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Editorial on the Research Topic

Towards targeting prolactin signaling in human diseases: stimulate
or inhibit?
Prolactin is an anterior pituitary hormone that was originally named for its

indispensable role in lactation, but increasingly it is being recognized for pleiotropic

roles in metabolism, immune function, pregnancy adaptations and parental behavior.

Prolactin secretion is tightly controlled by a short-loop feedback system whereby prolactin

stimulates specific neurons in the hypothalamus to release dopamine, which then inhibits

prolactin secretion. During pregnancy and lactation, however, this feedback systems adapts

to allow prolonged elevations in prolactin secretion, enabling a range of functions specific

to these conditions. Prolactin is also released under conditions of stress in both sexes.

Prolactin signals exclusively through the prolactin receptor (Prlr), but this is not a simple

system. In target cells, prolactin/Prlr engages various signal transduction mechanisms

including JAK2/STAT5 (canonical), PI3K/Akt, MAPK and Src family kinases. There is also

evidence of local production of prolactin in non-pituitary tissues, leading to autocrine/

paracrine receptor triggering independent of circulating hormone. Adding to this

complexity, in many species, including humans, there are multiple ligands for the Prlr.

These include placental lactogens that supplement prolactin function in pregnancy, and in

primates only, pituitary growth hormone. Moreover, specific proteolytic products of these

hormones exert important biological actions independent of Prlr. These functions, that are

often completely distinct from those of prolactin, have led to the classification of these

fragments as a new class of hormones known as vasoinhibins.

Reflecting this molecular and functional complexity, abnormalities in prolactin

signaling have been implicated in multiple clinical conditions. There are consequences

when circulating prolactin is too high, with hyperprolactinemia causing infertility in both

males and females, as well as being associated with a range of metabolic disturbances and

mood disorders. But there are also consequences if prolactin is too low, the most obvious
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being lactation failure in the absence of prolactin signaling, but

many other more subtle deficits are being identified. Changes in

autocrine/paracrine prolactin signaling may be extremely important

in some conditions, e.g. in modulating inflammation, pain

responses, and cancer. The challenge remains when to stimulate

and when to inhibit prolactin actions, and this Research Topic

dissects different situations that would benefit from either option.

Kavarthapu and Dufau provide an integrated view of the

molecular biology of the “target” (Prlr) encompassing its complex

transcriptional regulation viamultiple promoters, the various receptor

isoforms resulting from alternative splicing, their specific signaling

capacities when homo- or hetero-dimerized, their crosstalk with

EGFR/HER2 family members, and how these individual processes

can cooperatively promote breast cancer progression. In line with

this, Schuler and O’Leary provide a systematic overview of the

epidemiological and experimental data documenting the complex

actions of prolactin in breast cancer, dichotomizing effects on early

lesions versus established tumors, and showing how the stromal

environment (including matrix stiffness) may alter the responses of

target cells to prolactin. This balanced perspective tentatively links to

the viewpoint of Ali et al. supporting the beneficial actions of prolactin

as a pro-differentiation pathway restricting breast cancer cell plasticity,

following emerging evidence that preventing epithelial-to-

mesenchymal transition and acquisition of stemness may be a viable

approach to temper cancer progression.

This Research Topic also highlights the involvement of

prolactin in two diseases besides cancer. Triebel et al. provide an

up-to-date discussion of the anti-angiogenic and anti-

vasopermeability properties of prolactin and vasoinhibins, which

may help restrict the vascularization in the eye of patients with

diabetes. The translational potential is advocated by results of a

clinical trial in which higher prolactin levels were associated with

less diabetic retinopathy.

Prolactinomas are the most frequent functional pituitary

tumors causing systemic hyperprolactinemia, with its clinical

consequences, and mass effect, locally. The first-line treatment

involves dopamine receptor D2 agonists, but a minority of

patients with prolactinomas are resistant to this therapy. Ferraris

explores impaired autocrine actions of prolactin (a local inhibitor of

lactotroph proliferation acting through Prlr), independent of

dopamine, in a subtype of medically-resistant prolactinomas. This

implies that the pathogenesis of these prolactinomas is not the same

as those responding to dopamine therapy, raising Prlr-targeting as a

potential therapeutic approach.

Three additional papers emphasize the role of prolactin as a

homeostasis hormone:

Macotela et al. discuss evidence for the beneficial actions of

functional hyperprolactinemia (moderately-elevated prolactin

levels) in metabolic diseases such as obesity and non-alcoholic

fatty-liver disease. In clinical practice, beyond the role of prolactin

in reproduction, a grey zone of hyperprolactinemia is defined as

mild to moderate transient elevations of prolactin levels that are

poorly understood. Thus, this review defines ‘Homeo Fit-PRL levels’
Frontiers in Endocrinology 025
that are required to deal with metabolic challenges. Clapp et al.

describe the roles of prolactin in inflammatory responses, and

specifically in rheumatoid arthritis where prolactin has both

negative and positive outcomes depending on circulating levels.

Inflamed tissue is rich in enzymes that cleave prolactin into the

bioactive metabolite vasoinhibins. This hormone also influences

tissue responses to inflammation, and thus, when prolactin is high,

such as during pregnancy and lactation, levels of vasoinhibins are

also increased, providing both direct and indirect mechanisms to

influence tissue responses. Finally, Garay et al. focus on placental

lactogens, which are pregnancy-specific hormones that act through

the Prlr. These hormones are critical to adaptive changes in the

mother during pregnancy, and low placental lactogen has been

associated with impaired pregnancy outcomes. The authors found

that maintaining a conscious healthy diet during pregnancy was

associated with increased placental lactogen and increased

birthweight of babies.

Should Prlr signaling need to be inhibited in cancer or any other

disease, Standing et al. provide the most up-to-date toolbox of the

various approaches and drug candidates that have been developed

so far, including prolactin-based receptor antagonists, receptor

neutralizing antibodies and small molecule inhibitors.

In conclusion, this Research Topic aimed to demonstrate how

deciphering the complexity of the prolactin/Prlr system in different

tissues has clinical relevance in understanding disease. Collectively,

these reviews highlight that for normal function, prolactin must be

in the “goldilocks zone” – not too high, and not too low – “just

right”. This evidence constitutes a challenge for any therapeutic

intervention aimed at modulating systemic Prlr signaling in disease.
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Dual Roles of Prolactin and
Vasoinhibin in Inflammatory Arthritis
Carmen Clapp*, Georgina Ortiz , Jose F. Garcı́a-Rodrigo, Marı́a G. Ledesma-Colunga,
Oscar F. Martı́nez-Dı́az, Norma Adán and Gonzalo Martı́nez de la Escalera

Instituto de Neurobiologı́a, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico

The term inflammatory arthritis defines a family of diseases, including rheumatoid arthritis
(RA), caused by an overactive immune system, and influenced by host aspects including
sex, reproductive state, and stress. Prolactin (PRL) is a sexually dimorphic, reproductive,
stress-related hormone long-linked to RA under the general assumption that it aggravates
the disease. However, this conclusion remains controversial since PRL has both negative
and positive outcomes in RA that may depend on the hormone circulating levels, synthesis
by joint tissues, and complex interactions at the inflammatory milieu. The inflamed joint is
rich in matrix metalloproteases that cleave PRL to vasoinhibin, a PRL fragment with
proinflammatory effects and the ability to inhibit the hyperpermeability and growth of blood
vessels. This review addresses this field with the idea that explanatory mechanisms lie
within the PRL/vasoinhibin axis, an integrative framework influencing not only the levels of
systemic and local PRL, but also the proteolytic conversion of PRL to vasoinhibin, as
vasoinhibin itself has dual actions on joint inflammation. In this review, we discuss recent
findings from mouse models suggesting the upregulation of endogenous vasoinhibin by
the pro-inflammatory environment and showing dichotomous actions and signaling
mechanisms of PRL and vasoinhibin on joint inflammation that are cell-specific and
context-dependent. We hypothesize that these opposing actions work together to
balance the inflammatory response and provide new insights for understanding the
pathophysiology of RA and the development of new treatments.

Keywords: rheumatoid arthritis, proinflammatory cytokines, joint inflammation, angiogenesis, synovial fibroblasts,
endothelial cells, prolactin, vasoinhibin
INTRODUCTION

Inflammatory arthritis is a collective name for a group of acute and chronic diseases driven by an
overactive immune system that causes painful inflammation and stiffness of one or more articular
joints. These diseases, broadly classified as non-autoimmune (sepsis arthritis and gout) and
autoimmune (rheumatoid arthritis, juvenile idiopathic arthritis, spondyloarthritis, among others)
are progressively debilitating if untreated. Rheumatoid arthritis (RA) is the most common chronic
inflammatory arthritis affecting around 1% of the global population with a female to male ratio 3 to
1 (1). RA manifests as progressive synovial hyperplasia (pannus formation) and inflammation
(synovitis) leading to polyarticular destruction. The etiology of RA is multifactorial, with genetic,
environmental, and host-related factors driving early alterations of the innate and adaptive immune
n.org June 2022 | Volume 13 | Article 90575616

https://www.frontiersin.org/articles/10.3389/fendo.2022.905756/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.905756/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:clapp@unam.mx
https://doi.org/10.3389/fendo.2022.905756
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.905756
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.905756&domain=pdf&date_stamp=2022-06-02


Clapp et al. Prolactin and Vasoinhibin in Arthritis
system that result in the recruitment of immune cells into the
joints and subsequent chronic inflammation.

The close association between RA, sex, reproductive state, and
stress have long-linked the sexually dimorphic, reproductive, stress-
related hormone prolactin (PRL) to disease progression (2).However,
the role of PRL in RA is more complex than anticipated. Clinical and
pre-clinical studies have shown that PRL can be both pro-
inflammatory and anti-inflammatory in a context-dependent
manner. The detailed essentials of the association of PRL and RA
arebeyond the scope of this article and canbe found in several reviews
(2–5).Here,webriefly summarize thebasesof the associationbetween
PRL andRAand focus on recentfindings in arthritic rodents showing
direct effectsofPRLon joint tissues and the influenceof theproteolytic
conversion of PRL to vasoinhibin, a PRL fragment with dual actions
on vascular and non-vascular cells of joint tissues that affect
inflammatory reactions. Finally, we discuss how this information
may be translated into novel therapeutic interventions.
PROLACTIN AND RA

The fact that RA is more frequent in women and disparity is
greater at younger ages (6) encouraged investigating the female
reproductive history. Early studies showed a higher risk of RA in
nulliparous than parous women and a higher risk and worsening
of RA in the postpartum period in association with breastfeeding
(7). Because both risk factors (reduced fecundity and
breastfeeding) associate with hyperprolactinemia, PRL was
suggested as a biological explanation (8). Furthermore, the
frequently observed adverse relationship between stressful
events and RA (9) pointed to the upregulation of PRL in
response to stress (10) as a contributing factor. However, other
evidence suggested the opposite. A large population cohort,
controlled for breastfeeding among parous women, did not
support nulliparity as risk factor and revealed that
breastfeeding for >12 months was inversely related to the
development of RA (11). Also, RA improves or goes into
remission during pregnancy (12) when the circulating levels of
PRL and placental lactogen are high. Moreover, stress worsens
but also attenuates RA dependent on the duration and type of
stressors and in association with stress hormones, including PRL
(9). For example, acute exposure to hyperprolactinemia enhances
inflammation during stress, whereas chronic hyperprolactinemia
is immunosuppressive (13). Finally, controversies were found
when measuring PRL levels in the circulation of patients with RA
(reviewed by Clapp et al., 2016 (2)). Higher, similar, and even
lower PRL levels, within the normal range (≤ 20 mg/L), occurred
with no clear association to disease severity. Lowering or
increasing circulating PRL levels with dopamine D2 receptor
agonists or antagonists, respectively, were both effective and
ineffective against RA. Altogether the contrasting findings have
indicated dual outcomes of PRL in RA and encouraged the
search for clarifying mechanisms.

Opposite effects of PRL on the immune response have been
known for more than three decades and are essentially associated
to PRL concentration (14), with lower levels (≤25 mg/L) being
Frontiers in Endocrinology | www.frontiersin.org 27
immunost imulatory and higher levels (≤100 mg/L)
immunosuppressive (15). It is possible that systemic levels of
PRL in RA are confounded by PRL produced and metabolized at
the inflamed joint. Infiltrated leukocytes and fibroblasts of the
RA synovium produce PRL (16) and matrix metalloproteases
(MMPs) upregulated in the joints of patients with RA (17) cleave
this hormone to vasoinhibin (18), a PRL fragment with potent
anti-angiogenic and pro-inflammatory properties (19).
Following is a summary of the PRL/vasoinhibin axis, an
integrative framework able to alter joint inflammation by
influencing the levels of systemic and local PRL and vasoinhibin.
THE PRL/VASOINHIBIN AXIS

The PRL/vasoinhibin axis is a newly described endocrine axis
where the proteolytic cleavage of PRL to vasoinhibin is regulated
at the hypothalamus, the pituitary, and the target tissue levels
(20). Disruption of this axis contributes to the pathogenesis and
progression of diabetic retinopathy (21), retinopathy of
prematurity (22), peripartum cardiomyopathy (23), pre-
eclampsia (24), and inflammatory arthritis (25, 26).
Vasoinhibin comprises a family of PRL fragments that range
from 5.6 to 18 kDa that correspond to the first 48 to 159 amino
acid residues of PRL depending on the cleavage site of proteases
that include MMPs (18), cathepsin D (27), bone morphogenetic
protein 1 (28), thrombin (29), and plasmin (30). Vasoinhibin
signals through receptor/binding protein complexes distinct
from the PRL receptor (31) to exert effects frequently opposite
to those of the full-length hormone. PRL stimulates angiogenesis,
whereas vasoinhibin inhibits angiogenesis, vasodilation, and
vasopermeability (19). Vasoinhibin acts as proinflammatory
cytokine upregulating inducible nitric oxide synthase (iNOS) in
lung tissues (fibroblasts and type II epithelial cells) (32), whereas
PRL attenuates proinflammatory cytokine-induced iNOS
expression in these cells (33). PRL inhibits and vasoinhibin
stimulates anxiety- and depression-related behaviors (34) as
well as neuronal apoptosis (35), respectively. However, both
PRL and vasoinhibin stimulate the release of vasopressin by
the hypothalamo-neurohypophyseal system (36). Because
opposing actions reside within the PRL molecule, proteolytic
cleavage represents an efficient mechanism for balancing
functions. Recent work showed that a short linear motif of just
three residues (His46-Gly47-Arg48) is the functional
antiangiogenic determinant of vasoinhibin and that such motif
is concealed in PRL by salt-bridges between Arg48 and Glu161
and 162 located in PRL fourth alfa-helix, a part of PRL removed
during vasoinhibin generation (37).

The influence of the PRL/vasoinhibin axis in arthritis is
suggested by the presence of PRL in the synovial fluid and of
PRL, vasoinhibin, and PRL-cleaving MMPs in joint tissues
including chondrocytes, vascular endothelial cells, synoviocytes,
fibroblasts, and immune cells (reviewed by Clapp et al., 2016 (2)).
While RA remains a uniquely human disease, animal models with
induced synovial inflammation are an essential component of drug
development (38) that have helped investigate the influence of the
PRL/vasoinhibin axis in RA.
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PRL, VASOINHIBIN, AND INDUCED
ARTHRITIS IN RODENTS

Murine adjuvant arthritis (AA) and antigen-induced arthritis
(AIA) are models of inflammatory arthritis, including RA, where
disease is mediated by antigen-specific immune responses by T
and B lymphocytes (39). The AA model is commonly induced by
a single intradermal injection of complete Freund’s adjuvant in
rats and mice and is characterized by a reliable, rapid onset and
progression of robust and easily measurable polyarticular
inflammation, cartilage degradation, and bone loss. AIA is
usually induced in mice immunized by intradermal and
subsequent intra-articular injection of antigen (methylated
bovine serum albumin) that causes acute monoarticular
inflammation and eventual joint destruction.

A first study, carried out 40 years ago, suggested a detrimental
effect of PRL by showing that hypophysectomized rats do not
develop AA unless treated with this hormone (40). However,
adrenocortical deficiency due to hypophysectomy confounded
PRL action. In the absence of hypophysectomy, rats made
hyperprolactinemic by placing anterior pituitary grafts under the
kidney capsule showed less severe AA and higher corticosterone
circulating levels (41). The PRL beneficial action was recently
confirmed and extended by showing that hyperprolactinemia
induced by anterior pituitary grafts, osmotic minipumps
delivering PRL, or treatment with the dopamine D2 receptor
blocker, haloperidol, reduced joint inflammation and pain,
cartilage loss, and bone erosion in AA rats (42, 43). Reduced
inflammation involved systemic (lower levels of circulating C-
reactive protein and TNFa) and local mechanisms (43). The long
isoform of the PRL receptor was upregulated in arthritic joints
where hyperprolactinemia inhibited enhanced expression of
proinflammatory cytokines (TNFa, IL-1b, IL-6, INFg), elevated
chondrocyte apoptosis, and increased osteoclast differentiation
(42, 43). Furthermore, PRL-receptor null mice (Prlr-/-) exhibited
a more severe AA (43), which was consistent with previous reports
showing that targeted disruption of the PRL receptor (44) or PRL
(45) enhances immune responses and mortality under stress-
related conditions.

The positive role of PRL in murine arthritis contrasts with its
controversial action in RA. Because high PRL levels are
immunosuppressive (15), the magnitude of the induced
hyperprolactinemia (>60 mg/L) (42, 43) could be an explanatory
mechanism. Another contributing factor may be the cleavage of
PRL to vasoinhibin. Hyperprolactinemia promotes the conversion
of PRL to vasoinhibin by providing more substrate to cleaving
proteases. Hyperprolactinemic mice overexpressing PRL in the
liver have enhanced levels of circulating vasoinhibin (46), and
pharmacologically induced hyperprolactinemia results in higher
levels of vasoinhibin in ocular tissues and fluids of rats (47) and
humans (48). In agreement, the activity of major PRL-cleaving
proteases, MMPs and cathepsin D, is upregulated in the joints
from AIA mice (26), vasoinhibin increases in the circulation of
Prlr-/- mice when subjected to AIA (26), and Prlr-/- mice are
hyperprolactinemic (49).
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Upregulation of vasoinhibin can contribute to the beneficial
outcome of PRL in arthritis by means of its inhibitory effects on
blood vessels. Exacerbated vasopermeability and angiogenesis
promote synovial inflammation and inhibition of angiogenesis is
a promising therapy in RA (50). Hypervasopermeability results
in edema formation and joint swelling, and pannus formation
requires new blood vessels to cope with the increased
requirement of oxygen and nutrients and the delivery of
inflammatory cells and molecules. Consistent with this notion,
the intra-articular delivery of the vasoinhibin gene via a
recombinant adeno-associated type 2 vector (AAV2-Vi)
reduced pannus vasopermeability and angiogenesis, joint
inflammation, and bone loss in mice under severe AIA (25).

Nevertheless, the role of vasoinhibin in arthritis is not a
simple matter, as vasoinhibin is also proinflammatory. Higher
circulating vasoinhibin levels coincide with exacerbated arthritis
in Prlr-/- mice (26, 43) and vasoinhibin has proinflammatory
effects in lung tissues (32). A recent study showed that
vasoinhibin indirectly inhibits and directly stimulates joint
inflammation depending on vasoinhibin concentration and the
severity of the disease in which it acts (26). While the AAV2-Vi
vector indirectly (via an antiangiogenic mechanism) ameliorated
severe joint inflammation (25), it enhanced arthritis under mild
inflammatory conditions (26). Vasoinhibin gene delivery in mice
subjected to mild AIA enhanced joint swelling, synovial
leukocyte infiltration, and expression of proinflammatory
mediators (Il1b, Il6, Inos, Mmp3, Icam1, Cxcl1, Cxcl2, Cxcl3,
and Ccl2) by a direct action on synovial fibroblasts (26). The
magnitude of vasoinhibin transgene expression was higher under
mild vs. severe AIA suggesting that, depending on the
inflammatory context, higher levels of vasoinhibin are needed
to promote inflammation but not anti-inflammation in arthritis.

Altogether evidence shows that dual actions of PRL extend to
vasoinhibin and are dependent on the local concentration of each
hormone, the level of inflammation, the activity of local proteases,
and the activation of specific cells and signaling pathways.
TARGETED CELLS AND
SIGNALING PATHWAYS

PRL signals directly on chondrocytes and synovial fibroblasts to
inhibit cartilage degradation, synovial inflammation, and
osteoclastogenesis in arthritis (42, 43). Articular chondrocytes
express the long form of the PRL receptor (51) and PRL inhibits
the apoptosis of cultured chondrocytes in response to
proinflammatory cytokines (Cyt: IL-1b, TNFa and INFg) by
preventing the induction of p53 and decreasing the BAX/BCL-2
ratio through a NO-independent, JAK2-STAT3 dependent
pathway (42) (Figure 1). Furthermore, the Cyt upregulate the
long PRL receptor in synovial fibroblasts (43) which are key cells
in the initiation and perpetuation of joint inflammation and
destruction (52). PRL induces the phosphorylation/activation of
STAT3 in cultured in synovial fibroblasts to inhibit Cyt-induced
expression of IL-1b, IL-6, and receptor activator of nuclear factor
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kB ligand (RANKL), a major promoter of osteoclastogenesis in
RA (43) (Figure 1).

In contrast to PRL, vasoinhibin acts on synovial fibroblasts
to promote inflammation. Vasoinhibin activates the NFkB
signaling pathway in cultured synovial fibroblasts to
upregulate proinflammatory mediators, chemokines, and
iNOS-mediated NO production (26) (Figure 1). However,
like PRL, vasoinhibin inhibits inflammation albeit through
the inhibition of vascular endothelial cells. Vasoinhibin
signals on synovial endothelial cells to stimulate protein
phosphatase 2A and inhibit the Ca2+-calmodulin binding that
leads to blockage of the VEGF-induced endothelial NOS
(eNOS) activation required for pannus vasopermeability and
angiogenesis (25, 53) (Figure 1).

Dual actions on inflammation illustrate the complex balance
of the inflammatory response. As PRL and vasoinhibin, major
proinflammatory cytokines (INFg, IL-2, IL-6, TNFa) function as
anti-inflammatory mediators and classical anti-inflammatory
factors (IL-10, TGFa, glucocorticoids) exhibit proinflammatory
effects depending on cytokine concentration, the stage of the
disease, and the combination with other cytokines (54, 55).
Major questions are how and when PRL and vasoinhibin
opposing actions operate and mechanistically interact to
influence arthritis progression (Figure 2). Current data suggest
that vasoinhibin generation is dependent on hyperprolactinemia
and that the proinflammatory action of vasoinhibin on synovial
fibroblasts may occur during the early mild phase of arthritis,
whereas the anti-inflammatory effect, via inhibition of synovial
vascular cells, manifest at a later, more severe stage (26).
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We hypothesize that these opposing actions work in concert to
prevent infection and limit destruction of joint tissues.
CLINICAL IMPLICATION

Animal models of RA are of limited therapeutic information since
none of these models are truly RA. However, murine inflammatory
arthritis has been extensively used for drug development (38) and
has provided insights into the influence of the PRL/vasoinhibin axis
on joint inflammation. Experimental studies showed that increasing
prolactinemia, either by PRL infusion or treatment with the
dopamine D2 receptor blocker haloperidol, ameliorates the
severity of arthritis, either directly (42) or via the PRL conversion
to antiangiogenic vasoinhibin (25) (Figure 2). Of note, a pilot
clinical trial carried out 40 years ago showed that haloperidol
improved the evolution of RA (56) and a recent observational
study described the potential inverse association between
haloperidol and RA (57). Also, inhibition of angiogenesis is a
promising therapy for RA (50) and vasoinhibin itself may
represent a therapeutic opportunity by virtue of its antiangiogenic
and anti-vasopermeability properties. Translation of vasoinhibin
into the clinic has been hampered by difficulties in its recombinant
production (58). However, the barrier of using vasoinhibin as
therapeutic agent was recently removed by showing that seven
amino acid peptides containing the anti-angiogenic motif (HGR)
of vasoinhibin inhibit angiogenesis and vasopermeability with the
same potency as the whole protein (37). Oligopeptide optimization
to target vascular andnot non-vascular actions in arthritis represents
FIGURE 1 | Schematic representation of PRL and vasoinhibin signaling in various cells of the joint. MMPs, matrix metalloproteases; STAT3, signal transduction
activator of transcription 3; NF-kB, nuclear factor kappa-B; PP2A, protein phosphatase 2A; Ca2+- CaM, calcium-calmodulin complex; BAX, BCL2 associated X-
protein; Bcl-2, B-cell lymphoma 2; CASP3, caspase 3; RANKL, receptor activator of nuclear factor kB ligand; iNOS, inducible nitric oxide synthase; NO, nitric oxide;
eNOS, endothelial nitric oxide synthase. Scheme created with Biorender.com.
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a promising therapeutic approach and an important tool for guiding
future research. Nonetheless, dichotomous actions of the PRL/
vasoinhibin axis expose its intricate role in inflammatory arthritis
and demand further research to better understand its role and
therapeutic application in RA.
CONCLUSIONS

TheroleofPRL inRAremainspoorlydefinedbuthyperprolactinemia
is emerging as a protective influence. Evidence supporting the
beneficial impact of physiological hypeprolactinemia (in pregnancy
and after breastfeeding) on RA is reinforced by experimental studies
showing that sustained PRL administration or genetic deletion of the
PRL receptor ameliorates or worsens the severity of inflammatory
arthritis, respectively. PRL signals on arthritic joint tissues
(chondrocytes and synovial fibroblasts) to inhibit cartilage
degradation, synovial inflammation, and osteoclastogenesis.
Hyperprolactinemia promotes the conversion of PRL to
vasoinhibin, a PRL fragment that directly stimulates and indirectly
inhibits (via an antiangiogenic mechanism) joint inflammation in a
context- and cell type-dependent manner. Understanding the
mechanisms governing the regulation and action of the PRL/
vasoinhibin axis in inflammatory arthritis should help clarify the
Frontiers in Endocrinology | www.frontiersin.org 510
role of PRL in RA to ultimately develop novel therapeutic
interventions that can be tested in patients.
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FIGURE 2 | Schematic representation of findings in rodent models showing dual actions of hyperprolactinemia in inflammatory arthritis. Hyperprolactinemia
inhibits synovial inflammation, cartilage degradation, and bone loss directly or via its proteolytic cleavage by matrix metalloproteases (MMPs) and cathepsin D
(CD) to antiangiogenic vasoinhibin. PRL conversion to vasoinhibin may also worsen inflammatory arthritis by a vasoinhibin pro-inflammatory effect. Understanding
how and when PRL and vasoinhibin actions operate and mechanistically interact to influence arthritis progression warrants further research. Scheme created
with Biorender.com.
June 2022 | Volume 13 | Article 905756

https://www.biorender.com
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Clapp et al. Prolactin and Vasoinhibin in Arthritis
REFERENCES

1. Silman AJ, Pearson JE. Epidemiology and Genetics of Rheumatoid Arthritis.
Arthritis Res Ther (2002) 4(Suppl 3):S265–72. doi: 10.1186/ar578

2. Clapp C, Adan N, Ledesma-Colunga MG, Solis-Gutierrez M, Triebel J,
Martinez de la Escalera G. The Role of the Prolactin/Vasoinhibin Axis in
Rheumatoid Arthritis: An Integrative Overview. Cell Mol Life Sci (2016) 73
(15):2929–48. doi: 10.1007/s00018-016-2187-0

3. Neidhart M, Gay RE, Gay S. Prolactin and Prolactin-Like Polypeptides in
Rheumatoid Arthritis. BioMed Pharmacother (1999) 53(5-6):218–22.
doi: 10.1016/S0753-3322(99)80091-2

4. Chuang E , Molitch ME. Prolactin and Autoimmune Diseases in Humans.
Acta BioMed (2007) 78(Suppl 1):255–61.

5. Costanza M, Binart N, Steinman L, Pedotti R. Prolactin: A Versatile Regulator
of Inflammation and Autoimmune Pathology. Autoimmun Rev (2015) 14
(3):223–30. doi: 10.1016/j.autrev.2014.11.005

6. Symmons D, Turner G, Webb R, Asten P, Barrett E, Lunt M, et al. The
Prevalence of Rheumatoid Arthritis in the United Kingdom: New Estimates
for a New Century. Rheumatol (Oxford) (2002) 41(7):793–800. doi: 10.1093/
rheumatology/41.7.793

7. Brennan P, Silman A. Breast-Feeding and the Onset of Rheumatoid Arthritis.
Arthritis Rheum (1994) 37(6):808–13. doi: 10.1002/art.1780370605

8. Brennan P, Ollier B, Worthington J, Hajeer A, Silman A. Are Both Genetic and
Reproductive AssociationsWith Rheumatoid Arthritis Linked to Prolactin? Lancet
(1996) 348(9020):106–9. doi: 10.1016/s0140-6736(96)02037-5

9. Cutolo M, Straub RH. Stress as a Risk Factor in the Pathogenesis of
Rheumatoid Arthritis. Neuroimmunomodulation (2006) 13(5-6):277–82.
doi: 10.1159/000104855

10. Levine S, Muneyyirci-Delale O. Stress-Induced Hyperprolactinemia:
Pathophysiology and Clinical Approach. Obstet Gynecol Int (2018)
2018:9253083. doi: 10.1155/2018/9253083

11. Karlson EW, Mandl LA, Hankinson SE, Grodstein F. Do Breast-Feeding and
Other Reproductive Factors Influence Future Risk of Rheumatoid Arthritis?
Results From the Nurses' Health Study. Arthritis Rheum (2004) 50(11):3458–
67. doi: 10.1002/art.20621

12. Østensen M, Villiger PM. The Remission of Rheumatoid Arthritis During
Pregnancy. Semin Immunopathol (2007) 29(2):185–91. doi: 10.1007/s00281-
007-0072-5

13. Ochoa-Amaya J, Malucelli B, Cruz-Casallas P, Nasello A, Felicio L, Carvalho-
Freitas M. Acute and Chronic Stress and the Inflammatory Response in
Hyperprolactinemic Rats. Neuroimmunomodulation (2010) 17(6):386–95.
doi: 10.1159/000292063

14. Spangelo BL, Hall NR, Ross PC, Goldstein AL. Stimulation of In Vivo
Antibody Production and Concanavalin-A-Induced Mouse Spleen Cell
Mitogenesis by Prolactin. Immunopharmacology (1987) 14(1):11–20.
doi: 10.1016/0162-3109(87)90004-x

15. Matera L, Cesano A, Bellone G, Oberholtzer E. Modulatory Effect of Prolactin
on the Resting and Mitogen-Induced Activity of T, B, and NK Lymphocytes.
Brain Behav Immun (1992) 6(4):409–17. doi: 10.1016/0889-1591(92)90039-q

16. Nagafuchi H, Suzuki N, Kaneko A, Asai T, Sakane T. Prolactin Locally
Produced by Synovium Infiltrating T Lymphocytes Induces Excessive
Synovial Cell Functions in Patients With Rheumatoid Arthritis.
J Rheumatol (1999) 26(9):1890–900.

17. McInnes IB, Schett G. The Pathogenesis of Rheumatoid Arthritis. N Engl J
Med (2011) 365(23):2205–19. doi: 10.1056/NEJMra1004965

18. Macotela Y, Aguilar MB, Guzmán-Morales J, Rivera JC, Zermeño C, López-
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N, Ruiz-Herrera X, Núñez FF, et al. Sulpiride-Induced Hyperprolactinemia
Increases Retinal Vasoinhibin and Protects Against Diabetic Retinopathy in
Rats. J Neuroendocrinol (2022) 34:e13091. doi: 10.1111/jne.13091

48. Nuñez-Amaro CD, Moreno-Vega AI, Adan-Castro E, Zamora M, Garcia-
Franco R, Ramirez-Neria P, et al. Levosulpiride Increases the Levels of
Prolactin and Antiangiogenic Vasoinhibin in the Vitreous of Patients With
Proliferative Diabetic Retinopathy. Transl Vis Sci Technol (2020) 9(9):27.
doi: 10.1167/tvst.9.9.27

49. Schuff KG, Hentges ST, Kelly MA, Binart N, Kelly PA, Iuvone PM, et al. Lack
of Prolactin Receptor Signaling in Mice Results in Lactotroph Proliferation
and Prolactinomas by Dopamine-Dependent and-Independent Mechanisms.
J Clin Invest (2002) 110(7):973–81. doi: 10.1172/JCI15912

50. Leblond A, Allanore Y, Avouac J. Targeting Synovial Neoangiogenesis in
Rheumatoid Arthritis. Autoimmun Rev (2017) 16(6):594–601. doi: 10.1016/
j.autrev.2017.04.005

51. Zermeno C, Guzman-Morales J, Macotela Y, Nava G, Lopez-Barrera F, Kouri
J, et al. Prolactin Inhibits the Apoptosis of Chondrocytes Induced by Serum
Starvation. J Endocrinol (2006) 189(2):R1–8. doi: 10.1677/joe.1.06766
Frontiers in Endocrinology | www.frontiersin.org 712
52. Bartok B, Firestein GS. Fibroblast-Like Synoviocytes: Key Effector Cells in
Rheumatoid Arthritis. Immunol Rev (2010) 233(1):233–55. doi: 10.1111/
j.0105-2896.2009.00859.x
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Prolactin coordinates with the ovarian steroids to orchestrate mammary development and
lactation, culminating in nourishment and an increasingly appreciated array of other
benefits for neonates. Its central activities in mammary epithelial growth and
differentiation suggest that it plays a role(s) in breast cancer, but it has been challenging
to identify its contributions, essential for incorporation into prevention and treatment
approaches. Large prospective epidemiologic studies have linked higher prolactin
exposure to increased risk, particularly for ER+ breast cancer in postmenopausal
women. However, it has been more difficult to determine its actions and clinical
consequences in established tumors. Here we review experimental data implicating
multiple mechanisms by which prolactin may increase the risk of breast cancer. We
then consider the evidence for role(s) of prolactin and its downstream signaling cascades
in disease progression and treatment responses, and discuss how new approaches are
beginning to illuminate the biology behind the seemingly conflicting epidemiologic and
experimental studies of prolactin actions across diverse breast cancers.

Keywords: prolactin (PRL), breast cancer, mammary cancer, luminal breast cancer, HER2+ breast cancer, STAT 5
transcription factor, triple negative breast cancer
1 INTRODUCTION

Factors that regulate cell-specific proliferation and differentiation repeatedly have been shown to be
significant actors in oncogenesis and potential therapeutic targets in established cancers. Prolactin
(PRL) cooperates with the ovarian steroids, estrogen and progesterone, to orchestrate the cycles of
mammary development and differentiation that lead to successful lactation, providing nourishment
for the offspring. PRL-initiated signals that expand alveolar cells during pregnancy and coordinate
their differentiation at the time of birth have been mechanistically defined [ (1–4) and references
therein]. The essential actions of PRL in these physiological processes have suggested roles in breast
Abbreviations: APC, adenomatous polyposis coli; COL1A1, collagen type I alpha 1; DCIS, ductal carcinoma in situ; ECM,
extracellular matrix; ER, estrogen receptor alpha; FAK, focal adhesion kinase; GH, growth hormone; JAK2, janus kinase 2;
MHT, menopausal hormone therapy; MMP, matrix metalloprotease; MMTV, mouse mammary tumor virus; NOD, non-obese
diabetic; NR4A, nuclear receptor subfamily 4 group A member 1; NRL, neu-related lipocalin; NSG, NOD SCID gamma; OHT,
hydroxytamoxifen; PDX, patient-derived xenograft; PGE2, prostaglandin E2; PRL, prolactin; PRLR, prolactin receptor;
PTGS2, prostaglandin-endoperoxide synthase 2; RCAS, replication-competent ASLV long terminal repeat (LTR) with a splice
acceptor; SCID, severe combined immunodeficiency; STAT, signal transducer and activator of transcription; TNBC, triple
negative breast cancer.

n.org June 2022 | Volume 13 | Article 910978113

https://www.frontiersin.org/articles/10.3389/fendo.2022.910978/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.910978/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:linda.schuler@wisc.edu
https://doi.org/10.3389/fendo.2022.910978
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.910978
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.910978&domain=pdf&date_stamp=2022-06-16


Schuler and O’Leary Prolactin and Breast Cancer
cancer [ (5–14) and references therein], by analogy to the
recognized roles of the two other major hormones that
regulate mammary development and function, estrogen and
progesterone. Yet understanding its activities and consequences
across diverse clinical breast cancers in order to develop
prevention or treatment strategies has been elusive.

While control of PRL expression by pituitary lactotrophs
during pregnancy and lactation is well understood [reviewed in
(15)], its expression outside of pregnancy has received less
attention. Pituitary PRL secretion is influenced by many
factors, and circulating levels in nonpregnant women vary
considerably (16–18). In addition to physiological stimuli,
estrogen-progestin menopausal hormone therapy (MHT) raises
circulating PRL (18), and anti-psychotics that antagonize
dopamine induce hyperprolactinemia (19, 20). Further, PRL
also can be expressed by non-lactotrophs, including within the
mammary gland (21–23), and by breast cancer cells themselves
(24–27). COX-2 (PTGS2) can induce PRL expression in
fibroblasts, including at potential metastatic sites, mediated by
PGE2 induction of NR4A (28). Moreover, in contrast to growth
hormone (GH) in nonprimates, hGH is also a potent PRL
receptor agonist (29, 30). Like PRL, it can be produced locally
by breast cancer cells (26), and hGH and PRL receptors can
heterodimerize (31). Thus, PRL receptors (PRLR) in the breast
may be exposed to agonists from local and circulating systemic
sources, even in the absence of pregnancy.

Here we review the epidemiologic evidence linking PRL to
oncogenesis in the breast, and recent experimental studies
implicating multiple underlying mechanisms. We then address
the more controversial role(s) for PRL in established breast
cancers. PRLR is highly expressed in many breast cancers
across all different subtypes, and epidemiologic analyses and
experimental studies are revealing that PRL can elicit both pro-
differentiation and pro-aggression outcomes. We discuss how
new approaches are illuminating the factors that determine the
responses to PRL, including intrinsic tumor cell properties and
the microenvironment, and point to directions for future studies
that will integrate our understanding of this hormone in breast
cancer progression and therapeutic responses.
2 PRL ACTIONS IN DEVELOPMENT OF
BREAST CANCER

2.1 Epidemiological Studies
Multiple epidemiologic studies have examined the relationship
between levels of circulating PRL and development of breast
cancer [meta-analysis and review (32),]. Large prospective
studies have linked higher levels of circulating PRL within the
normal range to increased risk for breast cancers which express
estrogen receptor alpha (ER+) in postmenopausal (16, 33), or
premenopausal women (34). In the study nested within the
Nurses’ Health Study, PRL levels predicted breast cancer risk
independent of estrogen (35). Additional analyses of this cohort
found that the association of circulating PRL in the highest
quartile in postmenopausal women ten years prior to diagnosis
Frontiers in Endocrinology | www.frontiersin.org 214
was strongest for aggressive ER+ breast cancer (36).
Furthermore, epidemiologic studies have linked PRL to
mammographic density (34, 37, 38), a potent independent
contributor to increased breast cancer risk (39, 40).
Incorporation of PRL in risk prediction models improves their
efficacy (34, 41). Conversely, the reduced PRL levels in parous
compared to nulliparous women may play a role in the long term
protection conferred by pregnancy (16, 18, 34, 42).

2.2 Experimental Studies
2.2.1 In Vivo Models
The ability of PRL to stimulate mammary tumorigenesis in
rodent models has been recognized for some time. Many early
studies manipulated pituitary PRL (5–7), especially using
pituitary isografts transplanted to the kidney capsule to
chronically elevate circulating PRL by removing the inhibitory
effects of dopamine (43). This approach reveals effects of PRL in
combination with progesterone; in rodents, PRL also supports
the corpus luteum (44).

More recently, genetically modified mice have permitted
interrogation of mechanisms by which PRL may increase risk
of breast cancer, apart from ovarian steroids. Transgenic PRL
under the control of several promoters leads to mammary
cancers [reviewed in (45)], as does transgenic mammary
STAT5A, the canonical mediator of PRL signals (46). PRL
drives development of mammary cancers in mice with
germline ablation of Stat1 secondary to somatic truncating
mutations in Prlr, resulting in an alternatively spliced protein
resembling the human “intermediate” isoform (47) (see Sections
3.1, 3.4.2). Our group generated the NRL-PRL mouse (48, 49), in
which transgenic rat PRL is expressed by mammary epithelia,
mimicking the local PRL synthesis in breasts of women (23).
Unlike circulating PRL, this locally elevated PRL does not disturb
estrous cycling, enabling study of the interactions of PRL with
ovarian hormones, of particular importance when assessing
models of pre- and post-menopausal breast cancer. Mammary
glands of young adult NRL-PRL females exhibit elevated pERK1/
2 and pAKT, in addition to pSTAT5 (50), reflecting the spectrum
of PRL-initiated signaling cascades (22, 51). These mammary
glands exhibit both ductal abnormalities (mammary
intraepithelial neoplasias, resembling ductal carcinoma in situ,
DCIS), and epithelial hyperplasias (48, 52). With age, nulliparous
females spontaneously develop histologically diverse, metastatic
ER+ carcinomas with long latencies, mirroring the epidemiologic
link between PRL exposure and aggressive ER+ cancer (36).
These tumors can develop without postpubertal ovarian steroids,
similar to the observation that the increased risk conferred by
PRL in women is independent from estrogen (16), although
supplemental 17b-estradiol decreases tumor latency (50). Once
established, tumors are no longer dependent on estrogen for
growth, modeling clinical anti-estrogen resistant luminal B
cancers (53–55). However, the ER remains functional; estrogen
activity modulates tumor gene expression and behavior,
including proliferation and cancer stem cell activity (54, 56).

In order to understand the molecular events underlying PRL-
driven oncogenesis, we performed comprehensive genomic
June 2022 | Volume 13 | Article 910978
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profiling over the course of disease (57). Similar to clinical ER+
breast cancers (58–60), end stage tumors exhibited few
nonsynonymous somatic mutations. However, nearly 80% of
tumors showed alterations in the Ras pathway, including
canonical activating mutations and copy number amplifications
of Kras. Interestingly, many aggressive clinical ER+ breast
cancers exhibit elevated Ras pathway activity as a result of
mutations in the Ras proteins, or reduced expression or
somatic loss of Ras-GAP tumor suppressors (61–64). Many of
the remaining 20% of experimental PRL-induced cancers
exhibited elevated pAKT, but not pERK1/2, consistent with
driver mutations in the phosphatidylinositol-3-kinase pathway,
common in many clinical ER+ cancers (63, 65, 66).
Transcriptomic analyses showed that tumors expressed variable
transgenic PRL compared to preneoplastic tissue, suggesting
divergent PRL influence once tumors are established. These
analyses also revealed marked alterations in cell-intrinsic
processes and the tumor microenvironment, including immune
activity. Consistent with low numbers of intratumoral
lymphocytes, including CD8+ effector T cells, but large
numbers of infiltrating macrophages, tumors contained
strikingly reduced transcripts for many chemokines and
indicators of anti-tumor immunity. This immunosuppressed
environment resembles that of clinical ER+ breast cancers
[reviewed in (67, 68)].

2.2.2 Direct Actions on Mammary Epithelia
Extensive studies of the direct actions of PRL on breast cancer
cells in vitro have demonstrated increased proliferation and cell
turnover [reviewed in (22)], and these effects are also observed in
normal mammary epithelia in the dynamic in vivo environment
in multiple murine models (2, 45, 49). In addition, recent studies
have revealed that PRL powerfully influences the mammary
epithelial hierarchy, both independent of ovarian steroids and
in concert with these hormones (69) (Figure 1).

In the NRL-PRL model, local PRL increased epithelial stem/
progenitor activity and dampened the regulatory networks which
Frontiers in Endocrinology | www.frontiersin.org 315
drive differentiation (69). In ovariectomized young adult females,
transgenic PRL increased luminal progenitors; in combination
with estrogen and progesterone, PRL increased bilineage
progenitors, and raised stem cell activity associated with
augmented canonical Wnt signaling. However, PRL opposed
steroid-driven luminal maturation, associated with reduced
Gata3 and higher Sox9 transcripts (69). A growing literature
supports stem/progenitor cell populations as cancer cells of
origin (70), and mammary luminal progenitors have been
implicated as precursors for multiple subtypes of breast cancer
[reviewed in (71)]. The ability of PRL to expand these epithelial
subpopulations would contribute to increased cancer risk.

2.2.3 Effects on Non-Epithelial Cells
Multiple non-epithelial cells in the mammary environment have
been reported to express PRLR (72, 73). Although few actions of
PRL at stromal targets have been addressed experimentally in the
context of breast cancer, data from physiologic and other
pathologic states suggest the need for additional study. The
critical roles of the immune system in mammary development,
lactation and involution are increasingly appreciated (74–76).
PRL, like the ovarian steroids, can influence mammary immune
cell content and activity, both indirectly by altering epithelial
cytokine secretion (77), as well as directly acting on both innate
and adaptive immune cell subpopulations (78–83). Studies of
lymphocyte activation in vitro showed a bimodal concentration-
dependent response to PRL (84, 85), suggesting the intriguing
possibility that mammary PRL synthesis may influence local
immune activity. Together, these reports suggest that PRL may
modulate inflammation and/or immunotolerance during
tumorigenesis, with potential to contribute to a permissive
environment for development of breast cancer.

PRL-induced synthesis of components of the extracellular
matrix (ECM) by both epithelial and non-epithelial target cells
may complement mitogenic effects of PRL on mammary
epithelium to augment mammographic density, suggesting
another mechanism by which PRL may raise risk (86). In this
FIGURE 1 | Studies of human samples and experimental models have shown that PRL can act on multiple target cells within the mammary environment, including
not only epithelia, but also stromal cells, including immune and fibroblastic cell subpopulations. Although its effects on epithelia are best understood in the context of
breast cancer, its actions on stromal targets which have been defined in other systems would also be predicted to increase the risk for breast cancer. See Section
2.2 for details.
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regard, the ability of PRL to stimulate macrophages to augment
fibrosis in pancreatic cancer is of interest (87). Furthermore, PRL
can modulate angiogenesis. As an intact protein, it can promote
vascularization (88, 89); in contrast, its proteolytic products
(vasoinhibins) impede this process (90). These activities have
suggested roles in normal mammary function as well as breast
cancer (91).

2.2.4 Contributions to Growth of Early Lesions
These actions of PRL on breast epithelia and potentially on other
stromal cells could support development of breast cancers.
Moreover, these activities would fuel early lesions regardless of
the initiating event (Figure 1). Many clinical DCIS lesions
express PRLR (92), and the PRL antagonist, D1-9-G129R-
hPRL, inhibited the mammosphere-forming activity of primary
DCIS samples (93). The rich literature elevating systemic PRL
using pituitary isografts in mouse models demonstrates that PRL
in combination with progesterone can promote carcinogen- and
p53 null-induced tumors [e.g., (6,94)]. Conversely, germline
genetic ablation of Prl or Prlr slowed growth of lesions induced
by viral oncogenes (95, 96). Antipsychotics that act by
antagonizing dopamine, thereby raising circulating PRL,
promoted tumorigenesis in experimental models initiated by
RCAS-caErbB2, RCAS-HrasQ61L and MMTV-Wnt-1 (97). A
recent study found that patients using these drugs had a
significantly increased risk of breast cancer (20). Together,
these observations in patients and murine models indicate a
role(s) for PRL in progression of early lesions.

2.2.5 Cooperation With Other Factors
2.2.5.1 Estrogen, Progesterone
In patients, PRL would act in concert with other hormones and
potentially carcinogenic factors, as well as dysregulation of
multiple pathways as disease progressed. Prior to menopause,
PRL would interact with ovarian steroids; after menopause,
estrogen/progestin MHT would continue this crosstalk. In the
European Prospective Investigation into Cancer and Nutrition
cohort, postmenopausal women with higher circulating PRL who
had used combined estrogen/progestin MHT had the most
significant increase in incidence of ER+ breast cancer (33).
Estrogen in the absence of progestins also would be an actor in
postmenopausal women receiving either estrogen only MHT, or
in untreated women by extraovarian estrogen synthesis (98, 99).
PRL cooperates with estrogen, a well-recognized risk factor for
breast cancer, by multiple mechanisms, including reciprocal
upregulation of the other’s receptors (100, 101), and
downstream crosstalk (102, 103). Supplemental estrogen
accelerates PRL-driven mammary cancers in the NRL-PRL
model (50). Furthermore, PRL induced pAKT and pERK1/2
can activate ERa in the absence of estrogen ligand in vivo as well
as in vitro (104–106). PRL interaction with progesterone has
been best studied in the context of pregnancy and lactation,
where these hormones cooperatively drive expansion of alveolar
cells during pregnancy, but oppose one another to initiate
lactation (3). Outside of pregnancy, they regulate the other’s
receptors, and as observed above, work together to increase
mammary stem cells (69, 107, 108).
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2.2.5.2 Other Oncogenic Factors
Locally elevated transgenic PRL also has revealed potent
collaboration with other oncogenic pathways. Crosses between
NRL-PRL mice and other murine models of mammary cancer,
including elevated TGFa, loss of p53, and mutagen with
increased canonical Wnt signals conferred by an inactivating
mutation in the tumor suppressor APC, dramatically reduced
tumor latency or increased tumor incidence (52, 104, 109–111).
Transgenic PRL not only enhanced carcinogenesis, but also
markedly influenced the resulting cancers in ways that would
impact treatment responses. For example, transgenic local PRL
increased the proportion of claudin low tumors in the absence of
p53 (110), and in the presence of mutated APC, elevated PRL
resulted in tumors with Notch-dependent cancer stem cell
activity, compared to the b-catenin-dependence observed in
tumors with mutant APC alone (111). Further, transgenic PRL
and TGFa in combination sustained activation of the ERK1/2
and AKT signaling cascades (104, 109), reflecting the potent
cooperation of PRL with growth factor-initiated signals (112,
113). This further activates ERa in the absence of estrogen ligand
in vivo (104, 106, 109), one mechanism which underlies
resistance of ER+ breast cancers to anti-estrogens (114, 115)
(Section 3.3 below). In contrast to the positive interactions
between PRL and growth factors in these transgenic murine
and breast cancer models, PRL and EGF have been reported to
oppose one another in “normal” mammary cell lines, such as
HC11 and NMuMG; the phenotype of the target cell is likely to
be critical in dictating the outcome of PRL signals and crosstalk
with other signals (112, 116).
3 ROLE OF PRL IN ESTABLISHED
BREAST CANCERS

In contrast to the strong epidemiologic data supporting a role for
PRL in development of breast cancer, particularly of ER+
tumors, its role in established cancers continues to be actively
debated. Much of the discussion revolves around the extent of
PRLR expression by the tumor parenchyma, including which
breast cancer subtypes and which PRLR isoforms, and
importantly, whether PRL fuels tumor aggression or fosters a
more differentiated phenotype.

3.1 PRL Receptors in Clinical Breast
Cancers
PRLR isoforms with distinct intracellular domains and
consequent differing signaling capacities are generated by
alternative splicing. The full length “long” PRLR isoform is
best studied, but as noted below, expression of the
“intermediate” PRLR isoform in breast cancers is also
recognized. Homo- and hetero-dimerization of these PRLR
isoforms not only influences the repertoire of potential
signaling pathways, but also stability of the receptors [reviewed
in (22, 117)]. These isoforms have further confounded detection
of PRLR across breast cancer subtypes, which is already
complicated by the specificity and sensitivity of historically
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available antibodies (117, 118). However, multiple recent studies
have reported PRLR protein expression in ER+, HER2+ and
triple negative (TNBC) breast cancers, in sharp contrast to the
epidemiologic link between PRL and development of only ER+
breast cancers. The relative proportion of tumors within each
subtype that expressed PRLR varied with the cohort examined,
antibody utilized [i.e., detecting the extracellular domain shared
by most PRLR isoforms (119–121), intracellular domain of the
full length “long” PRLR (92, 122), or unique intracellular domain
of the “intermediate” PRLR isoform (117)], and other
methodological differences. Given these variables, it is not
surprising that the proportion of PRLR-expressing breast
cancers varied from 25-83%.

Although PRLR expression was independent of ER (92, 119,
120, 122), PRLR levels were highest in ER+ tumors when
analyzed (92, 123). Some of these studies found highest PRLR
expression in more differentiated tumors in patients with longer
metastasis free survival (92, 119). In contrast, Shemanko and her
colleagues found that higher tumor PRLR protein levels
correlated with a shorter time to bone metastasis, consistent
with experimental PRL-induced osteoclast differentiation (120).
Some of these reports included interrogation of relative
transcript abundance and outcomes in various publicly
available databases; with the caveat that transcript levels may
not reflect protein expression, these results also differed (92, 123).

Although overall, TNBCs expressed less PRLR detected with
an antibody to the intracellular domain of the “long” PRLR (92),
a subset of these tumors expressed higher PRLR levels. This
TNBC subset was found to be more differentiated, supporting the
hypothesis that PRL drives a pro-differentiation program in these
cancers (122). (See review by Ali and colleagues elsewhere in this
series). Interestingly, however, Clevenger and colleagues reported
that the “intermediate” isoform of the PRLR, which would not
have been detected with the antibody used in the study above,
was most highly expressed in TNBC (117). Moreover, they found
that cancers with a high ratio of transcripts for the
“intermediate” to the “long” PRLR isoform were associated
with greater likelihood of distant metastases in the TCGA
database. Experimentally, heterodimers of these PRLR isoforms
were more stable, and less able to activate STAT5 (Section 3.4.2
below). Clinical TNBCs are very heterogeneous (124, 125);
together, these reports suggest that different TNBC subsets
may respond quite differently to PRL.

Although many of these studies correlated levels of PRLR
protein or transcripts with prognosis, albeit with conflicting
conclusions, the outcome of PRLR signaling has been directly
addressed only in small Phase I/II studies of patients with
advanced disease. A study of a PRLR neutralizing antibody as
a monotherapy that included 34 breast cancer patients (all
subtypes, but 75% ER+ cancers) found no significant effect on
disease progression (126). In another small Phase II trial (20
breast cancer patients), the dopamine D2 receptor agonist,
cabergoline, was used to inhibit secretion of pituitary PRL; two
of these patients experienced extended disease control (127). The
lack of definitive positive results dampened enthusiasm, although
the small number of patients, the advanced stage of their disease,
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and extensive pretreatment regimens limit interpretation.
However, interest in this area persists. Conjugates of other
therapeutic agents to PRL antagonists or PRLR neutralizing
antibodies are being developed, as discussed further in Section
3.3 below.

3.2 Experimental Studies Using Xenografts
Mouse PRL has little activity at the human PRLR (30), which has
complicated experimental study of breast cancers in vivo.
However, Rui and his colleagues have developed a mouse in
which the mouse Prl gene has been replaced with the human PRL
gene (NSG-Pro), resulting in physiologic regulation of hPRL
expression (128). In these recipients, ER+ patient derived
xenografts (PDXs) displayed a remarkable 15-20 fold higher
transplantation rate than in wildtype NOD SCID gamma (NSG)
mice. Moreover, the NSG-Pro mice facilitated metastatic
dissemination and growth of distant lesions, genetic evolution
and development of anti-estrogen resistance (128). These studies
support an important role for PRL in the biology of ER+ tumors.

Well-characterized breast cancer cell lines modeling different
breast cancer subtypes have been extensively studied in vitro to
understand the outcomes of PRL actions, and to dissect its
signals and mechanisms of interaction with other factors; these
reports will not be further reviewed here. (See reviews by Ali and
Clevenger and their colleagues elsewhere in this series). Some
investigators have examined PRL responses in murine recipients
of transplanted cell lines by providing another source of hPRL,
with conflicting results. Primary tumors of transplanted MDA-
MB-468 breast cancer cells that expressed hPRL grew more
rapidly than tumors that did not in nu/nu (nude) mice (129).
Reduction of the “long” PRLR isoform reduced pulmonary and
hepatic metastatic burden in NOD-SCID recipients of HER2+
BT474 cells, which were supplemented with hPRL (130). In
contrast, hPRL-treatment of NOD/SCID mice bearing
xenografts of MDA-MB-453 breast cancer cells reduced tumor
growth and dissemination (122), and growth of primary HER2+
SKBR3 tumors (131).

In a different approach, Ali and her colleagues used CRISPR/
Cas9 to reduce PRLR expression in the ER+ MCF7 and HER2+
SKBR3 breast cancer cell lines (132). Loss of PRLR in MCF7 cells
reduced ER expression, consistent with regulation of ESR1 by PRL,
and promoted less differentiated, more aggressive tumors upon
transplantation toNOD/SCIDmice. InHER2+ SKBR3 cells, loss of
PRLR increased HER2 expression, and ability to colonize lungs of
NSG recipients. These findings, together with associated in vitro
analyses, indicate beneficial actions of PRLR in these models (132).
(See review by Ali and colleagues elsewhere in this series).

The basis for the disparate responses to PRL in these
xenograft studies is unclear. There are many differences among
these experiments. The transplanted cancer cells, whether PDXs
or different breast cancer cell lines (133, 134), are quite distinct.
Moreover, the design of these studies differs markedly, including
placement of the transplanted cells, the extent that the murine
hosts are immunocompromised, and method of manipulating
PRL activity. Additional studies are necessary to understand how
these findings reflect diverse clinical breast cancers.
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Few studies have been performed in syngeneic experimental
models. However, the findings are intriguing. In a murine model
of HER2+ cancer (MMTV-neu), the PRL antagonist, G129R-
hPRL, reduced metastases after removal of the primary tumor
(135). In a subsequent study, the effects of G129R-hPRL on HER2
signaling in this model were found to be dependent on cancer
associated fibroblasts (136), supporting the importance of study of
complex systems with multiple cell types. Systemically reducing
expression of the “long” PRLR isoform using a novel method
reduced metastases in the aggressive 4T1 model, and PRL-
supported immunosuppressive Tregs were identified as a major
target (83, 130). These observations underscore the drawbacks of
xenograft models. Most notably, currently available xenograft
recipients are severely immunocompromised, lacking critical
components of the host response. Ongoing efforts to develop
mice with “humanized” immune systems will address this
shortcoming. In addition, subtle differences in the structures of
mouse/human proteins can obscure paracrine/systemic
communication between tumor and stromal cells, e.g., PRL
itself (30).

3.3 PRL Interactions With Other Treatment
Approaches
Although PRL/PRLR inhibitors have not shown robust promise
as monotherapies, there has been long term interest in their
interaction with other treatment modalities, especially with anti-
estrogens in ER+ breast cancers. As noted in Section 2.2.5, PRL
cooperates with estrogen by multiple mechanisms, which have
been dissected primarily in the well-differentiated ER+ breast
cancer cell line, MCF7 (100–103). Not surprisingly, as for other
aspects of cancer biology, this relationship evolves with disease
progression. In an experimental rat model of hormonally-
responsive ER+ mammary cancer, concomitant inhibition of
PRL and aromatase cooperatively reduced tumor growth (137).
Similarly, in therapy naïve ER+ PDXs transplanted to NSG-Pro
recipients, PRL initially supported anti-estrogen responsiveness,
but with time, the PRL environment facilitated development of
resistance to tamoxifen (128). This was associated with increased
growth factor signals, including ligand independent activation of
ER, a potent outcome of PRL-growth factor crosstalk (See
Section 2.2.5), and activation of the ERBB2 pathway (128).
This relationship between PRL and resistance to anti-estrogens
is reflected in some but not all small clinical studies [reviewed in
(16)]. Interestingly, LAT1/SLC7A5, a transporter for branched
chain amino acids which is regulated by PRL during lactation
(138), is highly expressed by tamoxifen resistant cancers (139–
141). The growing recognition of the importance of tumor
metabolism, and role of PRL in regulation of metabolism
during lactation, points to this area for further study.

The potent crosstalk of PRL with growth factor-initiated
signals observed both in breast cancer cell lines (112, 142), and
anti-estrogen resistant ER+ PDXs (128) has suggested that
targeting PRL signaling in combination with these pathways
may be an efficacious therapeutic strategy. PRL can initiate
phosphorylation of HER2 in SKBR3 and BT474 breast cancer
cells in vitro and in a murine MMTV-neu-derived tumor ex vivo
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(136, 143, 144). In light of the apparent conflict of these in vitro
observations with the results of some but not all xenograft studies
as noted in Section 3.2, this deserves additional investigation.

Several small clinical studies suggested that reduction of PRL
might improve responses to chemotherapies [reviewed in (16,
145)]. The ability of PRL to promote survival of breast cancer
cells in vitro has been appreciated for some time [reviewed in (22,
145)]. In breast cancer cell lines representing different cancer
subtypes, PRL promoted to resistance to chemotherapies,
including doxorubicin, paclitaxel, and cisplatin (93, 146, 147).
Several related mechanisms have been identified, including PRL-
induced expression of anti-apoptotic proteins (148),
transcription of the multidrug resistance transporter ABCG2
(149), and activation of glutathione-S-transferase (147).
Interaction with chemotherapies has not been directly revisited
clinically, but these actions may contribute to the efficacy of
compounds conjugated to anti-PRL agents, as noted below.

The relatively low toxicity of PRL antagonists and PRLR
neutralizing antibodies and widespread PRLR expression across
different breast cancer subtypes have prompted their
development as delivery vehicles for other therapeutic agents,
including cytotoxic compounds (121, 135, 150, 151), anti-HER2
(152), and immunomodulators to attract and/or activate CD8+ T
cells (135, 153). In addition to targeting delivery of other
treatments, testing of these molecules will also provide
information on the efficacy of concomitant inhibition of
PRL signals.

3.4 PRL Initiated Signals
3.4.1 Canonical JAK2-STAT5 Pathway
As described above, most studies have examined the outcome of
the sum of all PRL-initiated signals in different breast cancer
settings. However, it has long been appreciated that PRL can
activate multiple signaling cascades (22, 51), with potentially
different outcomes. The JAK2-STAT5A pathway mediates PRL-
driven proliferation and differentiation that is essential for
successful lactation (2, 154, 155), and binding of STAT5A to
regulatory enhancer regions initiates chromatin remodeling,
coordinating tissue specific gene expression (4, 156). (See
review by Clevenger and colleagues elsewhere in this series).
Transgenic overexpression of STAT5A leads to mammary
carcinomas in the absence of other oncogenes (46). However,
evidence for high STAT5A activity in clinical breast cancers has
been repeatedly associated with more differentiated cancers and
better prognoses [ (154, 157, 158) and references therein].
Consistently, the JAK2-STAT5A pathway also has been linked
to PRL-induced pro-differentiation activities in various
experimental models (53, 56, 159–161) (Figure 2). Of
particular interest for premenopausal breast cancer, PRL-
activated STAT5 suppressed a progestin-induced progenitor
population in T47D breast cancer cells (162).

The highly homologous STAT5B remains a complication in
these studies. In contrast to STAT5A, STAT5B is not associated
with a more favorable prognosis in patients (158), and in vitro,
STAT5B drives aggressive behavior in several models (56, 159,
161). Activities distinct from STAT5A are supported by different
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target genes (56, 158, 163), and divergent regulation by estrogen
activity (56). Additional studies with more specific reagents are
needed to resolve the roles of the STAT5 isoforms in PRL actions
in breast cancer.

3.4.2 Other Signaling Cascades
PRL can also initiate activation of src family kinases, and
multiple additional mediators, including AKT and MAP
kinases (164–168). Interestingly, the alternatively spliced PRLR
isoforms with distinct intracellular domains are less able to
activate the JAK2/STAT5 pathway than the well-studied “long”
PRLR isoform. Indeed, heterodimerization of the “long” PRLR
isoform with the “intermediate” isoform, which was recently
reported to be highly expressed in a subset of TNBC (see Section
3.1), inhibits phosphorylation of STAT5, without impacting
other PRL-activated signaling pathways (117). AKT and MAP
kinase cascades are linked to tumor progression for many
cancers (169–173). Moreover, as noted above, they can activate
ERa in the absence of ligand (105, 106), with implications for
therapeutic responses to anti-estrogens in ER+ breast cancers.
Importantly, they are also potent sites of cooperation with other
oncogenic factors, including growth factors (112, 142). Together,
these observations point to the potentially divergent outcomes of
different arms of PRL signals, and raise the question of
determinants of the repertoire of signaling options for PRL.
Clearly intrinsic differences in tumor cells themselves, including
relative levels of PRLR isoforms and other signaling components
play a role; different breast cancer cell lines, even of the same
breast cancer subtype, exhibit different spectra of PRL activated
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signals in vitro [e.g., (137, 174)]. In addition, as discussed below,
environmental factors also can powerfully modulate the balance
of PRL signals.

3.4.3 Features of the Extracellular Matrix Shift PRL-
Initiated Signals in ER+ Tumor Cells and Alter
Sensitivity To Anti-Estrogens
Accumulating data underscore the importance of the ECM in
normal mammary function and tumor behavior (86, 175). A
mechanically stiff matrix increases signaling through focal
adhesions (176, 177). Aligned collagen fibers oriented
perpendicularly to the tumor boundary have been linked to a
poor prognosis, particularly in ER+ breast cancer (178). We have
demonstrated that ECM structure can strongly influence the
spectrum of PRL signals and PRL-estrogen crosstalk in ER+
breast cancer cells, and reciprocally, that these hormones can
modify ECM structure (Figure 2). When well-characterized ER+
breast cancer cell lines were cultured in stiff ECM in vitro (MCF7
and T47D cells in 3-dimensional collagen cultures and tunable
polyacrylamide substrates), PRL was less able to activate JAK2/
STAT5, but more strongly activated FAK-SRC-ERK1/2,
associated with increased localization of PRLR in focal
adhesions (167, 179). These conditions augmented PRL-driven
invasion and re-orientation of collagen fibers in vitro (167), and
intravasation and metastasis of PRL-initiated ER+ tumors in a
syngeneic model of increased COL1A1 density/stiffness in vivo
(180). Moreover, a stiff/dense matrix enhanced PRL-estrogen
crosstalk to increase invasion, reduce responsiveness to
tamoxifen, and further modify ECM structure in vitro (181);
FIGURE 2 | PRL can initiate multiple signaling cascades in established cancers, which can result in different biological outcomes. Determination of the repertoire of
PRL signals can be modulated by multiple factors, including properties of the ECM. In ER+ cell lines, the stiffness and density of the extracellular matrix (ECM)
strongly influences the balance of these signals: in stiff matrices, PRL signals are shifted away from the canonical JAK2/STAT5A pathway, and toward FAK/SFK/
ERK1/2. This shift permits PRL to drive proliferation, invasion, and resistance to tamoxifen (OHT), and further remodel collagen fibers in the ECM. These experimental
findings support the clinical observations that ER+ cancers with regions of aligned collagen perpendicular to the tumor boundary have a worse prognosis, and that
activated STAT5A is strongly linked to more differentiated cancers and tamoxifen sensitivity. See Section 3.4 for details.
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these findings were supported using the syngeneic ER+ model
above (55). Moreover, progesterone further augmented PRL
induction of MMP3 RNA in stiff matrices (107). These studies
indicate that desmoplasia, a feature of the microenvironment of
many tumors, can alter the repertoire of PRL-initiated signals to
favor pro-tumor pathways and anti-estrogen resistance, thus
illuminating one mechanism underlying the apparent disparate
reports of the outcomes of PRL signals in ER+ breast cancers.
Extension of these studies of the effect of ECM characteristics on
PRL signals to other breast cancer subtypes may further resolve
some of the apparently contradictory reports.
4 SUMMARY AND FUTURE DIRECTIONS

Strong epidemiologic data linking higher levels of circulating
PRL to increased risk for ER+ breast cancer are supported by
multiple lines of experimental evidence. Independently from
ovarian steroids, PRL can modulate the epithelial hierarchy
and increase progenitor populations, drive development of
ductal and alveolar abnormalities, and with time, promote
aggressive metastatic ER+ carcinomas. PRL engages in
complex crosstalk with estrogen and progesterone, cooperating
with them by multiple mechanisms, but also opposing steroid-
driven differentiation. Further understanding of these
interactions apart from the hormonal milieu of pregnancy will
provide additional insight into the impact of PRL on increased
breas t cancer r i sk in premenopausa l women and
postmenopausal women treated with estrogen-progesterone
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MHT (107, 162, 182). As disease progresses with dysregulation
of multiple pathways, intrinsic tumor cell properties and the
stromal environment are likely to alter the responses of target
cells to PRL and its interactions with other potential oncogenic
factors. Although not well understood, the literature suggests
that PRL also may act directly on multiple mammary stromal cell
types including immune cell subpopulations and/or modulate
their activity via paracrine signals, which may further increase
risk. The high PRLR expression in clinical DCIS and
preneoplastic structures in preclinical models is reminiscent of
ER expression in many of these lesions [reviewed in (183)], and
suggests a role for PRL at this early stage of the disease process.

In contrast, the role(s) of PRL in the biology of established
clinical breast cancers remains unclear. Although PRLR is highly
expressed by many tumors across breast cancer subtypes, data
from small clinical trials inhibiting PRL action are difficult to
interpret, and studies of xenografts, particularly of breast cancer
cell lines, are conflicting. Responses of phenotypically diverse
heterogeneous cancers are complicated by different levels of
PRLR isoforms with distinct signaling capabilities, selection
and genomic evolution as tumors progress and respond to
initial therapies, and environmental context, including site-
specific responses of the metastatic niche [e.g., bone (120)],
ECM properties and the steroid hormone and growth factor
milieu (Figure 3). The emerging data support complex actions of
PRL in breast cancer biology, resembling the major recognized
hormonal actor in breast cancer, estrogen (184–186). This is
illustrated in ER+ cancers, the breast cancer subtype in which
PRL actions are currently best understood. Experimental
FIGURE 3 | PRLR is expressed on a substantial subset of breast cancers across the major subtypes. The outcome of PRL signals may vary considerably, driving
either differentiation or aggression, depending on tumor cell intrinsic properties (PRLR expression, available downstream signaling cascades) as well as extrinsic
factors (ECM characteristics, hormone/growth factor milieu), as illustrated above. See Section 3 for details.
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evidence shows that PRL can activate STAT5A-driven
differentiation, and maintain ERa expression, thereby
facilitating anti-estrogen responsiveness (56, 128, 132, 159,
161). However, PRL can also drive proliferation and invasion,
and support development of resistance to anti-estrogens (128,
181). Within the heterogeneous TNBCs, evidence indicates
distinct subgroups which exhibit divergent responses to PRL
(117, 122). Conflicting outcomes in a very limited number of
different HER2+ breast cancer cell lines suggest similar
possibilities. Together, these reports paint a more nuanced
picture of PRL action in established cancers, and potential for
very different outcomes depending on context. They underscore
the need for additional study of PRL in diverse clinical breast
cancers, changes with disease progression and therapeutic
pressure, and influences of the metastatic sites.

New technologies will assist in the resolution of these issues.
The NSG-Pro mouse is a powerful tool to interrogate the actions
of PRL in diverse clinical breast cancers in a dynamic in vivo
environment (128). Already providing insights into ER+ cancers,
this model will help resolve some of the conflicting studies
observed with experimental xenografts of a relatively small
number of breast cancer cell lines of other subtypes. It will
enable dissection of the mechanisms underlying observed
differences, and facilitate identification of biomarkers that
predict beneficial or adverse responses to PRL and/or PRL
inhibitors. Pending validation of humanized mice, syngeneic
mouse models continue to be essential to reveal the impact of
PRL as well as other agents on inflammation and suppression of
anti-tumor immunity, a critical step toward employment of the
promise of immunotherapies for hormonally responsive cancers.
Further, as discussed in Section 2.2.3, many other stromal cell
types which sculpt the tumor microenvironment are potential
PRL targets, motivating additional study in the context of breast
cancers. In addition, the paucity of inhibitors to interrogate PRL
Frontiers in Endocrinology | www.frontiersin.org 921
actions in clinical samples and experimental models is now
addressed by small molecule inhibitors (129), the technology to
reduce specific PRLR isoforms in vivo (130), and renewed
interest in PRLR neutralizing antibodies (Sections 3.1, 3.3).
Development of selective inhibitors of the JAK2 and src family
kinase-mediated signals of PRL, taking advantage of our
understanding of the closely related growth hormone receptor,
will advance these studies (142, 187, 188). Together, these
approaches will unravel the complex actions of PRL,
permitting a new understanding of the role of this third
hormone in breast cancer, with implications for prevention
and treatment.
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Terminal differentiation and
anti-tumorigenic effects of
prolactin in breast cancer
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and Jean-Jacques Lebrun

Department of Medicine, Cancer Research Program, The Research Institute of the McGill University
Health Centre, McGill University, Quebec, Canada
Breast cancer is a major disease affecting women worldwide. A woman has 1 in

8 lifetime risk of developing breast cancer, and morbidity and mortality due to

this disease are expected to continue to rise globally. Breast cancer remains a

challenging disease due to its heterogeneity, propensity for recurrence and

metastasis to distant vital organs including bones, lungs, liver and brain

ultimately leading to patient death. Despite the development of various

therapeutic strategies to treat breast cancer, still there are no effective

treatments once metastasis has occurred. Loss of differentiation and

increased cellular plasticity and stemness are being recognized molecularly

and clinically as major derivers of heterogeneity, tumor evolution, relapse,

metastasis, and therapeutic failure. In solid tumors, breast cancer is one of the

leading cancer types in which tumor differentiation state has long been known

to influence cancer behavior. Reprograming and/or restoring differentiation of

cancer cells has been proposed to provide a viable approach to reverse the

cancer through differentiation and terminal maturation. The hormone prolactin

(PRL) is known to play a critical role in mammary gland lobuloalveolar

development/remodeling and the terminal differentiation of the mammary

epithelial cells promoting milk proteins gene expression and lactation. Here,

we will highlight recent discoveries supporting an anti-tumorigenic role for PRL

in breast cancer as a “pro/forward-differentiation” pathway restricting plasticity,

stemness and tumorigenesis.

KEYWORDS

Prolactin/prolactin receptor, breast cancer, stem cells, plasticity, single cell analysis,
JAK/STAT, differentiation
Abbreviations: A/B, apical/basal; ALDH; aldehyde dehydrogenase gene; ATAC, Assay for Transposase-

Accessible Chromatin; BCSCs, breast cancer stem cells; BL, basal-like; BRD4i, bromodomain-containing

protein 4 inhibitor; CK5, cytokeratin-5; DT, differentiation therapy; EGF, epidermal growth factor; EMP,

epithelial-mesenchymal-plasticity; EMT, epithelial-to-mesenchymal transition; ER, estrogen receptor;

GOBO, Gene expression- based Outcome for Breast Cancer Online; HDACi, histone deacetylases

inhibitor; HER2, human epidermal growth factor receptor-2; HER2-E, HER2-enriched; hPRL, human

prolactin; LAR, luminal-androgen receptor; MaSC, mammary stem cell; NMI, N-myc interactor; PPARg,

peroxisome proliferator- activated receptor gamma; PR, Progesterone receptor; PRL, Prolactin; sc, single

cell; TNBC, Triple negative breast cancer.
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Introduction

Cancer is a complex disease caused by both genetic and

epigenetic mutations/alterations promoting uncontrolled

growth and ultimately ensuring the dysregulation of control

mechanisms of normal tissue differentiation and homeostasis

(1, 2). Recent advances in our understanding of the process of

tumorigenesis have indeed emphasized tumor plasticity

(encompassing dedifferentiation, blocked differentiation, and/

or trans-differentiation) and enrichment of stem-like cell

population(s) underlie tumor heterogeneity, progression and

therapy failure and resistance. Just recently, tumor cellular

plasticity was recognized within the “hallmarks” of cancer,

initially proposed in 2000, as an enabling feature promoting

tumor evolution and progression (2, 3). Thus, reprograming

and/or restoring differentiation of cancer cells has been

proposed to provide a viable approach to reverse the cancer

phenotype through differentiation and terminal maturation

(4). Importantly, while differentiation-based therapeutic

approaches have already been employed and shown success

in the treatment of hematological malignancies, their

application to solid tumors including breast cancer is yet to

be fully developed and is an area of intense investigation (5–8).

Thus, it is evident that characterizing mechanisms/pathways

promoting differentiation in breast cancer is fundamental and

will help generate novel differentiation-based reagents and

approaches to better manage and serve patients stricken by

this aggressive disease. In this review we will summarize

knowledge gained from exploring the impact of the

mammary differentiation hormone PRL in the context of

suppression of breast tumorigenesis through restoration of

differentiation and suppression of stemness.
Breast cancer differentiation
state illustrates good prognosis vs
poor prognosis

Tumor differentiation state in breast cancer is classically

determined by the tumor grade established based on the use of

certain histological and morphological criteria, such as nuclear

pleomorphism, gland or tubule formation and number of dividing

cells, and has long been used as predictive of cancer behavior

where immature tumor (not resembling the tissue of origin) is

more aggressive than the more differentiated counterpart (9–11).

Findings emanating from a large study examining tumor grade

and patient outcome indicated that high-grade (grade 3) breast

cancers tend to recur and metastasize early following diagnosis

and show poor prognosis, whereas low-grade tumors (grade 1)

tend to show a very good outcome and grade 2 tumors show an

impaired outcome in the long term (12, 13).
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Moreover, the correlation of breast cancer differentiation

state with tumor behavior and patient outcome can also be

gleaned from the current classification schemes of breast

cancer whether based on evaluating the histological

expression of the estrogen receptor (ER), progesterone

receptor (PR) and human epidermal growth factor receptor-

2 (HER2), or classifications based on intrinsic gene expression

and genomic profiling (PAM 50) (14, 15). Largely, breast

cancers can be categorized into molecularly distinct subtypes

including, luminal A, luminal B, HER2-enriched (HER2-E)

and basal-like and claudin low (representing triple negative

breast cancer [TNBC]: ER-, PR-, HER2-) (16–18). Among the

different breast cancer subtypes, the most differentiated breast

tumors are those of the luminal A subtype which tend to be of

low grade showing epithelial-like differentiation and

interestingly have the least aggressive tumor biology and the

most favorable prognosis. In contrast, luminal B, HER2-E and

TN are considered ‘aggressive’ subtypes, characterized by a

tumor biology showing generally high grade, high mitotic/

proliferation index, and a greater risk of local recurrence,

metastasis and poor survival outcomes (19–21). In

agreement, recent studies using single cell (sc) approaches

have further emphasized the phenotypic and cellular diversity

of breast tumors (22, 23). Importantly, tumor cellular

phenotypic abnormalities linked to deviation from the juxta-

tumoral area were found to be higher for tumor cells of luminal

B, luminal B-HER2+, TN, and grade 3 tumors than for luminal

A and lower grades tumors. Moreover, phenotypically

abnormal cells were also correlated with hypoxic phenotype

and proliferation marker expression which were previously

linked to poor differentiation in breast cancer (24). Moreover,

sc-analyses of the heterogeneous TNBC subtype showed that

TNBC tumors of the basal-like phenotype as exhibiting high

proliferation index compared to the TNBC subtype showing

luminal-androgen receptor (LAR)-differentiation phenotype

(23, 25).

Additionally, over the past two decades studies evaluating the

breast cancer cell-of-origin and the cancer stem cell hypothesis have

emphasized a link between the mammary stem cell (MaSC)

hierarchy, breast cancer stem cells (BCSCs) and the inter- and

intra-tumoral heterogeneity of breast cancer (26–28). These studies

highlighted that essentially breast cancer originate from amammary

luminal progenitor population and indicated the presence of rare

populations of cancer cells within breast tumors that exhibit high

tumorigenic capacity and resistance to chemotherapy with a stem-

like phenotype capable of self-renewal and tumor repopulation.

These aggressive BCSCs are found to be mostly enriched in the

aggressive breast tumors such as TNBC as well as HER2-E tumors

(29). In summation, there is extensive literature implicating loss of

tumor differentiation, and the accumulation of dedifferentiated

immature cancer cells endow breast cancer with aggressive features

and is predictor of poor prognosis.
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PRL regulation of alveolar
differentiation and apical/basal polarity

ThehormonePRL is best knownas a lactationhormone critical

for mammary gland lobuloalveolar development/remodeling and

the terminal differentiation of the mammary epithelial cells

promoting milk proteins gene expression and lactation (30–32).

PRL mediates its effects by binding to its specific receptor (PRLR),

resulting in receptor dimerization and activation of different

intracellular signaling cascades, most well studied is the Jak2/

Stat5 pathway (33). Importantly, PRL, PRLR, Jak2 and Stat5

knockout mouse models have all shown defects in mammary

gland development and lactation, clearly highlighting the

prominent role of PRL in the normal development and

functional differentiation of the mammary gland (34–38). Indeed,

during the pregnancy/lactation cycle the mammary gland

undergoes a complex growth and remodeling characterized by

the establishment of the secretory alveolar units. These mammary

alveoli consist of a layer of terminally differentiated luminal

mammary epithelial cells attaining apical/basal (A/B) polarized

architecture with closed tight junctions and well-established

adherence junctions. Their main function is to allow for the

synthesis and directional secretion of milk proteins and solutes

into the lumen of the alveolar unit to the mammary ductal system

upon suckling of the infant (39, 40). In agreement with the above

work and crucial to the differentiation role of PRL in the breast,

using a well-established ex vivo mammary 3D cell culture model,

PRL signaling through Jak2was found to induceA/Bpolarityand to

organize the mammary epithelial cells around a single hollow

lumen (41, 42). Recently, PRL regulated gene Pre-B-Cell

Leukemia Transcription Factor-Interacting Protein 1 (PBXIP1/

HPIP) was also found to play a role in PRL-mediated mammary

epithelial cell differentiation and acini morphogenesis (43).

Moreover, studies from our laboratory also highlighted that PRL

indeed limits the proliferative capacity of the mammary epithelial

cells and provided resistance to the proliferative effects of EGF (42,

44). Previously, PRLwas shown tobepart of a cooperative signaling

network with EGF promoting alveolar survival, morphogenesis,

and functional differentiation (45, 46). Our studies however,

highlighted an important negative cross-talk between PRL/Jak2-

differentiation axis and the EGF-Erk1/2-proliferative pathway (44).

Together, these results expand on the vital role for PRL in deriving

the normal differentiation program of the mammary cells and

constrains the proliferative effects of growth factors (Figure 1).
PRL regulation of the MaSC
hierarchy and terminal differentiation

Extensive research has been devoted to characterizing the

breast epithelium delineating the mammary stem cell (MaSC)

hierarchy and its relevance to breast cancer inter-tumor
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heterogeneity with the interest of identifying new therapeutic

targets in breast cancer (27, 47). Studies have described a MaSC

hierarchy consisting of different cell populations based on

expression of cell surface markers into: basal (EpCAMlow/-/

CD49fhigh/+), luminal progenitor (EpCAMhigh/+/CD49fhigh/+), and

mature luminal cells (EpCAMhigh/+/CD49flow/-) (48). With

advances in sc-analyses, recent studies have indeed expanded on

this model and highlighted a more complex mammary lineage

hierarchies and cell stateswithin themammaryepithelium(49–51).

Still, these studies confirmed that the epithelium in mouse and

human samples are mainly divided into three major clusters,

namely basal cells, luminal progenitors, and mature hormone-

sensing luminal cells. We previously investigated the contribution

of PRL to the differentiation program of the MaSC hierarchy.

Mammary epithelial cells isolated frommid-pregnantmice showed

two distinct cellular sub-populations based on the expression

profile of EpCAM and CD49f. One population featured a surface

marker signature with EpCAMhigh/+/CD49fhigh/+ defining the

luminal progenitor cells and another with EpCAMhigh/

+/CD49flow/- defining mature luminal cells. Comparing with EGF

treated cells, treatment with PRL resulted in a shift in the luminal

progenitor (EpCAMhigh/+/CD49fhigh/+) cells into the mature

luminal (EpCAMhigh/+/CD49flow/-) cells suggesting that PRL

derives the terminal differentiation of the mammary epithelial

cells (42). This proposition is also supported by the sc-studies

described above where PRLR expression was found to be enriched

in the most differentiated hormone sensing cells and least

expression was found in the basal compartment (49). As well,

PRL-target milk proteins (e.g. Wap, Csn2) were expressed

exclusively in cellular clusters composed of cells from gestation

and lactationdefining themasdifferentiated secretoryalveolar cells.

Interestingly, Assay for Transposase-Accessible Chromatin

(ATAC) analyses pointed to a strong correspondence between

high FOXA1 transcription factor, known regulator of luminal

differentiation and an antagonist of the epithelial-to-

mesenchymal transition (EMT), motif accessibility, and gene

expression in the hormone-responsive luminal cells (52).

Interestingly, we have previously found that there is positive

correlation of expression between PRLR and FOXA1 in breast

cancer cases (53). Altogether, these results suggest that PRL/PRLR

derives the terminal maturation of the mammary stem cells into a

differentiated hormone sensing cells and differentiated alveolar

cells. These results also highlight the close association between

FOXA1 and the PRLR in the differentiated hormone sensing

luminal cells that is maintained in breast cancer.

Evidence of anti-tumorigenic
functions of PRL/PRLR pathway in
breast cancer

While the role of PRL as a differentiation factor in the

mammary gland is well known, its role in breast cancer is still
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not fully characterized. Several studies using in vitro cell culture

approaches as well as transgenic and knock-out mouse models

have highlighted a pro-tumorigenic role for PRL in breast cancer

promoting tumor initiation, development and metastasis

(reviewed elegantly in this series Schuler, LA and O’Leary, KA

as well as previously (54)). These findings prompted interest in

developing strategies to block PRL as a treatment modality in

breast cancer. Most recent and indeed direct approach was the

generation of humanized antibodies to block PRLR as a targeted

therapy in breast cancer (55, 56). Following extensive

characterization of these antibodies, their therapeutic value

was assessed. Indeed, these agents failed to show any

antitumorigenic effects in a landmark multicenter clinical trial

performed in PRLR expressors breast cancer patients (Novartis,

2016) (USA, Belgium, Italy and Spain), despite effective blockage

of the PRLR, resulting in the termination of the trial (57, 58). The

lack of anti-tumorigenic effects of blockers of PRLR suggests that

the described pro-tumorigenic role of PRL in breast cancer BC is

not of clinical value. Also, these results indicate that PRL role in

breast cancer needs further evaluation.

Epidemiological studies examining the normal physiological

levels of circulating PRL (2-29 ng/mL) have implicated PRL as a

risk factor and is involved in breast cancer etiology (59–63).

However, later extended follow-up analyses showed either

modest association, that is limited to patients who were on

hormone replacement therapy or no significant associations (60,

61, 64, 65). Importantly, no differences in mean serum PRL levels

in premenopausal (~21 ng/mL) or postmenopausal (~13 ng/mL)

breast cancer cases compared with normal cases was reported

(65). This finding suggests that serum PRL is not a breast cancer

risk factor. In addition, studies of patients with conditions that

result in high circulating PRL levels such as prolactinomas or the

use of antipsychotics showed no causal link to breast cancer (66,

67). In fact, other conditions that lead to high circulating levels of

PRL (~200 ng/mL) such as breastfeeding have been linked to
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reduced risk of breast cancer. A seminal study (2002) that

examined 50,000 breast cancer cases from 47 epidemiologic

studies in 30 countries, reported that the relative risk for breast

cancer is reduced by 4.3% for every 12 months a woman

breastfeed (68). Another study reported a 14-28% lower risk of

developing breast cancer in parous women who ever breastfed

compared with parous women who never breastfed (69).

Furthermore, little-to-no breastfeeding correlated with increased

risk of developing aggressive types of breast cancer (70–72). While

studies have emphasized the local/autocrine PRL and not the

circulating endocrine PRL as contributing to mammary

tumorigenesis and breast cancer development, however, other

studies using large breast cancer patient data and cell lines

provided different conclusions. PRL mRNA expression was

found to be either very low or undetectable in the majority of

samples representing 144 breast cancer patients and in many

breast cancer cell lines and the study concluded that autocrine

PRL signaling is unlikely to be a general mechanism promoting

tumor growth in breast cancer (73). We have also analyzed PRL

protein and mRNA levels in breast cancer cases (74). Interestingly,

our results agreed with the above report and showed a significant

down regulation of PRL expression in breast cancer compared to

normal tissue. Moreover, inline with the differentiation role of

PRL in the breast, expression of PRL mRNA was associated with

more differentiated tumors, early stage, smaller tumor size and

absence of distant metastasis with higher PRL mRNA levels

correlating with prolonged relapse free survival (74).

Importantly, in preclinical xenograft mouse models of TNBC

and HER2-E breast cancer types, PRL was found to cause tumor

downstaging as measured by tumor volume/growth and

expression of the proliferative marker Ki67 (53, 75, 76). Also,

PRL was found to suppress induction of the cytokeratin-5 (CK5)-

positive stem-like population in breast cancer cells both in vitro

and in vivo (77, 78). As well, PRL was recently found to sensitize

ER+ breast cancer cells to tamoxifen in a xenograft mouse model
FIGURE 1

PRL induces mammary A/B polarity and acini morphogenesis: Primary mouse mammary epithelial cells grown in 3D culture were stained with
antibody to ZO1 (green) and Ecad (red). Nucleus was counter stained with DAPI (blue). Scale bar, 20 µm. The morphology of the colonies was
evaluated following different treatments: (1) Control: 2% FBS, (2) PRL: 2% FBS + 2 µg/mL ovine PRL or (3) EGF: 2% FBS + 10 ng/mL EGF. In
contrast to control or EGF treated cells, PRL treated mammary epithelial cells organize around a single lumen showing apical localization of the
tight junction protein ZO1 and basal/lateral localization of the adhesion protein E-cadherin.
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expressing hPRL gene (79). Altogether, these findings implicate

that PRL of endocrine or tumor source is not a risk factor in breast

cancer but rather a marker of more differentiated and less

aggressive tumors and is a potential therapeutic agent.

Assessing the expression levels of PRLR in breast cancer

cases is vital to further define the role of PRL in breast cancer.

Whereas short forms of the human PRLR generated by

alternative splicing or as mutant truncation forms have been

described, the long form of the PRLR is considered as the

signaling hub for PRL (80–82). Previous reports have

examined PRLR expression and have reported a widespread

expression in breast cancer samples (83). More recent findings

contradict these observations and implicate that PRLR

expression is generally downregulated in breast cancer. For

example, it was reported that using specific anti-human PRLR

antibodies in a screen of 160 mammary adenocarcinomas

demonstrated significant immunoreactivity in only 4 tumors

(ie less than 3% expression). This led the authors to conclude

that PRLR is generally not strongly upregulated in human breast

cancer (84). We previously used human breast cancer cases

organized in tissue microarrays as well as bioinformatics

analyses and datasets to assess the expression of PRLR in

breast cancer. We found that PRLR expression to be

significantly downregulated in invasive breast cancer, only 21%

of invasive cases showed detectable expression of the PRLR in

comparison with normal/benign (80%) and in situ carcinoma

(60%) (85). In addition, gene expression level of PRLR was also

evaluated in relation to intrinsic molecular subtypes, tumor

grade, and patient outcome using GOBO database for 1881

breast cancer patients. PRLR expression was found to associate

with less aggressive clinicopathological parameters such as

lymph node negativity and low-grade well-differentiated

tumors. Also, among the different breast cancer subtypes,

PRLR mRNA levels were highest in luminal A subtype and

least expression was detected in the most aggressive TNBC

basal-like subtype. Furthermore, PRLR expression was

significantly associated with better survival outcome in breast

cancer cases (85). Interestingly, within the TNBC subtypes,

PRLR gene expression positively correlated with luminal and

epithelial metagenes (LAR and Epithelial Cell-Cell adhesion),

whereas it negatively correlated with metagenes defining the

aggressive TNBC basal-like (BL) and mesenchymal stem-like

subtypes (MSL) (25, 53). A subsequent study also found that

PRLR expression defined a patient population with better

prognosis showing lower recurrence and higher overall

survival in TNBC patients (86). Interestingly, reports have

shown that expression of truncated forms of the PRLR long

form resulted in initiation of mammary tumorigenesis in mouse

models of ER+ breast cancer as well as in human MCF10A

xenograft model (87, 88). Similarly, direct knock out of the PRLR

in ER+ and HER2-E breast cancer cell lines led to enhanced

tumorigenic and metastatic phenotype as well as resistance to

conventional therapies (89). Altogether, these results implicate
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that loss of PRL/PRLR expression contributes to the initiation

and progression of breast cancer and argues against a role for

PRL/PRLR in promoting breast tumorigenesis.

In agreement with the above data showing PRL/PRLR as

favorable markers of tumor differentiation and suppressors of

tumorigenesis, other groups have demonstrated that expression/

activation of the PRL effector molecule-Stat5a in breast cancer

promotes adhesion and inhibits invasion of breast cancer cells

(90). As well, Stat5a expression in breast cancer clinical cases was

found to associate with histologic differentiation (low grade) and

favorable prognosis, whereas loss of Stat5a expression was

associated with tumor progression, unfavorable prognosis and

increased risk of failure to antiestrogen therapy (90–94).

Recently, Stat5a-N-myc interactor (NMI)-signaling also further

supported an anti-tumorigenic role for Stat5a. It was reported

that this signaling axis is downregulated in breast cancer and its

expression is distinctive for less frequent metastasis and good

prognosis (95). Additionally, examining expression of PRL

signaling pathway-based gene signature composed of PRL,

PRLR, Jak2 and Stat5a showed a significant association with

more differentiated tumors and prolonged survival (74).

Interestingly, PRL-responsive milk proteins were also shown

to inhibit tumorigenesis and invasion of breast cancer cells (96–

98). Moreover, global gene profiling of prolactin-modulated

transcripts in ER+ human breast cancer xenotransplant model

revealed that PRL-upregulated genes were enriched in pathways

involved in differentiation and a gene signature based on PRL-

upregulated genes was associated with prolonged relapse-free

and metastasis-free survival in breast cancer patients (99).

Interestingly, gene profiling of PRL stimulated mammary

epithelial cells also defined a gene signature derived from PRL-

upregulated target genes to be associated with well differentiated

tumors, whereas expression of a gene signature composed of

PRL-downregulated genes showed a significant association with

shortened distant metastasis free survival (74). Importantly,

functional investigations of these PRL-downregulated genes

identified novel players in breast cancer. Indeed, PRL-

downregulated genes were found to be drivers of oncogenic

processes including the epigenetic A-to-I RNA editing process

and the metastatic and stemness epithelial-mesenchymal-

plasticity (EMP) process (77, 78, 100, 101). Altogether, there is

now a large body of evidence implicating PRL/PRLR pathway as

a clinically relevant anti-tumorigenic pathway in breast cancer.
PRL/PRLR and the cancer
cell-of-origin

The molecular classification of breast cancer subtypes based

on global gene expression profile had a fundamental impact on

the current understanding of inter-tumor heterogeneity. Studies

have also highlighted the link between the mammary stem cells

hierarchy serving as the cell of origin for malignant
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transformation giving rise to the various tumor subtypes (16, 17,

102, 103). Direct comparison of the gene expression profiles of

normal mammary epithelial subsets described above (i.e. basal/

MaSC, luminal progenitor, and mature luminal cells) to those of

breast tumors based on the molecular subtype classifications were

performed (104). Interestingly, luminal A and B subtypes showed

high similarity to the mature luminal cell population EpCAM high/

+/CD49flow/−. The luminal progenitor gene expression signature

was very similar to the basal-like subtype showing expression of

basal-like markers; including cytokeratins14 and 5/6 (105). On the

other hand, the MaSC-signature exhibited high association with

the claudin-low subtype (106). Clinically, the detection of

EpCAMlow/-/CD49fhigh/+ in breast tumors was shown to be

associated with poor clinical prognosis (107). Studies have also

linked the MaSC hierarchy with the profile of tumor initiating

cells/BCSCs characterized by CD44+/CD24- and ALDH+, where,

CD44+/CD24- correspond to the MaSC population (EpCAMlow/-/

CD49fhigh/+) and ALDH+ correspond to the luminal progenitor

(EpCAMhigh/+/CD49fhigh/+) cells (29). Moreover, activation of the

EMT program is well known to be a deriver of phenotypic

plasticity and stemness in breast cancer (108, 109). Interestingly,

our original work investigating the role of PRL in breast cancer BC

revealed PRL to act a potent suppressor of the EMT process,

further inhibiting the invasive capacity of breast cancerBC cells.

This effect of PRL was found to be linked to the negative-crosstalk

between PRL-induced signaling cascade and the two major pro-

metastatic pathways MAPK-Erk1/2 and TGFb (110).

Subsequently, we have accumulated compelling evidence and

notably, we found that treatment of breast cancer cells

representative of the TNBC subtype or of the HER2-E subtype

significantly depleted the highly tumorigenic CD44+/CD24− and

ALDH+ BCSC subpopulations and induced their differentiation

into the least tumorigenic phenotype (ie CD44−/CD24− and

ALDH- resulting in suppression of their tumorsphere
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formation/self-renewal capacities (53, 76). On the other hand,

loss of expression of the PRLR in ER+ and HER2-E breast cancer

cells resulted in the enrichment of these BCSC populations.

Clinically, Prlr gene expression was also found to have inverse

relationship with CD44 gene expression in TNBC patients (76).

Moreover, in RNA-seq data of breast cancer patients, PRLR

expression correlated negatively with the mRNA levels of a

number of genes (including Aurkb, Ccna2, Scrn1, Npy, Atp7b

and Chaf1b) that are related to stemness, resistance to therapy and

poor patient outcome (111). Among the multiple isoforms of

ALDH, ALDH1A1 and ALDH1A3 are known to be associated

with cancer stem cells (112, 113). Interestingly, PRL treatment of

HER2-E breast cancer cells was found to suppress the expression

levels of both ALDH1A1 and ALDH1A3 mRNA expression.

Recent sc- analyses of mammary epithelial cells also identified

ALDH1A3 as a marker of luminal progenitor cells having its levels

gradually decreased as cells progressed away from their common

origin and differentiated to express higher levels of PRLR either in

the in hormone sensitive differentiated cells or the alveolar

differentiated trajectories (49). In summary, PRL imparts

significant anti-tumorigenic effect in breast cancer through

differentiation and terminal maturation (Figure 2).
Outlook

In view of our improved understanding of the contribution of

tumor cellular plasticity and loss/defects in normal tissue

differentiation mechanisms to cancer progression and tumor

evolution, significant efforts are directed at exploiting

differentiation pathways as therapeutic avenues in cancer. The

premise of differentiation therapy (DT) in cancer is a strategy that

aims at engaging-forward differentiation and cellular

reprograming restricting the proliferative, tumor repopulation,
FIGURE 2

PRL/PRLR signaling pathway in breast cancer differentiation limiting tumorigenesis: The PRL/PRLR pathway is a fundamental pathway
promoting mammary gland development, morphogenesis, and terminal differentiation of the mammary epithelial cells. Loss of this
hormonal pathway is a marker of aggressive breast cancer characterized by poor differentiation promoting stem-like phenotype, tumor
development and metastatic spread.
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stemness, EMT and metastatic capacities of tumor cells leading to

the cessation of the aggressive tumor phenotype and offering the

cancer patients improved survival for decades (6, 114–116).

Interestingly, the concept of DT was first proposed by Pierce in

1961, reporting on the differentiation of aggressive forms of

teratocarcinoma into benign forms and in 1984 was the first

clinical application of DT when the use of all-trans retinoic acid

was approved for acute promyelocytic leukemia (117). Currently,

still under development, several highly promising candidate

differentiation and cellular reprograming targets encompassing

epigenetics, transcription factors, metabolic and modulators of the

cancer stem cells are being evaluated preclinically and clinically as

anti-cancer therapeutics (i.e., inhibitors of histone deacetylases

(HDACi) (118), micro-RNAs (119) peroxisome proliferator-

activated receptor-g (PPARg) pathway (120–122), inhibitors of

bromodomain-containing protein 4 (BRD4i) (123) among others

(115)). Indeed, whereas significant advances have been achieved

in treatment options for patients with hormone receptor positive

tumors including anti-endocrine-based therapies, and more

recently CDK4/6 inhibitors (124), and for HER2-E subtype

targeting HER2 (trastuzumab (Herceptin), lapatinib, pertuzumab

and trastuzumabemtansineTDM-1)noeffective treatmentoptions

besides chemotherapy is available for patients with TNBC (125,

126). Notably, none of these approaches are differentiation-based

therapeutics. Therefore, identifying drivers and mechanisms of

tumor cellular differentiation in breast cancer are urgently in need

in our pursuit to limit aggressive malignant changes of tumor

progression and to develop new generation of biomarkers and anti-

cancer therapies centered on the “pro/forward-differentiation”

concept. Collectively, in breast cancer accumulating data implies

PRL/PRLR as a clinically relevant potent differentiation pathway

limiting the tumorigenic phenotype and thus may serve as a

potential pro-differentiation therapeutic candidate.
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Prenatal health behaviours as
predictors of human placental
lactogen levels

Samantha M. Garay, Lorna A. Sumption
and Rosalind M. John*

School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
Placental lactogen (hPL) is a key hormone of pregnancy responsible for

inducing maternal adaptations critical for a successful pregnancy. Low levels

of placental lactogen have been associated with lower birth weight as well as

symptoms of maternal depression and anxiety. Lower placental lactogen has

been reported in women with higher body mass index (BMI) but it is unclear

whether prenatal health behaviours predict hPL levels or if hPL is associated

with infant weight outcomes. This study utilised data from the longitudinal

Grown inWales cohort, based in SouthWales. Participants were recruited at the

pre-surgical appointment for an elective caesarean section. This study

incorporates data from recruitment, post-delivery and a 12 month follow-up.

Measures of maternal serum hPL were available for 248 participants. Analysis

included unadjusted and adjusted linear and binary regression. Unadjusted,

prenatal smoking and a Health Conscious dietary pattern were associated with

hPL levels, however this was lost on adjustment for BMI at booking, Welsh Index

of Multiple Deprivation (WIMD) score and placental weight. When stratified by

maternal BMI at booking, a Health Conscious dietary pattern remained

associated with increased hPL levels in women with a healthy BMI (p=.024,

B=.59. 95% CI=.08,1.11) following adjustment for WIMD score and placental

weight. When adjusted for a wide range of confounders, maternal hPL was also

associated with increased custom birthweight centiles (CBWC) (p=.014,

B=1.64. 95% CI=.33,2.94) and increased odds of large for gestational age

deliveries (p=<.001, Exp(B)=1.42. 95% CI=1.17,1.72). This study identified that

consuming a Health Conscious dietary pattern in pregnancy was associated

with increased hPL, within women of a healthy BMI. Moreover, higher hPL

levels were associated with increased CBWC and increased odds of delivering a

large for gestational age infant. This improves the current limited evidence

surrounding the nature of hPL in these areas.

KEYWORDS

placental lactogen, birth weight, maternal depression, health-conscious diet, body
mass index
frontiersin.org01
37

https://www.frontiersin.org/articles/10.3389/fendo.2022.946539/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.946539/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.946539/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.946539&domain=pdf&date_stamp=2022-09-09
mailto:JohnRM@cf.ac.uk
https://doi.org/10.3389/fendo.2022.946539
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.946539
https://www.frontiersin.org/journals/endocrinology


Garay et al. 10.3389/fendo.2022.946539
Introduction

During pregnancy the mammalian mother undergoes

substantial adaptations to support fetal development and to

prepare for nurturing her offspring once they are born (1–5).

Playing an essential role in these maternal adaptations are the

hormones produced by, or dependent on, the fetally-derived

placenta. Placental hormones ensure sufficient nutrients are

available to support fetal and placental growth by increasing

maternal appetite, decreasing her activity and driving metabolic

adaptations throughout pregnancy (6, 7). Placental hormones

are also involved in inducing behavioural changes in the mother

during pregnancy priming her to respond expeditiously to her

offspring when they are born (8–13). Consequently, constraints

in the production of placental hormones can have wide reaching

consequences for fetal growth, maternal metabolism and

maternal behaviour potentially contributing to the co-

morbidity of common complications of pregnancy.

Human placental lactogen (hPL) is one of the key hormones

of pregnancy, and the most highly expressed peptide hormone of

the human placenta (14). hPL is collectively composed of two

identical placental lactogen peptides encoded by CHORIONIC

SOMATOMAMMOTROPIN HORMONE 1 and 2 (aka HPL-A

and HPL-B) (15). Placental lactogens are evolutionarily related

to the pituitary hormone prolactin (15) and signal via the

prolactin receptor to mediate their activity at target sites

around the body (15, 16). During pregnancy hPL is

synthesised in increasing amounts by the syncytiotrophoblast

and extravillous trophoblast lineages of the human placenta with

levels reaching 5–7 µg/ml in maternal blood at term, exceeding

that of any other peptide hormone (14, 15, 17). While there are

rare cases of pregnancy proceeding in the apparent absence of

hPL (18), several studies have reported associations between

lower than normal levels of hPL and pregnancy complications

(19). For example, reduced levels of maternal serum hPL levels

and placental CSH1/2 mRNA expression have been associated

with fetal growth restriction (20–22) while positive correlations

have been reported between hPL and birthweight (23, 24). One

study reported reduced serum hPL in gestational diabetes (25)

while another reported significantly reduced placental CSH1/2

associated with pre-eclampsia (26). We reported an association

between lower placental CSH1/2 at term and both clinically

diagnosed depression and questionnaire reported symptoms of

depression in pregnancy (27). More recently, we reported low

serum placental lactogen at term was associated with symptoms

of both depression and anxiety for up to ten weeks after birth

(28). In this same study we noted a positive association between

serum hPL and birthweight (g), placental weight and head

circumference consistent with previous studies. While these

studies in human populations do not demonstrate a causal

relationship between placental lactogen and birthweight,
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gestational diabetes or maternal mental health, data from

rodent models supports such a conclusion. For example,

transgenic overexpression of mouse placental lactogen targeted

to the beta cells of the pancreas increases the proliferation rate of

these cells in mice, and drives both fasting and postprandial

hypoglycaemia (29) while targeted deletion of the prolactin

receptor provides indirect evidence that placental lactogens

drive pancreatic b-cell expansion (30). Infusion of placental

lactogen into the non-pregnant female rodent brain stimulates

maternal caregiving behaviour (31, 32) while ablation of the

maternal prolactin receptor disrupts maternal caregiving (33–

37). Disruption of signalling via this receptor has also been

linked to increased postpartum anxiety (38). Our work on mice

with placental endocrine insufficiency driven by genetically

modified changes in the expression of imprinted genes further

demonstrates a role for placental hormones in regulating

birthweight with a reduction in the number of placental

endocrine cells linked to low birthweight in several models

(39–41). We also reported both maternal neglect and maternal

anxiety in response to the loss of placental endocrine lineages

(42, 43) with the mouse offspring exhibiting anxiety-like

behaviours later in life (44). Together, these data highlight the

importance of placental hormones, and more specifically

placental lactogens, for pregnancy health. Moreover, in

addition to genetic drivers of placental endocrine insufficiency,

a number of environmental stressors in pregnancy have been

linked to changes in the expression of placental hormones and

alterations in maternal behaviour (45) identifying a mechanism

with potential to link early life adversity to a variety of poor

health outcomes.

Given the importance of placental lactogen for a healthy and

successful pregnancy, it is vital that we identify factors that

positively or negatively influence the production of this

hormone. Previously pre-pregnancy obesity has been linked to

significantly lower placental expression of CSH1/2 (46–48).

Similarly, we have reported an association between maternal

BMI at booking (week 12-14 of pregnancy) and serum hPL at

term (28). In addition, we noted an association between serum

hPL and the Welsh Index of Multiple Deprivation (WIMD)

score. WIMD is the Welsh Government’s official measure of

relative deprivation for small areas in Wales calculated from

anonymised postcodes (http://wimd.wales.gov.uk). The small

areas used to construct the index are known as Lower Super

Output Areas (LSOAs) with an average population of 1,600

people. There are 1,909 LSOAs inWales - the most deprived area

is given a rank of 1 and the least deprived a rank of 1,909

therefore lower scores are indicative of higher levels of

deprivation. The WIMD is composed of a number of

indicators which include income, employment, health,

education, access to services, housing, community safety and

physical environment. We have previously reported that WIMD
frontiersin.org
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scores were significantly positively associated with a ‘Health

Conscious’ dietary pattern which in turn was significantly

associated with increased custom birthweight centile (CBWC)

(49). Together, these observations suggest that factors in

addition to maternal BMI may influence hPL levels. Here we

explored the association between a variety of modifiable health

behaviours in pregnancy and term serum hPL, as well as the

influence of hPL on a range of infant weight outcomes, using

data from the Grown in Wales Study.
Material and methods

Cohort

This study analysed data from the Grown in Wales (GiW)

cohort, a pregnancy cohort recruited in South Wales, UK with a

focus on maternal mental health (50). Full ethical approval for

the GiW study was obtained by the Wales Research Ethics

Committee (REC2 reference 15/WA/0004). Research was

carried out employing the principles of the Declaration of

Helsinki as revised in 2008. Recruitment occurred between

September 2015 and November 2016 at the University

Hospital of Wales (UHW) with women providing written

consent to the study. Women were recruited by two trained

research midwives at their morning pre-surgical appointment in

advance of an elective caesarean (ELCS), one to four days before

delivery. ELCS was chosen to maximise the potential for

collecting biological samples. At UHW women routinely

provide blood samples at their pre-surgical appointment

before their surgery facilitating the collection of maternal

blood for this study. The planned surgery took place during

the working week when the research midwives were available to

collect placental biopsies and cord blood samples. Recruitment

criteria consisted of women being between 37 weeks and 42

weeks of pregnancy, aged between 18 and 45, having a singleton

birth without fetal abnormalities or infectious diseases.

Participants have been followed up within one week of birth,

ten weeks and one year postnatally and most recently at four

years postpartum.
Participants

355 women were initially recruited and seven later withdrew.

Of these, hPL measures were available 272 participants within

the overall cohort. The current analysis focused on participants

who delivered at term (≥ 37 weeks) and those of Caucasian

ethnicity. This selection was required as the dietary patterns

were previously developed for these participants (49). This was

due to the recruitment small number of participants of other

ethnicities whose inclusion greatly influenced findings through

the introduction of variation, an issue especially relevant for
Frontiers in Endocrinology 03
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smaller cohorts (51, 52). Following the exclusion criteria, hPL

data was available for 248 participants.
Human placental lactogen

Maternal venous serum samples were obtained at

recruitment from blood taken as part of a standard anaesthetic

review one to four days prior to surgery. Serum was obtained by

centrifugation of maternal venous blood which was then frozen

at −80°C. hPL levels were assayed in duplicate using the Leinco

Technologies Human Placental Lactogen (HPL) Micro-ELISA

test kit (Universal Biologicals product code T115-96 tests).

Assays were performed by the NIHR Cambridge Biomedical

Research Centre, Core Biochemical Assay Laboratory. Average

value = 8.3 µg/mL ± 2.75.
Demographic and biological data

Demographic data such as a participants education level and

income were obtained from the maternal questionnaire

completed at recruitment. Participant postcodes were also

collected and anonymised which enabled the calculation of

Welsh Index of Multiple Deprivation (WIMD) 2014 scores

(http://wimd.wales.gov.uk). The maternal questionnaires also

contained the Edinburgh Postnatal Depression Scale (EPDS)

(53) and the State-Trait Anxiety Inventory (STAI) (54) which

provided data on maternal mental health. Biological data such as

participants ethnicity, age, parity, weight and BMI at booking as

well as data on mode of delivery, placental weight and infant sex

were collected from the midwife recorded notes following

delivery. Gestational weight gain was calculated from data on

pre-pregnancy weight and weight at booking.
Prenatal health behaviours

Data on maternal prenatal smoking, alcohol intake and

exercise were acquired from the maternal questionnaire

completed at recruitment. Dietary patterns were identified

from data collected through a food frequency questionnaire

(FFQ), also completed at recruitment. The dietary patterns

within the GiW cohort were Western and Health Conscious,

with the process for obtaining the dietary patterns outlined in

detail in (49). Briefly, the dietary pattern scores were obtained

via the regression method following Principal Component

Analysis. Each participant has a score for both dietary

patterns. These scores are typically centred around zero, with

greater positive scores indicating higher adherence to a dietary

pattern and greater negative scores indicating lower adherence

to a dietary pattern.
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Infant weight outcomes

Data on birthweight (g) was obtained from the midwife

recorded notes following delivery. CBWC were later calculated

via the GROW bulk centile calculator (55) utilising the following

data from the midwife notes; maternal height, weight, ethnicity and

parity as well as infant gender, birthweight and gestational age. This

enabled the classification of infant birthweight as small for

gestational age (SGA), average for gestational age (AGA) or large

for gestational age (LGA). Data on infant weight at one year of age

was obtained from a maternally completed questionnaire.
Statistical analysis

All statistical analyses were undertaken utilising IBM SPSS

Statistics Version 27. Normality for relevant variables was

assessed via Kolmogorov-Smirnov test, Shapiro-Wilk test, normal

Q-Q plots and histograms. All relevant variables were determined

to be non-parametric, thus demographic statistics were displayed as

median (IQR) or % (n) as appropriate. Health behaviour predictors

of hPL were assessed utilising both unadjusted and adjusted linear

regression. In the adjusted analysis the significant predictors were

entered together in the model, with maternal BMI at booking

(continuous), WIMD score and placental weight (g) selected as

potentially confounding variables. Variables were selected as

confounding variables if a previous GiW study identified them to

be associated with hPL (28) or if the variables were found to be

associated with the outcome variables in a univariate analysis

(Supplementary Table 1). In light of the highly influential nature

of maternal BMI, the association between predictors and hPL was

also assessed when stratified by maternal BMI at booking, with the

exception of the underweight BMI category due to low numbers.

Unadjusted and adjusted linear and binary regression were

undertaken to assess the influence of hPL on infant weight

outcomes. The analysis of birthweight (g) was adjusted for the

following potentially confounding variables; BMI at booking

(continuous), WIMD score, maternal age, gestational weight gain

fetal sex, placental weight (g), gestational age, smoking and a Health

Conscious dietary pattern. Education and income were not

included as the WIMD score incorporates these measures. The

same variables were utilised for analyses of CBWC derived

variables, with the exception of fetal sex and gestational age which

are already accounted for within this birthweight measure.
Results

Demographic data for the 248 participants involved in the

analysis is provided in Table 1. Categorical data is displayed as %

(n) and continuous data as median (IQR).
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Health behaviour predictors of hPL

Linear regression was utilised to investigate if prenatal

maternal health behaviours influence levels of maternal serum

hPL (Table 2). Unadjusted univariate regression identified that

both smoking at any point in pregnancy and a Health Conscious

dietary pattern were associated with hPL measures. Specifically,

smoking compared to not smoking was associated with a

decrease in hPL of 1.24 µg/mL, whilst a one unit increase in

Health Conscious dietary pattern score was associated with an

increase in hPL of.40 µg/mL. These significant health behaviours

were adjusted for: maternal BMI at booking, WIMD score and

placental weight (g). Following adjustment, no prenatal health

behaviours remained significantly associated with hPL measures.

To understand the highly influential effect of BMI further, the

relationship between health behaviours and hPL was examined

when stratified by maternal BMI at booking (Table 3). It was

determined that a Health Conscious dietary pattern was

significantly associated with hPL measures in women classified

as having a healthy BMI at booking. This association remained

after adjustment for WIMD score and placental weight (g).

Specifically, for women with a healthy BMI at booking, a one

unit increase in Health Conscious dietary pattern score was

associated with an increase in hPL of .59 µg/mL equivalent to an

increase of 8% of the average value.
hPL & infant weight outcomes

Linear regression was again utilised to investigate the

relationship between hPL and a range of infant weight

measures, collected both at birth and at one year of age

(Tables 4, 5). The relationship between hPL and both

birthweight and CBWC is displayed in Figures 1, 2. At the

unadjusted level, hPL was significantly associated with all

measures of weight with the exception of infant weight at 12

months of age. These significant associations were adjusted for

the potentially confounding variables that included maternal

BMI at booking, maternal age, gestational weight gain, fetal sex,

placental weight, gestational age, smoking at any point in

pregnancy, Health Conscious dietary pattern score and WIMD

score. Following adjustment, hPL was no longer significantly

associated with birthweight (g) or the odds of being born SGA

compared to LGA. However, hPL remained significantly

associated with CBWC, with a one unit increase in hPL

associated with an increase in CBWC of 1.64 units.

Additionally, hPL was associated with being born LGA

compared to AGA, with a one unit increase in hPL associated

with increased odds of delivering an LGA compared to AGA

infant by a factor of 1.42.
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Discussion

This study aimed to investigate both the health behaviour

predictors of hPL and the influence of hPL on infant weight

outcomes. It was determined that, at the unadjusted level, both

smoking at any point in pregnancy and consuming a Health

Conscious dietary pattern were associated with hPL levels.

However, this was lost following adjustment for the

confounding variables of WIMD score, maternal BMI at

booking and placental weight. Given that BMI is known to

strongly influence maternal hPL, this association was also

examined when stratified by BMI. Following adjustment for

WIMD score and placental weight, consuming a Health

Conscious dietary pattern in pregnancy was associated with

increased hPL levels in participants with a healthy BMI at

booking. Regarding infant weight outcomes, prior to

adjustment hPL was associated with all weight outcomes with

the exception of infant weight at 12 months. This analysis was

adjusted for a range of confounding variables including maternal

BMI at booking, maternal age, gestational weight gain, fetal sex,

placental weight, gestational age, smoking at any point in

pregnancy, Health Conscious dietary pattern score and WIMD

score. After adjustment, maternal hPL was associated with

increased CBWC as well as increased odds of delivering an

LGA compared to AGA infant.

The associations between the modifiable prenatal health

behaviours of maternal smoking and adhering to a Health

Conscious diet on hPL were identified but did not remain

associated once adjusted for BMI at booking, WIMD score

and placental weight. However, given that BMI is known to be

highly influential for hPL levels, this analysis was stratified by

BMI at booking. When stratified, the association between a

Health Conscious dietary pattern and hPL remained significant
TABLE 1 Demographic data for the eligible GiW participants.

% (n) or median (IQR)

Maternal BMI at booking - overall 26.33 (7.23)

Maternal BMI at booking % (n)

Underweight .40 (1)

Healthy 38.20 (89)

Overweight 35.60 (83)

Obese 25.80 (60)

Maternal age at booking 33.00 (6.00)

Parity, % (n)

Multiparous 81.90 (203)

Nulliparous 18.10 (45)

Gestational weight gain (kg) 15.07 (7.88)

GDM % (n)

Yes 5.30 (13)

No 94.70 (230)

Hypertension % (n)

Yes 3.70 (9)

No 96.30 (236)

Fetal sex, % (n)

Female 54.40 (135)

Male 45.60 (113)

Placental weight (g) 655 (183)

Gestational age (weeks) 39.00 (0)

Birthweight (g) 3500.00 (650.00)

Birthweight classification

LBW 2.60 (8)

ABW 79.20 (247)

HBW 18.30 (57)

CBWC 57.85 (50.05)

Size for gestational age % (n)

SGA 6.90 (17)

AGA 80.60 (200)

LGA 12.50 (31)

Smoking in pregnancya, % (n)

No 89.80 (220)

Yes 10.20 (25)

Alcohol in pregnancya, % (n)

No 59.30 (144)

Yes 40.70 (99)

Strenuous exercise, % (n)

No 81.60 (200)

Yes 18.40 (45)

Western dietary pattern -.03 (1.28)

Health Conscious dietary pattern .05 (1.50)

Highest education level, % (n)

Left before GCSE 5.90 (14)

GCSE & Vocational 22.90 (54)

A-level 12.70 (30)

University 30.90 (73)

(Continued)
TABLE 1 Continued

% (n) or median (IQR)

Postgraduate 27.50 (65)

Family income (£), % (n)

<18,000 7.50 (18)

18 – 25,000 10.00 (24)

25-43,000 19.70 (47)

>43,000 52.30 (125)

Do not wish to say 10.50 (25)

WIMD 1270.00 (1211.00)

A1 EPDS total 7.00 (6.00)

A1 STAI total 34.00 (13.00)
IQR, Interquartile range; BMI, body mass index; GDM, gestational diabetes mellitus;
LBW, low birthweight; ABW, average birthweight; HBW, high birthweight; CBWC,
custom birthweight centile; SGA, small for gestational age; AGA, average for gestational
age; LGA, large for gestational age; WIMD, Welsh Index of Multiple Deprivation; EPDS,
Edinburgh Postnatal Depression Scale; STAI, State-Trait Anxiety Inventory.
aAt any point in pregnancy.
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for women within the healthy BMI category. This finding

supports the important influence of maternal diet in relation

to hPL levels. Moreover, there is potential for this to be a direct

relationship with studies in several experimental animal models

reporting that both overnutrition and undernutrition reduce the

expression of placental hormones (45). However, while this

relationship was evident in women of a healthy BMI, it was

not apparent in women with an unhealthy BMI. BMI is already

known to have an influential effect on maternal hPL serum levels

with structural changes in the placental hPL gene locus reported

in women with higher BMI compared to those on the normal

range (48). Together, these findings suggest that BMI has a

stronger influence on hPL levels than maternal diet. The caveat

is that, in our cohort, BMI and diet are linked with increasing

BMI associated with decreasing Health Conscious dietary

pattern score (49). Similarly in the majority of animal models

of overnutrition, both weight gain and exposure to diet occur
Frontiers in Endocrinology 06
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concurrently in pregnancy. Distinguishing direct and indirect

relationships consequently presents a challenge.

We have previously reported a positive relationship between

term serum hPL and infant birthweight (g), head circumference

and placental weight (g) (28) consistent with a number of

previous studies (20, 21). This study went further by

examining additional weight measures. CBWC and the

associated classifications of SGA, AGA and LGA have several

advantages over the traditional population based weight

measures (55, 56) and have been recommended for use in the

UK by the Royal College of Obstetricians and Gynaecologists

since 2002 (57). In our cohort nearly twice the number of infants

would be classified as growth restricted by the CBWC criteria

(Table 1). However, these measures are rarely utilised in

research. We are unaware of any other studies reporting the

influence of hPL on these birthweight measures. As such, this

research strengthens and supports the current evidence base that
TABLE 2 Unadjusted and adjusted linear regression indicating the association between maternal prenatal health behaviours and hPL (mg/mL).

p B 95% CI

Unadjusted Smoking .036 -1.24 -2.40, -.08

Alcohol .359 .33 -.38, 1.04

Exercise .119 .72 -.19, 1.63

Western dietary pattern .640 -.09 -.47, .29

Health Conscious dietary pattern .029 .40 .04, .76

Adjusted Smoking .706 -.23 -1.42, .97

Health Conscious dietary pattern .618 .09 -.26, .44
front
CI, confidence interval. Bold values are significant at p < .05.
TABLE 3 Unadjusted and adjusted linear regression indicating the association between maternal prenatal health behaviours and hPL (mg/mL)
when stratified by maternal BMI at booking.

p B 95% CI

Unadjusted Healthy Smoking .179 -1.43 -3.53, .67

Alcohol .259 .66 -.49, 1.81

Exercise .264 .72 -.56, 2.00

Western dietary pattern .227 -.36 -.95, .23

Health Conscious dietary pattern .020 .65 .11, 1.19

Overweight Smoking .321 -1.29 -3.85, 1.28

Alcohol -1.14 .23 -1.14, 1.61

Exercise .837 .22 -1.93, 2.38

Western dietary pattern .720 -.14 -.88, .61

Health Conscious dietary pattern .338 .35 -.37, 1.07

Obese Smoking .448 -.66 -2.40, 1.08

Alcohol .914 .07 -1.28, 1.43

Exercise .161 1.39 -.57, 3.34

Western dietary pattern .214 .45 -.27, 1.17

Health Conscious dietary pattern .404 -.33 -1.10, .45

Adjusted Healthy Health Conscious dietary pattern .024 .59 .08, 1.11
CI, confidence interval. Bold values are significant at p < .05.
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TABLE 4 Unadjusted and adjusted linear regression indicating the association between hPL (mg/mL) and infant weight outcomes.

p B 95% CI

Unadjusted Birthweight (g) <.001 52.01 30.20, 73.82

CBWC <.001 3.82 2.62, 5.01

12 month weight (kg) .967 .00 -.17, .17

Adjusted Birthweight (g) .090 16.56 -2.64, 35.75

CBWC .014 1.64 .33, 2.94
Frontiers in Endocrinology
 07
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CI, confidence interval; CBWC, custom birthweight centile. Bold values are significant at p < .05.
TABLE 5 Unadjusted and adjusted binary regression indicating the association between hPL (mg/mL) and infant weight categories.

p Exp (B) 95% CI

Unadjusted SGA .008 .70 .53, .91

LGA <.001 1.31 1.15, 1.49

Adjusted SGA .090 .72 .49, 1.05

LGA <.001 1.42 1.17, 1.72
nt
CI, confidence interval; SGA, small for gestational age; LGA, large for gestational age. Bold values are significant at p < .05.
FIGURE 2

The relationship between hPL (µg/mL) and infant custom birthweight centile.
FIGURE 1

The relationship between hPL (µg/mL) and infant birthweight (g).
iersin.org
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hPL is associated with birthweight outcomes. As there was no

association between hPL and infant weight at 12 months, this

also suggests that the influence of hPL on infant weight is short

term in nature.

There are several potential limitations to consider regarding

this study. Firstly, dietary patterns were originally identified

using data from Caucasian participants, a demographic which

forms the majority of the Grown in Wales study cohort (91%).

As such, the generalisability of the study to other ethnicities may

be limited and future research should be conducted with diverse

populations to validate the findings. Secondly, our population

were recruited to explore the impact of maternal depression on

the placenta and therefore focused on recruiting women booked

for ELCS. This selective process is both a limitation – due to the

restricted nature of the cohort – and an advantage since hPL

measures were all taken 1-4 days prior to birth by the same two

research midwives on the morning of the participants surgical

assessment. This focused timing in the collection of samples and

the somewhat homogenous nature of the cohort means that we

are able to detect subtle relationships in our relatively small

pregnancy cohort. However, an important question remains

unanswered which is the timings of the relationships. We have

a single measure of hPL at near term. Determining a more

precise timeline will be important.

In conclusion, we have established that there is a positive

association between a healthy maternal diet and hPL, a key

hormone of pregnancy, at least within women with a healthy

BMI category. Moreover, hPL is associated with birthweight

outcomes. While we have not established the extent to which

this is a direct relationship, it is clear that consuming a healthy

diet in pregnancy reduces the risk of a number of

complications of pregnancy and is likely to protect offspring

from the longer term problem association with exposure to

early life adversity.
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Diabetic retinopathy (DR) and diabetic macular edema (DME) are major causes

for visual loss in adults. Nearly half of the world’s population with diabetes has

some degree of DR, and DME is a major cause of visual impairment in these

patients. Severe vision loss occurs because of tractional retinal detachment due

to retinal neovascularization, but the most common cause of moderate vision

loss occurs in DME where excessive vascular permeability leads to the

exudation and accumulation of extracellular fluid and proteins in the macula.

Metabolic control stands as an effective mean for controlling retinal vascular

alterations in some but not all patients with diabetes, and the search of other

modifiable factors affecting the risk for diabetic microvascular complications is

warranted. Prolactin (PRL) and its proteolytic fragment, vasoinhibin, have

emerged as endogenous regulators of retinal blood vessels. PRL acquires

antiangiogenic and anti-vasopermeability properties after undergoing

proteolytic cleavage to vasoinhibin, which helps restrict the vascularization of

ocular organs and, upon disruption, promotes retinal vascular alterations

characteristic of DR and DME. Evidence is linking PRL (and other pituitary

hormones) and vasoinhibin to DR and recent preclinical and clinical evidence

supports their translation into novel therapeutic approaches.

KEYWORDS

vasoinhibin, PRL, diabetic retinopathy, diabetic macular edema, diabetes, levosulpiride
Diabetic Retinopathy is a common cause of vision
loss and blindness

Most patients with longstanding diabetes mellitus developmicrovascular complications

of diabetes, namely nephropathy, neuropathy, and retinopathy. DR is a highly specific

neurovascular complication of diabetes and is the most frequent cause of new blindness

among adults aged 20-74 years in developed countries (1, 2). DR advances from mild

nonproliferative abnormalities with increased vasopermeability and microaneurysms to

moderate and severe stages characterized by the growth of new blood vessels in the retina
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and the posterior surface of the vitreous. Fibrous tissue may exert

tension on the retina and cause retinal detachment. The new

blood vessels may bleed and cause preretinal and vitreous

hemorrhage. A macular edema causing central vision

impairment may occur because of increased vasopermeability

and capillary nonperfusion (3). Major risk factors include the

duration of diabetes, HbA1c levels, and blood pressure (3, 4). The

onset of puberty and pregnancy increase the risk of progression of

DR. Tertiary prevention of DR includes laser photocoagulation for

proliferative diabetic retinopathy (PDR), anti-VEGF therapy for

DME and PDR, and vitrectomy in advanced DR (5). Various

pathophysiological and pathobiochemical pathways directly

linked to chronic hyperglycemia which lead to a disorganization

and breakdown of the blood-retinal-barrier are involved in the

manifestation of DR and DME, including an activation of protein

kinase C (6) and the accumulation of advanced glycation end

products (7). However, there are patient populations with type 1

diabetes of extreme duration who do not develop diabetic

complications and appear to be protected by unknown factors

(8, 9). This contrasts with other studies, which usually report

that >90% of patients with type 1 diabetes will eventually develop

retinopathy (10). Also, there was a lack of association between

glycemic control and prevalence of reported microvascular

complications (11). Consistently, the total glycemic exposure

(A1C and duration of diabetes) explained only 11% of the

variation in risk in the Diabetes Control and Complications

Trial (DCCT) cohort, where retinopathy progression was

studied in conventional and intensive treatment groups (12). It

is thus acknowledged that significant numbers of patients with

diabetes can live without severe complications, likely due to

factors that can neutralize the adverse effects of hyperglycemia

or other unknown protective factors which prevent the

development of diabetic complications (11). Hormonal factors

are predisposed to confer protective effects against microvascular

complications through their effects on organ function, repair and

maintenance of homeostasis, the control of growth, and their

capacity to adapt their levels and action in response to demand or

to pathologic stimuli. The investigation of pituitary hormones is

therefore warranted.
Pituitary infarction revealed an
involvement of pituitary hormones
in diabetic retinopathy

A role of pituitary hormones in the etiopathology of DR

emerged soon after the observation that infarction or

insufficiency of the anterior lobe of the pituitary, can result in

hypoglycemia and high sensitivity to administered insulin,

known as the Houssay-Biasotti phenomenon. In fact,

infarction, or insufficiency of the pituitary gland, also known

as Simmond’s disease, can lead to terminal hypoglycemia, as
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reported in a series of early case studies (13, 14). Pituitary

infarction can also occur after severe peri- or postpartum

hemorrhage, as described by Sheehan (Sheehan’s syndrome).

In all instances, examples of cessation or regression of diabetic

retinopathy was observed. Soon thereafter, pituitary ablations,

stalk sections, and destruction by irradiation were introduced for

treating diabetic retinopathy but became obsolete in the face of

the harmful effects that were associated with these procedures

and the following anterior pituitary insufficiency. The beneficial

effects of pituitary insufficiency were attributed to the cessation

of growth hormone secretion and consecutively lower insulin-

like growth factor I (IGF-I) levels, however, the overall resumé of

repeated cross-sectional, longitudinal, and prospective studies

on the relationship between circulating IGF-I levels and DR did

not establish a clear role for the GH/IGF-I axis (15). Patients

with acromegaly and diabetes mellitus do not have a higher

prevalence of DR (16) and patients with diabetes and congenital

IGF-I deficiency (Laron syndrome) or GH gene deletion can

develop DR (17, 18). Disparate data are available on circulating

IGF-I levels and DR progression during pregnancy, with studies

finding or not finding an association of IGF-I levels with DR

during pregnancy (19, 20). On the other hand, it is known that

an acute reduction of chronic hyperglycemia can accelerate DR,

and that this deterioration is preceded by an upregulation of

serum IGF-I (21). Both, GH, and IGF-I are present in the

vitreous and the levels of IGF-I are higher in the vitreous of

pat ients with ret inal neovascular iza t ion (22, 23) .

Mechanistically, IGF-I has mitogenic and differentiating effects

on cultured retinal endothelial cells (24) and on retinal

capillaries (25), and can induce neovascularization in the

avascular rabbit cornea (26). IGF-I and its receptor, as well as

IGF binding proteins are distributed throughout the retina, and

IGF-I mRNA has been detected in the ganglion cell layer, the

inner nuclear layer and in the outer limiting membrane (27, 28).

The total IGF-I distribution in ocular tissues is therefore a

combination of local expression and systemic uptake.

Altogether, the contribution of local and circulating IGF-I in

diabetic retinopathy remains to be understood, can be

interpreted as rather “permissive” than causal (17) and

therapeutic interventions into the GH/IGF-I axis did not yield

sufficient evidence in clinical studies to be considered in the

current treatment recommendations for DR (5). Attesting to the

heterogeneity and variation in pathomechanisms of proliferative

retinopathies across the lifespan, ample evidence demonstrates

the key role of IGF-I in retinopathy of prematurity (29–32).
Circulating PRL levels change
in diabetes

Another pituitary hormone which attracted attention in respect

to its involvement in DR is PRL. Not long after the
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radioimmunoassay for PRL became available, which allowed the

measurement of circulating PRL concentrations (33, 34), PRL was

evaluated in patients without DR and DR at various stages. Early

reports found higher PRL levels in patients with diabetes but

without severe DR and hypothesized about the potential function

of PRL as a protective factor in DR, and about some potential

treatment based on the stimulation of PRL secretion (35, 36).

Indeed, pituitary stalk section results in minimized GH secretion

with subsequent decline of IGF-I levels but result in higher PRL-

secretion due to a disinhibition of lactotroph PRL secretion by the

disruption of dopamine transport through the pituitary stalk (37).

The beneficial effects of pituitary stalk sections could therefore have

been not only due to the reduction of IGF-I levels, but also due to an

increase in circulating PRL. Comparable with IGF-I levels, various

results were reported in which the association of PRL levels with DR

presence and severity was not confirmed (38–41). A mechanism of

action for protective effects of PRL levels was also missing. PRL

exerts a diverse array of biological functions beyond its essential role

in lactation (42–44), a fact which has received little attention in

clinical medicine in the past, where the relevance of PRL is

acknowledged in prolactinoma and secondary amenorrhea.

Regarding diabetes and its complications, there is a new trend

towards the recognition of PRL as an important metabolic

hormone, directly involved in beta-cell function and survival, and

the regulation of insulin sensitivity and resistance, respectively (45).

Higher PRL levels are associated with higher insulin sensitivity and

a lower incidence of type 2 diabetes mellitus, which led to a re-

evaluation of current thresholds for normal PRL levels and

hyperprolactinemia (45). It was proposed to re-define the

interpretation of PRL levels beyond the upper threshold of 25 ng/

ml where a homeostatic functionally increased transient

hyperprolactinemia (homeoFIT) can be assumed, the suggested

term for an elevation of PRL levels which may constitute a

physiological response to increased metabolic demand (reviewed

in ref. 45).
The PRL/vasoinhibin axis
controls ocular angiogenesis and
vascular function

A new perspective on the role of PRL in DR began to evolve

when the antiangiogenic effects of an enzymatically cleaved 16

kDa N-terminal fragment of human PRL were discovered (46),

and a direct pathophysiological implication towards the

regulation of blood vessel growth emerged. It became evident

that the 16 kDa N-terminal fragment is not the only fragment

with antiangiogenic effects, and that multiple isoforms with a

large variation in molecular mass exist, their size being

determined by the PRL-cleaving enzyme and its cleavage site

location within the PRL molecule. The isoforms were collectively

called vasoinhibin (47–49), including similar proteins generated

by the proteolytic cleavage of GH and placental lactogen (PL)
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(50, 51). A strong role of vasoinhibin as a regulator of ocular

angiogenesis and vascular function evolved, and with reference

to existing reviews (52–55), and 11 years after PRL and

vasoinhibin were first portrayed as endogenous players in DR

(56), the following discussion will focus on key principles and

significant developments in the recent years (Table 1). The new

understanding of circulating PRL levels in terms of homeoFIT-

levels is relevant when considering the role of PRL and

vasoinhibin in DR, as in partial disagreement to the early

studies between 1970 and 1985, there appeared to be an

association between circulating PRL levels and DR, reported

by Arnold et al. in 2010 (62). The PRL levels were higher in

patients with diabetes and no retinopathy (compared to healthy

controls) and higher in patients with diabetes and non-

proliferative DR than in patients with PDR (62). The PRL

levels in the patients with diabetes were above the

conventional threshold of 25 ng/ml, and therefore in the

homeoFIT-range. In addition to answering to increased

metabolic demand, PRL levels in the homeoFIT-range may

also, through their proteolytic conversion to vasoinhibin,

contribute to control the function and growth of ocular blood

vessels. Interestingly, uncleaved PRL is protective in the retina

and required for maintaining retinal functionality in mice during

aging and has potential therapeutic value against age-related

retinal disorders (68, 69). Short PRL isoforms are expressed in

the canine retina undergoing retinal degeneration (70). A clinical

study in patients with a prolactinoma using optical coherence

tomography revealed a reduced thickness of the chorioretinal

layers in patients with prolactinoma compared to controls (71).

Patients with DR have a higher renal elimination of PRL (72)

and the circulating levels of vasoinhibin are reduced in patients

with DR (63).

The principle underlying vasoinhibin accumulation in the

retina – or in other tissues – is that of an endocrine axis in which

the levels of vasoinhibin are controlled by regulatory

mechanisms at the hypothalamo-, the pituitary-, and the local

level. The vasoinhibin levels depend on the availability and

amount of secreted and circulating PRL (hypothalamo-

pituitary level), and on the hypothalamo, pituitary, and

peripheral tissue distribution and activities of PRL-cleaving

proteases (local level). This hormonal axis was described as the

PRL/vasoinhibin axis of which the vasculature is a major target

tissue (53, 67). The cleavage sites in PRL through which

vasoinhibin is generated are conserved in vertebrates (47, 67,

73) and high affinity cleavages sites evolved, most likely as a gain

of function under positive selection, as a unique feature of higher

primates (74). The cleavage of PRL to generate vasoinhibin

occurs in the wider context of a hormone-metabolism

junction, through which specifically cleaved hormones regulate

essential functions to maintain homeostasis at the organismal,

tissue, or organ levels (75, 76). The PRL/vasoinhibin axis

contributes to maintaining corneal avascularity (66), restricts

retinal vasculature (65), and is disrupted in retinopathy of
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prematurity (77, 78). In rodents, hyperprolactinemia leads to

vasoinhibin accumulation in the retina and reduces both VEGF-

induced and diabetes-induced retinal vasopermeability (57, 62,

64); an effect also demonstrated by vasoinhibin gene transfer which

not only prevented (61) but also reversed (60) excessive retinal

vasopermeability and oxygen-induced retinal angiogenesis (79).

The bioactive site in vasoinhibin, through which the

antiangiogenic and antivasopermeability effects of the molecule are

mediated, is a short, conserved three-residue motif consisting of

residues His46-Gly47-Arg48 which becomes active after the

proteolytic cleavage of PRL to vasoinhibin (80). Molecular

dynamics simulations predicted the three-dimensional structure of

vasoinhibin comprising a three-helix bundle with a tendency to form

dimers or multimers, which also complicated the experimental

resolution of the vasoinhibin three-dimensional structure (73, 81,

82). Vasoinhibin signals through various binding partners such as a

specific high affinity binding site on endothelial cells (83), integrin

alpha5 beta1 (84), or plasminogen activator inhibitor 1, urokinase,

and urokinase receptor multicomponent complex (85) to trigger

intracellular signaling pathways that result in its effects on endothelial

cells but a classical hormone receptor has not been identified. The

circulating levels of vasoinhibin are unknown due to the absence of a

quantitative vasoinhibin assay for human serum, which is why

immunoprecipitation followed by SDS-PAGE and Western blotting

is still the only more frequently used method for the evaluation of

vasoinhibin in clinical samples (77). Alternative methods using a lab-
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on-a chip technology ormass spectrometry were reported (63, 86, 87)

but did not establish themselves thereafter. The lack of monoclonal

anti-vasoinhibin antibodies able to discriminate between PRL and

vasoinhibin prevented attempts to develop a sandwich enzyme-linked

immunosorbent assay (ELISA). Fortunately, monoclonal antibodies

were recently developed, and their evaluation for an ELISA by which

the levels of vasoinhibin could be quantified is underway (88).

However, Western blot evaluation of vasoinhibin in clinical

samples is supported by the measurement of its antiangiogenic

properties in the presence or absence of anti-PRL antibodies that

neutralize vasoinhibin action (58, 89).
A clinical trial investigates the
elevation of PRL-levels in patients
with diabetic retinopathy

Increased, hypoxia-driven expression of VEGF, produced by

the retinal pigment epithelium, by endothelial cells, pericytes

and other retinal cells, with consecutive enrichment in the retina

and vitreous is a major driver of DME and PDR as it contributes

to rupturing the blood-retinal barrier and induces angiogenesis

which results in pathological neovascularization. The healthy

vitreous is one of the few naturally avascular structures but is

invaded by blood vessels in PDR. Not only the elevation of
TABLE 1 Landmark original research articles and reviews highlighting the involvement of the prolactin/vasoinhibin axis in diabetic retinopathy.

Brief description Year Ref.
ORIGINAL RESEARCH ARTICLES

Sulpiride-induced hyperprolactinaemia inhibits the diabetes- and VEGF-mediated increase in retinal vasopermeability by promoting the intraocular
conversion of endogenous PRL to vasoinhibin

2022 (57)

Levosulpiride increases the levels of PRL in the vitreous of PDR patients and promotes its MMP-mediated conversion to vasoinhibin, which can inhibit
angiogenesis in DR

2020 (58)

Study protocol of a prospective, randomized, double-blind, placebo-controlled trial enrolling male and female patients with type 2 diabetes having DME,
randomized to receive placebo or levosulpiride

2018 (59)

AAV2 vasoinhibin vector decreases retinal microvascular abnormalities in rats 2016 (60)

AAV2-vasoinhibin vector in rats prevents pathologic retinal vasopermeability and suggest it could have therapeutic value in patients with DR 2011 (61)

Circulating PRL influences the progression of DR after its intraocular conversion to vasoinhibin. Inducing hyperprolactinemia may represent a novel
therapy against DR

2010 (62)

Patients with diabetes mellitus and DR have lower circulating levels of vasoinhibin, compared to healthy patients 2009 (63)

Vasoinhibin blocks retinal vasopermeability in diabetic rats and in response to intravitreous injection of VEGF or of vitreous from patients with DR 2008 (64)

Vasoinhibin is a natural inhibitor of angiogenesis in the retina 2005 (65)

Vasoinhibin is a natural inhibitor of corneal vascularization 1999 (66)

Speculations whether stimulating PRL-release in patients with DR might be benefitial 1976 (36)

REVIEW ARTICLES

Pharmacological interventions into the prolactin/vasoinhibin axis for the treatment of diabetic retinopathy 2017 (52)

Introduction of the prolactin/vasoinhibin axis and its pathophysiological significance including DR 2015 (67)

Review of the regulation of blood vessel growth and function by vasoinhibin 2015 (53)

Portray and review of PRL and vasoinhibin as endogenous players in DR 2011 (56)

Introduction of vasoinhibin as a novel inhibitor of ocular angiogenesis 2008 (55)
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growth factors facilitates its invasion by neovessels, the impaired

production or insufficient upregulation of natural blood vessel

inhibitors responsible for maintaining the avascular state of the

vitreous are relevant as well (90). The healthy vitreous humor as

such is antiangiogenic and inhibits tumor neovascularization

(91), and angiogenesis in various other models, for example the

retinal-extract induced angiogenesis in the chick chorioallantoic

membrane (CAM) assay (92).

As mentioned, hyperprolactinemia leads to vasoinhibin

accumulation in the retina of rats and prevents and reverses

diabetes-induced blood retinal barrier breakdown and ischemia-

induced angiogenesis by inhibiting vasopermeability and by

targeting the retinal pigment epithelial cells in the outer blood

retinal barrier (62, 93). These insights triggered the development

of a randomized clinical trial, in which levosulpiride is evaluated as a

medical treatment in patients with PDR and DME (59) (Figure 1).

Levosulpiride is a dopamine D2 receptor blocker which is used as a

prokinetic drug in patients with diabetic gastroparesis, where enteric

inhibitory dopaminergic D2 receptor antagonism can have

prokinetic effects. At the pituitary level D2 receptor antagonism
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with levosulpiride evokes hyperprolactinemia (94). One arm of the

clinical study includes patients with PDR undergoing vitrectomy,

with and without prior treatment with levosulpiride and subsequent

laboratory evaluation of the vitreous fluid. Levosulpiride treatment

increased PRL and vasoinhibin in the vitreous, and the vitreous from

levosulpiride-treated patients with PDR, but not from placebo-

treated patients with PDR, inhibited the basic fibroblast growth

factor (bFGF) andVEGF-induced proliferation of endothelial cells in

culture (58). The conversion of PRL to vasoinhibin was mediated by

matrix metalloprotease (MMP) present in the vitreous fluid and was

higher in patients without diabetes than in patients with PDR (58).

This result is the first partial outcome of the clinical study which

provided a proof-of-concept that treatment with levosulpiride is

appropriate to elevate intraocular PRL and vasoinhibin levels.

Further proof-of-concept was shown by an in vivo study in rats

with streptozotocin-induced diabetes, in which racemic sulpiride

increased ocular vasoinhibin levels and inhibited retinal

hypervasopermeability (57). The other arms of the trial that also

comprise patients with DME are awaiting completion and the

publication of the results are expected soon.
FIGURE 1

Schematic representation of the mechanism by which levosulpiride therapy could limit the progression of DME and DR. Levosulpiride, a dopamine D2
receptor antagonist, blocks dopamine D2 receptors located in the membrane of anterior pituitary cells that produce PRL (lactotrophs). Given that
hypothalamic dopamine inhibits the release of PRL, levosulpiride leads to high levels of PRL in the circulation (hyperprolactinemia) which, in turn, favor
PRL penetration across the blood–ocular barrier. MMPs in the intraocular/vitreous compartment cleave PRL to vasoinhibin, which can reduce retinal
vasopermeability and angiogenesis in DME and DR. Scheme was partly created with Biorender.com. The original figure was published by Nunez-Amaro
et al. (58) under the Creative Commons Attribution-Non-Commercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/
by-nc-nd/4.0/). The figure was not modified.
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PRL and vasoinhibin are
endogenous players in
diabetic retinopathy with
translational potential

By the providing the retina and the vitreous with PRL and

antiangiogenic vasoinhibin, the PRL/vasoinhibin axis

contributes to the physiological restricted and avascular states

of the retina and vitreous body, respectively. The natural

antiangiogenic capacity of the vitreous is impaired in DR,

namely by the upregulation of factors stimulating blood vessel

growth, but likewise by the downregulation of inhibitors. The

downregulation includes a reduced MMP-mediated conversion

of PRL to vasoinhibin in DR and facilitates an increase in retinal

blood vessel permeability and neovascularization growing into

the vitreous, with concurrent manifestation of edema, bleeding,

tractional retinal detachment, and clinically loss of vision and

blindness. Preclinical experimental and clinical proof-of-concept

studies revealed the translational potential of raising systemic

PRL levels to elevate ocular PRL levels and enhance the

generation of vasoinhibin in the vitreous. The PRL/vasoinhibin

axis and its regulation in diabetes is among the factors beyond

glycemic exposure which may determine the risk of DME, and

DR. Therapeutic interventions are currently evaluated in a

clinical trial and will show whether patients with diabetes

benefit from raising circulating PRL levels. The new clinical

perspective of PRL in metabolism and its contribution to the

control of blood vessel growth and function via the PRL/

vasoinhibin axis is attesting to the clinical significance of PRL

beyond reproduction-associated functions.
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Prolactin receptor gene
transcriptional control,
regulatory modalities relevant
to breast cancer resistance
and invasiveness

Raghuveer Kavarthapu and Maria L. Dufau*

Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of Health, Bethesda,
MD, United States
The prolactin receptor (PRLR) is a member of the lactogen/cytokine receptor

family, which mediates multiple actions of prolactin (PRL). PRL is a major

hormone in the proliferation/differentiation of breast epithelium that is

essential for lactation. It is also involved in breast cancer development, tumor

growth and chemoresistance. Human PRLR expression is controlled at the

transcriptional level by multiple promoters. Each promoter directs

transcription/expression of a specific non-coding exon 1, a common non-

coding exon 2 and coding exons E3-11. The identification of exon 11 of PRLR

led to finding of alternative spliced products and two novel short forms (SF) that

can inhibit the long form (LF) of PRLR activity with relevance in physiological

regulation and breast cancer. Homo and heterodimers of LF and SF are formed

in the absence of PRL that acts as a conformational modifier.

Heterodimerization of SF with LF is a major mechanism through which SF

inhibits some signaling pathways originating at the LF. Biochemical/molecular

modeling approaches demonstrated that the human PRLR conformation

stabilized by extracellular intramolecular S−S bonds and several amino acids

in the extracellular D1 domain of PRLR SF are required for its inhibitory actions

on PRLR LF-mediated functions. Studies in breast cancer cells demonstrated

that the transcription of PRLR was directed by the preferentially utilized PIII

promoter, which lacks an estrogen responsive element. Complex formation of

non-DNA bound ERa dimer with Sp1 and C/EBPb dimers bound to their sites at

the PRLR promoter is required for basal activity. Estradiol induces

transcriptional activation/expression of the PRLR gene, and subsequent

studies revealed the essential role of autocrine PRL released by breast cancer

cells and CDK7 in estradiol-induced PRLR promoter activation and

upregulation. Other studies revealed stimulation of the PRLR promoter

activity and PRLR LF protein by PRL in the absence of estrogen via the

STAT5/phospho-ERa activation loop. Additionally, EGF/ERBB1 can induce the

transcription of PRLR independent of estrogen and prolactin. The various

regulatory modalities contributing to the upregulation of PRLR provide
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options for the development of therapeutic approaches to mitigate its

participation in breast cancer progression and resistance.
KEYWORDS

prolactin receptor (PRLR), transcriptional regulation, gene structure, signal
transduction, breast cancer, prolactin (PRL)
Introduction

Prolactin (PRL) is a multifaceted protein hormone produced

and secreted by the anterior pituitary gland, and it is also found

in extra-pituitary tissues, including the mammary gland, brain,

decidua, gonads, pancreas, immune cells, liver and adipose

tissue, where it exerts autocrine and paracrine functions

[reviewed in (1–4)]. Prolactin directs several physiological

functions, such as lactation, immunomodulatory actions, and

glucose and lipid metabolism, and is involved in pathological

modalities, such as prolactinoma, hypogonadism and several

cancers [reviewed in (2–4)]. The highly diversified actions of

PRL are mediated through its transmembrane prolactin receptor

(PRLR), a member of the lactogen/cytokine receptor family,

which is expressed ubiquitously and functions as a dimer

activated by PRL. A short isoform of PRLR with 310 amino

acids (aa) was initially cloned from rat liver (5). The long form

(LF) of PRLR with 610 aa was isolated from human hepatoma

and breast cancer cells (6) and from the rat ovary (7). The

monomeric structure of human PRLR (hPRLR) was resolved

using combined NMR and computational approaches (8). PRLR

gene expression is controlled by multiple promoters that regulate

sustained PRLR levels and function (9). In humans, there are

several PRLR isoforms, including the LF, many short forms

(SFs), an intermediate variant and a soluble isoform [ (10),

reviewed in (11)]. The expression of these isoforms of PRLR

widely varies in different tissues and is required for specific

functions of the organ system at specific times. Certain short

isoforms of hPRLR can interfere with the essential signaling of

the long isoform, thereby exerting inhibitory action [reviewed in

(11, 12)].

PRL is structurally similar to growth hormone and can act as

a growth factor, immunomodulator, or neurotransmitter in an

autocrine and paracrine manner [reviewed in (2)]. PRL mediates

its actions through PRLR, resulting in the activation of the janus

tyrosine kinase (JAK)/signal transducer and activator of

transcription (STAT) and mitogen-activated protein kinase

(MAPK) signaling pathways [reviewed in (2)]. PRL/PRLR has

been implicated in the development of several cancers and

tumor progression [reviewed in (13–20)]. Hence, PRLR

signaling has emerged as a relevant target in breast cancer.

PRL is normally secreted in a pulsatile fashion, and this is
02
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clinically important for diagnostics related to problems in

lactation and female infertility. Additionally, elevated

circulating or locally produced PRL levels are associated with

the risk of breast cancer [reviewed in (17, 18)]. PRL, through its

cognate receptor, stimulates various downstream signaling

cascades involv ing STAT5, RAS and MAPK, and

phosphatidylinositol 3-kinase (PI3K) have been implicated in

mammary tumorigenesis [reviewed in (18, 19, 21)]. The gain-of-

function mutations in PRLR reported in benign and malignant

breast cancer patients may support the hypothesis that PRLR

signaling cascades could participate in benign breast

tumorigenesis (22). In this review, we provide an overview of

the current understanding of the transcriptional regulation of

PRLR and signal transduction in physiological and pathological

modalities in mammary glands with special emphasis on the role

of PRL/PRLR signaling in breast cancer.
PRL and PRLR

PRL and PRLR distribution and
biological functions

Prolactin is a 23 kDa protein hormone containing 199 aa

that is produced in the lactotroph cells of the anterior pituitary

gland. Prolactin is also secreted in an extra-pituitary and

autocrine/paracrine manner from different tissues, such as

mammary glands, brain, decidua, gonads, pancreas, immune

cells, liver, and fat [reviewed in (1–3)]. The gene encoding

human PRL is ∼10 kb with five exons, and four introns is

present on chromosome 6. In addition to its normal expression

in the anterior pituitary, it is also expressed in mammary

epithelial cells, the decidua, brain, myometrium, endometrium,

lacrimal gland, thymus, spleen, skin fibroblasts, sweat glands and

immune system cells. PRL secretion is regulated by several

factors. Ovarian steroids, specifically estrogens, modulate PRL

synthesis and prolactin release while suppressing dopamine

synthesis [reviewed in (1–3)]. Increased PRL secretion

(prolactinomas) directly suppresses the secretion of GnRH and

indirectly suppresses follicle-stimulating hormone and

luteinizing hormone, thereby disrupting the HPG axis and the

ovulatory cycle (reviewed in 1-2). PRL performs innumerable
frontiersin.org
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physiological functions in the body, including mammary gland

development, lactation, gonadal functions (luteal cycle, uterine

actions, Leydig cell development), parental behavior,

preadipocyte differentiation, osmoregulation, angiogenesis,

immunomodulatory function, islet cell proliferation, adrenal

steroidogenesis, bone and calcium homeostasis, anovulation,

reduced stress responses, oxytocin secretion and lipid

metabolism. Prolactin also promotes neurogenesis in maternal

and fetal brains [reviewed in (2, 3)].

PRLR has been identified in numerous cells and tissues of

adult mammals. Cellular proliferation is also an important

function of PRL in mammals. The expression of receptors

(short and long forms) tends to vary with the stage of the

estrous cycle, pregnancy, and lactation (23). The expression of

PRLR in the late gestational fetal rat using in situ hybridization

and immunocytochemistry showed that the long and short

isoforms of PRLR were expressed during late fetal

development (days 17.5 to 20.5). These studies showed PRLR

transcripts were widely expressed in tissues from all three germ

layers, in addition to the classic target organs of PRL (24). The

expression of PRLR mRNA in the fetal adrenal cortex,

gastrointestinal and bronchial mucosae, renal tubular epithelia,

choroid plexus, thymus, liver, pancreas, and epidermis was

higher than that in other tissues (23).
PRLR structure and isoforms

PRLRs belong to the lactogen/cytokine receptor superfamily,

which mediates the various cellular actions of PRL in different

target tissues. PRL binds to preexisting PRLR dimers and acts as

a conformational modifier, which results in the activation of the

JAK/STAT pathway and MAPK and SRC kinases, thus leading

to the induction of PRL responsive genes [reviewed in (4, 18)].

PRLR structure
PRLR has three main domains: extracellular, transmembrane

and intracellular. The extracellular domain is divided into two

fibronectin domains, D1 and D2, and the WS motif in D2 acts as a

molecular switch during ligand-bound activation of PRLR (25).

PRLR has a single-pass transmembrane chain, and the receptor

chain does not possess kinase activity. The receptor chain

is dependent on the associated kinases to transduce

phosphorylation-based signal cascades. The intracellular domain

includes proline-rich sequence-mediated JAK2 association to the

prolactin receptor is required but not sufficient for signal

transduction Box-1/2 sub-domains. Box-1 is known to interact

with JAK2 and SRC family kinases such as FYN [reviewed in (4)].

The intracellular domain of PRLR-LF is intrinsically highly

unstructured/disordered and binds to negatively charged lipids of

the inner plasma membrane through conserved motifs resembling

immuno receptor tyrosine-based activation motifs. However, this
Frontiers in Endocrinology 03
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lipid association of the PRLR intracellular domain is not

accompanied by induced folding and is independent of specific

tyrosine phosphorylation. These attributes may contribute to

regulating intracellular signaling (26). There are two short

isoforms of hPRLR generated by alternative splicing to exon 11 (10).

PRLR gene and isoforms
The genomic organization of the hPRLR gene (>200 kb) is

complex and subject to alternative splicing, which results in

several isoforms of the receptor. The gene resides on

chromosome 5p14-13. The hPRLR gene contains eleven exons,

where exon 1 consists of six non-coding sequences (hE13, hE1N1-

5) that are alternatively spliced to a common non-coding exon 2,

and only exons 3 to 11 are coding exons [ (9); Figure 1]. The LF

of hPRLR is encoded by exons 3-10 (Figure 2). Additionally, an

intermediate form (412 aa) with partial deletion of 198 aa within

the cytoplasmic domain in exon 10 of the LF was isolated from

the rat Nb2 lymphoma cell line (28) and human breast cancer

cells (29). In addition, a soluble PRLR lacking transmembrane

and cytoplasmic regions was isolated from the rat ovary (7). The

transmembrane domain is encoded by Exon 8, while most of the

intracellular domain is encoded by Exon 10 (Figure 2).

Alternative splicing of exons 10 and 11 with a truncated

intracellular domain resulted in two novel SFs of hPRLR,

S1a and S1b, which inhibit the LF signal induced by PRL [

(10); Figures 2, 3]. In addition, a unique spliced variant

designated S1c, which completely lacks exon 10, has been

identified in human spermatozoa (30). These short forms S1a

and S1b are expressed as cell surface transmembrane receptors

with a reduced cytoplasmic domain and unique C-termini S1b

was far more effective in inhibiting the PRL-induced activation

of the b-casein gene promoter mediated by LF (31, 32). A

subsequent study demonstrated a naturally occurring DS2
deletion variant of SF in normal and cancerous human cells.

These studies have also demonstrated that removal of the S2

extracellular subdomain can alter the conformation of the

intracellular signaling region of the LF and both SFs (S1a and

S1b), thereby supporting the concept that the conformation of

the ECD can affect the conformation of the intracellular

domain (33).

Our studies on human LF, S1a and S1b have revealed the

existence of constitutive LF and SF homodimers and

heterodimers (LF/S1a or LF/S1b) under non-reducing

conditions in the absence of PRL that acts as conformational

modifier (31). Both LF and SFs (S1a and S1b), as dimers, are

capable of ligand binding and PRL-induced phosphorylation of

JAK2, but only LF can activate downstream STAT5 signaling.

S1a and S1b cannot induce the downstream activation of STAT5

due to the lack of an extended cytoplasmic domain. PRL

signaling through the SF of PRLR in mouse ovaries actively

regulates the expression of several genes and can profoundly

affect follicular survival. SF can mediate the activation of MAPK
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and PI3K pathways [reviewed in (34)]. In breast cancer, the ratio

of SFs (S1a and S1b) to LF is markedly reduced compared to that

in adjacent tissue, which indicates that the loss of inhibitory

regulation of LF could increase tumor cell proliferation (35).

Two intramolecular disulfide bonds within the extracellular D1

domains are essential for the inhibitory function of S1b on LF.

Additionally, the JAK2 association was disrupted. S−S bond

disruption of S1b (S1bx) affects the dimerization interface, thus

causing a significant decrease in LF heterodimerization with

S1bx and an increase in homodimerization of S1bx. Therefore,

stability of the PRLR structure by intramolecular S−S bonds is

required for the inhibitory action of S1b on LF-mediated

function (36). Additionally, mutations in E69 of the D1

domain of S1b and neighboring amino acid residues (R66,
Frontiers in Endocrinology 04
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E67, E42) close to its surface binding domain cause a loss of

its inhibitory effect, while those away from this region or

mutants in the D2 domain have no effect. These findings

underscore the significant role of extracellular D1 on the S1b

conformation and its inhibitory action in PRL-induced LF

function [ (12); Figure 4]. In addition, PRL signaling through

SF of mouse PRLR can either stimulate or inhibit a substantial

number of transcription factors in the decidua as well as ovary.

Few transcription factors have been shown to be similarly

regulated in both tissues, while most transcription factors are

oppositely regulated by PRL (37). Additional studies are needed

to better understand the role of alternatively spliced PRLR

isoforms and the manner in which such splicing is regulated

in breast cancer.
FIGURE 1

Schematic representation of multiple exons 1 (hE13, hE1N1-5) driven by individual promoters and alternative splicing to common exon 2 of
human PRLR. Exon 3 has initiation codon. PIII/hEI3 is the predominantly utilized generic promoter in addition to five specific exon 1/promoters
(hE1N1 to hE1N5).
FIGURE 2

Schematic representation of human PRLR isoforms generated by alternative splicing [adapted from reference (27)] PRLR (prolactin receptor)
Atlas Genet Cytogenet. ** indicates soluble form of PRLR.
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Transcriptional regulation of PRLR

The expression of PRLR is controlled by multiple promoters

using a complex regulatory transcriptional network. In the rat

these promoters are PI (gonad specific and SF1 dependent), PII

(liver specific induced by HNF4), and PIII a widely expressed in

all tissues and requires CCAAT/enhancer binding protein-b (C/

EBPb) and specificity protein 1 (Sp1) for its activation. Promoter
Frontiers in Endocrinology 05
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PI is inoperative in mice due to disruption of the SF1 motif.

These multiple promoters have been shown to direct tissue-

specific expression in the ovary, liver and mammary gland in rats

[ (38), reviewed in (39)]. In humans, hPIII is a universal/generic

promoter similar in structure and regulation to one of those

found in rodents (PIII). This promoter in humans directs

transcription in all PRL-responsive tissues as well as other

promoter(s) of less known function (9). The promoters
FIGURE 3

Structure of human PRLR variants. LF, long form; IF, intermediate form; S1a, S1b & S1c, short forms; PRLBP, prolactin binding protein; LFDS1,
long form lacking D1 domain; LFDS2, long form lacking D2 domain; D, deleted exon. D1, D2, N-terminal subdomain; WS, WSXWS motif; C,
cysteine; Y, tyrosine; EC, extracellular domain; TM, transmembrane domain; IC, intracellular domain [adapted from reference (27)].
FIGURE 4

Mechanism of inhibitory action of short form S1b PRLR on PRL-induced long-from (LF) receptor signaling (reproduced from reference 12).
Homodimer of the hPRLR long form (LF) mediates PRL stimulated JAK2/Stat5 signaling required for transcription/expression PRL/PRLR target
genes which are essential for the various biological effects of the hormone. The inhibitory action of short form S1b on LF’s function induced by
PRL results from LF/SF heterodimer formation and marked reduction of LF/LF homodimers which are required by Stat5 activation.
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include the predominantly utilized generic promoter 1/exon 1

(PIII/hEI3), which is also present in rats and mice, and five

human-specific exon 1/promoters (hE1N1 to hE1N5) [ (9, 39);

Figure 1]. The PRLR promoters belong to the TATA-less/

initiator class and are activated by estradiol 17b (E2). The

preferentially utilized human promoter III (hPIII) promoter

contains Sp1 and C/EBP elements that bind to Sp1/Sp3 and C/

EBPb, which are required for basal transcriptional activity

(Figure 5). These promoters were found to be utilized in breast

cancer tissue and cell lines, including MCF7 and T47D, and

variably used in other tissues (40). Among these promoters, the

generic hPIII (the human counterpart of rodent PIII), which

drives the universal human E13 exon (the human counterpart of

EIII in rodents), was functionally characterized in breast cancer

cells, while the specific human exon hEN1 directed by promoter

hPN1 is driven by domains containing an ETS element and a

nuclear receptor NR half-site. The promoters for the specific

human exons, i.e., hEN2-5, remain to be identified (39).

E2 can induce an increase in hPRLR mRNA transcripts

directed by the hPIII promoter via a non-classical ERE

independent mechanism in breast cancer cells [ (40); Figure 5].

The association of ERa with DNA-bound Sp1 and C/EBPb is

essential for E2-induced hPRLR gene transcription (Figure 5). The

additional interaction between zinc fingers of Sp1 and leucine

zipper of C/EBPb stabilizes the ERa-Sp1-C/EBPb complex. The
Frontiers in Endocrinology 06
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enhanced complex formation of the ERa dimer (DNA binding

domain) with Sp1 (zinc finger motifs) and C/EBPb (basic region

and leucine zipper) by E2 plays an essential role in the

transcriptional activation of the PRLR gene [ (40, 41); Figure 5].

An autocrine/paracrine loop increases PRLR mRNA expression

via its ligand PRL in breast cancer cells. Similarly, in MCF7 cells

overexpressing PRL, upregulation of PRLR was observed in

response to endogenous PRL but not exogenous PRL.

Furthermore, there was an increase in ER levels and estrogen

responsiveness in these MCF-7 cells. Owing to the positive effect

of estrogen on PRLR transcription, this reciprocal regulation

amplifies both ER and PRLR signaling in breast cancer (42).

Another steroid hormone that can also regulate PRLR

transcription is progesterone through its receptor (Figure 5).

Progesterone participates in the menstrual cycle, pregnancy, and

embryogenesis and can be involved in tumorigenesis as well as in

normal growth. It has been reported that the progesterone

receptor lacks the consensus sequence or half-sequence response

element in the PRLR gene PIII promoter and demonstrated that

progesterone induces an increase in PRLR mRNA in a non-

classical manner by inducing the expression of PRLR through the

cooperative activation of Sp1 and CEBPb at the PIII promoter in

mouse cells and T47D breast cancer cells (43).
PRLR Signal Transduction

JAK-STAT pathway

This is the most classical and well-studied downstream

signaling pathway induced by the binding of PRL to PRLR.

This pathway appears to mediate most of the PRL actions in

lobuloalveolar development and lactation (Figure 6). The

intracellular domain of PRLR is devoid of any intrinsic

enzymatic activity; however, ligand-mediated activation of

PRLR results in tyrosine phosphorylation of numerous cellular

proteins, including the receptor itself [reviewed in (2, 4)].

Binding of PRL to PRLR results in conformational induction

o f pre formed dimers and ac t iva t ion of JAK2 by

transphosphorylation, which brings two JAK2 molecules close

to each other [reviewed in (2, 4)]. JAK2 kinases are involved in

the phosphorylation of Tyr residues of the PRLR itself, and the

phosphotyrosines serve as potential docking sites for transducer

molecules containing SH2 domains [ (45), reviewed (4)]. The

phosphorylation of Tyr residues of PRLR occurs in all isoforms

except short isoforms of PRLR [reviewed in (4)]. The LF of PRLR

mediates several processes upon receptor activation due to the

phosphorylation of several Tyr residues present in PRLR (45).

The STAT family of proteins are the major transducers of

cytokine receptor signaling, which contains eight members.

STAT1/3 and STAT5a/5b have been identified as transducer

molecules of PRLR. STAT contains five conserved domains:

DNA-binding, SH3-like, SH2-like, and NH2- and COOH-
FIGURE 5

Transcriptional regulation of hPRLR induced by E2. E2 induces
ligand mediated ERa-Sp1-C/EBPb complex formation and
binding to the hPIII promoter of the hPRLR gene (38, 39). This
results in increased transcription of PRLR. PRL/PRLR activates
JAK/STAT that can induce the transcription of ERa. P4
(progesterone)/Prog receptor can induce transcription of PRLR
through association with Sp1and C/EBPb through promoter hPIII.
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terminal transactivating domains [ (46), reviewed in 4)]. As per the

consensus model of STAT activation, a phosphorylated Tyr of the

activated receptor interacts with the SH2 domain of STAT. Then,

STAT is phosphorylated by receptor-associated JAK kinase. The

phosphorylated STAT dissociates from the receptor and undergoes

homodimerization or heterodimerization through an interaction

involving the phosphotyrosine of each monomer and the SH2

domain of another phosphorylated STAT molecule. The STAT

dimer translocates to the nucleus and activates a STAT DNA-

binding motif in the promoter of target genes such as b-casein,
IRF1, c-Myc, and cyclin-D (46). The consensus DNA motif

(TTCxxxGAA), termed GAS (g-interferon activated sequence), is

recognized by STAT1, STAT3, and STAT5 homo or heterodimers

[reviewed in (47, 48)].
RAS/RAF/MAP kinase pathway

In addition to JAK/STAT signaling initiated by the activation

of PRLR, several reports implicate PRLR in the activation of the

mitogen-activated protein (MAP) kinase cascade (49, 50).

Phosphotyrosine residues of PRLR can serve as docking sites for

adapter proteins (Shc/Grb2/SOS) connecting the receptor to the

RAS/RAF/MAPK cascade [ (49, 50); Figure 6]. Although the JAK/

STAT and MAPK pathways were initially regarded as

independent or parallel pathways, results suggest that these

pathways are interconnected [reviewed in (51)].
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Other kinases: c-SRC and FYN

Several reports indicate PRL-induced activation of members

of the Src kinase family, c-SRC (reviewed in 4) and FYN (52).

PRL-induced rapid Tyr phosphorylation of insulin receptor

substrate-1 (IRS-1) and a subunit of PI3K have been

described. Both IRS-1 and PI3K seem to be associated with the

PRLR complex. PRL-induced activation of PI3K has been

proposed to be mediated by FYN (52). PRL/PRLR can also

induce TEC-VAV1 and NEK3-VAV-1/VAV-2 signaling

cascades and function in the regulation of the cytoskeleton

(Figure 6). NEK3 kinase has been shown to regulates PRL-

mediated cytoskeletal reorganization and motility of breast

cancer cells (53, 54).
Role of PRL/PRLR signaling in
breast cancer

PRL/PRLR induced signaling cascades
promote breast development
and progression

PRL plays a crucial role inmammary gland development and in

the etiology and progression of breast cancer. Considerable

supporting data indicate that PRL/PRLR hyper signaling

contributes to the initiation of breast cancer. A strong correlation
FIGURE 6

PRL/PRLR signaling pathways. PRL through its receptor PRLR induces multiple signaling cascades which include participation of JAK, SFK, PI3K/
AKT, NEK3/VAV2, TEK/VAV1 kinases and STAT transcription factors. These signaling pathways are involved in lactation, immune response,
cytoskeleton remodeling and cell growth, proliferation & survival [adapted from reference (44)].
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between breast cancer with increased PRL and PRLR has been

reported in several studies (17, 55–58). Higher levels of PRL in

postmenopausal women may eventually lead to an increased risk of

breast tumors and metastatic cancer (58–60). In premenopausal

women with breast cancer, there are higher-than-average levels of

serum PRL together with elevated PRLR expression. These are

associated with an increased risk of tumor progression and invasion

(60–62). An association is observed between invasive breast cancer

risk in postmenopausal women with high circulating PRL,

particularly for ER-positive disease. PRL/PRLR is expressed in

95% of mammary tumors and 60% of male breast carcinomas

(63). These findings were replicated in transgenic mice

overexpressing PRL that develop mammary tumors and in in

vitro studies where PRL played a role in the proliferation of

breast cancer cells (64, 65). A direct correlation is observed

between single nucleotide polymorphisms (SNPs) in the PRLR

gene and benign breast tumor incidence. The two SNPs PRLR-

I76V and I146L demonstrate constitutive receptor activity, and one

of the SNPs (PRLRI146L) correlates with benign breast disease in a

patient cohort, but these patients did not have high levels of serum

PRL (22, 66). However, in subsequent study these SNPs in the

PRLR gene were found not to be associated with breast cancer and

multiple fibroadenoma (67). In another study, SNPs were found in

PRL, and PRLR genes were associated with breast cancer metastasis

in Taiwanese women (68). Studies from our lab and others in T47D

and MCF-7 breast cancer cells have shown that the PI3K/AKT and

RAF/MEK/ERK pathways are activated in parallel following PRL

treatment, which leads to profound cell proliferation and survival

(69, 70). PRLR can also induce the MAPK/ERK signaling cascade

via the PI3-kinase-dependent RAC/PAK/RAF/MEK pathway,

which is in turn controlled by JAK2, SRC family kinases and

focal adhesion kinase (FAK) (71). In addition to the role of the

predominant LF of PRLR in breast cancer, a recent study showed

that the human intermediate PRLR (alternatively spliced isoform) is

amammary proto-oncogene capable of stimulating cell survival and

proliferation (29). Many breast tumors are characterized by reduced

STAT5 and high levels of PRLR expression and MAPK signal

components, including AP-1 and pro-invasive matrix

metalloproteinases [reviewed in (56)]. MMPs are highly invasive

agents and are associated with resistance to chemotherapy and anti-

estrogen treatments (72). Extracellular matrix components in the

breast tumor microenvironment can also influence PRL/PRLR

signaling (73, 74). In invasive breast cancer, there is a shift in

PRL signaling from STAT5-mediated pathways to focal-adhesion

kinase andMAPK pathways, thereby favoring proliferation (73, 74).

PRL signaling in high-density stiff collagenmatrices increasesMMP

expression, thereby promoting cellular motility. Therefore, the

tumor microenvironment may be responsible for favoring one

signaling pathway over another (73, 74). There is a complex

interplay between PRLR and estrogen receptor (ERa), and there

is an important role for the tumor microenvironment. The co-

expression of PRLR and ERa in a non-compliant, rigid matrix is

associated with increased tumor invasiveness and reduced
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responsiveness to estrogen antagonists (75). PRLR signaling can

also induce motility and invasion of T47D breast cancer cells by

activating downstream effectors such as TEC and NEK3 kinases,

thus leading to cytoskeletal and focal adhesion reorganization (54,

76). Several studies using breast cancer cells have shown that PRL

activates unliganded ERa through phosphorylation at the Ser118

and Ser167 residues. The activation of ERa promotes ligand-

independent transcriptional initiation of ERE-dependent target

genes, which seems to be an important factor in the proliferative

and transcriptional actions of PRL in breast cancer cells (70, 77, 78).

The most significant transcription factor in PRL/PRLR signaling is

STAT, which regulates the growth, differentiation, and survival of

mammary tissue. STAT3 and STAT5 are activated/overexpressed in

several types of cancers, including breast cancer [reviewed in (79,

80)]. STAT5 can act as both a tumor suppressor and an oncogene in

breast cancer under different circumstances. In ER-positive breast

cancer, STAT5 expression enhanced the response to hormone

therapy and increased the overall survival of patients [reviewed in

(81)]. Recent studies have shown that phosphorylation of STAT5a

serine residues (S726 and S780) may regulate its activity to promote

cell proliferation in MCF-7 cells (82). Reports have indicated that

STAT5 acts as a suppressor of breast cancer invasion andmetastatic

progression and can be used as a tumor marker of favorable

prognosis [reviewed in (79)]. STAT5 is progressively inactivated

with the progression to metastatic breast cancer due to enhanced

regulation by tyrosine phosphatases (83). The activation of STAT5

in breast cancer cells promotes homotypic adhesion and inhibits the

invasive characteristics of cells (84).
PRL and cyclin-dependent kinase 7
(CDK7) in estrogen-induced upregulation
of PRLR in breast cancer cells

We demonstrated the essential role of endogenous PRL in

the upregulation of the PRLR promoter, which involves the

requisite participation of E2/ERa at the hPIII promoter along

with STAT5a (Figure 5). Phosphorylated STAT5a, which

associates with its functional element at hPIII, interacts with

non-DNA-bound E2/ERa, which in turn associates in a complex

with Sp1 and C/EBPb bound to their cognate DNA sites at the

PRLR hPIII promoter [ (85); Figure 5]. We have shown in MCF-

7 cells that E2 induces ERa phosphorylation at S118 via CDK7

kinase and greatly increases the recruitment of E2/ERa to the

hPIII promoter over basa l unl iganded ERa (86) .

Phosphorylation of ERa at S118 is necessary for its association

with the Sp1-C/EBPb complex and its interaction with STAT5a.

Inhibition by the specific CDK7 inhibitor THZ1 markedly

reduced E2-induced ERa phosphorylation at S118, while the

JAK2 inhibitor AG490 or MEK inhibitor U0219, which inhibits

downstream JAK2-induced pathways known to phosphorylate

unliganded ERa at S118 and S167, had no effect. Targeting

CDK7 kinase, which is known to regulate both transcription and
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the cell cycle, and ERa phosphorylation with the THZ1 inhibitor

was found to effectively inhibit the transcription of PRLR and

cell migration in breast cancer cells (85). Our studies may

provide insights for therapeutic approaches that will mitigate

the transcription/expression of PRLR and its participation in

breast cancer progression fueled by E2 and PRL via their cognate

receptors (Figure 5).
Crosstalk between PRLR and other
receptors in breast cancer

Studies have indicated that PRLR signaling crosstalk with

other receptors can influence signal transduction. PRLR interacts

with integrin via the signal regulatory protein alpha

transmembrane glycoprotein and SHP2 (87). PRL/PRLR and

E2/ER synergistically can regulate the gene expression and

proliferation of breast cancer cells (87). Furthermore, PRLR

signaling tends to activate the unliganded ER (70, 77). PRL and

estrogen cooperatively induce phosphorylation of ERK1/2 and

enhance prolonged activation of AP-1 in breast cancer cells (88).

This type of signaling pathway crosstalk can promote breast

cancer progression and chemotherapeutic resistance. Crosstalk

occurs between PRLR and EGFR/HER2 (Figure 7). PRLR can

activate HER2 signaling via JAK2 (70, 85). We have demonstrated

that PRL/PRLR induces HER2 phosphorylation at Tyr residues

1221 and 1222 through JAK2, thereby activating downstream

PI3K/AKT pathways in both MCF-7 and T47D cells (70). This

crosstalk between PRLR and HER2 signaling further facilitates the

phosphorylation of ERa, its recruitment to the PRLR promoter

and upregulation of PRLR transcription. Interestingly, we also

found that EGF/EGFR in MCF-7 and T47D cells can induce

PRLR transcription via downstream MAPK and PI3K signaling

pathways (Figure 7). Crosstalk between the PRLR and

progesterone receptor (PR) signaling pathways has been shown

to be relevant to both breast development and progression. Both

PR and STAT5a are key transcription factors in these pathways

and have been shown to be mediators of breast cancer stem cell

outgrowth (89). This evidence, coupled with their established

function in the same transcriptional complexes at phospho-PR-

target genes with high cancer relevance, supports the importance

of PR-PRLR crosstalk [reviewed in (90)].
Resistance to endocrine therapy in
breast cancer and future perspectives

Endocrine therapy is one of most effective forms of targeted

adjuvant therapy for hormone receptor-positive breast cancer.

Adjuvant therapy has been well established with different types of

antiestrogens, including selective ER modulators (tamoxifen,

raloxifene), which block the activity of ER, selective ER

downregulators, such as fulvestrant, which causes destabilization
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and degradation of ER, and the third generation of aromatase

inhibitors (anastrozole, letrozole and exemestane), which reduce

the production of E2 in tumors [ (91), reviewed in (92)]. Although

these endocrine therapies for women with ER+/PR+ breast cancer

have led to substantial improvements, a significant number of

cancer patients develop either intrinsic resistance or acquired

resistance, which often results in tumor relapse. There can be

multiple reasons for this endocrine resistance which includes

mutations of ER, enhanced MAPK and PI3K/mTOR signaling

pathways. Other aspects of endocrine resistance could result from

overexpression of HER2, and crosstalk of ER with bypass signaling

pathways, such as the EGFR/HER2 and PRLR signaling pathways

[reviewed in (93–96)]. To overcome HER2 hyperactivation,

trastuzumab is still being used as the most effective form of

treatment for ER+ and HER+ breast cancer patients. However,

some cancer patients develop resistance to trastuzumab and tumor

relapse within one year of treatment. Hyperactivation of HER2-

induced downstream PI3K/AKT signaling is often observed in

trastuzumab-resistant breast cancer patients [reviewed in (97, 98)].

HER2-targeted therapies have been established in recent years,

including tyrosine kinase inhibitors, such as lapatinib, neratinib,

tucatinib, and pyrotinib (99). Together, these drugs targeting

multiple receptors, such as HER2, EGFR and HER4, were studied

in the early and advanced stages of breast cancer and revealed some

promising outcomes. Furthermore, in clinical trials, the

combination of HER family inhibitors with endocrine therapy

has been shown to have better results [reviewed in (100)]. PRLR

and EGFR/HER2 crosstalk, which greatly increases the activation of

the RAS/ERK and PI3K/AKT pathways, are associated with poor

prognosis and therapeutic resistance in breast tumor patients. In

the case of PRLR, only a few attempts have successfully developed a

potential therapeutic small molecule inhibitor or monoclonal

antibody (LFA102) to block PRLR signaling induced cell

proliferation in breast cancer cell lines (101). Therefore,

simultaneous treatments targeting both the HER2 and PRLR

signaling cascades may offer better outcomes by efficiently

hindering breast tumor progression and ameliorating endocrine

resistance. A study using G129R (PRLR antagonist) and

trastuzumab (monoclonal antibody targeting HER2) as a

combination therapy to inhibit HER2+ breast cancer cells and a

nudemouse xenograft model showed inhibition of cell proliferation

(102). Additionally, combining PI3K/AKT/mTOR pathway

inhibitors with endocrine therapy has been shown to potentially

reverse resistance to trastuzumab in HER2+ patients andmetastatic

breast cancer in early clinical trials. A rational combination of

therapeutic agents based on the disease profile would be more

beneficial to breast cancer patients [reviewed in (103)].
Concluding remarks

PRL is a pleiotropic hormone that plays a crucial role in

mammary gland development, lactogenesis, reproduction and
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immune function. It mediates its actions through PRLR,

a member of the lactogen/cytokine receptor family.

PRLR activation induces JAK/STAT and mitogen-activated

protein kinase signaling pathways implicated in the

development of mammary glands and etiology of breast

cancer. In this review, we provide an overview of the current

understanding of the complex organization of the human

PRLR gene and its transcriptional regulation. Preclinical

data, epidemiological studies, and patient tumor tissues

analyses strongly support the contribution of PRL/PRLR

to breast tumorigenesis and cancer progression. This

review also stresses the importance of signal transduction

pathways (PI3K/AKT, RAF/MEK/ERK, FAK, and SFK)

activated by PRL/PRLR in breast cancer. We have summarized

how steroid hormones (E2 and PR) and growth factors (EGF/

ERBB1 and HER2) can induce the transcription of PRLR,

thereby increasing its expression in breast cancer cells and

promoting cell proliferation. Therefore, in this era of precision

medicine, we conclude that combination therapy involving

pathway-selective kinase inhibitors and PRLR inhibitors

depending on the status of the breast cancer can provide

better outcomes in clinical studies.
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FIGURE 7

PRLR and EGFR/HER2 signaling crosstalk in breast cancer. EGF released by stromal microenvironment surrounding the breast tumor activates
signaling cascades that overlap with PRLR signaling cascades upon activation with PRL secreted by breast tumor cells. PRL stimulates HER2 and
EGFR signaling pathways via JAK2. EGF/EGFR also activates STAT5 signaling indirectly via s-SRC. This crosstalk between receptors can increase
progression of breast tumor and endocrine resistance [adapted from reference (44)].
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The beneficial metabolic
actions of prolactin

Yazmı́n Macotela*, Xarubet Ruiz-Herrera,
Dina I. Vázquez-Carrillo, Gabriela Ramı́rez-Hernandez,
Gonzalo Martı́nez de la Escalera and Carmen Clapp

Instituto de Neurobiologı́a, Universidad Nacional Autónoma de México
(UNAM), Querétaro, Mexico
The role of prolactin (PRL) favoring metabolic homeostasis is supported by

multiple preclinical and clinical studies. PRL levels are key to explaining the

direction of its actions. In contrast with the negative outcomes associated with

very high (>100 mg/L) and very low (<7 mg/L) PRL levels, moderately high PRL

levels, both within but also above the classically considered physiological range

are beneficial for metabolism and have been defined as HomeoFIT-PRL. In

animal models, HomeoFIT-PRL levels counteract insulin resistance, glucose

intolerance, adipose tissue hypertrophy and fatty liver; and in humans associate

with reduced prevalence of insulin resistance, fatty liver, glucose intolerance,

metabolic syndrome, reduced adipocyte hypertrophy, and protection from

type 2 diabetes development. The beneficial actions of PRL can be explained by

its positive effects on main metabolic organs including the pancreas, liver,

adipose tissue, and hypothalamus. Here, we briefly review work supporting PRL

as a promoter of metabolic homeostasis in rodents and humans, the PRL levels

associated with metabolic protection, and the proposed mechanisms involved.

Finally, we discuss the possibility of using drugs elevating PRL for the treatment

of metabolic diseases.

KEYWORDS

prolactin levels, homeoFIT-PRL, metabolically healthy and unhealthy obesity, metabolic
homeostasis, insulin resistance, homeorhetic response
Introduction
Defining the role of prolactin (PRL) inmetabolismhas been challenging due to contrasting

findings demonstrating positive and negative effects of PRL on metabolic homeostasis. This

contradiction is disentangled after realizing that PRL levels and the physio-pathological context

influence the direction of PRL action (1). Low and very high PRL levels are deleterious to the

metabolism, whereas medium and moderately high levels are usually beneficial.

PRL action is necessary to maintainmetabolic homeostasis, as the absence or reduction of

PRL signaling due to the lack of PRL receptors (PRLR) or low PRL levels associate with

exacerbated metabolic alterations, particularly in the context of a metabolic challenge or

disease. In humans, low PRL levels associate with increased prevalence of metabolic diseases

(1). In contrast, patients with overweight and obesity (OW/OB) having elevated PRL levels
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show better metabolic profiles than BMI-matched patients with

lower PRL values (2–6), to imply that elevated PRL is a mechanism

dealing with metabolic challenge.

The mechanisms by which PRL promotes metabolic

homeostasis involves actions in different metabolic organs. A

detailed description of the levels of PRL and their cellular and

molecular mechanisms mediating metabolic benefits warrant

further research. Also, a careful evaluation of drugs that elevate

PRL levels is needed in the context of metabolic diseases.

Prolactin promotes metabolic
homeostasis in rodents

Serum PRL decreases in rodents with obesity, diabetes, and

insulin resistance (2, 7–10), suggesting a role for reduced PRL

levels in the pathophysiology of metabolic diseases. As a proof of

concept, PRL treatment in mice and rats with streptozotocin

(STZ)-induced diabetes or diet-induced obesity improves their

metabolic profile (2, 11, 12), whereas PRLR null mice with STZ-

induced diabetes or diet-induced obesity show a more severe

disease phenotype (2, 13). Moreover, mice lacking PRLR in the

liver become insulin resistant, whereas insulin resistant obese mice

(db/db mice lacking leptin receptors) overexpressing the PRLR in

the liver show improved insulin sensitivity (14).

In addition, PRL action is required to deal with the metabolic

challenges of pregnancy, a state characterized by hyperphagia,

excessive adiposity, and physiological insulin resistance to redirect

nutrients towards the fetus (15–17). Pregnant mice null for the

PRLR in the pancreas, specifically in b-cells, develop gestational

diabetes (18–20), due to deficient pancreatic b-cell hyperplasia
and hyperinsulinemia (21).

Moreover, PRL reduces metabolic alterations in lactating pups

nursed by dams consuming a high fat diet (HFD) during lactation.

The obesogenic milk from HFD-fed dams has 50% less PRL

compared to the milk from dams fed a chow diet (22). Pups

consuming the obesogenic-hypoprolactinemic milk develop

obesity, excessive adiposity, severe insulin resistance, and fatty

liver at weaning; whereas when their HFD-fed mothers or

themselves receive exogenous PRL during lactation, metabolic

alterations are ameliorated (22). These findings support PRL in

maternalmilk exertingbeneficialmetabolic effects in lactatingpups,

and lowPRL levels inmilk contributing to thematernal obesogenic

diet-induced metabolic disease in pups.
Elevated prolactin levels as a
mechanism to counteract metabolic
alterations in humans

Low PRL levels associate with a higher prevalence of type 2

diabetes (T2D), insulin resistance, glucose intolerance, metabolic

syndrome (MS), adipose tissue (AT) dysfunction, b-cell
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dysfunction, non-alcoholic fat liver disease (NAFLD), and

cardiovascular events, whereas moderately high PRL levels

correlate with metabolic protection in all these instances (Table 1).

Moderately high PRL levels (16–35 mg/L) associate with lower

prevalence of T2D and even predict a reduced incidence of T2D 10

years later (23). PRL levels in the 4th quartile correlate with lower

incidence (23, 25, 29) or prevalence (24, 26–28, 30, 42) of T2D

(Table 1), andPRL levels are inversely related to fasting glucose levels

and glycosylated hemoglobin (HbA1c) values (4, 25, 26, 28, 31, 35,

36) in both men and women. Consistently, high serum PRL in

pregnancy predicts a lower risk of postpartum prediabetes/diabetes

(29), and in women with gestational diabetes mellitus, lower PRL

levels at 6 to 9weeks postpartumassociatewith a higher future risk of

developingT2D in a 10-year followup (30) (Table 1). T2D andother

metabolic alterations derive from insulin resistance, i.e., the inability

of insulin to activate a normal insulin response on its target cells.

Moderately elevated PRL levels associate with increased insulin

sensitivity in men (2, 3, 5, 26, 31), women (3, 5, 26, 31, 33, 34) and

even children (32) (Table 1).

Insulin resistance can derive from AT dysfunction and occur

in parallel to b-cell dysfunction. High PRL levels associate with

reduced AT dysfunction and predict smaller adipocytes (reduced

hypertrophy) in visceral AT (2, 3, 5, 6, 34), the type of fat that, in

excess, associates with metabolic alterations and disease severity

(43–46). Regarding b-cell function, pregnant women with high

PRL levels have a lower postpartum risk of developing diabetes

and b-cell dysfunction (29), and women with polycystic ovary

syndrome (PCOS) with PRL levels in the 4th quartile show lower

prevalence of b-cell dysfunction (33) (Table 1).

The MS represents a group of alterations that elevate the risk of

cardiovascular disease, stroke, and T2D, and consists of high blood

pressure, hyperglycemia, abdominal obesity, and abnormal

cholesterol and triglyceride levels (47). Moderately high PRL levels

associate with lower prevalence of MS in children (32) and in adult

patients suffering from certain conditions, such PCOS in women

(38), and sexual dysfunction (SD) in men (36, 37). Also, high PRL

levels in men with SD are associated with protection from major

cardiovascular events (40). However, in the general adult population

a correlation betweenPRL andMShas not been found (3, 25).When

only dyslipidemia is evaluated, an inverse association occurs between

PRL levels and total cholesterol, LDL cholesterol, and triglyceride

levels (4, 5, 38, 39).

Another parameter closely linked to metabolic disease is a

proinflammatory environment. In subjects with obesity,

moderately high PRL levels associate with lower levels of

interleukin 6 in children (32) and tumor necrosis factor-a (TNF-

a) in adults (4).

Most studies in humans show that moderately high PRL levels

are not associated with obesity itself, the exception being a study in

children (32). This observation can be explained by the fact that

some subjects with obesity remain metabolically healthy

(metabolically healthy obesity - MHO), or at least show fewer

metabolic alterations. Indeed, subjects having MHO have
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increased circulating PRL levels as compared to those with

metabolically unhealthy obesity (MUHO) (4–6). Moreover,

logistic regression analysis showed PRL as an independent

predictor of MHO (6). Patients with obesity and high PRL (HP)

levels displayed reduced blood glucose, total and LDL cholesterol,

triglyceride, and TNFa levels than patients with obesity and

normal PRL (NP) levels. Also, after sleeve gastrectomy, patients

in the HP group showed reduced PRL levels, whereas those in the

NP group have increased PRL levels (4). Similarly, patients with

OW/OBwith higher PRL levels had a better metabolic profile than

those with lower PRL values. Interestingly, PRL levels decreased

once metabolic parameters improved following bariatric surgery

(5) (Table 1). These studies support that increased PRL levels are

protective against metabolic diseases and return to basal values

after the metabolic challenge is resolved (Figure 1).

Another metabolic disease associated with low PRL levels is

NAFLD. Patients withNAFLD show lower PRL levels than control

subjects and thosewithseverehepatic steatosis haveeven lowerPRL

values than patients with amild tomoderate disease (41) (Table 1).

Moreover, PRL levels are part of amathematicalmodel to diagnose

the presence and severity of NAFLD (48).
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The association between low PRL levels and higher prevalence

of metabolic diseases also stands for postmenopausal women and

middle-aged and elderly men (23, 36), implying its independence

from gonadal status. Because PRL levels may decrease with aging,

it remains to be determined whether the HomeoFIT-PRL range

differs between young vs. middle-age or elderly individuals.

The right prolactin levels for metabolic
maintenance and protection – not too
much and not too little

While low and very high PRL levels have deleterious metabolic

consequences, a specific range of PRL values is beneficial for

metabolism. This PRL range includes levels in the normal

physiological range (7 to 25 mg/L) but also levels above (25 to

100 mg/L). The latter, previously claimed as hyperprolactinemia,

have been defined as HomeoFIT-PRL (Homeostatic Functionally

Increased Transient Prolactinemia) (1), since they occur in response

to physiological or pathological challenges and respond to it by

favoring metabolic homeostasis (Figure 1).
TABLE 1 Moderately high PRL serum levels associate with lower incidence of metabolic disease.

Metabolic disease Population PRL level associated with lower disease incidence or prevalence (mg/L)

T2D Women
Women & men
Pregnancy
Women w/GDM

>15.8 (23), 18.4 (24)
>12.9 (25), >11.5 (26), Q4 (27, 28)
>115 Lower postpartum risk (29)
>78.7 postpartum, lower risk of future T2D (30)

Insulin resistance Men
Women & men

Children
Women w/PCOS
Women & men w/obesity

≥12.0 (2)
≥12.0 (3), >11.5 (26)
Inverse association with PRL levels (31)
7.9 (32)
>14.9 (33), Inverse association with PRL levels (34)
Inverse association with PRL levels (5)

Fasting glucose levels & HbA1c Women w/T1D
Women & men w/obesity
Women & men

Inverse association with PRL levels (35)
19.2 (6)
30.5 (4), >11.5 (26), >12.9 (25), Q4 (28)
Inverse association with PRL levels (31)

MS Children
Men w/SD
Women w/PCOS

7.9 (32)
>11.1-35 (36), Inverse association with PRL levels (37)
>7.0 (38)

Adipose tissue dysfunction Women & men
Men
Women w/PCOS
Women & men w/obesity

≥12.0 (3)
≥12.0 (2)
Inverse association with PRL levels (34)
19.2 (5, 6)

Metabolically unhealthy obesity Women & men w/obesity
Women & men

19.2 (5, 6)
30.5 (4)

Beta cell dysfunction Pregnancy
Women w/PCOS

>115 Lower postpartum risk (29)
>14.9 (33)

Dyslipidemia Women & men
Women & men w/obesity
Women w/PCOS

30.5 (4)
Inverse association with PRL levels (5)
>7.0 (38), >15.9 (39)

Major CVE Men w/SD > 12 – 35 (40)

NAFLD Women & men >12.8 (41)
Clinical studies within the last 12 years showing an inverse association between PRL circulating levels and risk, prevalence or incidence of metabolic diseases. Abbreviations: Q, quartile;
T2D, type 2 diabetes; GDM, gestational diabetes mellitus; PCOS, polycystic ovary syndrome; T1D, type 1 diabetes; HbA1c, glycosylated hemoglobin; MS, metabolic syndrome; SD, sexual
dysfunction; CVE, cardiovascular event; NAFLD, non-alcoholic fatty liver disease.
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In healthy individuals PRL levels are usually within the

classical normal range <25 mg/L. However, some physiological

challenges elevate PRL in a transient manner, such as intense

exercise, acute stress, sleep, and sexual arousal (49). These

conditions together with reproductive states (pregnancy and

lactation) can be categorized as conditions that trigger a

homeorhetic response, meaning the orchestrated or

coordinated control of body metabolic tissues necessary to

maintain a physiological state (defined by Bauman and Currie)

(50). Moreover, the association between moderately elevated

PRL levels and a beneficial metabolic phenotype supports

elevated PRL levels in obesity as part of a homeorhetic

response occurring both, under physiological and pathological

challenges (Figure 1).

Altogether, PRL levels ranging from 7 to100 mg/L are

beneficial for metabolism. PRL values are in the lower end of

this range under healthy physiological conditions (outside

reproductive states); however, in the context of a metabolic

challenge they are likely to increase towards maintaining

metabolic homeostasis and return to basal when the stressor/

challenge is eliminated. Conversely, patients experiencing a

metabolic challenge, such as obesity, that are unable to

respond by increasing PRL levels, are more prone to suffer

from metabolic alterations than those upregulating their PRL

levels (Figure 1).

Elevated PRL levels derived from prolactinomas are not part

of a response to a metabolic challenge, they result from a diseased

state (tumor) and are not considered HomeoFIT-PRL (and are

usually above 100 mg/L). It is expected that normalization of PRL
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levels in subjects with prolactinomas associate with a healthier

metabolic profile, if the PRL levels achieved by the treatment

remain in the healthy range (>7mg/L).
Mechanisms mediating the
beneficial metabolic action
of prolactin

PRL actions favoring metabolism are the result of its

pleiotropic action reflected by the presence of the PRLR in

almost every tissue in the body, including the main metabolic

organs —pancreas, liver, adipose tissue, muscle, intestine, and

hypothalamus— where beneficial metabolic actions and

mechanisms of PRL have been described (51, 52).
Pancreatic b-cells

PRL stimulates the proliferation and survival of b-cells (53,
54), promotes glucose-induced insulin secretion (53), stimulates

pancreas development during the perinatal stage (55), and is

essential for b-cell expansion during pregnancy (18, 19, 56). The

mechanisms that mediate PRL effects on b-cells involve

increased osteoprotegerin synthesis, leading to the inhibition

of receptor activator of NF-kB ligand pathway, an inhibitor of b-
cell proliferation (57); increased survivin levels (58), elevated

expression of the transcription factors Foxm1 and MafB,

increased cyclin activity, and higher islet serotonin production
FIGURE 1

Elevated prolactin levels are part of a homeorhetic response upon metabolic challenges. A challenged metabolic state can be either
physiological or pathological; in both cases a homeorhetic response includes elevated prolactin (PRL) levels, allowing a series of metabolic
adaptations to deal with the physio-pathological demand. In a physiological challenge, such as pregnancy, lactation, or stress, this response
leads to a new physiological set point (green arrows), whereas in a pathological challenge, such as obesity, it leads to a milder disease or
protection from disease risk (yellow arrows, left side of figure). If the homeorhetic response fails, PRL levels do not rise and remain low instead,
leading to altered physiological states (i.e., gestational diabetes mellitus, GDM, lactation insufficiency, LI, anxiety) (yellow arrows, right side of
figure), or to aggravated disease with higher disease risk or prevalence (red arrows, right side of figure). MS, metabolic syndrome, T2D, type 2
diabetes, NAFLD, non-alcoholic fatty liver disease; MUHO, metabolically unhealthy obesity. Created in BioRender.com.
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via Tph1 synthesis, all promoting b-cell proliferation (18, 56).

Also, PRL leads to the inhibition of extrinsic and intrinsic

apoptosis pathways (54) and improved glucose sensitivity

through increased glucokinase and glucose transporter 2

expression (19, 59, 60) (Figure 2).
Liver

PRL regulates liver growth (61) and liver metabolic function.

Increased PRLR expression in liver stimulates both liver and

systemic insulin sensitivity, whereas reduced hepatic PRLR

expression results in tissue and whole-body insulin resistance

(14). Also, PRL reduces hepatic lipid accumulation by inhibition

of the expression of the fatty acid transporter CD36 and the lipid

synthesis enzyme, SCD1 (41, 62). Consistently, there is an

inverse association between PRL levels and hepatic CD36

expression, and the PRLR decreases in the liver of patients

with NAFLD (41). Thus, PRL prevents fatty liver disease.

Mechanistically, the activation of STAT5 downstream of the

PRLR mediates the insulin sensitizing effects of PRL (14). PRLR

interacts with IRS1 (63) and promotes the phosphorylation of

AKT (64), two key members of the insulin signaling pathway.

Upregulating the hepatic PRLR in combination with systemic

insulin treatment enhances the phosphorylation of the insulin

receptor and of AKT in mouse liver, whereas reducing the

expression of the PRLR by adenovirus-shRNA impairs insulin-

induced liver phosphorylation of IR and AKT (14) (Figure 2).

Moreover, the PRLR is regulated by the level of hepatic insulin

resistance/sensitivity, i.e., it is downregulated in insulin resistant

conditions and upregulated in insulin sensitive states (14).
Adipose tissue

PRL acts on the AT to regulate lipid metabolism and

promote adipogenesis and healthy AT expansion (65). PRL

inhibits lipid uptake via reduced lipoprotein lipase activity in

human fat (66) and inhibits lipolysis in rat and human AT (67).

PRL contributes to adipocyte differentiation in the adipocyte cell

lines NIH-3T3 and 3T3-L1, by stimulating the activation of

STAT5, and of the adipogenic transcription factors C/EBPb and

PPARg (68, 69). PRL is essential for brown fat formation and

activity in newborn mice, and for brown preadipocyte

differentiation (70). The PRLR is present in AT from rodents

and humans and PRL is secreted by human AT (65, 66, 71),

while obesity decreases PRL release from human fat (67). In

PRLR null mice, there is either decreased or no change in fat

mass (2, 72–74) depending on age, fat depot, and genetic

background. C57BL/6 PRLR null mice fed an HFD, show

increased adiposity and exacerbated adipocyte hypertrophy in

AT (2). In obese rats, PRL treatment stimulates the healthy

expansion of AT by promoting adipocyte hyperplasia and
Frontiers in Endocrinology 05
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reducing visceral adipocyte hypertrophy, via increased

expression of transcription factors PPARg and Xbp1s, both

favoring adipogenesis and insulin sensitivity (2) (Figure 2).
Hypothalamus

PRL promotes insulin sensitivity, at least in part, by central

actions on the hypothalamus. Increased PRLR expression in the

hypothalamus stimulates whole body insulin sensitivity, whereas

reduced PRLR expression results in insulin resistance and glucose

intolerance (75). PRL effects on the hypothalamus lead to vagal

signals that promote increased liver insulin sensitivity (75). Also,

in 90% pancreatectomized rats, intracerebroventricular infusion

of PRL increases liver insulin sensitivity, inhibits b-cell apoptosis,
and reduces body weight and adiposity by increasing

hypothalamic dopamine levels and leptin signaling

(76) (Figure 2).
Prolactin elevating drugs in the
treatment of metabolic diseases

Several drugs elevate PRL circulating levels, mainly those

that act as dopamine D2 receptor blockers, including first- and

second-generation antipsychotics and medications treating

gastrointestinal symptoms, antidepressants, antihypertensives,

and others (77, 78). The use of antipsychotics has been

associated to the development of metabolic alterations;

however, a recent meta-analysis, evaluating the metabolic

actions of 18 antipsychotics in around 26,000 patients with

schizophrenia (79), showed a large variation in the metabolic

side-effects of antipsychotics. Some drugs had clear adverse

effects increasing body weight, triglyceride levels, cholesterol

levels, and glucose levels (olanzapine, clozapine, and quetiapine),

while others showed neutral or even positive metabolic

outcomes, with very mild or no effects on body weight and

triglyceride levels, and some reducing LDL cholesterol and

glucose levels (aripiprazole, brexpiprazole, cariprazine,

lurasidone, ziprasidone and amisulpiride). Regarding the effect

of these drugs on PRL levels (77), some of the drugs exerting

beneficial metabolic actions present a moderate to high risk for

elevating PRL levels (77), whereas the drugs causing adverse

metabolic actions have minimal to moderate risk for elevating

PRL levels (77). This and other studies (80, 81) support those

metabolic adverse effects derived from treatment with

antipsychotic drugs not being associated with elevated PRL

levels. Attention on drugs that exert beneficial metabolic

effects by elevating PRL to HomeoFIT-PRL levels with

negligible adverse actions is warranted.

One example is amisulpiride, a D2/D3 antagonist shown to

reduce glucose levels in humans (79) and in diet-induced obese

mice (82). The proposed beneficial metabolic action of
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amisulpiride at low doses involves increasing dopaminergic

activity by preferentially blocking presynaptic D2/D3 receptors

(83). Also, amisulpiride seems to stimulate insulin secretion by

pancreatic b-cells (82). Therefore, given the positive metabolic

effects of amisulpiride at low doses and its capacity to increase

PRL levels, it is worth testing whether this and other benzamides

can improve metabolic outcomes in obesity conditions.

Another benzamide, levosulpiride, is being tested in a

clinical trial on patients with diabetic retinopathy and diabetic

macular edema to elevate PRL levels and favor its conversion
Frontiers in Endocrinology 06
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into vasoinhibin, the antiangiogenic, anti-vasopermeability PRL-

derived fragment (84). The results of this clinical study raise the

possibility to explore the potential therapeutic benefits of

levosulpiride on obesity-derived metabolic alterations.

The fact that bromocriptine quick release (Cycloset), a PRL-

lowering drug, is an FDA-approved treatment for T2D questions

the association between low PRL levels and high prevalence of

T2D. This controversy can be explained by the fact that

dopamine and PRL act through different mechanisms to

promote metabolic homeostasis. There is a morning surge of
FIGURE 2

Mechanisms of prolactin’s beneficial metabolic actions. Prolactin (PRL) promotes metabolic homeostasis acting on the main metabolic tissues.
In white adipose tissue, PRL reduces adipocyte size by stimulating lipolysis and reducing LPL activity, preventing lipid uptake. Also, it stimulates
insulin sensitivity by activating PPARg and Xbp1s and promotes adipogenesis by activating CEBP/b and PPARg, favoring the healthy expansion of
adipose tissue by hyperplasia vs hypertrophy in obesity conditions. In brown adipose tissue (BAT), PRL promotes adipocyte differentiation and
BAT formation and activity in newborns. In liver, PRL promotes insulin sensitivity by its canonical signaling STAT5, and by activation of IRS1 and
AKT. PRL also reduces liver lipid accumulation by reducing the activity of SCD1 and CD36, preventing aggravated fatty liver in NAFLD. In
pancreas, PRL promotes b-cell proliferation, inhibits their apoptosis, and elicits glucose-induced insulin secretion. In hypothalamus, PRL
promotes dopamine release and stimulates leptin signaling, inducing hypothalamus-mediated liver insulin sensitivity. LPL, lipoprotein lipase;
PPARg; peroxisome proliferator-activated receptor-g; Xbp1s, spliced form of X-box-binding protein-1; CEBP/b, CCAAT/enhancer-binding
protein beta; PRLR, prolactin receptor; IR, insulin receptor; IRS1, insulin receptor substrate 1; AKT, Protein kinase B; SCD1, stearoyl-CoA
desaturase 1; CD36, fatty acid translocase; Tph1, tryptophan hydroxylase 1; 5-HT, serotonin; OPG, osteoprotegerin; RANKL, receptor activator of
NF-kB ligand; Foxm1, forkhead box M1; MafB, MAF BZIP transcription factor B. Created in BioRender.com.
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dopaminergic activity in the central nervous system that lowers

insulin resistance and hyperglycemia, and this surge is reduced

in patients with T2D (85). Accordingly, by counteracting such

reduction, treatment with bromocriptine benefits glucose

homeostasis. Also, bromocriptine increases glucose tolerance

in diet-induced obese mice that are PRL deficient (86).

Whether normalizing PRL levels in bromocriptine-treated

patients leads to further metabolic improvements is unclear

and needs to be investigated.
Conclusions and future perspectives

PRL is present in the circulation throughout life and,

particularly in humans, its levels are comparable between

sexes, highlighting the role of PRL in physiology beyond

reproduction. PRL senses the metabolic status of an individual,

and upon physiological and pathological metabolic challenges its

levels rise as part of an homeorhetic response, allowing

organisms to adequately adjust to such demands. On the other

hand, the inability to elevate PRL levels in challenged conditions

aggravates metabolic diseases and alters physiological outcomes.

Key questions remain to be addressed such as: 1) What are

the signals that increase PRL levels in metabolically healthy

individuals and what prevents such elevations in metabolically

unhealthy individuals? 2) Does the pharmacological elevation of

PRL levels in metabolically unhealthy individuals improve their

health outcomes? 3) Are changes in PRL (either decreased or

elevated levels) in metabolic diseases part of a larger cascade of

altered responses? and, if so, what is the upstream or leading

regulator of the cascade? 4) What and how is the PRLR regulated

in different physio-pathological conditions and a tissue-

specific manner?

Future studies should focus on answering these questions,

evaluating the benefit of PRLR-specific agonists, and carefully

testing whether the current D2 receptor antagonists at low doses

may be useful in the treatment of metabolic diseases due to their

PRL-elevating properties. Understanding the underpinnings of

PRL actions on metabolism in physiological and pathological
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conditions will help target this hormone to improve

health outcomes.
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Ramıŕez-Neria P, Hernández W, et al. Basis and design of a randomized clinical
trial to evaluate the effect of levosulpiride on retinal alterations in patients with
diabetic retinopathy and diabetic macular edema. Front Endocrinol (Lausanne)
(2018) 9:242. doi: 10.3389/fendo.2018.00242

85. Defronzo RA. Bromocriptine: a sympatholytic, d2-dopamine agonist for the
treatment of type 2 diabetes.Diabetes Care (2011) 34(4):789–94. doi: 10.2337/dc11-0064

86. Framnes-DeBoer SN, Bakke E, Yalamanchili S, Peterson H, Sandoval DA,
Seeley RJ, et al. Bromocriptine improves glucose tolerance independent of circadian
timing, prolactin, or the melanocortin-4 receptor. Am J Physiol Endocrinol Metab
(2020) 318(1):E62–71. doi: 10.1152/ajpendo.00325.2019
frontiersin.org

https://doi.org/10.1016/j.tem.2006.02.005
https://doi.org/10.1111/jne.12888
https://doi.org/10.2337/diab.43.2.263
https://doi.org/10.1007/s00125-011-2102-z
https://doi.org/10.1152/ajpendo.00636.2012
https://doi.org/10.1038/nm.2173
https://doi.org/10.1016/j.cmet.2015.05.021
https://doi.org/10.1007/s00125-015-3670-0
https://doi.org/10.1210/endo.137.5.8612496
https://doi.org/10.1677/JOE-07-0043
https://doi.org/10.1152/ajpregu.00282.2013
https://doi.org/10.1016/j.bbrc.2018.03.048
https://doi.org/10.1074/jbc.272.4.2050
https://doi.org/10.1016/j.cellsig.2009.10.013
https://doi.org/10.1016/j.bbrc.2007.03.168
https://doi.org/10.1016/j.bbrc.2007.03.168
https://doi.org/10.1210/jc.2002-021137
https://doi.org/10.1210/en.2006-0487
https://doi.org/10.1210/mend.14.2.0420
https://doi.org/10.1016/j.bbrc.2004.09.053
https://doi.org/10.1371/journal.pone.0001535
https://doi.org/10.1371/journal.pone.0001535
https://doi.org/10.1210/jc.2002-021255
https://doi.org/10.1210/endo.142.2.7979
https://doi.org/10.1677/joe.1.06939
https://doi.org/10.1096/fj.12-204958
https://doi.org/10.1096/fj.12-204958
https://doi.org/10.1007/s00125-014-3336-3
https://doi.org/10.1159/000336501
https://doi.org/10.1007/s40263-014-0157-3
https://doi.org/10.1016/S2215-0366(19)30416-X
https://doi.org/10.4088/JCP.19m12785
https://doi.org/10.4088/JCP.0208e04
https://doi.org/10.1111/j.1463-1326.2011.01529.x
https://doi.org/10.2165/00023210-200418130-00007
https://doi.org/10.2165/00023210-200418130-00007
https://doi.org/10.3389/fendo.2018.00242
https://doi.org/10.2337/dc11-0064
https://doi.org/10.1152/ajpendo.00325.2019
https://doi.org/10.3389/fendo.2022.1001703
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Vera Popovic-Brkic,
Faculty of Medicine, University of Belgrade,
Serbia

REVIEWED BY

Damasia Becu-Villalobos,
CONICET Instituto de Biologı́a y Medicina
Experimental (IBYME), Argentina
Eleonora Sorianello,
CONICET Instituto de Biologı́a y Medicina
Experimental (IBYME), Argentina

*CORRESPONDENCE

Jimena Ferraris

jimena.ferraris@dbb.su.se

SPECIALTY SECTION

This article was submitted to
Translational Endocrinology,
a section of the journal
Frontiers in Endocrinology

RECEIVED 30 September 2022

ACCEPTED 28 December 2022
PUBLISHED 12 January 2023

CITATION

Ferraris J (2023) Is prolactin
receptor signaling a target in
dopamine-resistant prolactinomas?
Front. Endocrinol. 13:1057749.
doi: 10.3389/fendo.2022.1057749

COPYRIGHT

© 2023 Ferraris. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 12 January 2023

DOI 10.3389/fendo.2022.1057749
Is prolactin receptor signaling a
target in dopamine-resistant
prolactinomas?

Jimena Ferraris*

Department of Biophysics and Biochemistry, Stockholm University, Stockholm, Sweden
The hypothalamic neuroendocrine catecholamine dopamine regulates the

lactotroph function, including prolactin (PRL) secretion, proliferation, and

apoptosis. The treatment of PRL-secreting tumors, formerly known as

prolactinomas, has relied mainly on this physiological characteristic, making

dopamine agonists the first therapeutic alternative. Nevertheless, the group of

patients that do not respond to this treatment has few therapeutical options.

Prolactin is another physiological regulator of lactotroph function, acting as an

autocrine/paracrine factor that controls PRL secretion and cellular turnover,

inducing apoptosis and decreasing proliferation. Furthermore, the signaling

pathways related to these effects, mainly JAK/STAT and PI3K/Akt, and MAPK,

have been extensively studied in prolactinomas and other tumors as therapeutic

targets. In the present work, the relationship between PRL pathophysiology and

prolactinoma development is explored, aiming to comprehend the value of PRL

and PRLR-associated pathways as exploratory fields alternative to dopamine-

related approaches, which are worth physiological characteristics that might be

impaired and can be potentially restored or upregulated to provide more options

to the patients.

KEYWORDS

prolactinomas, PRL, PiNETs, PRL receptor, JAK/STAT, PI3K/AKT
1 Introduction

Pituitary neuroendocrine tumors (PitNETs), formerly pituitary adenomas, are

systematized according to the 2022 WHO classification, accounting for the expression of

transcription factors, hormones, and biomarkers. Lactotroph tumors (commonly referred to

as prolactinomas) are a type of Pit-1-linage PitNET characterized by the presence of PRL,

either in paranuclear dot-like expression (“Sparsely granulated lactotroph tumor”) or a

diffuse cytoplasmatic manner (“Densely granulated lactotroph tumor”). Other PitNET-

expressing PRL includes the Mammosomatotroph tumor, the Mature plurihormonal

PIT1-lineage, the Immature PIT1-lineage tumor, and the Acidophil stem cell tumor and

Mixed somatotroph and lactotroph tumor (1).
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The present review will discuss the relationship between PRL and

the pathogenesis of PRL-related neuroendocrine tumors, focusing

primarily on non-aggressive lactotroph tumors, aiming to identify

targets for upcoming treatment strategies.

Lactotroph PiNETs are benign adenomas and constitute about

50% of pituitary tumors, with a prevalence that ranges from 25 to 63/

100000, depending on the region reported (2), and an annual

incidence of 4 new cases per 100,000 inhabitants (3).

The clinical consequences of lactotroph adenomas are

concomitant hyperprolactinemia and mechanical compression

effects at the brain level exerted by the presence of the tumor.

These aspects have been previously reviewed, and the reader can

refer to Melmed et al. (5)or Karavitaki (3) for further details.

The first-line treatment, dopamine receptor 2 (D2R) agonist

administration, reduces PRL levels and tumor size. The Endocrine

Society recommends administering cabergoline to treat

hyperprolactinemia in patients presenting macroadenomas (4).

However, 20%-30% of patients do not respond to treatment (2, 4–6).

The pathogenesis of PRL-secreting PiNETs has been extensively

investigated. Two germline mutations induce familial prolactinomas:

MEN1 and AIP mutations (5). However, spontaneous pituitary

adenomas are the most preva lent , and these tumors ’

pathophysiology remains elusive. Being dopamine a natural

inhibitor of PRL secretion and lactotrophproliferation; and the

dopamine pathway a successful target, most efforts have been made

to understand the pathophysiology of the dopamine and dopamine-

associated pathways, such as the biology of dopamine receptors,

extracellular-regulated mediators such as TGF-beta or intracellular

signaling pathways such as ERK1/2 (7–9).

Nevertheless, in this interconnected network of neuroendocrine,

endocrine, and local factors crosstalk, PRL is the precise outcome, but

that could also be an initiator or intermediate player. So, this review

will summarise the current knowledge about the relationship between

PRL and pituitary physiology and aim to identify PRL’s role in the

pathophysiology of prolactinomas. Is PRL a pro or anti-

prolactinoma factor?
2 Prolactin and prolactinomas: A
retrospective viewpoint

Hypothalamic neurons of the tuberoinfundibular (TIDA) and

tuberohypophysial dopamine systems express PRL receptors (PRLR),

so they are sensitive to changes in circulating levels of this hormone.

Circulating PRL reaches the arcuate nucleus and stimulates the

synthesis and activity of the tyrosine hydroxylase in the TIDA

neurons, which increases dopamine release to the portal system,

inhibiting the secretory activity of lactotrophs. This way, PRL

regulates its synthesis and release by controlling hypothalamic

dopamine secretion.

At the pituitary level, PRL can induce a negative feedback control

strategy. Prolactin inhibits its production and secretion (10), and as it

will be discussed later, it inhibits cellular proliferation. Notably, this

effect contrasts PRL in many other target tissues, such as the

mammary gland, lymphoid cells, pancreas, or the prostate, where

the main physiological action of PRL is pro-proliferative. Prolactin

has been implicated in tumorigenesis in some tissues, like the
Frontiers in Endocrinology 0278
mammary gland and prostate (reviewed in (11)), and others, such

as glioblastomas.

So, in the context of prolactinomas, what has sounded intuitively

comprehensive has been that PRL, being elevated in the pathological

context, could be contributing to prolactinoma proliferation and

creating a positive loop: high PRL levels lead to enhanced

lactotroph activity and, thus, contributes to, at least, the

prolactinoma progression.

Early studies proposed PRL as a growth factor in a somatotroph-

derived cell line, GH3 (12). Later, it was demonstrated that PRL

inhibits its transcription, controlling its production through an ultra-

short feedback loop (10). Dopamine receptor 2 KO mice (D2RKO)

develop pituitary hyperplasia and hyperprolactinemia. Consequently,

it was proposed that those tumors were consequences of the increased

levels of PRL in these animals, assigning PRL a proliferative action on

pituitary cells, especially lactotrophs (13).

On the other hand, PRL Receptor KO mice (PRLRKO) present

hyperprolactinemia and develop prolactinomas after 12 months of

age with high penetrance (6). However, the seminal work by Schuff

et al. showed that in vivo, constitutive double D2RKO/PRLRKO mice

also exhibit prolactinomas, even significantly higher than single

knockouts. This observation led to questions about whether there

are independent actions of PRL on lactotroph cells (13).

The same group explored the effects of PRL in cultured lactotroph

cells from wild-type and D2RKO mice, as they hypothesized a

dopamine-independent PRL effect. They observed that PRL

treatment reduces the proliferative index of lactotroph proliferation

from wild-type female animals, whereas PRL has little effect in

cultured lactotrophs derived from hyperprolactinemic D2RKO

animals. Another exciting aspect is that although cabergoline

restores circulating PRL levels in PRLRKO mice, it does not induce

tumor reduction, suggesting that dopamine and PRL effects can be

interplaying but also have separate actions (6).

Many years later, conditional deleting of the PRLR, specifically in

lactotrophs, showed no effect on PRL levels, and the authors did not

observe changes in pituitary size. The deletion was achieved in 20% of

pituitary cells leading to a qualitative reduction in one of the PRLR-

mediated signaling activation, pSTAT5. Interestingly, these mice

presented an elevated dopamine tone, suggesting a strengthening in

the inhibitory input as a compensatory mechanism of the constitutive

deficiency of PRLR inhibitory effect in lactotrophs (14).

So far, all these backgrounds suggested that 1) PRL can exert an

effect on lactotrophs inhibiting proliferation, 2) That effect is

independent of dopamine, and 3) In a hyperprolactinemic context,

this physiological mechanism could be impaired.

Apart from the knockout mouse models described above, other

evidence suggested that PRL could be implicated in regulating

lactotroph cell turnover. In rats, two-week treatment with estradiol

leads to hyperprolactinemia. Although pituitary hyperplasia is

observed in this animal model , the apoptot ic rate of

hyperprolactinemic estradiol-treated rats is higher than control

ovariectomized females (15). Although the role of dopamine and

estrogens themselves could not be excluded at the time, the presence

of PRL and an elevated apoptotic rate was suggestive of a relationship

between PRL and the regulation of pituitary turnover.

Nevertheless, a question remained elusive: Does PRL act directly

on lactotrophs through PRLR activation?
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3 Prolactin effects on pituitary
lactotrophs: Evidence for direct effects

Apart from the knockout mouse model and the chronic estradiol

treatment described above, other evidence suggests that PRL can be

implicated in regulating lactotroph cell turnover in vivo. One is that

the induction of acute hyperprolactinemia by PRL injection leads to a

decrease in pituitary proliferation and an increase in the apoptotic

rate, particularly in lactotroph cells. The same is observed when

hyperprolactinemia is induced by acute treatment with a D2R

antagonist. This evidence illustrates a possible dopamine-

independent effect of PRL on lactotrophs (16).

The implication of a PRLR-mediated effect of PRL was further

confirmed in male and female transgenic mice constitutively

expressing a PRLR antagonist. Both males and females that lack

PRLR activation either by the presence of a PRLR antagonist or by

lacking PRLR (e.g., PRLR KO mice) present pituitary hyperplasia and

altered proliferation and apoptotic rates (16, 17).

Interestingly, circulating hormones regulate anterior pituitary cell

proliferation and apoptotic rates in female rodents. The proestrus

seems to be an essential regulation point of cellular homeostasis at the

pituitary level. Estradiol, TNF-Alpha, FasL, and dopamine induce

apoptosis, particularly during this estrous cycle stage. The highest

proliferative rate occurs in estrus, whereas the highest apoptotic rate

occurs in proestrus, leading to a balance in the apoptosis/proliferation

rate in the tissue. This apoptosis peak coincides with the PRL peak

and is absent in PRLRKO females, even before tumor formation

(around 6 months old), although hyperprolactinemia has been

evident since early ages (6, 13). Thus, a cumulative lack of PRLR-

dependent apoptosis could explain the later pituitary hyperplasia in

this animal model (16).

The alteration of low but recurrent apoptotic rates was also

observed in females where the PRLR was constitutively

antagonized. These mice also present an altered proliferation rate

and develop pituitary hyperplasia (16).

Studying autocrine factors can be challenging since adding the

agonist to a system already exposed to that factor can mask some

effects, pushing the system to non-physiological conditions. So, it was

not until later, with the use of a PRLR antagonist, that question could

be further clarified (18).

The inhibition of the PRLR activation by locally produced PRL

showed that local PRL acts as a proapoptotic and antiproliferative

factor in both primary cultures and the tumor-derived GH3 cell line

(16, 17).

This body of evidence supports the physiological Role of

autocrine/paracrine PRL in modulating cell turnover homeostasis

and that alterations in this mechanism could lead to enhanced

pituitary tumorigenesis.
4 Mechanism of action of PRL in
Lactotrophs

PRL acts through a receptor belonging to the class I cytokine

receptor group, a group of transmembrane-step proteins that share

conserved sites in the extracellular and intracellular domain and do
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not possess intrinsic tyrosine kinase activity (19). Alternative

processing of the primary transcript of the PRLR gene gives rise to

different isoforms, which differ in the length of the amino acid chain

of the intracellular portion but share identical extracellular portions

and transmembrane domains (19–21). These isoforms are called long

and short (or several types of short isoforms depending on the

species) because of the length of their intracellular portion (358 and

57 amino acids, respectively) (19). The long isoform contains the box

1 and 2 regions, while the short isoforms lack the latter (22, 23).

The phosphorylation of PRLR depends on the binding of the

intracellular portion of PRLR to intracytoplasmic kinases. PRLR is

constitutively associated with proteins in the Janus kinase family,

specifically, the JAK2 protein. Phosphorylated tyrosine residues

possess the ability to bind transcription factors with SH2 domains,

such as the family of transducer and transcription activator proteins

(STAT, signal transducer and activator of transcription). After being

phosphorylated, STAT proteins translocated to the nucleus and

modulate the expression of specific genes (11, 20). The STAT

family of proteins includes STAT 1, 3, and 5, and the latter is most

often associated with the PRLR signaling pathway (18, 24). While all

class I cytokine receptors can recruit proteins from the STAT family,

the specificity of signaling occurring by binding a specific ligand to a

given receptor is given by the subset of STAT proteins that each

receptor recruits. Thus, it has been postulated that signaling through

JAK2/STAT5 would be the specific pathway of the PRLR (24). Other

proteins with the SH2 domain can be recruited by PRLR, such as the

socs family proteins, SOC1-SOC7, and CIS (20). These PRL-induced

proteins bind to and inhibit JAK2 activity by forming JAK-SOCS or

JAK-SOCS-PRLR complexes. In addition, PRL induces the expression

of the protein inactivator of activated STAT (PIAS). These proteins

exert negative feedback by inhibiting the JAK/STAT signaling

pathway, inhibiting PRL signaling. In addition to the JAK/STAT

pathway, PRLR is very well known to activate other signaling

pathways such as MAPK, Src (21), phosphoinositide-3 Kinase

(PI3K)/Akt (25), or Nek3-vav2-Rac1 (22).

Since the JAK2 protein is associated with the intracellular portion

proximal to the membrane, both LPRLR and SPRLR can bind to this

enzyme. However, only the long isoform is phosphorylated by the

activation of JAK2 since the tyrosine residues of the receptor

susceptible to being phosphorylated in the terminal C portion of

the PRLR are not present in the short isoform of the receptor (20).

Therefore, PRL can activate or inhibit other pathways, such as MAPK

and phosphatidylinositol 3 kinase (PI3K), without recruiting STAT

proteins (21, 26, 27). In breast cancer cell-derived cell lines, PRL

activates both Src family kinases and the JAK/STAT, as well as PI3K/

Akt and MAPK signaling pathways. Whereas activation of MAPK

occurs independently of STATs protein recruitment, it depends on

JAK activation with PI3K as an intermediate cascade (26). In the

ovary, PRL activates ERK1/2 and p38 MAPK independently of the

JAK/STAT pathway by specific activation of the short isoform of the

receptor (28). Hepatocytes express the PRLR short isoform in rodents

(29, 30), and PRL inhibits the MAP3K-/c-Myc pathways in these cells

Since the PRL action is mediated by that isoform of the PRLR (31),

whereas other actions are mediated by the PRLR Long/JAK/STAT5

pathways (32, 33).

Adding to the complexity of the PRL/PRLR isoform and signaling

puzzle, the expression of PRLR can be modulated by endocrine
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factors. Apart from sex differences, in hormone-responsive tissues,

the expression of PRLR is variable in either reproductive stages or

along the sexual cycle (16, 24, 28, 29, 34–36).

The rat, mouse and human adenohypophysis express both

isoforms of PRLR (16, 29, 37–39). While the ratio of LPRLR to

SPRLR isoforms is approximately 13:1 in males, it is variable along the

estrous cycle in females, and the PRLR expression is higher in

diestrus, with changes in the ratio that varies from approximately

36:1 in diestrus to 1:1 in proestrus (16, 17, 29).

Since both LPRLR and SPRLR isoforms are expressed in the

pituitary, either isoform could mediate the effect of PRL action in

lactotrophs. In this regard, a study showed that mice lacking the

LPRLR isoform present high serum prolactin levels. This indicates a

partial impairment in the negative feedback mechanism acting in the

hypothalamus and the pituitary, supporting a role for the long

isoform of the PRLR in controlling PRL levels (22).
5 Prolactin, prolactin receptor, and
signaling pathways associated with the
control of cellular turnover

The lactotroph function is controlled by several intracellular

pathways controlling hormone production, secretion, and

cell survival.

Prolactin gene expression is modulated by various signals,

stimulatory such as estradiol and inhibitory such as dopamine, that

Converge in several signaling pathways such as the AMPc/PKA, PKC,

or MAPK pathways (19, 40, 41). The secretion of PRL is another

control point, regulated mainly through calcium-dependent-

mechanisms (42, 43) which can depend on the cell’s electrical

activity, e.g., voltage-dependent calcium entry or signaling

molecules such as IP3, initiated chiefly by Gq/11-coupled membrane

receptors (44).

The specific intracellular signals that control lactotrophs’

proliferation, death, and phenotype under physiological and

pathological conditions also result from systemic, hypothalamic,

and intrahypophyseal signals. Regardless of the signal trigger

(estrogens (45–47), dopamine (8, 48), or TGF-b (9), for example),

some intracellular signaling pathways have been identified as critical

regulators of proliferation and apoptosis in both normal and tumoral

lactotrophs. All these pathways are also susceptible to modulation

by PRL.

The MAPK pathway is a pathway in which several extracellular

signals converge, and particularly ERK is dysregulated in cell lines

derived from prolactinomas (49, 50). The PI3K-Akt pathway is a

proliferative pathway inhibited by dopamine, which also regulates the

MAPK/ERK pathway, and both pathways work together, regulating

cell proliferation (51). However, a Ras/MAPK mutation alone does

not promote tumorigenesis in lactotroph cells (7). TGF-beta regulates

transcription by recruitment of Smad proteins but also, through its

so-called non-canonical pathway, regulates ERK1/2 and Jun kinases,

PI3K, and Akt proteins (52, 53).

A balance between proliferation and apoptosis keeps the cell

turnover. The evidence of factors controlling lactotrophs apoptosis

has been less studied than the proliferative factors. Dopamine and
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estradiol have been extensively studied among the apoptosis factors

for lactotroph cells. It was described that dopamine induces

adenohypophysis cell apoptosis by activating p38 MAPK or

oxygen-reactive species generated by dopamine metabolism (48,

54), by activation of the MEK/ERK1/2 pathways (55), and estrogens

sensitize to cytokine-induced cell death by regulating transcription

factor NFК-B (56) and protein balance of the Bcl-2 family (57). This

apoptotic protein family is modulated by dopamine (58) and PRL.

The activation of PRLR leads to the phosphorylation of JAK and

nuclear translocation of phosphorylated STAT5. Although PRLR-

activated pathways are usually associated with cell differentiation or

proliferative effects (11, 19–22), these pathways can also induce

apoptotic effects. For example, STAT5 phosphorylation mediates

the apoptosis of osteosarcoma-derived cells and cerebellar neurons

by regulating the Bax/Bcl-2 ratio (59–61). The JAK2/STAT5-

dependent balance towards proapoptotic Bax proteins leads to

apoptosis in lactotroph cells (62).

PRLR downregulates MEK/Erk1/2 and PI3K/Akt pathways,

leading to apoptosis and decreased proliferation (62). Furthermore,

the mutation of a splicing factor, SF3B1, was associated with a bad

prognosis. This mutation stimulates the PI3K/Akt pathway in

prolactinomas, increasing tumor invasiveness (63). Similar

pathways have been identified as therapeutic targets in

prolactinoma by studying differentially expressed mRNA together

with microRNAs (64).

In their recent review, Biagetti et al. identified potential

therapeutic options related to relevant signaling pathways for the

treatment of dopamine-resistant prolactinomas, highlighting the

JAK/STAT3, PI3K-Akt-mTOR, MAPK/AMPK, and JAK2/STAT5

pathways. All of them are related to paracrine/autocrine PRL effects

in the pituitary; for all, there are already described pharmacological

modulators and thus are relevant pharmacological targets for

potential aggressive prolactinomas. Nevertheless, no clinical trial

currently assesses these therapeutic options (65).
6 Prolactin receptor expression and
associated genetic alterations related
to PRL-secreting adenomas

Suppose the PRLR mediates a physiological autocrine/paracrine

control of the lactotroph population by PRL. In that case, mutations

in this receptor are expected to be related to the formation,

progression, or prognosis of PRL-secreting adenomas.

In 2013, a loss-of-function PRLR mutation was described in the

extracellular domain-encoding region. The mutation was present in a

family with autosomal dominant hyperprolactinemia. This mutation

leads to an impairment in the JAK2/STAT5 signaling, and although

no changes in the pituitary size were observed at the time of the study,

this can indicate that the PRLR/JAK2/STAT5 activation can be a

relevant control mechanism of lactotroph function in humans (66).

The first analysis of inactivating germline mutations of PRLR was

not associated with prolactinomas concluding that most

prolactinomas occur independently of germline changes in the

PRLR gene (67). Nevertheless, in 2019, two germline PRLR

intracellular domain variants were later associated with
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prolactinoma manifestation. Interestingly, one of those variants

results in the overactivation of the Akt-related pathways (68).

Although genetic mutations are not the leading cause of

prolactinoma development, since PitNETs are mainly sporadic (4,

69), the studies mentioned above can shed light on the mechanisms

tha t cou l d be a l t e r ed du r i ng th e i n i t i a l pha s e s o f

prolactinoma development.

Since both loss-of-function and gain-of-function genetic

alterations can lead to alteration in the lactotroph function, it is

possible that a balance between PRLR cascades plays a role in the

maintenance of lactotrophs homeostasis and that the lack of

equilibrium in the intricated pathway network, as discussed

previously, can lead to clinical manifestations. Given the complexity

of the PRL and lactotroph turnover regulation, more efforts should be

put into understanding the interconnections between receptors,

isoforms, and signaling pathways to elucidate the physiological

relevance of PRLR in the control of lactotroph function in vivo.
7 Discussion

Prolactin-secreting PiNETs that do not respond to standard

treatments with dopamine agonists imply a large number of

patients annually around the globe. It has been proposed that

prolactinomas have a monoclonal origin (4), and although several

oncogenes are overexpressed in these tumors, the pathophysiological

processes that lead to the formation of prolactinomas have not yet

been established (4, 7, 19). From the analysis of familial pituitary

tumors, a series of oncogenes involved in tumor development have

been proposed, but most prolactinomas (more than 95%) occur

spontaneously, and these oncogenes do not explain their

appearance (7, 70). Although progression to invasive and metastatic

tumors is rare, lactotroph macroadenomas are one of the

predominating types (71–73), and the mechanism leading to

malignant transformation is currently unknown (74).

Since the adenohypophysis is a gland with high plasticity (75),

a l terat ions in the mechanisms that normal ly regulate

adenohypophysis cell renewal could be involved in developing

pituitary tumors (38).

The evidence presented here suggests a significant role of PRL in

the pathogenesis of prolactinomas. Such implications can be

considered in two main scenarios. In one scenario, alteration of

PRLR-related actions locally at the pituitary level, either initiating

or contributing to tumor development. The second is the effect of PRL

at the hypothalamic level, controlling neuroendocrine functions, such

as dopamine or potentially other hypothalamic factors, that further

control the pituitary’s cell physiology.

At the hypothalamic level, prolactin feedback onto TIDA neurons

contribute to maintaining lactotroph homeostasis by negative

feedback that restores dopamine inhibitory input to the pituitary

(76). In the adenohypophysis, PRL possesses proapoptotic and anti-

proliferative effects, which are critical for maintaining tissue

homeostasis of the gland in rodent models, in an interplay with

mainly hypothalamic factors (13, 14, 16, 17, 77). Deficiencies in PRLR

signaling due to PRLR activity alterations or wrong intracellular
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pathway connectivity, crosstalk, or co-regulation exerted by other

factors, such as hypothalamic or paracrine mechanisms, can lead to

pituitary hyperplasia and eventual tumor development.

The intracellular signals that regulate the specific phenotype of

lactotrophs, as well as the control of their proliferation and the

death of these cells, are very little known in humans (7, 78).

Approaching how prolactinomas develop from studying

intracellular signaling pathways that regulate the proliferation

and apoptosis of lactotrophs and the study of a physiological

regulator of these pathways, PRL, is necessary to understand the

pathophysiology of the development of tumors in this gland.

Identifying therapeutic targets that contribute to the design of

new treatments will be possible if new hypotheses are tested and

efforts are currently required to understand the mechanisms in

human pituitaries.

Prolactin, dopamine and other factors control lactotroph

homeostasis (7, 19, 48, 52, 65). For patients where dopamine

agonists are inefficient, it is worth consideringwhether the

pathogenesis of those tumors is the same as in those responsive to

dopamine. The field usually includes prolactinomas in a unique group

in which, first, a dopamine agonist is administered, and in case of

treatment failure, surgery and a very limited pharmacological toolbox

are considered, although the probability of success is decreased (2,

79). Merely adding other players in the lactotroph physiological

regulation may help to understand if tumors categorized as

“refractory to treatment with dopamine agonists” involve a different

pathophysiological mechanism.

If such factors can be identified, the exploration, for example, of

PRLR or PRLR-associated pathways, not only in terms of mutations

but also in gene expression regulation or modulatory molecules using

high throughput technologies in patients, could help in designing a

specific personalized therapy (63, 65, 67, 68),

The approach to the knowledge of how prolactinomas develop

from studying physiological factors that control the intracellular

signaling pathways that regulate the proliferation and apoptosis of

lactotrophs is critical, and PRL is a promising candidate.
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treatment - Exploring anti-PRLR
signaling strategies

David Standing, Prasad Dandawate and Shrikant Anant*

Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
Prolactin (PRL) is a peptide hormonemainly secreted from the anterior pituitary

gland. PRL is reported to play a role in pregnancy, mammary gland

development, immune modulation, reproduction, and differentiation of islet

cells. PRL binds to its receptor PRLR, which belongs to a superfamily of the class

I cytokine receptor that has no intrinsic kinase activity. In canonical signaling,

PRL binding to PRLR induces downstream signaling including JAK-STAT, AKT

and MAPK pathways. This leads to increased cell proliferation, stemness,

migration, apoptosis inhibition, and resistance to chemotherapy. PRL-

signaling is upregulated in numerous hormone-dependent cancers including

breast, prostate, ovarian, and endometrial cancer. However, more recently, the

pathway has been reported to play a tumor-promoting role in other cancer

types such as colon, pancreas, and hepatocellular cancers. Hence, the signaling

pathway is an attractive target for drug development with blockade of the

receptor being a potential therapeutic approach. Different strategies have been

developed to target this receptor including modification of PRL peptides (Del1-

9-G129R-hPRL, G129R-Prl), growth hormone receptor/prolactin receptor

bispecific antibody antagonist, neutralizing antibody LFA102, an antibody-

drug conjugate (ABBV-176) of the humanized antibody h16f (PR-1594804)

and pyrrolobenzodiazepine dimer, a bispecific antibody targeting both PRLR

and CD3, an in vivo half-life extended fusion protein containing PRLR

antagonist PrlRA and albumin binding domain. There have also been

attempts to discover and develop small molecular inhibitors targeting PRLR.

Recently, using structure-based virtual screening, we identified a few

antipsychotic drugs including penfluridol as a molecule that inhibits PRL-

signaling to inhibit PDAC tumor progression. In this review, we will

summarize the recent advances in the biology of this receptor in cancer and

give an account of PRLR antagonist development for the treatment of cancer.
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PrlR, antagonist, small molecule inhibitor, immunotherapy, antibody-drug conjugate
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1 Introduction

Prolactin (PRL) and its cognate receptor, prolactin receptor

(PRLR), have been characterized in hundreds of biological

functions, especially mammary gland development and

lactation. PRL is a peptide hormone that resembles the growth

hormone due to a conserved helix bundle composition. It is

largely produced by the lactotrope cells of the anterior pituitary

gland as a pro-hormone that undergoes proteolytic cleavage to

produce a 199 amino acid active peptide (1). However, aberrant

PRL levels are also observed in disease states, which may also be

related to its synthesis from the affected tissues including the

prostate, skin, adipose tissue, endometrium, myometrium,

immune cells, brain, and breast tissues (2). It can therefore

participate in paracrine and autocrine signaling functions related

to cell homeostasis and growth (3). Composed of 4 parallel alpha

helices, PRL, binds to PRLR via several residues, including Lys-

69, Tyr-169, and H180 of Site 1, and Arg-24, Lys-124 within the

Gly129 cavity and Glu-43 within the N-terminus of Site 2,

stimulating dimerization of PRLR on the cell surface, leading

to activation of canonical signaling via Janus kinase (JAK)-signal

transducer and activator of transcription (STAT) (Figure 1)

(4–8).

Extrapituitary prolactin is thought to be regulated primarily

at the transcriptional and translational level. In contrast,
Frontiers in Endocrinology 02
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lactotrope cells have large vacuolar stores of PRL, which can

be released by calcium-dependent exocytosis. Transcription of

PRL mRNA in tissues other than the pituitary is regulated by an

alternative promoter upstream of the site utilized by lactotrope

cells (9). Transcripts generated from alternative promotor driven

transcription results in inclusion of an additional exon1a within

the 5’untranslated region of the transcript. However, this does

not alter the amino acids of the encoded protein (10). While

pituitary PRL synthesis and release is sensitive to regulation by

dopamine, typically extrapituitary PRL is not (11). An exception

to this is in the context of adipocytes in which PRL is dependent

on dopamine (12). The mechanisms that control expression of

PRL at extrapituitary sites is poorly understood; however, the use

of an alternate promoter indicates site specific regulation of PRL

transcription to modulate expression, which warrants further

study especially during tumorigenesis (13).

PRLR is a type 1 cytokine receptor, encoded by the PRLR

gene on chromosome 5. Conserved homology permits binding

by human growth hormone (GH) in addition to PRL. In

humans, the PRLR gene contains 11 exons and is widely

expressed throughout the body (14). PRLR can undergo

alternatively splicing events resulting in the expression of

several PRLR isoforms, with tissue specificity. These isoforms

have modified cytoplasmic domains, but share identical

extracellular domains that bind PRL. Moreover, PRLR lacks
FIGURE 1

Schematic of PRL : PRLR signaling. PRL binds to PRLR, inducing JAK2 association that leads to downstream activation of multiple pathways that
include STAT3, STAT5, PI3K, AKT, and ERK.
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intrinsic kinase activity, thus necessitating dependency on

associated kinases such as the Janus kinases (JAKs) to further

transduce signaling. PRLR is a single pass transmembrane

protein that has two conserved cytoplasmic regions, Box1 and

Box2, which are responsible for association with JAK2 (15).

PRLR signaling plays a major role in numerous biological

functions, primarily mammary gland development and

lactation. However, due to the widespread expression of PRLR

within tissues, aberrant activation of this signaling has been

linked to progression of prostate, breast, cervical, ovarian, and

pancreatic tumors (16).

High expression of PRLR and circulating PRL can drive the

expression of genes involved in proliferation, migration, and

invasion of cancer cells. In breast cancer, PRL-mediated JAK/

STAT signaling contributes to endocrine therapy resistance in

conjunction with elevated HER2, by activating oncogenic factors

such as MYC, FOS, and JUN (17). This has been shown to be

mediated, in part, by the estrogen independent activation of ERa
by PRL, both in vitro and in vivo (18, 19). In particular, PRL has

been shown to activate ERa through a PAK1 mediated

mechanism, circumventing the mechanism of action of anti-

estrogen therapies (20). Others have shown that PRL participates

in endocrine therapy resistance through the activation of PRLR,

and stimulating downstream signaling pathways that include

STAT5, ERK1/2, and PI3K (20–22). With prostate cancer, PRL

overexpression contributes to increased hyperplasia of prostatic

t i ssues , thereby elevat ing the r isk for developing

adenocarcinomas. Epidemiologic studies have linked PRL and

STAT5 with higher grade tumors and more aggressive disease

(23). Enhanced PRLR signaling in gynecological, pancreatic, and

co lorec ta l tumors promotes metas ta t i c potent ia l ,

chemoresistance, and pro-survival signaling events (24–27).

Briefly, preincubation of PRL for 1 hour abrogated cisplatin-

induced apoptosis of ovarian and endometrial cancer cells, as

determined by Annexin V/PI staining (27). The authors

demonstrate significant activation of Ras signaling, as well as

STAT3, ATF-2, MEK1, CREB, and p53 within 5 minutes of PRL

stimulation (27). Interestingly, GH has been shown to induce the

expression of ABC efflux transporters (ABCB1, ABCB5, ABCC1,

ABCC2, ABCG1, and ABCG2), contributing to acquired drug

resistance (28). Concurrently, PRL has been shown to induce the

expression of ABCG2 through the activation of STAT5, leading

to binding at consensus sequences upstream of the ABCG2

transcription start site (29). Moreover, the authors further

demonstrated that STAT5 was required, but insufficient for

PRL induced transcription, as MAPK and PI3K inhibitors also

decreased PRL induced ABCG2 expression, without affecting

STAT5 DNA binding (29). In our own studies with pancreatic

cancer, we observed that PRLR signaling potentiated invasive

cell behavior and stemness through JAK2/STAT3 and ERK

phosphorylation (25). We had previously observed in colon

cancer, that PRL enhanced stemness in a JAK2/STAT3/ERK

dependent manner by modulating Notch signaling (26).
Frontiers in Endocrinology 03
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Interestingly, in both pancreatic and colon cancer, we did not

observe activation of STAT5 (25) As such, PRLR signaling plays

an extensive role in human cancers, which has led to research

directed towards developing therapeutic strategies to

modulate activity.

Due to the strong evidence supporting the critical role of

PRL and PRLR in human cancers, various approaches have

attempted to modulate activity both by suppressing downstream

signaling as well as by developing PRLR antagonists. These

strategies will be discussed in more detail later. In brief, the

use of a PRL antagonist peptide, G129R, was shown to block the

PRL : PRLR signaling axis in ovarian cancer mouse models (30).

This resulted in greater than 90% reduction in tumor weights

compared to controls, when used in combination with the

standard-of-care agent paclitaxel. A preclinical study of the

anti-PRLR antibody REGN2878-DM1 suggested induction of

cell-cycle arrest and apoptosis in PRLR expressing breast cancer

cell lines, and also exhibited synergistic activity with fulvestrant

(31). In preclinical studies with pancreatic cancer, we identified a

small molecule Penfluridol to inhibit PRL induced JAK/STAT

activation by competitively binding to PRLR. This resulted in

suppression of cancer cell growth in vitro and in vivo (25). The

efficacy of these preclinical studies demonstrates the validity of

targeting PRLR while also establishing the critical role of PRL :

PRLR signaling in human cancers.

In this review, we discuss the current research strategies

directed towards PRL : PRLR inhibition. Due to the extensive

expression of PRL and PRLR in various tissues, and the efficacy

of preclinical inhibitory strategies, it is clear that the PRL : PRLR

signaling axis is a critical pathway in human biology and cancers.
2 Novel approaches to target
prolactin receptor

2.1 Competitive antagonists of the
human prolactin

A class of inhibitors that was first developed to target

prolactin-sensitive pathologies such as dopamine-resistant

prolactinomas, as well as breast, prostate and pancreatic

malignancies were designed to compete with endogenous PRL

for PRLR binding (32). As such, these types of antagonists often

require higher molar concentrations compared to endogenous

PRL to ensure sufficient activity (33). Moreover, it is vital that

any unintended agonistic properties are eliminated, particularly

at high concentrations (33). As described previously, PRLR

signaling is activated by the binding of PRL to a PRLR

homodimer. This interaction is ternary in nature and has 3

intermolecular interactions referred to as sites 1-3. Site 1 and 2

interactions are between prolactin and each receptor, while site 3

is the interaction between two receptor units. Once active, this

ternary complex induces various downstream signaling
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pathways, including the JAK2-STAT3/STAT5 axis, MAP kinase,

AKT, and Src kinase pathways (8, 34). It is this ternary

interaction between PRL and PRLR that has served as the

design template for the development of competitive PRLR

antagonists, such as G129R-hPRL and Del1–9-G129R-hPRL,

which will be discussed in detail below.

2.1.1 G129R-hPRL
G129R-hPRL was developed in the early 1990s as the result

of a mutational screen of hPRL with the purpose of identifying

and characterizing binding sites in PRLR. This was based on

strategies that were utilized for growth hormone (GH) and its

cognate receptor (GHR) that yielded the discovery of a potent

GHR antagonist and drug, Pegvisomant (7, 35–39). G129R-

hPRL was tested for its inhibitory activity in the NB2 rat cell

proliferation assay, because PRL induces proliferation of these

cells. Surprisingly, instead of being an antagonist, G129R-hPRL

appeared to actually be a weak agonist, increasing the

proliferation of NB2 cells rather than suppress it (7). Binding

of G129-hPRL was confirmed by surface plasmon resonance;

however, the affinity towards site 2 of PRLR was demonstrated to

be decreased compared to WT hPRL (6, 7, 40). Based on these

findings, it was concluded that the lack of antagonistic activity

was due, at least in part, to poor affinity for site 2, leading to

insufficient hindrance of ligand:receptor interaction. Shortly

after these initial reports, several studies determined that

detection of the competitive antagonistic properties of G129-

hPRL was impacted by the bioassay used and species of origin

(41–43). A PRL-responsive luciferase reporter assay was

designed in human embryonic kidney fibroblasts (HEK293)

that were transfected with a hPRLR long isoform expressing

construct. Under these conditions, G129R-hPRL exerted potent

antagonistic activity (6). Species specific discrepancies were also

confirmed, as G129R-hPRL had reduced antagonism towards rat

PRLR (6). These findings were validated by multiple groups

using various hPRLR-mediated cell bioassays and breast cancer

cell lines (44–47). However, conflicting results were obtained

when studies were performed in Ba/F03 human cells stably

transduced with hPRLR (Ba/F03-hPRLR). When stimulated

with hPRL, Ba/F03-hPRLR cells exhibited increased

proliferation, while G129R-hPRL failed to induce antagonistic

effects, similar to results obtained previously in NB2 rat cells

(48). As such, it was hypothesized that G129R-hPRL behaves as

a weak antagonist/partial agonist in sensitive bioassays, while in

low sensitivity assays where the levels of PRLR activation

induced by G129R-hPRL is not sufficient to produce a

biological effect, it acts as an antagonist (48). Despite these

contradictory findings, many studies have since been performed

demonstrating antagonistic activity, which are outlined below.

In a recent report, it has been shown that G129R-hPRL

blocks the activity of PRL-PRLR signaling in ovarian cancer (30).

The authors demonstrate that in orthotopic mouse models

G129R-hPRL inhibits tumor growth in a dose-dependent
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manner. Moreover, prolonged treatment with G129R-hPRL at

100 mg/day resulted in a durable response, and reduced tumor

weights by 50% compared to control, while in combination with

paclitaxel produced more than a 90% inhibition (30). There was

also no apparent off target toxicity with G129R-hPRL. In in vitro

studies, the authors further demonstrated that G129R-hPRL did

not inhibit proliferation or migration in 2-dimensional

monolayer cultures of SKOV3 cells; however, in 3-dimensional

spheroid cultures of HeyA8 and SKOV3 cells, G129R-hPRL

abrogated cellular growth and induced apoptosis (30).

Furthermore, G129R-hPRL attenuated PRL induced growth

and activation of JAK2, STAT3, and STAT5 phosphorylation

in HeyA8 cells, further supporting the antagonistic properties of

G129R-hPRL (30).

Several groups have studied the role of PRLR in breast

cancer, and in the process have observed antagonistic activity

in cells treated with the G129R-hPRL analog. Chen et al. showed

that G129R-hPRL treatment inhibited proliferation of T47D

breast cancer cells and induced apoptosis within 2 hours of

treatment at a dose of 50 ng/mL (45). In regard to PRLR

signaling, Catalado et al. sought to determine the effect of

G129R-hPRL on STAT3 activation, and identified that hPRL

activated STAT3 preferentially compared to STAT5 in T47D

breast cancer cells (47). Furthermore, the authors determined

that G129R-hPRL inhibited STAT3 phosphorylation (47). This

was further confirmed by others, in which G129R-hPRL

attenuated PRL-induced activation of JAK-STAT and MAPK

pathways (44). In breast cancer xenograft models, PRL was

found to induce tumor growth of T47D and MCF-7 tumors,

while G129R-hPRL inhibited growth (49). These findings

provide evidence that targeting the PRL : PRLR signaling axis

is feasible and that the G129-hPRL has antagonistic activity. As a

result, further interest in targeting PRLR has led to several

studies focused on developing G129R-hPRL fusion proteins as

well as combinatorial therapeutic strategies.

A fusion protein of G129R-hPRL with Pseudomonas

exotoxin A (PE40) was developed and found to competitively

bind to hPRLR in T47D cells, further suppressing PRL-induced

STAT5 phosphorylation and inducing caspase-independent

cytotoxicity (50). In another study, G129R-hPRL was fused to

endostatin, and was shown to inhibit PRL-induced signaling in

T47D breast cancer cells, while further suppressing HUVEC cell

proliferation, tube formation, and tumor formation of mouse

4T1 cells in vivo (51, 52). Tomblyn et al. have examined the

combination of three G129R-hPRL based fusion proteins, which

include G129R-hPRL fusions with endostatin (an angiogenesis

inhibitor), interleukin 2 (immune modulator), and PE38KDEL

(a truncated cytotoxin) in allografts of a mammary carcinoma

cell line (McNeuA) derived from MMTC-neu mice (53).

Treatment with these fusion proteins increased the number of

cytotoxic CD8+ T cells in the tumor, while reducing recurrence

and lung metastases (53). In similar studies conducted by Scotti

et al, combining G129R-hPRL with Herceptin resulted in
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suppression of STAT3 and STAT5 phosphorylation and reduced

HER2 expression in T47D and BT474 breast cancer cells (54).

The combination of G129R-hPRL with Herceptin also

demonstrated an additive inhibitory effect on HER2 and

MAPK activation and further suppressed tumor xenograft

growth in athymic nude mice (54). Taken together, these

studies demonstrate antagonistic activity of G129R-hPRL,

despite previous confounding studies, and show the feasibility

of inhibiting PRLR signaling to suppress cancer growth.

2.1.2 D1–9-G129R-hPRL
Due to confounding evidence of agonistic activity of G129R-

hPRL, development of a second-generation PRLR antagonist

was attempted, resulting in a competitive antagonist that is

devoid of residual agonistic properties in cell culture and

animal models (55). The D1–9-G129R-hPRL is a human

prolactin core protein analog that has two modifications: 1) a

deletion of nine N-terminal amino acid residues and 2) a glycine

substitution by arginine at residue 129 (55). This second-

generation PRLR antagonist was developed following findings

from G129R-hPRL. Furthermore, crystal structures of ovine

placental lactogen (PL), a polypeptide that shares high

structural and functional similarities with PRL, and rat PRL

binding protein (PRLBP) identified that the N-terminal region

of PL is critical in site 2 binding of PRLR (56). This finding led to

in depth analyses of the N-terminal domain in PRL biological

activity (57). Multiple deletion constructs were developed

including deletion of amino acids 1-9 (D1-9-hPRL) and 1-14

(D1-14-hPRL) (58). Interestingly, the D1-9-hPRL construct

increased receptor binding affinity and biological activity,

while the D1-14-hPRL construct decreased binding affinity and

activity by modulating site 2 functionality (55, 58). Although the

effects were modest, these deletion mutations were introduced

into G129R-hPRL, intending to improve upon the antagonistic

properties of the parent construct. Both of the double mutant

analogs, D1-9-G129R-hPRL and D1-14-G129R-hPRL, exhibited
similar dose-response curves in bioassays of PRLR activity.

These new analogs failed to improve upon the antagonistic

properties of the first-generation construct, G129R-hPRL;

however, the authors did observe significant improvements

related to agonistic activity. While G129R-hPRL displayed

agonistic properties in sensitive bioassays, particularly Ba/F-LP

and Nb2 cell proliferations assays, the new double mutant

analogs failed to stimulate proliferation. These data

demonstrate that the absence of agonistic activity markedly

improved the second-generation antagonists.

Goffin et al. published a crystallographic structure of D1-9-
G129R-hPRL to understand the structural and thermodynamic

basis of PRLR antagonism (56). The authors reported no major

structural changes compared to wild type hPRL, suggesting the

pure antagonistic properties of D1-9-G129R-hPRL are due to

intrinsic mutations and deletions (56). Moreover, they compared

the physiochemical, structural, and biological properties of wild
Frontiers in Endocrinology 05
88
type hPRL and various variants including N-terminal or Gly129

mutations, either alone or in combination. The authors

determined that human PRL activity was unaffected by N-

terminal modifications; however, in the context of G129R

mutants, N-terminal deletions eliminated residual agonist

activity. Moreover, this was unrelated to site 1 affinity (56).

Conversely, N-terminal alterations impacted biological activity

only when site 2 binding was affected by G129 mutants (56). N-

terminal deletions of PRL did have measurable decreases in site 2

affinity alone, as determined by SPR; however, these

modifications were insufficient to eliminate biological activity

indicating the critical nature of G129 to hPRL function (56).

What this indicates is twofold: 1) that the N-terminus

participated in site 2 binding and 2) that residual agonism of

early PRL antagonists may be eliminated by further modifying

the N-terminus interactions with site 2.

Several studies have employed the second-generation

antagonist to dissect PRL : PRLR biology. Ferraris et al.

studied the effects of D1-9-G129R-hPRL in the turnover of

mouse anterior pituitary cells and PRLR expression in vivo

using transgenic mice constitutively expressing the analog

(59). The authors observed that the weight and proliferation

index of the pituitary gland was elevated in transgenic mice

expressing the antagonist compared to wild type mice (59).

Moreover, in vitro studies showed that D1-9-G129R-hPRL
enhanced proliferation while reducing apoptosis of GH3 cells,

a somatolactotrope and primary rat anterior pituitary cells (59).

These data suggest that PRL acts as an antiproliferative and pro-

apoptotic factor in cells of the anterior pituitary gland. Dwivedi

et al. identified hematopoietic PBX-interacting protein (HPIP)

as a novel regulator of mammary epithelial cell differentiation,

where D1-9-G129R-hPRL attenuated HPIP-mediated synthesis

of PRL, activation of AKT, and synthesis of b-casein in cultured

HC11 cells (60). Recently, synthesis and purification of D1-9-
G129R-hPRL was performed by testing different activation

temperature and chromatographic techniques including nickel-

affinity chromatography, size-exclusion chromatography and

high-performance size-exclusion chromatography (HPSEC)

(61). D1-9-G129R-hPRL was extracted with more than 95%

purity, enhanced solubility, correct folding, and without

methionine, and has a significant potential in clinical

application (61).

In the context of cancer, several groups have shown anti-

tumor activity and suppression of PRLR signaling following

treatment with the D1-9-G129R-hPRL antagonist. Treatment

with D1-9-G129R-hPRL abolished the increase in nitric oxide

production by prolactin-induced plasma membrane

carboxypeptidase D in triple-negative breast cancer cell lines

(62). It was further shown to inhibit prolactin-induced osteoclast

differentiation and bone lysis in breast cancer cells (63). Similar

inhibition of PRL-induced carboxypeptidase D was also seen in

prostate cancer (64). In addition, Hou et al. demonstrated that

while PRL increased oncogenic potential in breast cancer cells by
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stimulating HOXA1, which in turn induced STAT5, ERK

phosphorylation, and increased transcriptional activity of

ELK1, SAP1A, STAT5A and B to increase cell proliferation,

survival and anchorage dependent growth, following treatment

with D1-9-G129R-hPRL (65). The effect of D1-9-G129R-hPRL
induced PRLR antagonism was further studied by Howell et al.

in multiple breast cancer cell lines (66). As a monotherapy D1-9-
G129R-hPRL failed to demonstrate antiproliferative effects of

the cell lines, but potentiated the effects of doxorubicin and

paclitaxel when used in combination (66). Moreover, D1-9-
G129R-hPRL inhibited the growth of colonies in soft agar and

mammosphere formation supporting the rational for use in

combination therapeutic strategies for breast cancer (66). Asad

et al. have studied the effects of PRLR inhibition on glioblastoma

multiforme (GBM) pathogenesis (67). The authors identified

that PRLR was highly expressed and was further correlated with

poor survival in GBM patients (67). Moreover, D1-9-G129R-
hPRL treatment reduced the proliferation, colony formation,

chemoresistance and migration in GBM cells suggesting

potential for PRLR as a therapeutic target in GBM (67). Lastly,

D1-9-G129R-hPRL treatment prevented early stages of prostate

carcinogenesis by inhibiting STAT5 phosphorylation,

proliferation, abnormal basal-cell pattern and grade of

intraepithelial prostate neoplasia suggesting the application of

PRLR-based therapies in prostate cancer (68). Collectively, these

studies demonstrate antagonistic activity of D1-9-G129R-hPRL
and further provide solid evidence for targeting PRLR in

human malignancies.

2.1.3 Improving half-life of PRLR
antagonists In vivo

While current PRLR antagonists have shown promise in pre-

clinical applications, there remain challenges limiting their usage

in clinic. PRL and current PRL antagonists have molecular

weights of ~23 kDa, which are below the 60kDa cut-off values

for glomerular filtration by the kidneys (69). Hence, these are

quickly cleared from the blood following intravenous delivery.

Hence, the half-life of PRL in the blood is ~41 minutes (70), and

speculation towards PRLR antagonists would yield similar

results. As such, their application in a clinical setting is limited.

To overcome this challenge, Yu et al. have developed a PRLR

antagonist fusion protein designed around D1-9-G129R-hPRL,
and several additional mutations (C11S, S33A, Q73L, G129R

and K190R). In addition, the fusion protein included an albumin

binding domain (ABD) from Streptococcal protein G, also

known as ABD035, which has 46 amino acids in a three-helix

structure (71). Surface plasmon resonance of this fusion protein,

called PrlRA-ABD determined the KD to be 2.3 ± 0.2 vs 3.4 ± 0.5

nM of PrlRA alone, while PRL showed a KD value of 23 ± 4 nM

(71). Furthermore, ABD-PrlRA and PrlRA both inhibited PRL-

induced phosphorylation of STAT5 in U251-MG cells in a dose-

dependent manner (71). To understand the changes in

pharmacokinetics both PrlRA and ABD-PrlRA were injected
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subcutaneously in Wistar rats at a dose of 4 mg/kg. After 24 h,

serum was analyzed for PrlRA and ABD-PrlRA concentration

and determined to be 150 ng/ml and 15,000 ng/ml, respectively

(71). This data suggests that addition of ABD to PrlRA enhanced

its in vivo half-life by 100-fold, demonstrating the feasibility of in

vivo applications.

Additional strategies that have been effective for hGH may

also have implications for PRL antagonists. Pegvisomant is a

PEGylated G120K protein analog of hGH, and was the first drug

approved as a GHR antagonist (39). Much like PRL, hGH is

readily cleared by kidney filtration. To slow clearance,

polyethylene glycol (PEG) polymers were attached to hGH

derivatives. The authors observed significant retention of PEG-

hGH derivatives in serum compared to hGH, with measurable

concentrations detected out to ~200 hours and 12 hours,

respectively (37). Since PEGylation of hGH derivatives proved

successful, we could speculate that these strategies may be useful

for PRL antagonists as well; however there are challenges that

must be overcome with the use of PEG based polymers. PEG

chains can mask the protein binding sites, and thereby reduce

affinity of biological activity (72). Therefore, design of the

polymer is crucial to developing an effective PEGylated

protein. Nevertheless , this may provide addit ional

opportunities for improving PRL antagonist half-lives, and

warrant further study.
2.2 Antibody-based PRLR antagonists

The use of antibody-based therapeutic agents has become

attractive and one of the most successful strategies for the

treatment of various diseases, including cancer (73). The use

of monoclonal antibodies has achieved significant success in

recent years, while antibody-drug conjugates have only recently

been utilized for the treatment of solid tumors and lymphomas

(73). The anticancer effects of these monoclonal antibodies can

be due to direct receptor blockade, immune-activated cell killing,

and specific defects of antibodies on cancer vasculature and

stromal components as well as drug delivery (74–77). Specific

examples of successful monoclonal antibody therapies targeted

epidermal growth factor receptor (EGFR) (75, 78), C-MET (79),

HER2 (80), fibroblast activation protein (FAP) (81), and

cytotoxic T lymphocyte-associated antigen 4 (CTLA4) (82).

The ideal properties of monoclonal antibodies include high

selectivity towards specific target antigens, activating immune

cell responses, and modulating downstream signaling pathways

(83). Hence, antibody design is critical for successful preclinical

and clinical applications. The successful development of

monoclonal antibodies for use in a clinical setting involves

identification of the physiochemical properties of the antibody,

analysis of specificity, study of immune response and signaling

pathways as well as in vivo antibody localization, biodistribution,

toxicity, and efficacy (73). Several monoclonal antibodies have
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received approval by US Food and Drug Administration in the

recent decade, which have been summarized previously (84–87).

In the context of PRLR, the presence of a defined extracellular

domain structure makes it an attractive target for designing

monoclonal antibody based inhibitors and therapeutics. As such,

several antibodies and antibody based constructs have been

developed targeting PRLR and are being tested in preclinical

and clinical studies, which will be summarized in detail in the

following sections.

2.2.1 PRLR neutralizing antibodies
2.2.1.1 LFA102

Damiano et al. developed and characterized a neutralizing

antibody LF102 targeting human PRLR, which was shown to

inhibit the physiological functions of both autocrine and

paracrine PRL (88). The authors first generated a parental

hybridoma to LFA102 in mice immunized with recombinant

PRLR extracellular domain, then LFA102 was prepared by

humanizing the antibody (88). Using flow activated cell

sorting, the authors demonstrated that LFA102 binds to PRLR

in human breast cancer cell lines, in addition to primary breast

cancer cells (88). Moreover, LFA102 was also found to bind to

rat pre-T cell lymphoma cell line Nb2-11 suggesting this

antibody has cross-reactivity to rat PRLR (88). To assess

selectivity of LFA102, the authors used a PRLR-negative BaF3

cell line and re-expressed PRLR (BAF3-PRLR). LFA102 did not

bind to PRLR-negative BaF3 cells but was found to bind to BaF3-

PRLR (88). In addition, the antibody did not interact with cells

expressing murine PRLR. To determine if LFA102 acted through

a competitive or non-competitive mechanism with PRLR, the

authors designed a ligand competition assay using Alexa647-

labeled PRL (A647-PRL). The authors demonstrated that

LFA102 did not affect A647-PRL binding to PRLR even at

saturation concentrations of LFA102 (88), suggesting that

LFA102 is not a ligand-competitive inhibitor. To determine

whether LF102 affects PRL-mediated signaling, T47D breast

cancer cells were treated with the antibody. There was

significant attenuation of PRL-induced phosphorylation of

STAT5, AKT, and ERK in a concentration-dependent manner

(88). However, LFA102 failed to regulate PRLR signaling when

treated alone demonstrating the absence of residual

agonistic activity.

As proof of principle for in vivo activity, T47D-T2 xenografts

were generated in NOD/SCID mice and LFA102 or as control, a

human IgG1 was administered, followed by a bolus of PRL to

stimulate PRLR. Mice treated with PRL alone showed increased

levels of phosphorylated STAT5 in the tumors, while the treatment

of LFA102 inhibited this PRL-induced phosphorylation suggesting

the in vivo efficacy of LFA102 (88). In addition, LFA102 achieved a

30-56 mg/mL concentration in the serum of these mice. Detailed

pharmacokinetic and pharmacodynamics studies of LF102 were

subsequently performed. The clearance of LFA102 ranged from

1.45 to 0.92 mL/h/kg and 13.5 to 3.93 mL/h/kg in males and
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females, respectively. In addition, the mean estimated half-life was

between 1.43 and 8.99 days and 0.12 to 4.23 days in males and

females, respectively (88). Subsequently, to further understand the

antitumor efficacy of LF102, a subcutaneous xenograft model in

SCID mice was used. Mice were injected subcutaneously with

luciferase expressing Nb2-11 cells to generate tumors. These mice

were treated with a single dose of LFA102 (0.01-10 mg/kg) or

control IgG antibody, and disease burden was measured from 14

days after dosing to 4.5 months. Doses exceeding 0.3 mg/kg

displayed antitumor efficacy by day 3 post-injection. Moreover,

LFA102 treated mice (doses exceeding more than 0.3 mg/kg)

showed significantly higher survival compared to controls, with

50% of animals surviving 2-4 fold longer than IgG1 treated

mice (88).

In addition to xenograft tumor models, a carcinogen

induced model was utilized to assess LFA102 efficacy. Briefly,

7,12-Dimethylbenz[a]anthracene (DMBA) was administered to

induce rat mammary tumors. LFA102 treatment (300 mg/kg)

significantly reduced PRLR signaling and tumor growth in this

rat mammary cancer model as a monotherapy and combination

with letrozole (aromatase inhibitor, 10 mg/kg). LFA102

treatment reduced tumor volume to 809±279 mm3 from 1964

±243 mm3 in case of control, while combination of LFA102 and

Letrozole further reduced tumor volume to 436±144 mm3,

suggesting synergistic/additive anticancer activity (88). These

data demonstrated that LFA102 has the potential to be the first

effective antibody-based therapeutic agent for the treatment of

PRL-responsive malignancies.

Following these studies, the clinical efficacy of LFA102 was

assessed in patients with stage IV breast and castration-resistant

prostate cancer. In this Phase I clinical trial, patients (n=73,

female=34, male=39) received 3-60 mg/kg of LFA102

intravenously once every 4 weeks and the maximum tolerated

dose (MTD) and/or recommended dose for expansion was

determined to study the safety and antitumor efficacy of

LFA102 (89). Drug-related toxicity was not observed during

the dose escalation study, hence a MTD was not obtained during

this study. The highest tested dose of 60 mg/kg was established

as the recommended dose for expansion. The most common side

effects recorded were fatigue (44%), nausea (33%), vomiting,

constipation, and reduced appetite (21%), while 3 patients had

adverse effects, which included decreased blood phosphorus,

increased levels of serum lipase, and reduced blood lymphocyte

count (89). The mean half-life of LFA102 ranged from 6-9 days.

At the dose of 60 mg/kg, the Cmax of LFA102 was found to be

1,495 ± 589 µg/ml, and mean area under the curve (AUClast) was

230,991 ± 102,673 hour × µg/ml (89). There was no response

noted in the patients with breast cancer after LFA102 treatment.

Similarly, in prostate cancer patients, there was no PSA

response. Overall, LFA102 treatment contributed to stable

disease in 13 patients out of 73 (18%), while all other patients

67 out of 73 (92%) discontinued the study due to the cancer

progression (89). This poor response of LFA102 was thought to
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be because of insufficient exposure. The authors retrospectively

hypothesized that a more frequent dosing of LFA102, such as

once every 2 weeks, would have resulted in durable PRLR

inhibition and superior antitumor efficacy

In another Phase 1 Trial study in East Asian patients of

Japanese ancestry with breast (n=7) and prostate (n=7), similar

results were obtained for MTD and anti-tumor activity of

LFA102. Here, the antibody was administered at a dose of 3-

40 mg/kg intravenously every 4 weeks (90). There were 14

patients enrolled in the study and grade 1 or 2 toxicities were

reported in 9 patients out of 14 (64%), while the most frequent

toxicity reported was nausea in 3 patients (21%) (90). The mean

AUClast of LFA102 (40 mg/kg) was found to be 5674 ± 507 µg/

ml×day, Cmax was found to be 1089 ± 227 µg/ml, while median

t1/2 was found to be 12.1 days (90). As with the previous Phase I

trial, LFA102 did not display antitumor activity.

2.2.1.2 Anti-prolactin receptor (PRLR) antibody, F56

Cui et al. sought to design a new PRLR antagonist using a

hybridoma technique to develop a series of monoclonal

antibodies (91). After screening these antibodies, F56 was

selected that specifically antagonized PRLR as assessed by

enzyme-linked immunosorbent assay (ELISA) and western

blot. The authors performed epitome mapping which

identified a common binding epitope between F56 and PRL.

In subsequent experiments, the authors determined that F56

inhibited PRL binding to PRLR in a dose-dependent manner

suggesting that the F56 epitope overlapped with the PRL-

binding site. Furthermore, F56 treatment (0.1-5 mg/ml)

inh ib i t ed PRL- induced STAT3/5 , AKT, and ERK

phosphorylation in CHO cells expressing PRLR and Nb2 cells

in a dose-dependent manner, confirming the antagonistic

activity of F56 (91). Moreover, F56 inhibited PRL-induced

proliferation of Nb2 cells, corroborating molecular data. These

preclinical studies identified F56 as the first PRLR antagonist

that has an overlapping epitope as PRL, which has potential to

treat PRL-dependent diseases. However, early phase clinical

trials will be required to assess toxicity, and preliminary efficacy.

2.2.2 Antibody-drug conjugates
2.2.2.1 ABBV-176

Antibody-drug conjugates (ADCs) have become a popular

therapeutic design concept that combines the specificity of

antibodies and potency of payload/cytotoxic drugs. Currently,

5 antibody-drug conjugates have been approved for the

treatment of four hematological malignancies and one for solid

tumors. For the purpose of targeting PRLR, Anderson et al.

designed a novel pyrrolobenzodiazepine antibody-drug

conjugate, ABBV-176 (92). To generate the PRLR-specific

antibody used to produce the ABBV-176 ABC, a standard

hybridoma technique following immunization with the PRLR

extracellular domain was employed. The lead antibody selected

was h16f (PR-1594804) based on affinity, epitope binding and
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activity (92). Initial screening was performed on antibodies

conjugated to monomethyl-auristatin payload and studied

based on ability to inhibit proliferation of the BT474 cell line.

Based on this, the lead candidate ABBV-1776 was selected from

the panel for further analysis. Surface plasmon resonance was

performed with ABBV-176 and the extracellular domain of

human PRLR, showing a strong affinity with a KD value of 1

nM (92). In bioassays of anti-tumor activity, ABBV-176 was

found to inhibit the growth of various cancer cell lines including

breast cancer (IC50 value = 0.0055-0.77 nM), prostate cancer

(IC50 value = 0.01 nM), endometrial cancer (IC50 value = 0.6

nM), ovarian cancer (IC50 value = 0.16 nM), colorectal cancer

(IC50 value = 0.11 nM) and liver cancer (IC50 value = 5.2-8.6

nM) (92). These IC50 values were highly dependent on PRLR

expression (i.e. more PRLR receptors was associated with higher

IC50 for ABBV-176). Moreover, ABBV-176 was found to be

nontoxic to normal/immortalized cell lines in kidney, breast,

liver, lung, prostate, and vascular endothelium. Furthermore, the

antitumor activity of ABBV-176 was evaluated in the BT-474

FP2 human xenograft breast cancer model. The single dose of 0.5

mg/kg was effective in significantly reducing tumor growth (92).

A higher dose of 3 mg/kg produced the highest tumor reduction

without affecting body weight as compared to control.

Furthermore, there were no apparent physiological changes

suggesting no impact on normal tissues. Similar results were

obtained in a patient-derived xenograft (PDX) model. In these

studies, the authors established the effect of ABBV-176 (0.1 mg/

kg) in combination with the PARP inhibitor Valiparib (200 mg/

kg) in CTG-0670 triple-negative, BRCA1 deficient, BRCA2

mutant PDX tumor models (92). It was determined that

ABBV-176, both as a monotherapy and in combination with

Valiparib, significantly inhibited PDX growth. This data suggests

that ABBV-176 may be an effective therapy either alone or in

combination with PARP inhibitors for the treatment of breast

cancers (92).

Recently, Lemech et al. conducted a first-in-human Phase 1

dose-escalation study of ABBV-176 in patients with advanced

solid tumors for evaluating safety, pharmacokinetics, and

preliminary anticancer activity (93). Patients were given

ABBV-176 once every three weeks with dose escalation based

on level of exposure which was continually assessed. Drug-

related toxicities were studied following each dose escalation to

determine MTD. A group of 19 patients were enrolled, of which

11 had colorectal cancer, 6 had breast cancer and 2 had

adrenocortical carcinoma. The patients were administered 2.7-

109.36 mg/kg ABBV-176 (93). Dose-limiting toxicities occurred

in four patients, which included two cases of thrombocytopenia,

two cases of neutropenia, and one case of pancytopenia (93). The

common adverse effects of ABBV-176 reported were

thrombocytopenia, neutropenia, nausea, fatigue, increased

aspartate aminotransferase, and pleural effusions. PRLR

expression in tumors among these patients was varied, but no

patient had an objective response. Unfortunately, there was
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considerable toxicity associated with ABBV-176 in this Phase 1

dose-escalation study. One caveat is that the study analysis relied

on a small patient cohort with differential PRLR expression. This

may be the reason why no response was observed. This study

was terminated following administration of the drug to 19

patients. Therefore, further evaluation may be necessary with a

larger cohort of patients with high PRLR expression.
2.2.2.2 REGN2878-DM1

Another antibody-drug conjugate REGN2878-DM1 that is

reported to target PRLR was developed by Kelly et al. to target

PRLR positive breast cancer (31). This antibody-drug conjugate is

composed of a high-affinity anti-PRLR IgG1 antibody conjugated

to a cytotoxic maytansine derivative DM1, via a noncleavable

Succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate

linker. The antibody was generated in VelocImmune mice, which

contain genes encoding human immunoglobulin heavy and kappa

light chain variable regions. The mice were immunized with

recombinant protein of the extracellular domain of human

PRLR. Hybridomas were generated and joined to the human

IgG1 constant region. REGN2878 was selected as the lead

antibody after screening more than 300 antigen-binding clones.

This antibody was further conjugated to DM1 via a non-cleavable

SMCC (Succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-

carboxylate) l inker and purified by size exclusion

chromatography. The concentration of antibody-drug conjugate

was confirmed by UV spectroscopy and MALDI-TOF mass

spectrometry analysis. Both REGN2878 and REGN2878-DM1

were determined to have high-affinity binding to hPRLR with a

KD value of 1.05 and 1.24 nM respectively, and blocked prolactin

binding to PRLR as measured by ELISA with an IC50 value of 5.0

and 4.4 nM, respectively (31). REGN2878-DM1 also inhibited

prolactin-induced STAT5 activity in the HEK293/PRLR/STAT5-

Luc reporter cell line, demonstrating inhibition of PRLR signaling.

Moreover, REGN2878-DM1 treatment induced cell death in

breast cancer cells with IC50 values between 0.06 nM and 0.97

nM (31). Proof of principle in vivo studies were performed using

MCF7 and MCF7-PRLR over-expressing breast cancer xenograft

mouse models in NCr nude mice. The xenografts were established

and treated with a single dose, or thrice single-weekly doses of

REGN2878-DM1 (5, 10, 15 mg/kg). Single dosing of 15 mg/kg

significantly impaired tumor growth, which was also observed

with 10 and 15 mg/kg repeated injections compared to control in

both MCF7 and MCF7-PRLR overexpressing tumors (31).

REGN2878-DM1 was further tested in breast cancer mouse

xenografts of T47Dv11, which exhibit high levels of endogenous

PRLR. As seen with previous studies, REGN2878-DM1 inhibited

tumor growth in this model even at 2.5 and 5 mg/kg doses, while

complete regression was observed with the highest 15 mg/kg dose

(31). REGN2878-DM1 (2.5 mg/kg) was also test in combination

with Fulvestrant (150 or 250 mg/kg), standard-of-care for ER+

breast cancer, showed greater inhibition of tumor growth in
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T47Dv11 xenografts in mice compared to monotherapy,

suggesting synergistic or additive effects (31). Follow-up

pharmacokinetic studies, in which 5 mg/kg of REGN2878-DM1

was delivered, resulted in serum levels above 16 mg/mL for at least

10 days, suggesting a long-lasting concentration sufficient to

produce anti-tumor effects in the conducted mouse models (31).

Collectively, these data suggest that the REGN2878-DM1

antibody-drug conjugate has potential to target PRLR and may

have implications in the treatment of breast cancer with high

expression of PRLR. Further early phase clinical trials will be

required to assess toxicity, and preliminary efficacy in patients.

2.2.3 Bispecific antibodies targeting PRLR
Bispecific antibody (BsAb) is a novel technology that

contains two binding sites towards two different epitopes. This

provides significant clinical advantages compared to monoclonal

antibodies, due to an increased range of applications. Currently,

more than 110 BsAbs are being evaluated in clinical trials (94),

demonstrating the functionality, and excitement of this

technology in targeting applications for human diseases and

conditions. Two different BsAbs have been developed

targeting PRLR.

2.2.3.1 PRLR-DbsAb targeting CD3 and PRLR

Zhou et al. have recently developed a bispecific antibody,

PRLR-DbsAb, that targets both PRLR and T-cell surface antigen,

CD3 using the “Bispecific Antibody by Protein Trans-splicing”

(BAPTS) system (95, 96). Briefly, Fragment A (CD3 antibody

fusion protein) and Fragment B (PRLR antibody fusion protein)

were expressed in CHO and 293E cell lines, respectively, and

purified using protein L affinity chromatography. The authors

identified that the PRLR-DbsAb-mediated cytotoxicity of

immune effector cells is dependent on the ratio of effector to

target cells; PRLR-DbsAb showed dramatic T-cell toxicity at the

ratio of 5:1. Further, PRLR-DbsAb mediated cell killing of T47D

(PRLR high) cells was 60% at a dose of 100 ng/ml at a ratio of

10:1 (97). It was shown that PRLR-DbsAb induced cytotoxicity

via the synergistic effect of immune cell recruitment and not

solely on the combined effect of PRLR and CD3 antibody. When

T47D cells were treated with single targeting antibodies towards

PRLR or CD3 alone, they produced less cytotoxic activity

compared to PRLR-DbsAb. The EC50 values of PRLR-DbsAb

against breast cancer cell lines MDA-MB-231, MCF-7, SKBR-3,

and T47D were found to be 5.053, 1.78, 46.68, and 7.63 ng/ml,

respectively (97). Mechanistically, PRLR-DbsAb was found to

recruit T cells to PRLR expressing T47D breast cancer cells,

which further induced cytotoxicity. Moreover, PRLR-DbsAb

was found to activate T-cells in vitro as shown by increased

CD69 levels in peripheral blood mononuclear cells (PBMCs)

without target cells, while CD8+CD69+ T-cells had more activity

than CD4+CD69+ T-cells when cultured with target cells (97).

Rather, PRLR-DbsAb was found to activate CD4+CD69+ T-cells,
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while CD8+CD69+ T cell activation is dependent on

combination with the target cells engagement. Moreover,

cytokine release (IL10 and TNF-alpha) was significantly

increased after PRLR-DbsAb treatment, supporting the T-cell

activation mechanism (97). The in vivo activity of PRLR-DbsAb

was evaluated in the NOD/SCID mice where T47D cells together

with healthy human PBMCs were co-injected subcutaneously.

PRLR-DbsAb was delivered once weekly at 0.33, 1, and 3 mg/kg

intraperitoneally and compared with a 3 mg/kg PRLR

monoclonal antibody (97). PRLR-DbsAb treatment

significantly inhibited tumor growth at 0.33 mg/kg, which was

comparable to PRLR monoclonal antibody alone. At higher

doses of 3 mg/kg, PRLR-DbsAb substantially suppressed

tumor growth, as both tumor volume and weight were

impaired compared to control, and further increase survival of

mice (97). Moreover, PRLR-DbsAb stimulated T-cell infiltration

and expression of PD-L1 in these tumor tissues. Lastly, when

PRLR-DbsAb was delivered in combination with a PD-1

antibody, anti-tumor activity was enhanced against MDA-MB-

231 cells supporting the rationale of targeting PRLR with the

novel BsAbs technology for PRLR-expressing breast

cancers (97).

2.2.3.2 Growth hormone receptor/Prolactin
receptor BsAbs (H53)

As PRLR and growth hormone receptor (GHR) are closely

involved in the incidence and development of breast cancer (98)

which typically express PRLR, GHR, and GHR-PRLR

heterodimers (99), the use of a combination PRLR and GHR

antagonists may be a better strategy for breast cancer treatment.

As such, Chen et al. have used a hybridoma technology to design

a dual GHR-PRLR targeting antibody called H53 (100). Using

competit ive ELISA, receptor binding analysis , and

immunofluorescence assays, the authors identified that H53

behaved like a typical anti-idiotypic antibody (Ab2b) (100).

Further testing revealed that H53 treatment (0.05-1 mg/ml)

inhibited not only the growth of CHO cells expressing PRLR

and GHR but also PRLR-induced JAK2-STAT5 signaling (100).

H53 also inhibited the PRL-induced phosphorylation of both

STAT3 and STAT5, and AKT at a dose of 5-10 g/ml in T47D

and MCF7 breast cancer cell lines, and further attenuated PRL-

induced proliferation (100). Moreover, H53 also inhibited

clonogenic potential, and migration that was accompanied by

decreased expression of PRLR and GHR (100). The H53 BsAbs

also displayed robust antitumor activity in proof-of-principle

T47D and MCF-7 tumor xenografts models. When delivered at

15 and 30 mg/kg twice a week the expression p-STAT3/5 and p-

AKT were downregulated in tumor tissue (100). H53-treated

tumors also displayed a reduction in Ki67 that was accompanied

by increased tunnel staining, indicating that H53 induced
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apoptosis in tumor cells. This preclinical study demonstrates

the application of dual GHR/PRLR antibodies as a useful

strategy for the treatment of breast cancer by impeding the

PRLR signaling axis.
2.3 Small molecular inhibitors of PRLR

Extensive research has been conducted on developing

antibody-based targeting and competitive antagonists of PRLR,

but to date have unfortunately failed to produce sufficient

anticancer activity in clinical trials. While these strategies have

shown antagonization of PRLR in pre-clinical studies, poor

bioavailability and stability can result in less durable responses,

leading to tumor progression. While these technologies may still

produce effective therapies, and certainly warrant further

studies, an alternative solution to the noted clinical challenges

may be resolved through the development of small molecule

inhibitors. Advantages of small molecule inhibitors include oral

delivery, low/no immunogenic properties, ability to cross the

blood-brain barrier, easy to synthesize and optimize, and lower

cost due to ease in manufacturing, transport, and storage

compared to antibody based strategies (101). We have

summarized below several studies focused on developing small

molecule inhibitors for targeting PRLR, which have largely been

conducted in the context of cancer.

2.3.1 Small molecule inhibitors that target the
ECD of PRLR

Borcherding et al. sought to identify a small molecular

inhibitor targeting the extracellular domain (ECD) of PRLR

(102). First, they performed in silico docking of a virtual library

of 340,000 small molecules and evaluated their binding to the

ECD of PRLR, of which 1000 compounds were predicted to

affect PRL binding (102). Moreover, 50,000 diverse compounds

were selected in addition to the predicted 1,000 compounds

through virtual screening. For high-throughput screening, three

sequential assays were performed on selected compounds. All

three assays were designed under conditions where cells were

incubated with PRL alone, compound alone, and PRL and

compound in combination. Compounds that displayed

significant cytotoxicity in the absence of PRL were eliminated.

In the first assay, Nb2 cells, which are sensitive to PRL

stimulation, were treated with selected compounds to

determine the effect on proliferation at a concentration of 10

mM. The authors identified 120 potential compounds for further

screening. In the second assay, a stably transfected PRLR cell line

Ba/F3 was utilized for calculating IC50 values. Verification was

performed in a third assay of T47D breast cancer cells stably

transfected with luciferase reporter driven by a PRL-responsive
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promoter. Seven compounds were selected based on the IC50

values of 0.09 to 2.07 mM in the Ba/F3 assay. These were further

analyzed for PRLR ECD binding using Microscale

Thermophoresis (MST) technique. Three compounds, SMI-1,

-6, and -7 bound to PRLR-ECD with KD values of 1.26, 3.31, and

2.69 mM, respectively (102). Interestingly, SMI-1 was predicted

by virtual screening and by molecular docking. Receptor binding

was further confirmed by isothermal titration calorimetry. The

~40X ratio of antagonist/PRL binding affinities was found to be

1.26 mM vs. 29.9 nM (102). The incubation of SMI-1 and -6 at 1

mM concentration inhibited PRL-induced migration of MDA-

MB-468 cells in the Boyden chamber transmigration assays.

Moreover, both compounds also inhibited PRL-induced

proliferation of Jurkat lymphocytes, as well as PRL-induced

phosphorylation of JAK2 in Ba/F3 cells (102). SMI-6 was

selected for further testing based on the absence of in vitro off-

target toxicity. Further evaluation of SMI-6 identified that it

inhibited PRL-induced phosphorylation of STAT5 in MDA-

MB-468 cells without affecting the ability of growth hormone to

phosphorylate STAT5 in PRLR deficient-T47D cells. To study

the selectivity of SMI-6, the DiscoverX platform was used and

tested against 168 G-protein-coupled receptors (GPCRs). In

addition to PRLR, SMI-6 inhibited the serotonin receptors 2C,

2A, and hypocretin receptor 1 with IC50 values of 3.476, 2.395,

and 6.712 mM, respectively. Moreover, SMI-6 was also tested

against 468 kinases and failed to display inhibitory activity

towards the tested kinases, including JAK2 (102) .

Subsequently, the authors evaluated the anti-proliferative

activity in six breast cancer cell lines (BT474, MCF7, T47D,

MDA-MB-231, ZR75-1, and MDA-MB-468). SMI-6 produced

dose-dependent antiproliferative activity with IC50 values

ranging from 0.29-1.68 mM (102). In non-malignant cells

(fibroblasts, keratinocytes, and mammary epithelial cells) IC50

values were determined between 4.5-20.4 mM, suggesting low

toxicity and a plausible therapeutic window (102). To confirm

these findings, the authors assessed SMI-6 antitumor efficacy in

proof-of-concept in vivo models utilizing athymic nude mice

implanted orthotopically with control MDA-MB-468 cells or

with Doxycycline regulated PRL producing cells (MDA-PRL).

MDA-PRL produced larger tumors compared to control, while

delivery of SMI-6 significantly inhibited tumor growth of MDA-

PRL tumors. Moreover, SMI-6 did not show any apparent signs

of toxicity or discomfort in mice. These data demonstrate that

SMI-6 serves as a potent small molecular inhibitor targeting

PRLR that may have implications for the treatment of

breast cancer.

2.3.2 Repurposing antipsychotic drugs for
targeting the JAK-2 binding site of PRLR.

Several attempts were made to target the extracellular

domain of PRLR using competitive antagonists, neutralizing
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antibodies, antibody-drug conjugates, and small molecule

inhibitors but none have produced a clinically effective and

acceptable antitumor response to date. In our own studies, we

sought to identify novel targets involved in pancreatic ductal

adenocarcinoma (PDAC) progression, and came across a pilot

clinical trial that studied serum prolactin levels in women with

different cancers (27). The authors observed 3-4 times greater

prolactin levels in women with PDAC, which led us to

investigate the role of PRL and PRLR in pancreatic cancer. In

initial studies, we determined that PRLR is overexpressed in

PDAC patient tissues by immunohistochemistry (25). The

expression of PRLR in the normal pancreas was limited to the

islet cells, while high cytoplasmic expression was observed in

PDAC tissues. Moreover, we observed PRL released by PDAC

tissues and cell lines using IHC and ELISA techniques,

suggesting the role of both autocrine and paracrine PRL in

PDAC progression. Furthermore, when we treated PDAC cells

(MiaPaCa-2 and Panc-1) with PRL, it induced phosphorylation

of canonical JAK2, STAT3, and ERK in a time- and dose-

dependent manner, suggesting the functionality of the PRLR

in PDAC cell lines (25). Interestingly, while PRL treatment failed

to increase proliferation of MiaPaCa-2 and Panc-1 cells, we

observed a significant increase in spheroid formation and

migration (25). Furthermore, when we knocked down PRLR

(PRLR KD) from PDAC cell lines (MiaPaCa-2 and mouse

UKNC-6141) using CRISPR-Cas9 and shRNA approaches.

PRLR KD resulted in significant inhibition of proliferation,

colony formation, migration, and spheroid formation,

suggesting that PRLR regulated multiple hallmarks of cancer

progression (25). Moreover, when we treated PRLR knockdown

cells with PRL, PRL failed to induce phosphorylation of JAK2,

STAT3, and ERK suggesting the inhibition of PRL : PRLR

regulated signaling pathways. In proof-of-concept studies, we

injected PRLR knockdown UNKC-6141 cells in the pancreas of

C57BL/6 mice to generate syngeneic orthotopic tumors. PRLR

KD significantly impaired growth of orthotopic tumors

compared to controls (25). These data suggested that PRLR

affected PDAC progression and can be an attractive target for

therapeutic interventions. These studies further demonstrate the

feasibility and druggability of PRLR.

Due to limited the success achieved by targeting the PRLR

ECD, we decided to approach targeting PRLR from a different

perspective. In initial studies, we observed the presence of

multiple isoforms of PRLR in PDAC cell lines. Structurally, all

PRLR isoforms retain a conserved JAK2 binding domain.

Following PRL binding to PRLR, JAK2 binding is the first

downstream event that occurs in PRL-PRLR signaling. Hence,

we sought to target the JAK2 binding domain of PRLR. We

performed in silico virtual screening of small molecular

inhibitors using a homology model of the intracellular domain

(ICD) of PRLR, due to the lack of a published crystal structure
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for the ICD. We utilized I-TASSER software to predict inhibitors

followed by virtual screening of small molecules using the

IDOCK program. We selected two classes of compounds based

on these predictions. We decided to use a fragment-based drug

design approach to select commercially available small

molecules. Since previous attempts achieved limited success in

producing anticancer activity in clinical trials, we first screened

these compounds for antiproliferative activity against PDAC cell

lines. We found a single compound Penfluridol produced

antiproliferative activity against MiaPaCa-2 and Panc-1 cells in

a dose- and time-dependent manner, with an IC50 value of 3-4

mM concentration (25). Penfluridol is a first-generation

antipsychotic drug used for the treatment of schizophrenia.

We further performed multiple assays to study Penfluridol :

PRLR binding and inhibition of PRL-induced signaling. First, we

pretreated PDAC cells with Penfluridol at 4 mM concentration

and subsequently stimulated with PRL. We determined that

pretreatment of Penfluridol inhibited PRL-induced

phosphorylation of STAT3 and ERK in both MiaPaCa-2 and

Panc-1 cells (25). Moreover, we performed cell-based and cell-

free drug-protein binding assays. Surface plasmon resonance

and magnetic relaxometry using a peptide encoding the JAK-2

binding site of PRLR confirmed a dose-dependent response in

Penfluridol binding (25). We further validated these results

using cell-based binding assays. We performed a cellular

thermal shift assay (CETSA), in which MiaPaCa-2 cells were

treated with Penfluridol (5-20 mM) and subjected to a thermal

gradient to assess PRLR denaturation in the presence or absence

of drug. We observed that PRLR denatured at ~58°C, while

denaturation occurred at 66°C in Penfluridol treated cells,

suggesting that Penfluridol bound to PRLR and provided

stabilization to thermal denaturation (25). These results were

validated with the Drug Affinity Responsive Target Assay

(DARTS). Similarly, Penfluridol provided stability to PRLR

against pronase-induced proteolysis demonstrating Penfluridol

binding. Collectively, these data confirmed that Penfluridol

binds to PRLR.

We further tested the anticancer activity of Penfluridol in a

variety of PDAC animal models. Penfluridol was delivered at 5

mg/kg intraperitoneally for 21 days in all models. We used

UNKC6141 and KPC cell lines to generate orthotopic tumors in

C57BL/6 mice. In a second model, we used Panc-1 cells to

generate subcutaneous xenografts in Nude mice. In the third

model, we generated a PDX in NSG mice. Penfluridol produced

significant antitumor activity in all three animal models, and

further induced LC3B and p62 mediated autophagy in PDAC

cells as well as in orthotopic tumors (25). Our study is the first to

target the JAK2 binding domain of PRLR. We demonstrate that

Penfluridol binds to the PRLR ICD, and potently inhibits PRL :

PRLR signaling that results in the inhibition of PDAC growth.
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3 Summary and conclusions

It is becoming clear that PRLR mediated signaling plays a

critical role in multiple human diseases and malignancies, and

therefore is an attractive target for developing therapies. Since

the early 1990s, researchers have attempted to generate PRLR

antagonists and inhibitors with mixed success in pre-clinical and

clinical applications. While none of these studies have resulted in

FDA approval to date, they have provided a foundation for

future discoveries that may yet be exploited. At the very least,

our understanding of PRLR biology has expanded, and the

studies to date have provided tools to interrogate this to

greater depths.

First generation human PRL analogs exhibited weak

agonistic activity towards PRLR despite numerous studies

demonstrating antagonism, leading to reluctance for use in

clinic (55). This contributed to the development of second

generation analogs, such as D1–9-G129R-hPRL, which exhibits

pure antagonism across multiple bioassays. Unfortunately, there

remain challenges for clinical applications. Since these

antagonists are small peptides (~23 kDa), these are quickly

filtered by the kidneys, leading to suboptimal half-lives to

maintain a potent and durable response. Nevertheless, the

high selectivity of these analogs remains attractive with clinical

prospects. With recent technological advancements, hormone

based analogs may yet have therapeutic use. As shown in the

recent studies by Yu et al., the fusion of second generation

analogs with stabilizing proteins/peptides, such as albumin

binding domain, can extend analog half-life substantially (71).

As such, hormone analogs should not be discounted, and

certainly further investigation is warranted to determine

therapeutic implications.

Due to the clinical challenges innate to current hormone

based analogs, and the significant advancement in antibody and

protein engineering and recombinant DNA technology,

antibody-based strategies have become of interest for

antagonizing PRLR activity. Generally speaking, these

strategies are attractive due to their success for the treatment

of multiple human conditions, including cancer. Structurally,

PRLR is an attractive target for antibody-based technologies due

to the presence of a defined extracellular domain. Monoclonal

antibodies and antibody-drug conjugates targeting PRLR have

shown promising results in pre-clinical applications,

antagonizing PRL induced signaling and cellular growth and

migration (88–90, 92). Unfortunately, these have failed in Phase

I clinical trials assessing toxicity and preliminary anti-tumor

efficacy due to disease progression or development of dose-

limiting adverse effects. This potentially could be improved by

adjusting dosing frequency in therapies with minimal toxicities,

though that is highly speculative. In such cases, antibody design
frontiersin.org

https://doi.org/10.3389/fendo.2022.1112987
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Standing et al. 10.3389/fendo.2022.1112987
is essential to preclinical and clinical success, and requires

stringent study in regard to specificity, biodistribution, toxicity

and efficacy. Moreover, antibody-drug conjugates are an exciting

and novel technology. Though current designs have shown

substantial toxicity in Phase I trials, there are significant

advantages in concept design compared to monoclonal

antibodies, combining the high specificity of antibodies and

potency of cytotoxic drugs. Overall, there have been few

antibody-based strategies that have been evaluated in clinical

trials to date for targeting PRLR, largely due to the recency of

technologic developments supporting their generation. As such,

antibody based therapies may have significant potential for use

in the future, though further study and designs are required to

fully assess their prospective use.

The use of small molecule inhibitors may also provide

alternatives to inhibiting PRLR signaling, and improving upon

the challenges related to antibody and hormone based

approaches. There are significant advantages to the use of

small molecules; of particular note, oral delivery, ease of

synthesis and optimization, and cost effectiveness make small

molecule inhibitors a highly attractive approach (103). In silico

screening tools combined with bioassays can provide a high-

throughput screening pipeline for thousands of compounds.

Prospective leads can then be validated for selectivity, and

serve as scaffold platforms for additional analogs/derivatives to

improve target binding, potency, bioavailability and stability.

To date, a handful of small inhibitors have been designed for

targeting PRLR. SMI-6, developed by Borcherding et al., has

been well characterized, demonstrating high selectivity for PRLR

extracellular domain (102). Efficacy was also validated in both in

vitro and in vivomodels of breast cancer. Though SMI-6 is at the

level of experimental investigation, the potential for therapeutic

applications remains open, and certainly will be of interest to
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follow. In our own studies, we identified that Penfluridol, which

has been approved for the treatment of schizophrenia, binds to

PRLR at the JAK2 binding site within the intracellular domain

(25). Penfluridol effectively inhibited PRLR signaling and

maintained potent anti-tumor activity in multiple mouse

models of PDAC (25). Penfluridol is a first generation

antipsychotic with a long half-life, which may confer

advantages in maintaining potent and durable responses in

clinic. Unfortunately, Penfluridol is no longer licensed in the

United States based on current FDA drug database information.

Nevertheless, these studies demonstrate the feasibility of small

molecule inhibitors targeting the intracellular domain of PRLR.

With the development of more accurate in silico screening

tools, repurposing FDA approved drugs may serve as a means

for rapid approvals for treating PRLR dependent conditions

outside the original scope. FDA-approved drugs have been

extensively screened for toxicity, safety, and pharmacokinetic

and pharmacodynamic properties, and hence, may potentially

decrease overall development timelines and costs for new

applications. In this regard, It is important to address that the

majority of PRLR targeting approaches have been designed

against the extracellular domain, and it would be wise to

expand these approaches to include the intracellular domain.

Ultimately, the goal is to develop therapeutic strategies that can

modulate PRLR signaling to promote positive clinical responses,

either through agonistic or antagonistic mechanisms. For the

purpose of studying PRLR biology, we already have numerous

tools available that have been extensively characterized, and have

been outlined in this review and Table 1, yet there remain

challenges with the development of PRLR targeting

therapeutics. As such, expanding our developmental strategies

to include additional sites within PRLR may yield promising

candidates for future clinical applications.
TABLE 1 Summary of PRLR inhibitors in preclinical and clinical stages of development.

Inhibitor Class Development
Stage

Cancers tested Effects Reference

G129R-
hPRL

hPRL protein
analog

Preclinical Ovarian, Breast Inhibited cancer growth (6, 21, 36–
39, 41–46)

A1-9-
G129R-
hPRL

hPRL protein
analog

Preclinical Breast, Glioblastoma, Prostate Inhibited cancer cell growth, chemoresistance (47, 48, 50,
54–60)

ABD-
PrIRA

Neutralizing
antibody

Preclinical Glioblastoma Inhibited PRL induced signaling, extended serum half-
life

(63)

LFA102 Neutralizing
antibody

Clinical Breast, Prostate Inhibited cancer cell growth in preclinical studies, failed
to inhibit tumor growth in clinical trials

(80–82)

F56 Neutralizing
antibody

Preclinical N/A Inhibited PRL induced signaling (83)

(Continued)
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In summary, PRLR has become an attractive target for

therapeutic development due to the broad expression of PRL

and PRLR within biological tissues and human diseases.

Hormone based approaches have yielded the development of

specific antagonists, though their potential for clinical use is

limited due to rapid filtration from blood and excretion.

Antibody-based strategies have shown promise in preclinical

applications, though they have failed in clinical trials due to

toxicities and poor response. Nevertheless, there remains

potential with antibody-based approaches due to the defined

extracellular domain of PRLR. Similarly, the development of

small molecule inhibitors has also shown potential in preclinical

applications. The challenge now is to further assess lead

candidates in clinical trials, as well as design new candidates

with increased potency, with limited adverse toxicities.
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