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Background

Few data are available on the risk factors of locoregional recurrence (LRR) after neoadjuvant chemotherapy (NACT) and immediate breast reconstruction (IBR) in breast cancer. Herein, we evaluated the factors predicting LRR in a large series of patients who underwent either nipple- (NSM) or skin-sparing mastectomy (SSM) with IBR after NACT.



Methods

We retrospectively analyzed 609 breast cancer patients who underwent NACT and NSM/SSM with IBR between February 2010 and June 2017. Factors associated with an increased risk of LRR were analyzed by univariate (chi-square or Fisher’s exact test) and multivariate (Cox proportional hazard regression model) analyses.



Results

During a median follow-up of 63 months, LRR as the first event occurred in 73 patients, and the 5-year cumulative LRR rate was 10.8%. Multivariate analysis revealed post-NACT Ki67 ≥ 10% [hazard ratio (HR), 2.208; 95% confidence interval (CI), 1.295-3.765; P = 0.004], high tumor grade (HR, 1.738; 95% CI, 1.038-2.908; P = 0.035), and presence of lymphovascular invasion (LVI) (HR, 1.725; 95% CI, 1.039-2.864; P = 0.035) as independently associated with increased LRR risk. The 10-year LRR rate was 8.5% for patients with none of the three associated risk factors, 11.6% with one factor, 25.1% with two factors, and 33.7% with all three factors (P < 0.001).



Conclusions

Post-NACT Ki67 ≥ 10%, high tumor grade, and presence of LVI are independently associated with an increased risk of developing LRR after NACT and NSM/SSM with IBR. Future prospective trials are warranted to decrease the risk of LRR in patients with associated risk factors.
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Introduction

Neoadjuvant chemotherapy (NACT) has been established as the standard of care for locally advanced breast cancer and is now being used more often as a treatment in early-stage breast cancer (1). NACT aims to increase the rate of breast conservation; however, a large proportion of patients receiving NACT undergo mastectomy as the surgical treatment, either because breast-conserving surgery is not feasible or because of patient preference. Over the last decade, patients have begun to prefer nipple- (NSM) or skin-sparing mastectomy (SSM) combined with immediate breast reconstruction (IBR) in the treatment of breast cancer, as it provides improved aesthetic results and quality of life (2, 3). Several non-randomized studies have demonstrated that the oncologic outcomes of NSM/SSM with IBR are comparable to those of conventional mastectomy alone (4–6). Recently, NSM/SSM with IBR has also been performed in patients who receive NACT; however, data related to the long-term safety of such treatments in this patient population are still insufficient (7). In addition, locoregional recurrence (LRR) following NSM/SSM with IBR remains clinically challenging, not only because it may indicate poor prognosis (8), but also because the oncologic management of LRR may lead to loss of the initial reconstruction (9). In patients who receive NACT and breast reconstruction, the predictive value of clinicopathologic features or treatment-associated factors for LRR is unclear due to a lack of data.

In this study, we aimed to identify the factors associated with an increased risk of LRR in a large series of breast cancer patients who underwent NSM/SSM with IBR after NACT.



Materials and Methods

This study was approved by the institutional review board (IRB) of Asan Medical Center, Seoul, Republic of Korea (No. 2017-1341). This study is a retrospective study conducted with the exemption of consent under IRB deliberation using a platform for extracting unidentified clinical information for research purposes. The medical records of all patients who underwent IBR with NSM/SSM after NACT for primary breast cancer between January 2010 and June 2017 at the Asan Medical Center, Seoul, Republic of Korea, were reviewed from a prospectively maintained database. Patients presenting with inflammatory breast cancer or synchronous distant metastasis were excluded. Patient and tumor characteristics were collected and analyzed, including age at diagnosis, tumor stage, grade, molecular subtype, histotype, lymphovascular invasion (LVI) status, presence of extensive intraductal component, post-NACT Ki67 status, and pathological multifocality/multicentricity. Tumor staging was conducted according to the 8th American Joint Committee on Cancer Staging Manual (10). Pathological complete response (pCR) was defined as no evidence of invasive cancer in the breast or axillary lymph nodes.

All patients included in this study received NACT after breast cancer diagnosis. The NACT regimens were selected at the discretion of the treating oncologist. NSM/SSM was performed by breast surgeons, and IBR was performed by plastic surgeons using autologous flaps or implants. NSM or SSM was performed according to the indications of conventional mastectomy, regardless of tumor size or tumor-to-nipple distance, as long as there was no evidence of tumor involvement in the breast skin and nipple-areola complex, clinically or on imaging. In cases of NSM, retroareolar frozen-section biopsy specimens were collected and examined intraoperatively. The nipple-areola complex was preserved if the shape, color, and palpated features of the nipple were normal, and if the nipple margin was confirmed to be tumor free on frozen-section biopsy. In cases in which the retroareolar tissue was positive for malignancy in the frozen section or permanent biopsy, the nipple with or without the areola was removed, and these cases were considered SSM. The decision to undergo adjuvant radiotherapy was made by the treating radiation oncologist after consideration of pre- and post-NACT disease stages, tumor response to NACT, and other tumor biomarkers in patients. Most patients who required adjuvant radiotherapy after evaluation underwent simultaneous irradiation of the chest wall and supraclavicular region. Adjuvant hormonal therapy was applied in patients with hormone receptor-positive disease.

Postoperatively, patients were regularly followed up every 3–6 months for the first 5 years and annually thereafter. Recurrence and metastasis were identified based on the results of the clinical examination, chest radiography, and tumor marker (CA15–3) measurements, which were taken every follow-up visit. In some cases, abnormal clinical findings were further evaluated using chest computed tomography (CT), a bone scan, ultrasonography, and/or positron emission tomography-CT. In patients suspected of LRR, fine needle aspiration, core needle, or excisional biopsy was performed for pathological confirmation. Lesions with clear evidence of distant metastasis on imaging evaluation were considered as recurrence without pathological examination.

LRRs were classified as local or regional recurrence. Local recurrence was defined as biopsy-proven recurrences in the ipsilateral skin/subcutaneous layer, chest wall, or nipple-areola complex, and regional recurrence was defined as carcinoma metastases in the ipsilateral axillary, supraclavicular, or internal mammary lymph node. Any other site of recurrence was considered distant metastasis. Patients with initial distant metastasis were excluded from the LRR group. In cases of concurrent LRR and distant metastasis, each recurrence was counted as an event. Occurrence of contralateral breast cancer was considered a new primary cancer and was not counted as a recurrence. Follow-up was calculated from the date of diagnosis.

The 5- and 10-year cumulative LRR rates were calculated using the Kaplan-Meier method and compared using the log-rank test between subgroups. The clinicopathological factors that were significant in univariate analyses (Chi-square or Fisher’s exact test) of LRR were included in the multivariate analysis using the Cox proportional hazards regression model. All statistical analyses were performed using IBM SPSS Statistics software version 24.0 for Windows (IBM Corp., Armonk, NY, USA). Two-tailed P-values < 0.05 were considered significant.



Results

A total of 609 patients who underwent NACT and IBR with NSM/SSM for primary breast cancer were included. Patient, tumor, and treatment characteristics are shown in Table 1.


Table 1 | Patient, tumor, and treatment characteristics (N=609).



The median age at diagnosis was 42 years (range, 23-72 years). The majority (89.7%) of patients received anthracycline-based (with or without taxane) NACT. NSM was performed in 370 (60.8%) patients and SSM in 239 (39.2%). Four hundred and twenty (69%) patients underwent autologous flap reconstruction, and 189 (31%) patients underwent implant-based reconstruction. Adjuvant radiotherapy was administrated in 316 (51.9%) patients. Among the 223 patients with human epidermal growth factor receptor 2 (HER2)-positive disease, 219 (98.2%) received adjuvant trastuzumab. On follow-up, pCR was observed in 79 (13%) patients.

The median follow-up period was 63 months (range, 11-135 months). LRR as the first event occurred in 73 patients, and the 5-year cumulative LRR rate was 10.8%. Among these, isolated LRR occurred in 55 patients (75.3%) and concurrent LRR with distant metastasis occurred in 18 (24.7%). Table 2 summarizes the oncologic outcomes of the entire cohort. The median time to LRR was 35 months (range, 7-76 months). Patients with isolated LRR as the first event showed a significantly lower 10-year overall survival rate than those without LRR (64.7% vs. 90.2%; log-rank P = 0.035). Table 3 shows the incidence rates of LRR according to various clinicopathological and treatment factors. The following factors were significantly associated with increased rates of LRR in the univariate analysis: age at diagnosis ≤ 40 years, pathological T stage, pathological nodal status, pCR status, tumor grade, LVI, and post-NACT Ki67 status. Of these, post-NACT Ki67 ≥ 10% [hazard ratio (HR), 2.208; 95% confidence interval (CI), 1.295-3.765; P = 0.004], high tumor grade (HR, 1.738; 95% CI, 1.038-2.908; P = 0.035), and presence of LVI (HR, 1.725; 95% CI, 1.039-2.864; P = 0.035) were independently associated with reduced LRR-free survival in the multivariate analysis (Table 4).


Table 2 | Oncologic outcomes.




Table 3 | Univariate analysis of factors associated with LRR.




Table 4 | Multivariate analysis of risk factors associated with LRR.



Figure 1 shows the Kaplan-Meier curves for LRR risk, according to the number of independent risk factors. The 10-year rate of LRR was 8.5% for patients with none of the three independent risk factors (n = 197, 32.3%), 11.6% for those with one risk factor (n = 226, 37.1%), 25.1% for those with two risk factors (n = 144, 23.6%), and 33.7% for those with all three risk factors (n = 42, 6.9%; log-rank P < 0.001).




Figure 1 | Increased risk of LRR with an increasing number of independent risk factors. LRR, locoregional recurrence.





Discussion

Although previous studies have investigated predictive factors of LRR after NACT in conventional mastectomy or breast-conserving surgery (11–15), little data regarding the risk factors of LRR after NACT for NSM/SSM with IBR exists. In this study, we identified the 5-year LRR rate (10.8%) and factors predicting LRR in breast cancer patients who underwent NSM/SSM with IBR after receiving NACT. Post-NACT Ki67 ≥ 10%, high tumor grade, and presence of LVI were independent risk factors for LRR in the current setting. Notably, the 10-year LRR rate reached 33.7% in patients with all three risk factors and was 8.5% in patients with none of these factors.

NSM/SSM with IBR has become an important surgical strategy in modern breast cancer care. This surgical procedure, particularly NSM with IBR, can provide significantly improved aesthetic results, patient satisfaction, and/or psychosocial/sexual well-being (2, 3, 16). A recent analysis from the National Cancer Database of the American College of Surgeons and the American Cancer Society showed an increasing trend toward the application of NSM in patients with advanced disease, particularly in those who received NACT, and highlighted the importance of further prospective trials to validate the evidence of oncologic safety of this procedure (7). The current National Comprehensive Cancer Network (NCCN) guidelines recommend that NSM/SSM should be performed by an experienced breast surgery team working in a multidisciplinary fashion, according to specific clinical features and selected criteria (17). In case of NSM, NCCN guidelines include some cases of locally advanced invasive breast cancers, provided there is complete clinical response after NACT and no nipple involvement. Furthermore, assessment of nipple margin during surgery is mandatory (17). Several studies have reported on the feasibility of this approach in patients who receive NACT, and the LRR rates ranged between 3.2% and 10.3% (18–22). However, the majority of the studies involved a relatively small sample size and short follow-up durations. In the current study, with a median follow-up of 63 months, we found a 5-year cumulative LRR rate of 10.8% for the entire cohort. The LRR rate of our cohort appears acceptable in consideration of the previously reported LRR rates, which ranged from 6.0% to 21.0% after NACT and mastectomy with or without reconstruction (14, 23–26).

The occurrence of breast cancer LRR is an important determinant of adverse survival outcomes (8, 27–29). In our study, isolated LRR as the first event in patients who underwent NSM/SSM with IBR after NACT was associated with a poor 10-year overall survival rate. In addition, patients with isolated LRR often required oncologic management, including surgical excision of the recurrent tumor, which could result in loss of the initial reconstruction (9). Therefore, identifying risk factors for LRR in the current setting is imperative for optimal locoregional management and patient surveillance strategies. However, investigating risk factors for recurrence after NACT remains a challenge because of the high frequency of inconsistent disease status in patients between before and after neoadjuvant treatment. Previous studies have described several clinical and pathological factors of LRR after NACT. The National Surgical Adjuvant Breast and Bowel Project (NSABP) study, including NSABP B-18 and NSABP B-27 data, identified that young age (< 50 years), clinical tumor size (> 5 cm), clinical node status (cN+), and pCR status (ypT+ or ypN+) were predictive of an increased risk of LRR after NACT in patients who underwent mastectomy and breast conservation therapy (11). The authors developed a nomogram using these factors to predict the risk of LRR and guide optimal administration of adjuvant radiotherapy (11); however, histopathological characteristics such as molecular subtype, tumor grade, LVI, and Ki67 index were not analyzed in that study (11). One study by the European Organization for Research and Treatment of Cancer 10994/BIG 1-00 revealed that triple-negative or HER2-positive subtype and lack of pathologic response were associated with increased LRR after NACT (12). However, Ki67 index, tumor grade, and LVI were not analyzed in that study (12). Our current study investigated the risk factors of LRR exclusively in patients who underwent NSM/SSM with IBR after NACT and involved several prognostic factors not included in the aforementioned studies that used prospective data. Moreover, in our multivariate analysis, post-NACT Ki67 index, tumor grade, and LVI independently influenced LRR. In our univariate analysis, factors including age at diagnosis, pathological T stage, pathological node stage, and pCR status were associated with LRR rates; however, after multivariate analysis these factors were no longer significant. Notably, the role of post-NACT Ki67, tumor grade, and LVI in LRR risk has previously been suggested in smaller retrospective studies (13–15). In a study by Yamazaki et al., 217 patients who underwent NACT and breast-conserving surgery were analyzed, and post-NACT Ki67 > 20%, triple-negative subtype, the presence of LVI, and high tumor grade were found to be significant prognostic factors of LRR (13). However, these factors were identified in a univariate analysis, and no multivariate analysis was conducted (13). In another retrospective study by Wang et al. that included 217 patients with cT1-2N0-1 who underwent NACT and mastectomy, the 5-year LRR rate was 12%, and LVI, tumor grade, and ypN stage were independent prognostic factors of LRR in multivariate analysis (14). However, no data on the Ki67 index were presented in that study (14). In a previous retrospective study including 319 NSM cases after NACT conducted at our center demonstrated that post-NACT Ki67 index was the only independent risk factor for LRR in multivariate analysis (30). Our results on factors correlated with higher LRR risk after NACT are in line with those of previous reports (13–15, 30). In addition, we quantified LRR risk according to the number of independent risk factors and found that the 10-year LRR rate was 8.5% in patients with none of the three independent risk factors, while patients with one, two, or, three of these factors had 10-year LRR rates of 11.6%, 25.1%, and 33.7%, respectively. This risk stratification of LRR may aid in selecting patients who can benefit from further investigation of locoregional management (i.e., adjuvant radiotherapy) strategies in the current setting.

The current study was limited by its retrospective, single-center design, and the study population was heterogeneous for clinicopathological and treatment characteristics. Detailed analysis of the relationship between different adjuvant radiotherapy regimens and LRR, as well as the rate of reconstruction failure, could not be conducted in this study because relevant data were not available. In addition, a relatively small number of patients and LRR events were included in certain subgroups of interest, which might have affected the statistical power of the results.

In conclusion, post-NACT Ki67 ≥ 10%, high tumor grade, and presence of LVI are independently associated with a high risk of developing LRR after NACT and NSM/SSM with IBR. Future prospective trials are warranted to decrease the risk of LRR in patients with associated risk factors.
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Background

The long noncoding RNA HOX transcript antisense RNA (HOTAIR) is highly expressed in breast cancer (BC) tissues and is associated with the recurrence and metastasis of BC. Until now, the results of studies on associations between several functional single nucleotide polymorphisms(SNPs) (rs920778, rs1899663, and rs4759314) in HOTAIR with BC susceptibility carried out in different regions of China are still inconsistent. There is no study on correlation between HOTAIR SNPs and prognosis of Chinese population. Therefore, we investigated the relationship between HOTAIR SNPs and susceptibility to and prognosis of BC.



Method

We conducted a population-based case-control study involving 828 BC cases and 905 healthy controls. Peripheral blood DNA was used for genotyping. The association between HOTAIR genotypes and BC risk were estimated by odds ratios (ORs) computed using the binary logistic regression model. The relationships between HOTAIR SNPs and clinicopathological features were tested by Pearson’s chi-square test or Fisher’s exact test. Survival was analyzed using the Kaplan-Meier method.



Results

The functional rs920778 genetic variant increased BC risk in the codominant model. Individuals with the rs920778 GG genotype had an OR of 2.426 (95% confidence interval [CI] = 1.491–3.947, P < 0.001) for developing BC compared to individuals with the AA genotype. Individuals with the AG genotype had an OR of 1.296 (95% CI = 1.040–1.614, P = 0.021) for developing BC compared to individuals with the AA genotype. Individuals with the rs4759314 GA genotype had a lower BC risk than individuals with the rs4759314 AA/GG genotype (OR = 0.566, 95% CI = 0.398–0.803, P = 0.001). The rs1899663 genotype had no correlation with BC susceptibility. Haplotypes composed of rs920778–rs1899663 and rs920778–rs1899663–rs4759314 could increase BC risk (all P < 0.001). There were no statistically significant associations between HOTAIR SNPs and clinicopathological characteristics. The rs920778 GG/AG genotypes were associated with worse disease-free survival (DFS) (p = 0.012), and the rs4759314 GA genotype was associated with worse DFS and overall survival (OS) (p = 0.011).



Conclusion

HOTAIR SNPs(rs920778 and rs4759314) are significantly related to BC susceptibility and prognosis in the northeastern Chinese population, indicating the significance in the occurrence and development of BC.





Keywords: HOTAIR, breast cancer, susceptibility, prognosis, single nucleotide polymorphisms



Introduction

Breast cancer (BC) is one of the most common cancers among women, and its morbidity and mortality have continued to increase worldwide in recent years, reflecting its strong invasive and metastatic characteristics (1, 2). In China, the incidence of BC is increasing annually and is currently the most common malignant tumor in women (3, 4).

Long noncoding RNAs are non-protein-coding transcripts longer than 200 nt and play important roles in the epigenetic regulation of gene expression. One such RNA, HOX transcript antisense RNA (HOTAIR), is transcribed from the antisense strand of the HOXC locus and mainly regulates HOXD genes. HOTAIR can guide the polycomb repressor complex 2/lysine-specific histone demethylase 1 complex to a specific target gene, where the complex then trimethylates lysine 27 of histone H3 and dimethylates lysine 4 of histone H3, causing chromatin remodeling (5–7). This can block some metastasis suppressor genes, such as junctional adhesion molecule 2, protocadherin beta 5, and protocadherin 10 (6).

HOTAIR is overexpressed in BC and is related to the occurrence, development, recurrence, and metastasis of BC. A large number of researches indicate that HOTAIR has oncogenic impacts. In the diagnosis of gastric cancer, pancreatic cancer, and colorectal cancer, the expression of HOTAIR is used to distinguish benign and malignant tissues, compared with benign tissues, the expression of HOTAIR in tumor tissues is higher. HOTAIR is a biomarker of therapeutic response and poor prognosis (8). In our previous studies, we identified several single nucleotide polymorphisms (SNPs) in HOTAIR (rs920778, rs4759314, and rs1899663). These SNPs are located in the intronic region of HOTAIR and can regulate its expression (9–11). Therefore, these SNPs are expected to be related to the occurrence, development, recurrence, and metastasis of BC. These SNPs may have the potential to be a new therapeutic target. Further research demonstrated that these sites are related to gastric cancer, esophageal cancer, and papillary thyroid cancer susceptibility. Several meta-analyses showed that these SNPs are associated with the susceptibility of gastrointestinal cancer and estrogen-dependent tumors (12–17), especially in Asian populations. However, these SNPs have different prevalences in different regions and races and are more common in Asian populations than in Caucasian populations. There are also different prevalences in different parts of Asia (12, 17). Few studies have reported a relationship between HOTAIR SNPs and BC susceptibility. The participants of the current study were mainly Chinese, Turkish, Iranian, and Indian. The results of the research on populations in different regions are inconsistent and controversial. There are obvious regional differences in the distribution of HOTAIR genetic polymorphisms in gastrointestinal cancer. The GG genotype of rs920778 in northeastern population is higher than in middle or southern population, the GG genotype of rs4759314 in southeastern population is higher than in middle and northern population, the GG genotype of rs1899663 in southeastern population is lower than in middle and northern population. Therefore, it is of great significance for us to study the role of HOTAIR gene polymorphisms in the occurrence, development, and prognosis of BC in the Northeast population for the first time. This can provide research basis for discovering new pathogenic targets of BC.Therefore, we retrospectively analyzed the relationship between HOTAIR SNPs (rs920778, rs1899663, and rs4759314) and BC clinicopathological features and prognosis in the northeastern Chinese population.



Materials and Methods


Ethics

This study was approved by the Institutional Ethics Committee of our hospital (ethical approval number 2014-031). Written informed consent was obtained from each participant at recruitment. The study methods were carried out in accordance with the relevant guidelines.



Study Design


Selection and Description of Participants

We investigated the relationship between HOTAIR SNPs (rs920778, rs1899663, and rs4759314) and the risk of BC in a case-control study. All of the participants were genetically unrelated Han Chinese individuals from northeast China. This study enrolled 828 BC patients and 905 age-matched healthy control individuals from The First Affiliated Hospital of Jilin University (Changchun, Jilin Province, China) between April 2013 and September 2016. The median follow-up time was 6.7 years. The participants’ clinical characteristics were collected through medical records. The inclusion criteria were female patients with early breast cancer diagnosed by pathology.



HOTAIR SNP Genotyping

DNA was extracted from peripheral blood samples. Genotypes were detected using the MassArray system (Agena, San Diego, CA, USA) by the matrix-assisted laser desorption ionization-time of flight mass spectrometry method. HOTAIR was selected and genotyped as described previously (9–11). SNP genotyping was performed without knowledge of case status. Reciprocal testing was performed in a random sample of 15%, and the reproducibility was 99.7%.




Statistics

SPSS 24.0 (IBM Corp., Armonk, NY, USA) and the online SNPStats program (https://www.snpstats.net/start.htm, developed by the Institut Català d’Oncologia) were used to analyze BC risk. Variables are characterized as percentages. The Hardy-Weinberg equilibrium test was conducted to test whether the allele frequency distribution of the case group and the control group is biased. Pearson’s chi-square test was used to examine differences in demographic variables and HOTAIR htSNP genotype distributions between BC cases and controls. Associations between HOTAIR genotypes and BC risk were estimated by odds ratios (ORs) and their 95% confidence intervals (CIs), which were computed using the binary logistic regression model. All ORs were adjusted by age whenever appropriate. Pearson’s chi-square test or Fisher’s exact test were used to evaluate the relationships between HOTAIR SNPs and clinicopathological features. The effects of the HOTAIR SNPs on disease-free survival (DFS) and overall survival (OS) were evaluated using the Kaplan-Meier method and the univariate Cox model. All statistical tests were two-sided. P values < 0.05 were considered statistically significant.




Results


Participant Characteristics

The control group was composed of healthy women who had undergone routine physical examination in our hospital who did not have a family history of cancer. The median age of the control group was 38 years (range 32–53 years). There were 678 premenopausal women and 226 postmenopausal women. The median age of the case group was 51 years (range 44–58 years), in which there were 398 premenopausal women and 430 postmenopausal women. Only 32 cases had a family history of cancer. Among 828 BC cases, 793 were of an invasive ductal carcinoma and 35 were of other types. Detailed information on the characteristics of the BC patients can be found in Table 1.


Table 1 | Clinical characteristics of breast cancer patients.





Relationship Between HOTAIR SNPs and Risk of BC

The genotype distribution of cases and controls showed no deviation for different HOTAIR SNPs either in controls or in cases (Table 2). The functional rs920778 genetic variant was associated with an increased risk of BC in three genetic models. We used the Akaike Information Criterion to select the optimal genetic model, and the lowest AIC was found in the codominant genetic model. We discovered that the rs920778 GG genotype had an OR for BC development of 2.426 (95% CI = 1.491–3.947, P < 0.001) compared to the AA genotype. The rs920778 AG genotype was also associated with an increased BC risk compared to the rs920778 AA genotype (OR = 1.296, 95% CI = 1.040–1.614, P = 0.021). The functional rs4759314 genetic variants had different associations with BC risk in different genetic models (i.e., the codominant model, dominant model, and overdominant model). The AIC was the lowest in the overdominant model; therefore, using that model, the rs4759314 GA genotype was associated with a lower risk of BC development (OR = 0.566, 95% CI = 0.398–0.803, P = 0.001) than the AA/GG genotype. The rs1899663 SNP did not show an association with BC risk (Table 3).


Table 2 | Hardy-Weinberg equilibrium test for different HOTAIR SNPs.




Table 3 | Association between HOTAIR SNPs and breast cancer risk.





Haplotype Analysis

In order to analyze the influence of different haplotype systems composed of three HOTAIR SNP sites on the occurrence of BC, We explored the correlation between haplotypes and BC risk by comparing the distribution of each haplotype in the case group and the control group. There were significant differences between the case and control groups in the distributions of the following haplotypes: rs920778–rs1899663 and rs920778–rs1899663–rs4759314 (all P < 0.001). However, rs1899663–rs4759314 was not related to BC risk (Table 4). Haplotype 1 is composed of wild-type genotypes of three SNPs. Haplotype 2 increased BC risk compared with haplotype 1 (OR=1.39, 95%CI=1.13-1.70, P=0.002). Haplotype 4,5, and 6 reduced BC risk compared with haplotype 1 (all P < 0.001) (Table 5).


Table 4 | Association between haplotypes in HOTAIR and breast cancer risk.




Table 5 | Haplotype distribution analysis.





Relationship Between HOTAIR SNPs and Prognosis of BC

We did not find any significant associations between HOTAIR SNPs and clinicopathological characteristics of BC, including tumor size, lymph node metastasis, lymphovascular invasion, molecular type, histological grade, family history, menstrual status, and pathological type (Table 6). We then assessed the correlation between HOTAIR SNPs and survival in Cox regression analysis. GA genotype of rs920778 and GA genotype of rs4759314 could predict poor prognosis both in univariate analysis and multivariate analysis (Tables 7 and 8).


Table 6 | Association between HOTAIR SNPs and BC clinical characteristics.




Table 7 | HR in different genotypes of HOTAIR SNPs in univariate Cox regression analysis.




Table 8 | HR in different genotypes of HOTAIR SNPs in multivariate Cox regression analysis.



For the rs920778 SNP, there were many significant differences in DFS (P = 0.012) after comparing all three genotype of rs920778, the GG genotype was associated with the worst DFS of the three genotypes (GG, AG, and AA) in univariate analysis (HR = 1.909, P = 0.048). The AG genotype was associated with worse DFS than the AA genotype (HR = 1.48, P = 0.037). However, there was no significant difference in OS (P = 0.13). (Figure 1 and Table 8).




Figure 1 | DFS (A) and OS (B) for BC patients with different genotypes of HOTAIR rs920778. BC, breast cancer; HOTAIR, HOX transcript antisense RNA; DFS, disease-free survival; OS, overall survival. The three curves of DFS are statistically significant (P = 0.012), subjects with GG genotype had a worst DFS (P = 0.048); the three curves of OS are not statistically different (P = 0.13), however, subjects with GA genotype had a worst OS than subjects with AA genotype (P = 0.047).



There was no difference in DFS or OS between individuals with the rs1899663 CC or CA genotypes and those with the AA genotype in multivariate analysis. (Figure 2 and Table 8).




Figure 2 | DFS (A) and OS (B) for BC patients with different genotypes of HOTAIR rs1899663. BC, breast cancer; HOTAIR, HOX transcript antisense RNA; DFS, disease-free survival; OS, overall survival. The three curves of DFS/OS are not statistically different, the P value is 0.099 and 0.92 respectively. However, subjects with CA genotype had a worse DFS compared to subjects with AA genotype (P = 0.007).



When comparing all three rs4759314 genotypes, the GA genotype had worse DFS and OS than those with the AA genotype (P = 0.008). The OS was significantly different when comparing all three genotypes (P = 0.011); individuals with the GA genotype had the worst OS(P=0.001). However, individuals with the GG genotype and those with the AA genotype had similar OS (P = 0.968) (Figure 3 and Table 8).




Figure 3 | DFS (A) and OS (B) for BC patients with different genotypes of HOTAIR rs4759314. BC, breast cancer; HOTAIR, HOX transcript antisense RNA; DFS, disease-free survival; OS, overall survival. The overall three curves of DFS are insignificant different (P = 0.075), however, subjects with GA genotype had a worst DFS than subjects with AA genotype(P = 0.026); the overall three curves of OS are statistically significant, subjects with GA genotype had a worst OS in the three genotypes, however, subjects with GG genotype and AA genotype had a similar OS.






Discussion

HOTAIR is widely studied as an oncogene, and functional SNPs of HOTAIR have been related to cancer risk, including lung cancer, gastric cancer, esophageal cancer, cervical cancer and, prostate cancer, among others. Due to the difference in sample size and population characteristics, the relationship between the HOTAIR SNPs and BC risk is still contradictory. Our study may help to identify the significance of these three functional SNPs in BC susceptibility. Over-expression of HOTAIR is correlated with poor tumor prognosis, The expression of HOTAIR is regulated by multiple factors at the transcriptional and post-transcriptional levels, including estrogen receptors and estrogen receptor coregulators such as histone methylases MLL1 and MLL3 and CBP/p300 binding to the promoter of HOTAIR and regulating HOTAIR expression (18) and Pumilio homolog 1 regulating HOTAIR expression via a post-transcriptional mechanism (19). Three functional SNPs of HOTAIR can regulate HOTAIR expression (20–22), which may influence the BC prognosis. Our present study explored the relationship between the HOTAIR SNPs and BC prognosis.

The rs920778 SNP (G > A) is located in the intronic enhancer region of HOTAIR, and the AA genotype can increase the expression of HOTAIR. In our study, this SNP increased BC risk, which is consistent with the results of Bayram et al. (23), Rajagopal et al. (24), and Hassanzarei et al. (25) (Table 9). However, Yan et al. (26) found that the A allele is the most common genotype in the central Chinese population and could increase BC risk, which is contrary to the findings for northeast Chinese, southeast Iranian, South Indian, and Turkish populations (the present study, Hassanzarei et al.’s study, Rajagopal et al.’s study, and Bayram et al.’s study, respectively). We found that the G allele is rare and can increase BC risk. The distributions of rs920778 genotypes in BC patients in these five BC studies differ slightly. However, in these five BC studies, the AA genotype is more common whereas the GG genotype is rare. They differ from the distributions observed in other tumor studies [Yan et al. (26) found that the GG genotype is more common, the AA genotype is rare, and the A allele carries disease risk]. One possible reason for this is differences in tumor type and gender. Further, the study by Yan et al. has limitations in terms of sample size, detection methods, research results, and population. Therefore, we think that the rs920778 GG/AG genotypes can increase BC risk.


Table 9 | Comparison of previous studies with our study in the association of HOTAIR SNPs and BC risk.



The rs1899663 SNP (C > A) is located in the intronic region of HOTAIR, and the AA genotype can increase the expression of HOTAIR by altering the binding affinity of various transcription factors, such as paired box 4, spermatogenic leucine zipper 1, and zinc finger protein 281 (ZFP281) (28) to HOTAIR. The results of studies on the relationship between the rs1899663 SNP and BC susceptibility remain controversial. It has been observed that rs1899663 polymorphism is associated with BC risk in the South Indian population (Rajagopal et al.’s study), the southeast Chinese population (Lin et al.’s study) (21), and the Southeast Iranian population (Hassanzarei et al.’s study) (Table 9). However, no relationships were observed in the central Chinese population (Yan et al.’s study), northeastern Chinese population (the present study), or in the Iranian population (Khorshidi et al.’s study) (27). Two smaller studies from Iran (Hassanzarei et al. and Khorshidi et al.) have inconsistent results, as do three larger Chinese studies (Lin et al., Yan et al., and the present study). In Taheri et al.’s study, the relationship between rs1899663 SNP and prostate cancer susceptibility was not observed due to the sample size, however, they compared prostate hyperplasia tissues and prostate cancer tissues and identified that the risk of AA alleles in tumor tissues was higher than CC alleles, This result suggests that AA alleles might increase prostate cancer susceptibility (28).The P value of 0.087 in the present study is close to 0.05. Therefore, we think that SNP has a weak relationship with BC risk when increasing the sample size due to the weak effect of rs1899663 SNP on BC risk.

The rs4759314 SNP (A > G) is located in intronic region of HOTAIR, and the GG genotype can increase the expression of HOTAIR by enhancing the promoter activity of HOXC11. Of five studies examining the relationship between rs4759314 and BC susceptibility (Table 9), only two Chinese studies [Yan et al. (26) and this study] have shown a significantly decreased risk of BC in individuals with at least one G allele (GA or GG) compared to individuals with homozygous A alleles. The other three studies did not show any association of rs4759314 with BC risk. Two studies in the Iranian population [Hassanzarei et al (25). and Khorshidi et al. (27)] are too small to draw such conclusions, and another Chinese study in southeast China (Lin et al.’s study) showed that rs4759314 has no correlation with the risk of BC (21). This may be because BC has a population bias, and the population in the other two studies are in middle and northeast China.

We also examined the haplotypes of these three SNPs. We found that the rs920778–rs1899663 and rs920778–rs1899663–rs4759314 haplotypes significantly increase BC risk (P < 0.001). We believe that the gene effect of rs920778 affects the gene effects of the other two SNPs, which leads to an increase in breast cancer susceptibility.

In Bayram’s study, researchers found an association between the rs920778 SNP and clinicopathological features in the Turkish population, including advanced TNM stage, larger tumor size, distant metastasis, perineural invasion, and poor histological grade (23). In Hassanzarei’s study, they found that the rs920778 SNP was only significantly associated with ER status (25). In Rajagopal’s study, they found that the rs920778 variant (AG + GG genotype) increased BC risk in premenopausal women (OR = 5.86, 95% CI = 3.87–8.88, P < 0.0001) (24). However, we did not find any relationship between the rs920778 SNP and any clinicopathological features. This may be because all of these studies were retrospective and there might be an inherent selection bias. Because of the low distribution frequency of the GG genotype (about 3–8% among common populations), a large sample size is needed to analyze the relationship between the GG genotype and clinical characteristics.

We initially found that the rs920778 SNP is associated with the prognosis of BC patients. Our study found that the DFS of patients with the AG/GG genotypes was much shorter than that of patients with the AA genotype (P = 0.012). However, we did not find similar results for OS. Our result is consistent with the result of Weng et al’s (29) study showing that subjects with GG genotype of rs920778 had a poor OS, however Xavier-Magalhhães et al’s study (30) had the opposite result that subjects with the AG genotype of rs920778 had a longer overall survival than GG subjects in glioma patients. The sample size and tumor type might result the inconsistent results. HOTAIR is regarded as an oncogene involved in both the initiation and progression of cancer. The rs920778 SNP is located in the intronic enhancer region of HOTAIR, and polymorphism of rs920778 could alter the activity of this enhancer and lead to overexpression of HOTAIR. Elevated expression of HOTAIR has been reported to be associated with reduced DFS and OS in cervical cancer patients (31). Therefore, we infer that the influence of the rs920778 SNP on BC prognosis is mediated by the resultant increased expression of HOTAIR. We need to prove this hypothesis further in BC tissue.

The rs1899663 SNP had no effect on DFS. However, in subgroup analysis, individuals with the CA genotype had worse DFS than those with the AA genotype (P = 0.007), which could provide references for future research. Individuals with the rs4759314 GA genotype had worse DFS and OS than patients with other genotypes(P=0.008 and P=0.001 respectively), which was also interesting and needed further study. Because of the low distribution frequency of the rare genotypes AA of rs1899663 and GG of rs4759314 (no more than 2.4%), a larger sample size is needed to assess their associations with prognosis. Because the rs1899663 and rs4759314 SNPs can increase the expression of HOTAIR, their effect on BC prognosis appears to be mediated by the increased expression of HOTAIR. However, we need to prove this hypothesis further in BC tissue. Although all the results of survival analysis have not been verified in multivariate analysis, our results suggest that some gene loci may play a role in the occurrence and development of BC.

In summary, this study demonstrates, for the first time, that functional HOTAIR SNPs rs920778 and rs4759314 are related to the risk and prognosis of BC in the northeastern Chinese population, suggesting that these two SNP sites may be involved in the occurrence, development, and metastasis of BC by regulating the expression of HOTAIR. This may have certain significance for future diagnosis, drug development, and prognostic judgment of BC. The distribution of gene frequency of the three functional HOTAIR SNP loci has a certain correlation with regions and populations. This study only examined the northeast Chinese population as its research object, and it therefore cannot explain why these three HOTAIR SNP loci are responsible for the occurrence and development of BC in the overall Chinese population. Therefore, we need a more large prospective multi-center, multi-regional, multi-ethnic population to analyze the significancy of HOTAIR SNP in BC development and find a target of treatment.
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Purpose

We aimed to assess the additional value of a radiomics-based signature for distinguishing between benign and malignant non-mass enhancement lesions (NMEs) on dynamic contrast-enhanced breast magnetic resonance imaging (breast DCE-MRI).



Methods

In this retrospective study, 232 patients with 247 histopathologically confirmed NMEs (malignant: 191; benign: 56) were enrolled from December 2017 to October 2020 as a primary cohort to develop the discriminative models. Radiomic features were extracted from one post-contrast phase (around 90s after contrast injection) of breast DCE-MRI images. The least absolute shrinkage and selection operator (LASSO) regression model was adapted to select features and construct the radiomics-based signature. Based on clinical and routine MR features, radiomics features, and combined information, three discriminative models were built using multivariable logistic regression analyses. In addition, an independent cohort of 72 patients with 72 NMEs (malignant: 50; benign: 22) was collected from November 2020 to April 2021 for the validation of the three discriminative models. Finally, the combined model was assessed using nomogram and decision curve analyses.



Results

The routine MR model with two selected features of the time-intensity curve (TIC) type and MR-reported axillary lymph node (ALN) status showed a high sensitivity of 0.942 (95%CI, 0.906 - 0.974) and low specificity of 0.589 (95%CI, 0.464 - 0.714). The radiomics model with six selected features was significantly correlated with malignancy (P<0.001 for both primary and validation cohorts). Finally, the individual combined model, which contained factors including TIC types and radiomics signatures, showed good discrimination, with an acceptable sensitivity of 0.869 (95%CI, 0.816 to 0.916), improved specificity of 0.839 (95%CI, 0.750 to 0.929). The nomogram was applied to the validation cohort, reaching good discrimination, with a sensitivity of 0.820 (95%CI, 0.700 to 0.920), specificity of 0.864 (95%CI,0.682 to 1.000). The combined model was clinically helpful, as demonstrated by decision curve analysis.



Conclusions

Our study added radiomics signatures into a conventional clinical model and developed a radiomics nomogram including radiomics signatures and TIC types. This radiomics model could be used to differentiate benign from malignant NMEs in patients with suspicious lesions on breast MRI.





Keywords: breast cancer, non-mass enhancement, radiomics, differential diagnosis, magnetic resonance imaging



1 Introduction

According to the American College of Radiology (ACR) BI-RADS® Atlas, 5th edition (1), breast lesions with abnormal enhancement variables on dynamic contrast-enhanced breast magnetic resonance imaging (breast DCE-MRI) include foci, masses, and non-mass enhancement lesions (NMEs). In 2020, breast cancer became the most common cancer of women worldwide (2), and the differentiation between benign and malignant breast lesions using MRI-based diagnostics was found to be critical for breast cancer treatments. However, distinguishing benign and malignant breast lesions on DCE-MRI is challenging, especially when NMEs are present (3).

NMEs are associated with a wide-ranging spectrum of different pathologic findings (4–6), with an overlap in the imaging findings between malignant and benign lesions. NMEs remain a diagnostic challenge for radiologists despite the frequent attempts to distinguish benign from malignant NMEs using different methodologies, including conventional morphologic comparisons (6–8) and the measurement of different parameters, such as ADC values and the initial slope of kinetic curves (9–11). Baltzer et al. reported that the primary cause for false positive results of breast MRI may due to NMEs, resulting in unnecessary biopsies (12). Studies have shown that morphologic assessments are disputable in attempting to differentiate benign vs. malignant NMEs. Some studies have demonstrated that morphologic assessments are more useful than kinetic assessments in distinguishing NMEs (13–15), while other studies have reported that morphologic assessments have a relatively low specificity and sensitivity to distinguish NMEs (16–18). In addition, morphologic assessments depend on the human eye are subjective with limitations; thus, substantial inter- and intra-observer variability is seen with these assessments (19). A meta-analysis (20) showed heterogeneity among studies with sensitivities from 0% to 100% and specificities from 48% to 100%. These factors underscore the complexity of the diagnostic phase and simultaneously present a therapeutic challenge. For example, idiopathic granulomatous mastitis, a benign inflammatory disease, can mimic breast cancer, both clinically and radiologically (21, 22).

In recent years, radiomics, a technology of transforming digital medical images into quantifiable data to improve medical decisions (23), has been found to have a potential benefit in increasing the knowledge base of diagnostic oncology and predicting the accuracy of medical imaging. Radiomics is partially based on the hypothesis that medical images contain much more information than can be visually deciphered by radiologists (24). According to our best knowledge, there is little research reported the additional value of radiomics to differentiate benign vs. malignant NMEs on DCE-MRI. Additionally, to date, a model that combines a radiomics signature and conventional analysis to produce superior diagnostic performance in diagnosing malignant NMEs has yet to be reported.

In this study, we developed and validated a nomogram that combined radiomics and conventional analytic clinical factors to evaluate the additional value of radiomics in differentiating benign from malignant NMEs. We also compared the diagnostic performance of the nomogram with the radiomics score and analytic clinical factors alone.



2 Materials and Methods


2.1 Patients

We retrospectively reviewed 3352 consecutive patients who underwent breast MRI in our hospital between December 2017 and October 2020. In total, 232 female patients with 247 lesions were selected and comprised the primary training cohort (mean age, 44.8 ± 10.6 years). Among these patients, 14 had additional lesions in the contralateral breast and 1 patient had two lesions in different quadrants of her left breast. The inclusion criteria were as follows: (a) histologically confirmed benign or malignant breast lesions on DCE-MRI examinations; (b) no previous treatments or breast implants; (c) no pregnancy or lactation; and (d) NMEs found on DCE images. Patients were excluded if image quality was poor, hemorrhage was present after biopsy, lesions did not involve parenchyma on the DCE images, or the lesion sizes were <5 mm. Using this inclusion and exclusion criteria, a validation cohort of 72 consecutive female patients (mean age, 47.9± 11.2 years) was selected from 908 consecutive patients between November 2020 and April 2021 in our hospital. A flowchart of this study is presented in Figure 1. For each patient, conventional clinical data, including age and menopause status, were obtained from electronic medical records.




Figure 1 | Flowchart of the study population enrollment. NME, non-mass enhancement lesion.





2.2 Magnetic Resonance Image Acquisition

MR examinations for both the validation cohort and training cohort were obtained on a 3T scanner (MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany) in our hospital. All scans were performed with a dedicated 16-channel phased-array breast coil in the prone position using the same protocol.

For breast diffusion-weighted imaging (DWI), multi-b-value DWI was applied with a readout-segmented technique (RESOLVE DWI), similar to our previous works (25): repetition time (TR) = 5000 ms, echo time (TE) = 70 ms, field of view (FOV) = 169 x 280 mm2, matrix size = 114 x 188, slice thickness = 5.0 mm, readout segment = 5, average = 1, diffusion gradient mode = 3-scan-trace, b values = 0, 50, 1000s/mm2, and acquisition time = 4:27 (min: sec).

For breast DCE-MRI, a protocol based on time-resolved angiography was used with a stochastic trajectory, volume-interpolated breath-hold examination sequence (TWIST-VIBE). The detailed scan parameters were as follows: TR = 5.24 ms, TE = 2.46 ms, matrix size = 182 x 320, FOV = 260 x 320 mm2, slice thickness = 1.5 mm without gap, flip angle = 10°, temporal resolution = 5.74 s/phase, and acquisition time = 5:57(min: sec).

The contrast medium (Omniscan, GE Healthcare, Milwaukee, WI) was intravenously injected with a power injector at the end of the third acquisition phase. The dose was 0.1 mmol/kg body weight, with an injection rate of 2.5 mL/s, which was followed by a 20 mL saline flush.



2.3 Image Interpretation

For each patient in the training cohort and the validation cohort, two radiologists (Y.L. and T.A. with 8 and 10 years of experience in breast MRI, respectively), were blinded to the pathologic results. Each radiologist reviewed all breast MR images from the 304 patients, assessing breast density, the degree of background parenchymal enhancement, and MR-reported lymph node status by consensus. The maximal diameter, internal enhancement, and distribution were recorded in the very early phase (about 90 seconds) after contrast media injection according to the BI-RADS 5th edition (1). Of these, the maximal diameter was assessed on multiplanar reformatted images using a Siemens clinical workstation. The type of time-intensity curve (TIC) for each case was drawn based on DCE-MRI with a region of interest (ROI) of approximately 0.2-0.4 cm2 placed on each slice at the brightest part of the lesions on images obtained in the early phase after the contrast injection. We recorded the high-level TIC curve types when different types were present in each lesion. On all slices of the apparent diffusion coefficient (ADC) maps, multiple ROIs were carefully placed on the darkest areas, which were confirmed by agreement by the two radiologists. Thus, the lowest ROI ADC value was regarded as the minimum ADC value for each lesion. If no lesions could be evaluated with DWI or the ADC maps, we copied ROIs on the DCE-MRI image and pasted them on the ADC maps. We defined the axillary lymph node (ALN) with a maximal short diameter of ≥10mm, an absent fatty hilum, or a long axis/short axis of <2 as MR-reported ALN positive. Vasodilation of the surrounding feeding artery was defined as positive on maximum intensity projection images (MIPs) and was included based on our experience. The above-mentioned factors were all initial clinical candidate predictors for NME differentiation.



2.4 Features Extraction and Radiomics Signature

The radiomics signature was applied to the clinical analyses, and a diagnostic model for differentiation was developed using the training cohort. The radiomics analysis was performed on the very early phase (90 seconds) images after contrast media injection, as was the morphologic evaluation. Prior to the radiomics analysis, the images of each case were transferred into the open-source software, ITK-SNAP (Version 3.8.0), to perform semi-automatically ROI segmentation. ROIs were drawn with care to include the whole lesion, avoiding normal glandular tissue, fat, vessels, and necrosis. Pyradiomics open-source software (https://pyradiomics.readthedocs.io/en/latest/index.html) was used to automatically extract tissue intensities and textural, morphologic, and wavelet features. We used the least absolute shrinkage and selection operator (LASSO) method, an appropriate tool for high-dimensional data regression (26), to select the most effective features from the training cohort data set. For each lesion, a radiomics score (Rad-score) was calculated weighting by the respective coefficients of selected features.



2.5 Nomogram in the Training Cohort and Validation

Initial clinical multivariate logistic regression analysis included age, menopause status, maximal diameter, fibrotic gland tissue, background parenchymal enhancement, morphologic assessment, ALN status, and TIC assessment on DCE-MRI and the minimum ADC values on DWI. We added radiomics features into the clinical multivariable logistic regression analysis and built the radiomics nomogram to supply the radiologists and clinicians with an effective tool for differentiating benign and malignant NMEs. The calibration curve and Hosmer & Lemeshow test (27) were adapted to evaluate the radiomics nomogram calibration. Nomogram performance was evaluated using the area under the curve (AUC) analysis.


2.5.1 Consistency Validation

In the data set of the training cohort, consistency validation was performed by comparing the first measurement and second measurement one month later of reader 1 (Y.L.) for intra-observer agreement. The second measurement of reader 1 and the extraction of reader 2 (Z.L.Y) in 60 patients were compared to produce inter-observer agreement. The interclass correlation coefficient (ICC) was applied to assess the feature extraction agreement, which was greater than 0.80 and considered excellent.



2.5.2 Data Validation

We applied the same method as that of the training cohort to calculate the Rad-score in the validation cohort. We applied the logistic regression equation produced in the training cohort to all lesions of the validation cohort. We tested the performance of the nomogram using calibration and AUC analyses.




2.6 Statistical Analysis

R (RStudio, Version 3.6.3) software was used for algorithms and statistical analyses. For continuous variates, Student’s t-tests were performed. For categorical variates, the chi-square test or Wilcoxon rank-sum test were applied. We used univariate logistic regression analysis to determine potential factors affecting differentiation. Then, logistic regression models containing the above-mentioned potential factors were used for multivariate analysis. A nomogram was built on the logistic regression model as a graphical presentation. The area under the receive operating characteristic (AUC-ROC) curve, accuracy, sensitivity, and specificity were applied to indicate the discriminative ability of each factor and nomogram. P-values <0.05 (two-tailed) was considered statistically significant.




3 Results


3.1 Conventional Clinical Analysis


3.1.1 Training Cohort

In the training cohort, of the 247 lesions, 191 malignant and 56 benign lesions were confirmed pathologically by either biopsy, lumpectomy, or mastectomy. For the patient who had two lesions in the left breast, the lesion in the upper outer quadrant was confirmed as adenosis, while the lesion in the medial area was ductal cancer in situ. Specific pathologic results are shown in Table 1. Internal enhancement patterns, background parenchymal enhancements (BPEs), and MRI reported-fibroglandular tissue (FGT) were not different between malignant and benign lesions (P=0.397, 0.760, 0.139). The mean age of the patients with malignant lesions was older than that of the benign cases (P=0.035). The maximal diameter of the malignant lesions was significantly longer than that of the benign lesions (P<0.001). A higher proportion of postmenopausal women were found in the malignant group than in the benign group (P=0.034). The constituent ratio of distribution was significantly different between malignant and benign cases (P<0.001). Of these, the proportion with linear distributions was higher in the benign group than in the malignant group (P=0.046). The minimum ADC value of the malignant lesions was significantly lower than that of the benign lesions (P<0.001). The malignant group had a significantly higher percentage of higher-level TIC pattern types and MR-reported ALN-positive and MIP-positive cases (all P<0.001). Specific results are shown in Table 2. Age, menopause status, maximal diameters, distributions, TIC patterns, minimum ADC values, MRI reported-ALN status, and MIP status were potential factors influencing differentiation according to the univariate logistic regression analysis. From the multivariate analysis results, higher-level TIC pattern types, and MR-reported ALN-positive statuses were significantly associated with malignancy (all P<0.001). The AUCs, sensitivities, and specificities of the clinical multivariate regression model developed using TIC types and MR-reported ALN status were 0.852 (95%CI: 0.799-0.906), 0.942 (95%CI: 0.906-0.974), and 0.589 (95%CI:0.446-0.714), respectively, to differentiate between malignant and benign NME lesions. The specific results are shown in Table 3.


Table 1 | Pathologic findings for all non-mass enhancement (NME) lesions.




Table 2 | Characteristics of patients in the training and validation cohorts.




Table 3 | Risk factors for malignancy and the performance of the clinical and combined models for breast non-mass enhanced (NME) lesions.





3.1.2 Validation Cohort

In the validation dataset, there were 50 malignant lesions and 22 benign lesions. Like the training dataset, internal enhancement patterns, MRI reported-FGT, and BPE were not significantly different between malignant and benign lesions. Moreover, no significant differences were found between the two cohorts regarding the MIP status. When applying the clinical multivariate logistic regression equation of the primary cohort to the validation dataset, the AUCs, sensitivities, and specificities were 0.842(95%CI: 0.758-0.926), 0.940(95%CI: 0.860-1.000), and 0.545(95%CI: 0.364-0.727), respectively (Table 3).




3.2 Radiomics Analysis and the Combined Model


3.2.1 Training Cohort

Of all features extracted from the lesions in the primary cohort, six features were selected as potentially effective factors for differentiation and were applied in the Rad-score calculation (Figure 2). The final computation of the model coefficients led to the following differentiation model for NMEs:

	




Figure 2 | Texture feature selection. (A) Using the LASSO model, tuning parameter (λ) selection was according to a 5-fold cross-validation. Using the minimum criteria and the 1 standard error of the minimum criteria, dotted vertical lines were drawn for the optimal values. A λ value of 0.0495 with a log (λ) of -3.005783 was chosen for the 5-fold cross-validation. (B) According to the log (λ) sequence, a coefficient profile plot was produced. At the value selected with the 5-fold cross-validation, a vertical line was drawn, where the optimal λ resulted in six non-zero coefficients.



Of the six features, the biggest weight was given to the shape feature (Surface Area to Volume Ratio). A significant difference in the Rad-score between benign and malignant NMEs was found in the training cohort (P<0.001). The AUC, sensitivity, and specificity of the radiomics multivariable logistic regression alone for NME differentiation was 0.864 (95%CI: 0.805-0.923), 0.827 (95%CI: 0.770-0.880), and 0.804 (95%CI: 0.696-0.893) (Figure 3, Table 3). After adding the radiomics analysis into the clinical multivariate regression model, MR-reported ALN status was no longer an independent factor of malignancy. We built a nomogram for the training cohort based on the TIC types and the radiomics signature (Figure 4), the specificity of which was improved from 0.589 (95%CI: 0.464- 0.714) in the clinical model to 0.839 (95%CI: 0.750- 0.862) in the combined model (Table 3). The final regression equation and correlation coefficients were calculated. In Table 3, the parameters in detail are reported. Using ROC curve analysis, the optimal cutoff value of the final regression equation was 0.772. Lesions with values below the cutoff value are judged as benign, while those with values exceeding the cutoff value are judged as malignant.




Figure 3 | Receiver operating characteristic (ROC) curves of the clinical model, radiomics signature, and combined model to differentiate benign from malignant non-mass enhancement (NME) lesions. (A) Three methods in the training cohort; (B) Three methods in the validation cohort.






Figure 4 | The combined nomogram for differentiating benign and malignant non-mass enhancement (NME) lesions. (A) The radiomics nomogram developed with the training cohort included time-intensity curve (TIC) types and radiomics signatures. (B, C) Calibration curves of the combined model in the training (B) and validation (C) cohorts. The Bias-corrected line represents the nomogram performance. The closer the red Bias-corrected line is to the diagonal dotted (ideal) line indicates a better differentiation performance.





3.2.2 Validation Cohort

In the validation cohort, there was also a significant difference in the Rad-score between benign and malignant NMEs (P<0.001). After adding the Rad-score analysis into the clinical model, the specificity increased from 0.545 (95%CI: 0.364- 0.727) to 0.864 (95%CI: 0.682- 1.000) (Table 3).

For the differentiation between benign and malignant NMEs, the calibration curve of the combined model demonstrated excellent agreement between the prediction and real pathologic results in the training cohort as well as the validation cohort (Figure 4). In clinical medicine, the decision curve analysis for the combined model was developed according to a previous study (28) and is showed in Figure 5. The decision curve demonstrated that if the threshold probability was >19%, the nomogram could add more benefit to the discrimination of benign and malignant NMEs than the clinical model.




Figure 5 | Decision curve analysis of the combined model. The Y-axis demonstrates the net benefit to patients. As indicated in the curve, the net benefit of using the combined model to differentiate benign and malignant NME lesions is greater than when the clinical model is used at a threshold probability of > 0.19.






3.3 Consistency Validation

Based on the comparisons of radiomics feature measurements assessed one month apart by reader 1, the intra-observer agreement was excellent (ICC value=0.936, 95%CI: 0.929 to 0.942). Using the second measurements of the 60 patients assessed by reader 1 and the features extraction of the same data set assessed by reader 2, inter-observer was also excellent (ICC value =0.887, 95%CI: 0.876 to 0.898).

Figures 6 and 7 show two cases in detail.




Figure 6 | A 49 years old woman diagnosed as BIRADS 4 preoperatively by radiologists and confirmed as adenosis by operation. (A) Axial dynamic contrast-enhancement images obtained in the very early phase (about 90 seconds) show a non-mass enhancement lesion with segmental distribution in the right breast. (B) On the ADC map, multiple ROIs are placed to cover the whole area of the lesion. The ADC map shows the minimum ADC value of the ROIs is 1056 ×10−6 mm2/s. (C) After drawing the TIC curves for all ROIs at the brightest part on each slice, the high-level TIC curve type of this lesion is persistent type. (D) Using the ITK-SNAP software, the whole lesion was segmented. Finally, the logistic regression equation of the combined model for this lesion was calculated as 0.669, which was lower than the cut-off value 0.772 and adjudicated as benign lesion, consistent with the pathological results.






Figure 7 | A 44 years old woman diagnosed as BIRADS 4b preoperatively by radiologists and confirmed as invasive ductal carcinoma by operation. (A) Axial dynamic contrast-enhancement images obtained in the very early phase (about 90 seconds) show a non-mass enhancement lesion with segmental distribution in the right breast. (B) The ADC map shows the minimum ADC value of the ROIs is 745 ×10−6 mm2/s. (C) After drawing the TIC curves for all ROIs at the brightest part on each slice, the high-level TIC curve type of this lesion is washout type. (D) Using the ITK-SNAP software, the whole lesion was segmented. Finally, the logistic regression equation of the combined model for this lesion was calculated as 0.989, which was higher than the cut-off value 0.772 and adjudicated as malignant lesion, consistent with the pathological results.





3.4 Specificity Changes

Considering the low specificity in the conventional clinical analysis, we conducted an analysis for the false positive (FP) lesions (n=33) and the true negative (TN) lesions (n=45) on the basis of the conventional clinical analysis in the whole cohort (78 benign NMEs). The results showed that compared to the TN lesions, the FP lesions had a significant larger proportion of moderate or marked BPE (P=0.004), plateau or washout type of TIC (P<0.001), and positive MIP sign (P<0.001). Of the 33 FP NMEs, 30 (90.9%) lesions were confirmed as adenosis, and the other 3 lesions were chronic inflammation. In addition, 21 of 33 (63.6%) FP lesions were categorized as malignancy applying the final combined model.




4 Discussion

In this study, we developed a clinical model that consisted of clinical characteristics, morphologic lesion assessments, the ALN status, TIC assessments on DCE-MRI, and minimum ADC values on DWI to differentiate benign and malignant NMEs. This model showed high sensitivity and low specificity in both the training (0.942, 0.589) and validation (0.940, 0.545) cohorts. To investigate the added value of the radiomics signature for NME differentiation, we added radiomics features derived from early phase DCE-MRI to the clinical model and built the combined model. The combined model achieved a higher specificity in the training (0.839) and validation (0.864) cohorts.

For the morphologic analysis, we used early phase images after contrast agent injection for NME evaluations because NMEs can be affected and obscured by more pronounced BPEs on the delayed phase images (29). Remarkably, although morphologic assessments, including distribution and internal enhancement patterns, were reported effective in previous studies (13–15), our study demonstrated that these morphologic features were not independently associated with NME differentiation, which is consistent with the results of a study by Naoko Mori et al. (10). Conversely, this lack of an independent association with morphologic features could be explained by decision-making pitfalls caused by the subjective judgment of visual examinations and by the variance of morphologic proportions contained in different study cohorts. In China, this can happen because the national breast cancer screening program is largely lacking compared with other countries; therefore, the lesions in the cohort of our study had larger sizes and a higher proportion of regional distributions and heterogeneous enhancement patterns. Thus, considering the potential role and subjective nature of morphologic assessments, we drew ROIs covering the whole lesion in each image plane and investigated the performance of the radiomics signatures alone, achieving a high sensitivity (82.7%) and specificity (80.4%). Of the six selected radiomics features, the surface area to volume ratio was given a maximum negative correlation (-0.594); lower ratios indicated a greater likelihood of NME malignancy, which is hard to identify with the human eye. Overall, these results indicated an important role for morphologic assessments in differentiating benign and malignant NMEs. However, it also indicated that histological patterns enrolled in the study may impact on the sensitivity and specificity of the model. The number of lesions in this study is relatively small, and further research should be undertaken in a large cohort to investigate the impact of different histological patterns on the differentiation performance of the model.

A previous study observed that minimum ADC values potentially suggested the presence of an invasive component in ductal carcinoma in situ (DCIS) (30). In our study, we applied the same approach for malignant component detection. To perform this approach, we assumed that the area with minimum ADC values corresponded to the region with the highest tumor cell density, reflecting malignancy. However, we demonstrated that malignant lesions had significantly lower minimum ADC values than benign lesions. The multivariate analysis indicated that the minimum ADC value was not an independent factor for the discrimination of benign and malignant lesions, suggesting a limited role for DWI. These results are consistent with those of some recent studies (9, 31).

Naoko Mori et al. reported that kinetic assessments might be more important than the morphologic assessments in differentiating benign from malignant NMEs on the ultrafast DCE-MRI (10). In this study, we employed a similar ultrafast DCE-MRI approach and achieved similar results. Comparatively, malignant lesions tended to have more neovascularization (32). Thus, it is reasonable to set the ROI on the brightest areas of the images during the very early phase after contrast injection to obtain TIC curves. The selection of higher TIC curve types could provide greater detection of malignant components in the lesion enhancements. The TIC type alone gave a higher sensitivity (94.2%) and lower specificity (58.9%) for NME differentiation.

Our results showed that MR-reported ALN alone offered a higher specificity (92.9%) and lower sensitivity (36.6%) than conventional DCE-MRI assessments, which could be explained since less axillary lymphadenopathy was detected on the MRI images of most patients with malignant or benign lesions in this study. However, this situation was not consistent with what is seen in clinical practice.

The analysis of low specificity showed that moderate or marked BPE, plateau or washout TIC, and MIP positive status may be prone to yield false positive results for NMEs in the conventional clinical analysis. It further indicated the difficulty and complexity of differentiation in clinical practice. Finally, the combined model of clinical features with added radiomics signature features improved the specificity in both the training (0.839) and validation cohorts (0.864). Given the comparable proportion of benign and malignant lesions and the good agreement between observers, the improved performance indicated that the radiomics signature was robust for the differentiation of benign and malignant NME lesions. The nomogram was primarily used to improve personalized diagnostics. The results of our study might suggest that additional radiomics signatures could help improve the specificity of differentiating benign and malignant NME lesions and avoid unnecessary biopsies. However, further studies with larger sample sizes are needed.

There were several limitations in our study. A primary limitation was the retrospective nature of the analysis, making potential selection bias difficult to avoid. Second, most of the patients in our hospital underwent breast MRI scans for two possible indications; preoperative staging for known breast cancer and further scanning for suspicious lesions in high-risk patients. Thus, the proportion of malignant lesions in our cohort was high, and there was a difference in the malignant/benign ratio between the training and validation cohorts. Third, the morphologic assessments and parameter measurements were accomplished by two radiologists using a consensus, and further research is needed to validate the repeatability of inter- and intra-observer. Fourth, the maximal diameters and morphologic assessments were recorded in the early phase to avoid being affected by BPEs; thus, some lesions with progressive enhancements might not have been evaluated accurately. Optimal timing needs to be determined in future studies.

In conclusion, the clinical multivariate regression analysis indicated that TIC patterns and ALN status were independent factors for the differentiation of benign and malignant NME lesions. Our results demonstrated that a radiomics nomogram combining clinical factors with radiomics signatures derived from early phase DCE-MRI could achieve high sensitivity and specificity for NME differentiation. Additional radiomics signatures could be used to improve specificity and avoid unnecessary biopsies. We believe that our model may not substitute but could improve conventional diagnostic workflow. However, a more extensive analysis with large samples is needed.
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Ribophorin 1 (RPN1) is a major part of Oligosaccharyltransferase (OST) complex, which is vital for the N-linked glycosylation. Though it has been verified that the abnormal glycosylation is closely related to the development of breast cancer, the detail role of RPN1 in breast cancer remains unknown. In this study, we explored the public databases to investigate the relationship between the expression levels of OST subunits and the prognosis of breast cancer. Then, we focused on the function of RPN1 in breast cancer and its potential mechanisms. Our study showed that the expression of several OST subunits including RPN1, RPN2, STT3A STT3B, and DDOST were upregulated in breast cancer samples. The protein expression level of RPN1 was also upregulated in breast cancer. Higher expression of RPN1 was correlated with worse clinical features and poorer prognosis. Furthermore, knockdown of RPN1 suppressed the proliferation and invasion of breast cancer cells in vitro and induced cell apoptosis triggered by endoplasmic reticulum stress. Our results identified the oncogenic function of RPN1 in breast cancer, implying that RPN1 might be a potential biomarker and therapeutic target for breast cancer.
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Introduction

Breast cancer (BC) is one of the leading causes for the mortality of women all over the world. It accounted for 24.2% of the 8.6 million new cases of female cancer and 15.0% of 4.2 million cancer-related deaths in women worldwide in 2018 (1). BC is a complex and heterogeneous disease. Four major intrinsic molecular subtypes, which are Luminal A, Luminal B, HER2-enriched, and basal-like breast cancer (BLBC), have been identified (2). Among which, BLBC is recognized as the worst subtype due to the lack of effective treatment. Although great progress has been made in the diagnosis and treatment of BC, finding new targets for early diagnosis and treatment remains a challenge. Recently, large accessible databases like Oncomine have become efficient and economic tools for identifying targets for BC (3, 4). And they may play an important role in identifying novel genes associated with BC.

N-linked glycosylation is a vital protein modification in eukaryotic cells. Proteins are N-glycosylated in the endoplasmic reticulum lumen by Oligosaccharyltransferase (OST) complex. Although the exact structure of OST in eukaryotes is largely unknown, it has been found that OST complex consists 12 subunits, including STT3 OST complex catalytic subunit A and B (STT3A, STT3B), Ribophorin 1 (RPN1), Ribophorin 2 (RPN2), dolichyl-diphosphooligosaccharide-protein glycosyltransferase (DDOST), defender against cell death 1 (DAD1), oligosaccharyl-transferase complex subunit 4 (OST4), transmembrane protein 258 (TMEM258), oligosaccharyltransferase complex (OSTC) and keratinocyte associated protein 2 (KRTCAP2), magnesium transporter 1 (MAGT1), and tumor suppressor candidate 3 (TUSC3) (5–8).

The abnormality of OST subunits can lead to the hypoglycosylation of proteins, which account for the misfolding of proteins. The accumulation of misfolded proteins would affect the homeostasis of endoplasmic reticulum, ultimately inducing an imbalance between protein folding load and capacity. This abnormality is known as endoplasmic reticulum stress (ERS) (9), which is associated with the development and prognosis of cancers (10–13). At first, ERS initiates unfolded protein response (UPR) to improve the adaptability and reestablish the homeostasis. With the persistent ERS, the UPR could turn from a pro-survival to a pro-death response, playing a biswitch role in homeostasis maintenance (14).

RPN1, which is only found in the rough endoplasmic reticulum, facilitates the N-glycosylation by selecting the specific substrates (15). Though it is a critical subunit of OST, the association between RPN1 and cancers has rarely been reported. In this study, we analyzed the relationship between OST subunits, especially RPN1, and BC by several accessible databases, and then explored the effects of RPN1 knockdown on the proliferation, migration, and invasion of BC cells. Finally, we found that the ERS-induced cell apoptosis was responsible for the inhibition of cell proliferation and invasion after RPN1 knockdown.



Materials and Methods


Oncomine Database Analysis

Expression level of the OST subunits in various cancer types was retrieved from Oncomine (http://www.oncomine.org, accessed on February 28, 2019) (3). Thresholds were set as the following: p-value: 0.0001; fold change: 1.5; gene rank: top 10%; and data type: mRNA. After analyzing the mRNA expression level in different cancers, we additionally performed a meta-analysis with the providing 13 datasets, which contained 43 analyses of 3,555 samples on different kinds of BC (Supplementary Table S1), aiming to compare the over-expression variation of different subunits. p-value<0.01 was considered statistically significant.



BC Gene-Expression Miner v4.5 Analysis

Bc-GenExMiner v4.5 (bcgenex.centregauducheau.fr/, accessed on August 3, 2020) was used to measure the correlation between the OST subunits and the clinicopathologic features in BC (4). P-value<0.01 was considered statistically significant. The Pearson correlation coefficient between the expression level of candidate genes and RPN1 was computed to determine the co-expressed genes of RPN1. We identified genes as the co-expressed genes of RPN1 when the Pearson correlation coefficient > 0.4.



Survival Analysis

Kaplan-Meier Plotter (kmplot.com, accessed on March 3, 2019) was used to identify the prognostic genes among OST subunits in BC (16). We also identified the prognostic genes among OST subunits in each subtype of BC, and the subtype of BC was determined by the 2013 St Gallen criteria. The patients were divided into two groups (high expression and low expression) by the median value of gene expression level, and only the best probe for each gene was selected. The hazard ratio (HR) with 95% confidence intervals (CI) and log-rank Genes with P-value<0.05 was considered as prognostic genes.



The Cancer Genome Atlas and Gene Expression Omnibus Database Analysis

The TCGA and GEO database (GSE42568) were used to explore the expression of RPN1 in BC tissues and normal breast tissues or para-tumor tissues. The expression level of RPN1 in each subtype was also analyzed in TCGA and GEO database (GSE47561). In addition, using the transcriptome data from TCGA, we evaluated the co-expression level between two of OST subunits by custom R scripts.



GeneMANIA Analysis

As a prediction server for gene prioritization and predicting gene function (17), GeneMANIA database (http://genemania.org/, accessed on January 17, 2020) was used in our study to construct an interactive functional-associated network for OST subunits in terms of physical interactions, predictions, pathways, shared protein domains, co-expression, co-localization, and genetic interactions, as well as to find their functions.



The Human Protein Atlas Database Analysis

We used the HPA (https://www.proteinatlas.org/, accessed on December 19, 2019) to explore the immunohistochemical (IHC) staining of RPN1 (18–20). The images of normal breast tissues were gotten from the TISSUE ALTAS, while the images of BC tissues were gotten from the PATHOLOGY ALTAS. Both normal breast and BC tissues were stained by antibody CAB009748.



UALCAN Database Analysis

UALCAN (http://ualcan.path.uab.edu/, accessed on December 20, 2019) is an interactive database for analyzing cancer omics data, including TCGA data and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data (21). We used UALCAN to analyze the protein level of RPN1 in BC tissues compared to the normal breast tissues in CPTAC samples and the methylation level on the promoter region of RPN1 in TCGA samples.



Functional Enrichment Analysis

Gene Ontology (GO) enrichment analysis for gene lists from Bc-GenExMiner v4.5 database was conducted using the R package “clusterProfiler”, “org.Hs.eg.db”, “enrichplot” (https://bioconductor.org/, accessed on January 18, 2020), and “ggplot2” (https://cran.rproject.org/web/packages/, accessed on January 18, 2020). Only the top five significant enriched GO terms were plotted.



Cell Culture and Reagents

The human BC cell lines SUM149 and SUM159 (purchased from Asterland Bioscience, MI, USA) were confirmed without mycoplasma and then cultured in Han’s F12 medium with 5% fetal bovine serum (FBS, Thermo Fisher), 1% streptomycin/penicillin (Beyotime), 1 mg/ml hydrocortisone (Sigma-Aldrich), 10 ug/ml gentamicin (Life Technologies), and 5 mg/ml insulin (Sigma-Aldrich). All cells were incubated under 37°C with 5% CO2. Sodium phenylbutyrate (4-PBA) was purchased from MCE and dissolved in DMSO.



Virus Infection and Cell Lines Construction

The effective sequences of shRNAs were bought from Sigma-Aldrich (Supplementary Table S2). The RPN1 knockdown lentiviruses were produced by transfecting 293T cell in the University of Michigan Vector Core Facility. SUM159 and SUM149 cells were infected in the presence of polybrene (8 ug/ml, Millipore) for 24 h, then the medium was discharged and replaced with the fresh medium. And knockdown cells were selected by Puromycin (Invitrogen) for 14 days.



RNA Extraction and Real-Time qRT-PCR

Total RNA was extracted using Trizol (Takara) and reverse-transcribed into cDNA with the HiScript II 1st Strand cDNA Synthesis Kit (Vazyme Biotech). The primers for qRT-PCR were provided in Supplementary Table S3. And qRT-PCR was carried out using AceQ qPCR SYBR Green Master Mix (Vazyme Biotech) in a real-time PCR system (7300, Applied Biosystem). TATA-box binding protein (TBP) was used as a reference gene.



MTT Assay

One thousand cells of SUM159 and 3,000 cells of SUM149 were seeded in per well of 96-well plates and cultured for 1 day for eliminating the counting error. Two hundred cells of SUM159 and 500 cells of SUM149 were did the same at the same time but cultured for 3, 5, and 7 days. Then 20 ul MTT (5 mg/ml, Biosharp) was added in each well, and the plates were incubated at 37°C for 4 h. After removing the supernatant, 100 ul DMSO was added in per well, and the optical density (OD) was measured at 490 nm with microplate reader (Elx800, BioTek). Each group had six parallel wells and was performed in triplicate.



Colony Formation Assay

One thousand cells of SUM159 and 3,000 cells of SUM149 were seeded and cultured in six-well plates under 37°C for 2 weeks. Ten percent formaldehyde was used for fixing for 30 min, and the cell colonies were stained with 0.1% crystal violet for another 30 min. After washing and drying, the number of colonies was calculated. Each group had three parallel wells and was performed in triplicate.



Wound Healing Test

One million cells of SUM159 were seeded in six-well plates and grew to approximately total confluence. Then the wounds were created by a 200 ul pipette tip. The wells were washed by PBS for two times, and none-serum medium was added. Wound healing within the scrape lines were then observed and photographed at 0, 6, 18, and 24 h. Each group had more than three parallel positions and was performed in triplicate.



Invasion Assay

Transwell chambers (#3422, Corning, USA) precoated with matrigel (354234, Corning, USA) were placed in 24-well plates at 37°C for 4 h. Then 5×104 cells of SUM159 were plated on chambers without serum and medium containing 5% FBS offered in the bottom well. After 36 h of incubation in normal condition, the chambers were fixed (methyl alcohol: glacial acetic acid = 3:1) and stained with 0.1% crystal violet. After washing and drying, the invaded cells were photographed for statistical analysis. Each group had three parallel wells and was performed in triplicate.



Western Blot

Cells were lysed in RPRA buffer (Beyotime, China), and protein concentration was measured by BCA Kit (Pierce, USA). Protein samples were separated by SDS-PAGE and subsequently transferred onto PVDF membranes. Membrane was blocked in 5% de-fat milk and incubated with primary antibody at 4°C for a night and sequentially HRP-conjugated secondary antibody at room temperature for 1 h. ImageQuant LAS 4000 mini imaging system (GE, Fairfield, USA) and Western HRP Substrate (WBLUF0500, Millipore) were used in chemiluminescent detection. The antibody used in this study are as following: anti-GAPDH (M017, TransGen), anti-PERK (5683, CST), anti-IRE1α (3294, CST), anti-ATF6 (24169-1-AP, Proteintech), anti-BiP (3177, CST), anti-Bax (2774, CST), anti-Bcl-2 (4223, CST), goat anti-mouse IgG-HRP (sc-2005, Santa Cruz), and goat anti-rabbit IgG-HRP (sc-2004, Santa Cruz).



Flow Cytometry

For apoptosis analysis, the cells were stained with annexin V-fluorescein isothiocyanate (BD) and propidium iodide (Sigma-Aldrich) for 15 min at room temperature. The stained cells were measured by flow cytometer according to the manufacturer’s instructions. For cell cycle analysis, cells were fixed in 70% ethyl alcohol at 4°C for 6 h and then stained with propidium iodide containing 1% RNase A (Takara) at 37°C for 30 min. CytoFLEX (Beckman Coulter) was used for the detection and acquisition of data, and the analysis was performed in CytoExpert software.



Statistical Analysis

All data were present as the mean ± standard deviation. Difference between two groups was analyzed by Student t test with GraphPad Prism 6. Some results of statistical analysis were download from the websites directly. P<0.05 was considered statistically significant unless otherwise indicated.




Results


Correlations of Transcriptional Expression Among OST Subunits and Construction of a Protein-Protein Interaction Network

According to the transcriptional data from TCGA database, the Pearson correlations among OST subunits in BC patients were analyzed (Figure 1), and Pearson correlation coefficient exceeding 0.40 indicated a good correlation. It could be found that there was a significant positive correlation between RPN1 and DDOST, STT3B and MAGT1, TMEM258 and OSTC, as well as among OST4, TMEM258, and KRTCAP2.




Figure 1 | Correlation analysis of OST family members (data from TCGA). Pearson’s correlation of OST subunits. In the upper right, red and blue cells represent positive and negative relationship, respectively. In the lower left, correlation scatter diagram of the two genes is listed.



Then, GeneMANIA database was used to construct a protein-protein interaction network for the OST subunits and to analyze their potential functions (Supplementary Figure S1). The 12 central nodes represented the OST subunits, and the 20 nodes surrounding represented the top 20 genes that correlated to the OST subunits in terms of physical interactions, predictions, pathways, shared protein domains, co-expression, co-localization, and genetic interactions. And further functional analysis showed that the 12 central genes we focused on were as expected greatest related to the OST complex and the function of glycosylation.



mRNA Expression Profiles of the Subunits of OST in BC Patients

We first analyzed the mRNA expression level of OST subunits in different human cancers, especially in BC, compared to the normal breast tissues (Figure 2). Analyses that met the threshold were listed in Supplementary Table S4. According to Figure 2 and Supplementary Table S4, it could be found that the expression level of RPN1 was upregulated in various subtypes of breast cancer including invasive breast carcinoma, mucinous breast carcinoma, medullary breast carcinoma, invasive ductal breast carcinoma, and ductal breast carcinoma in Curtis’s dataset (22). And the mRNA expression of RPN1 in ductal breast carcinoma was 1.684-fold higher than normal tissues in Sorlie’s dataset (23). The other OST subunit expression patterns were also analyzed in BC tissues. Higher mRNA expression levels of RPN2, DAD1, OSTC, KRTCAP2 and lower expression levels of TUSC3, MAGT1 could be found in different types of BC compared to the normal breast tissues in Curtis’s dataset (22), Zhao’s dataset (24), Ma’s dataset (25), Finak’s dataset (26), Karnoub’s dataset (27), and TCGA dataset.




Figure 2 | The mRNA expression levels of the OST subunits in different types of human cancers (Oncomine). The figure was generated from Oncomine database with the thresholds that p-value, 0.0001; fold change, 1.5; gene rank: top 10%. The cell number represented the dataset number that met all of the thresholds with the color blue for low expression while the color red for high expression, and the cell color was determined by the best gene rank percentile for the analyses within the cell. An analysis might be counted in more than one cancer type. mRNA expression levels of OST subunits in breast cancer are delineated with yellow highlight. CNS, central nervous system.



We carried out a meta-analysis by Oncomine and found that only RPN1, RPN2, STT3A, STT3B, and DDOST significantly upregulated in BC tissues according to the 43 analyses of 13 datasets (Figure 3 and Supplementary Table S1).




Figure 3 | The meta-analysis on the mRNA expression of OST subunits (Oncomine). The comparison of OST subunit mRNA expression in different datasets. Only the upregulated subunits were listed. The rank for a gene was the median rank for that gene across each of the analyses. The p-value for a gene was its p-value for the median-ranked analysis, and p<0.01 was considered statistically significant.





The Relationships Between OST Subunits and the Clinicopathologic Features of BC

Then we analyzed the correlations between the mRNA expression of OST subunits especially RPN1, RPN2, STT3A, STT3B, and DDOST, and the clinicopathologic features of BC patients according to Bc-GenExMiner v4.5. The results were presented in Table 1 and Supplementary Table S5. For age character, RPN2 (P = 0.0019) was found to have significantly higher expression in the group not more than 51 years old. For the patient samples with negative estrogen receptor (ER) status, the expression of RPN1, RPN2, STT3A, DDOST were upregulated. The expression levels of RPN1 (P<0.0001), RPN2 (P=0.0003), and DDOST (P<0.0001) were also significantly higher in the BC patient samples with negative progesterone receptor (PR) status. Moreover, compared to the patients with positive human epidermal growth factor receptor 2 (HER2) expression, the mRNA levels of RPN2 (P<0.0001) and STT3B (P<0.0001) were significantly upregulated in the negative ones. In addition, in the BC patients with nodal metastasis, only STT3B (P<0.0001) mRNA expression increased significantly.


Table 1 | The relationship between the OST subunits and the clinicopathologic parameters of BC (bc-GenExMiner v4.5).



Intrinsic molecular subtype is one of the most important clinicopathologic characteristics of BC. The expression levels of all five subunits were significantly higher in basal-like and HER2-enriched patients compared with Luminal A patients, while all five subunits except STT3A expressed higher in Luminal B patients than Luminal A ones. RPN1 and DDOST could be found upregulated in basal-like patients compared with Luminal B and HER2-enriched patients, while RPN2, STT3A, and STT3B were in the opposite. Additionally, it could be found that the expression level of RPN2, STT3A, STT3B, and DDOST increased significantly in Luminal B patients compared with HER2-enriched patients (Table 1, Supplementary Figure S2).

As the BLBC has the worst prognosis, we especially analyzed the five genes’ mRNA expression between the BLBC and the non-BLBC patients. The expression levels of RPN1 (P<0.0001), STT3A (P<0.0001), and DDOST (P<0.0001) increased significantly in the BLBC compared with non-BLBC patients (Table 1, Supplementary Figure S3).

In BC, the Scarff Bloom & Richardson (SBR) grade is an important prognostic factor associated with the gland formation, the nuclear features, and the mitotic activity. The SBR is also correlated with poor clinical outcome (28, 29). As shown in Table 1 and Supplementary Figure S4, higher mRNA expression levels of all five genes were associated with a higher SBR grade, while only RPN1, RPN2, STT3B, and DDOST were statistically significant (p<0.01) in all pairwise comparisons. The Nottingham Prognostic Index (NPI) is another system to evaluate the prognosis of BC after surgery, referring to the size of lesion, the number of lymph nodes involved, and the pathologic grade (30, 31). We found that higher expression levels of RPN1, RPN2, and STT3B were associated with higher NPI grade. The expression level of RPN1 was higher in NPI2 and NPI3 patients than in NPI1 patients, but there was no significant difference between NPI2 and NPI3 patients. The expression levels of RPN2 and STT3B increased only in NPI2 patients compared with NPI1 patients (Supplementary Figure S5). In summary, the high expression levels of RPN1, RPN2, and STT3B were associated with poor prognosis, suggesting their potential roles in BC.



Prognostic Values of OST Subunits Expression in BC

The prognostic values of all OST subunits in BC were listed in Supplementary Table S6, and Supplementary Figure S6 showed the relapse-free survival (RFS) curves. As for the five selected genes (Figure 4), high expression of RPN1 (HR: 1.51, 95% CI: 1.35–1.69, P=1.20E-13), RPN2 (HR: 1.26, 95% CI: 1.13–1.40, P=3.60E-5), and STT3A (HR: 1.15, 95% CI: 1.03–1.28, P=0.013) were associated with worse RFS, while the expression of STT3B (P=0.11) and DDOST (P=0.69) showed no relationship with RFS. We also analyzed the correlation between mRNA expression level of all OST members and other prognostic indexes including overall survival (OS), distant metastasis-free survival (DMFS), and post-progression survival (PPS) (Supplementary Table S6, Figure 5). High expression level of RPN1 (HR: 1.35, 95% CI: 1.09–1.68, P=0.006) and RPN2 (HR: 1.49, 95% CI: 1.2–1.85, P=0.00031) indicated worse OS, while DDOST (HR: 0.8, 95% CI: 0.65–1.0, P=0045) was in the opposite. High expression level of DDOST (HR: 0.75, 95% CI: 0.61–0.91, P=0.0031) was associated with better DMFS.




Figure 4 | Survival analyses of the five subunits in BC (RFS in Kaplan–Meier Plotter). (A–E) RFS for RPN1, RPN2, STT3A, STT3B, and DDOST in all BC. P<0.05 was considered statistically significant. (F) Prognostic HR of RFS for the five subunits. The data with statistical significance (P<0.05) were marked in bold text. RFS, relapse-free survival; HR, hazard ratio; CI, confidence interval.






Figure 5 | Survival analyses of the OST subunits in breast cancer (RFS, PS, DMFS, PPS in Kaplan–Meier Plotter). (A–D) Prognostic HR of RFS, OS, DMFS, and PPS of individual OST subunits in all breast cancers. The data with statistical significance (P<0.05) were marked in bold text. RFS, relapse-free survival; OS, overall survival; DMFS, distant metastasis-free survival; PPS, post-progression survival; HR, hazard ratio; CI, confidence interval.



We then analyzed the correlation between OST members and prognosis in different subtypes of BC (Supplementary Table S7 and Table 2). In Luminal A patients, high expression of RPN1 (P= 0.00024) and RPN2 (P=9.1E-7) indicated worse RFS. In Luminal B patients, high expression of RPN1 (P=0.025) and STT3A (P=0.028) predicted worse RFS. In HER2-enriched patients, high expression of RPN1(P=0.0093) indicated worse RFS while DDOST (P=0.049) indicated the opposite. In basal-like patients, high expression of RPN1 (P=0.038) and STT3A (P=0.0063) were significantly associated with worse RFS. In a word, these results implied that higher expression of most OST members, especially RPN1 and RPN2, were significantly correlated with poor prognostic outcome and might play a pro-tumor function.


Table 2 | RFS of the RPN1, RPN2, STT3A, STT3B, and DDOST with different molecular subtypes in breast cancer.





RPN1 Is a Novel Prognostic Gene for BC

According to the above analyses, it could be concluded that RPN1 and RPN2 were the most influential subunits in BC progression due to their significant relationship between their expression level and clinical prognosis. However, the function of RPN2 in BC has been reported by several studies before (32–34). We focused on the function of RPN1 in BC. Therefore, we analyzed the expression status and prognostic value of RPN1 in BC deeply.

According to TCGA, GEO (GSE 42568), the HPA, and UALCAN database, both mRNA expression level and protein expression level of RPN1 could be found higher in BC tissues compared to the normal ones (Figures 6A, C, D). The details of the IHC figures of RPN1 in the HPA are listed in Supplementary Table S8. As mentioned above, BLBC has the worst prognosis. Our analyses showed that the mRNA expression level of RPN1 was the highest in BLBC tissues in TCGA database and the second highest in BLBC tissues in GEO database (GSE47561) (Figure 6B). Besides, the promoter methylation level of RPN1 in BC tissues was lower in TCGA samples according to UALCAN database (Figure 6E).




Figure 6 | The expression status and prognostic value of RPN1 in BC. (A) Gene expression analysis of RPN1 in BC tissues and normal breast tissues according to TCGA database and GEO database (GSE42568). (B) Gene expression analysis of RPN1 in different subtypes of BC according to TCGA database and GEO database (GSE47561). (C) Representative IHC staining of RPN1 expression in BC tissues and normal tissues according to the HPA database. (D) The protein expression of RPN1 in BC tissues and normal tissues in CPTAC samples according to the UALCAN database. Z-values represented standard deviations from the median across samples. (E) The promoter methylation level of RPN1 in BC tissues and normal tissues in TCGA samples according to the UALCAN database. The Beta value indicated the level of DNA methylation ranging from 0 (unmethylated) to 1 (fully methylated). (F–I) RFS for RPN1 in BLBC, Luminal A, Luminal B, and HER2-enriched BC. P<0.05 was considered statistically significant. **P < 0.01, ***P < 0.001 and ****P < 0.0001.



In addition, previous result by Kaplan–Meier Plotter analysis has shown that higher mRNA expression of RPN1 indicated worse RFS, and the same tendency could be found in different subtypes of BC (Figures 6F–I).



RPN1 Knockdown Inhibits the Proliferation and Invasion of BLBC Cells

To explore the function of RPN1 in BLBC, we established shRNA-mediated RPN1 knockdown cell lines in SUM159 and SUM149, the two BLBC cell lines (Figure 7A). RPN1 knockdown induced significant proliferation inhibition (Figures 7B, C), which might be due to the cell cycle arrest, because of the remarkably increased percentage of cells in G2/M phase (Figure 7D). In addition, migration and invasion abilities of SUM159 cells were significantly inhibited by the knockdown of RPN1 (Figures 7E, F).




Figure 7 | RPN1 knockdown inhibited the growth and invasion of BLBC cells. (A) RPN1 was knocked down (scramble was the control). The expression of RPN1 was detected by qRT-PCR in SUM159 and SUM149. (B, C) MTT assay and Colony formation assay were used to measure the cell proliferation ability. (D) Cell cycle distribution analyzed by flow cytometry in SUM159 cells. (E, F) Wound healing assay and transwell assay were used to measure the cell migration and invasion ability. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.





RPN1 Knockdown Induces ERS-Dependent Cell apoptosis in BLBC

To explore the possible mechanisms of RPN1 in regulating the proliferation and invasion of BC cells, a total of 46 positively co-expressed genes of RPN1 with a Pearson correlation no less than 0.40 were obtained from the RNA-seq data in BLBC by bc-GenExMiner v4.5 database (Supplementary Table S9). And the GO enrichment analyses revealed that the biological process of “response to ERS”, “endoplasmic reticulum unfolded protein response”, “cellular response to unfolded protein”, “cellular response to topologically incorrect protein”, and “IRE1α-mediated unfolded protein response” were enriched for these genes (Figure 8A), indicating the possible important role of ERS in the knockdown of RPN1.




Figure 8 | ERS-dependent apoptosis was triggered by the knockdown of RPN1. (A) Bubble plot of the GO function enrichment analysis of the genes positively correlated with RPN1 RNA expression level in BLBC. Y-axis represents the name of the function, and X-axis represents the ratio of the number of the genes assigned to a term to the total number of the genes. The Bubble size represents the number of the genes annotated to the function. The color of the bubble represents the enriched P-value, while the red indicates a greater significance level. (B) The expression of ERS-related proteins was detected by western blot in SUM159 cells. (C) Scramble and shRPN1-infuected SUM159 cells were treated with 4-PBA (2 uM) or same volume of DMSO for 48 h, and the ERS markers were determined by qRT-PCR. (D, E) The protein expression of Bax and Bcl-2 in SUM159 detected by western blot and the ratio of the protein expression of Bcl-2 and Bax were also shown. (F) The ratio of the mRNA expression level of Bcl-2 and Bax was determined by qRT-PCR in 4-PBA- or DMSO-treated SUM159 cells. (G, H) Apoptosis analyzed by flow cytometry in 4-PBA- or DMSO-treated SUM159 cells. *P < 0.05, **P < 0.01 and ***P < 0.001. BP, Biological process; CC, cellular component; MF, molecular function; 4-PBA, Sodium phenylbutyrate.



RPN1 plays a critical role in N-linked glycosylation, and previous studies have shown that the abnormality of the N-linked glycosylation may induce ERS in cells. Though the effect of ERS on tumor growth and metastasis was complex and dynamic, it has been proven that ERS could inhibit the growth and metastasis of tumors (35, 36). Inositol-requiring protein 1 α (IRE1α), protein kinase RNA -like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) are endoplasmic reticulum transmembrane proteins, and each of them mediates an arm of the UPR. Normally, they are in a silent state combining with the endoplasmic reticulum chaperone immunoglobulin-binding protein (BiP). When under the ERS, they dissociate from BiP and activate their signaling functions respectively (14, 37). The results of both western blot and qRT-PCR showed the upregulation of PERK, IRE1α, ATF6, and BiP in RPN1-knockdown SUM159 cells (Figures 8B, C), suggesting that the ERS was induced after knockdown of RPN1. The ERS inhibitor 4-PBA could interact with unfolded or misfolded proteins to alleviate ERS (38). Treated with 4-PBA, the ERS could be significantly reduced in RPN1-knockdown SUM159 cells (Figure 8C). Several studies have demonstrated that the persistent ERS could play a pro-death role and trigger apoptosis (14, 35). Here, we found the knockdown of RPN1 decreased Bcl-2/Bax ratio at both protein and mRNA levels, which meant an increased apoptosis (Figures 8D–F), while treatment of 4-PBA increased the Bcl-2/Bax ratio (Figure 8F). We also found that the knockdown of RPN1 induced significant increase of early apoptosis in SUM159 cells, while treatment of 4-PBA rescued it (Figures 8G, H). These results demonstrated that inhibition of RPN1 could suppress BLBC cell proliferation and invasion via triggering the ERS.




Discussion

N-glycosylation, one of important ways of post-translational modification, plays an important role in maintaining the stability of proteins. Most secreted proteins require glycosylation to maintain stability and solubility, and N-glycosylation could assist proteins forming a proper folded structure by increasing the hydrophilicity of them or determining the chaperone bound to them (39). The OST complex is important for N-glycosylation, the abnormality of which is involved in tumors. Liu et al. found that the N-glycan profiles of membrane proteins in BC tissues significantly changed compared to the adjacent normal ones (40). Furthermore, previous reports have demonstrated the N-glycan alterations were essential for tumorigenesis, proliferation, and metastasis via modifying critical proteins or triggering mechanisms involved in the maintenance of cell homeostasis, such as ERS (41–45).

The 12 known subunits of OST complex play different roles in N-glycosylation. Some of the subunits have been reported to be associated with tumor. Takahashi et al. found that RPN2 could stabilize mutant p53 by inactivation of glycogen synthase kinase-3b, and the overexpression of RPN2 promoted the growth of BC (32). Burgermeister et al. revealed that the silence of TUSC3 by methylation was associated with the tumorigenesis of colorectal cancer, and epidermal growth factor receptor could be one of the target proteins (46).

In our study, we found that the mRNA expression levels of RPN1, RPN2, STT3A STT3B, and DDOST were significantly upregulated in BC tissues, and the expression levels of RPN1 and DDOST were significantly higher in the BLBC tissues compared to the non-BLBC. As for SBR and NPI, with the increasing of the grade of both SBR and NPI, the expression levels of RPN1, RPN2, and STT3B increased. As for the survival, the high expression of RPN1, RPN2, and STT3A were associated with worse RFS. Considering about both expression level and survival value, RPN1 and RPN2 could be the most effective biomarker and the most potential therapeutic target of OST subunits in BC. However, some studies have revealed that RPN2 plays a critical role in different cancers (32–34, 47, 48), while there was almost no study reporting the effect of RPN1.

RPN1 has been confirmed to be a type I transmembrane protein located on the endoplasmic reticulum, regulating N-glycosylation by interaction with the ribosomes and facilitating the specific precursors to the catalytic STT3A and STT3B subunits as a chaperone (15, 49). We conducted in-vitro experiments after knockdown of RPN1 in cells. And it turned out that the knockdown of RPN1 by shRNA led to poorer proliferation rate and less migration as well as invasion.

ERS is a mechanism to maintain the homeostasis of cell. And the aberrant glycosylation of proteins can lead to ERS and activate a set of signaling pathways (6). As mentioned previously, PERK, IRE1α, and ATF6 mediate three arms of UPR independently, and the signal pathways initiated by them could induce cell apoptosis. PERK, as a Ser/Thr kinase, mediates phosphorylation of eukaryotic initiation factor 2 (eIF2α) and then leads to the translation of transcription factor ATF4 (50). IRE1α can act not only as a protein kinase but also as an endoribonuclease. On the one hand, IRE1α can activate a pathway leading to c-Jun N-terminal kinase phosphorylation, which can promote apoptosis in several pathways (51). On the other hand, IRE1α is able to splice the mRNA of the transcription factor X-Box Binding Protein 1 (XBP1), producing XBP1s (52). ATF6 could not only cleave itself as a downstream signal molecule but also induce the modification of XBP1 (53). C/EBP homologous protein (CHOP), as an important pro-apoptotic transcription factor, can be the shared target of the three branches of UPR. It can be upregulated by the increased of ATF4, XBP1s, and cleaved ATF6. CHOP could induce the upregulation of various essential genes including Bcl-2 family members (54), thereby increase cell apoptosis directly.

The role ERS plays in tumorigenesis, proliferation, invasion, and apoptosis has been extensively reported (35, 55). In our study, we found that the knockdown of RPN1 inhibited the proliferation, migration, and invasion of BC. And the knockdown of RPN1 induced the upregulation of BiP, PERK, IRE1α, and ATF6 and the increase of cell apoptosis, while the treatment of ERS inhibitor could rescue them. These phenomena indicated that the RPN1 played a pro-tumor role by maintaining the endoplasmic reticulum homoeostasis in BLBC cells. However, the main target of RPN1 and the specific downstream pathway of ERS need further exploration.

In conclusion, clinically, the high expression level of RPN1 not only predicts a worse prognosis but is also related to a variety of recognized indicators of poor prognosis like negative ER status, negative PR status, BLBC subtype, higher SBR, and higher NPI. Biologically, our in vitro experiments clearly confirm that the proliferation, migration, and invasion of BC cells are significantly inhibited after interfering the expression of RPN1. Mechanismly, RPN1 inhibition leads to the activation of ERS and subsequent cell apoptosis. Although the detailed molecular mechanism is still not clear, it can be apparent that RPN1 plays an important part in BC and may be a novel biomarker as well as a potential therapeutic target.
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Supplementary Figure S1 | Protein-protein interaction network of OST family members (data from GeneMANIA). Protein-protein interaction network among OST subunits. Each node indicates a gene, and the node size represents the strength of interactions. The internode connection lines represent the types of gene-gene interactions, and the line color represents the types of interactions, while the color of node represents the possible functions of these genes.

Supplementary Figure S2 | The relationships between the OST subunits and intrinsic molecular subtypes of breast cancer (data from bc-GenExMiner v4.7). (A–L) Box plots of individual OST subunit’s expression according to the intrinsic molecular subtype of breast cancer (including basal-like, luminal A, luminal B, and HER2-enriched). Significant differences between groups were assessed by Welch’s test, and Dunnett–Tukey–Kramer’s test computed for each pairwise comparison. P<0.05 was considered statistically significant. In addition, the data in this figure was obtained from bc-GenExMiner v4.7 due to the update of the website. HER2-E, human epidermal growth factor receptor 2 enriched.

Supplementary Figure S3 | The relationships between the OST subunits and basal-like status of breast cancer (data from bc-GenExMiner v4.5). (A–L) Box plots of individual OST subunit’s expression according to the basal-like status of breast cancer (basal-like or not). Significant differences between groups were assessed by Welch’s test, and P<0.05 was considered statistically significant.

Supplementary Figure S4 | The relationships between the OST subunits and the SBR criteria (data from bc-GenExMiner v4.5). (A–L) Box plots of individual OST subunit’s expression according to SBR. Global significant differences between groups were assessed by Welch’s test, and Dunnett–Tukey–Kramer’s test computed for each pairwise comparison. P<0.05 was considered statistically significant. SBR, Scarff Bloom & Richardson grade.

Supplementary Figure S5 | The relationships between the OST subunits and the NPI criteria (data from bc-GenExMiner v4.5). (A–L) Box plots of individual OST subunit’s expression according to NPI. Global significant differences between groups were assessed by Welch’s test, and Dunnett–Tukey–Kramer’s test computed for each pairwise comparison. P<0.05 was considered statistically significant. NPI, Nottingham Prognostic Index.

Supplementary Figure S6 | Survival analyses of the OST subunits in breast cancer (RFS in Kaplan–Meier Plotter). (A–L) RFS for individual OST subunits in all breast cancers. P<0.05 was considered statistically significant. RFS, relapse-free survival; HR, hazard ratio.
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Breast cancer (BC) is the second leading cause of cancer death in women, although recent scientific and technological achievements have led to significant improvements in progression-free disease and overall survival of patients. Genetic mutations and epigenetic modifications play a critical role in deregulating gene expression, leading to uncontrolled cell proliferation and cancer progression. Aberrant histone modifications are one of the most frequent epigenetic mechanisms occurring in cancer. In particular, methylation and demethylation of specific lysine residues alter gene accessibility via histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). The KDM family includes more than 30 members, grouped into six subfamilies and two classes based on their sequency homology and catalytic mechanisms, respectively. Specifically, the KDM4 gene family comprises six members, KDM4A-F, which are associated with oncogene activation, tumor suppressor silencing, alteration of hormone receptor downstream signaling, and chromosomal instability. Blocking the activity of KDM4 enzymes renders them “druggable” targets with therapeutic effects. Several KDM4 inhibitors have already been identified as anticancer drugs in vitro in BC cells. However, no KDM4 inhibitors have as yet entered clinical trials due to a number of issues, including structural similarities between KDM4 members and conservation of the active domain, which makes the discovery of selective inhibitors challenging. Here, we summarize our current knowledge of the molecular functions of KDM4 members in BC, describe currently available KDM4 inhibitors, and discuss their potential use in BC therapy.
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Introduction

Breast cancer (BC) is the second leading cause of cancer death in women worldwide with a 0.5% increase in incidence rate per year. Advances in diagnosis and treatment in 64% of BC cases at earlier stages has increased 5-year survival to 99% (National Breast Cancer Foundation).

Much is known about oncogenes, tumor suppressors, and DNA repair genes, which play a role in breast tumorigenesis, promoting aberrant cell growth and/or mismatch error repair (1, 2). Research on molecular hallmarks of BC has identified several diagnostic markers including: i) immunohistochemical markers, such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2); ii) genetic markers, such as BRCA1, BRCA2, and PIK3CA mutations; iii) immunomarkers, such as programmed death-ligand 1 (PD-L1) and tumor infiltrating lymphocytes; iv) proliferation markers, such as Ki-67. All of these have significantly changed the prediction of prognosis and therapy decisions (3).

The Cancer Genome Atlas classifies BC into five different subtypes: normal-like, luminal A, luminal B, HER2-positive (HER2+), and basal-like. Luminal A and B tumors are ER- and PR-positive (ER+PR+), while the HER2+ and basal-like subtypes are hormone-independent (ER-PR-) and positive for high levels of Ki-67, showing the worst prognosis (4).

Current therapeutic strategies for BC are based on tumor heterogeneity associated with different histotypes and specific molecular profiles: ER+ and PR+ patients are treated with hormonal therapy, HER2+ patients with anti-HER2 therapy, and BRCA mutation carriers with poly (ADP-ribose) polymerase (PARP) inhibitors plus adjuvant therapies (chemotherapy, immunotherapy, and radiation therapy) (5).

Despite advancements in our knowledge of BC biology as well as intense disease prevention programs and therapies able to block tumor progression, the incidence of BC continues to rise. High-throughput analysis reveals a massive transcriptional deregulation in BC, for which a tight interplay between genetic and epigenetic factors has been hypothesized. Progressive dedifferentiation of cell identity to a progenitor-like state due to increased cell plasticity is observed in the early phase of cancer formation, whereas epigenetic modifications support oncogenic progression (6).

Epigenetic alterations such as DNA methylation and reversible histone modifications (methylation, acetylation, ubiquitination) alter gene accessibility, resulting in aberrant gene expression.

A promising opportunity to rewind cell fate comes from epigenetic-based therapies, which make use of small molecule drugs (epidrugs) able to interfere with the activity of epigenetic regulators and thus correct cancer-associated chromatin states (7). Following confirmation of the efficacy of epidrug-based therapies in oncology by several in vitro studies, many epidrugs have moved to clinical trials for different cancer types (8), and some have been clinically approved by the US Food and Drug Administration (9).

Eukaryotic chromatin is organized in active euchromatin and inactive heterochromatin and the histone methylations define these two interchangeable functional states. Histone lysine methylation is regulated by methyltransferases (KMTs) and demethylases (KDMs) (10). KDMs are classified into two groups: i) the KDM1 or LSD1 family, dependent on flavin adenine dinucleotide (FAD) and ii) the JmjC family, dependent on 2-oxoglutarate (2-OG) for their demethylase activity. JmjC domain-containing KDMs form the larger KDM class with 20 members grouped into five subfamilies (KDM2/7, KDM3, KDM4, KDM5, and KDM6), and their deregulation is associated with cancer, including BC (11).

Based on their catalytic activity, KDM4 subfamily members catalyze N-methyl-lysine demethylation by removing mono-, di-, and trimethyl marks via an oxidative mechanism. KDM4 uses 2-OG and O2 as cosubstrates, Fe(II) as a cofactor for the enzymatic oxygenase reaction (Figure 1A). This activity contributes to the control of gene expression in a context-dependent manner, either by influencing the compaction of chromatin or through regulation of signaling pathways and recruitment of other protein complexes. The most frequent modifications occur on H3K4, H3K36 and H3K79 associated with gene activation, whereas H3K9, H3K27, H4K20 and H3K56 associated with gene silencing (11–13).




Figure 1 | (A) KDM4s: mechanism of demethylation; (B) KDM4s have conserved JmjN and JmjC domains, while substrate recognition domains such as PHD and Tudor are present only in KDM4A-C. Histone targets of KDM4 family members are shown on the right.



The KDM4 (JHDM3/JMJD2) subfamily is highly conserved (14, 15). In humans, this subfamily comprises KDM4A, KDM4B, KDM4C, and KDM4D genes, with KDM4E and KDM4F considered as pseudogenes, although a partial catalytic activity is reported (16) (Figure 1B).

KDM4A-C enzymes have five different domains: JmjN, JmjC, tandem PHD, Tudor, and F-box, whereas KDM4D-F lack PHD and Tudor domains (Figure 1B) (17). The stability and catalytic activity of KDM4s depends on the interaction between JmjN and JmjC domains, and their structural integrity maintains overall protein stability (18). The crystal structure of the KDM4A Tudor domain revealed it as histone reader, identifying methylated lysine residues at histone H3 and H4 tails; the function of the PHD domain is still unclear, although in other PHD-containing proteins this domain is able to bind modified and unmodified histone residues (19).

Concerning KDM4 mRNA levels, they are tightly regulated to guarantee proper biological processes (20). Next-generation sequencing in normal tissues revealed that KDM4A/B/C are broadly expressed in most tissues, although at different levels. They share more than 50% protein sequence identity, however the variations in expression levels suggest that these proteins have not-overlapping functions, as evidenced also by single/double knockout mouse models, that were viable and showed no evident abnormalities. Cell-specificity is thus guaranteed by specific interaction with regulatory factors. For instance, the control of KDM4A expression rely on ubiquitin-proteasome pathway through FBX022, a key regulator of histone methylation. This evidence suggests that posttranslational modifications of KDM4A regulates its abundance, conferring it the cell/tissue-specificity (21). Other studies suggested that KDM4s have peculiar cell-type functions. Heart-specific KDM4A conditional knockout showed cardiac hypertrophy and no compensatory effect has been observed (22).

KDM4 subfamily members control different biological functions, to ensure proliferation, differentiation, migration and adhesion (23), as well as regulation of transcription (24) and genome stability (25) (Figure 2). In embryonic stem cells (ESCs), KDM4 proteins (4B and 4C) control stem cell identity by interacting with the pluripotency factors such as Sox2, Oct4, c-Myc, and Klf4, but also by modulating, alone or in combination, gene expression during the differentiation program (26). In addition, depletion of KDM4C in ESCs causes downregulation of Myc and Klf4 genes associated with cell proliferation during early embryo stage, leading to developmental defects (27).




Figure 2 | Schematic representation of KDM4 functions in normal and cancer cells. Deregulation of KDM4 promotes cancer cell proliferation, migration, and invasion, angiogenesis, chromosome instability, and stimulation of ER and PR activity.



KDM4s are also involved in cell differentiation: KDM4B promotes osteogenic differentiation of human mesenchymal stem cells, activating expression of DLX genes by removing trimethyl groups from H3K9me3 marks (28, 29), whereas depletion of KDM4B reduces osteogenic differentiation via DLX gene suppression (28).

Downregulation of Taf1b and Nom1 in hematopoietic stem cells was observed due to accumulation of H3K9me3 on their transcription start sites (30), following knockout of KDM4A/B/C in vivo resulting in aberrant differentiation.

KDM4A was found to play an important role in skeletal muscle differentiation (31), while KDM4B deletion in mice leads to neurodevelopmental disorders and defects in spinal maturation (32). KDM4A knockdown or inhibition decreases leukocyte adhesion and transmigration in inflammatory response, by modulating expression of vascular adhesion proteins (ICAM1 and VCAM1) in cerebral microvessels (33). KDM4A/D play a role in female fertility (34) and in spermatogenesis, respectively (35). KDM4D was recently reported to maintain genome stability by facilitating double-strand DNA damage repair mechanisms in a PARP1-dependent manner; specifically, the interaction between KDM4D and RNA seems to be essential for chromatin localization and efficient demethylation of trimethyl H3K9 (36).

Concerning breast tissue, KDM4B is important for transcriptional regulation and development of mammary gland. Deletion of KDM4B in mammary epithelium produces immature mammary gland development in female mice (37). KDM4B is also involved in ER signaling cascade and is required for ER-mediated gene transcription, essential for normal development of ovarian follicles, luteal function, and ovulation (38–40). In summary, these findings revealed that KDM4B plays a critical role in regulation of transcriptional program in the mammary gland.

Dysregulation of KDM4s is behind several hallmarks of cancer (Figure 2). Tumorigenesis is a complex adaptive process that involves alterations in different cellular functions, as proliferation, differentiation, adaptation to altered microenvironment, many of them controlled by KDM4s, found overexpressed in various human cancers, sustaining tumor progression and acting as oncoproteins (11, 41).

Thus, KDM4s have emerged as a druggable targets in cancer to restore cell homeostasis by erasing inappropriate histone modifications distributed across the genome that are responsible of cell transformation. Although the drug discovery rationale is straightforward, the efficacy of KDM4 inhibitors identified to date is limited, mainly due to their lack of selectivity and/or specificity to the different KDM4 isoforms (42).

High expression levels of KDM4A were observed in squamous cell carcinoma as well as in ovarian and prostate cancer, where it is highly associated with chromosomal instability (43). KDM4A/C/D bind androgen receptor (AR) in vitro and in vivo, resulting in tumor cell proliferation through demethylation of H3K9me3 in AR target genes, stimulating AR-dependent transcription in combination with KDM1A (44, 45).

KDM4A is also directly involved in upregulation of the lung cancer-associated genes CXCL5, ADAM12, and JAG1, involved in angiogenesis promotion, tumor cell growth, and cell proliferation (46–50). Overexpression of KDM4C was found in non-small cell lung carcinoma (51) and osteosarcoma (52), where upregulation of fibroblast growth factor 2, promoted by KDM4B/C modulates cell migration, invasion, and proliferation in osteosarcoma metastasis (52).

Demethylation of H3K9 marks by KDM4D is involved in tumor necrosis factor α activation, associated with tumorigenesis and inflammatory response (53). KDM4D stimulates p53-dependent gene expression and acts as a pro-oncogenic factor, specifically on AR target genes in prostate and colon cancer cell growth (54). Further, KDM4A reduces activity of p53 pathway through inhibition of Ras-mediated chromodomain-helicase-DNA-binding protein 5 (CHD5) induction, blocking senescence and thereby promoting cell transformation (55).

In ovarian cancer, reduced levels of KDM4B led to an increase in H3K9me3 in the promoter regions of genes such as PDGFB, LCN2, and LOXL2, suppressing cell migration, invasion, and formation of spheroids in vitro (56). In gastrointestinal tumors, KDM4D promotes cancer progression by directly interacting with hypoxia-inducible factor (HIF) 1β gene and activating its expression via H3K9me3 demethylation of the vascular endothelial growth factor A promoter region (57). KDM4B expression was found to be activated by HIF genes, promoting cancer cell survival in a hypoxic setting (58–60).

In conclusion, KDM4s exert their effect mainly by altering the chromatin state and therefore the expression of genes involved in physiological functions that, when disrupted, cancer occurs.



Functional Role of KDM4s in Breast Cancer

KDM4s are responsible in controlling development and proliferation of mammary gland (61), and their altered expression (mainly gene amplification) can promote cell transformation, migration, and invasion, all hallmarks of tumorigenesis in BC (47) (Figure 3). A recent meta-analysis of KDM4 gene expression in BC subtypes identified overexpression of KDM4A/D in basal-like BC, whereas KDM4B was predominantly expressed in ER+ luminal-type BC (61).




Figure 3 | Expression levels of each KDM4 and its histone marks associated with BC progression.



The development of potential KDM4 inhibitors with high selectivity in different BC subtypes therefore remains a major challenge. To address this issue, a better understanding of the molecular mechanisms of KDM4s as well as their specific target sites is urgently required to develop new treatments targeting molecular pathways crucial for BC progression.


KDM4A in BC

KDM4A mainly demethylates H3K9me2/me3 and, at a lower rate, H3K36me2/me3 in vivo and H1.4K26me3 in vitro (17), promoting chromatin decompaction. Via histone deacetylase (HDAC) and p53 association, KDM4A may repress gene expression (62, 63).

Overexpression of KDM4A was observed in 60% of BC tissue at both mRNA and protein level (64). KDM4A overexpression leads to upregulation of estrogen-dependent genes, whereas depletion of KDM4A decreases transcription of ERα target genes, such as JUN and CCND1, promoting cell growth arrest. Taken together, these interconnections suggest that KDM4A promotes BC growth via hormone-dependent and -independent mechanisms (65). KDM4A overexpression was also found to contribute to BC growth through downregulation of the tumor suppressor gene ADP-ribosylarginine hydrolase 1 (ARH1), highly expressed in normal breast tissue (66). Furthermore, downregulation of the ubiquitous transcription factor Sp1 was reported in highly invasive and in advanced stages of BC, showing a clear correlation with the TNM staging system, confirmed by KDM4A overexpression (67). In vitro, knockdown of KDM4A in MCF-7 cells blocks JUN expression, inhibiting invasion, migration, and tumor formation (68–70). In these cells, expression levels of KDM4A were also found to be modulated by hsa-mir-23a-3p, hsa-mir-23b-3p, and hsa-mir-137. Inhibition of these microRNAs enhances KDM4A levels, with a consequent increase in some drug-resistant genes such as CDC28 protein kinase regulatory subunit 1B (CKS1B) (71), contributing to the outgrowth of chemoresistant cells (68).

CHD5, a tumor suppressor gene, is under the control of KDM4A, whose silencing restores CHD5 expression by decreasing H3K36me2/me3 histone marks in its locus (72).



KDM4B in BC

KDM4B is similar to KDM4A in structure and enzymatic activity, demethylating both H3K9 and H3K36. Unlike KDM4A/C, KDM4B acts as a monomer and not as a homodimer or heterodimer (73).

KDM4B is a key regulator of estrogen signaling cascade, and its depletion attenuates BC growth both in vitro and in vivo (37, 40). Noteworthy, KDM4B is itself an ER-responsive gene (58). Taken together, these findings suggest a positive feedback mechanism between KDM4 and ER whereby estrogen-induced KDM4 expression in turn coregulates and, unexpectedly, upregulates ER-target genes, sustaining BC growth. KDM4B is required in ER-mediated gene transcription essential not only in mammary gland, but also in ovarian follicles, suggesting a possible correlation of KDM4B between these gynecological cancers.

H3K4 methylation and H3K9 demethylation are coordinated by binding of KDM4B/mixed-lineage leukemia 2 (MLL2 or KMT2D) complex, with ERα driving ERα-dependent transcription (74). Some studies report the interaction of KDM4B/ERα with SWI/SNF-B chromatin complex, regulating numerous genes involved in resistance and invasiveness of BC (37). Decreased levels of H3K9me3, corresponding to overexpression of KDM4B, facilitate transcription of ER-responsive genes such as MYC, MYB, CCND1 (37), and FOXA1 (40). GATA-3 is a transcription factor highly expressed in luminal A-type BC and is associated with ER expression. The demethylation process mediated by KDM4B is fundamental for activation of ER by GATA-3, whereas downregulation of KDM4B levels induces H3K9 methylation and a reduction in GATA-3 binding on ER promoter, suppressing ER targets (40). Moreover, ERα regulates expression of KDM4B through HIF-1α, promoting its expression in a feed-forward regulatory circuit (58).

Several ER coregulated genes are primed to activate gene expression upon histone modifications induced by KDM4 proteins. One example is the KDM3A/KDM4B/FOXA1 complex, which leads to an increase in pro-proliferative and ERα-dependent gene expression and dual knockdown of KDM4A and KDM4B, strongly inhibiting ERα activity and blocking cell proliferation (75).

Additionally, high KDM4B-mediated demethylation levels of H3K9 were found on the promoter of long interspersed nuclear element-1, increasing its expression and improving the effectiveness of retrotransposition (76). A direct correlation was found between KDM4B expression and the absence of H3K9me3 in pericentromeric regions, suggesting the involvement of this enzyme in chromosomal instability and aneuploidy cell formation (77).

Interestingly, KDM4B also plays a role at cytoplasmic level, where it regulates the unfolded protein response (UPR) pathway through direct interaction with eukaryotic initiation factor 2α (eIF2). UPR is commonly hyperactivated as result of severe and prolonged cellular stress, triggering cell death. Inhibiting the association between KDM4B and eIF2 also allows activation of UPR cell death pathway in triple-negative breast cancer (TNBC), deficient in PTEN, and therefore increases responsiveness to therapy with PI3K-AKT inhibitors (78).

Selective estrogen receptor modulators (SERMs) are beneficial in treating premenopausal ER-positive BC resistant to tamoxifen. However, no effect was obtained in tumors where Fbxo22 gene is low expressed as Fbxo22 ubiquitinates tamoxifen-bound KDM4B (79), resulting in KDM4B overexpression and poor prognosis.



KDM4C in BC

KDM4C (also known as GASC1) is amplified in many cancers including BC, mainly in basal-like and in ER- and PR- subtypes (80), making this enzyme a negative prognostic marker (81, 82). KDM4C overexpression is mediated by gene amplification of 9p24 chromosomal region, which contains several candidate tumor genes, including KDM4C.

KDM4C regulates expression of genes involved in stem cell self-renewal and induces phenotypic changes in cancer cells. However, despite its involvement in tumor development, proliferation, and aggression, very little is known about this enzyme compared to KDM4A/B. In MCF-10A cells, the expression of KDM4C induces a transformed phenotype (80). KDM4C upregulates many genes responsible for cell growth, migration, and metastasis and interacts with HIF-1α, mediating KDM4C recruitment on hypoxia-inducible genes and demethylation of H3K9 on metabolic genes, such as LDHA, PDK1, LOXL2, L1CAM, BNIP3, and GLUT1. The physical interaction of these two proteins is a critical epigenetic mechanism, given that HIF-1α involvement in BC is responsible for an aggressive phenotype, characterized by metastasis progression and resistance to drug therapy (83).

A D396N polymorphism found in the caspase-3 cleavage site of KDM4C in BC cells and contributes to drug resistance, indicating the involvement of KDM4C in BC-resistant progression (81).

Unlike KDM4A, KDM4C is recruited to mitotic chromosomes, modulating correct chromosomal stability and gene expression. This suggests that total inhibition of the enzyme in TNBC should induce a reduction in cell multiplication (84) and an increase in γ-H2AX, a marker of DNA damage (81). Through modulation of steroid receptor co-activator 1 (SRC-1), KDM4C also regulates CD24 and the apoptotic protein PAWR. In endocrine-resistant BC cell lines, SRC-1/KDM4C complex together with JUN mediates transcriptional repression of these two oncogenic proteins (85).

Despite evidence that KDM4C silencing or inhibition may represent an effective epigenetic therapy in BC treatment, a study conducted on 355 patients with invasive BC found that KDM4C was negatively associated with the development of a more aggressive BC histopathological type (grade II/III, ductal-type, PR-, and ER-). Women with KDM4C-positive tumors responded better to radiation therapy and hormone treatment (82).



KDM4D/E/F in BC

Unlike other subfamily members, KDM4D has JmjN and JmjC domains encoding only a small peptide protein. KDM4D potentially regulates H3K79me3, suggesting its involvement in DNA repair, telomeric silencing regulation, cellular development, transcriptional regulation, and cell cycle checkpoints (86). The role of KDM4D in cancer is relatively less studied than that of other KDM4s. A recent study reported that KDM4D was significantly overexpressed in basal-like BC, with an amplification frequency of 3.6%, and was found ubiquitously expressed in ER+, MCF-10A, and basal-like cell lines (61).

The catalytic domain of KDM4E was found to demethylate H3K9me3/me2 regulated by the availability of O2 in an in vitro assay (87).

The expression of KDM4E/F in BC is still unknown. Further studies on these genes may unveil their potential role in BC and in other cancers.



KDM4 Inhibitors

Depending on their mechanism of action, KDM4 inhibitors are divided into different classes: 2-OG cofactor mimics, metal cofactor disruptors, histone substrate-competitive inhibitors, and natural and peptide inhibitors (Figure 4) (88).




Figure 4 | KDM4 inhibitors in BC.



Cofactor mimics are metal-chelated inhibitors that competitively bind Fe(II) molecules of the catalytic site of KDM4 members, blocking their enzymatic activity. Cancer cells are able to reprogram their metabolism to support the increased energy demand required for cell survival and rapid proliferation. Metabolic disruption can alter KDM4 activity by modifying the availability of the required cofactor, 2-OG. Therefore, the intermediates of the tricarboxylic acid (TCA) cycle can inhibit KDM activity. The first identified KDM4 inhibitors were the natural molecules fumarate and succinate, which act as competitive antagonists for 2-OG (89).

Among 2-OG analogs, the oxalic acid-derivative N-oxalylglycine (NOG: IC50 = 78 µM), pyridine dicarboxylic acid (PCA: IC50 = 1.4 µM), and 8-hydroxyquinoline (8-HQ: IC50 = 0.6 µM) showed antiproliferative activity (42).

The hydroxamate-based 2-OG analog NCDM-32B was identified as a good inhibitor of KDM4 subfamily members, and its therapeutic potential was investigated in basal-like BC (61). In enzymatic assays, NCDM-32B displayed IC50 values of 3.0 µM for KDM4A and 1.0 µM for KDM4C. Treatment with NCDM-32B in BC cell lines induced a global increase in H3K9me3/me2 marks, and microarray Gene Ontology analysis of differentially expressed genes revealed pathways that control cell proliferation, growth, DNA replication, and DNA repair. Of note, the compound suppressed the expression of oncogenes, such as the MET proto-oncogene, as well as genes involved in cell cycle regulation including CDC26 and CDK6. These data suggest that NCDM-32B may be a regulator of different cell growth and transformation pathways activated in BC (61).

The orally available KDM4 inhibitor QC6352 has an IC50 value of 0.104 µM for KDM4A, 0.056 µM for KDM4B, and 0.035 µM for KDM4C (90). This molecule showed a strong capability to inhibit proliferation, sphere formation, and xenograft tumor formation of BC stem-like cells derived from tissue of TNBC patients after neoadjuvant chemotherapy. Via H3K9me3 induction, QC6352 inhibited expression of epidermal growth factor receptor, a pivotal gene in therapy resistance mechanisms in TNBC (91).

A very recent study characterized TACH101 as a first-in-class pan inhibitor of KDM4s, with promising pharmacological applicability. Surprisingly, the compound displayed potent inhibitory activity on four KDM4 isoforms (A-D) with IC50 values below 0.100 µM. Furthermore, it increased H3K36me3 levels and induced apoptosis in human esophageal cancer, TNBC, and colorectal cancer cell lines. In vivo, TACH101 showed 100% tumor growth inhibition in BC xenograft models, reducing tumor-initiating cell frequencies by 4.4-fold, and exhibited good oral availability. However, further preclinical studies are required to drive progression of the compound to clinical trials (92).

Another interesting study reported that KDM4 inhibitors such as A1 (CGC00247751), B3 (NCGC00244536), and I9 (NCGC00247743) repress the transcriptional activity of AR and B-MYB, regulating genes such as PLK1, involved in cell cycle progression. Interestingly, the compound B3 showed antiproliferative effects in BC cell lines. Findings from this study suggest that the inhibitor specifically targets KDM4B in late S-phase due to activation of PLK1 transcription via B-MYB, justifying the development of this KDM4B inhibitor for AR+ prostate cancer and opening up the possibility for new treatments in the AR+ subgroup of BC (93).

Other selective KDM family inhibitors are also described as anticancer agents in BC. Many reports indicate that KDM5 maintains tumor-initiating cells and promotes the development of drug tolerance (94). A selective inhibitor of KDM5B, KDOAM-21, significantly increased global levels of H3K4me3 in MCF-7 and TNBC cells. The compound also inhibited the growth of MCF-7 cells at 5 µM in colony-formation experiments (95). In another study, YUKA1, a small molecule inhibitor of KDM5A, displayed the ability to prevent drug tolerance in HER2+ BC cells treated with trastuzumab (96).



Natural Inhibitors

Quercetin (WO2007104314) is a natural flavonoid that was found to inhibit KDM4C in demethylation assays and to modify H3K9me3 demethylation status in esophageal carcinoma and bone osteosarcoma cells. A hydroxamate analog (JP2011168581) showed selective inhibition of KDM4A/C (88). Methylstat (US20130137720) is a methyl ester analog inhibiting KDM4C that increases hypermethylation levels of H3K9me3 and H3K36me3 in a concentration-dependent manner, blocking the growth of MCF-7 cells (97).

Curcumin derivatives show good inhibition of KMD4s at cellular level. For example, efficient histone demethylation was observed by FLLL compounds. Notably, FLLL-8 and FLLL-24 displayed inhibitory activity against KDM4C, while FLLL-60 showed inhibition of KMD4A/D (98). Recently, a new compound synthesized from the natural product purpurogallin was reported to be a KDM4 inhibitor. This compound, called 9bf, exhibited a potent inhibitory activity on KDM4A and antiproliferative activity in many solid cancer cells (99).



Peptide Inhibitors

In 2014, the first peptide-based KDM4 inhibitors displaying major selectivity and minor off-target effects were described (100). Two cyclic peptides were identified and both were active against KDM4C. Interestingly, this study proposed a novel approach to developing selective KDM4 inhibitors, regardless of the substrate and cofactor used (100).

An in vitro screening of a cyclic peptide library identified selective substrate-competitive inhibitors of KDM4s, showing alteration of H3K9me3 levels and inhibition of cell proliferation. The cyclic peptide CP2 showed potent IC50 values (IC50 = 0.42/0.33/0.39 μM against KDM4A/B/C, respectively) and exceptional intra-subfamily selectivity. The compound displayed high potency against KDM4A/B/C but was much less active against KDM4D (IC50 = 6.2 μM) and KDM4E (IC50 = 9.2 μM) (101). Although further studies are needed to evaluate stability, cell permeability, and subcellular localization, this approach may lead to the discovery and characterization of potent peptide inhibitors of KDM4 for the treatment of BC and other cancers. Because the functions of non-catalytic domains of KDM4 subfamily members such as PHD and Tudor domains are still unknown, the development of KDM4 inhibitors against non-catalytic domains remains challenging.



Dual and Other Inhibitors

Since epigenetic machinery such as DNA methylation and histone modifications often work in parallel, the use of single agents in combination has recently drastically increased as this approach enhances their efficacy (102). Such a drug combination approach has also been exploited toward non-epigenetic targets (103). For example, combinations of HDAC-HSP90 inhibitors (104), HDAC-DNMT inhibitors (105), HDAC-KDM1 inhibitors (106), HDAC-BET protein inhibitors (107, 108), HDAC-EZH2 inhibitors (109), and HDAC-PI3K inhibitors (110) showed good efficacy in different cancer cells.

By way of an example, the dual KDM inhibitor MC3324 showed inhibition of KDM1 and KDM6A with a consequent increase in H3K4me2 and H3K24me3 levels and induction of apoptosis in hormone-responsive MCF-7 cells. Downregulation of ERα was observed at both transcriptional and translational level, indicating that the compound affects the transcription of genes regulating cell proliferation, hormonal response, and apoptosis. Interestingly, MC3324 reduced cell proliferation in ex vivo BC models and showed absence of toxicity and good oral efficacy in chicken embryo and mouse xenograft models. Thus, the simultaneous inhibition of multiple targets could be beneficial in BC (111).

Combining different drugs could be a feasible strategy to target multiple oncogenic pathways (112–114). Currently, many two-in-one drug approaches are being investigated in clinical trials for various cancers. The well-known HDAC inhibitor vorinostat (SAHA) in combination with tamoxifen (NCT00365599), and carboplatin and nab-paclitaxel (NCT00616967) is at different stages of clinical trials. In another trial, entinostat (MS-275) in combination with immunotherapy and monoclonal antibodies (nivolumab, ipilimumab) is under evaluation in patients with metastatic BC and HER2- BC (NCT02453620). The synergy between HDAC inhibitors and anti-HER2 therapy with trastuzumab showed promising results (NCT00258349), but the adverse effects of trastuzumab resistance need to be further evaluated. In sum, in order to develop and optimize the effective use of epidrugs alone or in combination, there is an urgent need to identify new epigenetic targets that will pave the way for new cancer treatments.

In recent years, epigenetic studies combined with advanced computational methods have brought substantial advancements in drug discovery. A recent cutting-edge technology known as “epi-informatics” has been exploited to create a plethora of targeted compounds that may eventually lead to the discovery of new drugs. Computer-aided drug design could be used to explore and identify much needed selective KDM4 inhibitors for BC (115).




Discussion

The role of KDM4s in cancer has been extensively studied, and promising targets for BC therapy have been proposed. Through demethylation of H3K9 and H3K36, KDM4s regulate chromatin structure and gene expression in numerous cancer types. Notably, overexpression of KDM4 subfamily members promotes cancer cell proliferation, invasion, and migration, DNA damage, tumor angiogenesis, and metastasis. Although some epigenetic mechanisms and functions of KDM4 proteins associated with carcinogenesis remain unclear, a growing body of evidence indicates that KDM4 inhibitors are good candidates as anticancer drugs for various malignancies, including BC. To date, however, reported inhibitors do not have a sufficient level of enzyme specificity and are not commercially available for the treatment of any cancer types. The specific role of KDM4s and their mechanism of action in BC is less well known. Another challenging task is to explore new compounds against KDM4 activity through computational screening, which may identify more specific KDM4 inhibitors. Further studies could drive the future development of potent and selective targets for specific KDM4s in BC.

To improve overall healthcare outcomes in BC, a substantial endeavor aimed at reducing mortality and increasing survival in patients is needed. Several studies have investigated the crucial role of KDM4 subfamily members in different cancers, and KDM4 targeting has been revealed as a promising strategy to inhibit BC development. However, no KDM4 modulators have as yet been approved for clinical use. Targeting these molecules has thus been attracting considerable interest among the scientific community (62, 88). The development of KDM4 inhibitors is still in its premature stage, with a limited number of scientific publications and patents. Although the development of potent and selective KDM4 inhibitors for BC is a complicated process, efforts in a number of different directions might be of help: i) The functions of KDM4E/F are still unclear, and more extensive investigations into these two enzymes may open up new avenues in cancer research. In addition, KDM4A/B/C share the same substrates, further complicating the development of selective inhibitors for KDM4 subtypes. Structural studies could help better define the catalytic pockets of these enzymes for more precise targeting (116, 117); ii) Specific gene expression patterns/programs controlling KDM4 activity are poorly studied and need to be further explored; iii) Findings related to KDM4 inhibitors usually derive from in vitro or cell-based assays, with a lower amount of in vivo data being reported. Characterizing their in vivo activity might provide greater insights useful for more potent drug development; iv) The activity of KDM4s in regulating DNA damage, non-histone proteins, and other posttranslational modifications is still unclear. New research directed at understanding these mechanisms may lead to the identification of novel molecules with higher selectivity: v) Due to their structural similarities and the presence of a JmjC domain in all isoforms of KDM4, engineering KDM4 inhibitors with isoform specificity is challenging. However, elucidating the distinct physiological function of each KDM4 enzymes in cancer is necessary.

Moving from a single- to a multi-KDM4s target therapeutic approach may be a useful strategy to improve BC treatment. Specifically, hybrid scaffolds coupling two individually well-known KDM4i compounds in a single unit (dual compound) could be a valid option to simultaneously target different KDM4 isoforms. As reported, the molecule MC3324 was more effective in blocking cell proliferation, targeting ER, and inducing cell death of BC cells, compared to its constituent moieties and other known inhibitors used alone or in combination. Alternatively, dual compounds could also be used to directly target KDM4 isoforms and their co-regulators in a highly specific manner. Hybrid scaffolds bridging binders of KDM4 isoform domains could be used to target a dual compound to KDM4 isoforms, thus overcoming the lack of specificity towards isoforms. However, the complexity and vulnerability of epigenetic regulation limits the use of epigenetic molecules to specific treatment contexts, which may contribute to poor therapeutic outcome. Studies into combinatorial epigenetic therapy have recently paved the way toward exploring new effective therapeutic strategy in cancer. For instance, polyclonal tumors are characterized by the presence of multiple coactive deregulated pathways, and in these tumors epigenetic alterations are favoring, permissive, or secondary events. In this scenario, testing novel targeted treatments in a single-agent approach may thus be problematic and may underestimate their effectiveness. Combining epigenetic drugs with conventional protocols, both targeted and immune therapies, may therefore represent a successful anticancer approach.

Exploiting single-cell omics approaches could capture cancer cell heterogeneity and provide a better understanding of the involvement of different KDM4s in the sequential stages of breast transformation at both bulk and single-cell level. This approach may ensure a more accurate patient stratification and unravel the role of each KDM4 in BC transformation, allowing evaluation of the efficacy of targeted selective modulators and opening the way toward personalized medicine in BC driven by specific KDM4 aberrations.

Unlike genetic events, epigenetic changes are reversible and because of this inherent plasticity, epigenome-targeted therapy has emerged as a potential strategy for the treatment of cancer. The results of investigational and approved epigenetic therapies in other clinical contexts have proven that this approach can be effective. KDM4s have been found to control many aspects of BC, including cancer initiation and progression. Additionally, traditional BC treatments fail in targeting therapy-resistant cancer stem cells strongly characterized by alteration of epi-regulators. Thus, considering that KDM4s are epigenetic regulators with overlapping functions in controlling gene expression of crucial signaling pathways, KDM4s inhibition reflects their target potential for BC therapy. Targeting these histone demethylases will pave the way toward improving the treatment of BC patients.
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Breast cancer is the second cause of cancer-associated death among women and seriously endangers women’s health. Therefore, early identification of breast cancer would be beneficial to women’s health. At present, circular RNA (circRNA) not only exists in the extracellular vesicles (EVs) in plasma, but also presents distinct patterns under different physiological and pathological conditions. Therefore, we assume that circRNA could be used for early diagnosis of breast cancer. Here, we developed classifiers for breast cancer diagnosis that relied on 259 samples, including 144 breast cancer patients and 115 controls. In the discovery stage, we compared the genome-wide long RNA profiles of EVs in patients with breast cancer (n=14) and benign breast (n=6). To further verify its potential in early diagnosis of breast cancer, we prospectively collected plasma samples from 259 individuals before treatment, including 144 breast cancer patients and 115 controls. Finally, we developed and verified the predictive classifies based on their circRNA expression profiles of plasma EVs by using multiple machine learning models. By comparing their circRNA profiles, we found 439 circRNAs with significantly different levels between cancer patients and controls. Considering the cost and practicability of the test, we selected 20 candidate circRNAs with elevated levels and detected their levels by quantitative real-time polymerase chain reaction. In the training cohort, we found that BCExoC, a nine-circRNA combined classifier with SVM model, achieved the largest AUC of 0.83 [95% CI 0.77-0.88]. In the validation cohort, the predictive efficacy of the classifier achieved 0.80 [0.71-0.89]. Our work reveals the application prospect of circRNAs in plasma EVs as non-invasive liquid biopsies in the diagnosis and management of breast cancer.
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Introduction

Breast cancer is a major kind of malignant tumor that seriously endangers women’s health. According to cancer statistics in 2018, breast cancer accounts for more than 10% of all new diagnoses and causes about 600,000 deaths every year (1). Although the overall prognosis of breast cancer is good, the five-year relative survival rate of stage IV patients is still lower than 30% (2). Early diagnosis of cancer could effectively improve their therapeutic effects. Therefore, it is necessary to develop an early diagnosis method for breast cancer identification.

Plasma extracellular vesicles (EVs), such as exosomes and microvesicles, are mainly derived from cancer and hematopoietic cells in cancer patients, which host cell-information of their original tissues (3, 4). Since the contents of EVs could reflect the characteristics of cancer cells, they have been used to develop a variety of non-invasive methods for cancer-related applications, such as early diagnosis and prognosis prediction of cancer (5–8). For example, microRNAs and proteins derived from EVs have been used for the early diagnosis of various cancers (5, 9, 10). However, instability of microRNA and low abundance of proteins may limit their clinical applications. Therefore, a stable biomarker with appropriate concentrations may be more suitable for the early diagnosis of breast cancer.

Circular RNA (circRNA) is a new type of RNA, which shows the remarkable feature of being covalently closed continuous loops without 5’ to 3’ polar structure (11). CircRNA is stable, temporospatial (often exhibit type-specific, tissue-specific, and stage-specific manner), and conserved (12, 13). Functional studies have shown that they may play important roles in tumorigenesis by becoming microRNA sponge or translating into proteins (14, 15). Recently, a variety of RNAs, especially circRNAs, were discovered in EVs of different types of cancer (16, 17). Since circRNA is stable and type-specific, we assume that the circRNA in the EVs can be used for early diagnosis of breast cancer.

In this study, we first implemented genome-wide long RNA sequencing to determine the difference of RNA profiles in EVs of plasma between breast cancer patients and controls. In the training stage, the circRNAs with significantly different levels were selected and their relative levels were evaluated among 182 participants by quantitative real-time polymerase chain reaction (qPCR). Based on the relative levels, we then constructed the diagnosis classifier with multiple machine learning models, including SVM, LR, and LDA. According to the results of their cross-validation, the classifier with the largest AUC was selected, and its performance was further studied in the validation cohort.



Methods


Participants and Research Design

In total, we collected 259 plasma samples from two groups of individuals: breast cancer patients and controls (including healthy individuals and benign breast patients including fibroadenoma and benign epithelial proliferation, Figure 1). Participants were enrolled from the First People’s Hospital of Foshan and plasma samples of all cancer patients were collected prospectively before cancer therapy. The samples used in the discovery stage were collected prospectively from January 2018 to July 2018. Plasma samples used in the training and validation stage were collected prospectively from August 2018 to May 2019. All plasma samples were obtained under institutional review board of the First People’s Hospital of Foshan approved protocols with written informed consent from all participants for research use [ID: L(2021)-7]. More details about the clinical information of all participants involved in this study were shown in Supplemental Table 1.




Figure 1 | Study design. To develop classifiers for the early diagnosis of breast cancer, the workflow of our study consists of three stages, including the discovery stage, training, and validation stage. In the discovery stage, we used whole-genome sequencing to identify circRNAs with significantly different levels. In the training stage, we developed classifiers with three regression models by using the circRNAs levels detected by qPCR. In the validation stage, the predictive efficacy of the classifiers was validated. qPCR, quantitative real-time polymerase chain reaction. circRNA, circular RNA.





RNA Extraction and Sequencing

RNAs of EVs were extracted from about 5 mL of plasma with exoRNeasy Serum/Plasma Maxi Kit following the manufacturer’s instructions (QIAGEN, Germany). In brief, the plasma was prefiltered, then was mixed with 2x binding buffer. The mixture is added to the exoEasy membrane affinity to bind the EVs to the membrane. After centrifugation, the wash buffer was added to wash off non-specific material in the column. After enriching EVs, QIAZOL was added to the column to lyse the vesicles and chloroform was added to the lysate collected after centrifugation. After the aqueous phase is recovered and mixed with ethanol, and the sample-ethanol mixture is added to the RNeasy MinElute spin column and centrifuged. Washing the column with buffer RWT, then wash twice with buffer RPE. And finally elute RNA in water. The rRNAs in total RNAs were first removed using Ribo-Zero rRNA Removal Kits (Illumina, USA) and the libraries of RNA-sequencing were constructed with TruSeq Stranded Total RNA Library Prep Kit (Illumina, USA). Subsequently, quality and quantification of libraries were assessed using the BioAnalyzer 2100 system (Agilent Technologies, USA). Finally, 10 pM libraries were denatured as single-stranded DNA molecules, captured on Illumina flow cells, amplified in situ as clusters, and finally sequenced for 150 cycles on Illumina HiSeq 4000 sequencer following the manufacturer’s instructions.



Process of High Throughput RNA-Sequencing Data

The 3’ adapter of the raw read was trimmed, and the low-quality read was removed by using cutadapt software (v1.9.3). At first, the reads were aligned to the reference genome (hg19) and transcriptome with STAR software (v2.5.1b) (18). Then, the circRNAs were detected and identified by DCC software (v0.4.4) (19). According to their genomic localization of known genes, the circRNAs were separated into five different types, including exon, intronic, intergenic, antisense, and sense overlapping circRNAs. In addition, the identified circRNAs were annotated with circBase and some previous studies (20–22). Normalized expression values of circRNAs were calculated by using edgeR software (v3.16.5) (23). For LncRNA and mRNA, the reads were aligned to the human reference genome with hisat2 software (v2.0.4) (24).

The dysregulated circRNAs were determined by the edgeR package of R software with a cutoff threshold of |log2 fold change| ≥ 2 and P-value < 0.05 (Supplemental Table 2). The principal component analysis (PCA) and result visualization were realized by rgl package (v0.1). The enrichment of GO function and KEGG pathway were implemented and visualized by using Metascape (25) and OmicShare tools (www.omicshare.com/tools).



Detection of qPCR

TaKaRa PrimeScript™ RT reagent was done with equal quality of input RNA. The qPCR for human circRNAs was done on an Applied Biosystems 7500 Real-Time PCR System using the TaKaRa TB Green™ Premix Ex Taq™ II. The value of the cycle threshold (Ct) was processed and exported by the software of Applied Biosystems SDS (v2.3.0). CircRNAs from the training and testing cohort were detected by qPCR with a human endogenous mRNA, U6, as a reference. Relative quantification was used and the levels of circRNAs were normalized against the level of reference by 2–Δct, where ΔCt = Cttarget – Ctreference. Their primer sequence was shown in Supplemental Table 3.



Construction of Classifiers for Early Diagnosis of Breast Cancer

The workflow of classifier construction was shown in Figure 1. Firstly, the circRNAs with significantly elevated levels in breast cancer patients were selected. In the training stage, the relative level of 20 candidate circRNAs in 182 participants, including 101 breast cancer patients and 81 controls (30 healthy individuals and 51 breast benign patients [42 fibroadenoma and 9 benign epithelial proliferation]), was assessed using qPCR (Figure 1). To construct circRNA classifiers that could distinguish breast cancer patients from controls, the qPCR was used to develop classifiers with three regression modes, including support vector machine (SVM), logistic regression (LR), and linear discriminate analysis (LDA). The SVM classifier was constructed with the linear kernel in e1071 package using the default setting. The glm and lda function in base package of R software was used to develop the LR and LDA classifier with default setting, respectively.

Since quite a number of studies have reported that discrete data may improve classifier performance (26), before classifier construction, the continuous variable was first discretized according to the optimal cut-off point. The optimal cut-off point of each variable was defined as the maximum value of (sensitivity + specificity)/2 in the training cohort. Then the continuous value set to one when it was larger than the corresponding optimal cut-off in each subject; Otherwise, it was set to zero (Supplemental Table 4). The stepwise method was used to select the optimal classifier with the largest AUC. To estimate the robustness and prediction error of the selected classifiers, we applied the leave one out cross-validation (LOOCV) method. Briefly, each subject in the training cohort was withheld in turn, and the rest of subjects were submitted to train the model. As there were 182 samples in the training cohort, this procedure was repeated 182 times. In the validation cohort, the relative levels of the circRNAs in the selected classifiers were detected, which included 77 participants, including 43 breast cancer patients and 34 controls [13 healthy individuals and 21 breast benign patients (17 fibroadenoma and 4 benign epithelial proliferation)]. Finally, the predictive efficacy of the optimal classifier in the validation cohort was calculated.



Statistical Analysis

The fisher exact test and the χ2 test were used for comparison of categorical variables. P-value < 0.05 for two-sided tests was considered to be statistically significant. Hierarchical clustering was applied to the circRNAs with significantly different levels, using the average‐linkage clustering algorithms in Cluster (ver. 3.0). Heat maps were plotted using the pheatmap package of R (version 3.0.1). The receiver operating characteristic curve (ROC) was drawn and the difference of the area under the curve (AUC) was calculated by using the pROC package (27).




Results


Genome-Wide Long RNA Profiles of Plasma EVs

Previous studies have shown that a variety of RNA was found in EVs of plasma. Therefore, we first analyzed the genome-wide long RNA profiles of breast cancer patients and controls. We found that there existed different types of RNAs in EV, such as circRNA, lncRNA, and mRNA, and each type of RNA showed many entities [circRNA (n=34,749), lncRNA (n=68,298) and mRNA (n=20,324); Figure 2A]. The amount of circRNAs derived from breast cancer patients was significantly higher than that of benign patients (Figure 2A). However, this phenomenon has not been observed in lncRNA and mRNA. In addition, the circular structure of circRNAs was normally more stable than the linear RNA, so they may be suitable to be disease biomarkers.




Figure 2 | RNA composition in EVs. (A) The types of RNAs in EVs. (B) Annotation of circRNAs. (C) Source of circRNAs. (D) Length distribution of circRNAs. nt, Nucleotide. All, all of individuals. Overlap, sense overlapping circRNAs.



By using public databases and literatures to annotate the circRNAs, we found that approximately 71.30% of circRNAs were novel circRNAs (Figure 2B). According to previous classification criteria, we characterized the circRNAs into five types, including exonic, intronic, intergenic, sense overlapping and antisense circRNAs. We found that the exonic and intronic circRNAs took up the largest proportion of circRNAs (55.1%, Figure 2C). By further analyzing their length distribution, we found that the majority of circRNAs in EVs were less than 2,500 nucleotides (nt), which took up over 85.92% (Figure 2D).



Distinct CircRNA Profiles Between Breast Cancer Patients and Controls

The workflow of classifier construction was shown in Figure 1. In the discovery stage, by comparing the circRNA profiles of 14 breast cancer and 6 benign patients, we identified 439 circRNAs of EVs with significantly different levels, including 162 increased and 277 decreased circRNAs, and the cut-off threshold (|log2 fold change|>2, P-value<0.05) was calculated by edgR (Figure 3A, Supplemental Table 2). The PCA results showed that the expression profiles between cancer patients and controls showed different patterns (Figure 3B). There is approximately 64.69% of circRNAs were novel circRNAs and the exonic and intronic type took up 54.44% among the dysregulated circRNAs. Next, we implemented unsupervised cluster analysis, and found that there was a distinct pattern between the cancer patients and controls (Figure 3C), which indicated that circRNAs in EVs may be used for the diagnosis of breast cancer.




Figure 3 | circRNAs with significantly different levels. (A) Volcano plots of circRNAs with significant different levels (|log2 fold change| ≥ 2 and P-value < 0.05 produced by edgR package of R software) between cancer and control groups. (B) PCA analysis of genome-wide RNA sequencing data derived from 14 breast cancer patients and 6 benign patients. (C) Heat map of the z-scores of circRNAs with significantly different levels. (D) Gene function enrichment analysis of the host genes of the circRNAs with significantly different levels. Decrease, circRNAs with decreased levels. Non, circRNAs with non-significant changes. Increase, circRNAs increased levels.



To further reveal the relationships between the dysregulated circRNAs and breast cancer, we implemented gene function enrichment analysis on the host genes of circRNAs. The results showed that these terms were enriched in multiple processes, such as cell part morphogenesis, regulation of the JNK pathway and I-kappaB phosphorylation (Figure 3D). Previous studies have reported that the enriched pathways were related to the tumorigenesis of breast cancer. For example, the JNK pathway influences proliferation, differentiation, survival and migration in different cancers (28).



Classifiers for Early Diagnosis of Breast Cancer

Since the up-regulated features were more practical in clinical detection, we focused on the 20 circRNAs, which were increased in breast cancer patients compared to controls (Supplemental Figure 1). In the training cohort, we evaluated the relative levels of 20 increased circRNAs in 182 plasma samples, including 101 breast cancer patients and 81 controls. Three regression models, including SVM, LDA and LR, were used to construct circRNA classifiers which could distinguish breast cancer patients from controls. The AUC, accuracy, sensitivity and specificity of the classifiers were cross-verified by LOOCV cross-validation method (Figure 4). Among all combinations with three different regression models, a nine-circRNA combination, named BCExoC, achieved high performance [AUC=0.83 (95% confidence interval 0.77-0.88) and accuracy=0.83] in the training cohort after LOOCV, displaying the maximum AUC of SVM model (Figures 4A,B). The circRNAs in BCExoC were hsa_circ_0002190, hsa_circ_0007177, hsa_circ_0000642, hsa_circ_0001439, hsa_circ_0001417, hsa_circ_0005552, hsa_circ_0001073, hsa_circ_0000267, and hsa_circ_0006404 (Supplemental Table 4).




Figure 4 | Performance of classifiers for breast cancer prediction. The performance of training cohort (A, B), testing cohort (C, D) and all sample (E, F) with three models was showed. The AUC in the training cohort was cross-validated using leave one out cross-validation (LOOCV). Receiver operating characteristic, ROC; Acc, accuracy; Sen, sensitivity; SVM, support vector machine; LDA, linear discriminate analysis; LR, logistic regression; Spe, specificity; P, the P-value of DeLong's test.



Then, the performance of BCExoC was investigated and verified in the validation cohort. In the validation cohort, the AUC of BCExoC was 0.80 (95% CI 0.71-0.89, Figures 4C, D). By contrast with the training cohort, the AUC of the validation cohort was similar to those in the training cohort (P-value= 0.582; DeLong’s test).




Discussion

By analyzing genome-wide long RNA sequencing data of EVs, we identified a large number of novel circRNAs in human blood. By comparing the levels between breast cancer patients and those of controls, we found 439 circRNAs with significantly different levels. Based on their levels in EVs, we developed classifiers with three regression models in the training cohort. The optimal classifier (BCExoC) composed of nine circRNAs with the highest AUC was selected, and then it was verified in the validation cohort. The AUC of BCExoC was 0.82 [0.77-0.87] in all cohorts (Figures 4E, F). These findings highlight the potential of BCExoC as a non-invasive assessment for breast cancer in preclinical stages.

Compared with other studies, our method has several strengths: The circRNAs showed temporospatial characteristics (exhibit patient-specific and stage-specific manner), and the heat map results showed distinct patterns between breast cancer patients and controls, indicating their potentials as early diagnostic biomarkers of breast cancer. In this study, we used circRNAs in plasma EVs, so our method is non-invasive, which could reduce the harm of biopsy to patients and avoid the heterogeneity of cancer. In addition, the circular structure of circRNAs was normally more stable than the linear RNA, therefore, they may be more suitable taken as disease biomarkers. However, our study also has some limitations: as all samples were merely collected from one center, the performance of our classifier needs to be validated with more independent cohorts prior to their clinical applications.

By literature search, we found that three of the top 20 up-regulated circRNAs have been studied in breast cancer cells, and their functions were closely related to tumorigenesis (29, 30). For example, silencing of has_circ_0004771 inhibits proliferation and induces apoptosis in breast cancer through activation of miR-653 by targeting ZEB2 signaling pathway (29). Results of gene function enrichment analysis showed that some of these circRNAs were related to the tumorigenesis of breast cancer. Searching for the functions of these genes is expected to be biomarkers or therapeutic targets for breast cancer.

In summary, our data showed that BCExoC is a promising noninvasive method for the early diagnosis of breast cancer. Our techniques required for circRNA detection, such as plasma collection, RNA extraction, and qPCR, are routinely used in clinics. What’s more, the cost of reagents and consumables is relatively low and the result of BCExoC is easy to be explained. Therefore, it is feasible to analyze BCExoC in clinical practice.
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Background

Patients with stage II to III breast cancer have a high recurrence rate. The early detection of recurrent breast cancer remains a major unmet need. Circulating tumor DNA (ctDNA) has been proven to be a marker of disease progression in metastatic breast cancer. We aimed to evaluate the prognostic value of ctDNA in the setting of neoadjuvant therapy (NAT).



Methods

Plasma was sampled at the initial diagnosis (defined as before NAT) and after breast surgery and neoadjuvant therapy(defined as after NAT). We extracted ctDNA from the plasma and performed deep sequencing of a target gene panel. ctDNA positivity was marked by the detection of alterations, such as mutations and copy number variations.



Results

A total of 95 patients were enrolled in this study; 60 patients exhibited ctDNA positivity before NAT, and 31 patients exhibited ctDNA positivity after NAT. A pathologic complete response (pCR) was observed in 13 patients, including one ER(+)Her2(-) patient, six Her2(+) patients and six triple-negative breast cancer (TNBC) patients. Among the entire cohort, multivariate analysis showed that N3 classification and ctDNA positivity after NAT were independent risk factors that predicted recurrence (N3, hazard ratio (HR) 3.34, 95% confidence interval (CI) 1.26 – 8.87, p = 0.016; ctDNA, HR 4.29, 95% CI 2.06 – 8.92, p < 0.0001). The presence of ctDNA before NAT did not affect the rate of recurrence-free survival. For patients with Her2(+) or TNBC, patients who did not achieve pCR were associated with a trend of higher recurrence (p = 0.105). Advanced nodal status and ctDNA positivity after NAT were significant risk factors for recurrence (N2 – 3, HR 3.753, 95% CI 1.146 – 12.297, p = 0.029; ctDNA, HR 3.123, 95% CI 1.139 – 8.564, p = 0.027). Two patients who achieved pCR had ctDNA positivity after NAT; one TNBC patient had hepatic metastases six months after surgery, and one Her2(+) breast cancer patient had brain metastasis 13 months after surgery.



Conclusions

This study suggested that the presence of ctDNA after NAT is a robust marker for predicting relapse in stage II to III breast cancer patients.





Keywords: circulating tumor DNA, neoadjuvant therapy, breast cancer, recurrence, next-generation sequencing



Introduction

Although breast cancer prognosis has improved during the past two decades, breast cancer-related death remains a major cause of cancer-related mortality in women (1, 2). The main reason is that a significant proportion of breast cancer patients develop recurrence and distant metastases (3, 4). Once metastases occur, breast cancer is treatable but no longer curable (5).

For breast cancer patients, early detection of recurrence remains a major unmet need. In the neoadjuvant setting, pathological complete response (pCR) is a favorable prognostic marker in patients with Her2 (+) and triple-negative breast cancer (TNBC) (6). However, some patients with pCR may still experience recurrence or metastasis; on the other hand, the absence of pCR does not necessarily correlate with recurrence (6, 7). Recent studies have shown circulating tumor DNA (ctDNA), which are circulating DNA fragments that carry tumor-specific sequence alterations found in the cell-free fraction of blood, to be a promising and sensitive tool for targeted monitoring (8–12). The detection of resistance mutations using ctDNA can also occur significantly earlier than radiographic progression (13). In previous reports of metastatic cancer patients, serial quantification of ctDNA allowed for noninvasive assessment of therapeutic response and understanding of resistance mechanisms (8, 11, 14, 15). For patients with early-stage breast, lung and colon cancer, studies reported that ctDNA in the plasma can be used to detect minimal residual disease (16–18). Serial detection of ctDNA after surgery and adjuvant chemotherapy of breast cancer could identify recurrent disease earlier than clinical overt tumor presenting in the radiologic images (19, 20). However, for breast cancer patients receiving neoadjuvant therapy (NAT), the prognostic value of ctDNA before and after NAT is uncertain. It is unknown whether ctDNA or pCR has a more prognostic value for breast cancer patients, either. To determine the prognostic value of ctDNA in the context of NAT, we collected the patients’ plasma before and after NAT and used next-generation sequencing (NGS)-based deep sequencing to detect ctDNA and evaluated the impact of ctDNA on disease recurrence.



Methods


Patients and Sample Collection

Stage II or III breast cancer patients who received NAT were enrolled in this study. The clinical and pathologic characteristics were reviewed retrospectively from medical records. The presence of estrogen receptors (ER), progesterone receptors (PR), and Her2 were determined by immunohistochemical staining. The ER or PR status was considered negative when less than 1% of the tumor cells showed positive staining. For Her2 staining, a score of 0 or 1+ was considered negative; specimens with a score of 2+ were further tested with fluorescence in situ hybridization analysis. The tumor histological grade was defined using the Nottingham combined histological grading system. This study was approved by the institutional review board (IRB number: 201704009RINC).

At the initial diagnosis (defined as before NAT), a 10-mL sample of blood was collected and stored in an EDTA-containing tube. Then, all patients were treated with NAT and received breast surgery. After NAT and breast surgery (defined as after NAT), another 10 mL of blood was sampled. Within three hours of blood sampling, the plasma was extracted after centrifugation at 1000× G for 10 minutes then stored at -80°C (21). Cell-free DNA was extracted using a QIAamp Circulating Nucleic Acid Kit (Qiagen, Germantown, MD, USA) according to the manufacturer’s protocol.



Library Preparation and Next-Generation Sequencing

The library was constructed using a QIAseq Targeted DNA Panel with a customized gene list. The customized panel was designed to amplify the coding regions of the following genes: TP53, PIK3CA, Her2, GATA3, CDH1, PTEN, AKT1, ESR1, S100A7-9, ZNF703, B2M, CCND1, GATA3 and c-MYC. According to the manufacturer’s protocol, 10 ng of DNA was digested briefly into small fragments by a fragmentation enzyme at 32°C and 72°C. The DNA fragments were added to the QIAseq IL-N7 adapters, followed by target enrichment polymerase chain reaction (PCR) using the QIAGEN IL-Forward primer and the targeted DNA Panel primers. Finally, the library was amplified with universal PCR. The DNA library was then checked by using an Agilent Chip High Sensitivity DNA kit. KAPA library quantification kits were used to quantify the final concentration. The final DNA library was sequenced with the following Illumina platforms: Illumina MiSeq Reagent Kit v2, 2 x 150 bp reads or Illumina NextSeq 550 system Mid-Output Kit, 2 x 150 bp reads.



Post-Sequencing Analysis

Previously, we have constructed an analytic pipeline of post‐NGS bioinformatics (22). First, BWA software (version 0.5.9) was used to align the raw sequencing data to the reference human genome [Feb. 2009, GRCh37/hg19; SAMtools (version 0.1.18)]. Picard (version 1.54) was used to perform the necessary data conversion, sorting, and indexing. GATK was used for variant calling with the Mutect2 and VariantFiltration parameters. Finally, ANNOVAR was used to annotate the genetic variants. Pathogenic and likely pathogenic variants were defined according to the American College of Medical Genomics and Genetics (ACMG) guidelines (23). The presence of ctDNA was determined by the presence of pathogenic and likely pathogenic variants, which are also considered tumor mutations. For variants of uncertain significance, if the prevalence of the variants in the normal population was less than 0.01 in a genomic database (1000 Genomics, ESP6500 and ExAC) and predicted to be deleterious by computer software (SIFT, PolyPhen2, and CADD), then they were classified as “highly suspected deleterious”. The above filtering analyses removes germline variants as much as possible (24); these variants are highly suspected to originate from tumors, so the detection of these variants could be considered indicative of ctDNA.



Analysis of Copy Number Changes

Since the Her2, c-Myc, CCND1 and S100A genes can be amplified in some breast cancer tumors, we decided to use copy number variations (CNV) to indicate the presence of ctDNA (25–27). Copy number variations were analyzed by OncoCNV (https://github.com/BoevaLab/ONCOCNV) according to the authors’ instructions. The baseline control consisted of the ctDNA BAM files of 14 healthy people. The ctDNA BAM files from the breast cancer patients were compared to the BAM files from the control population by using OncoCNV’s default cghseg segmentation algorithm (28). The sequencing region of each targeted gene was divided into several segments. When the mean of all segments of each gene was significantly different from the baseline, such as when the copy number predicted was greater than three copies or fewer than one copy from the baseline, we considered that to indicate a CNV alteration, which indicated the presence of ctDNA.



Statistics

The chi-squared test and Fisher’s exact test were used to calculate the significance of the variance between each group. Survival was estimated by Kaplan-Meier analysis. Cox proportional hazards regression analysis was used to estimate the hazards ratios of RFS with a corresponding 95% confidence interval (CI) for various factors. All p values are two-sided, and p-values less than 0.05 were considered statistically significant.




Results


Evaluation of Assay Performance

First, to confirm the accuracy of the NSG-based deep sequencing, we checked whether this method could distinguish the existence of low-abundance mutants from background errors arising from the polymerase chain reaction (PCR) or sequencing process. We constructed a TP53 mutant (NM_000546.6: c.844C>A) as a reference sample; then we utilized this TP53 mutant with serial concentrations of 100%, 10%, 1%, and 0.1% to test whether the experimental method could detect these mutants at these concentrations (Supplementary Methods). The results demonstrated that the signal from the 0.1% mutant was significantly higher than background errors (Supplementary Figure S1A), suggesting that NGS testing accurately detected mutants present at 0.1%. In addition, the mutation level could be measured with a linear fashion (R2 = 0.9997, Supplementary Figure S1B).

Second, in deep cell-free analyses, another source of variants that makes it hard to distinguish cancer mutations is clonal hematopoiesis of indeterminate potential (CHIP) (29–31). The CHIP mutations mostly occur in the DNMT3A, TET2, PPM1D, ASXL1 and TP53 genes (29), whereas pathogenic variants of breast cancer were most prevalent in TP53, PIK3CA, MAP3KA1, CDH1, and PTEN (32). Variants most likely to be indistinguishable from CHIP were located in TP53. Twenty-two tumors from the pre-neoadjuvant core biopsy tumors were available for DNA extraction and sequencing (Supplementary Table S1). Among them, 6 patients had TP53 variants, and their TP53 variants co-existed in the ctDNA and DNA from tumor biopsies (Supplementary Table S1 and Supplementary Figure S2), suggesting the TP53 variants origin from breast cancer, not CHIP mutations.



Patients

A total of 95 patients were enrolled in this study. The median age was 50.0 years old. Forty-one patients had ER(+) Her2(-) breast cancer, 29 patients had Her2(+) breast cancer, and 25 patients had triple-negative breast cancer (TNBC). Before NAT, tumors with T1, T2 and T3-4 size classifications were found in three, 54 and 38 patients of each population, respectively. Eighty-two patients had positive axillary lymph nodes. According to standard clinical practice, ER(+) Her2(-) breast cancer patients with large tumors were treated with NAT. Out of the 95 patients, 77 patients received anthracycline while 80 patients received taxane in their NAT regimens. All Her2(+) patients received adjuvant anti-Her2 target therapy (27 patients receiving trastuzumab, one another receiving trastuzumab/pertuzumab and the other receiving trastuzumab-DM1). After NAT, 13 patients achieved a pCR of their primary breast tumors; 82 patients did not have pCR. Among the 13 pCR patients, there was one ER(+) Her2(-), six Her2(+) and six TNBC patients. The frequency of pCR was significantly higher in patients with Her2(+) breast cancer or TNBC than ER(+)Her2(-) patients (p = 0.002). CtDNA was detected in 60 patients before NAT and 31 patients after NAT. All of the clinical and pathologic characteristics are shown in Table 1.


Table 1 | Clinical and pathologic characteristics of enrolled patients stratified by immunophenotypes.





Genetic Alterations in Tumor ctDNA

Among the 95 patients, 19 patients were found to have ctDNA before and after NAT; 41 patients had ctDNA only before NAT, 12 patients had ctDNA only after NAT, and 23 patients had ctDNA neither before nor after NAT (Supplementary Table S2). The most common genetic variants were in the TP53 (n = 28), followed by PIK3CA (n = 16), CDH1 (n = 15), and Her2 (n = 7) genes. Eighteen patients had altered CNVs in their ctDNA, including of AKT1, CCND1, CDH1, c-MYC, Her2, PIK3CA, S100A, and ZNF703, either before or after NAT (Supplementary Table S2 and Figure 1). Before NAT, Patient #73 (Figure 1A) and Patient #24 (Figure 1B) exhibited copy number gains of the S100A and Her2 genes in ctDNA, respectively; after NAT, the copy numbers of these genes in ctDNA returned to normal levels. Patient #3 (Figure 1C) had a new copy loss of the PTEN gene after NAT. We observed gains of Her2 and c-MYC in patient #27 (Figure 1D) before NAT that were only partially resolved after NAT.




Figure 1 | The CNV of four patients before and after NAT (A–D). The red dots represent the CNV before NAT, and green dots represent the CNV after NAT.





Association Between ctDNA and Clinical Characteristics

Patients who had ctDNA before NAT tended to have a larger tumor size than those who did not have ctDNA before NAT (mean 5.0 cm vs. 4.3 cm, p = 0.104). However, the presence of ctDNA after NAT did not correlate with the tumor size or LN numbers after NAT. Although the difference was not statistically significant, patients with pCR had a lower detection of ctDNA after NAT than patients with no pCR (patients with pCR vs. absence of pCR: 15.4% vs. 35.4%, p = 0.132). Additionally, the presence of ctDNA was not correlated with the immunophenotype of breast cancer.



Impact of Clinical Factors and ctDNA on RFS

The median follow-up time of the entire cohort was 5.1 years, and the 5-year recurrence-free survival (RFS) was 58% (95% CI 48.0 – 68.0%). For clinical factors, Kaplan-Meier analysis showed that the residual tumor size after NAT and N classification after NAT were prognostic factors for RFS; patients who achieved pCR tended to have a better RFS than patients who did not achieve pCR (Figures 2A–C and Table 2). On the other hand, patients with ctDNA after NAT had a significantly inferior RFS (p < 0.001, Figure 2D). Other factors, such as age, ctDNA detection before NAT, immunophenotype, initial tumor size before NAT and N classification before NAT and adjuvant chemotherapy did not influence RFS. RFS was similar between patients with and without TP53, PIK3CA and CDH1 mutations (Table 2 and Supplementary Table S3).




Figure 2 | Kaplan-Meier analysis estimated the recurrence-free survival of the entire cohort according to (A) the tumor size after NAT (p = 0.021), (B) N classification after NAT (p = 0.011), (C) pCR (p = 0.055) and (D) ctDNA after NAT (p < 0.001).




Table 2 | Univariate and multivariate analysis of recurrence-free survival of the entire cohort.



We then analyzed the clinical and pathologic characteristics of patients with and without ctDNA after NAT, and no difference was found between the two patient groups (Supplementary Table S4). After incorporating the residual tumor size, N classification after NAT, pCR and ctDNA after NAT, multivariate analysis showed that an N3 classification and ctDNA positivity after NAT were independent risk factors that predicted tumor recurrence (N3, hazard ratio (HR) 3.352, 95% CI 1.267 – 8.870, p = 0.015; ctDNA, HR 4.135, 95% CI 2.014 – 8.491, p < 0.0001). Other factors did not significantly impact RFS (Table 2).

Next, we analyzed the 72 patients with detected ctDNA, either before or after NAT. Patients with ctDNA positivity after NAT had a significantly inferior RFS compared to those without detectable ctDNA (Supplementary Figure S3, p<0.001). After adjusting for tumor size (after NAT), N classification (after NAT) and pCR, multivariate analysis with the Cox model revealed that ctDNA positivity after NAT was the most significant risk factor that predicted tumor recurrence (HR 8.02, 95% CI 3.24 – 19.86, p < 0.0001) (Supplementary Table S5).



The Impact of ctDNA on Disease Recurrence in Different Immunophenotypes of Breast Cancer

The median RFS of all the patients with ctDNA positivity after NAT was 1.19 years. When stratified by the immunophenotypes, ctDNA positivity after NAT was associated with a significantly inferior RFS for ER(+) breast cancer or TNBC patients and a trend of higher recurrence rates for patients with the Her2 subtype (Figures 3A–C). The median RFS of ER(+) breast cancer, Her2 (+) breast cancer and TNBC patients with ctDNA positivity after NAT were 0.90, 2.52 and 0.74 years, respectively.




Figure 3 | The prognostic impact of ctDNA after NAT in patients with (A) ER(+) breast cancer, (B) Her2(+) breast cancer and (C) TNBC. ctDNA after NAT predicted RFS in (D) pCR and (E) patients who did not achieve pCR.





The Impact of ctDNA on Disease Recurrence in Patients With and Without a pCR

For the entire cohort, the presence of ctDNA after NAT was a significant risk factor associated with recurrence in both patients who achieved and did not achieve pCR (Figures 3D, E, all p < 0.001). Because pCR was previously reported as a surrogate marker for survival in patients with Her2(+) and TNBC (6), we analyzed these patient subgroups. Between the two patient populations, pCR was related to a trend of improved survival compared to absence of pCR (HR 3.328, 95% CI 0.777 – 14.243, p = 0.105, Supplementary Table S6). Multivariate analysis showed that advanced nodal status and ctDNA after NAT were independently correlated with high risk (N2-3, HR 3.753, 95% CI 1.146–12.297, p = 0.029; ctDNA, HR 3.123, 95% CI. 1.139 – 8.564, p = 0.027), and pCR status did show a not significant correlation with recurrence (Table 3). A potential reason for this phenomenon is that pCR only represents the therapeutic efficacy of local breast tumor and the ctDNA may indicate that an occult lesion is present that is not effectively treated with NAT. In our study, 13 patients achieved pCR after NAT, and among those patients, two exhibited ctDNA positivity after NAT. One TNBC patient (case #50) received neoadjuvant docetaxel/epirubicin (four cycles) and achieved pCR for her primary breast and axillary tumors. However, she had hepatic metastases at 6 months after mastectomy (Supplementary Figure S4). The other patient (case #5) had Her2-positive breast cancer and received neoadjuvant docetaxel/trastuzumab (four cycles) and epirubicin/cyclophosphamide (four cycles). The pathology showed no residual tumors. Trastuzumab was continuously maintained for one year. At the end of trastuzumab treatment (13 months after mastectomy), a cerebellar metastasis was found. The other 11 patients who achieved a pCR did not have ctDNA after NAT nor did they experience recurrence or metastasis.


Table 3 | Multivariate analysis of recurrence-free survival in patients with Her2(+) breast cancer and TNBC.






Discussion

Our data suggested that the presence of ctDNA after NAT is a prognostic factor that predicts breast cancer recurrence after mastectomy. Traditionally, the therapeutic response to NAT was considered a marker for predicting prognosis (6). In our study, multivariate analysis showed a greater predictive value for ctDNA than the response of the primary breast tumor to NAT treatment. Therefore, ctDNA seems more representative of the therapeutic efficacy of primary and potential micrometastatic tumors treated with NAT.

During the median 5.1-year follow-up, the overall positive predictive value of ctDNA positivity after NAT for disease relapse was 70.9%, which was higher than the predictive value of 48.8% for relapse in patients who did not achieve pCR. After stratifying patients into pCR and absence of pCR, ctDNA positivity after NAT remained a significant risk factor for RFS among the two patient groups (Figures 3D, E). Although patients who did not achieve pCR usually had a significantly inferior RFS than pCR patients, ctDNA negativity after NAT in patients who did not achieve pCR was associated with a better RFS (Figure 3E), compatible with previous findings that ctDNA clearance associated with the improved survival in patients who did not achieve pCR (33). In contrast, pCR after NAT was a surrogate marker for predicting disease-free Her2(+) and TNBC patients. However, in our cohort, two patients (one Her2(+) and one TNBC) who achieved a pCR and exhibited ctDNA positivity after NAT developed distal metastasis at six months and one year, respectively. A possible reason is that the pCR was assessed using only primary breast tumor detection without evaluating systemic micrometastatic tumor cells. The patient who had Her2-positive breast cancer and achieved a pCR after NAT developed brain metastasis after trastuzumab maintenance therapy. This was compatible with previous report that trastuzumab was difficult to penetrate the blood-brain barrier to treat brain micrometastatic tumor cells (34). However, ctDNA positivity suggested that ctDNA could cross the blood–brain barrier to be detected in the plasma (35). Thus, ctDNA is more suitable than pCR for representing the overall disease state and could be a robust marker for predicting the survival rate.

Although patients with ctDNA positivity after NAT had inferior RFS, the length of RFS varied among patients with different immunophenotypes. Among patients with ctDNA positivity after NAT, patients with Her2- positive breast cancer had a significantly longer RFS than patients with TNBC and luminal breast cancers. The maintenance of anti-Her2 antibody therapy and the potential long-term preservation of antibody-dependent cellular cytotoxicity may explain the risk attenuation and delayed relapse of Her2-positive breast cancer patients (36). In this study, some patients received adjuvant chemotherapy according to physician decision. However, adjuvant chemotherapy did not influence the RFS in the overall cohort (Table 2) or in each subtype of breast cancer (Supplementary Table S3). For patients with detected ctDNA after NAT, all twelve Her2-positive breast cancer patients received postmastectomy adjuvant anti-Her2 therapy; one received trastuzumab emtansine, another received trastuzumab plus pertuzumab, and the remaining patients received trastuzumab for one year. For the eight TNBC patients, only one received adjuvant chemotherapy. Out of the eleven patients with ER(+) breast cancer, six received adjuvant chemotherapy, and all of them received hormone therapy. Notably, the median RFS of TNBC and ER(+) breast cancer patients was less than one year. This result might suggest that current standard chemotherapy and hormone therapy treatments were not effective for these patients. CtDNA has the potential to identify actionable genetic variants that provide sensitivity or resistance mechanisms for chemotherapy and/or targeted therapy (37); this information can be used to guide personalized therapy in the future (38). Alternative adjuvant therapy options can be explored for these patients.

The concordance between pCR and the clearance of ctDNA was moderate. The ctDNA concentration usually decreases after NAT (17, 39). In a previous report, the decrease in ctDNA levels in patients who achieved a pCR was greater than that in those who did not achieve a pCR (39). Similarly, our data revealed that a lower proportion of patients who achieved a pCR exhibited ctDNA positivity after NAT than that in patients who did not achieve pCR (pCR vs. absence of pCR: 15.4% vs. 35.4%, p = 0.132). Among the 72 patients with ctDNA positivity (before and after NAT), 81.0% of responders had a decrease in ctDNA (defined as a tumor size reduction of more than 30% of the original size) (40), whereas 58.9% of nonresponders had a decrease in ctDNA concentrations (Pearson’s chi-squared, p = 0.088, Figures 4A, B).




Figure 4 | (A, B) Changes in the fraction of ctDNA in patients who did and did not respond. The different color represented different mutations. (C) The duration of RFS in patients with (detected) and without (undetected) ctDNA after NAT.



One limitation to this study is the possibility that some ctDNA mutations may have originated from CHIP mutations (41). Although we observed a good concordance of genetic variants between ctDNA and available pre-neoadjuvant biopsy tumors, the possibility that some ctDNA mutations originated from CHIP mutations could not be ruled out because we did not have all of the biopsy tumors for sequencing. To reduce the possibility of detecting CHIP mutations, first, we designed a sequencing panel by selecting genes that are often mutated in breast cancer, not in hematologic cells (32). This strategy decreases the possibility of mixing the CHIP mutations into breast cancer mutations. Second, we only considered pathogenic/likely pathogenic or highly-suspicious deleterious variants as proof of ctDNA positivity. These variants may have biological implications for breast cancer. For example, PIK3CA H1047R is a driver mutation in breast cancer (42), suggesting that it could be a ctDNA specific to breast cancer. Third, we not only analyzed the genetic variants but also the CNV. The amplification of Her2, S100A and CCND1 have biological significance in breast cancer pathology (25, 43), and amplification of c-MYC is related to high-grade malignancy (44). These CNVs are considered to be derived from breast cancer. Thus, we can reduce the possibility to contaminate CHIP mutations in the ctDNA.

The second limitation was that we only examined ctDNA before and after NAT and did not perform longitudinal monitoring; as a result, we were not able to detect late recurrence. In our cohort, 42 patients had disease recurrence. Out of those 42 patients, 22 exhibited ctDNA positivity after NAT. The 22 patients with ctDNA positivity had a significantly shorter time to recurrence than those with ctDNA negativity (with ctDNA vs. without ctDNA: 1.31 vs. 2.64 years, p = 0.004, Figure 4C). A single time point sample of ctDNA after NAT was a significant predictor of only early recurrence. Longitudinally tracking ctDNA may improve the predictive value for both early and late recurrence (19, 20, 39).



Conclusions

We showed that ctDNA detection after NAT has great clinical utility potential as a prognostic marker in patients with breast cancer. CtDNA detection can identify and define a subset of high-risk patients. The next step is to determine the type of adjuvant therapy strategies that can effectively reduce recurrence. Since actionable genetic variants can be detected by ctDNA, further prospective trials should focus on incorporating ctDNA detection and exploring how to guide patient treatment, which could maximize the utility of ctDNA detection.
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Background

The treatment for locally advanced breast cancer (LABC) is a severe clinical problem. The postoperative radiotherapy is a conventional treatment method for patients with LABC, whereas the effect of preoperative radiotherapy on outcome of LABC remains controversial. This study aimed to examine and compare the overall survival (OS) in patients with LABC who underwent preoperative radiotherapy or postoperative radiotherapy.



Methods

This retrospective cohort study included 41,618 patients with LABC from the National Cancer Database (NCDB) between 2010 and 2014. We collected patients’ demographic, clinicopathologic, treatment and survival information. Propensity score was used to match patients underwent pre-operative radiotherapy with those who underwent post-operative radiotherapy. Cox proportional hazard regression model was performed to access the association between variables and OS. Log-rank test was conducted to evaluate the difference in OS between groups.



Results

The estimated median follow-up of all included participants was 69.6 months (IQR: 42.84-60.22); 70.1 months (IQR: 46.85-79.97) for postoperative radiotherapy, 68.5 (IQR: 41.13-78.23) for preoperative radiotherapy, and 67.5 (IQR: 25.92-70.99) for no radiotherapy. The 5-year survival rate was 80.01% (79.56-80.47) for LABC patients who received postoperative radiotherapy, 64.08% (57.55-71.34) for preoperative radiotherapy, and 59.67% (58.60-60.77) for no radiotherapy. Compared with no radiation, patients receiving postoperative radiotherapy had a 38% lower risk of mortality (HR=0.62, 95%CI: 0.60-0.65, p<0.001), whereas those who received preoperative radiotherapy had no significant survival benefit (HR=0.88, 95%CI: 0.70-1.11, p=0.282). Propensity score matched analysis indicated that patients treated with preoperative radiotherapy had similar outcomes as those treated with postoperative radiotherapy (AHR=1.23, 95%CI: 0.88-1.72, p=0.218). Further analysis showed that in C0 (HR=1.45, 95%CI: 1.01-2.07, p=0.044) and G1-2 (AHR=1.74, 95%CI: 1.59-5.96, p=0.001) subgroup, patients receiving preoperative radiotherapy showed a worse OS than those who received postoperative radiotherapy.



Conclusions

Patients with LABC underwent postoperative radiotherapy had improved overall survival, whereas no significant survival benefit was observed in patients receiving preoperative radiotherapy. Preoperative radiotherapy did not present a better survival than postoperative radiotherapy for LABC patients.





Keywords: locally advanced breast cancer, National Cancer Database, preoperative radiotherapy, postoperative radiotherapy, overall survival



Introduction

Breast cancer has become the most common cancer worldwide. Early breast cancer accounts for an increasing proportion of new breast cancer cases, and the disease burden continues to increase over time (1). Locally advanced breast cancer (LABC) encompasses stage III of the disease and a subset of patients with stage II (2), with a maximum lesion diameter of more than 5cm or lesion involving the surrounding skin or muscle, with or without axillary lymph node fusion and intramammary node, or ipsilateral supraconavicular node involvement.

The treatment of LABC is still a major challenge in patients with breast cancer because of the large space occupied by the primary lesions and serious local adhesions (3). Due to its low rate of overall survival (OS), high rate of recurrence and distant metastasis, LABC affects the overall survival of breast cancer largely (4). Currently, common adjuvant treatments for breast cancer are postoperative chemotherapy and radiotherapy (5). Radiotherapy is an effective treatment to reduce metastasis and improve the survival rate of breast cancer (6).

Recently, with the development of radiotherapy techniques, the value of preoperative radiotherapy has been reevaluated (7–10). Preoperative radiotherapy has been proven to prolong the prognosis of many cancers, such as rectal cancer (11), cervical cancer (12), et al. Some studies stated that preoperative radiotherapy could reduce the stage of tumor, increase the rate of surgical resection, alleviate symptoms and pain in patients, and improve the life quality of patients (9, 13). At present, there are few clinical studies on preoperative radiotherapy, and its effect for LABC patients is controversial (14–16). Early studies were mainly single-center, uncontrolled retrospective studies with small sample sizes, and the results were limited (17). In terms of long-term survival, the comparison between preoperative radiotherapy and postoperative radiotherapy lacks high-grade evidence-based data, and further investigation is needed.

The Nationally recognized National Cancer Database (NCDB), co-sponsored by the American College of Surgeons and the American Cancer Society, is a clinical oncology database derived from hospital registries collected by more than 1,500 Cancer Council accredited institutions. NCDB data were used to analyze and track patients with malignant cancer, their treatment and outcomes. The data represent more than 70 percent of newly diagnosed cancer cases and more than 34 million historical records nationwide (18). Based on the NCDB, we conducted this study to determine whether preoperative radiotherapy is superior to postoperative radiotherapy for the prognosis of patients with LABC. In this study, we analyzed the radiotherapy status of LABC patients who underwent surgery, and discussed the status and role of preoperative radiotherapy and postoperative radiotherapy in the treatment of LABC, as well as their prognostic value.



Materials and Methods


Study Design and Data Sources

We performed a retrospective review of the NCDB data of LABC patients diagnosed between January 1, 2010, and December 31, 2014. All adult women with LABC were selected by the ICD-O-3 (histological code <8800), and were assigned according to the 7th AJCC TNM edition. Cases with LABC were defined as patients with stage III (T0-2N2M0, T3-4N0-2M0, T0-4N3M0) and part of stage II B (T3N0M0).

The inclusion criteria were as follows: (1) patients diagnosed with LABC in 2010-2014, microscopically confirmed, and only one malignant or in situ primary tumor in the patient’s lifetime; (2) patients who underwent breast surgery with a specific surgical procedure; (3) patients with no distant metastasis; (4) cases were females and aged ≥18.

We excluded cases for any of the following reasons: (1) lack of data on estrogen receptor, progesterone receptor, or human epidermal growth factor receptor 2 (Her-2); (2) unknown tumor grade or stage; (3) unknown status of chemotherapy, hormone therapy, or immunotherapy treatment; (3) lack of data on insurance, income, home location, vital status, or follow-up time; (4) if the patient received radiation therapy both before and after surgery or if they received intraoperative radiation with or without another therapy, in an unknow sequence except for postoperative radiotherapy, preoperative radiotherapy, and no radiation.



Data Extraction and Outcomes

All included LABC patients were confirmed by cytology, histopathology, or microscopy and had only one lifetime history of malignancy or in situ recurrence, with no distant metastasis. We used the Charlson-Deyo Comorbidity Index (CCI) to quantify comorbid conditions. In total, eighteen factors were extracted: age at diagnosis, race, insurance provider (Medicaid, Medicare, or Private insurance/managed Care), median household income (high, high-middle, low-middle, or low), home location (rural, urban, or metro); CCI, grade (G1, well differentiated; G2, moderately differentiated; G3, poorly differentiated; G4, undifferentiated); tumor stage (T stage), nodal stage (N stage), molecular subtype (luminal, Her-2 positive, and triple-negative breast cancer); clinical stage, chemotherapy, hormone therapy, immunotherapy, surgery method; sequence of patients receiving radiotherapy and surgery, vital status, and follow-up time. The surgical procedure included total (simple) mastectomy, breast-conserving or -preserving surgery (BCS), and radical mastectomy. The race of the patients was divided into white, black, Asian/other. The pathological results of patients were classified into three categories based on ER, PR, and ERBB2 status. Luminal subtype was ER or PR positive, with or without ERBB2 positive. Her-2 positive subtype meant that both ER and PR are negative and ERBB2 is positive. Triple-negative subtype was defined as negative for estrogen receptor (ER), progesterone receptor (PR) and ERBB2 or Her-2. ER and PR were considered negative if less than 1% of cells stain positive. If the immunohistochemistry score was 0 to 1+ or fluorescence in situ hybridization and color in situ hybridization do not amplify, ERBB2 status was considered negative. The primary outcome was the rate of overall survival after breast surgery and radiotherapy. The endpoint was defined as the vital status of patients at last contact (alive or deceased). And the number of months to last contact were recorded. The diagram outlining all the selection criteria is presented in Figure 1.




Figure 1 | Flow Chart of participants Selection in National Cancer Database.





Statistical Analysis

We used frequency (percentage) to express categorical variables data and reported quantitative variables in quartile range (IQR). χ2 test or Fisher’s exact test was used for qualitative variables, and unpaired Kruskal-Wallis test was applied in quantitative variables. The Bonferroni test was conducted to compare sociodemographic, therapeutic, and tumor characteristics between the three treatment groups. In addition, from diagnosis to the last contact or death, the OS rate was calculated on a monthly basis. Univariate and multivariate Cox proportional hazard models were used to investigate the factors affecting OS in the unmatched and matched cohort. To solve the imbalance between patients receiving postoperative and preoperative radiotherapy, we conducted propensity score matching (PSM) analysis (19). We matched the conditional probability propensity scores for adjuvant radiotherapy before and after surgery. The variables included in the PSM analysis were age, race, insurance, income, home location, CCI, grade, T stage, N stage, molecular subtype, clinical stage, chemotherapy, hormone therapy, immunotherapy, surgery method. These variables are potential factors affecting the probability of receiving radiotherapy treatment. To avoid over-fitness, items (radiation and surgery sequence) entered into the PSM were excluded from the multivariate Cox regression analysis. The Kaplan-Meier curve was fit to calculate cumulative survival in unmatched and propensity matched cohorts. A log-rank test was performed to test the differences in the cumulative proportions across different treatment groups (20). Our study was reported followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline (eTable 1). All statistical tests were two-sided, the significance level of the Bonferroni test was 0.0167, and the significance level of other tests was 0.05. All statistical analyses were conducted using R software for Windows, version 4.0.5 (R Project for Statistical Computing).




Results


Patient Characteristics

A total of 41,618 cases met the inclusion criteria outlined above and were enrolled in our initial non-matched analysis (Figure 1). Among these patients, 32,625 (78.39%) experienced postoperative radiotherapy, 8,787 (21.11%) received no adjuvant radiation, and 206 (0.49%) endured preoperative radiotherapy. Compared with patients experienced preoperative radiotherapy, the postoperative radiotherapy cohort was younger (mean age, 59.24 vs 59.27, p<0.001), more Asians (p<0.001), more private insurance payers (p=0.002), more luminal tumors (p<0.001); and had better differentiation levels (p<0.001), lower tumor stage (p<0.001), higher nodal stage (p=0.005), better prognosis (p<0.001); more patients received hormone therapy (p<0.001) and BCS (p<0.001). There were no significant differences of distribution between preoperative and postoperative groups in income, home location, CCI grade, clinical stage, chemotherapy, and immunotherapy (Table 1).


Table 1 | Patient demographic, disease, and treatment characteristics of locally advanced breast cancer grouped by radiation status.





Univariate and Multivariate Analysis

The estimated median follow-up time was 70.1 months (IQR: 46.85-79.97, range: 2.92-112.95, 95%CI: 69.7-70.5) for postoperative radiotherapy, 68.5 (IQR: 41.13-78.23, range: 4.99-111.57, 95%CI: 65.2- 74.8) for preoperative radiotherapy. The 5-year survival rate was 80.01% (79.56-80.47) for LABC patients receiving postoperative radiotherapy, 64.08% (57.55-71.34) for preoperative radiotherapy. In the survival analysis of the unmatched cohort, postoperative radiotherapy was related associated with improved OS compared to no radiation (p<0.0001) (Figure 2A). Similarly, in the multivariable Cox analysis adjusted for confounders, patients who received postoperative radiotherapy had a 38% lower risk of mortality [Adjusted HR (AHR) =0.62, 95%CI: 0.60-0.65, p<0.001]. However, there was no significant difference in prognosis between patients who received preoperative radiotherapy and those who did not (HR=0.85, 95%CI: 0.68-1.06, p=0.148; AHR=0.88, 95%CI: 0.70-1.11, p=0.282, Table 2).




Figure 2 | Kaplan-Meier overall survival analysis, before and after propensity score matching. (A) all participants, (B) matched population.




Table 2 | Univariable and multivariable Cox analysis of overall survival for patients with locally advanced breast cancer.



Multivariable Cox analysis revealed that some factors were independently associated with improved or worse OS in LABC patients. Among these, the highest HR was for high nodal stage of LABC (N1/N2/N3 vs. N0), with N3 patients having an AHR of 3.49 (95%CI: 3.14-3.89, p<0.001, Table 2) and tumor stage ≥T2, and those with T4 having an AHR of 2.18 (95%CI: 2.02-2.36, p<0.001). Compared with well or moderately differentiated LABC, patients with poorly differentiated or undifferentiated histology had a 53% higher mortality risk (AHR= 1.53, 95%CI: 1.46-1.60, p<0.001). Compared with patients aged 35-50 years, patients aged <35 years, 50-70 years, and ≥70 years had a 23% (p<0.001), 11% (p<0.001), and 63% (p<0.001) higher mortality risk, respectively. Black patients had a 16% higher mortality risk (AHR= 1.16, 95%CI: 1.10-1.22, p<0.001) than white patients. Patients classified as C1 and C2-3 on the CCI had higher mortality risk values compared to C0 patients (C1: AHR=1.27, 95%CI: 1.21-1.33, p<0.001; C2-3: AHR=1.67, 95%CI: 1.55-1.80, p<0.001). Other factors associated with poor survival included clinical stage (stage 0-2 vs 3-4: AHR=1.14, 95%CI: 1.03-1.26, p=0.012), triple-negative subtype (triple-negative vs. luminal: AHR=1.94, 95%CI: 1.81-2.09, p<0.001), and the receipt of radical mastectomy (radical vs. simple: AHR=1.12, 95%CI: 1.07-1.17, p<0.001). In addition, some factors were associated with improved survival of patients with LABC. Asian and other races had a 23% lower mortality risk than white patients (AHR= 0.77, 95%CI: 0.69-0.85, p<0.001). Compared with patients who were not insured, private insurance payers had a 22% lower mortality risk (AHR= 0.78, 95%CI: 0.70-0.86, p<0.001). In addition, compared with low-income patients, those who carried a high median household income had a 6% lower mortality risk (AHR= 0.94, 95%CI: 0.89-0.99, p=0.041). Patients who lived in metro had a 7% lower mortality risk (AHR= 0.93, 95%CI: 0.88-0.99, p=0.014) than those who lived in rural or urban areas. As presented in eTable 2, patients who received preoperative radiotherapy combined with chemotherapy (HR= 0.34, 95%CI: 0.19-0.62, p<0.001) or hormone therapy (HR= 0.56, 95%CI: 0.36-0.88, p=0.012) showed better outcomes compared with their counterparts without corresponding treatments. The univariate Cox analysis results of patients who received postoperative radiotherapy were shown in eTable 3.



Propensity Score–Matched Analysis and Outcomes

The estimated median follow-up time was 71.4 months (IQR: 34.37-75.22, range: 4.50-107.04, 95%CI: 67.40-75.20) for patients who received postoperative radiotherapy and 68.5 months (IQR: 65.20-74.80, range: 4.99-111.57, 95%CI: 65.2- 74.8) for those who experienced preoperative radiotherapy. The 5-year survival rate was 66.29% (59.82-73.47) for those who received postoperative radiotherapy and 64.08% (57.55-71.34) for those who endured preoperative radiotherapy. In the multivariable analysis of the matched cohort (Table 3), patients aged ≥70 years had a three times higher risk of mortality (AHR= 3.83, 95%CI: 1.81-8.11, p<0.001) compared to those aged 35-50 years. Black patients had a 59% worse OS (AHR= 1.59, 95%CI: 1.07-2.37, p<0.001) than white patients. In addition, factors associated with poor OS in the matched cohort included tumor stages T3 (T3 vs T0-1: AHR= 2.09, 95%CI: 1.09-4.02, p=0.027) and T4 (T4 vs T0-1:AHR= 3.45, 95%CI: 1.82-6.54, p<0.001), nodal stages N1 (N1 vs N0: AHR= 3.37, 95%CI: 1.48-7.68, p=0.004), N2 (N2 vs N0: AHR= 10.01, 95%CI: 4.59-21.83, p<0.001), and N3 (N3 vs N0: AHR= 10.26, 95%CI: 4.62-22.78, p<0.001), triple-negative subtype (Triple negative vs Luminal: AHR= 9.02, 95%CI: 3.90-20.86, p<0.001), Her-2 positive subtype (Her-2 positive vs Luminal: AHR= 4.17, 95%CI: 1.48-11.72, p=0.007), and patients underwent radical mastectomy (AHR= 1.71, 95%CI: 1.10-2.66, p=0.017). Finally, patients who endured preoperative radiotherapy had a statistically similar prognosis to those who received postoperative radiotherapy (AHR=1.23, 95%CI: 0.88-1.72, p=0.218). Survival analysis indicated no difference existed in the OS of LABC patients between preoperative radiotherapy and postoperative radiotherapy (p=0.77, Figure 2B). In addition, patients in C0 (HR=1.45, 95%CI: 1.01-2.07, p=0.044) and G1-2 subgroup (AHR=1.74, 95%CI: 1.59-5.96, p=0.001) experienced preoperative radiotherapy showed a worse OS than those who received postoperative radiotherapy (Figure 3).


Table 3 | Propensity-adjusted multivariable Cox regression analysis of overall survival for locally advanced breast cancer.






Figure 3 | Subgroup analyses of radiotherapy treatment based on matched population. BCS, breast-conserving surgery; HR, hazard ratio.






Discussion

In this hospital-based registry analysis, postoperative radiotherapy presented a significant benefit for improved OS of LABC patients compared to no radiation, which appears to be consistent with a previous study (21). The benefit was also observed in patients who endured preoperative radiotherapy. However, the benefit was not statistically significant. PSM matched analysis indicated that, compared with postoperative radiotherapy, no survival improvement was observed in LABC patients who experienced preoperative radiotherapy. The effect of postoperative radiotherapy for LABC patients had been confirmed by several large clinical trials, which could significantly increase the local control rates and improve their OS rates (22).

In recent years, the value of preoperative radiotherapy in the treatment of LABC patients has been reassessed. Studies showed that new adjuvant chemotherapy improved the pathological complete response of tumors (23). A Previous study reported on the benefits of preoperative radiotherapy or chemotherapy on tumor treatment (24) and the impact of breast reconstruction surgery, as well as its value in tumor biology and translational medicine research. Our analysis illustrated that patients receiving preoperative radiotherapy combined with chemotherapy or hormone therapy showed prognosis benefit, which is consistent with published studies (25, 26). Through the combined use of preoperative radiotherapy and drugs, clinicians can obtain a clinical effect evaluation in a relatively short period of time and guide follow-up treatment by observing lesion changes (27, 28). However, approximately 1/3 of LABC patients are resistant to neoadjuvant chemotherapy, and there is still no manual resection opportunity for the tumor after chemotherapy. In this case, preoperative radiotherapy (21) or preoperative concurrent chemoradiotherapy is an important salvage treatment measure which could reduce the tumor load in some patients and provide the opportunity for surgical resection (2). Preoperative radiotherapy could increase the sensitivity of radiotherapy (29), cause tumor tissue fibrosis, reduce the risk of intraoperative implantation and metastasis, change the tumor microenvironment, transform the tumor immune escape state into a tumor immune attack state, and activate the immune system to produce long-distance effects (9, 30). However, the high incidence of acute toxic reactions is attributed to the lack of therapeutic experience and/or technical limitations due to factors such as concurrent chemotherapy, a high total dose of radiotherapy, and the limit of radiation techniques. Severe toxic reactions are the most important reason for the limited clinical application of preoperative radiotherapy or preoperative neoadjuvant concurrent chemoradiotherapy (31). Several studies have demonstrated the favorable effect of preoperative radiotherapy on tumor treatment and breast reconstruction surgery, as well as its value in tumor biology and translational medicine research.

Radiotherapy is important for the treatment of breast cancer, improving the local control rate and OS of patients at a high risk of recurrence. For advanced breast cancer (16), preoperative radiotherapy can reduce tumor stage, increase the resection rate, and alleviate the symptoms of patients.

Clinically, the selection of neoadjuvant radiotherapy for patients is limited to a certain extent, and there is currently no unified standard. Most clinical decisions depend on the clinical experience of doctors, so there may be the possibility of overtreatment. In our analysis, black patients with LABC were more inclined to endure preoperative radiotherapy, especially for patients with T4 stage tumors, aged 50-70 years, uninsured, triple negative subtype, poorly or undifferentiated. As for surgery method, the proportion of patients undergoing radical breast cancer resection undergoing preoperative radiotherapy was higher than that of patients undergoing other surgical procedures. Besides, neoadjuvant radiotherapy or chemoradiotherapy may lead to vascular injury and microcirculation disturbance, resulting in tissue cell degeneration and necrosis, breast fibrosis and skin injury. However, the fibrotic and damaged skin of the breast increases the difficulty of operation and prolongs the operation time, making radiotherapy as a neoadjuvant therapy method not widely employed for breast cancer (7). Suitable and safe treatment plans timelines, and treatment modalities with long survival rates, short and convenient reconstruction processes, and good appearance should be determined for LABC patients. In addition, biomarkers that are sensitive to radiation and chemotherapy should be ascertained.

A study based on 129,692 patients supported that breast-conserving surgery with radiation therapy improved the survival of breast cancer patients (26). Patients with stage IIB-IIIA breast cancer are generally considered having “operable breast cancer”. In contrast, those receiving postoperative radiotherapy or with stage IIIB and IIIC cancer are likely to be classified as inoperable cases; this is due to the presence of inflammation and/or extensive skin involvement, immobilization, or very large axillary lymph node disease, and/or the involvement of supraclavicular or internal breast lymph nodes (32). However, preoperative radiotherapy provides LABC patients with no chance of surgery with the opportunity of surgical treatment, as well as the opportunity of breast-conserving surgery for patients who cannot initially undergo breast-conserving surgery (24), thus improving their quality of life (33). By comparing the tumor tissues before and after radiotherapy and analyzing the various differences at the molecular level, biological information related to the radio sensitivity of tumor cells can be obtained, which helps to understand the changes in the immune microenvironment (34).

There are some limitations inevitable in this study. A small percentage of patients with LABC received preoperative radiation. Due to the limited data, we could not perform further subgroup analysis on the radiotherapy duration and dose of patients. The study population included patients who were diagnosed with LABC and underwent breast surgery. It should be emphasized that the application of these results cannot be expanded to general breast cancer. Although we used a retrospective paired study to select the control group, there is still an unavoidable selection bias, and there are some unknown influencing factors that will affect the final study conclusion. Besides, due to the limited data of preoperative radiotherapy, we had not been able to do a preoperative and postoperative analysis of other treatments (e.g., chemotherapy, endocrine therapy, immunotherapy) in LABC patients. However, we had enrolled those potential factors into the PSM analysis, and the effect of the variables has been largely balanced. In addition, we analyzed the relationship between the two types of radiotherapy combined with other treatments independently. We recommend that patients with LABC be treated in combination with chemotherapy or hormone therapy, regardless of preoperative or postoperative radiotherapy. Nevertheless, the role and value of preoperative radiotherapy or concurrent radio-chemotherapy for the treatment of LABC under the application of novel radiotherapy technologies and medicines requires confirmation and investigation by prospective, multi-center, randomized controlled clinical studies with large sample sizes.

In this study, patients with LABC who received postoperative radiotherapy were associated with improved OS, while those who received preoperative radiotherapy had no significant benefit. In the matched analysis, there was no significant difference in survival between patients receiving postoperative radiotherapy and those who receiving preoperative radiotherapy. The conclusions still need to be confirmed in large prospective clinical trials.
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NAA25 gene variants were reported as risk factors for type 1 diabetes, rheumatoid arthritis and acute arterial stroke. But it’s unknown whether it could contribute to breast cancer. We identified rs11066150 in lncHSAT164, which contributes to breast cancer, in our earlier genome-wide long non-coding RNA association study on Han Chinese women. However, rs11066150 A/G variant is also located in NAA25 intron. Based on the public database, such as TCGA and Curtis dataset, NAA25 gene is highly expressed in breast cancer tissues and this result has also been proved in our samples and cell lines through RT-qPCR and western blot analysis. To better understand the function of NAA25 in breast cancer, we knocked down the expression of NAA25 in breast cancer cell lines, FACS was used to detect cell apoptosis and cell cycle and colony formation assay was used to detect cell proliferation. We found that NAA25-deficient cells could increase cell apoptosis, delay G2/M phase cell and decrease cell clone formation. RNA sequencing was then applied to analyze the molecular profiles of NAA25−deficient cells, and compared to the control group, NAA25 knockdown could activate apoptosis-related pathways, reduce the activation of tumor-associated signaling pathways and decrease immune response-associated pathways. Additionally, RT-qPCR was employed to validate these results. Taken together, our results revealed that NAA25 was highly expressed in breast cancer, and NAA25 knockdown might serve as a therapeutic target in breast cancer.




Keywords: breast cancer, NAA25, cell cycle, apoptosis, RNA sequencing



Introduction

Breast cancer is the most common and a leading cause of cancer-related deaths of women worldwide (1). And China is undergoing the cancer transition stage, with the occurrence of female breast cancer increasing rapidly (2, 3). With the development of sequencing technologies, a lot of breast cancer associated genes have been validated (4, 5). Our previous case-control genome wide lncRNA association study on Han Chinese women identified that SNP rs11066150 was associated with breast cancer and lncHSAT164 gene could contribute to breast cancer (6). And rs11066150 A/G was an intron variant in N-alpha-acetyltransferase 25 (NAA25) gene (also known as MDM20, C12orf30 and NAP1). NAA25 gene variants were reported to be associated with type 1 diabetes (T1D), rheumatoid arthritis, acute arterial stroke and dyslipidemia (7–10). However, the relationship between NAA25 and breast cancer is still unknown.

NAA25 encodes the auxiliary subunit, which could then affect posttranslational modifications by forming N-terminal acetyltransferase B complex with catalytic subunit NAA20 (11). In yeast, it can regulate actin remodeling, and stabilize actin cytoskeleton and mitochondrial targeting (12, 13). And NAA25 knockdown can disrupt cell cycle and reduce cell growth (14). However, the physiological function and mechanism of NAA25 in breast cancer remain unknown.

To explore the relationship between NAA25 gene and breast cancer, we compared NAA25 gene expression between normal tissues and breast cancer tissues in public databases, such as TCGA and Curtis dataset, and analyzed the relationship between NAA25 gene expression and overall survival (OS) of patients. In addition, we tested NAA25 gene expression in breast cancer tissues, para-carcinoma tissues, breast cancer cell lines and normal breast epithelial cell lines. Furthermore, we specifically knocked down NAA25 gene expression in breast cancer cells and explored its influence on tumor cell proliferation, apoptosis and cell cycle. Finally, RNA-seq analysis was used to clarify the molecular profiles of NAA25-deficient cells.



Materials and Methods


Subjects

In this study, four-pairs of breast cancer tissues and para-carcinoma tissues (all from Han Chinese women) were collected at the No.2 Hospital, Anhui Medical University. All cases were diagnosed with breast cancer by at least two pathologists. Para-carcinoma specimens were adipose/skin tissues, which were collected from breast cancer patients who underwent radical mastectomy. All tissue samples were stored in liquid nitrogen immediately after surgical resection. The information of breast cancer patients was provided in Supplementary Table 1.



Cell Culture

MCF10A, MCF7, T47D, and HEK293T cell lines were purchased from the Institute of Basic Medical Sciences of the Chinese Academy of Medical Sciences. MCF10A, a kind of normal human breast epithelial cell, was grown in DMEM/F12 (Gibco, Life, China) medium supplemented with 10% fetal bovine serum (FBS) (Gibco, Australia), 10 µg/ml insulin (Macklin, China), 20 ng/ml EGF (Peprotech, China), and 0.5 µg/ml hydrocortisone (Macklin, China). MCF7 and HEK293T cells were maintained in DMEM (Gibco, Life, USA) supplemented with 10% FBS (Gibco, Australia). T47D cells were maintained in RPMI-1640 medium (Gibco, Life, USA) supplemented with 10% FBS (Gibco, Australia). All medium were supplemented with 100 U/ml penicillin–streptomycin (Gibco, Life, China), and all cells were maintained at 37°C in a humidified atmosphere containing 5% CO2 and confirmed to be mycoplasma free.



RNA Extraction and RT-qPCR Analysis

The total RNA from the cell lines, human breast cancer tissues and para-cancerous tissues used in this study was extracted with TRIzol reagent, and DNase I (Thermo Fisher, USA) was used to remove genomic DNA. First-strand cDNA was synthesized by using the SuperScript III Reverse Transcriptase Kit (Thermo Fisher, USA). Relative RNA levels determined by RT-qPCR were measured on a Rotor-Gene Q real-time PCR machine (Qiagen, Germany). GAPDH was employed as an internal control. The relative expression of RNAs was calculated using the 2−ΔΔCt method. All primer sequences for RT-qPCR are listed in Supplementary Table 2.



Plasmid Construction, Transfection and Lentivirus Infection

Short hairpin RNAs (shRNAs) against NAA25 sh1 and sh2 were designed and synthesized by Taihe Biotechnology (Beijing, China) and cloned into the EGFP-Puro-pll3.7 plasmid. Based on the PSPAX2-PMD2G lentiviral system, a lentivirus was constructed according to the manufacturer’s instructions. After lentivirus infection, 1 µg/ml puromycin (In vivoGen, USA) was added for selection, and 48-72 hours later, the cells were harvested for further experiments. shRNA sequences are listed in Supplementary Table 2.



Western Blot Analysis

Tissues and cells were lysed in RIPA buffer (Beyotime, China). 40 μg of protein was used for SDS-PAGE gel electrophoresis (Bio-Rad) and transferred onto PVDF membranes (Millipore, China). Blocking was performed with 5% milk, and then the membranes were incubated with primary antibodies. Anti-NAA25 (1:1, 000 HPA039322, Sigma-Aldrich) or anti-actin (1:5000, A1978, Sigma-Aldrich) was added and incubated overnight at 4°C. After being washed, the membranes were incubated with secondary antibodies (peroxidase conjugated, suitable for each primary antibody) for 2 hours at room temperature. The signal was detected with a Bio-Rad ChemiDoc XRS + System after adding Super Signal West Pico chemiluminescence.



Colony Formation Assay

To analyze cell growth, colony formation assays were performed. 1×103 cells of T47D- and MCF7- Ctr, -sh1, -sh2 were seeded in a 6-well plate and incubated for 10 to 15 days at 37°C. Then, the cells were washed twice in PBS, fixed with 90% ethanol for 15 minutes and stained with 0.1% crystal violet for 20 minutes. Images of colonies were taken with a digital camera, and the number of colonies was analyzed by ImageJ v1.8.0 software.



Apoptosis Assay

For apoptosis analysis, target cells were transferred to a 15 ml centrifuge tube, and annexin V binding buffer was added. After being centrifugated at 1,000 rpm for 5 min at 4°C, the cells were washed 3 times in PBS. Then, the cells were treated with 100 μl of binding buffer, 5 μl of Annexin V-APC and 1 μl of 100 μg/ml propidium iodide (PI) stain (Thermo Fisher, USA), and incubated in the dark for 25 min. Cell apoptosis was analyzed by flow cytometry (BD Biosciences).



Cell Cycle Assay

For cell cycle analysis, target cells were fixed with 75% ice-cold ethanol at 4°C overnight. Then, the cells were suspended in PBS supplemented with 100 mg/ml RNase A for 30 min at 37°C and then stained with 50 µg/ml PI (Thermo Fisher, USA) in the dark at room temperature for 15 min. Finally, a total of 20,000 cells were analyzed on a FACS Calibur flow cytometer equipped with Cell Quest software (BD Biosciences).



RNA-Seq Analysis

After NAA25 knockdown in T47D cells, cells from the Ctr, sh1 and sh2 groups were harvested for RNA-seq analysis at Shanghai Majorbio Biopharm Technology Co. mRNAs were isolated from total RNA with the oligo (dT) method. The mRNAs were fragmented, and then first-strand cDNA and second-strand cDNA were synthesized. After being purified, cDNA fragments were linked to adapters. Then, cDNA fragments of suitable size were selected for PCR amplification. The sequencing platform used in this study was Illumina HiSeq, and the paired-end reads were 2×150 bp. TPM (Transcripts Per Million reads) was used to evaluate genes expression, transcript abundance was assessed with the DESeq2, and the significantly affected genes were determined by setting a fold change of ≥ 2. The differentially expressed gene (DEG), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, gene ontology (GO), GO term and gene set enrichment analysis (GSEA) described in this paper were performed on the free online platform Majorbio Cloud Platform (www.majorbio.com).



Statistical Analysis

All statistical analyses were performed using Graphpad Prism 8.0 statistical software (California, US). Experiment data are shown as the means ± SEM, and all experiments were conducted for at least three times. Significance was determined using the Student’s t-test: N.S. p > 0.05; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 and ∗∗∗∗p < 0.0001.




Results


rs11066150 Associated Gene NAA25 Highly Expressed in Breast Cancer

rs11066150 was reported in lncHSAT164 (6), and it is also located within the fifth intron of NAA25 gene (Figure 1A). Based on the eQTLGen database (https://www.eqtlgen.org/), we identified 4 cis-eQTL effects genes, TMEM116, HECTD4, MAPKAPK5 and NAA25, to be associated with rs11066150 (Supplementary Table 3). And TMEM116, HECTD4, MAPKAPK5 was reported to be associated with renal cell carcinoma, prostate cancer and colorectal cancer (15–17). However, NAA25 gene has never been reported to be associated with cancers.




Figure 1 | Characterization of NAA25 gene in breast cancer. (A) rs11066150 variant schematic diagram in lncHSAT164 and NAA25. (B, C) NAA25 gene was highly expressed in breast cancer tissues compared to the controls in TCGA dataset and Curtis dataset. (D) OS analysis of patients with high and low NAA25 expression. The p value was calculated using Mann-Whitney U tests. (E) Western-blot and RT-qPCR to analyze NAA25 expression in breast cancer tissues and para-carcinoma tissues, NAA25 was highly expressed in breast cancer tissues. The two bands are all NAA25. *p < 0.05.



To explore the role of NAA25 gene in breast cancer, we analyzed its expression in different public databases. According to TCGA and the Curtis, Finak breast and Richardson breast datasets (18–21), we found that NAA25 was greatly up regulated in breast cancer tissues in comparison with normal breast tissues (Figures 1B, C and Supplementary Figures 1A, B). Furthermore, high mRNA levels of NAA25 showed marginal associations with poor OS in the Curtis database (p = 0.013) (Figure 1D). Additionally, we explored the expression of NAA25 gene in breast cancer tissues and para-cancerous tissues. RT-qPCR and western blot analyses were performed in four-pairs of tissues, and results revealed that NAA25 was highly expressed in cancer tissues (Figure 1E). We also monitored NAA25 expression in normal breast epithelial cell line MCF10A, and breast cancer cell lines MCF7 and T47D. Compared to MCF10A, NAA25 was highly expressed in T47D cells (Figure 2A). Together, our analyses reveal a previously unknown role of NAA25 in breast cancer, and highly expressed NAA25 might influence the progress of breast cancer.




Figure 2 | NAA25 gene influences cell apoptosis and the cell cycle in breast cancer. (A) RT-qPCR and western blot analysis of NAA25 gene expression in breast cancer cell lines (The two bands are all NAA25.). (B) RT-qPCR and western blot analysis in the NAA25-deficient T47D cell line. (C) Cell apoptosis in the NAA25-deficient T47D cells. Compared to the Ctr group, NAA25 knockdown could increase cell apoptosis. (D) Cell cycle analysis of the NAA25-deficient T47D cells. Compared to the Ctr group, NAA25 knockdown induced G2/M cell cycle arrest. (E, F) Downregulated NAA25 reduced the clonogenic potential of breast cancer cells. N.S. p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001 and ****p < 0.0001.





NAA25 Knockdown Inducing Apoptosis, G2/M Arrest and Suppressing Cell Proliferation

To investigate the physiological roles of NAA25 gene in breast cancer, two shRNA targets were designed to knockdown NAA25 gene in breast cancer cell lines, and the mRNA expression and protein expression of NAA25 were both significantly diminished (Figure 2B and Supplementary Figure 1C). Apoptosis is a key cellular process in breast cancer. We measured the effect of NAA25 on apoptosis and cell cycle by FACE analysis. Compared to the Ctr group, the number of apoptotic cells was relatively larger in the shRNA groups (p < 0.01), as shown in (Figure 2C), and more cells were arrested in the G2/M phase (p < 0.05), as shown in (Figure 2D).

To further investigate whether NAA25 knockdown could influence tumor growth, colony formation assays were applied in this study, which illustrated that clonogenic survival significantly decreased following NAA25 knockdown in T47D cell line (Figures 2E, F). And similar results were investigated in NAA25-deficient MCF7 cells. Hence, based on these results, we conclude that NAA25 is highly expressed in breast cancer and may lead to poor OS in patients by regulating tumor cell apoptosis and cell cycle.



RNA Sequencing Characterizing the Molecular Profile of NAA25-Deficient Breast Cancer Cells

To investigate the importance of NAA25 gene in breast cancer, RNA-seq analysis was applied after NAA25 knockdown in the T47D cell line. Pearson’s correlation analysis (PCA) was performed to cluster all samples (Supplementary Figure 2A). Based on the gene expression matrix, the Venn diagram was used to analyze the co-expressed and specifically expressed genes or transcripts among the Ctr group and shRNA groups (Figure 3A). Furthermore, differentially expressed gene (DEG) analysis was conducted to compare the Ctr group and the sh1 and sh2 groups respectively, and 119 DEGs were identified (Figures 3B, C, Supplementary Figure 2B). All DEGs were presented in Supplementary Table 4.




Figure 3 | RNA-seq analysis in the NAA25-deficient T47D cells. (A) Venn diagram analysis of gene or transcript expression among the Ctr group and shRNA groups. (B) Differentially expressed gene (DEG) heatmap analysis. Blue indicates downregulated genes. Red indicates upregulated genes. (C) Volcano plot showing the DEG in the Ctr group and the sh1 group. (D) GO term analysis between the Ctr group and the sh1 group. (E) Gene set enrichment analysis (GSEA) to analyze DEG between the Ctr group and the sh1 group. (F) RT-qPCR analysis to validate DEGs after NAA25 knockdown in the T47D cells. The data shown here are representative of at least 3 independent experiments. N.S. p > 0.05; *p < 0.05; **p < 0.01 and ****p < 0.0001.



Furthermore, KEGG enrichment analyses were performed among the 119 DEGs, and most of them were related to infections, immune responses, cancers and immune diseases (Supplementary Figure 2C). GO term analysis was performed to NAA25-deficient cells, and the results showed that many genes were associated with infection and immunity (Figure 3D and Supplementary Figure 2D).

To assess the molecular pathways involved in NAA25-deficient T47D cells, we performed gene set enrichment analysis (GSEA). And NAA25 knockdown could increase apoptosis associated pathways, and reduce tumor associated pathways, like MYC, HIF1A, ERB2, MEK and TNF (Figure 3E and Supplementary Figure 2E). In addition, immune response associated pathways like IL4, TNF and LTE2 were reduced. Finally, RT-qPCR analysis was used to verify RNA-seq data (Figure 3F). IFIT2, IFIT3, IFIT27, IFITM1, NDRG1, PFKFB4, ZNF395, IFI6, FUT11 and OAS2 mRNA expression was upregulated after NAA25 knockdown, and HSPH1 gene expression was down regulated, consistent with the RNA-seq results.




Discussion

A large number of breast cancer associated susceptibility SNPs and genes were identified and reported as a molecular marker in tumor incidence, metastasis, prognosis and treatment. Previously, we performed a genome-wide lncRNA association study in Han Chinese women and identified two new susceptibility SNPs, rs11066150 and rs12537 (6) (22). rs11066150 variant had no relationship with the clinical characteristics of breast cancer like family history, menopausal status, and molecular subtypes (22). However, rs11066150 associated lncRNA, lncHSAT164, was highly expressed in breast cancer, and overexpressed lncHSAT164 could promote colony formation and down-expressed lncHSAT164 could promote cell apoptosis and regulate cell cycle (6). In this study, we reported rs11066150 as an intron variant SNP in NAA25 gene. And NAA25 gene is highly expressed in breast cancer tissues relative to normal tissues, while high NAA25 expression is correlated with poor OS. And NAA25 knockdown could induce cell apoptosis, delay G2/M phase cell and decrease cell clone formation. NAA25 was reported to be associated with T1D (7, 23), arthritis (8, 24) and virus infection (25). However, NAA25 gene was reported as a proto-oncogene in breast cancer for the first time, and more research is needed in the future to characterize the impact of rs11066150 A/G variant on breast cancer, and the relationship between lncHSAT164 and NAA25 gene also needs further study.

RNA-seq is a ubiquitous tool in molecular biology that is shaping nearly every aspect of our understanding of genomic function (26). The molecular features of NAA25-deficient T47D cell lines were analyzed by RNA-seq in this work, and analysis results indicated that many infection and immune associated genes were highly expressed, which suggests that immune therapy may be an effective approach in treating NAA25-overexpressed breast cancer.

Highly expressed IFIT2 and NDRG1 could reduce tumor migration and metastasis (27–30). And HSPH1 was highly expressed in different tumors, such as colorectal cancer, B-cell lymphoma, melanoma and esophageal squamous cell carcinoma (31–34), while NAA25 knockdown could upregulate IFIT2 and NDRG1 expression and downregulate HSPH1 expression (Figure 3F). These findings suggest that NAA25 knockdown may also play a positive role in treating other cancers. As an important accessory subunit of the NatB enzymatic complex, NAA25 could work with the NAA20 catalytic subunit to promote enzymatic activity (26, 35), and NAA25 knockdown did not reduce NAA20 expression (12). It’s also verified in the current study.

In conclusion, in this study, we reported NAA25 as a candidate gene of rs11066150, which was highly expressed in breast cancer, and highly expressed NAA25 could reduce patient’s OS. In addition, NAA25 knockdown could induce cell apoptosis, delay G2/M phase cell and decrease cell clone formation. RNA-seq analysis was also applied to clarify the molecular profiling of NAA25-deficient cells, and NAA25 knockdown repressed tumor- and immune response-associated pathways. This study is among the first attempts to clarify the function of NAA25 in breast cancer, and these results have elucidated the mechanism of NAA25 in breast cancer and suggests that NAA25 may serve as a potential therapeutic target of breast cancer.
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Supplementary Figure 1 | NAA25 gene expression in public databases. (A, B) Compared to normal tissues NAA25 gene was highly expressed in breast cancer tissues in Finak breast and Richardson breast databases. (C) RT-qPCR and western blot analysis in the NAA25-deficient MCF7 cell line. The two bands are all NAA25. p < 0.05; **p < 0.001.

Supplementary Figure 2 | RNA-seq analysis in the NAA25-deficient T47D cells. (A) Pearson’s correlation analysis (PCA) clarified the similarity between RNA-seq samples. (B) Volcano plot showing the DEG in the Ctr group and the sh2 group. (C) GO term analysis between the Ctr group and the sh1 group. (D) GO analysis between the Ctr group and the sh1 group. (E) Gene set enrichment analysis (GSEA) to analyze the DEG between the Ctr group and the sh2 group.
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Background

The purpose of the present work was to test whether quantitative image analysis of circulating cells can provide useful clinical information targeting bone metastasis (BM) and overall survival (OS >30 months) in metastatic breast cancer (MBC).



Methods

Starting from cell images of epithelial circulating tumor cells (eCTC) and leukocytes (CD45pos) obtained with DEPArray, we identified the most significant features and applied single-variable and multi-variable methods, screening all combinations of four machine-learning approaches (Naïve Bayes, Logistic regression, Decision Trees, Random Forest).



Results

Best predictive features were circularity (OS) and diameter (BM), in both eCTC and CD45pos. Median difference in OS was 15 vs. 43 (months), p = 0.03 for eCTC and 19 vs. 36, p = 0.16 for CD45pos. Prediction for BM showed low accuracy (64%, 53%) but strong positive predictive value PPV (79%, 91%) for eCTC and CD45, respectively. Best machine learning model was Naïve Bayes, showing 46 vs 11 (months), p <0.0001 for eCTC; 12.5 vs. 45, p = 0.0004 for CD45pos and 11 vs. 45, p = 0.0003 for eCTC + CD45pos. BM prediction reached 91% accuracy with eCTC, 84% with CD45pos and 91% with combined model.



Conclusions

Quantitative image analysis and machine learning models were effective methods to predict survival and metastatic pattern, with both eCTC and CD45pos containing significant and complementary information.





Keywords: liquid biopsy, circulating tumor cells, image analysis, machine learning, data science



Background

Breast cancer remains the most diagnosed tumor in the female population worldwide (1, 2). Cancer-related deaths are associated with the metastatic spread to various organs, mainly liver, bones, lungs and brain; along cancer evolution, the metastatic disease expresses the most complex picture of genetic modifications, often expressed by therapy resistance (3–8). Current methods for the detection of tumor progression are suffering from limited sensitivity, thus the development of accurate, sensitive and minimally invasive diagnostic tests is a hot topic in the clinical management of patients (9). Liquid biopsy, by the analysis of circulating tumor cells (CTC), tumor DNA (ctDNA) and exosomes, represents one of the most promising approaches to provide a complete and real-time overview of tumor evolution (10–12). In particular, the identification and characterization of CTC provide researchers with a goldmine of information that goes beyond mere DNA mutations. Epigenetics, transcriptomics, and phenotypical aspects of cancer can be probed exclusively on CTC. We focused on image analysis of immunostained whole cells, thus providing morphological and phenotypical information.

In our laboratory, we optimized a workflow to identify, count and sort viable CTC, immune-stained by an antibody cocktail recognizing CD45, epithelial and mesenchymal markers and analyzed by the DEPArray system (Menarini-Silicon Biosystems) (13). In metastatic breast cancer (MBC) patients, 4 classes of circulating cells have been described: epithelial CTC (eCTC), epithelial–mesenchymal CTC (EM-CTC), circulating cells with mesenchymal phenotype (MES), and circulating cells negative for epithelial, mesenchymal and for the CD45 pan-leukocyte markers (NEG) (13, 14). We limited the study to eCTC since their prognostic role has been widely demonstrated in breast cancer, while it is much less explored for mesenchymal CTC (15–19). Additionally, our preliminary data on the genomic profile of single CTC showed that while eCTC are a homogeneous population containing high fraction of tumor cells, mesenchymal cells represent a mix of cancer cells and normal stromal cells, constituting a significant risk of spurious results (13). Previous studies have shown that the number and phenotype of CTC represents a prognostic factor in patients with MBC (13, 18, 20, 21). However, these studies were based on image qualitative data only (presence/absence of known markers), which are used to classify cells phenotypically. No quantitative data from cell images were extracted or analyzed. The Kelley group obtained semi-quantitative information on the expression of known markers by means of magnetic gradients, and demonstrated that semi-quantitative information are valuable (22). However, to the best of our knowledge, there is no prior work considering quantitative data that can be obtained by CTC images, either morphological or fluorescence intensity of known markers, and correlating them to clinical outcomes.

The aim of the study was to evaluate whether quantitative analysis of images of CTC can provide useful information in terms of both overall survival (OS) and presence of bone metastases (BM).

Machine learning is a branch of artificial intelligence that aims to extrapolate relevant information from available data thus creating a model able to infer conclusions on future data. Machine learning has a long history of successful applications in all sorts of fields, but only recently has it received a lot of attention, mainly thanks to the neural network algorithm. Albeit the notoriety, neural networks need huge amounts of data (in the order of tens of thousands) to perform effectively, while having significant risk of losing generalization by overfitting training set when working with smaller datasets. In this study, we concentrate on algorithms with demonstrated capability of effectiveness even with small datasets; those algorithms have the advantage of being transparent with respect to the analyzed features, allowing insights into the model (23, 24).

As an additional aim, we evaluated whether the images of white blood cells contained information on OS and BM. It is in fact increasingly recognized that the immune system represents a central player in tumor occurrence, development and progression (25, 26). Recent studies illustrated that the “immunome” is generally dysfunctional in MBC patients. In particular, peripheral blood lymphocyte count is generally decreased and lymphocyte subpopulations are altered (27). Also, the cytokine signaling responsiveness of T cells is dysregulated (28). The immune status of cancer patients seems to predict response to therapy and prognosis in both localized and metastatic settings and correlates with clinical-pathological features (29–31). For these reasons, tumor-induced systemic immune changes are used as relevant biomarkers to better understand cancer evolution in women with MBC, and we hypothesized that white blood cells collected were worth to be investigated.

Thus, we focused on both the eCTC and leukocytes, to test the hypothesis whether the images of these cells can provide clinical information in MBC.



Methods


Patients’ Recruitment

The clinical study, approved by the Regional Ethics Committee (Ceur, N.152/2011/Sper and N.178/2014 Em), is a prospective observational study, carried out in collaboration between the Pathology Institute and the Oncology Department of Udine (University of Udine, Udine Academic Hospital). The criteria used for the recruitment and selection of patients were: age ≥18 years; measurable metastatic breast tumor; start of a new line of systemic therapy; Eastern Cooperative Oncology Group Peformance Status (ECOG PS) between 0 and 2; Availability of a histological sample of the primary tumor. In particular, 45 of 100 patients recruited in the period between November 2013 and December 2019 were eligible, for this study, since the others had no eCTC or were collected at a different timepoint.



Sample Processing and Staining

Approximately 7.5 ml of peripheral blood samples of the patients were processed for the isolation and characterization of CTC by DEPArray technology. After a hypotonic red blood cell lysis (Miltenyi Biotec), the sample was enriched by an immuno-magnetic depletion of the CD45+ and CD325a+ (Miltenyi Biotec) fraction of the blood, according to manufacturer’s instructions. After incubation for 20 min at 4°C, the sample was depleted into an LD column (Miltenyi Biotec), lodged in the appropriate MidiMACS (Miltenyi Biotec) separator. The CD45− fraction, including CTC, was collected, loaded in a cartridge, and analyzed by DEPArray®. CTC were characterized alive by an antibody cocktail recognizing epithelial biomarkers in the FITC channel (EpCAM, E-Cadherin), mesenchymal markers in the PE channel (CD44, CD146, N-Cadherin) and the pan-leukocytes marker CD45 in the APC one. Nuclei were stained with HOECHST 33342 (Thermofisher Scientific). Immunostaining procedure is described in detail in the following article (13).



DEPArray Analysis and Data Selection

Circulating cell subgroups created during the DEPArray analysis were: Epithelial cells (E) characterized by nuclear positivity in blue (HOECHST 33342+) and a green signal (FITC+) specific for epithelial markers; Mesenchymal cells (M) characterized by nuclear positivity in blue (HOECHST 33342+) and by a red signal (PE+) specific for mesenchymal markers; Epithelial–Mesenchymal Cells (EM) characterized by blue nuclear positivity (HOECHST 33342+) and the simultaneous presence of a red signal (PE+) for mesenchymal markers and a green one (FITC+) for the epithelial ones; Lymphocytes (L) characterized by nuclear positivity (HOECHST 33342+) in blue and a blue signal (APC+) specific for CD45, sometimes by a mesenchymal red signal (PE+) and Negative cells (N) characterized by only the nuclear positivity in blue.

Cells of interest were selected using the CellBrowser Software (Menarini Silicon Biosystems), and sorted individually. Parameters provided by CellBrowser were morphological features such as: such as diameter, circularity, OV circularity, perimeter and fluorescence intensities for each channel (mean fluorescence intensity, max intensity, mean intensity without background) of each single cell found. All raw data were exported from the instrument and elaborated through bioinformatic tools.



Experimental Setup

All cellular parameters were analyzed first with single-variable analysis and then by means of machine-learning algorithms considering multiple variables (Figure 1).




Figure 1 | Overview of data analysis workflow.



The single variable analysis was conducted using a combination of GraphPad Prism 6.01 for the statistical analysis and Microsoft Excel 2016 for data handling. All the software used for the machine learning tests was written in Python. The version of the interpreter is Python 3.7. The software library used for the machine learning classifiers is scikit-learn 0.21.3, which is the de-facto standard library for data science with Python. Since scikit only provided a limited selection of naïve Bayes algorithms that did not fit our needs (in particular Gaussian and a Bernoulli naïve Bayes algorithm, which are targeted towards data following normal distributions and binary data respectively), we implemented a naïve Bayes algorithm able to deal with categorical data (a similar tool is now available directly from the scikit-learn library, from version 0.22.2 onwards). The system used for the analysis is a 64 bit processor Intel(R) Core I i7-7700HQ at 2.8 GHz equipped with 16 GB of RAM.




Results


Overall Design, Patients’ Selection and Cells Included in the Study

The study included 45 MBC patients. Each of these patients had a variable number of CTC and CD45pos cells, and each cell had several parameters provided by CellBrowser software. It was not possible to directly use the dataset, because single cells among patients were not comparable. Thus, we aggregated data of single cells in the form of descriptive statistics (average, st. dev, 25th percentile, etc.) to obtain a list of comparable features describing the cell population for each patient (Supplementary Figure S1).

A total of 2,598 cells belonging to the 45 MBC patients were processed, extracting 846 CD45pos cells and 344 eCTCs. Specifically, for each cell, DEPArray obtained a brightfield image and also 4 fluorescence images corresponding to the expression of epithelial (FITC), mesenchymal (PE), leukocyte (APC), and nuclear (DAPI) markers. From each cell image the following parameters were provided by CellBrowser software of DEPArray: circularity (using 2 algorithms, named circularity and circularityOV, the second being more effective on cells with irregular membranes), diameter, perimeter, average, and maximum intensity for each channel (both corrected and not corrected for background value). Table 1 summarizes the clinical and pathological data of patients, while Table 2 reports the number and type of cells for each patient.


Table 1 | Demographic and clinicopathological features of the 45 MBC patients analyzed.




Table 2 | Distribution of cells in patients.





Feature Selection and Data Preprocessing

Descriptive statistics of cell population data for each patient was performed using mean, standard deviation, 25th percentile, median and 75th percentile, resulting in 34 parameters for each patient, corresponding to the 34 features of cell images. Percentiles were included since the Shapiro–Wilk test revealed that most features did not follow a normal distribution (data not shown). In addition to data derived from image analysis, we considered the total number of cells per patient, and the absolute and relative number of eCTC and circulating CD45 positive cells.

To reduce the dimensionality of data, parameters were ranked by information gain with respect to the target variable (OS and BM). Information gain is the amount of information gained about a random variable or signal from observing another random variable; it is a method of feature selection widely used in machine-learning applications. OS was transformed into a dichotomic variable (survival ≤30 or >30 months), considering the median as threshold, so that the population could be divided in two groups equally represented. BM was transformed into a dichotomic variable as well (presence or absence of bone metastasis). Feature selection process was performed independently for eCTC and CD45pos cell populations. The ten most relevant features obtained for each of these two cell populations are listed in Table 3. Each selected feature for eCTC and CD45pos is visualized as box plot with respect to OS and BM in Supplementary Figures S2-S5. Since OS was originally a continuous variable, regression plot is also displayed in Supplementary Figures S6, S7 for completeness.


Table 3 | Best features ranked by information gain, with respect to overall survival and bone metastasis.



With respect to OS, both morphological and phenotypic variables were selected among the most relevant, with a predominance of morphological variables. Interestingly, the number of cells was not included among this set by ranking, while known to be a good predictor of OS. With respect to BM, variables describing morphology, phenotype and the number of eCTC were included among the most relevant variables.

Most of the classification algorithms we adopted (see section Experimental Setup) did not need additional pre-processing to utilize the features. The only exception was naïve Bayes, which expected the features to be categorical instead of continuous. Therefore, we maintained the data in their original form when using all approaches, except for naïve Bayes, where features were discretized in four equal-frequency classes.



Single Variable Analysis Demonstrated That Morphology of Both eCTC and CD45pos Predict Prognosis and Bone Metastasis

For both eCTC and CD45pos, we selected the best feature, used ROC curve analysis to detect the best cutoff for the variable with respect to the target (either OS or BM) using the Youden index (calculated as SN + SP − 1, where SN is the sensitivity and SP is the specificity), and represented Kaplan–Meier curve for OS and contingency tables for BM. Survival curves and contingency tables were obtained using the leave-one-out method: cut-off was assessed on all patients except for one, on which prediction for survival and bone metastasis were performed according to the established cut-off. This was iterated for all patients, so that each prediction was made on a patient who was not used for cut-off assessment. Interestingly the best variable was morphological in all cases.

Considering OS, circularity, measured in brightfield images, resulted to be the most predictive feature for both eCTC and CD45pos, although two different aspects were considered for the two types of cell: the 25th percentile for eCTC (i.e., circularity degree) and standard deviation for CD45pos (i.e., variability in circularity). The median survival of MBC patients, stratified as predicted to survive <= or > 30 months months, resulted to be 15 months vs. 43 months for eCTC (p = 0.03, Log-Rank) and 19 months vs. 36 months for CD45pos (p = 0.16, Log-Rank) (Figure 2).




Figure 2 | Kaplan–Meier curves of MBC patients stratified according to the circularity of eCTC (left) and CD45 positive cells (right). P-values were calculated by Log Rank test.



Considering the presence of bone metastases, the best predictors resulted to be the diameter for either eCTC (increased median value) or CD45pos (increased standard deviation), measured in different fluorescence channels. Using the same iterative cut-off method to predict MBC patients as having or not BM. eCTC could predict BM with a positive predictive value (PPV) of 79% and a negative predictive value (NPV) of 48%, while CD45pos presented a PPV of 91% and an NPV of 41%. The accuracy was 64% for eCTC and 53% for CD45pos (Table 4).


Table 4 | Contingency tables of prediction of bone metastasis based on a single variable derived from either eCTC (left) or CD45-positive cells (right).



The prediction showed strong PPV, but high number of false negatives. In the attempt of improving this results, we explored different machine learning approaches.



Machine Learning Approaches Improved the Accuracy in Predicting Overall Survival and Bone Metastasis

The machine learning approaches selected for our tests are the following:

	Logistic regression: A statistical model commonly used in medicine to classify binary target variables (32–37).

	Decision trees: this algorithm is considered a weak classifier, but able to organize features based on their importance and find the best cut-off value for discriminating subgroups. It is a white-box approach, therefore it offers an explanation of every choice the algorithm made, making it well suited for medical applications (24, 32, 38).

	Random forest: An approach that represents an evolution of the previous: by combining several decision trees in a voting system, this algorithm is able to mitigate the error that a single decision tree might have. It is less transparent than a single decision tree, but it typically performs better in terms of classification (32, 39).

	Naive Bayes: It is a probabilistic machine learning method which assumes strong independence between the features. While this assumption is typically too “naive” for non-synthetic data, where there are often hidden dependences between variables, this approach has been applied successfully in many real-world scenarios (23, 32).



As in the case of single-variable analysis, image-based features of eCTC and CD45pos cells were used as inputs and OS (≤30 vs. >30 months) or BM (absence vs. presence) as output.

For each model, we evaluated the “power set” of the best ten features identified during feature selection. The “power set” includes all possible subsets of a given set (e.g., if our set is [1, 2, 3], the power set is [1, 2], [2, 3], [1, 3], [1], [2], [3], [], [1, 2, 3]). Thus, for each model, we tested 1023 possible subsets of features with size ranging from 1 to 10 features (Supplementary Table S1). Thus, we screened all models with all combinations of features, to identify the best one. Each model was cross-validated with leave-one-out strategy, that is, training of the model on all patients except for one, which is in turn used as test set, doing this iteratively for all patients. The performance of the model is thus the average of all “leave-one-out” models created.

Models were trained independently for eCTC and CD45pos, then we evaluated models taking into account both cell populations combined.

Naïve Bayes resulted to be the best classifier in all cases: considering all three possible inputs (eCTC, CD45pos, eCTC & CD45pos) and all possible target variables (OS or BM) (Supplementary Table S1). Details on the results obtained by the Naïve Bayes approach are reported below.


Both eCTC and CD45pos Features Could Predict Overall Survival

Table 5 shows the features considered by the best models for eCTC, CD45pos and eCTC & CD45pos. The power set of 10 features was evaluated, but the best performing subset of features only contained 6 features for eCTC, 3 features for CD45pos and 4 features for eCTC & CD45pos. This underlines that addition of a feature is not always beneficial and can actually lead to worst performance, increasing noise. Regarding the parameters selected, they were mainly morphological in the case of eCTC (circularity of cell and nucleus and perimeter), while, for the CD45pos, both circularity and expression of mesenchymal markers (PE) were chosen by the Naïve Bayes model.


Table 5 | Features identified by the naïve Bayes approach as the most informative to predict overall survival and bone metastasis considering eCTC features alone (left), CD45pos alone (center) or both (right).



As shown in Figure 3, the Naïve Bayes model significantly stratifies patients according to prognosis using image features of either eCTC and CD45pos alone or in combination.




Figure 3 | Kaplan–Meier curves of the MBC patients stratified in OS <= 30 months (blue curve) or >30 months (orange curves) according to the naïve Bayes analysis conducted taking into consideration eCTC (left panel), CD45pos (central panel) or eCTC+C45pos (right panel).



The median OS difference was similarly significant in all three cell subsets: eCTC (46 months versus 11 months; p <0.0001), CD45pos (12.5 vs. 45 months; p = 0.0004) and eCTC+CD45pos (11 vs. 45 months; p = 0.0003). The combined approach was slightly more accurate in predicting OS (89%) with respect to eCTC or CD45pos considered alone (82 and 84%, respectively). Thus, the combination of the information obtained from eCTC and CD45pos worked better than considering these cell populations separately.

Altogether these data showed that, with respect to the single variable analysis (Table 5), adopting a machine learning approach significantly increased accuracy in stratification of patients by survival. The improvement in accuracy was significant in the case of eCTC (from 73.3 to 82%), and even higher in CD45pos (from 66.7 to 84%). Moreover, the combination of image data obtained from eCTC and CD45pos further boosted the classification accuracy to 89%, confirming the benefit of associating information from both cell types.



eCTC Predicted the Presence of Bone Metastases With Greater Accuracy Than CD45 Positive Cells

Naïve Bayes was the best performing model also concerning the BM prediction (Supplementary Table S1). In Table 5 are summarized the subsets of features selected for eCTC, CD45pos and eCTC & CD45pos.

In the case of eCTC, beside features strictly related to image analysis (perimeter, circularity and aberrant expression of CD45), the percentage of eCTC was selected as an informative feature, that is the fraction of eCTC on total CTC detected in that patient, suggesting a role for the number of CTC in prediction of bone metastasis. In the case of CD45pos, circularity and expression of mesenchymal markers resulted to be informative. Interestingly, in the combined approach the features selected were all derived from eCTC, indicating no improvement derived by combining the analysis with CD45pos.

Considering the contingency tables (Table 6), it is apparent that, with respect to the single-variable analysis, the accuracy was strongly increased either considering eCTC (from 67 to 91%) or CD45pos alone (from 58 to 84%).


Table 6 | Contingency tables of the prediction of bone metastases adopting a machine learning approach taking into consideration only eCTC (top), only CD45-positive cells (middle) or both (bottom).



In particular, the eCTC model performed better than the CD45pos one. Indeed, specificity and PPV were both 100% for eCTC and 80 and 84% for CD45pos.

Differently from OS, considering eCTC & CD45pos did not improve the accuracy in predicting bone metastases. As additional evidence, the combined approach used the same features of the model set on eCTC only.





Discussion

Systematic and quantitative image analysis of cells and machine-learning have been employed in CTC detection methods (40–42). Moreover, a software application named ACCEPT intended to segment images of cells and extract multiple parameters was recently published (43). Applications of ACCEPT found in literature were however limited to accurate and reproducible assessment of particular features [e.g., treatment target expression levels (43) or size (44)], or cell classification (45). To our knowledge, quantitative features extracted from images of isolated CTC have never been employed as prognostic biomarkers for clinical outcomes either alone or integrated in complex modeling. This paper offers evidence that useful information can be extracted from quantitative analysis of images of isolated CTC. Moreover and surprisingly, information about overall survival could also be extracted from images of leukocytes. We conducted both a single variable analysis and a multi-variable analysis with machine-learning approaches. In general, features that when taken alone showed poor performance in discriminating between target variables (OS and bone metastasis), were instead capable of generating effective models when integrated in a multi-features model.

Some biological insights might be gained by a closer look to features selected by ranking and model optimization. With respect to eCTC and OS, features ranking indicated predominantly morphological properties, and some protein expression data. The most represented morphological aspect was circularity, which is the most prevalent feature, in various channels and statistical variables, and it is defined as:

	

Circularity is thus inversely proportional to the square of perimeter, meaning that membranes with higher complexity (frequency and extent of indentations) have lower levels of circularity.

Higher circularity values (simpler membranes) are linked to poor survival. In patients with lower overall survival, both nucleus and membrane of eCTC have higher circularity. In a purely speculative way, in the attempt to attribute a meaning to this information, the ideal representation of a cell with a highly circular membrane and nucleus is a small basal-like or stem-like cell with low differentiation, which might be more be responsible of cancer progression (46). Thus, the increased average circularity of CTC population might indicate an increased proportion of such highly aggressive cells.

Protein expression in patients with lower overall survival showed higher variation (SD) in CD45 expression in eCTC (higher mean_intensity_bgsub_apc_SD). Considering that eCTC do not show CD45 expression, we cannot give a biological interpretation to this feature. From a data analysis point of view, it is very interesting that a feature typically used as categorical (presence/absence of CD45 expression) seems to have instead some information when considered quantitatively, even inside the same category of “negative” CD45 expression.

Considering CD45-positive cells and OS, cells also showed significantly increased circularity (and decreased standard deviation) in lower OS, indicating a more circular and homogenous cell population in patients with lower OS. Interpretation of this variable is not easy as we do not know whether CD45pos are neutrophils, monocytes or lymphocytes.

With respect to bone metastasis, eCTC showed morphological, protein expression, and % composition features. The eCTC population associated with bone metastasis can grossly be described as bigger, more circular, and with higher fraction of epithelial cells over total CTC. This provides an interesting insight in morphological properties which could be worth investigating with deeper molecular analysis, in order to understand why these cells display such preferential trophism for bone.

Considering bone metastasis and CD45pos, cells show substantially a lower circularity when bone metastasis are present.

The majority of these variables are selected also in the independent process of model screening and optimization. With respect to the machine learning analysis, we provided an exhaustive benchmark of the available algorithms. In the totality of cases, naïve Bayes proved to be the best classifier. In the analysis for the OS prediction, there was a significant improvement compared with the single-variable analysis, in terms of both accuracy and Kaplan–Meier curve, particularly in CD45pos cells. In the single-variable analysis, CD45pos cells failed to stratify patients according to survival. By exclusively using this approach, one would conclude that no information related to survival is contained in CD45pos. The use of a more complex approach instead, able to highlight more subtle relationships hidden in data, showed that CD45pos do actually contain information about survival, apparently comparable to eCTC, as effective stratification of patients was possible. Moreover, the combined approach boosted the performance of the model from 0.84 to 0.89 of accuracy, suggesting that information coming from CD45pos is different and complementary to eCTC.

The naïve Bayes classifier proved to be a good predictor of BM, especially in terms of specificity and positive predictive value. Contrarily to OS prediction, combining the information from CD45pos does not improve the performance of the classifier.

Thus, both CD45pos and eCTC cells are informative with respect to OS, and their information is different and complementary, because combining information coming from the two populations showed better performance than considering either CD45pos or eCTC alone. Moreover, combined model showed top-ranked features of both cell subpopulations.

In BM prediction instead, information was found mainly in eCTC population. CD45pos is informative, but information is overshadowed by eCTC. Combining information from eCTC and CD45pos did not improve performance, with the combined model showing only eCTC features.

A possible explanation of these facts is that eCTC and CD45pos contain information regarding two different aspects of patient-tumor interaction: eCTC contain information about biological features of cancer, while CD45pos offer an insight into the host immune system status. For this reason, considering both these aspects by combining information offer better prediction on survival than taken singularly. Bone metastasis instead are mainly dependent on the trophism of cancer cells, and are thus mainly predicted by eCTC features.


Conclusions

The study suggests that quantitative image analysis can reveal undiscovered meaningful information. Thanks to modern machine learning approach, the massive amount of data yielded by quantitative image analysis can be linked to clinical outcomes effectively. In our specific case, images of epithelial CTC and leukocytes revealed information predicting overall survival and metastatic pattern of MBC patients. The method uses standardized outputs (cell images and data obtained by DEPArray) and relatively simple models (e.g., Naïve Bayes), and can thus be easily scaled-up and standardized for further validation.
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Background

Overtreatment of axillary lymph node dissection (ALND) may occur in patients with axillary positive sentinel lymph node (SLN) but negative non-SLN (NSLN). Developing a magnetic resonance imaging (MRI)-based radiomics nomogram to predict axillary NSLN metastasis in patients with SLN-positive breast cancer could effectively decrease the probability of overtreatment and optimize a personalized axillary surgical strategy.



Methods

This retrospective study included 285 patients with positive SLN breast cancer. Fifty five of them had metastatic NSLNs and 230 had non-metastatic NSLNs. MRI-based radiomic features of primary tumors were extracted and MRI morphologic findings of the primary tumor and axillary lymph nodes were assessed. Four models, namely, a radiomics signature, an MRI-clinical nomogram, and two MRI-clinical-radiomics nomograms were established based on MRI morphologic findings, clinicopathologic characteristics, and MRI-based radiomic features to predict the NSLN status. The optimal predictors in each model were selected using the 5-fold cross-validation (CV) method. Their predictive performances were determined by the receiver operating characteristic (ROC) curves analysis. The area under the curves (AUCs) of different models was compared by the Delong test. Their discrimination capability, calibration curve, and clinical usefulness were also assessed.



Results

The 5-fold CV analysis showed that the AUCs ranged from 0.770 to 0.847 for the radiomics signature, from 0.720 to 0.824 for the MRI-clinical nomogram, from 0.843 to 0.932 for the MRI-clinical-radiomics nomogram. The optimal predictive factors in the radiomics signature, MRI-clinical nomogram, and MRI-clinical-radiomics nomogram were one texture feature of diffusion-weighted imaging (DWI), two clinicopathologic features together with one MRI morphologic finding, and the DWI-based texture feature together with the two clinicopathologic features plus the one MRI morphologic finding, respectively. The MRI-clinical-radiomics nomogram with CA 15-3 included achieved the highest AUC compared with the radiomics signature (0.868 vs. 0.806, P <0.001) and MRI-clinical nomogram (0.868 vs. 0.761; P <0.001). In addition, the MRI-clinical-radiomics nomogram without CA 15-3 showed a higher performance than that of the radiomics signature (AUC, 0.852 vs. 0.806, P = 0.016) and the MRI-clinical nomogram (AUC, 0.852 vs. 0.761, P = 0.007). The MRI-clinical-radiomics nomograms showed good discrimination and good calibration. Decision curve analysis demonstrated that the MRI-clinical-radiomics nomograms were clinically useful.



Conclusion

The MRI-clinical-radiomics nomograms developed in our study showed high predictive performance, which can be used to predict the axillary NSLN status in SLN-positive breast cancer patients before surgery.





Keywords: multiparametric magnetic resonance imaging, nomograms, sentinel lymph node, lymph node excision, breast neoplasms



Introduction

Breast cancer is the first high incidence of malignant tumor and the leading cause of death by cancer among female patients (1). Axillary lymph node (ALN) status assessment is of great significance to stage breast cancer and guides the treatment decision-making (2). Nowadays, sentinel lymph node biopsy (SLNB) has substituted for the ALN dissection (ALND) to assess the ALN metastasis in early-stage breast cancer patients (3). Despite a high risk that non-sentinel lymph nodes (NSLNs) metastasis may occur in patients with metastatic sentinel lymph nodes (SLNs) (4, 5), not all patients with a positive SLN would necessarily have a positive NSLN. Indeed, the Z0011 randomized clinical trial showed that only approximately 27.3% of patients with 1 or 2 positive SLNs had NSLN metastasis (6). Other studies showed that 32.1–63% of patients with positive SLNs had NSLNs metastasis, as confirmed by ALND following SLNB (4, 5). These results demonstrate that a considerable number of patients with positive SLN might have negative NSLN; these patients may suffer from overtreatment of ALND (7). Therefore, to avoid unnecessary ALND in a patient with positive SLN but negative NSLN, developing a method to predict the absence or presence of NSLN metastasis is desperately needed.

Previously, several clinicopathologic nomograms (Memorial Sloan Kettering Cancer Center, Mayo, Cambridge, Stanford, and Ljubljana) and scoring systems (Tenon, MD Anderson Cancer Center, and Saidi) have been established to predict the NSLN status (7–14). However, all these models were developed based on pathologic features of the SLN, which could only be obtained from invasive axillary procedures. In addition, except for the Ljubljana nomograms in which preoperative axillary US examination was used as the predictors (7), none of these models have used radiologic features from diagnostic imaging. To date, noninvasive magnetic resonance imaging (MRI) has been recommended as a sufficient tool to comprehensively evaluate ALN status before treatment (15). However, MRI mainly relies on the morphologic criteria to assess the status of the ALN, which showed high specificity but low sensitivity in identifying the ALN metastasis (16). Radiomics could quantify heterogeneity of inter-tumor and intra-tumor by extracting high-throughput data from MR images (17, 18). Previously, MRI-based radiomics of the primary breast cancer has been used to predict the ALN metastasis with an area under the curve (AUC) ranging from 0.81 to 0.92 in training and 0.74 to 0.90 in the validation datasets (19–22), and the SLN burden with a reported AUC of 0.82, 0.81, and 0.81 in the training, validation, and test dataset, respectively (23). However, whether MRI-based radiomics could be applied to predict the NSLN metastasis in breast cancer patients with positive SLNs remains to be determined.

In this study, a large cohort of patients with SLN-positive breast cancer was retrospectively included. Radiomic features of the primary breast tumor on pretreatment multiparametric MRI were extracted, and the MRI-based radiomics signature was constructed to predict the NSLN metastasis. In addition, predictive clinicopathologic features and MRI morphologic findings of breast tumors before treatment were identified to develop an integrative predictive MRI-clinical-radiomics nomogram. The purpose of this study was to develop an MRI-based radiomics model to predict the NSLN metastasis in breast cancer patients with positive SLNs.



Materials and Methods


Patients and Study Design

This study was approved by the Institutional Review Board of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, and the informed consent was waived because of the nature of the retrospective study. A total of 306 consecutive women with pathologically confirmed primary breast carcinoma were collected from the hospital medical record system between April 2016 and September 2018. The patient enrollment workflow is shown in Figure 1. Patients were included if they (i) underwent multiparametric breast MRI examination before breast and axillary surgery; (ii) underwent SLNB and ALND with at least one pathologically positive SLN. The exclusion criteria were as follows: (i) chemotherapy, endocrine therapy, targeted therapy, or radiotherapy before surgery; (ii) recurrent breast malignant tumor; (iii) a history of ipsilateral breast lesion excision; (iv) distant metastasis; and (v) bilateral, multicentric, multifocal, or non-mass-type breast cancer. A total of 285 patients were included. According to the pathologic results of ALND, 285 patients were divided into two groups: the metastatic NSLN group in which at least one NSLN was metastasis (micrometastasis or macrometastasis) pathologically (n = 55) and the non-metastatic NSLN group (n = 230) in which none of NSLN was metastasis pathologically.




Figure 1 | Patient enrollment workflow. MRI, magnetic resonance imaging; SLNB, sentinel lymph node biopsy; ALND, axillary lymph node dissection; SLN, sentinel lymph node; NSLN, non-sentinel lymph node.





Clinicopathologic Characteristics

All patients were treated by surgery, namely, breast tumor resection, SLNB, and ALND. SLNB was performed by using the methylene blue technique, as previously described (24). The status of NSLN was identified by ALND and subsequent pathologic examination. The clinicopathologic data, namely, age, family history of breast cancer, palpable breast mass, clinical tumor staging, carcinoembryonic antigen (CEA) level, carbohydrate antigen 15-3 (CA 15-3) level, cytokeratin-19-fragment level, pathologic type of breast cancer, lymphovascular invasion, estrogen receptor (ER) status, progesterone receptor (PR) status, human epidermal growth factor receptor-2 (HER-2) status, Ki-67 status, the number of pathologically proved metastatic SLNs, and the number of pathologically proved metastatic ALNs were collected from the electronic medical record system and pathologic system. Clinical tumor staging was evaluated following the guidelines of the TNM staging system proposed by the American Joint Committee on Cancer (25). In addition, the ALN status determined by preoperative axillary ultrasound (US) examination or US-guided fine-needle aspiration biopsy (FNAB) was collected from the electronic medical record system. The presence of ALN metastasis on US was assessed according to the following abnormal morphologic features: lobulated or eccentric cortex, dislocated and/or absence of fatty hilum, eccentric or concentric thickening ≥2 mm, a cortex-to-hilum ratio ≥1, or a longitudinal axis-to-transverse axis ratio ≤2 (26). During US evaluation, the typical location of the SLN (i.e., axillary tail area) was paid special attention. A biopsy sample was obtained from the most suspicious ALN that showed the above abnormal morphologic characteristics (26).



Multiparametric MRI Acquisition

MRI was performed on a 1.5 T MR scanner (Magnetom Avanto, Siemens Medical Solutions) with an 8-channel phased-array breast coil (Siemens Medical Solutions). The patients were placed in the prone position with a body parallel to the shoulders, and both breasts were naturally suspended in the coil. The sequences included axial T2-weighted imaging (T2WI), axial T1-weighted imaging (T1WI), axial diffusion-weighted imaging (DWI) with readout segmented echo planar imaging, followed by axial dynamic contrast-enhanced imaging (DCE), axial and coronal delayed contrast-enhanced T1WI (T1 + C). Two dynamic phases of DCE acquisition (40 phases with a temporal resolution of 8 s) were initially performed. And then, all patients underwent intravenous bolus injection of Gd-DTPA-BMA (Omniscan, GE Healthcare; dose = 0.1 mmol/kg body weight; flow rate = 3.5 ml/s) through a high-pressure contrast agent injector (Spectris, Medrad). The T1 + C images were obtained immediately after the DCE imaging was finished. The detailed acquisition parameters are shown in Table 1.


Table 1 | Multiparametric MRI and acquisition parameters.





MRI Morphologic Analysis

Morphologic findings of MRI were assessed by two radiologists (ZY and YQ, with 12 and 7 years of clinical experience in breast MRI diagnosis, respectively) who knew breast cancer diagnosis but were blinded to other clinicopathologic information. All MRI sequences of each patient were available during the morphologic assessment. Any disagreement between the two radiologists was resolved by consultation of another senior radiologist (JS with 20 years of clinical experience in breast MRI diagnosis), and a final diagnosis was made by this senior radiologist. For morphologic analysis, MRI findings, namely, the quadrant of breast cancer, long diameter of breast cancer, presence of ALN metastasis, number of metastatic ALN, and short diameter of the largest ALN, were evaluated. The quadrant of breast cancer and the long diameter of breast cancer were measured on axial or coronal T1 + C image in which the primary tumor showed the largest section. All lymph nodes in the axilla were evaluated on axial and coronal T1 + C images. The ALN metastasis was assessed according to previously morphologic criteria as follows: the disappearance of hilum structure (27), lymphatic hilum displacement, eccentric cortical thickening, short diameter >1 cm, or the ratio of long to a short diameter less than 2 (28). The number of metastatic ALN was recorded. The short diameter of the largest ALN was measured on the axial T1 + C image.



Radiomic Feature Extraction

The flowchart and radiomics analysis workflow are shown in Figure 2. First, the primary breast cancer was segmented manually by investigator 1 (XZ, with 10 years of clinical experience in breast MRI diagnosis) to separately create a volume of interest (VOI) on DWI images, apparent diffusion coefficient (ADC) maps, T2WI images, and T1 + C images using the ITK-SNAP (version 3.6.0). Investigator 1 repeated the tumor segmentation in a randomized selecting dataset (n = 60) after 2 weeks, and investigator 2 (JH, with 3 years of clinical experience in breast MRI diagnosis) independently performed the segmentation in these 60 patients using the same method as that of investigator 1. Second, radiomic feature extraction was performed using the PyRadiomics toolkit (version 3.0.1) written in Python (version 3.8.3). All the segmented images were interpolated to normalize the spatial resolution in X, Y, and Z directions. For each patient, 1,595 radiomic features were extracted from the initial VOIs and the wavelet filtered, and intensity transformed DWI, ADC, T2WI, and T1 + C images. A total of 6,380 radiomic features were extracted from the primary breast tumors of these four sequences. Details of radiomic features are shown in Supplementary Table 1. Third, the intraclass correlation coefficients (ICCs) for the extraction of NSLN metastasis-related radiomic features were assessed by the reproducibility of intra-investigator (first segmentation of investigator 1 vs. second segmentation of investigator 1) and inter-investigator (first segmentation of investigator 1 vs. segmentation of investigator 2), respectively. A good agreement was considered when an ICC was greater than 0.75.




Figure 2 | Study flowchart and radiomics analysis workflow. The green rectangular boxes in the study flowchart represent three different non-sentinel lymph node predictive models, namely, radiomics signature, MRI-clinical-radiomics nomogram, and MRI-clinical nomogram. MRI, magnetic resonance imaging; LASSO, shrinkage and selection shrinkage and selection operator; T2WI, T2-weighted imaging; T1 + C, delayed contrast-enhanced T1-weighted imaging; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; VOI, volume of interest.





Development of Predictive Models

MRI morphologic findings, clinicopathologic characteristics, and MRI-based radiomic features were selected to develop three kinds of predictive models, namely, a radiomics signature and two integrative models. For the two integrative predictive models, one was the MRI-clinical nomogram where the independent predictors of MRI morphologic findings and predictive clinicopathologic characteristics were included; the other was the MRI-clinical-radiomics nomogram where the independent predictors of MRI morphologic findings, predictive clinicopathologic characteristics, and radiomics signature were included. To construct integrative predictive models, the Mann–Whitney U test was used to compare the MRI morphologic findings and clinicopathologic characteristics between the metastatic NSLN group and the non-metastatic NSLN group. Multivariable logistic regression was then applied to select independent predictors of NSLN metastasis from the MRI morphologic findings and clinicopathologic characteristics. For radiomics analysis, the Mann–Whitney U test was performed to select the statistically significant radiomic features between metastatic NSLN group and non-metastatic NSLN group, followed by the least absolute shrinkage and selection operator (LASSO) regression to identify the NSLN metastasis-related radiomic features. The radiomics signature was presented as a radiomics score and constructed by combining the NSLN metastasis-related radiomic features, weighted by the corresponding coefficients of LASSO regression. To determine the optimal independent predictors in each model, a 5-fold cross-validation (CV) analysis was performed by training and testing five separate models to select the most robust predictors (29). For the 5-fold CV analysis, the entire dataset was randomly divided into five subsets, four subsets used for training and another one subset used for testing. This process was repeated five times and five training CV folds and five internal validation CV folds were obtained. The receiver operating characteristic (ROC) curve analysis was used to assess the predictive performance of each model. The area under the curve (AUC) was calculated and compared among different models by the DeLong test (30).



Performance and Usefulness of Predictive Models

The most robust predictors in the radiomics signature, the MRI-clinical nomogram, and the MRI-clinical-radiomics nomogram selected by the 5-fold CV analysis were used to construct the final predictive models. The performances of the final models of the radiomics signature, MRI-clinical nomogram, and MRI-clinical-radiomics nomogram were determined by the ROC curves analysis in the entire dataset. Their AUCs were compared by the Delong test. The calibration of the final radiomics signature, MRI-clinical nomogram, and MRI-clinical-radiomics nomograms was evaluated using the calibration curves with the Hosmer–Lemeshow test. In addition, the decision curve analysis (DCA) was conducted respectively to assess the clinical use of the final predictive models presenting as the net benefit at different threshold probabilities (31).



Statistical Analysis

Descriptive statistics were summarized as median (quartile range) for continuous variables or as frequencies with percentages for categorical variables. The continuous variables were compared between different groups by using the t-test. The categorical variables were compared between different groups using Pearson’s χ2 or Fisher exact test. The comparison of continuous and categorical variables and ICCs for the feature extraction of intra- and inter-investigator was conducted on SPSS 25. The Mann–Whitney U test, LASSO regression, multivariable logistic regression, 5-fold CV, ROC analysis with AUC values calculating, calibration curves, and DCA were performed using the R software (version 4.0.1). P <0.05 was considered statistically significant.




Results


Clinicopathologic Characteristics and MRI Morphologic Findings

The clinicopathologic characteristics and MRI morphologic findings of 55 patients with metastatic NSLN and 230 patients without metastatic NSLN are summarized in Table 2. The time between the breast MRI and surgery ranged from 1 to 12 days, with a median of 5 days. There were significant differences in CA 15-3 status (P <0.001), pathologic types of breast cancer (P = 0.005), lymphovascular invasion (P = 0.001), MRI-determined presence of ALN metastasis (P = 0.018), and MRI-determined short diameter of the largest ALN (P <0.001) between metastatic and non-metastatic NSLN groups. Most of the patients (272 of 285, 95.4%) had preoperative US results of ALN status. Among these 272 patients, 246 patients had negative results on axillary US examination, and 26 patients had positive results on axillary US examination but negative results US-guided FNAB. Based on the entire dataset of 285 patients, multivariable logistic regression showed that one MR-determined finding (MRI-determined short diameter of the largest ALN), and two clinicopathologic characteristics (CA 15-3 and lymphovascular invasion of breast cancer) were the independent predictors of the NSLN metastasis (Table 3). Based on the dataset of 272 patients having preoperative axillary US results, US-reported ALN status was an independent predictor of the NSLN metastasis (Table 3). Other MRI morphologic findings and clinicopathologic characteristics were not selected as the independent predictors of the NSLN metastasis (Supplementary Table 2).


Table 2 | Clinicopathologic characteristics and MRI morphologic findings of patients with and without metastatic NSLN.




Table 3 | Multivariate logistic regression analysis of predictors of NSLN metastasis prediction in patients with breast cancer based on entire dataset.





Radiomic Feature Extraction

A total of 6,380 radiomic features were extracted from DWI, ADC, T2WI, and T1 + C images of the primary breast tumors for each patient. The ICCs of these radiomic features ranged from 0.797 to 0.981 and 0.773 to 0.976 for intra- and inter-investigator segmentation, respectively, indicating a good reproducibility for radiomic feature extraction.



Development of Different Predictive Models

For the radiomics signature, the MRI-clinical nomogram and the MRI-clinical-radiomics nomogram, the selected independent predictors and their AUCs in each training and internal validation CV fold of the 5-fold CV analysis are shown in Table 4. The AUCs ranged from 0.774 (95% CI, 0.675–0.873) to 0.847 (95% CI, 0.757–0.937) in the training CV fold and from 0.770 (95% CI, 0.654–0.886) to 0.820 (95% CI, 0.749–0.891) in the internal validation CV fold for the radiomics signature, from 0.758 (95% CI, 0.662–0.854) to 0.824 (95% CI, 0.729–0.919) in the training CV fold and from 0.720 (95% CI, 0.598–0.843) to 0.762 (95% CI, 0.685–0.840) in the internal validation CV fold for the MRI-clinical nomogram, and from 0.850 (95% CI, 0.764–0.936) to 0.932 (95% CI, 0.871–0.993) in the training CV fold and from 0.843 (95% CI, 0.745–0.943) to 0.904 (95% CI, 0.849–0.959) in the validation CV fold for the MRI-clinical-radiomics nomogram. The comparisons of the performances among different predictive models in each training CV fold and internal validation CV fold are shown in Table 5. The AUCs of the MRI-clinical-radiomics nomogram were higher than those of the radiomics signature (P ≤0.001–0.059) and the MRI-clinical nomogram (P = 0.003–0.050). Although Fold 1 model of MRI-clinical-radiomics nomogram appeared to perform the best in training and also validation and in comparison with other models, the most robust variables selected by each CV fold were four features, namely, an MRI morphologic finding (short diameter of the largest ALN), two clinicopathologic features (CA 15-3 and lymphovascular invasion of breast cancer), and a texture feature of DWI (DWI_original_GLDM_Small_Dependence_High_GrayLevel_Emphasis), which were considered as the optimal independent predictors and used for final model construction.


Table 4 | Five-fold cross-validation analysis of different predictive models.




Table 5 | Comparisons of predictive performances of different predictive models in 5-fold cross-validation analysis.





Performance and Clinical Usefulness of Different Predictive Models

The final model of the MRI-clinical-radiomics nomogram is shown in Figure 3A. ROC analysis showed that the final model of the MRI-clinical-radiomics nomogram had an AUC of 0.868, which was significantly higher than that of radiomics signature (0.868 vs. 0.806, P <0.001) and MRI-clinical nomogram (0.868 vs. 0.761, P <0.001) (Figure 3B). As the CA 15-3 is not a standard of care for prediction of NSLN metastasis, the MRI-clinical-radiomics nomogram, namely, an MRI morphologic finding (short diameter of the largest ALN), a clinicopathologic features (lymphovascular invasion of breast cancer), and a texture feature of DWI (DWI_original_GLDM_Small_Dependence_High_GrayLevel_Emphasis) but without CA 15-3 were also constructed. This MRI-clinical-radiomics nomogram had an AUC of 0.852, which was significantly higher than those of radiomics signature (0.852 vs. 0.806, P = 0.016) and MRI-clinical nomogram (0.852 vs. 0.761, P = 0.007) in predicting NSLN metastasis in the entire dataset (Figure 3C). The calibration curves (Figure 3D) indicated an excellent calibration capability of the MRI-clinical-radiomics nomogram with or without CA 15-3, and the Hosmer–Lemeshow test showed a P-value of 0.291 and 0.296, respectively, suggesting a favorable calibration in terms of the agreement between the predicted risk and actual probability for NSLN metastasis. The decision curve analysis showed that if the threshold probability is between 0.1 and 0.6, using the MRI-clinical-radiomics nomograms with or without CA 15-3 to predict NSLN metastasis adds more benefit than either treating-all or treating-no patients (Figure 4). Additionally, the radiomics score of each patient is shown in Figure 5A. The radiomics scores in the non-metastatic NSLN group were higher than those in the metastatic NSLN group (0.210 [−0.471, 0.822] vs. −0.980 [−1.270, −0.401], P <0.001). The comparison of radiomics scores between the two groups is shown in Figure 5B.




Figure 3 | MRI-clinical-radiomics nomograms, receiver operating characteristic (ROC) curves, and calibration curves of predictive models. MRI-clinical-radiomics nomogram (A) developed in the entire dataset incorporates one MRI-determined morphologic finding, two clinicopathologic characteristics (lymphovascular invasion of breast cancer plus CA 15-3), and radiomics signature. MRI-clinical-radiomics nomogram (B) developed in the entire dataset incorporates one MRI-determined morphologic finding, one clinicopathologic characteristics (lymphovascular invasion of breast cancer alone), and radiomics signature. ROC curves of the radiomics signature, MRI-clinical nomogram, and MRI-clinical-radiomics nomograms with CA 15-3 (MRI-Clinical-Radiomics Nomogram 1) and without CA 15-3 (MRI-Clinical-Radiomics Nomogram 2) in the entire dataset (C). Calibration curves of the radiomics signature, MRI-clinical nomogram, and MRI-clinical-radiomics nomograms in the entire dataset (D). ALN, axillary lymph node; AUC, area under the curve; CI, confidence interval; HL, Hosmer–Lemeshow.






Figure 4 | Decision curve analysis (DCA) of the radiomics signature, MRI-clinical nomogram, and MRI-clinical-radiomics nomograms with CA 15-3 (MRI-Clinical-Radiomics Nomogram 1) and without CA 15-3 (MRI-Clinical-Radiomics Nomogram 2). The x-axis and y-axis represent the threshold probability and net benefit, respectively. The gray line and black line represent the hypothesis that all patients and no patient had NSLN metastasis, respectively. The threshold probability is where the expected benefit of treatment is equal to the expected benefit of avoiding treatment. The decision curves in the validation dataset showed that if the threshold probability is between 0.1 and 0.6, using the MRI-clinical-radiomics nomograms to predict non-sentinel lymph node metastasis add more benefit than treating all or treating no patients.






Figure 5 | Waterfall plots show the distribution of radiomic feature and non-sentinel lymph node metastasis status for each patient in the entire dataset (A). Boxplots of the radiomic score in the entire dataset (B).



Additionally, since axillary US is the most robust axillary assessment tool, the 5-fold cross-validation analysis, where the US-reported ALN status was also included as a variable, was performed in 272 patients with negative axillary US examination (with or without FNAB). The results showed that the US-reported ALN status was not a strong clinical predictor (Supplementary Table 3). Based on these 272 patients, the MRI-clinical-radiomics nomograms with CA 15-3 and without CA 15-3 showed an AUC of 0.861 and 0.844 in predicting NSLN metastasis, respectively (Figure 6). After the US-reported ALN status was added, the MRI-clinical-radiomics nomograms with CA 15-3 and without CA 15-3 had an AUC of 0.862 and 0.824 in predicting NSLN metastasis in this subcohort (Figure 7).




Figure 6 | Receiver operating characteristic curves of the MRI-clinical-radiomics nomograms with CA 15-3 (MRI-Clinical-Radiomics Nomogram 1) and without CA 15-3 (MRI-Clinical-Radiomics Nomogram 2) in predicting non-sentinel lymph node metastasis based on 272 patients with negative axillary US examination.






Figure 7 | Nomograms, receiver operating characteristic (ROC) curves of the US-reported ALN status-incorporated MRI-clinical-radiomics predictive models with CA 15-3 (MRI-Clinical-Radiomics Nomogram 3) and without CA 15-3 (MRI-Clinical-Radiomics Nomogram 4) in predicting non-sentinel lymph node metastasis based on 272 patients with negative axillary US examination. MRI-clinical-radiomics nomogram 3 (A) incorporates one MRI-determined morphologic finding, three clinicopathologic characteristics (lymphovascular invasion of breast cancer, CA 15-3 plus US-reported ALN status), and radiomics signature. MRI-clinical-radiomics nomogram 4 (B) incorporates one MRI-determined morphologic finding, two clinicopathologic characteristics (lymphovascular invasion of breast cancer plus US-reported ALN status), and radiomics signature. ROC curves (C) of the MRI-Clinical-Radiomics Nomogram 3 and MRI-Clinical-Radiomics Nomogram 4 in predicting non-sentinel lymph node metastasis based on 272 patients with negative axillary US examination. ALN, axillary lymph node; AUC, area under the curve; CI, confidence interval.






Discussion

In this study, we developed two MRI-clinical-radiomics nomograms that incorporate one MR-determined finding (short diameter of the largest ALN), one or two clinicopathologic characteristics (i.e. lymphovascular invasion of breast cancer or CA 15-3 plus lymphovascular invasion of breast cancer), and the radiomics signature consisting of one DWI radiomic feature based on the entire dataset of 285 patients. These two MRI-clinical-radiomics nomograms demonstrated robust and high predictive performance (AUC = 0.868 and 0.852), which were both better than the radiomics signature alone and MRI-clinical nomogram. The developed MRI-clinical-radiomics nomograms can serve as novel and easy-to-popularized tools to predict axillary NSLN metastasis in breast cancer patients with positive SLNs.

Invasive ALND is associated with potential postoperative morbidities such as pain, numbness, lymphedema, restricted arm movements, and high risk of infection (32, 33), which can be omitted for those patients at extremely low risk of NSLN metastasis (2). Previously, various clinicopathologic models, such as Memorial Sloan Kettering Cancer Center, Mayo, Cambridge, Stanford, and Ljubljana nomograms, were constructed to predict the NSLN metastasis with reported AUCs range from 0.74 to 0.84 (8–12). It is noted that these predictive models required the pathologic results both from the primary tumor and from the SLN, i.e., the SLN size, the number of positive SLN, and the proportion of positive SLN to all dissected SLN. This information is available only after the invasive SLNB (8–12). In our study, only the preoperative imaging data, clinical details, and pathologic information of the primary breast tumor obtained from biopsy were applied to develop a predictive model. Comparatively, our predictive model may be preferable in clinical practice as it can predict NSLN status without the trauma of the axilla resulting from the SLNB.

To date, a few MRI-based radiomics nomograms have been established for predicting the presence of ALN metastasis, disease-free survival, neoadjuvant chemotherapy efficacy, and tumor microenvironment status in breast cancer patients (19, 34–36). Previously, a Ljubljana nomogram was constructed using the preoperative axillary US features and clinicopathologic information to predict the likelihood of NSLN metastases, with the reported AUCs ranging from 0.75 to 0.79 (7). MRI-based radiomics nomogram to predict the axillary NSLNs metastasis in breast cancer patients with positive SLNs remains a scarcity of data. Dong et al. reported that breast cancer-specific radiomics features extracted from T2WI and DWI images could improve the performance in predicting SLN metastasis, with an AUC of 0.863 in the training set and 0.805 in the validation set (21). In addition, a T2WI and DWI images-based radiomics predictive model could be utilized for preoperative stratification of the SLN low- and heavy-burden in breast cancer patients, yielding an AUC of 0.82, 0.81, and 0.81 in the training, validation, and test dataset, respectively (23). These studies indicated the potential of T2WI- and DWI-based radiomics in predicting the NSLN metastasis. In our study, radiomic features of multiparametric MRI, namely, T2WI, DWI, ADC, and T1 + C were extracted. The 5-fold CV analysis showed that one radiomic feature from DWI (DWI_original_GLDM_Small_Dependence_High_GrayLevel_Emphasis) ranged from 0.774 to 0.847 in the training CV fold and from 0.770 to 0.820 in the internal validation CV cohort. Moreover, DWI_original_GLDM_Small_Dependence_High_GrayLevel_Emphasis was a consistently selected variable during the 5-fold CV analysis, suggesting that this radiomic feature from DWI was a robust variable. As such, it was selected as the optimal predictor incorporated into the final predictive models. The final model of the one DWI feature-based radiomics signature had a favorable AUC of 0.806 in the entire cohort. This result suggested that the predictive capacity of radiomics features from DWI may be better than the radiomics features extracted from other sequences for predicting the NSLN metastasis. Moreover, this one feature-based radiomics signature might be more convenient for clinical use since fewer reproducible radiomic features imply better reproducibility (37).

To further improve the predictive performance of radiomics signature, clinicopathologic information and MRI-determined morphologic findings were also assessed and incorporated to build an integrative radiomics-based predictive model in our study. Besides the radiomics signature, one MRI morphologic finding (short diameter of the largest ALN), and two clinicopathologic characteristics, including CA 15-3, lymphovascular invasion of breast cancer, were identified as the independent predictors by multivariable logistic regression for NSLN metastasis. The final model of the MRI-clinical-radiomics nomogram incorporating these predictors showed a higher performance than that of the radiomics signature (AUC, 0.868 vs. 0.806, P <0.001) and the MRI-clinical nomogram (0.868 vs. 0.761, P <0.001) in the entire dataset. In addition, the MRI-clinical-radiomics nomogram without CA 15-3 incorporated also showed a higher performance than those of the radiomics signature (AUC, 0.852 vs. 0.806, P = 0.016) and the MRI-clinical nomogram (AUC, 0.852 vs. 0.761, P = 0.007) in the entire dataset. It is seemingly that the MRI-clinical-radiomics nomograms developed in our study may serve as a preferable approach to predicting NSLN status in patients with SLN metastasis but without NSLN metastasis. Notably, the MRI-clinical-radiomics nomograms developed in our study also did not need pathologic features that should be obtained from invasive SLNB.

Our study had several limitations. First, the dataset used in our study was retrospectively collected from one center, and no independent external dataset was available for validation, which may limit the generalizability of the radiomics-based nomogram. Further multicenter studies with a larger sample size are needed to acquire high-level evidence for the clinical application of our predictive nomogram. Second, 272 patients (95.4%) underwent preoperative US scan of ALN. Unfortunately, the results of axillary US examination in the remaining 13 patients were not available in our hospital database. This might result in slightly higher than expected SLN involvement in the entire cohort. The accuracy of NSLN prediction could be affected for the constructed predictive models. Third, the proportion of the patients with metastatic NSLN enrolled in our study was relatively small. In our study, the 5-fold CV analysis was used to select the optimal variables for the development of predictive models, as previously reported (29). Forth, manual segmentation of tumors in our study was time- and labor-consuming, which could be improved by a more automatic segmentation approach with the assistance of artificial intelligence in the future. Fifth, the radiomics signature was built based on the radiomic features extracted from primary tumors but not the ALNs. However, it is ambiguous to identify the target ALN for radiomics feature extraction because it has a great challenge to match the ALNs on pathologic examination with the lymph nodes shown on preoperative axillary MRI. Sixth, non-mass-like, multicentric, and multifocal tumors were excluded, which may limit the generalizability of our results. However, it was a great challenge to delineate the boundary of non-mass-like lesions precisely on MR images. In addition, a potential possibility that a heavy burden of axillary NSLN metastasis in patients with multicentric and multifocal tumors may lead to a bias for the patient selection.

In conclusion, two MRI-clinical-radiomics nomograms were developed in our study. The proposed integrative MRI-clinical-radiomics nomograms was one feature-based radiomics signature with one MRI-determined morphologic finding, and one or two clinicopathologic characteristic incorporated, which showed high performance in predicting the axillary NSLN metastasis in patients with SLN positive breast cancer. These MRI-clinical-radiomics nomograms can serve as novel tools to predict axillary NSLN status, which may help avoid unnecessary invasive procedures on the axilla, i.e., ALND, in breast cancer patients with positive SLN but negative NSLN.
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Purpose

The LORDSHIPS study aimed to explore the safety and efficacy of a novel fully oral triplet combination of dalpiciclib (a potent cyclin-dependent kinase 4/6 inhibitor), pyrotinib (a HER2 tyrosine kinase inhibitor) and endocrine therapy letrozole in patients with HER2-positive, hormone receptor (HR)-positive metastatic breast cancer (MBC) in the front-line setting.



Patients and Methods

Postmenopausal women with HER2-positive, HR-positive MBC were recruited in the dose-finding phase Ib trial. A standard 3 + 3 design was used to determine safety, tolerability, and recommended phase II dose (RP2D) for the combination.



Results

A total of 15 patients were enrolled to three dose combination cohorts (letrozole/pyrotinib/dalpiciclib, level/I: 2.5/400/125 mg, n=5; level/L1: 2.5/400/100 mg, n=6; level/L2: 2.5/320/125 mg, n=4). Three patients experienced dose-limiting toxicities (level/I, n=2; level/L1, n=1) and level/L2 was identified as RP2D. The most frequent grade 3-4 adverse events were neutropenia (46.7%), leukopenia (40.0%), oral mucositis (26.7%) and diarrhea (20.0%). The confirmed objective response rate (ORR) was 66.7% (95% CI: 38.4% to 88.2%). The confirmed ORR of study treatment as first line (1L) and second line (2L) HER2-targeted therapy was 85.7% (6/7) and 50.0% (4/8), respectively. Median progression-free survival (PFS) was 11.3 months (95% CI: 5.3 months to not reached). PFS in 1L setting was not reached yet, while PFS in 2L setting was 10.9 months (95% CI: 1.8 to 13.7 months).



Conclusions

The fully oral combination of dalpiciclib, pyrotinib and letrozole is a promising chemotherapy-sparing treatment option for HER2-positive, HR-positive MBC patients. The planned dose-expansion phase II study is ongoing.



Clinical Trial Registration

ClinicalTrials.gov, identifier NCT03772353.





Keywords: metastatic breast cancer, HER2-positive, hormone receptor-positive, pyrotinib, CDK4/6 inhibitor, endocrine therapy



Introduction

Breast cancer (BC) is the most common cancer globally (1), with 15%-20% of BCs classified as human epidermal growth factor receptor (HER2)-positive (2). Despite successful HER2 targeted therapies, a substantial proportion of patients with HER2-positive advanced breast cancer will eventually acquire treatment resistance and succumb to their disease. The co-expression of hormone receptors (HR) is an important resistance mechanism, affecting around 50% of HER2-positive BC (2–4). Given that patients with HER2-positive, HR-positive breast cancer are less likely to respond to standard combination of anti-HER2 and chemotherapy (5–8), several studies have valuated the possibility of combined treatment with anti-HER2 and endocrine therapy. However, such regiments merely led to a modest improvement in progression-free survival (PFS) (9–11). Therefore, alternative strategies are much-needed to overcome the treatment resistance in patients with HER2-positive, HR-positive breast cancer.

Cyclin-dependent kinase 4/6 (CDK4/6) has now become a promising strategy for HER2-positive, HR-positive breast cancer treatment as it is the downstream of the estrogen receptor (ER) and HER2 pathways, as well as many other cellular pathways inducing resistance to HER2-targeted therapies (12). Preclinical studies have reported that increased levels of cyclin D1 and CDK4 confer resistance to HER2-inhibitors in tumor cells, and CDK4/6 inhibitor can regain the sensitivity to HER2-directed agents (13). Results from the MonarcHER study demonstrated that the combination of CDK4/6 inhibitor abemaciclib plus trastuzumab and fulvestrant were effective and tolerable in heavily pretreated HER2-positive, HR-positive metastatic breast cancer (MBC) patients (14). Moreover, a similar study of tucatinib, palbociclib and letrozole showed promising activity in patients with two lines of prior therapy for HER2-positive, HR-positive MBC, even in brain metastases (15, 16). Previous findings bring a glimmer of light to prevent or conquer either endocrine or anti-HER2 therapy resistance in HER2-positive, HR-positive MBC patients. However, the efficacy of the addition of CDK 4/6 inhibitors to hormonal and anti-HER2 therapies in the front-line setting remains unknown.

Dalpiciclib (SHR6390) is an oral, novel, efficient, and highly selective small-molecule CDK4/6 inhibitor (17). Phase III trial (DAWNA-1) has demonstrated improved PFS with dalpiciclib plus fulvestrant versus placebo plus fulvestrant (15.7 vs 7.2 months; hazard ratio, 0.42; p<0.0001] in pretreated HR-positive, HER2-negative advanced breast cancer (18) Pyrotinib, an irreversible pan-HER receptor tyrosine kinase inhibitor (TKI) targeting epidermal growth factor receptor/HER1, HER2, and HER4 (19), is approved for the treatment of HER2-positive metastatic breast cancer in China. In a randomized, controlled, phase III trial (PHOEBE), pyrotinib plus capecitabine yielded significantly improved PFS compared with lapatinib plus capecitabine (12.5 vs 6.8 months; hazard ratio, 0.39; one-sided p<0.0001) in HER2-positive metastatic breast cancer patients who previously received trastuzumab and taxanes (20). Notably, preclinical studies demonstrated that dalpiciclib can overcome resistance to endocrine therapy and HER2-targeted antibody in ER-positive, HER2-positive breast cancer cells (21). Additionally, dalpiciclib sensitizes pyrotinib in pyrotinib-refractory HER2-positive gastric cancer models, which has been preliminary validated in five HER2-positive gastric cancer patients (22).

Previous findings suggested that the combination of anti-HER2 agent, CDK4/6 inhibitor and endocrine therapy could be synergistic in HER2-positive, HR-positive breast cancer. To test the hypothesis, we conducted the LORDSHIPS study to investigate the safety and efficacy of a fully oral therapy that adding CDK 4/6 inhibitor dalpiciclib to the combination of pyrotinib and letrozole as front-line treatment in patients with HER2-positive, HR-positive relapsed or metastatic breast cancer.



Patients and Methods


Study Design and Treatments

The LORDSHIPS study (ClinicalTrial.gov Identifier: NCT03772353) was a single-center, open-label, dose-finding phase Ib study. In this trial, a traditional 3 + 3 design was implemented for dose finding (Figure 1). The treatment consisted of letrozole (fixed dose at 2.5 mg) and pyrotinib (initial dose at 400 mg) orally once daily in 28-day cycles combined with dalpiciclib (initial dose at 125 mg) orally once daily for 21 days followed by 7 days off. The combination dose finding of dalpiciclib and pyrotinib followed the “3+3” principle, with a subsequent dose escalation or de-escalation based on the incidence of specified dose-limiting toxicities (DLTs) in the initial dose group. If the initial dose level (Level/I) with pyrotinib 400 mg/d and dalpiciclib 125 mg/d could be tolerated with zero out of three patients or one out of six patients experienced a DLT, subsequent participants were assigned to the higher level (Level/H) with pyrotinib 400 mg/d and dalpiciclib 150 mg/d; otherwise, to de-escalation of dalpiciclib that Level/L1 with pyrotinib 400 mg/d, and dalpiciclib 100 mg/d, or de-escalation of pyrotinib that Level/L2 with pyrotinib 320 mg/d, and dalpiciclib 125 mg/d. If two or more patients experienced a DLT in a cohort of three or six patients at the dose of Level/L1 and Level/L2, patients would be assigned to the next dose de-escalation group in Level/L3 with pyrotinib 320 mg/d and dalpiciclib 100 mg/d according to the dose adjustment principle (Figure 1).




Figure 1 | Study design. HR, hormone receptor; HER2, human epidermal growth factor receptor 2; DLT, dose-limiting toxicity; RP2D, recommended phase II dose.





Patients

Postmenopausal female patients aged 18-75 years, diagnosed with HER2-positive, HR-positive unresectable, relapsed or metastatic breast cancer confirmed by histopathology (local laboratory assessment) were recruited. Patients must have received ≤1 line of systemic chemotherapy for metastatic stage, ≤1 line of HER2 targeted therapy and ≤1 line of endocrine therapy. Other key inclusion criteria included at least one extracranial measurable lesion per Response Evaluation Criteria in Solid Tumors (RECIST) criteria version 1.1, an Eastern Cooperative Oncology Group (ECOG) performance status of 0-1, and adequate bone marrow and organ function. Key exclusion criteria were untreated central nervous system metastases, any prior treatment with CDK4/6 inhibitor, or proven primary resistance to letrozole or anastrozole. Primary resistance was defined as relapse during the first 2 years of adjuvant endocrine therapy or progression of disease within the first 6 months of first-line endocrine therapy for metastatic breast cancer.

The study was approved by the institutional ethics committee of the Fudan University Shanghai Cancer Center, following the principles of Declaration of Helsinki and Good Clinical Practice guidelines of the National Medical Products Administration of China. Informed consent was obtained from each participant. The potential risks and benefits of the protocol had been explained by the investigators before any study procedures were initiated. The protocol was designed and conducted in accordance with all applicable regulations, guidance, and local policies.



Study Objectives and Assessments

The aim of the study was to determine the safety and tolerability of dalpiciclib in combination with letrozole and pyrotinib, and the recommended dose to be used in the phase II extension study.

The primary endpoints were DLTs, maximum tolerated dose (MTD), RP2D and safety of dalpiciclib in combination with letrozole and pyrotinib. DLTs were defined as the following adverse events (AEs) definitely or possibly related to study drugs in the first cycle: grade 4 neutropenia ≥5 days; grade 4 thrombocytopenia or grade 3 thrombocytopenia with significant clinical bleeding; grade ≥3 neutropenia with fever (≥38.0 degrees Celsius for 1 hour or >38.3 degrees Celsius on single oral measurement); grade ≥4 anemia; and any grade ≥3 non-hematological toxicity (excluding grade 3-4 nausea/vomiting/diarrhea/electrolyte disturbance in patients who recovered to ≤ grade 2 within 72 hours with best supportive care, and grade 3-4 increased alkaline phosphatase or glutamyl transpeptidase related to cancer instead of drugs). MTD was defined as the dose below which ≥1 of 3 or ≥2 of 6 patients experienced DLTs in the first cycle. AE severity was classified according to the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE) (version 4.0.3).

The secondary endpoints included investigator-assessed PFS, objective response rate (ORR), disease control rate (DCR), clinical benefit rate (CBR, the proportion of subjects with complete response (CR), partial response (PR) or stable disease (SD) ≥ 24 weeks during the study), and duration of response (DOR). CR and PR must be confirmed within 4-6 weeks after the criteria for response were first met. Enrolled patients underwent imaging evaluations at baseline and at the end of every 2 cycles (every 8 weeks ±7 days) until disease progression or the initiation of new anticancer therapy. The tumor response was evaluated according to RECIST 1.1 criteria. Following disease progression or initiation of new anticancer therapy, survival was followed up every 12 weeks until death. This study also collected samples for the analysis of the pharmacokinetic (PK) profile. Blood samples for PK analyses of dalpiciclib in combination with letrozole and pyrotinib were collected on day 21 of the first cycle at 1 hour, 3 hours, and 24 hours after administration.



Statistical Analyses

All statistical analyses, except pharmacokinetic analysis (Phoenix WinNonlin 8.1), were conducted using SAS 9.2 or above (North Carolina, USA). Continuous data were presented as mean and standard deviation, or median with maximum and minimum value. Categorical data were listed as the frequency and percentage. The adverse events and serious adverse events were assessed as the indicators of safety in each dose group. Point estimates of efficacy endpoints such as ORR, DCR, and CBR were provided with 95% confidence interval (CI) calculated by Clopper-Pearson method. The Kaplan-Meier method was used to evaluate median PFS and Brookmeyer-Crowley method was used to construct 95% CI.




Results


Patient Characteristics

Between February 2019 and June 2020, a total of 15 eligible MBC patients from Fudan University Shanghai Cancer Center were enrolled in the phase Ib study. As of the January 1, 2022 data cutoff, the median follow-up was 11.4 months (range, 1.8-24.3 months). Four patients (26.7%) remained on study treatment, whereas 11 patients (73.3%) discontinued treatment because of disease progression (9 [60.0%]) or AEs (2 [13.3%]).

Baseline patient demographics, disease characteristics, and previous systemic therapies for breast cancer are summarized in Table 1. The median age was 53 years old (range, 38 to 72 years old). 14 patients (93.3%) had visceral metastases with six patients (40.0%) had more than three metastatic lesions. 10 patients (66.7%) had been previously treated with trastuzumab and 11 patients (73.3%) had received prior hormonal therapy. Seven patients (46.7%) and eight patients (53.3%) received the study treatment as first-line (1L) and second-line (2L) HER2-targeted treatment, respectively.


Table 1 | Patient characteristics.





DLTs and RP2D

Five patients were enrolled in Level/I with pyrotinib 400 mg/d, dalpiciclib 125 mg/d, and letrozole 2.5 mg/d, and two patients experienced a DLT with grade 3 oral mucositis. Subsequent participants were assigned to Level/L1 or Level/L2 with de-escalation of dalpiciclib or pyrotinib followed a 3 + 3 design. Six patients were enrolled in Level/L1 and one patient experienced a DLT with grade 3 oral mucositis, while four patients were enrolled in Level/L2 and no DLT occurred. Two different MTDs were determined as Level/L1 and Level/L2. Accordingly, Level/L2 with pyrotinib 320 mg/d, dalpiciclib 125 mg/d, and letrozole 2.5 mg/d was declared as RP2D as no DLT occurred in this cohort.



Safety

Patients who received at least one dose of protocol therapy were evaluable for safety. All patients experienced treatment-related adverse events (TRAEs) with grade 3-4 TRAEs being reported in 80.0% of patients (Table 2). The most common TRAEs were neutropenia (100.0%), leukopenia (100.0%), anemia (100.0%), oral mucositis (93.3%) and diarrhea (86.7%). Other common TRAEs (≥50% of patients) included increased creatinine (73.3%), ECG T wave abnormal (60.0%) and hypertriglyceridemia (53.3%). The most frequent grade 3-4 TRAEs included neutropenia (46.7%), leukopenia (40.0%), oral mucositis (26.7%) and diarrhea (20.0%). Serious adverse events (SAE) occurred in only one patient with intracranial hemorrhage, which was attributed to cerebral arteriovenous fistula instead of study drugs. TRAEs led to dose reduction in five patients (33.3%) and treatment discontinuation in 2 patients (13.3%), respectively.


Table 2 | All grade AEs related to treatment with at least two patients.





Efficacy

As of 1 January 2022, 15 patients were considered evaluable for efficacy. Majority of patients (93.3%, 14/15) showed tumor shrinkage (Figure 2A). 10 of 15 (66.7%; 95% CI: 38.4% to 88.2%) patients achieved confirmed partial response (PR) as assessed by the investigator (n=3 [60.0%], Level/I; n=3 [50.0%], Level/L1; n=4 [100.0%], Level/L2) (Figures 2A, B; Table 3). Responses were still ongoing in 4 of the 10 responders, and the median DOR was 15.6 months (95% CI: 3.7 months to not reached). The DCR was 93.3% (95% CI: 68.1% to 99.8%) and the CBR was 80.0% (95% CI: 51.9% to 95.7%) for all 15 patients (Table 3). With 9 (60.0%) disease progression events, the median PFS was 11.3 months (95% CI: 5.3 months to not reached) (Figure 3A).




Figure 2 | Clinical response to combination therapy in patients. (A) Maximum reduction of target lesions from baseline for patients in the Level/I, Level/L1, and Level/L2 dose cohorts. The best response for target lesions per patient was determined on the basis of RECIST 1.1 criteria. (B) Change in tumor burden over time, measured as the sum of longest diameters (SLD), in patients with MBC. PR was confirmed by investigator-assessed RECIST 1.1 criteria. PR, partial response; SD, stable disease; PD, progressive disease; HER2, human epidermal growth factor receptor 2.




Table 3 | Response in the evaluable population.






Figure 3 | PFS of combination therapy in patients with HER2+/HR+ MBC. (A) Kaplan-Meier estimates of PFS in all patients (N = 15). (B) Kaplan-Meier estimates of PFS in patients with 1L and 2L HER2-targeted therapy. PFS, progression-free survival; HR, hormone receptor; HER2, human epidermal growth factor receptor 2; 1L, first-line; 2L, second-line; CI, confidence interval; NR, not reached.



Preliminary subgroup analysis by the number of HER2-targeted treatment lines for advanced breast cancer showed that ORR of study treatment as 1L and 2L HER2-targeted therapy was 85.7% (6/7) and 50.0% (4/8), respectively. PFS in 2L setting was 10.9 months (95% CI: 1.8 to 13.7 months), while PFS in 1L setting was not reached yet. (Figure 3B). In addition, patients with ER≥50% had better ORR (83.3%, 10/12) compared with those with ER<50% (0/3).



PK Analysis

Plasma samples for PK analysis were available from 8 patients. The PK parameters are summarized in Supplementary 1. The means of Cmax for dalpiciclib (125 mg) were 130.38 ng/mL and 139.20 ng/mL, and AUClast of dalpiciclib (125 mg) were 2.65 μg·h/mL and 2.52 μg·h/mL, with pyrotinib doses of 320 mg and 400 mg, respectively. Based on the preliminary data, pyrotinib did not alter the PK profile of dalpiciclib in each cohort. The exposures of pyrotinib were different when combined with dalpiciclib, indicating more data would be needed to identify the drug-drug interaction between pyrotinib and dalpiciclib in the phase II trial.




Discussion

To the best of our knowledge, this was the first study to establish a fully oral therapy of the novel CDK4/6 inhibitor dalpiciclib combined with HER2-targeted tyrosine kinase inhibitor pyrotinib and aromatase inhibitor letrozole as first- or second-line treatment in patients with HR-positive, HER2-positive relapsed or metastatic breast cancer. This approach showed promising anticancer activities and tolerable toxicities. The TRAEs of the combination of pyrotinib, dalpiciclib, and letrozole observed in this study were as expected for each drug toxicity profile, with mild or moderate neutropenia (100%), leukopenia (100%), anemia (100%), oral mucositis (93.3%) and diarrhea (86.7%) as the most common TRAEs (17, 19, 23). Similar to dalpiciclib combined with fulvestrant in DAWNA-1 study, the incidence of hematological toxicities with dalpiciclib, pyrotinib plus letrozole was high, whereas grade≥3 neutropenia and leukopenia were reported less frequently (grade ≥3 neutropenia: 84.2% vs 46.7%; grade ≥ 3 leukopenia: 62.1% vs 33.3%) (24). Diarrhea occurred in 86.7% of patients, by only 20.0% with grade ≥ 3 diarrhea, which compared favorably with pyrotinib plus capecitabine (all grade: 95%; grade ≥ 3: 31%) (20). Diarrhea was generally reversible with anti-diarrhea treatment, treatment interruption, or dose reduction, and it did not lead to treatment termination. Three cases of oral mucositis were identified as DLTs: two cases in Level/I and one case in Level/L1 cohort, respectively. Despite the low incidence of oral mucositis with single agent [dalpiciclib, all grade: <10% and grade ≥ 3:<3% (18); pyrotinib, all grade: 9.9% and grade ≥ 3:1.4% (25)], the events were considered as possibly related to both dalpiciclib and pyrotinib. In this study, dalpiciclib 125 mg/d, pyrotinib 320 mg/d, and letrozole 2.5 mg/d was defined as the recommended phase II dose.

Regardless of the HR status, patients with HER2 overexpression/amplification should receive a combination of HER2-targeted therapy and chemotherapy as the standard 1L treatment (26). However, data from clinical trials showed that the subgroups of HER2-positive, HR-positive tumor are less likely to respond to standard chemotherapy combined with trastuzumab and pertuzumab, or with T-DM1 (5–8). In CLEOPATRA study, 1L treatment of dual HER2-targeted pertuzumab and trastuzumab plus docetaxel yielded inferior PFS and OS benefits in HR-positive/HER2-positive subsets compared to HR-negative/HER2-positive subsets (hazard ratio for PFS: 0.73 vs 0.64; hazard ratio for OS: 0.71 vs 0.61) (5). In the Chinese bridging study PUFFIN, subgroup analysis suggested that 1L treatment with dual HER2-targeted pertuzumab and trastuzumab plus docetaxel failed to prolong PFS compared to trastuzumab plus docetaxel significantly (14.5 months vs 12.5 months; hazard ratio: 0.80; 95%CI 0.50 to 1.29) in HR-positive, HER2-positive MBC patients (7). The present study showed that the median PFS in the 1L setting was not reached and the ORR was 85.7%, which was equivalent to dual-targeted HER2 agents combined with chemotherapy in CLEOPATRA (ORR in HER2-positive patients: 80.2%) (27) or PUFFIN trial (ORR in HR-positive/HER2-positive patients: 81.7%) (7). T-DM1 is the standard second-line treatment for HER2-positive metastatic breast cancer patients based on the results of EMILIA study, with an ORR of 43.6% and a median PFS of 9.6 months regardless of HR status (6). In China, pyrotinib plus capecitabine has become an alternative 2L treatment option with better PFS and OS compared to lapatinib plus capecitabine (PFS: 12.5 months vs 6.8 months; hazard ratio, 0.39; p<0.0001; ORR 67% vs 52%) (20). In our study, patients in the 2L setting had an ORR of 50.0% and a median PFS of 10.9 months (95% CI: 1.8 to 13.7 months), which was similar to standard treatment of T-DM1 or pyrotinib plus capecitabine. Although cross-trial comparisons should be made with caution, our results indicate a promising treatment option for HR-positive, HER2-positive breast cancer and support further investigations.

It’s speculated that the inferior response of anti-HER2 and chemotherapy in HR-positive subgroups compared to HR-negative subgroups was in part attributed to the bidirectional crosstalk between the HER2 and ER-α pathways (28, 29). As a result, a growing number of clinical studies have explored the combination of HER2 targeted and endocrine therapy in the subsets of breast cancer patients (9–11, 30). In TAnDEM trial (11), 1L treatment of trastuzumab plus anastrozole achieved PFS benefits compared to anastrozole (4.8 months vs 2.4 months; hazard ratio, 0.63; p=0.0016). In addition, subgroup results of phase III EGF 30008 trial showed that lapatinib plus letrozole achieved ORR 28% and PFS 8.2 months in first line patients (9). These data showed a promising but still modest PFS benefits in HR-positive, HER2-positive patients, indicating that intervention of the crosstalk between HER2 and ER-α might be insufficient and additional treatment are of value to be explored.

Preclinical models showed that CDK4/6 inhibitors could sensitize HER2-targeted therapy and delay tumor recurrence in HER2+ breast cancer (13). The monarcHER trial built on these preclinical findings and reported that CDK4/6 inhibitor abemaciclib combined with trastuzumab and fulvestrant significantly improved PFS compared to trastuzumab plus standard-of-care chemotherapy (8.3 months vs 5.7 months; hazard ratio, 0.67; p=0.051) as third-line or later treatment in HR-positive/HER2-positive MBC patients (14). Moreover, in heavily pretreated patients with HR-positive/HER2-positive MBC, the combination of tucatinib with letrozole and palbociclib showed a considerable anti-tumor activity with median PFS of 8.7 months (10.1 months for patients without brain metastasis and 6.0 months for those with brain metastasis) (15), and the central nervous system metastases PFS was 8 months in patients with untreated asymptomatic or treated stable patients with brain metastases (16). As 60.5% of HR-positive/HER2-positive MBC patients chose first-line hormonal therapy over chemotherapy in real-world (39.5%) (31), whether patients could obtain benefits from this new kind of chemo-free combination in the 1L or 2L setting would be worthy of investigation. In our study, the combination of pyrotinib, dalpiciclib, and letrozole achieving an ORR of 66.7% (95% CI: 38.4% to 88.2%) with a median PFS of 11.3 months (95% CI: 5.3 months to not reached), shows potential to be a promising chemo-sparing regimen for patients with HR-positive/HER2-positive MBC in the front-line setting. Furthermore, identifying patients who are likely to gain the most benefits from the combination of HER2-targeted and endocrine therapy with CDK4/6 inhibitor is important. Given our results, HR-positive/HER2-positive MBC patients with higher ER expression seemed to be associated with greater benefits from the combination. However, it should be noted that subgroup analysis is inconclusive due to the limited sample size.

Limitations of this early-phase study included its nonrandomized, single-arm design, small sample size and lack of direct comparator with pyrotinib plus letrozole or chemotherapy. In addition, the preliminary pharmacokinetic analyses had not yielded conclusive results because of large variation within individuals and limited blood sampling points. More patients and samples are planned to be included in further study to verify efficacy and pharmacokinetics of the combination. Meanwhile, our study excluded patients with brain metastases in phase Ib. Based on the clinical efficacy of tucatinib with letrozole and palbociclib in heavily treated patients with brain metastases, our study would further investigate the efficacy of the triplet regimen in this population in the front-line setting. Recently, T-DXd was recommended as the new standard second-line therapy by guidelines based on DESTINY-Breast03 trial with highly clinically meaningful and statistically significant improvement in PFS compared with T-DM1 in patients with HER2-positive MBC (PFS HR of 0.28 (P = 7.8×10-22)), similarly in HR-positive subgroup (22.4 months vs 6.9 months; hazard ratio: 0.3191) (32, 33). Since T-DXd has made a breakthrough in HER2-positive breast cancer, anti-HER2 ADC combined with CDK4/6 inhibitor and endocrine therapy may be the future exploring direction of HR-positive/HER2-positive breast cancer.

In conclusion, this is the first study to evaluate a fully oral treatment with the CDK4/6 inhibitor dalpiciclib plus HER2 TKI pyrotinib and letrozole in front-line HR-positive, HER2-positive MBC patients. The triplet combination of dalpiciclib, pyrotinib and letrozole has been proven to be safe and effective, potentially offering a chemotherapy-sparing treatment option for patients with HER2-positive, HR-positive MBC. The dose expansion phase II trial is ongoing to further evaluate its efficacy and safety.
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HOTAIR SNPs Ethnicity Source of Control No. of Cases  Assay methods Genotype Genetic model OR (P value)

Author rs920778 CC% CT% TT%
Bayram et al. (23) Turkish Hospital® 123 TagManSNP 25.2 423 32,5  Recessive® 24
Genotyping P=0.01
Yan et al. (26) Chinese Population 502 PCR-RFLP 24 30.1 675 T 141
CRS-RFLP Allele P=0.02
Hassanzarei et al. (25)  Southeast Iranian Population 220 PCR-RFLP 15.0 54.1 30.9  Dominant? 2.64
P<0.0001
Rajagopal et al. (24) Indian Population 502 PCR-RFLP 17.3 50.2 325  Over-dominant® 1.31
P=0.031
Present Study 2021 Chinese Population 828 MassAray system 6.4 33.2 60.4  Codominant® 2.426
P<0.001
rs1899663 GG% GT& TI%
Yan et al. (26) Chinese Population 502 PCR-RFLP 6753 3135 397 T 0.88
CRS-RFLP Allele P=0.25
Hassanzarei et al. (25)  Southeast Iranian Population 220 PCR-RFLP 37.7 55.0 %8 Over-dominant® 0.38
P<0.0001
Khorshidi et al. (28) Iranian Population 122 ARMS-PCR 30.0 52.0 18.0 1.433
P=0.118
Lin et al. (21) southeast Chinese  Population 969 PCR-RFLP 82.7 16.2 0.01 2.08
P=0.027
Rajagopal et al. (24) Indian Population 502 PCR-RFLP 385 454 16.1  dominant® 1.32
P=0.08
Present Study 2021 Chinese Population 828 MassAray system  66.67 29.23 41 Recessive® 1.633
P=0.087
rs4759314 AA% AG% GG%
Yan et al. (26) Chinese Population 502 PCR-RFLP 89.84 1071 040 G 09
CRS-RFLP Allele P=0.57
Hassanzarei et al. (25)  Southeast Iranian Population 220 PCR-RFLP 93.2 6.8 0 Codominant® 231
P=0.0808
Khorshidi et al. (28) Iranian Population 122 ARMS-PCR 79.0 21.0 10 0.755
P=0.316
Lin et al. (21) southeast Chinese  Population 969 PCR-RFLP 82.7 16.2 0.01 142
P=0.52
Present Study 2021 Chinese Population 828 MassAray system 91.64  7.52 0.84  overdominant® 0.566
P=0.001

4optimal model.
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242.65)
622(68.73)
283(31.27)
798(88.18)
104(11.49)
3(0.33)
798(88.18)
107(11.82)
902(99.67)
3(0.33)
801(88.51)
104(11.49)

(
@.
((
(
(
@
{
(
(@
((
(2.
((
(
(
(.
{
((
((

OR (95%Cl)*

1.000
1.296(1.040-1.614)
2.426(1.491-3.947)

1.000
1.406(1.140-1.735)

1.000
2.220(1.373-3.588)

1.000
1.215(0.979-1.509)

1.000
0.910(0.729-1.134)
1.586(0.900-2.793)

1.000
0.962(0.778-1.190)

1.000
1.633(0.931-2.864)

1.000
0.890(0.715-1.108)

1.000
0.568(0.400-0.807)
1.930(0.459-8.119)

1.000
0.609(0.434-0.855)

1.000
2.039(0.486-8.560)

1.000
0.566(0.398-0.803)

Pvalue

<0.001
0.021
<0.001
0.001

0.001
0.078
0.163
0.400
0.111
0.721
0.087
0.296
0.004
0.002
0.370
0.004
0.331

0.001

AlC

2174.4

2180.6

2177.2

2188.1

2190.6

2194.3

2190.1

2192.6

2182.8

2184

2189.3

2182

40R and 95%CI were analyzed by logistic regression and adjusted by age. Common genotype was taken as reference.
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Haplotypes df Global P
rs920778-rs1899663 3 <0.001
rs1899663-rs4759314 3 0.100
rs920778-rs1899663-rs4759314 7 <0.001

adjusted by age.
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Haplotype rs920778 rs1899663 rs4759314 Controls: Case frequency OR(95%CI) P

1 0.7353: 0.7657 1.00

2 G A A 0.1313: 0.1854 1.39(1.18-1.70) 0.002
3 G C G 0.0354: 0.0453 1.32(0.91-1.92) 0.140
4 A A A 0.0498: 0.0018 0.02(1.01-0.07) <0.001
5 A C G 0.0237: 0.0006 0.01(0.00-0.10) <0.001
6 G C A 0.0228: 0.0012 0.03(0.01-0.12) <0.001
rare A A G 0.0017: NA 0.00(-) =
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Characteristic

Molecular type

Lymph node

Tumor size

Menstrual status

Family history

Histological grade

Total

Grouping

luminalA
luminalB
HER2

Triple negative
NO

T4
Premenopause
Postmenopause
negative
positive

1

I

m

rs920778 genotype
AAN(%) GA n(%)
62(12.45) 37 (13.50)
324 (65.06) 161 (58.76)
58(11.65)  38(13.87)
54(10.84)  38(1387)
251(50.40) 120 (43.80)
168(33.73) 94 (34.31)
53(10.64)  41(14.96)
26 (5.23) 19 (6.93)
264 (5301) 137 (50.00)
213(42.77) 121 (44.16)
14 (2.81) 11(4.01)
7(1.41) 5(1.83)
244 (49.00) 124 (45.26)
254 (51.00) 150 (64.74)
474(95.18) 266 (97.08)
24 (4.82) 8(2.92)
20 (4.02) 8(292)
305(61.24) 172 (62.77)
173(34.74) 94 (34.31)
498 (100.00) 274 (100.00)

GG n(%)

5(0.44)
33 (62.26)
7(18.21)
8 (15.09)
23 (43.40)
22 (4151)
7(18.21)
1(1.88)
19 (35.85)
31 (58.49)
1(1.89)
2(3.77)
29 (54.72)
24 (45.28)
53 (100.00)
0(0.00)
3(5.66)
32 (60.38)
18 (33.96)
53 (100.00)

0.650

0.258

0.221

0.372

0.136

0.877

rs4759314 genotype
AAN(%)  GAn(%)  GGn(%)
95(1257)  8(1290)  1(14.29)
473(6257)  42(6774)  3(42.86)
94 (12.43) 7(11.29) 1(14.29)
94 (12.43) 5(8.07) 2(28.56)
363 (48.02) 25 (40.32) 6(85.71)
260(34.39)  24(3871)  0(0.00)
93(1230  7(1129  1(1429)
40 (5.29) 6(9.68) 0(0.00)
300(51.59)  30(4839)  1(14.29)
327(4325)  30(4839)  6(85.71)
26 (3.44) 1(1.61) 0(0.00)
13(1.72) 1(161) 0(0.00)
350(47.49)  34(54.84)  4(57.14)
397 (5251)  28(45.16)  3(42.86)

726(96.03)  60(96.77) 7 b(100.00)
30(397) 2(3.29) 0(0.00)
28(3.70) 3(4.84) 0(0.00)
464(61.38)  40(6452)  5(71.43)
264 (34.92)  19(3064)  2(2857)

756(100.00) 62 (100.00) 7 (100.00)

0.649

0.200

0.397

0.475

1.000

0.861

rs1899663 genotype

AA n(%)

70 (12.68)
358 (64.86)
65(11.78)
59(10.68)
273 (49.46)
187 (33.88)
60 (10.86)
32 (5.80)
288 (52.17)
240 (43.48)
16 (2.90)
8 (1.45)
276 (50.00)
276 (50.00)
526 (95.29)
26(4.71)
21(3.80)
342 (61.96)
189 (34.24)
552 (100.00)

GAnN(%)

30 (12.40)
142 (58.68)
34 (14.05)
36 (14.87)
111 (45.87)
82 (33.88)
36 (14.88)

18 (6.37)
119 (49.17)
109 (45.04)

10 4.13)

4(1.66)
102 (42.15)
140 (57.85)
236 (97.62)

6 (2.48)

9(3872)
149 (61.57)
84 (34.71)

242 (100.00)

GG n(%)

4(11.76)
20 (68.82)
4(11.76)
6(17.66)
12(35.29)
16 (47.06)
5(14.71)
1(2.94)
15 (44.12)
16 (47.06)
1(294)
2(5.89)
20 (58.82)
14 (41.18)
34.(100.00)
0(0.00)
1(2.94)
20 (58.82)
13 (38.24)
34 (100.00)

0.527

0.407

0.505

0.055

0.159

0.992
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HER2+/ HR+ relapsed or metastatic breast cancer
eligible for first- or second-line treatment

Initial dose level (Level/T)
letrozole 2.5 mg/d; pyrotinib 400 mg/d;
dalpiciclib 125mg/d, d1-d21;

28 days/cycle

=1/3DLT

<1/3DLT

Level/H
letrozole 2.5 mg/d; pyrotinib 400 mg/d;
dalpiciclib 150 mg/d, d1-d21;
28 days/cycle

Level/L1 Level/L2
letrozole 2.5 mg/d; pyrotinib 400 mg/d; letrozole 2.5 mg/d; pyrotinib 320 mg/d;
dalpiciclib 100 mg/d, d1-d21; dalpiciclib 125 mg/d, d1-d21;
28 days/cycle 28 days/cycle

=1/3DLT

<1/3DLT Level/L3
letrozole 2.5 mg/d; pyrotinib 320 mg/d;

dalpiciclib 100 mg/d, d1-d21;
<1/3DLT 28 days/cycle

Safety and efficacy expansion (RP2D)
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Characteristics

Cases No. (%)

Median age (years)
Menstrual status
Premenopause
Postmenopause
Family history
Negative
Positive
Pathological type
Invasive ductal carcinoma
Other types
Histological grade
|
I
il
Tumor size
T
T2
T3
T4
Lymph node
NO
N1
N2
N3
Lymphovascular invasion
Negative
positive
Total

51 (44-58)

398 (48.07)
430 (51.99)

796 (96.14)
32 (3.86)

793 (95.77)
35 (4.23)

31(3.74)
511 (61.71)
286 (34.54)

422(50.97)
365(44.08)
27(3.26)
14(1.69)

396 (47.83)

285 (34.42)

101 (12.20)
46 (5.58)

471 (56.88)
357 (43.12)
828 (100.00)
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Median PFS, months

100 11.3 (95%CI:5.3-NR)

80

60

PFS(%)

40

0 3 6 9 12 15 18 21 24

No.at risk Months
15 13 11 9 6 5 4 3 0

100 1L: Median PFS not reached

80

60

40 g 2L: Median PFS, months
: 10.9 (95% CI:1.8-13.7)

PFS(%)

No.at risk Months
L 7 6 5 4 4 4 3 2 0
2L 8 4 6 3 2 1 1 1 0

—— 1L HER2-targeted therapy

—— 2L HER2-targeted therapy





OPS/images/fonc.2021.706428/table2.jpg
SNPs Cases Controls

"Ho "He e P "Ho "He I'a P
rs920778 0.3321 0.3545 3.2952 0.0695 0.3105 0.3072 0.1054 0.7455
rs1899663 0.2923 0.3043 1.2960 0.2549 0.3127 0.2089 1.9426 0.1634
rs4759314 0.0743 0.0870 17.5992 <0.001 0.1149 0.1142 0.0398 0.8419

"HO:0bserved value of heterozygote frequency; 'He:expected value of heterozygote frequency.
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Variables

B Odds ratio (95% CIy* P-value
MRI-determined short diameter of the largest ALN 0342 1.408 (1.195-1.658) <0.001*
US-reported ALN status* 1.829 6.227 (1.871-20.727) 0003*
CA15-3 2006 7.436 (2.237-24.719) 0001*
Lymphovascular invasion of breast cancer 1612 5.012 (2.213-11.355) <0.001*

Cl, confidence interval; MRI, magnetic resonance imaging; ALN, axilary lymph nod; CA 15-3, carbohydrate antigen 15-3; US, utrasound.

“Data in parentheses are 95% confidence intervals.
* Data was based on 272 patients who had preoperative axillary US resutts.
“P.value < 0.05.
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Predictive Model Fold Selected Variable AUC (95% CI) AUC (95% CI)

Sequence in training CV fold  in internal validation CV fold
Radiomics signature Fold 1 DWI_Original GLDM Small Dependence High Gray Level 0.837 0.820
Emphasis (0.755-0.922) (0.749-0.891)

ADC_Wavelet LLH First order 10 Percentile
ADC_Wavelet HHH NGTDM Contrast
ADC_Wavelet HHL GLDM Small Dependence Low Gray

Level Emphasis
Fold 2 DWI_Original GLDM Small Dependence High Gray Level 0.774 0.794
Emphasis (0.675-0.873) (0.673-0.915)
Fold 3 DWI_Original GLDM Small Dependence High Gray Level 0.806 0.787
Emphasis (0.707-0.906) (0.676-0.899)
Fold 4 DWI_Original GLDM Small Dependence High Gray Level 0.847 0.770
Emphasis (0.757-0.937) (0.654-0.886)

ADC_Wavelet LLH First order 10 Percentile
ADC_Wavelet HHH NGTDM Contrast
ADC_Wavelet HHL GLDM Small Dependence Low Gray

Level Emphasis

Fold 5 DWI_Original GLDM Small Dependence High Gray Level 0.821 0.787
Emphasis (0.729-0.912) (0.676-0.899)

MRI-clinical nomogram Fold 1 CA15-3 0.758 0.762

Lymphovascular invasion (0.662-0.854) (0.685-0.840)
MRI-determined short diameter of the largest ALN

Fold 2 CA15-3 0.772 0.745
Lymphovascular invasion (0.673-0.872) (0.734-0.950)
MRI-determined short diameter of the largest ALN

Fold 3 CA15-3 0.779 0.745
Lymphovascular invasion (0.675-0.883) (0.628-0.863)
MRI-determined short diameter of the largest ALN

Fold 4 CA15-3 0.824 0.720
CYFR 21-1 (0.729-0.919) (0.598-0.843)

Lymphovascular invasion
Pathologic type of breast cancer
MRI-determined short diameter of the largest ALN
Fold 5 CA15-3 0.787 0.745
CYFR 21-1 (0.690-0.884) (0.628-0.863)
Lymphovascular invasion
Pathologic type of breast cancer
MRI-determined short diameter of the largest ALN

MRI BI-RADS
MRI-clinical-radiomics Fold 1 CA15-3 0.906 0.904
nomogram Lymphovascular invasion (0.839-0.973) (0.849-0.959)

MRI-determined short diameter of the largest ALN
DWI_Original GLDM Small Dependence High Gray Level
Emphasis

ADC_Wavelet LLH First order 10 Percentile
ADC_Wavelet HHH NGTDM Contrast

ADC_Wavelet HHL GLDM Small Dependence Low Gray

Level Emphasis
Fold 2 CA15-3 0.850 0.898
Lymphovascular invasion (0.764-0.936) (0.808-0.987)

MRI-determined short diameter of the largest ALN
DWI_Original GLDM Small Dependence High Gray Level

Emphasis
Fold 3 CA15-3 0.875 0.843
Lymphovascular invasion (0.790-0.959) (0.745-0.943)

MRI-determined short diameter of the largest ALN
DWI_Original GLDM Small Dependence High Gray Level

Emphasis
Fold 4 CA15-3 0.929 0.886
CYFR 21-1 (0.864-0.994) (0.778-0.974)

Lymphovascular invasion

Pathologic type of breast cancer

MRI-determined short diameter of the largest ALN
DWI_Original GLDM Small Dependence High Gray Level
Emphasis

ADC_Wavelet LLH First order 10 Percentile
ADC_Wavelet HHH NGTDM Contrast

ADC_Wavelet HHL GLDM Small Dependence Low Gray

Level Emphasis
Fold 5 CA 15-3 0.932 0.843
CYFR 21-1 (0.871-0.993) (0.745-0.943)

Lymphovascular invasion

Pathologic type of breast cancer

MRI-determined short diameter of the largest ALN

MRI BI-RADS

DWI_Original GLDM Small Dependence High Gray Level
Emphasis

AUC, area under the curve; Cl, confidence interval; CV, cross-validation; DWI, diffusion-weighted imaging; GLDM, Gray Level Dependence Matrix; ADC, apparent diffusion coefficient;
NGTDM, Neighbouring Gray Tone Difference Matrix; MRI, magnetic resonance imaging; ALN, axillary lymph node; CA 15-3, carbohydrate antigen 15-3; CYFR 21-1, Cytokeratin-19-
fragment; BI-RADS, Breast imaging-reporting and data system.
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Fold P-Values for Comparison of AUCs in Training CV Fold P-Values for Comparison of AUCs in Internal Validation CV Fold
Sequence

MRI-Clinical-Radiomics MRI-Clinical-Radiomics MRI-Clinical-Radiomics
Nomogram vs. MRI-Clinical Nomogram vs. Radiomics Nomogram vs. MRI-Clinical Nomogram vs. Radiomics
Nomogram Signature Nomogram Signature
Fold 1 0.017* 0.001* 0.007* 0.001*
Fold 2 0.006* 0.059 0.050 0.006*
Fold 3 0.015* 0.044* 0.042% 0.037*
Fold 4 0.004* 0.007* 0.007* 0.007*
Fold 5 0.003* 0.001* 0.042% 0.037*

MRI, magnetic resonance imaging; AUC, area under the curve; MRI, magnetic resonance imaging.
*Povalue < 0.05.
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Sequence TR/TE FOV Matrix Acquisition Slice gap Fat Flip Slice thickness b value

(ms) (mm) time (s) (mm) suppression angle (mm) (s/mm?)
T2WI 2,600/107 350 x 50 384 x 256 174 1 yes 111° 4 -
TIWI 6.86/2.39 350 x 350 384 x 256 17 1 yes 1112 4 =
DWI 5,400/119 350 x 350 128 x 128 165 1 yes 90° 4 0/800
DCE 4.95/2.28 360 x 360 384 x 224 332 0.8 yes 15° 1.6 =
T1 + C (Axial) 4.85/2.34 360 x 360 320 x 320 65 0.2 yes 5° 1.4 -
T1 + C (Coronal) 6.88/62.39 360 x 360 384 x 384 81 0.4 no 111° 2 =

TR, repetition time; TE, echo time; FOV, field of view; T2WI, T2-weighted imaging; T1WI, T1-weighted imaging; DWI, diffusion-weighted imaging; DCE, dynamic contrast-enhanced
imaging; T1+C, contrast-enhanced T1-weighted imaging.
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Characteristic Non-metastatic NSLN (n = 230) Metastatic NSLN (n = 55) P-value
Age (median, quartile range), years 49 (44, 58) 50 (45, 59) 0.337"
Family history of breast cancer 0.578*
No 227 (98.7) 54(98.2)

Yes 3(1.3) 1(1.8)

Palpable breast mass 0028°
No 215 (93.5) 46 (83.6)

Yes 15 (6.5) 9(16.4)

Clinical tumor staging 0.100°
T 117 (50.9) 21(382)

T2 113 (49.1) 34(61.8)

CEA* 0.738*
Negative 219/(95.2) 52(94.5)

Positive 114.8) 3(55)

CA 15-3" <0.001%
Negative 218(94.8) 42(76.4)

Positive 12(6.2) 13(23.6)

CYFR 21-1" 0.063°
Negative 171 (74.3) 34(61.8)

Positive 59 (25.7) 21(382)

Pathologic type of breast cancer 0.005*
IDC 189 (82.2) 44(80.0)

LC 3(13 50.1)

Others" 38(16.5) 6(109)

Lymphovascular invasion 0,001
No 181(78.7) 31(56.4)

Yes 49 (21.3) 24 (43.6)

ER status 0.453
Negative 48 (20.9) 9(16.4)

Positive 182 (79.1) 46 (83.6)

PR status 0546°
Negative 81(35.2) 17(30.9)

Positive 149 (64.8) 38 (69.1)

HER-2 status 0.248*
Negative 3(1.3) 2(36)

Positive 227 (98.7) 53(96.4)

Ki-67 status 0.354°
Negative (<14%) 46 (20) 8(145)

Positive (214%) 184 (80.0) 47 (85.5)

MRI-determined quadrant of breast cancer 0.154%
Central quadrant 10(4.3) 1.8

Outer-upper quadrant 83(36.1) 26(47.8)

Outer-lower quadrant 42 (18.3) 14 (25.5)

Upper-inner quadrant 64 (27.8) 8(14.5)

Lower-inner quadrant 31(13.5) 6(109)

MRI-determined long diameter of breast cancer (median, quartile range), mm 19.75 (15.1, 26.7) 22.2 (166, 29) 0074°
MRI-determined presence of ALN metastasis 0.018°
No 218(94.8) 46 (83.6)

Yes 12(6.2) 9(16.4)

MRI-determined number of metastatic ALN 00774
< 218.(94.8) 46 (83.6)

< 8(35) 6(109)

3 401.7) 3(5.5)

MRI-determined short diameter of the largest ALN (median, quartile range), mm 360(2753) 57(3889) <0.001*
US-reported ALN status® 0.041°
Negative 202 92.2) 44 83)

Positive 17078 9(17)

Numbers in the parentheses were presented as percentages. NSLN, non-sentinellymph node; CEA, carcinoembryonic antigen; CA 15-3, carbohyarate antigen 15-3, CYFR 21-1, cytokeratin-19-fragment; IDC, invasive ductal carcinoma, ILC,

invasive lobular carcinoma; ER, estrogen receptor, PR, progesterone receptor; HER-2, human epidermal growth factor receptor-2; MRI, magnetic resonance imaging; mm, millmeter; ALN, axillary lymph node; US, ultrasound.

"Others include intraciuctal papilery carcinoma, ductal carcinoma in situ, lobular carcinoma in situ, neuroendocrine carcinome, mucinous carcinoma.
*Data was based on 272 patients who underwent US examination in Sun Yat-sen Memorial Hospital, Sun Yat-sen University.
“Laboratory analysis of CEA, CA 15-3, and CYFR 21-1 were performed through blood tests within 1 week before surgery. CEA level <5 ng/mi, CA 15-3 level <25 U/ml, and CYFR 21-1 level <3.3 ng/ml were set as the normal ranges.

*Continuous variables were compared by using the Nonparametic test.
“Categorical variables were compared by using the Fisher exact test.
“Categorical variables were compared by using Pearson’s 2 test.
“B_yalue <0.05.
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Locoregional recurrence 78 12
Skin/chest wall 27 4.4
Nipple-areola complex 7 1.9°
Regional lymph nodes 45 7.4

Distant metastasis 99 16.3

Any first recurrence 138 22.7

Death 57 9.4

5-y locoregional recurrence-free survival 87.6

5-y disease-free survival 77.5

5-y distant metastasis-free survival 83.6

5-y overall survival 92.3

%Including 5 cases of concurrent local and regional recurrence without distant metastasis,
and 18 cases of concurrent local and/or regional recurrence with distant metastasis as the
first event.

bCalculated in 370 cases of nipple-sparing mastectomy.
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Variables N LRR rate, % P-value

73 12.0

Age at diagnosis, years <40 39 15.4 0.030
>40 34 9.6

Clinical T stage cT 4 10.5 0.530
cT2 47 13.2
cT3-4 22 10.2

Clinical N stage cNO 22 10.4 0.669
oN1 40 128
cN2-3 " 131

Pathological T stage ypTO/ypTis 4 4.6 0.045
ypT1 33 15.2
ypT2 29 13.2
ypT3 7 8.2

Pathological nodal status ypN- 25 8.7 0.019
ypN+ 48 14.9

Molecular subtype HR+/HER2- 35 10.8 0.362
HR+/HER2+ 17 10.7
HR-/HER2+ 1 172
™ 10 15.9

PCR Yes 3 338 0.015
No 70 132

Pathological MF/MC Yes 30 14.6 0.162
No 43 10.7

Tumor grade 1,2 45 10.0 0.010
3 28 17T

w Yes 40 17.6 0.001
No 33 8.6

Extensive intraductal component Yes 22 12.9 0.652
No 51 11.6

Post-NACT Ki67 <10% 24 85 0.001
>10% 47 18.4
Unknown 2 NA

Mastectomy type NSM 46 124 0.674
SSM 27 11.3

Axillary surgery SLNB alone 37 10.3 0.126
ALND 36 14.4

Adjuvant radiotherapy Yes 31 9.8 0.086
No 42 14.3

Adjuvant hormonal therapy Yes 52 10.8 0.076
No 21 16.5

Adjuvant chemotherapy Yes 10 14.3 0.529
No 63 1.7

Trastuzumab in HER2+ Yes 28 126 1.000
No 0 0.0

Reconstructive surgery Autologous flaps 50 11.9 0.926
Implants 23 12.2

ALND, axillary lymph node dissection; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; LRR, locoregional recurrence; LVI, lymphovascular invasion; MF/MC,
multifocality/multicentricity; NA, not applicable; NACT, neoadjuvant chemotherapy; NSM, nipple-sparing mastectomy; pCR, pathological complete response; SLNB, sentinel lymph node
biopsy; SSM, skin-sparing mastectomy: TN, triple negative.
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Characteristics N %

Age at diagnosis, years Median 42 (23-72)
<40 254 a1.7
>40 355 58.3
Clinical T stage cT1 38 6.2
cT2 355 58.3
cT3-4 216 35.5
Clinical N stage cNO 212 34.8
cN1 313 51.4
cN2-3 84 13.8
Pathological T stage ypTO/ypTis 87 14.3
ypT1 217 35.6
ypT2 220 36.1
ypT3 85 14.0
Pathological N stage ypNO 287 471
ypN1 221 36.3
ypN2-3 101 16.6
Molecular subtype HR+/HER2- 323 53.0
HR+/HER2+ 159 26.1
HR-/HER2+ 64 10.5
™ 63 10.3
pCR Yes 79 13.0
No 530 87.0
Pathological MF/MC Yes 206 33.8
No 403 66.2
Histotype Ductal 533 87.5
Lobular 26 4.3
Mixed/Others 50 8.2
Tumor grade 1 15 25
2 436 71.6
3 1568 259
LI Yes 227 37.3
No 382 62.7
Extensive intraductal component Yes 170 27.9
No 439 7241
Post-NACT Ki67 <10% 281 46.1
>10% 255 419
Unknown 73 12.0
NACT regimens AC/AC+T 546 89.7
T 51 8.4
Others 12 20
Mastectomy type NSM 370 60.8
SsM 239 39.2
Axillary surgery SLNB alone 359 58.9
ALND 250 41
Adjuvant radiotherapy Yes 316 51.9
No 293 48.1
Adjuvant hormonal therapy Yes 482 791
No 127 209
Adjuvant chemotherapy Yes 70 115
No 539 88.5
Trastuzumab in HER2+ Yes 219 98.2
No 4 1.8
Reconstructive surgery Autologous flaps 420 69.0
Implants 189 31.0

AC, anthracycline; ALND, axillary lymph node dissection; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; LVI, lymphovascular invasion; MF/MC, multifocality/
multicentricity; NACT, neoadjuvant chemotherapy; NSM, nipple-sparing mastectomy; pCR, pathological complete response; SLNB, sentinel lymph node biopsy; SSM, skin-sparing
mastectomy: T, taxane; TN, triple negative.
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Income

Low

High

High-middle
Low-middle

Grade

G12

634

Stage

s0-2

S3-4

Charlson Comorbidity Index
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0.36(0.11-1.23)

152 (0.88-2.6)
1.08 (0.70-1.67)
151 (0.46-5.03)
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1.02(0.54-1.95)
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0.554
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0275

0573
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0.054
0.349
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0.799
0.181
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0.001
0313

0.598
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0.044
0.193
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013
0.715
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0473
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0.289
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Variable Total No Postoperative Preoperative P value
population radiation radiotherapy radiotherapy
No.
e (No.) % (No.) % (No.) % No radiation vs No radiation vs Postoperative
Postoperative Preoperative radiotherapy vs
radiotherapy radiotherapy Preoperative
radiotherapy
Age, mean 59.82(12.91) 60.98 (14.64) 59.24 (11.89) 56.27 (13.00) <0.0012 <0.0012 <0.0012
(SD), years
Age distribution (years)
<35 1415 187 13.22 1212 85.65 16 1.13 <0.0012 <0.001% 0.015%
35-50 10860 15675 14.50 9236 85.05 49 0.45
50-70 20345 3434 16.88 16804 82.60 107 0.53
270 8998 3591 39.91 5373 59.71 34 0.38
Race
White 33144 6927 20.90 26073 78.67 144 0.43 <0.001% 0.001a <0.001%
Asia/ 2140 401 18.74 1731 80.89 8 0.37
other
Black 6334 1459 23.03 4821 76.11 54 0.85
Insurance
Not insured 1436 267 18.59 1153 80.29 16 1.1 <0.0012 <0.001® 0.002%
Medicaid 4800 941 19.60 3830 79.79 29 0.60
Medicare 12995 4258 32.77 8676 66.76 61 0.47
Private 22387 3321 14.83 18966 84.72 100 0.45
Insurance/
Managed
Care
Income
Low 7839 1937 24.71 5856 74.70 46 0.59 <0.0012 <0.001® 0.381
High 156333 2878 18.77 12384 80.77 4! 0.46
High-middle 9612 1980 20.60 7583 78.89 49 0.51
Low-middle 8834 1992 22.55 6802 77.00 40 0.45
Home location
Rural/urban 5720 1207 21.10 4491 78.51 22 0.38 0.957 0.246 0.238
Metro 35898 7580 2112 28134 78.37 184 0.51
Charlson Comorbidity Index
co 34199 6684 19.54 27344 79.96 171 0.50 <0.001% 0.053 0.1
C1 5921 1574 26.58 4323 73.01 24 0.41
C2-3 1498 529 35.31 958 63.95 " 0.73
Grade
G1-2 22435 4344 19.36 18008 80.27 83 0.37 <0.0012 0.0116% <0.0012
G3-4 19183 4443 23.16 14617 76.20 128 0.64
Tumor stage
T0-1 7016 767 10.93 6224 88.71 25 0.36 <0.0012 <0.001® <0.001%
T2 13610 2007 14.75 115651 84.87 52 0.38
T3 17616 4828 27.41 12718 72.20 70 0.40
T4 3376 1185 35.10 2132 63.15 59 1.7
Nodal stage
NO 8255 3153 38.20 5053 61.21 49 0.59 <0.001% <0.001* 0.005%
N1 5787 15658 26.92 4198 72.54 31 0.54
N2 19298 2771 14.36 16437 85.17 90 0.47
N3 8278 1305 15.76 6937 83.80 36 0.43
Stage
S0-2 8050 2883 35.81 5134 63.78 33 0.41 <0.001% <0.001 0.988
S3-4 33568 5904 17.59 27491 81.90 173 0.52
Chemotherapy
No 8054 4207 52.23 3827 47.52 20 0.25 <0.0012 <0.001* 0.429
Yes 33564 4580 13.65 28798 85.80 186 0.55
Hormone therapy
No 12563 4408 35.09 8055 64.12 100 0.80 <0.001% 0.697 <0.001%
Yes 29055 4379 15.07 24570 84.56 106 0.36
Immunotherapy
No 39252 8457 21.55 30597 77.95 198 0.50 <0.001% 0.99 0.215
Yes 2366 330 13.95 2028 85.71 8 0.34
Subtype
Luminal 31257 5895 18.86 25247 80.77 115 0.37 <0.001% <0.001% <0.0012
Triple 7677 2209 28.77 5391 70.22 7 1.00
negative
Her-2 2684 683 25.45 1987 74.03 14 0.52
Surgery
Simple 13582 3586 26.40 9938 7317 58 0.43 <0.001® <0.001% <0.001%
mastectomy
BCS/other 9374 1200 12.80 8150 86.94 24 0.26
Radical 18662 4001 21.44 14537 77.90 124 0.66
mastectomy
Vital status
Alive 30352 5108 16.83 25116 82.75 128 0.42 <0.0012 0.28 <0.001%
Deceased 11266 3679 32.66 7509 66.65 78 0.69

BCS, breast-conserving surgery; SD, standard deviation.
Significance was evaluated using Bonferroni test. The statistical tests were two-sided, the significance level was 0.0167.
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Variables HR 95% ClI P-value
Age at diagnosis, years >40 1 (reference) 0.427
<40 1.214 0.752-1.959
Pathological T stage ypTO/ypTis 1 (reference)
ypT1 1.888 0.367-9.708 0.447
ypT2 2017 0.867-4.692 0.103
ypT3 1.857 0.806-4.278 0.146
Pathological nodal status ypN- 1 (reference) 0.097
ypN+ 1.589 0.920-2.745
pCR Yes 1 (reference) 0.452
No 2971 0.174-50.602
Tumor grade 1,2 1 (reference) 0.035
3 1.738 1.038-2.908
LVI No 1 (reference) 0.035
Yes 1.725 1.039-2.864
Post-NACT Ki67 <10% 1 (reference) 0.004
>10% 2.208 1.295-3.765

Cl, confidence interval: HR, hazard ratio; LRR, locoregional recurrence; LVI, lymphovascular invasion; NACT, neoadjuvant chemotherapy; pCR, pathological complete response.
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Low-middle
Home location
Rural/urban
Metro

Charlson Comorbidity Index
co
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Nodal stage
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Stage
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S3-4
Chemotherapy
No
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Hormone therapy
No

Yes
Immunotherapy
No

Yes

Subtype
Luminal

Triple negative
Her-2

Surgery

Simple mastectomy
BCS/other
Radical mastectomy
Radiotherapy
No

Postoperative radiotherapy
Preoperative radiotherapy

Total population

10860
1415
20345
8998

33144
2140
6334

1436

4800

12995
22387

7839
15333
9612
8834

5720
35898

34199
5921
1498

22435
19183

7016
13610
17616
3376

8255
5787
19298
8278

8050
33568

8054
33564

12563
29055

39252
2366

31257
7677
2684

13582
9374
18662

8787
32625
206

Alive

No.

8731
1055
15582
4984

24421
1758
4173

1049
3416
7975
17912

5336
11767
7020
6229

4041
26311

25771
3843
738

18100
12252

5454
9939
13198
1761

6478
4329
14438
5107

6400
23952

4794
25558

7024
23328

28387
1965

24683
3822
1847

10482
7279
12591

5108
25116
128

Deceased Univariable Analysis Multivariable Analysis
No. % HR (95% CI) P value HR (95% CI) P value
2129 19.60 1 (Ref) 1 (Ref.)
360 25.44 1.36 (1.22-1.53) <0.001 1.23 (1.10-1.37) <0.0012
4763 23.41 1.22 (1.16-1.28) <0.001 1.11(1.05-1.17) <0.001°
4014 44.61 2.80 (2.65-2.95) <0.001 1.63 (1.52-1.76) <0.0012
8723 26.32 1 (Ref)
382 17.85 0.68 (0.61-0.75) <0.001 0.77 (0.69-0.85) <0.0012
2161 34.12 1.42 (1.36-1.49) <0.001 1.16(1.10-1.22) <0.0012
387 26.95 1 (Ref) 1 (Ref)
1384 28.83 1.07 (0.95-1.19) 0.264 0.99 (0.89-1.11) 0.898
5020 38.63 1.50 (1.35-1.66) <0.001 0.97 (0.87-1.09) 0.646
4475 19.99 0.66 (0.60-0.74) <0.001 0.78 (0.70-0.86) <0.001?
2503 31.93 1 (Ref) 1 (Ref)
3566 23.26 0.67 (0.63-0.70) <0.001 0.94 (0.89-0.99) 0.041*
2592 26.97 0.81 (0.76-0.85) <0.001 0.97 (0.92-1.03) 0.344
2605 29.49 0.90 (0.85-0.95) <0.001 1.03 (0.98-1.092) 0.27
1679 29.35 1 (Ref) 1 (Ref)
9587 26.71 0.88 (0.84-0.93) <0.001 0.93 (0.88-0.99) 0.014%
8428 24.64 1 (Ref) 1 (Ref.)
2078 35.10 1.54 (1.46-1.61) <0.001 1.27 (1.21-1.33) <0.0012
760 50.73 2.59 (2.41-2.79) <0.001 1.67 (1.55-1.80) <0.0012
4335 19.32 1 (Ref) 1 (Ref)
6931 36.13 2.18 (2.09-2.26) <0.001 1.53 (1.46-1.60) <0.001%
1562 22.26 1 (Ref) 1 (Ref)
3671 26.97 1.25(1.18-1.33) <0.001 1.12(1.05-1.19) <0.0012
4418 25.08 1.19 (1.12-1.26) <0.001 157 (1.47-1.68) <0.0012
1615 47.84 2.75 (2.56-2.95) <0.001 2.18(2.02-2.36) <0.001?
1777 21.53 1 (Ref) 1 (Ref.)
1458 25.19 1.18 (1.10-1.26) <0.001 1.39 (1.24-1.54) <0.0012
4860 25.18 1.14 (1.08-1.21) <0.001 2.35(2.12-2.62) <0.0012
3171 38.31 1.90 (1.79-2.01) <0.001 3.49(3.14-3.89) <0.0012
1650 20.50 1 (Ref) 1 (Ref)
9616 28.65 1.44 (1.37-1.52) <0.001 1.14 (1.03-1.26) 0.012%
3260 40.48 1 (Ref) <0.001 1 (Ref)
8006 23.85 0.49 (0.47-0.51) <0.001 0.57 (0.54-0.60) <0.001®
5539 44.09 1 (Ref) 1 (Ref)
5727 19.71 0.34 (0.33-0.35) <0.001 0.62 (0.58-0.66) <0.001?
10865 27.68 1 (Ref)
401 16.95 0.69 (0.63-0.77) <0.001 0.85(0.77-0.95) 0.003*
6574 21.03 1 (Ref) 1 (Ref)
3855 50.21 3.34 (3.21-3.48) <0.001 1.94 (1.81-2.09) <0.0012
837 31.18 1.60 (1.49-1.72) <0.001 0.93(0.84-1.02) 0.125
3100 22.82 1 (Ref) 1 (Ref)
2095 22.35 0.96 (0.91-1.01) 0.137 0.95 (0.90-1.01) 0.085
6071 32.53 1.48 (1.42-1.56) <0.001 1.12(1.07-1.17) <0.0012
3679 4187 1 (Ref) 1 (Ref)
7509 23.02 0.43 (0.42-0.45) <0.001 0.62 (0.60-0.65) <0.0012
78 37.86 0.85 (0.68-1.06) 0.148 0.88 (0.70-1.11) 0.282

BCS, breast-conserving surgery; HR, hazard ratio.
aThe statistical tests were two-sided, the significance level was 0.05.
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Variable

Age distribution (years)
35-50

<385

50-70

>70

Race

White

Asia/other

Black

Insurance

Not insured
Medicaid

Medicare

Private Insurance/Managed Care
Income

Low

High

High-middle
Low-middie

Home location
Rural/urban

Metro

Charlson Comorbidity Index
co

C1

C2-3

Grade

G1-2

G3-4

Tumor stage

T0-1

T2

T3

T4

Nodal stage

NO

N1

N2

N3

Stage

S0-2

S3-4
Chemotherapy
No

Yes

Hormone therapy
No

Yes
Immunotherapy
No

Yes

Subtype

Luminal

Triple negative
Her-2

Surgery

Simple mastectomy
BCS/other

Radical mastectomy
Radiotherapy
Postoperative radiotherapy
Preoperative radiotherapy

HR (95% ClI)

1 (Ref)
1.09 (0.54-2.21)
1.33 (0.83-2.14)
3.83(1.81-8.11)

1 (Ref)
1.31 (0.45-3.81)
1.59 (1.072-2.37)

1 (Ref)
1.27 (0.48-3.35)
0.67 (0.26-1.74)
1.09 (0.44-2.67)

1 (Ref)
1.35 (0.80-2.27)
1.09 (0.64-1.88)
1.70 (0.99-2.90)

1 (Ref)
1.18 (0.59-2.19)

1 (Ref)
1.12 (0.62-2.02)
1.48 (0.74-2.97)

1 (Ref)
1.07 (0.72-1.60)

1 (Ref)
1.76 (0.96-3.25)
2,09 (1.09-4.02)
3.45 (1.82-6.54)

1 (Ref)
3.37 (1.48-7.68)
10.01 (4.59-21.83)
10.26 (4.62-22.78)

1 (Ref)
0.71 (0.30-1.68)

1 (Ref)
1.06 (0.58-1.94)

1 (Ref)
1.60 (0.71-3.58)

1 (Ref)
1.46 (0.52-4.13)

1 (Ref)
9.02 (3.90-20.86)
4.17 (1.48-11.72)

1 (Ref)
1.80 (0.89-3.62)
1.71 (1.10-2.66)

1 (Ref)
1.23 (0.88-1.72)

P value

0.814
0.233
<0.001?

0.625
0.021*

0.63
0.406
0.858

0.259
0.741
0.054

0.71

0.706
0.266

0.736

0.07
0.027*
<0.0012

0.004*
<0.001°
<0.001°

0.436

0.855

0.254

0.472

<0.001°
0.007%

0.1
0.017*

0.218

BCS, breast-conserving surgery; HR, hazard ratio.
The statistical tests were two sided, the significance level was 0.05.
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Variables

T classification (after NAT)
no tumor

T

T2

13-4

N classification (after NAT)
NO

N1

N2-3

Response

pCR

absence of pCR

Adjuvant chemotherapy
No

Yes

CtDNA after NAT
undetected

detected

HR

0.909
2.461
4.082

1.845
3.753

4.082

1.137

3.128

lower

0.167
0.435
0.756

.633
1.146

0.756

0.419

1.139

upper

4.952
13.917
22.038

5.378
12.297

22.038

3.084

8.564

P value

0.912
0.308
0.102

0.262
0.029

0.102

0.801

0.027
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NCDB Breast cancer diagnosed in 2010-2014
Age =18, No metastasis (n =684857)

Cases excluded
-Male (n = 5899)

Females with breast cancer (n=678958)

Cases excluded

-ER status unknow (n = 27314}

-PR status unknow (n = 34948)
-ERBB2 status unknow (n = 157283)
-Grade unknow (n = 76774)
-Chemotherapy unknow (n = 12482)
-Hormone therapy unknow (n = 19003)
-Immunotherapy unknow (n = 2605)
-Insurance unknow (n =31542)
-Surgery way unknow (n = 1274)
-No surgery (n = 28578)

Woman with breast cancer
received specific breast surgery

(n=397783)
Cases excluded

-T stage unknow (n = 54430}
-Tis {n = 126307)
-Not LABC {n =217046)

Females with locally advanced breast cancer
(n=50402)

Cases excluded
-Radiation therapy both before and after
surgery (n=219)
-Intraoperative radiation therapy (n=2143)
-Intraoperative radiation therapy with
other therapy administered before or after
surgery (n =632)

41618 individuals included -Sequence unknown {n =5750)

32625 received post-operative radiation
206 received pre-operative radiation
8787 not received radiation
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OVERALL SURVIVAL

eCTC
FEATURES

circularityOV_brightfield_25th
perimeter_fitc_25th
circularity_brightfield_25th
mean_intensity_bgsub_apc_SD
circularity_brightfield_mean
circularity_apc_mean
circularityOV_pe_75th
max_intensity_brightfield_median
diameter_apc_median
circularity_dapi_25th

BONE METASTASIS

eCTC

FEATURES
diameter_fitc_median

% of eCTC

perimeter_apc_25 th
circularity_fitc_SD
circularityOV_fitc_SD
max_intensity_apc_SD
circularityOV_brightfield_SD
mean_intensity_bgsub_apc_25th
diameter_apc_mean
diameter_apc_75th

SCORE

0.237*
0.215*
0.189*
0.184*
0.174*
0.146
0.146
0.142
0.138
0.133

SCORE
0.211*
0.189*
0.189*
0.177*
0.177*
0.177*
0.177*
0.170
0.167
0.167

CDA45 positive cells

FEATURES

circularityOV_brightfield_SD
circularityOV_fitc_25th
circularity_brightfield_25th
circularity_fitc_25th
mean_intensity_bgsub_pe_25th
perimeter_fitc_75th
circularityOV_fitc_mean
diameter_brightfield_25th
circularity_fitc_SD
circularityOV_brightfield_median

CD45 positive cells
FEATURES
diameter_pe_SD
circularity_fitc_SD
perimeter_pe_SD
perimeter_fitc_SD
perimeter_brightfield
circularity_apc_75th
circularityOV_brightfield_75th
circularity_apc_25th
circularity_pe_median
circularityOV_pe_75th

SCORE

0.203*
0.178*
0.169*
0.163*
0.154*
0.146
0.146
0.133
0.130
0.121

SCORE
0.203*
0.203*
0.203*
0.163
0.155
0.188
0.139
0.139
0.134
0.134

Each feature is described by the parameter, the channel of collection (brightfield, fitc, pe or apc) and descriptive statistics feature (mean, standard deviation, median, 25th or 75th
percentile). SD, standard deviation; mean_intensity_bgsub, mean intensity after background subtraction; fitc, epithelial marker expression; pe, mesenchymal marker expression; apc,
CD45 expression; DAPI, nuclear staining. *features subsequently selected for the combined approach (see Experimental Setup).
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AGE AT THE DIAGNOSIS
- MEDIAN (range)
HISTOTYPE

Ductal

Lobuar

Ducial and Lobuar
MOLECULAR CLASSIFICATION
Luminal

HERZ+

Triple negative

NA

NO. OF METASTATIC SITES
1

2

2

METASTATIC SITES*

Bone

Liver

Lymphonodes

SNC

Skin

Lung

Pl mavi ake tve e ond alis INoMeZ.

5431-78)

86:6%
11.2%
22%

a4.4%
31.1%
200%

44%

31.1%
17.8%
51.1%

66.7%
a4.4%
333%
11.1%
200%
355%
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Patient no.of CD45pos eCTC Patient no.of CD45pos eCTC

id cells id cells
1 " 1 1
2 125 13 1 24 25 12 9
3 53 6 31 25 7 12 4
4 80 18 51 26 79 a1 1
5 48 9 1 27 87 64 2
6 73 30 11 28 60 12 7
7 31 6 2 29 21 6 4
8 21 7 5 30 84 35 5
9 40 138 6 31 T 1 2
10 21 8 7 32 38 26 3
11 46 0 16 33 24 3 0
12 52 33 2 34 15 0 2
13 12 0 9 35 98 9 8
14 94 14 3 36 67 51 1
15 47 7 0 37 127 66 3
16 98 39 2 38 101 27 18
17 M 5 0 39 72 26 16
18 56 23 4 40 35 24 0
19 32 23 1 4 15 0 11
20 144 25 62 42 57 11 3
21 63 32 1 43 62 17 6
22 72 30 8 44 49 15 0
23 111 25 5 45 57 21 10
TOT = 2598 846 344

CD45pos, CD45-positive cells; eCTC, epithelial circulating tumor cells.
Bold is the total (sum) of each column.
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Discovery stage (n=20)
Genome-wide RNA sequencing
14 breast cancer patients
6 Breast benign patients

Classifier construction (n=259)
20 candidate circRNAs identified
with 2-times change

Training stage (n=182)
101 Breast cancer patients
81 controls (30 health and 51 benign)

SVM, LDA, LR
Stepwise method for feature selection
Leave one out cross-validation (LOOCV)
Ideal classifier: BCExoC
a 9-circRNA combination with SVM

Validation stage (n=77)
43 Breast cancer patients
34 controls (13 health and 21 benign)
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BC subtypes Gene

Basal-like RPN1
RPN2
STT3A
STT3B
DDOST
Luminal A RPN1
RPN2
STT3A
STT3B
DDOST
Luminal B RPN1
RPN2
STT3A
STT3B
DDOST
HER2-enriched RPN1
RPN2
STT3A
STT3B
DDOST

Affymetrix ID

201011 _at
213491 _x_at
202223_at
224700_at
208675_s_at
201011_at
213491 _x_at
202223_at
224700_at
208675_s_at
201011_at
213491 _x_at
202223_at
224700_at
208675_s_at
201011 _at
213491 _x_at
202223_at
224700_at
208675_s_at

Num of patients

618
618
618
360
618
1,933
1,933
1,933
831
1,938
1,149
1,149
1,149
407
1,149
251
251
251
156
251

HR (95%Cl)

1.31(1.01-1.68)
0.87 (0.67-1.12)
1.42 (1.1-1.83)
1.24 (0.9-1.72)
0.94 (0.73-1.21)
1.38 (1.16-1.64)
1.54 (1.29-1.83)
0.88 (0.74-1.04)
)
)
)
)

1.12 (0.87-1.43
0.93 (0.79-1.11
1.24 (1.03-1.51
1.12 (0.92-1.35
1.24 (1.02-1.5)
1.23 (0.91-1.68)
1(0.82-1.21)
1.67 (1.13-2.47)
1.2 (0.82-1.77)
1.21 (0.82-1.78)
0.75 (0.48-1.18)
0.68 (0.46-1)

The molecular subtypes were based on the 2013 St Gallen criteria. All of the data above were obtained from the Kaplan-Meier Plotter database.
The data with statistical significance (P<0.05) were marked in bold text.

HR. hazard ratio; Cl, confidence interval.

logrank P

0.038
0.27
0.0063
0.19
0.65
0.00024
9.1E-07
0.14
0.38
0.42
0.025
0.26
0.028
0.18
0.98
0.0093
0.35
0.33
0.21
0.049
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Age
ER (IHC)

R (IHC)
HER?2 (IHC)
Nodal status

Intrinsic molecular subtypes

Basal-like status

SBR

NPI

<51

>51

Negative

Positive

Negative

Positive

Negative

Positive

Negative

Positive

Total

Basal-like vs Luminal A
Basal-like vs Luminal B
Basal-like vs HER2-E
Luminal B vs Luminal A
Luminal B vs HER2-E
HER2-E vs Luminal A
Basal

None

Total

SBR2 vs SBR1

SBR3 vs SBR1

SBR3 vs SBR2

Total

NPI2 vs NPI1

NPI3 vs NPI1

NPI3 vs NPI2

RPN1

Comp.

SV IV VVYV

VoV

>
>

P

0.8184

<0.0001

<0.0001

0.0661

0.9624

<0.0001
<0.0001
<0.0001
<0.05
<0.0001
>0.01
<0.0001
<0.0001

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.001
<0.001
>0.01

RPN2

Comp.
T

1

VAVAAV

v

v

P

0.0019

0.0020

0.0003

<0.0001

0.1551

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
0.4492

<0.0001
<0.0001
<0.0001
<0.0001
0.0015
<0.01
>0.01
>0.01

STT3A

Comp.

VoV

VoV SV A A

P

0.1950

<0.0001

0.1242

0.1040

0.0289

<0.0001
<0.0001
<0.0001
>0.01
<0.001
<0.0001
<0.0001
<0.0001

0.0012
>0.01
<0.01
<0.01

0.2014
>0.01
>0.01
>0.01

STT3B

Comp.

VAV AAV

v

P

0.0578

0.2391

0.3620

<0.0001

<0.0001

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.001

<0.0001
0.2047

<0.0001
<0.01

<0.0001
<0.01
0.0024
<0.01
>0.01
>0.01

DDOST

Comp.

SV AV VVYV

v v

P

0.4482

<0.0001

<0.0001

0.0631

0.5209

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

<0.0001
<0.01
<0.0001
<0.0001
0.0715
>0.01
>0.01
>0.01

The data with statistical significance (P<0.01) were marked in bold text.
Comp, comparison; IHC, immunohistochemical; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; HER2-E, HER2-enriched; SBR,
Scarff Bloom & Richardson grade; NPI, Nottingham Prognostic Index.
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Al ER(+)Her2 ER(x)Her2 TNBC
) +)

Number 95 41 29 25
Age (mean + SD) 500+ 492+7.8 493zx87 52.0 +
8.8 10.2
T classification (before NAT)
T 3 0 1 2
T2 54 19 16 19
13-4 38 22 12 4
N classification (before NAT)
N-negative 13 4 6 3
N-positive 82 37 23 22
T classification (after NAT)
no tumor 13 1 6 6
T1 32 10 13 9
T2 29 16 6 7
13-4 21 14 4 3
N classification (after NAT)
NO 34 7 16 1"
N1 29 9 10 10
N2 22 17 2 3
N3 10 8 1 1
Response
pCR 13 1 6 6
absence of pCR 82 40 23 19
NAT regimen
Anthracycline 7 33 24 20
Taxane 80 29 29 22
Trastuzumab/pertuzumab 29 0 29 0
Presence of ctDNA
before NAT 60 33 15 12
after NAT 31 11 10 10
Adjuvant chemotherapy 30 18 3 9
anthracycline 15 8 3 4
taxane 16 10 0 5
Adjuvant anti-Her2 target 29 0 29 0
therapy*

anti-Her2 target therapy*: 27 patients receiving trastuzumab, one another receiving
trastuzumab/pertuzumab and the other receiving trastuzumab-DM1.





OPS/images/fonc.2021.736769/table2.jpg
variables

Age (>50 vs. <50)

T classification (before NAT)
T1-2

13-4

N classification (before NAT)
N-negative

N-positive

T classification (after NAT)
no tumor

T

T2

T3-4

N classification (after NAT)
NO

N1

N2

N3

Response

pCR

absence of pCR
Immunophenotype
ER/PR(+)Her2(-)
ER/PR(+)Her2(+)

TNBC

CtDNA

before NAT*

after NAT*

Adjuvant chemotherapy
No

Yes

Genes

TP53*

CDH1*

PIK3CA"

univariate multivariate
HR lower upper P value HR lower upper P value
0.962 00.525 1.763 .899
1
1.026 .553 1.903 0.936
1
2.266 0.700 7.336 0.172
1 1
2.536 0.568 11.333 0.223 1.963 0.333 11.575 0.456
4.842 1.112 21.083 0.036 2.435 0.450 13.186 0.302
4.158 0.929 18.604 0.062 2.338 0.488 11.202 0.288
1 1
0.953 0.401 2.263 0914 1.378 526 3.606 0.514
1.750 0.798 3.838 0.163 1.418 611 3.293 0.416
3.055 1.246 7.487 0.015 3.352 1.267 8.870 0.015
1 1
3.656 0.883 156.134 0.074 2.230 0.468 10.623 0.314
1
0.611 0.284 1.314 0.207
1.294 0.639 2.622 0.474
0.700 0.378 1.298 0.257
3.894 2113 TATT. <0.001 4.135 2014 8.491 <0.001
1
1.141 0.601 2.169 0.686
1.156 0.609 2197 0.657
0.669 0.263 1.704 0.399
1.313 0.607 2.837 0.489

*The presence of ctDNA vs. nonpresence of ctDNA; *gene mutation vs. nonmutation.
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All cohorts

100
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AUC (95% CI)
B SVM 083(077-089)
@ LR 080(0.73-0.86)
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80

Sensitivity
60

40

AUC (95% CI)
@ SVM 080(0.71-059)
@ LR 0.81(0.72-0.90)
O LDA 0.80(0.71-0.89)

AUC (95% CI)
B SVM 082(0.7-087)
@ LR 080 (0.75-0.85)
LDA 0.78(0.73-0.83)

1-specificity

Training cohort

20 40 60 80

T T

20 40 60

1-specificity
Testing cohort

80

20 40 60 80 100
1-specificity

All cohorts

Model Acc Sen Spe

Acc Sen Spe

Acc Sen  Spe P

SVM 83.0 842 815
LR 80.8 891 704

LDA 785 851 70.0

79.2 744 853
80.5 76.7 853

79.2 744 853

819 812 826
80.7 854 748 0.355

784 819 739 0.038
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Parameter Dose Cohorts

Level/l (n=5) Level/L1 (n=6) Level/L2 (n=4) Total (N=15)

CR, n (%) 0(0) 0(0) 0(0) 0(0)
PR, n (%) 3(60.0) 3(50.0) 4 (100.0) 10 (66.7)
SD, n (%) 12 (20.0) 3 (50.0) 0(0) 4(26.7)

PD, n (%) 1 (20.0) 0(0) 0(0) 16.7)

ORR,n (%)  3(60.0) 3(50.0) 4 (100.0) 10 (66.7)
95% Cl 38.4-88.2
DCR,n(%) 4 (80.0) 6(100.0) 4 (100.0) 14 (93.3)
95% Cl 68.1-99.8
CBR,n(%)  4(80.0) 4(66.7) 4 (100.0) 12 (80.0)
95% Cl 51.9-95.7

a1 patient with SD > 24 weeks.

®Among 3 patients, 1 patient with SD > 24 weeks.

CR, complete response; PR, partial response; SD, stable disease; PD,
progressive disease; ORR, objective response rate (CR + PR); DCR, disease
control rate (CR + PR + SD); CBR, clinical benefit rate (CR + PR + SD > 24 weeks);
Cl, confidence interval.
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TRAES, n (%) All grades Grade 3-4

Total patients with any AE 15 (100.0) 12 (80.0)
Hematologic
Neutropenia 15 (100.0) 7 (46.7)
Leukopenia 15 (100.0) 6 (40.0)
Anemia 15 (100.0) 1(6.7)
Thrombocytopenia 6 (40.0) 00
Gastrointestinal
Oral mucositis 14 (93.3) 4 (26.7)
Diarrhea 13(86.7) 3(20.0)
Anorexia 4 (26.7) 0(0)
Nausea 2(13.3) 0(0)
Laboratory
Increased creatinine 11 (738.3) 0(0)
Hypertriglyceridemia 8(53.3) 0 (0)
Hyperglycemia 7 (46.7) 0(0)
Hypophosphatemia 7 (46.7) 1(6.7)
Hyperuricemia 6 (40.0) 0 (0)
Increased ALT 6 (40.0) 0(0)
Haematuria 6 (40.0) 0(0)
Hypokalemia 5(33.3 1(6.7)
Increased AST 4 (26.7) 0(0)
Hypoproteinemia 4(26.7) 0 (0)
Hypomagnesemia 4(26.7) 0 (0)
Hypocalcemia 4 (26.7) 0(0)
Positive urine leukocyte 4(26.7) 0(0)
Increased ALP 3(20.0 0 (0)
Increased GGT 2(13.3) 0 (0)
Hypercholesterolemia 2(13.3) 0(0)
Hyponatremia 2(13.3 0 (0)
Constitutional
ECG T wave abnormal 9 (60.0) 0(0)
Weight loss 7 (46.7) 0(0)
Rash 3(20.0) 0(0)
Fatigue 3(20.0) 0(0)
Dermatitis acneiform 2(13.9) 0(0)
Palmar-plantar erythrodysaesthesia syndrome 2(13.3) 0 (0)
Periodontal disease 2(13.9 00

ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, yGlutamyl
transpeptidase; ALP, alkaline phosphatase; ECG, electrocardiogram.
Note: no patients died from treatment-emergent adverse events.
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Characteristics

Dose Cohorts

Level/l (n=5) Level/L1 (n=6) Level/L2 (n=4) Total (N=15)

Age, median (range), years 59 (38-65) 56 (42-72) 50 (44-55) 53 (38-72)

<65 years 4(80.0) 5(83.3) 4 (100.0) 13 (86.7)

>65 years 1(20.0) 1(16.7) 0(0) 2(13.3)
ECOG performance status, n (%)

0 0(0) 0(0) 000 0(0)

1 (100.0) 6 (100.0) 4(100.0) 15 (100.0)
ER status, n (%)

ER <50% 1(20.0) 2(33.3) 0(0) 3(20.0)

ER 250% 4(80.0) 4(66.7) 4 (100.0) 12(80.0)
No. of metastatic sites, n (%)

<3 3(60.0) 4(66.7) 2 (50.0) 9 (60.0)

>3 2 (40.0) 2(33.3) 2 (50.0) 6 (40.0)
Metastatic sites, n (%)

Visceral 4(80.0) 6 (100.0) 4(100.0) 14 (93.3)

Non-visceral 1(20.0) 0(0) 0(0) 16.7)
Previous lines of HER2-targeted treatment 2, n (%)

0 1(20.0) 4(66.7) 2(50.0) 7(46.7)

1 4(80.0) 2(33.3 2(50.0) 8(63.3)
Previous trastuzumab therapy, n (%)

Neoadjuvant/Adjuvant only 2(40.0) 1(16.7) 1(25.0) 4(26.7)

Advanced setting 3(60.0) 1(16.7) 2 (50.0) 6 (40.0)

Overall 5(100.0) 2(33.3) 3 (75.0) 10 (66.7)
Previous endocrine therapy, n (%)

Neoadjuvant/Adjuvant setting only 3(60.0) 2(33.3) 1(25.0) 6 (40.0)

Advanced setting 2 (40.0) 1(16.7) 2 (50.0) 5 (33.3)

Tamoxifen 2(40.0) 3(50.0) 3(75.0) 8(563.3)

Aromatase inhibitors 3(60.0) 2(33.3 2(50.0) 7 (46.7)

Overall 5(100.0) 3(50.0) 3(75.0) 11(73.3)
Previous lines of chemotherapy for advanced setting, n (%)

0 2 (40.0) 5(83.3) 3(75.0) 10 (66.7)

1 3(60.0) 1(16.7) 1(25.0) 5(33.3)

%0 line anti-HER2 treatment was defined as with no history of trastuzumab treatment or relapse more than 1 year after the end of trastuzumab-based adjuvant therapy. 1 line anti-HER2
treatment was defined as relapse during or within 1 year after the end of the adjuvant trastuzumab treatment, or progression on first line trastuzumab treatment for advanced disease.
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Pathological results Training Cohort Validation Cohort

(n = 247) (n=72)

Benign 56 22
Adenosis 49 22
Papilloma 1 0
Chronic inflammation 5 0
Fibroadenoma/fibroadenomatous 1 0
change

Malignant 191 50
IDC 88 21
ILC 11 0
Pure DCIS 31 9
Invasive cancer with CIS 50 14
CIS with invasive component 24 6
Mucinous carcinoma 1 0

IDC, Invasive ductal carcinoma; ILC, Invasive lobular carcinoma; DCIS, ductal carcinoma
in situ: CIS, cancer in situ.
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0.940 (0.860 to 1.000)

0.589 (0.464 to 0.714)
0.545 (0.364 to 0.727)

P

<0.001

<0.001

0.019
NA

NA

NA
NA
NA
NA

0.864 (0.805 t0 0.923)
0.876 (0.791 t0 0.962)

0.827 (0.770 to 0.880)
0.800 (0.680 to 0.900)

0.804 (0.696 t0 0.911)
0.868 (0.727 to 1.000)

-3.167
1.463
0.680
1.173

Odds Ratio (95% CI)

4.319 (2.310 to 8.074)
1.975 (0.526 to 7.419)
3.233 (1.963 to 5.325)

0.908 (0.864 to 0.952)
0.901 (0.827 to 0.974)

0.896 (0.817 t0 0.916)
0.820 (0.700 to 0.920)

0.839 (0.750 to 0.862)
0.864 (0.682 to 1.000)

<0.001
<0.001

0314
<0.001

B is the regression coefficient; NA, not applicable; TIC, time-intensity curve; ALN, axillary lymph node; AUC, area under the curve.
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Characteristic

Training Cohort

Validation Cohort

Malignant (n = 191)

Age, mean + SD, years 45.4 £10.2
Menopause status, No (%)

Postmenopausal 41 (21.5)
premenopausal 150 (78.5)
MRI reported-FGT, No (%)

a 1(0.5)
b 37 (19.4)
o 140 (73.3)
d 13 (6.8%)
MRI reported-BPE, No (%)

Minimal-Mild 143 (74.9)
Moderate 43 (22.5)
Marked 5(2.6)
Maximal diameter, mean + SD, mm 47.7 £21.4
NME Enhancement patterns

Distribution, No (%)

Focal 21 (11.0)
Linear 2(1.0
Segmental 38 (19.9)
Regional 82 (42.9)
Multiple regions 35(18.3)
Diffuse 13 (6.8)
Internal enhancement patterns, No (%)

Homogeneous 11(6.8)
Heterogeneous 127 (66.5)
Clumped 46 (24.1)
Clustered ring 7(3.7)
TIC pattern, No (%)

Persistent 11 (5.8)
Plateau 82 (42.9)
Washout 98 (51.9)
Minimum ADC value, mean + SD, 10A-6 mm2/s 769.3 + 173.4
MRI reported- ALN status, No (%)

ALN-positive 70 (36.6)
ALN-negative 121 (63.4)
MIP

positive 117 (61.3)
negative 74 (38.7)

Radiomics score, median (interquartile range)

Benign (n = 56)

420+ 11.8

589
51(91.1)

00
8(14.3)

44.(78.6)
4(7.1)

36 (64.3)
19(33.9)
1(1.8)
329+ 189

16 (28.6)
6(10.7)
1(19.6)
14 (25.0)
8(14.3)
1(1.8)

7(125)
34(60.7)
13(23.2)

2(36)

33 (58.9)
18 (32.1)
5(89)

914.2 + 247.8

4(7.1)
52 (92.9)

17 (30.4)
39 (69.6)

P

0.035

0.034

0.395

0.099
<0.001

<0.001

0.438

<0.001
<0.001

<0.001

<0.001

1.833 (1.320to 2.391) 0.368 (-0.335 to 0.977) <0.001

Malignant (n = 50) Benign (n = 22)

51.4£102 39.9+95
20 (40) 2(9.1)
30 (60) 20 (90.9)
2(4) 1(4.5)
11(22) 3(13.6)
34 (68) 15 (68.1)
3(6) 3(136)
24 (48) 7318
23 (46) 10 (45.5)
3(6) 5(22.7)
44.3 £16.6 29.6 + 10.6
0(0) 0(0)
0(0) 4(18.2)
13 (26) 5(22.7)
26 (52) 13 (59.1)
9(18) 00
2(4) 0(0)
2(4) 4(18.2)
36 (72) 12 (54.5)
9(18) 6(27.9)
3(6) 00
3(6) 12 (54.5)
27 (54) 9(40.9)
20 (40) 1(4.5)
730.1 + 147.8 898.5 + 118.1
15 (30) 0(0)
35 (70) 22 (100)
16 (32) 8(36.4)
34 (68) 14 (63.6)

<0.001

0.011

0.331

0.079
<0.001

0.016

0.474

<0.001
<0.001

0.003

0.789

1.453 (1.108 t0 2.074) 0.376 (-0.161 to 0.925) <0.001

Percentages may not add up to 100 because of rounding. TIC, Time Intensity Curve; BPE, Background Parenchymal Enhancement; FGT, Fibro glandular Tissue; ALN, Axillary Lymph

Nodes; MIP, Maximum Intensity Projection.





