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Retention of the ability to wake from sleep in response to dangerous situations is an
ideal characteristic of safe hypnotics. We studied the effects of a dual orexin receptor
antagonist-22 (DORA-22) and the GABA-A receptor modulator, triazolam, on the ability
to wake in response to aversive stimuli. We examined four modalities of sensory inputs,
namely, auditory (ultrasonic sound), vestibular (trembling), olfactory (predator odor),
and autonomic (hypoxia) stimuli. When the mice fell asleep, one of the four stimuli
was applied for 30 s. In the case of auditory stimulation, latency to arousal following
vehicle, DORA-22, and triazolam administration was 3.0 (2.0–3.8), 3.5 (2.0–6.5), and
161 (117–267) s (median and 25–75 percentile in the parentheses, n = 8), respectively.
Latency to return to sleep after arousal was 148 (95–183), 70 (43–98), and 60 (52–69)
s, respectively. Similar results were obtained for vestibular and olfactory stimulation.
During the hypoxic stimulation, latencies for arousal and returning to sleep were not
significantly different among the groups. The findings of this study are consistent with the
distinct mechanisms of these sleep promoting therapies; GABA-A receptor activation by
triazolam is thought to induce widespread central nervous system (CNS) suppression
while DORA-22 more specifically targets sleep/wake pathways through orexin receptor
antagonism. These data support the notion that DORA-22 preserves the ability to
wake in response to aversive and consciousness-inducing sensory stimuli, regardless
of modality, while remaining effective in the absence of threat. This study provides a
unique and important safety evaluation of the potential for certain hypnotics.

Keywords: orexin, hypocretin, hypnotics, dual orexin receptor antagonist, triazolam, aversive stimuli

INTRODUCTION

Although living in the modern world allows us to encounter dangerous situations far less frequently
than what wild animals may encounter, it is still important for humans to be able to awaken quickly
during natural disasters such as earthquakes, volcanic explosions, and fires. Stress and anxiety
resulting from worrying about sleeping through these occurrences may lead to conditions such
as insomnia.

Even during sleep, the brain continuously processes sensory information. This has been
demonstrated by brainstem auditory evoked potential recordings (Perrin et al., 1999) and
neuroimaging (Portas et al., 2000). The threshold required for the sensory input to reach

Abbreviations: CNS, central nervous system; DORA, dual orexin receptor antagonist.
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the cerebral cortex, however, is higher during sleep than when
awake due to thalamic sensory gating (McCormick and Bal,
1994). Central nervous system (CNS) depressants, such as
benzodiazepines, also affect the threshold required in order
for sensory input to evoke arousal. For example, the short-
acting benzodiazepine triazolam impaired the ability in sleeping
humans to wake up upon exposure to a loud fire alarm (Johnson
et al., 1987).

The orexin/hypocretin-signaling pathway was discovered in
1998 (de Lecea et al., 1998; Sakurai et al., 1998) and plays an
important role in regulating arousal and sleep (Sakurai, 2007) as
well as vigilance state-dependent changes in autonomic functions
(Kuwaki, 2015; Carrive and Kuwaki, 2016). Dual orexin receptor
antagonists (DORAs) that block orexin receptors 1 and 2 have
recently been developed and promote sleep through a decrease
in arousal signaling (Gotter et al., 2014). GABA-A modulators,
the most widely used hypnotic (Roehrs and Roth, 2000; Wang
and Liu, 2016), and DORAs have different sleep promoting
mechanisms, so it stands to reason that their effect on sensory-
input induced arousal may also be different.

Tannenbaum et al. (2014) previously showed that one of
the DORAs, DORA-22, did not impair the ability to wake in
response to emotionally salient acoustic stimuli in dogs. In their
study, the authors used an acoustic tone classically conditioned
to be associated with a food reward. In almost all of the trials,
DORA-22-treated dogs woke up in response to the salient
positive stimulus but not to the neutral stimulus in a similar way
to when they received no drug. The same group of authors later
showed similar results with monkeys (Tannenbaum et al., 2016).
Unfortunately, however, the authors mentioned only tested
positive but not negative emotion-associated stimulus. Another
weak point of their studies was that they used cue-conditioned
test paradigm but not innate salient stimuli. Therefore, possible
effect of DORA-22 on sensory processing circuit is still an
open question even though it may not affect memory retrieval
process.

The purpose of the present study was to examine the possible
effects of a DORA-22, on negative valence stimuli-induced
arousal which is independent from learning and memory, and
compare them with GABA-A receptor modulators, eszopiclone
and triazolam. We also analyzed the latency to return to sleep
after the stimuli ceased in order to evaluate any possible retention
of sleep promoting effects from the drugs.

MATERIALS AND METHODS

Animals
Experiments were conducted on male C57BL/6 mice (25–35 g,
Clea Japan). Animals were maintained under normal laboratory
conditions (controlled 23◦C temperature and food/water
ad libitum) under a regular 12-h light/dark cycle (19:00 lights off
and 07:00 lights on). All experiments were performed during the
dark phase when nocturnal mice are most active. Experiments
were performed in accordance with the guidelines outlined by
the Physiological Society of Japan (2015) and were approved by
the Experimental Animal Research Committee of Kagoshima
University (MD16051).

Compounds
All pharmacological agents were diluted in 20% d-alpha
tocopherol polyethylene glycol 1,000 succinate (Vitamin
E-TPGS) vehicle to a dose volume of 0.1 ml/10 g, and were
administered orally using standard stainless steel gavage needles
affixed to a 1 ml syringe (p.o.). Hypnotics tested included a
DORA-22 (100 mg/kg; Gotter et al., 2014; a kind gift fromMerck
& Co., Inc., Kenilworth, NJ, USA), triazolam (1.25mg/kg; Sigma-
Aldrich Corporation, St. Louis, MO, USA), and eszopiclone
(15 mg/kg; Carbosynth Ltd., Compton, Berkshire, UK). Doses
were determined according to previously published articles
(Gotter et al., 2014) and clinical dosage information for humans
(10 mg for suvorexant, a derivative of DORA-22, 0.125 mg for
triazolam, and 1 mg for eszopiclone).

All mice received treatment with all drugs/vehicle in
randomized order. An interval between administrations of
at least 3 days was used according to the previous article
(Winrow et al., 2012) to prevent any possible influences of
repeated procedures and residual drug effects. Half-life off-rate
of DORA-22 to orexin 2 receptor binding was reported to be
37.8 min (Gotter et al., 2013) and no next-day effects was
reported at least in monkeys (Gotter et al., 2013).

Sleep Recordings
Under isoflurane (1.5%–2.0%, inhalation through face mask)
anesthesia, electrodes were implanted for EEG/EMG recording.
Two holes were drilled in the skull, and the arms of the
electrode for the EEG were implanted at sites approximately
1.5 mm lateral to the Bregma. EMG recording wires made
of stainless steel (Cooner Wire, Chatsworth, CA, USA) were
inserted into the neck muscles bilaterally. Each electrode was
fixed rigidly to the skull with dental cement. After surgery,
mice were given an antibiotic, penicillin G (40,000 U kg−1),
and an analgesic (buprenorphine, 0.05 mg kg−1). Animals were
individually housed and allowed to recover for at least 7 days.
The implanted electrode of each mouse was connected to a
cable for signal output. Signals were amplified (AVH-11, Nihon
Kohden, Tokyo, Japan) and digitally recorded on a computer
with signal processing software (Chart, ADInstruments Inc.,
Bella Vista, NSW, Australia). Sleep stages were judged according
to the method previously published (Nakamura et al., 2003). In
brief, wakefulness was defined by a high frequency (8–30 Hz)
low-amplitude EEG with a high EMG tone. Slow wave
sleep (SWS) was defined by a low-frequency (0.25–4 Hz)
high-amplitude EEG. Non-SWS sleep or rapid eye movement
(REM) sleep was defined by a mixed-frequency (4–8 and
8–30 Hz) low amplitude EEG associated with weak or absent
EMG activity.

Test for Sleep-Promoting Effects of the
Hypnotics
Before the aversive stimuli-experiments, the length and
magnitude of sleep-promoting effects of the hypnotics were
tested in our experimental setting without any stimulation.
Mice (n = 5) in their home cage were connected to the cable
for EEG/EMG measurement at 19:00 when the dark phase
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begins. After 1 h of baseline measurement, either vehicle,
DORA-22, triazolam, or eszopiclone was orally administered
to the mice. Mice eventually received all four drugs in a
random order. The sleep-wake rhythm was measured until
02:00 (6 h after administration). Night dosing was selected
because in nocturnal mice the baseline time spent sleeping is
smaller than it is in daytime and thus any sleep-promoting
effects are easier to observe. Sleep time was calculated for every
30 min. Mice’s natural sleep is not continuous as humans but
relatively short repetition of sleep and wake. Therefore, we
thought that latency to arousal by aversive stimuli and latency
to return to sleep should be evaluated in comparison with
natural sleep/awake duration. For this purpose, we calculated
episode duration of sleep and awake in this (without stimulation)
experiment.

Aversive Stimuli-Induced Arousal Testing
Stimulation experiments were conducted between 21:00 and
24:00, which correspond 1–4 h period after the drug
administration, in the different sets of the animals to the
above-stated without stimulation group. When the mouse fell
asleep for more than 1 min and in SWS, one of the stimuli (see
below) was applied and any possible effects of the stimulus on the
sleep-wake cycle were observed for 30 min. The same stimulus
was applied 2–3 times in one animal during the experimental
period of 3 h and the average value was used as the representative

value for the experiment. Only one type of stimulus was tested
over the course of one experimental night.

The following four aversive stimuli were tested using different
set of the animals. First, for auditory stimulation, ultrasonic
sound (25 kHz, 100 dB, 0.5 s × 7 times, interval 4.5 s; Moriya
et al., 2018) was applied from a position 20 cm above the sleeping
mouse (n = 8). Ultrasonic sound was generated by PET-AGREE
(apparatus used for training pets; K2 Enterprises, NY, USA).
Second, for vestibular stimulation, trembling (180 rpm) was
applied to a measuring cage containing a mouse (n = 8) for
30 s. Trembling was done by a shaker (mini-shaker PSU-2T;
WakenBtech, Kyoto, Japan) on which the measuring cage was
placed. Third, for olfactory stimulation, a cotton swab containing
10 µL of TMT (2,4,5-trimethyl-3-thiazoline, a predator odor
which is extracted from fox feces) was placed at the distance of
1 cm from the tip of the mouse’s nose (n = 10) for 30 s (Tashiro
et al., 2016). Fourth, for hypoxic stimulation, 10% O2 gas
(1,000 ml/min) was introduced into a gas tight chamber (750 ml)
in which the mouse (n = 8) was placed. Oxygen concentration
in the chamber was monitored (model JKO-25LJ II CM, JIKCO,
Tokyo, Japan) at the output port. Oxygen concentration in the
chamber became 10% within 120 s, was maintained there for
180 s, and then returned to the normal room air concentration
(21% O2).

For the sleep state analysis, we calculated the latency to wake
up from the aversive stimulus and latency to return to sleep after

FIGURE 1 | Effects of dual orexin receptor antagonist-22 (DORA-22), triazolam, and eszopiclone on sleep time and sleep architecture. Time slept per every 30 min is
shown for (A) DORA-22, (B) triazolam, and (C) eszopiclone for 6 h after p.o. administration of the drugs. The same values for the vehicle are shown repeatedly for
comparison purposes. Each animal received DORA, triazolam, eszopiclone, and vehicle in a randomized order on spaced days. Data are shown as Mean ± SEM.
(D) Comparison among the four treatments (F(3,12) = 5.101, p = 0.017) revealed that DORA-22 and triazolam, but not eszopiclone, significantly increased total sleep
time during a 3-h period starting at 1 h after administration. These drugs did not affect sleep episode duration (F(3,12) = 0.906, p = 0.467; E) but did decrease awake
episode duration (F(3,12) = 33.0, p < 0.001; F). In (D–F), data from the same animal are connected with lines to show possible interactions between drugs in
individual mice. Horizontal lines indicate mean value for each treatment. Statistical results using repeated measure ANOVA followed by Tukey’s multiple comparisons
test are indicated in the graph.
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arousal. Every mouse was tested for the same aversive stimulus
after receiving vehicle, DORA-22, and triazolam.

Statistical Analysis
In the test for the sleep promoting effects of the hypnotics, data
were expressed as mean ± SEM. Statistical comparisons were
performed using repeated measure ANOVA followed by Tukey’s
multiple comparisons test. In the stimuli-induced arousal
testing, data were expressed as median and 25–75 percentile
because data were not normally distributed (see ‘‘Results’’
section) and non-parametric statistics were more suitable.
Statistical comparisons were performed using the Friedman test,
a repeated measure nonparametric multiple comparisons test.
When appropriate, it was followed by Dunn’s post hoc test. All
statistics were calculated using Prism6 software (GraphPad
Software, Inc.). Differences were considered significant
at p < 0.05.

RESULTS

Sleep Time Without Aversive Stimuli
Before the aversive stimuli-experiments, the length and
magnitude of any sleep-promoting effects from the various
hypnotics were tested in our experimental setting without any
stimulation (Figure 1). During the 6 h of the observation period,
mice spent 160 ± 11 min, 221 ± 6 min, 210 ± 13 min, and
209 ± 7 min sleeping (SWS and REM sleep) under the effects of
either vehicle, DORA-22, triazolam, or eszopiclone, respectively.
Although all three drugs seemingly had a sleep promoting effect,
the detailed characteristics were different. As to SWS duration,
DORA-22 (206 ± 5 min, p = 0.006, n = 5, Tukey’s multiple
comparison test) and triazolam (209 ± 13 min, p = 0.016)
significantly increased and eszopiclone (205 ± 7 min, p = 0.057)
tended to increase as compared to vehicle (154 ± 10 min).
While on REM sleep, DORA-22 (15.3 ± 1.7 min, p = 0.033)
significantly increased, triazolam (1.5 ± 0.2 min, p = 0.089)
tended to decrease, and eszopiclone (3.9 ± 0.7 min, p = 0.784)
showed no effect as compared to vehicle (5.1 ± 0.9 min). In
addition, effect of eszopiclone appeared to have a later onset
than DORA-22 and triazolam (compare Figures 1A–C). Since
the main purpose of this study was to compare aversive stimuli-
evoked responses among the hypnotics, we thought similar
magnitude and similar time course of sleep-promoting effect
of hypnotics would be desirable. From this consideration, we
selected the 3 h starting from 1 h after the injection until 4 h
after the injection for statistical analysis. In addition, we focused
on SWS since duration of REM sleep was too short to evaluate
aversive stimuli-evoked responses. Comparison among the
4 treatments by repeated measure ANOVA (F(3,12) = 4.944,
p = 0.018) and subsequent multiple comparison with Tukey’s test
revealed that DORA-22 (p = 0.012) and triazolam (p = 0.046),
but not eszopiclone (p = 0.22), significantly increased total SWS
time during a 3-h period as compared to vehicle treatment
(Figure 1D). These drugs did not affect sleep episode duration
(F(3,12) = 0.906, p = 0.467; Figure 1E) but did decrease awake
episode duration (F(3,12) = 33.0, p < 0.001; Figure 1F).

Thus, we confirmed that DORA-22 and triazolam had similar
sleep promoting effects over a similar time course for the selected
dosages. From these results, we decided to compare vehicle,
DORA-22, and triazolam, but not eszopiclone, in the next step
of aversive stimuli-induced arousal testing. The testing took
place during the 1–4 h period after the drug injection because
the lag period for drug absorption and distribution appeared
to be approximately 1 h. The confirmation period required to
define sleep before stimulation was performed was set as 60 s
because each sleep episode typically lasted for approximately
200 s (Figure 1E).

Aversive Stimuli-Induced Arousal and
Return to Sleep After the Cessation of the
Stimuli
Next, we examined whether the animal was able to promptly
wake up from sleep induced by DORA-22 and triazolam in
response to aversive stimuli. We also examined the latency to
return to sleep after arousal. Latency to arousal and latency to
return to sleep in drug-treated groups were compared with those
in the vehicle-treated ‘‘natural’’ sleep group.

For auditory stimulation (Figure 2A), the latency to arousal
following vehicle, DORA-22, and triazolam administration was
3.0 (2.0–3.8), 3.5 (2.0–6.5), and 161 (117–267) s (median and
25–75 percentile in the parentheses, n = 8), respectively. After
mice received the vehicle and DORA-22, they woke up during
the stimulation period of 30 s but after triazolam mice woke
up after secession of the stimulus. Latency to return to sleep
after arousal was 148 (95–183), 70 (43–98), and 60 (52–69) s,
respectively for vehicle, DORA-22, and triazolam. Returning
to sleep was never observed during the stimulus period in
all the drug treatments. Statistical analysis using the Friedman
test and Dunn’s post hoc test showed that the latency to
arousal was significantly prolonged by triazolam (p = 0.005)
but not by DORA-22 (p > 0.99) when compared to vehicle.
Latency to return to sleep was significantly shorter in DORA-22
(p = 0.018) and triazolam (p = 0.004) when compared to vehicle
and there was no significant difference between DORA-22 and
triazolam (p > 0.99). Similar results were obtained for vestibular
stimulation (Figure 2B, n = 8) and olfactory stimulation
(Figure 2C, n = 10). The only exception was that there was
no significant difference between latency to return to sleep
in the vehicle treatment and DORA-22 treatment (p = 0.22)
after olfactory stimulation. This is probably because one out of
10 animals showed a longer latency to return to sleep under
DORA-22 than they did with vehicle.

In contrast to the above-mentioned auditory, vestibular, and
olfactory stimulation, there were no significant differences in
the latencies to arousal and return to sleep among vehicle,
DORA-22, and triazolam when hypoxia was used as a stimulus
(Figure 2D, n = 8). There was a time lag of about 120 s before
O2 concentration in the chamber reached 10% and most animals
woke up within that 120 s. For example, the O2 concentration
in the chamber when the mice woke up from sleep with vehicle,
DORA-22, and triazolam was 16.3 (15.4–18.4), 16.4 (15.0–17.9),
and 15.6 (14.4–17.6) % (median and 25–75 percentile in the
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FIGURE 2 | Latency to arousal and latency to return to sleep induced by four modalities of sensory stimulation. (A) Auditory stimulus by ultrasonic sound (n = 8).
(B) Vestibular stimulus by cage shaking (n = 8). (C) Olfactory stimulus by a predator odor (n = 10). (D) Autonomic stimulus by hypoxia (n = 8). Each animal received
vehicle (V), DORA-22 (D), and triazolam (T) in a randomized order on spaced days and were tested for one of the stimuli 2–3 times. The value from those tests were
averaged and are represented as a single dot. Data from the same animal are connected with lines to show possible drug interactions within an individual animal.
Horizontal lines indicate, from top to bottom, 75 percentile, median, and 25 percentile, respectively. Statistical results using the Friedman test, a repeated measure
nonparametric multiple comparisons test, are indicated in the graph. Note that latency to arousal in DORA-22 treated mice is not different from those in vehicle
treated mice and significantly shorter than those in triazolam treated mice, with the exception of hypoxia. Also note that latency to return to sleep in DORA-22 treated
mice is significantly shorter than those in vehicle treated mice and not different from those in triazolam treated mice at least for auditory and vestibular stimuli.

parentheses), respectively. There was no significant difference
among the drugs. Some animals re-slept even when the hypoxic
O2 concentration of 10% continued. Out of the eight animals
undergoing the hypoxic stimulation, the number that re-slept
under the vehicle, DORA-22, and triazolam conditions were 5,
5, and 7, respectively. A chi-square test revealed no statistical
differences (p = 0.446) among the treatments.

DISCUSSION

This study demonstrates that DORA-22 (100 mg/kg) and
triazolam (1.25 mg/kg) had similar sleep promoting effects

(30%–40% increase in SWS time as compared to vehicle) in a
similar time course (approximately 4 h after oral administration)
in mice. During this period, aversive stimuli-induced arousal and
the return to sleep after arousal were examined. As expected,
auditory stimulus-induced arousal was delayed significantly in
the triazolam treatment (p = 0.005) but not in the DORA-22
treatment (p > 0.99) when compared to the vehicle treatment.
Even though the DORA-22 treatment showed a short latency
to wake up, the sleep-promoting effect of DORA-22 seemed to
remain because the latency to return to sleep after arousal was
significantly shorter than vehicle treatment and not different
from triazolam. Similar results were obtained for vestibular and
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olfactory stimuli-induced arousal and return to sleep. In contrast,
hypoxic stimulus-induced arousal and return to sleep were not
different among groups.

We had expected that eszopiclone (15 mg/kg) would show
a sleep promoting effect similar to triazolam and DORA-22
because eszopiclone as well as triazolam and suvorexant
(another DORA) are effective clinically in humans (Matheson
and Hainer, 2017). In a preliminary experiment, we tried a
higher dose of eszopiclone (100 mg/kg, n = 2) but the result
was similar to the selected dose of 15 mg/kg. Gotter et al.
(2014) reported that the sleep-promoting effects of eszopiclone
are highly species specific. In their study, they showed that
treatment with eszopiclone resulted in consistent effects in
rats and rhesus monkeys, variable effects in mice (60 mg/kg),
and paradoxical hyperarousal in dogs. The reason behinds
the differences in species has not yet been revealed, but the
authors speculated that possible differences in the GABAergic
pathways in the brains of these species may be the cause. It
may be interesting to point out that activation of extrasynaptic
GABA-A receptor in the pontine reticular formation promotes
wakefulness (Vanini and Baghdoyan, 2013). In any case, we
stopped further experimentation using eszopiclone because our
main purpose was to examine any possible effects DORA-22
may have on negative valence stimuli-induced arousal and
compare it with at least one of the GABA-A receptor modulators.
We were able to confirm that triazolam was suitable for this
purpose. Nevertheless, we admit that possible species difference
in the effectiveness of different drugs is a limitation of this
study.

The prolonged latency to wake up during triazolam treatment
did not seem to be caused by a general inhibition of waking
systems in the brain because there was no significant change in
the latency to wake in response to hypoxic stimulus (Figure 2D).
Rather, it seemed to be caused by inhibition of sensory input
pathways. An increase in latency to wake from triazolam
treatment in the auditory and vestibular stimuli tests indicated
an importance of the thalamus where the GABA-A receptor is
involved in sensory gating before the signal reaches the cerebral
cortex (McCormick and Bal, 1994). The unchanged latency to
wake in response to hypoxic stimulus may be explained by
the fact that autonomic reflex-like responses do not depend on
the thalamo-cortical pathway. A possible contribution of the
medullary GABAergic pathway, however, has been proposed to
be responsible for arousal in response to intermittent hypoxia
(Darnall et al., 2012). One of the more surprising results was
that the latency to wake in response to olfactory stimulus
was also prolonged with triazolam treatment. It is interesting
because olfactory information directly reaches the cerebral
olfactory cortex from the glomerulus in the olfactory bulb and
thus is not gated by the thalamus. The periglomerular cells
of the olfactory system that contain the GABA-A receptor
(Panzanelli et al., 2007) may be responsible for the gating
effect.

We noticed that latency to return to sleep after arousal by
aversive stimuli (150–300 s in vehicle and 50–100 s in DORA-22
and triazolam, Figures 2A–C) was similar to and did not exceed
awake episode durations in our tests where no stimuli were given

(∼300 s in vehicle and ∼100 s in DORA-22 and triazolam,
Figure 1F). This result indicates that the aversive stimuli used
in this experiment were mild enough to not elicit a continuous
alerting effect on the mice. Due to the observation that DORA-22
and triazolam were effective for approximately 4 h, at least
without stimulation (Figure 1), and aversive stimulus-induced
arousal testing was performed within this time window, it was
not surprising to observe a short latency to return to sleep in the
drug-treated groups.

We used within-subject design to compare drugs’ effect for
each aversive stimulus. This design gives us higher statistical
power than independent design but at the same time possible
habituation effect to the stimulus may distort the results.
However, such habituation effect seemed minimal in the current
experimental setting and randomized order of dosing. If the
habituation effect took place, then some animals that were
treated with vehicle after DORA-22 and/or triazolam should
had longer latency to arousal than those that was treated
with vehicle as the first drug. This seemed not the case since
the data distribution for vehicle showed very narrow range
(Figure 2). In addition to statistical high power, within-subject
design needs fewer animals than independent design. Therefore,
when habituation effect is enough smaller than the effect of
interest, within-subject design is a good choice of experimental
design.

Orexin exerts its wake promoting/stabilizing effect through
activation of monoaminergic systems such as noradrenaline
in the locus coeruleus, serotonin in the dorsal raphe, and
histamine in the tuberomammillary nucleus (Sakurai, 2007).
Thus, the sleep-promoting effect of orexin receptor blockade is
believed to be elicited by an inhibition of orexin signaling in
these nuclei. Although orexin receptors are also expressed in
some thalamic nuclei (Marcus et al., 2001), possible effects of
orexin receptor blockade on sensory input gating have not yet
been reported. It is of interest to note that orexin is involved
in stress-induced analgesia (Watanabe et al., 2005; Inutsuka
et al., 2016) as well through possible activation of descending
pain-inhibitory pathways (Ho et al., 2011). If orexin does also
plays a role in sensory input gating, it seems plausible for it
to also be anti-nociceptive. Therefore, any effect that orexin
receptor blockade might have on sensory gating may occur
in a direction opposite to that of any sleep-related sensory
gating.

CONCLUSION

The findings of this study are consistent with the distinct
mechanisms of these sleep promoting therapies; GABA-A
receptor activation by triazolam is thought to induce widespread
CNS suppression, which includes sensory gating systems, while
DORA-22 more specifically targets sleep/wake pathways through
orexin receptor antagonism. These data support the notion that
DORA-22 preserves the ability to wake in response to aversive
and consciousness-inducing stimuli, regardless of modality,
while remaining effective in the absence of the threat. This study
provides a unique and important point of view for the evaluation
of the safety of these hypnotics.
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Receptor Expression, in a Diurnal
Rodent Model of Seasonal
Affective Disorder
Joseph S. Lonstein*, Katrina Linning-Duffy and Lily Yan

Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States

Seasonal affective disorder (SAD) involves a number of psychological and behavioral
impairments that emerge during the low daytime light intensity associated with winter,
but which remit during the high daytime light intensity associated with summer. One
symptom frequently reported by SAD patients is reduced sexual interest and activity,
but the endocrine and neural bases of this particular impairment during low daylight
intensity is unknown. Using a diurnal laboratory rodent, the Nile grass rat (Arvicanthis
niloticus), we determined how chronic housing under a 12:12 h day/night cycle involving
dim low-intensity daylight (50 lux) or bright high-intensity daylight (1,000 lux) affects
males’ copulatory behavior, reproductive organ weight, and circulating testosterone.
We also examined the expression of mRNAs for the aromatase enzyme, estrogen
receptor 1 (ESR1), and androgen receptor (AR) in the medial preoptic area (mPOA;
brain site involved in the sensory and hormonal control of copulation), and mRNAs for
the dopamine (DA) D1 and D2 receptors in both the mPOA and nucleus accumbens
(NAC; brain site involved in stimulus salience and motivation to respond to reward).
Compared to male grass rats housed in high-intensity daylight, males in low-intensity
daylight displayed fewer mounts and intromissions when interacting with females, but
the groups did not differ in their testes or seminal vesicle weights, or in their circulating
levels of testosterone. Males in low-intensity daylight unexpectedly had higher ESR1,
AR and D1 receptor mRNA in the mPOA, but did not differ from high-intensity daylight
males in D1 or D2 mRNA expression in the NAC. Reminiscent of humans with SAD,
dim winter-like daylight intensity impairs aspects of sexual behavior in a male diurnal
rodent. This effect is not due to reduced circulating testosterone and is associated with
upregulation of mPOA steroid and DA receptors that may help maintain some sexual
motivation and behavior under winter-like lighting conditions.

Keywords: hormones, light, nucleus accumbens, medial preoptic area, seasonal affective disorder,
sexual behavior
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INTRODUCTION

Seasonal affective disorder (SAD) is a recurrent major depressive
disorder with a seasonal pattern that in most cases worsens in
fall and winter, but remits in spring and summer (Rosenthal
et al., 1984; American Psychiatric Association, 2013). Up to
5%–10% of people living in latitudes far from the equator are
thought to be above the clinical threshold to be diagnosed
with SAD, and subsyndromal symptoms are experienced by a
much larger percentage of the population (e.g., Potkin et al.,
1986; Rosen et al., 1990; Magnusson and Partonen, 2005;
Grimaldi et al., 2009; Wirz-Justice et al., 2019). The symptoms
of SAD are numerous and include not only depressed mood but
also anxiety, irritability, reduced physical activity, hyperphagia,
sleep disruption, and low libido (Rosenthal et al., 1984;
Jacobsen et al., 1987).

Given the clinical definition of SAD, it is not surprising
that most research on seasonal changes in human affect and
behavior has focused on the etiology and treatment of depressed
mood. There has been considerably less attention paid to the
other seasonal changes, and almost none to the biological basis
of winter-time decreases in libido, sexual activity, and sexual
satisfaction (Kasper et al., 1989; Roenneberg and Aschoff, 1990;
Bronson, 1995; Avasthi et al., 2001; Demir et al., 2016; Arendt and
Middleton, 2018). Many studies have reported seasonal variation
in circulating gonadal steroids in humans (Smals et al., 1976;
Ronkainen et al., 1985; Kauppila et al., 1987a,b; Kivelä et al., 1988;
Dabbs, 1990; Meriggiola et al., 1996; Valero-Politi and Fuentes-
Arderiu, 1998; Garde et al., 2000; Wisniewski and Nelson, 2000;
van Anders et al., 2006; Stanton et al., 2011; Demir et al., 2016),
but there is no evidence that SAD patients have atypical gonadal
hormone levels at any time of year (although they do for some
pituitary and adrenal hormones—Jacobsen et al., 1987; Avery
et al., 1997; Martiny et al., 2004; Thorn et al., 2011). In addition,
the seasonal changes in testosterone particularly seen in men
most often involve a peak in fall/winter (Smals et al., 1976; Dabbs,
1990; Valero-Politi and Fuentes-Arderiu, 1998; Wisniewski and
Nelson, 2000; van Anders et al., 2006; Stanton et al., 2011), which
does not temporally correspond with what would be expected
for a wintertime decline in sexual interest and activity. Thus, the
low winter-time libido and sexual function in SAD patients and
other individuals in the general population is unlikely to be due
to a drop in circulating gonadal hormone levels. Interestingly,
there is some evidence that the winter-time reduction in libido
also does not depend on the presence of a mood disorder
(Bossini et al., 2009).

The underlying mechanisms may instead be due to seasonal
modifications in the central nervous system sites underlying
sexual behaviors. The neural network involved in mammalian
sexual behaviors includes the medial preoptic area (mPOA) lying
just rostral to the hypothalamus. In many animals, the mPOA is
critical for the sensory and gonadal steroid regulation of partner
choice, sexual motivation, and/or the expression of copulatory
behaviors (for reviews see Hull and Dominguez, 2015; Micevych
and Meisel, 2017; Pfaff and Baum, 2018). Relevant to SAD,
the hormonal sensitivity of the mPOA is affected by changes
in season or photoperiod. Winter-like short day length reduces

mPOA aromatase activity (the enzyme that converts testosterone
into estradiol) in seasonally breeding male Golden hamsters
(Callard et al., 1986), causes a drop in androgen receptor (AR)
binding in their mPOA (Bittman and Krey, 1988), decreases
AR immunoreactivity in the mPOA of male Siberian hamsters
(Tetel et al., 2004), and lowers both estrogen receptor (ESR)
and progestin receptor immunoreactivity in the mPOA of female
Syrian hamsters (Mangels et al., 1998). Similar effects of the
season can be found for the steroid hormone sensitivity of the
mPOA in sheep (Skinner and Herbison, 1997) and European
starlings (Riters et al., 2000).

Not only is the mPOA’s response to steroid hormones critical
for its role in the display of sexual behaviors, but activity of
the neurotransmitter, dopamine (DA), in the mPOA is also
essential. DA is released in the mPOA of male rats and Japanese
quail when they are exposed to female sensory cues, and this
DA response appears to determine their subsequent behavioral
interactions with the female (Hull et al., 1995; Kleitz-Nelson
et al., 2010). Disrupting DA receptor signaling in the mPOA
by infusing the D1/D2 receptor antagonist, cis-flupenthixol,
impairs both sexual motivation and performance in male rats
(Pehek et al., 1988). Furthermore, selective antagonism or
agonism of D1 and D2 receptors in the mPOA reveals that low
D1 signaling and high D2 signaling is especially disruptive for
males’ latency to begin copulating, but hastens ejaculation (Hull
et al., 1989). D1 and D2 signaling in the mPOA also modulates
sexual behaviors in female rats, with high D1 or D2 activity
promoting sexual solicitation depending on the subjects’ ovarian
hormone milieu (Graham and Pfaus, 2010, 2012). Lastly,
the consolidation of sexual experience in male rats requires
mPOA D1 receptor activity during interactions with the female
(McHenry et al., 2012), while others have shown that previous
sexual experience not only increases the number of D2 receptor-
immunoreactive cells in the male rat mPOA but also that
Fos expression in these D2R-immunoreactive cells is positively
correlated with a number of facets of their copulatory behaviors
(Nutsch et al., 2016).

The mPOA is not the only site in the brain where changes
in DA signaling may be associated with seasonal changes
in libido and sexual activity. Similar to other depressive
disorders, SAD involves decreased interest or pleasure in most
activities (i.e., anhedonia; American Psychiatric Association,
2013), which is associated with the mesolimbic DA system
dysfunction (Nestler and Carlezon, 2006). Mesolimbic DA
signaling is essential for high sexual motivation and behaviors
in laboratory rodents (Yoest et al., 2014; Hull and Dominguez,
2015), and natural or experimental changes in ambient light
do alter DA synthesis, metabolism, and receptor content in
many areas of the laboratory rodent and human brain (e.g.,
Neumeister et al., 2001; Eisenberg et al., 2010; Tsai et al.,
2011; Cawley et al., 2013; Deats et al., 2015; Goda et al., 2015;
Itzhacki et al., 2018).

It is reasonable to hypothesize that decreased libido in male
SAD patients results from altered gonadal steroid and DA
sensitivity of the mPOA and nucleus accumbens (NAC). In
the present experiment, we tested this hypothesis in a male
diurnal rodent—the Nile grass rat (Arvicanthis noliticus). We
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have found that, similar to SAD patients, winter-like lighting
regimen (involving either short daylength or reduced daytime
light intensity) increases depression- and anxiety-like behaviors
and produces cognitive impairments in Nile grass rats (Leach
et al., 2013a,b; Deats et al., 2014; Ikeno et al., 2016; Soler
et al., 2018). Those behavioral responses are accompanied by
changes in central DA, serotonin, orexin, neurotrophin, and
stress-mediating systems (Leach et al., 2013a,b; Deats et al., 2014;
Ikeno et al., 2016; Soler et al., 2018). Humans are diurnal and
neurobehaviorally stimulated by light, so studying diurnal grass
rats offers advantages for understanding how light affects the
human brain and behavior over studying most other laboratory
rodents (which are nocturnal; Yan et al., 2019). Also similar
to humans, but not some laboratory rodents like hamsters that
are seasonal breeders, grass rats will copulate all year around
(McElhinny et al., 1997; Blanchong et al., 1999) so are an
excellent model for studying seasonal influences on diurnal male
copulatory behavior, testosterone levels, and brains.

Instead of studying the effects of day length or daylight
duration, we here studied the effects of winter-like daylight
intensity. This is because it is the seasonal differences in daylight
intensity that are most salient to modern humans. Most humans
around the world now use artificial lights, so the duration of light
across seasons is much less variable than the intensity of the light
we receive across seasons (Hébert et al., 1998). We predicted that
housing in winter-like, low-intensity daylight would: (1) impair
males’ copulatory behaviors when paired with a conspecific
female; (2) decrease aromatase, ESR1, AR, D1 and D2 mRNA
expression in the mPOA; and (3) reduce D1 and D2 mRNA
expression in the NAC.

MATERIALS AND METHODS

Subjects
Subjects were from a stock of Nile grass rats (Arvicanthus
nilotocus) originally captured in sub-Saharan Africa by Dr. Laura
Smale in 1993 and maintained for almost two decades at
Michigan State University using outbred breeding (McElhinny
et al., 1997). Animals were housed in transparent polypropylene
cages (43 × 23 × 20 cm) containing wood chip bedding and
an 8 × 6 cm PVC pipe for shelter/enrichment. They were
maintained under 12 h light-12 h dark conditions (lights on
at 06:00 h), typical of their equatorial habitat. After reaching
adulthood, males were singly housed. Pre-experimental colony
room light was supplied by cool white fluorescent lights mounted
on the ceiling, with light intensity at the center of the room
at ∼300 lux. Animals had food (Prolab 2000 #5P06, PMI
Nutrition) and water ad libitum. This study was carried out in
accordance with the recommendations of the National Institutes
of Health Guide for the Care and Use of Laboratory Animals
(NIH Publication No. 80-23). The protocol was approved by
the Institutional Animal Care and Use Committee of Michigan
State University.

Lighting Conditions
At the onset of the experiment, males were moved out of the
colony and singly housed in smaller environmental chambers.

In these chambers, they were subjected to a 12 h bright daylight
(1,000 lux)-12 h dark (1 lux) condition (bright Light/Dark;
brLD) or a 12 h dim daylight (50 lux)-12 h dark (1 lux)
condition (dim Light/Dark; dimLD) for 5 weeks (for sexual
behavior tests) or for 4 weeks (for testosterone, reproductive
organ, and brain measures). Different groups of animals were
used for the behavioral and biological measures in order to
avoid any effects of group-level differences in sexual experience
complicating the biological data interpretation. Our prior work
has shown that male grass rats housed in brLD and dimLD
for 4–5 weeks differ in their anxiety- and depression-related
behaviors, stress responsiveness, spatial memory, and numerous
neural characteristics (Leach et al., 2013a,b; Deats et al., 2014;
Ikeno et al., 2016). Light was provided by cool white fluorescent
bulbs (Jesco Lighting, SP4-26SW/30-W), with the same full
spectrum maintained in both the brLD and dimLD conditions.

Copulatory Behavior
Before being placed into brLD or dimLD conditions, males
were screened to ensure they copulated during a 30-min
interaction with unfamiliar female grass rats from our colony
that were primed with subcutaneous injections of 10 or 20 µg
estradiol benzoate once a day for two consecutive days, followed
24 h later by a subcutaneous injection of 250 or 500 µg
progesterone (Sigma, USA). Females were used for behavior
testing starting 3 h later. Males were removed from their home
cages and placed in larger glass aquaria (61 × 32 × 29 cm)
that contained wood chips for bedding and a hormone-primed
female under ∼300 lux (i.e., colony room) illumination. Males
that successfully copulated were then randomly assigned to be
housed in either the brLD (n = 11) or the dimLD (n = 14)
condition for 5 weeks. After 5 weeks, they were then tested again
in the glass aquaria for copulatory behaviors with unfamiliar
ovarian hormone-primed female grass rats. If males did not
make contact with a stimulus female within 2 min after the
beginning testing, or if a stimulus female did not show lordosis
in response to a male’s mounts, the stimulus female was
replaced with another hormone-primed female grass rat and
the test started over. Male-female interactions were recorded
for 15 min and males’ latencies to begin sniffing the females,
latencies to first mount, their frequencies of mounts, and their
frequencies of intromissions were later scored. ‘‘Hit rate’’ as
a measure of copulatory efficiency was determined by the
number of intromissions divided by the number of mounts plus
intromissions × 100. Ejaculations were not reliably observed in
most males within the 15-min observations.

Reproductive Organ Weights and Plasma
Testosterone Levels
A set of experimentally naïve animals from the colony were
housed in either brLD (n = 7) or dimLD (n = 8) for 4 weeks
and sacrificed between 09:00 and 10:00 h with an overdose of
sodium pentobarbital. Animals were weighed, their testes and
seminal vesicles collected and stripped of fat, and the fresh
tissues weighed to the nearest mg. Trunk blood was obtained
from another set of experimentally naïve male grass rats housed
in each condition for 4 weeks and sacrificed during the day
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at Zeitgeber T2 (nine dimLD, nine brLD) or in the evening
at T14 (eight dimLD, eight brLD). Blood was centrifuged at
15,000 rpm for 15 min, and the plasma stored at −80◦C until
being assayed for testosterone using a commercially available
EIA kit per the manufacturer’s protocol (Enzo Life Sciences,
Farmingdale, NY, USA).

Brain Processing and qtPCR
Brains from experimentally naïvemale grass rats (brLD n = 11 for
mPOA, n = 10 for NAC; dimLD n = 8 for mPOA; n = 12 for
NAC) were collected, quickly frozen on dry ice, and stored at
−80◦C until later analysis of five mRNAs relevant to sexual
and other motivated behaviors. Brains were cut into 200-µm
sections and bilateral 1-mm diameter micropunches (Harris
Micropunch, Electron Microscopy Sciences, Pennsylvania, PA,
USA) were made to obtain the mPOA and NAC. Tissue was
processed and qtPCR run as described previously (Grieb et al.,
2018). Briefly, tissue punches were homogenized by pulsed
sonication in RLT Plus buffer (Qiagen, Germantown, MD,
USA) containing β-mercaptoethanol. mRNAs were extracted
using an RNeasy Plus Mini Kit (Qiagen, Germantown, MD,
USA) and quantified with a GeneQuant100 machine (Harvard
Bioscience, Holliston, MA, USA). RNA purity was determined
by the ratio of absorbances at 260:280 nm wavelengths, and
ratios of ∼2.0 was considered pure. Equal concentrations
of mRNAs were converted to cDNA using a high-capacity
reverse transcription kit (Applied Biosystems, Foster City,
CA, USA). Real-time PCR was conducted with 2.5 ng/µl of
converted cDNA (based on starting concentration of RNA
converted to cDNA) and samples were run in triplicate. Runs
included cDNA, primers, and SYBR Green PCR Master Mix
(Applied Biosystems, Foster City, CA, USA) in a 25-µL reaction
involving an ABI PRISM 7000 Sequence Detection System
(Applied Biosystems, Foster City, CA, USA). A no-template
control was run alongside the samples to ensure that no
primer-dimer amplification had occurred. In addition, mRNA
samples not run through the reverse transcription kit were
also run at the same time to ensure no gDNA contamination.
Amplification efficiencies were calculated for each primer set,
and each was within the accepted range (1.90–2.10) to use
the ∆∆CT method to calculate fold change between groups
(Schmittgen and Livak, 2008).

Preoptic area mRNAs analyzed were for the
androgen receptor (forward—ACTACTTCTCTGCAGTGC
CT; reverse—CCAGGAAATAGAACTGGGGAAC), ESR1
(forward—CCAGCTCCACTTCAGCACAT; reverse—GAGCC
TGGGAGTTCTCAGAT), and aromatase (forward—CTACT
GTCTGGGAATCGGGC; reverse—GTTGCAGGCACTTCC
AATCC). mPOA and NAC mRNAs analyzed were for
the DA D1 receptor (forward—GTGGGCGAATTCTTC
CCTGA; reverse—GGGCAGAGTCTGTAGCATCC) and
D2 receptor (forward—GGACATGAAACTCTGCACCG;
reverse—ATCCATTCTCCGCCTGTTCAC). All were compared
to the ‘‘housekeeping’’ gene HPRT1 (forward—CTCATGGAC
TGATTATGGACAGGAC; reverse-GCAGGTCAGCAAAGAA
CTTATAGCC). The primers (Integrated DNA Technologies,
Coralville, IA, USA) were designed based on the corresponding

gene sequences in laboratory mice and rats, and the identities of
all the PCR products we obtained in grass rats were confirmed
by sequencing at the MSU Genomic Core.

Data Analyses
Data sets were confirmed to be normally distributed and have
homogeneous variance among groups. Data were subjected to
Grubb’s single-outlier tests and any outliers were removed. The
data were then analyzed using two-tailed independent Student t-
tests comparing groups of brLDmales to dimLDmales. Statistical
significance was indicated by ps < 0.05.

RESULTS

Copulatory Behaviors
All brLD and dimLD male grass rats included in the study
copulated with ovarian hormone-primed stimulus females
during the 15-min observations. The groups did not significantly
differ in their latency to begin sniffing the females (t(23) = 0.18,
p = 0.986), but there was a trend for dimLD males to take longer
tomount (t(23) = 1.704, p = 0.10). DimLDmales alsomounted the
females less frequently (t(23) = 2.28, p < 0.033) and intromitted
less often (t(23) = 2.10 p = 0.047) compared to brLD males
(Figure 1). Males’ ‘‘hit rate’’ was similar between the brLD and
dimLD groups (t(23) = 0.30, p = 0.766).

Reproductive Organs and Plasma
Testosterone
Daytime light intensity did not affect males’ testes weights
(1.40 ± 0.03 vs. 1.45 ± 0.44 g/g bodyweight × 100; t(13) = 0.96,
p = 0.35) or seminal vesicle weights (0.91 ± 0.12 vs.
0.89 ± 0.07 g/g bodyweight × 100; t(13) = 0.18, p = 0.85).
It also did not affect their levels of circulating testosterone
(F(1,34) = 1.83, p = 0.18), although there was a significant effect of
when blood was taken, such that male grass rats sacrificed during
the day had higher circulating testosterone compared to males
sacrificed at night (F(1,34) = 4.23, p = 0.049; Figure 2). There was
no significant interaction between light intensity group and time
of day on testosterone levels (F(1,34) = 0.528, p = 0.47).

Medial Preoptic Area and Nucleus
Accumbens mRNAs
Male grass rats housed in brLD and dimLD conditions did not
differ in their mPOA aromatase mRNA expression (t(17) = 1.635,
p = 0.120), but dimLD males had significantly higher ESR1
(t(17) = 2.175, p = 0.044) and AR (t(16) = 2.31, p = 0.035) mRNA
expression compared to brLD males (Figure 3A). dimLD males
also had significantly higher D1 (t(17) = 4.21, p = 0.001), but not
D2 (t(16) = 1.52, p = 0.149), receptor mRNA expression in the
mPOA. In the NAC, dimLD and brLDmales did not significantly
differ in their DAD1 (t(20) = 0.874, p = 0.393) or D2 (t(19) = 0.129,
p = 0.878) receptor mRNA expression (Figure 3B).

DISCUSSION

Winter-time decrease in libido, sexual activity, and sexual
satisfaction are commonly associated with SAD, and also

Frontiers in Behavioral Neuroscience | www.frontiersin.org 4 April 2019 | Volume 13 | Article 7214

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Lonstein et al. Dim Daylight Affects Male Copulation

FIGURE 1 | Behavioral response to dim daylight. Male grass rats were housed in bright daylight intensity (brLD) or dim daylight intensity (dimLD) and their (A) latency
to sniff an estrus female, (B) latency to mount an estrus female, (C) frequency of mounts, and (D) frequency of intromissions is shown (Means ± SEMs). ∗p < 0.05.

FIGURE 2 | Hormonal response to dim daylight. Circulating levels
(Mean ± SEM) of testosterone in male grass rats housed in bright daylight
intensity condition (brLD) or dim daylight intensity (dimLD) condition, and
sacrificed during the day (hatched) or night (gray). #Significant main effect of
time of day, p < 0.05.

experienced by many people whose seasonal symptoms would
not reach the clinical threshold for this disorder (Schlager et al.,
1993; Harmatz et al., 2000; Avasthi et al., 2001; Demir et al.,
2016; Arendt and Middleton, 2018). It has been suggested that
the seasonal decrease in sexual function (and thus mating) may
have evolutionary origins, such that births would be less likely
to occur during the increasingly resource-poor autumn, and

instead be biased toward early spring (Eagles, 2004; Davis and
Levitan, 2005). In support, SAD is more common in people
of reproductive age than those younger or older (Magnusson
et al., 2000). Despite a possible evolutionary benefit, for most
modern humans around the globe which use artificial light and
live in resource-rich environments, seasonal changes in sexual
function can be quite distressing and very little is known about
the neurobiological underpinnings.

Influence of Daytime Light Intensity on
Male Copulatory Behavior and Relevance
to SAD
Using diurnal male grass rats as a model, we hypothesized
that housing in low-intensity light during the daytime would
recapitulate the effects of winter on male sexual activities. Our
results generally supported this hypothesis. When compared to
males housed in the bright, high-intensity daylight condition
(brLD), males in the dim, low-intensity daylight condition
(dimLD) had a trend toward longer latencies to begin mounting
estrus females and showed about half as many mounts and
intromissions. This suggests that, inmale grass rats, being housed
in winter-like daylight intensity may have only minor negative
effects on sexual approach/motivation (reflected by the latencies
to sniff andmount the females), butmore considerable disruptive
effects on copulatory performance (mounts and intromission).
This is consistent with the winter-time reduction in men’s
sexual activity and satisfaction reported in a number of studies
(Schlager et al., 1993; Harmatz et al., 2000; Avasthi et al., 2001;
Demir et al., 2016; Arendt and Middleton, 2018).
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FIGURE 3 | Neural response to dim daylight. (A) Relative levels
(Mean ± SEM) of mRNAs for aromatase (Arom), estrogen receptor 1 (ESR1),
androgen receptor (AR), D1 and D2 in the medial preoptic area (mPOA) of
male grass rats housed in bright daylight intensity condition (brLD) or dim
daylight intensity (dimLD) condition. (B) Relative levels (Mean ± SEM) of
mRNAs for D1 and D2 in the nucleus accumbens (NAC) of male grass rats
housed in brLD or dimLD conditions. ∗p < 0.05.

At first, however, our results appear somewhat inconsistent
with the reduced libido (i.e., sexual interest and motivation)
often thought to be associated with SAD (Rosenthal et al., 1984).
While no animal model is likely to reflect all symptoms of
a given disorder, we also believe there is a lack of clarity in
the ‘‘low libido’’ often cited as a symptom of SAD. First, the
diagnostic criteria for SAD in the DSM-5 do not specifically
involve anything related to sexual motivation or performance.
Although some instruments frequently used to examine the
depressive symptoms associated with SAD do ask a question
about sexual functioning, they either offer libido as the only
example of a concern related to sexual activity for patients
to endorse (HRDS/HAM-D), only ask specifically about libido
(BDI), or only ask about sexual satisfaction (Zung’s SDS). Other
common instruments do not ask about sexuality at all (CES-
D, HADS-Dl QUIDS-SR16, MADRS, SPAQ). Thus, it is unclear
if seasonal changes in the frequency or satisfaction of sexual
activity are or are not usually captured by the high endorsement
of ‘‘low libido’’ in SAD patients. Greater discrimination among
the motivational, behavioral, and emotional aspects of human

sexual functioning in SAD would be useful for understanding
the validity of our and other laboratory rodent models of this
affective disorder.

Influence of Daytime Light Intensity on
Gonadal Function
Short winter-like day length increases the duration of melatonin
released from the pineal gland each day. Particularly in animals
that are seasonal breeders, this elevated melatonin signal inhibits
pituitary gonadotropin synthesis, causes gonadal regression,
and eventually the cessation of mating (Carter and Goldman,
1983; Arendt, 1986; Kriegsfeld et al., 2015; Weems et al., 2015;
Simonneaux, 2019). Of note, short day lengths do not reduce
circulating testosterone in some laboratory rodents that are
not highly seasonal breeders including rats (Prendergast and
Kay, 2008), CD1 mice (Nelson, 1990), and California mice (P.
californicus; Trainor et al., 2008; also see Trainor et al., 2006).
Short day lengths also do not affect testosterone levels or testes
mass in male grass rats housed within the laboratory (Nunes
et al., 2002). As far as we are aware, there have been no
previous studies on the effects of winter-like daylight intensity on
gonadal function in any diurnal or nocturnal rodent. We found
that male grass rats housed in brLD or dimLD conditions had
similar circulating testosterone levels that were within the range
previously reported for laboratory-housed and wild male grass
rats (Sicard et al., 1994; Nunes et al., 2002). Testes and seminal
vesicle weights were also similar between our two groups. We did
not have an a priori expectation for these measures because it is
unclear if grass rats are somewhat seasonal breeders or simply
opportunistic breeders that mostly rely on recent environmental
conditions to determine their reproduction (Neal, 1981; Delany
and Monro, 1986; Sicard et al., 1994). It should be kept in
mind for interpreting our results that the behavioral data and
the blood (and brains) were obtained from different groups of
dimLD and brLD male grass rats, which was done to avoid
confounding effects of group differences in copulatory behaviors
on circulating testosterone. Also, the sets of dimLD and brLD
males used for behavior and blood analyses differed by 1 week in
how long they were in their lighting conditions, although there
are no obvious reasons why a difference of 4 vs. 5 weeks would
have mattered for males’ circulating gonadal hormones.

In any case, our results suggest that the impairments in
copulatory behavior in dimLD-housed males are independent
of their gonadal function. Other studies have found that
changes in laboratory rodent behavior due to day length are
also not positively related to gonadal hormones. For example,
aggression in female Siberian hamsters housed in short day
lengths is independent of their circulating ovarian hormones
(Scotti et al., 2007), and aggression in male Siberian hamsters
is inversely related to their circulating testosterone (Jasnow
et al., 2000). In male California mice, housing in short days
does not affect circulating testosterone (Nelson et al., 1995), but
still increases aggression (Trainor et al., 2008). In laboratory
rats, short-day lengths increase depression- and anxiety-like
behaviors (Prendergast and Kay, 2008; although see Dulcis
et al., 2013) without affecting circulating testosterone or testes
size (Wallen et al., 1987; Prendergast and Kay, 2008). It has
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also long been known that in some subpopulations of male
laboratory rodents there is no positive relationship between their
circulating testosterone and copulatory behaviors (Davidson,
1966; Damassa et al., 1977). Additionally, as mentioned above
there is no evidence that gonadal function is abnormal in
men who experience winter-time reductions in libido, sexual
activity, or sexual satisfaction; our results from male grass rats
suggest that these reductions are likely unrelated to circulating
testicular hormones.

While we found no effect of daytime light intensity on gonadal
function, we did find significantly higher circulating testosterone
in male grass rats sacrificed in the morning compared to those
sacrificed at night. A circadian rhythm in circulating gonadal
hormones is commonly found in mammals (Kriegsfeld et al.,
2002), and the circadian rhythm suggested by our results is
similar to the morning peak in testosterone found in diurnal
humans (e.g., Diver et al., 2003; Brambilla et al., 2009). It is
also consistent with the early-morning peak and evening nadir
in hypothalamic gonadotropin releasing hormone (GnRH) cell
activity, and circulating luteinizing hormone (LH), in female
grass rats from our colony (McElhinny et al., 1999). In contrast to
diurnal grass rats, the nocturnal laboratory rat and mouse show
their peak circulating testosterone levels in the early evening
(Kriegsfeld et al., 2015).

Influence of Daytime Light Intensity on
mPOA Steroid Hormone and DA Receptor
mRNAs
The mPOA is a critical node in the neural network underlying
the hormonal and sensory control of male sexual behavior (Hull
and Dominguez, 2015). There is a large population of cells in
the mPOA where endogenous testosterone can be aromatized
into estradiol, which then acts on cytosolic ESRs as well as other
substrates to regulate male sexual motivation and performance
(Balthazart et al., 2004). Testosterone also acts directly on ARs
in the mPOA to promote male sexual activity (McGinnis et al.,
2002; Harding and McGinnis, 2004). We found that mPOA
levels of aromatase mRNA did not differ between males housed
in dimLD and brLD conditions, suggesting a similar capacity
for local estradiol synthesis. The groups differed in ESR1 and
AR mRNA expression, though, with both transcripts higher in
dimLD males than brLD males. This was unexpected because
the impaired copulation in the dimLD-housed males would have
intuitively been consistent with lower ESR1 and AR expression
in the mPOA. Thus rendering it less sensitive to steroid hormone
influences on sexual behavior.

Winter-like short day length downregulates ARs in the
mPOA of seasonally breeding male Golden and Siberian
hamsters (Bittman and Krey, 1988; Tetel et al., 2004), as
well as downregulates ESR1 in the mPOA of female Syrian
hamsters (Mangels et al., 1998), concomitant with cessation of
their copulatory behavior. In non-seasonal breeders, however,
the consequences of short day length on central AR and
ER expression are more complex, being both species- and
site-specific (Trainor et al., 2007, 2008). Similar to our findings
related to reduced daytime light intensity, short day length

increases ESR1 mRNA in the mPOA of male Oldfield mice
(P. polionotus). However, housing in short days does not affect
ESR1 mRNA expression in the mPOA of male Deer mice
(P. maniculatus; Trainor et al., 2007) or estrogen receptor
immunoreactivity in the mPOA of Siberian hamsters (Kramer
et al., 2008). Short day length also increases ESR1 mRNA
and/or estrogen receptor protein in the posterior bed nucleus
of the stria terminalis (BNST) of male Oldfield mice, Deer
mice, and Siberian hamsters, but not in male California mice
(P. californicus; Trainor et al., 2007, 2008; Kramer et al., 2008).
Because these non-seasonally breeding animals show no changes
in circulating testosterone or sexual behavior in response to short
day length, the seasonal changes in their behavior (e.g., increased
aggression and anxiety) are independent of circulating steroids.
In our male grass rats, reduced copulatory behavior in response
to low-intensity daylight is also independent of circulating
testosterone and more likely associated in some manner with
the upregulated AR and ESR1 expression in their mPOA. Given
the direction of the results, we propose that the upregulated
expression may be part of a compensatory mechanism that
maintains sexual behavior, albeit at lower levels, in the dimLD
males. An alternative hypothesis could be that upregulation of
these receptors in the mPOA actively suppresses male copulatory
behavior in dimLD males. While we can find no evidence from
the literature that upregulating AR or ESR1 in the mPOA would
impair copulation or any other sociosexual behavior in male
rats, overexpressing estrogen receptors in other sites such as the
medial amygdala or BNST does reduce prosocial behaviors in
male prairie voles (Cushing et al., 2008; Lei et al., 2010).

We also found upregulated D1 mRNA in the mPOA of
dimLD-housed male grass rats, which was unexpected based
on what is known about DA receptors in this brain site and
male copulation. High mPOA D1 activity relative to D2 activity
is associated with faster sexual motivation and more mounts
and intromissions before ejaculation in male laboratory rats
(Hull et al., 1989; Moses et al., 1995), not the somewhat longer
latencies to mount females and lower mount and intromissions
frequencies in our dimLD grass rats. Similar to the upregulated
AR and ESR1 expression in the mPOA, perhaps upregulated
D1 receptor expression in the mPOA of dimLD male grass rats
helps maintain some level of sexual activity in these animals.

Influence of Daytime Light Intensity on
NAC DA Receptor mRNAs
DA receptor signaling in the NAC is essential for incentive
salience, motivation to approach, and/or continued responding
for a rewarding stimulus (Salamone et al., 2005; Castro and
Berridge, 2014). It would make sense if that extends to natural
rewards such as sexual activity, but the literature so far has
shown that neither D1 or D2 antagonism nor D2 agonism in
the NAC affects copulatory behavior in male laboratory rats
tested under high-motivation conditions (Hull et al., 1986; Moses
et al., 1995; Guadarrama-Bazante and Rodríguez-Manzo, 2019).
Nonetheless, D2 agonism in the NAC (but not mPOA) can
reinstate mounting by sexually sated male rats that have low
motivation to copulate (Guadarrama-Bazante and Rodríguez-
Manzo, 2019).

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 April 2019 | Volume 13 | Article 7217

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Lonstein et al. Dim Daylight Affects Male Copulation

We found no significant difference between our two groups
of male grass rats in levels of D1 or D2 receptor mRNAs
in the NAC. This does not mean that other aspects of their
mesolimbic systems do not differ in ways that affect their sexual
behavior, and this would be worthy of future investigation.
A number of studies report relationships among light, DA,
and mood. Pharmacologically induced catecholamine depletion
during the summer causes relapse in SAD patients (Lam et al.,
2001) and significantly lowers mood in healthy women living
for just 2 days under a normal circadian cycle but with very
dim daytime light intensity (10 lux; Cawley et al., 2013). A study
of people naturally experiencing winter-time short day length
along with low daytime light intensity found that the ventral
tegmental area and other DA-rich midbrain cell groups have
much less tyrosine hydroxylase immunoreactivity compared to
midbrains obtained from people during the summer (Aumann
et al., 2016). On the other hand, human cerebrospinal fluid
levels of DA and its metabolites are higher (Hartikainen et al.,
1991), striatal presynaptic DA synthesis and storage are elevated
(Eisenberg et al., 2010), and DA transporter binding in the
striatum is lower (Neumeister et al., 2001) in winter. Even the
small differences in potential sunshine exposure in a subtropical
location (i.e., Taiwan) is associated with lower D2/D3 receptor
availability in the human striatum (Tsai et al., 2011). These results
collectively suggest a winter-time downregulation of midbrain
DA cells, but upregulation of forebrain terminal and synaptic
mechanisms that may permit some degree of compensation in
humans. The effects of winter-like conditions on central DA
systems in diurnal rodents is less clear. Male Nile grass rats
in either winter-like photoperiod or low daytime light intensity
have fewer hypothalamic cells containing tyrosine hydroxylase
(Deats et al., 2015) and winter-like reduction in both daylight
length and intensity downregulate DA turnover in the NAC
of Sudanian grass rats (Arvicanthis ansorgei), which could be
restored to control levels by daily bright light ‘‘therapy’’ (Itzhacki
et al., 2018). In diurnal chipmunks, short days decreased
DA content in the striatum but increased DA levels in the
hypothalamus and amygdala (Goda et al., 2015).

CONCLUSIONS AND FUTURE
DIRECTIONS

Seasonal changes in human sexual motivation and function are
quite common but are rarely studied. As such, the biological

bases are poorly understood. The present findings from diurnal
male grass rats, along with other research on diurnal and
non-seasonally breeding rodents, indicates that the locus of
such effects of winter-time light conditions is not at the level
of the gonads but in brain sites such as the mPOA that are
vital for sexual activity. It will be valuable in future studies to
determine if such effects of dim daylight on sexual behavior in
grass rats are reversible by daily ‘‘light therapy.’’ It will also be
valuable to determine the effects of winter-like dim daylight on
copulation, ovarian hormone levels, and relevant mRNAs in the
mPOA of female grass rats. Women suffer from SAD 2–4 times
more often men (Kasper et al., 1989; Lee and Chan, 1998), and
consistently show some inhibition of ovarian function during
winter (Ronkainen et al., 1985; Kauppila et al., 1987a,b; Kivelä
et al., 1988). Perhaps female grass rats housed in dim daylight
would show less copulatory behaviors compared to females in
bright daylight, but the effects are due to both a drop in ovarian
function and reduced steroid and DA sensitivity of their mPOA
and other hypothalamic sites involved in female copulation (e.g.,
ventromedial nucleus).
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Associated With Efficient Attention
Holding by Self Face in Women
Hirokazu Doi* and Kazuyuki Shinohara
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Capacity to recognize one’s own face (hereinafter referred to as self face) is a
fundamental component of various domains of social cognition such as empathy in
humans. Previous research has demonstrated that a high level of androgen suppresses
empathic behavior and social brain function. Taking these into consideration, we
hypothesized that people with high androgen level show reduced response to self face.
The present study examined this hypothesis by investigating the association between
attentiveness towards self face, as assessed by a psychophysiological experiment,
and salivary testosterone concentration. The attentional responses to self face was
measured by a modified Go/NoGo task. In this task, self face or unfamiliar other’s face
was presented simultaneously with Go or NoGo signal. In go trials, participants had
to divert their attention from the face to a peripheral target. The reaction time (RT) for
peripheral target detection in each condition was measured. In addition to behavioral
data, saliva samples were collected to assay salivary testosterone concentration. The
index of potency of self face to hold viewer’s attention that was computed based
on RT data was regressed against salivary testosterone concentration in men and
women separately. The analyses revealed that self face holds visuospatial attention more
effectively in women with low than high salivary testosterone level, but no such trend
was observed in men. This pattern of results indicates that low testosterone level is
associated with a pronounced response to self face as we hypothesized and raises
the possibility that multiple aspects of self-face processing are under the influence of
endocrinological function.

Keywords: self, face, attention, testosterone, sex difference

INTRODUCTION

Self-awareness is considered a cornerstone of social cognition (Gallup, 1970; Keenan et al.,
2000; Humphreys and Sui, 2016). The distinction between self and other is indispensable in
the theory of mind and perspective taking (Happé, 2003; Bradford et al., 2015). Reflecting
this special status self holds in social cognition, one’s visual system processes self face in a
manner different from an unfamiliar or a highly familiar other’s face. Tong and Nakayama
(1999) demonstrated that the representation of self face is highly viewpoint invariant. In addition,
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many neuroimaging studies have revealed increased activation
of neural regions, such as the medial prefrontal cortex and
anterior cingulate cortex, to self faces compared with other’s faces
(Keenan et al., 2000; Kircher et al., 2001; Heatherton et al., 2006),
which indicates that exposure to self face induces introspection
and emotional reaction effectively. Interestingly, part of these
neural regions is recruited in inference of other’s mental status
and perspective taking as well (Mitchell et al., 2005; Healey
and Grossman, 2018), which gives further credence to the view
that self-face processing comprises the basis of social cognition
(Happé, 2003).

One phenomenon reflecting the special status of self face is its
effectiveness to hold one’s attention (Humphreys and Sui, 2016).
Psychophysical and eye-tracking studies have shown that self face
holds adult’s attention more effectively than an unfamiliar or
a familiar other’s face (Brédart et al., 2006; Devue et al., 2009;
Humphreys and Sui, 2016; Wójcik et al., 2018).

There is great interindividual variation in the ability of social
cognition. Such individual differences presumably stem from
various factors, including environmental and biological factors.
Among these, many studies point out that a high level of
androgen is associated with poorer function in many domains
of social cognition (van Wingen et al., 2011). Direct evidence
for the link between social cognition and androgen comes from
testosterone administration studies. This line of study has shown
that a single administration of testosterone reduces empathy and
mentalizing (Hermans et al., 2006; van Honk et al., 2011; but
see Nadler et al., 2019). Correlational studies also linked a high
level of testosterone to impaired social function, indicating the
possibility that testosterone can impair social cognition ability
even within the physiological range (Ronay and Carney, 2013;
Zilioli et al., 2015).

Taken together, these pieces of evidence indicate that
a high level of testosterone leads to a lower level of social
cognition ability. Taking this into consideration, together with
the proposed link between social cognition and self-processing
(Happé, 2003), it is highly conceivable that a high level
of testosterone is associated with reduced behavioral and
neurophysiological responses to self-related information,
including self face. However, the association between
neuroendocrinological function and self-face processing has not
been examined fully with only a few exceptions that investigated
the association between representation of self face and levels
of hormones (Colonnello et al., 2013; Welling et al., 2016).
Specifically, Colonnello et al. (2013) revealed that intranasal
administration of oxytocin increases one’s ability to discriminate
self and other’s faces, while Welling et al. (2016) demonstrated
that testosterone administration makes one’s representation
of self face more masculine than the actual self face. Thus,
despite the abundance of studies that indicate effectiveness of
self face to hold viewer’s visuospatial attention (Devue et al.,
2009; Humphreys and Sui, 2016; Wójcik et al., 2018), no study
to date has investigated the link between the indicators of
endocrinological function and attentional responses to self face.

The present study attempts to fill in the gap in knowledge
by investigating the association between salivary testosterone
concentration and strength of attention holding by self face

to examine the hypothesis that a high level of testosterone
is associated with weaker attention holding by self face. We
collected data from men and women during their 20–30 s
because many previous studies found link between testosterone
level and sociocognitive function in population within similar
age range (Welling et al., 2007, 2016; van Honk et al., 2011;
Volman et al., 2011).

MATERIALS AND METHODS

Participants
The present study included 44 males (mean age = 20.7 years
old, SD = 2.9; age range = 18–32) and 36 females (mean
age = 21.3 years old, SD = 3.3; age range = 18–35) participants
with normal or corrected to normal visual acuity after they gave
written informed consent. Most of them were in their early
20 s. There was no significant between-group difference in age,
t(78) = 0.82, p = 0.42, d = 0.18. Participants with history of
psychiatric and neurological conditions or being currently on
medication were excluded from the final sample.

Procedure
Behavioral Experiment
After the participants arrived at the lab, we took a picture of
each participant’s face against cream-white background. The
participants were instructed to maintain a neutral expression
with their mouths closed. The image was cropped and adjusted
in size so that the resultant image fit an 8.6 cm × 8.6 cm
square that served as the face stimulus in the Self condition.
Face stimuli presented in the Other condition were created by
averaging 30 faces of people with roughly the same age (20–30 s)
as the participants. The unfamiliar face for female participants
was created from 30 female faces while that for male participants
was created from 30 male faces. The identical same-sex average
face was presented for all the participants in each sex in the
Other condition because the participants’ age was not widely
distributed. The size of the face image in the Other condition was
equal to that in the Self condition. The stimuli were presented on
a 17-inch monitor viewed from∼65 cm away.

After instructions were given to the participants, the
experiment started. At the start of each trial, a fixation cross
appeared at the center against white background for 500 ms.
Then, a face image was presented. In two-thirds of the trials,
a small green square subtending 0.67 cm was presented at the
height of the nose (Go condition), and a small red rectangle
was presented in the remaining trials (NoGo condition). One-
hundred and fifty milliseconds after the presentation of the face
image, two 1.3 cm× 2.3 cm black rectangles were presented at the
periphery of screen, ∼11.8 cm from the center, simultaneously
with the face image. One was presented in vertical, and the other
in horizontal orientation. In the Go condition, the participants
identified the location of the horizontal target using a key press
as soon as possible. In the NoGo condition, they were instructed
to refrain from making any responses. The targets stayed on the
screen for 1,250 ms in the NoGo trials. We included Go and
NoGo conditions so that the participants would pay attention
to the face image; we wanted to make sure that participants
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direct overt attention to the facial image because there was a
good chance that they might process the faces only in parafoveal
vision due to relatively large size of the facial images used.
After the key press or 1,250 ms passes after the appearance
of face image, feedback about the correctness of response was
presented for 300 ms. There was no intertrial interval. Thus,
after the disappearance of feedback, the experiment immediately
proceeded to the next trial. The sequence of the stimulus
presentation is schematically shown in Figure 1. There were
32 Go and 16 NoGo trials each for the Self and Other conditions,
yielding in total of 96 trials. The trials in these conditions were
pseudorandomly ordered with the restriction that trials of the
four conditions (Go/NoGo× Self/Other) were evenly distributed
throughout the experiment.

Salivary Sample Collection
The saliva sample was collected between 12:00 and 14:00 h to
mitigate the influences of circadian fluctuation (Dabbs, 1990).
Each saliva sample was deposited into a polystyrene tube
by passive drool and stored at −80◦C until the assay. The
participants refrained from eating, drinking, smoking, brushing
their teeth, and exercising for 1 h before the experiment.
They also rinsed their mouths with water ∼15 min before the
sample collection.

Self-administered Questionnaires
After the behavioral experiment, participants were asked to
complete the Japanese translation of Rosenberg’s self-esteem
scale (Rosenberg, 1965) and the self-consciousness scale
(Sugawara, 1984). We collected data of these questionnaires
because attitude to and one’s evaluation of self might
influence attentional responses to self face. Self-esteem scale
is comprised of ten 5-point items that measure the level of
positive evaluation of one’s worth and abilities (range = 5−50;
Yamamoto et al., 1982). Self-consciousness scale includes

7-point items that measure private (range = 7−70) and
public self-consciousness (range = 7–77; 10 items for private
self-consciousness and 11 items for public self-consciousness).
Private self-consciousness refers to the tendency to pay attention
to own inner states, while public self-consciousness is the
tendency to pay attention to own appearance and how one’s
behavior is evaluated by others. The self-consciousness scale is a
modified version of Feininger’s inventory (Fenigstein et al., 1975)
but includes items more familiar to the Japanese population.
Still, it shows a reliable two-dimensional structure of public and
private self-consciousness (Fenigstein et al., 1975).

Testosterone Concentration Analysis
After all participants had completed the experimental tasks, the
concentration of salivary testosterone in each sample was assayed
by enzyme immunoassay (EIA) using a commercially available
kit (Salimetrics Europe Limited, Suffolk, UK). Testosterone
level in saliva samples is known to correlate with serum
testosterone level in men but not necessarily in women. At the
same time, salivary concentration of testosterone is supposed
to reflect the level of free-testosterone and testosterone only
weakly binding to sex hormone-binding globulin and hence is
considered to be a reliable indicator of the level of bioactive
testosterone (Papacosta and Nassis, 2011). The sample was first
centrifuged and the aqueous layer was aliquoted for assay.
Information about the recovery and specificity of the kit can
be found online in the EIA kit manual. In short, testosterone
concentration in 25 µl of undiluted saliva samples was
measured by competitive immunoassay. The optical densities
of each well of the plate was read by a microplate reader
at 450 nm and then converted to testosterone concentration
values on the basis of simultaneously measured standard
curve. The percent cross-reactivity with estradiol, progesterone,
and cortisol is reported to range from ND (none detected)

FIGURE 1 | Schematic representation of temporal sequence in stimulus presentation. The face image is not exactly the same with those presented in the actual
experiment.
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to <0.03 (see for more details, https://salimetrics.com/wp-
content/uploads/2018/03/testosterone-saliva-elisa-kit.pdf).

Statistical Analysis
The potency of self face to hold a participant’s visuospatial
attention was quantified as the standardized difference between
reaction time (RT) in Self-Go and Other-Go conditions using the
following equation:

RTdiff =
RTself − RTother

RTself + RTother

where RTself and RTother are mean RT in successful trials in
Self-Go and Other-Go conditions, respectively. Higher RTdiff
indicates less efficient disengagement of visuospatial attention
from self than other’s face, thus more efficient holding of
attention by self face. We obtained essentially the same results
when analyzing RTself − RTother without standardization. Thus,
in the following, we report only the results of RTdiff.

We carried out linear and quadratic regression analyses
separately for male and female participants because previous
studies found sex differences in androgenic effects on higher-
order cognition (Moffat and Hampson, 1996; Sapienza et al.,
2009; Doi et al., 2015, 2018). We also carried out two-way
between-participant analysis of variance (ANOVA) and t-tests
for group comparisons. All the statistical analyses were carried
out using R 3.5.2 (R Development Core Team). The power was
computed by G∗Power 3.1 (Faul et al., 2007) using medium effect
size (Cohen, 1988).

RESULTS

Sex Difference
We first examined sex differences in hormonal and behavioral
measures. The mean and standard deviations of these variables
are summarized in Table 1. The range of salivary testosterone
concentration was comparable to the previous studies (Deady
et al., 2006; Welling et al., 2007; Cobey et al., 2015). As expected,
the salivary testosterone concentration was significantly higher
in male than in female participants, t(78) = −16.2, p < 0.001,
d = 3.79. No other comparison reached statistical significance,
ts< 1.54, ps> 0.12.

Association Between Testosterone and
Attentiveness Toward Self Face
RTdiff was regressed against the salivary testosterone
concentration. The scatterplots between RTdiff and salivary
testosterone concentration are shown in Figure 2 for male and
female participants separately. There was a significant negative
correlation between RTdiff and testosterone concentration in

female participants, r(34) = −0.49, p = 0.003, but not in male
participants, r(42) =−0.05, p = 0.76, power = 0.71.

To clarify the nature of this pattern of correlational analysis,
three additional analyses were conducted. In the first analysis,
we carried out multiple regression analysis for data of female
participants with RTdiff as the dependent variable. The predictors
included testosterone concentration, age, and questionnaire
results of self-esteem, public self-consciousness, and private
self-consciousness. The results are summarized in Table 2. As
can be seen in the table, the correlation between testosterone
concentration and RTdiff persisted even after the influences of the
other predictors were controlled for.

From the visual inspection of scatterplot (Figure 2), there
seems to be a curvilinear trend in the relationship between
testosterone concentration and RTdiff in male participants.
Considering this together with the previous study indicating
curvilinear relationship between androgen and behavior (Moffat
and Hampson, 1996; Tan and Tan, 1998; Sapienza et al., 2009;
Doi et al., 2015; for a review see Swift-Gallant and Monks, 2017),
in the second analysis, we carried out a quadratic regression
analysis with RTdiff as the dependent variable and testosterone
concentration and squared testosterone concentration as the
independent variables. The quadratic model did not show
significant fit to RTdiff, F(2,41) = 1.47, p = 0.24, r2 = 0.07,
power = 0.59.

In the third analysis, participants were first classified into
high and low testosterone groups within each sex. The median
value of testosterone concentration within each sex was used
as the criteria of participant grouping. For example, female
participants whose testosterone level was higher than the median
testosterone concentration in all the female participants were
included into high-female group. Then, we submitted RTdiff to a
two-way between-participant ANOVAwith factors of sex (2) and
testosterone (2; high–low). The mean and standard deviation in
each group are shown in Figure 3.

ANOVA revealed a significant main effect of testosterone,
F(1,76) = 5.97, p = 0.017, η2p = 0.073, but the main effect of sex
failed to reach significance, F(1,76) = 0.35, p = 0.56, η2p = 0.004.
These effects were qualified by a significant interaction between
sex and testosterone, F(1,76) = 6.21, p = 0.015, η2p = 0.076.
Simple main effect analysis revealed RTdiff as significantly
higher in female participants with low rather than high salivary
testosterone concentration, F(1,76) = 11.07, p = 0.0014, η2p = 0.13.
No such effect was found in male participants, F(1,76) = 0.001,
p = 0.97, η2p < 0.001, power = 0.38. For explanatory purpose,
we tested whether the averaged RTdiff differed from zero. T-tests
revealed significant deviation of RTdiff from zero in female
participants with low testosterone, t(17) = 3.55, p = 0.002, but not
in the other three groups, ts< 1.9, ps> 0.08, powers> 0.51.

TABLE 1 | The means and standard deviations of hormonal and behavioral results.

Testosterone (pg/ml) RTSelf (ms) RTOther (ms) Self-Esteem Public Private

Male 262.7∗∗ (65.3) 533.4 (76.7) 535.9 (81.4) 31.8 (7.6) 52.6 (10.2) 46.0 (8.5)
Female 77.2 (22.7) 562.4 (92.0) 562.4 (101.7) 29.6 (6.7) 55 (10.8) 46.4 (8.5)

The standard deviations are in the parenthesis. RTSelf, reaction time in Self-Go condition; RTOther, reaction time in other-Go condition; Public, public self-consciousness; Private, private
self-consciousness, ∗∗p < 0.01 in group comparison.
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FIGURE 2 | The scatterplot between RTdiff and salivary testosterone concentration for female and male participant.

TABLE 2 | Summary of the statistical values of the multiple regression analysis.

β SE t-value p-value

Testosterone −0.512 0.167 −3.072 0.005
Age 0.141 0.175 0.808 0.426
Self Esteem −0.185 0.186 −0.994 0.329
Public −0.201 0.183 −1.102 0.28
Private −0.029 0.184 −0.158 0.876
Intercept −0.012 0.163 −0.076 0.94

β, standardized coefficient of each predictor; SE, standard error of each predictor; Public:
public self-consciousness; Private, private self-consciousness.

DISCUSSION

Many studies have shown the association between androgenic
function and cognitive/perceptual abilities such as spatial
perception, financial decision making, and aggression (Moffat
and Hampson, 1996; Mazur and Booth, 1998; Sapienza et al.,
2009; Doi et al., 2015). The ability of social cognition is no
exception to this, and an accumulating number of studies
has linked a higher level of testosterone with poorer ability

FIGURE 3 | The mean and standard deviation of RTdiff in each condition.
∗∗p < 0.01 in the simple main effect analysis.

in many domains of social cognition (Welling et al., 2016;
van Honk et al., 2011; Ronay and Carney, 2013; Zilioli
et al., 2015; but see Nadler et al., 2019). Given the close
linkage between processing of self-related information and
sociocognitive functions (Happé, 2003; Bradford et al., 2015), it
seems plausible to postulate an association between testosterone
level and self-related information processing.

The present study revealed that female participants with low
salivary testosterone show inefficient disengagement of attention
from self face compared with those with a relatively high
testosterone level. In other words, self face holds attention more
efficiently in female participant with low than high testosterone
level. Actually, female participants with low testosterone level
was the only group that showed self-face advantage in attention
holding in the present study in line with the previous findings
(Devue et al., 2009; Humphreys and Sui, 2016; Wójcik et al.,
2018). Furthermore, efficiency of attentional disengagement
from self face was not related to any variables tested other than
testosterone level in female participants. Taken together, these
observations seemingly indicate that a high testosterone level is
associated with a reduced response to self face as hypothesized.
Although many studies have revealed androgenic influences on
social cognition, to the best of our knowledge, this is the first
to empirically show the relationship between systemic androgen
levels and the attentional response to self face.

Some neural regions recruited in self-face processing, such
as the medial prefrontal cortex and amygdala, are rich with
androgen receptors in mammals (Simerly et al., 1990; Finley
and Kritzer, 1999), and a previous study has found functional
decoupling of these regions by testosterone administration
(Volman et al., 2011). Thus, downregulation of functional
connectivity in this neural network probably explains the
reduced attentiveness toward self face in the present study. A
previous study showed that men administered with exogenous
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testosterone tend to have an inner representation of their own
face that is more morphologically masculine than what is actually
true (Welling et al., 2016). Taken together with this, the present
study indicates that androgen modifies multiple aspects of
self-face processing.

Together with the previous findings associating high level
of testosterone with impaired socio-cognitive abilities (Hermans
et al., 2006; van Honk et al., 2011; Ronay and Carney, 2013),
the overall pattern of the present results seemingly supports the
proposed link between self-face processing and social cognition
(Happé, 2003). However, we did not collect measures of the
other aspects of social cognition such as empathy and perspective
taking because the primary aim of the present study was not
to validate the link between self-face processing and social
cognition in general. As a result, it remains unclear whether
testosterone affects all aspects of social cognition including
self-face processing in the same way. With regard to this point,
the extreme male brain theory of autism (Baron-Cohen, 2010)
claims that hypermasculinization of brain induced by exposure
to excessive level of androgen shower during fetal period leads
to later impairment in empathic behavior while promoting
systemizing tendency. Furthermore, many researchers argue that
high level of fetal androgen exposure decreases second/fourth
digit length ratio (2D:4D; Manning et al., 1998; Hönekopp et al.,
2007). On the basis of these, if self-face processing is intrinsically
linked to social cognition, stronger attention holding by self face
should be observed in people with high compared to low 2D:4D.
Thus, multiple measures of social cognition and 2D:4D should
be incorporated to get a more comprehensive picture of the
relationship between self-face processing, social cognition, and
androgen. In relation to this, it would also be of interest to see
if individual difference in self-face processing is related to the
empathizing–systemizing cognitive styles (Baron-Cohen, 2009).

Interestingly, we found no robust relationship between
behavioral performance and salivary testosterone concentration
in men. RTs in women were numerically longer than men
irrespective of conditions. Short RT in men may have resulted
in a kind of floor effect that masked any association between
testosterone level and behavioral effect. A sex difference in
sensitivity to the activational effect of androgen has often
been reported in previous studies (Moffat and Hampson, 1996;
Sapienza et al., 2009; Doi et al., 2015, 2018), but its cause remains
largely unknown. One possible explanation is that self-face
processing of male young adult, whose brain had already been
masculinized/defeminized to some extent during the fetal period
(Baron-Cohen, 2010), is not modified further by subtle difference
in the level of circulating testosterone within physiological
range. The social brain is saturated with androgens in this
population at this stage of life, so differences in endogenous
testosterone level may not have observable effect on self-related
information processing. However, at this point, this is mere
speculation and should be validated with empirical results. An
alternative explanation is the often-reported curvilinearity or
plateauing due to ceiling effect in the relationship between
androgen and behavior (Swift-Gallant and Monks, 2017). This
explanation is partly refuted in the present dataset because
a quadratic regression model including squared testosterone

concentration as the predictor failed to show correlation with
self-face advantage (RTdiff). However, this may be because of
relatively weak power of statistics in the present study.

In contrast to women with low testosterone, those with high
testosterone level showed tendency to be more attentive to
unfamiliar other’s face than self face. A previous study found that
testosterone administration reduces perceived trustworthiness
of others’ faces in women (Bos et al., 2010). Given that
threatening images are the most potent stimuli to capture
attention (Mogg and Bradley, 2010), the observed tendency in
women with high testosterone seemingly stems from reduced
trust in unfamiliar others.

Lack of clear self-face advantage in men was totally
unexpected. There are several explanations for this null result.
First, our previous study (Doi and Shinohara, 2018) has
shown that male young Japanese do not show clear attentional
prioritization of self face over other’s face after mid-adolescence.
Taking into consideration the previous finding indicating that
developmental change of face processing continues into late
adulthood (Anastasi and Rhodes, 2005; Boutet et al., 2015), we
might get a different picture if, we recruit younger or older
population. The second potential cause is that the stimulus onset
asynchrony (SOA) between face image and target stimuli was
not optimal to detect self-face advantage in attentional responses
in men. Previous studies on the influences of facial information
on visuospatial attention have revealed that the effect of facial
information on behavioral response is sensitive to SOA (Liu
et al., 2016; Carlson et al., 2019). Thus, it is necessary to test the
association between testosterone and attentional responses to self
face using more varying SOAs in the future study.

We presented averaged face of same-sex persons as unfamiliar
other’s face. Average faces are generally perceived to be attractive
(Little et al., 2011) From the perspective of evolutionary
psychology, attractive face signals health and high reproductivity
(Rhodes, 2006). Considering this, it is possible that participants
have implicitly deemed averaged same-sex face as potential
competitor for resources and sexual mates (Ellis, 2006). Such
intrasex competition might have increased attentiveness to
other’s face especially in men, who are reported to show
stronger tendency of intrasexual competition (Ellis, 2006),
which might explain the lack of self face advantage in men.
Several studies have shown that the attributes (age, sex) of
viewers interact with those of viewed faces in determining
the pattern of neural and behavioral responses to other’s face
(Doi et al., 2010; Hills and Lewis, 2011; Kret and De Gelder,
2012; Rhodes and Anastasi, 2012). For example, Doi et al.
(2010) revealed that the amplitude of an event-related potential
component reflective of emotional and attentional responses
to face increases in response to the same-sex compared to
opposite-sex faces with neutral expression. In the present study,
we used average faces of same-sex people within age range
similar to participants to match the attributes of self and other’s
face closely. However, we cannot deny the possibility that this
specific choice introduced some complications to the results in
the present study.

There are several limitations that qualify the interpretation
of this study. First, this is a mere correlational study, and thus,
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we cannot ascertain the causal linkage or direction between
testosterone and attentiveness to self face. To establish the
presumed causal linkage, a testosterone administration study
on attentiveness to self face is warranted. Second, we did
not collect information on menstrual cycle in female samples.
Testosterone can exert influences on neural function through
aromatization into estrogen (Roselli et al., 2010). Thus, the effect
of testosterone might be confounded by fluctuations in secretion
levels of other hormones such as estrogen and progesterone,
as might be the levels of testosterone itself. These hormones
could confound the results for men as well. Furthermore, the
level of testosterone itself fluctuates during menstrual cycle.
Thus, simultaneous measurement of multiple hormones should
be required in the future study to see whether the attentional
response to self face is specifically linked to testosterone
level or not.

CONCLUSION

In summary, the present study investigated the association
between attentiveness to self face and salivary testosterone
concentration. The results revealed that self face holds
visuospatial attention of female individuals with low testosterone
level more effectively than those with high testosterone
concentration. This finding gives support to the view that
self-face processing, a fundamental component of social
cognition, is also under the influences of androgenic function.
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Positive social interactions are crucial for human well-being. Elevated prenatal exposure
to testosterone as indicated by a low second-to-fourth finger length ratio (2D:4D) relates
to more aggressive/hostile behavior in men of low 2D:4D, especially in challenging
situations. How much people enjoy interacting with others is determined by the
personality trait sociability. Given its role in approach and avoidance behavior, sociability
might also be influenced by prenatal sex hormones, but studies are inconclusive so
far. Here, we investigated the association between 2D:4D and the personality trait
sociability complemented by personal social capital and personal social network size,
in a population-based cohort of 4998 men. Lower 2D:4D correlated significantly with
higher trait sociability, bigger personal social capital, and larger personal social network
size. These effects were consistent across both hands separately and their mean value.
Furthermore, both factors of sociability (1) liking party and company of friends and (2)
isolation intolerance, correlated significantly with the prenatal testosterone marker. The
exploratory analysis revealed no link between 2D:4D and responses to the personality
trait aggression items or items of anti-social-personality disorder. Our data suggest that
prenatal androgen exposure organizes the brain with lasting effects on social behavior.

Keywords: 2D:4D, digit ratio, sociability, aggression, opioid receptor, social behavior, isolation intolerance

INTRODUCTION

During the early prenatal window, androgens and estrogens influence the development with long-
lasting effects on the structure and composition of the body and on behavior. Prenatal stress relates
to increased androgen load; accordingly, intervention programs to reduce maternal stress during
pregnancy are being developed (Lenz et al., 2018b). Animal models (mice, sheep) have shown
permanent organizational effects of prenatal testosterone on the brain (Brown et al., 2015; Huber
et al., 2018). These early effects also contribute to sex differences in adult behavior.

Aggression and social relationships are subject to gender dimorphisms. In comparison to men,
women show less direct aggressive behavior (Archer, 2004), but in conduct disorder, women show
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hurtful manipulation of relationships (relational aggression)
more often than men (Ackermann et al., 2019). Men less often
report having a close confident other than the spouse (Antonucci,
1994), spend less time involved in responding to requests from
others (Kessler et al., 1985; Troisi, 2001) and on online social
networks (Bouna-Pyrrou et al., 2015, 2018), have a smaller risk
to use them pathologically (Bouna-Pyrrou et al., 2015), and
are less often the target of online communication (Griffiths
et al., 2004). The sex differences may suggest that prenatal
exposure to androgens influences aggressive and social behaviors
in adulthood. Due to ethical reasons and the long time interval
between the prenatal window and adulthood, it is hardly possible
to directly investigate the effects of intrauterine sex hormones.
Hence, biomarkers have been established. The second-to-fourth
finger length ratio (2D:4D) is widely used to study prenatal
sex hormone exposure. Reinforced prenatal androgen signaling
causes lower 2D:4D in mice (Zheng and Cohn, 2011) and
indirect effects of such organizational properties have been also
found in humans (Manning et al., 2014), for critical review
see Berenbaum et al. (2009), Del Giudice et al. (2018). E.g.,
human maternal plasma testosterone during pregnancy shows
a negative correlation with new borns’ digit ratio in both sexes
(Ventura et al., 2013), amniotic fluid testosterone is negatively
related to 2 year olds’ 2D:4D (Lutchmaya et al., 2004), and
females with exposure to excessive prenatal testosterone levels
due to congenital adrenal hyperplasia (CAH) have lower 2D:4D
values than normal controls (Brown et al., 2002; Buck et al.,
2003). Hence, lower 2D:4D is indicative of higher prenatal
androgen load in humans.

A meta-analysis reported that lower 2D:4D relates to more
aggression in men (Hönekopp and Schuster, 2010), although
these effects have been found to be small. Furthermore,
situational factors, and adult hormone levels play a moderating
role (Hönekopp and Watson, 2011). From an evolutionary
perspective, one could also expect that social behaviors involving
approach and bonding might be related to biological factors
such as prenatal sex hormone exposure. Studies investigating
social behavior and prenatal testosterone exposure have been
conducted under varying contexts and with the use of different
methods, ranging from economic games to observation of
interactions. The findings have been inconsistent, perhaps
due to the complexity of human behavior and its interplay
with environmental factors (Millet and Buehler, 2017). Indeed,
contextual factors such as the presence of aggressive (Kilduff
et al., 2013) or sexual cues (Van den Bergh and Dewitte, 2006),
adult hormone levels (Millet and Dewitte, 2008; van Honk
et al., 2012; Manning et al., 2014; Portnoy et al., 2015; Millet
and Buehler, 2017), cognitive reflection (Millet and Aydinli,
2019), and time-pressure (Bird et al., 2019) moderate the
relationship between 2D:4D and prosocial behavior in economic
games. Furthermore, the relationships might differ across sex
(Hönekopp and Watson, 2011). However, the evidence seems
to be more consistent at least at the level of achievements in
adults. Within men, more prenatal androgen (lower 2D:4D)
is associated with higher academic grade (Nye et al., 2017;
Tektas et al., 2019), larger reproductive success (Manning
et al., 2000), and higher trading outcome in financial traders

(Coates et al., 2009). Thus, in contrast to what one might expect
due to the above reported sex differences, men with lower
(more masculine) 2D:4D perform better in tasks that require
networking or bonding. Accordingly, in men, lower 2D:4D has
been related to more fairness (Millet and Dewitte, 2006), stronger
cognitive reflection (Bosch-Domenèch et al., 2014), and higher
betweenness centrality, i.e., they connect separated parts of the
social structure (Kovářík et al., 2017). Moreover, males with lower
2D:4D show more courtship behavior in social interactions with
women (Roney and Maestripieri, 2004).

How much people enjoy interacting with others or need
to be in company (two factors of sociability) and how many
people they know to rely on (social capital) are important
determinants of human well-being and health. For example,
a low social capital has been associated with negative health
outcomes (Murayama et al., 2012) including depression, pain,
and psychosomatic symptoms (Åslund et al., 2010). Thus,
associations between 2D:4D and health further highlight the
importance to understand the role of prenatal androgen exposure
in adult social behavior. For example, in males, lower 2D:4D has
been associated with lower anxiety (Evardone and Alexander,
2009), a higher risk for conduct problems during childhood
(Eichler et al., 2018), addictive and substance use disorders
(Kornhuber et al., 2011, 2013; Canan et al., 2017, 2019; Lenz
et al., 2017, 2018a, 2019a; Siegmann et al., 2019), suicide (Lenz
et al., 2016, 2019b), and reduced life expectancy in adulthood
(Lenz and Kornhuber, 2018).

Given the complexity of behavior in experimental tasks or
hypothetical trading situations, relatively stable indicators of
social behavior, like the personality trait sociability, personal
social capital, and personal social network size provide a suitable
approach to investigate the link between social behavior and
organizational effects of prenatal androgens. Furthermore, the
Alternative Five Model (measuring sociability as one of five
factors) has been established for traits with a strong biological-
evolutionary basis and increases the comparability of our results
with animal models (Zuckerman et al., 1993).

Here, we tested whether 2D:4D relates to sociability, personal
social capital, and personal social network size in a large
population based cohort of 4998 young males. We also explored
whether 2D:4D is associated with aggression and anti-social
personality characteristics.

MATERIALS AND METHODS

Study Sample
The data analyzed here originate in the third survey wave
of the longitudinal Cohort Study on Substance Use Risk
Factors (C-SURF)1. From 2010 to 2012, 7556 young males,
who attended their mandatory recruitment for the Swiss army,
gave written informed consent and 5987 participated in the
first wave. Data for this study were derived from the third
wave which has been conducted between April 2016 and

1www.c-surf.ch
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March 2018 and which has included 5516 males (see2 for
Questionnaire No. 3).

Behavioral Phenotyping
To measure sociability, we used the subscale sociability
of the Alternative Five Factor Model (Zuckerman-Kuhlman
Personality Questionaire, ZKPQ-50-cc) (Zuckerman et al., 1993)
questionnaire, consisting of 10 binary items and its summation
score (Aluja et al., 2006). The scale was further divided in the
two subscales representing (1) liking lively parties and friends
and (2) intolerance of social isolation. Personal social capital
with the subscales bridging and bonding was quantified by an
adaptation of the Personal Social Capital Scale (Archuleta and
Miller, 2011; Chang and Zhu, 2012; Wang et al., 2014) with only
the 5 most relevant items per subscale selected in C-SURF and
a Likert Scale 1–5 to respond. Bonding social capital refers to
how well a person is embedded within their various networks
of different types of people (e.g., family members, friends, and
former colleagues), and bridging social capital refers to how
well a person is embedded within different types of social
organizations. Personal social network size was estimated in
C-SURF by two items referring to social network size from
the Personal Social Capital Scale (Archuleta and Miller, 2011;
Wang et al., 2014). The first item refers to perceived number
of friends (from the bonding capital subscale) and the second
to the perceived number of cultural, recreational, and leisure
groups/organizations in the subject’s community (from the
bridging capital subscale).

Aggression was quantified using the 10 items scale of the
ZKPQ-50-cc (Aluja et al., 2006). The score on the Anti-Social
Personality Disorder scale was probed with items from the
Mini-International Neuropsychiatric Interview (M.I.N.I.) with
ASSIST-WHO (Sheehan et al., 1998; Hergueta et al., 2015).

2D:4D
The participants were instructed to document the lengths of their
second and fourth fingers in millimeters separately for their right
and left hands (see2, Questionnaire No. 3 ID: J18) similar to the
methods described by Reimers (2007) and Lenz et al. (2018a).
The instruction was “Hold your left hand in front of you. Look
at where your index finger joins the palm of your hand. Find
the bottom crease. Go to the middle of this crease. Put the 0 of
your ruler exactly on the middle of the bottom crease (see 2a
in the picture below). Make sure the ruler runs straight up the
middle of your finger. Measure to the tip of your finger (not
your nail see 2b in the picture) in millimeters.” Finger lengths
under 10 mm or over 100 mm (Reimers, 2007) and, additionally,
2D:4D values outside of the 2.5 and 97.5 percentiles (Hell and
Päßler, 2011; Lenz et al., 2018a) separately for the right and left
hand were excluded. Subsequent, we calculated the mean of right-
hand 2D:4D and left-hand 2D:4D (M2D:4D) which served as
our primary predictor. Whereas some studies report that target
traits are more strongly related to 2D:4D of the right hand
(Manning et al., 1998; Hönekopp and Watson, 2010; Kornhuber
et al., 2011; Masuya et al., 2015; Bilgic et al., 2016), other report

2www.c-surf.ch/img/questionnaires_pdf/q3_follow_up2_en.pdf

stronger associations with 2D:4D of the left hand (Muller et al.,
2012; Kornhuber et al., 2013; Hong et al., 2014; Lenz et al.,
2017, 2019a). As far as we know, there is no reliable explanation
for different associations of right- and left-hand 2D:4D with
prenatal androgen load. There is also no support for superiority
of either side in a meta-analysis on aggression (Hönekopp and
Watson, 2011). Separate values for right-hand 2D:4D (R2D:4D),
left-hand 2D:4D (L2D:4D), and the difference between R2D:4D
and L2D:4D (2D:4Dr-l) were defined as exploratory predictors.
Moreover, regarding quality control, we refer to a previous
analysis of the same cohort (except for 9 patients with missing
data on alcohol-related questions) which showed median values
of 2D:4D similar to other studies (Lenz et al., 2019a).

Statistical Analyses
Continuous data are presented as the median and interquartile
range (IQR) and nominal data as frequencies (FREQUENCIES
function in SPSS). For missing data points, the corresponding
study subjects were excluded from the specific analyses and the
number of individuals included in these analyses is reported.
Correlations were calculated using Spearman’s method, because
normal distribution was rejected for all variables. We used the
Mann–Whitney U test to compare independent groups. For two-
sided tests, p < 0.05 was considered to be statistically significant.
All reported p-values are uncorrected for multiple comparisons.
Data were analyzed using IBM SPSS Statistics Version 21 for
Windows (SPSS Inc., Chicago, IL, United States) and Graph Pad
Prism 5 (Graph Pad Software Inc., San Diego, CA, United States).

RESULTS

Sample Characteristics
Due to missing values or eliminations resulting from quality
control of R2D:4D and L2D:4D, 518 individuals were excluded
from the statistical analyses. This resulted in a total cohort
of 4998 study subjects and M2D:4D, L2D:4D, and R2D:4D
sub-cohorts of 4778, 4898, and 4878 individuals. The total
cohort was characterized as follows: age 25 years (IQR 25–26;
N = 4998); body mass index 23.5 kg/m2 (IQR 21.8–25.5;
N = 4990); 79.6% gainfully employed (N = 4997); 3.0% secondary
education, 1.2% basic vocational education, 34.4% secondary
vocational/technical education, 4.3% community college, 11.2%
vocational high school, 11.8% high school, 23.4% bachelor
(university), 6.1% master (university), 4.6% other (N = 4985);
82.9% single, 5.2% married, 0.1% divorced, 11.6% not married,
not separated, not divorced but living together with my partner
(e.g., in registered partnership), 0.1% married but separated, 0.1%
widowed (N = 4989).

Trait Sociability
Lower M2D:4D (indicative of higher levels of prenatal androgen
exposure) correlated with higher trait sociability (ρ = −0.043,
N = 4755, p = 0.003), and both L2D:4D and R2D:4D correlated
similarly with trait sociability (ρ = −0.045, N = 4875, p = 0.002;
ρ = −0.032, N = 4855, p = 0.024). 2D:4Dr-l did not correlate with
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trait sociability (p > 0.05). As shown in Table 1, both subscales of
sociability correlated significantly with 2D:4D.

Statistics for the M2D:4D differences for the 10 individual
binary items (post hoc analysis) are shown in Supplementary
Table S1. Specifically, the items “At parties, I enjoy mingling
with many people whether I already know them or not.” and
“I am a very sociable person.” were significantly associated
with lower M2D:4D.

Personal Social Capital
Lower M2D:4D correlated with bigger personal social capital
(ρ = −0.040, N = 5762, p = 0.005), and both L2D:4D and
R2D:4D correlated similarly with bigger personal social capital
(ρ = −0.036, N = 4882, p = 0.012; ρ = −0.013, N = 4861,
p = 0.039). 2D:4Dr-l did not correlate with personal social capital
(p > 0.05). Table 2 shows the results of the post hoc analysis
on subscale level.

Item level analysis revealed significant correlations with the
items “interacting with people makes me feel like a part of a
large community,” “the people I interact with would be good job
references for me” and “if I needed an emergency loan, I know
someone I can turn to”, for details see Table 3.

Personal Social Network Size
2D:4D correlated negatively with the personal social network
size (Figure 1).

TABLE 1 | Post hoc analysis Sociability: Spearman correlations at facet level.

Sociability M2D:4D L2D:4D R2D:4D 2D:4Dr-l

Parties/Friends ρ −0.036 −0.031 −0.034 −0.008

p 0.012 0.029 0.019 0.600

N 4763 4883 4863 4763

Isolation Intolerance ρ −0.035 −0.041 −0.020 0.018

p 0.017 0.005 0.172 0.221

N 4760 4880 4860 4760

2D:4D, second-to-fourth-finger length ratio; primary predictor: M2D:4D, mean
of R2D:4D and L2D:4D; exploratory predictors: L2D:4D, left-hand 2D:4D;
R2D:4D, right-hand 2D:4D; 2D:4Dr-l, difference between R2D:4D and L2D:4D.
P < 0.05 (uncorrected) in bold. Cronbach’s alpha: Parties/Friends 0.48, Isolation
Intolerance 0.57.

TABLE 2 | Post hoc analysis Personal social capital: Spearman correlations
at subscale level.

Personal social capital M2D:4D L2D:4D R2D:4D 2D:4Dr-l

ρ −0.032 −0.032 −0.030 0.011

Bridging p 0.026 0.026 0.035 0.443

N 4764 4884 4863 4764

ρ −0.038 −0.031 −0.032 −0.001

Bonding p 0.009 0.030 0.025 0.968

N 4768 4888 4867 4768

2D:4D, second-to-fourth-finger length ratio; primary predictor: M2D:4D, mean of
R2D:4D and L2D:4D; exploratory predictors: L2D:4D, left-hand 2D:4D; R2D:4D,
right-hand 2D:4D; 2D:4Dr-l, difference between R2D:4D and L2D:4D. P < 0.05
(uncorrected) in bold. Cronbach’s alpha: Bridging 0.79, Bonding 0.83.

Aggression and Anti-social Personality
M2D:4D, L2D:4D, R2D:4D, or 2D:4Dr-l did not correlate with
aggression or anti-social personality disorder score (p > 0.05,
Supplementary Table S2).

DISCUSSION

Here, we report that higher sociability and bigger personal social
capital are correlated with lower 2D:4D in a population-based
cohort of young Swiss men. Notably, both factors of sociability,
liking lively parties and friends and intolerance of social
isolation (Zuckerman et al., 1993), correlated independently
with 2D:4D across both hands. Furthermore, we provide
preliminary evidence for an association between bigger personal
social network size and lower 2D:4D. These results suggest
that, in men, higher prenatal androgen exposure improves
sociability and leads to a bigger social capital and social
network size in adulthood. Our observation is consistent with
a study showing that prenatal testosterone as measured in
amniotic fluid during 13–20 weeks of gestation is associated
with approach behavior and reactivity to happy faces in
brain reward areas of boys (Lombardo et al., 2012). The
large sample size of nearly 5000 study participants analyzed
here is a major strength of this project. It is limited by
the 2D:4D self-measurement method which is related to
reduced reliability in comparison to expert measured 2D:4D
(Hönekopp and Watson, 2010).

Sociability involves the opioid system of the brain (Knowles
et al., 1989; Kalin et al., 1995). In animal experiments,
prenatal androgen receptor inhibition by flutamide down-
regulates cerebral expression of the µ opioid receptor 1 in
adulthood (Huber et al., 2018). In line with this association
between prenatal sex hormone effects and opioid signaling,
R2D:4D in men has been related to genetic polymorphisms in
opioid receptors (Pearce et al., 2018). During social laughter –
related to the sociability factor “party and friends” – endogenous
opioids are released, and the depletion during social isolation
motivates to seek company – related to the sociability factor
“isolation intolerance” (Knowles et al., 1989; Kalin et al., 1995).
The minor G-allele of the µ-opioid receptor 1 polymorphism
rs1799971 is associated with more pleasure experienced in social
situations (Troisi et al., 2011), and mice with this variant
have increased motivation for non-aggressive social interactions
and show less avoidance after social defeat (Briand et al.,
2015). Taken together, prenatal androgen exposure may organize
cerebral opioid signaling with behavioral effects on sociability.
Future research should investigate how prenatal influences might
interact with genetics to affect sociability.

We found lower 2D:4D to be associated with higher
sociability. Our findings are in line with previous reports on
higher betweenness centrality in men with lower 2D:4D, i.e., these
subjects connect separated parts of the social structure (Kovářík
et al., 2017). Furthermore, academic, reproductive, and trading
success, all negatively correlated with 2D:4D (Manning et al.,
2000; Coates et al., 2009; Nye et al., 2017; Tektas et al., 2019),
have networking as an essential common mechanism to success.
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TABLE 3 | Post hoc analysis Personal social capital: Spearman correlations at item level.

Personal social capital M2D:4D L2D:4D R2D:4D 2D:4Dr-l

ρ p N ρ p N ρ p N ρ p N

Interacting with people makes me want to try new
things

−0.026 0.077 4771 −0.021 0.138 4891 −0.023 0.107 4870 0.009 0.514 4771

Interacting with people makes me interested in
what people unlike me are thinking

−0.018 0.206 4771 −0.019 0.189 4891 −0.013 0.355 4870 0.009 0.535 4771

Interacting with people makes me feel like a part of
a large community

−0.038 0.009 4770 −0.034 0.019 4890 −0.036 0.011 4869 0.009 0.551 4770

Interacting with people makes me feel connected to
the bigger picture

−0.008 0.567 4765 −0.014 0.322 4885 −0.010 0.492 4864 0.016 0.281 4765

I come into contact with people all the time −0.012 0.390 4770 −0.016 0.258 4890 −0.006 0.693 4869 0.012 0.400 4770

There are several people I trust to solve my
problems

−0.024 0.099 4769 −0.026 0.074 4889 0.013 0.380 4868 0.013 0.365 4769

If I needed an emergency loan, I know someone I
can turn to

−0.037 0.010 4769 −0.027 0.061 4889 −0.033 0.022 4868 −0.006 0.700 4769

There is someone I can turn to for advice about
making very important decisions

−0.016 0.261 4770 −0.008 0.589 4890 −0.020 0.170 4869 −0.019 0.193 4770

I know several people well enough to get them to
do anything important

−0.020 0.165 4770 −0.017 0.224 4890 −0.017 0.235 4869 0.001 0.963 4770

The people I interact with would be good job
references for me

−0.031 0.031 4770 −0.027 0.057 4890 −0.025 0.082 4869 0.010 0.503 4770

2D:4D, second-to-fourth-finger length ratio; primary predictor: M2D:4D, mean of R2D:4D and L2D:4D; exploratory predictors: L2D:4D, left-hand 2D:4D; R2D:4D, right-
hand 2D:4D; 2D:4Dr-l, difference between R2D:4D and L2D:4D. P < 0.05 (uncorrected) in bold.

FIGURE 1 | The M2D:4D (A), L2D:4D (B), and R2D:4D (C) ratios [but not 2D:4Dr-l (D)] were negatively correlated with self-reports for the number of friends and the
number of cultural, recreational, and leisure groups/organizations/associations in one’s community. 2D:4D, second-to-fourth-finger length ratio; primary predictor:
M2D:4D, mean of R2D:4D and L2D:4D; exploratory predictors: L2D:4D, left-hand 2D:4D; R2D:4D, right-hand 2D:4D; 2D:4Dr-l, difference between R2D:4D and
L2D:4D. P < 0.05 (uncorrected) in bold.
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Hence, higher sociability might mediate the relationship between
lower 2D:4D and successfulness in men.

In our adult cohort, we did not find any significant correlation
between 2D:4D and aggression, which might be explained by the
low precision due to the employed self-measurement technique
and the fact that correlations of aggression and 2D:4D in adults
are mainly found in challenging situations (Hönekopp and
Watson, 2011) and in other situations are small at the best
(Hönekopp and Watson, 2011).

By contrast, we found lower 2D:4D to be associated with
higher sociability. At the first glance, our findings may contradict
that lower 2D:4D (indicative of higher prenatal androgen
exposure) relates to behavioral symptoms in boys (Williams
et al., 2003; Eichler et al., 2018), which entails problems in
social interaction. Aggression, fighting, and lacking obedience
are characteristics of conduct disorder. However, the frontal lobe
and cognitive reflection are still developing in children. Frontal
lobe development and cognitive reflection inhibit aggressive
outbursts and the shift of neural regulation to prefrontal areas
takes place during puberty (Cubillo et al., 2012; Rubia et al., 2013;
Tyborowska et al., 2016). In adulthood, cognitive reflection is
higher in individuals with lower 2D:4D (Bosch-Domenèch et al.,
2014) and probably explains the moderating role of sexual and
aggressive cues on the relationship between 2D:4D and aggressive
behavior (Hönekopp and Watson, 2011). Without a situationally
triggered testosterone surge, aggression as a trait is less evident
in daily life and cognitive reflection might counteract aggressive
trends in men with low 2D:4D. Boys with higher sociability
(following higher prenatal androgen load) may be involved
into fights more often due to the increased total frequency
of interactions with others and given the fact that physical
aggression is used instrumentally in healthy young children.

In support of this developmental view on aggression, we also
did not find a correlation of prenatal testosterone with anti-social
personality disorder (ASPD) items. Whereas conduct disorder
increases the risk for ASPD (Olsson and Hansson, 2009), other
factors like intelligence, parent psychopathology, parent-child
relation, and peer-rejection are known to moderate this risk
essentially (Olsson and Hansson, 2009).

In this study, lower 2D:4D correlated with bigger personal
social capital and a larger personal social network. Here, we
will argue that negotiation strategies, which are conceptually
related to social networking, change from children to adulthood
into more functional behavior in people with lower 2D:4D. In
adult men, lower 2D:4D is associated with more uncooperative
behavior, but only when they act intuitively or less reflected
(Millet and Buehler, 2017; Millet and Aydinli, 2019) and
as already mentioned, men with lower 2D:4D have stronger
cognitive reflection skills (Bosch-Domenèch et al., 2014). In
general, adult men with low 2D:4D prefer fair from either
altruistic or egoistic choices (Millet and Dewitte, 2006), even
though their faces appear more dominant to others (Neave
et al., 2003). In children, however, a lower 2D:4D is still
unrelated to fair choices and correlates with less altruistic
choices instead (Millet and Dewitte, 2006). In adults, social
status relevance (potentially leading to a surge in testosterone)
within a given context moderates the impact of 2D:4D on

cooperative behavior, aggression, and dominance in economic
games (Millet and Buehler, 2017). Taken together, evidence
on negotiation strategies of lower 2D:4D subjects supports
our findings on the relationship between 2D:4D, social capital,
and network size.

Furthermore, children with a higher status – as measured in
number of friends/interaction partners – choose the prosocial
option less often (Horn et al., 2018). In contrast to our data
from adults, in which a bigger social capital and a larger
social network are associated with lower 2D:4D, in boys the
strategies to gain status may still be dysfunctional, as a link with
number of friends/interaction partners and 2D:4D was not found
(Horn et al., 2018).

The relationship between sociability, aggression, and
behavioral strategies to gain status or bond might change
from childhood to adulthood, when cognitive reflection and
the frontal lobe have fully developed. As a consequence,
normative behavior, learned cooperation, and fairness may be
utilized by adult men with low 2D:4D, at least in unchallenging
situations. Furthermore, experiences from frequent social
interactions (sociability) and from testing the limits with
others during childhood (instrumental aggression) might in
the end help to bond with others and make these subjects
more resilient, explaining the long term positive outcomes of
men with lower 2D:4D in academia (Nye et al., 2017; Tektas
et al., 2019), reproduction (Manning et al., 2000) and trading
(Coates et al., 2009).

Although we found that low 2D:4D in men is associated
with higher trait sociability and possibly more social bonds
to rely on, there is evidence for a more avoidant attachment
style (Del Giudice and Angeleri, 2016) and lesser quality of
relationships in people with low 2D:4D (Knickmeyer et al., 2005).
Furthermore, intimate partner violence is actually higher in low
2D:4D men (Romero-Martínez et al., 2013). Thus, sociability
and a bigger social capital in men do not necessarily mean that
intimate or close relationships are better on the long term. They
might even be worse as subjects are more directed at social
status than intimacy.

G-allele carriers of the µ opioid receptor 1 polymorphism
rs1799971 experience more pleasure in social situations (Troisi
et al., 2011) and alcohol-dependent G-allele carriers show
increased cue-reactivity to alcohol stimuli in certain brain regions
which correlates with craving (Bach et al., 2015). As endogenous
opioids contribute to the punishing effects of social isolation
and rejection (Knowles et al., 1989; Kalin et al., 1995; Briand
et al., 2015), it is interesting that an interaction between 2D:4D
and the rs1799971 polymorphism has been reported for alcohol
dependence (Gegenhuber et al., 2018). Both aspects of sociability,
the interest in parties and friends und isolation intolerance,
which correlated with 2D:4D in our study, might influence
the development of alcohol dependency. This study’s results
indicate that the pleasure to bond with others and enjoy social
laughter is increased in people with low 2D:4D which might
lead to more reward (opioid release) experienced during these
situations. This mechanism might potentiate the rewarding effect
of consumption (again opioid release) by increased chances of
social laughter and bonding. Finally, also isolation intolerance
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might play a role, as it might induce drinking behavior to cope
with loneliness. However, further research is needed to test
these hypotheses.

At first glance, the observed negative correlation between
2D:4D and social network might contradict the fact that
lower 2D:4D has been associated with suicide completion
(Lenz et al., 2016) because social connectedness has been
shown to be protective against suicidal behaviors (Fässberg
et al., 2012). However, for suicide completion, it has been
argued that correlations of lower 2D:4D with stronger cognitive
reflection (Bosch-Domenèch et al., 2014; Millet and Aydinli,
2019) might play a role, leading to better planned and more
successful suicide attempts, as 2D:4D measured independently
from cognitive reflection is unrelated to suicidal thoughts and
attempts (Lenz et al., 2019b).

LIMITATIONS

Self-measured 2D:4D is less reliable than expert-measures and is
said to reach only 46% of its reliability (Hönekopp and Watson,
2010). Furthermore, finger deformation was not assessed in this
project, which has reduced precision. We are aware of current
criticism on 2D:4D as a proxy for prenatal androgen exposure,
as the experimental evidence used to support the validity of
2D:4D as a biomarker of prenatal androgen exposure has not
been replicated consistently (Berenbaum et al., 2009; Huber et al.,
2017; Del Giudice et al., 2018).

Besides correlating our primary independent variable with
our dependent variables, we extended the analysis to exploratory
testing of left and right hand 2D:4D and asymmetries of left and
right hand 2D:4D, but did not correct for multiple hypothesis
testing which might have resulted in false positive findings in the
exploratory analysis.

Personal social capital was assessed in C-SURF only with a
selection of items from the Personal Social Capital Scale, using
only the 5 most relevant items per subscale. Even though we
found a good internal consistency of 0.85 Cronbach’s alpha,
construct validity remains unknown for this subset of items.

Personality disorder diagnoses like anti-social personality
disorder should be assessed by experienced clinicians
using structured clinical interviews (Paap et al., 2017).
Here, we correlated the summation score of a self-report
screening instrument with unknown discriminability for this
clinical disorder.

We did not find a correlation between 2D:4D and aggression
as a personality factor. In a meta-analysis on 2D:4D and
aggressive behavior, it was reported that any correlation found
appear to be very small and findings are context dependent
(Hönekopp and Watson, 2011). We investigated the personality
factor aggression with a questionnaire and did not use an
experimental setup with provocative cues or interaction partners.
Furthermore, we face a lower reliability of self-measured 2D:4D
measures in comparison to expert ratings. Moreover, sex
differences in aggression appear to be larger in children than in
adults (Campbell, 2006; Archer, 2009) and our adult cohort is
rather homogeneous in age.

Exploratory analysis of social network size was only probed
by two self-reported items and future research should use more
reliable and objective measures to investigate the relationship
between 2D:4D and social network size.

Finally, our cohort consisted of mostly Caucasian young
men and the results cannot be transferred to other ethnicities,
gender, or age groups.

CONCLUSION

To summarize, our data show that low 2D:4D is associated with
higher trait sociability, bigger personal social capital, and larger
personal social network size. Given the complexity of human
behavior and environmental/nurture effects on personality, it is
not surprising that the correlations are small though. Our study
provides a better understanding of the link between prenatal
influences and social behavior in adulthood. It also leads to
an interesting hypothesis on the mediating role of sociability
between prenatal environment and life achievements, behavioral
problems in adolescence, and other health related aspects.
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Emotional intelligence is an important factor contributing to social adaptation. The
current study investigated how salivary testosterone (T) and cortisol (C) levels, cognitive
control of emotional conflict processing were associated with children’s emotional
intelligence (EI). Thirty-four 10- to 11-year-old children were enrolled and instructed
to complete questionnaires on emotional intelligence as well as empirical tasks of
emotional flanker and Stroop with event-related potential (ERP) recordings. Saliva
collection took place on another day without ERP tasks. Results showed that lower
T and C levels were associated with higher accuracy in emotional conflict tasks,
as well as better emotional intelligence (managing self emotions). In the Stroop task,
higher T/C ratios were associated with greater congruency effects of N2 latencies, and
lower cortisol levels correlated with stronger slow potential activities (SP). For girls,
the correlation between cortisol and emotional utilization was mediated by the SP
amplitudes on fearful conflicts in the flanker task (95% CI: −8.64, −0.54, p < 0.050).
In conclusion, the current study found the relationship between cortisol and an emotional
intelligence ability, emotional utilization, might be mediated by brain activities during
emotional conflict resolution processing (SP responses) in preadolescent girls. Future
studies could further investigate testosterone-cortisol interaction and its relation with
cognitive control of emotion as underlying mechanisms of emotional intelligence.

Keywords: emotional conflict control, cortisol, testosterone, emotional intelligence, preadolescence, event-
related potentials

INTRODUCTION

The perception, processing, regulation, and utilization of emotional information is well-known as
emotional intelligence (EI) (Nelis et al., 2009), which intrinsically includes self-control of emotions
(Davis and Rachel, 2016). EI is another phrase for emotional competence (Mayer and Salovey,
1993), which is critical for solving problems like conflict. There is a lot of evidence suggesting
that EI contributes to successful social adaptation (Martins et al., 2010; Punia and Sangwan, 2011;
Davis and Rachel, 2016). However, EI may also contribute to negative emotional manipulation
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(Davis and Rachel, 2016). Today training and intervention
of EI are of interest to scientists and the public, yet there
is limited evidence of the underlying neural and hormonal
mechanisms. Positive relationships were reported between EI
and cognitive control (Checa and Fernández-Berrocal, 2015).
Cognitive control can be influenced by sub-cortical emotional
(bottom–up) processing, and this communication is mediated by
testosterone and cortisol (Terburg et al., 2009). High testosterone
was reported to down-regulate the interaction between cognitive
and emotional systems and therefore diminishes the impact
of cognitive control (Schutter and Van Honk, 2004). Basal
cortisol also seems to correlate with cognitive control (Schutter
and Van Honk, 2005). Few studies have took testosterone,
cortisol and cognitive control processings as mechanisms
underlying emotional intelligence, although there were some
studies concerning other hormones and emotional perception in
the context of emotional intelligence (Cardoso et al., 2014; Koven
and Max, 2014; Milivojevic et al., 2014; do Vale et al., 2015). It
is possible that the ratios of the basal levels of testosterone and
cortisol are closely related to emotion regulation (Van Honk and
Schutter, 2006). In this study we concentrate on the correlations
among the hormones testosterone and cortisol, the cognitive
control of emotion and EI in children.

Top–down modulation of emotional processing has been
investigated as the cognitive control of emotion (Ochsner and
Gross, 2005). According to the dimensional overlap theory
(Kornblum et al., 1990, 1999), conflicts can be further categorized
based on the overlap between the response (R), the task-
relevant stimulus (SR), and the task-irrelevant stimulus (SI).
The emotional flanker task contains the stimulus-stimulus (S-S)
conflicts that SR (the target emotional facial expression) overlaps
with SI (the bilateral distractor emotional faces) (Fenske and
Eastwood, 2003; Liu et al., 2013). The emotional Stroop task
contains both S-S and S-R conflicts, with the affective word
(“FEARFUL” or “HAPPY”) on an emotional (happy or fearful)
face, and participants are required to report the expression
on the face (Etkin et al., 2006, 2010; Egner, 2008; Liu et al.,
2010; Chechko et al., 2012; Soutschek and Schubert, 2013). It
is reported that S-S and S-R conflicts involve distinct conflict
control processes (Egner et al., 2007; Akcay and Hazeltine, 2011;
Li et al., 2015) and rely on different neural substrates, since
S-R conflict tasks activated the anterior cingulate cortex (ACC),
precuneus and supplementary motor areas and S-S conflict tasks
activated the inferior parietal cortex (Liu et al., 2004). The
empirical study adopting color-object Stroop task to investigate
the developmental changes of stimulus (S) interference and
response (R) interference in 6–10 years old children found
that the response interference control matured later (at age
10–12 years) than the stimulus interference control (at age
6–7 years), which further suggested the distinctive conflict
control processes on the S-S and S-R conflicts from the child
development evidences (Jongen and Jonkman, 2008).

Electrophysiological studies showed that conflict control
processes are composed of two subprocessings: the N2
component of event-related potentials (ERPs), peaking at
approximately 200 ms after stimulus onset, is associated with
detection on both emotional (Shen et al., 2013; Fan et al., 2016;

Xue et al., 2016) and non-emotional conflicts (Liu et al.,
2010; Larson et al., 2014). The P3 and/or slow potential (SP)
components, with a central-parietal neural distribution, are
related to conflict resolution on both emotional (Fan et al.,
2016; Xue et al., 2016) and non-emotional conflicts (Jonkman,
2006; Abundis-Gutiérrez et al., 2014). Both the cognitive control
of emotional and non-emotional conflicts has been shown to
activate the ACC, the dorsolateral prefrontal cortex (DLPFC),
the parietal regions, the insula and the visual cortex (Chechko
et al., 2012; Soutschek and Schubert, 2013).

Development of the interaction between emotional brain and
cognitive brain could impact cognitive control of emotional
processing throughout childhood and adolescence (Heller et al.,
2016). The triple balance model of emotion (Van Honk
and Schutter, 2006) hypothesized that the balance between
the emotional brain and the cognitive brain would influence
emotional processing at three levels which were linked to
testosterone and cortisol. It has been reported that the first
significant increase of testosterone occurs at 10 (SizoNenko
and Paunier, 1975). Puberty peaks in brain functional activity
showed to be related to testosterone (Braams et al., 2014).
Previous studies demonstrated a possible negative association
between testosterone levels and cortical response to word-face
Stroop conflicts in 10- to 15-year-old adolescents (Cservenka
et al., 2015), but during adults’ cognitive control of emotional
processing, lower testosterone levels were associated with both
stronger (Volman et al., 2011) and weaker response (Van
Strien et al., 2009). There were also inconsistent results of the
associations between the cortisol levels and executive functions
(Raffington et al., 2018). Conflict detection might be influenced
by testosterone and cortisol, since cortisol might enhance fear
sensitivity (Watling and Bourne, 2013) and testosterone might
enhance reward sensitivity (Van Honk and Schutter, 2006).
According to the three balance model of emotion and the
existing evidence, the testosterone/cortisol ratios can be related
to cortical activities and behavioral tendencies in emotional
processing (Terburg et al., 2009), but there are little evidence
about the associations between testosterone/cortisol ratios and
neural dynamic processing of emotional cognitive control.

To our knowledge, this is the first study to investigate the
possible mediation effects of cognitive control of emotion on
the relationships between hormones and EI components. The
aims of the current study were to investigate the relationships
among EI, the emotional conflict processing, and daily circulating
testosterone and cortisol in 10- to 11-year-old children. We
mainly focused on 10- to 11-year-old children in the current
study for the following reasons. First, it is found that testosterone
show their first significant rise at 10 years old and further
lead the important influence on the brain reactivity (SizoNenko
and Paunier, 1975; Nguyen et al., 2013). Second, most studies
found that it is a crucial age for the neurodevelopment of
cognitive control abilities (Waxer and Morton, 2011; Larson
et al., 2012; Erb et al., 2017). Different types of conflict
control develop at different speeds and with varied patterns
(Jongen and Jonkman, 2008; Bryce et al., 2011) and may be
indistinguishable in children up to 9 years of age, but may be
related yet separable by 10–11 years of age (Brydges et al., 2014).
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Third, but not the least, at this age, the neural function
of frontal and limbic areas gets more mature and starts to
strengthen the interconnections to facilitate children’s perception
and regulation on emotional information and states (Derntl et al.,
2009; Sapienza et al., 2009; Stanton et al., 2011; Terburg et al.,
2012). We adopted the emotional flanker task and emotional
Stroop task to measure the emotional conflict control processing.
We hypothesized that children’s high testosterone/cortisol ratios
would diminish the efficiency of brain activities in emotional
conflict control processes, and the efficiency of emotional conflict
control processing would be positively associated with EI.

MATERIALS AND METHODS

Participants
Thirty-six right-handed children participated in the experiment,
and the data of two children were removed from analysis
because of too much head movement. The data of remaining
34 children (16 girls [10.56 ± 0.32 years old] and 18 boys
[10.90 ± 0.29 years old]) were further analyzed. The parents
of child participants accomplished the written questionnaire,
in which they were asked that whether the participant and
his/her family had the neurological and/or psychiatric disorders.
None of the participants reported that he/she or his/her family
had neurological or psychiatric disorders. All the participants
had normal or corrected-to-normal visual acuity, and they
were naïve to the purpose of the experiment. This study was
approved by the Ethics Committee of the Institute of Psychology,
Chinese Academy of Sciences and School of Psychology, Capital
Normal University. The work described has been carried out
in accordance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki) for experiments involving
humans and Uniform Requirements for manuscripts submitted
to biomedical journals. The ERP, behavioral measurements and
saliva collection were all undertaken with the understanding and
written consent of the participants’ parents.

Procedure
The brief outline of the time course of the tests: first, the salivary
collection for all participants was on a school day before the ERP
tasks; second, the completion of the emotional flanker and Stroop
tasks with EEG recording; then, the completion of paper-pencil
version of Emotional Intelligence Scale questionnaire (EIS).

Salivary Collection and Analysis
Salivary testosterone and cortisol samples were collected within
the same hours from all participants to minimize seasonal
and diurnal variation as much as possible. Salivary collection
was scheduled on a school day when no EEG recordings
were scheduled. Participants were asked to rinse their mouths
thoroughly 1 h before the saliva collection to avoid contamination
from food debris and prevent sample dilution. During the
interval between the mouth rinse and the saliva collection, the
participants were asked to abstain from food or drink. Saliva
samples were collected twice during a half-hour period from 8:40
a.m. to 9:10 a.m. Participants were instructed to pull the sponge

out of the Salivette and place it into their mouth. They were told
to chew the sponge very gently and roll it around in their mouth
for 2 min. Saliva samples were then stored at −20◦C as soon
as possible. Testosterone and cortisol levels were determined
using testosterone and cortisol ELISA kits (DRG, Germany). For
testosterone, the reported inter- and intra-assay coefficients of
variance were < 9.6 and 13.8%, respectively, with an analytical
sensitivity of 1.9 pg/ml. For cortisol, the reported inter- and intra-
assay coefficients of variance were < 7.5 and 4.5%, respectively,
with an analytical sensitivity of 0.537 ng/mL.

Emotional Flanker and Stroop Tasks
Each participant was instructed to participate in two
computerized emotional conflict control tasks with EEG
recordings, including the emotional flanker and the emotional
Stroop task. The presentation sequence of these two tasks was
counterbalanced among participants.

Emotional Flanker Task
The facial images in the revised emotional flanker task (Fenske
and Eastwood, 2003; Liu et al., 2013) were of the face of six
models (three males, three females) displaying both happy and
fearful faces. The face stimuli were from our lab’s collection, and
they were collected and used under the standardized procedure.
Another 30 volunteers (male, 16, female, 14; age range 22.3–
28.7 years) were instructed to assess the valence and arousal of
each facial image by using normative nine-point scale. For the
valence rating, happy images (Mean = 7.71, Standard deviation
[SD] = 0.34) featured higher valence scores than fearful images
(Mean = 2.11, SD = 0.31) (p < 0.001). For the arousal rating, there
were no significance between happy (Mean = 6.82, SD = 0.35)
and fearful images (Mean = 7.01, SD = 0.33) on arousal scores
(p > 0.05). Each stimulus consisted of a central target face and
two bilateral rows of two faces each, with the five faces in each
stimulus from a single model. The visual angle of each stimulus
was 1◦ vertical and 3.8◦ horizontal. According to the target
facial expressions and the congruency between the target facial
expression and the bilateral facial expressions, there were four
types of trials: target fearful face in congruent trials (FFFFF),
target fearful face in incongruent trials (HHFHH), target happy
face in congruent trials (HHHHH), and target happy face in
incongruent trials (FFHFF).

Emotional Stroop Task
The stimuli in the revised emotional Stroop task (Etkin et al.,
2006) were the same with the emotional flanker task. Each
stimulus consisted of a gray facial expression image overlaid with
the red Chinese word “ ” (happy) or “ ” (fearful). The visual
angle was approximately 1◦ × 1.8◦. Participants were instructed
to concentrate on the facial expression and ignore the word over
each presented stimulus. In the congruent condition, the facial
expression was compatible with the meaning of the word. For the
incongruent condition, the facial expression was incompatible
with the meaning of the word.

For these two tasks, all the stimuli were presented on
a computer monitor with a black background (17 inches,
1024× 768 at 100 Hz), and the participant’s viewing distance was
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65 cm. Participants were required to press the left or right button
to judge whether the facial expression was happy or fearful, and
the mappings of the left and right index fingers to the happy and
fearful stimuli were counterbalanced among participants. In both
tasks, each trial began with a grey fixation cross “+ ” displayed for
250 ms and the presentation of a stimulus for 1500 ms, followed
by randomly varied inter-trial intervals (ITIs) between 800 and
1000 ms. In the practice section, a total of 16 trials were displayed
to allow participants to become familiar with the response rules,
and the formal experiment section consisted of 4 blocks with 65
trials in each block. Each task consisted of 65 congruent trials with
happy faces, 65 congruent trials with fearful faces, 65 incongruent
trials with happy faces, and 65 incongruent trials with fearful
faces. The participants were permitted to rest for 2–3 min after
each block, and the whole task lasted approximately 18 min. In
the two tasks in our study (see Figure 1), fearful conflict refers to
cognitive conflict in trials with fearful target face. Happy conflict
refers to cognitive conflict in trials with happy target face.

EIS Questionnaire Measurement
Participants were required to complete the Chinese version of
the EIS, which has been found to be suitable for measuring
emotional intelligence of children and adolescents (Wang, 2002).
EIS contains 33 items and is used to measure four EI abilities with
the Emotion Perception (EP), Managing Self Emotions (MSE),
Managing Others’ Emotions (MOS), and Emotional Utilization
(EU) subscales (Wang, 2002; Sevdalis et al., 2007).

EEG Recording and Data Analysis
The electroencephalogram (EEG) was recorded from sixty-four
electrodes embedded in a Neuroscan cap with the electrodes
placed according to the 10–20 system locations. Four bipolar
electrodes were placed on the outer canthi of both eyes and
the inferior and superior areas of the left eye to monitor the
vertical and horizontal electrooculogram (VEOG and HEOG,
respectively). The EEG signal with a nose reference was
continuously recorded with online filters at 0.05–100 Hz and

FIGURE 1 | The sample stimuli and procedure in the emotional flanker task
and the emotional Stroop task.

was amplified at a sampling rate of 1000 Hz. The electrode
impedance was kept below 5 k�. The signal was epoched into
trials with 100 ms prior to (for baseline correction) and 1000 ms
after the stimulus onset, and epochs exceeding ± 100 µV at
any electrode were excluded. The averaged ERPs were further
digitally filtered off-line (zero phase shift; bandwidth: 1 and
30 Hz; slope: 24 dB/octave). The N2 and SP components were
further analyzed according to previous literature (Larson et al.,
2014) and current ERP data. The N2 components were analyzed
over the fronto-central brain areas (average from F3, FC3, Fz,
FCz, F4, and FC4) during the 220–370 ms time window after
stimulus onset. The SP component was analyzed over the parieto-
central areas (average from CP3, P3, CPz, Pz, CP4, and P4) in a
time window of 510–680 ms.

For the behavioral and electrophysiological data analyses of
the conflict control tasks, the response accuracy, reaction time
(RT), and mean amplitudes and peak latencies of the N2 and SP
components were analyzed with 2× 2× 2× 2 repeated ANOVAs
with within-subject independent variables (IVs) of Task (flanker,
Stroop), Expression (happy, fearful) and Congruency (congruent,
incongruent) and the between-subject IV of Gender (boy, girl).
The Greenhouse–Geisser correction for violations of sphericity
was used where appropriate, and the significant interactions were
tested by Sidak test for multiple comparisons.

Consistent with other studies (Nguyen et al., 2013), a natural
logarithm transformation of the levels of testosterone (ln_T)
and cortisol (ln_C) and the T/C ratio (ln_ T/C) was used to
avoid analytical bias. Since the Shapiro-Wilk test indicated that
ln_T was non-normally distributed in the samples from the boys
(p < 0.05), Spearman’s correlation analysis was used to examine
the interrelationships among hormone levels, behavioral data and
brain activities in boys and girls separately. Pearson correlation
analysis was used to examine the non-sex-specific associations.

In addition, a mediation model was built to establish the
roles of the neural activities during emotional conflict control
processes in the correlation between the hormone levels and
the EI abilities of individuals. According to Baron and Kenny’s
(1986) conventions, the total effect was considered to be the
association of the independent variable (IV) with the dependent
variable (DV), the direct effect was the association of the IV
with the DV after adjusting for the mediating variable (MV),
and the indirect effect was path a (relation between IV and
MV) × path b (relation between MV and DV after controlling
for IV). The significance of the indirect effects was measured by
a bootstrapping procedure (Preacher and Hayes, 2008). We used
10,000 samplings to generate 95% confidence intervals (CIs). If
the CIs did not contain zero, then the association between the IV
and DV was significantly explained by the MV (p < 0.05).

RESULTS

Hormone Levels and Emotional
Intelligence
There were no significant differences between boys and girls on
the hormonal assay results (p > 0.05) and on EI scores results
(p > 0.05) (Table 1).
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TABLE 1 | Descriptive statistics and associations between hormones and EIS scores.

Association with hormone (boys and girls together)

Measure Boys Girls EIS-EP EIS-MSE EIS-MOS EIS-EU

T(pg/ml) 20.70 (6.84) 20.44 (7.87) 0.03 −0.40∗ −0.14 −0.161

C(ng/ml) 2.83 (1.26) 2.86 (0.75) −0.04 −0.42∗ −0.032 0.006

T/C ratio (× 10−3) 7.96 (2.77) 7.16 (1.99) 0.08 −0.17 −0.122 −0.190

Age (years) 10.90 (0.29) 10.56 (0.32)

EIS-EP 37.16 (4.84) 36.56 (4.07)

EIS- MSE 34.22 (6.74) 34.56 (3.28)

EIS- MOS 31.11 (4.48) 31.40 (4.25)

EIS- EU 15.67 (3.01) 15.58 (2.94)

Data are presented as mean and standard deviation. Total N = 34. Components in the EIS questionnaire: EP, Emotion Perception; MSE, Managing Self Emotions; MOS,
Managing Others’ Emotions; EU, Emotional Utilization. ∗p < 0.05.

Behavioral Performances on the Two
Tasks
For accuracy in the two tasks (Table 2), ANOVA showed a
significant main effect of Gender (F(1,32) = 13.1, p < 0.001,
η2 = 0.29), with girls providing more accurate responses
than boys. Congruency also showed a significant main effect
(F(1,32) = 31.2, p < 0.001, η2 = 0.49), with participants exhibiting
a higher accuracy in congruent trials than incongruent trials.

In the analysis of the RT, a significant main effect of Task was
observed (F(2,64) = 10.5, p < 0.001, η2 = 0.25), with participants
responding faster in the flanker task than in the Stroop task
(t(32) = −2.8, p < 0.05). The main effect of Expression was also
significant (F(1,32) = 9.5, p < 0.01, η2 = 0.23), and RTs were shorter
in response to happy faces than to fearful faces. The interaction
between Task and Congruency was detected (F(2,64) = 23.9,
p < 0.001, η2 = 0.43), and RTs were shorter in congruent trials
than incongruent trials in the flanker (t(32) = −3.7, p < 0.001)
and the Stroop tasks (t(32) = −8.2, p < 0.001).

ERP Waveforms
The mean peak latencies and amplitudes of N2 and SP
components are shown in Table 3. The grand average waveforms
of N2 and SP are displayed in Figures 2, 3, respectively.

N2 Components
For N2 amplitudes, the interaction among Task, Expression, and
Gender was marginally significant (F(2,64) = 3.0, p = 0.06), and
boys exhibited more negative N2 responses to happy faces than
fearful faces in the flanker task (t(64) = 2.79, p < 0.01). There were
no significant main effects or interaction effects for N2 latencies.

TABLE 2 | Mean and standard deviation of response accuracy and reaction time
(RT) in the two tasks.

Flanker Stroop

Congruent Incongruent Congruent Incongruent

Boys Accuracy 0.83 (0.07) 0.81 (0.08) 0.88 (0.06) 0.77 (0.10)

RT 695 (125) 703 (130) 706 (135) 746 (149)

Girls Accuracy 0.92 (0.05) 0.88 (0.07) 0.95 (0.04) 0.85 (0.07)

RT 688 (114) 704 (114) 723 (100) 803 (109)

SP Components
SP latencies showed a significant main effect of Expression
(F(1,32) = 5.87, p < 0.05, η2 = 0.16), with happy faces inducing
shorter SP latencies than fearful faces. A significant main effect
of Congruency was also observed (F(1,32) = 22.1, p < 0.001,
η2 = 0.41), with shorter SP latencies in congruent trials than
in incongruent trials. Additionally, the interaction among Task,
Expression, and Congruency was significant (F(2,64) = 4.4,
p < 0.05, η2 = 0.12). In the flanker task, SP latencies were
shorter in congruent trials than in incongruent trials when
the target faces were fearful (t(32) = 3.7, p < 0.001). In the
Stroop task, SP latencies were shorter in congruent trials than in
incongruent trials when faces were fearful (t(32) = 3.7, p < 0.001)
and happy (t(32) = 3.6, p < 0.001). SP latencies were also
shorter in response to happy faces than to fearful faces in
incongruent trials of the flanker task (t(32) = 3.5, p < 0.01).
There were no significant main effects or interaction effects
for SP amplitudes.

The Correlations Among Emotional
Abilities, Emotional Conflict Control, and
Hormone Levels
For the whole sample, negative associations were found between
testosterone and Managing Self Emotions (r = −0.40, p < 0.05),
and between cortisol and Managing Self Emotions (r = −0.42,

TABLE 3 | Mean peak latencies (ms) and amplitudes (µV) of N2 and SP
components in the two tasks.

Flanker Stroop

Congruent Incongruent Congruent Incongruent

Boys N2 latency 284 (28) 281 (30) 290 (38) 293 (36)

N2 amplitude −4.84 (4.61) −5.59 (4.3) −3.57 (3.6) −3.74 (3.99)

SP latency 578 (40) 562 (32) 555 (33) 585 (34)

SP amplitude 15.5 (8.55) 15.66 (8.22) 13.95 (8.45) 13.73 (7.44)

Girls N2 latency 285 (33) 280 (31) 286 (33) 294 (33)

N2 amplitude −4.80 (3.58) −4.94 (3.4) −4.90 (3.79) −5.93 (5.56)

SP latency 584 (40) 587 (37) 565 (28) 598 (40)

SP amplitude 14.56 (8.17) 14.98 (7.74) 13.4 (8.31) 13.96 (6.62)
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FIGURE 2 | The grand-average waveforms of N2 components in two tasks.

FIGURE 3 | The grand-average waveforms of SP components in two tasks.

p < 0.05), and no significant correlations between brain activities
and Managing Self Emotions (all p > 0.05) were found.

There were significant negative correlations between
testosterone and accuracy (r = −0.36, p < 0.05), and between
cortisol and accuracy (r = −0.36, p < 0.05) in the congruent

trials in the emotional flanker task when target faces were
fearful. There were also significant negative correlations
between cortisol and accuracy (r = −0.45, p < 0.01) in the
congruent trials in the emotional Stroop task when target
faces were happy.
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TABLE 4 | Associations between brain activities and testosterone-cortisol balance.

Testosterone Cortisol T/C ratio

Flanker

N2 latency_left_fearful1 0.46∗∗ 0.45∗∗ −0.01
DN2 latency_left_fearful −0.37∗ −0.40∗ 0.05
DN2 latency_middle_fearful −0.22 −0.37∗ 0.12

Stroop
DN2 latency_middle_fearful −0.01 −0.26 0.37∗

DN2 amplitude_left_happy −0.23 −0.36∗ 0.18

Stroop

SP latency_left_fearful1 −0.15 0.07 −0.35∗

SP amplitude_middle_fearful2 −0.09 −0.40∗ 0.38∗

SP amplitude_middle_happy1
−0.13 −0.45∗∗ 0.39∗

SP amplitude_middle_happy2
−0.16 −0.60∗∗ 0.53∗∗

SP amplitude_right_fearful2 −0.21 −0.49∗∗ 0.37∗

SP amplitude_right_happy1
−0.17 −0.51∗∗ 0.42∗

SP amplitude_right_happy2
−0.21 −0.59∗∗ 0.46∗∗

SP amplitude_overall_fearful2 −0.15 −0.43∗ 0.35∗

SP amplitude_overall_happy1
−0.20 −0.53∗∗ 0.40∗

DCongruency effects; 1Congruent trials; 2 Incongruent trials. ∗p < 0.05, ∗∗p < 0.01.

In the flanker task, N2 latencies in congruent trials were
positively correlated with testosterone and cortisol levels when
the target faces were fearful (testosterone: r = 0.46, p < 0.01;
cortisol: r = 0.45, p < 0.01) (Table 4). T/C ratios were
positively correlated with the differences in N2 latencies between
incongruent and congruent trials in the Stroop task over the mid-
line area (r = 0.37, p < 0.05). In the Stroop task, SP amplitudes
were positively correlated with T/C ratios (see Table 4).

Girls
Emotional Utilization scores in EI negatively correlated with
cortisol levels (r = −0.57, p < 0.05). Cortisol levels were
also associated with the SP amplitude in incongruent trials of
the flanker task (r = 0.63, p < 0.01) and the SP amplitude
difference (r = 0.51, p < 0.01) when the target face was fearful.
Hormone levels were negatively correlated with accuracy in
congruent trials of the flanker task when the facial expression
was fearful (r = −0.52, p < 0.05, testosterone; r = −0.68,
p < 0.05, cortisol). Cortisol levels were positively correlated
with RT in the incongruent trials of the Stroop task when the
facial expression was fearful (r = 0.51, p < 0.05), and RT in the
congruent trials of the Stroop task when the facial expression
was happy (r = 0.50, p < 0.05). Cortisol levels correlated
with accuracy in congruent trials of the Stroop task when the
facial expression was fearful (r = −0.56, p < 0.05) and happy
(r = −0.56, p < 0.05) and SP amplitude in incongruent trials
of the flanker task when the target face was fearful (r = 0.54,
p < 0.05). Finally, cortisol levels also correlated with SP amplitude
differences when the facial expression was happy in the Stroop
task (r =−0.51, p < 0.01).

Boys
Managing Self Emotions in EI was positively correlated with
accuracy in the incongruent trials of the Stroop task (r = 0.55,
p < 0.05). Emotion Utilization positively correlated with the SP

amplitude difference in the flanker task when the target face was
fearful (r = 0.48, p < 0.05). Testosterone levels were negatively
correlated with Managing Self Emotions in EI (r = −0.51,
p < 0.05). Testosterone levels were also negatively correlated with
response accuracy (r =−0.51, p < 0.05) and positively correlated
with N2 latency (r = 0.49, p < 0.05) in incongruent trials of the
flanker task when the target face was happy. Testosterone levels
were also negatively correlated with the difference in accuracy
between congruent trials and incongruent trials of the Stroop task
when the facial expression was fearful (r =−0.50, p < 0.05).

The Mediation Effects Among Emotional
Abilities, Emotional Conflict Control, and
Hormone Levels
Based on the correlation results, we further assessed a mediation
model including brain activity. We included the scores associated
with Emotional Utilization of the girls as the DV, their cortisol
levels as the IV, and the SP amplitudes in incongruent trials
of the flanker task when the target face was fearful as the
MV. The SP amplitude in incongruent trials of the flanker
task when the target face was fearful mediated the influence
of the cortisol levels on the utility of emotion in EI [95%
CI = (−8.64,−0.54), p < 0.05].

DISCUSSION

To our best knowledge, this is the first study investigating the
correlations among hormones (testosterone and cortisol), EI and
neuronal activities during emotional conflict control processes
in preadolescent children. Overall, the results suggested a more
complicated picture of relationships than we expected. Although
there were no significant correlations between hormone ratios
and EI, lower hormone (testosterone or cortisol) levels were
found to be related with better abilities of managing self emotions
(a component of EI) in preadolescent children. Furthermore, we
also found that the associations between cortisol and emotional
utilization (another component of EI) were mediated by neural
activities in conflict resolution on emotional conflicts in girls.
Another finding was that T/C ratio correlated with conflict
processing when processing fearful faces.

The comparison of different conflict control processes with
varied conflict types in our study supported the dimensional
overlap model (Liu et al., 2010) and further indicated that the
varied combination of different dimensions of stimulus-response
mappings may induce varied conflict control processes (Liu et al.,
2004; Egner et al., 2007).

The current behavioral conflict control processes were not
modulated by the valence of the target facial expression, which
was inconsistent with previous findings in adults, potentially
revealing that the brain functions of preadolescent children might
not be sufficiently mature to support the interplay between these
two processes. Our study revealed distinct response patterns
dependent on emotional prosody. RTs were shorter in response to
happy faces than fearful faces, which is consistent with previous
evidence showing that happy expression was the first expression
that children could identify (Watling and Bourne, 2013).
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Testosterone levels may mediate cognitive function through
attentional control processes (Martin et al., 2009). The current
study showed that emotional conflict control processes in both
boys and girls were associated with testosterone. For boys,
lower testosterone levels were related to greater accuracy in
conflict control tasks with happy conflicts (in the flanker task)
and fearful conflicts (in the Stroop task) and were associated
with shorter frontal responses to happy conflicts during conflict
detection processing (in the flanker task). For girls, lower
testosterone levels correlated with greater accuracy in congruent
trials of the flanker task when the target faces were fearful,
consistent with the findings of Van Strien et al. (2009). Similarly,
for behavioral responses, Tyborowska et al. (2016) found that
lower testosterone levels were associated with faster responses
to happy faces than to angry faces; however, they also found
that lower testosterone levels were associated with more errors
with angry faces than with happy faces. They analyzed the
behavioral data with boys and girls together. Previous studies
have provided puzzling results upon examination of brain
activities during emotional control. Cservenka et al. (2015)
adopted an emotional Stroop task to study the effects of
hormones on emotional conflict control processes and brain
activity in adolescence and found significant gender effects, as
testosterone was negatively correlated with frontal and striatal
activities in male adolescents and cerebellar and precuneus
activities in female adolescents. These findings revealed that
testosterone could play important roles during emotional
cognitive control processes and indicated that sex differences
should be further examined.

Previous studies showed that children’s salivary cortisol
levels were tightly associated with their inhibition control
abilities and fear perception (Klimes-Dougan et al., 2001;
Gunnar et al., 2009). Our present findings revealed a tight
relationship between cortisol levels and emotional conflict
control processes in both boys and girls. Upon examination
of the neuronal activity during conflict resolution, we found
that lower cortisol levels in girls were associated with better
conflict resolution in the parietal cortex (greater SP amplitude)
in fearful conflicts in the flanker task. Consistently, Schutter
et al. (2002) revealed cortisol-related reductions in transmission
between the left prefrontal and right parietal cortex in healthy
subjects aged 20–28 years.

Interestingly, the relationships between hormones and brain
activities in the flanker task showed that it might take longer
to detect whether there were conflicts in the flanker task
when all the five faces were fearful (congruent trials) when
children bore higher hormone levels. At the same time, higher
hormone levels correlated with smaller congruency effects of
N2 latency when the target face was fearful. We speculated
that these hormone-latency associations mainly indicated high
concentration of hormone was related to the delay of processing
fearful faces in congruent trials in the flanker task. The reason
was that the congruency effects in N2 latency were outcomes
of subtracting latency of congruent trials from latency of
incongruent trials, However, there might be distinct brain
mechanisms for the association between fearful expression
processing and testosterone (Van Honk and Schutter, 2006)

and cortisol (Watling and Bourne, 2013). Furthermore, a recent
study reported that higher daily cortisol concentrations inhibited
functional connectivity between the prefrontal cortex and the
amygdala when processing fearful faces compared to neutral faces
(Hakamata et al., 2017).

In addition, our findings might also indirectly indicate the
association between fearful face processing and T/C ratio. This
is the first study providing evidence for T/C ratios and brain
activities in emotional processing in children. When faces
were fearful, T/C ratios were correlated with SP latency and
congruency effects on N2 latency, while neither testosterone or
cortisol levels were correlated with them. This is similar with a
previous study. Glenn et al. (2011) found that psychopathy was
associated with an increased T/C ratio, but was not associated
with testosterone or cortisol independently. In addition, the
faster SP responses related to higher T/C ratios might indicate
T/C-related behavioral impulsivity (Terburg et al., 2009; Romero-
Martínez et al., 2016; Manigault et al., 2019). A recent study also
found that high testosterone relative to cortisol, was associated
with aggressive behavior in 16-year-old adolescents (Platje et al.,
2015). However, since T/C ratio is not correlated with any
component of EI, further studies should be carried out with larger
sample size and different measures.

The lack of sex differences in testosterone levels, as reported
in our results, is consistent with previous studies of children
(Quaiser-Pohl et al., 2016; Nguyen et al., 2018). Distinguishing
between the biologically active free fraction of gonadal hormone
levels (as measured in saliva) and the amount of available
hormone levels in total (as measured in blood) might be
important (Quaiser-Pohl et al., 2016). As for cortisol levels, it
has been proposed that sex-related differences in HPA regulation
emerge at puberty (Wang et al., 2018).

Previous studies of adults found that EI is positively associated
with affective executive function processes (Sevdalis et al.,
2007). Our findings implied that different aspects of EI were
related to varied neuronal activities in different brain areas
during conflict control processes. Self-management of emotion
was associated with both frontal and parietal activities during
neuronal processes of conflict monitoring and conflict resolution
of affective conflicts. However, emotional utilization was only
associated with parietal activities during conflict resolution of
affective conflicts.

We found that lower testosterone levels in boys were
associated with better self-management of emotion in EI, and
lower cortisol levels in girls were associated with better emotional
utilization in EI. Bechtoldt and Schneider (2016) found that the
testosterone and cortisol levels in male adults did not correlate
with EI. One reason for this difference may be due to differences
in the collection times of the saliva samples. Samples collected
between 3 p.m. and 8 p.m. have been shown to contain relatively
lower levels of testosterone and cortisol during the daytime (Nelis
et al., 2009), whereas samples collected around 9 a.m., as in the
current study, contain relatively higher levels. Another possible
reason for the discrepancy is the criterion validity of the EI
scale. Bechtoldt and Schneider (2016) specifically stressed that
the ability-based tests of EI that they chose assessed emotion
management by evaluating maximum performance measures in
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hypothetical contexts, which may be inadequate for predicting
emotion-regulating behavior in real contexts. A significant
mediation effect of emotional conflict control on the association
between EI and hormones was found in girls. Lower cortisol levels
were associated with better utilization of emotion in girls, and
the association was mediated by a stronger parietal response to
emotional conflicts. Our findings revealed an essential role of
neural activities conflict resolution in mediating the hormonal
effects on emotional abilities in girls.

There were several limitations in the current study. First,
a single-point measure of hormones is a significant weakness
of our study, and it would be better to measure salivary
hormones on two or more consecutive days with multiple time-
points on each day. Second, the small sample size is also a
weakness; therefore, we adopted strict Bonferroni corrections
for multiple comparisons. Third, the emotional words used in
the current study may be not that emotional in terms of the
emotion-inducing effect compared with facial expression images,
and further studies should adopt some emotional words with
higher arousal levels.

CONCLUSION

The study shows that testosterone correlates with conflict
detection and managing self emotions, while cortisol correlates
with conflict detection and resolution as well as managing
self emotions. Besides, in girls, neural activities during conflict
resolution in the S-S conflicts mediate the correlation between
cortisol levels and emotional utilization. In addition, the
relationships between hormones and neural activities vary
depending on the type of emotional conflict control task and
emotional stimuli. We thereby provide supportive preliminary
evidence for hormonal and neural mechanisms underlying
emotional intelligence in preadolescence. Future studies can
further investigate the involvement of hormone-mediated
emotional processing during the development of emotional
intelligence in children and adolescents, and latent state-trait
modeling could be applied to model individual differences
in salivary testosterone, cortisol, and their interaction in
the future studies.
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The second-to-fourth digit ratio (2D:4D ratio) is considered a postnatal proxy measure for
the degree of prenatal androgen exposure (PAE), which is the primary factor responsible
for masculinizing the brain of a developing fetus. Some studies suggest that the
organizational effects of PAE may extend to the hypothalamic-pituitary-adrenal (HPA)
axis response to stress. This study investigates the relationship between 2D:4D ratio
and HPA axis functioning using a rhesus monkey (Macaca mulatta) model. Subjects were
N = 268 (180 females, 88 males) rhesus monkey infants (3–4 months of age). Plasma
cortisol concentrations were assayed from two blood samples obtained during a 25-h
experimental social separation stressor at 2- and 7-h post-separation. Subjects’ 2D:4D
ratio was measured later in life (Mage = 6.70 years). It was hypothesized that infant rhesus
monkeys that exhibited a more masculine-like 2D:4D ratio would show lower levels of
circulating cortisol after a social separation and relocation stressor. The results showed
that there was a sex difference in the left-hand 2D:4D ratio. The results also showed
that there was an overall sex difference in cortisol concentrations and that female, but
not male, monkeys that exhibited a more masculine-like right- and left-hand 2D:4D ratio
exhibited lower mean stress-induced cortisol concentrations early in life. These findings
suggest that higher levels of prenatal androgens in females, as measured by 2D:4D ratio,
may be related to an attenuated HPA axis stress-response, as measured by plasma
cortisol levels. To the extent that these findings generalize to humans, they suggest that
the organizational effects of PAE extend to the infant HPA axis, modulating the HPA axis
response, particularly in females.

Keywords: 2D:4D ratio, cortisol, HPA axis, prenatal androgen exposure, rhesus monkeys, stress

INTRODUCTION

Prenatal androgen exposure (PAE) is thought to be the main source of morphological and central
nervous system masculinization, and, consequently, is responsible for many of the phenotypic
behavioral differences observed between males and females (Phoenix et al., 1959; Hughes, 2001;
Thornton et al., 2009). During gestation, androgens bathe the brain, initiating enzymatic cascades
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that masculinize the developing fetus (Hughes, 2001) through
a variety of epigenetic mechanisms (Gegenhuber and Tollkuhn,
2019). The degree of PAE varies between the sexes (males
typically have a higher degree of PAE; Wilson et al., 1981), but
there are also wide individual differences within each of the
sexes. Studies show that variation in PAE contributes to stable
individual differences in brain function and behavior (Hines
et al., 2016; Spencer et al., 2017; Del Giudice et al., 2018). Second-
to-forth digit ratio (2D:4D ratio) is associated with sex differences
in behavior, for example, one well-replicated line of research
shows the same-sex attraction in women is associated with a
more masculinized 2D:4D ratio (Williams et al., 2000; Kraemer
et al., 2006; Watts et al., 2018), although the inverse relationship
is not always found in men (Williams et al., 2000; Voracek et al.,
2005). Thus, PAE plays a complex and important modulating
role in the development of typical sex differences through its
organizational effect on the brain. Studies also show that PAE
is implicated in the development of several psychopathological
disorders with extant sex differences in incidence rates, such as
autism spectrum disorder (Cherskov et al., 2018), schizophrenia
(Paipa et al., 2018), attention deficit hyperactive disorder (Martel
et al., 2008) and, particularly relevant to this study, anxiety
disorders (de Bruin et al., 2006).

Given its organizational effects on the brain and periphery,
PAE may modulate the hypothalamic-pituitary-adrenal (HPA)
axis. Numerous studies suggest that there are sex differences in
the functioning of the HPA axis (for a review, see Handa et al.,
1994). For example, using the same paradigm described in the
present study, Capitanio et al. (2005) assessed sex differences
in HPA axis response. Briefly, this paradigm consists of a 25-h
stress-inducing social separation of infant rhesus monkeys from
their mothers. During this period, infant subjects are assessed on
a variety of biobehavioral metrics, including undergoing blood
sampling at 2-h and 7-h post-separation, respectively. Obtained
plasma cortisol is then assayed for cortisol concentrations
using radioimmunoassay (for a detailed description of this
methodology, see Capitanio et al., 2005). Using this paradigm,
Capitanio et al. (2005) showed that male rhesus monkey
infants exhibit lower plasma cortisol and are less responsive
to dexamethasone and adrenocorticotropic hormone (ACTH)
during an experimental social separation and relocation stressor,
when compared to females, replicating plasma cortisol and
ACTH findings in human subjects (Kudielka et al., 2004). Studies
also suggest that the plasma cortisol levels of females may be
more sensitive to other variables that affect the response of the
HPA axis to stress (Uhart et al., 2006), with research suggesting
that the greater prevalence of women with depression, when
compared to men, may be related to the tendency of females to
show an elevated HPA axis response to stress when compared
to males (for a review, see Bale and Epperson, 2015). Given
these tendencies, more PAE may lead to a more masculinized
HPA axis in males, when compared to females, although few
studies have assessed this possibility. As stress reactivity is a
complex and emergent phenomenon, influenced by both the
organizational and activational effects of testosterone, there is a
greater need to understand the individual contributions of PAE
in an organizational capacity.

While direct measures of PAE can be made by extracting
amniotic fluid (Spencer et al., 2017; Beking et al., 2018; Wang
et al., 2019), there are decided limitations to this methodology.
For example, the composition of extracted amniotic fluid
represents androgen levels at a single time point, which may
not capture the day-to-day variability of PAE or the sustained
effect of higher mean levels of PAE. While some have attempted
to measure PAE by other means, such as assaying venous or
arterial umbilical cord blood, these data often do not correlate
with concomitant androgen levels in the amniotic fluid (van
de Beek et al., 2004). Moreover, none of these methods,
including assaying amniotic fluid for androgen levels using
a single point in time, provide a long-term chronic pooled
estimate of PAE exposure. Given the difficulty in collecting
representative samples across pregnancy, many researchers have
opted for proxy measurements of PAE, such as the 2D:4D
ratio, first proposed by Manning et al. (1998), and widely
used by others following the initial publication (Hönekopp
et al., 2007). While somewhat controversial, the 2D:4D ratio has
been widely used to investigate biological influences on gender
differences. Comparisons of 2D:4D ratios and phenotype have
not always shown clear sex differences and its use as a proxy
to demonstrate prenatal contributions to gender differences
are sometimes inconsistent, with recent commentaries (see
Swift-Gallant et al., 2020) suggesting myriad reasons including
small sample sizes, variation in behavior, that 2D:4D ratio is
intended as an imperfect proxy for PAE, and that PAE is only
partially responsible for variation in 2D:4D ratio. Indeed, while
2D:4D ratio provides a useful measure of chronic pooled PAE,
other influences on 2D:4D ratio, such as genetic influences,
cannot be ruled out, nor are they mutually exclusive. The
bulk of the studies suggest that the 2D:4D ratio is sexually-
dimorphic in humans (for a review, see Manning, 2011) and
non-human primates (Nelson and Shultz, 2010), though the
direction of the dimorphism may be species-specific, with
male rhesus monkeys typically exhibiting a higher 2D:4D ratio,
while female humans typically exhibit a higher 2D:4D ratio
(Baxter et al., 2018).

PAE is thought to be, at least in part, responsible for 2D:4D
ratio, with sex differences in 2D:4D ratio already apparent
prenatally (Galis et al., 2010). For example, a recent study showed
a significant relationship between urinary testosterone levels
in pregnant female monkeys and subsequent 2D:4D ratio of
offspring (Baxter et al., 2019). Studies in nonhuman primates
also show that experimentally increasing circulating prenatal
androgens, thus increasing PAE, masculinizes 2D:4D ratios
(Abbott et al., 2012). Similarly, studies investigating congenital
adrenal hyperplasia, a condition that leads to abnormally high
PAE, show that female humans with this condition exhibit a
more masculinized 2D:4D ratio (Brown et al., 2002; Rivas et al.,
2014). Studies also suggest that the effects of PAE extend to
behavior and temperament. For example, one study showed that
a feminized 2D:4D ratio in women (but not men) is associated
with increased temperamental harm avoidance (Jeon et al.,
2016), which may be related to the organizational effects of
PAE on the HPA axis. Another study in young adult females
showed that experimental administration of testosterone led to
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reductions of cognitive empathy, and this testosterone-induced
low empathy was related to PAE, as measured by 2D:4D ratio
(van Honk et al., 2011). Such 2D:4D relationships with harm
avoidance and empathy suggest that prenatal organizational
effects likely modulate gender differences in mood and may
explain, at least in part, male-female differences in the risk for
mood disorders.

Researchers have noted the utility of rhesus monkeys
(Macaca mulatta) for studying organizational effects of PAE
on the brain (Thornton et al., 2009; Baxter et al., 2018),
due to their genetic (Gibbs et al., 2007), temperamental
(Weinstein and Capitanio, 2008), and social (Capitanio, 1985)
similarities to humans. Particularly relevant to this study, the
rhesus monkey response to stress has been widely studied
and is well-characterized (see Sanchez, 2006). One important
strength of utilizing a rhesus monkey, rather than a human,
model to investigate the relationship between 2D:4D ratio and
development is that the rhesus monkey environment is closely
controlled, eliminating extraneous variables that may impact
human development (for example, socioeconomic status or
race; Henry et al., 2019). This, plus the relative ease of obtaining
direct measurements, increases the ability to assess potential
causal mechanisms with a higher degree of certainty. The present
study investigated the relationship between PAE, as measured
by 2D:4D ratio, and early-life HPA axis response to stress, as
measured by circulating cortisol concentrations in infant male
and female rhesus monkeys during an ecologically-meaningful,
well-validated stressor. The purpose of this study is to investigate
the organizational effects of PAE on the HPA axis. To the
extent that women are at greater risk for mood disorders that
are HPA-axis-related (Rainville and Hodes, 2019), investigating
whether higher PAE in females has a protective effect while
lower PAE in males is a risk factor for dysregulated HPA
axis function may provide important information concerning
both the etiology of sex differences in the HPA axis and the
organizational effects of PAE on subsequent risk for anxiety and
depression. Based on earlier findings showing sex differences in
plasma cortisol response to a social stressor (Capitanio et al.,
2005), it is hypothesized that infant rhesus monkey females
will have a greater cortisol response to social separation from
their mother and their social group when compared to males.
Given earlier findings of a sex difference in 2D:4D ratio of
rhesus monkeys (Baxter et al., 2018), it is hypothesized that
there will be a sex difference in 2D:4D ratio, such that male
rhesus monkeys will exhibit a higher 2D:4D ratio pattern,
when compared to female rhesus monkeys. Furthermore, given
findings suggesting the relationship between female-typical
2D:4D ratio and personality/temperament in women (Jeon et al.,
2016) and men (Evardone and Alexander, 2009) and other
studies showing that females tend to exhibit greater sensitivity
to environmental moderators of the HPA axis (Barr et al.,
2004; Uhart et al., 2006), it is hypothesized that females with a
more male-typical 2D:4D ratio will exhibit lower plasma cortisol
concentrations in response to stress when compared to other
females, while males with a more female-typical 2D:4D ratio will
exhibit higher cortisol concentrations in response to stress when
compared to other males.

MATERIALS AND METHODS

Subjects were N = 268 rhesus monkeys (180 females, 88 males)
housed at the California National Primate Research Center
(CNPRC) in Davis, California in outdoor, 0.2-hectare field
cages. Subjects lived in large social groups (approximately
60–100 animals of all age and sex classes), which is about
the same size as typical rhesus monkey groups, in conditions
approximating the natural social composition (matrilineally
organized extended-family groups with multiple adult males,
infants, and juveniles). This study was carried out following
the recommendations of the Guide for the Care and Use of
Laboratory Animals, National Institutes of Health, and with
the guidelines established by the California National Primate
Research Center (CNPRC). All procedures were reviewed and
approved by the Animal Care and Use Committee of the
University of California-Davis.

Cortisol Sampling
Cortisol samples were obtained when the subjects were infants,
during standardized experimental testing outlined by Capitanio
et al. (2005). Briefly, at 3–4 months of age, infants were
separated from their mothers and their larger social groups
and underwent a standardized, 25-h biobehavioral assessment,
in which they participated in a wide variety of biobehavioral
tests. As part of the testing battery, blood samples were
obtained via femoral venipuncture at 2-h following separation
(11:00 h) and again approximately 5-h later (16:00 h). All
blood samples were drawn using unheparinized syringes and
immediately transferred to EDTA tubes. The samples were
centrifuged at 4◦C at 1,277 g for 10 min. Plasma was pipetted
into tubes and stored at −80◦C until they were assayed for
cortisol concentrations. All cortisol data were collected between
2001–2016. The samples collected before 2014 (n = 151), were
assayed using a commercial radioimmunoassay kit (Siemens
Medical Solutions Diagnostics, Los Angeles, CA, USA). Samples
collected after 2014 (n = 117), were assayed using a quantitative
competitive immunoassay (Siemens Healthcare Diagnostics,
Tarrytown, New York, NY, USA). For a description of each
assaying procedure, see Vandeleest et al. (2019). There were
no significant differences in the mean cortisol concentrations
assayed using the two methods (t(264) = 0.56, p = 0.580).
As preliminary analyses showed that the two cortisol samples
were significantly and positively correlated across time points
(r = 0.74, p < 0.0001), mean cortisol concentrations were used
in analyses. To account for any variance due to cohort year,
cortisol concentrations were statistically standardized across
cohort years and the resulting standardized values were used in
all further analyses.

Digit Ratio Measurements
Digits were measured between 1–17 years after cortisol sampling
during routine biannual health examinations. As part of these
routine examinations, subjects were sedated with ketamine
(15mg/kg, intramuscular). Two techniciansmeasured the fingers
by working together, using the same procedure described in
Baxter et al. (2018). Briefly, monkeys were laid in a recumbent
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position on a table, and, to increase accuracy, the first technician
used a wooden craft stick to depress and restrain the monkeys’
palms and fingers flat against the table. A second technician
measured the restrained fingers using a digital caliper, measuring
from the finger-crease most proximate to the palm to the
most distal point of the finger, following guidelines from
Manning (2011). Using a caliper to directly measure fingers
may yield more accurate and reliable measures than indirect
measurements from photos or scans (Fink and Manning, 2018).
Subjects’ second and fourth fingers of their right and left hands
were measured at least twice, until at least two measurements
were obtained within ± 1.5 mm, and the average length of the
finger was calculated by averaging the two closest measurements.
Subjects’ 2D:4D ratios were calculated by dividing the average
length of the second finger by the average length of the
fourth finger for each hand. All digit ratio data were collected
between 2016–2018 (inter-rater reliability >0.90). Preliminary
analyses showed that right-hand 2D:4D ratio and left-hand
2D:4D ratio were significantly and positively correlated (r = 0.27,
p < 0.001). Right- and left-hand 2D:4D ratios were statistically
standardized across cohort years and the resulting standardized
right- and left-hand 2D:4D ratio values were used in all
further analyses. For ease of interpretation, all figures depict
unstandardized values.

Data Analysis
As an earlier study showed a significant relationship between
3–4 month infant monkeys’ cortisol concentrations and age
(Capitanio et al., 2005), infant age (days old) at the time of
cortisol sampling was controlled in all analyses. ANOVAs were
used to test for sex differences in 2D:4D ratio, with sex as the
independent variable and left- or right-hand 2D:4D ratio as
the dependent variable. An ANOVA was also used to test for
sex differences in plasma cortisol, with sex as the independent
variable, mean plasma cortisol concentrations as the dependent
variable, and infant age entered as a covariate.

Multiple regression was used to test the relationship between
cortisol and 2D:4D ratio, with right- or left-hand 2D:4D ratio and
infant age as the independent variables and mean plasma cortisol
concentrations as the dependent variable. Because preliminary
analyses showed sex differences in cortisol concentrations
(p < 0.0001), the multiple regression analyses were performed
separately for males and females. All analyses were performed
using SPSS, version 25.

RESULTS

As hypothesized, results from ANOVA showed a significant
sex difference in mean cortisol concentrations between males
(M = 69.17 ± 1.93) and females (M = 81.80 ± 1.84);
F(1,263) = 18.20, p < 0.0001; see Figure 1). There was also
a significant sex difference in the left-hand 2D:4D ratio
(F(1,248) = 6.837, p = 0.009), with males exhibiting a higher
left-hand 2D:4D ratio (0.81 ± 0.003), when compared to females
(0.80 ± 0.002). There was not a detectable sex difference in the
right-hand 2D:4D ratio (p = 0.22).

FIGURE 1 | Results from an ANOVA with sex as the independent variable
and infant stress-response cortisol concentrations as the dependent variable
and infant age entered as a covariate showed a significant effect of sex on
stress-induced cortisol concentrations in 3-to-4-month-old infants
(F (1,263) = 18.20, p < 0.0001). Error bars represent standard error of
the mean.

FIGURE 2 | Controlling for infant age, there was a significant (β = −0.204,
p = 0.007; Overall model: R = 0.203, F (2,173) = 3.70, p = 0.027) negative
relationship between right-hand 2D:4D ratio and stress-induced plasma
cortisol concentrations for female rhesus monkeys.

Females
Controlling for infant age at cortisol sampling, results from
a multiple regression analysis showed a significant negative
relationship between right-hand 2D:4D ratio and mean plasma
cortisol concentrations for females (β = −0.204, p = 0.007;
Overall model: R = 0.203, F(2,173) = 3.70, p = 0.027; see Figure 2).

Controlling for infant age at cortisol sampling, results from
a multiple regression analysis showed a significant negative
relationship between left-hand 2D:4D ratio and mean plasma
cortisol concentrations for females (β = −0.199, p = 0.009;
Overall model: R = 0.198, F(2,173) = 3.54, p = 0.031;
see Figure 3).
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FIGURE 3 | Controlling for infant age, there was a significant (β = −0.199,
p = 0.009; Overall model: R = 0.198, F (2,173) = 3.54, p = 0.031) negative
relationship between left-hand 2D:4D ratio and stress-induced plasma
cortisol concentrations for female rhesus monkeys.

Males
The relationship between right-hand 2D:4D ratio and infant
cortisol concentrations was not significant for males (β = 0.023,
p = 0.837; Overall model: R = 0.076, F(2,82) = 0.24, p = 0.789), nor
was the relationship between left-hand 2D:4D ratio and infant
cortisol concentrations (β = 0.010, p = 0.929; Overall model:
R = 0.073, F(2,82) = 0.22, p = 0.803).

DISCUSSION

Partial support was found for the hypotheses: There was a
relationship between circulating stress-response plasma cortisol
and 2D:4D ratio in females, with females that possessed
a more male-typical 2D:4D ratio exhibiting lower plasma
cortisol concentrations as infants during a mother-infant social
separation stressor. To illustrate this point, 61% of females
with 2D:4D ratios that were at or above the male 2D:4D
ratio average had cortisol concentrations that were comparable
to males. For the males, however, there was no relationship
between 2D:4D ratio and infant plasma cortisol concentrations.
To the extent that the 2D:4D ratio is a biomarker for the
degree of PAE, these results suggest that PAE has a prenatal
organizational effect on the HPA axis, which appears to
attenuate the stress response of the HPA axis in female
rhesus monkeys. To our knowledge, this is the first report
of a relationship between PAE and stress-induced plasma
cortisol levels.

One explanation for the finding that there is a relationship
between infant plasma cortisol concentrations and 2D:4D ratio
in females, but not males, is that high levels of PAE may
lead to organizational changes that masculinize the HPA axis,
leading to a more masculinized response in females. Specifically,
infant females that were likely exposed to relatively higher
levels of prenatal androgens (as indicated by their 2D:4D
ratio) showed an attenuated, male-like cortisol response to a

social separation stressor, at least at the level of the HPA
axis. This interpretation is corroborated by our finding that
infant female rhesus monkeys have higher plasma cortisol
concentrations than infant male rhesus monkeys, replicating
other studies showing that infant rhesus monkey females have
higher stress-induced concentrations of plasma cortisol when
compared to infant rhesus monkey males (Capitanio et al., 2005),
and studies in humans showing that depressed females have
more feminized 2D:4D ratios, when compared to non-depressed
females (Smedley et al., 2014; De Kruijff et al., 2016). Perhaps
the strongest experimental evidence that testosterone has an
organizational effect that attenuates the female response to
stress comes from rodent studies. These studies show that
when androgens are administered during the organizational
phase, the exposed females exhibit an attenuated glucocorticoid
response to stress (Seale et al., 2005). In line with this research,
individuals with congenital hyperplasia, a condition where the
fetus is exposed to high levels of PAE, exhibit dysregulated
cortisol biosynthesis as well as a blunted plasma cortisol response
to stress (Merke and Bornstein, 2005; Turcu and Auchus,
2016). Furthermore, McHenry et al.’s (2014) comprehensive
review of cortisol and the glucocorticoid response to stress
and anxiety in animals suggests that, whether exogenous or
naturally occurring, PAE decreases anxiety- and depression-like
behaviors later in life. Similarly, human males with a more
female-like 2D:4D ratio show an increased risk for depression
(Bailey and Hurd, 2005), although this appears to have a low
effect size and is not always seen in smaller samples (Martin
et al., 1999; Li et al., 2019). One possible explanation for the
failure of this and some other studies to find a relationship
between PAE and cortisol concentrations in males is that
males are exposed to substantially higher levels of prenatal
androgens than are females (Knickmeyer and Baron-Cohen,
2006), which may reduce interindividual variability (i.e., a
ceiling effect), potentially resulting in a failure to detect the
same relationship in males. Taken together, these and other
findings suggest that a more masculinized 2D:4D ratio is
related not only to an attenuated cortisol response in females
but also with lower rates of anxiety and depression in both
sexes. One possible ramification of these findings and the data
presented is that females whose brains are masculinized as
a result of higher PAE may be at lower risk for subsequent
affective psychopathology.

Consistent with the hypotheses, results showed that
females exhibited higher stress-induced plasma cortisol
concentrations when compared to males. Studies of sex
differences in adult cortisol response have mixed findings,
with one meta-analysis concluding that men show higher
plasma cortisol concentrations than women (Kudielka and
Kirschbaum, 2005). Still, other studies show that sex differences
in stress-response plasma cortisol may vary with the type
of stressor (Uhart et al., 2006; Goel et al., 2011). Other
studies suggest that puberty status may further modulate
sex differences in plasma, salivary, and urinary cortisol (Gifford
and Reynolds, 2017; Van der Voorn et al., 2017). Human studies
investigating sex differences in blood and salivary cortisol in
prepubertal children similarly show mixed results (Dahl et al.,
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1992; Gifford and Reynolds, 2017; Hollanders et al., 2017;
Van der Voorn et al., 2017), which may reflect population
differences, paradigm, or methodological differences between
studies. Perhaps because of the homogeneous rearing and the
experimentally manipulated stressors, studies of nonhuman
primate infants are more consistent in showing that infant
females have higher stress-response plasma cortisol than
male infants, particularly when the investigation of sex
differences is the primary variable under consideration
(Capitanio et al., 2005; Vandeleest et al., 2013). Given the
similarity between humans and rhesus monkeys in HPA
axis functioning (Sanchez, 2006), this disparity in variability
when comparing humans and nonhuman primates may be
a consequence of the more controlled early environments,
situational testing, and, consequently, increased homogeneity
in treatments and early experiences of nonhuman primates
although species differences cannot be ruled out. One advantage
of the nonhuman primate model is the homogeneous early
environment, which increases the capacity to detect effects.
While correlation cannot establish causation, one possible
explanation is that early PAE has a masculinizing effect
on both the 2D:4D ratio and the HPA axis. Future studies
should investigate 2D:4D ratio and the HPA axis response
perhaps using other measures, such as corticotropin releasing
hormone or ACTH, which may give a better estimate of central
mechanisms that may be affected by PAE, leading to the sex
differences observed.

One possible limitation of these findings is that cortisol
concentrations were obtained when subjects were infants,
while 2D:4D ratio was measured later in life, spanning a
wide range of time (1–17 years later). Nevertheless, studies
show that inter-individual differences in stress-induced plasma
cortisol concentrations are stable from early in life into
adulthood (Higley et al., 1992), and inter-individual differences
in 2D:4D finger ratio also appear to be constant across
development (Trivers et al., 2006), stabilizing early in life
and showing trait-like individual differences across time. For
example, Trivers et al. (2006) first measured 2D:4D ratios in
N = 108 9-year-old Jamaican children and then measured
them a second time 4 years later, finding modest inter-
individual stability, even though many of the children had
gone through puberty between measure one and measure
two. Although we did not have repeated 2D:4D measures on
all of our subjects, we did repeatedly measure the 2D:4D
ratios of a separate representative sample (N = 63) across
2 years. Results from bivariate correlations showed a statistically
significant positive correlation between the two measurements
(r = 0.51, p < 0.0001), suggesting that, for the present sample,
2D:4D ratio remained stable across time. Subsequent studies
are underway to assess the relationship between adult cortisol
concentrations and 2D:4D ratios to verify whether the cortisol
and 2D:4D relationship is present in adult rhesus monkeys.
Studies show that testosterone inhibits cortisol secretion in
human adults (for example, see Terburg et al., 2009). It is
also of note that, beginning in the first month and ending
at the third month of life, there is a postnatal surge in
testosterone levels in male, but not female, rhesus monkeys

(Robinson and Bridson, 1978; Frawley and Neill, 1979). While
this surge is unlikely to have affected cortisol levels in females,
it is possible that for the males, measuring cortisol at a later
time point may have produced different results, although that
remains speculative.

There was a significant sex difference in the left- but
not right-hand 2D:4D ratio, with males exhibiting a higher
2D:4D ratio, when compared to females. That the males had
a higher 2D:4D ratio, when compared to females, is partially
consistent with our earlier study in rhesus monkeys (Baxter
et al., 2018), but in that study, the difference was seen in
both hands. It is of note that in the previous study, the
left hand showed greater sexual dimorphism and the study
had a larger sample size, and, as noted in the methods
section of this paper, there was a positive correlation between
right- and left-hand 2D:4D ratio, suggesting that we may
have been underpowered to detect this difference in the
right hand.

Finding a relationship between PAE and stress-induced
levels of plasma cortisol in female rhesus monkeys is an
important first step in investigating the organizational effects
of PAE on postnatal HPA axis functioning. Given that
much of the early work investigating the masculinizing effect
of PAE was performed in rhesus monkeys (Goy et al.,
1988), future research should investigate the relationship
between PAE and HPA axis functioning through experimental
manipulation of PAE in rhesus monkeys, which would lead
to evidence for a cause and effect relationship. If such
efforts provide further support of the relationship between
PAE and HPA axis functioning, 2D:4D ratio may be an
important noninvasive biomarker for studies assessing the
masculinizing effect of androgens on the HPA axis, as well as
studies investigating the early risk for developmental affective
disorders, particularly anxiety-related disorders and other HPA
axis abnormalities.
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Developmental exposure to selective serotonin reuptake inhibitor (SSRI) increases the
risk of Autism Spectrum Disorder (ASD), however, the underlying neurobiology of this
effect is not fully understood. Here we used the socially monogamous prairie vole as a
translational model of developmental SSRI exposure. Paired female prairie voles (n = 20)
were treated with 5 mg/kg subcutaneous fluoxetine (FLX) or saline (SAL) daily from birth
of the second litter until the day of birth of the 4th litter. This design created three cohorts
of FLX exposure: postnatal exposure in litter 2, both prenatal and postnatal exposure in
litter 3, and prenatal exposure in litter 4. Post-weaning, subjects underwent behavioral
testing to detect changes in sociality, repetitive behavior, pair-bond formation, and
anxiety-like behavior. Quantitative receptor autoradiography was performed for oxytocin,
vasopressin 1a, and serotonin 1a receptor density in a subset of brains. We observed
increased anxiety-like behavior and reduced sociality in developmentally FLX exposed
adults. FLX exposure decreased oxytocin receptor binding in the nucleus accumbens
core and central amygdala, and vasopressin 1a receptor binding in the medial amygdala.
FLX exposure did not affect serotonin 1A receptor binding in any areas examined.
Changes to oxytocin and vasopressin receptors may underlie the behavioral changes
observed and have translational implications for the mechanism of the increased risk of
ASD subsequent to prenatal SSRI exposure.

Keywords: oxytocin receptor, vasopressin receptor, serotonin receptor, 5-HT, autism, antidepressant, SSRI,
autoradiography

INTRODUCTION

In humans, antidepressant medication, most frequently a selective serotonin reuptake inhibitor
(SSRI), is commonly prescribed to pregnant and lactating women with major depression (Boukhris
et al., 2016). Use of SSRIs during pregnancy has increased dramatically over the last several
decades, with estimates ranging from 6 to 13% of pregnancies in the United States (Cooper et al.,
2007; Andrade et al., 2008; Alwan et al., 2011). Pharmacological treatment of maternal depression
is typically recommended during the prenatal period, primarily because of the well-established
negative effects of maternal depression (Davalos et al., 2012; Jarde et al., 2016). However, there
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may be side effects of SSRIs leading to preterm labor, altered
gestational length and early delivery (Hayes et al., 2012),
congenital heart malformations (Knudsen et al., 2014; Gentile,
2015a), persistent pulmonary hypertension (Grigoriadis et al.,
2014), and adverse neurodevelopmental outcomes (El Marroun
et al., 2014; Glover and Clinton, 2016). There is reason for
concern about the effects of early exposure to SSRIs on
the developing brain. SSRIs can cross the placental barrier
(Hendrick et al., 2003; Rampono et al., 2009) and enter into
breast milk (Kristensen et al., 1999; Rampono et al., 2000).
Exposed infants show altered brain activity measured via EEG
(Videman et al., 2017).

A growing body of research indicates increased rates of
Autism Spectrum Disorder (ASD) in prenatally SSRI-exposed
children (Croen et al., 2011; El Marroun et al., 2014; Gidaya
et al., 2014; Gentile, 2015b; Boukhris et al., 2016; Andalib
et al., 2017). While others have found no relationship when
controlling for maternal factors (Hviid et al., 2013; Kobayashi
et al., 2016) recent meta-analyses indicate that SSRI-exposure
does increase autism diagnosis when pooling across studies (Man
et al., 2015; Kaplan et al., 2017). Disentangling the effects of the
underlying psychiatric condition of the mother from the effects
of SSRIs on fetal development is difficult, and causality remains
to be established.

Decades of research have indicated a link between ASD and
serotonin, starting with the finding of hyperserotonemia in a
subset of individuals shortly after the disorder was first described
(Schain and Freedman, 1961). Hyperserotonemia has remained
a consistent finding in a large subgroup of individuals diagnosed
with ASD, with roughly one third of individuals presenting with
high whole blood serotonin levels (Schain and Freedman, 1961;
Anderson et al., 1987; Hranilovic et al., 2007; Gabriele et al., 2014;
Muller et al., 2016). This finding has led researchers to suggest
that hyperserotonemia underlies differences in the brain which
are responsible for the appearance of autistic behavior (Whitaker-
Azmitia, 2005; Yang et al., 2014). Animal models corroborate
that hyperserotonemia leads to behavioral and neuroendocrine
changes consistent with those seen in autism (Whitaker-Azmitia,
2005; McNamara et al., 2008; Veenstra-VanderWeele et al., 2012;
Madden and Zup, 2014; Tanaka et al., 2018). Developmental
hyperserotonemia decreases the number of oxytocinergic cells
in the paraventricular nucleus of the hypothalamus in both rats
(McNamara et al., 2008) and prairie voles (Martin et al., 2012),
while decreasing affiliative behavior and increasing anxiety.

The effects of hyperserotonemia on the brain are rooted in
serotonin’s critical role during early development as a trophic
factor, long before it begins to function as a neurotransmitter. As
a growth factor, it regulates development of its own and related
systems and guides cell division, differentiation, migration,
myelination, synaptogenesis, and dendritic pruning (Lauder,
1993; Azmitia, 2001; Wirth et al., 2017). Because serotonin
exposure at this time also functions to autoregulate its own
innervation throughout the brain via a negative feedback
mechanism, developmental hyperserotonemia can cause
organizational change which may enduringly alter serotonergic
neurotransmission (Whitaker-Azmitia, 2001). Despite the
relative paucity of serotonin neurons, they innervate almost all

parts of the brain, making this system a powerful mediator of
brain activity in many regions. Thus, alterations in serotonin
during development may be particularly influential.

Significant overlap exists in psychiatric conditions associated
with serotonin dysfunction and ASD. For instance, heightened
rates of anxiety and depression may be seen in ASD populations
(Lugnegård et al., 2011) and serotonin-based treatments,
including SSRIs, show efficacy in treating some symptoms of
ASD (Kolevzon et al., 2006; Hollander et al., 2012). Furthermore,
depletion of tryptophan, the serotonin precursor, worsens
repetitive behavior symptoms in ASD (McDougle et al., 1993,
1996). In addition, gastrointestinal problems are prevalent in
ASD (Adams et al., 2011; Chaidez et al., 2014; McElhanon et al.,
2014), and serotonin is highly involved in gut motility (Sikander
et al., 2009). These comorbidities suggest that disrupted serotonin
signaling may underlie the neurobiology of autism.

The serotonin system has important interactions with other
systems in the brain. One such example is the interaction
seen in the serotonin and oxytocin (OT) systems, both during
development and in adulthood. Animal models indicate these
systems are anatomically interconnected. Fibers from the dorsal
and median raphe project to the paraventricular (PVN) and
supraoptic (SON) nuclei of the hypothalamus, where oxytocin
receptors (OTR) are distributed around them (Emiliano et al.,
2007). Serotonin acts on OT neurons via serotonin receptors
located in the PVN and SON, where OT is produced (Osei-
Owusu et al., 2005). Likewise, OT acts via OTR on serotonin
neurons in the raphe nuclei, where serotonin is produced,
which may mediate the release of serotonin and have a role
in the anxiolytic effects of OT (Yoshida et al., 2009). While
evidence suggests that these two neurochemical systems may be
working in tandem, it is not yet clear how early SSRI use may
affect neural OT.

Vasopressin (AVP) is structurally and genetically similar to
OT, and both play a central role in modulating the development
of normal social behavior (Carter, 2014). Direct approaches to
target the oxytocinergic and vasopressinergic systems are aimed
at treating social dysfunction in disorders such as ASD. Although
clinical results remain contradictory regarding whether effects
are prosocial or antisocial (De Dreu et al., 2010; Guastella
et al., 2010), recent advances in our understanding of the
complex neurobiology of OT and AVP signaling, release, and
degradation present promising avenues for understanding social
function in ASD.

Animal models are useful in establishing causal links to long-
term effects of perinatal SSRI exposure on social behavior in
offspring (Zucker, 2017). Results are complicated by age, sex, and
context-specific effects. Pre- and postnatal FLX exposure resulted
in loss of a preference for a social partner vs. an empty cage, and
a deficit in social recognition, in mice (Bond et al., 2020). When
rats were tested as pre-adolescents, prior exposure to perinatal
FLX prevented effects of maternal stress on play behavior in
both sexes, but also resulted in an increase in aggressive play in
males only (Gemmel et al., 2017). When tested as adults, perinatal
exposure resulted in sex-specific increases in social behaviors
(Gemmel et al., 2019). Another study of perinatal exposure found
decreases in social interaction in male rats when tested as adults
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(Silva et al., 2018). In addition, some types of social behavior (i.e.,
pair bonding) are not present in rats and mice, necessitating a
different animal model.

In the present study, we used the prairie vole as a translational
model of developmental SSRI exposure. Prairie voles are
socially monogamous microtine rodents that form lasting adult
heterosexual pair bonds characterized by the formation of
a partner preference, intrasexual aggression, and bi-parental
care. Prairie voles are highly social and have a well described
neurohypophyseal nonapeptide system (for review see Young
et al., 2011) and can be tested in standardized assays of social
behavior and anxiety-like behavior (e.g., partner preference,
elevated plus maze). Here we use the prairie vole to examine
how developmental exposure to a SSRI affects adult behavior and
neural OTR, vasopressin 1a (V1aR), and serotonin 1A (5-HT1a)
receptors and to determine if these changes replicate aspects of
the symptomology of ASD.

MATERIALS AND METHODS

Subjects
Subjects were laboratory-housed prairie voles (Microtus
ochrogaster) from the breeding colony at the University of
California, Davis. This colony was derived from a lineage of
stock which was wild-caught near Champaign, IL. Animals
were housed on a 14:10 light dark cycle with lights on at 0600.
Food (Purina high-fiber rabbit chow) and water were available
ad libitum in the home cage. Breeding pairs and offspring
prior to weaning were housed in large polycarbonate cages
(44 cm × 22 cm × 16 cm) and were given compressed
cotton nestlets for bedding. Offspring were weaned on
postnatal (PND) 20 and housed in small polycarbonate
cages (27 cm × 16 cm × 16 cm) throughout testing with a
same-sex sibling when available and a similarly aged non-sibling
when not. All procedures were reviewed and approved by the
Institutional Animal Care and Use Committee of the University
of California, Davis.

Drugs
Fluoxetine hydrochloride (Sigma-Aldrich, St. Louis, MO,
United States) was dissolved in isotonic saline in a concentration
of 1 mg/ml. It was then filtered into sterile solution and injected
subcutaneously at the nape of the neck in a dose of 5 mg/kg.
This dose was chosen based on the literature and the results of
our own prior dose finding study. Both 5 and 10 mg/kg doses
of FLX are commonly used in other rodent studies for perinatal
administration (Gemmel et al., 2017, 2019; Grieb and Ragan,
2019). In the prairie vole dose-finding study, we examined the
effect of 5 mg/kg FLX, 10 mg/kg FLX, or saline (SAL) vehicle
on forced swim behavior and sucrose preference in socially
isolated adult female prairie voles. At 5 mg/kg, females struggled
significantly less (when compared to SAL, t36 =−2.92, p = 0.005),
and spent approximately 40% less time immobile (although this
was not statistically significant). In contrast, at 10 mg/kg struggle
behavior did not differ from SAL, and time spent immobile
trended toward an increase (when compared to saline, t37 = 1.64,

p = 0.106). We therefore determined that 5 mg/kg was a more
appropriate dose for the current study (data are available in
Supplementary Figure S1).

Design and Procedures
Virgin prairie voles (20 male, 20 female) were paired and allowed
to raise a litter of pups together undisturbed. On the day of birth
of the second litter, females were hand caught and pups were
briefly removed. Litters were culled to two male and two female
pups when possible. Females were given a subcutaneous injection
of 5 mg/kg FLX or SAL at the nape of the neck and returned
to the home cage along with her pups. On subsequent days, the
female was hand caught and FLX or SAL was injected without
removing the pups from the nipples. Females were dosed daily
in this way with either FLX or SAL until the day of birth of the
fourth litter. This design created three cohorts of FLX exposure:
postnatal exposure in litter 2 (POST), both prenatal and postnatal
exposure in litter 3 (PRE + POST), and prenatal exposure in
litter 4 (PRE) (Figure 1). The average interbirth interval for litter
2–3 was 22.7 ±0.34 days (range 21–26), and for litter 3–4 was
22.9±0.19 days (range 21–24).

Parental Care of Prenatally Exposed
Offspring
Parental care is minimally altered following treatment with FLX
(Villalba et al., 1997), however the effects of withdrawal prior to
weaning has not been examined in prairie voles. Parental care
of prenatally FLX-exposed subjects (litter 4) was quantified in
the home cage to determine whether FLX withdrawal would
significantly alter parental behavior. Undisturbed parental care
was observed in the home cage for 20 min once during the
morning and once in the afternoon on 2 days between PND 1-
3. Behaviors were quantified in real-time using Behavior Tracker
1.5 (behaviortracker.com) using methods previously validated
to measure the type and amount of parental care (Perkeybile
et al., 2013). Both maternal and paternal behavior was measured,
including huddling, non-huddling contact, licking/grooming,
pup retrieval, nest building, and maternal nursing postures.

Behavioral Tests
After weaning, subjects underwent behavioral testing. Half of
each litter, one male and one female when possible, underwent
behavioral testing during periadolescence, between PND21 and
PND39. Periadolescent subjects underwent alloparental care,
elevated plus maze, and open field testing in that order. The
other half of each litter, one male and one female when
possible, underwent behavioral testing as adults, between PND45
and PND120. Adult subjects were tested for alloparental care,
elevated plus maze, and open field; in addition, they also
underwent intrasexual adult affiliation and partner preference
testing. All behaviors were quantified using Behavior Tracker
1.5 (behaviortracker.com). Behavioral tests occurred from 1
to 5 days apart.
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FIGURE 1 | Timeline of maternal daily dosing and subject exposure. GD, gestational day; PND, postnatal day.

Alloparental Care
A minimum of 24 h after weaning, subjects were tested with a
novel pup to measure alloparental care behavior as previously
described (Bales et al., 2004a). Subjects were placed into an arena
consisting of two polycarbonate cages (27 cm × 16 cm × 16 cm)
connected by a short clear tube for a 45-minute acclimation
period. This period was followed by a 10 min test in which a
novel pup (PND 0-4) was placed into the arena. The subject
was free to move about the arena and interact with the pup.
Tests were video-recorded and later scored by a trained observer
blind to condition. Behaviors quantified included frequency and
latency of approach, sniffing, licking and grooming the pup,
autogrooming, physical contact with the pup, huddling, pup
retrievals, non-injurious biting, attacks, digging, and location
in the arena relative to the pup. Digging and autogrooming
were considered potential stereotypical behaviors. When attacks
occurred, the test was immediately stopped and the subject
removed from the arena. If possible, injuries were treated and
the pup returned to the home cage. If necessary, the pup was
euthanized. Each pup was used for no more than two test sessions.
Following testing, animals were returned to their home cage.

Sex differences in prairie voles in this test are well-established,
with males responding with higher levels of alloparental care
than females. This sex difference, although already present in
peri-adolescents, becomes more marked as animals become adult
(Roberts et al., 1998).

Elevated Plus Maze
The elevated plus-maze was used as a measure of anxiety and
exploration (Insel et al., 1995) based on the rodent predisposition
to prefer dark enclosed spaces (Campos et al., 2013). The maze
consisted of two open and two enclosed opaque arms, each 67 cm
long and 5.5 cm wide. The arms were elevated 1 m above the
floor. Each vole was placed into the center of the maze and its
behavior was scored for 5 min. Any animals that jumped off
the open arms of the maze were captured and placed back into
the center of the maze. If a subject jumped off the maze three
times, the test was stopped. Throughout the course of the study,
only four animals jumped off the maze, and data from only two
animals had to be removed due to jumping. Trained observers
blind to conditions scored behavior live for duration of time
in the open and closed arms, freezing, and autogrooming with
an inter-rater reliability greater than 90%. Autogrooming was

considered a potential stereotypical behavior. Following testing
animals were returned to their home cage.

It is worth noting that at baseline, prairie voles spend a
higher amount of time in the open arms of the elevated plus-
maze than mice typically do (Komada et al., 2008). While
across 90 genetically engineered strains, mice spent an average
of 9.19 ± 0.36% time in the open arms of the maze, prairie
voles often spend 35–75% of their time in the open arms
(Bales et al., 2004b; Greenberg et al., 2012). Male prairie voles
tend to spend more time in the open arms, or exhibit higher
frequencies of open arm entries, than females (Bales et al., 2004b;
Greenberg et al., 2012).

Open Field
The open field test was used as a second measure of anxiety
and exploration (Ramos and Mormède, 1997). The open field
consisted of a 40 cm × 40 cm × 40 cm plexiglass arena with a
grid marked on the floor. The subject was placed in the center of
the arena and behavior was digitally recorded for 10 min. Time
spent in the center and the periphery was measured, as well as
the frequency of rearing. Tests were video recorded and later
scored using Behavior Tracker by trained observers with an inter-
rater reliability greater than 90%. Following testing animals were
returned to their home cage. Sex differences for prairie voles are
not well established and are absent in some studies (Greenberg
et al., 2012); we did not therefore predict any sex differences at
baseline for this test.

Intrasexual Adult Affiliation
Subjects were placed into a novel arena (27 cm× 16 cm× 16 cm)
with a stimulus animal of the same sex and body size for
5 min as a low-threat, low-aggression social interaction task
(Perkeybile and Bales, 2015). Behavior was video recorded and
later scored by an observer blind to the treatment condition. The
ethogram used to score behavior included affiliative behaviors
(sniffing, physical contact, allogrooming, and play), anxiety
related behaviors (rearing, digging, abrupt withdrawal), and
aggressive behaviors (lunging, wrestling, chasing). Digging and
autogrooming were considered potential stereotypical behaviors.
Prior to testing, stimulus animals were screened for aggressive
behavior with a novel animal, and were not used if they displayed
high levels of aggression. Stimulus animals were collared prior
to the start of testing to allow for identification during later
behavioral scoring. Stimulus animals were used for a maximum

Frontiers in Behavioral Neuroscience | www.frontiersin.org 4 November 2020 | Volume 14 | Article 58473162

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-14-584731 November 10, 2020 Time: 15:58 # 5

Lawrence et al. Developmental SSRIs in Voles

of 2 tests, and were not reused if they experienced an aggressive
interaction. Tests were continuously monitored for high levels of
aggression and were stopped if necessary. Intense aggression was
rarely seen. Following testing, animals were returned to the home
cage. At baseline, we expected males to be more aggressive and
less affiliative than females (Bales and Carter, 2003b).

Partner Preference
This test is commonly used as an operational index of the
formation of a pair-bond in the prairie vole (Williams et al.,
1992; Bales and Carter, 2003a; Bales et al., 2013). Male subjects
were housed with a female “partner” for 24 h prior to testing
and female subjects were housed with a male partner for 6 h
prior to testing. These durations have been previously shown to
be sufficient time for the formation of a partner preference and
account for the sex difference in time to pair bond formation
(Williams et al., 1992; DeVries and Carter, 1999). Following this
cohabitation, the opposite-sex mate of the subject (partner) and
a non-related opposite-sex animal matched on age and weight to
the mate (stranger) were tethered in opposing ends of a three-
chamber testing apparatus. The subject was placed untethered in
the empty middle chamber and was free to move about all three
chambers and interact with either the partner or stranger for 3 h.
The test was digitally recorded, and the duration of time in each
of the three locations was quantified, as was the duration of side
by side contact with the stranger and partner.

Brain Extraction and Tissue Sectioning
Brains were taken from behaviorally tested animals of both ages
(juvenile and adult), but only brains from the PRE + POST
exposure cohort were analyzed for receptor binding (see below).
Twenty-four hours after completion of all behavioral testing,
subjects were euthanized via cervical dislocation and rapid
decapitation under deep anesthesia. Brains were removed quickly
and placed in powdered dry ice and then stored at −80◦C
until sectioning. Brain tissue was sectioned coronally in 20 µm
slices at 20◦C on a cryostat (Leica) and thaw mounted on
Fisher Superfrost Plus slides. Slides were stored at −80◦C until
the time of assay.

OTR and V1aR Autoradiography
Because they showed the largest effects on behavior, quantitative
receptor autoradiography for OTR, V1aR, and 5-HT1aR was
performed for the PRE + POST exposure cohort. Analyses
were carried out on the right side of the brain only, as tissue
punches were taken from the left side for additional analyses.
Tissue was allowed to thaw in slide boxes containing desiccant
packets. OTR and V1aR autoradiography was performed as
previously reported (Perkeybile and Bales, 2015) with minor
adjustments. For OTR binding, the ligand 125I-OVTA [125I-
ornithine vasotocin [d(CH2)5[Tyr(Me)2

, Thr4
, Orn8, (125I)Tyr9-

NH2] analog], 2200Ci/mmol (Perkin Elmer, Waltham, MA,
United States) was used. For V1aR binding, the ligand 125I-
LVA [125I-lin-vasopressin [125I-phenylacetyl-D-Tyr(ME)-Phe-
Gln-Asn-Arg-Pro-Arg-Tyr-NH2] analog], 2200Ci/mmol (Perkin
Elmer, Waltham, MA, United States) was used. After assay
completion, slides along with 125I-autoradiographic standards

(American Radiolabeled Chemicals, St. Louis, MO, United States)
were exposed to Biomax MR film (Kodak, Rochester, NY,
United States) for 72 h and then developed. We have previously
reported a sex difference in the nucleus accumbens shell, with
males displaying higher OTR binding than females at baseline
(Guoynes et al., 2018).

5-HT1A Autoradiography
For 5-HT1A binding, 3.0 nM [3H]WAY-100635, 74Ci/mmol
(Perkin Elmer, Waltham, MA, United States) was used. Tissue
was rinsed in 50 mM Tris–HCl buffer (pH 7.5) followed by a
120 min incubation in the tracer buffer at room temperature.
10 nM of L-485,870, a dopamine antagonist, was included to
prevent binding of WAY-100635 to Dopamine D4 receptors.
Following the incubation period, tissue was rinsed twice in
50 mM Tris buffer at 4◦C and then dipped in dH2O and air dried.
Tissue was exposed to Carestream BioMax MR Film (Kodak,
Rochester, NY, United States) for 6 weeks with 3H microscale
standards (American Radiolabeled Chemicals, St. Louis, MO,
United States). We had no a priori predictions as far as 5-HT1A
binding sex differences at baseline for this species.

Quantification
Experimenters were blind to conditions during autoradiogram
quantification. ImageJ software (National Institutes of Health,
Bethesda, MD, United States) was used to quantify OTR optical
binding density (OBD) in previously reported (Insel and Shapiro,
1992) regions of interest (ROI) including the nucleus accumbens
core and shell, anterior central amygdala, and the lateral septum,
and for V1aR in the medial amygdala, lateral septum, and
ventral pallidum. 5-HT1aR OBD were quantified in the anterior
and posterior lateral septum, dorsal hippocampus, dorsal raphe,
and frontal cortex using MCID Core Digital Densitometry
system (Cambridge, United Kingdom). The ten standard OBD
values were used to generate a standard curve. Three separate
measurements for ROIs and background OBD were averaged to
yield normalized values and account for individual variation in
background across samples.

Data Analysis
Statistical analyses were conducted using SAS 9.4 (SAS Institute,
Cary, NC, United States). All analyses were carried out using
generalized linear mixed models (GLMM) utilizing backward
selection to eliminate non-significant variables from the model.
Significance level was set at p < 0.05 for all analyses and all
tests were two-tailed. Data were checked for normality, and if
not normally distributed, square root, quad root, or reciprocal
transformation was used. If data was not transformable to
normality, a GLMM was still used as recommended by Feir-
Walsh and Toothaker (1974). Post hoc analyses utilized least
squares means when the omnibus test was significant. The
random factor used in all analyses was a pair ID (for the subject’s
parents) to account for differences due to parenting or genetic
background for subjects within the same litter or across litters.
Drug condition was nested within this term, as each female
maintained a consistent drug condition throughout the study and
thus all offspring of a given pair had the same drug condition.
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When a three-way interaction was statistically significant, all two-
way interactions which included the variables in the three-way
interaction were left in the model even if not significant.

Parental Care
A multivariate mixed model was used for analysis of parental
care behavior. All three types of nursing were included in one
model, as were behaviors that were examined concomitantly in
both mothers and fathers that were not independent, such as
huddling. Factors included in the model were pair ID and drug
condition of the mother prior to cessation of treatment, as well as
age of pups at observation and time of day as covariates.

Alloparental Care Test
For the alloparental care analyses, variables were summed for
duration of time in the same location (with the pup) or different
location (without the pup) in the testing arena. A ratio was
created to examine relative proportion of time spent in the
same location as the pup relative to duration in a different
location than the pup using the equation: ratio = with the
pup/(with the pup + without the pup). Factors included in
the model were pair ID, drug condition, sex, exposure cohort,
age group, and interactions of these factors. Also analyzed were
time spent in contact to the pup, time spent retrieving the
pup, time spent in proximity to the pup, latency to approach,
duration of social investigation, duration of licking, and duration
of huddling over the pup.

Elevated Plus Maze
For the elevated plus maze analysis, a ratio was created to
examine the proportion of time spent on the open arms relative
to total time on the maze using the equation: ratio = time
on open arms/(time on open arms + time on closed arms).
Factors included in the model were pair ID, drug condition, sex,
exposure cohort, age group, and interactions of these factors.
Autogrooming, entries onto the arms of the maze, and duration
of freezing, were also analyzed.

Open Field Test
For the open field test analyses, a ratio was created to examine
proportion of time spent in the center of the arena relative to
total time using the equation: ratio = time in center/(time in
center + time in periphery). Factors included in the model were
pair ID, drug condition, sex, exposure cohort, age group, and
interactions of these factors. Rearing was also analyzed.

Intrasexual Adult Affiliation
For the intrasexual adult affiliation analyses, the frequency of
aggressive behavior was calculated by summing the frequencies
of lunging and wrestling. Factors included in the model for
each behavior (including affiliative, anxiety-like, and aggressive
behaviors, as described above) were pair ID, drug condition, sex,
exposure cohort, and interactions of these factors.

Partner Preference Test
For between-group partner preference test analyses, a difference
score was created to examine duration of time spent in the same

FIGURE 2 | Parental care of prenatal exposure subjects. (A) Mean (±SEM)
total, neutral, lateral, and active nursing duration comparing mothers
previously exposed to saline to mothers previously exposed to fluoxetine.
(B) Mean (±SEM) duration of nest building in mothers previously exposed to
saline and their male pair-mates (fathers) compared to mothers previously
exposed to fluoxetine and their pair-mates. *p < 0.05.

cage as the partner relative to time spent with the stranger using
the equation: difference = time with partner - time with stranger.
The same procedure was used to examine physical contact
with the partner relative to contact with the stranger using the
equation: difference = time in contact with the partner - time in
contact with the stranger. Duration of time spent in the empty
chamber was analyzed separately, and square root transformed
for analyses to make the residuals for this model normally
distributed. Factors included in the model were pair ID, drug
condition, sex, exposure cohort, and interactions of these factors.

Within-group partner preference analyses for the SAL and
FLX groups were performed using matched t-tests for time
spent in contact with the partner vs. time spent in contact
with the stranger.

Oxytocin, Vasopressin 1a, and Serotonin
1a Receptor Binding
For all binding analyses, density of binding in three sequential
areas of each ROI were averaged for each individual. The model
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included pair ID, drug condition, sex, age group, and interactions
of these factors.

Pearson correlations were calculated for the 4 ROIs quantified
for OTR and the 3 ROIs quantified for V1aR with difference
in time in physical contact and duration of time in the
empty chamber in the partner preference test. Correlation
of OTRs in the central amygdala and proportion of time
on the open arms of the elevated plus maze was also
examined. When multiple comparisons were made within a
single behavioral or neuroanatomical test, a Benjamini-Hochberg
false discovery rate adjustment for multiple comparisons was
used (Benjamini and Hochberg, 1995).

RESULTS

Parental Care
Parental care of the PRE cohort was minimally altered by the drug
condition of the mother, either FLX withdrawal or no withdrawal
from SAL at the time of parenting. Drug condition did not alter
total duration of nursing, nor did it alter duration of neutral
nursing postures or lateral nursing postures. However, duration
of active nursing was altered by drug condition (F1,51 = 5.11,
p < 0.05), with FLX-withdrawing dams spending more time
in active nursing than those who had been treated with SAL
(Figure 2A). Nest building duration was also greater in FLX-
withdrawing mothers (F1,51 = 4.06, p < 0.05) as well as their
untreated male pair-mates (F1,51 = 4.79, p < 0.05) compared
to pairs in which mothers were previously treated with SAL
(Figure 2B). Because of the high amount of variability in this
behavior, we also analyzed nest-building with a non-parametric
Kruskal-Wallis test. The duration of nest-building in FLX-
withdrawing mothers, compared to SAL mothers, remained
significant (χ2

1 = 4.62, p < 0.05), however, the effect was non-
significant in their male mates (χ2

1 = 1.14, p > 0.05). All
other behaviors observed were not affected by drug condition
including maternal huddling, paternal huddling, maternal non-
huddling contact, paternal non-huddling contact, maternal
licking and grooming, paternal licking and grooming, maternal
pup retrieval, paternal pup retrieval, maternal autogrooming, or
paternal autogrooming.

Behavior of Developmentally Exposed
Offspring
Alloparental Care Test
Duration of overall pup physical contact was greater in males
than in females (F1,167 = 8.28, p < 0.01). A three-way interaction
of condition, sex, and age group (F1,167 = 3.77, p < 0.05) indicated
that among FLX subjects, adult females were in contact with the
pup less than periadolescent females (t41 = 2.88, p < 0.05) and
that among SAL subjects, periadolescent females were in contact
with the pup less than periadolescent males (t49 = 2.06, p < 0.05).
Adult females spent less time in contact with the pup compared
to adult males exposed to either SAL (t52 = 1.97, p < 0.05) or
FLX (t44 = 2.83, p < 0.01) (Figure 3A). Put another way, females
were in contact with the pup less than males under matching
conditions, with the exception of FLX periadolescent females,

FIGURE 3 | Alloparental care behavior. (A) Mean (± SEM) duration of physical
contact with the pup comparing saline and fluoxetine exposure by age and
sex. (B) Mean (±SEM) duration of pup retrieval comparing saline and
fluoxetine exposure by exposure cohort. (C) Mean (± SEM) latency to
approach the pup, sniffing, and huddling comparing saline and fluoxetine
exposure. *p < 0.05, **p < 0.01.

which spent more time in contact with the pup than did FLX
periadolescent males.

Duration of time spent retrieving the pup tended to be
greater in males than in females (F1,163 = 3.69, p = 0.057).
A drug condition by cohort interaction (F2,163 = 3.44, p < 0.05)
(Figure 3B) indicated that in the PRE + POST cohort, FLX
subjects spent more time retrieving the pup than SAL subjects
(t63 = 2.34, p < 0.05), and that in FLX subjects, PRE + POST
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FIGURE 4 | Elevated plus maze. Mean (±SEM) proportion of time spent in the
open arms relative to total time comparing saline and fluoxetine exposure by
age. *p < 0.05.

subjects spent more time retrieving than PRE (t60 = 2.40,
p < 0.05) and POST (t58 = 2.47, p < 0.05) subjects.

Fluoxetine exposure had no effect on proximity to the pup,
licking the pup, latency of approach, social investigation, or
huddling (Figure 3C). Ratio of time spent in the same chamber
of the testing arena as the pup relative to total time was not
altered by drug condition, nor was latency to approach the pup,
duration of sniffing, huddling, licking, or grooming of the pup.
There was no indication of heightened repetitive behavior with
FLX exposure, and duration of autogrooming and digging were
not altered by drug condition.

Elevated Plus Maze
Proportion of time spent in the open arms relative to total
time on the maze showed an interaction of drug condition
and age group (F1,141 = 4.02, p < 0.05) such that FLX-
exposed adults spent a lower proportion of time in the open
arms compared to SAL-exposed adults (t64 = 2.21, p < 0.05),
while there was no such difference in periadolescent subjects
(Figure 4). Drug condition did not alter the number of entries
onto the arms of the maze, duration of freezing, or duration
of autogrooming.

Open Field Test
Proportion of time spent in the center of the open field relative
to total time showed a three-way interaction of drug condition,
sex, and age group (F4,119 = 4.66, p < 0.01) (Figure 5). In
SAL-exposed females, periadolescents spent more time in the
center than adults (t39 = 2.48, p = 0.01), while this was not true
for FLX-exposed subjects (t30 = 1.29, p = 0.20). Among SAL
exposed subjects, time in the center was greater in adult males
than adult females (t31 = 3.42, p < 0.001), in periadolescent
females than periadolescent males (t44 = 1.94, p = 0.05), and in
adult males than periadolescent males (t36 = 3.00, p < 0.01).
There was also a trend level difference between SAL males and
SAL females (t76 = 1.91, p = 0.06). There were no sex or age
group differences within the FLX-exposed subjects. Duration
of autogrooming and frequency of rearing were not affected
by drug condition.

FIGURE 5 | Open field test. Mean (±SEM) proportion of time spent in the
center relative to total time comparing saline and fluoxetine exposure by age
and sex. Different letters indicate a significant difference at p < 0.05.

Intrasexual Adult Affiliation Test
Duration of sniffing of the stimulus animal, the primary
form of social investigation, did not differ by drug condition.
Duration of allogrooming of the stimulus animal showed a
trend level interaction of drug condition and sex (F1,91 = 3.73,
p = 0.057). FLX exposed males spent more time allogrooming
than SAL exposed males (t49 = 1.77, p = 0.07), and SAL females
spent more time allogrooming than SAL males (t48 = 1.91,
p = 0.059). Duration of time in physical contact with the stimulus
animal, autogrooming, or frequency of rearing were not altered
by drug condition.

Frequency of aggressive behavior was not altered by drug
condition. In contrast, duration of digging showed an interaction
of treatment and sex (F1,73 = 4.62, p < 0.05) (Figure 6A). SAL
males dug more than SAL females (t48 = 2.53, p < 0.05), but there
was no sex difference in FLX exposed subjects.

Duration of play with the stimulus animal showed an
interaction of drug condition and sex (F1,91 = 5.75, p < 0.05)
(Figure 6B). FLX males played more than FLX females (t45 = 2.23,
p < 0.05) and SAL males (t49 = 2.36, p < 0.05).

Partner Preference Test
Difference in duration of time in the partner and stranger
chambers was greater in females compared to males
(F1,74 = 12.95, p < 0.001) but did not differ by cohort or
drug condition (Figure 7A). Difference in duration of time in
side-by-side contact with the partner and the stranger was not
altered by cohort but did show an interaction of sex and drug
condition (F1,73 = 4.01, p < 0.05) (Figure 7B). SAL females spent
more time in physical contact with the partner than SAL males
(t40 = 2.62, p < 0.01), but there was no sex difference in the FLX
condition. Within the SAL group, females formed a significant
preference for the partner (t24 = 3.44, p = 0.002), while males
did not (t16 = −0.14, p = 0.891). Within the FLX group, neither
females (t18 = 1.672, p = 0.121) nor males (t16 = 1.816, p = 0.07)
formed a significant preference.

Duration of time spent in the empty chamber in the partner
preference test showed an interaction of drug condition and
exposure cohort (F2,70 = 4.17, p < 0.05) (Figure 7C). Subjects
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FIGURE 6 | Intrasexual adult affiliation. (A) Mean (± SEM) duration of digging
comparing saline and fluoxetine exposure by sex. (B) Mean (±SEM) duration
of play comparing saline and fluoxetine exposure by sex. *p < 0.05.

in the PRE cohort that were exposed to FLX spent more time
in the empty chamber than those exposed to SAL (t26 = 2.06,
p < 0.05). Time in the empty chamber was not altered by sex,
nor were there differences by drug condition in the PRE+ POST
or POST conditions.

Quantitative Receptor Autoradiography
Oxytocin Receptors
Oxytocin receptors binding in the nucleus accumbens core was
lower in FLX subjects compared to SAL subjects (F1,43 = 3.96,
p = 0.05) and was greater in adult compared to periadolescent
subjects (F1,43 = 7.18, p < 0.01). A drug condition by sex
interaction (F1,43 = 4.89, p < 0.05) (Figures 8A, 9A) indicated
that FLX females had less OTR binding than SAL females
(t31 = 2.84, p < 0.01) and FLX males (t30 = 2.20, p < 0.05).
A drug condition by age group interaction (F1,43 = 5.02,
p < 0.05) (Figure 8B) indicated that FLX adults had less OTR
binding than SAL adults (t28 = 2.73, p < 0.01). Adults also
had greater OTR binding compared to periadolescents with SAL
exposure (t34 = 3.50, p = 0.001), but this was not the case
with FLX exposure (t30 = 0.31, p = 0.76). OTR binding in the
nucleus accumbens shell did not differ by drug condition or
sex. Adult subjects had greater OTR binding in the nucleus
accumbens shell than periadolescents (F1,45 = 3.92, p = 0.05;
Figure 8C).

Oxytocin receptors binding in the anterior central amygdala
was decreased with FLX exposure compared to SAL exposure
(F1,46 = 8.42, p < 0.01). There was no effect of sex on
OTR binding in the central amygdala. A condition by age
group interaction (F1,46 = 3.98, p = 0.05) (Figures 8D,
9B) indicated that FLX adults had lower OTR binding
compared to SAL adults (t66 = 3.26, p < 0.01), and that
SAL adults had higher OTR binding than SAL periadolescents
(t34 = 2.01, p = 0.05), but this age difference was not
found with FLX exposure. OTR binding in the lateral
septum was not altered by drug condition (Figure 8E),
sex, or age group.

Oxytocin receptors binding did not correlate with difference
in contact between the partner and stranger or duration in the
empty chamber in the partner preference test. There was also no
correlation between OTR binding in the central amygdala and
proportion of time on the open arms of the elevated plus maze.

Vasopressin 1a Receptors
Vasopressin 1a binding in the medial amygdala was reduced
by FLX exposure compared to SAL exposure (F1,47 = 4.20,
p < 0.05) (Figures 10A, 9C). V1aR binding in the medial
amygdala was not altered by sex or age group. V1aR binding
in the lateral septum was not altered by drug condition,
sex, or age group (Figure 10B). V1aR binding in the ventral
pallidum was not altered by drug condition, sex, or age
group (Figure 10C).

Vasopressin 1a binding density in the three ROIs quantified
did not correlate with difference in contact between the
partner and stranger or duration in the empty chamber in
the partner preference test once adjusted to account for
multiple comparisons.

Serotonin 5-HT1a Receptors
Unexpectedly, there was no effect of FLX exposure on 5-HT1A
receptor binding density in any ROI examined (anterior and
posterior lateral septum, dorsal hippocampus, dorsal raphe,
frontal cortex) nor were there any significant interactions of age
group, sex, and ROI (Figures 11A–E).

DISCUSSION

Understanding the etiology of the increased risk of ASD
associated with developmental SSRI exposure is an area of
research which can greatly benefit from animal models. Here, we
used the prairie vole as a translational model in which to examine
how exposure to an SSRI, FLX, affects behavior, neuropeptide
receptors, and serotonin receptors in the brain.

We examined three primary behavioral domains which are
associated with ASD: social behavior, repetitive behavior,
and anxiety-like behavior. The first two represent the
two primary diagnostic criteria for ASD, impaired social
communication and stereotyped or repetitive behavior;
the third represents the heightened anxiety frequently
comorbid in ASD (White et al., 2009; van Steensel et al.,
2011). Modeling the social communication domain of
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FIGURE 7 | Partner preference test. (A) Mean (±SEM) difference in duration between time spent in the partner chamber and the stranger chamber comparing saline
and fluoxetine exposure by sex. (B) Mean (±SEM) difference in duration between time spent in side-by-side contact with the pair-mate and the stranger comparing
saline and fluoxetine exposure by sex. (C) Mean (±SEM) duration of time in the empty chamber comparing saline and fluoxetine exposure by exposure cohort.
*p < 0.05, **p < 0.01, ***p < 0.001.

ASD is particularly difficult in animal models. Verbal
language is uniquely human, and thus the precise deficits
found in individuals with ASD cannot be modeled in
any animal species.

We examined sociality by measuring species-typical behaviors
involved in social interaction and looking for deficits in FLX

exposed subjects. Social investigation (sniffing) was not altered
by FLX with a novel social partner, be it a pup or an adult
conspecific. Affiliative behavior, which is ubiquitous in prairie
voles, was altered by FLX exposure (Table 1). We observed
changes in alloparental care (Figures 3A,B), in play behavior with
a same-sex adult (Figure 6B), and in time spent in the empty
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FIGURE 8 | Oxytocin receptor binding. (A) Mean (± SEM) optical binding density in the nucleus accumbens core comparing saline and fluoxetine exposure by sex.
(B) Mean (±SEM) optical binding density in the nucleus accumbens core comparing saline and fluoxetine exposure by age. (C) Mean (±SEM) optical binding density
in the nucleus accumbens shell comparing saline and fluoxetine exposure by age. (D) Mean (±SEM) optical binding density in the central amygdala comparing saline
and fluoxetine exposure by age. (E) Mean (±SEM) optical binding density in the lateral septum comparing saline and fluoxetine exposure. *p < 0.05, **p < 0.01,
***p < 0.001.

chamber of the partner preference test (Figure 7C). The changes
in alloparental care were primarily in retrieval behavior, with
males that had been treated with both prenatal and postnatal FLX
spending significantly more time retrieving (Figure 3B). These
males were picking up the pup in their mouths and running
excitedly around the test arena, in an apparently less organized
manner of providing care for the pup.

During the partner preference test, prenatal FLX exposure
also led subjects of both sexes to opt out of social interaction in
favor of time alone in the empty cage (Figure 7C), indicating

that FLX led to a rejection of social interaction very atypical
of prairie voles. However, FLX males also spent more time
in play behavior with stimulus males during the intrasexual
affiliation test. Much as the research in humans suggests, prenatal
SSRI exposure may increase the likelihood of asociality, or the
alteration or disorganization of sociality; but it does so in subtle,
non-deterministic ways.

The neurohypophyseal nonapeptides, oxytocin and
vasopressin, are likely candidates to be involved in such shifts in
sociality due to their developmental interaction with serotonin
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FIGURE 9 | Representative autoradiograms of oxytocin and vasopressin 1a receptor binding. Please note that tissue punches were taken from the left side of each
brain to assess additional outcome measures not reported here. (A) Oxytocin receptor binding in the nucleus accumbens core shows a sex by drug condition
interaction (see also Figure 8A). (B) Oxytocin receptor binding in the central amygdala shows an age by drug condition interaction (see also Figure 8C).
(C) Vasopressin 1a receptor binding in the medial amygdala shows a drug condition effect (see also Figure 9A).
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FIGURE 10 | Vasopressin 1a receptor binding. (A) Mean (±SEM) optical binding density in the medial amygdala comparing saline and fluoxetine exposure. (B) Mean
(±SEM) optical binding density in the lateral septum comparing saline and fluoxetine exposure. (C) Mean (±SEM) optical binding density in the ventral pallidum
comparing saline and fluoxetine exposure. *p < 0.05.

as well as their important roles in social behavior across species
(Carter and Perkeybile, 2018). We found that FLX exposure
reduced the binding density of oxytocin receptors in the nucleus
accumbens core and the central amygdala (Figures 8A,B,D),
and the binding density of vasopressin 1a receptors in the
medial amygdala (Figure 9A). While the nucleus accumbens
shell has been strongly implicated in studies of prairie vole pair
bonding, oxytocin receptors in the core are under-studied in the
neurobiology of social behavior in voles, and may represent a
new avenue of investigation.

It is likely that changes in OTR and AVPR1a underlie the
differences found not only in social behavior, as described above,
but also in anxiety-like behavior. Anxiety-like behavior was
altered in the elevated plus maze (Figure 4), where adults spent
less time on the open arms if developmentally exposed to FLX,
regardless of the timing of exposure. This result is in line with
previous research which has reported an increase in anxiety-like
behavior in adults exposed to an SSRI developmentally (Ansorge
et al., 2004; Boulle et al., 2016). We also found that FLX
exposed subjects had lower OTR in the central amygdala during
adulthood but not during periadolescence (Figure 8D). The
amygdala is an area of the brain that is highly involved in
anxiety and emotion regulation (Babaev et al., 2018). OTRs in
the central amygdala are known to be involved in anxiety, as
well as regulation of the hypothalamic-pituitary-adrenal axis,
and can play a role in mediating the stress response (Neumann
et al., 2000). Likewise, V1aR in the amygdala mediate stress and
anxiety, with binding at V1aRs linked to heightened anxiety,
reducing time spent in the open arms of the elevated plus
maze (Hernández et al., 2016). Taken together, one potential
mechanism by which developmental exposure to FLX increases
anxiety in adulthood may be the reduction of OTRs and V1aRs
in the amygdala.

While developmental FLX altered social and anxiety related
behaviors, there was no indication of increased repetitive
behaviors in FLX exposed subjects. We found no increase
in stereotypies in any of the behavioral tests examined.
Autogrooming and digging were not increased by FLX exposure
in any of the behavioral tests in which they were measured.

Changes in offspring behavior may have been mediated by
changes in the behavior of the mothers treated with FLX,
although these were relatively subtle. In particular, mothers
that were withdrawing from FLX spent extra time in active
nursing (Figure 2A) and in nest-building (Figure 2B). The
male pair mates of the FLX-withdrawing mothers also spent
higher amounts of time in nest-building (although this effect was
eliminated when the data were examined non-parametrically).
Unfortunately, we missed the opportunity to assess the quality
of the nests being produced (Figure 2B). Nest quality is an often-
used measure of parental behavior in rodents and other species
(Mann, 1993; Deacon, 2012). In three-spined sticklebacks, FLX
reduced measures of male nest quality (Sebire et al., 2015); while
in mice, females prenatally treated with FLX displayed lower nest
quality during early days postpartum (Svirsky et al., 2016). The
quality of the nest could affect various measures for the offspring
including survival (Hamilton et al., 1997), thermoregulation
(Gaskill et al., 2013), and even sleep (Harding et al., 2019). It is
possible that the FLX-withdrawing parents put in extra time nest-
building, while still producing low quality nests. A disorganized
approach to nest-building would be consistent with the active
nursing behavior of the mothers, which is when they locomote
around the cage with the pups still attached to the nipples (prairie
vole pups have milk teeth). Given that the pups are being bounced
against substrate as they are dragged around, we have generally
regarded this as a lower quality form of maternal behavior.
Active nursing is also higher in prairie vole mothers that are
broadly characterized as “low contact” mothers (Perkeybile et al.,
2013). Future research on this topic should include nest quality
as a variable in aiding understanding of the effects of FLX on
parental behavior.

A major limitation of this study is that we did not find
a partner preference in the SAL-treated males (Figure 7B).
A possible explanation for this is that the daily injections
inadvertently created a prenatal stress paradigm to which all
subjects were exposed. Daily saline injections in pregnant rats
have been shown to be sufficient to change several aspects of
stress reactivity and the serotonin system in offspring (Peters,
1982). Prenatal stress has been shown to alter the social behavior
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FIGURE 11 | Serotonin receptor 1a binding. (A) Mean (±SEM) optical binding density in the dorsal hippocampus comparing saline and fluoxetine exposure.
(B) Mean (±SEM) optical binding density in the dorsal raphe comparing saline and fluoxetine exposure. (C) Mean (±SEM) optical binding density in the frontal cortex
comparing saline and fluoxetine exposure. (D) Mean (±SEM) optical binding density in the anterior lateral septum comparing saline and fluoxetine exposure.
(E) Mean (±SEM) optical binding density in the posterior lateral septum comparing saline and fluoxetine exposure.

of offspring (Weinstock, 2001; Schulz et al., 2011; Wilson and
Terry, 2013) and likely prevented any of our animals from
forming a preference. However, the finding that prenatally FLX
exposed subjects spent more of their time alone compared
to SAL treated animals suggests a change in social interest

above and beyond that involved in the formation of a partner
preference. Furthermore, maternal stress adds ecological validity
given that in human prenatal SSRI use there is an underlying
psychiatric condition for which pharmacological treatment with
SSRIs has been prescribed. Chronic stress is frequently used in
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TABLE 1 | Summary of behavioral effects of fluoxetine exposure.

Behavioral test Measure Effect of fluoxetine Interacts with Results

Alloparental Care Physical contact Y Sex, age group FLX adult female < FLX peri female
SAL peri female < SAL peri male

Pup retrieval Y Exposure cohort FLX PRE + POST > SAL
PRE + POST FLX
PRE + POST > FLX PRE, FLX
POST

Same chamber as pup N – –

Latency to approach N – –

Sniff N – –

Huddle N – –

Lick and groom N – –

Autogroom N – –

Dig N – –

Elevated plus maze Ratio of time on open arms Y Age FLX adult < SAL adults

Arm entries N – –

Freeze N – –

Autogroom N – –

Open field test Ratio of time in center Y Sex, age group Eliminated sex and age differences
seen in SAL

Autogroom N – –

Rear N – –

Intrasexual adult affiliation Sniff N – –

Allogroom Y Sex FLX male > SAL male (trend)
Eliminated sex difference seen in
SAL

Physical contact N – –

Autogroom N – –

Rear N – –

Aggression N – –

Dig Y Sex Eliminated sex difference seen in
SAL

Play Y Sex FLX male > FLX female FLX
male > SAL male

Partner preference test Difference in partner and
stranger chamber time

N – –

Difference in side-by-side
contact

Y Sex Eliminated sex difference seen in
SAL

Empty chamber time Y Exposure cohort FLX PRE > PRE SAL

Y, significant effect; N, no effect; peri, periadolescent.

the laboratory to induce a learned helplessness phenotype of
depressive-like behavior to model depression (Pollak et al., 2010).

An interesting and unexpected finding was that FLX exposure
eliminated sex differences across multiple behavioral tests. One
example is the change in physical contact with the pup seen
in the alloparental care test (Figure 3A). Male prairie voles
are typically more alloparental than females, and here we saw
that with FLX exposure, male periadolescents were not more
alloparental than females, as was the case with SAL exposure.
Male alloparental care is directly impacted by estrogen receptor
expression, and sex-dependent changes in alloparental care
with increasing age are based on changes in estrogen receptor
expression (Perry et al., 2015). FLX exposure also eliminated
the sex difference in partner and stranger contact in the partner
preference test (Figure 7B). Both alloparental care and partner

preference are examples of behaviors that show well-established
sex differences in prairie voles. Estrogen receptor α expression
has been implicated in reducing heterosexual adult contact in
the partner preference test as well as male alloparental care
behavior (Lei et al., 2010). FLX has estrogenic effects both in vivo
and in vitro (Jacobsen et al., 2015; Pop et al., 2015; Muller
et al., 2016), as does its bioactive metabolite norfluoxetine (Lupu
et al., 2015). There is evidence in the literature for sex-specific
effects of FLX on estrogen receptor expression (Adzic et al.,
2017). FLX may have altered estrogen receptor expression, which
in turn reduced affiliative behavior specifically in males, thus
abolishing the sex differences seen in the SAL exposure groups.
Future work should more thoroughly characterize the effects of
developmental FLX on steroid receptors to further understand its
behavioral effects.
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Developmental timing is likely to be important in SSRI
exposure. While some work has suggested that in humans, any
chronic exposure in the year prior to birth results in heightened
risk (Croen et al., 2011), others have found that either the first
or third trimester are the periods of greatest risk (Oberlander
et al., 2008; Croen et al., 2011; Harrington et al., 2014). In order
to address the effects of exposure timing, we evaluated behavior
in three different gross exposure cohorts spanning prenatal
and postnatal development. We found few effects of FLX that
were specific to an exposure cohort with the notable exception
of increased duration in the empty chamber of the partner
preference test in the PRE cohort. It is likely that creating shorter
dosing periods which translate to specific trimesters in human
pregnancy would be beneficial to more accurately determining
how to best limit risk to offspring based on timing of exposure.

It is also worth pointing out that due to study design,
offspring with different exposure timing were born to mothers of
different parity and were potentially subject to different maternal
hormone exposures. For example, pups that were part of the
PRE + POST cohort were being nursed by mothers which
were becoming pregnant again. To the extent that variation in
maternal hormones due to parity or pregnancy may have affected
hormones during the postpartum estrus or lactation (Bridges and
Byrnes, 2006; Bridges, 2016), altering pup hormonal exposure in
utero or through milk, these exposures may have varied in this
study. In addition, all subjects in that cohort were litter 3 for their
parents, whereas subjects in the POST cohort were all litter 2, and
subjects in the PRE cohort were all litter 4; which could have also
had effects on hormone exposure.

We have shown here that developmental SSRI exposure
alters OTR and AVPR1a, but not 5-HT1A, binding. Because
FLX’s mechanism works to increase serotonin neurotransmission
by blocking reuptake of serotonin, it was surprising to find
that 5-HT1A receptor binding was unchanged by FLX in all
regions examined. Studies in mice have shown that perinatal
FLX can regularize 5-HT1A levels that have been altered by
other developmental factors (Nagano et al., 2012; Stagni et al.,
2015). For the current study, it appears that the behavioral
effects were mediated by OTR and V1aR without concomitant
changes in the 5HT system. However, while there was no
change in serotonin receptor density, actions on OTR and V1aR
subsequent to FLX exposure may have been precipitated by
changes in the peptides themselves, the function or location of
the receptor, or other downstream cellular mechanistic pathways.
Serotonin developmentally autoregulates its own innervation
throughout the brain (Herlenius and Lagercrantz, 2004) and is
plastic throughout development. Fetal exposure to FLX is poorly
understood, yet it is clear that it leads to changes that last well into
adulthood (Kiryanova et al., 2013). While SSRIs are presumed to
increase extracellular serotonin in the long term, short term SSRI
exposure can reduce raphe cell firing by acting on autoreceptors
leading to a reduction in extracellular serotonin (Tao et al., 2000).
Such activity may have neurodevelopmental consequences for
offspring that have yet to be elucidated fully, but which warrant
further investigation.

The serotonin system is also an extensive system with 15
different types of receptors (Carr and Lucki, 2011). We chose to

examine the 1A receptor because of its autoreceptor function, but
it may be the case that other exclusively post-synaptic serotonin
receptors were altered while 1A was not. Further work examining
other serotonin receptor populations will be important to clarify
how serotonergic neurotransmission is altered by SSRI use
prenatally. It is also possible that species differences between
mice and voles may have altered the effects of FLX on 5-HT1A
receptor binding.

Another area that should be considered is how exposure
interacts with the maternal and early postnatal environment, as
environmental moderation of SSRI effects may underlie their
effects (Alboni et al., 2017). Since the prevalent and incident use
of SSRI-exposed pregnancies has increased in the last two decades
(Alwan et al., 2011), it is of the utmost importance that we more
clearly understand the causes and consequences that prenatal
SSRI exposure may have on the developing brain.
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