 metabolites
and the metabolites measured using gas chromatography time-
of-flight (GC-TOF) (Bölling and Fiehn, 2005) (Figure 4). Only
six metabolites were overlapping among the three sets (adenine,
glycerol, glycine, myo-Inositol, putrescine, and uracil), while 149
were common between iRC1080 and the Biolog set under investi-
gation. This shows that while each technology/tool has its strength
in metabolic profiling research, the Biolog set can be a significant
source of new metabolic information.

After subtracting the background signal, we observed acetic
acid as the only positive assay for carbon utilization (in PM01
plate). Detection of acetate as the only carbon source from this
plate is consistent with the Chlamydomonas literature (e.g., Harris,
2009) and provides evidence for specificity of our assays. Four pos-
itive reactions for sulfur utilization (sulfate, thiosulfate, tetrathion-
ate, d,l-Lipoamide) and four positive assays for phosphorus uti-
lization (thiophosphate, dithiophosphate, d-3-phospho-glyceric
acid and cysteamine-S-phosphate) were detected. C. reinhardtii
showed positive results for several nitrogen sources including
both l-amino and d-amino acids, and less common amino acids
such as l-homoserine, l-pyroglutamic acid, methylamine, eth-
ylamine, ethanolamine, and d,l-α-amino-butyric acid. Further-
more, a large number of dipeptides and a few tripeptides assayed
positive (Table 1).

Altogether, we identified 128 new metabolites from the PM
data that were not present in our iRC1080 metabolic model:
eight d-amino acids, tetrathionate, thiophosphate, dithiophos-
phate, cysteamine-S-phosphate, l-pyroglutamic acid, and ethyl-
amine, 108 dipeptides, and 5 tripeptides. We note that sequence
specificity was observed for utilization of both di- and tripeptides.
The identified metabolites are summarized in Table 1 and Table
S2 in Supplementary Material.

We searched KEGG and MetaCyc to define all possible reactions
and EC numbers associated with the identified new metabo-
lites. Forty-nine unique EC numbers were associated with the
newly identified metabolites. Table S2 in Supplementary Material
includes pathways, reactions, EC numbers, proteins, and Chlamy-
domonas annotation sources for each of the metabolites. Five
different sources were used to obtain genomic evidence for the
reactions. These included Phytozome Version 10.0.2 (Goodstein
et al., 2012), JGI Version 4 (Ghamsari et al., 2011), AUGUSTUS 5.0
and 5.2 (Chang et al., 2011), annotations from Manichaikul et al.
(2009), and KEGG (Kanehisa et al., 2014). Out of 49 searched
ECs, 15 transcripts could be found with annotations matching
the searched ECs (Table 1; Tables S1 and S2 in Supplementary
Material).

The metabolic reactions and their respective EC numbers for
which no genomic evidence was found (using the aforementioned
resources) were then entered into the Universal Protein Resource
website (UniProt)6 (Apweiler et al., 2004; Consortium, 2014).
There, sequences that are related to the metabolites but are from
other organisms were identified. Those sequences were then used
to run Position-Specific Iterated BLAST (PSI-BLAST queries)7

6http://www.uniprot.org/
7https://blast.ncbi.nlm.nih.gov/Blast.cgi
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FIGURE 2 | Phenotypic microarray profiling selection of C. reinhardtii .
Respiration (or growth) xy -plots and level plots of the PM01 [Carbon sources;
(A,B)] and PM03 [Nitrogen sources; (C,D)] assay plates are shown. The figure
is an 8×12 array where each cell represents a well plate and, thus, a given
metabolite or growth environment. Within each cell or well representation,
curves represent dye conversion by reduction (y -axis) as a function of time
(x -axis). PM respiration curves from the CC-503 and blank are both shown in

each cell and are indicated by color (teal color represents blank and purple
color represents CC-503). The level-plot represents each respiration curve as a
thin horizontal line changing color (or remaining unchanged) over time.
Shading color changes from light yellow to dark orange or brownish based on
the level of respiration measurement values, with the brownish color
representing higher respiration values. Metabolites utilized by C. reinhardtii
(CC-503) and the blank plates are shown.
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FIGURE 3 | Reproducibility of PM tests. OmniLog values were collected
over a 168 h period and the maximum values were plotted for two replicate
studies. Each axis represents the maximum OmniLog values for each study
(the x -axis being one replicate study and the y -axis another). Identical
values fall on a 45° line; there are a few deviating test values (some
deviations were by more than 50 units). Each point represents a single
maximum OmniLog value.

FIGURE 4 | Venn diagram of metabolites. The Venn diagram is a
representation of metabolites common to Biolog’s PM plates, the iRC1080
metabolic model and Gas Chromatography time-of-flight (GC-TOF)
experiments. Each circle indicates the total number of metabolites that exists
in each respective method of study, while the overlapping regions represent
the number of metabolites shared between those methods of study. The
iRC1080 metabolic model contains a total of 1,068 unique metabolites, the
GC-TOF identified a total of 77 metabolites (Bölling and Fiehn, 2005), while
there are a total of 662 metabolites tested using Biolog’s PM plates.

Table 1 | List of identified positive substrate utilization metabolites

(C, P, S, N) not present in the iRC1080 model.

Biolog

chemical

ECa Gene annotation PSI-BLAST

Cysteamine-S-

phosphate

3.1.3.1 JLM_162926b,c,d,e

Tetrathionate 1.8.2.2 Insignificant E-value

1.8.5.2 Insignificant E-value

D-Alanine 1.4.1.1 XP_001700222.1

1.5.1.22 Failed manual QC

2.1.2.7 Insignificant E-value

1.4.3.3 Cre02.g096350.t1.3f

2.3.2.10 Insignificant E-value

2.3.2.14 Insignificant E-value

2.3.2.16 Insignificant E-value

2.3.2.17 Insignificant E-value

2.3.2.18 Insignificant E-value

2.6.1.21 Failed manual QC

3.4.13.22 XP_001698572.1,

XP_001693532.1,

XP_001701890.1,

XP_001700930.1

3.4.16.4 Chlre2_kg.scaffold_

14000039b,c,d

3.4.17.8 Failed manual QC

3.4.17.13 Insignificant E-value

3.4.17.14 Insignificant E-value

4.5.1.2 Insignificant E-value

6.1.1.13 Failed manual QC

6.1.2.1 Failed manual QC

6.3.2.4 au.g14655_t1b,c,d

6.3.2.10 Failed manual QC

6.3.2.16 Insignificant E-value

6.3.2.35 Insignificant E-value

D-Asparagine 1.4.5.1 Insignificant E-value

1.4.3.3 Cre02.g096350.t1.3f

3.1.1.96 Insignificant E-value

2.3.1.36 Insignificant E-value

1.4.99.1 XP_001692123.1

3.5.1.77 e_gwW.1.243.1b,c

3.5.1.81 Insignificant E-value

5.1.1.10 Failed manual QC

D-Aspartic acid 6.3.1.12 Insignificant E-value

1.4.3.3 Cre02.g096350.t1.3f

D-Glutamic

acid

1.4.3.7 Insignificant E-value

1.4.3.3 Insignificant E-value

D-Lysine 5.4.3.4 Insignificant E-value

1.4.3.3 Cre02.g096350.t1.3f

6.3.2.37 Failed manual QC

(Continued)
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Table 1 | Continued

Biolog

chemical

ECa Gene annotation PSI-BLAST

D-Serine 2.7.11.8 Insignificant E-value

2.7.11.17 Cre12.g486350.

t1.3b,c,d,e

3.4.21.78 Failed manual QC

3.4.21.104 Failed manual QC

4.3.1.18 g6244.t1e Failed manual QC

6.3.2.35 Insignificant E-value

6.3.3.5 Insignificant E-value

1.4.3.3 Cre02.g096350.t1.3f

D-Valine 1.21.3.1 Failed manual QC

6.3.2.26 Failed manual QC

1.4.3.3 Cre02.g096350.t1.3f

L-Pyroglutamic

acid

Thiophosphate

Dithiophosphate

Ethylamine 6.3.1.6

D,L-α-Amino-

butyric

acid

2.1.1.49 Insignificant E-value

1.4.3.3 Cre02.g096350.t1.3f

Di-peptide 3.4.13.18 Cre02.g078650.t1.3b

Tri-peptide 3.4.11.4 Cre16.g675350.t1.3b

aReaction was not include if no gene was identified.
bPhytozome version 10.0.2 (http://phytozome.jgi.doe.gov/pz/portal.html#!info?

alias=Org_Creinhardtii).
cJGI version 4 (Ghamsari et al., 2011).
dAugustus version 5 (Chang et al., 2011).
eKEGG (http://www.genome.jp/kegg/kegg1.html).
fJGI version 3.1 (Manichaikul et al., 2009).

from the NCBI website to identify homologous sequences in C.
reinhardtii. Only the sequences that produced significant align-
ments were considered; specifically, results with an E-value below
0.005 were retained. The final step before integrating the genes
from the PSI-BLAST results with the iRC1080 metabolic model
was to check whether the genes’ relevant reactions related to the
new metabolites; only hits with relevant annotated enzymatic reac-
tions were kept. The PSI-BLAST yielded four additional transcripts
(Table 1; Table S2 in Supplementary Material).

MODEL REFINEMENT
The metabolites identified as new to the network were catego-
rized and annotated in the model based on their utilization into
nitrogen sources, phosphate sources, and sulfur sources. The nitro-
gen source metabolites were 8 d-amino acids, 2 l-amino acids,
108 dipeptides, and 5 tripeptides. The phosphate sources were
cysteamine-S-phosphate, thiophosphate, and dithiophosphate.

Table 2 | Contents of iRC1080 and iBD1106.

Model Reactions Metabolites Genes

iRC1080 2,191 1,706 1,086

iBD1106 2,445 1,959 1,106

Table 3 | Summery of new reactions in iBD1106.

Category or class of reactions Number of reactions

Amino acids 20

Dipeptides 108

Tripeptides 5

Transport reaction 120

The only new sulfur source metabolite was tetrathionate. No
genomic evidence for tetrathionate was found in databases and
its PSI-BLAST E values did not pass the threshold of 0.005, thus,
no reaction for this metabolite was added to the model. In addi-
tion, l-pyroglutamic acid, thiophosphate, dithiophosphate, and
ethylamine were not added to model due to lack of genomic
evidence.

To expand the existing model, reactions associated with the
new metabolites and the genes associated with the new reactions
were added to iRC1080 model to generate an expanded network,
iBD1106. iBD1106 accounts for 2,445 reactions, 1,959 metabo-
lites, and 1,106 genes (Table 2). The new 254 added reactions are
distributed as follows: 20 amino acid reactions, 108 di-peptide
reactions, 5 tri-peptide reactions, and 120 transport reactions
(Table 3). The new 20 amino acids reactions were associated with
4 new genes (Cre02.g096350.t1.3, au.g14655_t1, e_gwW.1.243.1,
Cre12.g486350.t1.3). The d-amino acids are oxidized into ammo-
nium and a 2-oxo-carboxylate via the following reaction with EC
number of 1.4.3.3 and associated gene Cre02.g096350.t1.3:

D−amino acid+O2+H2O→ NH4+H2O2+2−oxo carboxylate
(1)

Equation 1 is a general reaction for all d-amino acids. However,
some d-amino acids contribute to different reactions in addition
to their own oxidation reactions. For example, d-serine reacts with
ATP producing ADP and phospho-d-serine. Moreover, the chiral-
ity of d-amino acids can also be inverted into L forms and vise
versa through annotated racemases (Table S2 in Supplementary
Material).

Four genes identified by PSI-BLAST were added into the
model and account for the d-alanine transaminase reaction
(Eq. 2); XP_001698572.1, XP_001693532.1, XP_001701890.1,
XP_001700930.1:

2 −oxoglutarate+D−alanine↔ D−glutamate+pyruvate (2)

In addition, XP_001692123.1, a PSI-BLAST identified gene, was
associated with the oxidation of d-asparagine reaction as shown
in Eq. 1.
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A total of 113 added new reactions account for the hydrol-
ysis of dipeptides and tripeptides. The hydrolysis of dipep-
tides and tripeptides are associated with two genes, one
for dipeptides (Cre02.g078650.t1.3), and one for tripeptides
(Cre16.g675350.t1.3). The dipeptides and tripeptides are decom-
posed into their unit l-amino acids, for instance, Leu–Pro
decomposes into l-leucine and l-proline.

With respect to sources of phosphorus, a reaction for hydroly-
sis of cysteamine-S-phosphate into cysteamine and phosphate was
added according to the following reaction that is associated with
the gene JLM_162926:

Cysteamine− S−Phosphate+H2O→ Cysteamine+Phosphate
(3)

In order to specify the cellular compartment where the new
reactions occur, we used the WoLF PSORT tool (Horton et al.,
2007)8 and the results reported by Ghamsari et al. (2011). By
providing protein sequences that are associated with the new reac-
tions, WoLF PSORT predicted that the new reactions are localized
to the cytosol.

In metabolic models, incomplete biochemical information may
create gaps that form discontinuity in the network. In order
to identify if any new gaps were introduced in the new model,
gapFind, a COBRA command that lists root gaps, was used. The
root gaps are defined as metabolites that cannot be produced in the
metabolic model (Becker et al., 2007; Schellenberger et al., 2011).
Using this command we found that both iRC1080 and iBD1106
models contain the same 91 root gaps. This indicates that the addi-
tion of the new metabolites and their associated reactions, did not
introduce any new gaps. We note that transport reactions for the
import of new metabolites into the cytosol were added.

The metabolic behavior of iBD1106 was tested under light
conditions (no acetate) and dark conditions (with acetate) by car-
rying out flux balance analyses with the biomass as the maximized
objective function. To assess the contribution that each metabolite
makes to the set objective function, shadow prices for all metabo-
lites were obtained (Tables S3 and S4 in Supplementary Material).
The shadow price of a metabolite is defined as the change in an
objective function with respect to flux changes of a metabolite
(Varma et al., 1993; Orth et al., 2010). Shadow price allows the
determination of whether a metabolite is in “excess” or is “lim-
iting” the objective function, e.g., biomass production. Negative
values are for metabolites that will decrease the objective function,
positive values are for those that will increase the objective func-
tion, and values of 0 are for metabolites that will have no effect on
the objective function. The comparison of shadow prices between
iBD1106 and iRC1080 indicates that, for most metabolites, a large
change is not observed (Figure 5; Tables S3–S5 in Supplemen-
tary Material); however, differences are observed in 105 and 70
cases under light and dark growth, respectively. Instances of such
metabolites are provided in Table 4.

DISCUSSION
Algae are a group of diverse photosynthetic eukaryotes, which
are polyphyletic in origin (Pröschold and Leliaert, 2007). Algal

8http://www.genscript.com/psort/wolf_psort.html

FIGURE 5 | Shadow prices of metabolites in iRC1080 and iBD1106
under different conditions for biomass maximization. Each circle on the
“radar plots” corresponds to a shadow price value, while each line
extending from the center of a plot indicates a metabolite. (A) shows the
different shadow prices and subsequently metabolic behaviors of iRC1080
and iBD1106 under light growth conditions, while (B) shows the different
metabolic behaviors of metabolites of iRC1080 and iBD1106 under dark
growth conditions.

lineages include the viridiplantae, which the green algae (or
Chlorophyta) belong to; stramenopiles that include brown,
golden, and yellow algae and diatoms; rhodophyta or the red algae;
and photosynthetic alveolates that include dinoflagelates (Barton
et al., 2007). Given the evolutionary distances between these lin-
eages, significant differences in genome size and coding potential,
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Table 4 | Examples of significant shadow prices for iRC1080 and iBD1106.

Growth condition Metabolite Name iRC1080 iBD1106

Light 4r5au 4-(1-d-Ribitylamino)-5-aminouracil 0 0.168

5aprbu 5-Amino-6-(5′-phosphoribitylamino)uracil −0.009 0.158

pa1819Z18111Z 1-(9Z)-octadecenoyl,2-(11Z)-octadecenoyl-sn-glycerol3-phosphate −0.009 −0.65

Dark 4abut 4-aminobutanoate 0.18 −0.05

environmental niche, and metabolic properties can be expected.
Members of green algae may be aquatic or soil organisms with
mixotrophic or autotrophic modes of metabolism (Pröschold and
Leliaert, 2007). In addition, microalgae may or may not require
co-factors for their growth. Studies on microalgal growth require-
ments have indicated that more than half require cobalamin (vita-
mine B12), while 22% require thiamine and 5% need biotin (Croft
et al., 2006). Interestingly, these requirements are not reflected in
algal phylogeny (Helliwell et al., 2011).

Genomic approaches powered by next-generation sequencing
technologies help to improve the understanding of the encoded
algal metabolic potential; however, the full characterization of
algal metabolism requires phenotypic data. For instance, the
metabolome of C. reinhardtii has been studied under a num-
ber of conditions, including sulfur deprivation (Matthew et al.,
2009; Shu and Hu, 2012; Aksoy et al., 2013), nitrogen deprivation
(Blaby et al., 2013; Courant et al., 2013), and response to irradiance
(Mettler et al., 2014) to provide insight into regulatory and meta-
bolic responses of the species to environmental perturbations. In
addition, transcriptomics, proteomics, and metabolomics studies
have guided non-targeted profiling approaches for the detection
and quantification of metabolites. Those non-targeted profiling
approaches have included nuclear magnetic resonance (NMR),
liquid chromatography mass spectrometry (LC-MS/MS), and gas
chromatography mass spectrometry (GC/MS) (Veyel et al., 2014;
Wase et al., 2014). The ability to study functional responses and
phenotypes has been classically limited to targeted serial stud-
ies that usually employ mutagenesis, genetic knockouts, genetic
over-expression, and physiological studies (Bochner, 2003; Dent
et al., 2005; Morgan et al., 2009; Tshikhudo et al., 2013; Greetham,
2014). The wealth of phenotypic information gained from the PM
technology, as demonstrated in this study, can help provide more
complete systems-level knowledge when combined with other
omics data, and help develop and refine metabolic models.

Genome-scale metabolic networks provide predicted genotype-
phenotype relationships through metabolic flux optimization-
based approaches. We previously reconstructed a genome-scale
model for C. reinhardtii (iRC1080) (Chang et al., 2011) based
on literature evidence (entailing ~250 sources), structurally veri-
fied genomic evidence, and predicted gene function and cellular
localization information. This model has 1,706 metabolites with
2,191 reactions. Through the pipeline that we have described in
this work, we were able to expand the network significantly to
include 1,959 metabolites, 2,445 reactions, and 1,106 associated
genes. A clear advantage that the PM provides is functional assays
for entry metabolites to inform model refinement. Whereas mass
spectrometry approaches give information on intermediate- and

final-level metabolites, PM assays have the unique capability, due
to the accounting for entry-level metabolites, to inform more com-
plete models from the start of metabolic pathways. PM assays and
mass spectrometry can therefore be considered as complementary
approaches when characterizing organisms’ metabolic profiles,
with each technology refining and filling in specific gaps in meta-
bolic models. Yet, PM’s contribution to a metabolic model’s refine-
ment is made through a rapid, high-throughput, and convenient
manner with an entire set of metabolites assayed in 5–7 days.

NEW METABOLITES
We have identified a number of di and tripeptides, and d-amino
acids that significantly expand the list of nitrogen utilization
compounds in C. reinhardtii. While we found d-amino acids
can support metabolism of C. reinhardtii, they may be involved
in additional functions. A serine-type d-alanyl-d-alanine car-
boxypeptidase was found in C. reinhardtii’s genome that could
potentially be involved in d-alanine metabolism. Serine-type d-
alalyl-d-alanine carboxypeptidases have been shown to play a
variety of protective roles including protection against ionic and
hyperosmotic stress (Príncipe et al., 2009). A d-alanine ligase was
found in C. reinhardtii’s genome that is potentially involved in
d-alanine multimerization. Recent research using 15N NMR spec-
troscopy found that d-alanine accumulated in plants during UV
exposure and this finding is supported by previous research under
various stress signals (Monselise et al., 2014). Therefore, the possi-
bility that d-amino acids might have additional cellular functions
in C. reinhardtii, aside from providing a source of nitrogen, can be
a subject of future investigations.

Chlamydomonas reinhardtii is known to be able to use a variety
of amino acids as a sole nitrogen source as long as acetate is present
(Munoz-Blanco et al., 1990). In C. reinhardtii, arginine is the only
amino acid known to be imported with high affinity; the rest are
believed to be deaminated extracellularly (Kirk and Kirk, 1978) or
transported passively (Zuo et al., 2012). We note that a search in
the literature for d-amino acid transports has not provided any
information on the mode of transport for this class of amino acids
in C. reinhardtii, nor is it known if the C. reinhardtii deaminase can
deaminate d-amino acids. However, C. reinhardtii has been shown
to exhibit amino acid racemerase activity (Takahashi et al., 2012),
which could explain the ability to assimilate d-amino acids intra-
cellularly. This also provides indirect evidence that these amino
acids may be absorbed or transported into the cell for conversion
to their L counterparts. A biological function for d-amino acids
has not been clearly defined; however, d-alanine and d-aspartate
were detected in algae using a reversed-phase HPLC; d-alanine was
present in some marine diatoms while d-aspartate was found in
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all the selected freshwater green microalgae and marine diatoms
(Yokoyama et al., 2003).

In many microbes, dipeptides are imported into the intra-
cellular compartment before they are eventually hydrolyzed. For
instance, Francisella tularensis relies on an amino acid transporter
of the major facilitator superfamily of secondary transporters for
transporting amino acids intracellularly. Furthermore, dipeptides
containing asparagine were effective at restoring cellular multipli-
cation in the infection cycle of a F. tularensis mutant that lacked
that essential amino acid transporter (Gesbert et al., 2014). In
this study, a variety of dipeptides were found to promote het-
erotrophic respiration in C. reinhardtii. The latest version of C.
reinhardtii’s genome contains a gene annotated as a peptide hydro-
lase Cre02.g078650.t1.3. We note that the detected utilization of
the dipeptides is not without sequence specificity as 159 out of 267
of the dipeptides and 9 out of 14 of the tripeptides did not result
in positive assay results.

From these newly identified metabolites, three phos-
phorus compounds were found: (1) cysteamine-S-phosphate
(C2H7NO3PS), which is an organic phosphorothioate anion that
is derived from deprotonation of thiophosphate OH groups and
protonation of the amino group, (2) thiophosphate (or phospho-
rothioate), and (3) dithiophosphate, which is the product of the
reaction of a base with phosphorus pentasulfide.

The only new sulfur source that was identified, tetrathionate, is
a sulfur oxoanion and is derived from the compound tetrathionic
acid and is commonly found in soils. It is a key intermediate in the
oxidation of various reduced inorganic sulfur compounds. Several
species of bacteria including Salmonella enterica (Winter et al.,
2010) and Acidithiobacillus ferrooxidans (Rohwerder et al., 2003;
Holmes and Bonnefoy, 2007; Chen et al., 2012) are known to be
able to assimilate tetrathionate. Strains of A. ferrooxidans overex-
pressing tetrathionate hydrolase (tetH) were found to grow better
on both sulfur and tetrathionate. In the archeon Acidianus hospi-
talis, tetrathionate is secreted to form filaments from tetrathionate
homomultimers (Krupovic et al., 2012). These remarkable fila-
ments are believed to play a role in sulfur metabolism and adap-
tation to A. hospitalis’s extreme environment. Prokaryotes have
also been shown to use tetrathionate as an electron acceptor in
cobalamin (coenzyme B12) synthesis (Roth et al., 1996). Sulfur
is commonly assimilated as reduced sulfur for most living organ-
isms, but bacteria are known to reduce tetrathionate, thiosulfate,
sulfite, sulfur, and dimethyl sulfoxide in dissimilatory reactions as
well (Barrett and Clark, 1987). Tetrathionate is often used as an
electron sink for oxidative phosphorylation (Chen et al., 2012).
Bacteria that are known to respire using tetrathionate are often
found to have the capability of reducing thiosulfate as well, but
thiosulfate is not found to be reduced among organisms that do
not respire thiosulfate (Rohwerder et al., 2003). Considering that
C. reinhardtii is a soil organism, the ability to assimilate this com-
pound is likely to provide an important survival advantage in
Chlamydomonas’ natural life cycle.

iBD1106 MODEL VS. iRC1080
Different behaviors can be observed for iBD1106 than those for
iRC1080 under different conditions. When the biomass produc-
tion was set as the objective function, a differential change can be

noticed as a result of growth conditions. The addition of the new
nitrogen sources (d-amino acids, dipeptides, and tripeptides) has a
significant and differential effect on the shadow prices of metabo-
lites under light and dark conditions for biomass production
(Figures 5A,B, respectively).

Under light growth, the d-aspartate in iBD1106 showed sig-
nificant effect on the behavior of the chloroplastic metabo-
lites of the riboflavin pathway. In iBD1106, d-aspartate is
converted into l-aspartate through racemase, and l-aspartate
can be produced through hydrolysis of its dipeptides (Asp–
Leu, Asp–phe, Pro–Asp, Asp–Ala, Asp–Gln, and Asp–Gly). Also
the oxidation of d-asparagine produces d-aspartate as oxo-
carboxylate (Eq. 1). The addition of l-aspartate increases
its consumption in purine metabolism, which yields to
more production of 2,5-Diamino-6-hydroxy-4-(5′-phosphoribos
ylamino)-pyrimidine (25dhpp). The latter can be converted
into 5-Amino-6-(5′-phosphoribosylamino)uracil (5apru) in the
riboflavin metabolism resulting in an excess of 4-(1-d-
Ribitylamino)-5-aminouracil (4r5au) and 5aprbu, with shadow
prices of 0.168 and 0.158, respectively. Those results were not
observed in iRC1080.

Another example of model discrepancy under light
growth is the effect of adding d-serine reactions in
iBD1106. Addition of d-serine limited the availability of
the metabolite 1-(9Z)-octadecenoyl,2-(11Z)-octadecenoyl-sn-
glycerol-3-phosphate (pa1819Z18111Z) (shadow price −0.009
in iRC1080 and −0.65 in iBD1106). This metabolite is pro-
duced and consumed by the reactions of glycerolipid metabolism
for the production of Palmitoyl-CoA (n-C16:0CoA) (pmtcoa).
The addition of l-serine in iBD1106 results in more consump-
tion of pmtcoa in the sphingolipid metabolism through the
reaction serine C-palmitoyltransferase (SERPT) that produces
3-dehydrosphinganine.

Under dark growth conditions,4-aminobutanoate was in excess
in iRC1080 and became limiting in iBD1106 with shadow price
values of 0.18 and −0.05, respectively. The reason for this lim-
iting availability is the addition of d-histidine and d-glutamate
dipeptides hydrolysis reactions, e.g., Ala–His, and inversion into
l-histidine and l-glutamate through a racemase. This addition
increases the consumption of l-glutamate and l-histidine along
with 4-aminobutanoate in glutamate and arginine and proline
metabolisms, respectively. Moreover, the dark growth condition
did not affect the behavior of 4-aminobutanoate significantly
in iBD1106; however, in iRC1080 it was shifted from a limiting
metabolite (−0.07) into an excess metabolite (0.18) (Table 4).
The excessiveness of 4-aminobutanoate in iRC1080 under dark
conditions might be related to the high consumption of NADPH
under dark growth conditions. In proline metabolism, NADPH
and 4-aminobutanoate are consumed more rapidly in dark than
that in light conditions. As such, the addition of d-histidine and
d-glutamate compensates the effect of growth under dark in the
proline metabolism.

CONCLUSION
Phenotypic profiling has tremendous utility in modeling and
understanding algal metabolism and is essential in elucidating
genotypic differences in algae and the effects of environmental
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conditions on metabolism. The method presented here demon-
strates the first reproducible study utilizing PM assays in profiling
microalgae using C. reinhardtii as a model. We observed pos-
itive growth on 148 nutrients (one positive assay for C-source
utilization, four positive assays for the S-source and P-source uti-
lization, and 139 positive assays for N-source utilization). The
wealth of phenotypic data can be used along with other refer-
ences to compare organisms with known mutants or unknown
isolates. This wealth of information will also shed light on new
and novel metabolic pathways. The substrate utilization informa-
tion and the newly identified metabolites were used for metabolic
network expansion and refinement of the iRC1080 metabolic
model. The study also provides a framework to bridge the miss-
ing links between genomics and metabolomics in microalgae. The
described work provides an excellent method for the initial char-
acterization of newly isolated or uncharacterized strains of algae.
This combination of high-throughput phenotypic screening with
metabolic modeling can allow for rapid refinement of existing
metabolic network models as demonstrated and also provides bio-
chemical evidence to support de novo reconstruction of new algal
models.
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biomass was set as objective function with growth under dark with
acetate.
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The characterization of biological systems with respect to their behavior and functionality
based on versatile biochemical interactions is a major challenge. To understand these
complex mechanisms at systems level modeling approaches are investigated. Different
modeling formalisms allow metabolic models to be analyzed depending on the question to
be solved, the biochemical knowledge and the availability of experimental data. Here, we
describe a method for an integrative analysis of the structure and dynamics represented
by qualitative and quantitative metabolic models. Using various formalisms, the metabolic
model is analyzed from different perspectives. Determined structural and dynamic
properties are visualized in the context of the metabolic model. Interaction techniques
allow the exploration and visual analysis thereby leading to a broader understanding of
the behavior and functionality of the underlying biological system. The System Biology
Metabolic Model Framework (SBM2 – Framework) implements the developed method
and, as an example, is applied for the integrative analysis of the crop plant potato.

Keywords: metabolic modeling, integrative analysis, kinetic analysis, flux balance analysis, petri net analysis,
topological analysis

1. INTRODUCTION
Metabolic models have been reconstructed for an increasing
number of organisms to understand complex biochemical
processes. At least 54 bacterial, 6 archaeal, and 16 eukaryotic
reconstructions are available to-date while many others are
under development (Xu et al., 2013). In addition, resources
such as Path2Models (Büchel et al., 2013) provide draft models
for a large number of organisms. Such metabolic models are
composed of biochemical reactions and associated experimental
parameters of the biological system under investigation. Different
metabolic models can be reconstructed depending upon the
completeness of knowledge about the detailed interaction
mechanisms in a biological system. The metabolism is thereby
roughly represented in large and mostly qualitative models
and smaller, but more quantitative models (Steuer and
Junker, 2008). Different model sizes and knowledge details
allow the structural and dynamic properties to be analyzed
using different modeling formalisms. For further details on
modeling formalisms in Systems Biology the reader is referred
to (Machado et al., 2011). Several modeling formalisms entail
different analysis techniques facilitating the investigation of a
metabolic model from different perspectives and thus, revealing
complementary insights.

A couple of review papers evaluated modeling formalisms
(Wiechert,2002; Steuer and Junker,2008; Hübner et al., 2011; Koch
et al., 2011; Machado et al., 2011; Pfau et al., 2011; Dandekar et al.,
2012) and revealed among others kinetic, Petri net, stoichiometric,
and topological modeling methods as well-established. The

strengths and weaknesses of each formalism are summarized in
Figure 1.

Kinetic modeling using ordinary differential equations (ODEs)
includes detailed quantitative descriptions on the biochemical
processes and therefore requires often difficult to obtain kinetic
rate equations and parameters. Due to this, kinetic modeling
is generally limited to smaller models, but leads to quantitative
predictions and reveals dynamic behavior of the underlying
biological system (Resat et al., 2009). Petri net modeling is
powerful due to several Petri net extensions for qualitative and
quantitative analysis. The stochastic effects involved in quantitative
predictions and system dynamics can be accounted for by using,
for example, the stochastic Petri net (SPN) simulation. However,
these extensions complicate the qualitative analysis (Baldan et al.,
2010). Stoichiometric modeling using optimization-based analysis
such as flux balance analysis (FBA) (Orth et al., 2010) allows
for quantitative predictions due to the steady-state assumption.
A static description of the biochemical processes is therefore
sufficient when including stoichiometric, thermodynamic, and
enzyme capacity constraints. Thus, stoichiometric modeling is
applicable for large models, but is limited in revealing the dynamic
behavior of the underlying biological system (Lewis et al., 2012).
Topological modeling considers only the topological information
of models (not limited in model size) and can identify structures
and robustness against disturbances. Using, for example, centrality
analysis (Koschützki and Schreiber, 2008) different importance
concepts provide insights into key elements based on metabolite
or reaction graphs (Steuer and Junker, 2008).
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FIGURE 1 | Metabolism is represented in large and mostly
qualitative models and smaller, but more quantitative models.
Different modeling formalisms that depend on the completeness of
knowledge about the detailed interaction mechanisms are utilized to
gain knowledge on the underlying biological system. Each modeling
formalism is applied to different models as indicated by the

corresponding colors and possesses strengths (+) and weaknesses
(−). The integration of the independent modeling formalisms mitigates
the weaknesses (−) and leads to the potential of the integrated
analysis indicated in parentheses (major + or minor ± improvement,
explanations are given in the Results and Discussion section). Adapted
from Steuer and Junker (2008).

Some of the introduced metabolic modeling formalisms are
already investigated in different approaches to analyze metabolic
models at the system level and to overcome problems due to
the lack of experimental data. Described methods either extent
qualitative models with obtained analysis results to investigate a
follow-up quantitative analysis, or models are reduced to assign
less data for quantitative analysis. In most cases, such as Birch et al.
(2014) and Chowdhury et al. (2014), the stoichiometric formalism
FBA is used to obtain flux distributions, which are utilized to derive
ODEs for kinetic analysis (Resat et al., 2009). Methods using the
Petri net formalism for model reduction to integrate less data
for kinetic analysis are described by Chen et al. (2011), Gilbert
and Heiner (2006), and Koch and Heiner (2008). An advanced
method is presented by Machado et al. (2010) whereby Petri net
formalism is applied to integrate both of the aforementioned
methods for model reduction and a follow-up kinetic analysis.
Grafahrend-Belau et al. (2013) combined overview kinetic models
(household models) with FBA toward a quasi-dynamic FBA.
Heiner et al. (2012) and Nagasaki et al. (2010) propose a unifying
Petri net framework comprised of a family of related Petri net
types. In this approach qualitative, stochastic and continuous Petri
net analyses are conducted by converting different Petri net types
into each other.

Here,we introduce an integrated approach,which complements
the presented approaches through a formalization leading to
a standardized, transformable, and extensible abstraction of
metabolism. This method allows the investigated metabolic
models to be integrated, utilizing different well-established
modeling formalisms and at the same time maintaining a

standardized visualization. Moreover, the integration of analysis
results with corresponding elements of the metabolic model leads
to a combination of model structure and model dynamics. Several
interaction techniques support the exploration and interpretation
of the gained analysis results to provide a comprehensive
understanding of the underlying biological system.

2. MATERIALS AND METHODS
In general, metabolic models are networks consisting of different
elements such as metabolites and reactions with relations between
these elements and additional attributes. Thus, a suitable data
structure for metabolic models is a graph. Dependent upon
the modeling formalism, graphs with different structure and
attributes are able to represent kinetic, Petri net, stoichiometric,
or topological models. Each of these graphs contains nodes
(metabolites and/or reactions), which are related to each other
through edges.

Following the concept of generalization, different specific
graphs representing qualitative and quantitative metabolic models
(Figure 2C) are generalized into a unified graph (Figure 2A).
This concept allows a standard graphical representation to be
maintained (Figure 2B) and additionally, to transform the
unified graph into specific graphs to apply different modeling
formalisms. Some formalisms utilize a reduced structure and
attribute set of the unified graph to perform analyses (this
will be described in detail in the Transformation Section).
Using our method, the analysis results from different formalisms
are visualized in the context of the metabolic model through
data assignment functions (Figure 2D). Thus, the underlying
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FIGURE 2 | Concept for an integrative analysis of metabolic models
including: (A) formalization (GUnified with M metabolite and R reaction
nodes, different edge types: ci consumption irreversible, cr
consumption reversible, pi production irreversible, pr production
reversible, and i inhibition), (B) visualization in SBGN-PD,

(C) transformation in different specific graphs: GKinetic dark green, GPetri net

light green, GStoichiometric light blue, and two topological graphs GMetabolite

and GReaction dark blue, and (D) integration of different analysis results
(colors represent results from different analysis performed using
specific graphs).

biological system is characterized from different perspectives
providing complementary insights. Using interaction techniques,
the subsequent visual analysis is conducted. Furthermore, analysis
results can be integrated in other formalisms to constrain this
analysis and thereby make them either feasible or more precise.

The following sections introduce the concept depicted in
Figure 2 in detail.

2.1. FORMALIZATION
With the aim to formally represent qualitative and quantitative
metabolic models a directed, attributed, bipartite graph (called
the unified graph) is defined as follows.

Definition 2.1 (unified graph). The unified graph GUnified= (M,
R, E, A) is a directed, attributed, bipartite graph consisting
of two finite, non-empty sets M of metabolites and R of
reactions, whereby both sets are disjoint M ∩R=∅. Other finite
sets are directed edges E ⊆ (M×R)∪ (R×M ) and attributes
A= {type, stoichiometry, localization, label, concentration, capacity,
rate, boundaries, objective function}, which are assigned to nodes
and edges using the following functions:

• type: E→ {ci, pi, cr, pr, i} is a function, which assigns a
type to each edge (ci consumption irreversible, pi production
irreversible, cr consumption reversible, pr production
reversible, or i inhibition). A directed edge from a metabolite to
a reaction is of type ci, cr, or i [i.e., ∀e ∈ (M×R): type(e)=
ci ∨ type(e)= cr ∨ type(e)= i] and a directed edge from a
reaction to a metabolite is of type pi or pr [i.e., ∀e ∈ (R×M ):
type(e)= pi ∨ type(e)= pr]. To easily distinguish between
reversible and irreversible edges, reversible edges are illustrated
using a double-headed arrow, with the black arrow-head
denoting the main direction from substrate (consumed
metabolite) to product (produced metabolite) of a reaction.
• stoichiometry : E ′→R>0 is a function, which assigns a positive

real number greater than 0 to each edge of type ci, cr, pi, or pr
out of the set E ′= {e ∈ E|¬ (type(e)= i)}.

• label : M ∪R→Σ* is a function, which assigns a word over the
alphabet to each metabolite and each reaction.
• localization: M→Σ* is a function, which assigns a word over

the alphabet to each metabolite.
• capacity : M→R≥0 ∪ {∞} is a function, which assigns a positive

real number or infinity {∞} to each metabolite.
• concentration: M→R≥0 is a function, which assigns a positive

real number to each metabolite. Additionally, the concentration
of a metabolite has to be less than or equal to the capacity of the
metabolite, ∀m ∈M: concentration(m)≤ capacity(m).
• rate: R→{{h, j}, h, j, {}} is a function, which assigns a kinetic

rate equation j ∈ J, whereby J is a set of all kinetic rate equations
or a positive real number (stochastic rate) h ∈R≥0 or the empty
set to each reaction.
• boundaries: R→ (lower, upper), with lower, upper ∈R≥0, and

lower ≤ upper is a function, which assigns an ordered pair of
positive real numbers to each reaction, whereby the lower bound
has to be smaller than or equal to the upper bound.
• objective function: R→ {0, 1}, with ∀r, r ′ ∈R: objective function

(r)= 1∧ objective function (r ′)= 1⇒ r = r ′, is a function,
which assigns 0 or 1 to each reaction, whereby only one reaction
receives the value 1 (for optimization).

Furthermore, the following requirements must be fulfilled:
For all reactions r ∈R applies: (1) there exists at least one

incoming and one outgoing edge (whereby the incoming edge is
not of type i) and (2) if one incoming or outgoing edge is reversible
(irreversible) than all incoming and outgoing edges are reversible
(irreversible). With this rule a reaction is either connected to
reversible edges or irreversible edges but not a combination of
them.

Between a metabolite m ∈M and a reaction r ∈R there are at
most two edges e, e ′ ∈ E of different types. If two edges e and e ′

connect m with r the type of e is ci and the type of e ′ is i. This case
describes a substrate inhibition at high substrate concentrations,
whereby a metabolite is substrate and inhibitor at the same time.
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FIGURE 3 | Basic elements of the unified graph (left) and the
corresponding SBGN-PD visualization (right): (A) irreversible reactions,
(B) inhibition of irreversible reactions, (C) localization (compartment) of

metabolites (samecolor), (D) reversible reactions, (E) inhibition of reversible
reactions, (F) export reactions (top irreversible and bottom reversible), and
(G) import reactions (top irreversible, bottom reversible).

If one edge e connects r with m and another edge e ′ connects
m with r the type of e is pi and the type of e ′ is i. In this case, a
product inhibition is modeled with a metabolite as product and at
the same time inhibitor of a reaction.

An explicit formulation of both cases for reversible reactions
is not needed because the reaction mechanisms already provide
implicit substrate- and product inhibition.

Moreover, the following sets are defined to simplify the
transformation of the unified graph into specific graphs for
analysis. The edge set E is composed of three subsets,
E = Ei ∪ Eir ∪ Er. The subset of inhibitory edges is Ei= {e ∈
E |type(e)= i}, the subset of irreversible edges is Eir= {e ∈ E|type(e)
= ci ∨ type(e)= pi} and the subset of reversible edges is

Er= {e ∈ E|type(e)= cr ∨ type(e)= pr}. The set of metabolites M
consists of a subset of metabolites Mcp, which are either consumed
or produced in reactions Mcp= {m ∈M|∃r ∈R: (m, r)∈ Er ∨ (m,
r)∈ Eir}∪ {m′ ∈M |∃r ∈R:(r, m′)∈ Er ∨ (r , m′) ∈ Eir }.

To assign analysis results to nodes and edges of the unified graph,
data assignment functions that integrate calculated structural and
dynamic data are used (this will be described in detail in the
Transformation section).

Due to the definition of the unified graph with a rich
attribute set qualitative and quantitative metabolic models can be
represented and additionally visualized using standards. Figure 3
illustrates the basic elements of the unified graph and the
corresponding visualization in SBGN-PD.
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2.2. VISUALIZATION
In order to derive a standardized graphical representation
of the unified graph the Systems Biology Graphical Notation
(Le Novère et al., 2009) (SBGN ) is utilized. SBGN has been
developed to interpret biological models easily without the need
for extensive descriptions using three sub-languages. SBGN-PD
(Moodie et al., 2011) is the Process Description sub-language
visualizing the temporal dependencies of biological interactions
in detail and is thus suited for the metabolic models encoded in
the unified graph.

The translation of the unified graph in a SBGN-PD visualization
is based on the following schema. All elements of the metabolite
set m ∈M (reaction set r ∈R) are visualized using simple
chemicals ∈ entity pool nodes (process ∈ process nodes). All elements
of the edge set e ∈ E are visualized using arcs of the set connecting
arcs based on the assigned type. Edges of type ci are visualized
using consumption arc, pi using production arc, cr using production
arc in the opposite direction, pr using production arc and i using
inhibition arc, respectively.

The edge attribute stoichiometry is visualized using cardinality
and the metabolite attribute localization is visualized using
compartment, which is a container for metabolites defined for
this location. The localization of reactions is independent of a
compartment, hence, a reaction could be located within, outside or
on top of the border of a compartment. Import or export reactions
in SBGN-PD are defined using the additional symbol source and
sink ∈ entity pool nodes, see Figure 3.

Furthermore, interaction techniques allow the exploration and
subsequent visual analysis leading to a broader understanding of
the behavior and functionality of the underlying biological system
(which will be described in detail in the Results and Discussion
section).

2.3. TRANSFORMATION
Overall, five transformations from the unified graph (GUnified) into
the specific graphs (GKinetic, GPetri net, GStoichiometric, GMetabolite,
GReaction) have to be performed as a prerequisite to analyze
a metabolic model using different modeling formalisms. The
different models, modeling formalisms and the transformation
from GUnified into GStoichiometric are described in the following.
The transformations from GUnified into GKinetic, GPetri net, and into
both of the topological graphs GMetabolite, GReaction are defined in
the Supplementary Material.

2.3.1. Kinetic model
A kinetic metabolic model (ODE model) consists of a structural
description of relations between metabolites and reactions and
is extended with detailed kinetic data including rate equations,
metabolite concentrations, and additional kinetic parameters. The
kinetic model is represented by the kinetic graph (GKinetic), which
is transformed from the unified graph (GUnified), see Figure 2C
and for details Definition 1.1 in Supplementary Material. This
transformation results in no structural differences, but in a
reduced attribute set.

To analyze the kinetic metabolic model its kinetic graph
is converted in ODEs, which are numerically solved (Resat
et al., 2009). Changes in metabolite concentrations and reaction

rates over a period of time are obtained as the results of the
analysis.

2.3.2. Petri net model
A Petri net metabolic model can be defined using different Petri
net types. Here, we refer to extended qualitative place/transition
Petri nets (eP/T nets) and extended quantitative stochastic Petri
nets (eSPNs). The extension includes continuous tokens (to model
metabolite concentrations), continuous arc weights (to model
non-integer stoichiometry), continuous place capacities (to model
limited resources), and inhibitor arcs (to model inhibition). An
inhibition is modeled using an inhibitor arc from a place to a
transition meaning that the transition can only fire if no token is
on that place. The transition may only fire when the place is empty.

Both Petri net types share the same structure, but eSPNs are
specialized by weights for the exponentially distributed random
variable (firing time) assigned to transitions. For further details
on Petri nets for modeling metabolic models the reader is referred
to Baldan et al. (2010). The Petri net model is represented by the
Petri net graph (GPetri net), which is transformed from the unified
graph (GUnified), see Figure 2C and for details Definition 1.2 and
Figure S1 in Supplementary Material. This transformation results
in structural differences (reversible reactions are represented using
a pair of irreversible reactions for both directions) and a reduced
attribute set.

A Petri net metabolic model can be analyzed qualitatively or
quantitatively. For the qualitative analysis, the Petri net graph is
converted into a linear equation system, which can be solved
to derive invariants describing main pathways (T-invariants)
or metabolite conservation (P-invariants) of a metabolic model
[more details in Murata (1989), Baldan et al. (2010), and Reisig
(2013)]. Furthermore, all possible states are calculated using
the reachability analysis and if the reachability graph cannot
be constructed then the coverability graph is calculated instead
(infinite state-space). The main purpose of the quantitative
analysis (simulation) of a Petri net metabolic model is to include
stochastic effects. The reactions can additionally be weighted with
reaction rates to conduct a more constraint stochastic simulation
revealing changes in metabolite concentrations over a number of
simulation steps.

2.3.3. Stoichiometric model
Compared to both of the aforementioned models a stoichiometric
model consists of stoichiometric reactions without quantities,
such as metabolite concentrations, or reaction rates. Due to the
steady-state assumption, the regulatory effects resulting from
enzymes or inhibitors are neglected; see Orth et al. (2010) for
more details.

Definition 2.2 (stoichiometric graph). The unified graph
GUnified is transformed in a directed, attributed, bipartite
stoichiometric graph GStoichiometric= (MS, RS, ES, AS) with a
metabolite set MS=Mcp, which is a subset of the set M in GUnified.
Metabolites with only inhibitory interactions to reactions are not
considered. The reaction set in GStoichiometric RS=R equals the
reaction set R set in GUnified and the edge set in GStoichiometric

ES= Eir ∪ Er is a subset of the set E in GUnified. Edges of type i
are excluded. The attribute set in GStoichiometric AS⊆A is a subset
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of the set A in GUnified with AS= {type, stoichiometry, localization,
label, boundaries, objective function}.

Figure 2C and for details Figure S4 in Supplementary Material
depict the transformation of inhibited reactions from GUnified into
GStoichiometric and thereby detailing the difference between both
graphs. This transformation results in structural differences (no
inhibitions) and a reduced attribute set. Thereby, all regulatory
information and quantitative data are lost.

Using the stoichiometric graph, a metabolic model can
be validated utilizing the Dead-End analysis or Gap-Finding
analysis revealing blocked reactions or dead-end metabolites. To
examine the flow of metabolites through a metabolic model the
stoichiometric graph is converted into a system of mass balance
equations at steady-state, which are solved by minimizing or
maximizing an objective function. This optimization can be
conducted using a linear optimization instead of a non-linear
optimization to handle the problem of alternate optimal solutions.
Applicable optimization-based methods are FBA, flux variability
analysis (FVA), robustness analysis (RA), and knockout-analyses
(KA) resulting in a flux distribution, minimal and maximal fluxes,
sensitivity curves, and sensitivity values, respectively. For a detailed
description of optimization-based methods the reader is referred
to (Lewis et al., 2012).

2.3.4. Topological models
Metabolic models are analyzed according to topological properties
in order to understand the importance of key elements, structure,
and robustness against disturbances. Since the metabolite graph
(nodes represent metabolites, edges reactions) and reaction graph
(nodes represent reactions, edges metabolites) are predominantly

used for topological analysis (Steuer and Junker, 2008) the
unified graph GUnified is transformed into both, see Figure 2C
(For details see Definition 1.3 and Figure S2 in Supplementary
Material for metabolite graph and Definition 1.4 and Figure S3 in
Supplementary Material for reaction graph). This transformation
results in structural differences (unipartite graphs) and a reduced
attribute set. Thereby, all regulatory information and quantitative
data are lost.

Topological analysis of the metabolic model based on its
metabolite graph or reaction graph is conducted using the
corresponding adjacency matrix. A shortest path analysis results in
paths (subgraphs which could be the graph itself). Furthermore,
centrality analysis with different centrality measures leads to a
ranking of graph elements according to different importance
concepts. For further details on different centrality measures the
reader is referred to Koschützki and Schreiber (2008).

2.4. INTEGRATION
To integrate structural and dynamic analysis results in the unified
graph, which have been computed using specific graphs, data
assignment functions are applied. To focus on several analysis
methods, we chose typical examples from a number of analysis
methods comprised in the different modeling formalisms. Using
these analysis methods, two sets of data types are generated: vectors
of numeric values and graph elements, which are assigned to
different graph elements of the unified graph, see Table 1.

Numeric values of the vector (nv ∈NV ) are assigned to
elements of the unified graph (M metabolite, R reaction, and E
edge) using the assignment function zn: M, R, E→NV, whereby
the vector could comprise numeric values (e.g., sensitivity values),

Table 1 | Summary of typical examples of analysis methods and corresponding results produced with different modeling formalisms grouped in

data types, which will be assigned to different graph elements [metabolite nodes (M), reaction nodes (R ), and edges (E )] of the unified graph.

Modeling formalisms Typical examples of analysis methods Analysis results Data types GUnified

M R E

Kinetic modeling Kinetic analysis
Metabolite concentrations,

reaction rates over time

Vector of time dependent

numeric values
x x

Invariant analysis P- and T-invariants Vector of numeric values xa xa

Reachability analysis
Reachability graph/coverability

graph
Graph xa xa

Petri net modeling

Stochastic analysis
Metabolite concentrations,

reaction rates over steps

Vector of step dependent

numeric values
xa xa

Stoichiometric analysis Dead-ends Nodes x

Gap-finding Gaps Nodes x

FBA Flux distribution Vector of numeric values x

Optimization-based

analysis

RA Sensitivity curve
Vector of flux dependent

numeric values
xStoichiometric modeling

KA Sensitivity value Vector of numeric values x

FVA
Min/max flux values of

reactions
Vector of numeric value pairs x

Centrality analysis Centrality values Vector of numeric values x x
Topological modeling Shortest path Shortest path Graph xb xb xb

aAnalysis results from forward and backward reactions of the Petri net are integrated into the corresponding reversible reactions in the unified graph.
bAnalysis results from edges of the metabolite graph or reaction graph correspond to several edges and nodes in the unified graph.
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pairs of numeric values (e.g., min and max fluxes), and a set
of time, step, and flux value dependent numeric values (e.g.,
metabolite concentrations over time, steps and sensitivity curves,
respectively).

Another type of analysis results data are the elements of graphs,
which are assigned to the unified graph using the assignment
function zg : M, R, E→Mx, Rx, Ex, whereby x can be replaced
with P Petri net, S stoichiometric, K kinetic, M metabolite, or R
reaction to define the specific graphs. As an example, Gap-Finding
analysis results in a set of metabolites of the stoichiometric graph,
which must be assigned to metabolites in the unified graph using
zg : M→MS.

These assignment functions provide the basis for the
visualization of the analysis results in the context of the metabolic
model. Furthermore, interaction techniques such as brushing &
linking and animation support the exploration, for example, of
different Petri net invariants in the context of the metabolic
model [for more details concerning interaction techniques see Von
Landesberger et al. (2011)]. An integrated visualization by means
of an application using the developed method is represented in the
Results and Discussion section.

3. RESULTS AND DISCUSSION
In conclusion, the developed method allows previously separated
well-established modeling formalisms to be combined into
one application using one workflow, supported by interaction
techniques and integrated visualizations in the context of
the metabolic model. The method mitigates the weaknesses
(−) of independent modeling formalisms as explained in the
Introduction section and leads to major (+) or minor (±)
improvements of an integrated analysis as already depicted in
Figure 1.

In detail, using the integrated approach it is not required to
define detailed kinetics to derive quantitative predictions and
reveal dynamic behavior of the underlying biological system.
Instead, using some parameters the Petri net simulation or
stoichiometric modeling method FBA could be performed
to approximate kinetic simulations. Thus, larger models are
applicable in the integrated approach leading to analysis results,
which could be again integrated to analyze the model further.
Additionally, qualitative analysis can be conducted for extended
Petri nets using another integrated formalism such as Dead-End
analysis or centrality analysis. Quantitative predictions can be
revealed for a qualitative model with a static description using
stoichiometric analysis.

Hence, different modeling formalisms complement each
other even through, overlaps between the introduced metabolic
modeling formalisms exist. For example, the stoichiometric matrix
used in the stoichiometric modeling formalism to derive mass
balance equations corresponds to the incidence matrix of the
Petri net formalism used to derive an equation system solved for,
e.g., invariant analysis. In the case of structural analysis, both the
stoichiometric and the Petri net formalism could be utilized to
reveal, for example, Dead-End metabolites. Additionally, Petri net
T-invariants correspond to flux modes, which could be directly
calculated using the stoichiometric analysis method elementary
flux modes (not presented here).

The described method is implemented as an Add-on for the
VANTED system (Rohn et al., 2012), called the System Biology
Metabolic Model Framework (SBM 2 – Framework). It utilizes
and extends VANTEDs functionality for the interpretation of
experimental data and for analyzing metabolic models with
different modeling formalisms.

In order to characterize the metabolic functionality and
behavior of the crop plant potato (Solanum tuberosum) an
integrative analysis is performed using the described method. Due
to its main component, starch in the potato tuber, potato is of
great importance as food and in industry, for example, for the
production of fuel. Therefore, a major aim of plant breeding is
to improve the distribution of biomass within the plant in favor
of harvestable plant parts. Based on the homogeneous tissue of
the potato tuber the main flux of metabolites is from sucrose to
starch (Geigenberger et al., 2004). The investigation of sucrose
degradation can be conducted. Almost all genes of this pathway are
already known and thus provide the basis for the reconstruction
of a metabolic model of the potato tuber.

Using a kinetic model representing the sucrose breakdown in
the developing potato tuber (Junker, 2004) the integrative analysis
is performed and analysis results are shown in Figure 4A. The
model comprises of 15 reactions and 17 metabolites located in
the cytosol. Sucrose (Suc) is converted into hexose phosphates
(e.g., glucose-6 phosphate, G6P) utilized in glycolysis (Glyc) and
as precursors for starch synthase (StaSy). The pathways Glyc, starch
biosynthesis, and energy consumption (ATPcons) are modeled as
summarized reactions. This is a necessary simplification to avoid
unknown transport processes into additional compartments. To
describe the environment the model is extended through sucrose
import (Imp) and starch export reactions (Exp).

The kinetic analysis results in time-course diagrams converging
toward a steady-state producing starch, which can be increased
by an overexpression of the enzyme invertase (Inv) as described
in Junker (2004). The consequence of the overexpression can be
compared and visually analyzed to investigate both situations side
by side in the model, see Figures 4A,B.

To perform a stochastic simulation the steady-state reaction
rates generated by the kinetic analysis are used to weight
the reactions of the eSPN. The stochastic simulation results
in increasing and decreasing metabolite concentrations, which
oscillate with different amplitudes (data not shown). The results
indicate the production of starch and the utilization of reactions
with different probabilities.

Additionally, the invariant analysis reveals beside 3 P-invariants
(reflecting substance conservation) 19 T-invariants, which can
be grouped in trivial and non-trivial T-invariants. Each of the
seven trivial T-invariants corresponds to a reversible reaction.
The non-trivial T-invariants can be differentiated in a group of
nine representing the cleavage of sucrose by invertase and another
group of three where the sucrose is cleaved by sucrose synthase.
These T-invariants reflect the main processes that are pathways
taking place in the metabolic model in reality (Koch et al., 2005).
One of the T-invariants is illustrated in Figure 4A by adding
numbers (firing counter) to the corresponding reactions. Sucrose
is initially cleaved by invertase, leading to the production of hexose
phosphates,which are metabolized in Glyc and starch biosynthesis.

Frontiers in Bioengineering and Biotechnology | Systems Biology January 2015 | Volume 2 | Article 91 | 46

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Hartmann and Schreiber Integrative analysis of metabolic models

FIGURE 4 | Integrative analysis of the sucrose breakdown in the
potato tuber. (A) The kinetic analysis results in time-course diagrams of
metabolites and reactions (left wild type, right overexpression of Inv ),
(B) enlarged view of both diagrams for metabolite starch. Petri net
invariant analysis results in T-invariants, one is represented using numbers
(firing counter, left lower corner in pink) assigned to reactions. The

steady-state flux distribution resulting from FBA optimized for
maximization of starch biosynthesis is depicted as edge thickness (gray
edge indicates 0 flux). (C) The topological analysis (shortest path
betweenness centrality analysis) of the metabolite graph results in a
(D) ranked table. Two metabolites are selected in the table (blue), which
correspond to the highlighted (red) nodes in (A,C).

The stoichiometric analysis (irrespective regulatory processes),
using only three steady-state reaction rates (Inv = 0.16 µM/FW/s,
SuSy = 4.89 µM/FW/s, ATPcons= 100 µM/FW/s) to constrain
the fluxes for these reactions, results in a flux distribution, which

is comparable to the kinetic analysis results. In Figure 4A, the
edge thickness corresponds to flux values. The flux through the
starch biosynthesis reaction with 6.42 µM/FW/s is equal to the
one of the kinetic analysis. Additionally, the reaction AdK is not
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utilized as can be seen in results of the kinetic and Petri net
analysis.

Using the metabolite graph, see Figure 4C, the structure of the
potato model is investigated. To identify important metabolites
that occur on the shortest paths between two nodes in a ranked way
the shortest path betweenness (SPB) centrality analysis is conducted.
As a result, the table in Figure 4D illustrates Suc and G6P, which
are selected to be highlighted in Figures 4A,C. Both metabolites
are very important in the model, indicating that without these
metabolites the reactions of starch biosynthesis and Glyc could
not be processed.

In summary, using the integrative analysis allows different
modeling formalisms to be investigated in one workflow. An
integrated and interactive visualization of the analysis results
leads to an advantage over the use of each modeling formalism
independently. This helps to compare analysis results from
different formalisms within one metabolic model and allows for
the investigation of analysis results from one formalism in another,
as mentioned in the use case.

4. CONCLUSION
We described a method, which is able to bring together different
metabolic modeling formalisms. The integration is realized by a
unified graph, enabling graph transformations, and a visualization
in a standardized and formalized way. The unified graph supports
user interaction and thereby allows different analysis results to be
explored in the context of the metabolic model. The application
reveals structural and dynamic properties of the crop plant
potato utilizing the integrative analysis. The method has been
implemented as an extension of the VANTED system and could
also be applied to other model types, but we have focused here on
metabolic models as an application area.

Combining different modeling formalisms opens many
possibilities for future research. Additional analysis algorithms
can be added to study metabolic models in more detail. We
plan to extend the method for different types of models such as
gene regulatory models to investigate further cellular processes.
This extension requires the adaptation of the unified graph,
adding of appropriate modeling formalisms, and corresponding
transformations. Furthermore, the visualization has to be adapted
to represent different types of models in SBGN using, for example,
the sub-language SBGN-AF for gene regulatory models.
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Modeling cellular metabolism is fundamental for many biotechnological applications,
including drug discovery and rational cell factory design. Central carbon metabolism
(CCM) is particularly important as it provides the energy and precursors for other
biological processes. However, the complex regulation of CCM pathways has still not
been fully unraveled and recent studies have shown that CCM is mostly regulated at
post-transcriptional levels. In order to better understand the role of allosteric regulation in
controlling the metabolic phenotype, we expand the reconstruction of CCM in Escherichia
coli with allosteric interactions obtained from relevant databases. This model is used
to integrate multi-omics datasets and analyze the coordinated changes in enzyme,
metabolite, and flux levels between multiple experimental conditions. We observe cases
where allosteric interactions have a major contribution to the metabolic flux changes.
Inspired by these results, we develop a constraint-based method (arFBA) for simulation
of metabolic flux distributions that accounts for allosteric interactions. This method
can be used for systematic prediction of potential allosteric regulation under the given
experimental conditions based on experimental data. We show that arFBA allows
predicting coordinated flux changes that would not be predicted without considering
allosteric regulation. The results reveal the importance of key regulatory metabolites, such
as fructose-1,6-bisphosphate, in controlling the metabolic flux. Accounting for allosteric
interactions inmetabolic reconstructions reveals a hidden topology inmetabolic networks,
improving our understanding of cellular metabolism and fostering the development of
novel simulation methods that account for this type of regulation.

Keywords: metabolism, systems biology, constraint-based modeling, allosteric regulation, Escherichia coli

1. Introduction

Mathematical models of metabolism have become a fundamental tool for understanding cellular
behavior and for designing genetic or environmental modifications to change that behavior toward
a specific purpose (Heinemann and Sauer, 2010). Metabolic models have found applications in both
biomedical research and industrial biotechnology. Examples of applications in biomedicine include
using metabolic models of human cells to analyze the altered behavior of cancer cells and to suggest
potential drug targets (Folger et al., 2011). In the context of industrial biotechnology, models of
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microbial metabolism are widely used for rational design of
microbial cell factories (Zomorrodi et al., 2012).

There are two major approaches for modeling cellular
metabolism, namely, kinetic modeling and constraint-based
modeling (Machado et al., 2012). The former, based on kinetic
rate laws, requires extensive experimental data for determination
of the enzymatic mechanisms and respective kinetic parameters.
For that reason, these models have been limited to central
pathways of well-studied organisms, such as Escherichia coli
and Saccharomyces cerevisiae (Teusink et al., 2000; Chassagnole
et al., 2002). Constraint-based modeling, on the other hand, only
accounts for the stoichiometry and directionality of biochemical
reactions, which can be obtained from genome annotations
and limited other information for the organism (Bordbar et al.,
2014). With the increasing number of fully sequenced genomes
for multiple organisms, the number of genome-scale metabolic
reconstructions suitable for constraint-based modeling is also
rapidly increasing, with over a hundred reconstructions currently
available (Monk et al., 2014).

Constraint-based models can be used to estimate the steady-
state flux distribution of a metabolic network, using the so-called
Flux Balance Analysis (FBA) approach (Orth et al., 2010). Since
the flux solution is not unique with only stoichiometric and direc-
tionality constraints, in FBA a single solution is selected based on
the assumption of an evolutionary principle of optimality, such as
maximization of cellular growth.Methods have been developed to
refinemetabolic flux predictions by integration ofmetabolicmod-
els withmodels of other biological processes, such as signaling and
transcriptional regulatory networks (Gonçalves et al., 2013).How-
ever, some limitations of these methods, such as the reduction of
gene expression levels to Boolean states, hamper the predictive
ability of the integrated models. More recently, several approaches
were developed to directly integrate gene expression data into
metabolic models. These methods are based on the assumption
that reaction fluxes should be proportional to their respective gene
expression levels. However, a recent systematic evaluation of these
methods showed little improvement in simulation accuracy when
gene or protein expression data are used for flux prediction with a
wide range of proposed methods (Machado and Herrgård, 2014).
One of the conclusions from this study is that the assumption of
proportionality between gene expression levels and reaction rates
is not valid for many reactions.

The conclusion that transcriptional or translational regulation
does not significantly regulate metabolic fluxes is consistent with
recent experimental observations in multiple organisms show-
ing that central carbon metabolism is mostly regulated at post-
transcriptional levels (Daran-Lapujade et al., 2007; Chubukov
et al., 2013; Kochanowski et al., 2013a). Regulation analysis is
a method introduced by ter Kuile and Westerhoff (2001) for
quantitatively decomposing flux regulation into hierarchical and
metabolic coefficients. The former accounts for transcriptional
and translational regulation as well as post-translational mod-
ifications, whereas the latter accounts for allosteric regulation
and thermodynamics. The application of this method to three
parasitic protists showed that regulation of glycolytic fluxes is
never completely hierarchical, being mostly metabolic in many
cases. Similar conclusions were obtained by applying this method

to S. cerevisiae, where it was observed that metabolic regulation
contributed to 50–80% of the flux change in glycolytic enzymes
for the given cultivation conditions (Daran-Lapujade et al., 2007).

The partial contribution of transcriptional regulation for flux
control in central carbon metabolism can be explained by the
cellular trade-off between lowering the investment of protein syn-
thesis (keeping enzymes saturated), and the need to achieve fast
regulatory responses and maintain metabolic homeostasis under
environmental changes (Fendt et al., 2010; Wessely et al., 2011).
In fact, metabolite measurements in E. coli and S. cerevisiae have
shown that most enzymes in central carbon metabolism are not
saturated, with substrate levels being close to their respective KM
values (Bennett et al., 2009; Fendt et al., 2010). A recent study
in B. subtilis showed that transcriptional regulation is insuffi-
cient to explain the observed flux change for growth in differ-
ent carbon sources (Chubukov et al., 2013). Interestingly, the
authors observed that the changes in substrate concentrations
were also insufficient to explain the observed flux change, leaving
an important contribution for post-translational modifications
and allosteric regulation.

Learning how allosteric regulation controls the metabolic flux
is fundamental for understanding cellular metabolism. Given
the growing scope of the constraint-based modeling approach,
we propose to expand this formalism with an explicit repre-
sentation for allosteric interactions. In this work, we build a
constraint-based model of allosteric regulation in the central car-
bon metabolism of E. coli and use it to analyze the role of this type
of regulation for controlling the metabolic flux under different
perturbations.

Allosteric information data are collected from relevant
databases and used to build a constraint-based model expanded
with allosteric interactions. We analyze how this new layer of
interactions affects the network topology in terms of node connec-
tivity and identify relevant metabolic hubs. The model is used as a
scaffold to perform regulation analysis using multiple omics data
for E. coli. Finally, a new method for constraint-based simulation
accounting for allosteric interactions is proposed and used for
model-based prediction of regulatory effects on flux control.

2. Results

2.1. Model Reconstruction
In order to analyze the effects of allosteric regulation in the central
carbon metabolism, we expanded a constraint-based model of the
core metabolism of E. coli (Orth et al., 2009) with allosteric inter-
actions obtained from relevant sources (see Figure S3 in Supple-
mentary Material and Methods section for details). The expanded
model is presented in Figure 1. It can be observed that the inte-
gration of regulatory interactions reveals an intricate topology
that is not captured by the stoichiometric reconstruction alone. In
this case, the connections represent signal flow rather than mass
flow. Much like in the case of signaling pathways, it is possible
to observe a highly complex crosstalk between different subpath-
ways. This includes multiple feedback links between upper and
lower glycolysis, upper glycolysis and the oxidative part of the
pentose-phosphate (PP) pathway, lower glycolysis and the TCA
cycle, and a positive feedback link from citrate to upper glycolysis.
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FIGURE 1 | Extension of the E. coli core metabolism model with allosteric interactions. Enzyme activations and inhibitions are represented, respectively, by
green edges with circle ends and red edges with bar ends. This figure is adapted from the metabolic map available at the BiGG database (Schellenberger et al., 2010).

Figure 1 shows that most regulatory interactions are inhibitory.
It is possible that some of these inhibitory interactions are com-
petitive rather than allosteric (i.e., the binding site of the effector
coincides with the catalytic site). Since the binding mechanisms
are not generally reported in the databases, and the regulatory
effect is similar, this distinctionwill be disregarded for the purpose
of this work.

Topological analysis in terms of connectivity degree shows
an increased connectivity for several metabolites when allosteric
regulation is considered (Figure 2). However, the median
value of connectivity remains the same (4 connections per
metabolite). Unsurprisingly, there is an increased connectiv-
ity for metabolites that were previously known metabolic
hubs. For instance, phosphoenolpyruvate (pep) is now con-
nected to a total of 13 reactions (previously 8), reinforcing
the importance of this glycolytic compound as a metabolic

hub (Link et al., 2013; Matsuoka and Shimizu, 2015). However,
changes are also observed for lowly connected metabolites. A
notable case is fructose-1,6-bisphosphate (fdp), which can now be
considered as a hub metabolite (with a total of 6 connections),
although its connectivity is bellow the median if regulation is not
considered. This metabolite was recently identified as a key flux-
signaling metabolite in the glycolytic flux-sensing mechanism of
E. coli (Kochanowski et al., 2013b).

2.2. Omics Data-Based Analysis of
Allosteric Regulation
In order to understand how the coordination between hierar-
chical and metabolic regulation drives the metabolic flux, we
used the reconstructed model to integrate and analyze a multi-
omics dataset for E. coli (Ishii et al., 2007). This dataset contains
transcript, protein, metabolite, and flux data for E. coli strains
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FIGURE 2 | Changes in the connectivity degree of each metabolite
when allosteric regulation is considered in the network topology. The
labeled metabolites represent the cases where the metabolite acts as
regulator to a set of enzymes and, consequently, an increase in connectivity is
observed. For the nodes with unchanged connectivity only the number of
occurrences is presented.

growing aerobically in a chemostat. It comprises several experi-
ments, including variations of dilution rate for the wild-type strain
(0.1–0.7 h−1) and 24 single knockout mutants growing at the
reference dilution rate (0.2 h−1). Herein, we will refer to the wild-
type strain growing at 0.2 h−1 as the reference condition, and the
remaining as the perturbed conditions (28 in total).

The data were analyzed using the concept of regulation analysis
introduced by ter Kuile and Westerhoff (2001) to decompose
the contribution of hierarchical (ρh) and metabolic (ρm) con-
trol coefficients during flux change between two experimental
conditions (ρh + ρm = 1). We applied the generalization proposed
in Chubukov et al. (2013) to simultaneously compare multiple
conditions (see Methods). This generalization assumes that the
coefficients are conserved across conditions. The results are pre-
sented in Figure S4 in Supplementary Material. It can be observed
that in many cases the slopes are close to zero or even negative,
indicating poor evidence of transcriptional control. Only three
reactions (PGI, CS, FUM) present an estimated hierarchical con-
trol coefficient above 0.5. Hence, only these reactions are likely to
be predominantly regulated at the transcriptional level.

Given the lack of evident hierarchical control formost enzymes,
one can try to analyze the allosteric control exerted by single
effectors in a similar fashion (see Methods). The results are pre-
sented in Figure S5 in SupplementaryMaterial. In order to observe
active flux control, positive slopes would be expected for enzyme
activators and negative slopes for enzyme inhibitors. However,
this behavior can only be observed in a few cases. The flux of
FBA positively correlates with its two activators, citrate and pep.

Some correlation is also observed between ATP levels and two of
its inhibition targets, GND and PFK.

Given the large number of reactions without evident transcrip-
tional or allosteric control, we hypothesize that the assumption of
constant control coefficients across all conditions does not hold
for the given experimental conditions. It is likely that, during
different perturbations, different kinds of control are predominant
for each reaction. This has also been observed in previous studies
in S. cerevisiae (Rossell et al., 2006).

We analyzed the flux change for each reaction at each perturbed
condition individually, by comparing the logarithmic change of
enzyme, flux, and metabolite levels between all 28 perturbed con-
ditions and the reference condition. Although this would result
in a total of 672 potential case studies (24 regulated reactions
times 28 perturbations), due to the sparsity of the data (especially
the metabolome data), this study was restricted to all reaction-
condition pairs with sufficient data to perform a meaningful
analysis (see Methods). This reduced the number of case studies
to 38 (see Figure S6 in Supplementary Material for details). We
then analyzed the evidence of allosteric control for these cases
(see Methods) and observed a total of 8 cases where allosteric
regulation seems to play a role in controlling the reaction flux
for the given perturbation (Figure S6 in Supplementary Material).
These 8 cases will be analyzed in detail below.

The regulation mechanisms of the three reactions involved
(PFK, PPC, and PYK) are depicted in Figure 3A. The intricate
regulation of these enzymes is evident, in particular for PFK and
PYK, which are catalyzed by multiple isozymes and regulated by
multiple effectors. The logarithmic change of flux and all mea-
sured intervening molecules for the selected reaction-condition
pairs is presented (Figure 3B). It can be observed that, in most
cases, the change in enzyme concentration is in the opposite
direction of the flux change. For PFK, only one of the isozymes is
measured. In the case of PYK, where both isozymes are measured,
it can be observed that the level of one isozyme increases while the
other decreases. In the few cases where the flux change follows the
direction of the enzyme level, the magnitude of enzyme change
is still insufficient to explain the flux change (since the reaction
rate would be directly proportional to the enzyme concentration).
Regarding the change in substrate levels, it can be observed that,
in most cases, it is also opposite to the direction of the flux
change.

The effect of allosteric control is evident in some scenarios. For
instance, in the ∆ppsA mutant, the flux of PPC largely increases,
despite the decrease of its only enzyme (ppc) and itsmain substrate
(pep). This increase can be explained by the increased concen-
tration of its allosteric activator (fdp). There are cases where the
different allosteric regulators have a cooperative effect in flux
control (e.g., PYK at 0.7 h−1) and cases where there is a competing
effect (e.g., PFK at 0.4 h−1). One can observe that flux change
is not always controlled by the same combination of effectors.
For instance, at high dilution rates (0.4–0.5 h−1) the flux of PFK
increases with the decrease of its inhibitors (ATP and pep), despite
the decrease of its activator (ADP). However, at an even higher
dilution rate (0.7 h−1), the flux increase coincides with higher lev-
els of the activator, whereas the two inhibitors change in opposite
directions.
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FIGURE 3 | Data analysis of allosterically regulated reactions. (A) Known regulation mechanism of three reactions analyzed in detail, including all participating
molecules. (B) Logarithmic change of the metabolic flux and concentrations of the participating molecules between the perturbed and reference condition. Missing
proteins and metabolites in the plots correspond to cases where the data were not available.

The interpretation of the results is hampered by the lack of pro-
tein and metabolite measurements for many experimental condi-
tions. One cannot exclude the possibility that some flux changes
are also driven by changes in unmeasured isozymes, cofactors, or
reaction products.

2.3. Model-Based Prediction of
Allosteric Regulation
Given the scarcity of multi-omics datasets with all the data
required to perform a quantitative analysis of allosteric regula-
tion, we developed a constraint-based approach for model-based
predictions. This method is based on the assumption that, if
a reaction is activated (respectively, inhibited) by a compound
present in a pathway, then its flux change should be positively
(respectively, negatively) correlated with the flux change in that

pathway (see Supplementary Material for details). It has been
proposed that allosteric intermediates function as flux-signaling
metabolites that directly translate flux information to metabolite
concentration (Kotte et al., 2010; Matsuoka and Shimizu, 2015).
The method, named allosteric regulation FBA (arFBA), is a vari-
ation of parsimonious FBA (pFBA) (Lewis et al., 2010) where the
objective function is extended as follows:

min
v

∑
i

|vi|+
∑
Rij>0

wij

∣∣∣∣∣ vjv0j − ti
t0i

∣∣∣∣∣+ ∑
Rij<0

wij

∣∣∣∣∣ vjv0j +
ti
t0i

− 2

∣∣∣∣∣ .
Here, v is the flux distribution to be estimated, v0 is the flux

distribution for a given reference condition, ti is the turnover rate
of metabolite i. The allosteric interactions are represented in a
new matrix R, which has a structure similar to the stoichiometric
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matrix, with Rij = 1 (respectively, −1) if metabolite i activates
(respectively, inhibits) reaction j, and 0 otherwise (note that the
stoichiometric matrix S is not changed). The wij parameters are
arbitrary weights that represent the strength of the interaction
between effector i and reaction j. If allwij are close to zero, then the
method defaults to a simple pFBA simulation. The minimization
of the extra terms in the objective function affects the respective
fluxes when regulation is active. For an activation, the subtraction
forces the flux and turnover ratios to be the same. For an inhibi-
tion, the term forces that a change in the turnover is compensated
by an opposite change in the flux. A detailed justification for
these terms is given in the Supplementary Material. The full
implementation of themethod is slightly more complex due to the
presence of reversible reactions and reactions without flux in the
reference condition (see Supplementary Material for a complete
description).

In general, it is not possible to know the strength of the allosteric
interactions beforehand. Therefore, we implemented an ensemble
modeling approach in order to find the most plausible models
(Figure 4). The approach is similar, albeit different, to the ensem-
ble modeling approach used for kinetic modeling (Tran et al.,
2008). A model ensemble was built by randomly sampling the wij
parameters (see Methods). The simulated flux distributions are
then compared with the intracellular flux data from Ishii et al.
(2007). The accuracy of each model is given by the (L1-norm)
distance between the predicted and measured flux distributions.
The original ensemble is split into two groups containing the
models with prediction accuracy above and below themedian.We
then perform enrichment analysis by comparing the distributions
of each parameter between the two ensembles. For a particu-
lar experimental condition, if a parameter wij has systematically
higher values in the ensemble with higher predictive accuracy,
then the assumption of allosteric control between effector i and
reaction j results in improved flux predictions for that condition.

Figure 5 shows t-test values for all parameters across all experi-
mental conditions. Although there are not clearly defined clusters
in the clustered heatmap, some general patterns can be observed.
About one-quarter of the interactions are positively enriched
for most experimental conditions, representing probable cases
of active allosteric control for those conditions. On the other
hand, almost half of the parameters are negatively enriched for a
majority of conditions. These represent allosteric constraints that,
in most cases, hamper the predictive ability of the models. Finally,
there is a subset of allosteric interactions which are neither posi-
tively nor negatively enriched. Accounting for these interactions
has very little effect in the prediction of flux distributions for the
given experimental conditions.

The most frequent positively enriched interactions include
inhibition of the oxidative phase of the pentose-phosphate path-
way (PPP) by reducing agents NADH and NADPH; mutual inhi-
bition between PPP and upper glycolysis; feedforward activation
of PPC and PYK by fdp; and inhibition of the glyoxylate shunt
by multiple effectors. Interestingly, several parameters that are
positively enriched for a subset of conditions are also negatively
enriched for some of the remaining conditions. Hence, although
the respective interactions improve the flux predictions in some
conditions, in other conditions they make predictions worse.

FIGURE 4 | Workflow diagram of the enrichment analysis based on the
ensemble modeling method. An ensemble of models is built by random
sampling of the parameter space (log-normal distribution). Physiological data
(growth and uptake rates) are used to constrain the models. The ensemble is
used for simulation of flux distributions, which are filtered by comparison with
13C-based intracellular flux data. The subset of ensembles with higher
predictive ability is compared to those with lower predictive ability and
enriched parameters are detected by t-test analysis. The active allosteric
control cases are identified by the positively enriched parameters for the
respective interactions.

In order to test the predictive ability of our in silico approach, we
analyzed the enrichment results for the potential cases of allosteric
control previously detected by data-driven analysis (Figure 3B).
Some of the allosteric interactions were significantly enriched,
namely the activation of PFK by ADP at the highest dilution rate
(t= 4.28, p= 1.88e-5), activation of PPC by fdp in the ∆ppsA
mutant (t= 19.0, p= 8.17e-79), and activation of PYK by fdp in
the ∆gnd mutant (t= 4.70, p= 2.63e-6) and the ∆galM mutant
(t= 7.09, p= 1.44e-12).

It should be noted that we are using our simulation method
(arFBA) in the reverse direction, i.e., a model ensemble is com-
paredwith experimental data to findwhich parameters (weighting
factors) result in improved predictions. Although, in theory, one
could use the method in the forward direction, i.e., to perform
simulations with improved flux predictions, this would require
finding a “universal” parameter configuration that fits all con-
ditions. The previous results show that such universal configu-
ration cannot be found due to the condition-specific nature of
allosteric regulation. Nonetheless, we tested the accuracy of arFBA
by measuring the distance between simulated and experimental
flux distributions. Figure 6 shows the frequency distribution of
the distances obtained by random sampling of the weighting
factors for each experimental condition. The distance obtained
with FBA is shown for comparison. It can be observed that,
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FIGURE 5 | Enrichment analysis of the parameters associated with each allosteric interaction, represented by the t-test value of each parameter
subsample for each experimental condition. The clustering of the heatmap was performed using complete linkage and Manhattan distance.

for most experimental conditions, the average distance obtained
with arFBA is lower than that obtained with FBA, indicating a
higher accuracy of the former. Finally, we tested the accuracy of
arFBA with a posteriori calibration of the weighting factors (see
methods). It can be observed that, after calibration, the accuracy
of arFBA is higher than FBA for 26 of the 28 conditions.

3. Discussion

In this work, we analyzed the role of allosteric regulation for
flux control in the central carbon metabolism of E. coli. For this,
we extended a constraint-based metabolic model of E. coli with
allosteric regulation. The application of such a model is twofold.
First, it can be used as an integrative scaffold for multi-omics
dataset analysis, revealing the coordination between enzyme,
metabolite, and flux levels. Second, it can be used for in silico-
based predictions that account for allosteric regulation in the sim-
ulation of the metabolic phenotype. For that purpose, we imple-
mented an FBA variant, named arFBA, that accounts for allosteric
interactions in the determination of the flux distribution.

Using the expanded model and a multi-omics dataset for E. coli
(Ishii et al., 2007), we analyzed the impact of allosteric regulation
in controlling the metabolic flux under multiple environmental
and genetic perturbations. We implemented a generalized form
of regulation analysis (ter Kuile and Westerhoff, 2001) in order
to find which reactions are predominantly under transcriptional
or allosteric control. The results reveal that most reactions are

generally not controlled by the same mechanism across all con-
ditions. This led us to analyze the effects of perturbations in
single reactions for each experimental condition. This analysis
is hampered by missing protein and metabolite measurements,
which does not allow accounting for all participating compounds
in the reactions analyzed. Although we neglected the effect of
missing isozyme and cofactor measurements, as well as prod-
uct concentrations for irreversible reactions, only 38 out of 672
possible case studies (24 reactions× 28 perturbations) could be
analyzed in a meaningful way (Figure S6 in Supplementary Mate-
rial). Nonetheless, it was possible to identify 8 (out of 38) cases
where the reaction flux is predominantly controlled by allosteric
mechanisms.

Considering that the dataset published by Ishii et al. (2007) is
one of the most comprehensive multi-omics dataset for a model
organism published so far, we can conclude that purely data-
driven analysis is very limited for studying metabolic regula-
tion. Therefore, we applied our simulation method using an
ensemble modeling approach to identify which allosteric inter-
actions result in improved flux predictions. Enrichment anal-
ysis of the weighting factors in our model revealed that sev-
eral allosteric interactions were significantly enriched when the
models were filtered by their agreement with experimental flux
data. A comparison between the in silico results and the data-
driven analysis showed that 4 of the 8 cases of allosteric control
previously identified were also detected by the computational
approach.
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FIGURE 6 | Simulation accuracy determined by the (L1-norm) distance between experimental and simulated flux distributions for each experimental
condition (data normalized by the maximum distance value). The blue curve shows the frequency distribution of the distances obtained by random sampling of
the weighting factors in arFBA. The black pin marks the distance obtained with an FBA simulation. The red pin marks the distance obtained with arFBA after
calibration of the weighting factors.

Given the very limited scope of the cases analyzed in detail,
the cross-comparison between the data driven and in silico results
can hardly be considered a validation of the latter. In order to
determine the accuracy of the simulation method it would be
necessary to estimate the number of false positive and false neg-
ative results for the whole dataset. Instead, the two approaches
should be seen as complementary methods to guide the analysis
of allosteric regulation. Furthermore, the data analysis revealed
that the predominant mode of regulation for each reaction is
condition dependent. This was also observed in the in silico anal-
ysis, hampering the determination of a universal set of weighting
factors for arFBA.Given the interplay between different regulation
mechanisms, the approach developed herein could be suitable for
integration with other methods for identification of regulation
mechanisms (Bordel et al., 2010).

An ensemble modeling approach was also employed by Link
et al. (2013) for systematic identification of allosteric interactions
in E. coli. The authors measured metabolite concentrations using
rapid sampling and 13C-labeled substrates (glucose and fructose)
to determine the transient profile of glycolytic intermediates in
dynamic cultures switching between glycolysis and gluconeoge-
nesis. A kinetic ensemble model for glycolysis was used to test 126

putative interactions. The results not only confirmed previously
known interactions but also predicted new interactions that had
not been previously reported. Although the model used in this
study differs fromours, the results regarding interactions common
to both models are consistent. In particular, both studies revealed
the importance of PFK as an active regulation target for control-
ling the glycolytic flux, and the role of fdp as key regulator of PPC
and PYK to control pep consumption.

At the end of our data-driven analysis, some flux changes
remain unexplained by hierarchical or metabolic control. One
main reason for this is the lack of coverage of the metabolomics
data, which only accounts for approximately half of the metabo-
lites in the model. Another possibility is that the regulatory mech-
anisms for the respective enzymes are not fully known or the
relevant allosteric interactionswere not included in themodel. It is
also possible that the enzyme concentrations do not correlate with
the respective enzymatic activity due to post-translational modifi-
cations (PTMs). It has been shown that PTMs, such as acetylation,
have important regulatory functions in E. coli (Castaño-Cerezo
et al., 2014).

The generation of high-quality multi-omics datasets will be
necessary for a deeper understanding of metabolic regulation.
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Herein, we used a previously published dataset for chemostat
cultures. However, steady-state datamay be insufficient to analyze
regulatory responses. It has been observed that fast metabolic
responses precede the slower transcriptional response during
metabolic adaptation (Ralser et al., 2009). Since allosteric reg-
ulation operates on a faster time-scale compared to transcrip-
tional regulation, transient profiles on short time scales should be
particularly informative (Link et al., 2013).

4. Conclusion

In this work, we focused on the role of allosteric regulation in
central carbon metabolism. The reconstruction of an allosteric
model revealed that allosteric information is inconsistent among
different data sources even for these highly studied pathways.
The allosteric interactions added a new layer to the network
topology, changing the overall network connectivity and reveal-
ing metabolic hubs that would otherwise be ignored (e.g., fdp).
Hierarchical and allosteric regulation analysis using a multi-omics
dataset revealed that there is no predominant mechanism of regu-
lation across all experimental conditions. Nonetheless, situations
of predominant allosteric control could be identified for some
reactions at particular conditions. Our new method for model-
based prediction of allosteric control was able to capture at least
a few of these situations. However, the assessment of the pre-
dictive ability of this method is hampered by the lack of more
comprehensive data.

For central carbon metabolism, it would have been feasible to
perform this analysis using a kinetic modeling approach [simi-
larly to Link et al. (2013)]. However, as we move toward regula-
tory analysis at the genome-scale, the constraint-based approach
should become especially useful. Building a genome-scale model
of allosteric regulation is a daunting task that will require lit-
erature mining, extensive manual curation, and prediction of
putative interactions. Our knowledge of the allosterome is cur-
rently limited by the lack of high-throughput screening methods
for detecting metabolite–enzyme interactions. It is likely that the
vast majority of allosteric interactions are yet to be discovered
(Lindsley and Rutter, 2006). Recent experimental methods have
been developed toward systematic identification of metabolite-
protein interactions (Gallego et al., 2010; Li et al., 2010; Orsak
et al., 2011; Feng et al., 2014). However, we are still far from a
genome-scale screening of the hundreds of thousands of poten-
tial interactions between all metabolites and enzymes in an
organism.

Notebaart et al. (2014) have recently unraveled the underground
metabolism of E. coli by expanding a genome-scale metabolic
model with reactions resulting frompromiscuous enzyme activity.
With the allosterome, we can unravel yet another hidden layer
in the network topology of cellular metabolism. New expanded
models of metabolism will be certainly useful for applications,
such as drug discovery and rational strain design, as we slowly
move toward what has been called the “second secret of life”
(Fenton, 2008).

A python implementation of arFBA as well as the allosteric
model in SBML format are available on GitHub: https://github.
com/cdanielmachado/arfba.

5. Materials and Methods

5.1. Model Reconstruction
The original model of the core metabolism of E. coli (Orth et al.,
2009) was extended with allosteric interactions obtained from
BRENDA (Schomburg et al., 2002), EcoCyc (Keseler et al., 2011),
and two previously published kinetic models (Chassagnole et al.,
2002; Kotte et al., 2010). We searched for evidence of regula-
tory interactions for each possible combination of enzymes and
metabolites in the model. A total of 148 regulatory interactions
were found (Figure S3 in Supplementary Material). Since the
majority of these interactions can only be found in one data
source, for the sake of curation we only included in the model
the interactions that are reported in at least two different sources.
In a few cases the same metabolite is reported as activator and
inhibitor of an enzyme (e.g., phosphoenolpyruvate binding to
fructose-bisphosphatase). In these cases, we used the most fre-
quently reported effect.

5.2. Regulation Analysis
5.2.1. Cross-Condition Analysis
The metabolic flux of a reaction (Ji) can be generically described
in terms of the concentrations of the respective enzyme(s) (Ei) and
all the intervening metabolites (substrates, products, effectors):

Ji = kcatEif(M)

where kcat is the turnover rate of the enzyme, and f (M) represents
a non-linear function of themetabolite concentrations.Regulation
analysis introduced by ter Kuile and Westerhoff (2001) decom-
poses the contribution from hierarchical and metabolic control
by considering the logarithmic change between two experimental
conditions:

∆log(Ji) = ∆ log(Ei) + ∆ log(f(M))

and estimating the respective contribution coefficients:

1 =
∆ log(Ei)
∆ log(Ji)

+
∆ log(f(M))

∆ log(Ji)
= ρh + ρm.

Since f (M) is generally unknown, one can estimate ρh (and
consequently ρm) by measuring the enzyme and flux levels across
different conditions. Chubukov et al. (2013) generalized this com-
parison from two to multiple conditions in order to decrease the
effects of experimental error. The estimation is performed by lin-
ear regression between log(Ei) and log(Ji) across all experimental
conditions using a robust linear regression method (Theil–Sen
estimator).

We further generalized this concept to the study of allosteric
regulation, by decoupling the effect of allosteric regulators in
the reaction flux from the non-linear f (M) component, using a
power-law approximation:

f(M) ≈ g(S,P)
∏
j

Aγij
j

∏
j

I−γij
j

where S, P, A, I represent, respectively, the set of substrates, prod-
ucts, activators and inhibitors of reaction i, and γij is the apparent
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kinetic order of effector j in reaction i, as defined in Biochemical-
Systems Theory (Voit, 2013). This allows us to estimate individual
allosteric regulation coefficients (ρa) for each effector as:

ρa(j) =


γij

∆ log(Aj)
∆ log(Ji)

if j is an activator of i

−γij
∆ log(Ij)
∆ log(Ji)

if j is an inhibitor of i

With the exception of effectors exhibiting cooperative binding,
we can assume that the kinetic orders are close to or below unity
(γij ≤ 1). Hence, the allosteric control coefficient is bound by the
slope of the linear regression.

Regulation analysis was performed for all allosterically regu-
lated reactions with available fluxomics and proteomics data. A
total of 18 (out of 24) regulated reactions were experimentally
measured. Due to gaps in the proteomics dataset, we restricted the
analysis to enzymes with available data for at least 10 (out of 29)
experimental conditions.

5.2.2. Single-Condition Analysis
Allosteric effects were analyzed for each perturbation individu-
ally by comparing the logarithmic change of enzyme, flux, and
metabolite levels between all 28 perturbed conditions and the
reference condition. Due to the sparsity of the data (especially
the metabolome data), this analysis was restricted to all reaction-
condition combinations where the following criteria were satis-
fied: (1) at least one associated enzyme was measured; (2) all main
substrates (excluding cofactors) were measured; (3) at least one
effector was measured. Furthermore, we excluded flux changes
that were not significant (i.e., the perturbed flux falls within a 95%
confidence interval of the reference flux).

Evidence of allosteric control was detected by selecting con-
ditions where the flux change is not fully explained by changes
in enzyme concentration (∆log(E)/∆log(J)< 0.5) or substrate
abundance (∆log(S)/∆log(J)< 0.5), and is at least partly related
with changes in one allosteric activator (∆log(A)/∆log(J)> 0.25)
or inhibitor (−∆log(I)/∆log(J)> 0.25). For reversible reactions,

the effect of flux changes arising from changes in the thermody-
namic driving force cannot be excluded. Therefore, for these reac-
tionswe only considered reactionswhere the products were exper-
imentally measured (excluding cofactors) and the flux change
cannot be fully explained by the change in product abundance
(−∆log(P)/∆log(J)< 0.5).

5.2.3. Ensemble Modeling with arFBA
For each experimental condition, an ensemble of 104 models was
built by sampling the weighting factors (wij parameters) from
a log-normal distribution. Each model is constrained with the
experimentally measured glucose and oxygen uptake rates, and
the growth rate, which is given by the dilution rate.

5.2.4. Calibration of Weighting Factors in arFBA
Condition-specific weighting factors were calibrated for each
experimental condition as follows: an ensemble of 104 arFBA
models was built as described above; the accuracy of each model
was determined by the L1-norm distance between the experi-
mental and simulated flux distributions; the calibrated weighting
factors were calculated as the average of the 10% most accurate
models.
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Genetic variation is the motor of evolution and allows organisms to overcome the envi-
ronmental challenges they encounter. It can be both beneficial and harmful in the process
of engineering cell factories for the production of proteins and chemicals. Throughout the
history of biotechnology, there have been efforts to exploit genetic variation in our favor to
create strains with favorable phenotypes. Genetic variation can either be present in nat-
ural populations or it can be artificially created by mutagenesis and selection or adaptive
laboratory evolution. On the other hand, unintended genetic variation during a long term pro-
duction process may lead to significant economic losses and it is important to understand
how to control this type of variation. With the emergence of next-generation sequencing
technologies, genetic variation in microbial strains can now be determined on an unprece-
dented scale and resolution by re-sequencing thousands of strains systematically. In this
article, we review challenges in the integration and analysis of large-scale re-sequencing
data, present an extensive overview of bioinformatics methods for predicting the effects of
genetic variants on protein function, and discuss approaches for interfacing existing bioin-
formatics approaches with genome-scale models of cellular processes in order to predict
effects of sequence variation on cellular phenotypes.

Keywords: genetic variation, SNP, next-generation sequencing, constraint-based modeling, metabolic engineering,
adaptive laboratory evolution, metabolism, high-throughput analysis

1. INTRODUCTION
Genetic engineering has been used for several decades to manip-
ulate microorganisms in order to allow production of valu-
able products, including primary metabolites (e.g., amino-acids
and organic acids), secondary metabolites (e.g., antibiotics), and
enzymes or other recombinant proteins (Adrio and Demain,
2010). Genetic engineering is thus a central part in the quest to
establish sustainable and efficient processes for the production of
fuels, chemicals, food ingredients, and pharmaceutical products.

Most of these achievements would not been possible without
sequencing technologies that allowed us to identify the genetic
sequences and validate the genetic manipulations in microorgan-
isms. More recently, Next-Generation Sequencing (NGS) tech-
nologies have provided us with the capability of fast and cheap
sequencing of DNA at an unprecedented scale. NGS has allowed
de novo assembly of the genomes of thousands of organisms for
which no genome sequences were previously available, ranging
from complex multicellular organisms (Li et al., 2010; Naka-
mura et al., 2013; Pegadaraju et al., 2013; Kelley et al., 2014)
to microorganisms (Soares-Castro and Santos, 2013; Yamamoto
et al., 2014). NGS technologies also provide us with the means to
re-sequence organisms (Atsumi et al., 2010; Wang et al., 2014), i.e.,
the sequencing of genetically distinct strains that are close enough
to a reference strain with a sequenced genome. Re-sequencing is
used to determine genetic variants ranging from single nucleotide
variants (SNV) to more complex structural variants such as

large deletions, inversions, and translocations. The falling cost of
sequencing allows routine re-sequencing of strains isolated from
the wild, monitoring the genetic stability of production strains
during genetic engineering and fermentation processes, and deter-
mining the genetic basis of adaptive laboratory evolution (ALE)
(Herrgård and Panagiotou, 2012). In addition to biotechnolog-
ical applications, re-sequencing of microbial strains plays also a
key role in other areas such as epidemiology of infectious diseases
caused by bacterial and fungal pathogens, and in understanding
the effects of human activity on microbial diversity and evolution
in the environment.

Genome-scale metabolic models (GSMs), consisting of bio-
chemical reactions and their relations to the genome and proteome
of a cell [through gene–protein-reaction (GPR) associations], are
a proven framework for the in silico analysis of the metabolic
physiology of microbes. Genome-scale metabolic models have also
been used successfully for the design of metabolically engineered
strains with improved production of commercially valuable pro-
teins and metabolites: recombinant antibodies, food additives
(e.g., vanillin), organic acids, ethanol, among others (Tepper and
Shlomi, 2009; Brochado et al., 2010). These models have become
increasingly popular over the past decade, and more than 100
models for different organisms have been published up to this
date (http://optflux.org/models). The greatest strength of GSMs
lie in their simplicity and computational efficiency; new GSMs
can be readily built from genomic annotations complemented
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with limited experimental data, and predictions from GSMs can
be obtained using standard mathematical optimization methods
(Varma and Palsson, 1993; Segrè et al., 2002; Shlomi et al., 2005)
allowing phenotypic predictions within minutes.

Genetic variation that entails a complete loss of function –
commonly referred to as gene knockout – has been successfully
used to tailor GSMs to a specific genotype to improve the produc-
tion of valuable compounds [e.g., biobutanol (Lee et al., 2008),
sesquiterpene (Asadollahi et al., 2009), vanillin (Brochado et al.,
2010), polyhydroxyalkanoates (Puchałka et al., 2008), or L-valine
(Park et al., 2007)], but so far no methodological framework has
been developed that would allow the incorporation of other types
of genetic variants systematically. In this work, we review exist-
ing tools for analyzing genetic variants that capture more subtle
changes such as synonymous and non-synonymous SNVs in cod-
ing regions or variants in promoter or other regulatory regions.
We will focus on outlining the challenges of combining more sub-
tle genetic variant information with GSMs in order to use models
to predict strain-specific phenotypes.

2. UNVEILING THE EFFECTS OF GENETIC VARIATION
2.1. GENETIC VARIABILITY
Genetic variants, including SNVs and larger structural variants
are commonly seen when natural or engineered strains are re-
sequenced (Figure 1). SNVs can be found across the genome
in different functional regions: (i) protein coding sequences, (ii)
promoters and other regulatory elements such as ribosome bind-
ing sites, (iii) splice sites and other regions affecting transcript
structures, and (iv) other genomic regions with unknown direct
connections to any given protein function. Moreover, insertions or
deletions of nucleotides (indels) within a coding region can cause a
shift in the open reading frame usually denoted as frameshift muta-
tions (Figure 1A). At the genome structure level, chromosomal
rearrangements, e.g., swaps, inversions, deletions, and insertions,
can affect the function of one or more proteins (Figure 1B).

The spectrum of the resulting effects caused by these genetic
variations on individual gene or protein function or expression
is very broad. Non-synonymous SNVs or in-frame indels in pro-
tein coding sequences can disrupt, enhance, or modify the activ-
ity of the protein depending on the exact amino-acid change

introduced. Introduction or removal of a stop codon by spe-
cific SNVs or out-of-frame indels would be expected to result
in more drastic changes of protein function. For example, the
appearance of a stop codon might lead to the separation of a
multi-domain protein to multiple individual single-domain pro-
teins. The removal or replacement of a stop codon could cause
translational read-through leading to an elongated protein with
potential new functions (Long et al., 2003). SNVs and indels in
regulatory regions such as promoters can affect the transcription
or translation processes giving rise to variation in expression levels
in specific proteins. In eukaryotes, variants within introns can also
affect transcript structures by introducing new exons or remov-
ing existing ones. Some variations can also be completely silent
with no change of phenotype, for example, a change in a stop
codon location might not change the protein activity. Ideally, we
should be able to predict the degree in which single and multiple
genetic variants within or near a coding locus affect the relevant
protein function or expression. This would allow us to rapidly
make sense of the vast quantities of re-sequencing data that is
becoming available without having to test the effects of all variants
experimentally.

Larger-scale structural variations, such as duplications, dele-
tions, translocations, and inversions, can have significant effects
on the expression or activity of individual proteins. For example,
there can be a complete loss of one or more genes, or a dupli-
cation of genomic regions can modify the expression of multiple
genes within or nearby these regions (Blount et al., 2012). Very
large-scale genomic changes, such as duplication of entire chro-
mosomes, can change the activity of hundreds of proteins at once
and have been reported in both natural microbial strains (Gordon
et al., 2009) and in strains created by ALE (Caspeta et al., 2014).
The effects of structural genomic variation are often more systemic
than the effects of smaller scale variations, but any framework
attempting to predict the phenotypic effects of genetic variation
needs to consider both small- and large-scale variation.

2.2. IN SILICO : PREDICTING THE EFFECT OF GENETIC VARIANTS
A major challenge to understanding the phenotypic consequences
of genetic variation lies in our ability to predict the mechanistic
consequences of mutations. Proteins are very complex structures

FIGURE 1 | Common genetic variations. Variations at the (A) nucleotide level and (B) structural level. (C) Single nucleotide polymorphism A/T across a
population.

Frontiers in Bioengineering and Biotechnology | Systems Biology February 2015 | Volume 3 | Article 13 | 62

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cardoso et al. Genetic variation and metabolic modeling

that fall into different functional categories and can be charac-
terized by many distinct properties. For example, how protein
activities are measured depends on their functional category: tran-
scription factors can be characterized by their binding strength to
a certain promoter region while metabolic enzymes would typi-
cally be characterized by their catalytic activity and specificity for
a certain substrate. Moreover, proteins do not operate in isolation
but interact with each other and with metabolites, and these inter-
actions have consequences on the activities of proteins. Here, we
provide a non-exhaustive review of the types of methods that are
commonly used to predict the effects of genetic variants on protein
function.

The study of single nucleotide polymorphisms (SNP) that affect
human health is one of the major focus areas of modern medical
research. In human genetics, SNPs are single nucleotide substitu-
tions found in more than 1% of a population. Several algorithms
were implemented to determine the effect of SNPs, mostly spe-
cialized to the analysis of human genotyping data (see Table 1 and
Figure 2). One limitation of most of these algorithms is that they
are binary classifiers – deleterious or neutral, disease-causing or
neutral, and tolerant or intolerant. This means that the genetic
changes will either be predicted to have no effect or to cause
some measurable, negative impact on the phenotype. This may
not be an issue in the context of human diseases as SNP data are
primarily used in diagnostics. However, fine tuning engineered
microbial strains requires more than a black and white approach
for predicting variant effects on protein function. This is because
many genetic variants can yield proteins with either increased or
decreased activity, requiring methods that are able to predict also
potential gains or modifications of functions. In particular, when
mutagenesis and selection or ALE methods are applied, one com-
monly sees gain of function mutations of specific genes that are
crucial for the adaptation to, for example, new carbon sources
(Conrad et al., 2011).

Of the existing algorithms (Table 1), SIFT (Sorting Intolerant
f rom Tolerant) (Ng and Henikoff, 2001) is often used as a gold
standard to compare the performance of new algorithms or as
a foundation for novel prediction strategies. SIFT and related
approaches are based on the notion that evolutionary conservation
can be used to predict the functional importance of each amino-
acid in a protein and the impact of specific amino-acid substitu-
tions. These methods typically use multiple sequence alignments
of related proteins to determine a probabilistic description of what
amino-acid substitutions are allowed in specific sites within the
target protein. These descriptions can be used to determine the
probability that non-synonymous coding SNPs observed in a re-
sequencing data set will be tolerated by the protein; substitutions
with a probability score smaller than a threshold are assumed to
be deleterious (Kumar et al., 2009).

Sorting intolerant from tolerant provides only a binary
deleterious/non-deleterious classification, and other methods
have been developed to allow predicting cases where SNPs improve
protein function. The Polyphen (Ramensky, 2002) and PolyPhen2
(Adzhubei et al., 2010) approaches provide the means to discrim-
inate three states when analyzing the effect of a SNP: benign,
neutral, or deleterious. Polyphen uses a list of predetermined
rules that combine the output of multiple algorithms using

combinations of structural and sequence-based measures of muta-
tion impact. PolyPhen2 uses a machine-learning approach (a naive
Bayes model) to predict an overall score for the variant effect,
and the classification to three categories is based on thresholds.
Although the algorithm is trained with human datasets, similar
methods could potentially be used to build predictive models for
variant effects in microorganisms. The overall variant effect score
could also be exploited in more advanced methods that combine
scores from different variants affecting different proteins to make
phenotypic predictions.

Most studies on genetic variation focus on SNPs and disregard
indels, which are also commonly observed when related microbial
strains are compared to each other. The PROVEAN (Choi et al.,
2012) and Mutation taster 2 (Schwarz et al., 2014) approaches are
capable of analyzing both SNPs and indels. PROVEAN uses sub-
stitution matrix scores (i.e., BLOSUM62) with gap and extension
penalties to compute a variation score between the wild-type and
mutant. More recently, Mutation taster 2 computes several features
(structural and evolutionary properties) for the mutated sequence
using a Bayes classifier.

One possible approach for improving our ability to predict
variant effects on protein function would be to predict effects of
amino-acid changes on protein stability and folding (Khan and
Vihinen, 2010). There are a number of tools available for these
tasks (Khan and Vihinen, 2010), and stability predictions could
be used to predict variant effects on protein function, as strongly
destabilizing mutations would result in complete loss of function
for the protein. Methods for predicting variant effects on protein
stability have only been found to be moderately accurate in inde-
pendent evaluation studies (Khan and Vihinen, 2010). For this
reason, stability predictors should be combined with other vari-
ant effect prediction approaches to improve their predictive power
for general variant effect analysis. The application of these types
of stability prediction methods will be discussed in Section 3.2 in
more detail together with the applications of metabolic modeling.

The majority of algorithms (53%) for variant effect predic-
tion listed in Table 1 rely on machine-learning approaches [e.g.,
AUTO-MUTE (Masso and Vaisman, 2010), FunSAV (Wang et al.,
2012), or HANSA (Acharya and Nagarajaram, 2011)], which is
a practical strategy given the huge amount of data available for
human diseases. Regarding the selection of features, most meth-
ods use evolutionary conservation information (92%) and more
than half rely on structural properties (69%). The selection of suf-
ficient features is a challenge in itself; no matter what approach
is used, it is necessary to define which properties and attributes
of proteins are capable of discriminating the phenotypes of inter-
est. The improvements in the prediction capabilities provided by
sequence-, evolution-, or structural-based features has been pre-
viously studied, and these studies have shown that the inclusion
of structural properties leads to significant improvements in pre-
dictive power (Saunders and Baker, 2002). This has been recently
confirmed by a benchmark performance test that includes several
of the existing algorithms (Thusberg et al., 2011). Another effort
to benchmark and improve different approaches is the Critical
Assessment of Genome Interpretation (CAGI) community, which
organizes a benchmark competition on predicting the effect of
genetic variants on known disease phenotypes.

www.frontiersin.org February 2015 | Volume 3 | Article 13 | 63

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cardoso et al. Genetic variation and metabolic modeling

Table 1 | A summary of the available software tools for predicting the effect of the genetic variants.

Tool Description Reference

AUTO-MUTE Uses the “4-Body Statistical Potential” to compute a set of features – based on protein 3D

structure – used to train a Random Forest model to predict neutral or disease-associated SNPs.

Masso and Vaisman (2010)

Align-GVGD This algorithm is based on multiple sequence alignment and Grantham distance to identify missense

SNPs. The authors propose a measure to calculate how much the substitution changes the Grantham

distance.

Tavtigian (2005)

CADD A machine-learning approach that uses a SVM model to predict deleterious phenotypes caused by

SNPs.

Kircher et al. (2014)

Chasman and

Adams (2001)

A probabilistic approach to identify which SNPs have an effect on the protein function using structural

and evolutionary features that compare the variation against a dataset of mutations of lac repressor

and T4 lysozyme.

Chasman and Adams

(2001)

CONDEL Consensus deleteriousness provides a score computed based on the weighted average of the

normalized scores of five different tools: LogR.E-value, MAPP, mutation assessor, polyphen, and STIF.

González-Pérez and

López-Bigas (2011)

Evolutionary

action

Evolutionary action is a function that links genotype with phenotype using evolutionary information,

by quantifying the impact of SNPs on the fitness of a population; it correlates with

disease-associated mutations.

Katsonis and Lichtarge

(2014)

FATHMM Uses Hidden Markov Models (HMMs) to obtain position-specific information. The prediction is based

on the probability change of the HMM between wild-type and mutant.

Shihab et al. (2012)

FunSAV A random forest classifier for predicting deleterious SNPs. It combines properties of the mutated

protein with other tools (i.e., nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen2, SIFT, and SNAP).

Wang et al. (2012)

FuzzySnps A machine-learning approach that uses a Random Forest model trained by combining “4-Body

Statistical Potential” and sequence-based features to identify tolerant and intolerant SNPs.

Barenboim et al. (2008)

Goldgar et al.

(2004)

A probabilistic approach to determine if a SNP is disease-causing, which is achieved by computing

the likelihood of the protein to be similar to previously classified mutated proteins in a dataset.

Goldgar et al. (2004)

HANSA It is a machine-learning classifier that uses a SVM model to predict whether a SNP will be neutral or

disease-causing.

Acharya and Nagarajaram

(2011)

LogR.E-value Uses the E -value computed by the HMMER algorithm using PFAM motifs to distinguish between

deleterious and neutral SNPs.

Clifford et al. (2004)

LS-SNP A workflow/database that uses predefined rules and machine-learning (SVN) approach to

systematically characterize known SNPs.

Karchin et al. (2005)

Krishnan and

Westhead (2003)

Two machine-learning approaches – using SVM and Decision Trees models – are used to predict the

“effect” or “no-effect” of a SNP.

Krishnan and Westhead

(2003)

MAPP Multivariate Analysis of Protein Polymorphism uses statistical analysis to predict the deleterious

effect of SNPs.

Stone (2005)

Mutation

assessor

Predicts the degree of impact in a protein by scoring the mutation based on the impact it causes

regarding the properties of a multiple sequence alignment of homologous sequences.

Reva et al. (2011)

Mutation taster 2 Uses a Bayes classifier to predict disease associated effects caused by SNPs or Indels. The classifier

uses a set of features that includes splicing site and polyadenylation signal information along with

structural and evolutionary properties.

Schwarz et al. (2014)

MutPred Uses a machine-learning approach to predict disease or neutral SNPs. The features used refer to a

probability of loss or gain of function regarding several functional and structural properties of the

encoded protein. The authors trained SVM and Random Forest models in this work.

Li et al. (2009)

nsSNPAnalyzer Uses a Random Forest model trained with features (consisting of SIFT score and information from

multiple sequence alignment and protein 3D structures) to identify disease associated SNPs.

Bao et al. (2005)

Papepro A SVM prediction model is used by the authors to separate deleterious from neutral SNPs. Tian et al. (2007)

(Continued)
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Table 1 | Continued

Tool Description Reference

Panther Using an internal database of HMM, an evolutionary score is computed and the method predicts

deleterious or neutral effects with a probability attached. The cutoff can be defined by the user

(default is 3).

Thomas and Kejariwal

(2004)

PhD-SNP This approach uses one of two SVM models: one is trained using sequence profile features and the

other is trained using sequence features. The choice of which model to use is based on a preliminary

decision: if the mutation exists in the homology profile, the first model is used, otherwise the

prediction is done using the second model.

Capriotti et al. (2006)

PMut Predicts pathological or neutral effects of amino-acid substitutions. The prediction model is a neural

network using structural-, physicochemical-, and evolutionary-based features, all calculated using

sequence information only (without requiring a3D protein structure).

Ferrer-Costa et al. (2005)

Polyphen A set of rules defined by the authors is used to predict the effect of a SNP. These rules are built based

on three properties: PSIC score, substitution site properties, and substitution type properties. If one

of the rules matches, the output can be deleterious or benign, otherwise the substitution is classified

as neutral.

Ramensky (2002)

PolyPhen2 The follow up version of Polyphen, uses a naive Bayes predictor to predict damaging, benign, or

neutral effects of SNPs. It uses structural information if available.

Adzhubei et al. (2010)

PROVEAN Protein Variation Effect ANalyzer computes a score based on evolutionary information to predict if a

genetic variant (i.e., SNP or Indel) is neutral or deleterious.

Choi et al. (2012)

RCOL Applies a Bayes’ formula to calculate the probability of a SNP to be deleterious. The likelihood is

tested using 20 structural and physicochemical parameters.

Terp et al. (2002)

SAPRED Using a SVM prediction model, the authors combine features computed from evolutionary, structural,

and physicochemical properties to predict disease associated SNPs.

Ye et al. (2007)

SIFT Using a PSSM, SIFT determines the probability of a substitution being tolerated in a given position. Ng and Henikoff (2001)

SNAP Identifies non-neutral SNPs using machine-learning approaches that combines a battery of Neural

Network models.

Bromberg et al. (2008)

SNPs3D Combines a set of features obtained from protein 3D structure and evolutionary information to

predict deleterious effects using a SVM model.

Yue et al. (2006)

SNPs&GO A machine-learning approach that includes GO annotations as features in a SVM model to predict

whether a SNP is neutral or disease associated.

Calabrese et al. (2009)

SNPs&GO3D It is the successor of SNPs&GO. It includes new features obtained from protein 3D structure. Capriotti and Altman (2011)

Sunyaev (2001) This approach uses a set of seven rules empirically defined by the authors to identify nsSNPs. If one

of the rules is matched, then the SNP is likely to be deleterious.

Sunyaev (2001)

SuSPect A SVM model implementation to predict disease phenotypes caused by SNPs. The authors started

with a high number of features until they identified nine that provided best performance.

Yates et al. (2014)

VarMode A machine-learning approach using a SVN model to predict the effect of SNPs that includes

information regarding known protein–protein interactions. It predicts non-synonymous SNPs.

Pappalardo and Wass

(2014)

While the majority of algorithms aim to predict variant effects
on individual proteins, a different objective is followed by the SNP-
IN method that predicts how protein–protein interactions (PPIs)
are affected by a SNP (Zhao et al., 2014). This is achieved by a set of
features that includes the relative free energy change between wild-
type and mutant PPI, the energy of all interactions in a protein
complex, and other physicochemical properties, e.g., hydrophobic
solvation or water bridges. Using these features, supervised and
semi-supervised machine-learning approaches are used to predict
how deleterious SNPs are. This approach is a very interesting, as

changes in PPIs could be used to explain epistatic interactions
between multiple variants. Like some previously mentioned pre-
diction algorithms, SNP-PI requires an existing 3D model of the
protein structure and, in addition, knowledge of the PPIs a given
protein is involved in.

At a larger scale, genome-wide association studies are used
to identify how differences between hundreds of thousands of
individuals and make genotype to phenotype consequences. This
approaches work as black boxes and make use of statistical and
machine-learning approaches that require huge datasets. The
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FIGURE 2 | Summary of properties and approaches for software listed in
Table 1. The approaches found fall into four different categories: Machine-
Learning, Probabilistic, Score (calculating a summarizing score of a set of
hand-picked statistics), and Rule (using a set of empirically derived rules).
These approaches provide one of two types of classifications each: a binary
classification (e.g., neutral or deleterious) or a multi-classification (e.g.,
benign, neutral, and deleterious). The features used by those approaches
can be computed based on properties of the following five categories:

(i) physicochemical properties (e.g., solvent accessibility, polarity, charge,
disorder, and Grantham), (ii) structural information about the primary,
secondary, and tertiary structure of a protein (e.g., α-helices, β-sheets, and
coil), (iii) evolutionary properties (multiple sequence alignments,
position-specific scoring matrices, and Hidden Markov models), and
(iv) genome annotation (GO terms or other protein function annotations). The
supported variants were determined either by accessing the tools’ websites
or by the description of the approach itself.

current work and applications (e.g., clinical risk assessment) have
been recently reviewed (Okser et al., 2014).

2.3. IN VIVO : DEEP MUTATIONAL SCANNING AND TN-SEQ
Next-generation sequencing has enabled studying the effects of
genetic variation on individual proteins or regulatory elements
in vivo and in vitro. Deep mutational scanning (DMS) is an
effective high-throughput method to measure the effects of muta-
tions on protein stability and function (Fowler and Fields, 2014).
The space of all possible amino-acid substitutions in a protein is
exhaustively screened by first constructing a library of sequence
variants using standard techniques like error prone PCR, then by
using a high-throughput assay to select variants based on a fitness
measure (e.g., growth rate, ligand binding, or product fluores-
cence), and finally by applying deep sequencing to the selected
and unselected sequence variant pools. This approach results in
a matrix that contains fitness values for each amino-acid substi-
tution discovered in the selected pool. Depending on the method
used for creating sequence diversity and sequencing depth, DMS
can also be used to measure epistatic effects between substitutions
at different sites.

The applicability of DMS is primarily limited by the lack of
high-throughput functional assays for most proteins and, so far,
DMS has not been applied to metabolic enzymes. When DMS
can be applied at a broader scale, the results obtained from the
assay could increase the predictive power of bioinformatic tools
for genetic variation analysis by providing more complete train-
ing datasets for the types of predictive methods discussed in the
previous section. Methods similar to DMS can also be used to sys-
tematically study effects of genetic variation in regulatory regions
on protein expression using fluorescence protein-based assays.

Here, we will highlight a few case studies using DMS and
related methods to study protein or regulatory element function.
In the analysis of Saccharomyces cerevisiae poly(A)-binding protein
(Melamed et al., 2013), strong epistatic effects between substi-
tutions at specific sites were discovered. Although epistasis was
not widespread, this is worrying from a computational model-
ing perspective, as modeling approaches usually do not account
for epistasis. Another important highlight is the identification of
alternative start codons. Although analyzed in previous studies,
the DMS has shown that some amino-acids can be replaced by
methionine and yield functional proteins (Kim et al., 2013). This
biological information can be extrapolated to other studies and is
highly relevant when developing strategies to understand the effect
of mutations, either in vivo or in silico. Strategies similar to DMS
have also been used to systematically study the effects of variation
in transcription factor binding sites and other regulatory elements
such as ribosomal binding sites (Kosuri et al., 2013). These stud-
ies will build the foundation for predicting effects of non-coding
sequence variants on protein expression.

The methods described above allow us to systematically study
the effects of a large number of variants in individual pro-
teins or regulatory regions. In microorganisms, it is also possible
to use a next-generation sequencing-based method called Tn-
seq to systematically study the effect of disruption of a large
number of genomic loci on cellular phenotypes (van Opijnen
and Camilli, 2013). Transposons are mobile DNA elements that
can disrupt a genetic locus by integrating themselves into it
(Figure 1B). Tn-seq, using high density transposon insertion
libraries, can be used to interrogate the function of, for exam-
ple, regulatory elements and specific protein domains in a single
genome-wide assay (van Opijnen and Camilli, 2013). Tn-seq has
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found many applications in microbiology, and it has been used
for the identification of gene function, understanding genome
organization, mapping genetic interactions, or assessing gene
essentiality (van Opijnen and Camilli, 2013; Yang et al., 2014).
Tn-seq does not offer a resolution on the single base-pair level,
but the method can be rapidly used to generate sub-gene-level
information relating, for example, to the essentiality of specific
domains in a protein. This information in turn could be used
to improve variant effect predictions, as variants in essential
domains of a protein would be more likely to be predicted to
be deleterious than variants in non-essential domains of the same
protein.

3. PREDICTING PHENOTYPES FROM GENOTYPES AT THE
GENOME-SCALE

3.1. STATISTICAL AND NETWORK-ORIENTED APPROACHES FOR
PREDICTING PHENOTYPES FROM GENOTYPES

Section 2 focused on the task of predicting the effects of genetic
variation on individual protein function or expression. However,
this is only a small part of a much larger problem, which of pre-
dicting cellular or organism phenotypic effects of all the genetic
variants present in a genome. This requires combing the effects
of variation on the function and expression of all proteins. So far,
there have been surprisingly few efforts to take all genetic variants
discovered in an individual (either a human or a microbial strain)
and attempt to predict how certain phenotypes would be affected
by all these variants together (Burga and Lehner, 2013; Lehner,
2013).

One of the first systematic attempts toward this goal was the
pioneering study by Jelier et al. in S. cerevisiae, where growth phe-
notypes of selected yeast strains under different conditions were
predicted from genetic differences between a reference strain and
the strain of interest (Jelier et al., 2011). This was achieved by
first predicting effects of coding and regulatory variants on pro-
tein function and expression using approaches similar to the one
outlined in the previous section. These variant effect predictions
were then combined into a single phenotypic prediction for the
strain, using published single gene deletion growth phenotyping
data for a yeast reference strain under the same condition. This
approach can be considered to be highly simplistic, as the effects of
multiple genetic variants acting on separate proteins were treated
cumulative. Despite this, the approach still allowed accurate pre-
diction of growth phenotypes across a broad range of conditions.
There have also been a number of other approaches for predicting
broader phenotypic consequences of single variants by mapping
the variant data onto biological networks such as PPI or genetic
networks (Carter et al., 2013). However, these approaches have
typically not attempted to use the whole genotype of an indi-
vidual (i.e., more than one variant at a time) to predict specific
phenotypes.

3.2. USING GENOME-SCALE METABOLIC MODELS FOR INTERPRETING
GENETIC VARIANTS

The phenotype prediction methods described above are
data-driven and use statistical models to predict the effects of
genetic variants in the context of biological networks. However,
for metabolic networks we can go beyond statistical models and

graph-based descriptions to constraint-based models that are scal-
able to the genome-level and incorporate physicochemical, flux
capacity, and reaction directionality constraints [see Price et al.
(2004) for a review of constraint-based modeling]. This type of
mechanistic modeling approach is very useful for understand-
ing genetic changes that affect specific metabolic phenotypes. For
example, the study of SNPs that affect mitochondrial metabolism
(Jamshidi and Palsson, 2006) is a good example of how variant
data can be mapped onto metabolic networks in order to explain
the mechanistic basis of disease phenotypes.

A genome-scale metabolic models are composed of biochemi-
cal reactions, collected from literature and the genome annotation
of an organism. This system of reactions is encoded as a matrix
of stoichiometric coefficients that is usually referred to as stoi-
chiometry matrix1. Assuming metabolism is in a steady-state, i.e.,
metabolite concentrations do not change over time, all fluxes have
to balance each other. These flux-balances constitute linear con-
straints that can easily be analyzed using methods from linear
algebra.

Furthermore, after inclusion of further constraints, e.g., known
uptake and secretion rates and knowledge about reaction direc-
tionality, linear optimization methods can compute biologically
relevant flux vectors that maximize defined objective functions.
For example, growth can be simulated by maximizing the con-
sumption of biomass precursors in empirically determined pro-
portions. This type of analysis is usually referred to as flux bal-
ance analysis [FBA; see Orth et al. (2010) for a comprehensive
introduction to this method].

Global optimal solutions to this linear optimization problems
can be calculated very efficiently using linear programing (compu-
tation times are on a millisecond to second range for genome-scale
models). Thus, one can compute thousands of phenotypes in
a few minutes, simply by changing the constraints of the prob-
lem [see Lewis et al. (2012) for a comprehensive list of available
in silico methods and (Bordbar et al., 2014) for a review of their
applications].

Since the relationship between reactions, enzymes, and genes
(usually referred to as GPR associations) is usually known and
encoded in these models, the effect of a gene knockout can readily
be mapped to the associated reactions by constraining their fluxes
to be zero or by removal from the model. This way FBA can be
used to compute the metabolic phenotype associated with a meta-
bolic gene deletion, making it suitable for the analysis of genetic
variation data that involves deletions or other mutations that lead
to the complete loss of function of enzymes.

Flux balance analysis assumes that knockout strains can recover
to an optimal growth phenotype, which might be unrealistic in
cases where regulatory mechanisms – not modeled explicitly in
these models – might not be able to accommodate the desired
state. Other methodologies [e.g., ROOM (Shlomi et al., 2005),
MoMA (Segrè et al., 2002), MiMBl (Brochado et al., 2012), and
RELATCH (Kim and Reed, 2012)] employ more plausible assump-
tions and have been shown to improve the accuracy of knockout

1The rows and columns of the stoichiometry matrix correspond to metabo-
lites and reactions respectively; negative (positive) factors represent consumption
(production) of substrates (products).
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predictions. For example, MoMA minimizes the euclidean dis-
tance of the wild-type and mutant flux distributions, assuming
that a mutant reaches the closest feasible flux distribution that is
not necessarily optimal. The predictive power of FBA and these
other approaches have been extensively assessed using genome-
wide gene knockout assays (Snitkin et al., 2008) and transposon
insertion libraries (Yang et al., 2014) and have resulted generally
in a high degree of accuracy (Monk and Palsson, 2014).

Constraint-based models have also been applied to predict
epistatic interactions by simulating effects of pairwise gene dele-
tions, but with a significantly reduced accuracy in comparison to
single deletions (Szappanos et al., 2011). Furthermore, simulations
of multiple gene deletions have been successfully applied in devel-
oping design strategies for metabolic engineering by redirecting
flux to desired products (Milne et al., 2009; Blazeck and Alper,
2010).

A number of limiting factors can diminish the ability of
constraint-based models to predict phenotypic effects of loss of
function mutations: (i) missing reactions and erroneous GPRs,
(ii) erroneous flux constraints due to the lack of thermodynamic
or regulatory information, and (iii) the assumption of a fixed
biomass composition that is known to change across growth con-
ditions. Even with these limitations, constraint-based models still
outperform statistical models in predicting consequences of gene
deletions (Szappanos et al., 2011).

Since constraint-based models have demonstrated good ability
to predict phenotypic outcomes of single and multiple gene dele-
tions, these models should also be useful for predicting effects of
other genetic variants. A SNV or indel that is predicted to reduce
the maximal flux rate of an enzyme can be used to constrain the
upper bound of a flux. FBA and similar methods can be used to
compute the effects of these variations on the phenotype, provid-
ing a system-wide overview of the effects caused by the substitution
(Jamshidi et al., 2007). This is a fast and effective way of predict-
ing phenotypes, but it requires that one can estimate the effect
the variant has on the maximum flux rate. Nevertheless, cases of
complete loss of function fall into the same category as gene knock-
outs, and combining the bioinformatic prediction tools discussed
in Section 2.2 with modeling capabilities can be used to integrate
variant data. This approach can also be extended to any number
of variants and genes, with the caveat that epistatic interactions
are currently not captured accurately by the models.

There is currently only a limited number of studies that use
GSMs to systematically explore the effects of genetic variants on
phenotypes. Chang et al. (2013) conducted a study where GSMs
coupled with protein structures of metabolic enzymes (GEM-
PRO2) were used to interpret genetic variant data of Escherichia
coli strains evolved to tolerate high temperatures (Chang et al.,
2013). In this study, a GSM of E. coli was constrained using
experimentally or bioinformatically determined thermostabilities
of metabolic enzymes. Since the maximum flux capacity of a
reaction is proportional to the concentration of active enzyme,
temperature changes can be modeled by varying the flux con-
straints accordingly. This enables the prediction of enzymatic steps

2Genome-scale metabolic models are sometimes also referred to as GEMs.

that are disproportionately temperature sensitive. For the evolved
strains, flux balance analysis was used to explore the adaptation
of the mutated enzymes; constraints associated with mutated pro-
teins were relaxed to explain the experimentally measured growth
rates (Chang et al., 2013). The study did not include separate pre-
dictions of variant effects on protein function, but rather treated
all variants observed in a protein as potentially affecting its activity.

A more recent study by Nam et al. (2014) describes the use
of GSMs for understanding the metabolic effects of cancer muta-
tions. In particular, Nam et al. use genetic mutation information,
gene expression profile data, and a human GSM (Thiele et al.,
2013) to construct context-specific models for different cancer
types. Loss and gain of function were systematically analyzed. Loss
of function was modeled as described above (i.e., constraining
affected reactions’ fluxes to 0). Gain of a function, on the other
hand, was modeled by adding novel promiscuous activities as pre-
dicted by chemoinformatic approaches. This approach allowed the
prediction of potential oncometabolites.

3.3. KINETIC MODELING OF GENETIC VARIANTS
As mentioned in the previous section, constraint-based modeling
does not provide any information about the dynamic behavior
of a metabolic system. A full kinetic description of a biochemi-
cal reaction network can be formulated using ordinary differential
equations (Heinrich and Schuster, 1996). The major advantage of
using kinetic models to study effects of genetic variation lies in
their ability to account for mutations affecting catalytic or regu-
latory sites of an enzyme, causing either a gain or loss of catalytic
activity, or binding sites of allosteric regulators.

Previous studies of red blood cell metabolism provide an
overview on how SNPs can alter kinetic parameters and how
kinetic models can be used to explain metabolic syndromes caused
by enzyme deficiencies (Jamshidi, 2002; Jamshidi and Palsson,
2009). A disadvantage of using kinetic models is that kinetic para-
meters are not available for most enzymes and measuring the
parameters can be challenging. For this reason, building predictive
genome-scale kinetic models remains a challenge (Stanford et al.,
2013). Kinetic models are a viable tool for interpreting genetic
variant data only in specific cases like, for example, the red blood
cell that harbors a relatively simple metabolism.

4. CONSIDERATIONS AND FUTURE DIRECTIONS
4.1. METHODS AND TOOLS TO PREDICT THE EFFECT OF GENETIC

VARIANTS
Many approaches have been explored in the past decade to under-
stand and analyze the effects of genetic variation. In particular,
the most active field has been the application of NGS techniques
to characterize of genetic variation in the context of human dis-
ease. The amount of disease related information makes machine-
learning approaches very suitable for the purpose of predicting
effects of single genetic variants. Since most prediction methods
have been trained and tested with human data, many of the exist-
ing methods do not perform as well or are simply not suited for
the analysis of microbial genetic variants.

The other area where the study of microbial genetic variation
lags behind human genetics is the systematic collection of vari-
ant and phenotyping data. Efforts to collect human genotype and
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phenotype data in a standardized way are currently underway
with databases such as dbSNP and European Variation Archive.
The UniProt database also collects variants found in the proteins
sequences when this information is available. Every day thousands
of new environmental or pathogenic isolates and laboratory devel-
oped microbial strains are sequenced around the world, but there
is no centralized repository for this data in common use. We argue
that it is of utmost importance to collect genetic variant data
together with associated phenotypic data in a standard way for
microbes as well.

All the existing algorithms for variant effect prediction are used
to classify variants to preassigned categories (for example deleteri-
ous or non-deleterious). The approaches that predict deleterious
effects can already be handled as knockouts in modeling their phe-
notypic effects using GSMs, but more subtle effects of mutations
are missed by this approach. In order to improve our ability to
predict phenotypes, there is a need to move beyond classifica-
tion toward quantitative measures of variant effects on individual
protein function. There are numerous features related to protein
function that may be relevant for predicting variant effects: evolu-
tionary and conservation, physicochemical (e.g., charge, polarity,
or free energy), and structural (e.g., secondary structures, spatial
distances between amino-acids or B-factors).

Existing methods for predicting variant effects have been pri-
marily focused on generic predictors for all proteins irrespective of
their function (e.g., enzymes, transcription factors, transporters,
chaperons, etc.) and how do they behave in their environment
(i.e., interaction with other elements: proteins, metabolites, DNA,
etc.). This limits the predictive power of the methods in cases
where additional information is readily available such as the rel-
atively well studied field of microbial metabolism. For example,
for metabolic enzymes, information on how kinetic parameters
are affected by mutations and how these parameters vary between
enzymes from different species is systematically collected in data-
bases such as BRENDA. This type of information could be used to
build improved variant effect predictors specifically for metabolic
enzymes.

4.2. MODELING AND HIGH-THROUGHPUT DATA ANALYSIS
Improvements in genome-wide variant effect prediction can
also come from improving or extending genome-scale modeling
approaches. Recent innovations like GEM-PRO, as discussed in
Section 3.2, fulfill the requirement of 3D protein structures to pre-
dict the effects of genetic variation at the protein level and could
be used to systematically analyze the effect of genetic variation on
a genome-scale for metabolism.

Approximately 10–30% of the genes encoded in a microbial
genome are represented in metabolic GSMs, limiting the utility
of these models for interpreting genomic variant data. Metabolic
GSMs can be extended in a number of ways to increase cov-
erage of the overall set of genes. The transcriptional regulatory
network represented as interactions between transcription factors
and target genes, can help extend the coverage of predictive mod-
els and can be integrated with metabolic GSMs in a number of
ways (Covert et al., 2004; Chandrasekaran and Price, 2010). These
integrated models have been successfully used to make phenotypic
predictions.

Another recent extension of GSMs is ME-Models3. These mod-
els account for the entire machinery needed for gene and protein
expression, providing a higher coverage of cellular functions and
a higher resolution of cellular composition (O’Brien et al., 2013).
ME-models have also been extended further to incorporate pro-
tein translocation from the cytoplasm to the periplasm (Liu et al.,
2014). Currently, most of these extensions of GSMs have only been
developed for E. coli and significant efforts will be required to build
these extended models for other bacteria as well as eukaryotic
model organisms such as S. cerevisiae.

The development of accurate kinetic models of metabolism,
which could be useful for investigating the effects of mutations on
allosteric regulation and catalytic activity, is still a tedious process.
These models are usually limited to small parts of metabolism
focusing on central carbon metabolism (Chassagnole et al., 2002;
Peskov et al., 2012; Machado et al., 2014). There are two main
reasons for these limitations: the models become huge in size and
kinetic information of many enzymes is still unknown. Protocols
(Stanford et al., 2013) and methodologies (Chowdhury et al., 2014)
are being developed to bring kinetic modeling to the genome-scale,
but the resulting models have not yet reached sufficiently mature
stage for use in variant effect prediction.

In comprehensive level, a strategy for building whole-cell mod-
els by combining multiple individual models of different cellu-
lar processes including cell cycle, metabolism, transcription, and
transport has been proposed (Karr et al., 2012). This strategy
that also allows combining models using different representa-
tions (constraint-based, kinetic, and stochastic) was used to build a
functioning whole-cell model of one of the simplest prokaryotes,
Mycoplasma genitalium. Efforts toward building more complete
genome-scale models of microbes will continue as more and more
information is collected and computing power increases. These
models will bring us closer to the goal of genome-wide prediction
of phenotypes from genotyping data.

4.3. OPPORTUNITIES
Genetic engineering tools, such as MAGE (Wang et al., 2009) or
CRISPR/Cas9 (Xu et al., 2014), already allow us to quickly edit
genomes in a precise and accurate fashion at the single base-pair
resolution level at multiple loci simultaneously. These methods
will allow us to map epistatic interactions of variants within a sin-
gle gene and between multiple genes more comprehensively than
before. On the other hand, new in silico tools for predicting variant
effects on phenotypes outlined above open the way to a new style
of modeling at the scale of single nucleotides. These new model-
ing tools will greatly benefit from better training datasets that can
be obtained using MAGE, CRISPR/Cas9 or other genome editing
methods systematically to map epistatic interactions. The applica-
tion of these novel strategies provides a way to fine tune activities
of proteins in the context of complete cellular networks. For exam-
ple, we envision that in the future we will have predictive models
of how engineering of multiple enzymes at the single amino-acid
level would affect the production of a desired metabolite.

To achieve the maximum potential of genome-scale biochem-
ical network modeling and genetic variant analysis, a link must

3Metabolism and Expression models.
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be created between these two fields. The necessary information to
connect both worlds is already there: we know the genes, the pro-
teins, and the reactions. The major limitations are in the current
methods and data sources. On the one hand, we must overcome
the limitations of the tools available to predict variant effects by
allowing more fine grained predictions of how a variant may affect
any given protein function or expression. The usage of protein
folding predictions, for example, has already been established in
metabolic modeling (Chang et al., 2013), and it should be possible
to use tools that predict variant effects on protein stability together
with genome-scale models. On the other hand, we need to improve
biochemical network modeling techniques: this is a evolving field
and in the past decade there have been efforts to standardize the
construction of models (Thiele and Palsson, 2010) and improving
prediction methods by including high-throughput data (Machado
and Herrgård, 2014).

Finally, it should be acknowledged that there will always be
limitations in using solely genomic variant data as the basis for
making phenotypic predictions for specific strains. We may also
need to measure intermediate phenotypes such as transcript, pro-
tein, or metabolite levels for these strains in order to make pre-
dictions of how a given genotype affects a specific phenotype
(Burga and Lehner, 2013). Fortunately enough comprehensive
multi-omic datasets are currently being collected for wild-type
microbial strains, allowing refinement of modeling and bioinfor-
matic approaches for phenotypic prediction (Ishii et al., 2007;
Skelly et al., 2013). Hopefully, systematizing such datasets and a
concerted action between modelers, geneticists, microbiologists,
and bioinformaticians will allow us to achieve the prediction of
changed and novel metabolic capabilities of a microbial strain
from genomic re-sequencing data.
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Sustainable production of target compounds such as biofuels and high-value chemicals

for pharmaceutical, agrochemical, and chemical industries is becoming an increasing

priority given their current dependency upon diminishing petrochemical resources.

Designing these strains is difficult, with current methods focusing primarily on

knocking-out genes, dismissing other vital steps of strain design including the

overexpression and dampening of genes. The design predictions from current methods

also do not translate well-into successful strains in the laboratory. Here, we introduce

RobOKoD (Robust, Overexpression, Knockout and Dampening), a method for predicting

strain designs for overproduction of targets. The method uses flux variability analysis

to profile each reaction within the system under differing production percentages of

target-compound and biomass. Using these profiles, reactions are identified as potential

knockout, overexpression, or dampening targets. The identified reactions are ranked

according to their suitability, providing flexibility in strain design for users. The software

was tested by designing a butanol-producing Escherichia coli strain, and was compared

against the popular OptKnock and RobustKnock methods. RobOKoD shows favorable

design predictions, when predictions from these methods are compared to a successful

butanol-producing experimentally-validated strain. Overall RobOKoD provides users with

rankings of predicted beneficial genetic interventions with which to support optimized

strain design.

Keywords: synthetic biology, systems biology, metabolic engineering, strain design, constraint-based modeling

Introduction

The sustainable production of target compounds such as biofuels and high-value chemicals
for pharmaceutical, agrochemical, and chemical industries is becoming an increasing prior-
ity given their current dependency upon diminishing petrochemical resources. The challenge
of producing such compounds from microbial cells straddles both systems and synthetic
biology. The development of microbial cell factories first requires a comprehensive under-
standing of host cell metabolic functions through metabolic model construction, and subse-
quent in silico experimentation, using systems biology methods. This in silico experimentation
can suggest host cell manipulations that can be applied in vitro using synthetic biology
techniques, leading to increased production of the target compound (Koide et al., 2009).
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Target producing microbial strains are typically designed
using combinations of gene manipulations. These manipulations
include gene additions (often recombinant genes from other
organisms) and removal of genes via knockouts. Furthermore,
over-expression or inhibition of host genes can either increase or
dampenmetabolic flux through the reactions that their expressed
proteins catalyze. Successful application of such strategies can be
used to overproduce host-native targets (Ng et al., 2012; Li et al.,
2014) or produce non-host-native targets (Atsumi et al., 2009;
Angermayr et al., 2014; Yuan et al., 2014). Identifying successful
gene manipulation combinations has traditionally relied on static
network inspection, and experimental trial and error to test the
strategies (Varman et al., 2011). This approach is not optimal as it
limits the amount of network information that can be used, dis-
counts metabolic complexity, and therefore prevents predictions
of less intuitive metabolic modifications (Kitano, 2002).

Through modeling approaches, strain predictions can be
improved by taking into account full metabolic complexity dur-
ing the design phase. Designed strains can also be screened in
silico before they are engineered and tested in the laboratory. The
process involves iterative application of the following steps: (i)
characterization of the host metabolic network; (ii) identification
of gene additions to bridge native metabolism to the target; (iii)
optimization of the modified metabolic network through gene
addition, deletion, overexpression or dampening; (iv) trialing
successful predictions in the laboratory. This process affords the
potential to develop successful strains more cost effectively, and
time efficiently. This work focuses on step (iii), which involves
elements of network characterization in order to identify suitable
optimization strategies.

To characterize the metabolic network, genome-scale mod-
els (GEMs) can be used in conjunction with constraint-based
techniques. GEMs are computer-analyzable, structured knowl-
edge bases of genes, proteins, and metabolites present within
a given organism (Thiele and Palsson, 2010). GEMs therefore
encode the complexity of host cell metabolism and are avail-
able for an increasingly large number of organisms (Büchel et al.,
2013). Constraint based techniques, including flux balance analy-
sis (FBA) and flux variability analysis (FVA), provide quantitative
predictions of cellular behavior such as metabolic flux patterns
and cellular growth rates. These are computed by applying con-
straints, which can be assigned from experimentally measured
nutrient uptake rates (Orth et al., 2010) and intracellular fluxes
(Sauer, 2006), or inferred through interpretation of gene expres-
sion data (Lee et al., 2012). These predictions provide insights
into the metabolic pathways active under different growth con-
ditions (Liao et al., 2011), gene essentiality (Joyce and Palsson,
2008; Dobson et al., 2010; Heavner et al., 2012), and as a result,
the fitness optimality of a given strain (Harcombe et al., 2013).
More detailed introductions to these techniques can be found in
Boxes 1, 2.

Optimization of microbial strains is complex, requiring a bal-
ance between target production and cell viability (Lo et al., 2013).
This makes the problem a multi-objective optimization problem,
whereby metabolic flux of cellular growth and target produc-
tion must be considered simultaneously. Successful optimization

strategies therefore include gene modifications (knockouts, over-
expression, dampening) which re-route flux toward the target
product whilst minimizing the effect on flux toward synthesis of
metabolites required for cellular maintenance.

Amongst the more prominent methods used for identify-
ing knockout targets are OptKnock (Burgard et al., 2003) and
RobustKnock (Tepper and Shlomi, 2010). OptKnock aims to
optimize the maximum flux toward the target product whilst
retaining cell viability, using up to five reactions knockouts to
generate the strain solution. The method does not take into con-
sideration flux variability, and therefore whilst there may be a
reasonable maximal flux yield toward to target product, it is pos-
sible that the minimal flux toward the target product could be
zero. RobustKnock was developed to improve on this shortcom-
ing, by optimizing the minimal flux toward the target product,
again by applying up to five reaction knockouts. Limitations of
these methods include the prediction of only a single gene knock-
out strategy, and also no consideration of over-expression or
dampening targets, which are key aspects of successful strain
design (Dellomonaco et al., 2011). A complementary method,
optGene (later updated to optFlux (Rocha et al., 2010)), can be
used for overexpression analysis. Flux Variability Analysis has
been used in a number of studies for identifying overexpression
targets (Choi et al., 2010; Park et al., 2012), as well as more com-
prehensive strategies (Pharkya and Maranas, 2006; Feist et al.,
2010), although these have not been extensively used. Elementary
modes have also been used to identify suitable knockout targets
(Ballerstein et al., 2012; von Kamp and Klamt, 2014).

To integrate the requirements of predicting both knockouts
and over-/under-expressions, we introduce RobOKoD (Robust
Overexpression, Knockout and Dampening). RobOKoD takes
into consideration metabolite centrality and flux variability in
order to comprehensively identify potential knockouts and gene
over-/under-expressions, ranked by significance, and follow the
schematic presented in Figure 1. This ranking is a strength, as it
allows for further, manual analysis of the system to be used for
strain design.

The performance of RobOKoD was tested against that of Opt-
Knock and RobustKnock in their ability to predict an engineering
strategy for production of butanol from Escherichia coli using the
reverse β-oxidation cycle. The predictions were validated against
a successful, experimentally-validated butanol producing strain
developed by Dellomonaco et al. (2011).

Materials and Methods

Escherichia coli model
The model used in this study is a derivation of a core metabolism
model derived from the iAF1260 reconstruction of E. coli
metabolism proposed by Feist et al. (2007). The core metabolism
model of 95 native reactions was modified to include the β-
oxidation pathway—a total of eight genes catalyzing 30 addi-
tional reactions—to produce the model iNS142 (see Table 1).
This model contains 142 genes, 125 reactions, and 93 metabolites
(Figure 2). The model is available in Supplementary Folder 1 in
SBML format (Hucka et al., 2003).
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BOX 1

Flux Balance Analysis (FBA) allows the computation of fluxes, and cellular growth, by using a set of constraints. FBA uses the stoichiometric matrix (S), which is a matrix

consisting of rows of metabolites (m), and columns of reactions (n). An example based on the toy network in Figure B1a can be seen in Table B1a. The matrix is

usually sparse and filled with positive (negative) coefficients for metabolites produced (consumed) by a reaction. Linear programming is used to compute feasible fluxes

(v) through the network ensuring that a steady state is satisfied (Equation i), subject to a set of constraints (Equation ii) and optimizing (Z) a specific function (Equation

iii, where c is a vector of weights, typically a vector of zeros with biomass production set to 1). The minimum solutions of Equation (i) are elementary modes, which are

minimal sets of enzymes that can operate at steady state, also known as minimal functional units (de Figueiredo et al., 2009). If Equation (i) cannot be satisfied, then

FBA cannot be computed on the system.

Sv = 0 (i)

lbi ≤ vi ≥ ubi, i = 1, . . . , n (ii)

Z = cTv (iii)

In the example network below (Figure B1a), c is given as an uptake rate of 10 units of metabolite a. In the center network Z = Target, and in the right-hand network

Z = Biomass. Reaction bounds are all assigned as lbi = 0, ubi = 1000. Meaning that each reaction through the network is irreversible. Computing FBA for Z = Target

we get 10 units of flux flowing through v2 and v3, producing v_Target = 10 units. For Z = Biomass we get 10 units of flux flowing through v3, v7, and v9, producing

v_Biomass = 10 units.

FIGURE B1a | Illustrating FBA for independent optimisation of target and biomass.

TABLE B1a | Stoichiometric matrix (S).

v1 v2 v3 v4 v5 v6 v7 v8 v9

a −1 0 0 0 0 0 0 0 0

b +1 −1 −1 −1 0 0 0 0 0

c 0 0 +1 0 0 0 −1 0 0

d 0 0 0 +1 0 −1 0 0 0

e 0 +1 0 0 −1 0 0 0 0

f 0 0 0 0 0 +1 0 −1 0

g 0 0 0 0 0 0 +1 +1 −1

bio. 0 0 0 0 0 0 0 0 +1

tar. 0 0 0 0 +1 0 0 0 0

RobOKoD
The RobOKoD method is based on the two following
assumptions:

(1) To achieve target production, carbon transfer within
the network has to be oriented toward pathways that
favor the target. Therefore, changes within the net-
work should aim to reduce carbon loss to peripheral
pathways.

(2) Flux variability of each reaction will differ depending on
whether the reaction is important for growth, generating
the desired product, both, or neither. Therefore, the func-
tionality of each reaction can be inferred by analyzing its
variability.

A simplified schematic of the method based on these two
assumptions can be seen in Figure 1 and additional details are
given in the next sections. First, a metabolite consumption test
(MCT) is applied which computes whether a given metabolite in
the target production pathway demonstrates flux loss to biomass
production. If flux loss is identified, all reactions that consume
that metabolite are flagged as potentially favored targets. Sec-
ond, flux variability analysis profiling (FVAp) is performed to
determine the flux variability of each reaction, at increments of
maximum biomass flux and then at increments of maximum tar-
get product flux. The profiles of each reaction are used to cal-
culate a score from which the importance of each reaction for
growth and target production can be estimated. Finally, MCT
and FVAp results are combined to rank potential modifications.
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BOX 2

Flux Variability Analysis (FVA). Box 1 showed an example of FBA, where a single set of fluxes was identified, which can maximize biomass production (Z). It can be seen

in the central network of Figure B2a, that this set of fluxes was just one of two possible solutions that could be selected to maximize Z—route A and route B. FVA allows

us to garner this additional information by identifying the minimum and maximum flux that each reaction can carry (Equation i). FVA can be implemented at the optimal

state whereby y = 1 (Equation ii), subject to flux constraints for each reaction (Equation iii) as demonstrated in the right-hand network in Figure B2a (Gudmundsson and

Thiele, 2010). Here the main information identified is which reactions are interchangeable. It is also common to compute FVA under suboptimal conditions (i.e., y = 0.95

as used in RobOKoD), which introduces a small amount of flexibility in the system and reduces the chances of optimal pathways being unrealistic when compared

in vivo.

vmax/vminvi (i)

γZ0 ≤ cTv (ii)

vlb ≤ v ≤ vub (iii)

FIGURE B2a | Illustrating implementation of FVA and how it can be used to identify alternative flux optima.

FIGURE 1 | Workflow of RobOKoD, illustrating the iterative application of the methods MCT and FVAp.

Modifications can consist of (i) gene deletions; (ii) changes of
environmental conditions; (iii) gene over-expressions; and (iv)
gene dampenings.

This strategy ensures that reactions that are vital for either
growth or target product production, or those that produce key
metabolites, are not selected as potential knockouts. Conversely,
reactions that (i) significantly divert carbon away from target

production; and (ii) consume a metabolite known to promote
flux loss from target production; are selected preferentially. Once
the first knockout is predicted, the model is modified to block
this reaction, and the same selection process is used to select the
second reaction to delete. This method can be applied iteratively
to predict a number of modifications that should enhance target
production whilst maintaining growth.
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TABLE 1 | Reactions and genes added to the core iAF1260 model to

implement the β-oxidation cycle.

Reaction Gene(s) EC

Thiolase fadA, fadI 2.3.1.16

Hydroxyacyl-CoA dehydrogenase fadB, fadJ 1.1.1.35

Enoyl-CoA hydratase fadB, fadJ 4.2.1.17

Enoyl-CoA reductase fadE 1.3.8.1

Alcohol/acetaldehyde dehydrogenase frmA, adhP, adhE 1.1.1.1

All code was developed in Matlab to maintain compatibility
with the COBRA Toolbox (Schellenberger et al., 2011), and is
available in Supplementary Folder 1.

Metabolite Consumption Test (MCT)
Metabolite Consumption Test (MCT) identifies metabolites
within the optimal target production pathway that are also con-
sumed to produce biomass. TheMCT score is given in a two-step
process. First flux change (Xm) per metabolite (m) is calculated,
then an MCT-value of 1 is given to all reactions that consume
metabolites, denoted by a negative Xm. Xm is calculated accord-
ing to Equation (1). For each metabolite that is featured in the
optimal target producing pathway, for the example network in
Figure 3, that would be metabolites a, b, e, all producing and
consuming reactions are identified. Then per identified reaction,
a unitary constant c is calculated which identifies the reaction
as a producer (+1) or consumer (−1) of the metabolite dur-
ing biomass production, thereby indicating whether there is a
potential flux loss or gain from that reaction. Each reaction is
then weighted (w) according to whether it is vital for both tar-
get and biomass (0); or potentially used (1), or not used (0) for
biomass production. v is the maximum flux through the reac-
tion during biomass production. All reactions that consume a
metabolite m with a negative Xm-value are flagged with a 1 in
the corresponding column (see MCT column in Table 2).

Xm =

n
∑

i= 1

c(i) · w(i) · v(i)
max (1)

FVA Reaction Profile (FVAp)
Prior to FVAp, FBA is applied to predict the maximal theoreti-
cal yield of both biomass (ybm) and target product (ytarget). FVAp
is then performed which computes the flux variability of each
reaction: (1) at different percentage (0–100%) of ybm whilst opti-
mizing target product; and (2) at different percentage (0–100%)
of ytarget , whilst optimizing biomass. By computing FVAp the
flux capacity of each reaction is profiled over a range of target
constraints. The key areas of interest are the extremes of target
production, and biomass production. It can be seen in Figure 5

that the first and last quartile of the x axis for all examples holds
the key information from which beneficial genetic interventions
can be inferred.

Knockout Scoring
Knockouts were selected by computing a knockout ranking score.
The ranking score is calculated for each reaction using FVAp
at different percentage (0–100%) of ybm whilst optimizing tar-
get product (red shaded area). Let us denote with (vmax)

target|p
and (vmin)

target|p the maximal and minimal flux, respectively of
reaction i obtained through FVAp when requiring a percentage
p of ybm to be produced while maximizing for product. Like-
wise let the maximal and minimal flux of reaction i obtained
through FVAp when requiring a percentage p of ytarget to be pro-

duced while maximizing for biomass be defined as (vmax)
biomass|p

and (vmin)
biomass|p, respectively. It must be noted that the per-

centage p refers to either biomass or target product production
requirement depending on the objective function.

A suitable knockout target displays the key characteristics
shown in Figure 5A, where the first quartile of x axis 0-25%
of ybm (red shaded area) carries a lower v(i)max|target , than 75-
100% of ybm, which shows that the reaction is required to carry a
higher flux to sustain optimal biomass production. This charac-
teristic is captured in Equation (2) (biomass reaction activation).
A reduced variability in the fourth quartile also demonstrates a
stronger constraint on the flux to produce ybm, this is captured in
Equation (3) (product variability area). The final knockout scor-
ing RiKOr for each reaction was computed according to Equation
(4), which takes into account the features of both the biomass
reaction activation and product variability area.

Biomass reaction activation:

100%
∑

p1 = 75%

(

v(i)
max

)target
|p1 −

25%
∑

p2=0%

(

v(i)
max

)target
|p2 (2)

Product variability area:

100%
∑

p= 75%

(

v(i)
max

)target
|p−

(

v
(i)
min

)target
|p (3)

RiKOr =
biomass reaction activation

product variability area
(4)

Reactions that obtain a high RiKOr , are identified as a putative tar-
get for knocking out providing it is not a lethal target for the cell.
Identified target reactions for knocking out are first ordered by
RiKOr , before secondary sorting by MCT flags. An example of this
sorting can be seen inTable 2 based on the toy network presented
in Figures 3, 4.

Over-Expression Ranking
The characteristics of a strong over-expression target can be seen
in the lower quartile of x axis in Figure 5B, where at 0-25%
of ybm (red shaded area) v(i)min|target has a higher flux capacity

than 75-100% of ytarget (blue shaded area), v(i)min|biomass (target
extra flux, see Equation 5). A lower variability is also desirable
for optimizing target subject to 0-25% of ybm (target variabil-
ity, Equation 6) as it ensures that the minimum flux the reaction
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FIGURE 2 | Graphical representation of the metabolic network of

Escherichia coli included in iNS142. Red squares represent

reactions, and green, blue, and orange circles represent extracellular

metabolites, intracellular metabolites involved in carbon transfers, and

intracellular metabolites not involved in carbon transfers, respectively.

Directed arcs show irreversible reactions, whereas undirected arcs

show reversible reactions. Water is not shown for clarity of the

layout.

can carry is close to optimum. The final ranking (RiOEx) is deter-
mined using Equation (7), where reactions with the highest RiOex
are the most likely over-expression targets. An example of a
weaker over-expression target (corresponding to a lower RiOEx) is
shown in Figure 5C, which illustrates an over-expression that will
increase flux to both target and biomass. Negative RiOEx represent

potential dampening targets (see Figure 5D), which display the
opposite characteristics.

Target extra flux:

25%
∑

p1 = 0%

(

v(i)max

)target
|p1 −

100%
∑

p2 = 75%

(

v(i)
max

)BM
|p2 (5)
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FIGURE 3 | Metabolite Consumption Test (MCT) identifies metabolites

that are in the optimal target production pathway. The test has two parts,

first a flux change (Xm) score is computed using Equation (1). Taking

metabolite b as an example: v1 produces b but is needed for both target and

biomass production so weight (w1) = 0; v2 consumes b but is needed for

producing the target so w2 = 0; v3 consumes b, so w3 = 1; v4 consumes b,

so w4 = 1. These values are multiplied by the absolute value of maximum flux

calculated using FVA (vimax), and by a constant (c) = ±1 according to whether

the reaction produces or consumes the metabolite. Where Xm < 0 MCT = 1,

where Xm ≥ 0 MCT = 0. Reactions identified as suitable knockout targets

using RobOKoD are sorted firstly by Ri
KOr

and secondly by their MCT flag.

This means that reactions with an equal Ri
KOr

can be differentiated by a

secondary sorting against whether they directly consume a metabolite that is

important for the target production (see Table 2).

TABLE 2 | Using the toy network presented in Figures 3, 4 we computed

the MCT score and Ri
KOr

of the intracellular reactions.

Flux MCT score Ri
KOr

v3 1 0.8523

v4 1 0.8523

v6 0 0.8523

v7 0 0.8523

v8 0 0.8523

v2 0 0

v3, v4, v6, v7, and v8 all have the same FVAp profiles and therefore Ri
KOr

scores. Of the

top ranking reactions within this network v3 and v4 consume a metabolite that is impor-

tant for target production. These reactions are then sorted as a higher priority within the

equally ranked reactions to select as a knockout target.

Target variability:

25%
∑

p= 0%

(

v(i)
max

)target
|p−

(

v
(i)
min

)target
|p (6)

RiOEx =
target extra flux

target variability
(7)

OptKnock and RobustKnock
The OptKnock algorithm (Burgard et al., 2003) is available in
the COBRA Toolbox for Matlab, and RobustKnock algorithm
is available as a Matlab script from the original paper (Tepper
and Shlomi, 2010). Both are repackaged in Supplementary File 1
allowing for reproduction of the following results.

Results

As a case study, RobOKoD was applied to design an E. coli strain
with a reverse β-oxidation cycle for butanol production. These
results can be recreated by unzipping the code in Supplementary
File 1, and running the test script iNS142_butanol.m in Matlab
[requires the COBRA Toolbox (Schellenberger et al., 2011), and
if RobustKnock is to be tested, the Tomlab solver (Tomlab Opti-
mization Inc., Västerås, Sweden)]. This test script runs RobOKoD
over a maximum of five iterations of knockout scoring, imple-
menting the highest scoring knockout, generating a results doc-
ument and reaction FVA profile plots for each iteration in the
directory iNS142_butanol_results, and outputting an updated
SBML model in which the knockouts have been implemented.
It subsequently runs over-expression ranking, again generating
output in the iNS142_butanol_results directory. OptKnock and
RobustKnock are then run in order to compare predictions from
each method. Knockout scoring, over-expression rankings, and
FVA profiles for all relevant reactions (such as those illustrated in
Figure 3) can then be inspected manually.

MCT allows the identification of reactions which consume
metabolites present in the optimal target production pathway
that demonstrate flux loss toward biomass. These reactions are
flagged in the listing of potential knockouts with a value of 1,
allowing these reactions to be identified preferentially, out a set
of reactions with the same knockout score. In this network, pyru-
vate was identified as a key metabolite where flux loss to biomass
production could occur, 11 reactions were then identified that
consume pyruvate.

FVA profiles representative of the different situations com-
monly encountered are shown in Figure 5. Knockout targets
(Figure 5A) are identified based on fixed biomass optimal tar-
get FVAp (red profile). As the percentage of fixed biomass
increases, the flux through the reaction increases to accommo-
date a higher biomass requirement, and the variability of the
flux narrows. Strong overexpression targets (Figure 5B) show the
opposite behavior of knockouts, whereby the flux through the
reaction reduces as the percentage of fixed target is reduced as
biomass is optimized (blue profile). Weak overexpression targets
(Figure 5C) show similar characteristics, but are not required

to carry a flux for the target to be optimized. Dampening tar-
gets (Figure 5D) are characterized by their ability to carry higher

flux through a reactions at low percentage of fixed target with
optimized biomass, than at both a high percent of fixed target
and optimized biomass, and a low percent of fixed biomass and

optimized target.
It is noted that some reactions obtain identical scores, hence

their deletion are predicted to have the same impact on the sys-
tem. This is for instance the case for two consecutive reactions of
an unbranched, linear pathway. More generally, this is observed
for the subsets of reactions that carry perfectly correlated fluxes
(Heiner, 2009; Feist et al., 2010). A feature of RobOKoD is
therefore its ability to identify such subsets of reactions. The cor-
responding knockouts are expected to result in a similar phe-
notype, hence the modification to perform for such subsets of
reactions should be evaluated in the light of technical consid-
erations. The most practical modifications should be selected,
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FIGURE 4 | FVA is performed to compute the flux variability of

each reaction: (1) at different percentage (0–100%) of ybm
whilst optimizing target product; and (2) at different percentage

(0–100%) of ytarget, whilst optimizing biomass. Each iteration

develops a profile of v
(i)
min and v

(i)
max across the range of flux space.

In this example an input flux of 10 units through v1 is fixed, and

the network optimized to situation 1 (top profile), or 2 (bottom

profile).

whilst the resulting strain should still be amongst the optimal
producers.

For comparison purpose, the well-established algorithms Opt-
Knock and RobustKnock were applied on the same model to
predict the optimal strain for butanol production. For each
method, the maximum number of modifications was fixed to
five, since constructing such a strain can still be managed
experimentally. The optimal producer strains predicted by each
method are listed in Table 3 and are compared to the most effi-
cient producer strain which has been experimentally validated
(Dellomonaco et al., 2011). OptKnock and RobustKnock pre-
dicted strains that were theoretically unable to produce butanol
during growth, and in the case of OptKnock, not viable for
growth.

Table 4 compares the functionality modifications of the pre-
dicted in silico cells, and the experimental strain. It appears
that RobOKoD automatically captures most of the functional
modifications experimentally carried out. In particular, it pre-
dicted that fermentation pathways (pfl, ldhA) should be knocked
out to avoid diversion of carbon and reduced cofactors toward
by-products of poor interest. Moreover, by highlighting the com-
peting interests of oxygen uptake pathway between the produc-
tion of biomass and butanol, RobOKoD was able to indicate
an anoxic condition change, similar to the experimental strain

which knocked-out fumarate reductase and was grown under
microaerobic conditions.

In addition to the knockout predictions, RobOKoD was also
able to predict over-expression and dampening targets. It pre-
dicted that enzymes catalyzing the reactions associated with the
reverse β-oxidation cycle should be over-expressed, consistent
with the experimental strain where the activity of transcriptional
inhibitors of this pathway are dampened (fadR, atoC(c), crp∗,
and 1arcA strains). Moreover, RobOKoD also predicts that a
number of transport reactions (or rather genes encoding the rel-
evant transport proteins) should be dampened, hence providing
additional modifications that could enhance butanol production.
These dampening predictions, less intuitive, were not carried
out in the experimental strain and have not been experimentally
verified.

Table 5 compares the molar production of butanol per mole
of glucose uptake, when the objective of the cell is to opti-
mize biomass. It shows that RobOKoD predicted the most suc-
cessful butanol strain design, with molar ratio values similar
to that achieved in the experimental strain. Neither OptKnock
or RobustKnock predicted successful strains, and in the case of
OptKnock, the strain was predicted to be no longer viable.

The strain predicted by RobOKoD was developed iteratively
by automatically knocking out the highest ranked suggested
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FIGURE 5 | Typical FVA profiles characteristic of knockout targets

(A), strong overexpression targets (B), weak overexpression

targets (C), and dampening targets (D). The red profiles show FVAp

of each reaction at different percentages of (0–100%) of ybm whilst

optimizing target product. The blue profiles show FVAp at different

percentages of (0–100%) of ytarget whilst optimizing biomass. Knockout

targets (A) are identified using (75–100%) of ybm (corresponding to the

fourth quartile of x axis) with target optimization: where v
(i)
max|target

increases as ybm increases, coupled with a reduced variability between

v(i)max|target and v(i)min|target. Strong overexpression targets (B) are

identified using (0–25%) of ybm optimizing target, and (75–100%) of

ytarget optimizing biomass (corresponding to the first quartile of x axis),

where v(i)max|target (red) has a higher flux carrying capacity than

v(i)max|biomass (blue), again with reduced variability between v(i)max|target

and v(i)min|target. Weak overexpression targets (C) show similar

characteristics, with a smaller difference between v(i)min|target and

v(i)min|biomass and a larger variability between v(i)min|target and

v(i)min|target. Profiles of dampening targets (D) are the reverse of

overexpression targets.

TABLE 3 | Gene modifications, based on the reactions predicted by the

three computational methods, and their comparison with those

successfully applied experimentally (Dellomonaco et al., 2011).

Method Gene modifications [1gene(reaction)]

OptKnock 1eutE(ACALD) 1nuoH(NADH16) 1amtB(NH4t) 1pflA(PFL)
1pitB(PIt2r)

RobustKnock 1lldP(D_LACt2) 1focA(FORti) 1pgi(PGI) 1satP(SUCCt2_2)
1sucD(SUCOAS)

RobOKoD Anoxic conditions(O2t), 1pflA(PFL), 1eutE(ACALD), 1dld(LDH_D),
fadA+, yqeF+

Experimental RB02(fadR atoC(c) crp* 1arcA 1adhE 1pta 1frdA)

1yqhD 1eutE yqeF+ fucO+

knockout target, that also was flagged by MCT as a potential
route for flux loss from the butanol production pathway. This
was to prevent selection bias for trialing its validity. It is strongly

TABLE 4 | Functional similarities captured in the gene manipulations

predicted by each method.

Gene Function OptKnock RobustKnock RobOKoD

1adhE Alcohol/acetaldehyde

dehydrogenase

X

1pta Phosphotransacetylase X

1frdA Fumarate reductase

(respiration)

X

1yqhD Alcohol dehydrogenase X

1eutE Acetaldehyde

dehydrogenase

X X

recommended to use the method more flexibly, looking at the
FVAp graphs that are produced for the reactions, knowledge of
the organism, and the scorings in order to decide on suitable
knockouts.
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TABLE 5 | Molar ratio of glucose:butanol produced in predicted strains.

Method Molar ratio (glucose:butanol)

OptKnock 1:0

RobustKnock 1:0

RobOKoD 1:0.9

Experimental 1:0.8

Discussion

These results illustrate two limitations of OptKnock and Robust-
Knock. First, the knockout predictions are deterministic, not
ranked, and a unique set of knockouts is predicted. As shown by
these results, different knockouts which may give similar pheno-
types cannot be identified by these algorithms. With RobOKoD,
a score is attributed to each modification, and one can readily
check whether some modifications are expected to result in sim-
ilar phenotypes and select those that can be more easily imple-
mented experimentally. Secondly, OptKnock and RobustKnock
are unable to predict over-expression or dampening strategies,
which are of prime interest to increasing or decreasing flux
down key pathways, respectively. However, it is argued that using
a range of available techniques may help to build up a more
comprehensive understanding of the system, and comparing the
results obtained by different methods (e.g., Burgard et al., 2003;
Choi et al., 2010; Tepper and Shlomi, 2010; Park et al., 2012)
would be the most valuable strategy for designing producing
strains.

It is also important to note that constraint-based modeling is
not appropriate in all instances for prediction of suitable strains
for target molecule production. FBA, a key method of assess-
ing the functionality of a given strain, has the flaw whereby side
reactions are not predicted to be carrying flux in silico as this
would reduce the optimal resources that are routed to growth. An
example being FBA run on yeast not producing ethanol under an
intuitively appealing set of constraints (Westerhoff et al., 2009).
This means that only solutions for target production pathways
which are heavily coupled with growth can be identified. This
is not an issue in most cases since a viable strain is desired
but limits the applicability of this framework in particular cases,
for example, when there is a need to decouple production from
growth. It also means that the false negative rate for in silico
strain predictions is high, with many successful laboratory strains
not appearing so when translated to an in silico model. In future
the field needs to look more toward different ways of predicting
metabolic fluxes. Combining kinetic and stoichiometric models
of the metabolic system (Chowdry et al., 2014) provides addi-
tional levels of constraints (including enzyme inhibition and acti-
vation) and is expected to improve the prediction of effective
interventions. A longer term goal is therefore the production of
detailed, large-scale kinetic models of the whole metabolic system
(Stanford et al., 2013).

When running OptKnock and RobustKnock, it was clear
that OptKnock was more user friendly, owing to it being
made available in the COBRA Toolbox for Matlab and
therefore applicable to a number of MILP (mixed integer linear

programming) solvers. This was not the case for RobustKnock,
which required a non-standardized model structure and the use
of a specific solver, Tomlab, which has limited free access. An
additional goal of designing RobOKoDwas therefore to ensure its
accessibility and robustness by reusing freely-accessible solvers,
extensively validated COBRA Toolbox methods, and standard-
ized model formats such as SBML.

A necessary future direction for both RobOKoD and existing
tools such as OptKnock and RobustKnock will be to move to
making predictions regarding knockouts, over-expressions, etc.
at the level of the gene, rather than, as currently, at the level of the
reaction. Due to the presence of both isoenzymes and promiscu-
ous enzymes, it is clear that there is not a 1:1 mapping between
gene and reaction. Consequently, manipulation of a given gene is
likely to affect a number of reactions. Modification of this method
to consider the gene-protein-reaction (GPR) relationships that
are present in many genome-scale metabolic models will be a
priority for future development.

To summarize, RobOKoD provides an additional tool to
aid the task of designing strains for the (over)production of
target products. It is able to predict and rank knockouts, over-
expressions, and dampening targets. While predicting an opti-
mized set of gene modifications to implement, unlike other
methods, RobOKoD also provides lists of candidate modifica-
tions, along with graphical flux variability profiles, allowing the
user to manually validate the set of predictions. Such a flexi-
ble approach—particularly when used in conjunction with other
analysis methods mentioned previously—will allow for sensible
gene manipulation approaches to be taken into the laboratory.
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Reaction Abbreviations

Model reaction ID Reaction name EC

ACALD Acetaldehyde dehydrogenase (acetylating) 1.2.1.10

er_027 Alcohol dehydrogenase (to butanol) 1.1.1.1

LDH_D D-lactate dehydrogenase 1.1.1.27

NADH16 NADH dehydrogenase (ubiquinone) 1.6.5.3

NH4t Ammonia reversible transport n/a

O2t O2 transport via diffusion n/a

PFL Pyruvate formate lyase 2.3.1.54

PIt2r Phosphate reversible transport via proton symport n/a
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Computational strain-design prediction accuracy has been the focus for many recent efforts
through the selective integration of kinetic information into metabolic models. In general,
kinetic model prediction quality is determined by the range and scope of genetic and/or
environmental perturbations used during parameterization. In this effort, we apply the k-
OptForce procedure on a kinetic model of E. coli core metabolism constructed using the
Ensemble Modeling (EM) method and parameterized using multiple mutant strains data
under aerobic respiration with glucose as the carbon source. Minimal interventions are
identified that improve succinate yield under both aerobic and anaerobic conditions to
test the fidelity of model predictions under both genetic and environmental perturbations.
Under aerobic condition, k-OptForce identifies interventions that match existing experimen-
tal strategies while pointing at a number of unexplored flux re-directions such as routing
glyoxylate flux through the glycerate metabolism to improve succinate yield. Many of the
identified interventions rely on the kinetic descriptions that would not be discoverable by a
purely stoichiometric description. In contrast, under fermentative (anaerobic) condition, k-
OptForce fails to identify key interventions including up-regulation of anaplerotic reactions
and elimination of competitive fermentative products. This is due to the fact that the path-
ways activated under anaerobic condition were not properly parameterized as only aerobic
flux data were used in the model construction. This study shed light on the importance of
condition-specific model parameterization and provides insight on how to augment kinetic
models so as to correctly respond to multiple environmental perturbations.

Keywords: computational strain design, kinetic model, bilevel optimization, succinate overproduction, model
parameterization

INTRODUCTION
Engineered microorganisms are increasingly being used as cellular
factories for the bio-production of chemicals of interest (Curran
and Alper, 2012; Hong and Nielsen, 2012; Lee et al., 2012). Keep-
ing pace with genome editing techniques for strain design, several
computational tools have been developed to identify system-wide
genetic modification strategies that improve the yield of targeted
biochemicals (Pharkya et al., 2004; Kim et al., 2011; Xu et al., 2011;
Maia et al., 2012; Cotten and Reed, 2013a). In general, these tools
rely on a stoichiometric representation of a metabolic network and
solve bilevel optimization problems to suggest prioritized inter-
vention strategies that divert metabolic flux towards the chemical
of interest (Segre et al., 2002; Burgard et al., 2003; Kim and Reed,
2010; Rocha et al., 2010; Tepper and Shlomi, 2010). The method-
ology and comparative benefits of each procedure is discussed in
detail elsewhere (Zomorrodi et al., 2012). However, key method-
ological impediments of these approaches are the stoichiometry-
only representation of metabolism and the on–off representa-
tion of regulation. This may lead to a metabolite concentration,
enzymatic activity, and metabolic regulation-agnostic interven-
tion strategies. Therefore, identified flux re-direction predictions
(especially up/down flux modulation) are sometimes difficult to

translate into actionable genetic interventions. For example, it is
unclear if a desired metabolic flux up-regulation is achievable or
even consistent with enzyme kinetics or physiological metabolite
concentrations.

Some of the shortcomings of genome-scale stoichiometric
models in quantifying the effect of concentration and enzyme
levels on reaction throughput and regulation can be addressed by
kinetic models of metabolism (Mahadevan et al., 2002; Fleming
et al., 2010; Jamshidi and Palsson, 2010; Smallbone et al., 2010;
Feng et al., 2012). Kinetic models yield a system of ordinary dif-
ferential equations (ODEs) that describe the time evolution of
metabolite concentrations, enzyme activities, and reaction fluxes.
Several efforts have been made in recent years for improving
the accuracy of stoichiometry-based tools by partially integrating
kinetic information (Nikolaev, 2010; Song and Ramkrishna, 2012;
Angermayr and Hellingwerf,2013; Almquist et al., 2014). However,
most of these procedures are aimed towards improved metabolic
phenotype prediction through ad hoc constraints (Cotten and
Reed, 2013b) rather than strain design. The k-OptForce procedure
(Chowdhury et al., 2014) extends the previously developed strain-
design OptForce algorithm (Ranganathan et al., 2010) by inte-
grating all available mechanistic details afforded by kinetic models

www.frontiersin.org January 2015 | Volume 2 | Article 76 | 85

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/about
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00076/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00076/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00076/abstract
http://www.frontiersin.org/people/u/182061
http://www.frontiersin.org/people/u/157528
http://community.frontiersin.org/people/u/199503
mailto:costas@psu.edu
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Khodayari et al. Kinetic model-driven strain design

within a constraint-based optimization framework tractable even
for genome-scale models. Reactions with available kinetic descrip-
tions yield (generally unique) steady-state flux values while the
remaining reactions are only constrained by stoichiometric rela-
tions. Genetic intervention strategies consistent with restrictions
imposed by maximum enzyme activity,bounds on metabolite con-
centrations and kinetic expressions are identified using a bilevel
Mixed Integer Nonlinear Program (MINLP) optimization frame-
work (Chowdhury et al., 2014). Examples addressed in Chowd-
hury et al. (2014), however, accounted for only a handful of
reactions with kinetic expressions.

In this paper, we apply k-OptForce procedure for the recently
published large-scale kinetic model of E. coli core metabolism
(Khodayari et al., 2014). The kinetic model includes 138 reactions,
93 metabolites, and 60 substrate-level regulatory interactions and
accounts for glycolysis/gluconeogenesis, pentose phosphate (PP)
pathway, TCA cycle, major pyruvate metabolism, anaplerotic reac-
tions, glyoxylate shunt, Entner–Doudoroff (ED) pathway, and a
number of reactions in other parts of the metabolism. The model
was parameterized using the ensemble modeling (EM) formal-
ism (Tran et al., 2008) by simultaneously satisfying normalized
flux data per 100 mmol of glucose uptake (for approximately 25
reactions per mutant) for the wild-type and seven single gene
deletion mutants, under aerobic condition (Ishii et al., 2007).
The EM approach decomposes all reactions into elementary steps
bypassing the need of detail kinetic expressions. First, an ensem-
ble of kinetic models is generated by uniformly sampling reaction
reversibilities and enzyme fractions following different time tra-
jectories but all reaching the same steady-state flux values (Tan
and Liao, 2012). Next, a Genetic Algorithm (GA) implementa-
tion is used to “swap” kinetic parameterizations between models
in the ensemble so as to minimize the deviations from all set of
mutant network fluxes. Models constructed using flux data for
a single strain do not always perform well in predicting dele-
tion strain metabolic phenotypes (Jouhten, 2012; Villaverde et al.,
2014). Unlike stoichiometric models that could reveal physiologi-
cally relevant flux re-directions in response to perturbations by
re-optimizing biomass yield, kinetic models must be endowed
beforehand with all known substrate-level regulatory interactions
to capture metabolic responses to genetic/environmental pertur-
bations (Jouhten, 2012; Heijnen and Verheijen, 2013; Villaverde
et al., 2014). Note that while the EM based elementary mode
analysis was used for strain design in an earlier effort (Flowers
et al., 2013), the limited scope of the model may fail to capture
genome-scale flux re-directions.

The k-OptForce procedure (Chowdhury et al., 2014) was used
to identify the minimal interventions that maximize the yield of
succinate production using a hybrid kinetic (Khodayari et al.,
2014) and stoichiometric iAF1260 (Feist et al., 2007) description
of E. coli metabolism. Succinate was chosen as the target bio-
product as there exists numerous experimental strain-engineering
studies to compare the suggestions of k-OptForce procedure (Lee
et al., 2005; Cao et al., 2011; Tan et al., 2011). This study was car-
ried out under both aerobic and anaerobic conditions to assess
the fidelity of the kinetic model when used to make predic-
tions for a different environmental condition (i.e., anaerobic)
than the one parameterized for (i.e., aerobic). The goal was to

quantify the reduction in prediction quality moving from aero-
bic to anaerobic under glucose minimal condition and suggest
model modifications that remedy these shortcomings. k-OptForce
recapitulated existing strategies while also pointing at promising
but currently unexplored interventions. In addition, results under
anaerobic condition indicate that the kinetic model needs to be re-
parameterized with mutant flux information involving a reversed
TCA cycle routing flux towards succinate. A number of regulatory
modifications of the kinetic model are also found to be neces-
sary to better reflect metabolic fluxes associated with anaerobic
succinate production. These include activation of fermentation
pathways and pyruvate formate lyase (PFL) by key regulatory pro-
teins FNR (fumarate and nitrate reductase regulation) and ArcA
(aerobic respiratory control).

MATERIALS AND METHODS
Using k-OptForce, the genome-scale stoichiometry matrix is
divided into two parts: reactions with stoichiometric informa-
tion only (J stoic), and those having additional kinetic information
(J kin). A schematic representation of the framework is depicted in
Figure 1. The kinetic information was extracted from the kinetic
model of E. coli central metabolism developed in Khodayari et al.
(2014). The number of reactions in the kinetic representation is
a compromise between reduction of solution space using kinetic
data and run time for solving the non-linear expressions of mass
conservations. Upon exclusion of the exchange/transport reac-
tions and elimination of reactions not involved in succinate syn-
thesis (such as glycogen pathway), a subset of the kinetic model was
selected containing 36 reactions and 31 metabolites. The result-
ing model includes reactions from glycolysis/gluconeogenesis,
PP pathway, TCA cycle, anaplerotic reactions, glyoxylate shunt,
and ED pathway with available experimental data during model
parameterization. This model was finally supplemented with the
stoichiometric iAF1260 model of E. coli (Feist et al., 2007).

Glucose minimal condition were simulated by restricting glu-
cose uptake flux (which serves as a basis for the fluxes in the
metabolic network) to −100 mmol gDW−1h−1. Oxygen uptake
was limited to −200 mmol gDW−1h−1 for aerobic condition and
set to zero for fermentative condition. Regulatory information for
both aerobic and anaerobic conditions was imported from the
supplementary material of iAF1260 model (Feist et al., 2007). The
minimum production levels of succinate was set at 90% of its theo-
retical maximum for each condition (i.e., 135 mmol gDW−1h−1 in
aerobic and 149 mmol gDW−1h−1 in anaerobic conditions) while
a minimum level of biomass production equal to 10% of its the-
oretical maximum was simultaneously imposed (i.e., 0.965 h−1 in
aerobic and 0.303 h−1 in anaerobic conditions). The k-OptForce
algorithm was implemented in the same stepwise procedure as
described previously [see Methods in Chowdhury et al. (2014) for
details]. At first, we identify all reactions that must depart (hence
called MUST sets) from the reference phenotype to realize the
targeted levels of overproduction of the desired chemicals under
stoichiometric and kinetic constraints. Subsequently, we solve a
bilevel optimization formulation (see Figure 1E) where we maxi-
mize the target flux by gradually increasing the total number (κ) of
enzymatic interventions (for reactions in J kin) and/or flux manip-
ulations (for reactions in J stoic) from the MUST sets. Starting from
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FIGURE 1 | A schematic representation of the framework.
(Continued)
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Khodayari et al. Kinetic model-driven strain design

FIGURE 1 | Continued
(A) The reactions with kinetic descriptions are shown in blue. (B) The
reactions are first decomposed into their elementary steps. (C) Elementary
kinetic parameters are expressed as a function of reaction reversibilities and
enzyme fractions. Reaction reversibilities and enzyme fractions are sampled
to construct an ensemble of models, for any given reaction. (D) A genetic

algorithm (GA) implementation identifies the optimal combination of the
sampled parameters by minimizing the deviation from experimentally
measured flux data for multiple mutant strains [see Methods of Khodayari
et al. (2014)]. (E) The k-OptForce procedure identifies a minimal set of
interventions that maximizes the yield of targeted product [see Methods of
Chowdhury et al. (2014)].

a single intervention, we stop this procedure when the target flux
does not improve appreciably with additional interventions. The
optimization formulations for the characterization of the overpro-
ducing network and identification of the FORCE sets were altered
from the original procedure to incorporate the kinetic information
of each reaction in J kin as a function of the decomposed expres-
sions of its elementary steps (see Figure 1) instead of directly
manipulating the reaction enzyme activities (vmax). Additional
constraints were imposed to express the flux of each reaction in
J kin as the difference of the forward and reverse reactions for each
elementary step. The sum of individual enzyme fractions e is rep-
resented by etot (i.e., normalized total enzyme concentration) that
is equal to one in the reference (wild-type) strain, but varies when
up/down-regulated in mutant strains. Here, we allowed the etot of
each reaction to vary between zero (i.e., removal of its activity) and
a 10-fold up-regulation in its expression to account for individ-
ual enzymatic perturbations in mutant strains. Likewise, the same
limits of variation were set for the individual enzyme fractions e
for each reaction.

The metabolite concentrations were allowed to vary within five-
fold from their steady-state values in the reference phenotype. The
FORCE set of interventions was identified in a two-step proce-
dure [see Methods of Chowdhury et al. (2014)]. The first step
identified the reactions in J kin (using binary variables ykin) whose
enzymatic activity (i.e., etot) must be altered from their reference
level to achieve the required flux re-distribution towards succi-
nate. The lower and upper bounds on etot (i.e., etot,lb and etot,ub)
are functions of ykin and the maximum fold-change z, as follows:

etot,lb
j
=

{
1, if j ∈ J kin

\MUSTL

1− ykin
j , if j ∈ J kin

∩MUSTL

etot,ub
j

=

{
1, if j ∈ J kin

\MUSTU

(z − 1) ykin
j + 1, if j ∈ J kin

∩MUSTU

If selected for down-regulation (i.e., when the reaction is part of
MUSTL), etot is allowed to vary from zero (etot,lb

= 0 for ykin
= 1)

to its reference expression. Otherwise, etot is set to one. Likewise,
if selected for up-regulation (i.e., when the reaction is part of
MUSTU), etot is allowed to vary from one to a z-fold overex-
pression (etot,ub

= z for ykin
= 1). The MINLP formulation for the

first-step was initially solved using a local solver [DICOPT (Gross-
mann et al., 2002)], and the results were used as inputs to find
the global optimum using the BARON solver (Sahinidis, 1996).
Subsequently, by fixing the fluxes in J kin, the second step identi-
fied additional flux manipulations in J stoic (using binary variables
y stoic) while assuming a worst-case scenario for the inner objective

function. The relation of the modified bounds
(

v lb
j , vub

j

)
on the

reaction fluxes in J stoic with y stoic is similar to that explained for

the first step of FORCE set identification for the implementation
of up/down-regulations and/or reaction removals [see Methods
of Chowdhury et al. (2014)].

RESULTS
EXAMINING THE PREDICTIVE PERFORMANCE OF THE KINETIC MODEL
The perturbed phenotype prediction accuracy of the parameter-
ized kinetic model was first assessed for five different engineered
strains under aerobic condition. The experimentally reported
product yield was compared against the kinetic model and FBA
predictions (see Table 1). A twofold up-regulation for small fold-
change, and 10-fold up-regulation for a high fold-change are used
to express enzyme up-regulation, whenever such information is
not available in the relevant literature. The enzyme level manip-
ulation in the kinetic model is achieved by changing etot for each
particular enzyme. Gene deletions are implemented by setting the
etot of the encoded enzyme to zero.

The kinetic model closely matches the succinate producing
strain while FBA over-estimates it because the former captures
the feed-forward inhibition on glyoxylate shunt by intermedi-
ates phosphoenolpyruvate (pep) (MacKintosh and Nimmo, 1988;
Ogawa et al., 2007) and isocitrate (icit) (Hoyt et al., 1988). For both
L-serine and L-threonine, FBA directs all carbon flux towards bio-
mass predicting little to no amount of product formation. The
kinetic model over-estimates L-serine yield as product inhibition
of the phosphoglycerate dehydrogenase (PGCD) (Grant, 2012; Li
et al., 2012; Wang et al., 2014) is not captured in the kinetic model
(see Figure 2A). In contrast, the kinetic model under-estimates
the yield of L-phenylalanine production. A possible reason is that
the feed-forward activation of pep on 5-enolpyruvylshikimate-3-
phospahte synthase (EPSPS) (Gruys et al., 1992) is absent in the
kinetic model (see Figure 2B). In addition, due to lack of exper-
imental data during parameterization, the model over-estimates
the inhibitory effect of phosphate on transaldolase (TALA) activ-
ity (Sprenger et al., 1995), which further restricts flux towards
l-phenylalanine production. The naringenin engineered strain
productivity is better reflected by the kinetic model as FBA does
not capture the feedback inhibition of acetyl-CoA on phosphoglu-
comutase (PGM) activity (Sanwal et al., 1972; Duckworth et al.,
1973) that limits flux towards the flavanone pathway.

OVERPRODUCTION OF SUCCINATE UNDER AEROBIC CONDITION
Both OptForce and k-OptForce adopt similar strategies for re-
directing flux towards succinate under aerobic condition by rout-
ing more flux through isocitrate lyase (ICL), increasing flux
through phosphoenolpyruvate carboxylase (PPC), and convert-
ing the intermediate glyoxylate back to glycerate 2-phosphate
(2pg) using glycerate metabolism (see Figure 3). However, the
number of required interventions varies. While OptForce sug-
gests that only three interventions are required to achieve a
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Table 1 | A comparison between model predictions and experimental yields for five different products in E. coli under aerobic condition.

accoa

g3p

13dpg

3pg

2pg

pep

oaa

mal-L

pyr

g6p

f6p

x5p

ru5p

r5p

cit

acon-C

akg

fum

succ

dhap

fdp s7pg3p

f6pe4p

pyr

pepglc-D

icit

glx

coa

2ddg6p

g3p

L-Serine

naringenin 

L-threonine 

succinate

L-phenylalanine 

6pgl 6pgc

succoa

Target product Interventions with

enzyme-fold-change

Yield (mol product/mol glucose)

FBA Kinetic model Experimental data

Succinate ∆SUCD 0.99 0.52 0.6 (Lin et al., 2005b)

ICL 10↑

PPC 2↑

L-serine ∆PDH 0–0.01 0.81 0.48 (Lai et al., 2012)

PGCD 10↑

PGK 2↑

L-threonine PPC 2↑ 0–0.04 0.52 0.59 (Lee et al., 2007)

ICL 2↑

L-phenyl alanine ∆PYK 0.44 0.11 0.36 (Baez-Viveros et al., 2007)

DDPA 10↑

TKT1 10↑

Naringenin ∆SUCOAS 0.43 0.07 0.11 (Xu et al., 2011)

∆FUM

ACCOAC 10↑

PDH 10↑

GAPD 10↑

The engineering strains are simulated using both the kinetic model and FBA (max biomass).

SUCD, succinate dehydrogenase; ICL, isocitrate lyase; PPC, phosphoenolpyruvate carboxylase; PDH, pyruvate dehydrogenase; PGCD, phosphoglycerate dehydroge-

nase; PGK, phosphoglycerate kinase; PPC, phosphoenolpyruvate carboxylase; PYK, pyruvate kinase; DDPA, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase;

TKT, transketolase; SUCOAS, succinyl-CoA synthetase; FUM, fumarase; ACCOAC, acetyl-CoA carboxylase; GAPD, glyceraldehyde-3-phosphate dehydrogenase.

FIGURE 2 | Biosynthesis pathways for (A) L-serine and (B) L-phenylalanine. The suggested up-regulations and knock-outs are shown with green color
and red crosses, respectively. The reactions absent in the current kinetic model are shown in gray. Missing regulatory interactions (i.e., activation and
inhibition) are shown with dashed lines.

succinate yield of 90% of its theoretical maximum, k-OptForce
suggests that additional direct up-regulations in the glycolysis
and TCA cycle are necessary. For example, k-OptForce suggests
at least ninefold up-regulation of ICL enzyme activity to pull TCA
cycle flux from icit towards succinate. Likewise, up-regulation
of enolase (ENO) enzyme by twofold of its reference activity is

required to push more glycolytic flux towards succinate precur-
sors oxaloacetate (oaa) and acetyl-CoA. Regular OptForce suggests
that up-regulation of aconitase (ACONT) and down-regulation
of isocitrate dehydrogenase (ICDH) are sufficient to indirectly
increase flux through PPC and ICL. In contrast, k-OptForce sug-
gests that PPC and ICL must be directly up-regulated to improve
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Khodayari et al. Kinetic model-driven strain design

FIGURE 3 | Comparison of intervention strategies predicted by
(A) regular OptForce and (B) k-OptForce for overproduction of
succinate under aerobic condition in E. coli. The values within
parentheses indicate the metabolic flux in mmol gDW−1 h−1 per

100 mmol gDW−1 h−1 glucose uptake. The values without
parentheses in (A) show steady-state flux distribution of the
reference (wild-type) strain used for kinetic model parameterization
(Ishii et al., 2007).

succinate yield. In addition, up-regulation of ENO pulls glyoxy-
late flux towards 2pg through the glycerate pathway to compensate
for the pep depletion. OptForce does not require any enzymatic
intervention to route metabolic flux towards acetyl-CoA send-
ing a significant portion (58 mmol gDW−1h−1) from oaa towards
acetyl-CoA using the threonine pathway. k-OptForce reveals that
such a high flux cannot be routed through the threonine path-
way. Even with maximum (i.e., 10-fold) up-regulation of the
aspartate transaminase (ASPTA) only 20 mmol gDW−1h−1 can
be diverted towards threonine. In addition, k-OptForce suggests
up-regulation of PPC enzyme activity (by 50% of its reference
activity) to ensure availability of equal amounts of acetyl-CoA and
oaa for the production of citrate thus preventing the accumulation
of intermediates.

The abovementioned interventions suggested by k-OptForce
are geared towards circumventing upper bounds on max enzyme
activities (i.e., no more than 10-fold). However, limits on metabo-
lite concentrations also play a significant role in restricting flux
towards succinate. The maximum yield of succinate suggested
by k-OptForce (1.2 mol/mol glucose, 80% of theoretical maxi-
mum) is less than the one suggested by OptForce (1.3 mol/mol
glucose, 90% of theoretical maximum). This is because as ICL

is up-regulated, the concentration of intermediates pep and icit
increase reaching twice their reference values. As these metabolites
are competitive inhibitors of ICL, the maximum flux through the
pathway towards succinate is restricted. In addition, to alleviate
the regulatory effect of malate (mal) on the activity of PPC, k-
OptForce also proposed a 10-fold down-regulation of the enzymes
that catalyze mal production, fumarase (FUM), or succinate dehy-
drogenase (SUCD). Likewise, k-OptForce suggests removal of
transketolase (TKT2) to alleviate the inhibition of 6-phospho-
D-gluconate (6pgc) on glucose-6-phosphate isomerase (PGI) to
improve the glycolytic flux towards succinate, which also reduces
the production of biomass precursors.

Most of the k-OptForce interventions were consistent with
engineering efforts aimed at improving succinate production
under aerobic condition. For example, up-regulation of ICL and
removal of SUCD and ICDH activities improved succinate yield in
E. coli to 0.5 mol/mol glucose (Lin et al., 2005b). Further improve-
ments in succinate production (up to 0.7 mol/mol glucose) have
been achieved by up-regulation of PPC (Lin et al., 2005a). Notably,
the same interventions improved aerobic succinate production
in C. glutamicum to 0.5 mol/mol glucose (Litsanov et al., 2012).
Similar to proportional up-regulation of ENO and PPC that fixes
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the branching ratio of the metabolic flux at pep, regulation of pep
to pyruvate in the phosphotransferase system (PTS) reaction for
glucose uptake was suggested to reduce the accumulation of inter-
mediates (pyruvate and acetate) and improve succinate yield (Lin
et al., 2005a). k-OptForce, however, fails to capture the accumu-
lation of acetate upon up-regulation of PPC and glyoxylate shunt
(Lin et al., 2005a; Zhu et al., 2013). This may be due to the fact that
no fluxomic data for mutant strains with anaplerotic/glyoxylate
shunt up-regulations was included during kinetic model para-
meterization. As a result, the kinetic model is unaware of the
up-regulation that leads towards increased acetate production.
Interestingly, k-OptForce routes glyoxylate (formed by the ICL
reaction) back to 2pg using the glycerate pathway instead of the
malate synthase (MALS) reaction. This pathway improves the yield
of succinate since it reduces the overall loss of carbon flux to car-
bon dioxide. This pathway was engineered by E. coli (Hubbard
et al., 1998; Osterhout et al., 2011) for the production of ethylene
glycol and glucarate consumption, respectively, but remains to be
explored for succinate overproduction.

OVERPRODUCTION OF SUCCINATE UNDER ANAEROBIC CONDITION
Under fermentative condition the electron transport chain is not
active, thus preventing the oxidation of cofactor NADH generated
primarily in glyceraldehyde 3-phosphate dehydrogenase (GAPD)
reaction in glycolysis back to NAD. Without an adequate NADH
sink, significant amount of metabolic flux is routed towards fer-
mentative products such as ethanol, acetate, lactate, formate, etc.
to restore redox balance and cellular growth. Therefore, the general

strategy for succinate overproduction is to eliminate all com-
petitive fermentative pathways while pushing more flux towards
succinate through the glyoxylate shunt and reversing the reduc-
tive branch of TCA cycle (see Figure 4). This flux re-direction
also regenerates NAD, thus simultaneously coupling succinate
production with biomass generation.

In contrast to the aerobic case, k-OptForce suggestions for the
anaerobic overproduction of succinate are less accurate compared
to OptForce predictions. OptForce requires only five interventions
to achieve a succinate yield of 1.42 mol/mol glucose. However,
k-OptForce suggests a maximum yield of only 1.08 mol/mol glu-
cose even after nine interventions. While k-OptForce recapitulates
some of the interventions identified by OptForce (e.g., threefold
up-regulation of the glyoxylate pathway enzymes ICL and MALS),
the remaining suggestions deviate from OptForce and proven engi-
neering strategies. The sources of these discrepancies can be traced
back to incompatible parameterization of the kinetic model for
the anaerobic case. First, due to absence of sufficient flux data
in the parameterization procedure, the kinetic model was not
tuned to capture reversal of the reductive branch of the TCA cycle
necessary for succinate overproduction. k-OptForce suggests up-
regulation of all three enzymes of the reductive branch [i.e., malate
dehydrogenase (MDH), FUM, and fumarate reductase (FRD)].
However, even after a 6.5-fold up-regulation in MDH activity and
10-fold up-regulation in FUM only 80% of the anaplerotic flux
(57 mmol gDW−1 h−1) goes towards succinate, while the remain-
ing amount (11 mmol gDW−1 h−1) uses the aspartate metabolism
to bypasses MDH and FUM (see Figure 4B).

FIGURE 4 | Comparison of intervention strategies predicted by (A) regular OptForce and (B) k-OptForce for over production of succinate under
anaerobic condition in E. coli. The values within parentheses indicate the metabolic flux in mmol gDW−1 h−1 per 100 mmol gDW−1 h−1 glucose uptake.
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The kinetic model also fails to capture the metabolic transition
of E. coli central metabolism from aerobic to anaerobic condition
due to lack of regulatory information (Salmon et al., 2003, 2005).
Under anaerobic condition, PP pathway, PPC, and TCA cycle are
repressed, while glycolysis and, in particular, fermentative path-
ways are up-regulated (Perrenoud and Sauer, 2005; Cho et al.,
2006). In addition, pyruvate dehydrogenase (PDH) is deactivated
while PFL carries most of the flux from pyruvate to acetyl-CoA
(Partridge et al., 2006). Even though the kinetic model captures
down-regulation of TCA cycle upon removal of oxygen it cannot
capture the remaining changes. Unable to capture the repression
of PPC [anaerobic PPC flux is one-tenth of aerobic flux (Choud-
hary et al., 2011)], k-OptForce does not suggest any up-regulation
in its activity to push more flux from pep towards oaa, contrary
to OptForce suggestion of a minimum 15-fold up-regulation in
PPC flux (8.4–133.3 mmol gDW−1 h−1). In contrast, failing to
recognize the regulatory activation of PFL under anaerobic con-
dition, k-OptForce suggests a minimum eightfold up-regulation
in its activity, while OptForce requires no such intervention.
Unable to recognize the up-regulation of the enzyme activities
in the fermentative pathways in the reference (non-engineered)
strain, k-OptForce does not suggest any down-regulations since
the parameterization of the enzymes does not allow a significant
amount of flux towards ethanol, acetate, and lactate. In contrast,
OptForce requires the removal of lactate dehydrogenase (LDH),
alcohol dehydrogenase (ALCD), and acetaldehyde dehydrogenase
(ACALD) to prevent diverting pyruvate flux away from succi-
nate. Surprisingly, k-OptForce suggests a fivefold up-regulation
in ACALD activity to maintain NAD/NADH redox balance. A
large fraction of the produced acetaldehyde is reduced to ethanol
(46 mmol gDW−1 h−1), while the rest is exported out of the cell
(3 mmol gDW−1 h−1). However, we note that as no information
capturing the effect of acetaldehyde on cell fitness was included
in the kinetic model, it is unable to capture the chemical’s toxic-
ity. k-OptForce also suggests a minimum 1.5-fold up-regulation
in triose phosphate isomerase (TPI) activity and a twofold up-
regulation in GAPD or phosphoglycerate kinase (PGK) activity to
route additional PP pathway flux through glycolysis, even though
the PP pathway is negligibly active in anaerobic condition (Choud-
hary et al., 2011). It is to be noted here that down-regulation of
TKT2 for aerobic overproduction of succinate and up-regulation
of GAPD for anaerobic case are not equivalent interventions even
though both strategies do increase glycolytic flux. This is because,
the flux distribution in the pay-off phase of glycolysis, which is
different in both cases, affects the metabolite concentrations of
the preparatory phase of glycolysis. Up-regulation of ENO in aer-
obic overproduction study pulls additional metabolic flux down
from upper glycolysis in addition to TKT2 removal. In absence of
ENO up-regulation, removal of TKT2 cannot reroute the entire
amount of PP flux towards glycolysis. As a result, up-regulation of
both GAPD and PGK (and TPI) is necessary. It is also to be noted
that the inactivation of PDH (and the subsequent activation of
PFL) in anaerobic condition affects the reactions preceding it.

Comparison with experimental studies shows that unlike in
the aerobic case, most of the verified engineering strategies are
consistent with OptForce suggestions. k-OptForce overlooks key
interventions such as up-regulation of PPC and removal of

fermentative pathways, that were identified to have the largest
impact in enhancing succinate yield (Millard et al., 1996; Zhang
et al., 2009). In addition, even in cases where k-OptForce correctly
identifies interventions, such as of MDH, FUM, and FRD up-
regulation, inaccurate parameterization result in yield predictions
far below experimentally observed succinate yield [1.08 vs. 1.2–
1.6 mol/mol glucose with fewer interventions (Cao et al., 2013)].
In other cases, untested interventions such as up-regulation of PFL
most likely will not improve succinate yield, considering that the
deletion of pflB was found to improve succinate yield (Sanchez
et al., 2005; Wu et al., 2007).

DISCUSSION
In this study, we compared the performance of k-OptForce in pre-
dicting interventions for overproduction of succinate in E. coli
under both aerobic and anaerobic conditions. k-OptForce predic-
tions under aerobic condition was found to be much more consis-
tent with experimental strain-design strategies as compared with
the stoichiometry-only OptForce predictions. In contrast, inter-
ventions for succinate overproduction under anaerobic condition
by k-OptForce led to significantly less promising strategies largely
inconsistent with experimental observations. This indicates that
kinetic models have the potential to substantially over-perform
FBA predictions when parameterized under the same (or similar)
conditions but they may perform worse than FBA when asked to
predict a significantly different metabolic phenotype. Note that
the two-step strategy of the k-OptForce procedure does not affect
the optimality of the results for the aerobic case as all interventions
were identified from the kinetic part of the model. The flux distrib-
ution in the stoichiometric part of the model, which is determined
by the worst-case inner problem, was effectively locked by the
kinetic expressions. In general, however, we may miss better inter-
vention strategies (for example in the anaerobic case study) when
implementing the two-step approach as a tradeoff for improving
computational performance.

The kinetic model was successful in capturing the underlying
kinetic regulation when the flux re-distribution was consistent
with the mutant flux information used for parameterizing the
kinetic model. For example, the effect of enzymatic interventions
around glycolysis and TCA cycle were identified with reason-
able accuracy in both anaerobic and aerobic cases. Under aerobic
condition, the kinetic model successfully captures the need for
equimolar amounts of acetyl-CoA and oaa to supply the TCA
cycle while preventing accumulation of intermediates (Lin et al.,
2005a). Even when the kinetic model failed to correctly quan-
tify fluxes, it provided a qualitative basis for making the right
interventions. For example, k-OptForce correctly identifies that
up-regulation of MDH, FUM, and FRD improves succinate pro-
duction under anaerobic condition, even though it over-estimates
the kinetic bottleneck towards such a flux-reversal resulting in
poorer yields than experimental observations. Note that the devel-
oped kinetic model cannot capture changes in glucose uptake
rate for different environmental and/or genetic backgrounds as
all mutant fluxes used to train the model were scaled with the
corresponding glucose uptake. Shortcomings in the model could
be rectified by re-parameterizing the model using additional flux-
omic information of mutant strains that allow for pathway reversal
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[e.g., using metabolic flux analysis information of a ∆SUCD strain
(Li et al., 2006)]. In general, the re-parameterization is a compro-
mise between model scope and accuracy. The observations showed
that parameterizing the kinetic model by making use of mutant
data located in the proximity of a target product provides a more
accurate flux distribution predictions by the model and conse-
quently results to the identification of more targeted interventions
using the k-OptForce procedure. In contrast, integration of a wide-
range of conditions with limited experimental data for model
training may provide a better global qualitative agreement. While
one could use separate kinetic models for aerobic and anaerobic
conditions, ideally we would like a single model parameterization
that could reproduce both aerobic and anaerobic responses. By
creating two separate aerobic and anaerobic models it becomes
unclear what model to use under micro/partial aerobic condition
(Partridge et al., 2007).

This study shows that the model does not retain fidelity of
predictions when growth is switched from aerobic to anaerobic
condition. Aerobic to anaerobic metabolic transition is mainly
controlled at the transcriptional level (Kochanowski et al., 2013)
by the activities of global regulatory proteins FNR and ArcA
(see Table 2). In absence of such regulatory interactions, the
kinetic model could not capture the activation of PFL and
fermentative pathways, and the deactivation of PPC and (to
a small extent) PP Pathway. As a result, k-OptForce failed to
identify key down-regulations (e.g., LDH, ALCD) in the for-
mer case, while suggested unnecessary up-regulations for the
latter. These shortcomings are harder to address and require
the incorporation of adequate regulatory information into the
model (see Table 2 for details) to capture the aerobic to anaerobic
transition.

Table 2 | Regulatory systems under anaerobic condition in E. coli

(Partridge et al., 2006).

Regulator Type Target gene Target reaction

ArcA Repression sucABCD SUCOAS

sdhABCD SUCD

fumA FUM

mdh MDH

aceEF PDH

acnAB ACONT

gltA CS

icdA ICDH

Activation pfl PFL

FNR Repression acnA ACONT

icdA ICDH

sdhABCD SUCD

fumAC FUM

ndh NDH

SUCOAS, succinyl-CoA synthetase; SUCD, succinate dehydrogenase; FUM,

fumarase; MDH, malate dehydrogenase; PDH, pyruvate dehydrogenase; ACONT,

aconitase; CS, citrate synthase; ICDH, isocitrate dehydrogenase; PFL, pyruvate

formate lyase; NDH, nadh dehydrogenase.

In general, this study revealed some of the strengths and limi-
tations of kinetic model-driven strain design. It demonstrated the
need to carry out model parameterization for a diverse range of
genetic/environmental perturbations (Khodayari et al., 2014) and
the tight integration of transcriptional level along with substrate-
level regulatory interactions. At a fundamental level, kinetic mod-
els must be a priori provided with the quantitative description
of as many as possible regulatory switches that become active in
response to genetic or environmental perturbations. This rich-
ness in mechanistic information enables a detailed description
of metabolism that captures dynamics, enzyme activities, and
metabolite concentrations but can lead to erroneous predictions
due to missing and/or incorrect modeling assumptions. Never-
theless, by studying failure modes of kinetic models, valuable
information can be uncovered for restoring prediction consistency
for new phenotypes.
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Collaborative genome-scale reconstruction endeavors of metabolic networks would not
be possible without a common, standardized formal representation of these systems.The
ability to precisely define biological building blocks together with their dynamic behav-
ior has even been considered a prerequisite for upcoming synthetic biology approaches.
Driven by the requirements of such ambitious research goals, standardization itself has
become an active field of research on nearly all levels of granularity in biology. In addition
to the originally envisaged exchange of computational models and tool interoperability,
new standards have been suggested for an unambiguous graphical display of biological
phenomena, to annotate, archive, as well as to rank models, and to describe execution and
the outcomes of simulation experiments. The spectrum now even covers the interaction
of entire neurons in the brain, three-dimensional motions, and the description of pharma-
cometric studies. Thereby, the mathematical description of systems and approaches for
their (repeated) simulation are clearly separated from each other and also from their graph-
ical representation. Minimum information definitions constitute guidelines and common
operation protocols in order to ensure reproducibility of findings and a unified knowledge
representation. Central database infrastructures have been established that provide the
scientific community with persistent links from model annotations to online resources. A
rich variety of open-source software tools thrives for all data formats, often supporting a
multitude of programing languages. Regular meetings and workshops of developers and
users lead to continuous improvement and ongoing development of these standardization
efforts.This article gives a brief overview about the current state of the growing number of
operation protocols, mark-up languages, graphical descriptions, and fundamental software
support with relevance to systems biology.

Keywords: model formats, modeling guidelines, ontologies, model databases, network visualization, software
support

1. INTRODUCTION
Since its emergence in the 1960s systems biology has always
been tightly related to the availability of powerful computational
resources. While at the beginning of research in the field and its
applications quick and simple script-based solutions were suf-
ficient, the bar for publication and review has been drastically
raised (Sauro et al., 2003). It has been realized that individual

Abbreviations: ANSI, American National Standards Institute; API, application
programing interface; BRAIN, brain research through advancing innovative neu-
rotechnologies; CAD, computer-aided design; COPASI, complex pathway simulator;
CSS, cascading style sheets; DAE, differential-algebraic equation; DIN, Deutsches
Institut für Normung; FBA, flux balance analysis; fbc, flux balance constraints; GO,
gene ontology; HTML, hyper text mark-up language; IEEE, Institute of Electrical
and Electronics Engineers; IETF, internet engineering task force; ISML, in silico
mark-up language; JSON, JavaScript object notation; KiSAO, kinetic simulation
algorithm ontology; LEMS, low entropy model specification; MAMO, mathematical
modeling ontology; MIASE, minimum information about a simulation experiment;
MIBBI, minimal information for biological and biomedical research; MIRIAM,
minimal information required in the annotation of models; NCBI, National Center
for Biotechnology Information; NuML, numerical mark-up language; OBO, open

scripts, which are specific to certain computational environments
and that are not very reproducible are of small benefit for the sci-
entific community and progress of the field (Lloyd et al., 2004).
The development of standardized data formats, models, and com-
putational methods have paved the way toward the evolution and
maturation of systems biology into a main-stream field of research
(Macilwain, 2011). Sufficient annotation and metadata of mod-
els, experiments, and other data enhance the reproducibility of

biomedical ontologies; ODE, ordinary differential equation; OMEX, open model-
ing exchange format; OMG, object management group; OSB, open-source brain;
OWL, web ontology language; PDE, partial differential equation; PharmML, phar-
macometrics mark-up language; PHML, physiological hierarchy mark-up language;
RDF, resource description framework; SBGN, systems biology graphical notation;
SBGN-ML, systems biology graphical notation mark-up language; SBML, systems
biology mark-up language; SBOL, synthetic biology open language; SBRML, sys-
tems biology result mark-up language; SBW, systems biology workbench; SED-ML,
simulation experiment description mark-up language; SVG, scalable vector graph-
ics; SWIG, simplified wrapper and interface generator; TEDDY, terminology for the
description of dynamics; URI, uniform resource identifier; W3C, world wide web
consortium; XML, eXtended mark-up language.
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results (Wolstencroft et al., 2011). For individual areas of research,
different models are required, hence different standards for their
encoding. Research in constraint-based modeling (Bordbar et al.,
2014) deals with the encoding of the stoichiometric matrix and
flux bounds, whereas, dynamic metabolic modeling (Dräger and
Planatscher, 2013a) is usually based on building ordinary differ-
ential equation systems, model calibration, and parameter esti-
mation (Dräger et al., 2009a; Kronfeld et al., 2009; Dräger and
Planatscher, 2013b). Spatial-temporal simulations require encod-
ing three-dimensional geometries and partial differential equation
systems (Moraru et al., 2008).

It can hence be observed that the modeling community in sys-
tems biology has diversified. One reason for this development
is that main parts of funding for these standardization attempts
originate from ambitious large-scale projects, each having has dif-
ferent requirements. These efforts include, for example, goal of
specifically reconstructing all reactions in specific organisms, such
as human or yeast, resulting in giant reaction networks (Duarte
et al., 2007; Herrgård et al., 2008; Rolfsson et al., 2011; Thiele
et al., 2013) or systematically representing the complete knowledge
about biochemical reactions available today (Büchel et al., 2013a).
Trans-European projects like SysMO (Booth, 2007) want to com-
prehensively record and describe dynamic molecular processes in
unicellular microorganisms and to present all processes in the
form of computerized mathematical models. The German Virtual
Liver Network (Holzhütter et al., 2012) aims to mathematically
explain all phenomena in the human liver across multiple cell
types and levels of organization. The Physiome project attempts to
achieve a full quantitative description of all physiological dynamics
and functional behaviors of the intact human body (Hunter and
Borg, 2003). The US BRAIN (Brain Research through Advanc-
ing Innovative Neurotechnologies) Initiative aims to support the
development of new technologies for classifying the anatomical
constituents for the brain and to allow simultaneous recording
from an unprecedented number of neurons simultaneously. The
EUs Human Brain Project seeks to develop the infrastructure
for creating computational models of brain regions at multiple
scales on high-performance computing platforms (Shepherd et al.,
1998; Markram et al., 2011; Kandel et al., 2013). Thereby, medical
applications become increasingly important (Büchel et al., 2013b;
Grillner, 2014).

Common to all these consortia is that with the increasing num-
ber of active researchers and collaborators the exchange, reproduc-
tion, and accessibility of models, data, and further information in
specific online databases play a major role (Brazma et al., 2006;
Schellenberger et al., 2010; Wolstencroft et al., 2011; Yu et al., 2011;
Chelliah et al., 2013). Just like the documentation of source code,
the careful annotation of models and data are also necessary to
achieve a fruitful collaboration. The more meta information that
is provided, the easier the model can be comprehended, modified,
simulated, and analyzed (Waltemath et al., 2013). The use of stan-
dard formats is highly recommended for the publication of results
even if not required by the prospective journal.

In addition, new fields and areas of application are emerging,
for instance, pharmacometric models or synthetic biology (Endler
et al., 2009; Galdzicki et al., 2011; Müller and Arndt, 2012). There
is therefore no one-size-fits-all solution that would be equally

suitable for all fields of research. The standardization community
therefore needs to continuously catch up with these developments
in the actual modeling community and to reinvent itself over
and over again. Recent approaches have suggested to modular-
ize modeling languages by introducing highly specialized packages
for modeling aspects that can otherwise not be represented in the
main data format (Chaouiya et al., 2013).

The structure of how standards are defined has also matured.
Brazma et al. (2006) describe that four steps are required for
the development of a standard: (i) data and information need
to be collected about the domain of interest that are relevant for
an unambiguous transfer and interpretation as well as concep-
tual model design, (ii) the model needs to be formalized, (iii) an
exchange format must be defined, and (iv) software support must
be implemented. Nearly all modeling formats described in this
article now follow this suggestion and are based on a minimum
information requirement description (Taylor et al., 2008). These
documents define what kind of information has to be stored in
a respective model in order to guarantee that the model can be
reused and understood by other researchers. In this way, the infor-
mation requirement and the corresponding modeling standard
are decoupled, exchangeable, and independent. The minimum
information requirement is usually complemented with a spe-
cific ontology, i.e., a hierarchical collection of field-specific terms
and their definitions (Courtot et al., 2011). These terms can be
associated to model components and descriptions. In addition,
elaborate and persistent annotation frameworks have been devel-
oped,which allow the modeler to precisely express,what individual
model components are and how they are to be understood (Juty
et al., 2012, 2013). The development of standards, minimal infor-
mation requirements, and ontologies needs to be orthogonal to
existing respective standards. Table 1 and Figure 1 give an overview
about the relationship amongst various standards discussed in this
article.

The structural representation of the model [for instance, SBML
by Hucka et al. (2004) or CellML by Cuellar et al. (2006)], its appli-
cation and analysis [SED-ML by Waltemath et al. (2011b)], its
(graphical) display [SBGN guidelines by Le Novère et al. (2009)],
and features should be accurately discriminated and encoded in

Table 1 | Standards with relevance for modeling in systems biology.

Model Procedures Results

Representation

formats

BioPAX, CellML,

NeuroML, PharmML,

SBML (including

extension packages),

SBGN-ML, SBOL

SED-ML NuML,

SBRML

Graphical display CellML visualization,

SBGN, SBOL visual

Minimal information

requirements

MIRIAM MIASE

Mathematical

semantics

SBO, MAMO KiSAO TEDDY

Biological semantics MIRIAM MIRIAM MIRIAM
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FIGURE 1 | Standards overview. Hierarchically organized controlled
vocabularies, so-called ontologies and modeling guidelines build the basis
for model encoding formats. These formats can refer to terms from
ontologies and their organization is in accordance with the modeling
guidelines. Recommendations for a visual representation of models as well
as the execution of individual models in numerical simulation or
optimization are separated from the structural models. Numerical results
can be encoded in further standard data formats.

distinct formats. Depending on the concrete modeling format,
structural models can also include mathematical formulations,
but not their interpretation framework (such as the algorithm
to solve the model or the simulation end time). Recently, a new
archive format has been proposed in order to link and distribute
these independent modeling aspects all together in a single file
(Bergmann et al., 2014).

Much effort has also been invested in software support and
the creation of infrastructures for diverse standards. For each data
format, a specific library has been implemented for reading and
writing files as well as for manipulating components of the for-
mat in memory (Bornstein et al., 2008; Miller et al., 2010; Demir
et al., 2013). Often, language-bindings for diverse programing
environments are provided, but sometimes specific libraries have
been developed in order to support certain programing languages
(Dräger et al., 2011). These parsing libraries help developers to use
and exploit the individual standards. Often these libraries provide
interfaces to corresponding ontologies and controlled vocabulary
annotations (Courtot et al., 2011). However, the interpretation,
analysis, drawing, etc. of models cannot be facilitated by these
libraries. Higher level software has been implemented to support
model building, display, simulation, etc. (Deckard et al., 2006;
Keller et al., 2013). Sometimes, this is done in the form of plug-ins
to more general frameworks, and often there are diverse stand-
alone or web-based tools for various purposes (König et al., 2012;
Krause et al., 2013).

When the first XML- or OWL-based exchange formats for mod-
els were proposed, developers of existing software tools were often
involved, and their individual software was adapted in order to
fit the standard. Nowadays, with many standards being well estab-
lished, software is specifically tailored with respect to the standards.

The stringent elaboration and clear distinction between models,
purpose, simulation, and annotation can also be a source of inspi-
ration for young researchers who enter the field. In the long-term,
using standard formats can lower the expenses for software devel-
opment because they allow the reuse of existing tools in new
applications. Moreover, with the many available tools for stan-
dard formats, less research time is needed for the interconversion
of tool-specific files, making it much easier to collect information
from diverse sources (Demir et al., 2010).

While international and national standardization bodies, such
as OMG, W3C, IEEE, ANSI, IETF, DIN, etc., usually approve stan-
dards and release specifications, the situation is different in systems
biology, where de facto standards are established by the scientific
community (Brazma et al., 2006). The fast-moving nature and
ongoing development of research makes this approach necessary.

However, keeping track of the growing number of model for-
mats and standards for diverse purposes has become more and
more difficult. This review article gives a broad overview of a
wide range of currently existing modeling standards, formats, and
online repositories, and a selection of software solutions for sys-
tems biology and related fields of research. The aim of this article
is to highlight specific standards, their usability, and application in
order to give the reader an up-to-date picture of model definition,
encoding, and availability in systems biology.

2. MATERIAL AND METHODS
2.1. MODELING GUIDELINES
Modeling formats give us the syntax of models (Juty et al., 2012). In
order to enhance accessibility of data and to facilitate the reuse of
models, several modeling guidelines have been proposed, which
are discussed in this section. These guidelines are often called
“Minimum Information of/for,”which should express that without
at least this form of information optimal use and reproducibility
of results cannot be guaranteed. More information can always be
provided on top of the minimal requirements. The guidelines are
hence a form of checklists that describe which kind of informa-
tion to include and often go back to the idea of the MIBBI project
(Minimal Information for Biological and Biomedical research)
proposed by Taylor et al. (2008). The open biomedical ontolo-
gies (OBO) foundry1 maintains orthogonal (non-overlapping)
collections of controlled vocabularies, which provide the seman-
tics for models. The most well-known ontology is probably the
gene ontology (GO) by (Ashburner et al., 2000).

2.1.1. Minimum information required in the annotation of models
Reuse of models can be compromised if inconsistent identifier
systems are used for individual components. For instance, when
merging models, it is necessary to match overlapping components.
If a molecule is identified as water in one model and as H2O in
another such a matching is already difficult for automated proce-
dures. To solve such problems, the minimum information required
in the annotation of models (MIRIAM) guidelines has been pro-
posed as a general model curation checklist (Le Novère et al., 2005).
The MIRIAM registry (Laible and Le Novère, 2007) goes further

1http://obofoundry.org
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and provides a connection between controlled vocabularies (Cour-
tot et al., 2011) and formats, tools, and databases. Most modeling
standards provide mechanisms to attach MIRIAM annotations to
their components. These annotations are structured based on a
subject-predicate-object scheme. Here, the subject is the identifier
of the model element. The predicate is one of several predefined
qualifiers, e.g., hasPart or is. The object should be a web resources
pointing to an identifiers.org address (Juty et al., 2012, 2013), for
instance http://identifiers.org/kegg.compound/C00001 for water.
This Uniform Resource Identifier (URI) is therefore composed
of the prefix identifiers.org/, the definition of the data collection
(in this example kegg.compound) followed by the delimiter and
finally the record identifier (here C00001). Using such an identi-
fiers.org address instead of directly pointing to an entry in ChEBI
(Brooksbank et al., 2013; Hastings et al., 2013), MetaCyc (Caspi
et al., 2014), KEGG (Kanehisa and Goto, 2000), or any other of
the more than 30 currently supported data collections has sev-
eral advantages. Should the original resource location or address
schema change, the identifiers.org site will point to the new loca-
tion. identifiers.org also measures the uptime of mirror servers for
identical records and preferably directs to the most reliable mirror.

2.1.2. Minimum information about a simulation experiment
The minimum information about a simulation experiment
(MIASE) project (Waltemath et al., 2011a) aims to unambigu-
ously define how to reproduce the results of a model simulation.
For stochastic models, the results should be within an acceptable
small range from the original results, and for deterministic mod-
els, the results should be identical. This requirements checklist
also supports the review process of scientific publications. Rele-
vant ontologies (Courtot et al., 2011) for MIASE are the kinetic
simulation algorithm ontology (KiSAO) that defines the method
to use, the terminology for the description of dynamics (TEDDY),
and the mathematical modeling ontology (MAMO).

2.1.3. Ontologies
2.1.3.1. Kinetic simulation algorithm ontology. The KiSAO
gathers computational methods that can be used to simulate a
model in a certain way (Courtot et al., 2011). It contains, for
instance, definitions of several differential equation solvers for
numerical calculations. Organizing these algorithms in a hier-
archical structure allows tools to automatically select the most
similar solver within their collection of implemented methods.

2.1.3.2. SBO. The Systems Biology Ontology is a collection of
terms that describe the structure of a model, its components, mod-
eling frameworks, and processes (Courtot et al., 2011). By using
terms from this ontology, the semantics of individual parts of a
model can be made explicit. This is often of particular impor-
tance if elements can participate in processes where they can have
multiple roles, such as catalysts or inhibitors.

2.1.3.3. Mathematical modeling ontology. The recently devel-
oped ontology (MAMO, see http://bioportal.bioontology.org/
ontologies/MAMO) has complemented and refined the modeling
framework branch of SBO. Both ontologies are intended to cross
link each other. While SBO mainly focuses on the entities and

parameters in the model and describes the relationships among
them, MAMO has been developed in order to precisely define and
categorize types of mathematical models (e.g., ODE) and their
characteristics (e.g., discrete vs. continuous) as well as types of read-
outs (such as time-course analysis) and variables (such as dependent
variable).

2.1.3.4. Terminology for the description of dynamics. The
TEDDY defines a formal way to specify how the numerical results
of a dynamic system behave when a simulation experiment is con-
ducted (Knüpfer et al., 2006; Courtot et al., 2011). In this way,
a machine-readable representation of such a description can be
automatically generated upon simulation and be stored along with
the model. When querying a database of numeric results, this ter-
minology can help to find models with a desired behavior, such as
ongoing oscillations.

2.2. MODELING FORMATS
Reconstructing computational models based on a textual descrip-
tion in a publication can be difficult,because required information,
such as a clear definition of the units of all components, can
be lacking, the language might be imprecise or ambiguous, or a
combined explanation of simulation procedure and actual model
hamper the implementation of the model (Cooling, 2010; Dräger
et al., 2010). In cases, where models are distributed in form of
source code implemented for a specific run-time environment or
programing language, executing these programs can be a challenge
because of diverse dependencies to operating systems or required
third-party libraries (Lloyd et al., 2004). In this section, we will
discuss several formats that encode systems biological models in
different ways with the aim to overcome this problem.

2.2.1. Systems biology mark-up language
The Systems Biology Mark-up Language (Finney and Hucka, 2003;
Hucka et al., 2003, 2004)2 is a hierarchical XML-based format
consisting of several lists of components, such as compartments
(finite spaces), (reactive) species, parameters (constants or vari-
ables), reactions with kinetic laws, user-defined functions and
rules, events, units, and many more. SBML has been developed
as a model exchange format that covers a wide range of model-
ing approaches used today (Hucka et al., 2004), including dynamic
and steady-state metabolic networks as well as gene-regulatory and
signaling networks (Lambeck et al., 2010; Vlaic et al., 2013). The
term reaction should no longer be seen as a strict (bio-)chemical
reaction. It is rather a process with inputs and outcomes. Spe-
cific annotation with SBO terms and MIRIAM identifiers clarify
the purpose of all elements. The reactions implicitly define a dif-
ferential equation system, whose explicit structure needs to be
assembled at simulation time or prior to simulation. The ratio-
nale behind this design decision is that the same model can be
interpreted in terms of a different modeling framework, such as
stochastic simulation, etc.

The libraries libSBML (Bornstein et al., 2008) and JSBML
(Dräger et al., 2011) facilitate the implementation of import and

2http://sbml.org

www.frontiersin.org December 2014 | Volume 2 | Article 61 | 99

http://identifiers.org/kegg.compound/C00001
http://bioportal.bioontology.org/ontologies/MAMO
http://bioportal.bioontology.org/ontologies/MAMO
http://sbml.org
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dräger and Palsson Standardization efforts in systems biology

export functions of SBML models in customized software solu-
tions. While libSBML provides bindings to a large variety of
programing languages based on the wrapper generator SWIG
(Beazley, 1996), the JSBML library has been specifically devel-
oped for the platform-independent Java™ language. Both libraries
strive to attain a high degree of compatibility. Specific API libraries
have also been implemented for working with SBML under MAT-
LAB™ (Keating et al., 2006) and Mathematica™ (Shapiro et al.,
2004, 2007).

It has been recognized that the interpretation and simulation
of SBML models can be quite challenging and that different simu-
lation environments can yield divergent results on identical input
files (Bergmann and Sauro, 2008). For this reason, a compre-
hensive test suite of manually created SBML models has been
established including reference results. This test suite can be used
as a benchmark test case for simulation routines.

SBML handles the increasing diversification of modeling
approaches and community requirements with the development
of several specific and orthogonal packages, which can be used
in addition or separately from the core format. The following
extension packages have already been released: hierarchical model
composition (comp) (Smith et al., 2013b), flux balance con-
straints (fbc) (Orth et al., 2010; Bergmann and Olivier, 2013),
three-dimensional arrangement of elements in diagrams (lay-
out) (Gauges et al., 2006), and qualitative relationships (qual)
(Chaouiya et al., 2013). Draft specifications are available for the
following extensions: arrays, sampling of values from statistical
distributions (distrib), dynamic creation and destruction of struc-
tures during a simulation (dyn), grouping of elements (groups),
entity pools with multiple states and complex composition of
species (multi), drawing graphical representations of a model
(render), indication of those model elements that are changed
by packages (req), and spatial processes and geometries (spatial).
For an up-to-date list and more detailed explanation of available
extension packages, see http://sbml.org/Community/Wiki.

2.2.2. CellML
The XML-based model storage and exchange format CellML3

has been developed for the IUPS Physiome project with the aim
to facilitate reuse of models or their components in a software-
independent manner (Lloyd et al., 2004; Cooling, 2010). CellML
eases the creation of new models based on parts of existing mod-
els and hence accelerates the cumbersome model building process
(Cooling et al., 2010). CellML models contain structural infor-
mation about the organization of the model (components, con-
nections, and units), mathematical equations (arbitrary MathML)
to quantitatively describe biological processes, and metadata that
link model components to online resources. An important design
feature of CellML allows components and parameters to be shared
across models via import statements and well-defined interfaces.
This also allows users to structure their models into multiple
files, similar as can be done with HTML pages, and increases
reusability of individual black-box models,but also requires a strict
decoupling of components. CellML uses RDF tags for semantic

3http://www.cellml.org

annotations and allows for hierarchical groupings of components.
A set of software tools is available to edit CellML models, includ-
ing an API implementation (Miller et al., 2010) or the graphical
modeling environments OpenCell (Lloyd, 2013) and OpenCOR
(Nickerson et al., 2013). CellML can be inter-converted from and
to SBML and to the scripting language Antimony (Schilstra et al.,
2006; Smith et al., 2013a). The rates of change of all components
are explicit in CellML. When adding components or connections
to a model, these rates of change would need to be updated. With
the help of interfaces modelers can avoid this cumbersome update
process (Cooling, 2010).

2.2.3. FieldML
FieldML4 is an XML-based model interchange standard, which
has been developed with a focus on the euHeart and Physiome
projects and is currently available in version 0.5 (Britten et al.,
2013). The main purpose of the format is to encode geometric
models in explicit or implicit mathematical form with respect to
biological and medical phenomena with spatial-temporal varia-
tion, such as the simulation of power fields and gradients. FieldML
focuses on fields over multiple discrete indices and multivariate
fields with discrete or continuous variables as well as interpolation
functions. With these approaches, it is possible to model muscle
contraction as part of cardiac mechanics, blood flows, and other
multi-scale processes. Other applications include the modeling of
patient-specific clinical images with the help of specific annota-
tions and fitting of models to fields. Similar approaches are also
planned for the spatial extension for SBML (Schaff et al., 2013). A
powerful C++ API with wrappers for Java, Fortran, and Python
as well as a software plug-in for the physiome model repository
(PMR) support FieldML and provide several high-level functions
for model building and simulation (Yu et al., 2011). Version 0.5
already includes model composition over multiple files and data
sources.

2.2.4. BioPAX
The motivation for the creation of the BioPAX5 format (Biological
Pathway Exchange) was the aim to unify the various co-existing
pathway encoding formats of numerous online databases (Demir
et al., 2010). This format is intended to facilitate the commu-
nication between diverse software systems and also serves as a
common knowledge representation of pathways. With BioPAX
the structure of metabolic, signaling, and gene-regulatory path-
ways can be encoded, including relationships between elements
(such as genes or molecules) as well as diverse states (such as
post-translational modifications). A growing number of pathway
databases and software tools provide BioPAX files as import or
export formats (Shannon et al., 2003; Funahashi et al., 2008; Demir
et al., 2010; Kelder et al., 2011) and BioPAX is useful to integrate
information from heterogeneous sources, to support visualization,
and analyses. The definition of BioPAX is the result of a continu-
ous community effort. The BioPAX language is organized in levels
that increasingly add features to the language definition. BioPAX
is based on OWL and it is implemented as an ontology. An online

4http://physiomeproject.org/software/fieldml
5http://www.biopax.org
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validator can be used to check the correctness of BioPAX files.
All elements within a BioPAX file can be annotated using con-
trolled vocabularies and MIRIAM (Laible and Le Novère, 2007;
Juty et al., 2012). For writing, reading, manipulating, and analyz-
ing the API library Paxtools (Demir et al., 2013)6 has been created
and is freely available. Quantitative relationships and temporal
sequences of events do not belong to the objectives of BioPAX.
However, since it is also possible to encode qualitative relation-
ships in SBML (Chaouiya et al., 2013), BioPAX can be converted
to SBML without loss of information (Büchel et al., 2012).

2.2.5. NeuroML
The object-oriented mark-up language NeuroML (Gleeson et al.,
2010)7 has been developed as a standard to specifically encode,
share, and store computational models of information transfer in
neurosciences (Goddard et al., 2001). The aim of the language
is to cover diverse structural levels beginning at individual neu-
ron cell membranes and ranging to entire neural networks. This
XML-based language encodes biophysically detailed neuronal and
network models including ion channels, synapses, and the anatom-
ical connectivity of neurons and how these elements underlie the
complex electrical behavior of the brain (Gleeson et al., 2010).
Therefore, from the very beginning, modularity, portability, and
clarity were the main language requirements (Goddard et al.,
2001). Supporting high-performance simulations and creating
software frameworks for neuroinformatics are the aims of the lan-
guage (Beeman, 2013). To this end, NeuroML 2 has been built on
the Low Entropy Model Specification (LEMS) language (Cannon
et al., 2014), which hierarchically defines structure and dynam-
ics of a large variety of biological models. For parsing, writing,
and manipulating NeuroML and LEMS files, the Python APIs
libNeuroML and PyLEMS as well as the Java™ APIs jNeuroML
and jLEMS are available (Vella et al., 2014). The original idea to
link sub-modules of processes in NeuroML to models encoded
in SBML or CellML (Gleeson et al., 2010) has since been further
elaborated. The LEMS libraries allow users to import SBML mod-
els and can also export SED-ML (Waltemath et al., 2011b) files
for reproducible simulation experiments. The main repository for
NeuroML is Open-Source Brain (Gleeson et al., 2013).

2.2.6. ISML and PHML
The XML-based language ISML (insilicoML) allows users to
describe biophysiological models that cross multiple scales and
levels. This format is fully compatible to CellML 1.0, but incor-
porates a specific ontology of physiological functions (Asai et al.,
2008). A large collection of models in ISML can be obtained from
an online database at http://www.physiome.jp. The physiological
hierarchy mark-up language (PHML) has been designed as the
successor of ISML (Asai et al., 2013). PHML defines each biologi-
cal or biophysical element as a module, which can be encapsulated
and linked through ports. This concept hierarchically structures
the language. Furthermore, PHML can integrate SBML models as
sub-cellular phenomena (Asai et al., 2012).

6http://www.biopax.org/paxtools/
7http://www.neuroml.org

2.2.7. PharmML
The Pharmacometrics Mark-up Language PharmML (Moodie
et al., 2013)8 belongs to the most recent languages in the family
of XML-based standards for biomedical computation and is cur-
rently under development. The purpose of this new language is to
exchange and store pharmacometric models, which includes stud-
ies, trials, simulations, estimation, and exploration. It will support
metadata, non-linear mixed effects models, serve as an encoding
platform for new approaches and elements, as well as support
model-based analysis. The developers want to ensure backwards
compatibility with existing relevant standards in order to use
existing software tools. Use-case scenarios are, for instance, the
kinetics of tumor growth, observation models, or trial design for
treatment-dosing-related data.

2.2.8. Synthetic biology open language
The Synthetic Biology Open Language9 also belongs to the lat-
est modeling standards (Galdzicki et al., 2014). This RDF-based
format has been designed in a community process in order to
facilitate the creation of synthetic biology components by pro-
viding an exchange format for software tools. As a specialty, SBOL
comes with a specific graphical representation for promoters, their
regulators, and many additional genetic structures (see Figure 2).

2.3. STANDARDS FOR MODEL SIMULATION PROCEDURES
Defining the structure of a model does not give any information
about reproducible simulation experiments. In order to perform
the identical simulation of the model as described in a correspond-
ing research article, the exact name of the numerical solving algo-
rithm, step size, error tolerance, etc. must be precisely defined. The
purpose of the Simulation Experiment Description Mark-up Lan-
guage (SED-ML)10 is to provide a standardized, machine-readable,
platform-independent data format for this purpose (Waltemath
et al., 2011b). SED-ML follows the MIASE guidelines (Waltemath
et al., 2011a) and hence enables users to attach both a model as
well as the description of its intended use to a publication, which
could also simplify review processes. It therefore contributes to the
reproducibility aspect in science, where only stochastic approaches
might diverge within a small range from published data. The XML-
based language SED-ML is organized in levels and can describe

8http://www.ddmore.eu
9http://www.sbolstandard.org
10http://sed-ml.org

FIGURE 2 | SBOL visual. The horizontal bar represents a DNA molecule to
which various features can be visually attached. Here, a few examples are
applied for demonstration purposes. A full specification and an exhaustive
list of all available symbols can be found online at http://www.sbolstandard.
org/visual.
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multiple simulation experiments within the same file. Language
components can be annotated using MIRIAM resources (Laible
and Le Novère, 2007). A key idea of SED-ML is not to dis-
tribute concrete implementations of simulation procedures, but
rather to use ontologies such as KiSAO (Courtot et al., 2011) to
refer to the method and its settings. Since this ontology has a
hierarchical structure, it is possible to apply related simulation
algorithms in case a required method is not implemented in a
certain software tool. Structural model changes prior to simula-
tion and post-processing steps of the results (such as converting
between amounts and concentration units) as well as the pre-
sentation of the output can also be defined (Waltemath et al.,
2013). The model can, in principle, be encoded in an arbitrary
standardized format and addressed through URI links. SED-ML
does not provide an encoding of the simulation results itself,
but can be used in combination with numerical mark-up lan-
guage (NuML) or SBRGML (Dada et al., 2010). An extension
to SED-ML has been proposed in order to also support sam-
pling sensitivity analysis simulation experiments (Miller et al.,
2012). Some simulation environments have already adopted this
young format (Olivier et al., 2005; Myers et al., 2009; Kolpakov
et al., 2011; Keller et al., 2013). A workflow editor (SED-ED), API
libraries (libSedML, jlibSEDML), and a simplified scripting lan-
guage (Antimony) are also available (Smith et al., 2009; Adams,
2012).

2.4. GRAPHICAL MODEL REPRESENTATION FORMATS
The visual representation of biochemical pathways has a long
tradition. Displays of biological circuit diagrams and reaction
pathways can be found in numerous textbooks and a plethora
of publications. Databases such as KEGG (Kanehisa and Goto,
2000) or MetaCyc (Caspi et al., 2014) take this up and provide
displays of biological networks in their specific layout and style,
which follows many traditional aspects. In order to display and
draw similar maps, several programs have been developed, for
instance, CellDesigner (Funahashi et al., 2008), JDesigner (Sauro
et al., 2003), TinkerCell (Chandran et al., 2009), VCell (Resasco
et al., 2012), or Cytoscape (Shannon et al., 2003) with its diverse
plug-ins (König et al., 2012; Gonçalves et al., 2013). We now discuss
recommendations for the display of pathways and standardized
data formats for exchanging these maps.

2.4.1. SBGN and SBGN-ML
The myriad of graphical notations that are being used can lead to
confusion or ambiguity. The development of a unified and stan-
dardized notation has thus become necessary (Le Novère et al.,
2009). The Systems Biology Graphical Notation11 effort aims to
make the display of biological networks exchangeable between
software tools and at the same time to clearly define the meaning
of specific nodes and arcs in such networks in order to ease their
interpretation and automated processing. Therefore, the number
of graphical symbols is intentionally limited in order to keep the
learning curve flat and to create a visually, syntactically, and seman-
tically consistent schema, which is modular in size and complexity

11http://sbgn.org

(Le Novère et al., 2009). The SBGN neither defines layout (place-
ment and adjustment) nor style (such as line thickness or color)
of objects. In order to represent the current needs for such a dis-
play, it is organized in levels, so that in the future new versions
can be proposed. The specifications of the SBGN are organized
in three different languages, each of which has been designed for
certain use-case scenarios and has inherent strengths and weak-
nesses. (i) In process-description diagrams (Kitano et al., 2005;
Funahashi et al., 2008), the level of detail is very high and these
maps show sequences of processes, which also involve temporal
causality (see Figure 3A). These maps are well suited for metabolic
pathways, but not for the consistent display of the combinatorial
complexity of several proteins with many phosphorylation states
(van Iersel et al., 2012). (ii) Activity flow charts (van Iersel et al.,
2012) are much more abstract and neglect many molecular mech-
anisms. By design, these maps introduce a certain ambiguity and
can hence be used to describe effects whose precise underlying
mechanisms are either not know or not relevant (see Figure 3B).
In this type of diagram, stimulation and inhibition, effects of
perturbation, and the activity of components can be displayed.
Activity flow charts are thus suitable for the display of causal-
ity chains (van Iersel et al., 2012). (iii) The entity-relationship
diagrams (Kohn et al., 2006) are particularly useful when the tem-
poral sequence of events does not play the main role, but precise
molecular interactions are to be displayed (see Figure 3C). These
maps are more concise than process-diagrams for protein modifi-
cations and interactions, but less capable of representing reactions
(van Iersel et al., 2012).

In order to specifically store and exchange SBGN maps in XML
files, the Mark-up Language SBGN-ML has been developed (van
Iersel et al., 2012). The main requirement for this format is its
simplicity, i.e., it should be easy to draw and to interpret. Most
significantly, SBGN-ML is not tied to any of the network repre-
sentation standards. While, this format does not include rendering
information, it has been proposed to incorporate a rendering
extension, similar as can be done with SBML files. In contrast to
the SBML layout extension, this format is focused on the concepts
of SBGN only and can be validated against the SBGN specifica-
tions. The API library libSBGN12 facilitates the import and export
of SBGN-ML files. The code of libSBGN has been automatically
created from an XML Schema Definition file (XSD), which signif-
icantly reduces the implementation effort, makes native language
implementations in C++ and Java™ possible, and can be used for
Schematron validation. A growing number of libSBGN-based soft-
ware tools support the SBGN-ML format, such as the VANTED
(Junker et al., 2006) plug-in SBGN-Ed (Czauderna et al., 2010),
the Cytoscape (Shannon et al., 2003) plug-in CySBGN (Gonçalves
et al., 2013), the online tool BioGrapher (Krause et al., 2013), the
model generator KEGGtranslator (Wrzodek et al., 2013), or the
visual editor CellDesigner (Funahashi et al., 2008).

2.4.2. Visualization of CellML
For CellML, a specialized interactive framework has been devel-
oped for the display of models (Wimalaratne et al., 2009). This

12http://libsbgn.sourceforge.net
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Dräger and Palsson Standardization efforts in systems biology

FIGURE 3 | (A) The glycolysis in human erythrocytes, simplified from
Dräger (2011). This example network depicts the reaction steps from
extracellular glucose to intracellular lactose as a chain of enzyme-catalyzed
reactions in SBGN PD notation. Metabolites that occur multiple times in
the map, such as ATP or NAD+, have darker clone markers on the bottom.
Simple molecules are displayed as circles, whereas, macromolecules
appear as rounded rectangles. Reactions are indicated as square process
nodes. (B) This activity flow diagram displays the interaction of two
mammalian signaling pathways that are stimulated by epidermal growth

factor (EGF) and tumor necrosis factor alpha (TNFα) and their influence on
the nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) and
mitogen-activated protein kinases (MAPK) cascades. Adapted from
Chaouiya et al. (2013) and generated with the program CellNOpt (Terfve
et al., 2012). Here, external stimuli are colored in green. (C) This figure
displays an example for an entity-relationship diagram, in which
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is precluded if it
dimerizes or if it binds to the protein calmodulin. Adapted from Le Novere
et al. (2011).

framework can either depict the physical model, i.e., the actual
components of the CellML format,or the biological interpretation.
CellML hence provides its own two-dimensional visual language
for both concepts, which can be used in programs to link between
the display and the underlying data structure, and also for dynamic
image manipulation. For both kinds of displays, a small set of dis-
tinct glyphs are defined: entities, processes, and roles. While the
physical display tends to be very complex, the biological view is
much more straightforward. The developers of the CellML visual-
ization scheme interact with the SBGN team (Wimalaratne et al.,
2009). On the longer term, it is intended to combine ideas from
SBGN (Le Novère et al., 2009) and the CellML display. Currently,
not all concepts of the CellML display can be expressed in SBGN
(Wimalaratne et al., 2009).

2.4.3. Layouts in SBML
Layouts can directly be stored in SBML models with the help
of the layout extension (Gauges et al., 2006). With this exten-
sion, it is possible to attach information about position and size
of objects, such as reactive species, compartments, or reaction
arcs. Text labels can also be placed. The SBML layout package
is based on boundary boxes and defines neither shapes nor colors
of objects, but it can be further extended with additional render-
ing information (Deckard et al., 2006; Shen et al., 2010). Tools
such as SBML2LaTeX or SBML2TikZ (Dräger et al., 2009b; Shen
et al., 2010) can interpret layouts stored in this extended SBML
to be consistent with SBGN process-diagram maps. In general,
these two SBML extensions allow users to store arbitrary forms
of network representations. Programs such as KEGGtranslator
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(Wrzodek et al., 2011, 2013) use the layout extension to preserve
initial layouts from the KEGG database in SBML files. In combi-
nation with the SBML extension for qualitative models (Chaouiya
et al., 2013), it is also possible to create activity flow networks.
In contrast to the SBML layout extension, no standardized way
has been proposed to directly store SBGN-ML layouts inside of
SBML files. However, the recent COMBINE format (Bergmann
et al., 2014) allows users to store files of diverse forms all together
within one archive file (see Section 2.6).

2.5. REPRESENTATION OF NUMERICAL RESULTS
In order to store the results of numerical simulation, specific file
formats have been proposed. The Systems Biology Result Mark-up
Language (SBRML, Dada et al., 2010) has been succeeded by the
NuML13. This new format has been developed as a standardized
exchange and archiving format for the results of numerical meth-
ods. This new language has been designed as a format that is usable
in various disciplines besides systems biology. The C++ library
libNUML can be used for parsing, manipulating, and writing the
information of NuML data structures.

2.6. COMBINE FORMAT
The COMBINE format aims to distribute diverse modeling, doc-
umentation, and data files together within one single Open Mod-
eling Exchange format (OMEX) file (Bergmann et al., 2014). The
format is basically a ZIP archive, i.e., a compressed datatype, which
contains an XML-based manifest file and an optional metadata
file in RDF format. While the structure of the manifest file is well-
defined, there are only recommendations for the metadata file.
If present, metadata should at least include information about
the author of the OMEX file in form of a vCard and follow
the structure proposed by the Dublin Core Metadata Initiative.
The manifest file contains structured links to all included files
together with a definition URI that describes the filetype. Thus,
diverse types of files can be included, even publications, plots,
models, graph definitions, etc. Just for the sake of significant data
compression, it is already recommended to store models inside
of OMEX files (file extension *.omex). Even though the COM-
BINE archive format belongs to the most recent datatypes of the

13http://code.google.com/p/numl/

systems biology community, it is already supported by a number
of tools and also the library libCombineArchive for dealing with
it (Java™ and C#).

2.7. ONLINE MODEL REPOSITORIES AND DATABASES
One important aspect of model exchange and reusability is the
availability and distribution of models that have already been pub-
lished or that are currently under review. Since a growing number
of journals require the online availability of models along with a
publication, it is important to be familiar with a number of online
resources that are now available. In this section, we will discuss the
different aims and features of selected online model repositories,
which are summarized in Table 2.

2.7.1. BiGG
An important resource for Biochemically, Genetically, and
Genomically structured genome-scale metabolic network recon-
struction is the BiGG database (Schellenberger et al., 2010). The
main focus of this knowledge-base is to facilitate the bottom-
up genome-scale reconstruction of metabolic networks. Inclusion
of every known reaction of an entire organism constitutes the
ultimate goal of BiGG. To this end, it integrates published genome-
scale metabolic networks into one resource and applies a standard
nomenclature for all of their components. Among these networks
are several important model organisms, such as E. coli and H.
sapiens, as well as further main branches of life (Duarte et al.,
2007; Feist et al., 2007; Thiele et al., 2013). All models are manu-
ally curated and all reactions are atom-balanced. These networks
also include gene–protein associations, which can be used to relate
the activity of genes via Boolean logic to reactions and hence to
perform knock-out or knock-down experiments in silico. BiGG
offers various options to search, browse, and display networks.
Manually curated maps can be downloaded in SVG format for a
multitude of pathways. There are often several such maps available
for one organism. Various build-in functions (such as decom-
partmentalization, orphan detection, gap filling, etc.) support the
modeling process. With its SBML export function, it provides
the basis for further steps in the modeling pipeline, particu-
larly constraint-based analyses by the COBRA platform (Becker
et al., 2007; Ebrahim et al., 2013). As the first database specific to
constraint-based models, it precedes the SBML extension for fbc,

Table 2 | Relevant online databases.

Database URL Provides Comments

BiGG http://bigg.ucsd.edu SBML COBRA models

BioModels http://www.ebi.ac.uk/biomodels-main/ CellML, SBML, PDF, VCML, and other formats Main repository for SBML models

JWS http://jjj.biochem.sun.ac.za/ JWS format, SBML Online simulation facility

ModelDB http://senselab.med.yale.edu/modeldb/ Various kinds of model data files Focus on neuroscience

Open-source brain http://www.opensourcebrain.org NeuroML and PyNN Interactive model development repository

PMR2 http://models.cellml.org CellML Project management platform with

connection to JWS

SEEK http://www.sysmo-db.org Models in diverse formats, publications, and

presentations

Focus on collaboration, connection

to JWS

WikiPathways http://www.wikipathways.org BioPAX, PathVisio, and image formats Interactive web 2.0 tool for biochemical

pathways
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but provides COBRA-specific model extensions that can be easily
converted (Bornstein et al., 2008).

2.7.2. BioModels database
BioModels database (Chelliah et al., 2013) is an open-source
project, whose license model allows free commercial and aca-
demic use. Individual authors can submit their models to this
database. A team of curators further improves the models, for
instance by making the annotations in the model consistent with
respect to MIRIAM guidelines (Juty et al., 2012). Large parts of the
database content have been imported from collaborative repos-
itories, such as the CellML model repository (Yu et al., 2011).
The web interface of BioModels database provides a large variety
of services based on embedded tools, e.g., for the simulation or
graphical display of models. The main format of BioModels data-
base is SBML, but models can be downloaded in a wide variety of
formats, most of which have been automatically converted from
the SBML files. It is also possible to obtain an exhaustive model
report about each model (Dräger et al., 2009b) that describes the
details of each model component in a human-readable way. Since
the database was launched in 2005, it has been observed that
not only are the number of models significantly increasing, but
also their complexity. It now contains a large number of mod-
els, each describing the same biological process, but with higher
levels of detail. With the growing size of the database the search
for a model of interest has become a problem by itself (Schulz
et al., 2011). With the help of metadata stored along with each
model and the actual content of the models, sophisticated rank-
ing procedures have been designed based on information theory
aiming to retrieve models from the database for a given query
(Henkel et al., 2010). The metadata include the submission and
modification data, the authors of the model, and references. The
user can browse through the models based on several charac-
teristics, including the model name, publication identifier, or a
GO-based (Ashburner et al., 2000) classification. Besides the cura-
tion of models, the main purpose of this repository includes the
reproduction of model simulation results as given by the original
publication (Waltemath et al., 2013).

2.7.3. CellML physiome model repository 2
The CellML physiome model repository 2 (PMR2) is the most
important resource for CellML models at different states of their
curation (Yu et al., 2011). It uses a Plone-based model manage-
ment system that is organized in workspaces. This allows its users
to collaboratively develop models based on a version-control sys-
tem and also facilitates the modular development of models. The
models stored in this database cover a large variety of processes,
including signal transduction and metabolic pathways, electro-
physiological and cell cycle models, immunological models, and
models describing muscle contraction or mechanical phenomena.
The idea of collaborative model development brings with it one
important feature: PMR2 keeps track of a detailed version history
of all models. Plug-ins to the system facilitate the presentation of
models in various ways and also enable the import and export
of diverse modeling formats, including SBML or FieldML besides
the native database format CellML. In addition, the plug-in tech-
nique makes the database extendable. A search function returns

models of all curation states. The main focus of this database is
to provide a version-controlled repository for the collaborative
model development and presentation of model information, here
called exposures.

2.7.4. JWS online model repository
Another popular model resource is the JWS Online Model Reposi-
tory (Snoep and Olivier, 2003). When JWS was launched as the first
central model database in 2003 the standards SBML and CellML
were still in their early development and not as well established.
The repository itself is tightly related to the JWS online simulator
(Olivier and Snoep, 2004), a particularly useful resource for edu-
cational purposes. Since then, the database has been continuously
extended. Its native data format is SBML. Models can be queried
based on a list of predefined characteristics (Waltemath et al.,
2013), including metadata such as author, publication, organism,
or model type as well as a list of categories (for instance, cell cycle
or metabolism). The purpose of JWS is to provide a user-friendly
online repository of kinetic models of biological systems in com-
bination with an application that facilitates the simulation of these
models. The aim of this infrastructure is to ease the review process
of papers describing these kinds of models. As a result of its inte-
gration into the SEEK platform (Wolstencroft et al., 2011) a large
number of collaborative projects use JWS as their default modeling
platform.

2.7.5. SEEK platform
The open-source SEEK platform benefits from the ability to offer
JWS as its integrated simulation tool to its users. The SEEK plat-
form goes beyond just being a model database. This web-based
tool has been designed as a pragmatic data management solu-
tion for the exchange of very diverse kinds of data relevant for
research in systems biology. Besides mathematical models, it also
covers the exchange of experimental data, scientific protocols, and
personal information about members of large research consortia
(Wolstencroft et al., 2011). It allows its users to record the out-
comes of experiments. One of its most important features is the
ability to link between data, models, and publications, as well as
to tag all uploaded items. This platform has originally been devel-
oped for the European SysMO consortium (Booth, 2007), and is
also used in several other National and European projects, such as
the German Virtual Liver Network (Holzhütter et al., 2012). The
preferred modeling data format of SEEK is SBML with MIRIAM
annotations.

2.7.6. ModelDB
ModelDB (Migliore et al., 2003; Hines et al., 2004) belongs to the
seven databases of SenseLab (NeuronDB, CellPropDB, ModelDB,
Olfactory Receptor Database, OdorDB, OdorMapDB, and Brain-
Pharm). SenseLab aims to provide a neural, genomics/genetics,
proteomics, and imaging information resource for the neuro-
science community and the interested public (Crasto et al., 2007).
The database does not explicitly require a standard data format.
Instead, authors are welcome to upload their models in arbitrary
formats. As a result, the database is very flexible, but model reuse
can take extra time to convert the desired model in a format for a
particular execution environment (Waltemath et al., 2013).
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2.7.7. Open-source brain
Inspired by the open-source movement, the collaboration-
oriented open-source brain (OSB) repository has been established
(Gleeson et al., 2013). All models in this repository can be com-
mented, debugged, and extended by registered users. This platform
therefore complements repositories, such as ModelDB (Hines
et al., 2004), which focus on distributing published models, with
the aim to drive the advance of models at all stages of its devel-
opment. An integrated WebGL-based 3D explorer allows users to
view cells and networks in NeuroML 2 format within their browser.
OSB is well integrated and links to ongoing research projects such
as OpenWorm14.

2.7.8. WikiPathways
The WikiPathways project (Kelder et al., 2011) provides a Web 2.0
wiki-based platform for the online curation of biological pathways.
The idea for this platform is that manually curated pathways are
of higher quality than automatically created ones. Motivating the
scientific community to share knowledge would thus increase the
quality of available pathway information. To this end, WikiPath-
ways provides an interactive zoom-able pathway viewer that comes
with a pathway diagram description, hyper-links, and detailed
information as well as literature references. Users can also anno-
tate the pathways with ontology terms. It is possible to submit
private pathway information that is shared later with the public,
for instance, as part of the review process, or if current knowledge
about certain processes is limited. As a major feature, WikiPath-
ways provides stable hyper-links to all pathways, which is useful
in order to use the platform as a reference. Its content can be
downloaded in many export formats under the terms of the Cre-
ative Commons license. The BioPAX standard (Demir et al., 2010)
is thereby its most important format. Internally, it uses GPML,
an XML standard that is compatible with many modeling tools,
including Cytoscape (Shannon et al., 2003).

3. RESULTS
3.1. INTEROPERABILITY OF STANDARDS
3.1.1. Path2Models
An important driving force for improved interoperability and
exchange of diverse data formats and standards was the com-
munity project path2models (Büchel et al., 2013a). The aim of
this project was to automatically create draft models of biolog-
ical processes based on the knowledge stored in the databases
KEGG (Kanehisa and Goto, 2000), MetaCyc (Caspi et al., 2014),
SABIO-RK (Wittig et al., 2014), and PID (Schaefer et al., 2009).
The extraction of information from these databases required the
development of new algorithms in order to capture a large variety
of special cases (Wrzodek et al., 2011, 2013; Büchel et al., 2012)
due to the different scope of the source databases. In order to also
encode qualitative networks in SBML, the standard needed to be
extended (Chaouiya et al., 2013). The draft SBML models had to be
quality controlled and enriched with further kinetic information
for reactions for which the SABIO-RK database did not yet provide
experimentally determined rate laws (Dräger et al., 2008, 2010).

14http://openworm.org

Drafts of whole organism models were created by combining
individual organism-specific pathway models (Swainston et al.,
2011).

The main purposes of the KEGG databases are to provide
a comprehensive, textbook-like educational view on the knowl-
edge about a large variety of biological pathways. For modeling
purposes, however, the information needs to be presented in a
different way (Wrzodek et al., 2013). Reactions cannot be lumped
together for the purpose of a better visual presentation, but have
to be made explicit. The model must be as specific as possible, i.e.,
organism-specific variations must be reflected in pathways.

New algorithms also needed to be proposed in order to generate
SBGN-ML files directly from KEGG (Czauderna et al., 2013). On
the one hand, the manually created pathway maps in KEGG can be
much better comprehended by human beholders than automatic
layouts. However, in order to obtain an unambiguous representa-
tion of knowledge, the initial KEGG layout needs to be modified
and subject to several constraints with respect to the esthetics of
the result.

Such a large-scale endeavor, which resulted in more than
140,000 pathway maps that are all available from BioModels Data-
base (Chelliah et al., 2013), was only feasible with the help of
automatic procedures. Overall, this effort can be seen as a showcase
application, which demonstrated the usefulness of data standard-
ization, source code exchange, and software development in a large
collaborative community project.

3.1.2. Workbench and workflow approaches
Even though several data storage and exchange formats have been
defined and software has been developed to import and export
those formats, it is still difficult to work with a large number
of different programs and in diverse environments. It can be of
particular interest to process intermediate results from one pro-
gram in another software package or to work with software on
different computers with different operating systems. Further-
more, software is often written in diverse programing languages
and compiled in diverse environments. Code reuse is still quite
limited. All this can hamper building complex analysis pipelines.
To address these problems, the systems biology workbench (SBW,
Sauro et al., 2003) and the Garuda effort (Ghosh et al., 2011) have
been launched. SBW is a software framework for communication
between heterogeneous application components. It provides a bro-
ker to which each SBW-enabled software needs to register. This
broker enables the software to be executed on different machines.
Information can be sent from one program to the other through
a specific protocol, which provides a fast binary encoded message
system. SBW therefore allows programs to use each other’s capa-
bilities. In contrast, Garuda is similar to an “App Store” for systems
biology (see http://www.garuda-alliance.org/). It provides a com-
mon platform, from which diverse applications (gadgets) can be
launched (see Figure 4). Garuda gadgets can call each other and
send their output the next gadget or receive input from other
gadgets. A powerful workflow would be to create a model with
KEGGtranslator (Wrzodek et al., 2011, 2013), which can forward
its result to the rate law generator SBMLsqueezer (Dräger et al.,
2008, 2010), which in turn launches SBMLsimulator (Keller et al.,
2013)in order to run a simulation and parameter calibration on
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Dräger and Palsson Standardization efforts in systems biology

FIGURE 4 | Garuda dashboard. This is the main screen of Garuda. The left column lists several categories that group individual gadgets. The icons in the center
column allow users to launch applications with a double click. A detailed description of a gadget is displayed in the right column upon click on an icon.

the resulting model. Garuda provides a nice and easily understand-
able user interface, the dashboard, from which applications can be
launched.

3.2. SOFTWARE SUPPORT
A large variety of software has been developed for many kinds of
model building, analysis, drawing, simulation, and format inter-
conversion. In this section, we will only discuss a small number
of conceptual categories and particularly important tools. Several
reviews specifically focus on available software (e.g., Dandekar
et al., 2012; Hamilton and Reed, 2013; Fernández-Castané et al.,
2014; Gostner et al., 2014; Koussa et al., 2014; Kramer et al.,
2014). Table 3 gives an overview of selected software. For an
up-to-date list and comprehensive information, see, for instance,
the dynamic software matrix at http://sysbioapps.dyndns.org/
pivot-software-matrix.html.

3.2.1. Visualization and model building
Several tools provide interactive graph-based user interfaces and
facilitate import or creation, manipulation, or export of complex
pathway structures. Some programs can be extended via plug-ins,
e.g., the Biological Network Analyzer BiNA (Gerasch et al., 2014),
CellDesigner (Funahashi et al., 2008), or Cytoscape (Shannon
et al., 2003). The flexible stand-alone application BiNA (Gerasch
et al., 2014) is based on a hierarchical graph concept and provides
highly configurable styles for the visualization of regulatory and
metabolic network data as well as access to the BN++ pathway

data warehouse (Küntzer et al., 2007). The web-modeling tool
BioGrapher (Krause et al., 2013) is implemented with HTML5,
CSS, and JavaScript and can be used to create SBGN maps. BioG-
rapher can import several standard formats, including SBML and
SBGN-ML, and export SBGN maps in a JSON file format or as
images. The VANTED plug-in SBGN-ED supports all three kinds
of SBGN maps and is therefore useful for designing and modifying
SBGN-ML files (Czauderna et al., 2010). The framework pro-
gram Cytoscape supports creation, import, and export of SBML
and SBGN through plug-ins (König et al., 2012; Gonçalves et al.,
2013). The main purpose of the straightforward and user-friendly
process-diagram editor CellDesigner is the creation, manipula-
tion, and simulation of SBML models (Matsuoka et al., 2014) with
export functions to BioPAX (Mi et al., 2011) and SBGN-ML (van
Iersel et al., 2012). CellDesigner can be extended through plug-
ins, such as the kinetic law generator SBMLsqueezer (Dräger et al.,
2008, 2010). The draft model generator KEGGtranslator (Wrzodek
et al., 2011, 2013) automatically downloads contents of the path-
way database KEGG (Kanehisa and Goto, 2000) and converts the
content to diverse output formats, including SBML with exten-
sions for layout (Gauges et al., 2006) and qual (Chaouiya et al.,
2013), SBGN-ML (van Iersel et al., 2012), BioPAX (Demir et al.,
2010),and many more. TinkerCell (Chandran et al.,2009) has been
developed as a computer-aided design (CAD) tool and provides
visual representations for systems biology and synthetic biology.
OpenCOR (open-source cross-platform) for working with CellML
files can be used through command-line or graphical user interface
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Table 3 | Selected relevant software for systems biology.

Program Main features Citation

BiNA Visualization of regulatory and metabolic network data with configurable styles and hierarchical

graph concepts; analysis of omics data; data warehouse; plug-in system architecture

Gerasch et al. (2014)

BioGrapher Web-based tool for creation and editing of SBGN maps with automatic layout algorithms Krause et al. (2013)

BioUML Platform for network building, simulation, analysis with full implementation of SBML Kolpakov et al. (2011)

CellNOpt Logic-based program for creating and simulating models of signal transduction Terfve et al. (2012)

Cytoscape Plug-in-based open-source software platform for visualizing complex networks and their attributes Shannon et al. (2003)

CellDesigner Process-diagram editor for gene-regulatory and biochemical networks with plug-in architecture and

integrated solvers

Funahashi et al. (2008)

COBRA,

COBRApy

Implementations of FBA, gene deletions, flux variability analysis, sampling, and batch simulations

for constraint-based models

Schellenberger et al. (2011),

Ebrahim et al. (2013)

COPASI Simulation and analysis of biochemical networks and their dynamics in stochastic and ODE

frameworks with support for SBW, parameter estimation, visualization, and several export formats

Hoops et al. (2006)

FASIMU Command-line based collection of common FBA algorithms for SBML and several kinds of

constraints. Its linear programing solvers can be exchanged and numerous constraints be defined

Hoppe et al. (2011)

Flint An efficient stand-alone solver for PHML and SBML models, which also provides a cloud service Asai et al. (2013)

GINsim Simulator for qualitative gene interaction networks with graph-drawing capability, interactive user

interface, and support for SBML qual

Gonzalez Gonzalez et al.

(2006)

GRN2SBML Converts the output of network inference procedures to SBML including MIRIAM annotation;

access to BioMart central portal; R-package

Vlaic et al. (2013)

iBioSim Modeling, analysis, design of genetic circuits for systems, and synthetic biology; user-friendly

editors for diverse formats; variety of ODE and stochastic simulators; and plotting functions

Myers et al. (2009)

JSim Building and analysis of quantitative numeric models with focus on physiology and biomedicine;

support for ODEs, PDEs, implicit equations, etc.

Butterworth et al. (2014)

libRoad-Runner C++ library for efficient numerical simulation and analysis of SBML models that provides Python

language-bindings, which are integrated into the tellurium environment

Sauro et al. (2013)

libSBMLSim C-based ODE simulation library for SBML models with explicit and implicit methods,

language-bindings, and command-line tool

Takizawa et al. (2013)

Mass-Toolbox Mathematica framework for kinetic and constraint-based model building and simulation; focus on

mass-action kinetics and elementary reaction systems; support for ODE/DAE (incl. delays and

events)

Sonnenschein and Palsson

(2013)

Module-Master Identification of cis-regulatory modules (CRMs) in sets of co-expressed genes based on

transcription factor binding information and multivariate functional relationships between regulators

and target genes

Wrzodek et al. (2010)

MOOSE Multi-scale object-oriented simulation environment for diverse biological systems with a Python

scripting interface and support for SBML, NeuroML, GENESIS kkit, and cell.p formats

Dudani et al. (2013)

OpenCOR Plug-in based cross-platform modeling environment for working with CellML files Nickerson et al. (2013)

Physio-Designer Platform for the creation and analysis of PHML models that also allows users to integrate SBML

models. It uses Flint as its solver back-end through a cloud service

Asai et al. (2013)

PySCeS Extendable Python toolbox for time-course simulation, steady-state and stability analysis, metabolic

control analysis and many more, support for SBML fbc and SED-ML

Olivier et al. (2005)

(Continued)
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Table 3 | Continued

Program Main features Citation

SOSlib C programing library for symbolic and numerical analysis of chemical reaction network models

encoded in SBML format

Hindmarsh et al. (2005),

Machné et al. (2006)

SBML-simulator Dynamic model simulation and heuristic parameter optimization of SBML models based on the

systems biology simulation core library and EvA2

Kronfeld (2008), Keller et al.

(2013)

SBML-squeezer Context-sensitive generator for kinetic equations of biochemical and gene-regulatory networks with

access to SABIO-RK

Dräger et al. (2008, 2010),

Dräger (2011)

SBToolbox2 MATLAB™ toolbox with support for SBML, and a large variety of analysis and high-performance

simulation functions as well as parameter estimation, sensitivity analyses

Schmidt and Jirstrand

(2006), Schmidt (2007)

TinkerCell Computer-aided design platform for synthetic biology with C and Python API Chandran et al. (2009)

VANTED Versatile plug-in based visualization and analysis platform for networks with support for SBGN-ML,

sophisticated layout algorithms, and FBA

Junker et al. (2006)

VCell Modeling and simulation (deterministic and stochastic) of physicochemical and electro-physiological

processes with support for irregular spatial distribution of substances in arbitrary geometries

Moraru et al. (2008),

Resasco et al. (2012)

(Nickerson et al., 2013). It supports various aspects of modeling,
including editing, simulation, and analysis. As a plug-in based pro-
gram, OpenCOR can be easily extended. One of its most recent
plug-ins facilitates the annotation of CellML.

3.2.2. Constraint-based modeling
The most important toolboxes for Constraint-Based Reconstruc-
tion and Analysis (Bordbar et al., 2014) are the COBRA Toolbox for
MATLAB (Schellenberger et al., 2011) and its Python implemen-
tation COBRApy (Ebrahim et al., 2013). These toolboxes provide
state-of-the-art implementations of flux balance analysis methods,
including gene deletions, flux variability analysis, sampling, and
batch simulations. Both versions of COBRA incorporate tools to
read-in and manipulate constraint-based models, which requires a
specific extension of the SBML standard. The Mathematica-based
Mass-Toolbox (Sonnenschein and Palsson, 2013)15 is a complex
framework for constraint-based model building and simulation,
which can calculate steady-state solutions for complex enzyme
reactions and even solve ODE and DAE systems with delays and
events. Further important tools for FBA are FASIMU (Hoppe
et al., 2011), the VANTED (Junker et al., 2006) plug-in FBA-SimVis
(Grafahrend-Belau et al., 2009), and PySCeS (Olivier et al., 2005).

3.2.3. Dynamic simulation
The main focus of the Mass-Toolbox (Palsson, 2011; Sonnenschein
and Palsson, 2013) is kinetic modeling with a focus on mass-action
rate laws and elementary reaction systems. It supports a large vari-
ety of analysis methods and high-level plotting commands for
phaseportraits, and many more.

The SBToolbox2 (see http://sbtoolbox2.org, Schmidt and
Jirstrand, 2006; Schmidt, 2007) provides a powerful and exten-
sible variety of simulation and analysis functions, which smoothly
integrate into the MATLAB environment. SBToolbox2 supports
SBML and parameter estimation with EvA2 (Kronfeld, 2008).

15http://opencobra.github.io/MASS-Toolbox/

CellDesigner delivers several third-party tools for interactive
model simulation SOSlib (Machné et al., 2006), the Simulation
Core Library (Keller et al., 2013), or COPASI (Hoops et al., 2006).

The SBW-enabled complex pathway simulation program
COPASI is primarily a stand-alone program, but provides API
language-bindings for several programing languages. COPASI
can read, write, and understand SBML, but has its own specific
modeling language and supports several other export formats. It
comprises methods for simulation and analysis of biochemical
networks and their dynamics based on ODEs and stochastic sys-
tems. Parameter estimation and the visualization of data as well as
animated pathways are among its strengths.

The tool SBMLsimulator combines the Simulation Core
Library, a comprehensive Java™ API for solving SBML models
(Keller et al., 2013) with the optimization framework EvA2 (Kro-
nfeld, 2008) in a self-explanatory user interface and provides a
complete implementation of the SBML standard in terms of an
ODE framework.

The stand-alone desktop tool BioUML (Kolpakov et al., 2011)
is among the few tools that provide a full implementation of the
SBML standard in terms of ODE systems and also provides its
functions as JavaScript API.

The stand-alone tool iBioSim (Myers et al., 2009) for model-
ing, analysis, and design of genetic circuits has been developed as
an editor and simulator (ODE and stochastic) with applications
in systems biology as well as synthetic biology. Besides SBML, it
also understands Petri net (LPN) models and has import access
to model databases. Experimental data can also be used to infer
models in iBioSim.

SOSlib (Machné et al., 2006) is an ODE-based C-API library
implementation of SBML that internally uses CVODE (Hind-
marsh et al., 2005). The newer C-implementation libSBMLSim
(Takizawa et al., 2013) supports even more recent versions of
SBML, explicit and implicit integration methods, and bindings
to several programing languages. Another alternative is libRoad-
Runner, a highly performant C++ library for the simulation of
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SBML models, which provides automatically generated language-
bindings to Python (Sauro et al., 2013).

The Java-based tool JSim has been designed for building quan-
titative numeric models as well as the analysis of these models
based on given experimental data (Butterworth et al., 2014). It
supports ODEs and PDEs, discrete events, and implicit methods.
JSim can import and export SBML and import CellML (Smith
et al., 2013a).

The Virtual Cell suite VCell is a powerful simulation toolbox for
complex biological phenomena (Moraru et al., 2008; Resasco et al.,
2012). It includes sophisticated methods for: (i) molecular inter-
actions and transport, (ii) various sub-cellular compartments,
(iii) dynamics of membrane potentials, and (iv) arbitrary fluxes
and passive cross-membrane transport mechanisms, and supports
PDEs in addition to ODEs. It is one of very few tools to incorpo-
rate physicochemical and electro-physiological processes and can
apply quasi-steady-state approximations to fast reactions. It is also
an image processing tool for experimental images.

The simulation environment MOOSE was developed as a reim-
plementation of the GENESIS neural simulator, and initially used
that simulator’s model description format. Recently though it
has developed support for NeuroML models, and is also capa-
ble of dealing with systems biological models (Gleeson et al., 2010;
Dudani et al., 2013). New simulation algorithms can be added to
MOOSE through a generic framework. It has also been developed
with a focus on multi-scale models and simulation in diverse levels
of detail (Dudani et al., 2013). For a more comprehensive overview
about recent simulation tools with a focus on neuroscience we refer
the interested reader to the review by Gleeson (2013).

The stand-alone modeling framework PhysioDesigner (Asai
et al., 2013) provides several functions for the creation and analysis
of PHML models. SBML models can be incorporated as submodels
through PhysioDesigner (Asai et al., 2014), aiming at integrating
dynamics at sub-cellular and cellular levels. The simulator Flint
can efficiently solve PHML models and provides a cloud service,
which allows users to remotely solve their models (Asai et al.,2012).
PhysioDesigner uses Flint and submits jobs to this cloud service.

3.2.4. Regulatory networks
The inference of regulatory networks is a challenge for many areas
of research. The program ModuleMaster (Wrzodek et al., 2010)
identifies cis-regulatory modules (CRMs) in sets of co-expressed
genes based on transcription factor binding information and mul-
tivariate functional relationships between regulators and target
genes. As an input it uses microarray and clustering experiments
and SBML models as output. In order to make the results of net-
work inference procedures such as NetGenerator (Töpfer et al.,
2007) reusable in further analysis tools, the program GRN2SBML
(Vlaic et al., 2013) has been developed as a converter to SBML.
It provides a graphical user interface, access to BioMart Central,
and can also be used as an R-package. The program GINsim has
been developed for the analysis and simulation of logical models
of gene interaction networks (Gonzalez Gonzalez et al., 2006) and
has been recently adapted to the SBML qual extension (Chaouiya
et al., 2013). The program CellNOpt can be useful for the cre-
ation of signal transduction networks based on a logical approach
(Terfve et al., 2012), and it also supports SBML qual.

3.3. REGULAR COMMUNITY MEETINGS
Many standards described in this paper are based on community
efforts. For this reason, community meetings have been required
from their inception. In October 2010, separate workshops were
combined in order to better coordinate individual developments
and to reduce the necessary amount of traveling for individual
researchers. This resulted in two regular annual meetings that
brought together the community. The COMBINE (Computa-
tional Modeling in Biology Network) is a workshop with scien-
tific presentations, poster sessions, and several break-out sessions,
which are used to discuss and coordinate the further development
of the “COMBINE Standards” BioPAX, CellML, SBGN, SBML,
SBOL, and SED-ML, as well as associated and related standards.
The idea of the spring Hackathon on resources for modeling in
biology (HARMONY) is to provide room and time for commu-
nity members to sit down, share code and ideas, program, and
discuss. In contrast to the fall event, HARMONY usually has
only very few talks and is much more a hands-on practical event,
where participants develop new approaches and ideas. For more
information about previous meetings see the meeting reports by
Le Novère et al. (2011), Waltemath et al. (2014) and the COM-
BINE homepage16. This alternating sequence of complementary
meetings leads to a very efficient and progressive development of
software and standards.

4. DISCUSSION
In this review article, we have examined diverse modeling stan-
dards and data formats that are currently in use within the
scientific community together, with databases from where these
formats can be obtained. We discussed a selection of useful soft-
ware packages and modeling approaches for systems biology and
related fields. The structuring of individual standards is at present
very elaborate: there is usually a modeling, annotation, or docu-
mentation recommendation that forms the theoretical basis for
a corresponding machine-readable data format and involves spe-
cific controlled vocabulary terms for unambiguous specification
of individual model components.

Aiming to keep even highly elaborate standards flexible and able
to incorporate new findings, the specifications are becoming more
and more abstract and modularized. For example, the original
reaction element in SBML is now seen as a generic process whose
inputs and outputs no longer strictly have to represent substrates
and products of biochemical reactions. The idea to develop specific
packages for certain needs rather than one monolithic modeling
language also follows this trend. The development of all standards
involves numerous people, detailed discussions, and careful con-
sideration. This overall procedure ensures that standards mature
in an open fashion and allows interested researchers to participate
and to contribute to this development. At the same time, it also
increases the chance that potential conflicts or inaccuracies can be
discovered in early stages of development. With increased use of
standards the requirements of the individual format are steadily
improved and current limitations are detected and solved. Thanks
to the regular meetings and ongoing exchange between the devel-
opers of the diverse standards, the individual formats are mutually

16http://co.mbine.org
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adopting more and more of each other’s features. It can there-
fore be expected that the exchange between different model and
pathway representation standards will further increase.

For end-user applications, the goal is that users would no longer
have to care about the underlying data format used by a specific
software tool. More and more details of the internal structure
and organization of underlying formats could be hidden and no
detailed knowledge about these formats would be required. Plug-
ins for platforms such as Cytoscape (Shannon et al., 2003) or
CellDesigner (Funahashi et al., 2008) can provide complemen-
tary functionality for export or import of certain data formats
based on a common underlying data structure (König et al., 2012;
Gonçalves et al., 2013). The SBW or the Garuda framework pro-
vides further ways to increase the interoperability of tools with
little effort (Sauro et al., 2003; Ghosh et al., 2011). Many tools
could also benefit from the ability of the new COMBINE archive
format to bridge separately stored representations or applications
of the same model (Bergmann et al., 2014).

The distribution and curation of standardized models, their
simulation description, and expected results by centralized data-
bases plays a prominent role. These knowledge bases consti-
tute valuable resources of available information about biological
processes and reproducible experiments. They can therefore sig-
nificantly reduce time and effort needed for the assembly of
extended models and create the basis for further research. The
ability to easily reproduce new scientific findings with existing sim-
ulation workflows facilitates the fast adoption and integration of
these findings into new and even further elaborated works. If other
researchers are able to run simulations and to comprehend mod-
els with minimal effort, it can be expected that these studies will
receive higher recognition and lead to more citations compared
to distributing models whose outcomes are difficult to reproduce.
The distribution of models and data in standard formats amongst
their project working groups will not only benefit collaboration
partners, but the fine-grained structure of standards for diverse
aspects of modeling workflows that is now available can even sim-
plify the review process of scientific papers. If a model is uploaded
along with a publication in a standard format, accompanied with
a simulation experiment description file and a graphical represen-
tation, reviewers can quickly obtain an overview about structure
and organization of a model, and even easily check if the findings
described in the paper can be reproduced. Thereby, the reviewer
can select any numerical tool that supports these data formats and
is not restricted to any particular environment.

The development of a standard can be seen as a long-term
investment. Unlike in other fields, the community-based bottom-
up development of exchange formats is very common in systems
biology. Depending on the structure of the field, it can therefore
take a long time before the overhead of developing a new standard
pays off; on the other hand, standards exist as long as the commu-
nity has a requirement for them (Brazma et al., 2006). It also seems
that the development of standards has become a field of research
by itself and is sometimes even seen as the central aspect in mod-
eling (Waltemath et al., 2013). Models and their evaluation are
certainly valuable tools for progress in research, but permanently
keeping track of all emerging standards can become difficult. The
proposed concepts and approaches can only be successful if these

are well-known. If standard data formats are developed that are
not adopted by the community, the standard will disappear and a
simpler solution will gain acceptance. As we go along, new model-
ing techniques and new finding are established and adopted by the
research community (Lerman et al., 2012; O’Brien et al., 2013).
Approaches for model encoding and standardization therefore
need to continuously evolve with the domain of research that
they represent. It is therefore important for the standardization
community to continue to closely interact with the modeling com-
munity in order to catch up with novel approaches, needs, and
requirements. The solutions given to the modeling community
must be simple enough in order to be easily adopted, implemented,
and applied, but they must also be sophisticated enough in order
to capture the complexity of the described systems. Participation
of the community in proposing encoding schemes and guideline
checklists is essential for the success of the respective standard.
Large-scale reconstructions and community projects require data
standards and at the same time push their development (Büchel
et al., 2013a; Thiele et al., 2013).

While in the past even quick computation in active research
required the implementation of some data structures from scratch
in customized scripts, the rich variety of software libraries and
modeling-specific scripting languages now available drastically
simplify these tasks. If an existing software solution cannot be
directly applied to solve a specific task, it is at least possible to
use standards compliant data structures from the very begin-
ning of a project. Also the quality of available software solutions
is progressively increasing. For the distribution of final results,
standard formats should be used as the preferred exchange and
storage medium in order to ensure reusability and reproducibility
of results and findings.
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